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Soli Deo Gloria
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Preface

Mimicking biology to improve sensory system designs and 
signal processing algorithms has thrived in the past and 
will continue to do so for decades to come. Technological 
advances have generally followed Moore’s Law (capability 
doubling every 2 years or so) since the 1960’s while 
our understanding of biological sensory systems is also 
rapidly advancing. These trends fuel the fertile grounds 
of bio-inspired sensory systems, a topic that is inherently 
multidisciplinary. This book is intended to be used as the 
primary text for a technical elective course in an under-
graduate or graduate electrical engineering curriculum, 
but it could certainly be used for related purposes as well. 
Available student materials for such a course have previ-
ously been limited to biology sensory system texts, robotic 
application systems, collections of papers from numerous 
authors, current technical publications, and related mate-
rial that have been useful but awkward as student study 
material due to the complexity of biology and the vast 
array of technical applications. There has not been a book 
or summary of study materials available that systemati-
cally covers natural photo-, mechano-, and chemo-sensory 
systems across the animal kingdom and also summarizes 
various novel engineering ideas that glean ideas from 
these natural sensory systems. 

For a one-semester course it is expected that the instructor 
of such a course would search the literature for recent 
sensory system designs inspired by biology such as 
examples already covered in this text . It is recommended 
that special assignments be given to students in the course 
to review the literature for relevant papers (or be given a 
set of papers to choose from) and present their findings to 
the class. A suggested assignment is given in Appendix 
A. It is also recommended that the instructor include the 
following free texts for more in-depth coverage of specific 
linear systems theory and image processing concepts 
when applicable (for example, when discussing a particular 
current application):

Ulaby, F. and Yagle, A, Signals and Systems: Theory 
and Applications, Michigan Publishing,  
ISBN 978-1-60785-487-6, 2018.  
Available at ss2.eecs.umich.edu.

Yagle, A. and Ulaby, F., Image Processing for  
Engineers, Michigan Publishing,  
ISBN 978-1-60785-489-0, 2018.  
Available at ip.eecs.umich.edu.

The following text is referenced frequently and is recom-
mended for a much more thorough study of the structure 
and function of natural sensory systems. Breaking this 
topic into photo-, mechano- and chemo-sensory systems is 
inspired by the organization of this book:

Smith, C. U. M., Biology of Sensory Systems, 2/e, John 
Wiley, and Sons, ISBN: 978-0-470-51862-5, 2008.

Since solutions manuals to textbooks are so readily avail-
able, it makes more sense to work example problems in this 
text and provide similar exercise problems (with only the 
answers provided) to assess the skill required to solve the 
problems. There are also sets of questions for the student 
to check their comprehension of the material covered. Most 
of these questions are directly answered in the text so an 
answer key is not provided separately.

Specific problems are introduced and worked that are 
intended to reinforce specific concepts covered. There are 
many various other problems that could be introduced, 
but the goal is to keep within the scope of a one-semester 
course. The following is a partial list of the problem types 
and why they were chosen for this text: 

2D convolution problems show how image filtering is a 
2D extension of 1D convolution covered in a standard 
linear systems course.

Space constant problem shows significant attenuation of 
ionic signal as it travels down the axon. 

Neuronal circuit model problems emphasize that many 
times neuronal electronic signals are due to the 
movement of ions and not electrons and holes. In 
biology ions must be replenished; thus, the circuit 
includes dependent sources that model microbiological 
structures called ion pumps.

Motion detection problems show that delayed responses 
of adjacent neurons are needed for most basic motion 
detection queues.

Center-surround opponent processing problems show 
how three cone types with broadly overlapping 
responses across the visible electromagnetic  
spectrum can be combined to uniquely identify  
very specific colors.

Wavelet analysis and synthesis problem demonstrate 
that broadly overlapping filters can be used to encode 

http://ss2.eecs.umich.edu
http://ip.eecs.umich.edu
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detailed signals and conserve signal energy, which is 
very important to biology. 

Auditory neuron response problem is another example 
of how broadly overlapping responses of adjacent 
neurons can be used to extract specific tonal informa-
tion from incoming sound source.

The author is grateful for a one-semester professional 
development leave (PDL) assignment in 2020 that made 
possible the completion of this project. Randy Hanna, 
Dean of Florida State University Panama City (FSU PC), 
is appreciated for his willingness to inaugurate PDL op-
portunities for dedicated teaching faculty on our campus. 
Shaun Saxon, FSU PC Librarian, and Laura Miller, FSU 
Open Publishing Librarian were invaluable for the help 
and advice for making this available in the most practical 
sense. Betul Adalier is very much appreciated for sharing 
her design talent in creating the front and back cover.

This book is provided for free in accordance with the 
Creative Commons license stated earlier. It is requested 
that you let us know how you plan to use the book and 
to let us know how we can make it better. The author 
may be contacted directly for comments and feedback at 
gbrooks@fsu.edu. The book may be downloaded from 
the FSU Libraries at https://manifold.lib.fsu.edu/projects/
bio-inspired-sensory-systems.

mailto:gbrooks%40fsu.edu?subject=
https://manifold.lib.fsu.edu/projects/bio-inspired-sensory-systems
https://manifold.lib.fsu.edu/projects/bio-inspired-sensory-systems


Chapter 1:  
INTRODUCTION

As an introduction we will define some multidisciplinary 
terminology, consider our motivations, and cover some 
relevant academic activity as well as research publications.

1.1 Relevant terminology and related  
bio-inspired technologies

Biomimetic implies the mimicry of biology; note the word 
mime embedded in the term. In recent years biomimicry 
seems to be used more and more for sensory systems 
applications (our interest), while biomimetics implies 
molecular-level mimicry. This text is focused on biologi-
cally-inspired paradigms used for sensory systems and the 
signal processing that goes with such systems. The subject 
is sensory systems and not the research associated with 
mimicking organic chemistry, muscle tissue, etc. In this 
text cursory descriptions of biological phenomena will be 
followed by electronic sensor designs and the signal process-
ing algorithms that emulating such phenomena for useful 
technological application. Bioprincipic is a similar term 
used recently implying the mimicry of biological principles.

Biometric implies measuring biological features unique to 
an individual to determine the identity of the person. For 
example, authentication can be granted based on a pattern 
matching of a fingerprint, scanned iris image, or recorded 
voice pattern. This could be used for building and computer 
security purposes. 

Biomedical means the branch of medicine associated with 
survival in stressing environments. Bionic means enhancing 
normal biological capability with electronic or mechanical 
devices [Webster]. 

Bioinformatics is used to describe computer applications 
of extracting information about biological phenomena, 
primarily in the field of molecular biology. Bioinformatics 
is more formally defined as “ The collection, classification, 
storage, and analysis of biochemical and biological infor-
mation using computers especially as applied to molecular 
genetics and genomics.” [Webster].

Anatomy and Physiology imply structure and function, re-
spectively. Scientists from many disciplines often organize 
their thoughts in similar ways. However, until there is a 
reason to communicate across disciplines, the terminology 
in each tends to develop into quite different terms. Table 1 
is an observation of the separation of phenomena into 
physical and abstract categories. 

Genetic Algorithms refers to computational methods 
inspired by genetics. A genetic algorithm may consist of 
randomly choosing a solution to a problem or improving 
an existing solution based on an evaluation of fitness 
representing the problem solution. Improved solutions may 
be derived from fitness evaluation and genetic operators 
representing mutation and crossover.

Evolutionary Computation refers to the computational 
methods mimicking natural evolutionary forces.

Neural Networks is used to refer to networks of computa-
tional elements that process information in an analogous 
way to biological neuronal networks. 

Both natural and artificial neural networks perform a 
nonlinear transform on an aggregation of many weighted 
input signals. There are many artificial “neural network” 
paradigms (ANN’s) that include many ideas ont found in 
biological neuronal networks, although the general concept 
has its original inspiration from biology.

Table 1. Different Terminology, Similar Concepts

Concept Biology Engineering Computer Common Term
Physical Anatomy Architecture Hardware Structure
Abstract Physiology Algorithm Software Function
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Nevertheless, most ANN variations have these features in 
common with natural neural networks:

- A summation of many inputs, each weighted  
differently based on learned examples

- A non-linear output mapping function follows  
the summation

- massively parallel

- distributive processing

- adaptive

The application of ANN’s to various engineering appli-
cations has grown into an academic field of its own, with 
separate texts and courses dedicated to the field. Further 
study of neural networks is reserved for courses and texts 
dedicated to this subject.

1.2 Motivation for this multidisciplinary 
study

So, why a special electrical engineering course focused on 
biologically-inspired sensory system designs and signal 
processing techniques? A few of the reasons include:

- Natural systems solve engineering problems

- Biological information is becoming increasingly 
more available

- Technology is becoming increasingly more  
affordable and available

- Research agencies continue to support  
bio-inspiration

- A better understanding of biology can result from 
attempting to imitate biology 

1.2.1 Natural systems solve engineering problems

From the earliest times we have looked to biological 
systems for engineering solutions to our technical prob-
lems. For example, in Greek mythology the legendary 
Daedalus, builder of the Cretan labyrinth, was motivated 
by birds to build wings to help him and his son, Icarus, 
escape imprisonment. Later observations of birds, such as 
wing-shape, have led to modern aircraft design features.

Velcro has been inspired by the way burrs attach them-
selves to clothing. Autonomous robots can benefit from 
the study of natural control mechanisms found in similar 
creatures in the animal kingdom. Machine vision systems 

for robotics require the separation of objects from the 
background, a task inherently embedded into the design of 
natural vision systems. The image recognition capability 
of humans is difficult to duplicate with computer technol-
ogy, although neurons are five or six orders of magnitude 
slower than silicon transistors and heterogeneous (or 
considerably ‘mismatched’ when compared to transistors).

1.2.2 Biological information is becoming  
increasingly more available 

The difficulty in reverse-engineering natural systems is 
due in part to our lack of complete understanding of these 
complex systems. In organic chemistry and microbiology, 
we have uncovered much detail of the fundamental 
physical processes at the neuronal level. We also have 
considerable understanding of the overall systems be-
havior from fields such as psychology or psycho-physics. 
What is difficult to grasp, however, is how the microscopic 
processes transforms sensory information into the macro-
scopic decisions and behaviors. This leads to an interest in 
natural design optimizations and interconnection schemes.

It is commonly agreed that many people will do almost 
anything for money but will also freely give it up for 
their health. This captures our limited existence in time 
and space while desiring permanence, which leads to 
our willingness to do whatever we can to maintain or 
improve our health. As a result, there is and will always be 
enormous resources (funds, etc.) available for exploring a 
deeper understanding of biological phenomena. Although 
guided for medical purposes, system concepts applicable 
for other uses will eventually unfold. As we move further 
into the information age with better and better technology, 
many of the details are already available for exploiting 
natural sensory design concepts.

Although there is already an abundance of information 
available on natural sensory systems and signal pro-
cessing, it is difficult for engineers to decipher useful 
information from the biomedical literature. This is due in 
part to the different motivations: The medical community 
is interested in diagnosing (organic) system problems 
and formulating procedures and medications to fix those 
problems or allow the patient the ability to adequately 
deal with the problems. The engineer, on the other hand, 
is more interested in how specific tasks are accomplished 
from the available sensory signals.
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1.2.3 Abundant technology is affordable and 
user-friendly

Due to rapid advances in processing speeds and through-
put capabilities many successful applications have now 
been developed using artificial intelligence, deep learning 
neural network architectures, and other related technolo-
gies. A small sample of tools readily available for students 
and researchers include:

Reconfigurable computing tools such as Quartus 
(Altera) and Vitis (Xilinx)

Circuit simulation tools such as PSPICE (Microsim)

Data Acquisition such as LabVIEW (National  
Instruments)

Computational tools such as Matlab (Mathworks)

Development platforms such as Raspberry,  
Arduino, etc.

Languages such as Python 

1.2.4 Research agencies continue to support 
bio-inspiration

The author draws from former work experience at 
the Munitions Directorate of the Air Force Research 
Laboratory (AFRL/MN). To address the high signal 
processing throughput and short latency of an imager that 
guides an exo-atmospheric hypervelocity missile, novel 
concepts were explored that involved biologically-inspired 
approaches. Funded concepts included an infrared sensor 
with retina-inspired readout, multi-resolution targeting 
inspired by foveated vision, and other research projects 
exploiting various bio-inspired sensory design ideas. 

Some historical efforts (late 1980’s and 1990’s)

Much of the work at AFRL/MN was leveraged from 
former research sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) and the Office of Naval 
Research (ONR). Research funded by ONR and DARPA 
as well as National Science Foundation (NSF), National 
Institute of Health (NIH), and others have resulted in 
books whose individual chapters are written by the various 
researchers, which can lead to a considerable lack conti-
nuity and consistency. Nevertheless, the material in such 
books is proven to very useful; a few examples include

Mead, Carver, Analog VLSI and Neural Systems, 
Addison-Wesley, 1989.

Zornetzer, Steven, Davis, Joel, and Lau, Clifford, 
editors, An Introduction to Neural and Electronic 
Networks, Academic Press, 1990.

Ayers, J., Davis, J. and Rudolph, A., editors  
Neurotechnology for Biomimetic Robots,  
MIT Press, 2002.

Bar-Cohen, Yoseph, and Breazeal, Cynthia, editors, 
Biologically-inspired Intelligent Robots, Taylor and 
Francis, 2003.

Bar-Cohen, Yoseph, editor, Biomimetics: Biologically- 
inspired Technologies, Taylor and Francis, 2006.

The following book and the 2nd edition have been useful  
for covering the structure and function biological  
sensory systems:

Smith, C.U.M, Biology of Sensory Systems, John Wiley 
and Sons, ISBN: 0-471-85461-1, 2000.

As an example of continued strong and direct support for 
biomimetics, consider this excerpt from an announcement 
for Biomimetics for Computer Network Security  
Workshop (1999): 

“The Office of Naval Research is sponsoring a work-
shop whose goal will be to identify technologies that 
are inspired by biological foundation and that, when 
matured, may contribute to a significant increase in 
network security capability...This research is aimed 
at developing a new class of biologically inspired 
robots that exhibit much greater robustness in perfor-
mance in unstructured environments than today’s 
robots.... The research involves a close collaboration 
among robotics and physiology researchers at 
Stanford, U.C. Berkeley, Harvard and Johns Hopkins 
Universities... sponsored by the Office of Naval 
Research under grant N00014–98–1–0669…”

More recent developments

In August, 2020, the Office of Naval Research (ONR, 
www.onr.navy.mil, Code 341) continued to solicit contract 
and grant proposals in the area of “Bio-inspired Autono-
mous Systems” with the following description:

The aim of Bio-inspired Autonomous Systems is to 
extract principles of sensorimotor control, biome-
chanics and fluid dynamics of underwater propulsion 
and control in aquatic and amphibious animals that 
underlie the agility, stealth, efficiency, and sensory 
adaptations of these animals. The principles that 
emerge from this interdisciplinary research are 
formalized and explored in advanced prototypes. The 
goal of this program is to expand the operational en-
velope of Navy underwater and amphibious vehicles 
and enable enhanced underwater manipulation.

http://www.onr.navy.mil/sci_tech/personnel/ONRPGALX.asp
http://www.onr.navy.mil/sci_tech/personnel/ONRPGALX.asp
http://www.onr.navy.mil
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as well as in “Bio-inspired Signature Management” with 
the following description:

The Bio-inspired Signature Management program 
aims to discover biologically-inspired adaptations 
and bioengineered solutions to expand current 
warfighter capabilities in detection mitigation and 
undersea navigational challenges. This will be 
accomplished through multidisciplinary research in 
science and technology fields such as bio-inspired / 
biomimetic materials, visual and sensory perception, 
and bio-optics / bioelectronics.

Also in August 2020 the Defense Advanced Research 
Projects Agency (DARPA, www.darpa.mil) gives the 
following description of their “Nature As Computer 
(NAC)” program:

Certain natural processes perform par excellence 
computation with levels of efficiency unmatched by 
classical digital models. Levinthal’s Paradox illus-
trates this well: In nature, proteins fold spontaneously 
at short timescales (milliseconds) whereas no efficient 
solution exists for solving protein-folding problems 
using digital computing. The Nature as Computer 
(NAC) program proposes that in nature there is 
synergy between dynamics and physical constraints 
to accomplish effective computation with minimal 
resources. NAC aims to develop innovative research 
concepts that exploit the interplay between dynamic 
behaviors and intrinsic material properties to devel-
op powerful new forms of computation. The ability 
to harness physical processes for purposeful compu-
tation has already been demonstrated at lab-scales. 
NAC seeks to apply these concepts to computation 
challenges that, for fundamental reasons, are poorly 
suited to, or functionally unexplored with, classical 
models. NAC will lay the foundation for advancing 
new theories, design concepts and tools for novel 
computing substrates, and develop metrics for com-
paring performance and utility. If successful, NAC 
will demonstrate the feasibility of solving challenging 
computation problems with orders-of-magnitude 
improvements over the state of the art.

1.2.5 Imitating biology can lead to a better  
understanding of biology

Although engineering applications may result from 
biological inspiration, sometimes those applications are 
biomedical. For example, artificial neural networks are 
used for identifying potential cancerous sites in x-ray 
images. Meanwhile, biomimetic robots are not only used 
as testbeds for potential engineering applications, but 

also as tools for biologists to better understand complex 
animal-environment relationships. An example of this 
expressed is found concerning MIT’s “RoboLobster” in 
the following quote:

The major result of these studies was a solid demon-
stration that tropotactic concentration-sensing 
algorithms could not explain the plume-tracking 
behavior in lobsters…So we are forced to consider 
other biologically feasible algorithms to find a 
reasonable explanation…Thus RoboLobster revealed 
to us something about the lobster’s world that we 
had previously only suspected: the need to switch 
tracking strategies between different regions of the 
plume [Grass02].

1.3 Academic Research activity    

Using natural biology as a source of inspiration for 
solving sensing problems requires a solid understanding 
of biology. Although there is a long history of our under-
standing how biological sensory systems perform certain 
tasks, there is still very much that is not yet understood. 
Biological research institutions continually reveal deeper 
knowledge of the structure and function of sensory 
systems, which gives engineering problem-solvers more 
to consider. Models and algorithms are developed to 
match measured data, such as the Hassenstein-Reichardt 
Elementary Motion Detection (HR-EMD) model [Hass56], 
DeValois spatial vision models [DeV88], and others more 
focused on a specific sensory system, such as Frank Wer-
blin’s efforts to simulate primate vision processing in the 
retina [Werb91], John Douglas’ and Nicholas Strausfeld’s 
work to map the neural circuitry of the fly [Doug00], and 
many others.

Sometimes biology is deliberately considered for inspira-
tion for new ideas. One example is the funding provided 
during the 1980’s by the Office of Naval Research (ONR) 
and the Defense Advanced Research Project Agency 
(DARPA) to pursue novel military sensor designs. One of 
the products is a collection of biologically-inspired sensory 
system design concepts implemented in VLSI technology. 
Several of these designs developed at California Institute 
of Technology (CalTech) are detailed in Analog VLSI and 
Neural System [Mead89]. One of these designs, the ‘silicon 
retina’, was expanded by the Air Force Research Laborato-
ry (AFRL) for military seeker applications by integrating 
with an array of infrared sensors [Mass93]. Some grad-
uates from Mead’s lab began their own bio-inspired labs 
at institutions such as Georgia Institute of Technology, 
University of Florida, Massachusetts Institute of  
Technology, etc. while other graduates started their own 

https://www.darpa.mil/program/nature-as-computer
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companies building bio-inspired components or research-
ing follow-on design concepts.  

Much more work in bio-inspired sensing can be found in 
technical journals and conferences such as the IEEE Inter-
national Conference on Robotics and Biomimetics. This 
conference alone has more than 500 papers and has been 
an annual conference since 2012. A common application 
for this conference is robotic fish, which has its inspiration 
in the design of fish for underwater maneuverability. Other 
popular topics include deep-learning neural networks, ac-
tuators, flocking (or swarming), and biomimetic materials. 
These topics are popular in other bio-inspired conferences, 
journals magazines, etc. Although the original neural 
network is bio-inspired, many subsequent efforts deviate 
from biology (not to mention very little is known about 
how real neural networks work). Any research using a 
neural network or adding something to a robotic fish or 
other originally bio-inspired concept could arguably be 
labeled ‘bio-inspired’, which complicates isolating truly 
new bio-inspired contributions.

In addition to the technology applications we have the 
more biology-focused efforts, where biologists are attempt-
ing to derive models that adequately reflect measured data. 
Example journals include Vision Research and Biological 
Cybernetics. A drawback for engineers is the biology-in-
tensive language necessary to convey their models, as well 
as efforts typically are very focused on a very specific part 
of one species’ neural circuitry, such as the mechanism 
for turning in the salamander [Liu20]. Therefore due to 
the quantity of technical efforts and the wide diversity of 
disciplines that consider this general topic area it is quite 
challenging to encompass all significant efforts in any of 
the basic modalities (vision, olfaction, gustation, tactile, 
audition) of bio-inspired sensory design.

Chapter 1 Questions 

1.   What do the terms biomimetics, biometrics,  
biomedical, bionics, and bioinformatics mean?

2.   What are some of the motivations for studying  
biomimetics?

3.   What terms do the various academic disciplines use to 
describe system structure and system function?

4.   What are some of the characteristics of both artificial 
and natural neural networks?

5.   There is a wealth of knowledge available concerning 
biological processing at the molecular and neuronal 
levels as well as a wealth of knowledge concerning 
human behavior. What is missing?

6.  Why is it a good assumption that there will continue to 
be significant spending on biological research?
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Chapter 2:  
GENERAL CONCEPTS FROM  
ENGINEERING AND BIOLOGY

Some common groundwork is necessary before inves-
tigating natural and biomimetic sensory systems and 
signal processing. A review of the salient aspects of linear 
systems (Section 2.1) is covered first. This is followed by 
fundamentals of neuronal systems (Section 2.2), neuronal 
processing (Section 2.3), an electric circuit model of a 
neuron (Section 2.4), and basic neuronal motion detection 
models (Section 2.5). The following free texts are recom-
mended for more thorough treatment of linear systems 
theory and image processing:

Ulaby, F. and Yagle, A, Signals and Systems: Theory 
and Applications, Michigan Publishing,  
ISBN 978–1–60785–487–6, 2018.  
Available at ss2.eecs.umich.edu.

Yagle, A. and Ulaby, F., Image Processing for  
Engineers, Michigan Publishing,  
ISBN 978–1–60785–489–0, 2018. 
Available at ip.eecs.umich.edu.

2.1 Relevant Linear Systems Theory

This section summarizes the salient points of linear sys-
tems theory relevant to biomimetic sensory systems and 
signal processing. Many facets of natural vision processing 
can be modeled as spatial-temporal filters operating on 
input signals or image sequences. The two-dimensional 
spatial filters operate on each image frame, which is 
subsequently modified to account for the temporal history 
of previously filtered image frames. These operations are 
extensions of 1D discrete-time convolutions and other sig-
nal processing operations. The topics covered here include 
the motivation for LTI system modeling, continuous-time 
convolution and impulse response, δ(t), discrete-time 
convolution and unit pulse function, δ[n], 2D discrete-time 
convolution, and the Fourier Series and Fourier Transform.

2.1.1 Motivation for linear time-invariant (LTI) 
system modeling

Biological systems are naturally non-linear and time-vary-
ing. However, there is much practicality in approximating 
portions of the system as piece-wise linear over a nominal 
range of input values and time-invariant for relatively short 
periods of time. Such models many times can be “close 
enough” to be very useful. To simplify signal processing, 
we desire to use models of biological information trans-
forms that are linear and time-invariant, or LTI transforms.

A system is linear if the law of superposition applies. In 
electrical engineering, superposition implies mathematical 
homogeneity and additivity. If the system output is y1 = f(x1) 
for an input x1 and y2 = f(x2) for an input x2, then the system 
is homogeneous if f(αx1) = αy1, additive if 

 f(x1 + x2) = f(x1) + f(x2) = y1 + y2

and therefore, linear if  f(αx1 + βx2)  =  f(αx1) + f(βx2) = αy1 
+ βy2

A system is time-invariant if for the same response is given 
for the same set of inputs, regardless of when the inputs are 
presented. That is, for y(t) = f(x(t)), then f(x(t - t0)) = y(t - t0) 
for a constant time interval t0.

Many natural (biological) signal processing functions can 
be modeled as a sequence of LTI subsystems we refer to as 
filters. The signal is sent through a filter and looks different 
at the output. For example, a filter simulating the layer of 
photoreceptors in mammalian vision systems may include 
a logarithmic conversion of light intensity followed by a 
blurring effect due to interactions with nearby photorecep-
tors. This model would include a logarithmic filter followed 
by a Gaussian blurring filter:

If h(t) is the impulse response to the system, then, for a 
continuous-time input signal f(t)

h t f t *� t
0

t

f � � t � d�
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and for a discrete-time input sequence f[n]

h[n] f [n]*δ[n]
k

f [k]δ[n k]

The symbol * is used to denote convolution, and δ denotes 
the Direct delta function, both of which are discussed later. 
For the discrete-time case, time-invariance implies that 
if h[n] is the response to δ[n], then h[n-k] is the response 
to δ[n-k]. The impulse response (h[n] for discrete-time 
systems and h(t) for continuous-time systems) of a linear 
time-invariant (LTI) system completely characterizes 
that system. The output, y[n], of an LTI system is the sum 
of individual impulse responses weighted by the current 
input value, x[n]:

y[n]
k

x[k]h[n k]

For a continuous-time signal, s(t), the Fourier Transform 
of s(t), represented as S(ω), shows the frequency content 
of s(t) as a function of radian frequency ω. The Inverse 
Fourier Transform of S(ω) gives back the original time-do-
main representation. The two functions, both representing 
the same signal from different domain perspectives form a 
Fourier Transform pair, denoted as:  s(t) <==> S(ω).

The response of a system to an impulse is called the 
impulse response and is denoted as h(t). The frequency 
representation of the impulse response, H(ω), is called the 
frequency response. Given an input signal to a known LTI 
system, the output can be determined:

in the time domain as the convolution of input and 
LTI impulse response, or 

in the frequency domain as the product of the input 
spectrum and the LTI frequency response.

To put it another way, given an input, x(t), whose spectrum 
is X(ω), to an LTI systems whose impulse response is h(t) 
(whose spectrum is H(ω), the frequency response) then the 
output, y(t), and its spectrum, Y(ω), is given as

Time domain:   y(t) = x(t) * h(t)
Frequency domain:  Y(ω) = X(ω) H(ω)

    INPUT          LTI SYSTEM     OUTPUT 
x(t) <==> X(ω)         h(t) <==> H(ω) y(t) <==> Y(ω)

<==> Fourier Transform pair  y(t) = x(t) * h(t)
h(t) – Impulse Response   Y(ω) = X(ω) H(ω)
H(ω) – Frequency Response

2.1.2 Continuous-time convolution

For continuous functions, f(t) and g(t), the convolution is 
defined by

f t *g t

0

t

f τ g t τ dτ

and has these properties:

f * g = g * f   commutative property

f * (g1 + g2) = f *g1 + f *g2 distributive property

( f * g) * v =  f * (g * v)  associative property

2.1.3 Continuous-time unit impulse function

The unit impulse function or Dirac delta function is 
defined as

 δ(t)= ∞,  t = 0  δ(t-a)= ∞,  t = a
       = 0,  t ≠ 0           = 0,  t ≠ a
and

δ t dt δ t a dt 1

since δ(t-a) has infinite strength at t = a, has zero duration 
at t = a, and has unity area.

A continuous-time signal x(t) can be replicated by the 
convolution with the unit impulse function:

x t x � � t � d�

2.1.4 Discrete-time unit pulse function

A continuous-time signal can be discretized into a se-
quence, x[0], x[1], x[2] ..., by collecting the values of this 
integral at the specific times t0, t0+T,  t0+2T,  t0+3T,  etc. so 
that

 x[0] = x(t)*δ(t0)  =  x(t0)
 x[1] = x(t)*δ(t0+T) =  x(t0+T)
 x[2] = x(t)*δ(t0+2T) =  x(t0+2T)
 :  :     :
 x[n] = x(t)*δ(t0+nT) =  x(t0+nT)

Brackets, [ ], are used to denote discrete-time sequences 
while parentheses, ( ), are used to denote continuous-time 
functions. In this example, the sequence x[0], x[1], ...x[n]... 
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is a discrete-time representation of the continuous-time 
function x(t).

The discrete-time version of the unit impulse sequence is 
called the unit sample sequence or the unit pulse function. 
The unit pulse function is defined as

  δ[n] =  1,  n = 0,
   0, n ≠ 0

To properly interpret between continuous-time functions 
and discrete-time sequences, it should be noted that the 
unit pulse function must have unity area. To maintain this 
definition for a pulse of duration T, then the amplitude 
must be defined as 1/T. The definition above presumes  
T = 1.

A discrete-time signal x[n] can be replicated by the 
convolution with the unit pulse function:

x[n] x[n]* δ[n]
k

x[k]δ[n k]

2.1.5 One-dimensional discrete-time convolution
The discrete-time convolution operation is defined as 

Equation 2.1-1

Example 2.1-1

Use Equation 2.1-1 to calculate y[n] = f[n] ⁎ g[n] where  
f[n] = {1  2  3} and g[n] = {1  1  1  1  1  1}.

Solution:

f[n] = {1  2  3} implies f[0] = 1, f[1] = 2, f[2] = 3 and 
g[n] = {1  1  1  1  1  1} implies g[0] = g[1] = g[2] = g[3] = 
g[4] = g[5] = 1

For n = 0, Equation 2.1-1 gives the summation y[0] = ··· 
f[-1]g[1] + f[0]g[0] + f[1]g[-1] + ...

but all values of f[n] and g[n] are zero for n < 0,  
so y[0] = f[0]g[0] = 1.

f n *g n

k

f k g n k

y[0]

5

k 0

f [k]g[0 k] f [0]g[0] 1

y[1]

5

k 0

f [k]g[1 k] f [0]g[1] f [1]g[0] 1 2 3

y[2]

5

k 0

f [k]g[2 k] f [0]g[2] f [1]g[1] f [2]g[0] 1 2 3 6

y[3]

5

k 0

f [k]g[3 k] f [0]g[3] f [1]g[2] f [2]g[1] 1 2 3 6

y[4]

5

k 0

f [k]g[4 k] f [0]g[4] f [1]g[3] f [2]g[2] 1 2 3 6

y[5]

5

k 0

f [k]g[5 k] f [0]g[5] f [1]g[4] f [2]g[3] 1 2 3 6

y[6]

5

k 0

f [k]g[6 k] f [1]g[5] f [2]g[4] 2 3 5

y[7]

5

k 0

f [k]g[7 k] f [2]g[5] 3

Where products are omitted when they are zero for 
specific k values. The result is y[n] = {1 3 6 6 6 6 5 3}.  

■

We could also visualize the answer graphically by 
reversing the sequence g[n] and placing it below f[n] and 
offsetting by the value of n in Equation 2.1–1. The first 
three values determined using this graphical approach are 
shown here: 

n =0:

k: -5 –4  –3 –2 –1  0  1  2  3  4  5 

f[k]:   0  0  0  0  0  1  2  3  0  0  0   

g[n-k]:   1  1  1  1  1  1  0  0  0  0  0    

y[0]

5

k 0

f [k]g[0 k] f [0]g[0] 1

n =1:

k: -5 –4 –3  –2  –1  0  1  2  3  4  5

f[k]:   0  0  0  0  0  1  2  3  0  0  0   

g[n-k]:   0  1  1  1  1  1  1  0  0  0  0   
 

y[1]

5

k 0

f [k]g[1 k] f [0]g[1] f [1]g[0] 1 2 3
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n =2:

k: -5 –4 –3  –2 –1   0  1  2  3  4  5

f[k]:   0  0  0  0  0  1  2  3  0  0  0   

g[n-k]:   0  0  1  1  1  1  1  1  0  0  0 

y[2]

5

k 0

f [k]g[2 k] f [0]g[2] f [1]g[1] f [2]g[0] 1 2 3 6 

And so on.

Example 2.1–2

Solve the same convolution (Example 2.1–1) using Equa-
tion 2.1–1 but reverse the roles of f[n] and g[n].

Solution:

Due to the commutative property the result should be 
the same. Using Equation 2.1-1, the order could also be 
reversed, as y = g ⁎ f, giving:

y[0]

5

k 0

g[k]f [0 k] g[0]f [0] 1

y[1]

5

k 0

g[k]f [1 k] g[0]f [1] g[1]f [0] 2 1 3

y[2]

5

k 0

g[k]f [2 k] g[0]f [2] g[1]f [1] g[2]f [0] 3 2 1 6

y[3]

5

k 0

g k f 3 k g 1 f 2 g 2 f 1 g 3 f 0 3 2 1 6

y[4]

5

k 0

g[k]f [4 k] g[2]f [2] g[3]f [1] g[4]f [0] 3 2 1 6

y[5]

5

k 0

g[k]f [5 k] g[3]f [2] g[4]f [1] g[5]f [0] 3 2 1 6

y[6]

5

k 0

g[k]f [6 k] g[4]f [2] g[5]f [1] 3 2 5

y[7]

5

k 0

g[k]f [7 k] g[5]f [2] g[5]f [1] 3

so that once again y[n] = {1  3  6  6  6  6  5  3}.

■

As before we could also visualize the answer graphically, 
but this time by reversing the sequence f[n] and placing it 
below g[n] and offsetting by the value of n in Equation 2.1-
1. The first three values determined using this graphical 
approach are shown here: 

n =0:

k: –2 –1  0  1  2  3  4  5  6

g[k]:   0  0  1  1  1  1  1  1  0 

f[n-k]:   3  2  1  0  0  0  0  0  0     

y[0]

5

k 0

g[k]f [0 k] g[0]f [0] 1

n =1:

k: –2 –1  0  1  2  3  4  5  6

g[k]:   0  0  1  1  1  1  1  1  0 

f[n-k]:   0  3  2  1  0  0  0  0  0     

y[1]

5

k 0

g[k]f [1 k] g[0]f [1] g[1]f [0] 2 1 3

n =2:
k: –2 –1  0  1  2  3  4  5  6

g[k]:   0  0  1  1  1  1  1  1  0 

f[n-k]:   0  0  3  2  1  0  0  0  0 

y[2]

5

k 0

g[k]f [2 k] g[0]f [2] g[1]f [1] g[2]f [0] 3 2 1 6

And so on.

Convolutions can be computed quickly in MatLab, 
which stands for “matrix laboratory”, a software product 
of Mathworks, Inc. [MatLab]. The sequence y = f * g 
{implying y[n] = f[n]*g[n]} as defined in Example 2.1–1 is 
computed in Matlab as

>> f = [1  2  3]; 
 >> g = [1  1  1  1  1  1]; 
 >> y = conv(f,g) 
 y =   1     3     6     6     6     6     5     3

Note that the resulting sequence is longer that both input 
sequences; this is a natural consequence of the convolution 
operation. Also, MatLab does not use a zeroth element; the 
first element of y is referenced in MatLab as y[1], which 
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is the same value as y[0] in Equation 2.1–1. Given these 
considerations the simulation confirms the hand-written 
results in Example 2.1–1.

Exercise 2.1–1

Use Equation 2.1-1 to calculate y[n] = x[n] ⁎ h[n] for  
x[n] = {1  2  2} and  h[n] = {1  3}. Check your answer using 
graphical convolution. 

Answer:  y[n] = {1  5  8  6}
■

Exercise 2.1–2

Use Equation 2.1-1 to calculate for the given sequences.  
Check your answer using graphical convolution. 

a)    x[n] = {1  1  1  1  1} and h[n] = {0.25   0.5   0.25}.  
b)    x[n] = {1  1  1  1  1} and h[n] = {0.25  -0.5  0.25}. 

Answers:

a)    y[n] = {0.25   0.75  1.0   1.0  1.0   0.75  0.25} 
b)    y[n] = {0.25  -0.25    0     0     0    -0.25   0.25}

■

2.1.6 Two-dimensional discrete-time convolution

In signal processing applications, one sequence may rep-
resent a filter and another a given input signal. Convolving 
the two signals would give an output that is a filtered 
representation of the given input signal. Image processing 
is two-dimensional (2D) signal processing, where one 
2D signal (image) represents a filter and the other the 
input image. For biomimetic applications, the filter could 
represent a model of a natural phenomenon as it affects the 
raw imagery. Assuming 2D variables f(x,y) and g(x,y), the 
2D convolution operation is given as:

Example 2.1–3

Using MatLab computer the 2D convolution y = f * g given 
the 2D variables f and g defined here:

 f =     1     1  g =      2     2     2

       1     1   2     2     2

     2     2     2

f [x y]*g[x y]

M 1

m 0

N 1

n 0

f [m n]g[x m y n]

Solution:

>> f = [1 1; 1 1]; 

>> g = [2 2 2; 2 2 2; 2 2 2];

>> y = conv2(f,g)  y =  2     4     4     2

          4     8     8     4

          4     8     8     4

          2     4     4     2 

■

Notice that for both 1D and 2D convolutions the result 
tends to grow. Sometimes it is necessary to ‘crop’ out the 
internal pixels so that the filtered version is the same size 
as the original. For example, defining f below as a 5x5 2D 
unit pulse and performing the convolution with the 3x3 2D 
variable g results in a 7x7 result:

>> f = zeros(5);

 >> f(3,3) = 1; f = 0     0     0     0     0

        0     0     0     0     0

         0     0     1     0     0

         0     0     0     0     0

         0     0     0     0     0

>> g = [1 2 3; 4 5 6; 7 8 9];    g =   1     2     3

    4     5     6

    7     8     9

>> y=conv2(f,g); y =    0     0     0     0     0     0     0

0     0     0     0     0     0     0

0     0     1     2     3     0     0

0     0     4     5     6     0     0

0     0     7     8     9     0     0

     0     0     0     0     0     0     0

     0     0     0     0     0     0     0
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To visualize the computation, flip g both vertically and 
horizontally: g* = 9   8   7     
   6   5   4     
   3   2   1

The values for y are found by placing g* over each element 
of f, and then performing a dot product; that is, multiply 
element-for-element, and then add the products (sum 
of products). One way to crop out the middle 5x5 is to 
manually redefine y:

>> y = y(2:6,2:6);  This command redefines y to be row 2 
through 6 and column 2 through 6. 
The result is cropping the internal 5x5 
image of the previous convolution so 
that the filtered version is now the same 
size as the original image, f.

y =  0     0     0     0     0

      0     1     2     3     0

      0     4     5     6     0

      0     7     8     9     0

      0     0     0     0     0

A better alternative for cropping out the central pixels is to 
use the same attribute in the conv2 Matlab function when 
determining y:

>> y=conv2(f,g,’same’);    y = 0     0     0     0     0     

         0     1     2     3     0     

         0     4     5     6     0     

         0     7     8     9     0     

         0     0     0     0     0     

Exercise 2.1–3

Given the 2D filter f and image x, give the output filtered 
image y = f * x.   

 f =  -2  0  2  x =  0  0  0  

  -1  0  1   0  1  1  

   0  1  0   0  0  0  

Give both the cropped and uncropped representations  
of the output.

Answers:

Uncropped:  y = 0     0     0     0     0       

   0    -2    -2    2     2  

   0    -1    -1    1     1

   0     0     1     1     0

   0     0     0     0     0

Cropped: y = -2   -2    2 

   -1   -1    1   

     0    1    1   

2.2 Neuronal Sensory Systems  
and Concepts

One of the difficulties in exploiting natural neuronal 
structure and function for engineering applications is the 
lack of understanding between the microscopic physiology 
and macroscopic behavior. Neuroscience is the study of 
neurons at the microscopic level, while psychophysics is 
the study of correlations between specific physical stimuli 
and the sensations that result. Neuroscience is somewhat 
focused on the chemistry of the neuron and psychophysics 
is more focused on the macroscopic behavior of the 
complete organism. The story of how and why neurons are 
connected the way they are continues to unfold and will 
continue for centuries to come.

2.2.1 Massive Interconnections

Neurons are highly interconnected to form the information 
channels in sensory systems. For example, the human 
brain contains about 1010 to 1012 neurons, each making up 
to 103 to 104 connections to other neurons. Small groups 
of neurons are called ganglia, which typically controls 
specific behaviors of an animal. Many invertebrates have 
large neurons and small ganglia, which allows researchers 
an opportunity to investigate neuronal signaling and 
primitive neuronal networks. 



 Chapter 214 |

2.2.2 Hebbian Learning

Natural neuronal connections are often strengthened 
with continued use, known as Hebbian Learning. The 
result is an adaptation of the network to the most frequent 
signal sequences from external stimuli. Artificial neural 
networks (ANN) are now commonly used to solve com-
putational problems when direct analytical methods are 
difficult or impossible. These networks are inspired by 
the natural neuronal paradigm, and many have taken on 
variations that diverge from these original examples. This 
is quite acceptable since the typical goal is to solve some 
engineering or computational problem, not necessarily to 
mimic the natural paradigm.  

2.2.3 Physical Types of Natural Sensors

There are different ways to categorize the natural neuronal 
systems designs that are available for engineering exploita-
tion. The method chosen here is based on the physics of 
the stimulus. The ones given the most attention are the 
ones most commonly found in nature:

- Photo-sensory systems, stimulated by photons 
-- vision systems in vertebrates and invertebrates

- Mechano-sensory systems, stimulated by physical 
motion in the environment 
-- touch systems in vertebrates and invertebrates 
-- auditory systems in vertebrates and invertebrates 
-- kinesthesia, which is knowing the relative positions 
of body parts

- Chemo-sensory systems, stimulated by changes in 
chemical content of stimuli 
-- olfactory systems providing the sense of smell 
-- gustation systems providing the sense of taste

Other physical senses occasionally found in biology in-
clude those sensitive to heat, infra-red radiation, polarized 
light, electric fields, and magnetic fields.

There are three basic types of stimulus reception in 
biological sensory systems:

- Exteroception is the receiving of signals from outside 
the organism, such as photons of light for the vision 
system, sound waves for the auditory system, and 
chemical traces for the olfactory system. Sensory 
systems in this group are the subject of this text and 
most of the bio-inspired sensory system research that 
has been done.

- Proprioception is the receiving of signals that relate 
position of body segments to one another and the 
position of the body in space, which involves kines-
thesia mentioned earlier.

- Interoception is the receiving of signals from condi-
tions inside the organism, such as blood glucose level 
and blood pressure level.

There are three basic maps of sensory receptive fields to 
portions of the brain:

- Somatotopic Map is a map of the body surface in the 
somatosensory cortex.

- Retinotopic Map is a map of the visual field (as focused 
onto the retina) in the primary visual cortex in the 
occipital lobe of the brain.

- Tonotopic Map is a map of the basilar membrane in 
the primary auditory cortex in the temporal lobe of 
the brain.

The amount of brain surface area dedicated to various 
regions of reception varies dramatically, as certain recep-
tion areas are more important and require more dedicated 
processing. For example, the allocation in the brain on the 
somatotopic map for the sensation of touch in the index 
finger is much larger than the same relative skin surface 
area of the back. Another interesting point is the near-
est-neighbor receptor mapping is generally preserved in the 
cortex. That is, adjacent receptors in the peripheral sensory 
system tend to stimulate adjacent neurons in the cortex.

2.3 Fundamentals of neuronal processing 

This section reviews basic neuronal topics that are 
prevalent in biological sensory systems such as the vision 
system, the auditory system, and the olfactory system. 
Although biological neurons are much slower than modern 
transistor electronics, the fundamental principles of 
neuronal processing exploit natural logarithmic behavior 
of charge distributions and transport. The pn junction 
exhibits this natural relationship, but we tend to take pairs 
of pn junctions (transistors) and create a binary switch 
(digital bit). If the exponential v-i relationship of a pn 
junction could be used at today’s computer clock speeds, 
there could be many orders of magnitude improvement in 
computational performance and power consumption. In 
addition, there is still much to be learned about the inter-
connection strategies found in natural neuronal networks.

2.3.1 Adaptation and Development

Although biological systems can be studied as existing 
systems that solve processing problems, it should be noted 
that these systems are constantly developing and adapting. 
From conception to death every known biological system 
is continually maturing, never reaching an unchanging 
physical state. The neuronal system of a mature adult is 
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relatively stable, thus representing some level of neuronal 
optimization due to environmental adaptation.

Adaptation can be immediate or long term. An example 
of immediate adaptation is the response of the iris of the 
eye to light levels, controlling the amount of photonic flux 
entering the pupil. A short-term adaptation, called habitu-
alization and sensitization, is demonstrated in the marine 
snail, Aplysia. The gill is withdrawn beneath a mantle in 
defense when the siphon, attached to the mantle, is stim-
ulated. The reflex magnitude is decreased as the siphon is 
artificially stimulated, resulting in the habitualization, or 
desensitization, of the response to the experimental envi-
ronment. The response can be subsequently sensitized by 
stimulating other parts of the body. Through training these 
reflex conditions can be made to last for days, indicating a 
primitive form of memory and learning [Dowl87].  

In higher life forms these simple neuronal adaptations 
combine with massive interconnections to provide more 
complex adaptation concepts. For example, it has been 
demonstrated that detection of spatial harmonics and 
identification of complicated sinusoidal grating patterns 
depends on adaptation to the harmonics and harmonic pat-
terns. The detection threshold increases after adaptation 
to the harmonic, and the pattern identification threshold 
increases after adaptation to the patterns [Vass95].

Training during one’s lifetime is an example of long-term 
adaptation. Training results in neurons being connected 
or strengthened, which is called coincidence learning or 
Hebb learning [Hech90]. A more long-term adaptation is 
genetic coding, passing adaptation information from one 
generation to the next.

2.3.2 Sense Organs and Adaptation

The following italicized text concerning the sense organs 
in crabs is quoted from [Warner77] (non-italicized text is 
additional commentary):

“Sense organs function at the cellular level by 
converting the stimulus into a change in the electrical 
potential across the receptor cell membrane. This 
receptor potential, if sufficiently large, results in the 
initiation of nerve impulses (action potentials) which 
are transmitted along nerve to the CNS” (Central 
Nervous System).”  

In some cases, however, such as primate vision, there 
are additional layers of cells between the receptors and 
action-potential transmission axons. In these instances, 
graded preprocessing functions occur before the informa-
tion is encoded into action potentials. But for the simpler 

sensory system designs, the action potential...

 “...frequency is a measure of the strength of the 
stimulus...Each receptor cell is specialized to convert 
a particular type of stimulus (light, mechanical 
deformation, etc.) and each has a particular thresh-
old below which the stimulus is insufficient to trigger 
nerve impulses. Maintained stimulation generally 
results in the threshold of a receptor being raised 
(i.e. the receptor becomes less sensitive). Thus, many 
receptor cells, described as rapidly adapting, respond 
with a short burst of impulses only at the initiation 
of stimulation. Others which respond over longer 
periods of maintained stimulation are referred to as 
slowly adapting or, in extreme cases, non-adapting. 
Single sense organs may be composed of several re-
ceptor cells each with a different rate of adaptation.”

To illustrate slow and rapid adaptation, consider two 
neurons whose threshold for action-potential generation is 
–55mV. As ions entered the neuron from input dendrites, 
the membrane potential would increase from a resting 
potential (about –70 mV) to the –55 mV threshold. An 
action potential spike would then cause positive ions to be 
discharged during the spike, resulting in the membrane 
potential returning to the resting potential. Then the pro-
cess would start over, where incoming ions would build up 
the membrane potential to the threshold for the initiation 
of an action potential. For rapid adaptation, the threshold 
might rise significantly after each spike generation, and 
degrade rapidly back to –55 mV when the input stimulus 
is removed. For slow adaptation, the threshold might rise 
nominally after each spike generation, and degrade more 
slowly back to –55 mV once the stimulus is removed.

Figure 2.3.2–1 shows the results of a neuronal adaptation 
model that accounts for increases in action-potential 
threshold with firing activity as well as a return to a 
nominal resting threshold in the absence of input stimulus.  
The input rectangular waveform is amplified to show 
when the stimulus is on and when it is off. As the neuronal 
membrane potential increases with input stimulus, there 
is a constant leakage that tends to bring the potential back 
to its resting state (about –70mV). Similarly, there is a 
constant leakage in the threshold that tends to bring it back 
to its resting state (about –55 mV). As the neuron adapts 
to the stimulus, the threshold level is raised, which subse-
quently reduces the action potential (spike) frequency. 
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Figure 2.3.2–1.  
Slow and Fast Neuronal Adaptation.

In this model, the speed of the model is implemented by 
the jump in threshold level after an action potential and the 

rate the threshold returns to resting state when stimulus 
stops. The input curve is amplified to better show when the 

input is present and when it is absent. Thr_adapt = 0.002 
(slow) and 0.01 (fast) represents increase in threshold after 

action potential, and Thr_leak = .003 (slow) and 0.006 
(fast) represents threshold return rate to –55 mV.

Initially, the spike frequency is high; as the neuron adapts, 
it is reduced, as seen in the figure. During slow adaptation, 
the threshold is not increased very much after each spike so 
that it takes longer for the frequency to reach a steady-state 
low frequency. During fast adaptation, the threshold is 
increased significantly after each spike so that the neuron 
quickly reaches a steady-state low frequency. An alternate 
mechanism for rapid adaptation is for the neuron to return 
to a potential higher than the normal resting potential after 
an action potential. Instead of returning to –70 mV, it may 
only return to, say,  –60 mV. Then the neuron has a much 
smaller potential increase to obtain before reaching the 
next threshold level for action potential firing.

2.3.3 Ionic Balance of Drift and Diffusion

A fundamental principle of semiconductor physics is the 
balance of charge carrier drift and diffusion currents in 
the depletion region of a pn junction. Both materials are 
characterized by a high concentration of mobile carriers 
(holes for p-type, electrons for n-type) within an electro-
statically neutral volume. When brought together, electrons 
in the n-type material diffuse from a higher concentration 
area, leaving charge-depleted positively charged lattice 
ions and combine in the p-type material to form a nega-
tively charged lattice ion there. As this process continues, 

an electric field from the positive lattice (n-type) to the 
negative lattice (p-type) is growing in strength. This field 
causes carriers to retreat, thus developing a drift current 
opposing diffusion current. Equilibrium is reached when 
the diffusion current equals the drift current [Horen96].

Biological cells are also held in equilibrium in part by 
a balance of drift and diffusion currents. However, the 
charge carriers are primarily potassium, K+, sodium, Na+, 
and chlorine Cl- ions, which are not as mobile as holes 
and electrons. The electronic currents are defined in terms 
of diffusion and mobility device constants, functions 
primarily of doping and geometry [Horen96]. Biological 
currents are functions of cell membrane permeabilities, 
which are functions of time, membrane potential, and ionic 
concentrations [MacG91]. 

In the case of potassium and sodium, there is a separate 
organic mechanism called the Na-K Pump that keeps ionic 
concentrations stable inside the neuron. The Na-K Pump 
uses metabolic energy supplied by the stored biological 
energy in the organism. For chlorine, however, the interior 
and exterior concentrations are maintained close together, 
balanced by drift and diffusion.

2.3.4 Nernst and Goldman Equations

An electric potential, or voltage, is established across a 
membrane when there is an unequal concentration of ions 
in the two regions. The Nernst equation (1908) showing 
this relationship is given by
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where R is the universal gas constant, T is the absolute 
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Bernstein (1912) presented the significance to neuroelec-
tric signaling of ionic fluxes about neuronal membranes. 
Building on this concept, the Nernst equation, and funda-
mental physics of ionic media contributed by Planck and 
Einstein, Goldman (1958) contributed the primary model 
for resting potential in neurons as

Goldman Equation

where T is absolute temperature, k is Boltzmann’s con-
stant, q is unitary electric charge, P’s are permeabilities, 
[ ]o’s are concentrations outside the cell, and [ ]i’s are 
concentrations inside the cell. As long as the permea-
bilities are constant, the Goldman equation gives good 
steady-state results [MACG91].

Example 2.3.4–1

Find the Nernst potential between the interior and exterior 
of a neuron due to each ion if their concentrations are as 
follows: 
  Inside  Outside
 K+ 360 mM 20 mM
 Na+ 45 mM  450 mM
 Cl- 50 mM  600 mM

(M stands for mole, a unit of concentration)

Solution:

Potential due to concentration differences alone are solved 
by the Nernst Equation, keeping in mind the ratio of 
outer-to-inner ion concentration are reversed for negative-
ly-charged ions:
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Example 2.3.4–2

For the given ion concentration determine the membrane 
potential assuming the following ratio of ion permeabili-
ties:  PK+ : PNa+ : PCl-  =  1.0 : 0.5 : 0.2

  Inside  Outside
 K+ 320 mM 25 mM
 Na+ 40 mM  420 mM
 Cl- 60 mM  540 mM

Solution:

The relative permeabilities given means that PNa+ = 0.5PK+ 
and PCl- = 0.2PK+; using the Goldman Equation
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Em = (0.026)

■

Example 2.3.4–3

Given the permeability ration PK+ : PCl- = 1.0 : 0.5 and the 
ion concentrations

  Inside  Outside
 K+ 400 mM 20 mM
 Na+ 50 mM  440 mM
 Cl- 52 mM  560 m

determine the relative permeability k of PNa+ such that 
PK+ : PNa+ : PCl-  =  1.0 : k : 0.5 and the resting membrane 
potential is +50 mV.
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Solution:

The relative permeabilities given means that PNa+ = kPK+ 
and PCl- = 0.5PK+; using the Goldman Equation
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6.84(50k + 680) = 440k + 46 ==> k = 47

■

Exercise 2.3.4–1

Find the Nernst potential for each ion using the concentra-
tions given in Examples 2.3.4-2 and 2.3.4-3

Answers:

Example 2.3.4-2: EK= -66.3 mV, ENa= 61.1 mV, ECl = -57.1 mV 
Example 2.3.4-3: EK= -77.9 mV, ENa= 56.5 mV, ECl = -61.8 mV

■

Exercise 2.3.4–2

a)    Repeat Example 2.3.4-2 with permeability  
ratio PK+ : PNa+ : PCl-  =  1.0 : 5.0 : 0.2

b)    Repeat Example 2.3.4-2 with permeability  
ratio PK+ : PNa+ : PCl-  =  1.0 : 0.05 : 0.2

Answers:

a)    31.8 mV

b)    -52.1 mV

■

Exercise 2.3.4–3

Repeat Example 2.3.4-3 so that the resting membrane 
potential is -50 mV.

Answer: k = 0.123

■

2.3.5 The Action Potential 

In general, neuronal processing within localized areas 
occurs as graded processing, while information trans-
mission over reasonable lengths occurs as a frequency of 
asynchronous pulses, called spikes. In graded processing, 
the potential of the cell and its output rise slowly as the 
input signal levels strengthen. When input signals cease, 
then the cell and its output slowly return to the resting 
membrane potential. In spike-train processing, the inputs 
to the cell cause the interior to rise in potential until a 
certain threshold is reached. Typically, the resting poten-
tial is about –70mV (with respect to the extracellular fluid) 
and the threshold for initiating a spike is about –55 mV. 
The profile of voltage per time during a spike is known as 
the action potential.

When signals are transmitted over long distances, the 
signal transmission process tends to be a series of action 
potentials whose occurrences increase (higher frequency) 
as the input signal increases. Hodgkin and Huxley (1952) 
presented the original set of equations that describe the 
generation of a single action potential in the giant squid 
axon. The intracellular membrane potential typically 
builds until a threshold is met, which is around –55mV in 
the giant squid axon. At the threshold voltage, an action 
potential is generated. For subsequent action potential 
firings, however, the threshold value changes. Describing 
these threshold variations requires knowledge of molecular 
processes controlling the conductance channels that 
trigger action potentials. This knowledge is not yet  
understood enough to qualitatively describe the electrical 
signal behavior [MacG91].

The general shape of the action potential is caused primar-
ily by significant increases in PK+ and PNa+, where PK+ is 
a smoother, more gradual increase than PNa+. Both return 
close to the original values: PNa+ within about 1 ms and PK+ 
within about 2 ms (see Figure 2.3.5-1). Both are positive 
ions, but [K]i > [K]o and [Na]i < [Na]o, so the effect on E 
are opposing [Dowl92, Kand81]. If PNa+ increases, more 
positive ions will flow from the outside to the inside, rais-
ing the potential between the inside and outside, denoted 
as Em. However, if PK+ increases, more positive ions will 
flow from the inside to the outside, lowering the potential 
between the inside and outside. 
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Figure 2.3.5–1. Action Potential and  
Ion Permeabilities.

After input signals cause Em to increase past a threshold 
of about –55mV, a sharp increase in PNa causes Em to 
sharply increase to about +60mV. As PNa declines, PK 

increases, causing Em to eventually overshoot the resting 
potential before settling back there (about –70mV).

The action potential sequence is therefore something like 
this:

Resting potential: 
Em ≈ –70 mV

Cell receives input: 
Em increases to about –55 mV

Action potential initiated: 
Sharp increase in PNa+, further increasing Em to 
about +50 mV 
More gradual increase in PK+ as PNa+ decreases, 
reducing Em 
PNa+ returns to resting value, while PK+ is still high 
Em reduces to about –80 mV (overshoot) as PK+ 
decreases 
Ion concentrations and permeabilities return to 
resting sate, Em ≈ –70 

The stronger the input signal to the cell is, the more 
frequent the action potentials. If the input is present but 
very weak, then Em may settle somewhere between –70 
mV and –55 mV with no action potentials. An analogy 
might be a leaky cup being filled from a faucet — when 
filled, it is emptied, simulating the action potential. If the 
incoming water flow is not sufficient, an action potential is 
never generated.

2.3.6 Axonal Signal Transmission

Neurons receive inputs from ionic channels called den-
drites and transmit (output) signals through their axons. 
Some neurons have no axons and serve to mediate signals 
by allowing ionic charges to be shared between adjacent 
neurons. Neurons transmitting action potentials typically 
have long, conductive axons for the signal transmission. 
Figure 2.3.6–1 shows a lossy transmission line circuit that 
simulates the charge-transmission behavior of an axon 
with membrane capacitance, CM, membrane resistance, 
RM, measured in Ω-cm (longer axons or wider-diameter 
axons ==> more surface area, less resistance), and axonal 
resistance RA, measured in Ω/cm (each unit length can be 
thought of as a series resistor). The space constant, λ, is 
given as
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Space Constant Equation 

The space constant is analogous to the time constants of 
RC circuits. For rapidly changing signals, the membrane 
time constant is RMCM. V0 here is the DC value at the 
beginning of the transmission line, and Vx is the value at a 
distance x from there. Typical values of λ are on the order 
of 0.1 to 1.0 mm [Kand81]. The space constant is deter-
mined from DC values, so CM is not considered. 
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Axon Model Circuit

As an action potential prop-
agates down an axon, energy 
is lost to the series cytoplasm 

resistance as well as the parallel 
membrane resistance. The 

speed of transmission is slowed 
by the membrane capacitance.
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The resistance of a conductor decreases as the cross-sec-
tional area increases. As a result, some species have 
developed relatively large axons, such as the giant squid 
axon reaching about 1mm in diameter. The resistance 
decreases in proportion to the square of the diameter, but 
the capacitance increases in proportion. The net effect is 
a decrease in the time constant, RMCM, resulting in faster 
transmission. Another biological approach is surrounding 
the axon with an insulating layer of myelin, called the 
myelinated sheath. The result is an increase in the separa-
tion of the membrane capacitance charge densities, which 
reduces the RMCM time constant as the capacitance is 
inversely proportional to the separation distance

Example 2.3.6–1

If the membrane resistance is RM = 100 Ω mm and axonal 
resistance is RA = 10 Ω /mm, at what length will a DC the 
signal be down to 10% of its original value?

Solution:

The space constant equation gives 

�
R
M

R
A

100 � mm
10 � mm

3 16 m

The length where the input, V0, is down to 10% of its 
original value is found by 

0.1V0 = V0e
-x/ƛ

0.1 = e-x/3.16

ln 0.1 = –   x   
3.16

x = 7.28 m

■

Exercise 2.3.6–1

If the membrane resistance is RM = 80 Ω mm and axonal 
resistance is RA = 15 Ω /mm, at what length will a DC the 
signal be down to a) 10% of its original value, b) 5% of its 
original value, and c) 1% of its original value?

Answers

a) 5.32 mm, b) 6.92 mm, c) 10.64 mm

■

2.3.7 Neuronal Adaptation through  
Lateral Inhibition

Lateral inhibition is a general phenomenon occurring 
frequently in layers of interconnected neurons. Cells are 
electrically coupled so that when one cell fires, it inhibits 
cells in its neighborhood from firing. The more directly 
connected a cell is (for example, a nearest neighbor), the 
greater the inhibition effect. This process is exhibited 
in the horizontal cell (HC) layer in the retina to provide 
the spatial-temporal smoothing function [Dowl87]. The 
HC layer can be modeled as a 2D resistor-capacitor (RC) 
ladder network, where the RC time constant is the inhibit-
ing force of the network [Koch91].

Lateral inhibition in retina decreases photoreceptor output 
signal due to activity in nearby photoreceptors; therefore, 
photoreceptor outputs adapt to significant changes in 
the local neighborhood. In engineering terms, this is 
considered a localized automatic gain control (AGC). A 
simple AGC applied across the whole image would help 
prevent image saturation when bright lights are present 
and help bring out darkened details in the absence of 
bright lights. In a conventional camera system, a single 
gain adjustment may be applied to the whole image based 
on image content. A variation of this is the shutter speed 
on film that limits the time duration for receiving photons. 
A high-speed (short integration time) film may be used in 
the presence of bright lights, while a slow-speed (longer 
integration time) film may be used in darkened rooms. The 
difficulty is that such a choice is made across the entire 
image. It would not be possible to capture both dark and 
bright contrasts in the same picture.

A localized AGC, however, will prevent saturation due to 
bright intensity sources and allow for sufficient detail to 
bring out dark objects against a dark background. Lateral 
inhibition in a neuronal layer effectively varies the ACG 
across the processing plane based on the average activity 
in the localized area. This is accomplished in the first 
horizontal cell layer in the retina. 

The second laterally-connected retinal cell layer, the 
amacrine cells, add further lateral inhibition to retinal 
processing which causes ganglion cell outputs in optic 
nerve to adapt to motion in the image stream. Motion in-
formation is sent initially, but then inhibited by this layer. 
Similar adaptation to transient signals is observed in the 
auditory system, as attention is quickly drawn to the onset 
of a sound, but then suppressed as the neuronal inhibitory 
signals adapt to this stimulus.
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2.3.8 A Circuit Model of a Neuron in Equilibrium

The ionic permeabilities (PK+, PNa+, and PCl-) regulate 
how slow or fast ions can move from inside-to-outside or 
outside-to-inside through a neuron’s cell membrane. These 
parameters can be modeled as conductances, such as GK+ 
, or resistances, such as RK+  = 1/GK+ . The Nernst potential 
associated with each ion can be modeled as an independent 
source. Since [Cl-]i  ≈ [Cl-]o the Nernst potential for Cl- is 
essentially zero. This is due in part by the fact that PCl- 
tends to change to keep the concentrations about the same. 

Figure 2.3.8–1 shows a simplified model of a neuron in 
equilibrium. The independent sources represent the Nernst 
potentials due to the concentration differences between 
inside and outside the cell. To determine the resting mem-
brane potential, we use Kirchoff’s Voltage Law (KVL) to 
solve for the inside with respect to the outside (ground). 

Figure 2.3.8–1. A simplified model of a  
neuron in equilibrium.

Example 2.3.8–1

Using the model shown in Figure 2.3.8–1 where RK+  = 
2MΩ, RNa+  = 1MΩ, EK+  = -75mV, and ENa+  = +55mV 
determine the intracellular fluid potential with respect to 
the extracellular fluid.

Solution:

Letting IK be the current upward through RK and INa be the 
current upward through RNa,

-75mV + IKRK  - INa RNa  - 55mV = 0,  and IK = -INa

=> IK (RK  +  RNa) = 130mV
=> IK  = 43.3nA
=> Vm  = -75mV+ IKRK  = -75mV+ (43.3nA)(2M) = 11.67 mV
Check:  - Vm = +55mV+ INaRNa  = +55mV+ (-43.3nA)(1M)  = 
11.67 mV

■

Figure 2.3.8–2 shows the same model with dependent 
current sources representing the Na-K Pump. Sometimes 
the K+ ions pumped in are not at the same rate as the Na+ 
ions pumped out. However, if the neuron is in a steady-
state condition and [K+]i  and [Na+]i  are constant, then 
computations are simplified as

IK   = -IK-Pump and INa = -INa-Pump

To solve for the resting potential, Vm, observe these two 
equations shown above that can be combined with these 
current relationships:

Vm  = Ek+ IKRK   and Vm  = ENa + INaRNa  

Figure 2.3.8–2. A model of a neuron in  
equilibrium with ion-pump current sources 

This one includes dependent current sources representing 
organic Na_K Pump.

Example 2.3.8-2

In Figure 2.3.8-2 let IK be the upward current through RK 
and INa be the upward current through RNa. Calculate Vm, 
IK, and INa if Ek = -75 mV, ENa = +55 mV, PK  = gK  = 1μ mho, 
PNa  = gNa  = 0.2μ mho, and 4 Na+ ions are pumped out for 
every 3 K+ ions pumped in. Assume [K+]i  and [Na+]i  are 
constant, and other ionic influences can be neglected.

Solution:

  RK  = 1/ gK  = 1MΩ
RNa = 1/gNa  = 5MΩ 

“...4 Na+ ions out for every 3 K+ in...” 
   =>  3INa-Pump  = - 4IK-Pump

   =>  IK-Pump  = -0.75INa-Pump

“...[K+]i  and [Na+]i  are constant...”
   => INa  = -INa-Pump  

   => IK  = -IK-Pump  = 0.75INa-Pump 

           = -0.75INa



 Chapter 222 |

 Vm  = -75mV + IKRK  = +55mV + INaRNa   
 => -130mV = INaRNa  -(-0.75INa)RK  

  => INa = -22.61 nA  
  => IK = (-0.75) INa = 16.96 nA  

 Vm  = -75mV + IKRK  = -58.04 mV 
 Check: Vm  = +55mV + INaRNa   = -58.04 mV   

■

Exercise 2.3.8-1

Let EK+ = -75mV and ENa+ = +55mV in the circuit of Figure 
2.3.8-1, where IK is the current upward through RK and INa 
is the current upward through RNa. Calculate Vm for 

a) RK+  = 200KΩ, RNa+  = 5MΩ, 
b)  RK+  = 2.6MΩ, RNa+  = 2.6MΩ, and
c) RK+  = 5.1MΩ, RNa+  = 100KΩ

Based on these values, complete the rest of the following 
table:

     Vm ( mV)

 RK+  << RNa+                                       

RK+  = 0.2MΩ, RNa+  = 5MΩ                                       

RK+  = 2.6MΩ, RNa+  = 2.6MΩ                                       

RK+  = 5.1MΩ, RNa+  = 0.1MΩ                                       

 RK+  >> RNa+                                       

Answers:

             Vm ( mV)

 RK+  << RNa+     ~ -75 mV

RK+  = 0.2MΩ, RNa+  = 5MΩ       -70 mV

RK+  = 2.6MΩ, RNa+  = 2.6MΩ       -10 mV

RK+  = 5.1MΩ, RNa+  = 0.1MΩ      52.5 mV

 RK+  >> RNa+       ~  55 mV

■

Exercise 2.3.8-2 

In Figure 2.3.8-2 let IK be the upward current through RK 
and INa be the upward current through RNa. Calculate Vm, IK 

, and INa in the model in Figure 2.3.8-2 if Ek = -75 mV, ENa = 
+55 mV, 

PK  = gK  = 5μ mho, PNa  = gNa  = 0.2μ mho, and 3 Na+ ions 
are pumped out for every 2 K+ ions pumped in. Assume 
[K+]i  and [Na+]i  are constant, and other ionic influences 
can be neglected.

Answers:

 Vm = -71.6mV, IK = 16.97nA, and INa = -25.32nA

■

Exercise 2.4-3 

Rework Exercise 2.3.8-2 assuming 5 K+ ions are pumped 
in for every Na+ ion pumped out:

In Figure 2.3.8-2 let IK be the upward current through RK 
and INa be the upward current through RNa. Calculate Vm, IK 

, and INa in the model in Figure 2.3.8-2 if Ek = -75 mV,  
ENa = +55 mV, 

PK  = gK  = 5μ mho, PNa  = gNa  = 0.2μ mho, and 5 K+ ions 
are pumped in for every Na+ ion pumped out. Assume  
[K+]i  and [Na+]i  are constant, and other ionic influences 
can be neglected.

Answers:

Vm = -53.3 mV, IK = 108.3 nA, and INa = -21.67 nA 

■
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2.3.9 Neuronal Motion Detection

Inputs from adjacent neurons can be connected in a way 
that provides motion detection. Figure 2.5–1(a) and (b) 
show two versions of a Hassenstein-Reichardt motion 
detection model [Zorn90, Hass56]. The two inputs, x1 
and  x2, represent outputs from two adjacent receptors in 
a sensory system. In the first instance, a time derivative 
of one input is multiplied by the value of the adjacent 
receptor. In the second instance, a delayed version of one 
input is multiplied by the value of the adjacent receptor. In 
both instances, the outputs of both products are compared: 
If equal, they cancel each other in the summation. Other-
wise, the result is either positive or negative, depending on 
the direction of the object.

In Figure 2.3.9–1(c) a three-element binary block is moved 
right (upper half) and then left (lower half). The input is a 
ten-element array, and the block is seen by the pattern of 
ones. The motion detector output is shown, followed by 
the interpreted results. Both models (a) and (b) result in the 
same output and interpreted results. The example here is 
binary, so that the results are very clean. For more realistic 
values, thresholds would need to be established to reduce 
effects of noise. 
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         (a)                               (b)

                    x
1  
x
2
                      output        Result

                    |  |                 |      |

          0  1  1  1  0  0  0  0  0  0  0   No Motion

          0  0  1  1  1  0  0  0  0  0  0   No Motion

          0  0  0  1  1  1  0  0  0  0  -1  Motion Right

          0  0  0  0  1  1  1  0  0  0  0   No Motion

          0  0  0  0  0  1  1  1  0  0  -1  Motion Right

          0  0  0  0  0  0  1  1  1  0  0   No Motion

           0  0  0  0  0  0  0  1  1  1  0   No Motion

           0  0  0  0  0  0  0  0  1  1  0   No Motion

          0  0  0  0  0  0  1  1  1  0  0   No Motion

          0  0  0  0  0  1  1  1  0  0  0   No Motion

           0  0  0  0  1  1  1  0  0  0  1   Motion Left

          0  0  0  1  1  1  0  0  0  0  0   No Motion

          0  0  1  1  1  0  0  0  0  0  1   Motion Left

          0  1  1  1  0  0  0  0  0  0  0   No Motion

          1  1  1  0  0  0  0  0  0  0  0   No Motion

          1  1  0  0  0  0  0  0  0  0  0   No Motion

(c)

Figure 2.3.9–1. Hassenstein-Reichardt Motion Detectors.
Two implementations shown: (a) in-channel differentiators, and (b) cross-channel delays.   

(c) MATLAB simulation results are the same for both implementations.
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Exercise 2.3.9-1

Give the expected output (Right, Left or No Motion) of a 
two-element Hassenstein-Reichardt motion detector given 
the following two input sequences; assume all previous 
values are zero. Either model (in-channel derivatives or 
cross-channel delays) should give the same results:

Sequence 1   Sequence 2

 x1  x2  Output     x1  x2  Output

0   0 No Motion  0   0 No Motion

0   0 __________  1   0 __________

1   1 __________  0   1 __________

0   0 __________  0   0 __________

1   0 __________  0   1 __________

0   1 __________  1   1 __________

1   0 __________  1   0 __________ 

 0   0 __________  0   0 __________

Answers:

Sequence 1      Sequence 2

 x1  x2  Output      x1  x2  Output

0   0 No Motion  0   0 No Motion

0   0 No Motion  1   0 No Motion

1   1 No Motion  0   1 Motion Right

0   0 No Motion  0   0 No Motion

1   0 No Motion  0   1 No Motion _

0   1 Motion Right  1   1 Motion Left

1   0 Motion Left  1   0 Motion Left 

0   0 No Motion  0   0 No Motion

■

Chapter 2 Questions

1. Nothing in the universe is linear, and everything 
varies with time. Why do we study linear  
time-invariant systems if they do not exist?

2. What are the primary physical sensor types most 
useful for reverse-engineering? How do the primary 
senses (touch, taste, smell, vision, and hearing) fit into 
these types?

3. What are the three basic types of stimulus reception in 
biological sensory systems?

4. What are the three basic maps of sensory receptive 
fields found in the brain?

5. What are the similarities between natural and artificial 
neural networks?

6. If neurons are so much slower than transistors, how 
could there be promise of significant performance 
improvement for computers built with diodes and 
transistors that model neuronal behavior?

7. If biological systems are constantly maturing and 
adapting, why is it beneficial to study the structure 
and function of the neuronal system of a mature adult 
animal (or human).

8. What is an immediate environmental adaptation in the 
human vision system?

9. Compare and contrast charge and steady-state charge 
neutrality in neurons and transistors.

10. How do the membrane resistance and axonal resis-
tance affect transmission ability of an action potential 
down an axon? What other factors can improve 
transmission? That is, what other factors increase the 
length of the spatial constant?

11. If a layer of cells exhibits lateral inhibition and a 
single neuron fires (produces an action potential), what 
happens to adjacent cells that are connected to this 
cell? What happens to cells that are connected but are 
farther away?

12. How are signals typically processed in neuronal 
layers? Examples may include the neuronal layers of 
the retina or the brain.

13. How is the strength of a signal measured when encod-
ed as action potentials of the same peak value (around 
+55 mV)?
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14. Action potentials are triggered when the intracellular 
fluid potential exceeds a threshold. How is it that for a 
steady input the output firing rate (frequency of action 
potentials) adapts from an initial firing rate to a slower 
firing rate?

15. What controls the rate of adaptation?
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Chapter 3:  
PHOTO-SENSORY SYSTEMS

Biological sensory systems perform energy-efficient and 
computationally elegant algorithms to accomplish tasks 
like those required of certain engineering applications.  
Animals and some engineered systems have the capacity 
for limited movement within the natural environment in 
response to sensory stimuli. For example, consider a front-
end seeker on a missile designed to autonomously seek 
and hit a specified target. The missile needs to be guided 
to a target seen by a seeker with background sensory 
noise; this requirement is like that of a dragonfly searching 
and acquiring smaller flying insects. Tasks common to 
both systems include navigating and guiding the system 
within the natural environment, detecting, identifying, and 
tracking objects identified as targets, efficiently guiding the 
system to the targets, and then intercepting these targets. 

This part is about photo-sensory systems, or vision, which 
involves the conversion of photonic energy into electronic 
signals. These signals are subsequently processed to 
extract pertinent information. The primary emphasis will 
be on vision computational models based on the primate 
vision system since much study has been made in this 
area. We begin with some vision principles common across 
many species within the animal kingdom. Then the struc-
ture and function of natural vision systems is investigated, 
with emphasis on information processing first within 
invertebrates (specifically arthropods) and then within 
vertebrates (specifically primates). Engineering application 
examples that leverage natural vision concepts follow.

3.1 Natural Photo-sensory Systems

Passive means the sensor observes natural stimuli that 
might be available within the environment, while active 
implies the sensor sends stimuli out and observes the 
response from the environment. Physical sensors in the 
animal kingdom include photo-sensory, such as passive 
vision systems processing photons, mechano-sensory, 
such as passive sonar (audition), active sonar (bats, 
dolphins, whales), passive compression (touch) and active 
compression (insect antennas), and chemo-sensory, such 
as gustation (taste) and olfaction (smell). This chapter will 
focus on passive photo-sensory vison systems. 

3.1.1 Common principles among natural  
photo-sensory systems

A photon is the wave-particle unit of light with energy  
E = hυ, where h is Plank’s constant and υ is the elec-
tromagnetic frequency. The energy per time (or space) 
is modeled as a wavelet since it satisfies the general 
definition of having a beginning and ending and unique 
frequency content. Information contained in the frequency 
and flux of photons is photonic information, which gets 
converted into electronic information coded in the graded 
(or analog) neural ionic voltage potentials or in the fre-
quencies of action potentials

Biological systems can be divided into vertebrates, such as 
mammals and reptiles, and invertebrates, such as insects. 
Animals collect and process information from the environ-
ment for the determination of subsequent action. The many 
varied species and associated sensory systems in existence 
reflect the wide range of environmental information avail-
able as well as the wide range of biological task objectives. 

Commonality of Photo-reception and Chemo-reception

Photo-reception is made possible by the organic chemistry 
of photopigments, which initiate the visual process by 
capturing photons of light. Photopigments are composed 
of a form of Vitamin A called retinal and a large protein 
molecule called opsin. Opsins belong to a large family 
of proteins which include olfactory (sense of smell) 
receptor proteins. Odorant and tastant molecules attached 
themselves to a special membrane receptor, causing a 
sequence of molecular reactions eventually resulting in 
neuronal signaling. Photopigment molecules are like these 
chemo-sensory membrane receptors with retinal serving 
as the odorant or tastant already attached. The incoming 
photon of light gives the molecule enough energy to 
initiate a chain reaction like that in chemo-sensory recep-
tion when an odorant or tastant molecule come in contact 
with the receptor. As a result, the photo-reception process 
is really a simplified form of the chemo-reception process. 
A photo-sensory (or visual) system begins by converting 
the photonic stimulus into a chemical stimulus (photopig-
ments) and the remaining information processing of the 
visual system is that of a chemo-sensory system.
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Curvature and Reflection

The two primary eye designs are the vesicular (containing 
a cavity) eye found in vertebrates and certain mollusks 
and the compound eye found in arthropods. Figure 3.1–1 
shows the concave nature of the vesicular eye and the 
convex nature of the compound eye. Images in biological 
systems are formed on a curved sheet of photoreceptors, 
called the retina. In a similar way, cameras form images 
on a sheet of photographic film, where the film is flat 
instead of curved. The ancient sea-going mollusk Nautilus 
has the concave retina structure with a pinhole aperture, 
which creates an inverted image with no magnification. 
Most concave retinas (vertebrates, etc.) depend on the 
refraction of light through a larger aperture. The lens 
serves this purpose. A larger aperture is needed to allow 
more photonic flux to enter the reception area to ensure 
sufficient energy is available to stimulate photoreceptors, 
and refraction through the lens and eyeball fluid (vitreous 
humor) serves to compensate for the otherwise blurred 
view of the environment as the aperture is increased.

Figure 3.1–1
(a) Concave retina of the vesicular eye of  

many vertebrates and mollusks.  
(b) Convex retina of arthropod compound eye.

Physical properties of reflection are also used in the eye 
designs of scallops and certain fish and mammals. Some of 
the purposes of designs based on reflection are not known 
(scallops), but other vision system designs exploit reflec-
tion in nocturnal (night-time low-light level) conditions. 
For example, night-hunting by certain mammals is aug-
mented by the fact that a photon of light has twice as much 
a chance of being captured by the same photoreceptor as 

the light passes through a second time after being reflect-
ed. A special reflective tissue (tapetum lucidum) behind the 
retina gives this advantage in nocturnal conditions. This 
reflection can be observed when shining a light (flashlight, 
headlight) toward the animal and it is looking back.

The photoreceptors are typically long and cylindrical cells 
containing photopigments arranged in many flat disc-
shaped layers. This design gives a small angular reception 
area, leading to sufficient spatial acuity, while providing 
many opportunities for the incoming photon to be captured 
by the photopigment. 

Optical Imperfections

There are several imperfections that are dealt with in 
natural vision systems. Some of these include spherical 
aberration, chromatic aberration, and diffraction. Natural 
vision system parameters typically represent an optimal 
balance of the effects of these imperfections. Spherical 
aberration is caused by light coming into focus at a shorter 
distance when coming through the periphery of the lens 
than from the center. Chromatic aberration is caused by 
the dependency on wavelength of the index of refraction: 
The shorter the wavelength, the greater the amount of 
refraction. This means that if the blue part of the image 
is in focus, then the red part of the image is slightly out 
of focus. The optical properties of the available biological 
material do not allow for perfect compensation of these 
effects. For example, to correct for spherical aberration 
requires a constant decrease in the cornea index of refrac-
tion with distance from the center. Since the molecular 
structure of the cornea is constant, this is not possible. 
The general shape, however, of the primate eye is slightly 
aspherical, which minimizes the effects of spherical aber-
ration. As the primate eye changes shape with age, these 
aberrations are corrected by external lenses (eyeglasses).

The third imperfection is caused by diffraction. Diffrac-
tion is a geometrical optics phenomenon resulting from 
the edge effects of the aperture. When combined with 
spherical and chromatic aberration, the result is a spatial 
frequency limit on the image that can be mapped onto 
the retina. This limit is typified by the angular distance 
that two separate point sources can be resolved, called 
angular acuity. Spatial acuity refers to the highest spatial 
frequency that can be processed by the vision system.  
The displacement between photoreceptors in highly 
evolved species is typically the distance represented by 
the angular acuity. Any further reduction in distance is not 
practical as there would be no advantage concerning  
image information content. 
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Another consideration is contrast sensitivity, which is 
how sensitive two separate photoreceptors are to varying 
levels of photon flux intensity. In biological systems, 
the information forwarded is frequently a difference in 
contrast between two adjacent photoreceptors. If the 
photoreceptors are very close, then the difference will 
never be great enough to show a relative contrast since 
edges in the image are already blurred due to the afore-
mentioned imperfections. The photoreceptor spacing in 
the retina is on the order of the Nyquist spatial sampling 
interval for frequencies limited by these imperfections. 
In the adult human retina, this turns out to be about 120 
million photoreceptors: about 100 million rods, which are 
very sensitive and used in nocturnal conditions, and about 
20 million cones, which come in three types and provide 
color information in daylight conditions. 

Visual Information Pathways

Receptive fields for the various sensory systems are 
mapped to specific surface regions of neuronal tissue (such 
as retina, brain, and other neuronal surfaces). Due to the 
connectivity, several pathways are usually observed. For 
example, one photoreceptor may be represented in several 
neurons that are transmitting photonic information to the 
brain. One neuron may represent the contrast between that 
particular photoreceptor and the most adjacent ones. This 
would be an example of a parvocellular pathway neuron 
(parvo means small). Another neuron may represent the 
contrast between an average of that photoreceptor and 
the most adjacent ones, and an average of a larger region 
centering on that photoreceptor. This would be an example 
of a magnocellular pathway neuron (magno means large). 
As it turns out, the names come from the relative physical 
size of these neurons, and they happen to also correspond 
to the size of the receptive field they represent. Parvocellu-
lar and Magnocellular pathways are common among many 
species, for example, both humans (and other mammals) 
and certain arthropods.

Connectivity and Acuity 

There is a balance between temporal acuity, which is the 
ability to detect slight changes in photonic flux in time, 
and spatial acuity, which is the ability to detect slight 
changes between two adjacent objects whose images are 
spatially separated on the retina. As receptors are more 
highly interconnected, there is better temporal acuity due 
to the better photon-integrating ability of the aggregate. 
Receptors that are not highly interconnected exhibit 
better spatial acuity. 

To illustrate this concept, consider a steady photonic flux 
represented by 1 photon per 10 photoreceptors per unit 
of time. On average, each photoreceptor would receive 1 

photon every 10 units of time. If this incoming photon rate 
changed to 2 photons per 10 photoreceptors, then the out-
put of a single photoreceptor would have to be monitored 
for a duration of 10’s of units of time to detect an average 
increase in photon flux. If an aggregate of 100 photore-
ceptor cells were integrated, and if the photonic flux were 
uniformly distributed, then the total output would jump 
from 10 photons to 20 photons, which might be noticeable 
at the very next unit of time. The result is that the animal 
will be able to detect slight changes in photonic flux much 
better if the cells are highly connected, while the ability 
to distinguish between two adjacent small objects would 
deteriorate. Thus, a higher connectivity results in sharp 
temporal acuity at the cost of spatial acuity.

Coarse Coding

Coarse coding is the transformation of raw data using a 
small number of broadly overlapping filters. These filters 
may exist in time, space, color, or other information 
domains. Biological sensory systems tend to use coarse 
coding to accomplish a high degree of acuity in sensory 
information domains. For example, in each of the visual 
system information domains (space, time, and color, or 
chromatic) we find filters that are typically few in number 
and relatively coarse (broad) in area covered (or band-
width): There are essentially only four chromatic detector 
types, whose spectral absorption responses are shown in 
Figure 3.1–2, three temporal channels, and three spatial 
channels. Neurons in the retina receiving information 
from the photoreceptors are connected in such a way that 
we can observe these spatial, temporal, and chromatic 
information channels in the optic nerve.

Coarse coding can take on many different forms, and one 
coarsely coded feature space may be transformed into 
another. For example, within the color channels of the 
vision system we find a transformation from broad-band 
in each of the three colors at the sensory level to broad-
band in color-opponent channels at the intermediate level. 
Other interesting examples of coarse coding include 
wind velocities and direction calculation by cricket tail 
sensors and object velocity calculations with bursting and 
resting discharge modes of neuronal aggregates in the cat 
superior colliculus.

The responses of vision system rods and cones must be 
broad in scope to cover their portion of the data space. 
For example, in daytime conditions only the three cone 
types have varying responses. As a minimum each type 
must provide some response over one-third of the visible 
spectrum. Each detector type responds to much more than 
one-third of the visible spectrum. Since a single response 
from a given detector can result from one of many com-
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binations of color and intensity, the value by itself gives 
ambiguous local color and intensity information. If the 
response curve was very narrow band, then any response is 
the result of a particular frequency, and the value of the re-
sponse would reflect its intensity. However, many of these 
detectors would be required to achieve the wide range 
(millions) of colors we can perceive. It is not practical to 
have each of many narrow-band detectors at each spatial 
location. The natural design is optimized to allow for many 
colors to be detected at each location while minimizing the 
neuronal hardware (or “wet-ware”) requirements. 

Ultraviolet                Visible Spectrum                       Infrared

Figure 3.1–2. Photon Absorption Curves.
These curves are peak-normalized response curves of 
the three known photopigments in primate retina. The 

responses overlap considerably. This figure was produced 
using Matlab curve-fitting to the selected points in  

measured biological tissue.

3.1.2 Arthropod vision system concepts

Although there are millions of species within the animal 
kingdom, there are relatively few photo-receptor design 
concepts that have stood the test of time, such as the 
arthropod compound eye. There are some interesting 
similarities between the vision systems of the insect phyla 
and primates. For example, both map incoming light onto 
an array of photoreceptors located in a retina. Both exhibit 
distinct post-retina neuronal pathways for what appears to 
be spatial and temporal processing. 

Of course, there are some key differences between insect 
and primate vision systems. Insects have non-movable 
fixed-focused optics. They are not able to infer distances 
by using focus or altering gaze for object convergence. 
The eyes are much closer together, so that parallax cannot 
be used to infer distances either. The size is much smaller, 
and the coverage is in almost every direction so that the 

overall spatial acuity is much worse than primates. As 
a result, navigation appears to be done more by relative 
image motion than by any form of object detection and 
recognition [Srini02].

Arthropod Compound Eye

The arthropod compound eye is a convex structure. The 
compound eye is a collection of individual ommatidia, 
which are complex light-detecting structure typically 
made up of a corneal lens, crystalline cone, and a group 
of photosensitive cells. Each ommatidium forms one piece 
of the input image so that the full image is formed by the 
integration of all ommatidia. There are three basic designs 
for integrating ommatidia into a composite image:

 1) Apposition. Each ommatidia maps its signal onto a 
single photoreceptor.

 2) Superposition: Several ommatidia contribute to the 
input signal for each photoreceptor

 3) Neural superposition: Not only are the photorecep-
tor inputs a superposition of several ommatidia, but 
neurons further in the processing chain also receive 
their inputs from several photoreceptor outputs. 

Apposition eyes form relatively precise images of the 
environment. This design is common among diurnal 
(daytime) insects. Superposition eyes are common among 
nocturnal (night-time) and crepuscular (twilight) insects. 
In conditions of low light levels, the superposition design 
allow for greater sensitivity since light from several 
ommatidia are focused onto a single photoreceptor. The 
greater sensitivity of the superposition eye comes at a cost 
of spatial acuity since image detail is shared by neigh-
boring pixels. This is an example of “higher connectivity 
results in sharp temporal acuity at the cost of spatial 
acuity” explained earlier. The neural superposition eye is 
found in the dipteran (two-winged) fly. This design allows 
for further processing to compensate for the loss of spatial 
acuity, resulting in both good spatial acuity and sensitivity.

The superposition eye has greater sensitivity to changes in 
photonic flux because of the higher degree of connectivity 
of the ommatidia to a single photoreceptor. In a similar 
way, the primate rod system is highly interconnected, 
which results in a high degree of temporal sensitivity. The 
primate photoreceptors are divided into rods and cones, 
named for the shape of the outer photopigment-containing 
segment. Certain cone cells are also highly interconnected, 
bringing better sensitivity to temporal changes.
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Scanning Eyes

A few mollusks and arthropods have developed a scanning 
mechanism for creating a visual image of the external 
environment. A narrow strip of photoreceptors is moved 
back and forth to generate the complete image. Certain sea 
snails have retinas that are 3 to 6 photoreceptors wide and 
400 photoreceptors long. The eye scans 90°, taking about a 
second to scan up, and about a fourth of a second to return 
down [Smith00]. 

Mantis shrimp contain 6 rows of enlarged ommatidia in 
the central region of the compound eye. The larger om-
matidia contain color visual pigments that can be used to 
further investigate an object of interest by scanning with 
these central photoreceptors. This allows the shrimp to use 
any color information in the decision process[Smith00]. 

Certain jumping spiders contain retinas 5 to 7 photo-
receptors wide and 50 photoreceptors long. The spider 
normally scans from side but can rotate the eye to further 
investigate a particular object of interest. The lateral (ad-
ditional) eyes on this spider contain highly interconnected 
photoreceptors for detecting slight rapid movements. Once 
detected, the attention of the primary eye can be directed 
to the newly detected object. This process is analogous to 
primate vision, where the more periphery cells are highly 
connected and the central area (the fovea to be discussed 
later) are more densely packed and not so interconnected. 
A sharp movement in the periphery causes a primate to 
rotate the eyes to fixate on the source of the movement. 
Once fixated, the higher spatial acuity of the central area 
can be used to discern the spatial detain of the new object 
of interest [Smith00]. 

3.1.3 Primate vision systems

Early vision can be defined as the processes that recover 
the properties of object surfaces from 2D intensity arrays. 
Complete vision would be the process of using early vision 
information to make some decision. The focus in this 
section is on vertebrate vision information pathways that 
begin in the retina and terminate in cortical processing 
stages. Cortical comes from cortex, which is used to 
describe the part of the brain where sensory system infor-
mation is processed. Vision is processed in the primary 
visual cortex, hearing is processed in the auditory cortex, 
and touch is processed in the somatosensory cortex. Many 
of these concepts are also common in insect vision. 

Figure 3.1–3 shows the relevant parts of the primate eye. 
Photonic energy is first refracted by the cornea and further 
by the lens and the vitreous humor, which fills the optics 
chamber. The retina covers most of the inner portion of the 

eye and serves as the first vision processing stage. Approx-
imately 120 million photoreceptors are encoded into about 
1 million axons that make up the optic nerve.

Figure 3.1–4 shows the other basic components of the 
primate vision system. A projection of the 3D environment 
is mapped onto the 2D sheet of neuronal tissue called the 
retina. The primate retina is composed of several layers 
of neurons, including photoreceptor, horizontal, bipolar, 
amacrine, and ganglion cell layers to be discussed in more 
detail later. The information is graded, which basically 
means analog to electrical engineers, until it reaches 
the axon (output) of the ganglion cell layer. The graded 
potential signaling is replaced by action potential signaling 
through the optic nerve. Upon reaching the optic chiasm, 
the right side of both retinas (representing the left side of 
the visual field) are mapped to the right side of the brain, 
and the left side of both retinas (right side of visual field) 
to the left side of the brain.

Figure 3.1–3. Simplified anatomy of  
the primate eye.

The retina, lateral geniculate nucleus (LGN) and the 
brain are all composed of layers of neurons. Figure 3.1–4 
highlights the LGN whose outer 4 layers are the termi-
nation of Parvocellular Pathway (PP) optic neurons and 
inner 2 layers the termination of Magnocellular Pathway 
(MP) optic neurons. Both PP and MP signals are opponent 
signals, meaning the signal levels correspond to the 
contrast between a central receptive field (RF) and a larger 
surrounding RF which would include responses from 
neurons not represented by the central RF. Parvo (small) 
and magno (large) were names given by anatomists who 
based the names on the size of the cell bodies. Convenient-
ly, it was later learned that the PP corresponds to smaller 
RFs (central RF could be one cell) and MP to larger RFs 
(central RF would be a larger aggregate of cells). In both 
cases the surrounding RF would be larger than the central 
RF. There is duality in the center-surround contrast signals 
in that some represent the central signal minus the sur-
round (“ON” signals) while others represent the surround 
signal minus the central (“OFF” signals).
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The PP contains color information as the cone response 
of a single central signal will have a different spectral 
response from the average response of the surrounding 
neurons. Some earlier researchers would use r, g, b for 
designating the three cone receptors. But since the spectral 
absorption curves broadly overlap much of the visible 
spectrum (as show in Figure 3.1–2) a better notation is l, 
m, s for long-, medium-, and short-wavelength cone types 
[DeV88]. We adopt that convention in this book.

Figure 3.1–4. Basic Components of Primate Vision.
Downloaded August 2020 from  

https://www.ncbi.nlm.nih.gov/books/NBK541137/

Spatio-temporal Processing Planes

The retina can be considered a “part” of the brain, as 
suggested by the subtitle of John Dowling’s book The 
Retina: An Approachable Part of the Brain [Dowl87]. The 
retina is a multi-layered region of neuronal tissue lining 
the interior surface of the eye, as shown in Figure 3.1–3. In 
the early stages of primate central nervous system (CNS) 
embryonic development, a single neural tube develops two 
optic vesicles with optic cups that eventually develop into 
the retinas for each eye. The physiology (or functioning) 
of layers of neurons are similar, whether located periph-
erally in the retina (about 5 layers), in the LGN (about 
6 layers), or in the visual cortex (about 10–12 layers). If 
we can better understand the spatial-temporal-chromatic 
signal processing that exists in the retinal it will better our 
understanding of what is also going on in the LGN and the 
higher processing centers of the visual cortex. 

The vision processing mechanics can be best visualized 
as a series of parallel-processing planes, each representing 
one of the neuronal layers in the retinal or in the brain, 
as shown in Figure 3.1–5. Parallel incoming photons are 

received by the outer segments of the photoreceptors 
resulting in signals that propagate to the visual cortex in 
the brain.  Each plane of neuronal processing acts upon 
the image in a serial fashion. However, the processing 
mechanism cannot be simply described as simple image 
filters acting on each separate plane. As the energy is 
propagated through the neuronal layers, the ionic charge 
spreads laterally across each processing plane. As a result, 
the output of each processing plane is a combination of the 
current and historic inputs of the cells in the path as well 
as the historical input of the adjacent cells.

To adequately model spatial and temporal effects of the 
neuronal interconnections, each cell in each neuronal 
processing plane must consider mediation effects of 
neighboring cells as well as temporal effects of signal 
degradation in time. One way to model both effects is to 
apply a 2D spatial filter to each image plane and follow the 
filter with a leaky integrator, that allows for temporal ionic 
equilibrium effects.

Information Encoding

Natural vision systems extract space (spatial), time (tem-
poral) and color (chromatic) information to make some 
decision. Information is often encoded for transmission, 
for example, from the retina to the LGN. Figure 3.1–6a 
shows the basic information blocks in the vision system. 
Figure 3.1–6b illustrates the overall numerical processing 
elements in each of the various vision processing stages. 
There is an approximately 100:1 compression of the retina 
photoreceptors to the optic nerve signals, but an expansion 
of 1:1000 optic nerve signals to visual cortex neurons. This 
expansion is known as optic radiation. Combining the 
compression and expansion there is an overall expansion 
of about 1:10 retinal photoreceptors to visual cortex 
neurons. As typical in biology, the compression and 
expansion is quite non-uniform, as there are about 2 optic 
nerve neurons per photoreceptor in the retina’s fovea (very 
central part of vision), but only 1 optic nerve neuron for 
about every 400 photoreceptors in the peripheral part of 
the retina. This unbalance is a consequence of the impor-
tance of information in the center-of-gaze.

https://www.ncbi.nlm.nih.gov/books/NBK541137/
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Figure 3.1–5. Planar/serial duality of vision processing.
Information in the form of cellular ionic potentials is filtered spatially as it propagates  

through the various layers of the vision system. Show in detail are the layers of the retina;  
layers in the LGN and visual cortex continue the spatio-temporal processing. 

(a)

(b)

Figure 3.1–6. Functional Vision Blocks (a) and Signal Encoding (b).

Natural vision filtering begins with photonic refraction 
through the cornea and lens (Figure 3.1–3). Figure 3.1–7 
depicts the various cell layers within the retina and a gross 
approximation of the mathematical function performed by 
each layer on the incoming imagery. The incoming light 
then passes through the vitreous humor and retinal cell 
tissue and is focused onto a photoreceptor mosaic surface. 
The flux within a photoreceptor’s receptive region of the 
retina is averaged to a single output at the triad synapse (at 
the root of the photoreceptor). As a result, the information 
can be visualized as a mosaic, where each piece represents 
a single photoreceptor’s output.

Photonic energy is converted to electronic charge in 
the photopigment discs of the photoreceptors (rods and 
cones). It is believed that the rate of information transfer 
is proportional to the logarithm of the incoming intensity. 
The photoreceptors, with the help of a layer of horizontal 
cells, spread the charge in space and time within a local 
neighborhood of other receptors. Such charge-spreading 
can be modeled by spatio-temporal gaussian filters. Two 
separate variances (horizontal and vertical) are required 
for the spatial 2D filter and another for how the signal 
degrades in time.
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The spread charge and original photoreceptor charge, both 
of which can be modeled as a gaussian-filtered version 
of the incoming imagery, are both available at the root of 
the photoreceptor, at the triad synapse. The bipolar cells 
connect to triad synapses and presumably activate signals 
proportional to the difference between the photoreceptor 
input and the horizontal cell input. Therefore, the bipolar 
cell output represents the difference-of-gaussian version of 
the original image.

Spatial edges are detected by two types of bipolar cells, 
on-bipolars and off-bipolars, which respond to light and 
darkness, respectively. The on-bipolar responds if the 
central receptive field exceeds the surrounding receptive 
field, while the off-bipolar cells respond if the surrounding 
receptive field exceed the central receptive field. Temporal 
edges (rapid changes in photonic flux levels) are detected 
by on-off and off-on bipolar cells, which respond to quick 
decrements or increments in photonic flux, respectively. 
Corresponding ganglion cells (on, off, on-off, and off-on) 
propagate amacrine-cell-mediated responses to these 
bipolar cells.

Figure 3.1–7. A generic model of the retina cell 
layers and corresponding functionality.

The difference signal propagated by the bipolar cells is 
a consequence of the lateral inhibition caused by the 
connectivity of photoreceptors and horizontal cells. 
The horizontal cells connect horizontally to numerous 
photoreceptors at the triad synapse. Horizontal cells only 
have dendrites, which for other neurons would typically 
serve as input channels. The dendrites (inputs) for these 
cells pass ions in both directions, depending how the 
ionic charge is distributed. The net effect is that adjacent 
photoreceptors have their information partially shared by 
this mediation activity of the horizontal cells.

Gap junctions between adjacent photoreceptors influence 
the photoreceptor charge. The response from a photore-
ceptor aggregate can be modeled as a spatial-temporal 
Gaussian with a small variance. The input from the 
neighboring aggregate of horizontal cells can be modeled 
with a similar Gaussian with a larger variance. The 
differencing function results in the difference-of-Gaussian 
(DOG) filter operation, resulting in a center-surround 
antagonistic receptive field profile. DOG functions and 
functions of the second derivative of Gaussian, called the 
Laplacian-of-Gaussian (LOG), have been used to model 
the bipolar cell output.

The analog charge information in the retina is funneled 
into information pathways as it is channeled from the 
mosaic plane to the optic nerve. These information chan-
nels originate in the retina and are maintained through the 
optic nerve and to portions of the brain. These include the 
rod channel, initiated by rod bipolars, the parvocellular 
pathway (PP) and the magnocellular pathway (MP), the 
latter two initiated by cone bipolars. Both the PP and the 
MP exhibit center-surround antagonistic receptive fields. 
PP cones are tightly connected, responding to small 
receptive fields, while the MP cones are more loosely 
connected (together with rod inputs), responding to large 
receptive fields.

The MP and PP perform separate spatial band-pass 
filtering, provide color and intensity information, and 
provide temporal response channels, as illustrated in 
Figure 3.1-8. A relatively high degree of acuity is achieved 
in each domain (space, time, and color, or chromatic) from 
these few filters. The MP is sensitive to low spatial fre-
quencies and broad color intensities, which provide basic 
information of the objects in the image. The PP is known 
to be sensitive to higher spatial frequencies and chromatic 
differences, which add detail and resolution. In the color 
domain, the PP provides color opponency and thus spectral 
specificity, and the MP provides color non-opponency and 
thus overall intensity. In the time domain, the PP provides 
slowly varying dynamics, while the MP provides transient 
responses to image dynamics.
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Figure 3.1–8. Natural Vision  
Information Channels.

The color opponent PP responds to spatial detail, slowly 
varying image dynamics, and chromatic detail. The color 

non-opponent MP responds to spatial averages, rapid  
transients, and intensity variations. The rod system 
pathway aids overall luminance and provides rapid  

temporal responses in periphery.

Graded Potential Processing 

Retinal information is primarily in the form of graded 
potentials as it moves from the photoreceptor cell (PC) 
layer through the retina to the amacrine cell (AC) and 
ganglion cell (GC) layers. The GC output axons make 
up the optic nerve, transporting spikes to the LGN. The 
ganglion axonal signals begin the optic nerve transmission 
of color, time, and space information to the remaining 
neuronal organs in the vision pathway. It is typical that 
localized processing is graded, like an analog voltage level 
in an RLC circuit, but is pulsed via action potentials when 
travelling distances, such as from the retina to the LGN, 
and from there to the superior colliculus and to the visual 
cortex. 

Figure 3.1–9 shows the signal and image processing 
functions at the various stages of the retina. Figure 3.1–10 
shows greater detail of the lower left region of Figure 
3.1–9. The spatio-temporal filtering characteristic is due 
to the connectivity of the first three layers of neurons: 
photoreceptors, horizontal cells, and bipolar cells.

Figure 3.1-9. Physics and Signal Processing in the  
Vertebrate Vision System.

The overall role (top line) is to process photonic information and make some decision as a 
result. This figure illustrates vertically the physics, signal nature, and processing functionality 

with respect to the various organic stages as information moves horizontally (to the right).
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Figure 3.10. Functional Detail Observed in the Retina.
The Oculomotor system controls the direction of gaze; part of it is automatic and part is  

consciously controlled. Spatio-temporal DoG feature enhancement is a consequence  
of the photoreceptor response and horizontal and bipolar cell connectivity.

Coarse-coding in the Signal Frequency Domain

We extend the use of coarse-coding to the signal frequency 
domain by considering Gaussian curves that simulate sig-
nal-processing filters. Gaussian-based filters were chosen 
due to the Gaussian nature of various stages of neuronal 
processing in vision systems as well as the ease of imple-
menting Gaussian filters in electronic systems.  

The Gaussian-based filters with different variances and 
their power spectra are shown in Figure 3.1–11.  Gaussian 
curves G1 through G4 have increasing variances. Each 
curve is normalized so that the peak is at the same loca-
tion. This way, the shape of the curve can be observed. 
In practical applications, the curves would be normalized 
for unity area so that filtering changes the signal without 
adding or taking away energy.

The spectrum of these Gaussian filters is Gaussian with 
decreasing variances.  A curve with a small variance, 
such as G1, will pass low and medium frequency com-
ponents and attenuate high ones, while one with a larger 
variance, such as G4, will only pass very low frequency 
components. Subtracting these filters gives us the Differ-
ence-of-Gaussian (DoG) filters shown. For the variances 
selected, DoG G1–G2 serves as a high-pass filter, while 
the others serve more as band-pass filters. 

Keep in mind that frequency here implies signal fre-
quency. The signal could contain variations in spatially 
distributed energy (spatial frequency), variations of in-
tensity with time at a single location (temporal frequency, 
or variations in color with respect to either time or space 
(chromatic frequency). 

Pairs of filters can be selected to decompose a signal into 
selected specified frequency components.  For example, if 
it is desired to measure the strength of a signal at around 
10% of the sampling frequency (horizontal axis in Figure 
3.1–11), then the difference between gaussians G3 and G4 
would be used to filter the signal. Due to linearity of the 
Fourier Transform, the spectral responses (middle plot in 
Figure 3.11) can be manipulated by addition or subtraction 
to get the desired spectral response of the filter (bottom 
plot). This simply translates to the same manipulation in 
the signal domain (top plot).

Figure 3.1–11. Selected Gaussian-based Filters.
All curves are normalized to a unity peak value. The top 
plot shows Gaussian filters plotted against data samples. 

The middle and lower plots show power spectra of  
Gaussian filters and DoG filters (respectively), plotted 

against sampling frequency.
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Photoreceptor Mosaic

These filtering concepts are readily extended to two 
dimensions for use with the planar processing behavior of 
vision system models. To fully appreciate the nature of the 
image filter, it is essential to understand that the pixels are 
not uniformly distributed in size or type. The input image 
comes from a photoreceptor mosaic composed of S, M, 
and L cones and Rods.

Figure 3.1–12 shows a gross simplification of the photo-
receptor mosaic. The central region is called the fovea 
and represents a circular projection of about a 1° conical 
view of the environment. In this region are only two 
photoreceptor types: M and L cells. Two cone types allow 
for color discrimination in the fovea, and the lack of rod 
cells allows for a high degree of spatial acuity. The rapid 
decline of spatial acuity with eccentricity, or the amount of 
separation from the center, can be clearly demonstrated by 
looking at a book on a bookshelf. Keeping the eyes fixed, 
it becomes difficult to read titles that are still relatively 
close to the fixation point.

The lack of rod cells in the fovea accounts for the disap-
pearance of a faint star when we look directly at it. Rod 
cells are far more sensitive, so they respond in nighttime 
dim lighting conditions. However, if cones are not stimu-
lated, there is no color discrimination since a strong signal 
at a frequency with weak response is the same as a weak 
signal at a frequency with strong response.

Figure 3.1–12. Photoreceptor Mosaic.
Three cone types and rod cells shown in representative distribution with eccentricity.  

L:M ratio is about 2:1 in the fovea with no rod cells, but overall rod cells far  
outnumber cone cells. Cone cell sizes increase slightly with eccentricity.

Figure 3.1–13 shows a representative mapping of fovea L 
and M cells into the parvo- (PP) and magnocellular (MP) 
pathways. The PP cells are physically smaller, but also 
carry information pertaining to smaller receptive fields. 
In the figure, the L and M ratios in the MP are kept nearly 
constant (2:1) so that the only response would be increased 
or decreased intensity (luminance). The PP surround cells, 
however, are skewed toward the cell not in the center. In 
other words, overall, there is a 2:1 ratio of L:M cells. The 
surround field in the upper left connection is 1:1, which 
favors the M cell contribution when the L cell is the center. 
The other example (upper right), the surround is purely L, 
which favors L over the 2:1 ratio when M is in the center. 
The surround, therefore, is at a slightly different cellular 
concentration that helps to favor local contrast between the 
two spectrally different cone types, allowing for a stronger 
acuity in the chromatic domain.

3.1.4 Color Vision Processing Models

There are several ways to designate the three cone types 
shown by their spectral responses in Figure 3.1–2. Some 
researchers use B, G, and R to represent blue, green, and 
red peaks in the photon absorption curves, although the 
peaks are not at those precise colors. Others prefer to use 
S, M, and L to denote the short wavelength, medium wave-
length, and long wavelength responses, respectively. This 
latter designation is more appropriate since the notation in 
Boynton’s model is changed to keep consistency between 
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the three models presented in the next sections. All three 
describe separate luminance and chromatic channels of 
information within color vision processing. 

Figure 3.1–13. Representative Pathway Mapping.
“On” and “Off” imply polarity of the difference between 
the center and surround. The dark lines connecting cell 

centers represent signal connectivity in the area.  
Each area (center or surround) is represented by a single 

integrated value. MP cells contrast larger concentric 
receptive fields while the PP cells contrast individual  

cells with adjacent cells.

Guth Color Model [Guth91]

A model proposed by Guth included luminance and 
chromatic channels, as shown in Figure 3.1–14. The 
response of the luminance channel can be summarized as 
L+M, while the response of the chromatic channel can be 
described as L - S. A variation of this model mixes chro-
matic and luminance channels with automatic gain control 
in an artificial neural network trained by psychophysical 
data. The localized gain control simulates the spatial-tem-
poral characteristics of the photoreceptor-horizontal cell 
network. There are numerous research efforts that have 
used various methods of emulating lateral inhibition for 
the spatial-temporal feature extraction inherent in the 
photoreceptor-horizontal cell network.

The first stage of the Guth model is the summation of 
simulated receptor noise sent to each cone followed by 
a steady-state self-adapting nonlinear gain control. The 
second stage is linear combinations of signals divided 
into two sets of three channels each. The third stage is a 
nonlinear compression of the second stage channels. One 
set includes two opponent channels and one non-opponent 
channel compressed to provide visual discriminations and 
apparent brightness. The other set includes three channels 
compressed to provide the appearances of light in terms of 

whiteness, redness or greenness, and blueness or yellow-
ness [Guth91, Guth96].

This model has been criticized as being a poor emulation 
of retinal structure since no provision is made for cone 
proportions, the nature of anatomical connections, and 
the receptive field structure of ganglion and geniculate 
(LGN) neurons. Also, it appears to be an artificial neural 
network, with no physiological basis, which is trained to fit 
psychophysical data [DeV96]. Nevertheless, the division of 
color processing into luminance and color channels is an 
integral part of the model, and the point here is that several 
of these models include similar arrangements of cone 
types for these vision channels.

Boynton’s Color Model [Boyn60]

A classic model by Boynton also divides the color vision 
pathways into luminance and chromatic channels. The 
luminance channel in his model is described as L+M. The 
chromatic channels are described as L-M and (L+M) - S. 
He points out the similarity in numerous others. The 
opponent chromatic channels are known from recordings 
at the horizontal cell layer. The horizontal cells connect 
to the photoreceptors and perform spatial and temporal 
photoreceptor signal mixing. The bipolar cells are thought 
to propagate difference signals in the opponent pathways 
[Boyn60].

DeValois’ Color Model [DeV88]

A later model proposed by DeValois (Figure 3.1–14) goes 
into more detail by considering the relative concentrations 
of cells into account. It is observed that the concentration 
of the various cone cells is a function of eccentricity, or 
the distance from the center. In the center, the foveola, 
there are only L and M cells in a respective ratio of about 
2:1. S cones become more apparent in the parafovea and 
more peripheral regions of the retina. There is an overall 
presumed ratio of L:M:S cells of 10:5:1. The normalized 
response of a neighborhood with these concentrations 
gives:

DeV_LMS = 0.625L + 0.3125M + 0.0625S.

The variable DeV_LMS represents the response from a 
typical photoreceptor neighborhood with representative 
cell population densities. The DeValois color model 
consists of 4 center-antagonistic-surround channels, 3 
representing PP channels and one representing an MP 
channel. Each of the 4 channels exists in two polarities for 
a total of 8 channels. The 6 chromatic channels model PP 
channel responses as
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PPL =  (+/-) (L - DeV_LMS)
PPM = (+/-) (M - DeV_LMS)
PPS  = (+/-) (S - DeV_LMS)

while the luminance channels model the MP channel re-
sponses as

MP = (+/-) ((L + M) - DeV_LMS)

The general concept for the Guth and DeValois color 
vision model is illustrated in Figure 3.14.

Generic Color-Opponent Model

The Boynton and DeValois models along with models 
from Martinez-Uriegas [Mart94] and Chittka [Chittka96] 
are compared in Figure 3.1–15. All of these (as well as 
Guth) have some sort of L and M cell synergism for 
encoding luminance and cell antagonism for encoding 
color. (N and W in Martinez-Uriegas model are for narrow 
and wide receptive field areas. S in the other models are 
for small-wavelength cones). Based on these popular 
models a simple color model could include a center 
receptive field contrasted with its local neighborhood. 
The center receptive field is modeled as a single picture 
element, or pixel. Ratios of the center pixel with the local 
neighborhood represent the color-opponent response. 
The models presented use differences, but ratios are in 
this generic model. This is plausible since many neurons 
respond logarithmically with stimulus, and ratios become 
differences after a logarithmic transformation. The actual 
responses of bipolar cells are presumed subtractive, but 
they can be considered divisive since the subtraction 
follows the logarithmic response of the photoreceptors.

Figure 3.1–14. Guth and DeValois  
Color Vision Model.

These models and others generally include  
additive L and M response for luminance and  

subtractive L, M, or S response with the  
surrounding neighborhood for color.

Chromatic Channel Luminance Channel
Boynton L-M L+M

(L+M)-S
DeValois L-LMS (L+M)-LMS
{LMS = (10L+5M+S) / 16} M-LMS

S-LMS
Martinez-Uriegas (L-M)(N+W) (L+M)(N-W)

(M-L)(N+W) (L+M)(W-N)
Chittka S vs ML: a=1
{Excitation = aEs + bEm + cEl, a+b+c=1} M vs SL; b=1

L vs SM: c=1

Figure 3.1–15. Various Color Vision Model.
Common among these models is a local contrast between L and M responses for chromatic  

information and a broad integration of L and M responses for intensity information.
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The photoreceptor responses are believed to be loga-
rithmic, while the bipolar cell responses are believed 
to be subtractive. Due to the logarithmic nature of the 
photoreceptor response, the bipolar difference signal 
really reflects a contrast ratio of the photoreceptor with 
the horizontal-cell-mediated signal (which is a localized 
spatial-temporal average signal). This is because a loga-
rithm transform of the ratio reduces a multiplication to an 
addition. For example, if an M detector responds with an 
output value of Mo and an L detector responds with an out-
put value of Lo, then the logarithm of the ratio is the same 
as a subtraction of the individual logarithm-transformed 
cell responses. That is,

ln (Mo / Lo) = ln(Mo) – ln(Lo).

3.1.5 Extracting color from parvocellular  
color-opponent pathway

Figure 3.1–13 shows on and off parvocellular pathways 
as a difference between a single photoreceptor cell in 
the center and a local neighborhood of a few adjacent 
photoreceptors.  A representative photon absorption curve 
for each receptor (S, M, L, and Rod) is shown in Figure 
3.1–2 If the neighboring receptors are averaged together 
the average response will be different form the center 
cell’s response because on average the response of the 
center field is different from that of the neighborhood. To 
illustrate this concept, consider this example: 

Example 3.1 Center-Surround Opponent Processing

Given photoreceptor spectral response curves in Figure 
3.1–2 and a unity-intensity mono-chromatic stimulus 
determine the output of a center-surround antagonis-
tic. Assume the surround input is made of a ratio of 
long-wavelength (L) to medium-wavelength (M) to 
short-wavelength (S) cones of L:M:S = 10:5:1. Assume the 
center field is only one cell (L, M, or S). Determine the 
output for a center cell of each cell type (S, M, and L) for a 
stimulus whose wavelength is

a)    450 nm
b)    500 nm
c)    550 nm
d)    600 nm

Solution:

Using Figure 3.1–2 we need to estimate the response of 
each stimulus that is expected from each of the three cell 
types. Looking at the normalized values at 450 nm the 
S-cone response is about 0.6, the M-cone about 0.3, and 
the L-cone about 0.1. The estimated measurements are 

shown in Figure 3.1–16. If the center cell is an S-cone cell 
the center value is 0.6. The surrounding neighborhood is 
calculated as a weighted average of the different responses. 
For L:M:S = 10:5:1 then the weighted average would be

 surround_response = 
1

16
10 0 1 5 0 3 0 6

3 1

16
0 194

and the S-cell center-surround response would be 

 S cell:  center_response – surround_response = 
0.6 – 0.194 = 0.406

Similarly, at 450 nm, 

M cell:  center_response – surround_response = 
0.3 – 0.194 = 0.106

L cell:  center_response – surround_response = 
0.1 – 0.194 = -0.094

Then the same can be done at 500, 550, and 600 nm. The 
following figure shows an estimated measured response 
for all three cell types at each of the 4 wavelengths:

Figure 3.1–16 Estimated normalized absorption 
values for Example 3.1.

See Example 3.1
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Using the weighted average as before, the result for each of 
the three cell types for each of the four wavelengths are:

  Stimulus              Center-surround  
Wavelength           opponent response

  S-cell  M-Cell  L-cell 
450 nm   0.41   0.11  -0.09
500 nm  -0.53   0.22  -0.06
550 nm  -0.89   0.07   0.06
600 nm  -0.61  -0.31   0.21 

■

Looking at the results of this example we see positive 
responses in the forward diagonal and negative responses 
away from it. This makes sense as the input wavelengths 
used for this example are incrementally increasing as are 
the peak response wavelengths going from S to M to L 
cell. When the input stimulus is near the peak response 
of the center cell then the weighted average of the local 
neighborhood is lower since it is influenced by cells not 
responding as strongly. Of course, this contrast is far more 
significant in the PP channel than the MP channel since 
the PP center field is typically a single cell instead of an 
aggregate of cells in a typical MP channel. The contrast 
caused by color is therefore much stronger in the PP chan-
nel than the MP channel, which is why color is attributed 
to the PP channel in Figure 3.1–8.

This example assumes an object emitting (or reflecting) 
energy at a single monochromatic frequency, but most 
natural objects emit a wide distribution of frequencies 
across the visible spectrum. Regardless of the chromatic 
frequency distribution the algorithm results in a single 
specific response for each input that the higher brain 
processing can use to perceive a specific color. The color 
difference of an object against its background is amplified 
by this contrast, which benefits a species dependent on 
color perception for survival.

3.1.6 Gaussian Filters

One of the original models for the outer plexiform layer 
(photoreceptor-horizontal-bipolar cell interconnection 
layer) is the Laplacian-of-Gaussian (LoG) filter. For a 
gaussian function, G, defined in terms of a radius from the 
center, r, so that r2 = x2 + y2 for cartesian coordinates x and 
y, then G is defined in terms of the variance, σ, as
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The LoG filter is defined as the second derivative of G:
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The Difference-of-Gaussian (DoG) for two gaussians with 
variances σ1 and σ2, is
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Difference-of-Gaussian (DoG) Filter

Under certain conditions, the DoG filter can very closely 
match the LoG filter [Marr82]. The DoG filter allows more 
flexibility as two variances can be modified, thus there 
are two degrees of freedom. The LoG filter only uses one 
variance, thus only one degree of freedom.

The spectrum of a gaussian is also a gaussian:
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Note that the variance, σ2, is in the denominator of the 
exponent in the time domain and in the numerator of 
the exponent in the frequency domain. This is shown 
graphically in Figure 3.1–11 as the broad (large variance) 
gaussians result in sharp spectral responses, passing only 
very low frequencies. The narrow (small variance) gauss-
ians pass more of the lower and middle frequencies. The 
limits are a zero-variance gaussian, which, when normal-
ized to unity area, becomes the impulse function, and an 
infinite-variance gaussian, which becomes a constant. An 
impulse function passes all frequencies, and a constant 
only passes the DC component of the signal, which, in 
frequency domain, is represented as an impulse at ω = 0 
(repeated every 2π increment of ω due to the periodicity of 
the Fourier Transform:

δ t 1  Zero-variance gaussian limit  
1 2 δ t   Infinite-variance gaussian limit

3.1.7 Wavelet Filter Banks and Vision Pathways

The two primary vision pathways are the magnocellular 
pathway (MP) and the parvocellular pathway (PP). Each 
neuronal response in the MP represents a local average 
over a large receptive field. Each neuronal response in the 
PP represents local detail in a smaller receptive field. Thus, 
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the MP and PP decompose the natural input image into 
local average and local detail components, respectively. 

Similarly, digital images can also be decomposed into a 
set of averages and another set of details using quadrature 
mirror filtering (QMF). This method of image analysis 
(breaking apart images into components) and synthesis 
(reconstructing images from the components) results in 
a series of averaging components and another series of 
detailing components [Strang96]. QMF is a special case 
of sub-band coding, where filtered components represent 
the lower and upper frequency halves of the original signal 
bandwidth. If the analyzing filter coefficients are symmet-
ric, then the synthesizing components are mirrored with 
respect to the half-band value, thus the term quadrature 
mirror. The structure of such a wavelet analyzer and 
synthesizer is shown in Figure 3.1–17. The low pass filter 
(LPF) and high pass filter (HPF) are similar in functional-
ity to the MP and PP in time, space, and color domains. A 
variety of applications have emerged from the QMF.

Figure 3.1–17 Quadrature Mirror  
Filtering (QMF).

QMF requires low-pass and high-pass filters whose spec-
tra cross at one-fourth the sampling frequency and mirror 
each other in spectral response. Each LPF and HPF in the 
analysis path includes a down-sampler, while each adjoint 

LPF and HPF in the synthesis path includes an  
up-sampler (or interpolator).

To illustrate QMF the following example and exercise 
decomposes a sequence into its averages (after LPF) and 
details (after HPF). The sequence is down-sampled after 
each pass through the LPF; all LPFs are the same and  
all HPFs are the same (technically, the reconstruction 
filters are adjoint filters, but are the same for real-valued 
coefficients).

Example 3.2, 1D QMF Analysis and Synthesis 

a) Using the discrete Harr wavelets [0.5   0.5]  
and [0.5  -0.5] for LPF and HPF respectively, show 
how to decompose the following sequence into one 
average value and a set of detailed values.

b) Reconstruct the original sequence from the calcu-
lated components to verify correct decomposition.  

c) Compare the energy of the original sequence with 
the energy of the components.

x[n] = {12  16  8  10  10  18  13  17}

Solution:

Figure 3.1–18 shows the QMF symmetry of the PSD for 
the given LPF and HPF.

Figure 3.1–18  Power Spectral Density of Harr 
LPF and HPF showing QMF symmetry.  

Horizontal axis is sampling frequency. See Example 3.2

Part a:

We now filter the input sequence with the LPF and HPF 
(and stop once we have the same number of values, thus 
discarding the last value). Using the graphical method of 
convolution, flipping the LPF (which is symmetrical) and 
passing under x[n], taking dot product, and shifting  
results in

x[n]:  12     16     8     10     10     18     13     17
LPF[-n]:  0.5      0.5     
= 6
  0.5    0.5    = 14
           0.5   0.5    = 12
         0.5   0.5   = 9
               0.5     0.5  = 10
                  0.5   0.5  = 14 
                  0.5   0.5 = 15.5
                   0.5   0.5 = 15
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First LPF result is {6  14  12  9  10  14  15.5  15}
Down-sampling LPF results gives {14  9  14  15}, 
which will be the input to the next LPF stage.

Similarly, using the graphical method of convolution, 
flipping the HPF and passing under x[n], taking dot 
product, and shifting results in

     x[n]:   12 16 8 10 10  18 13 17
     HPF[-n]: -0.5 0.5        = 6
   -0.5 0.5       = 2
    -0.5 0.5      = -4
     -0.5 0.5     = 1
      -0.5 0.5    = 0
       -0.5 0.5   = 4
        -0.5 0.5  = -2.5
         -0.5 0.5 = 2

First HPF result is {6  2  -4  1  0  4  -2.5  2}
Down-sampling HPF results gives {2  1  4  2},  
which will be saved as detailed components.

To determine the results of the second stage we repeat 
the LPF and HPF on the down-sampled LPF results of 
the first stage: 

     Down-sampled first-stage LPF results:  14   9   14   15
     LPF[-n]:     0.5 0.5    = 7
       0.5 0.5   = 11.5
        0.5 0.5  = 11.5
         0.5 0.5 = 14.5

Second LPF result is {7   11.5   11.5   14.5}
Down-sampling gives {11.5   14.5}, which will be the  
input to the next LPF stage.

Down-sampled first-stage LPF results:  14   9   14   15
HPF[-n]:     -0.5 0.5    = 7
       -0.5 0.5   = -2.5
        -0.5 0.5  = 2.5
         -0.5 0.5 = 0.5

 

Second HPF result is {7   -2.5   2.5   0.5}
Down-sampling gives {-2.5   0.5}, which will be  
saved as detailed components
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To determine the results of the third stage we repeat the  
LPF and HPF on the down-sampled LPF results of the second  
stage. Subsequent down-sampling results in one value with will be saved:

Down-sampled second-stage LPF results:  11.5 14.5
      LPF[-n]:    0.5 0.5   = 5.75
      0.5 0.5  = 13
 

Third LPF result is {5.75   13}
Down-sampling gives the value 13.  This value represents the sequence average.

Down-sampled second-stage LPF results:  11.5   14.5
HPF[-n]:    -0.5 0.5   = 5.75

      -0.5 0.5  = 1.5
Third HPF result is {5.75   1.5}
Down-sampling gives the value 1.5, and the analysis is complete.

A summary of the filter outputs is listed here, and the value after down-sampling is underlined:

First LPF result:  {6   14  12  9  10  14  15.5  15}
First HPF result: {6  2  -4  1  0  4  -2.5  2}

 Second LPF result:  {7   11.5   11.5   14.5}
 Second HPF result:  {7   -2.5   2.5   0.5}
 Third LPF result:  {5.75   13}

Third HPF result:  {5.75   1.5}

The QMF components in x[n] are the down-sampled HPF results and the final average, which is the sequence  
{2  1  4  2  -2.5  0.5  1.5  13},  
where the last value is the sequence average. 

Part b:

For the purposes of this text, which is to illustrate 
reconstruction from the components, we will simply 
subtract the detail from the average and then add the 
detail to the average to show the original sequence can 
be reconstructed.  The final detail, 1.5 will be subtracted 
from the final average, 13, to give 11.5, and then the same 
two values will be added to give 14.5:

Reconstructing second stage: { (13-1.5)    (13+1.5)} 
    = {11.5          14.5}

Then the second-stage down-sampled detail, the se-
quence {-2.5  0.5} will be used to subtract and add to the 
second stage average values just determined above: 

Reconstructing first stage: 
 
{(11.5-(-2.5))   (11.5+(-2.5))    (14.5-0.5)     (14.5+0.5)} 
= {14                     9                      14                  15 }
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and the original sequence determined from those value  
minus then plus the down-sampled first-stage details:

x[n] = {14-2   14+2   9-1   9+1   14-4   14+4   15-2   15+2}  
       = {12   16   8   10   10   18   13   17}

Part c:

One of the benefits of decomposition is the great reduction 
in signal energy.  The total energy is the sum of the square 
of each of the components, which results in 

Power in x[n]: 
122 + 162 + 82 + 102  + 102  + 182 +132 + 172  = 1446

Energy in QMF components of x[n]: 
22 + 12 + 42 + 22 + (-2.5) 2 + 0.52 + 1.52 + 132 = 202.8

As sequences become larger and signals become mul-
tidimensional (such as images or image sequences) the 
comparison can be far more dramatic (orders of magnitude).

■

Exercise 3.1, 1D QMF Analysis and Synthesis

Using the discrete Harr wavelets [0.5   0.5] and [0.5  -0.5] 
for LPF and HPF respectively, show how to decompose 
the following sequence into one average value and a set of 
detailed values.

x[n] = {2  22  4  12  0  16  0  4}

Answer:   
QMF Components of x[n]:  {10  4  8  2  -2  -3  -2.5   7.5}, 
where the last value is the sequence average.   

■

Vision pathways (MP and PP) and QMF filter banks both 
therefore break up the input image signal into high and low 
frequency components. The MP and PP are further aug-
mented by the rod-system pathway. Rod cells are highly 
interconnected and although the rods themselves are 
basically saturated in daylight conditions; the rod bipolar 
cells are mediated by neighboring cone cells. The overall 
effect is a spatial low-pass filter of the mosaic image.   

A model of the low frequency rod system filter can be 
combined with a model of the PP to create a pair of filters 
whose spectral response crosses at one-fourth the sampling 
frequency, or half the Nyquist-limited frequency. A care-
fully chosen pair can give a striking resemblance to typical 
filter pairs chosen for QMF applications. A model of the 
MP can be substituted for the low frequency filter, but the 
spectral response will diminish with very low frequencies.

3.1.8 Coarse Coding and the Efficient Use of  
Basis Functions

Natural vision systems process information in space, time, 
and color domains. In each of these domains we find filters 
that are typically few and relatively coarse in bandwidth. 
There are essentially only four chromatic detector types, 
three temporal channels, and three spatial channels. The 
responses of these elements must be broad in scope to 
cover their portion of the data space. For example, in 
daytime conditions only three detector types have varying 
responses. As a minimum each type must cover one-third 
of the visible spectrum.

Coarse coding resembles the more common wavelet 
applications typified by complementary coarse low pass 
and high pass filters. QMF signal reconstruction capability 
is a practical demonstration of extracting specific spectral 
detail from only two broadband filters. An interesting cor-
ollary to this line of research is that the behavior of such 
synthetic applications may lead to a deeper understanding 
of natural information processing phenomena.

3.1.9 Nonorthogonality and Noncompleteness in 
Vision Processing

Sets of wavelets can be subdivided into orthogonal or 
nonorthogonal and complete or noncomplete categories.  
A set of functions is orthogonal if the inner product of any 
two different functions is zero, and complete if no nonzero 
function in the space is orthogonal to every vector in the 
set. Orthogonality provides computational convenience for 
signal analysis and synthesis applications. Completeness 
ensures the existence of a series representation of each 
function within the given space. Orthogonality and 
completeness are desired properties for wavelet bases in 
compression applications. 

However, biological systems are not concerned with 
information storage for perfect reconstruction. Any 
machine-vision application requiring some action to be 
taken based on an understanding of the image content will 
also fit this general description. In fact, many biological 
processes can be modeled by sets of functions that are 
nonorthogonal [Daug88]. The task is processing informa-
tion to take some action, not processing information for 
later reconstruction.  Using nonorthogonal filters leads to 
a redundancy of information to cover the span of infor-
mation. The redundancy of vision filters is balanced by 
the need for efficiency, simplicity, and robustness.  Infor-
mation redundancy results in unnecessary hardware and 
interconnections, but often redundancy may be required to 
sufficiently span the information space inherent in the  
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environment. The cost of supporting the redundancy 
may be less significant than the benefit of using simpler 
processing elements that degrade gracefully. Since there 
is a closeness between Gaussian-based filters and more 
mathematically elegant filters (such as Laplacian) there 
is good retention of pertinent information (though not 
perfect).

3.2  Applications inspired by natural  
photo-sensory Systems

The first photosensory application is the author’s own 
idea to use gaussian filters for emulation of low-pass 
spatial-temporal filters of the photoreceptors and hori-
zontal cells and to do that at three levels, each resulting 
in inherent delays that are used for elementary motion 
detection (EMD) models. The three different levels allow 
for modeling the well-known center-surround contrasting 
signals (propagated by bipolar cells) that comprise the 
magnocellular and parvocellular pathway signals. It also 
allows for two different EMD’s at each location. The 
additional EMD gives a degree of freedom needed to 
determine edge velocity. 

The next group of research efforts are focused on modeling 
the outer plexiform layer (OPL) of the retina (photorecep-
tors, horizonal cells, and bipolar cells) using VLSI circuits. 
Biology is made of material with a natural plasticity for 
adapting to the organisms needs. Silicon is brittle, but very 
reliable as a technology for implementing the behavior of 
the OPL. Following those efforts are the ones combining 
the silicon retina concepts with optic flow for a more com-
prehensive adaptive pixel that better emulates the OPL.

A few examples of exploiting natural foveal vision are 
then presented. The densely-packed photoreceptors in 
the very center of the retina provides much better spatial 
acuity than the periphery, where photoreceptors are not 
as densely packed. This can be misleading as our ability 
to see detail in the very center far surpasses that of the 
periphery, and the photoreceptor packing is a very small 
part of that. There are about 5 times the number of rod cell 
than cone cells in the retina, but none in the fovea (thus a 
faint star may disappear when we look right at it). Also, 
cells are more interconnected in the periphery to afford 
better temporal resolution at the cost of spatial resolution. 
Most fovea-vision-inspired applications concern the higher 
resolution in a region of interest and not the representative 
rod and cone cell distributions and non-uniform level of 
cell interconnections.

The group following is focused on asynchronous event-
based signaling which, like biology, results in a spike (or 
action potential) when a significant event happens (or a 
threshold is exceeded). Diverging from biology into a 
possible realm of much higher signal processing capabili-
ties is the notion of doing the same OPL signal processing 
but with photonics rather than electronics. This would be 
a significant deviation from biology, but as pointed out 
before many times researchers are using biology to glean 
novel ideas and not necessarily attempting to duplicate bi-
ology. Another frontier being pursued is the incorporation 
of polarization information in vision systems as indicated 
in the final section.

3.2.1 Combined EMD and Magno/Parvo channel 
model [Brooks18] 

The Hassenstein-Reichardt elementary motion detection 
(HR-EMD) model [Hass56] reviewed earlier cannot accu-
rately measure optic flow velocity. A simplified version of 
the HR-EMD is shown in Figure 3.2.1–1. There is an opti-
mal speed for the peak response of the EMD based on the 
design of the delay element. If the spatial contrast is weak 
but moving across the image at that speed the response 
can be moderate and can be the same as a stronger spatial 
contrast moving at a sub-optimal speed. Another infor-
mation dimension is needed to determine edge velocity; 
one approach is to measure the power spectral density 
(PSD) of the image and combine that with a global EMD 
response in the form of a look-up table [Wu12] although 
a PSD measurement of an image is not known to exist 
in biology. These and similar approaches have used the 
delay inherent in traditional low-pass filters (LPFs) such 
as Butterworth filters (popular due to being maximally flat 
in pass band). Again, Butterworth filters are not known in 
biology. The best model of LPFs in biology are gaussian 
filters, which are not popular in conventional applications 
due to properties such as non-orthogonality. However, 
gaussian filters are naturally occurring in biology due to 
ion leakage, charge-sharing amongst receptor cells and 
excitatory and inhibitory signals of adjacent layers of 
neurons.
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Figure 3.2.1–1. Basic HR-EMD correlation model.
A moving object stimulating one receptor then the other 
will trigger correct motion on both leading and trailing 
edges of object stimulation; the object intensity can be 

greater than or less than the background.

Gaussian filters can also model the magnocellular and 
parvocellular pathways (MP and PP); each channel of the 
MP or PP can be modeled as a difference-of-gaussian filter 
between the center receptor (or group of receptors) and 
the surrounding receptors, referred to as center-surround 
antagonistic signals. To model the either the MP or PP 
two gaussian are needed, a smaller variance gaussian 
for the center field and a larger variance gaussian for the 
surrounding field. Possibly (a subject for future experi-
mentation) both channels can be modeled with a total of 3 
gaussian filters, where the variance of the surrounding PP 
signal is the same as the variance of the center MP signal. 
These three gaussian filters are identified in Figure 3.2.1–2 
as having high, medium, and low cutoff frequencies. Keep 
in mind these are spatial-temporal filters, so the frequen-
cies are multidimensional to include both time and space. 
In the primate vision system these spatial-temporal filters 
would be implemented at each receptor location by the 
effects of weak inter-photoreceptor connections, the effects 
of lateral inhibition of the horizontal cells, the propagation 
of bipolar cells, the further mediation by the amacrine 
cells as the signal is passed through the ganglion cells. 

Spatial-temporal gaussian filter effects are well known in 
vision. The three gaussians in Figure 3.2.1–2 provide the 
necessary information for both MP and PP channel mod-
eling as well as two separate EMD channels, referred to 
in the figure as the Parvo EMD and Magno EMD. Having 
two separate EMD channels gives the additional de-
gree-of-freedom needed for object velocity determination. 
The initial LPF (with high cutoff frequency) is used as the 
‘receptor’ signal in Figure 3.2.1–1 for both EMDs, and the 
delayed signal is the output of the second LPF (medium 
cutoff) for the Parvo EMD while the delayed signal is the 
output of the third LPF (low cutoff) for the Magno EMD.

The object velocity is a function of location in the image, 
and ambiguity would be expected if only one EMD 
measurement were available. However, in this model two 
independent EMD outputs are available, so the object 
velocity would be determined by some combination of the 
responses of the Parvo EMD and Magno EMD. Another 
subject for future experimentation would be how the 
signals are combined to give the unique velocity. This is 
very consistent with the coarse coding concepts we see 
throughout biological sensory systems (and likely higher 
brain function).

Figure 3.2.1–3 shows how the two separate EMDs can be 
combined to give a specific object motion velocity at the 
given location in the receptive field. The output of the left 
and right receptors in this figure would be the output of the 
high cutoff LPF of Figure 3.2.1–2. The output of delays D1 
and D2 correspond to the outputs of the medium cutoff LPF 
and the low cutoff LPF of Figure 3.2.1–2, respectively.

Figure 3.2.1–2. A 3-gaussian model for two EMD 
models and MP and PP models. 

Each pixel represents a sensory receptor in 2D space. As 
the pixel update algorithm is repeated, the spatio-temporal 

cutoff frequency of the LPF is reduced. The outputs of 
three sets serve to provide biologically-relevant PP and MP 

signals as well as inputs to EMDs that can provide very 
accurate object velocity and direction. The use of Parvo 
and Magno EMD is used to distinguish which output set 

is used, as the same signal is used for the negative input to 
the respective channels.
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Figure 3.2.1–3. Combining two EMDs for  
accurate object velocity estimation.

The second and third set of pixel update iterations show 
in Figure 3 is shown here as delay elements D1 and D2 
respectively. The input to the lower (or Magno) EMD 
allows the combination of delays for the two sets to be 

used. Because the delays are different, each EMD will be 
tuned to a different value in the range of motion. The look-
up table (LUT) could be a simple comparison to determine 

a precise velocity from the two samples provided by the 
individual EMDs.

The effectiveness of this magno/parvo EMD model can be 
simulated in MATLAB or other visualization tool. Letting 
γ control the amount of spatial spreading between frames 
(limiting it to a value between 0 and 1) then the pixel value 
retained will be γ times the current value which will be 
added to (1- γ) times the average of the 4 nearest neighbor 
current pixel values. Letting α control the amount of 
temporal smoothing so that the current pixel value is 
multiplied by α and added to (1- α) times the current 
spatially-processed pixel. The spatial-temporal effects 
are provided by the horizonal cells, so we reference that 
signal as Hi,j, where i is the row index and j is the column 
index. Letting Pi,j represent the pixel value (the modeled 
receptor value) at the ith row and jth column and using T 
as a temporary variable (for clarity) we have the following 
update algorithm:

T = 0.25(1- γ)(H(i-1),j + Hi,(j-1) + Hi,(j+1) + H(i+1),j) + γPi,j

Hi,j = (1- α)T + α Hi,j

The constants γ and α represent levels of spatial smoothing 
and temporal smoothing respectively, which in both 
cases gives the low-pass filtering effects of a gaussian 
filter (simultaneously in both time and space domains). 
These can be made adaptive once a performance metric is 
determined. Simulating the three filters in Figure 3.2.1–2 

is accomplished by tapping the results at differing numbers 
of iterations as the visual information is processed. A 
few iterations implement a high cutoff (spatial-temporal) 
frequency, more iterations would give a medium cutoff fre-
quency, and even more iterations a lower cutoff frequency. 
There are several degrees-of-freedom for experimentation, 
including the spatial and temporal smoothing constants 
along with the number of iterations for implementing the 
gaussian filters.

3.2.2 Autonomous hovercraft using insect-based 
optic flow [Roub12]

It is well known that insects such as honeybees navigate 
their environment by optic flow queues in the visual field. 
Insect-inspired optic flow was demonstrated in a small 
hovercraft robot [Roub12] autonomously following a wall 
and navigating a tapered corridor. The design is focused 
on obstacle avoidance in the azimuth plane with 4 2-pixel 
optic flow (OF) sensors at 45° and 90° on both left and 
right sides. The hovercraft robot followed a wall at a given 
distance as well as successfully navigating through a 
tapered corridor. As seen in experiments with honeybees 
[Srini11] the velocity decreases as it successfully navigates 
through a tapered corridor, a natural consequence of 
maintaining constant OF as side get closer. The honeybee 
navigation was presumed to be the result of the balancing 
OF on both sides of the insect. 

The hovercraft demonstrated the ability to adjust forward 
speed and clearance from the walls without rangefinders 
or tachometers. However, a magnetic compass and 
accelerometer were used to prevent movement in the yaw 
axis direction so that the craft continues to move forward. 
This is necessary since the experiment focused on the OF 
queues and the ability to navigate the corridor.

The algorithm was developed in simulation and imple-
mented on this hovercraft. All 4 sensors (two at 45° and 
two at 90° rom the forward direction on each side) were 
used in the navigation algorithm the authors call dual 
lateral optic flow regulation principle. It demonstrates a 
more comprehensive suggestion as to how honeybees nav-
igate their environment than simply balancing optic flow 
from the two sides. This is an example of a bio-inspired 
sensor that is used to help biologists better understand how 
honeybees navigate their environment.
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3.2.3 Autonomous hovercraft using optic flow for 
landing [Dup18]

In this effort 12 optic flow pixel sensors implementing a 
threshold-based motion detection is compared to a more 
traditional set of 12 optic flow pixels implementing a 
cross-correlation method. The cross-correlation method is 
more robust, but also more computationally complex. If a 
sufficient threshold method can work, then the complexity 
is greatly reduced. The drawback is the performance is 
strongly dependent on the threshold, which can vary from 
scene to scene and differing illumination conditions.

The application in mind is a hovercraft using optic flow 
sensing on the ventral side (under side) of the craft to 
ensure smooth landing. As an insect gets closer to the 
landing point the optic flow underneath will increase since 
the image texture is getting closer.  If the insect keeps the 
optic flow constant, then its speed must be reducing as the 
insect approaches, until the point where the insect is at 
rest on the landing surface. To measure the performance 
the optic flow sensor was fixed with a textured visual field 
passed in front of the sensor. 

3.2.4 Silicon Retina [Maha89]

The silicon retina [Maha89] is designed to emulate the 
initial processing layers of the retina, which include the 
photoreceptors, horizontal cells, and bipolar cells. An 
array of 48 x 48 pixels was fabricated using 2.0 µm design 
rules (width of conducting path) and pixel circuits about 
109 x 97 µm in size. A hexagonal resistive grid is used so 
that local averages of pixels are more highly influenced by 
the six nearest neighbors than those farther away. 

The triad synapse (connecting these three cell types) is 
modeled in silicon as a follower-connected transconduc-
tance amplifier. A capacitor stores the spatial-temporal 
signal of the photoreceptor, and an amplifier propagates 
the difference if this signal and the photoreceptor signal, 
modeling the bipolar cell center-surround antagonistic 
signal. The photodetector circuit is a bipolar transistor 
biased with a depletion region responding logarithmically 
with the incoming light intensity, which corresponds to 
physiological recordings of natural photoreceptors. 

The design was later revised with an adaptive photore-
ceptor circuit modulated by three feedback paths and 
individual time constants. The gain of the receptor is 
adaptive, and the circuit was more robust to transistor 
mismatches and temperature drifts than the original 
silicon retina. Another improvement was the incorporation 
of the edge signal position without the need for off-chip 
subtraction [Maha91].

3.2.5 Neuromorphic IR analog retina  
processor [Mass93]

Building on the silicon retina design the Air Force Re-
search Lab (AFRL, Eglin AFB) funded the development of 
an infrared sensor. One of the problems emulating biolog-
ical retinae with VLSI technology is the area required to 
model the time constants observed in biology make the 
design of a 2D array of pixels unreasonably large. This IR 
sensor design used switch-capacitor technology with small 
capacitors to emulate time constants of larger capacitors. 
Although such technology has no biological counterpart, 
it was successful in achieving biomimetic spatial-tem-
poral response rates. The drawback of this technology is 
additional noise caused by the 10KHz switching speeds 
required for the design. 

A 128 x 128 array of Indium Antimonide (InSb) detector 
elements at 50 µm pitch were connected 4-to-1 to create 
a 64 x 64 array at 100 µm pitch. This detector plane was 
bonded to a readout chip where each pixel used the 100 
µm pitch area for the switched-capacitor and readout 
circuitry. The InSb diodes were connected in photovoltaic 
mode and responded logarithmically as the biological 
photoreceptors do. The CMOS transistors configured as 
switched-capacitors were used between pixel nodes to 
provide the spatial-temporal smoothing inherent in  
laterally-connected horizontal cell layers of the retina.

The result was a medium-wave IR (MWIR) camera with 
localized gain control. The camera captured imagery of a 
gas torch in front of a lamp with a large flood light bulb. 
Conventional cameras at that time would saturate in all the 
lighted areas unless a global gain control were in place, 
in which case the objects in the darker parts of the image 
would not be seen. In this experiment the filament of the 
light bulb, the outline of the torch flame, as well as the 
object in the darker parts of the image could be clearly 
seen. This is the benefit of localized gain control of  
natural biological retinae and bio-inspired sensors that 
model them.

3.2.6 Michaelis-Menten auto-adaptive pixels 
M2APix [Maf15]

The vision system of primates (and other animals) 
provides responses over a wide range of luminosities 
while at the same time provides good sensitivity to local 
contrast changes, giving the vision system the ability to 
simultaneously distinguish a bright object against a bright 
background in one part of the image and a dark object 
against a dark background in another part of the image. 
The wide range of luminosities is facilitated by the open-
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ing and closing of the iris as well as the natural logarithmic 
response of the photoreceptors. The good sensitivity is 
facilitated by the lateral inhibition of the post-photorecep-
tor processing neurons, the horizontal cells.

Many machine vision designers have sought to develop 
wide dynamic range sensors and have looked to the natural 
vision system for inspiration. The Delbruck adaptive pixel 
[Del94] used the logarithmic photoreceptor circuit of the 
original silicon retina [Maha88] and is used in comparison 
with the Michaelis-Menten auto-adaptive pixel (M2APix) 
proposed here [Maf15]. 

The Michaelis-Menten equation [Mich1913] was derived 
to model enzyme kinetics in biochemistry. It describes the 
rate of enzymatic reactions in terms of the maximum rate 
achieved when the substrate is saturated and a constant 
representing the substrate concentration when the reaction 
rate is half the maximum rate [WikiMM]. It is adapted 
in [Maf15] to describe the photoreceptor’s response, V, in 
terms of the maximum response at lamination saturation, 
Vm, the light intensity, I, and an adaptation parameter, σ, 
given in [Maf15] as

V V
m

In

In σn

Substituting V with the enzymatic reaction rate, Vm with 
the maximum rate when the substrate concentration is 
saturated, I with the substrate concentration, and σ with 
the Michaelis constant, which is the substrate concentra-
tion when the rate is half Vm, and letting n = 1 this equation 
reduces to the original biochemistry equation [WikiMM].

The Delbruck adaptive pixel provides a 7-decade range of 
light adaptation and a 1-decade range of contrast sensitivi-
ty. There were some issues raised concerning steady-state 
responses increasing with light intensity and inconsistent 
transient responses under large contrast sensitivity. Other 
methods using resistive grids to emulate horizontal cell 
networks resulted in 4 decades of sensitivity but required 
external voltage sources to set bias points [Maf15].

A photoreceptor array of 12 M2APix pixels and 12 
Delbruck pixels was fabricated and used for comparison. 
The 2 x 2 mm silicon retina was fabricated into a 9 x 9 
mm package with the two 12-pixel arrays side-by-side for 
comparison. The experimental results confirmed that the 
M2APix pixels responded to a 7-decade range of luminos-
ities and with a 2-decade range of contrast sensitivities. 
The advantage over the Delbruck adaptive pixel is that 
it produces a more steady contrast response over the 7 
decades of luminosities so that the least significant bit 
(LSB) will be a lower value and therefore a better contrast 
resolution [Maf15].

3.2.7 Autonomous hovercraft using insect-based 
optic flow [Van17] 

A bio-inspired eye is designed to allow an aerial vehicle 
passive navigation through corridors and smooth landing 
by having vision sensors responding to optic flow in the 
front, two sides, and the bottom. A given example would 
be a quadrotor exploring a building by keeping a certain 
distance from the walls. 

Called the “OctoM2APix” the 50 gm sensor includes 
8 Michaelis-Menten auto-adaptive pixels (M2APix): 3 
measuring optic flow (OF) on the left side, 3 measuring 
OF on the right, and 2 on the bottom measuring OF on the 
ground underneath the vehicle. The center pixel on each 
side is measuring OF at right angles to the heading; one is 
pointing between the side and the front, while the other is 
pointing between the side and the rear. Each side covers 
about 92° in the horizontal plane. The object is to allow the 
vehicle to correct for heading based on the differing OF 
measurements of the three pixels on either side.

The experimental results were with the OctoM2APix 
sensor stationary and a textured surface moving next to it 
at various angles with respect to the (simulated) heading, 
or the direction of the front of the sensor. The experimental 
heading included 0°, where the vehicle would be following 
a wall-like surface, +20°, where the (non-simulated) 
vehicle would eventually collide with the surface if not 
corrected, -20°, where the vehicle would be separating 
from the surface, and -45°, where the vehicle would be 
separating at a faster rate. The OF on forward and rear side 
pixels should offset each other when heading is parallel to 
the surface, and the difference between forward and rear 
side pixels would provide cues for the heading with respect 
to the wall, and thus allow the vehicle to adjust its heading 
if the goal were to follow the wall at a constant rate. The 
experimental results are shown by calculating heading from 
the center and forward pixel, the center and rear pixel, and 
the forward and rear pixel, the latter being the best esti-
mate when all three sensors had the surface in view. This 
makes sense since this would be the widest separation.

3.2.8 Emulating fovea with multiple regions of 
interest [Azev19]

There are many applications where image resolution is 
high in some region of interest (ROI) and low in the re-
maining portion of the image. This is a crude resemblance 
of a foveated image but could be argued as bio-inspired 
by the fovea. In both natural and synthetic designs, the 
idea is to conserve computational resources by using a 
higher sampling in an ROI (center gaze for biology) and 
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lower sampling elsewhere. Non-uniform sampling is seen 
in all natural sensory systems as biology has adapted to 
the different levels of relevance of natural stimuli (passive 
or active). In many commercial and military applications 
multiple ROI’s could be employed, but this is rare in 
biology if it exists. (Vision systems have a single fovea, 
but it could be argued that there are multiple regions of 
higher sampling, for example, in the sense of touch as the 
well-known somatotopic map would suggest).

A vehicle tracking system designed for self-driving 
cars uses multiple ROI’s and claims fovea inspiration. 
The subsequent image processing is developed using 
deep-learning neural networks, which again implies some 
level of bio-inspiration.  The system uses vehicle wave-
points, which are the expected future locations of the 
vehicles, and continually crops the image looking for other 
vehicles. This is analogous to drivers looking down the 
road they are traveling. The experimental results claimed 
an improvement of long-range car detection from 29.51% 
to 63.15% overusing a single whole image [Azev19]. As 
pointed out before, many researchers are more focused on 
solving engineering problems (as they should be) and not 
too concerned with the level of biomimicry. Therefore, 
there can be a chasm between the levels of biomimicry 
between various efforts claiming bio-inspired designs.

3.2.9 Using biological nonuniform sampling for 
better virtual realization [Lee18] 

There are other applications that are not mimicking biolo-
gy but considering the high spatial acuity of the fovea. For 
example, a head-mounted display can consider the gaze 
direction for visualization of 3D scenes with multiple lay-
ers of 2D images. The goal is to improve received image 
quality and accuracy of focus cues by taking advantage of 
the loss of spatial acuity in the periphery without the need 
for tracking the subject’s pupil [Lee18]. Another example 
is a product (called Foveator) that tracks the motion of 
the pupil and limits high-resolution rendering only in the 
direction needed. The intended application is for improved 
virtual reality (VR) experience [see www.inivation.com]. 
These ideas leverage natural design information to relax 
requirements of a visual system to avoid providing more 
than necessary as opposed to using the design of natural 
fovea to inspire newer designs.

3.2.10 Asynchronous event-based retinas [Liu15a]

Conventional camera systems have pixelated, digitized, 
and framed pictures for post spatial, temporal, and 
chromatic processing. Natural vision systems send 
asynchronous action potentials (spikes) when the neuronal 

voltage potential exceeds a threshold, which happens at 
any time, instead of on the leading edge of a digital clock 
cycle. The information is thus gathered asynchronously, 
and these information spikes only occur when there is 
something to cause them. Mimicking this biological be-
havior is the emerging asynchronous event-based systems. 
Progress has been slow due in part to the unfamiliarity of 
silicon industry with non-clocked (asynchronous) circuitry. 
The emulation of cell types is limiting as industry is 
reluctant to reduce the pixel fill areas to make room for 
additional functionality [Liu15a]. In mammals the light 
travels through the retinal neuron layers and then through 
many layers of photopigment, allowing numerous oppor-
tunities for photon capture than a single pass (such as the 
depletion region of a pn junction). The chip real-estate for 
asynchronous (analog) processing in the retina does not 
conflict with the photon-capturing photoreceptor as the ret-
inal is transparent to the incoming photonic information.

One asynchronous silicon retina design includes an 
attempt to mimic the magno- and parvo-cellular pathways 
(MP and PP) of the optic nerve [Zag04]. The sustained 
nature of the PP and the transient nature of the MP is 
pursued which results in both ON and OFF ganglion 
cells for both MP and PP, which is what is observed in 
natural vision systems.  The benefit is natural contrast 
adaptation in addition to adaptive spatio-temporal filtering. 
The resulting localized automatic gain control provides 
a wide dynamic range and makes available two separate 
spatial-temporal bandpass filtered representation of the 
image. One of the challenges of using this vision system is 
the large non-uniformity between pixel responses [Liu15a]. 
Gross non-uniformity between receptors and neurons 
is common in natural sensory systems as the adaptive 
(plastic) nature of neurons compensates for such non-uni-
formities. 

3.2.11 Emulating retina cells using photonic net-
works of spiking lasers [Rob20] 

Silicon retinas and cochleae such as those in [Liu15] use 
hard silicon to emulate the behavior of biological neuronal 
networks that are adaptive and exhibit plasticity. Never-
theless, these bio-inspired designs show promise of the 
applications of such novel sensory systems. In a similar 
way vertical cavity surface emitting lasers (VCSELs) 
are used to emulate responses of certain neurons in the 
retina and are referred to as VCSEL-neurons. In biology 
the photonic energy is converted to a graded (or analog) 
potential by the biochemistry of the photopigments of 
the photoreceptor cells. By keeping the information 
photonic the speeds of computations can exceed 7 orders 
of magnitude improvement. This dramatic improvement in 

http://www.inivation.com
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information processing performance has wide applications 
for computationally-intense algorithm frameworks such as 
artificial intelligence and deep learning.

This effort demonstrates retinal cell emulation using 
off-the-shelf VCSEL components operating at conven-
tional telecom wavelengths. The VCSEL-neurons were 
configured to emulate the spiking behavior of ON and 
OFF bipolar cells as well as retinal ganglion cells. In these 
silicon and photonic applications, we see biology as an 
inspiration for novel information processing strategies but 
then combine those strategies with available technology 
that does not emulate the way biology works. A similar 
example of this concept is also seen when the fovea is 
emulated in the next few applications. 

3.2.12 Integrating insect vision polarization with 
other vision principles [Giak18] 

The visual sensory systems of many species are designed 
to process environment-provided stimulus that have space, 
time, and color dimensions. Arthropods and some marine 
species have been shown to have sensitivities to the po-
larization of light as well. For example, the octopus retina 
has tightly packed photoreceptor outer segments composed 
of microvilli that are at right angles to the microvilli of 
neighboring photoreceptor cells. The microvilli orientation 
alternates between these right angles and this is believed 
to give the octopus sensitivity to polarized light [Smith00].

Aluminum nanowire polarization filters are used in this ef-
fort [Giak18] to emulate the microvilli of ommatidium, the 
components that make up the compound eye. Polarization 
measurements were made to characterize the polarization 
of several polymers. A previously designed neuromorphic 
camera system is used with polarization filters to show 
improvement in visually recognizing a rotating blade if 
polarization information is used [Giak18]. 

Chapter 3 Questions

1.  Differentiate between passive and active sensors.

2.  What is the energy in a photon?

3.  How are chemo-reception and photo-reception similar?

4.  Describe the three most significant imperfections in 
biological vision systems and what causes them.

5.  Discuss the relationship between connectivity and 
spatial and temporal acuity

6.   What is coarse coding?

7.   What are the three information domains in which 
vision systems extract environmental information?

8.   Describe the three major compound eye designs.

9.    Give some examples of visual scanning systems in 
the animal kingdom.  What are the advantages and 
disadvantages of such a system?

10. Why is the retina considered a part of the brain, since 
the two organs are separated by distance and other 
components (optic nerve, LGN, etc.)?

11. What are the anatomical similarities between the 
retina, LGN, and the brain?

12. Explain the serial/planar duality that exists in biologi-
cal vision systems.

13. Describe the encoding and decoding levels (in orders 
of magnitude) in the various organs within the primate 
vision system.

14. Name the five major cell types (layers) in the retina.  
Which three are connected to the triad synapse?

15  Give the three primary vision information channels in 
primate vision.

16. DoG or LoG filters are primarily used to model what 
part of the vision system?

17. What are the commonalities in color vision models 
concerning luminance and color?

18. What is the photoreceptor mosaic, and how is that like 
an artistic mosaic?

19. What is the difference between LoG and DoG filters?

20. Discuss degrees of freedom with LoG and DoG filters?

21. Compare and contrast vision system pathways with a 
conventional wavelet filter bank.

22. How is coarse coding manifested in the vision system?

23. When contemplating a new communication encoding 
scheme, it is very important to choose an orthogonal 
basis.  But a typical biological set of basis functions 
are not mutually orthogonal.  What is the implication?  

24. Why are we so interested in biology if natural basis 
functions are not orthogonal?  
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Chapter 4:  
MECHANO-SENSORY SYSTEMS

4.1 Natural Mechano-sensory Systems

The primary mechano-sensory systems provide the 
sense of touch and hearing. Neurons are stimulated by 
contact with objects in the environment or by contact with 
fluid compression waves caused by movements in the 
atmosphere or underwater. The primate auditory sense is 
caused by air vibrations against the eardrum, which causes 
bone vibrations in the inner ear, which causes deforma-
tions of the basilar membrane that resemble the shape of 
the frequency spectrum of the incoming sound energy.

4.1.1 Mechano-sensory capability in simple  
life-forms

The most basic sense is the mechano-sensory tactile sense, 
which is the response to mechanical distortion. The history 
of the tactile sense goes back to ancient prokaryocytes, 
which are cellular organisms with no distinct nuclei, such 
as bacteria or blue-green algae. For these fundamental life 
forms, the tactile sense is required for continually detect-
ing the continuity of the cell boundaries. The organism 
can then 1) counteract swelling due to osmotic forces (fluid 
entering the cell to balance ionic concentrations) and 2) 
prepare for cell division when the tactile sense detects 
swelling for that purpose. [Smith08].

4.1.2 Mechano-sensory internal capability within 
higher life forms

The human hypothalamus located under the brain serves 
as an interface between the nervous system and the 
endocrine (interior secretion) system. The fluid secretions 
controlled by the hypothalamus are a primary influence 
for heart rate and other biological rhythm control, body 
temperature control, hunger and thirst control, digestion 
rate, and other related functions involving secretions. It is 
believed to be the center for “mind-over-body” control as 
well as for feelings such as rage and aggression [Tort84]. 
Within the hypothalamus is a complex neuronal design 
based on stretch-sensitive mechanoreceptors that sample 
the conditions of blood cell membranes in an analogous 
way that they serve the single-celled organisms. The 

difference is that the prokarycyte stretch-sensitive 
mechanoreceptors built into the organism, while the 
hypothalamic mechanoreceptors sample the blood cells 
from external to the cell [Smith08].

Mechano-sensors are built around stretch-sensitive chan-
nels that allow immediate detection and rapid response. 
Photo-sensory and chemo-sensory reception involves a 
complex biochemistry to translate the presence of a photon 
or a chemical tastant or odorant into an ionic charge pres-
ence within the receptor. The ionic charge increase is then 
translated into nerve impulses to eventually be processed by 
the higher brain functions. The mechanoreceptors, on the 
other hand, respond immediately to mechanical distortion. 

4.1.3 The sense of touch

Mechanoreceptors are fundamental to the detection of 
tension and the sense of touch. They are also basic com-
ponents to detecting vibrations, accelerations, sound, body 
movement and body positions. They play an important role 
in kinesthesia, which is sensing the relative positions of 
different body parts. It is believed that all these senses are 
ultimately derived from stretch-sensitive channels. However, 
the human understanding of the molecular structure and 
nature of most mechanosensory channels is still in its infancy.

4.1.4 Mechano-sensory sensilla

A discriminating characteristic of arthropods is their 
external skeleton, which limits (fortunately!) their overall 
size. Sensory organs such as the retina cannot develop in 
the hard exoskeletons. However, their kinesthetic sense 
is well developed due to sensory endings in muscles and 
joints of appendages. The most common insect sensory 
unit is the mechanosensory sensilla, each of which in-
cludes one or more neurosensory cells within a cuticular 
(external shell) housing. The cuticle is the external surface 
of an arthropod. Mechanosensitive sensilla may respond 
to cuticular joint movements or be positioned to detect 
movements within the cavity. The three primary mechano-
sensory sensilla in arthropods include:
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Hair sensilla

Neurosensory cells have dendritic inputs from within a 
hair protruding from the cuticle and axonal outputs from 
the cell bodies located at the root of the hair embedded 
in the epidermis underneath the cuticle. Deflection in 
one direction causes depolarization (an increase from the 
nominal –70 mV resting potential) while deflection in the 
other direction causes hyperpolarization (a decrease from 
–70 mV.) Minimum response thresholds are known for 
distortions down to 3–5 nm with response times down to 
100 us (0.1 ms). These figures imply the use of opening 
and shutting ion gates; the biophysics for mammalian hair 
cells is similar.

Campaniform sensilla

The hair has been reduced to a dome on the cuticle. The 
dendritic inputs are just beneath the external surface so that 
the neurosensory cell senses a slight surface deformation. 
Responses have been shown with deformations as small as 
0.1 nm. Directional selectivity is achieved with elliptically 
shaped domes, where deformation along the short axis is 
more sensitive to deformation along the long axis.

Chordotonal organs – Mechanosensory sensilla devel-
oped within the body cavity. These are characterized 
by a cap or other cell that stimulates numerous 
dendritic inputs to the neurosensory cell. Chordotonal 
organs are one of the proprioceptor types, located in 
almost every exoskeletal joint and between body  
segments. Many are sensitive to vibrations; for 
example, one type in the cockroach is sensitive to 
vibrations between 1 kHz to 5 kHz and amplitudes 
from 1 nm to 100 nm (0.1 micron). These sensing 
capabilities are important for detection of danger and 
for social communications. 

Other non-mechanosensory sensilla include gustatory 
(taste), olfactory (smell), hygroscopic (humidity-sensing), 
and thermal (temperature-sensing) sensilla.

Separating insect mechanoreceptors into vibration detec-
tors and acoustic detectors is difficult since many times the 
same receptors are used to detect vibrations in air, water, 
and ground. Certain water insects (pond skater, Gerris, 
and water-boatman, Notonecta) detect wave amplitudes 
around 0.5 microns in a frequency range 20–200Hz and 
time delay range 1 to 4 ms. 

Hairs and tympanic membranes for auditory sensing

Two basic types of sound detectors have been developed 
in insects: Hairs and tympanic organs. Hairs only respond 
to lateral distortions of air when the insect is very near the 
sound source, such as the wing beat frequency of a preda-

tor insect or a prospective mate. They are accompanied in 
detecting vibrations by Johnston’s organ, which consists of 
largely packed sensilla. The Johnston’s organs also detect 
flight speed in bees and gravity in the water beetle.

Tympanic organs (ears) respond to pressure waves and are 
thus able to respond to sound sources much farther away. 
Tympanic organs are used for communications, attack, and 
defense. The basic parts include a tympanic membrane, 
air cavity, and a group of chordotonal organs that provide 
the neuronal signaling from the acoustic stimulus. Across 
the species the tympanic organs have developed on many 
different parts of the insect body.

Evasive maneuvers of the lacewing moth

An interesting use of the tympanic organ is found in the 
green lacewing (Chrysopa carnea). Military pilots being 
pursued by enemy aircraft may mimic the lacewing when 
being pursued by a hungry bat. As the bat detects its prey 
and closes in, its active sonar pulses increase in frequency. 
When the search pulses are detected, the lacewing folds  
its wings into a nose-dive out of the sky before the bat’s 
sonar can lock on. Noctuid moths have two neurons for 
each tympanic organ. One signals a bats detection sonar 
pulse while the other starts responding with the higher 
frequency tracking pulses. With the first signal the moth 
will retreat in the opposite direction; with the second 
signal it will try desperate avoidance maneuvers, such as 
zig-zags, loops, spirals, dives, or falling into cluttering 
foliage. (Surrounding nearby vegetation “clutters” the 
returning sonar pulses echoing off a target moth; similarly, 
vegetation also “clutters” the returning echo radar pulses 
echoing off a military target.) Some moths will emit 
sounds during the last fraction of a second; it is not sure 
if the moth is warning others or trying to ‘jam’ the bats 
echolocation analysis mechanism [Smith08].

Equilibrium and halteres 

Hair cells in different orientations lead to gravitational 
force detection from different orientations, which lead 
to balance and equilibrium. Fluid-filled tubes in the 
vertebrates called the semicircular canals are oriented 
orthogonal to each other. Two fluids, called endolymph and 
perilymph are very different with respect to ionic concen-
tration levels. K+ ions flow through the stereocilia, which 
project well into the K+-rich endolymph. The resulting 
design is a complex system of orientation signals that are 
processed to achieve balance and equilibrium.
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The membranous labyrinth has developed from early 
lamprey (eel-like fish). It includes the semicircular canals 
and fluid-filled chambers called the utriculus and sacculus. 
It also includes pre-cochlear organs and cochlea (auditory 
part of hearing system) in the higher species.

Many insects have two pairs of wings to help control  
their flight, but the dipteran (two-winged) insects have  
developed halteres to replace the hind wings. These organs 
are attached to the thorax just under each wing and have 
dumbbell shaped endings causing responses to changes in 
momentum. Dipteran insects typically have short, stubby 
bodies that make it particularly remarkable that they can 
control their flight. The halteres provide inertial navigation 
information that is combined with optic flow input through 
the vision system. The head is kept stabilized by its own 
visual input, while the halteres provide inertial informa-
tion used to stabilize flight. The halteres can be thought of 
as vibrating gyroscopes that serve as angular rate sensors 
[North01]. It can be shown that a system of two masses 
suspended on a stiff beam at 45° has the capability to 
provide sufficient information for stabilized flight control. 
How the neurons are connected and how the information is 
processed to accomplish stabilized flight control, however, 
will remain a mystery for a long time to come [North01].  

The halteres have numerous campaniform sensilla nerve 
endings attached at the end as well as numerous chor-
dotonal organs embedded within. These signals can detect 
slight motion in each of the three degrees of freedom: 
pitch, roll, and yaw. Pitch is rotation about a horizontal 
axis orthogonal to the main horizontal axis, roll is rotation 
about the main horizontal axis, and yaw is rotation about 
the vertical axis. To illustrate each of these three, consider 
the effects of rotational motion when looking ahead from 
the bow of a ship: Pitch causes up and down motion, roll 
causes the left side to go up when the right goes down (and 
vice versa), and yaw causes the ships heading to oscillate 
to the left and right. Halteres can oscillate through about 
180° at frequencies between 100Hz and 500Hz [Smith08].

4.1.5 Mammalian tactile receptors

In mammalian skin tactile receptors can be classified into 
fast adapting, which respond only during initial skin de-
formation, and slow adapting, which continue to respond if 
the deformation is present. Fast adapters include:

- Pacinian corpuscles, which are in the deeper layers of 
glabrous (non-hairy, like the palm) skin and respond 
to vibrations in the range of 70–1000 Hz

- Meissner’s corpuscles, which are also in the deeper 
layers of glabrous skin and respond to vibrations in 
the range of 10–200 Hz

- Krause’s end bulbs, like Meissner’s corpuscles but 
found in non-primates, responding to vibrations in the 
range of 10–100 Hz

- Hair follicle receptors, which are located just below 
the sebaceous (sweat) glands; numerous nerve  
endings give hair follicles a wide range of hair-move-
ment sensitivities and response times.

The slow adapting tactile receptors in mammalian  
skin include:

 - Merkel cells, which respond to sudden  
displacements, such as stroking

 - Ruffini endings, which respond to steady  
displacement of skin

- C-Mechanoreceptors, located just beneath the skin, in 
the epidermis/dermis interface, have unmyelinated 
(unprotected) nerve fibers extending into the epider-
mis (the most external layer of skin). These nerves 
respond with slowly-adapting discharge to steady 
indentations of the skin. They also respond to tem-
perature extremes and to tissue damage, interpreted 
as pain.

Basic hair cells are similar in structure among all verte-
brates. Peak sensitivities in the human ear reach movements 
of only a tenth of a nanometer, which is one angstrom. Hair 
cell sensitivity “is limited by the random roar of Brownian 
motion” [Smith08]. Hair cell ending are composed of 
bundles of fine hair-like bundles called stereocilia and a 
single, tall cilium with a bulbous tip called a kinocilium. 
The receptor potential depolarizes (rises from–70 mV) 
for motion in one direction and hyperpolarizes (decreases 
below –70 mV) for motion in the other direction. (Biologists 
refer to the normal neuronal resting potential of –70 mV as 
the natural voltage “polarization” state).

4.1.6 Human auditory system

The founder of Ohm’s Law, G. S. Ohm, once suggested 
that the human auditory systems does a Fourier analysis 
of received sound signals, breaking the signals into sep-
arate components with separate frequencies and phases 
[Kand81]. Although this has proven to be true, the auditory 
system does more than a simple Fourier analysis. The input 
is fluid pressure waves (sound in air) from the environment 
striking the eardrum and the ear transforms the pressure 
waves to neuronal signals processed by the auditory cortex 
in the brain. 
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Figure 4.1.6–1 shows a sketch of the key components of 
the human auditory system. Sound enters the outer ear, 
and the vibrations are transferred to the middle ear and 
then the inner ear. The outer ear is composed of the exter-
nal cartilage, called pinna, the ear canal, and the tympanic 
membrane, or ear drum. The middle ear is composed 
of three bones in an air-filled chamber; the inner ear, or 
membranous labyrinth, contains the semicircular canals, 
fluid-filled chambers called the utriculus and sacculus, 
which are near the semicircular canals (but not labeled in 
Figure 4.2.1–1) and the cochlea.

 

Figure 4.1.6–1 Human Auditory System.
Credit: NIH Medical Arts, Picture from  

https://www.nidcd.nih.gov/sites/default/files/Documents/
health/hearing/AgeRelatedHearingLoss.pdf

The outer ear is designed to collect sound waves and direct 
them into the ear canal to the eardrum. The middle ear 
ossicles are the malleus, or “hammer (mallet)”, the incus, 
or “anvil”, and the stapes, or “stirrups”. The names come 
from their shapes being similar to familiar objects. The 
ossicles serve to provide an acoustic impedance matcher 
between the air waves striking the eardrum and the fluid 
waves emanating from the oval window in the cochlea. 
Without the impedance matching most of the air-wave 
energy would reflect off the surface of the cochlear fluid. 
Another purpose of the ossicles is to amplify the energy 
density due to the variation in acoustic surface area: The 
eardrum surface area is about 25 times larger than that of 
the oval window.

Time delays and sound localization

For humans, the typical time delay for a sound wave to 
reach each eardrum is between 350 to 650 microseconds 
[Mead89], depending on the binaural separation distance. 
A source directly in front of the listener will reach each 

ear simultaneously with no time delay, while a source at 
right angles will reach each ear with this maximum time 
delay. The difference in wave-front arrival time is there-
fore one of the horizontal localization cues for the sound 
source, as will be shown later for the barn owl.

Another horizontal localization cue for humans is the 
result of high frequency attenuation caused by sound 
traveling around the head. This is referred to as the 
acoustic head shadow. A sound source from directly 
ahead will have the same attenuation effect in both 
channels, while a source coming from an angle will result 
in more high frequency attenuation at the contra-lateral 
(opposite-sided) ear. The sound impulse response from a 
source between center and right angles shows both a delay 
and a broadening on the contra-lateral ear with respect to 
the ipsi-lateral (same-sided) ear. 

Elevation information is encoded in the deconstructive 
interference pattern of incoming sound wavefronts as they 
pass through the outer ear along two separate paths: The 
first path is directly into the ear canal, and the second is a 
reflected path off the pinna (see Figure 4.2.1–1) and again 
off the tragus before entering the ear canal. The tragus is 
an external lobe like the pinna but much smaller (and not 
seen in Figure 4.2.1–1); the tragus is easily felt when the 
finger is at the opening of the ear canal. The delay time 
in the indirect pinna-tragus path is a monotonic function 
of the elevation of the sound source. Since the destructive 
interference pattern is a function of the delay time, this 
pattern serves as a cue for the elevation of the sound 
source with respect to the individual.

Static and dynamic equilibrium

The three semicircular canals are mutually orthogonal 
to make available signals from each degree-of-freedom. 
Two chambers connect to the canals, called the utricle 
and saccule. Static equilibrium is sensed in regions of 
the chambers, while dynamic equilibrium is sensed at the 
cristae located at the ends of the semicircular canals.

The macula in the utricle and saccule (inner ear chambers) 
serve to provide static equilibrium signals. Hair cells and 
supporting cells in the macula have stereocilia and kinocil-
ium extending into a gelatinous layer supporting otoliths 
(oto ear, lithos stone). The otoliths are made of dense 
calcium carbonate crystals that move across gelatinous 
layer in response to differential gravitational forces caused 
by changes in head position. The movement stimulates 
the hair cells that provide static equilibrium signals to the 
vestibular cochlear nerve. (The vestibular branch contains 
signals from the semicircular canals and the utricle and 
saccule chambers, while the cochlear branch contains 
signals from the cochlea).

https://www.nidcd.nih.gov/sites/default/files/Documents/health/hearing/AgeRelatedHearingLoss.pdf
https://www.nidcd.nih.gov/sites/default/files/Documents/health/hearing/AgeRelatedHearingLoss.pdf
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The cristae located in the ends of each semicircular canal 
serve to provide dynamic equilibrium signals. Head move-
ments cause endolymph to flow over gelatinous material 
called the cupula. When each cupula moves it stimulates 
hair cells comprising the ampullar nerve at the end of each 
of the semicircular canals. These signals eventually cause 
muscular contractions that help to maintain body balance 
in new positions.

Time-to-frequency transformation in the cochlea

Sound vibrations from the external environment strike the 
eardrum, causing a chain reaction through the middle-ear 
ossicles that transforms the air vibrations into fluid 
vibrations in the basilar membrane of the cochlea. As 
shown in Figure 4.1.6–2, if the basilar membrane (inside 
the cochlea) were uncoiled and straightened out, it would 
measure about 33 mm long, and 0.1 mm (100 microns) 
wide at the round window end and 0.5 mm (500 microns) 
wide at the other end [Smith08]:

0.1mm              0.5mm

 33mm

 Round         Apex end of 
Window             cochlea

Figure 4.1.6–2. Typical Basilar  
Membrane Dimensions.

The vertical and horizontal dimensions are  
scaled differently.

The basilar membrane is stiffer at the round window end 
and looser at the apex. This causes the wave propagation 
velocity to slow down as it travels down the basilar mem-
brane. Depending on the initial frequency of the wave, this 
variable velocity behavior will cause a maximum resonant 
distortion along the path from the round window to the 
apex. The basilar membrane is quite complicated and in-
cludes sensitive inner and outer hair cell neurons that will 
respond to deformations of the basilar membrane at the 
location of each neuron. The hair cell neurons are located 
along the entire pathway so that the frequency content of 
the sound can be determined from the spatial location of 
the neurons that are firing. Thus, the basilar membrane 
performs a mechanical Fourier Transform on the incoming 
sound energy and the spatially-distributed neurons sample 
that signal spectrum.

It was mentioned (Chapter 2) that sensory receptors 
adjacent to each other in the peripheral sensory system 
(such as the auditory system) will eventually fire neurons 
adjacent to each other in the auditory cortex. The relevant 
signal characteristic of adjacent neurons in the auditory 
sensor, namely the hair cell neurons adjacent to each other 
in the basilar membrane, correspond to adjacent frequency 
components in the input sound. This tonotopic map of the 
neurons of the basilar membrane is reconstructed in the 
auditory cortex as well. So, frequency cues are provided 
by which neurons are firing. 

Data sampling rates and coarse coding

The rate of neuronal firing in the cochlea encodes the 
mechanical distortion of the basilar membrane, which 
is a direct consequence of the sound energy level of the 
source. This design is quite remarkable when considering 
the firing rate of neurons being a maximum of around 1 to 
2 ms. Nyquist sampling criteria states that a 1ms sampling 
(1 kHz) of a signal can only encode information up to 500 
Hz, yet human hearing can discern frequencies well above 
10 kHz. Each neuron can only fire at a rate much less than 
the Nyquist criterion, but there are many neurons firing si-
multaneously, so the aggregate sampling rate is much more 
than that required to sample a signal whose bandwidth is 
that of the typical human hearing range (up to 20 kHz). 

The firing rate of neurons in the cochlea (basilar mem-
brane) encodes sound intensity information, and not the 
sound frequency content. The frequency is coarsely-coded: 
Each neuron has roughly a gaussian frequency response, 
responding to around 10% to 20% of its peak frequency 
response. An adjacent neuron would have a slightly dif-
ferent peak frequency response. If both neurons are firing 
at the same rate, then the frequency would be the value in 
between their responses. If one is slightly higher than the 
other, then the frequency component would be closer to its 
peak response. With only two broadly overlapping gauss-
ian-like frequency responses, a very specific frequency 
could be extracted with precision far beyond what either 
neuron could provide. 

This is yet another example of coarse coding. In the vision 
system we observe 4 photoreceptor types whose spectral 
response curves broadly overlap, yet due to the complex 
post-processing of highly interconnected neuronal tissue, 
millions of combinations of color, tone, and shade can 
typically be discerned. Similarly, the auditory mechano-
receptors are sensitive to frequencies in a 10–20% band 
around a peak, yet we can discern more specific  
frequencies at a much higher resolution. 
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Figure 4.1.6–3 shows a Matlab-generated plot of three 
Gaussian curves centered at 1.0 KHz, 1.1 KHz, and 1.2 
KHz. For a monotone input somewhere between 0.9 KHz 
and 1.3 KHz would stimulate all three neurons. Keep in 
mind that the intensity of each neuron response concerns 
the intensity of the sound, so a moderate response from 
one neuron could be a weak signal at its peak frequency 
response, or a stronger signal at a slightly different fre-
quency. For the neuron whose peak response is 1.0KHz, 
the response would be about the same for a signal at  
1.0 KHz, or a 850 Hz signal at twice the strength (where 
the normalized response is about 0.5), or a 800 Hz signal 
at 4 times the strength (where the response is about 0.25). 
A single neuron cannot use its response for very accurate 
frequency detection.
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Figure 4.1.6–3. Gaussian curves representing 
notional auditory neuron responses.

Each neuron will respond to a given input frequency 
between 900 and 1300 Hz. The specific combination of the 
responses gives a specific frequency. A single neuron can 

only give a range of possible frequencies. 

It is therefore the relative responses of adjacent neurons 
(that are spatially located along the basilar membrane) that 
provides the frequency queues. The following example 
and exercise are intended to simply illustrate the improved 
frequency resolution that is obtained by comparing the 
responses of adjacent auditory neurons. 

Example 4.1.6-1

Assume three auditory neurons have gaussian responses 
around peak frequencies of 2.0 KHz, 2.1 KHz, and 2.2 
KHz like those shown in Figure 4.1.6–3. Assume the three 
gaussian responses have the same variance but these three 
different peak values. Give an estimate (or a range) for 
three separate inputs given that the normalized neuron 
output is measured as

          2.0 KHz         2.1 KHz             2.2 KHz 
           Neuron          Neuron          Neuron

Input_1  0.2  0.8  0.2
Input_2  0.4  0.9  0.1
Input_3  0.1  0.9  0.4

Solution:

For this problem we are not concerned with the signifi-
cance of one particular response value, but instead how 
the response values compare to those of adjacent neurons. 
Conveniently the 2.1 KHz Neuron give the strongest 
response to all three inputs, so the tone would be at least 
close to 2.1 KHz. Notice for Input_1 that the response to 
both adjacent neurons is the same (0.2). Since all three 
curves have the same variance and due to symmetry of 
Gaussian curves the only possible frequency giving this 
set of responses would be one at exactly 2.1 KHz.

The input frequency Input_2 would be closer to 2.1 KHz 
than 2.0 KHz or 2.2 KHz, but since the response of the 2.0 
KHz Neuron is greater than that of the 2.2 KHz Neuron 
the input would be closer to 2.0 KHz than 2.2 KHz, so 
something less than 2.1 KHz. If the input frequency were 
the midpoint 2.05 KHz then we would expect the response 
values for both the 2.0 KHz Neuron and the 2.1 KHz neu-
ron to be the same, but that is not the case. So, the Input_2 
frequency should be greater than 2.05 KHz but less than 
2.1 KHz, or in the range of about 2.06 KHz to 2.09 KHz.

The input frequency Input_3 would be closer to 2.1 KHz 
than 2.0 KHz or 2.2 KHz, but in this case the response of 
the 2.2 KHz Neuron is greater than that of the 2.0 KHz 
Neuron, so the input would be closer to 2.2 KHz than 2.0 
KHz, so something greater than 2.1 KHz. In this case if 
the input frequency were the midpoint 2.15 KHz then we 
would expect the response values for both the 2.1 KHz 
Neuron and the 2.2 KHz neuron to be the same, but once 
again that is not the case. So, the Input_2 frequency should 
be greater than 2.1 KHz but less than 2.15 KHz, or in the 
range of about 2.11 KHz to 2.14 KHz.
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The following give a summary of our estimates for the 
tonal input frequencies:

      2.0 KHz   2.1 KHz  2.2 KHz     Estimated tonal 
      Neuron     Neuron    Neuron    frequency (KHz)

Input_1          0.2 0.8 0.2         f  ≈ 2.1 KHz 

Input_2          0.4 0.9 0.1   ~ 2.06 ≤ f ≤ 2.09

Input_3          0.1 0.9 0.4    ~ 2.11 ≤ f ≤ 2.14          

Exercise 4.1.6–1

Assume four auditory neurons have gaussian responses 
around peak frequencies of 3.0 KHz, 3.1 KHz,  3.2 KHz, 
and 3.3 KHz like those shown in Figure 4.1.2–5. Assume 
the four gaussian responses have the same variance but 
these four different peak values. Give an estimate (or a 
range) for three separate inputs given that the normalized 
neuron output is measured as

         3.0 KHz 3.1 KHz 3.2 KHz  3.3 KHz 
   Neuron   Neuron   Neuron   Neuron

Input_1  0.1  0.8   0.8  0.1
Input_2  0.4  0.9   0.8  0.2
Input_3  0.7  0.4   0.2  0.1

Answers:

Input_1:  f ≈ 3.15 KHz,  
Input_2:  ~ 3.11 ≤ f ≤ 3.14 KHz, and  
Input_3:  f ≤ 3.0 KHz■

4.2  Applications inspired by natural  
mechano-sensory Systems

There are many potential applications for mechano-senso-
ry systems. As can be seen from the example applications 
that follow, there are numerous natural paradigms to con-
sider for the inspiration of novel design ideas. For example, 
barn owls, crickets, bats, dolphins, and primate cochlea 
represent a sample of designs accomplished by attempting 
to demonstrate or build mechano-sensory systems based 
on biological inspiration. There are also many useful 
applications resulting in a divergence from bio-mimicry, 
such as transforming photonic energy into sound energy 
and allowing the organism (blind person) the opportunity 
to learn how to see based on stimulated auditory cues.

4.2.1 Auditory Pathway of the Barn Owl [Lazz90] 

The barn owl localizes its prey by using timing delays 
between the two ears for determining azimuth (angle from 
directly forward) and intensity variations to determine el-
evation (angle from the horizon) with respect to itself. The 
result is a conformal mapping onto the inferior colliculus 
(IC) of sound events in auditory space. Each sound source 
is mapped to a specific location in the IC representing 
azimuth and elevation with respect to itself [Lazz90]. 

The auditory signals from the cochlea divide into two 
primary pathways that eventually meet in the IC. The first 
is the intensity pathway and passes through the nucleus 
angularis (NA), encoding elevation information. This is 
possible in part due to sound absorption variations caused 
by feather patterns on the face and neck. The second is the 
time-coding pathway and passes through the nucleus mag-

Figure 4.2.1–1.  
Information Pathways  

in the Barn Owl.
Sensory pathway for intensity 
cues is more direct than that 

for timing cues since the delay 
from the opposite-side  

stimulus is used. 
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nocellularis (NM) onto the nucleus laminaris (NL) where 
it meets the corresponding signals from the time-coding 
pathway from the opposite side.

Figure 4.2.1–1 represents the two information pathways 
leading to the IC. The details of the IC are spared to focus 
more on the pathway structure. Figure 4.2.1–2 shows a 
notional concept for coincidence detection in the timing 
circuits of the NL. As drawn, the spatial location of 
the output signals represents the same spatial direction 
(azimuth or heading) of the originating sound source.

Assume the total time it takes sound to travel the distance 
from one ear to the other is divided into 8 time delays, 
each denoted at Δt, as shown in the model (Figure 4.2.1–2). 
A stimulus on the immediate left side of the owl (left side 
of Figure 4.2.1–2) would travel through the bottom row of 
delays before the right side received the stimulus, therefore 

resulting in a correlation on the left side. Similarly, a 
stimulus on the immediate right side of the owl will result 
in a correlation on the right side of the model. Stimuli in 
between immediate left or right would result in a correla-
tion somewhere in between these two extremes.

Time-coding Auditory System

The time-coding architecture of the barn owl is im-
plemented in the silicon auditory localization circuit 
[Lazz90] as shown in Figure 4.2.1–3. Sound enters the 
system from the left and right ears into respective silicon 
cochlea described in the previous section. From there 62 
equally-spaced taps (representing the basilar membrane 
neurons in natural cochlea) encode the spectral signa-
ture at each side. Each tap feeds a hair-cell circuit that 
performs half-wave rectification, nonlinear compression, 
and action potential generation. The action potentials in 

Figure 4.2.1–2. Model of Time-coding in Nucleus Laminaris in the Barn Owl.
 Due to delay elements correlations will occur at different stimulus locations.

Figure 4.2.1–3. Time-Coding Auditory System Mimics Barn Owl System [LAZZ90].
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Figure 4.2.1–4. Details of Silicon Barn Owl Hair Cell Circuit of Figure 4.2.1-3 [LAZZ90].

the silicon version are fixed-width fixed-height pulses. As 
in natural neurons, the frequency of the action potential 
pulses represents the intensity, and the timing preserves 
the temporal characteristics of the signal.

The details of the hair-cell circuits are shown in Figure 
4.2.1–4. The half-wave rectifier and nonlinear compression 
simulate the inner hair cells and the action-potential 
generator simulates the natural spiral ganglion cells that 
take signals from the cochlea in owls, primates, and other 
species. For the barn owl, these circuits feed the NL-model 
delay lines like the ones modeled in Figure 4.2.1–2.

4.2.2 Robotic Implementation of Cricket  
Phonotaxis [Webb01, Webb02] 

Cricket Phonotaxis

The male cricket gives a mating call to attract female 
crickets, and a female can find a specific male using 
phonotaxis, which means movement in response to sound 
stimulus. In the presence of other noises, the female uses 
these auditory cues to cover 10 to 20 meters through veg-
etation and terrain and around obstacles to find the calling 
male. Phonotaxis is typically seen as a series of start-stop 
movements with corrective turns. 

The “cricket robot” implementing phonotaxis in this 
example can be modeled as first recognizing the correct 
song, and then moving toward the source. Each species 
has a specific sound characterized by a carrier frequency 
and a temporal repetition structure. A typical pattern is 
a ten to thirty second syllable of a pure tone (around 4–5 
kHz) grouped in distinctive patterns, or chirps. A primary 
cue serving to discriminate between species is the syllable 
repetition interval in the song. The correct recognition 
of this conspecific (same species) song is required before 
migration toward the source.

The cricket does not use time-delay signals between two 
ears as mammals do nor can it detect phase of the incoming 
signal. The geometry of the anatomical structure com-
pensates for this inability and gives the cricket the same 
capability without the complex circuitry. It has an eardrum 
on each leg connected by an air-filled tracheal tube and 
two additional openings on the cricket body. Sound reaches 
each eardrum in two primary paths: one is direct, striking 

the eardrum on the same side of the cricket as the sound, 
and the other is indirect, coming from the opposite side of 
the cricket body. Since these acoustical vibrations are on 
opposite sides of the eardrum, their effect generally cancels. 
However, there is a delay due to a longer path-length as 
well as a delay due to the tracheal tube properties. These 
delays cause phase differences between the opposing 
acoustic signals so that the amplitudes do not cancel. 

Robotic Implementation

The robotic model of cricket phonotaxis includes a 
programmable electronic sound source for modeling the 
cricket call, and a neural network modeling the dynamics 
of cell membrane potentials. The neural network model 
is not a generic architecture, but a specific architecture 
designed to mimic the neuronal structure of the cricket 
more closely:

“The architectures represent neural processes at ap-
propriate levels of detail rather than using standard 
artificial neural net abstractions. Individual neuron 
properties and identified connectivity are included, 
rather than training methods being applied to generic 
architectures.” [p. 3, Webb01]

The robot is a modification of an existing miniature robot 
(Khepera, “K-team 1994”) that is 6 cm in diameter and 4 
cm high. It was chosen as it is closer to cricket size than 
other available robots, although this size is still much more 
massive than a cricket. A modification for ears added 
another 6 cm in height. The robot has 2 drive wheels and 2 
castors and is programmed in C on a 68332 processor. Due 
to processor speed limitations, the neuronal model had to 
be revised (simplified) to run real time. This is a common 
theme in biomimetic systems: Although conventional 
processors are 5 or 6 orders of magnitude faster than 
biological neurons, we still must make sacrifices in compu-
tations to achieve any semblance of real-time biomimicry.

Figure 4.2.2–1 shows the simulated neuronal interconnects 
for the cricket robot. The separation between the micro-
phone ears can be varied but is set at one-quarter of the 
mimicked species carrier frequency. Another one-quarter 
period delay is programmed into the inhibitory connection 
to simulate the delay in the tracheal tube. The inverter 
(gain of –1) simulates the opposing effects of the direct 
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and indirect pathways striking the eardrum on opposite 
sides. In real crickets, the auditory neuron sends signals 
to the brain, where the connectivity and functionality 
are still not yet understood. The robotic model includes 
membrane potentials that result in action potential (spike) 
signal generation, but the reduction to four simple neurons 
was done in the robotic implementation in part to keep the 
simulation operating in real-time.

Figure 4.2.2–1. Webb’s Neuronal Phonotaxis 
Model in Cricket Robot. [Webb01]

Microphone ear separation variable, set to a default of ¼ 
wavelength; indirect inhibitory (gain of –1) pathway with 

programmable delay (z-1), also set to a default of  
¼ wavelength.

Each time a motor neuron in Figure 4.2.2–1 results in 
an action potential, the robot moves incrementally in 
that direction. The auditory neurons fire (send action 
potentials) when the threshold for firing is exceeded. All 
neurons exhibit leaky integration so that stray noises will 
not result in action potentials. A constant input stronger 
than the signal being leaked out must be sustained in order 
to bring the neuron to firing an action potential. However, 
the auditory neurons rapidly fire once initiated. This is 
modeled by returning the membrane potential closer to the 
threshold (-55 mV typ.) after an action potential instead of 
returning to the resting potential (-70 mV typ.)

The calling frequency is 4.7 kHz to match a specific 
species, the Gryllas bimaculatus. The robot microphones 
were placed 18 mm apart, which is a quarter wavelength of 
the 4.7 kHz calling frequency. An additional one-quarter 
period delay is also programmed into the circuitry as a 53 
us delay. When a signal is received from a right angle to the 
heading, then the combined delays would add to one-half 
wavelength, which, when inverted, would combine with 
the direct signal to give a maximum signal for the motor 
neuron to turn the robot toward the sound. The opposite 
motor neuron would receive the direct signal and inverted 
indirect signal at the same time, thus canceling. When 
directly in front of the robot, the same signal would be 
received at both motor neurons so that the left-right turning 
would cancel, and the robot would continue straight.

Results and discussion [Webb01]

The ¼-wavelength physical ear separation and the ¼-wave-
length programmable delay for a 4.7 kHz carrier proved to 
mimic biological observation. Experimental results showed 
that the robot migrated toward a 4.7 kHz signal more 
strongly than a 2.35 kHz signal and would ignore a 9.4 
kHz signal. It would also move toward the 4.7 kHz signal 
when played simultaneously with a 6.7 kHz signal.

By tuning the time constants, the response could be made 
selective for a bandpass of syllable rates. In one example, 
the robot responded to changes in signal direction when 
the syllables were 20 to 30 ms long but would not respond 
for shorter or longer syllables. The programmability built 
into this cricket robot will allow further study into the 
alternate hypotheses of how crickets and other animal 
species perform phonotaxis. The system will also allow 
for further study into non-phonotaxis capabilities of such a 
sensorimotor system.

Although the four-neuron model does not mimic the 
complexity of the cricket brain, it does demonstrate a 
minimal configuration for accomplishing basic phonotaxis 
functions, such as tracking of sound sources, selectivity for 
specific frequencies, selectivity for syllable rates, tracking 
behavior without directional input, and tracking behavior 
in the presence of other sound sources.

4.2.3 Mead/Lyon Silicon Cochlea [Lyon89]

The Mead/Lyon [Lyon89] Silicon Cochlea is a transmis-
sion line of second-order amplifier circuits illustrated in 
Figure 4.2.3–1. First order stages are simple circuits such 
as differentiators or integrators, whose step responses are 
typically an exponential response toward a steady-state 
condition. The second-order stages provide sinusoidal re-
sponse characteristics to step responses that will provide a 
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peak response at a resonant frequency. In the initial silicon 
cochlea circuit, there were 100 second-order circuits with 
10 voltage taps evenly spaced along the design.

Each second-order circuit is composed of three op-amps 
and two capacitors configured as cascaded follower-in-
tegrator circuits with a feedback amplifier providing 
oscillatory responses. The transconductance of the feed-
back amplifier is controlled by an external bias voltage. 
For low feedback transconductance, the circuit behaves as 
a two-stage follower-integrator, which follows the input 
voltage. As the feedback transconductance is increased, 
positive feedback causes the second integrator-follower to 
leap ahead slightly and oscillate to a steady state value. If 
the transconductance is set too high, the circuit oscillates 
out of control (goes unstable).

Once appropriately calibrated (tuned), the peak response 
of each second-order circuit is a function of the input 
frequency. Since each stage inherently adds a smoothing 
effect, the individual frequencies of the input voltage 
signals will have a peak response somewhere along the 
100-stage circuit. As in natural cochlea, the spatial distri-
bution of the voltage taps provides a sample of the Fourier 
representation of the input voltage signal. However, in 
natural cochlea the mechanical design of the basilar 
membrane provides physical peak deflections (correspond-
ing to signal frequency components present in the input 
signal) while this design models the mechanical cochlear 
structure with a bank of 2nd order electronics filters.

Figure 4.3–1. Silicon Cochlea is delay line of 2nd 
order circuits. [Lyon89]

4.2.4 MEMS-based electronic cochlea [Andr01] 

An example of a Micro-electromechanical system 
(MEMS) approach to a silicon electronic cochlea is 
described in [Andr01]. MEMS allows for mechanical 
distortion due to the incident sound energy to change 
the distance between two polysilicon plates that are 
implemented as a capacitor. This design concept includes a 
MEMS-based acoustic pressure gradient sensor and filter 
bank that decomposes incident acoustical energy into its 
wavelet components. The pressure transducer is a conven-
tional MEMS polysilicon diaphragm suspended in air over 

polysilicon backplate. Inspired by mechanically-coupled 
acoustic sensory organs of the parasitoid fly, the trans-
ducers are connected by a first-layer polysilicon beam, 
allowing for pressure gradient measurement. As acoustical 
energy strikes the external plate, the plate is distorted 
toward the backplate, reducing the air distance separating 
the two plates. This causes a decrease in the capacitance in 
response to acoustic pressure. The MEMS silicon cochlea 
implementation is composed of MEMS filter banks that 
allow for a real-time wavelet decomposition of the received 
acoustical energy. 

The advantages of the MEMS-based approach over analog 
VLSI approach is a lower power requirement as the 
physical energy of the sound waves is doing some of the 
work of the VLSI transconductance amplifiers. Also, since 
the MEMS-based approach more closely resembles natural 
systems there is a more direct correlation with system 
response to input acoustical energy.

Another application of MEMS technology for biomimetic 
robots include cantilever microswitches to model antenna 
behavior and provide water-flow sensors. These MEMS-
based sensors are being used to model lobster and scorpion 
behaviors on underwater robotic vehicles [McGr02].

4.2.5 “See-Hear” design for the blind by retraining 
auditory system [Mead89] 

The “See-Hear” concept is intended to help a blind person 
“see” by hearing different sounds based on objects visible 
in a head-mounted camera system [Mead89, Ch 13]. 
Successful implementation requires transforming visual 
signals into acoustic signals so that users can create a 
model of the visual world with their auditory system.

Both vision and auditory systems have receptive fields rep-
resenting data distributions within the local environment. 
The vision system maps light emissions and reflections 
from 3D objects onto the 2D photoreceptor mosaic in the 
retina, whose conformal mapping onto the brain is called 
the retinotopic map. Similarly, the auditory system takes 
frequency components of local sound energy and maps a 
spectrum onto the basilar membrane in the cochlea and 
subsequently (via cochlear nerve) to a conformal map on 
the brain called the tonotopic map. 

Both vision and auditory systems are concerned with 
detecting transient events. The vision system detects 
motion by taking time-space derivatives of the light 
intensity distribution. Transients help to localize events in 
both space and time, and the brain constructs a 3D model 
of the world using motion parallax, which is the apparent 
object motion against the background caused by observer 
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motion. If an observer is focused on a point at infinity and 
moves slowly, then nearby objects appear to move rapidly 
against the infinite background, while objects farther away 
appear to move more slowly. Transient sounds are also 
easily detected and localized in the auditory system.

The vision and auditory systems differ in how the periph-
eral information is processed:

“In vision, location of a pixel in a 2D array of neu-
rons in the retina corresponds to location of objects 
in a 2D projection of the visual scene. The location 
information is preserved through parallel channels 
by retinotopic mapping. The auditory system, in 
contrast, has only two input channels; location infor-
mation is encoded in the temporal patterns of signals 
in the two cochleae. These temporal patterns provide 
the cues that the higher auditory centers use to build 
a 2D representation of the acoustic environment, 
similar to the visual one, in which the position of a 
neuron corresponds to the location of the stimulus 
that it detects.” [Mead89]

The key biological vision concepts exploited in the See-
Hear chip include [Mead 89]:

- Logarithm of light intensity collected at the photo-
receptor; using a logarithmic function expands the 
available dynamic range as compared to a linear 
function.

- The spatial orientation of light sources (which includes 
reflected light) is preserved from the photoreceptor 
mosaic through the retinotopic map

- Depth cues required for mental reconstruction of 3D 
space are provided by time-derivative signals of the 
light intensity profile

The key auditory cues for sound localization include:

- Time delay (350–650 microseconds) between ears, 
providing horizontal placement cue

- Acoustic high-frequency attenuation, providing 
further horizontal placement cue

- Direct and indirect pathways in the outer ear causing 
a destructive interference pattern that is a function of 
elevation, thus providing a vertical placement cue

As in a natural vision system, the See-Hear system accepts 
photonic energy through a lens and focuses the energy 
onto a 2D array of pixel. (A pixel is simply a picture 
element). Each pixel value represents the light coming 
from a specific direction in the 3D world. The See-Hear 
chip includes local processing at each pixel location. 

Each pixel processor responds to the time-derivative 
of the logarithm of the incident light intensity. The 
incoming photons of light enter the depletion region of 
a bipolar junction phototransistor creating electron-hole 
pairs in quantities proportional to the light intensity. Two 
diode-connected MOS transistors connected to the emitter 
cause a voltage drop in response to the logarithm of the 
light intensity. A MOS transconductance amplifier with 
nonlinear feedback provides a time-derivative output 
signal of the pixel processor. Each pixel processor is 
capacitor-coupled to adjacent pixels so that each pixel 
processor act as a delay line. 

Time-derivative signals propagate in two directions in the 
electronic cochlea circuit, which results in a mimicry of 
the time delays between the left and right ears. As seen 
in Figure 4.2.5–1 a transient event in the left visual field 
will result in sound on the left side before sound on the 
right side, which mimics the behavior of sound events 
in auditory systems. The time delay circuit also filters 
higher frequencies, so that longer delays result in more 
attenuation of higher frequencies. This feature therefore 
models the binaural head-shadow, which is the attenuation 
of high frequencies as the sound travels around the head. 
The combined effect of delayed signals and high-frequency 
attenuation of the delay channels serves to combine both 
natural horizontal localization cues into one circuit.

Since each pixel processor circuit in the electronic 
cochlea contains its own photoreceptor circuit, multiple 
sound sources are processed as a superposition of the 
individual sources. To model the elevation inputs from 
the pinna-tragus pathway differences, the see-hear chip 
contains an additional delay circuit at each end. The 2D 
image is focused on a 2D array of pixel processors, and the 
output of each horizontal row is added to a delayed version 
of itself to model the mixing of the pathways relevant to 
the elevation of the objects in the image. In this way, the 
outputs of each row are all summed together to create only 
two separate sound signals, one for each ear. If two of the 
same objects were at different elevations within the image, 
the different pinna-tragus pathway delays at the end of 
their respective rows will provide the user with an audible 
queue as to where (in elevation) the object is located. 

The user can ultimately learn how to hear a 3D model of 
the external environment based on what is visually cap-
tured with the camera system.
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4.2.6 A biomimetic sonar system [Reese94]

A “Biologic Active Sonar System (BASS)” based on echo 
processing of bats and dolphins was designed to detect 
and classify mines in shallow water [Reese94]. Front-
end filters and nonlinear functions emulating auditory 
neuronal models were used to obtain high resolution with 
low frequency sonars (which is another example of coarse 
coding in natural systems). The intended product of this 
research is a system implementation into an autonomous 
underwater vehicle.

Figure 4.2.6–1 shows the block diagram of the BASS pro-
cessing stages. The band-pass filters (BPF’s) have sharp 
roll-off characteristics at high frequencies and are broad-
band, overlapping other channels significantly (coarse 
coding). This is inspired by natural peripheral auditory 
processing and provides good time/frequency definition 

of the signal as well as increases in-band signal-to-noise  
ratio (SNR).

As in the vision system, the automatic gain control 
(AGC) allows for covering a much wider dynamic range, 
which is based on integrate-to-threshold behavior of 
auditory signals. This sharpens signal onset time, which 
translates to sharpening range resolution. The half-wave 
rectifier and sigmoid function is inherent in mammalian 
auditory processing and serves to sharpen the onset-time 
and range resolution.

Peak summing and delay provide in-band coherent 
addition and inter-band signal alignment. This mimics 
natural biological phase-locked loops and provides pulse 
compression. The anticipated benefits of such a wide-band 
low frequency design is longer detection ranges and better 
target recognition of partially buried mines. 

Figure 4.2.5–1. Aural left-right arrival time mimicry in  
electronic cochlea.

This figure illustrates the part of the electronic which mimics the different 
arrival times of a sound wavefront due to different pathway lengths to each ear. 
Each block represents a uniform time-delay circuit and photodetector circuit. 

Each row in the figure represents the same row at a later unit of time.

Figure 4.2.6–1. Biologically-inspired sonar system.
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Chapter 4 Questions

1.   What is the most basic sense?

2.   Why is this sense necessary for the most primitive 
life-forms?

3.   How are stretch-sensitive mechanosensory designs 
fundamentally different from photosensory and  
chemosensory mechanisms? 

4.   What is kinesthesia?

5.    Lateral inhibition is a form of adaptation. What signal 
function does it accomplish?

6.   How is a military fighter pilot like the green lacewing?

7.   How is coarse coding manifested in the human  
auditory system?

8.   What are the three middle-ear ossicles, and what is 
their function?

9.    How are static and dynamic equilibrium changes 
sensed in the human auditory system?

10.  Neurons can fire at most 1kHz, or at a rate of 1ms 
between action potentials. Nyquist sampling requires 
two samples per highest-frequency wave period, which 
means that such a neuronal firing rate can only encode 
up to 500 Hz. How is it that humans can discern 
components beyond 20 times that amount (10kHz)?

11. What were some of the significant results from Webb’s 
robotic implementation of cricket phonotaxis?

12. Why is it so amazing that we must “cut corners” in 
computational processing to get our electronic models 
to simulate real-time behavior of biological sensory 
systems?

13  What are the two information pathways in the  
auditory system of the barn owl?

14. How do first-order systems, such as differentiators and 
integrators, and second-order systems differ in their 
step responses?

15. What is the basic idea behind the “See-Hear” system?

16. What advantages does the MEMS-based silicon 
cochlea have over the analog VLSI-based silicon 
cochlea?

17.  Define these terms:

 phonotaxis – 

 pitch – 

 roll –

 yaw –

 azimuth –

 elevation –

 halteres –

 dipteran –

 pixel –

 motion parallax –

 MEMS –
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Chapter 5:  
CHEMO-SENSORY SYSTEMS

5.1 Natural Chemo-sensory Systems

Natural chemo-sensory systems provide information from 
four groups of senses:

General chemical sense: All organisms display this 
sense. For humans, this sense is mediated by free 
neurons in the skin.

Olfaction: The sense of smell, generally regarded as a 
distance sense.

Gustation: The sense of taste, generally regarded as a 
contact sense. Separating olfaction and gustation is 
difficult as the cellular and molecular mechanisms 
can be the same. We could try to separate the two as 
either atmospheric or fluid medium, but this breaks 
down in describing the two senses for underwater  
life forms.

Solitary chemo-receptor cells (SCCs): Best developed 
in a few species of fish. The receptors are scattered 
in the fin surfaces and provide information on the 
presence of food or predators.

5.1.1 Chemo-sensory capability in simple life-
forms

The earliest life-forms on earth were the prokaryotes, 
which are cellular organisms with no nuclei, and the 
eukaryotes, which do have nuclei. It is believed that these 
organisms had the world to themselves for about two 
billion years. Much of our understanding of the molecular 
biology of chemo-sensitivity comes from experiments with 
contemporary bacteria called Escherichia coli, or e. coli.

Moving bacteria are propelled by flagella, which are long 
cilia- or hair-like protrusions that twist or turn in response 
to chemical stimuli. Some will rotate at around 100 Hz, 
energized by a transmembrane hydrogen ion concentration 
gradient. E. coli has 5-10 flagellum that are on either side. 
When all rotate counter-clockwise, the bacterium moves 
forward toward a chemical attractant, while when they all 
rotate clockwise, the motion is a random tumbling motion. 
With no chemical attractants, the movement is sporadic 

and random; with attractant present, the motion is the 
same except there is less tumbling when moving toward 
the source. The overall motion is a migration toward the 
source of chemical attractant.

Deep study into certain internal chemosensory system 
mechanisms will quickly merge into endocrinology 
(internal secretions) and biochemistry. The olfaction 
and gustation systems, however, are driven by chemical 
information external to the organism. Our interest is 
more on these exteroceptor sensory systems than on the 
interoreceptor sensory driven systems [Smith08].-

5.1.2 Gustation in insects

Chemo-sensory receptors in insects are frequently 
multi-modal, serving as both a mechano-sensory receptor 
and a chemo-sensory receptor. The multi-modal sensilla 
(hairs) protrude from the outer cuticle (shell) with a 
terminal pore at the tips of the sensilla. Chemicals can 
enter the pores and travel to the nearby dendritic inputs. 
Bio-chemical chain reactions result from the combinations 
of certain chemicals with the nerve endings. These same 
sensilla would also have another neuron sensitive to the 
mechanical distortions on the sensilla caused by fluid 
movement or direct contact or pressure [Smith08].

5.1.3 Gustation in mammals

There are six basic taste qualities [Smith08]:

 sweetness

 saltiness

 sourness

 bitterness

 umami

 water

The first four are in the order of taste receptor cells (TRCs) 
in the human tongue from the tip and working back. 
Umami is a Japanese word for the taste of monosodium 



Chapter 5  | 71  

glutamate, a crystalline salt used for seasoning foods 
(C5H8O4NaN). Gustatory receptors in mammals are 
grouped into taste buds, which are located on projections 
called papillae. Four types of papillae include 

filiform – contains no taste buds; serves to give tongue 
abrasive character (as in cats)

fungiform – resemble mushrooms; located on front 
and edges of the tongue; visible red spots sensitive 
to sweetness and saltiness; buried in the surface 
epithelium

foliate – located in folds at the rear of the tongue; 
sensitive to sourness or acidity

circumvallate – sunken in moat or trench; sensitive to 
sourness or bitterness

From the tip of the tongue to the back, the primary quali-
ties that stimulate the taste buds are in this order:

1) sweetness, 2) saltiness, 3) sourness, and 4) bitterness. 
Taste Receptor Cells (TRCs) typically have dendrites to 
multiple taste buds. Similarly, each taste bud may provide 
input to multiple TRCs. New nerve endings “search out” 
new synaptic contacts as taste buds are turned over. Thus, 
there is a complex connection scheme of taste buds to 
associated TRCs. There is ongoing debate as to whether 
the brain recognizes different tastes by specific fiber 
activity or by a pattern of activity across the population of 
fibers [Smith08].

5.1.4 Olfaction in insects

Insect hygro-receptors, which detect humidity, are classed 
as olfactory (distant receptors) as there is no opening 
for direct contact to the environment. These sensilla are 
typically short pegs within a cuticular cavity. Humidity 
causes sufficient mechanical distortion for receptor 
signaling, which would explain why they are set within a 
cuticular cavity: normal contact with the environment will 
not falsely send a humidity signal.

Hygro-receptors have been detected on the antennas of 
all insects that have been carefully examined. Although 
present in all these species, they are typically very sparse 
among other sensilla. For example, on the cockroach, 
about one in every 500 sensilla is a hygro-receptor. 
Hygro-receptor neurons share the same sensilla with other 
hygro-receptor neurons and with thermo-receptor neurons.

Insect olfactory sensilla are typically multi-porous, allow-
ing extra opportunity for the detection of a semiochemical, 
which is a chemical stimulant, or pheromone, with carries 
a specific meaning, such as a mating opportunity, danger, 

trail, aggregation, or dispersal. Social insects rely on trails 
and patches of semiochemicals. The detection of the sex 
pheromone is the most effective, which makes sense con-
sidering the importance of reproduction to survival. A male 
silkworm moth can detect a single molecule of the female 
pheromone. A single antenna consists of many branches, 
each having many sensilla. Each antenna has about 17,000 
sensilla that are each 100 microns long and 2 microns in 
diameter. The large number of sensilla effectively amplify 
the detection of faint odors in windy conditions. 

Olfaction begins with a chemical binding of the attractant 
molecule to an odorant-binding or pheromone-binding 
protein. There is increasing evidence that the subsequent 
biochemistry involving G-Protein membrane signaling 
is the same as found in vertebrate olfactory systems. 
This suggests a common process that has been developed 
throughout the animal kingdom [Smith08]. 

Rheotaxis and Anemotaxis

Insects such as moths use odor-gated anemotaxis, which 
means the insect moves in response to odorants present 
in the air currents. The moth’s flight path is modulated by 
odor concentrations. One simple strategy for anemotaxis 
is demonstrated by the male moth moving toward an 
attractant released by the female moth. When an attractant 
is detected, male moth flies upwind, and when the  
odorant plume is lost, it zig-zags across wind, increasing  
distances. If the male moth detects the attractant again,  
it simply flies upwind. 

Lobsters move there antennas back and forth to detect a 
source of food underwater. However, lobsters do not use 
rheotaxis, which is basically underwater anemotaxis, since 
the underwater currents are far too turbulent for that to work. 

Their irregular and variable tracks to source and increased 
speed in middle of track suggests lobsters (and other 
marine animals) are steered toward plume sources by 
odor patches, not odor-stimulated up-current movements 
like the moth. An interesting description is provided by 
[Consi94]: “Lobsters smell via paired antennules, small 
antennae positioned medially to the large antennae. Each 
antennule contains an array of thousands of sensory cells 
arranged in a tuft of hairs. The antennules can act as 
discrete time sampling sensors: under conditions of low 
flow they periodically ‘flick’, ejecting a parcel of water and 
allowing a new packet to enter the tuft of sensory hairs for 
a new measurement.” 



 Chapter 572 |

5.1.5 Olfaction in mammals and other vertebrates

Fish make incredible use of the sense of olfaction. Sharks 
and dogfish can detect blood and other body fluids from 
long distances. Salmon can use their olfactory sense to 
return to their spawning ground by tracing faint chemicals 
unique to their place of birth.

Receptor field mapping is obvious in the visual, auditory, 
somatosensory, and (to a lesser extent) the gustatory 
systems. Olfactory systems do not exhibit a receptive-field 
mapping corresponding to spatial location of the external 
environment. It does appear that there are three or four 
expression zones, where each zone represents each of the 
various types of molecular stimulants.

Individual olfactory receptor cells (ORC’s) are tightly 
embedded between supporting olfactory epithelium cells, 
with up to 20 cilia that detect stimulants and transmitting 
action potentials to the next layer of cells, the mitral cells. 
Photoreceptors in the vision system are also embedded 
between epithelium cells, but photoreceptors transform 
photonic flux into graded (analog) signals for processing 
by the next layers in the retina instead of action potentials.  
There is a convergence of about 1000 ORC’s to one mitral 
cell, and about 25 mitral cells to form one glomerulus. 
All 25000 or so ORC’s (in the rabbit) that converge to 
a glomerulus are specialized to detect one (or similar) 
odorant molecule, so that each glomerulus responds to one 
specific odor type [Smith 00].

5.1.6 Similarities in vision and olfactory systems: 
the retina and the olfactory bulb

The table at right is a summary 
of some similarities between the 
preprocessing stages in the verte-
brate vision and olfactory systems. 
In both the retinal and the olfac-
tory bulb there are two layers of 
cells connected orthogonal to the 
direction of information flow that 
mediate or inhibit the forward flow. 
This mediation serves to accent 
the locations of stimuli within the 
receptor layer and minimize the 
signal energy propagated to the 
deeper neuronal processing layers 
in the brain.

5.1.7  Coarse-coding in vision and chemo- 
sensory systems

There are a relatively few specialized ORC types from 
which we can discern many different smells. Specific 
odors cause specific patterns of responses to ORC types, 
so odors are analyzed by spatial maps in the central 
nervous system like the way other distant senses are 
mapped [Smith08]. A ‘model nose’ [Persaud82] is dis-
cussed later in this chapter where the authors searched 
for unique patterns of many odorants (over 20) using the 
responses of only three commercially-available sensors. 
This demonstrates coarse coding, previously defined as 
the transformation of raw data using a small number of 
broadly overlapping filters. The power of coarse coding 
is that detailed resolution can be achieved with relatively 
few broadly overlapping sensor responses. A handful of 
broadly-overlapping sensors can provide raw data for 
identifying thousands of different categories (smells, 
tastes, etc.).

Gustation (taste) sensory systems are like olfactory ones in
that there are relatively few types of receptor cells whose 
responses overlap significantly across numerous input 
types (tastes). A lot of work has gone into understanding 
psychophysics, or documenting behavioral responses to 
organism inputs, as well as microbiology for understand-
ing neuronal and other cellular responses to environmental
inputs. A significant gap in knowledge exists for explain-
ing how the individual cellular responses are combined 
and biologically processed to give the overall behavior.

 

 

VISION OLFACTION FUNCTION
Retina Olfactory Bulb Preprocess Information
Photoreceptors Olfactory Receptor Receive stimulus
(Rods and Cones) (ORCs)
(graded output) (spiked output)

Horizontal Periglomerular Mediate (Inhabit) nearby response
Bipolar Mitral/Tufted Pass on mediated signal
Amacrine Granule Further mediation (?)
Ganglion Mitral/Tufted Pass on mediated signal
100:1 1000:1 or 25000:1 Receptor signal compression
(1:2 fovea)(ORC Glom) (ORC to OT)
(400:1 periphery)
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As previously mentioned, in vision systems coarse coding 
exists in time, space, color, spatial frequency and temporal 
frequency domains, and here we find in olfactory and 
gustatory domains as well. With relatively simple (or 
low-order) filters or sensory responses biology offers a high 
degree of acuity in these sensory information domains. 
We saw that in vision systems there are essentially only 
four broadly-overlapping chromatic detector types, three 
basic temporal channels, and three basic spatial channels. 
Neurons receiving broadly-overlapping photoreceptor 
responses provide higher brain processing areas the ability 
to discern details in color, time, and spatial domains. 
Similarly, broadly-overlapping olfactory and gustatory 
receptor responses provide higher brain processing areas 
the ability to discern many distinct odors and tastes.

5.2 Applications inspired by natural  
Chemo-sensory Systems

There are many potential applications for chemo-sensory 
systems. Some of these include

- Health industry to understand our own biology
- Commercial food industry to understand sense of taste
- Commercial perfume industry to understand sense of 

smell
- Commercial pesticide/herbicide industry to understand 

insect gustation
- Governments to monitor air and water and find 

sources of pollution
- Military to trace chemical trails to hidden  

explosives, etc.

As with photo-sensory and mechano-sensory system 
applications, the rest of this chapter represents a sample 
of contributions of scientists and researchers attempting 
to demonstrate or build chemo-sensory systems based on 
biological inspiration.  

5.2.1 A model nose demonstrating discrimination 
capability [Persaud82]

This work demonstrates the coarse-coding capability of an 
olfactory system. The ORC types have different response 
levels for the basic odor components, and specific odors 
are believed to be perceived as a combination of the ORC 
type responses.

A model for an artificial olfactory system simulating 
biological ones was pursued with a focus on selecting 
odorant detectors that respond to a wide variety of chem-
ical types and combining the responses so that different 

odorants can be identified in parallel. A ratio of sensor 
responses was used to discriminate between different 
stimulating odorants. 

Gas sensors made by using n-type semiconductors is 
convenient, as the dopant and intensity of the doping could 
be adjusted to achieve a desired biomimetic ORC type. 
This would be advantageous as semiconductor technology 
is well suited to make a wide variety of n-type semicon-
ductors with very uniform responses, each representing an 
ORC type. A set of such commercially available semicon-
ductor gas sensors were used and gave specific response 
patterns for specific stimulants, but the response times 
were not as fast as natural olfactory systems. 

The model nose was completed by using three commer-
cially-available sensors from Figaro (www.figarosensor.
com), including one intended as a general purpose 
combustible gas sensor, one more sensitive to alcohols, 
and one more sensitive to carbon monoxide. The results 
showed that the responses to over 20 different odorants 
were consistent and unique. The researchers point out that 
as in biological systems, such an artificial olfactory system 
would have to be trained to recognize specific patterns as 
specific odors. 

5.2.2 Integrating a sniff pump in an artificial 
olfactory sensor [White02] 

The Tuft Medical School Nose (TMSN) was designed to 
improve sensitivity and discrimination ability with respect 
to previous artificial nose efforts. A fan and valving sys-
tem were arranged so that odorant molecules were drawn 
over the olfactory sensor array in short bursts, mimicking 
inhalation patterns. 

A deviation from biology includes the use of polymer 
and dye mixtures in LEDs whose fluorescence changes 
based on the present odorants. So electric energy is used 
to illuminate LED whose spectra change with input 
odorants, and then the photonic energy is converted to 
analog electronic for further processing. Presumably, this 
is done to help meet the desired sensitivity for a specific 
application, the one here being land mine detection. This 
device included 32 sensors whose responses were broad 
across the various odorants, which included TNT, DNT, 
and other such compounds. This course-coding of the 
input resembles natural olfactory sensors. 

This project (funded by ONR) illustrates the different uses 
of biology for inspired design. One purpose is to emulate 
biology to better understand how biology does what it 
does, so it is very important to make every effort to not 
deviate from biology. Another purpose involves a separate 

http://www.figarosensor.com
http://www.figarosensor.com
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problem that needs to be solved (detecting land mines) 
where biology can give some incredible insights into novel 
designs, but to meet the objectives other technology may 
be integrated int the design that moves it away from true 
emulation of biology. 

5.2.3 Integrating spike-based processing into 
artificial olfactory sensor [Liu18] 

This effort contributes the integration of spike-based sig-
nal processing which is a known characteristic in natural 
olfactory sensors. The first sensing stage is an array of 
virtual olfactory receptor neurons (VORNs) that convert 
the odorant response into a spatio-temporal pattern of 
spikes. As in biological ORs the array is composed of 
groups of similar receptors with overlapping responses. 
The next sensing state is the bionic olfactory bulb (BOB) 
composed of processing elements named for their biologi-
cal counterparts, the mitral cell layer which feedforwards 
to the granule cell layer. Inhibitory responses are fed 
back from the granule layer to the mitral layer, which is 
also known in biology. This is another example of lateral 
inhibition, or the suppression of continued responses once 
the cell is stimulated.

The task is to discern one of seven Chinese liquors which 
come from different geographical locations with their own 
unique combination of odorants. Little is known in biology 
concerning how the natural olfactory systems process the 
spike signals for specific odor detection. The researchers 
here used two traditional methods for electronic nose data 
processing, namely linear discriminant analysis (LDA) 
and support vector machine (SVM), as well as backpropa-
gation artificial neural network (BP-ANN). The latter has 
significant semblance to biological information processing 
and performed better than the other two.

5.2.4 Integrating insect olfactory receptors for 
biohybrid gas flow sensor [Yam20] 

In this effort biology is used to create chemical sensing 
since the natural sensor is sensitive and selective. Insect 
DNA is used to synthesize olfactory receptors which are 
brought into an artificial cell membrane. The difficulty 
is getting the input gas into a soluble form for chemical 
detection of the artificial olfactory receptor. Microscopic 
slits were designed into the gas flow path and modified 
with hydrophobic (water-repelling) coating to create 
microchannels for chemical detection. 

Since the odorant detection was sporadic for the given 
stimulants the design was scaled to monitor 16 channels. 
This appears to give the detection response that is desired. 

Biology also relies on multiple channels or opportunities 
for a successful chemical detection. For example, the 
male silkworm moth discussed earlier can detect a single 
molecule of the female pheromone due to antennas each 
having over 10,000 sensilla (each 100 microns long and 2 
microns in diameter). 

5.2.5 Robotic lobster chemotaxis in turbulent 
chemical sources [Grasso02] 

The Robo-Lobster experiment is motivated by a desire for 
autonomy for underwater vehicles. Acoustics is primarily 
used and sometimes optics, but many biological species 
make strong use of chemo-sensing. The lobster has long 
antennas that sample the water chemistry for purposes 
such as eating, mating, spawning, and avoiding predators. 
A challenge to locating an odorant source is the turbulent 
nature of underwater chemical plumes that cause dis-
continuities in chemical trails; gradient descent will not 
work. If moving toward a food source that is detected, the 
lobster antennas meander back and forth in an attempt 
to catch samples of the odorant and the lobster adjusts its 
orientation and movement direction in response to what is 
detected. Numerous underwater chemical source detection 
applications exist in the scientific, environmental, com-
mercial, and military industries. 

The emphasis of the effort was more on the autonomous 
acquisition of the chemical source. The ability of the 
lobster to crawl on the bottom was simplified to an un-
derwater wheeled robot in a fish tank. The tank measured 
10m by 2m and was filled to 44 cm deep with moving 
seawater. A chemical source was introduced that brought 
odorant molecules to the robot in slow-moving turbulent 
patterns. The robot would move forward when the chemi-
cal was detected (when the sensor conductivity exceeding 
a threshold) and oriented itself so that the responses to 
the two artificial antennas was more balanced. Sensor 
responses were converted to digital values and a Motorola 
microcontroller programmed in C was used to implement 
the wheel-movement algorithm.

A robot designed to imitate a particular species and 
attempting to perform a task done by that species can  
illuminate our understanding of biology. The authors 
express this by suggesting “construct a robot that is 
competent to test a hypothesis or set of hypotheses that 
have been suggested by the biology and then allow the 
robot’s behavior to inform you of the acceptability of that 
hypothesis”.
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Chapter 5 Questions

1.   Give examples of people (and their applications)  
interested in a better understanding of chemo-sensory 
systems:

2.   What are some reasons for pursuing research in bioro 
botics:

3.   What is olfaction?

4.   What is gustation?

5.   Why is it difficult to differentiate olfactory and  
gustatory sensing systems?

6.              The best way to distinguish between olfaction 
and gustation is

 a) olfaction is simple, and gustation is complex

 b) olfaction is a distance sense, and gustation is a 
contact sense

 c) olfaction detects chemicals in air while gustation 
detects chemicals in fluids

 d) there is no difference between the two

7.   Photoreceptors are the first neurons in the visual 
processing system pathway. What are the first neurons 
in the olfactory system pathway?

8.  The retinotopic map (vision) and somatotopic map 
(touch) in the brain provides a spatial map of external 
to stimuli in the respective systems. How is the 
olfactory system receptive field mapped in the brain?

9.  Taste buds provide neuronal inputs to what type of 
cells?

10. What do hygro-receptors detect?

11. What part of the insect have we always found  
hygro-receptors?

12. Differentiate between a semiochemical and a  
pheromone.

13. What is anemotaxis?

14. What is rheotaxis?

15. What are some application areas for successful lobster 
chemotaxis research?

16. What were some of the significant results from MIT’s 
robotic implementation of lobster chemotaxis in 
Robo-Lobster?
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Appendix A – Example Literature  
Review Assignment

The following is a representative literature review assignment. The course website was hosted by CANVAS with 
an active discussion board.

Use the CANVAS discussion board to claim the paper you would like to review – make sure it has not already 
been claimed. If you would like to consider other papers, that is fine, but email instructor a copy to approve before 
you do the review. It must be recent and directly relevant to imaging systems whose designs (or novel parts of it) 
are inspired by natural imaging systems (vision).

The FSU Libraries are very useful for finding additional publications. If interested:

Search “FSU Libraries” and then “Find a Database”. Under the option to “Search our A-Z list of Databases” 
pull down “I” and find IEEExplore. At this point you may have to log in to the FSU Portal. Once in IEEE 
Xplore, you can search on “biologically-inspired”, “bio-inspired imagers”, or some other related term. On 
the left under “year” refine your search by moving the range to the most recent year-and-a-half (2018 to 
2019), and the click on “Apply refinements”.

Once you have selected one of the provided papers (or have approval for a different paper) enter the citation (at 
least the author, title and year) on the course discussion board and confirm no one else has selected that paper. 
Read the paper and study it well enough to discuss it in class. You are not required to understand all derivations, 
equations, etc. but should be able to answer the following questions in a Word file. Your answers do not have to 
be long but should be in your own words and very clear and accurate; there is not a requirement on length. Use 
sentences and not phrases or bullet points. While presenting in class pull up your Word document (avoid power-
point, etc.) and you may pull up the paper you are reviewing as well; feel free to go back and forth between your 
written answers and the paper. You may refer to the figures, tables, diagrams, or anything else in the paper, but 
your Word file should answer the questions without the reader having to refer to the paper.

Turn in a Word file or PDF file that answers the questions in this format like the attached example on the next 
page:

Reviewed by{your name}

Paper citation: {citation}

What is the problem to be addressed or solved? 

What is the natural paradigm being considered? 

What has already been done? 

How is this approach different? 

What accomplishment is claimed? 

What do they plan to do next? 

{Graduate students} Discuss at least one (or more) of the mathematical derivations or equations in the paper.  
If there are no derivations discussed, then choose a paper which does.

Paper Abstract (pasted): {paste paper abstract here}

Post your Word file (or PDF) in the course Assignment folder. If you selected a paper not yet posted, post a copy 
of it as well with your file.



Example Paper Review

Reviewed by Dr. Brooks

Paper citation:  H. Wu, K. Zou, T. Zhang, A. Borst, K. Kuhnlenz, Insect-inspired high-speed motion vision 
system for robot control, Biological Cybernetics, 106:453-463, 2012). 

What is the problem to be addressed or solved?  

Improve the accuracy of velocity estimation in the Hassenstein-Reichardt Elementary Motion Detection 
(HR-EMD) model. Velocity estimation of the objects in an image is integral to visual perception and will 
be a necessity for robot control systems performing autonomous navigation and collaboration with other 
agents (robots). Motion estimation using conventional imaging technology is slow.

What is the natural paradigm being considered?  

Motion detection at the neuronal level in insect vision, specifically the well-known HR-EMD model.

What has already been done?  

The basic insect-vision-inspired HR-EMD model is well established. It has been used to address aircraft 
guidance (collision-avoidance, gorge-following, and landing) and demonstrated in robotic platforms. It 
has been implemented in VLSI for collision detection and implemented in FPGAs for optic flow detection 
and motion estimation. It has been applied for course stabilization and altitude control of a blimp-based 
unmanned aerial vehicle.

How is this approach different?  

The former applications of the HR-EMD are based on a more qualitative motion detection and not a quanti-
tative motion velocity estimation. Here the authors are using image pattern statistics (brightness, contrast, 
and a spatial PSD estimation) combined with the HR-EMD output and by a look-up table estimating the 
velocity of motion instead of simply motion. Here also, as with former efforts of the authors, a conventional 
temporal low-pass-filter is used as the delay element in the HR-EMD.

What accomplishment is claimed?  

The average EMD response of the entire image was used for closed-loop yaw-angle control system of a 
robotic manipulator arm. They demonstrated yaw control using a piece-wise linear motion input and an 
arbitrary motion input.

What do they plan to do next?  

They plan to extend to demonstrate motion estimation of 3D objects in a receptive field.

Paper Abstract (pasted): The mechanism for motion detection in a fly’s vision system, known as the Reich-
ardt correlator, suffers from a main shortcoming as a velocity estimator: low accuracy. To enable accurate 
velocity estimation, responses of the Reichardt correlator to image sequences are analyzed in this paper. An 
elaborated model with additional preprocessing modules is proposed. The relative error of velocity estima-
tion is significantly reduced by establishing a real-time response velocity lookup table based on the power 
spectrum analysis of the input signal. By exploiting the improved velocity estimation accuracy and the 
simple structure of the Reichardt correlator, a high-speed vision system of 1 kHz is designed and applied 
for robot yaw-angle control in real-time experiments. The experimental results demonstrate the potential 
and feasibility of applying insect-inspired motion detection to robot control.
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