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While much of this chapter will cover very specific aspects about the act of learning, in this section, we will present different
information that may at first seem unrelated. Some people would consider it more of a personal outlook than a learning practice,
and yet it has a significant influence on the ability to learn.

What we are talking about here is called grit or resilience. Grit can be defined as personal perseverance toward a task or goal. In
learning, it can be thought of as a trait that drives a person to keep trying until they succeed. It is not tied {
simply a tendency to not give up until something is finished or accomplished.

Figure 2.3 U.S. Army veteran and captain of the U.S. Invictus team, Will Reynolds, races to
the finish line. (Credit: DoD News / Flickr / Attribution 2.0 Generic (CC-BY 2.0))

The study showed that grit and perseverance were better predictors of academic success and achievement than
talent or IQ.
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Preface 1

PREFACE

Welcome to Calculus Volume 3, an OpenStax resource. This textbook was written to increase student access to high-quality
learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first
openly licensed college textbook was published in 2012, and our library has since scaled to over 25 books for college
and AP® courses used by hundreds of thousands of students. OpenStax Tutor, our low-cost personalized learning tool, is
being used in college courses throughout the country. Through our partnerships with philanthropic foundations and our
alliance with other educational resource organizations, OpenStax is breaking down the most common barriers to learning
and empowering students and instructors to succeed.

About OpenStax's resources
Customization

Calculus Volume 3 is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means
that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content
contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections
in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web
view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be made
available to students in low-cost print or digital form through their campus bookstore. Visit your book page on OpenStax.org
for more information.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors
sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary.
If you have a correction to suggest, submit it through the link on your book page on OpenStax.org. Subject matter experts
review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list
of past errata changes on your book page on OpenStax.org.

Format

You can access this textbook for free in web view or PDF through OpenStax.org, and for a low cost in print.

About Calculus Volume 3

Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to
enhance student learning. The book guides students through the core concepts of calculus and helps them understand
how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material,
we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar
coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.

Coverage and scope

Our Calculus Volume 3 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have
worked to make calculus interesting and accessible to students while maintaining the mathematical rigor inherent in the
subject. With this objective in mind, the content of the three volumes of Calculus have been developed and arranged to
provide a logical progression from fundamental to more advanced concepts, building upon what students have already
learned and emphasizing connections between topics and between theory and applications. The goal of each section is to
enable students not just to recognize concepts, but work with them in ways that will be useful in later courses and future
careers. The organization and pedagogical features were developed and vetted with feedback from mathematics educators
dedicated to the project.

Volume 1
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Chapter 1: Functions and Graphs
Chapter 2: Limits

Chapter 3: Derivatives

Chapter 4: Applications of Derivatives
Chapter 5: Integration

Chapter 6: Applications of Integration

Volume 2
Chapter 1: Integration

Chapter 2: Applications of Integration

Chapter 3: Techniques of Integration

Chapter 4: Introduction to Differential Equations
Chapter 5: Sequences and Series

Chapter 6: Power Series

Chapter 7: Parametric Equations and Polar Coordinates

Volume 3
Chapter 1: Parametric Equations and Polar Coordinates

Chapter 2: Vectors in Space

Chapter 3: Vector-Valued Functions

Chapter 4: Differentiation of Functions of Several Variables

Chapter 5: Multiple Integration

Chapter 6: Vector Calculus

Chapter 7: Second-Order Differential Equations
Pedagogical foundation

Throughout Calculus Volume 3 you will find examples and exercises that present classical ideas and techniques as well as
modern applications and methods. Derivations and explanations are based on years of classroom experience on the part
of long-time calculus professors, striving for a balance of clarity and rigor that has proven successful with their students.
Motivational applications cover important topics in probability, biology, ecology, business, and economics, as well as areas
of physics, chemistry, engineering, and computer science. Student Projects in each chapter give students opportunities to
explore interesting sidelights in pure and applied mathematics, from navigating a banked turn to adapting a moon landing
vehicle for a new mission to Mars. Chapter Opening Applications pose problems that are solved later in the chapter, using
the ideas covered in that chapter. Problems include the average distance of Halley's Comment from the Sun, and the vector
field of a hurricane. Definitions, Rules, and Theorems are highlighted throughout the text, including over 60 Proofs of
theorems.

Assessments that reinforce key concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Checkpoint” question. The book also includes assessments at the end of each chapter so
students can apply what they’ve learned through practice problems. Many exercises are marked with a [T] to indicate they
are suitable for solution by technology, including calculators or Computer Algebra Systems (CAS). Answers for selected
exercises are available in the Answer Key at the back of the book. The book also includes assessments at the end of each
chapter so students can apply what they’ve learned through practice problems.

Early or late transcendentals

The three volumes of Calculus are designed to accommodate both Early and Late Transcendental approaches to calculus.
Exponential and logarithmic functions are introduced informally in Chapter 1 of Volume 1 and presented in more rigorous
terms in Chapter 6 in Volume 1 and Chapter 2 in Volume 2. Differentiation and integration of these functions is covered in
Chapters 3-5 in Volume 1 and Chapter 1 in Volume 2 for instructors who want to include them with other types of functions.
These discussions, however, are in separate sections that can be skipped for instructors who prefer to wait until the integral
definitions are given before teaching the calculus derivations of exponentials and logarithms.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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Comprehensive art program

Our art program is designed to enhance students’ understanding of concepts through clear and effective illustrations,
diagrams, and photographs.
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Additional resources
Student and instructor resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, an instructor
solution manual, and PowerPoint slides. Instructor resources require a verified instructor account, which you can apply for
when you log in or create your account on OpenStax.org. Take advantage of these resources to supplement your OpenStax
book.

Community Hubs

OpenStax partners with the Institute for the Study of Knowledge Management in Education (ISKME) to offer Community
Hubs on OER Commons — a platform for instructors to share community-created resources that support OpenStax books,
free of charge. Through our Community Hubs, instructors can upload their own materials or download resources to use
in their own courses, including additional ancillaries, teaching material, multimedia, and relevant course content. We
encourage instructors to join the hubs for the subjects most relevant to your teaching and research as an opportunity both to
enrich your courses and to engage with other faculty.

To reach the Community Hubs, visit www.oercommons.org/hubs/OpenStax.
Partner resources

OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students
and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner
resources for your text, visit your book page on OpenStax.org.


/tmp/tmp7N8lCB-xhtml2pdf/www.oercommons.org/hubs/OpenStax

4 Preface

About the authors
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1| PARAMETRIC
EQUATIONS AND POLAR
COORDINATES

Figure 1.1 The chambered nautilus is a marine animal that lives in the tropical Pacific Ocean. Scientists think they have
existed mostly unchanged for about 500 million years.(credit: modification of work by Jitze Couperus, Flickr)
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Chapter Outline

1.1 Parametric Equations

1.2 Calculus of Parametric Curves

1.3 Polar Coordinates

1.4 Area and Arc Length in Polar Coordinates
1.5 Conic Sections

Introduction

The chambered nautilus is a fascinating creature. This animal feeds on hermit crabs, fish, and other crustaceans. It has a
hard outer shell with many chambers connected in a spiral fashion, and it can retract into its shell to avoid predators. When
part of the shell is cut away, a perfect spiral is revealed, with chambers inside that are somewhat similar to growth rings in
a tree.

The mathematical function that describes a spiral can be expressed using rectangular (or Cartesian) coordinates. However,
if we change our coordinate system to something that works a bit better with circular patterns, the function becomes much
simpler to describe. The polar coordinate system is well suited for describing curves of this type. How can we use this
coordinate system to describe spirals and other radial figures? (See Example 1.14.)

In this chapter we also study parametric equations, which give us a convenient way to describe curves, or to study the
position of a particle or object in two dimensions as a function of time. We will use parametric equations and polar
coordinates for describing many topics later in this text.

1.1 | Parametric Equations

Learning Objectives

1.1.1 Plot a curve described by parametric equations.
1.1.2 Convert the parametric equations of a curve into the form y = f(x).

1.1.3 Recognize the parametric equations of basic curves, such as a line and a circle.
1.1.4 Recognize the parametric equations of a cycloid.

In this section we examine parametric equations and their graphs. In the two-dimensional coordinate system, parametric
equations are useful for describing curves that are not necessarily functions. The parameter is an independent variable that
both x and y depend on, and as the parameter increases, the values of x and y trace out a path along a plane curve. For
example, if the parameter is t (a common choice), then t might represent time. Then x and y are defined as functions of time,
and (x(7), y(¢)) can describe the position in the plane of a given object as it moves along a curved path.

Parametric Equations and Their Graphs

Consider the orbit of Earth around the Sun. Our year lasts approximately 365.25 days, but for this discussion we will use
365 days. On January 1 of each year, the physical location of Earth with respect to the Sun is nearly the same, except for

leap years, when the lag introduced by the extra 1 day of orbiting time is built into the calendar. We call January 1 “day 1”

4
of the year. Then, for example, day 31 is January 31, day 59 is February 28, and so on.
The number of the day in a year can be considered a variable that determines Earth’s position in its orbit. As Earth revolves
around the Sun, its physical location changes relative to the Sun. After one full year, we are back where we started, and a
new year begins. According to Kepler’s laws of planetary motion, the shape of the orbit is elliptical, with the Sun at one
focus of the ellipse. We study this idea in more detail in Conic Sections.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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January 1
t=1)

April 2
(t=92)

October 1
@ (t = 274)

F, Sun

Figure 1.2 Earth’s orbit around the Sun in one year.

Figure 1.2 depicts Earth’s orbit around the Sun during one year. The point labeled F, is one of the foci of the ellipse; the

other focus is occupied by the Sun. If we superimpose coordinate axes over this graph, then we can assign ordered pairs to
each point on the ellipse (Figure 1.3). Then each x value on the graph is a value of position as a function of time, and each
y value is also a value of position as a function of time. Therefore, each point on the graph corresponds to a value of Earth’s
position as a function of time.

Yi

January 1
(t=1)

(x(0), ¥(1)

Figure 1.3 Coordinate axes superimposed on the orbit of
Earth.

We can determine the functions for x(¢#) and y(¢), thereby parameterizing the orbit of Earth around the Sun. The variable

t is called an independent parameter and, in this context, represents time relative to the beginning of each year.

A curve in the (x, y) plane can be represented parametrically. The equations that are used to define the curve are called

parametric equations.

Definition

If x and y are continuous functions of t on an interval I, then the equations

x=x(t)and y = y(?)

are called parametric equations and t is called the parameter. The set of points (x, y) obtained as t varies over the
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interval I is called the graph of the parametric equations. The graph of parametric equations is called a parametric
curve or plane curve, and is denoted by C.

Notice in this definition that x and y are used in two ways. The first is as functions of the independent variable t. As t varies
over the interval I, the functions x(7) and y(¢) generate a set of ordered pairs (x, y). This set of ordered pairs generates the

graph of the parametric equations. In this second usage, to designate the ordered pairs, x and y are variables. It is important
to distinguish the variables x and y from the functions x(¢) and y(7).

Example 1.1

Graphing a Parametrically Defined Curve

Sketch the curves described by the following parametric equations:
a. x()=t—-1, y)=2t+4, -3<tL2
b. x()=t>-3, y=2+1, -2<t<3

c. x(t)=4cost, y({t)=4sint, 0<Ltr<2x

Solution
a. To create a graph of this curve, first set up a table of values. Since the independent variable in both x(z)
and y(¢) is t, let t appear in the first column. Then x(#) and y(#) will appear in the second and third

columns of the table.

t x0 | )
3| -4 -2
2 | -3 0
-1 | -2 2
0 -1 4
1 0 6
2 1 8

The second and third columns in this table provide a set of points to be plotted. The graph of these points
appears in Figure 1.4. The arrows on the graph indicate the orientation of the graph, that is, the direction
that a point moves on the graph as ¢ varies from —3 to 2.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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O

x)=t—-1
yit)=2t+ 4
-3=t=2

Figure 1.4 Graph of the plane curve described by the
parametric equations in part a.

b. To create a graph of this curve, again set up a table of values.

t x9) | »@
-2 1 -3
-1 -2 -1
0 -3 1
1 -2 3
2 1 5
3 6 7

The second and third columns in this table give a set of points to be plotted (Figure 1.5). The first point
on the graph (corresponding to # = —2) has coordinates (1, —3), and the last point (corresponding

to t = 3) has coordinates (6, 7). As t progresses from —2 to 3, the point on the curve travels along a

parabola. The direction the point moves is again called the orientation and is indicated on the graph.
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x(t)=t2-3
yity=2t+1
-2=t=3

— 4 +
—5.4
Figure 1.5 Graph of the plane curve described by the
parametric equations in part b.
c. In this case, use multiples of #/6 for t and create another table of values:
t x(?) y(@) t x(0) y()
0 4 0 Iz -3~ -35 2
6
€ 2V3~35 2 43_7r -2 -2V3~-35
Z 2 2V3 ~ 3.5 3z 0 -4
3 2
z 0 4 Sz 2 -2V3~ =35
2 3
2z -2 23 %35 1z 23~ 3.5 2
3 6
Sz -2V3~ =35 2 2r 4 0
6
T -4 0

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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The graph of this plane curve appears in the following graph.
Yi

x(t) = 4cost 51

y(t) = 4sint
0=t=2nw

37

t="

-5+

Figure 1.6 Graph of the plane curve described by the
parametric equations in part c.

This is the graph of a circle with radius 4 centered at the origin, with a counterclockwise orientation. The
starting point and ending points of the curve both have coordinates (4, 0).

@ 1.1 Sketch the curve described by the parametric equations

x()=3t+2, yn=t>—1, -3<t<2.

Eliminating the Parameter

To better understand the graph of a curve represented parametrically, it is useful to rewrite the two equations as a single
equation relating the variables x and y. Then we can apply any previous knowledge of equations of curves in the plane to
identify the curve. For example, the equations describing the plane curve in Example 1.1b. are

xt)=1>=3, yn=2+1, -2<1<3.

Solving the second equation for t gives

This can be substituted into the first equation:

_(y—1)2_3_y2—2y+1_3_y2—2y—11
A ) " - 4

This equation describes x as a function of y. These steps give an example of eliminating the parameter. The graph of this
function is a parabola opening to the right. Recall that the plane curve started at (1, —3) and ended at (6, 7). These

terminations were due to the restriction on the parameter t.
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Example 1.2

Eliminating the Parameter

Eliminate the parameter for each of the plane curves described by the following parametric equations and describe
the resulting graph.

a. x(t)=\2t+4, YO =2+1, -2<t<6

b. x(f)=4cost, y(t)=3sint, 0<r<2n

Solution

a. To eliminate the parameter, we can solve either of the equations for t. For example, solving the first
equation for t gives

x = V2t+4

x> = 2t+4
x>—4 = 2
2

_ x*—-4

to= A=

2
Note that when we square both sides it is important to observe that x > 0. Substituting ¢ = £ 2_ 4 this

into y(¢) yields

yit) = 2t+1
2
— x“ -4
y = 2( > )+1
= x’—4+1
y = x2=3.

This is the equation of a parabola opening upward. There is, however, a domain restriction because
of the limits on the parameter t. When t=-2, x=%2(-2)+4=0, and when ¢=26,

x =\2(6) + 4 = 4. The graph of this plane curve follows.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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T x(t) =2t + 4
104 ¥(t)=2t+1
-2=t=6

61

21

T 15 5 4 6
—24
L

_alt=-2

Figure 1.7 Graph of the plane curve described by the
parametric equations in part a.

b. Sometimes it is necessary to be a bit creative in eliminating the parameter. The parametric equations for
this example are

x(t) =4 cos tand y(r) = 3 sint.

Solving either equation for t directly is not advisable because sine and cosine are not one-to-one functions.
However, dividing the first equation by 4 and the second equation by 3 (and suppressing the ¢) gives us

_x int =2
cost—4andsmt 3

Now use the Pythagorean identity cos’t+sin’7 =1 and replace the expressions for sin¢ and cost
with the equivalent expressions in terms of x and y. This gives

2 2
RO

This is the equation of a horizontal ellipse centered at the origin, with semimajor axis 4 and semiminor
axis 3 as shown in the following graph.
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Yi
x(t) = 4cost >
y(t) = 3sint
O0=t=27

Figure 1.8 Graph of the plane curve described by the
parametric equations in part b.

As t progresses from 0 to 2z, a point on the curve traverses the ellipse once, in a counterclockwise

direction. Recall from the section opener that the orbit of Earth around the Sun is also elliptical. This is a
perfect example of using parameterized curves to model a real-world phenomenon.

1.2 Eliminate the parameter for the plane curve defined by the following parametric equations and describe
the resulting graph.

M)=2+3, yn=1-1, 2<1<6

So far we have seen the method of eliminating the parameter, assuming we know a set of parametric equations that describe
a plane curve. What if we would like to start with the equation of a curve and determine a pair of parametric equations for
that curve? This is certainly possible, and in fact it is possible to do so in many different ways for a given curve. The process
is known as parameterization of a curve.

Example 1.3

Parameterizing a Curve
Find two different pairs of parametric equations to represent the graph of y = 2x2 - 3.

Solution
First, it is always possible to parameterize a curve by defining x(#) = ¢, then replacing x with ¢ in the equation

for y(#). This gives the parameterization

xO) =1, Yy =22-3.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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Since there is no restriction on the domain in the original graph, there is no restriction on the values of t.

We have complete freedom in the choice for the second parameterization. For example, we can choose
x(t) = 3t — 2. The only thing we need to check is that there are no restrictions imposed on x; that is, the range

of x(¢) is all real numbers. This is the case for x(f) = 3t — 2. Now since y = 2x% =3, we can substitute
x(t) = 3t — 2 for x. This gives
) =23t-2)2-2
=2(9r* - 12 +4) -2

=182 —24t+8 -2
=182 — 24t + 6.

Therefore, a second parameterization of the curve can be written as

x(f) = 3t — 2 and y(£) = 1812 — 241 + 6.

@ 1.3 Find two different sets of parametric equations to represent the graph of y = x% +2x.

Cycloids and Other Parametric Curves

Imagine going on a bicycle ride through the country. The tires stay in contact with the road and rotate in a predictable
pattern. Now suppose a very determined ant is tired after a long day and wants to get home. So he hangs onto the side of
the tire and gets a free ride. The path that this ant travels down a straight road is called a cycloid (Figure 1.9). A cycloid
generated by a circle (or bicycle wheel) of radius a is given by the parametric equations

x(t) =a(t —sint), y(t) =a(l —cost).
To see why this is true, consider the path that the center of the wheel takes. The center moves along the x-axis at a constant
height equal to the radius of the wheel. If the radius is a, then the coordinates of the center can be given by the equations
x()y=at, yYt)=a

for any value of ¢. Next, consider the ant, which rotates around the center along a circular path. If the bicycle is moving

from left to right then the wheels are rotating in a clockwise direction. A possible parameterization of the circular motion of
the ant (relative to the center of the wheel) is given by

x(t) = —asint, y(t) = —acost.
(The negative sign is needed to reverse the orientation of the curve. If the negative sign were not there, we would have to
imagine the wheel rotating counterclockwise.) Adding these equations together gives the equations for the cycloid.
x(t) = a(t —sint), y(t) =a(l —cost).
y

[ x
Figure 1.9 A wheel traveling along a road without slipping; the point on
the edge of the wheel traces out a cycloid.

Now suppose that the bicycle wheel doesn’t travel along a straight road but instead moves along the inside of a larger wheel,
as in Figure 1.10. In this graph, the green circle is traveling around the blue circle in a counterclockwise direction. A point
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on the edge of the green circle traces out the red graph, which is called a hypocycloid.

Yi
71

64
x(t) = 3cos t + cos 3t

> y(t) = 3sint — sin 3t

-7+

Figure 1.10 Graph of the hypocycloid described by the parametric
equations shown.

The general parametric equations for a hypocycloid are

x(f) = (a—b)cost+bcos(a;b)t

Y1) = (a—b)sint —b sin(“ = b)z

These equations are a bit more complicated, but the derivation is somewhat similar to the equations for the cycloid. In this
case we assume the radius of the larger circle is a and the radius of the smaller circle is b. Then the center of the wheel
travels along a circle of radius a — b. This fact explains the first term in each equation above. The period of the second
trigonometric function in both x(#) and y(¢) is equal to %.

The ratio % is related to the number of cusps on the graph (cusps are the corners or pointed ends of the graph), as illustrated

in Figure 1.11. This ratio can lead to some very interesting graphs, depending on whether or not the ratio is rational.
Figure 1.10 corresponds to a =4 and b = 1. The result is a hypocycloid with four cusps. Figure 1.11 shows some
a

b
number of cusps, so they never return to their starting point. These are examples of what are known as space-filling curves.

other possibilities. The last two hypocycloids have irrational values for <. In these cases the hypocycloids have an infinite

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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Figure 1.11 Graph of various hypocycloids corresponding to
different values of a/b.

19
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"Student PROJECT

The Witch of Agnesi

Many plane curves in mathematics are named after the people who first investigated them, like the folium of Descartes
or the spiral of Archimedes. However, perhaps the strangest name for a curve is the witch of Agnesi. Why a witch?

Maria Gaetana Agnesi (1718—-1799) was one of the few recognized women mathematicians of eighteenth-century Italy.
She wrote a popular book on analytic geometry, published in 1748, which included an interesting curve that had been
studied by Fermat in 1630. The mathematician Guido Grandi showed in 1703 how to construct this curve, which he
later called the “versoria,” a Latin term for a rope used in sailing. Agnesi used the Italian term for this rope, “versiera,”
but in Latin, this same word means a “female goblin.” When Agnesi’s book was translated into English in 1801, the
translator used the term “witch” for the curve, instead of rope. The name “witch of Agnesi” has stuck ever since.

The witch of Agnesi is a curve defined as follows: Start with a circle of radius a so that the points (0, 0) and (0, 2a)

are points on the circle (Figure 1.12). Let O denote the origin. Choose any other point A on the circle, and draw the
secant line OA. Let B denote the point at which the line OA intersects the horizontal line through (0, 2a). The vertical

line through B intersects the horizontal line through A at the point P. As the point A varies, the path that the point P
travels is the witch of Agnesi curve for the given circle.

Witch of Agnesi curves have applications in physics, including modeling water waves and distributions of spectral
lines. In probability theory, the curve describes the probability density function of the Cauchy distribution. In this
project you will parameterize these curves.

xY

Figure 1.12 As the point A moves around the circle, the point P traces out the witch of
Agnesi curve for the given circle.

1. On the figure, label the following points, lengths, and angle:
a. Cisthe point on the x-axis with the same x-coordinate as A.
b. x is the x-coordinate of P, and y is the y-coordinate of P.

c. Eisthe point (0, a).

d. Fis the point on the line segment OA such that the line segment EF is perpendicular to the line segment

OA.
e. bis the distance from O to F.
f. cis the distance from F to A.
g. dis the distance from O to B.
h. @ is the measure of angle ZCOA.

The goal of this project is to parameterize the witch using 6 as a parameter. To do this, write equations for x
and y in terms of only 6.
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Show that d = —24_.
sin @

Note that x = dcosf. Show that x = 2acotd. When you do this, you will have parameterized the

x-coordinate of the curve with respect to . If you can get a similar equation for y, you will have parameterized
the curve.

In terms of 6, what is the angle ZEOA?

Show that b+ ¢ = 2a cos(% — 6).

Show that y = 2a cos(% - 9) sin 6.

Show that y = 2a sin®@. You have now parameterized the y-coordinate of the curve with respect to 6.

Conclude that a parameterization of the given witch curve is
x = 2acot0, y=2asin20, — 0 <0< o00.

8a>

Use your parameterization to show that the given witch curve is the graph of the function f(x) = o)
x“+4a

21
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T

" Student PROJECT

Travels with My Ant: The Curtate and Prolate Cycloids

Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a
wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid,
called the curtate and prolate cycloids.

First, let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant
trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very
edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 1.13).

As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter t
represent the angle the tire has rotated through. Looking at Figure 1.13, we see that after the tire has rotated through
an angle of ¢, the position of the center of the wheel, C = (x, y), is given by

Xxc=atandyc =a.
Furthermore, letting A = (x4, y4) denote the position of the ant, we note that
Xc—xp=asintandy-—y, =acost.

Then
Xp=Xc—asint=at—asint = a(t —sin?)
Ya=Yc—acost=a—acost=a(l —cost).

Yi Y

Ya

¥

b=
>V
O

(@ (b)
Figure 1.13 (a) The ant clings to the edge of the bicycle tire as the tire rolls along
the ground. (b) Using geometry to determine the position of the ant after the tire has
rotated through an angle of t.

Note that these are the same parametric representations we had before, but we have now assigned a physical meaning
to the parametric variable t.

After a while the ant is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the
spokes toward the center of the wheel. By climbing toward the center of the wheel, the ant has changed his path of
motion. The new path has less up-and-down motion and is called a curtate cycloid (Figure 1.14). As shown in the
figure, we let b denote the distance along the spoke from the center of the wheel to the ant. As before, we let t represent
the angle the tire has rotated through. Additionally, we let C = (x, y) represent the position of the center of the

wheel and A = (x4, y4) represent the position of the ant.
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=*

@ (b)

3

(c)
Figure 1.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b)
The ant’s path of motion after he climbs closer to the center of the wheel. This is called a
curtate cycloid. (c) The new setup, now that the ant has moved closer to the center of the
wheel.

1. What is the position of the center of the wheel after the tire has rotated through an angle of ¢?

2. Use geometry to find expressions for x-— x, and for y-—y,.

3. On the basis of your answers to parts 1 and 2, what are the parametric equations representing the curtate
cycloid?
Once the ant’s head clears, he realizes that the bicyclist has made a turn, and is now traveling away from his
home. So he drops off the bicycle tire and looks around. Fortunately, there is a set of train tracks nearby, headed
back in the right direction. So the ant heads over to the train tracks to wait. After a while, a train goes by,
heading in the right direction, and he manages to jump up and just catch the edge of the train wheel (without
getting squished!).
The ant is still worried about getting dizzy, but the train wheel is slippery and has no spokes to climb, so he
decides to just hang on to the edge of the wheel and hope for the best. Now, train wheels have a flange to keep
the wheel running on the tracks. So, in this case, since the ant is hanging on to the very edge of the flange, the
distance from the center of the wheel to the ant is actually greater than the radius of the wheel (Figure 1.15).
The setup here is essentially the same as when the ant climbed up the spoke on the bicycle wheel. We let
b denote the distance from the center of the wheel to the ant, and we let t represent the angle the tire has
rotated through. Additionally, we let C = (x., y) represent the position of the center of the wheel and

A = (x4, y4) represent the position of the ant (Figure 1.15).

When the distance from the center of the wheel to the ant is greater than the radius of the wheel, his path of
motion is called a prolate cycloid. A graph of a prolate cycloid is shown in the figure.
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1
3
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(b)
. W
s b ‘\‘
;
LY a )1
= 2 Y -
(c)

Figure 1.15 (a) The ant is hanging onto the flange of the train wheel. (b) The new
setup, now that the ant has jumped onto the train wheel. (c) The ant travels along a

prolate cycloid.

4. Using the same approach you used in parts 1- 3, find the parametric equations for the path of motion of the

ant.

5. What do you notice about your answer to part 3 and your answer to part 4?
Notice that the ant is actually traveling backward at times (the “loops” in the graph), even though the train
continues to move forward. He is probably going to be really dizzy by the time he gets home!
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1.1 EXERCISES

For the following exercises, sketch the curves below by
eliminating the parameter t. Give the orientation of the
curve.

1. x=1242t, y=1+1

2. x=cos(t), y =sin(?), (0, 27x]

3. x=2t+4,y=1t—-1

4., x=3—-1t,y=2t-3,15<t<3

For the following exercises, eliminate the parameter and
sketch the graphs.
5. x=212, y=1*+1

For the following exercises, use technology (CAS or
calculator) to sketch the parametric equations.

6. [Tl x=1241, y=1>—1
7. Ml x=e", y=e¢*-1

8. [T] x=3cost, y=4sint
9. [T] x =sect,

y =cost

For the following exercises, sketch the parametric
equations by eliminating the parameter. Indicate any
asymptotes of the graph.

10. x= e’,

y= PR

11. x = 65in(260), y = 4 cos(20)

12. x=cosf, y=2sin(20)

13. x=3-2cosf, y=-5+3siné
14. x=4+2cosf, y=—1+sinf
15. x =sect,

y =tant

16. x=1In(21), y=1>
17 X = et, y = eZt

18. x=e

19. x=¢3,

25

20. x=4secd, y=3tanf

For the following exercises, convert the parametric
equations of a curve into rectangular form. No sketch is
necessary. State the domain of the rectangular form.

t

_ 2 _ 1
21. x=t 1, y >

22, x= 2 y=1+t,t>—1

23. x=4cosfh, y=3sinb, t € (0, 2x]
24, x=cosht, y=sinht

25. x=2t-3, y=6t—-7

26. x =12 y=t3

27. x=14cost, y=3—sint

28. x=\Vt, y=2t+4

3

29. x=sect, y=tant,7z§t<7”

30. x=2cosht, y=4sinht

31. x=cos(2f), y=sint
32, x=4t+3,y=16:>-9

33. x=¢% y=2Int,t>1

3. x=1, y=3Int,t>1

35. x=1t", y=nlnt,t>1, where n is a natural

number

x = In(51)
36. y= ln(t2) where 1 <r<e

x = 2 sin(8¢)
37. y =2 cos(8¢)
x =tant

38. y=sec’r—1

For the following exercises, the pairs of parametric
equations represent lines, parabolas, circles, ellipses, or
hyperbolas. Name the type of basic curve that each pair of
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equations represents.

x=3t+4
39. y=5t-2
x—4=>5t
40. y+2=1
x=2t+1
41. y=t2—3
x =3cost
42. y=3sint
x = 2 cos(3¢)

3.y =25in(30)

x =cosht
44. y =sinh ¢

x=3cost
45,y =4sint

x =2 cos(3¢)

46y = 55in(30)

x = 3 cosh(4t)
47. = 4 sinh(41)
x=2cosht
48. y = 2sinhr
x=h+rcost

49. Show that y=k+rsing Tepresents the equation of
a circle.

50. Use the equations in the preceding problem to find a
set of parametric equations for a circle whose radius is 5
and whose centeris (-2, 3).

For the following exercises, use a graphing utility to graph
the curve represented by the parametric equations and

identify the curve from its equation.
x=0+sin6

51 [1] y=1-cosf
x=2t—2sint

52. [T] y=2-2cost
x=1t—05sint

53. [T] y=1-15cost
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54. An airplane traveling horizontally at 100 m/s over
flat ground at an elevation of 4000 meters must drop an
emergency package on a target on the ground. The
trajectory  of  the package is given by
x=100¢t, y = —4.912 + 4000, t > 0 where the origin is
the point on the ground directly beneath the plane at the
moment of release. How many horizontal meters before the

target should the package be released in order to hit the
target?

55. The trajectory of a bullet is given by

x=vg(cosa)ty =vy(sina)t— %gt2 where

vo = 500 m/s, 2=9.8=98m/s> and
a = 30 degrees. When will the bullet hit the ground? How
far from the gun will the bullet hit the ground?

56. [T] Use technology to sketch the curve represented by
x = sin(47), y = sin(31), 0 < ¢t < 2x.

57. [T] Use technology to sketch
x =2tan(t), y = 3sec(t), —n <t < 7.

58. Sketch the curve known as an epitrochoid, which gives
the path of a point on a circle of radius b as it rolls on
the outside of a circle of radius a. The equations are

x=(a+b)ost—c- Cos[(a"'Tb)t]
y=(a+Db)sint—c- Sin[(a+Tb)t}

Leta=1,b=2,c=1.

59. [T] Use technology to sketch the spiral curve given by
x =tcos(t), y=tsin(¢) from -2z <t < 2x.

60. [T] Use technology to graph the curve given by the
parametric equations
x=2cot(t), y=1-cos(2t), —z/2 <t < n/2. This

curve is known as the witch of Agnesi.

61. [T] Sketch the curve given by parametric equations
x = cosh(?)

y = Slnh([) where -2 S t S 2.
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1.2 | Calculus of Parametric Curves

Learning Objectives

1.2.1 Determine derivatives and equations of tangents for parametric curves.

1.2.2 Find the area under a parametric curve.

1.2.3 Use the equation for arc length of a parametric curve.

1.2.4 Apply the formula for surface area to a volume generated by a parametric curve.

Now that we have introduced the concept of a parameterized curve, our next step is to learn how to work with this concept
in the context of calculus. For example, if we know a parameterization of a given curve, is it possible to calculate the slope
of a tangent line to the curve? How about the arc length of the curve? Or the area under the curve?

Another scenario: Suppose we would like to represent the location of a baseball after the ball leaves a pitcher’s hand. If
the position of the baseball is represented by the plane curve (x(¢), y(¢)), then we should be able to use calculus to find

the speed of the ball at any given time. Furthermore, we should be able to calculate just how far that ball has traveled as a
function of time.

Derivatives of Parametric Equations

We start by asking how to calculate the slope of a line tangent to a parametric curve at a point. Consider the plane curve
defined by the parametric equations

x(t)y=2t+3, y@®)=3t—-4, -2<1r<L3.
The graph of this curve appears in Figure 1.16. It is a line segment starting at (—1, —10) and ending at (9, 5).

Yi
54

xt)=2t+3
y(it)=3t—4
—-2=t=3

-1+

Figure 1.16 Graph of the line segment described by the given
parametric equations.



28 Chapter 1 | Parametric Equations and Polar Coordinates

We can eliminate the parameter by first solving the equation x(¢) = 2¢ + 3 for t:

x(t) = 2t+3
x—3 = 2t
t = x53.
Substituting this into y(f), we obtain
yit) = 3t—4
v = 3(E7Y)-4
The slope of this line is given by % = % Next we calculate x’ (f) and y’ (¢). This gives x' (f) =2 and y’(f) = 3. Notice

dy _dyldt 3 . . - S .
that I = dudi = > This is no coincidence, as outlined in the following theorem.

Theorem 1.1: Derivative of Parametric Equations

Consider the plane curve defined by the parametric equations x = x(¢#) and y = y(¢). Suppose that x’ (#) and y’(¢)

exist, and assume that x’ () # 0. Then the derivative % is given by

dy dyldt _y (1) (1.1)

dx ~ dxldt — x' (1)’

Proof

This theorem can be proven using the Chain Rule. In particular, assume that the parameter ¢ can be eliminated, yielding
a differentiable function y = F(x). Then y(¢#) = F(x(¢)). Differentiating both sides of this equation using the Chain Rule

yields
Yy (@ =F (x@)x' (),
S0
) _y®
F (-x(t)) - x/ (t)
But F’' (x(1)) = %, which proves the theorem.
O

Equation 1.1 can be used to calculate derivatives of plane curves, as well as critical points. Recall that a critical point of
a differentiable function y = f(x) is any point x = x(, such that either f’(xy) =0 or f’(x;) does not exist. Equation

1.1 gives a formula for the slope of a tangent line to a curve defined parametrically regardless of whether the curve can be
described by a function y = f(x) or not.

Example 1.4
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Finding the Derivative of a Parametric Curve

Calculate the derivative % for each of the following parametrically defined plane curves, and locate any critical

points on their respective graphs.
a. x(t)=1>=3, yn=2-1, -3<1<4
b. x(D=2t+1, yO)=13-3t+4, -2<1<5
c. x(t)=5cost, y({)=5sint, 0<t<2x

Solution
a. To apply Equation 1.1, first calculate x’ () and y’(?):

x' (1) =2t
Yy =2
Next substitute these into the equation:

dy _ dyldt
dx ~ dx/dt
dy _2
dx 2t
dy _1

dx 1

This derivative is undefined when ¢ = 0. Calculating x(0) and y(0) gives x(0) = (0)2 —3=-3 and
¥(0) = 2(0) — 1 = —1, which corresponds to the point (—3, —1) on the graph. The graph of this curve

is a parabola opening to the right, and the point (=3, —1) is its vertex as shown.

Yi
81

2 4 6 8 10 12 14X

x(t) =162+ 3
yit)=2t—-1
-3=t=4
_6..
t=-3
_8__

Figure 1.17 Graph of the parabola described by parametric
equations in part a.

b. To apply Equation 1.1, first calculate x’ (¢) and y’(?):

X () =2
v () = 3t% - 3.

29
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Next substitute these into the equation:

dy _ dyldt

dx ~ dx/dt

dy _3:2-3

dx 2
This derivative is zero when ¢t = +1. When ¢t = —1 we have

(=D =2(-D+1=-landy(-1) = (-1)>=3(-)+4=-1+3+4=6,

which corresponds to the point (—1, 6) on the graph. When ¢ = 1 we have

x()=2(1)+1=3andy()=(1)> =3()+4=1-3+4=2,

which corresponds to the point (3, 2) on the graph. The point (3, 2) is a relative minimum and the point

(=1, 6) is a relative maximum, as seen in the following graph.

Yi
gl
t=2
x(t)=2t+1
yit) =1t —-3t+ 4
—2=t=2

2 4 6 8 10 12%

Figure 1.18 Graph of the curve described by parametric
equations in part b.

c. To apply Equation 1.1, first calculate x’ () and y'(?):

x'(t) = =5sint

y'(t) = 5cost.
Next substitute these into the equation:

dy _ dyldt

dx — dx/dt

dy _ Scost

dx —5sint

dy _

E = —cott.

This derivative is zero when cost=0 and is undefined when sinz=0. This gives

t=0, %, 7, 37” and 27 as critical points for t. Substituting each of these into x(#) and y(f), we obtain
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t x(7) y(©)

0 5 0

% 0 5

n -5 0

3z 0 -5
2

2r 5 0

top and bottom, the derivative equals zero.

Yi
6

These points correspond to the sides, top, and bottom of the circle that is represented by the parametric
equations (Figure 1.19). On the left and right edges of the circle, the derivative is undefined, and on the

x(t) = 5cost
y(t) = 5sint

O0=t=2nw

Figure 1.19 Graph of the curve described by parametric
equations in part c.

@ 1.4 Calculate the derivative dy/dx for the plane curve defined by the equations

x(t) =12 -4, yi) =2 — 61,

and locate any critical points on its graph.

-2<tL3

31
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Example 1.5

Finding a Tangent Line

Find the equation of the tangent line to the curve defined by the equations

xO)=t*=3, yt)=2—-1, -3<t<4whent=2.

Solution

First find the slope of the tangent line using Equation 1.1, which means calculating x’ (#) and y’(?):

x'(t) =2t
v =2
Next substitute these into the equation:
dy _ dyldt
dx ~ dx/dt
y_2
dx 2t
y_1
dx U

When ¢ =2, % = %, so this is the slope of the tangent line. Calculating x(2) and y(2) gives

x2)=@2)?-3=1andyQ2) =2Q2)—1=3,
which corresponds to the point (1, 3) on the graph (Figure 1.20). Now use the point-slope form of the equation
of a line to find the equation of the tangent line:
y=yo = mx=xp)
-3 = -
y=3 Fe=1
1

y=3 = ¥=3
_ 1.5
y = 2x+2.

Figure 1.20 Tangent line to the parabola described by the
given parametric equations when ¢ = 2.
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@ 1.5 Find the equation of the tangent line to the curve defined by the equations

xt)=1>—4t, y@H)=2—61, -2<t<3whent=>5.

Second-Order Derivatives

Our next goal is to see how to take the second derivative of a function defined parametrically. The second derivative of a
function y = f(x) is defined to be the derivative of the first derivative; that is,

d’y _ A[@]
dx2  dxldx]

. dy _ dyldt . . . aody
Since I = dodr Weean replace the y on both sides of this equation with P This gives us
d*y _ 4, (@) _ (dldp\dyldx) (1.2)
dy2  dx\dx)”  dxldt

If we know dy/dx as a function of ¢, then this formula is straightforward to apply.

Example 1.6

Finding a Second Derivative

Calculate the second derivative d> y/a'x2 for the plane curve defined by the parametric equations

x()=1>=3,yt)=2t—-1, -3 <1< 4.

Solution

From Example 1.4 we know that % = % = % Using Equation 1.2, we obtain
d2y _ (dldn\dyldx) _ (dldy(1/t) _ —72 1
dx2  dxldt 2t 2t g3

@ 1.6  Calculate the second derivative d> y/dx2 for the plane curve defined by the equations
x()=t>—41, y@)=20-61, -2<t<3

and locate any critical points on its graph.

Integrals Involving Parametric Equations

Now that we have seen how to calculate the derivative of a plane curve, the next question is this: How do we find the
area under a curve defined parametrically? Recall the cycloid defined by the equations x(f) =t —sint, y(f) =1 —cost.

Suppose we want to find the area of the shaded region in the following graph.
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Yi
6+ x(t) =t — sint
y(t) = 1 — cost
34
ra 57?7 e _3;” . ° g i 37” 2m 57” 3"
_3t

Figure 1.21 Graph of a cycloid with the arch over [0, 27]

highlighted.

To derive a formula for the area under the curve defined by the functions

x = x(1),

we assume that x(7)

y = (@),

is differentiable and start with an equal partition of the interval a <7 <b.

a<t<bh,

Suppose

tg=a <t <ty <--<t,=>b and consider the following graph.

y

|

defined curve.

x(t,) x(t,)
Figure 1.22 Approximating the area under a parametrically

x(tn?‘

We use rectangles to approximate the area under the curve. The height of a typical rectangle in this parametrization is
y(x( 7 ;) for some value 7 ; in the ith subinterval, and the width can be calculated as x(t;) — x(t; _ ;). Thus the area of the

ith rectangle is given by

A

1

Then a Riemann sum for the area is

Y7 5)) () = x(2; _ ).

n

An= 20 M7 ) () = x(t; _ ).

Multiplying and dividing each area by #; — 7, _ gives

< - 1;) —x(t; _
A= X0l ) (M=

Taking the limit as #n approaches infinity gives

i=1

(ti—t;_ = 2, (1)) (%)AL

i=1

b

A= lim A, = fa Y)x' (8) dt.
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This leads to the following theorem.

Theorem 1.2: Area under a Parametric Curve

Consider the non-self-intersecting plane curve defined by the parametric equations

x=x@), y=y1, a<t<b
and assume that x(¢) is differentiable. The area under this curve is given by

b 1.3
A= [ yox @ar. 3

Example 1.7

Finding the Area under a Parametric Curve

Find the area under the curve of the cycloid defined by the equations

x(t)=t—sint, y()=1-cost, 0<Lt<2nx.
Solution
Using Equation 1.3, we have
b
A = Hx' (¢) dt
[ yox o
2
= [ (1 =cos (1 —cos ) di
0
2
= f (1 —200st+cos2t)dt
0
2
_ _ 14 cos 2¢
—fo (1 2cost+ 5 )dt

= f()ZE(%—Zcost+%2’)dt

2r
—3t_ng sin 2t
=3 2sint + 7 |0

= 3r.

@ 1.7 Find the area under the curve of the hypocycloid defined by the equations

x(t) =3cost+cos3t, y()=3sint—sin3t, 0<Ltr< 7

Arc Length of a Parametric Curve

In addition to finding the area under a parametric curve, we sometimes need to find the arc length of a parametric curve. In
the case of a line segment, arc length is the same as the distance between the endpoints. If a particle travels from point A to
point B along a curve, then the distance that particle travels is the arc length. To develop a formula for arc length, we start
with an approximation by line segments as shown in the following graph.
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A/"—‘-\‘\B

Figure 1.23 Approximation of a curve by line segments.

Given a plane curve defined by the functions x = x(¢), y = y(t), a < t < b, we start by partitioning the interval [a, b]
into n equal subintervals: fty =a < t| <, < -+ <t, = b. The width of each subinterval is given by At = (b — a)/n. We
can calculate the length of each line segment:

dy = V(x(t1) — x(tg)* + (y(t)) — ¥(tp))*

dy = x(19) = x(u)? + (v(29) = 301 ) ete.

Then add these up. We let s denote the exact arc length and s,, denote the approximation by n line segments:

(1.4)

sr Y se= 2 ) = xt_ P+ () = Y- D)
k=1 k=1

If we assume that x(#) and y(¢) are differentiable functions of ¢, then the Mean Value Theorem (Introduction to the

Applications of Derivatives (http://cnx.org/content/m53602/latest/) ) applies, so in each subinterval [t _, #;]

there exist 7, and ; such that
x(tk) - x(tk_ 1) =x' (tk)(lk — tk— 1) =x (lk)At
Y =¥t ) = [ = - ) = ' (1)

Therefore Equation 1.4 becomes

" g’

1
- B () v’

s o Y s
5
(S0

k=
[ i)
k=1
This is a Riemann sum that approximates the arc length over a partition of the interval [a, b]. If we further assume that

2

+y (Zk))z]m.

the derivatives are continuous and let the number of points in the partition increase without bound, the approximation
approaches the exact arc length. This gives
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k=1

il £ (<)

2

I
5

1

+(’ (;k)f]m

b
S @+ o 0.

A ~
When taking the limit, the values of 7, and ¢; are both contained within the same ever-shrinking interval of width Az,
so they must converge to the same value.

We can summarize this method in the following theorem.

Theorem 1.3: Arc Length of a Parametric Curve

Consider the plane curve defined by the parametric equations

x=x@), y=y@®, 1<ttt

and assume that x(#) and y(f) are differentiable functions of t. Then the arc length of this curve is given by
) 2 2 1.5
o= /) (&) o
1y I\dt dt ’

At this point a side derivation leads to a previous formula for arc length. In particular, suppose the parameter can
be eliminated, leading to a function y = F(x). Then y(¢#) = F(x(t)) and the Chain Rule gives y’ (¢¥) = F' (x())x’ (¢).

Substituting this into Equation 1.5 gives
SRR

-G+ o

_/ \/( ) (1+ (F ()2t

_/ x(t)1+ dy dt.

Here we have assumed that x’'(f) > 0, which is a reasonable assumption. The Chain Rule gives dx = x’ () dt, and

letting @ = x(t;) and b = x(t,) we obtain the formula

b 2
= [ (
s = /;1 1+ (a) dx,

which is the formula for arc length obtained in the Introduction to the Applications of Integration (http://cnx.orgl/
content/m53638/latest/) .

Example 1.8

Finding the Arc Length of a Parametric Curve

Find the arc length of the semicircle defined by the equations
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x(t)=3cost, y()=3sint, 0<Lr< .

Solution

The values ¢t =0 to ¢ = & trace out the red curve in Figure 1.23. To determine its length, use Equation 1.5:

) 2 2
LT G
= /:\/(—3 sin )% + (3 cos 1)2dt

T

=/ V9 sin%t + 9 cos2tdt
0
V3

=/ \/9(sin2t+cos2t t
0

V3
- fo 3dr = 31% = 3.

Note that the formula for the arc length of a semicircle is zr and the radius of this circle is 3. This is a great
example of using calculus to derive a known formula of a geometric quantity.

3
64+
5L  x(t) = 3cost
y(t) = 3sint

O=t=x

-2+

Figure 1.24 The arc length of the semicircle is equal to its
radius times 7.

@ 1.8 Find the arc length of the curve defined by the equations

x() =312 =205, 1<1<3.

We now return to the problem posed at the beginning of the section about a baseball leaving a pitcher’s hand. Ignoring the
effect of air resistance (unless it is a curve ball!), the ball travels a parabolic path. Assuming the pitcher’s hand is at the
origin and the ball travels left to right in the direction of the positive x-axis, the parametric equations for this curve can be
written as

x() = 1401, y() = —161% + 2t

where t represents time. We first calculate the distance the ball travels as a function of time. This distance is represented
by the arc length. We can modify the arc length formula slightly. First rewrite the functions x(#) and y(¢) using v as an

independent variable, so as to eliminate any confusion with the parameter t:

x(v) = 140v, y(v) = —16v2 + 2v.
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Then we write the arc length formula as follows:

o =[5 + (3

t
= /0 11402 + (=320 + 2)%dv.

The variable v acts as a dummy variable that disappears after integration, leaving the arc length as a function of time t. To
integrate this expression we can use a formula from Appendix A,

2
f\/a2+u2du=% a2+u2+a—ln|u+ Va2 + u?| + C.

2
We set a = 140 and u = —32v + 2. This gives du = —32dv, so dv= — %du. Therefore
[1140% + (=320 + 2%y = - 3L2[va2 + u%du
(32421402 4 (<320 + 2)2
= _ 1] 2 +C
2 2
3 +%1n|(—32v +2)+ 11402 + (=32v + 2)2|
and
— 2
st = — %[%v 140% + (=32 +2)% + %mk—szt +2) + 11402 + (=321 + 2)2‘]

2
+3L2[ 1402 + 22 + %1142 +1140% + 22‘]

= (£ = 5)V1024r2 — 1281 + 19604 — 122310 ~321 + 2) + 10247 — 1281 + 19604]

2
V19604 | 1225
+30 T + 5 n(2 + V19604).

This function represents the distance traveled by the ball as a function of time. To calculate the speed, take the derivative of
this function with respect to t. While this may seem like a daunting task, it is possible to obtain the answer directly from the
Fundamental Theorem of Calculus:

L[ o du = fo.
Therefore
0 =Lso)
t
- %[fo\/moz + (=320 + 2)2dv]
= 1402 + (=321 + 2)>

= 102412 = 1287 + 19604
= 2125612 — 321 + 4901.

One third of a second after the ball leaves the pitcher’s hand, the distance it travels is equal to
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) = () o) - s o

—%m (—32(%) + 2) + \/ 1024(%)2 - 128(%) + 19604

V19604 | 1225
+37 + 522 n(2 + V19604)
~ 46.69 feet.

This value is just over three quarters of the way to home plate. The speed of the ball is

s (%) - 2\/256(%)2 - 16(%) +4901 ~ 140.34 /s,

This speed translates to approximately 95 mph—a major-league fastball.

Surface Area Generated by a Parametric Curve

Recall the problem of finding the surface area of a volume of revolution. In Curve Length and Surface Area
(http:/lcnx.org/content/m53644/latest/) , we derived a formula for finding the surface area of a volume generated by
a function y = f(x) from x =a to x = b, revolved around the x-axis:

b
S=2z fa FOV +(f (0)%d.

We now consider a volume of revolution generated by revolving a parametrically defined curve
x = x(t), y = y(t), a < t < b around the x-axis as shown in the following figure.

Yi

Figure 1.25 A surface of revolution generated by a
parametrically defined curve.

The analogous formula for a parametrically defined curve is

b 1.6
s =22 Yol 0P + ' P (e

provided that y(¢) is not negative on [a, b].

Example 1.9

Finding Surface Area

Find the surface area of a sphere of radius r centered at the origin.
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Solution
We start with the curve defined by the equations
x(t) =rcost, y{)=rsint, 0<Ltr< 7

This generates an upper semicircle of radius r centered at the origin as shown in the following graph.
yi
| x=rcost
y=rsint
O=t=7x

Figure 1.26 A semicircle generated by parametric equations.

When this curve is revolved around the x-axis, it generates a sphere of radius r. To calculate the surface area of
the sphere, we use Equation 1.6:

b
S =21 fa YOV (@) + (' (0)dt

v 3
= 271/ r sin t\/(—r sin t)2 + (rcos t)zdt
0

/4
= 277/ r sin t\/r2 sint + r2cos? ¢t dt
0

¥/
= 271/ 7 sin t\/rz(sinzt + cosZt)dt
0
/1
= 271/ r2sin ¢ dt
0
_ 2 T
= 2xr=(—cos tly)
= 2712 (—cos & + cos 0)
= 4712,

This is, in fact, the formula for the surface area of a sphere.

@ 1.9 Find the surface area generated when the plane curve defined by the equations
xO =1, yo=t3 0<t<l

is revolved around the x-axis.
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1.2 EXERCISES

For the following exercises, each set of parametric
equations represents a line. Without eliminating the
parameter, find the slope of each line.

62. x=34+1, y=1—t¢
63. x=8+2¢f y=1

64. x=4-3t, y=-2+6¢t
65. x=-5t+7, y=3t—-1

For the following exercises, determine the slope of the
tangent line, then find the equation of the tangent line at the
given value of the parameter.

%.x=3ﬁm,y=3ww,t:%
67. x=cost, y=8sint,t=%
68. x=2t, y=1, t=-1

69. x=t+%,y=t—%, r=1

70. x=vt, y=2t, t=4

For the following exercises, find all points on the curve that
have the given slope.

71. x=4cost, y=4sint, slope=0.5
72. x=2cost, y=8sint, slope = —1
73. x=t+%, y=t—%, slope =1

74, x=2+Vt, y=2—4t, slope=0

For the following exercises, write the equation of the
tangent line in Cartesian coordinates for the given
parameter t.

75. x:ew’ y=l—lnt2, t=1
76. x=tInt, y:sjnzt,t:%
77. x=el, y=@-1% al, 1)

78. For x = sin(2t), y = 2sint where 0 <t < 2z. Find

all values of t at which a horizontal tangent line exists.
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79. For x = sin(2t), y = 2sint where 0 <t < 2z. Find

all values of t at which a vertical tangent line exists.

80. Find all points on the curve x = 4 cos(¢), y = 4 sin(¢)

1

that have the slope of 7

&JFmd%¥brx=$M&y=cm®.

82. Find the equation of the
z

x = sin(¢), y = cos(?) at t = T

tangent line to

83. Forthe curve x = 4t, y = 3t — 2, find the slope and

concavity of the curve at ¢ = 3.

84. TFor the parametric curve whose equation is
x=4cos6, y=4sin@, find the slope and concavity of

the curve at 6 = %

85. Find the slope and concavity for the curve whose
equationis x =2 +secf, y=1+2tan@ at 9=%.

86. Find all points on the curve x =t+4, y = 3 =3t at

which there are vertical and horizontal tangents.

87. Find all points on the curve x =sec, y =tanf at

which horizontal and vertical tangents exist.
For the following exercises, find d 2 y/dxz.

88. x=t*—1, y=tr—12

89. x =sin(xt), y = cos(at)

90. x=e " y= teZt

k)

For the following exercises, find points on the curve at
which tangent line is horizontal or vertical.

9. x=1(r>-3), y=30>-3)

_ 3t?

3t
y_
1+1°

92, x= 3
1+143

For the following exercises, find dy/dx at the value of the
parameter.

3z

93. x=cost, y=sint, t:T
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94. x=nt, y=2t+4, t=9

95. x=4cos(2xs), y=3sin(2xs), s= —

NS

For the following exercises, find d? y/d)c2 at the given

point without eliminating the parameter.

=12 =13 ;-
96. x=51% y=31" 1 2
97. x=nt, y=2t+4, t=1
98. Find t intervals on which the curve

x =312, y= 3~ is concave up as well as concave

down.

99. Determine  the
x=2t+1Int,y=2t—1Int.

concavity of the curve

100. Sketch and find the area under one arch of the cycloid
x=r(@—sind), y =r(l —cos ).

101. Find the area bounded by the
x=cost, y=é’, Ogtg% and the lines y=1 and

curve

x=0.

102. Find the area enclosed by the
x=acosf,y=>bsin6, 0 <0 < 2.

ellipse

103. Find the area of the region bounded by
x=2sin%0, y=2sin*@tand, for 0 <O < z.

For the following exercises, find the area of the regions
bounded by the parametric curves and the indicated values
of the parameter.

104. x=2cot, y=2sin’0,0<0<rx
105. [T]

x=2acost—acos(2t), y=12asint —asin(2t), 0 <t <2z«

106. [TI]

“hourglass”)

x=asin(2t), y=bsin(t), 0 <t <2z (the

107. [T]
x=2acost—asin(2t), y=bsint, 0 <t <2x (the

“teardrop”)

For the following exercises, find the arc length of the curve
on the indicated interval of the parameter.
108. x=4r+3,

y=3t-2, 0LtL2

43
=13 12 o<s<

109. x 3t, y 2t, 0<tr<1

110. x =cos(2¢t), y = sin(2¢), OStS%

1. x=14¢% y=(1+03 0<r<1

112. x=e'cost, y=e'sint, OSIS% (express

answer as a decimal rounded to three places)

113. x=a cos36’, y=a sin>6 on the interval [0, 27)
(the hypocycloid)

114. Find the length of one arch of the cycloid
x=4(t—sint), y =4(1 —cost).

115. Find the distance traveled by a particle with position
(x,y) as t varies in the given time interval:

2

X =sin“t, y:coszt, 0<t< 3

116. Find the length of one arch of the cycloid
x=60-sinf, y=1--cos.

117.  Show that the total length of the ellipse
x=4sinf, y=3cosl is

7l2

L= 16/ V1 —e%sin20dh,  where e=%  and
0

c=Va? - b2

118. Find the length of the curve

x=et—t,y=4eﬂ2, -8 <r<3.

For the following exercises, find the area of the surface
obtained by rotating the given curve about the x-axis.

19. x=¢, y=¢% 0<t<1
120. x=acos’d, y=asin’0, 0<0<%

121. [T] Use a CAS to find the area of the surface

generated by rotating x =1+ t3, y=1t-— Lz’ 1<t<L2
t

about the x-axis. (Answer to three decimal places.)

122. Find the surface area obtained by rotating

x=312,y=21,0<t<5 about the y-axis.

123. Find the area of the surface generated by revolving
x =12 y=12t,0 <t <4 about the x-axis.

124. Find the surface area generated by revolving
x= t2, y= 2t2, 0 <7 <1 about the y-axis.
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1.3 | Polar Coordinates

Learning Objectives

1.3.1 Locate points in a plane by using polar coordinates.

1.3.2 Convert points between rectangular and polar coordinates.
1.3.3 Sketch polar curves from given equations.

1.3.4 Convert equations between rectangular and polar coordinates.
1.3.5 Identify symmetry in polar curves and equations.

The rectangular coordinate system (or Cartesian plane) provides a means of mapping points to ordered pairs and ordered
pairs to points. This is called a one-to-one mapping from points in the plane to ordered pairs. The polar coordinate system
provides an alternative method of mapping points to ordered pairs. In this section we see that in some circumstances, polar
coordinates can be more useful than rectangular coordinates.

Defining Polar Coordinates
To find the coordinates of a point in the polar coordinate system, consider Figure 1.27. The point P has Cartesian
coordinates (x, y). The line segment connecting the origin to the point P measures the distance from the origin to P and

has length r. The angle between the positive x -axis and the line segment has measure 6. This observation suggests a
natural correspondence between the coordinate pair (x, y) and the values » and 6. This correspondence is the basis of

the polar coordinate system. Note that every point in the Cartesian plane has two values (hence the term ordered pair)
associated with it. In the polar coordinate system, each point also two values associated with it: 7 and 6.

Yi

=

Figure 1.27 An arbitrary point in the Cartesian plane.

Using right-triangle trigonometry, the following equations are true for the point P:

cos @ = % s50x = rcos 0

sint9=¥s0y= rsin 6.

Furthermore,

r2=xz+y2 andtan@:%.

Each point (x, y) in the Cartesian coordinate system can therefore be represented as an ordered pair (r, ) in the polar

coordinate system. The first coordinate is called the radial coordinate and the second coordinate is called the angular
coordinate. Every point in the plane can be represented in this form.

Note that the equation tan @ = y/x has an infinite number of solutions for any ordered pair (x, y). However, if we restrict
the solutions to values between 0 and 27 then we can assign a unique solution to the quadrant in which the original point
2

(x, y) is located. Then the corresponding value of r is positive, so r< = X2+ yz.
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Theorem 1.4: Converting Points between Coordinate Systems

Given a point P in the plane with Cartesian coordinates (x, y) and polar coordinates (r, ), the following

conversion formulas hold true:

x=rcosfandy = rsiné, (1.7)

r?=x>+y% andtan 6 = % (1.8)

These formulas can be used to convert from rectangular to polar or from polar to rectangular coordinates.

Example 1.10

Converting between Rectangular and Polar Coordinates

Convert each of the following points into polar coordinates.

a. (1,1
b. (-3,4)
c. (0,3)
d. (5V3, -5)
Convert each of the following points into rectangular coordinates.
e. (3, n/3)
f. (2, 3x/2)
g. (6, =57/6)
Solution

a. Use x=1 and y =1 in Equation 1.8:

= 2
r2 _ xz n )/2 tanf = X
= V2 = Z
r 0 i

Therefore this point can be represented as (\/2 %) in polar coordinates.

b. Use x=-3 and y =4 in Equation 1.8:

tanf = %

o= xz+y2 _ _4

- (_3)2+(4)2 and 3 4
r =5 0 = —arctan(g)
~ 2.21.

Therefore this point can be represented as (5, 2.21) in polar coordinates.
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Use x =0 and y = 3 in Equation 1.8:

r2 = xz+y2 y
2 5 tanf = *
= 3" +0O and 3
= 940 =0
r =3

Direct application of the second equation leads to division by zero. Graphing the point (0, 3) on the
rectangular coordinate system reveals that the point is located on the positive y-axis. The angle between

the positive x-axis and the positive y-axis is % Therefore this point can be represented as (3, %) in polar

coordinates.

Use x = 5V3 and y = —5 in Equation 1.8:

P o= )cz+y2 tanf = %
2 2
= (V3)°+(=5"  and = 5_\_%= —?
= 75425 i
ro= 10 0 =%

Therefore this point can be represented as (10, - %) in polar coordinates.

Use r =3 and § = Z in Equation 1.7:

3
x = rcosé y = rsinf
— z = inlZ
=3 005(3) and =3 sm(3)
- 3(L\=3 _ 3(¥3)_3V3
- 3(2)‘ 2 B 3(7)‘7‘
Therefore this point can be represented as (%, %) in rectangular coordinates.
Use r=2 and 0 = 37” in Equation 1.7:
X = rcosé@ y = r sin 6
— 3z _ . (3m
= 2 cos( 5 ) and = 2 sm(?)
= 20)=0 = 2(-1)=-2.

Therefore this point can be represented as (0, —2) in rectangular coordinates.

Use r =6 and = —2Z in Equation 1.7:

6
x = rcosf y = rsinf
- _Sz .
= 600;2 6ﬂ ) nd = 6s1n(—%’)
= o(-%) = ¢(-3)
= -3\3 = 3.
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Therefore this point can be represented as (—3\/§, —3) in rectangular coordinates.

@ L10 convert (—8, —8) into polar coordinates and (4, ZT”) into rectangular coordinates.
The polar representation of a point is not unique. For example, the polar coordinates (2, %) and (2, 7%) both represent the

point (l, \/§) in the rectangular system. Also, the value of r can be negative. Therefore, the point with polar coordinates

(—2, 4—”) also represents the point (1, Vg) in the rectangular system, as we can see by using Equation 1.8:

3
Y = rcosd y = rsinf
= -2 cos(‘%”) and = -2 sin(43—”)
e R

Every point in the plane has an infinite number of representations in polar coordinates. However, each point in the plane has
only one representation in the rectangular coordinate system.

Note that the polar representation of a point in the plane also has a visual interpretation. In particular, r is the directed
distance that the point lies from the origin, and @ measures the angle that the line segment from the origin to the point makes
with the positive x -axis. Positive angles are measured in a counterclockwise direction and negative angles are measured in
a clockwise direction. The polar coordinate system appears in the following figure.

m

Tm 2 5
2= 12 / 12 =
3 3
3 ud
4 4
57 s
6 6
i i
12 12
T - = 0 (Polar axis)
150 23w
12 12
= LUm
6 6
57 iw
4 4
Ax 5w
3 1w 197 3

12 3% 12
2

Figure 1.28 The polar coordinate system.

The line segment starting from the center of the graph going to the right (called the positive x-axis in the Cartesian system)
is the polar axis. The center point is the pole, or origin, of the coordinate system, and corresponds to » = 0. The innermost

circle shown in Figure 1.28 contains all points a distance of 1 unit from the pole, and is represented by the equation » = 1.
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Then r =2 is the set of points 2 units from the pole, and so on. The line segments emanating from the pole correspond

to fixed angles. To plot a point in the polar coordinate system, start with the angle. If the angle is positive, then measure
the angle from the polar axis in a counterclockwise direction. If it is negative, then measure it clockwise. If the value of r

is positive, move that distance along the terminal ray of the angle. If it is negative, move along the ray that is opposite the
terminal ray of the given angle.

Example 1.11

Plotting Points in the Polar Plane

Plot each of the following points on the polar plane.

b (%)
o (4,22
()
Solution

The three points are plotted in the following figure.

23)
P «(3.%)

Figure 1.29 Three points plotted in the polar coordinate
system.

@ 111 p (4, 53_7r) and (-3, _77,;) on the polar plane.

Polar Curves

Now that we know how to plot points in the polar coordinate system, we can discuss how to plot curves. In the rectangular
coordinate system, we can graph a function y = f(x) and create a curve in the Cartesian plane. In a similar fashion, we can

graph a curve that is generated by a function r = f(0).
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The general idea behind graphing a function in polar coordinates is the same as graphing a function in rectangular
coordinates. Start with a list of values for the independent variable (@ in this case) and calculate the corresponding values

of the dependent variable r. This process generates a list of ordered pairs, which can be plotted in the polar coordinate

system. Finally, connect the points, and take advantage of any patterns that may appear. The function may be periodic, for
example, which indicates that only a limited number of values for the independent variable are needed.

Problem-Solving Strategy: Plotting a Curve in Polar Coordinates

Create a table with two columns. The first column is for €, and the second column is for 7.
Create a list of values for 4.
Calculate the corresponding » values for each 6.

Plot each ordered pair (7, @) on the coordinate axes.

CI A

Connect the points and look for a pattern.

r.w Watch this video (http://lwww.openstaxcollege.org/l/20_polarcurves) for more information on sketching
polar curves.

Example 1.12

Graphing a Function in Polar Coordinates

Graph the curve defined by the function r = 4 sin 8. Identify the curve and rewrite the equation in rectangular

coordinates.

Solution
Because the function is a multiple of a sine function, it is periodic with period 2z, so use values for 6 between

0 and 27z. The result of steps 1-3 appear in the following table. Figure 1.30 shows the graph based on this table.
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0 r =4sinf ] r =4siné

0 0 P 0

z 2 1z -2

6 6

% 2V2 ~ 2.8 %n -2V2~-238
% 2V3 ~ 34 %ﬂ 23~ 34
z 4 3 4

2 2

2z 23~ 34 Sz -2V3~ -34
3 3
3z 22~ 2.8 In 22~ -28
4 4
Sm 2 1z -2
6 6
2 0
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r= 4sinf

2Z2%) 22

k)

00 1 2 3 4 s

Figure 1.30 The graph of the function » = 4 sin @ is a circle.

This is the graph of a circle. The equation » =4 sin# can be converted into rectangular coordinates by first
multiplying both sides by r. This gives the equation r? = 4rsin 6. Next use the facts that r> = x> + y2 and

y = rsin . This gives X+ y2 = 4y. To put this equation into standard form, subtract 4y from both sides of

the equation and complete the square:

x2+y2—4y =0
x2+(y2—4y) =0
(P —dy+4) = 0+4

+y-2P = 4

This is the equation of a circle with radius 2 and center (0, 2) in the rectangular coordinate system.

@ 1.12 Create a graph of the curve defined by the function r =4 + 4 cos 6.

The graph in Example 1.12 was that of a circle. The equation of the circle can be transformed into rectangular coordinates
using the coordinate transformation formulas in Equation 1.8. Example 1.14 gives some more examples of functions
for transforming from polar to rectangular coordinates.

Example 1.13

Transforming Polar Equations to Rectangular Coordinates

Rewrite each of the following equations in rectangular coordinates and identify the graph.

a. =%

3
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b. r=3

c. r=6cos@—8sind

Solution
a. Take the tangent of both sides. This gives tan 6 = tan(z/3) = V3. Since tan @ = y/x we can replace the
left-hand side of this equation by y/x. This gives y/x = V3, which can be rewritten as y = x\'3. This
is the equation of a straight line passing through the origin with slope V3. In general, any polar equation
of the form € = K represents a straight line through the pole with slope equal to tan K.
b. First, square both sides of the equation. This gives r? =9. Next replace r? with x? + yz. This gives

the equation X%+ y2 =9, which is the equation of a circle centered at the origin with radius 3. In

general, any polar equation of the form r = k where k is a positive constant represents a circle of radius

k centered at the origin. (Note: when squaring both sides of an equation it is possible to introduce new
points unintentionally. This should always be taken into consideration. However, in this case we do not

introduce new points. For example, (—3, %) is the same point as (3, 4%))

c. Multiply both sides of the equation by r. This leads to % = 6r cos 6 — 8rsin . Next use the formulas

r2=x2+y2, x=rcosf, y=rsind.

This gives
r? 6(r cos 6) — 8(r sin )
6x — 8y.

xz+y2

To put this equation into standard form, first move the variables from the right-hand side of the equation
to the left-hand side, then complete the square.

)62+y2 = 6x—8y

x2—6x+y2+8y =0
(x2—6x)+(y2+8y) =0

(x* —6x+9)+(y*+8y+16) = 9+16
(x=3)2+@y+4?% = 25.

This is the equation of a circle with center at (3, —4) and radius 5. Notice that the circle passes through

the origin since the center is 5 units away.

@ 1.13 Rewrite the equation r = sec @ tan € in rectangular coordinates and identify its graph.

We have now seen several examples of drawing graphs of curves defined by polar equations. A summary of some common
curves is given in the tables below. In each equation, a and b are arbitrary constants.
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Name

Equation

Example

Line passing through the
pole with slope tan K

0=K

-

123 45

Circle r = acost + bsing [
r = 2cost — 3sint
r
\j3 | 5’
Spiral r=a+ bo /

BY

S8
3
-
6

_1/é35
el

Figure 1.31

53
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Name Equation Example
Cardioid r=a(l + cosb) /
r=a(l — cosb)
r=a(l + s!nO) r=23(1 -+ cosh)
r=a(l — sing)
r
1234567
Limagon r = acost + b f )
r=asing + b r=-2_+ 4sing
B
1234567
Rose r = acos(bf) J
r = asin(bg)
r-= 3sin20
N\,
R

Figure 1.32

A cardioid is a special case of a limagon (pronounced “lee-mah-son”), in which @ = b or a = —b. The rose is a very
interesting curve. Notice that the graph of r = 3 sin 20 has four petals. However, the graph of r = 3 sin 36 has three petals
as shown.
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r = 3sin30

Figure 1.33 Graph of r = 3 sin 36.

If the coefficient of @ is even, the graph has twice as many petals as the coefficient. If the coefficient of € is odd,
then the number of petals equals the coefficient. You are encouraged to explore why this happens. Even more interesting
graphs emerge when the coefficient of 6 is not an integer. For example, if it is rational, then the curve is closed; that is,
it eventually ends where it started (Figure 1.34(a)). However, if the coefficient is irrational, then the curve never closes
(Figure 1.34(b)). Although it may appear that the curve is closed, a closer examination reveals that the petals just above
the positive x axis are slightly thicker. This is because the petal does not quite match up with the starting point.

— 3sin(m6)

(@) (b)
Figure 1.34 Polar rose graphs of functions with (a) rational coefficient and (b) irrational coefficient. Note that
the rose in part (b) would actually fill the entire circle if plotted in full.

Since the curve defined by the graph of r = 3 sin(z6)) never closes, the curve depicted in Figure 1.34(b) is only a partial

depiction. In fact, this is an example of a space-filling curve. A space-filling curve is one that in fact occupies a two-
dimensional subset of the real plane. In this case the curve occupies the circle of radius 3 centered at the origin.

Example 1.14
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Chapter Opener: Describing a Spiral

Recall the chambered nautilus introduced in the chapter opener. This creature displays a spiral when half the outer
shell is cut away. It is possible to describe a spiral using rectangular coordinates. Figure 1.35 shows a spiral in
rectangular coordinates. How can we describe this curve mathematically?

Y

P, y)

()

Figure 1.35 How can we describe a spiral graph
mathematically?

Solution

As the point P travels around the spiral in a counterclockwise direction, its distance d from the origin increases.
Assume that the distance d is a constant multiple k of the angle € that the line segment OP makes with the

positive x-axis. Therefore d(P, O) = k6, where O is the origin. Now use the distance formula and some

trigonometry:
diP, 0) = kO
\/(x - O)2 +(y— 0)2 = karctan %
X%+ y2 =k arctan(%)
2 2
) = X+ y”
arctan(x) = T
2 2
= w2

Although this equation describes the spiral, it is not possible to solve it directly for either x or y. However, if
we use polar coordinates, the equation becomes much simpler. In particular, d(P, O) = r, and @ is the second

coordinate. Therefore the equation for the spiral becomes r = k6. Note that when @ = 0 we also have r =0,

so the spiral emanates from the origin. We can remove this restriction by adding a constant to the equation.
Then the equation for the spiral becomes r = a + k@ for arbitrary constants a and k. This is referred to as an

Archimedean spiral, after the Greek mathematician Archimedes.

Another type of spiral is the logarithmic spiral, described by the function r =a- p’. A graph of the function

r= 1.2(1.25 9) is given in Figure 1.36. This spiral describes the shell shape of the chambered nautilus.
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r/= 1.2(1.25%

.\
=4
T

\ A 10 15 o 25

Figure 1.36 A logarithmic spiral is similar to the shape of the chambered nautilus shell. (credit: modification of
work by Jitze Couperus, Flickr)

Suppose a curve is described in the polar coordinate system via the function » = f(#). Since we have conversion formulas

from polar to rectangular coordinates given by
x=rcost
y=rsiné,

it is possible to rewrite these formulas using the function
x = f(6)cos @
y = f(6)sin 6.

This step gives a parameterization of the curve in rectangular coordinates using @ as the parameter. For example, the spiral
formula r = a + b0 from Figure 1.31 becomes

x = (a+ bb)cosb
y = (a+ b0)sin 6.

Letting 0 range from —oco to oo generates the entire spiral.

Symmetry in Polar Coordinates

When studying symmetry of functions in rectangular coordinates (i.e., in the form y = f(x)), we talk about symmetry
with respect to the y-axis and symmetry with respect to the origin. In particular, if f(—x) = f(x) for all x in the domain
of f, then f isan even function and its graph is symmetric with respect to the y-axis. If f(—x) = —f(x) forall x in the
domain of f, then f isan odd function and its graph is symmetric with respect to the origin. By determining which types

of symmetry a graph exhibits, we can learn more about the shape and appearance of the graph. Symmetry can also reveal
other properties of the function that generates the graph. Symmetry in polar curves works in a similar fashion.

Theorem 1.5: Symmetry in Polar Curves and Equations

Consider a curve generated by the function r = f(6) in polar coordinates.
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i. The curve is symmetric about the polar axis if for every point (r, #) on the graph, the point (r, —6) is also

on the graph. Similarly, the equation » = f(6) is unchanged by replacing 6 with —6.

ii. The curve is symmetric about the pole if for every point (r, 8) on the graph, the point (r, 7z + 6) is also on

the graph. Similarly, the equation r = f(6) is unchanged when replacing r with —r, or 8 with 7 + 6.

iii. The curve is symmetric about the vertical line 0 = % if for every point (r, ) on the graph, the point

(r, m — ) is also on the graph. Similarly, the equation r = f(6) is unchanged when @ is replaced by 7 — 6.

The following table shows examples of each type of symmetry.

Symmetry with respect to the polar axis:
For every point (r, #) on the graph, there is
also a point reflected directly across the

harizontal (polar) axis. (r,% Wi, T, )

(r, <0)

A

Symmetry with respect to the pole:
For every point (r, #) on the graph, there is
also a point on the graph that is reflected

through the pole as well. (r, 6)

12 < 9cos| 20/~ 5 O

A ]

(—r.0)
Symmetry with respect to the vertical !
line @ = %: For every point (r, #) on the
graph, there is also a point reflected directly
across the vertical axis.
r=2 - 2sing
L
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Example 1.15

L.

1l

il

Using Symmetry to Graph a Polar Equation

Find the symmetry of the rose defined by the equation » = 3 sin(26) and create a graph.

Solution
Suppose the point (r, #) is on the graph of r = 3 sin(26).

To test for symmetry about the polar axis, first try replacing 6 with —6. This gives
r = 3sin(2(—0)) = —3 sin(20). Since this changes the original equation, this test is not satisfied.
However, returning to the original equation and replacing » with —r and 6 with 7z — @ yields

—r =3sin(2(x — 0))

—r =3sin2z — 26)

—r = 3 sin(—-26)

—r = —35sin 26.

Multiplying both sides of this equation by —1 gives r = 3 sin 26, which is the original equation. This
demonstrates that the graph is symmetric with respect to the polar axis.
To test for symmetry with respect to the pole, first replace » with —r, which yields —r = 3 sin(20).
Multiplying both sides by —1 gives r = —3 sin(268), which does not agree with the original equation.
Therefore the equation does not pass the test for this symmetry. However, returning to the original
equation and replacing 6 with 8 + = gives
r =3sin(2(6 + 7))

= 3sin(20 + 2x)

= 3(sin 26 cos 2z + cos 20 sin 27)

= 3sin 26.

Since this agrees with the original equation, the graph is symmetric about the pole.

To test for symmetry with respect to the vertical line 8 = %, first replace both » with —r and € with
—6.

—r = 3sin(2(-6))

—r = 3 sin(-26)

—r = —35sin 26.

Multiplying both sides of this equation by —1 gives r = 3sin26, which is the original equation.

Therefore the graph is symmetric about the vertical line 8§ = %

This graph has symmetry with respect to the polar axis, the origin, and the vertical line going through the pole.
To graph the function, tabulate values of & between 0 and #/2 and then reflect the resulting graph.
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0 r

0 0

T

6 | Wwo2s
z 3

4

y/4

5| Wwos
z 0

2

This gives one petal of the rose, as shown in the following graph.
/

r = 3sin20

0365%

=

Figure 1.37 The graph of the equation between € = 0 and
6 = n/2.

Reflecting this image into the other three quadrants gives the entire graph as shown.
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r= 3sin2¢

=

petaled rose.

Figure 1.38 The entire graph of the equation is called a four-

@ 1.14 Determine the symmetry of the graph determined by the equation r = 2 cos(30) and create a graph.
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1.3 EXERCISES

In the following exercises, plot the point whose polar point in (0, 27]. Round to three decimal places.
coordinates are given by first constructing the angle 6 and

then marking off the distance r along the ray. 136. (2, 2)
125. (3, %) 137. (3, —4) (3, -4)
138. (8, 15)
_p. Sz '
126. (-2, )
139. (-6, 8)
iz
127. (0, —)
6 140. (4, 3)
4 3z _
128, (~4, 32) 141. (3, =\3)
129, (1. Z For the following exercises, find rectangular coordinates
: ( ’ Z) for the given point in polar coordinates.
5
130. (2, 3%) 142 (2.3F)
0
131, (1, %) 3. (-2, %)
For the following exercises, consider the polar graph below. 144. (5, %)
Give two sets of polar coordinates for each point.
[
in
s, (1, % )
3 3z
146. (-3,32)
p
147. (0, 2)
oA
o . 148. (—4.5,6.5)
c
For the following exercises, determine whether the graphs
of the polar equation are symmetric with respect to the x
. B -axis, the y -axis, or the origin.
D
149. r = 3sin(20)
150. r2=9cos6
132. Coordinates of point A. 151. r= cos(%)

133. Coordinates of point B.
152. r=12sect

134. Coordinates of point C.

153. r=1+4cosf
135. Coordinates of point D.
For the following exercises, describe the graph of each
polar equation. Confirm each description by converting
into a rectangular equation.

For the following exercises, the rectangular coordinates of
a point are given. Find two sets of polar coordinates for the
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154. r=3
3
155. 0= 4
156. r=secd
157. r=cscl

For the following exercises, convert the rectangular
equation to polar form and sketch its graph.

158. x2+y2:16
159. x2—y?>=16
160. x=8

For the following exercises, convert the rectangular
equation to polar form and sketch its graph.

161. 3x—y=2
162. y2 =4x

For the following exercises, convert the polar equation to
rectangular form and sketch its graph.

163. r=4sin6
164. r==6cosf
165. r=20

166. r=-cotfcscl

For the following exercises, sketch a graph of the polar
equation and identify any symmetry.

167. r=1+siné
168. r=3—-2cos#
169. r=2-2sin6
170. r=5—-4sin6
171. r =3 cos(26)
172. r =3sin(26)

173. r =2cos(36)

174. r=3 COS(%)

175. 1% = 4cos(20)
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176. r*=4sind
177. r=20

178. [T] The graph of r =2 cos(20)sec(d). is called a

strophoid. Use a graphing utility to sketch the graph, and,
from the graph, determine the asymptote.

179. [T] Use a graphing utility and sketch the graph of
— 6
"= 2sinf-3cos O

. . _ 1
180. [T] Use a graphing utility to graph r = T=coso"
181. [Tl Use technology to graph
= ™" 2 cos(40).

182. [T] Use technology to plot r = sin(%) (use the

interval 0 < 8 < 14x).

183. Without using technology, sketch the polar curve

=2z
0= 3

184. [T] Use a graphing utility to plot r = @sin@ for
—r1<60<L 7.

185. [T] Use technology to plot r=e %19 for
-10 <6< 10.

186. [T] There is a curve known as the “Black Hole.” Use
technology to plot r = ¢ %1% for —100 < 6 < 100.

187. [T] Use the results of the preceding two problems to

—-0.0010 —-0.00010 for

explore the graphs of r =e¢ and r=e

101 > 100.
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1.4 | Area and Arc Length in Polar Coordinates

Learning Objectives

1.4.1 Apply the formula for area of a region in polar coordinates.
1.4.2 Determine the arc length of a polar curve.

In the rectangular coordinate system, the definite integral provides a way to calculate the area under a curve. In particular,
if we have a function y = f(x) defined from x = a to x = b where f(x) > O on this interval, the area between the curve

b
and the x-axis is given by A = f f(x) dx. This fact, along with the formula for evaluating this integral, is summarized in
a

b

the Fundamental Theorem of Calculus. Similarly, the arc length of this curve is given by L = f 1+ (f (x))%dx. In this
a

section, we study analogous formulas for area and arc length in the polar coordinate system.

Areas of Regions Bounded by Polar Curves

We have studied the formulas for area under a curve defined in rectangular coordinates and parametrically defined curves.
Now we turn our attention to deriving a formula for the area of a region bounded by a polar curve. Recall that the proof of
the Fundamental Theorem of Calculus used the concept of a Riemann sum to approximate the area under a curve by using
rectangles. For polar curves we use the Riemann sum again, but the rectangles are replaced by sectors of a circle.

Consider a curve defined by the function r = f(6), where @ < 8 < f. Our first step is to partition the interval [a, f] into
n equal-width subintervals. The width of each subinterval is given by the formula A0 = (f — a)/n, and the ith partition
point @; is given by the formula 8; = a4+ iAf. Each partition point € = 8; defines a line with slope tan6; passing

through the pole as shown in the following graph.

0=0h_1

Figure 1.39 A partition of a typical curve in polar coordinates.
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The line segments are connected by arcs of constant radius. This defines sectors whose areas can be calculated by using a
geometric formula. The area of each sector is then used to approximate the area between successive line segments. We then
sum the areas of the sectors to approximate the total area. This approach gives a Riemann sum approximation for the total
area. The formula for the area of a sector of a circle is illustrated in the following figure.

Figure 1.40 The area of a sector of a circle is given by
A=2or.

Recall that the area of a circle is A = zr>. When measuring angles in radians, 360 degrees is equal to 27 radians.

0

Therefore a fraction of a circle can be measured by the central angle 6. The fraction of the circle is given by 25 S0 the

area of the sector is this fraction multiplied by the total area:

A= (%) art = %6r2.

Since the radius of a typical sector in Figure 1.39 is given by r; = f(0;), the area of the ith sector is given by
A;=Lno)(r(0,)?
= Laor0,
Therefore a Riemann sum that approximates the area is given by

A= A i%me)

N M:

We take the limit as n — oo to get the exact area:

i
A= lim A,=1 /a (f(6)? do

This gives the following theorem.

Theorem 1.6: Area of a Region Bounded by a Polar Curve

Suppose f is continuous and nonnegative on the interval a < 6 < # with 0 < f — a < 2z. The area of the region
bounded by the graph of » = f(@) between the radial lines § = a and 6 = f is

s s (1.9)
= %/a [F(O)do = %fa r2do.
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Example 1.16

Finding an Area of a Polar Region

Find the area of one petal of the rose defined by the equation r = 3 sin(26).

Solution
The graph of r = 3 sin(26) follows.

r = 3sin26

Figure 1.41 The graph of r = 3 sin(26).

When 6 =0 we have r = 35sin(2(0)) = 0. The next value for which » =0 is § = z/2. This can be seen by
solving the equation 3 sin(26) = 0 for 6. Therefore the values @ = 0 to € = z/2 trace out the first petal of the
rose. To find the area inside this petal, use Equation 1.9 with () = 3sin(2), a =0, and f = n/2:

p
A =L[ 0P
/2
-1 fo [3 sin(20)]* do

1 /2 )
=1 fo 95in2(26) 6.

To evaluate this integral, use the formula sinZa = (1 — cosQa))/2 with a = 26:
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1 /2 )
=§f 9sin%(20) d6
/2
9/ (1- cos(49))d9
/2

-

_ 2( ~ sinfe))z’z

1 — cos(40) d9]

4

- g(l_ sin 2;7)_2(0 _sin 4(0))
4274 4 4

— 9z
.

@ 1.15 Find the area inside the cardioid defined by the equation » = 1 — cos 6.

Example 1.16 involved finding the area inside one curve. We can also use Area of a Region Bounded by a Polar
Curve to find the area between two polar curves. However, we often need to find the points of intersection of the curves
and determine which function defines the outer curve or the inner curve between these two points.

Example 1.17

Finding the Area between Two Polar Curves
Find the area outside the cardioid » = 2 + 2 sin @ and inside the circle » = 6 sin 6.

Solution
First draw a graph containing both curves as shown.

r = 6sind

~TNat"2 3 4 5 6r
r= 2+ 2sing

Figure 1.42 The region between the curves r =2 + 2 sin
and r = 6sin 6.
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To determine the limits of integration, first find the points of intersection by setting the two functions equal to
each other and solving for 6:

6sinf = 2+2sind
4sinf = 2
ing = 1
sinf = ok
This gives the solutions 6 = % and 6 = %T, which are the limits of integration. The circle » = 3 sin @ is the

red graph, which is the outer function, and the cardioid » =2 + 2sin @ is the blue graph, which is the inner

function. To calculate the area between the curves, start with the area inside the circle between @ = % and

56” . then subtract the area inside the cardioid between 6 = 8 and 6 = 56”
A = circle — cardioid
5x/6 57/6
2] [6 5in 612 d6 — 1/ 2+ 25in0)2d0

S5n/6 57[/6
2/ 36in20 do — 2/ 4+8sin0+4sin204d0

57[/6 S5n/6
_ cos(29) — cos(20)
18f”/6 1= c0s(20) 49 _ 2/ 1+25m9+Td9

. 57/6 . Snl6
_ sin(260) 360 sin(260)
- 9[9 - T]ﬂm - 2[? ~2cos 9~ 30 ]ﬂ,6

_ 9(5_;z sin 2(571/6)) _ 9(& _ sin 2(77,'/6))

—\e6 2 6 2

—_(3(3z) _ Sg _sin 2(57r/6)) ( ) _ £ _sin 2(77/6))
(3(6) 4 cos 6 5 + 3(6) 40056 —

= 4.

@ 1.16 Find the area inside the circle » = 4 cos @ and outside the circle r = 2.

In Example 1.17 we found the area inside the circle and outside the cardioid by first finding their intersection points.

Notice that solving the equation directly for @ yielded two solutions: 8 = 8 and 0 = 56” . However, in the graph there are

three intersection points. The third intersection point is the origin. The reason why this point did not show up as a solution
is because the origin is on both graphs but for different values of 8. For example, for the cardioid we get

2+2sind = 0
sind = -1,

3z

so the values for € that solve this equation are 8 = 5

+ 2nz, where n is any integer. For the circle we get

6sind = 0.

The solutions to this equation are of the form @ = nx for any integer value of n. These two solution sets have no points in
common. Regardless of this fact, the curves intersect at the origin. This case must always be taken into consideration.
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Arc Length in Polar Curves

Here we derive a formula for the arc length of a curve defined in polar coordinates.

In rectangular coordinates, the arc length of a parameterized curve (x(f), y(¢)) for a <t < b is given by

dx dy
L= / V dt dt dt.

In polar coordinates we define the curve by the equation r = f(f), where a < 8 < f. In order to adapt the arc length
formula for a polar curve, we use the equations
x=rcosf = f(@)cosfandy = rsinf = f(0)sin 9,

and we replace the parameter t by 6. Then
@= f (@) cos @ — f(O)sind
dy = f'(0)sin O + f(O) cos 6.

We replace dt by df, and the lower and upper limits of integration are @ and f, respectively. Then the arc length

formula becomes

L= a |\dt dt
p 2 2
-/, \) + (@)

p
= f V(f” (0) cos 6 — f(6) sin 6) + (f (0) sin 6 + f(6) cos 0)2d0

p

= f \/(f’ () (cos? 0 + sin? 0) + (£(0)) (cos? 6 + sin? 0)d6
a
b , 2 2

= [ @P +(reo)rdo
p 2

= [ 124 (4dz

—fa r +(d9) deo.

This gives us the following theorem.

Theorem 1.7: Arc Length of a Curve Defined by a Polar Function

Let f be a function whose derivative is continuous on an interval @ < 6 < . The length of the graph of » = f(0)

L= / aﬂ LFOF +[f (0)]d6 = fjm do. (1.10)

from 0 =a to 0 =f is

Example 1.18

Finding the Arc Length of a Polar Curve

Find the arc length of the cardioid r = 2 + 2cos8.
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Solution

When 0 =0, r =2+ 2cos0 = 4. Furthermore, as 6 goes from 0 to 2, the cardioid is traced out exactly
once. Therefore these are the limits of integration. Using f(0) =2 + 2cosf, a =0, and f =2z, Equation
1.10 becomes

B
L = [ir@F+1f ©Fdo

2
= /O V12 + 2c0s0)2 + [~ 2sin0]2 do

2r
= ‘/0 V4 +8cosf + 4cos? 0 + 4sin? 040

2
=/0”\/4+800st9+4(cos2t9+sin2 G)dé’
2
=f0”\/8+8cos0dc9

2
= 2/0 V2 + 2cos6 do.

Next, using the identity cos(2a) = 2cos’a—1, add 1 to both sides and multiply by 2. This gives

2+ 2cosRa) = 4cos?a. Substituting a = 6/2 gives 2 + 2cosf = 4cos2(6’/2), so the integral becomes

2z
L =2 V2 + 2 cos 8dO
0

=2/02ﬂ 40052(% 0

=2 Do)

The absolute value is necessary because the cosine is negative for some values in its domain. To resolve this issue,
change the limits from O to z and double the answer. This strategy works because cosine is positive between 0

and % Thus,

Lo=af feos@)ao
=38 fo ﬂcos(g) do

T

szl

= 16.

@ 1.17 Find the total arc length of » = 3 sin 6.
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1.4 EXERCISES

For the following exercises, determine a definite integral
that represents the area.

188. Region enclosed by r = 4
189. Region enclosed by r = 3 sin 8

190. Region in the first quadrant within the cardioid
r=1+4siné

191. Region enclosed by one petal of r = 8 sin(26)
192. Region enclosed by one petal of r = cos(36)

193. Region below the polar axis and enclosed by
r=1-sinf

194. Region in the first
r=2-—cosé

quadrant enclosed by

195. Region enclosed by the inner loop of
r=2-3sind
196. Region enclosed by the inner loop of
r=3—4cosf

197. Region enclosed by » = 1 — 2 cos @ and outside the
inner loop

198. Region commonto r = 3sinfandr =2 —sin 4
199. Region commonto » = 2 and r = 4 cos 6
200. Region commonto » =3 cosfandr = 3sind

For the following exercises, find the area of the described
region.

201. Enclosed by r = 6sin 6
202. Above the polar axis enclosed by r =2 4 sin 6

203. Below the polar axis and enclosed by r = 2 — cos €

204. Enclosed by one petal of r = 4 cos(30)

205. Enclosed by one petal of r = 3 cos(20)

206. Enclosedby r=1+sin8

207. Enclosed by the inner loop of » =3 + 6 cos @

208. Enclosed by r =2+ 4 cos @ and outside the inner
loop
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209. Common interior of r = 4 sin(26) and r = 2
210. Common interior of
r=3-2sinfandr =—-3+4+2sinf
211. Common interior of r = 6sinfandr =3
212. Inside r = 1 4+ cos @ and outside r = cos 8
213. Common interior of

r=2+2cosfandr =2sin6

For the following exercises, find a definite integral that
represents the arc length.

214. r =4cosBon the interval ) < 6 <

0N

215. r=1+sin@ ontheinterval 0 <0 <2x

216. r=2sec@on the interval 0 < 0 < %

217. r = ¢?on the interval 0 <6<1

For the following exercises, find the length of the curve
over the given interval.

218. r=6ontheinterval 0 < 0 < %

219. r = ¢°?0n the interval 0 <62

220. r = 6cos @ on the interval 0 < 8 < %

221. r=8+8cosfontheinterval0 <O <7«
222. r=1—-sinfon theinterval 0 <0 <2x

For the following exercises, use the integration capabilities
of a calculator to approximate the length of the curve.

223. [T] r = 36 on the interval 0 < 0 < %

224, [T] r= %on the interval # < 0 < 27

225. [T] r= sinz(%) on the interval 0 <0<

226. [T] r= 262 on the interval 0 <0<nm
227. [T] r = sin(3 cos ) on the interval 0 < 0 < «

For the following exercises, use the familiar formula from
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geometry to find the area of the region described and then
confirm by using the definite integral.

228. r=3sin6fon theinterval0 <0 <7z

229. r=sinf+ cosfon theinterval 0 < 6 < =z

230. r=06sin6+ 8cosfontheinterval0 <O <=

For the following exercises, use the familiar formula from

geometry to find the length of the curve and then confirm
using the definite integral.

231. r=3sinfontheinterval0 <8 <7

232. r=sinf + cos@on the interval 0 <0<«

233. r=6sin6+ 8cosfontheinterval0 <9 <«

234.  Verify that if y=rsinf= f(f)sinfd then

% = f'(0)sin 0 + f(O)cos 6.

For the following exercises, find the slope of a tangent line
to a polar curve r = f(f). Let x =rcos8 = f(O)cos b

and y=rsinf = f(0)sinb,

r = f(0) is now written in parametric form.

so the polar equation

. . dy _ dyldf
235. Use the definition of the derivative = dodo and

the product rule to derive the derivative of a polar equation.

237. r=4cos0; (2, %)
238. r=28siné; (4, 5”)

— . 3z
239. r=4+sinb; (3, 2)
240. r=6+3cosb; (3, n)
241. r =4 cos(20); tips of the leaves

242, r = 2sin(30); tips of the leaves

99 (2 =
243. 1 =26, (2, 4)
244. Find the points on the interval —z < 6 < 7 at which
the cardioid r=1—cos@ has a vertical or horizontal
tangent line.
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245. For the cardioid » = 1+ sin @, find the slope of the

tangent line when 6 = %

For the following exercises, find the slope of the tangent
line to the given polar curve at the point given by the value
of 6.

246. r=3cos€,9=%

247. r=6, 0=

248. r=1n6l, O=e

249. [T] Use technology: r =2 +4cos @ at 0 = %

For the following exercises, find the points at which the

following polar curves have a horizontal or vertical tangent
line.

250. r=4cosé@

251. % =4cos(20)

252. r = 2sin(26)

253. The cardioid r =1 + sin 8

254. Show that the curve r = sin @ tan @ (called a cissoid
of Diocles) has the line x = 1 as a vertical asymptote.
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1.5 | Conic Sections

Learning Objectives

1.5.1 Identify the equation of a parabola in standard form with given focus and directrix.
1.5.2 Identify the equation of an ellipse in standard form with given foci.

1.5.3 Identify the equation of a hyperbola in standard form with given foci.

1.5.4 Recognize a parabola, ellipse, or hyperbola from its eccentricity value.

1.5.5 Write the polar equation of a conic section with eccentricity e .

1.5.6 Identify when a general equation of degree two is a parabola, ellipse, or hyperbola.

Conic sections have been studied since the time of the ancient Greeks, and were considered to be an important mathematical
concept. As early as 320 BCE, such Greek mathematicians as Menaechmus, Appollonius, and Archimedes were fascinated
by these curves. Appollonius wrote an entire eight-volume treatise on conic sections in which he was, for example, able to
derive a specific method for identifying a conic section through the use of geometry. Since then, important applications of
conic sections have arisen (for example, in astronomy), and the properties of conic sections are used in radio telescopes,
satellite dish receivers, and even architecture. In this section we discuss the three basic conic sections, some of their
properties, and their equations.

Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically
shaped parts called nappes. One nappe is what most people mean by “cone,” having the shape of a party hat. A right circular
cone can be generated by revolving a line passing through the origin around the y-axis as shown.

431

_4
Figure 1.43 A cone generated by revolving the line y = 3x

around the y -axis.

Conic sections are generated by the intersection of a plane with a cone (Figure 1.44). If the plane is parallel to the axis of
revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section
is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle. If the plane intersects one
nappe at an angle to the axis (other than 90°), then the conic section is an ellipse.
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nappes

hyperbola

C|rcle

Figure 1.44 The four conic sections. Each conic is determined by the angle the plane makes with the axis of
the cone.

Parabolas

A parabola is generated when a plane intersects a cone parallel to the generating line. In this case, the plane intersects only
one of the nappes. A parabola can also be defined in terms of distances.

Definition

A parabola is the set of all points whose distance from a fixed point, called the focus, is equal to the distance from
a fixed line, called the directrix. The point halfway between the focus and the directrix is called the vertex of the
parabola.

A graph of a typical parabola appears in Figure 1.45. Using this diagram in conjunction with the distance formula, we can
derive an equation for a parabola. Recall the distance formula: Given point P with coordinates (x, y;) and point Q with

coordinates (x,, y,), the distance between them is given by the formula

d(P, Q) = |(xy = x)? + (v -y
Then from the definition of a parabola and Figure 1.45, we get
d(F, P) dp, Q)
f0-02+(p -7 = V=07 +(=p-»>

Squaring both sides and simplifying yields

0%+ (-p - y)?
pr+2py+y?

X+ (p-y)?
xz+pz—2py+y2

x*=2py = 2py

x2 4py.
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yi
focus d Pxy
F(0.p),
d
0 X
Ty=p T o -p)
directrix

Figure 1.45 A typical parabola in which the distance from the
focus to the vertex is represented by the variable p.

Now suppose we want to relocate the vertex. We use the variables (%, k) to denote the coordinates of the vertex. Then if

the focus is directly above the vertex, it has coordinates (%, k + p) and the directrix has the equation y = k — p. Going

through the same derivation yields the formula (x — m?* = 4p(y — k). Solving this equation for y leads to the following

theorem.

Theorem 1.8: Equations for Parabolas

Given a parabola opening upward with vertex located at (4, k) and focus located at (&, k + p), where p is a constant,
the equation for the parabola is given by
N A (1.11)
y 4p(x h)-+k.

This is the standard form of a parabola.

We can also study the cases when the parabola opens down or to the left or the right. The equation for each of these cases
can also be written in standard form as shown in the following graphs.



76 Chapter 1 | Parametric Equations and Polar Coordinates

yi yi
parabola parabola
1 opens up T opens down
i focus T directrix
| (h‘k.l p) . y=k+p
vertex (h, k)
vertex (h, k)
L ———— -+ .
directrix (h, k—p)
1 y=k-p + focus
1 1
y =55 —h?+k y=—2,x—h?+k
yi Y
| directrix | i i directrix
Xx=h-p, 'x=h+p
1 vertex : 1 ( hfoc;s K) i vertex
L (hk)— : e — (h, k)
parabola i i parabola
T opens right | T | opens left
t 0 t ! E ! t ! t s t t ! t ! :[ ! t } g
1 — 12
x—4p(y k? + h X = 4p(y k)? + h

Figure 1.46 Four parabolas, opening in various directions, along with their equations in standard form.

In addition, the equation of a parabola can be written in the general form, though in this form the values of h, k, and p are
not immediately recognizable. The general form of a parabola is written as

ax2+bx+cy+d=0 or ay2+bx+cy+d=0.

The first equation represents a parabola that opens either up or down. The second equation represents a parabola that opens
either to the left or to the right. To put the equation into standard form, use the method of completing the square.

Example 1.19

Converting the Equation of a Parabola from General into Standard Form

Put the equation x> —d4x— 8y + 12 = 0 into standard form and graph the resulting parabola.
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Solution

Since y is not squared in this equation, we know that the parabola opens either upward or downward. Therefore
we need to solve this equation for y, which will put the equation into standard form. To do that, first add 8y to

both sides of the equation:

8y = x2 — 4x + 12.

The next step is to complete the square on the right-hand side. Start by grouping the first two terms on the right-
hand side using parentheses:

8y = (x* — 4x) + 12.

Next determine the constant that, when added inside the parentheses, makes the quantity inside the parentheses

2
a perfect square trinomial. To do this, take half the coefficient of x and square it. This gives (_74) =4. Add 4

inside the parentheses and subtract 4 outside the parentheses, so the value of the equation is not changed:
8y =(x*—4x+4)+12-4.

Now combine like terms and factor the quantity inside the parentheses:

8y =(x—2)%+8.
Finally, divide by 8:

y=%(x—2)2+ 1.
This equation is now in standard form. Comparing this to Equation 1.11 gives h =2, k=1, and p =2.
The parabola opens up, with vertex at (2, 1), focusat (2, 3), anddirectrix y = —1. The graph of this parabola

appears as follows.

yi

x> —4x—8y+12=20

focus
e (2, 3)

directrix
y 1

Figure 1.47 The parabola in Example 1.19.

@ 1.18  pyt the equation Zy2 —x+ 12y + 16 = 0 into standard form and graph the resulting parabola.

7
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The axis of symmetry of a vertical (opening up or down) parabola is a vertical line passing through the vertex. The
parabola has an interesting reflective property. Suppose we have a satellite dish with a parabolic cross section. If a beam of
electromagnetic waves, such as light or radio waves, comes into the dish in a straight line from a satellite (parallel to the
axis of symmetry), then the waves reflect off the dish and collect at the focus of the parabola as shown.

yi

xY

Consider a parabolic dish designed to collect signals from a satellite in space. The dish is aimed directly at the satellite, and
areceiver is located at the focus of the parabola. Radio waves coming in from the satellite are reflected off the surface of the
parabola to the receiver, which collects and decodes the digital signals. This allows a small receiver to gather signals from a
wide angle of sky. Flashlights and headlights in a car work on the same principle, but in reverse: the source of the light (that
is, the light bulb) is located at the focus and the reflecting surface on the parabolic mirror focuses the beam straight ahead.
This allows a small light bulb to illuminate a wide angle of space in front of the flashlight or car.

Ellipses

An ellipse can also be defined in terms of distances. In the case of an ellipse, there are two foci (plural of focus), and two
directrices (plural of directrix). We look at the directrices in more detail later in this section.

Definition

An ellipse is the set of all points for which the sum of their distances from two fixed points (the foci) is constant.
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Figure 1.48 A typical ellipse in which the sum of the distances from any
point on the ellipse to the foci is constant.

A graph of a typical ellipse is shown in Figure 1.48. In this figure the foci are labeled as F' and F’. Both are the same
fixed distance from the origin, and this distance is represented by the variable c. Therefore the coordinates of F are (c, 0)

and the coordinates of F’ are (—c, 0). The points P and P’ are located at the ends of the major axis of the ellipse, and
have coordinates (a, 0) and (—a, 0), respectively. The major axis is always the longest distance across the ellipse, and
can be horizontal or vertical. Thus, the length of the major axis in this ellipse is 2a. Furthermore, P and P’ are called the
vertices of the ellipse. The points Q and Q' are located at the ends of the minor axis of the ellipse, and have coordinates

(0, b) and (0, —b), respectively. The minor axis is the shortest distance across the ellipse. The minor axis is perpendicular
to the major axis.

According to the definition of the ellipse, we can choose any point on the ellipse and the sum of the distances from this
point to the two foci is constant. Suppose we choose the point P. Since the coordinates of point P are (a, 0), the sum of

the distances is

diP, F)+dP, F)=(a—c)+ (a+c) =2a.

Therefore the sum of the distances from an arbitrary point A with coordinates (x, y) is also equal to 2a. Using the distance
formula, we get

d(A, F)+d(A, F')

\/(x -0+ y2 + V(x +0) 2+ y2

2a
2a.

Subtract the second radical from both sides and square both sides:
()c—c)2+y2 4c12—4a\/m+(x+c)2+y2
)c2—2cx+cz+y2 = 4c12—4a\/(x+c)2+yz+)cz+2cx+cz+y2

—2¢x = 4a’>—4a Vx + o2+ y2 + 2cx.

Now isolate the radical on the right-hand side and square again:
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—2cx = 4a2—4a\/(x+c)2+y2+2cx
4a\/(x+c)2+y2
2 2 _
x+0)"+y° = a+<t

2.2
x+0)?+y? = a2+2cx+0)zc
a

4a? + 4dcx

2.2
X2+ 2ex+c?+y? = a2+2cx+0)26

et 4y? = APyl

xz_c )2c +y2 — a2—62
2 2),.2
a“—c
( - J +y2 = a?-¢2
a
Divide both sides by a® - c?. This gives the equation
2 2
5+ 2y 7=1
a”~ a“—c

If we refer back to Figure 1.48, then the length of each of the two green line segments is equal to a. This is true because
the sum of the distances from the point Q to the foci F and F’ is equal to 2a, and the lengths of these two line segments

are equal. This line segment forms a right triangle with hypotenuse length a and leg lengths b and c. From the Pythagorean

theorem, a?+b?=c? and b? = a* — ¢%. Therefore the equation of the ellipse becomes
) 2
L+l=1
a b

Finally, if the center of the ellipse is moved from the origin to a point (%, k), we have the following standard form of an

ellipse.

Theorem 1.9: Equation of an Ellipse in Standard Form

Consider the ellipse with center (4, k), a horizontal major axis with length 2a, and a vertical minor axis with length

2b. Then the equation of this ellipse in standard form is

x=h?  (y—k? (1.12)
F =1
a? b2
2
and the foci are located at (2 + ¢, k), where ¢ = a? — b2 The equations of the directrices are x = & + aT_
If the major axis is vertical, then the equation of the ellipse becomes
(x—h?  (y—k? (1.13)
+ =1
b2 a’
and the foci are located at (h, k +c¢), where c?=a%-b% The equations of the directrices in this case are
2
y=k+ aT_

If the major axis is horizontal, then the ellipse is called horizontal, and if the major axis is vertical, then the ellipse is
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called vertical. The equation of an ellipse is in general form if it is in the form Ax* + By2 +Cx+Dy+E=0, where A

and B are either both positive or both negative. To convert the equation from general to standard form, use the method of
completing the square.

Example 1.20

Finding the Standard Form of an Ellipse
Put the equation 9x? + 4y2 —36x + 24y + 36 = 0 into standard form and graph the resulting ellipse.

Solution
First subtract 36 from both sides of the equation:

9x2 + 4y? — 36x + 24y = —36.
Next group the x terms together and the y terms together, and factor out the common factor:
(9x2 — 36x) + (4% + 24y)
9(x2 - 4x) + 4(y2 + 6y)

=36
—-36.

We need to determine the constant that, when added inside each set of parentheses, results in a perfect square.

2
In the first set of parentheses, take half the coefficient of x and square it. This gives (_74) = 4. In the second
6 2
set of parentheses, take half the coefficient of y and square it. This gives (5) = 9. Add these inside each pair

of parentheses. Since the first set of parentheses has a 9 in front, we are actually adding 36 to the left-hand side.
Similarly, we are adding 36 to the second set as well. Therefore the equation becomes

9(x? — 4x +4)+4(y* + 6y + 9) = =36 + 36 + 36
9(x? — 4x +4) + 4(y* + 6y + 9) = 36.

Now factor both sets of parentheses and divide by 36:

9x—2)2+4(y+3)? = 36
9x—2)2 4y +3)?
%6 36 - |
2 2
G=2? 03 _

The equation is now in standard form. Comparing this to Equation 1.14 gives h =2, k= -3, a =3, and
b = 2. This is a vertical ellipse with center at (2, —3), major axis 6, and minor axis 4. The graph of this ellipse

appears as follows.
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Yy
IT Ox? + 4y? — 36x + 24y + 36 = 0

' e ' !

-1 0 2 4 5 6%
-1

Figure 1.49 The ellipse in Example 1.20.

@ 1.19  pyt the equation 9x? + 16y2 + 18x — 64y — 71 = 0 into standard form and graph the resulting ellipse.

According to Kepler’s first law of planetary motion, the orbit of a planet around the Sun is an ellipse with the Sun at one
of the foci as shown in Figure 1.50(a). Because Earth’s orbit is an ellipse, the distance from the Sun varies throughout the
year. A commonly held misconception is that Earth is closer to the Sun in the summer. In fact, in summer for the northern
hemisphere, Earth is farther from the Sun than during winter. The difference in season is caused by the tilt of Earth’s axis
in the orbital plane. Comets that orbit the Sun, such as Halley’s Comet, also have elliptical orbits, as do moons orbiting the
planets and satellites orbiting Earth.

Ellipses also have interesting reflective properties: A light ray emanating from one focus passes through the other focus
after mirror reflection in the ellipse. The same thing occurs with a sound wave as well. The National Statuary Hall in the
U.S. Capitol in Washington, DC, is a famous room in an elliptical shape as shown in Figure 1.50(b). This hall served as
the meeting place for the U.S. House of Representatives for almost fifty years. The location of the two foci of this semi-
elliptical room are clearly identified by marks on the floor, and even if the room is full of visitors, when two people stand on
these spots and speak to each other, they can hear each other much more clearly than they can hear someone standing close
by. Legend has it that John Quincy Adams had his desk located on one of the foci and was able to eavesdrop on everyone
else in the House without ever needing to stand. Although this makes a good story, it is unlikely to be true, because the
original ceiling produced so many echoes that the entire room had to be hung with carpets to dampen the noise. The ceiling
was rebuilt in 1902 and only then did the now-famous whispering effect emerge. Another famous whispering gallery—the
site of many marriage proposals—is in Grand Central Station in New York City.

@
Figure 1.50 (a) Earth’s orbit around the Sun is an ellipse with the Sun at one focus. (b) Statuary Hall in the U.S. Capitol is a
whispering gallery with an elliptical cross section.
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Hyperbolas

A hyperbola can also be defined in terms of distances. In the case of a hyperbola, there are two foci and two directrices.
Hyperbolas also have two asymptotes.

Definition

A hyperbola is the set of all points where the difference between their distances from two fixed points (the foci) is
constant.

A graph of a typical hyperbola appears as follows.
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Figure 1.51 A typical hyperbola in which the difference of the distances from any
point on the ellipse to the foci is constant. The transverse axis is also called the major
axis, and the conjugate axis is also called the minor axis.

The derivation of the equation of a hyperbola in standard form is virtually identical to that of an ellipse. One slight hitch lies
in the definition: The difference between two numbers is always positive. Let P be a point on the hyperbola with coordinates
(x, y). Then the definition of the hyperbola gives |d(P, F)— d(P, F,)| = constant. To simplify the derivation, assume

that P is on the right branch of the hyperbola, so the absolute value bars drop. If it is on the left branch, then the subtraction
is reversed. The vertex of the right branch has coordinates (a, 0), so

dP, F|)—d(P, Fp)=(c+a)— (c —a) = 2a.
This equation is therefore true for any point on the hyperbola. Returning to the coordinates (x, y) for P:
dP, F|)—dP, F,)) = 2a

Va+o? +3% = - 0%+

Add the second radical from both sides and square both sides:
V(x = ¢)? + y? 2a+ (x+¢)? +y?
(x—0)?+y? 40’ +4a\(x +O)? +y2 + (x+ )2 +y?

4az+4a\/m+x2+2cx+cz+y2
4a* + 4a Vx + 0)2 + y2 + 2cx.

Now isolate the radical on the right-hand side and square again:

2a.

x2—2cx+cz+y2

—2cx
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—2¢x = 4a? +4a\(x + c)2+y2+2cx
4a\(x + o)+ y2 = —4a®—4ex
2 2 _
x+0)"+y° = —a-%t

2.2
x+0)?+y? = a2+2cx+0)zc
a

2.2
X2+ 2ex+c?+y? = a2+2cx+0)26

et 4y? = APyl

x2_C)2c +y2 — a2—62
2_.2),2

a —c

( 2)’( +y2 = a2 ¢?

2

We now define b so that b? = ¢? — g2, This is possible because ¢ > a. Therefore the equation of the ellipse becomes

[ ]
[\

X

a2
Finally, if the center of the hyperbola is moved from the origin to the point (%, k), we have the following standard form of

a hyperbola.

Theorem 1.10: Equation of a Hyperbola in Standard Form

Consider the hyperbola with center (%, k), a horizontal major axis, and a vertical minor axis. Then the equation of
this ellipse is

x-n> y-k*_ . (1.14)
a? b2 a

2

and the foci are located at (h+c, k), where ¢?=a”+b> The equations of the asymptotes are given by

y=k=+ %(x — h). The equations of the directrices are

2 2
x=k+ =h+92_

T Y — C "
Va? + b2
If the major axis is vertical, then the equation of the hyperbola becomes

(R R C et ) Y (1.15)
2 b2 -

a

2

and the foci are located at (h, k+c¢), where ¢~ = a’+b%. The equations of the asymptotes are given by

y=k=+ %(x — h). The equations of the directrices are
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2 2

y=k+ o

TVa2ap?

If the major axis (transverse axis) is horizontal, then the hyperbola is called horizontal, and if the major axis is vertical
then the hyperbola is called vertical. The equation of a hyperbola is in general form if it is in the form

Ax? + By2 + Cx+ Dy+ E =0, where A and B have opposite signs. In order to convert the equation from general to

standard form, use the method of completing the square.

Example 1.21

Finding the Standard Form of a Hyperbola

Put the equation 9x2 — 16y2 +36x + 32y — 124 =0 into standard form and graph the resulting hyperbola.

What are the equations of the asymptotes?

Solution
First add 124 to both sides of the equation:

9x2 — 16y + 36x + 32y = 124.
Next group the x terms together and the y terms together, then factor out the common factors:
(9x2 + 36x) - (16y2 - 32y)
9(x? + 4x) — 16(y* — 2y)

124
124.

We need to determine the constant that, when added inside each set of parentheses, results in a perfect square. In
2

the first set of parentheses, take half the coefficient of x and square it. This gives (%) = 4. In the second set
2
of parentheses, take half the coefficient of y and square it. This gives (_72) = 1. Add these inside each pair of

parentheses. Since the first set of parentheses has a 9 in front, we are actually adding 36 to the left-hand side.
Similarly, we are subtracting 16 from the second set of parentheses. Therefore the equation becomes

O(r* +4x+4)— 16(y> — 2y + 1) = 124 + 36 — 16
O(r* +4x +4)— 16(y> — 2y + 1) = 144,

Next factor both sets of parentheses and divide by 144:

9x+2)2—16(y— 17 = 144
9x+22 16y =172 _ |
144 144 =
@+2? =17 _
16 9 - =

The equation is now in standard form. Comparing this to Equation 1.15 gives h=-2, k=1, a=4,
and b = 3. This is a horizontal hyperbola with center at (—2, 1) and asymptotes given by the equations

y=1=% %(x + 2). The graph of this hyperbola appears in the following figure.
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}G’Jl
Ox2 + 162 + 36x + 32y — 124 = 0
5

Figure 1.52 Graph of the hyperbola in Example 1.21.

1.20 pyt the equation 4y2 —ox+ 16y + 18x—29 =0 into standard form and graph the resulting
hyperbola. What are the equations of the asymptotes?

Hyperbolas also have interesting reflective properties. A ray directed toward one focus of a hyperbola is reflected by a
hyperbolic mirror toward the other focus. This concept is illustrated in the following figure.

y
T Light from star

Figure 1.53 A hyperbolic mirror used to collect light from distant stars.

This property of the hyperbola has important applications. It is used in radio direction finding (since the difference in signals
from two towers is constant along hyperbolas), and in the construction of mirrors inside telescopes (to reflect light coming
from the parabolic mirror to the eyepiece). Another interesting fact about hyperbolas is that for a comet entering the solar
system, if the speed is great enough to escape the Sun’s gravitational pull, then the path that the comet takes as it passes
through the solar system is hyperbolic.

Eccentricity and Directrix

An alternative way to describe a conic section involves the directrices, the foci, and a new property called eccentricity. We
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will see that the value of the eccentricity of a conic section can uniquely define that conic.

Definition

The eccentricity e of a conic section is defined to be the distance from any point on the conic section to its focus,

divided by the perpendicular distance from that point to the nearest directrix. This value is constant for any conic
section, and can define the conic section as well:

1. If e=1, the conicis a parabola.
2. If e< 1, itisan ellipse.
3. If e> 1, itisahyperbola.

The eccentricity of a circle is zero. The directrix of a conic section is the line that, together with the point known
as the focus, serves to define a conic section. Hyperbolas and noncircular ellipses have two foci and two associated
directrices. Parabolas have one focus and one directrix.

The three conic sections with their directrices appear in the following figure.

Ellipse Parabola Hyperbola

1 1

[ it vertex
b focus (a, 0) (@ 0)\ Iocg?
(c, 0) < c,
1 o \ —] & \
(0.0
v (O! 0)
=
- a

directrix / \

directrix directrix
X = iz X=—a X = iz
c [

Figure 1.54 The three conic sections with their foci and directrices.

Recall from the definition of a parabola that the distance from any point on the parabola to the focus is equal to the distance
from that same point to the directrix. Therefore, by definition, the eccentricity of a parabola must be 1. The equations of the

2
directrices of a horizontal ellipse are x = iaT‘ The right vertex of the ellipse is located at (a, 0) and the right focus is

(c, 0). Therefore the distance from the vertex to the focus is a — ¢ and the distance from the vertex to the right directrix

2
. a . . . .
is £z — c. This gives the eccentricity as

a—c _¢la=c) _cla=¢c) _c

2 dl—ac aa—o @
C

e =

Since ¢ < a, this step proves that the eccentricity of an ellipse is less than 1. The directrices of a horizontal hyperbola are

2
also located at x = ia?, and a similar calculation shows that the eccentricity of a hyperbola is also e = %, However in

this case we have ¢ > a, so the eccentricity of a hyperbola is greater than 1.
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Example 1.22

Determining Eccentricity of a Conic Section

Determine the eccentricity of the ellipse described by the equation

x=37° 0+2°

16 35—

Solution
From the equation we see that a =5 and b =4. The value of ¢ can be calculated using the equation

a’=b>+c? for an ellipse. Substituting the values of a and b and solving for c gives ¢ = 3. Therefore the

eccentricity of the ellipse is e = < = 3=0.6.

a 5

@’ 1.21 Determine the eccentricity of the hyperbola described by the equation

0-3" +2*_,
49 25

Polar Equations of Conic Sections

Sometimes it is useful to write or identify the equation of a conic section in polar form. To do this, we need the concept of
the focal parameter. The focal parameter of a conic section p is defined as the distance from a focus to the nearest directrix.
The following table gives the focal parameters for the different types of conics, where a is the length of the semi-major axis
(i-e., half the length of the major axis), c is the distance from the origin to the focus, and e is the eccentricity. In the case of
a parabola, a represents the distance from the