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Preface
A Note on Using this Text

Thank you for taking your meࢢ to read this preface. We will briefly share
some key features of this text to (hopefully) improve your experience using it.

For Instructors: How to Use this Text

This text was wri�en as a prequel to the APEXCalculus series, a three–volume
series on Calculus. This text is not intended to fully prepare students with all
of the mathemaࢢcal knowledge they need to tackle Calculus, rather it is de-
signed to review mathemaࢢcal concepts that are o[en stumbling blocks in the
Calculus sequence. It starts basic and builds to more complex topics. This text
is wri�en so that each secࢢon and topic largely stands on its own, making it
a good resource for students in Calculus who are struggling with the support-
ing mathemaࢢcs found in Calculus courses. The topics were chosen based on
experience; several instructors in the Applied Mathemaࢢcs Department at the
Virginia Military Insࢢtute (VMI) compiled a list of topics that Calculus students
commonly struggle with, giving the focus of this text. This allows for a more fo-
cused approach; at first glance one of the obvious differences from a standard
Pre-Calculus text is its size.

This text, as well as the three volumes of the APEXCalculus series, is available
separately for free at www.apexcalculus.com. All four texts can be purchased
as bound volumes for $15 or less per text at Amazon.com.

For Students: How to Read this Text

Many mathemaࢢcal texts are wri�en in very formal, succinct language. This
is a terrific approach if this text is simply used as a resource for someone who
is already comfortable with the ideas in the text, but can make it difficult for
anyone who is new to the material. This text was wri�en in a different fashion.
Its goal is to show you mathemaࢢcal ideas and concepts explained in an infor-
mal style so that your focus is on learning the math, not trying to decipher the
sentences.

This text is wri�en with many examples. Each new idea is shown through
several examples, starࢢng with a straigh�orward example and working up to

http://apexcalculus.com
http://amazon.com


more complex examples of the idea. These examples, and the exercises in the
text, come from the mathemaࢢcs as it appears in Calculus. You may noࢢce that
if you use this text as a resource while you are taking Calculus that many of the
problems in the text come from problems in Calculus. For example, many of the
quesࢢons asking you to simplify a funcࢢon are really unsimplified derivaࢢves of
common funcࢢon types, a type of funcࢢon with a special meaning that is used
in Calculus.

Addiࢢonally, the later secࢢons of this text will reinforce many of the ideas
of the earlier secࢢons. This is enࢢrely on purpose. In Calculus, you will need to
use many of these skills in the soluࢢon of a larger problem. The larger problems
almost never tell you the names of the skills you will use. This means that you
need to idenࢢfy which skills to use and when to use them. To help get you used
to these types of problems, this text o[en gives you problems that require skills
from earlier secࢢons, without telling you about it.

Finally, answers (but not soluࢢons) to all exercises are provided in an ap-
pendix at the end of the text. We highly recommend checking your answer to
each exercise before moving on to another exercise. This will prevent you from
pracࢢcing skills incorrectly and will save you the potenࢢal frustraࢢon of finding
out that you have done several problems and made the same mistake on all of
them.

Thanks

Many people contributed to this text, in ways small and large. First, thanks
are due to the VMI students who first used this text during the Summer Transi-
onࢢ Program (STP) in 2017 and the VMI cadets who used it during Fall 2017.
These students were diligent readers who found many typos and made sug-
gesࢢons that greatly improved the usefulness of the text for students. Second,
thanks to Meagan Herald, not only for proofreading the enࢢre text and answer
key mulࢢple ,mesࢢ but for never complaining about using a work in progress for
the basis of VMI’s Pre-Calculus course. Major revisions were made between STP
2017 and Fall 2017 with her help and guidance, including reordering the sec-
onsࢢ of the text so that exercises and examples did not use concepts that had
not been discussed by that point. Meagan also iniࢢally developed a list of top-
ics that formed the basis for those used in this text and well as the Pre-Calculus
course at VMI.

Addiࢢonally, I would like to thank Jessica Liberࢢni for moࢢvaࢢng me to com-
plete this text and providing me with many of the problems used in the text
as well as pedagogical advice. Furthermore, the hard work of Greg Hartman
who authored and maintains the APEXCalculus series needs to be acknowledged;
he is responsible for creaࢢng the formaࢰng files that hold this text together.
Throughout this process, we were also given large amounts of support by the
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Applied Mathemaࢢcs Department at the Virginia Military Insࢢtute, most no-
tably the department head, Troy Siemers who supported our efforts from the
beginning.

Finally, thanks are due to my husband Jonathan Chapman who supported
me as I worked on this text extra hours outside of the office and who provided
me with technical support to streamline the creaࢢon process.

APEX – Affordable Print and Electronic teXts

APEX is a consorࢢum of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wriࢢng paradigm is facing a poten-
alࢢ revoluࢢon as desktop publishing and electronic formats increase in popular-
ity. However, wriࢢng a good textbook is no easy task, as the meࢢ requirements
alone are substanࢢal. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboraࢢon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost.

Each text is available as a free .pdf, protected by a Creaࢢve Commons At-
tribuࢢon - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the la�er, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secࢢons that are “missing” or remove secࢢons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
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1: Numbers and Funcࢢons
When we first start learning about numbers, we start with the counࢢng num-
bers: 1, 2, 3, etc. As we progress, we add in 0 as well as negaࢢve numbers and
then fracࢢons and non-repeaࢢng decimals. Together, all of these numbers give
us the set of real numbers, denoted by mathemaࢢcians as R, numbers that we
can associate with concepts in the real world. These real numbers follow a set
of rules that allow us to combine them in certain ways and get an unambiguous
answer. Without these rules, it would be impossible to definiࢢvely answermany
quesࢢons about the world that surrounds us.

In this chapter, we will discuss these rules and how they interact. We will
see how we can develop our own “rules” that we call funcࢢons. In calculus, you
will be manipulaࢢng funcࢢons to answer applicaࢢon quesࢢons such as opࢢmiz-
ing the volume of a soda can while minimizing the material used to make it or
compuࢢng the volume and mass of a small caliber projecࢢle from an engineer-
ing drawing. However, in order to answer these complicated quesࢢons, we first
need to master the basic set of rules that mathemaࢢcians use to manipulate
numbers and funcࢢons.

Addiࢢonally, we will learn about some special types of funcࢢons: logarith-
mic funcࢢons and exponenࢢal funcࢢons. Logarithmic funcࢢons and exponenࢢal
funcࢢons are used in many places in calculus and differenࢢal equaࢢons. Log-
arithmic funcࢢons are used in many measurement scales such as the Richter
scale that measures the strength of an earthquake and are even used to mea-
sure the loudness of sound in decibels. Exponenࢢal funcࢢons are used to de-
scribe growth rates, whether it’s the number of animals living in an area or the
amount of money in your reࢢrement fund. Because of the varied applicaࢢons
you will see in calculus, familiarity with these funcࢢons is a must.

1.1 Real Numbers

We begin our study of real numbers by discussing the rules for working with
these numbers and combining them in a variety of ways. In elementary school,
we typically start by learning basic ways of combining numbers, such as addiࢢon,
subtracࢢon, mulࢢplicaࢢon, and division, and later more advanced operaࢢons
like exponents and roots. We will not be reviewing each of these operaࢢons,
but we will discuss how these operaࢢons interact with each other and how to
determine which operaࢢons need to be completed first in complicated mathe-
maࢢcal expressions.

You are probably already familiar with the phrase “order of operaࢢons.”
When mathemaࢢcians refer to the order of operaࢢons they are referring to a
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guideline for which operaࢢons need to be computed first in complicated expres-
sions:

1. Parentheses

2. Exponents

3. Mulࢢplicaࢢon/Division

4. Addiࢢon/Subtracࢢon

O[en we learn phrases such as “Please Excuse My Dear Aunt Sally” to help
remember the order of these operaࢢons, but this guideline glosses over a few
important details. Let’s take a look at each of the operaࢢons in more detail.

Parentheses

There are two important details to focus on with parentheses: nesࢢng and
“implied parentheses.” Let’s take a look at an example of nested parentheses
first:

Example 1 Nested Parentheses
Evaluate

2× (3+ (4× 2)). (1.1)

Soluࢢon Here we see a set of parentheses “nested” inside of a sec-
ond set of parentheses. When we see this, we want to start with the inside set
of parentheses first:

2× (3+ (4× 2)) = 2× (3+ (8)) (1.2)

Once we simplify the inside set of parentheses to where they contain only a sin-
gle number, we can drop them. Then, it’s meࢢ to start on the next parentheses
layer:

2× (3+ (8)) = 2× (3+ 8)
= 2× (11)
= 22

(1.3)

This gives our final answer:

2× (3+ (4× 2)) = 22

Someࢢmes this can get confusing when we have lots of layers of parenthe-
ses. O[en, you will see mathemaࢢcians use both parentheses, “(” and “)”, and
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1.1 Real Numbers

brackets, “[” and “]”. This can make it a bit easier to see where the parenthe-
ses/brackets start and where they end. Let’s look at an example:

Example 2 Alternaࢢng Parentheses and Brackets
Evaluate

(2+ (3× (4+ (2− 1))− 1)) + 2. (1.4)

Soluࢢon

(2+ (3× (4+ (2− 1))− 1)) + 2 = [2+ (3× [4+ (2− 1)]− 1)] + 2
= [2+ (3× [4+ (1)]− 1)] + 2
= [2+ (3× [4+ 1]− 1)] + 2
= [2+ (3× [5]− 1)] + 2
= [2+ (3× 5− 1)] + 2
= [2+ (15− 1)] + 2
= [2+ (14)] + 2
= [2+ 14] + 2
= [16] + 2
= 16+ 2 = 18

(1.5)

We started by finding the very inside set of parentheses: (2 − 1). The next
layer of parentheses we changed to brackets: [4+(2−1)]. We conࢢnued alter-
naࢢng between parentheses and brackets unࢢl we had found all layers. As be-
fore, we started with evaluaࢢng the inside parentheses first: (2−1) = (1) = 1.
The next layer was brackets: [4 + 1] = [5] = 5. Next, we had more paren-
theses: (3 × 5 − 1) = (15 − 1) = (14) = 14. Then, we had our final layer:
[2+ 14] + 2 = [16] + 2 = 16+ 2 = 18.

This gives our final answer:

(2+ (3× (4+ (2− 1))− 1)) + 2 = 18

When you are working these types of problems by hand, you can also make
the parentheses bigger as you move out from the center:

(2+ (3× (4+ (2− 1))− 1)) + 2 =
[
2+

(
3×

[
4+ (2− 1)

]
− 1
)]

+ 2

This may make it easier to see which parentheses/brackets are paired. You
never have to switch a problem from all parentheses to parentheses and brack-
ets, but you can alternate between them as you please, as long as you match
parentheses “(” with parentheses “)” and brackets “[” with brackets “]”.

Notes:
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Chapter 1 Numbers and Funcࢢons

There’s one more thing that we have to be careful about with parentheses,
and that is “implied” parenthesis. Implied parentheses are an easy way to run
into trouble, parࢢcularly if you are using a calculator to help you evaluate an
expression. So what are implied parentheses? They are parentheses that aren’t
necessarily wri�en down, but are implied. For example, in a fracࢢon, there is
a set of implied parentheses around the numerator and a set of implied paren-
theses around the denominator:

3+ 4
2+ 5

=
(3+ 4)
(2+ 5)

(1.6)

You will almost never see the second form wri�en down, however the first
form can you get into trouble if you are using a calculator. If you enter 3+4÷2+5
on a calculator, it will first do the division and then the two addiࢢons since it
can only follow the order of operaࢢons (listed earlier). This would give you an
answer of 10. However, the work to find the actual answer is shown below.

Example 3 Implied Parentheses in a Fracࢢon
Evaluate the expression in (1.6).

Soluࢢon First, let’s go back and find (1.6). You may have noࢢced that
the fracࢢons above have (1.6) next to them on the right side of the page. This
tells us that (1.6) is referring to this expression. Now that we know what we are
looking at, let’s evaluate it:

3+ 4
2+ 5

=
(3+ 4)
(2+ 5)

=
(7)
(7)

=
7
7

= 1

(1.7)

This reflects what we would get on a calculator if we entered (3+ 4)÷ (2+ 5),
giving us our final answer:

3+ 4
2+ 5

= 1

As you can see, leaving off the implied parentheses drasࢢcally changes our
answer. Another place we can have implied parentheses is under root opera-
,onsࢢ like square roots:

Notes:
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1.1 Real Numbers

Example 4 Implied Parenthesis Under a Square Root
Evaluate √

12× 3− 20
.

Soluࢢon

√
12× 3− 20 =

√
(12× 3)− 20

=
√
(36)− 20

= 6− 20
= −14

(1.8)

This gives our final answer:

√
12× 3− 20 = −14

Most calculators will display
√
( when you press the square root bu�on;

noࢢce that this gives you the opening parenthesis, but not the closing paren-
thesis. Be sure to put the closing parenthesis in the correct spot. If you leave
it off, the calculator assumes that everything a[er

√
( is under the root oth-

erwise. This also applies to other kinds of roots, like cube roots. In the ex-
pression in Example 4, without a closing parenthesis, a calculator would give
us
√
(12× 3− 20 =

√
(36− 20 =

√
(16 = 4.

We’ll see another example of a common issue with implied parentheses in
the next secࢢon.

Exponents

With exponents, we have to be careful to only apply the exponent to the
term immediately before it.

Example 5 Applying an Exponent
Evaluate

2+ 33

.

Soluࢢon

2+ 33 = 2+ 27
= 29

(1.9)

Notes:
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Chapter 1 Numbers and Funcࢢons

Noࢢce we only cubed the 3 and not the expression 2 + 3, giving us a final
answer of

2+ 33 = 29

This looks relaࢢvely straight-forward, but there’s a special case where it’s
easy to get confused, and it relates to implied parentheses.

Example 6 Applying an Exponent When there is a Negaࢢve
Evaluate

−42

.

Soluࢢon

−42 = −(42)
= −(16)
= −16

(1.10)

Here, our final answer is

−42 = −16

Noࢢce where we placed the implied parenthesis in the problem. Since ex-
ponents only apply to the term immediately before them, only the 4 is squared,
not−4. Taking the extra step to include these implied parentheses will help re-
inforce this concept for you; it forces you tomake a clear choice to show how the
exponent is being applied. If we wanted to square −4, we would write (−4)2
instead of−42.

Note that we don’t take this to the extreme; 122 sࢢll means “take 12 and
square it,” rather than 1× (22).

It’s also important to note that all root operaࢢons, like square roots, count
as exponents, and should be done a[er parentheses but before mulࢢplicaࢢon
and division.

Mulࢢplicaࢢon and Division

In our original list for the order of operaࢢons, we listedmulࢢplicaࢢon and di-
vision on the same line. This is because mathemaࢢcians consider mulࢢplicaࢢon

Notes:
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1.1 Real Numbers

and division to be on the same level, meaning that one does not take prece-
dence over the other. This means you should not do allmulࢢplicaࢢon steps and
then all division steps. Instead, you should do mulࢢplicaࢢon/division from le[
to right.

Example 7 Mulࢢplicaࢢon/Division: Le[ to Right
Evaluate

6÷ 2× 3+ 1× 8÷ 4

Soluࢢon

6÷ 2× 3+ 1× 8÷ 4 = 3× 3+ 1× 8÷ 4
= 9+ 1× 8÷ 4
= 9+ 8÷ 4
= 9+ 2
= 11

(1.11)

Since this expression doesn’t have any parentheses or exponents, we look for
mulࢢplicaࢢon or division, starࢢng on the le[. First, we find 6 ÷ 2, which gives
3. Next, we have 3 × 3, giving 9. The next operaࢢon is an addiࢢon, so we skip
it unࢢl we have no more mulࢢplicaࢢon or division. That means that we have
1 × 8 = 8 next. Our last step at this level is 8 ÷ 4 = 2. Now, we only have
addiࢢon le[: 9+ 2 = 11. Our final answer is

6÷ 2× 3+ 1× 8÷ 4 = 11

Note that we get a different, incorrect, answer of 3 if we do all the mulࢢpli-
caࢢon first and then all the division.

Addiࢢon and Subtracࢢon

Just like withmulࢢplicaࢢon and division, addiࢢon and subtracࢢon are on the
same level and should be performed from le[ to right:

Example 8 Addiࢢon/Subtracࢢon: Le[ to Right
Evaluate

1− 3+ 6

.

Notes:

7



Chapter 1 Numbers and Funcࢢons

Soluࢢon

1− 3+ 6 = −2+ 6
= 4

(1.12)

By doing addiࢢon and subtracࢢon on the same level, from le[ to right, we get a
final answer of

1− 3+ 6 = 4

Again, note that if we do all the addiࢢon and then all the subtracࢢon, we get
an incorrect answer of−8.

Summary: Order of Operaࢢons

Now that we’ve refined some of the ideas about the order of operaࢢons,
let’s summarize what we have:

1. Parentheses (including implied parentheses)

2. Exponents

3. Mulࢢplicaࢢon/Division (le[ to right)

4. Addiࢢon/Subtracࢢon (le[ to right)

Let’s walk through one example that uses all of our rules.

Example 9 Order of Operaࢢons
Evaluate

−22 +
√
6− 2− 2(8÷ 2× (1+ 1))

Soluࢢon Since this is more complicated than our earlier examples,
let’s make a table showing each step on the le[, with an explanaࢢon on the
right:

Notes:
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1.1 Real Numbers

−22 +
√
6− 2− 2(8÷ 2× (1+ 1)) = We have a bit of everything here, so

let’s write down any implied paren-
theses first.

= −22 +
√

(6− 2)− 2(8÷ 2× (1+ 1)) We have nested parentheses on the
far right, so let’s work on the inside
set.

= −22 +
√

(6− 2)− 2(8÷ 2× 2) There aren’t any more nested paren-
theses, so let’s work on the set of
parentheses on the far le[.

= −22 +
√
4− 2(8÷ 2× 2) Now, we’ll work on the other set of

parentheses. This set only has mul-
onࢢplicaࢢ and division, so we’ll work
from le[ to right inside of the paren-
theses.

= −22 +
√
4− 2(4× 2) Now, we’ll complete that set of paren-

theses.
= −22 +

√
4− 2(8) Let’s rewrite slightly to completely get

rid of all parentheses.
= −22 +

√
4− 2× 8 Now, we’ll work on exponents, from

le[ to right.
= −4+

√
4− 2× 8 We only squared 2, and not −2.

Square roots are really exponents, so
we’ll take care of that next.

= −4+ 2− 2× 8 We’re done with exponents; meࢢ for
mulࢢplicaࢢon/division.

= −4+ 2− 16 Now, only addiࢢon and subtracࢢon
are le[, so we’ll work from le[ to
right.

= −2− 16 Almost there!
= −18

Our final answer is

−22 +
√
6− 2− 2(8÷ 2× (1+ 1)) = −18

Computaࢢons with Raࢢonal Numbers

Raࢡonal numbers are real numbers that can be wri�en as a fracࢢon, such as
1
2 ,

5
4 , and−

2
3 . You may noࢢce that

5
4 is a special type of raࢢonal number, called

Notes:
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Chapter 1 Numbers and Funcࢢons

an improper fracࢡon. It’s called improper because the value in the numerator,
5, is bigger than the number in the denominator, 4. O[en, students are taught
to write these improper fracࢢons as mixed numbers: 5

4 = 1 14 . This does help
give a quick esࢢmate of the value; we can quickly see that it is between 1 and 2.
However, wriࢢng as a mixed number can make computaࢢons more difficult and
can lead to some confusion when working with complicated expressions; it may
be tempࢢng to see 1 14 as 1 ×

1
4 rather than

5
4 . For this reason, we will leave all

improper fracࢢons as improper fracࢢons.
With fracࢢons, mulࢢplicaࢢon and exponents are two of the easier opera-

onsࢢ to work with, while addiࢢon and subtracࢢon are more complicated. Let’s
start by looking at how to work with mulࢢplicaࢢon of fracࢢons.

Example 10 Mulࢢplicaࢢon of Fracࢢons
Evaluate

1
4
× 2
3
× 2

Soluࢢon With mulࢢplicaࢢon of fracࢢons, we will work just like we do
with any other type of real number and mulࢢply from le[ to right. When mul-
plyingࢢ two fracࢢons together, we will mulࢢply their numerators together (the
tops) and we will mulࢢply the denominators together (the bo�oms).

1
4
× 2
3
× 2 =

1× 2
4× 3

× 2

=
2
12

× 2

=
1
6
× 2

=
1
6
× 2
1

=
1× 2
6× 1

=
2
6

=
1
3

A[er each step, we look to see if we can simplify any fracࢢons. A[er the first
mulࢢplicaࢢon, we get 2

12 . Both 2 and 12 have 2 as a factor (are both divisible by
2), so we can simplify by dividing each by 2, giving us 16 . Before doing the second
mulࢢplicaࢢon, we transform the whole number, 2, into a fracࢢon by wriࢢng it
as 2

1 . Then, we can compute the mulࢢplicaࢢon of the two fracࢢons, giving us
2
6 . We can simplify this because 2 and 3 have 2 as a common factor, so our final
answer is

Notes:

10



1.1 Real Numbers

1
4
× 2
3
× 2 =

1
3

Next, let’s look at exponenࢢaࢢon of a fracࢢon.

Example 11 Exponenࢢaࢢon of a Fracࢢon
Evaluate (

1+ 2
5

)2

Soluࢢon With exponenࢢaࢢon,weneed to apply the exponent to both
the numerator and the denominator. This gives(

1+ 2
5

)2
=

(
(1+ 2)
(5)

)2

=

(
(3)
(5)

)2

=

(
3
5

)2
=
32

52

=
9
25

Noࢢce that we were careful to include the implied parentheses around the
numerator and around the denominator. This helps to guarantee that we are
correctly following the order of operaࢢons by working inside of any parentheses
first, before applying the exponent. We can’t simplify our fracࢢon at any point
since 3 and 5 do not share any factors. This gives us our final answer of

(
1+ 2
5

)2
=

9
25

Notes:
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With division of fracࢢons, we will build off of mulࢢplicaࢢon. For example, if
we want to divide a number by 2, we know that we could instead mulࢢply it by
1
2 because dividing something into two equal pieces is the same as spliࢰng it in
half. These numbers are reciprocals; 2 can be wri�en as 2

1 and if we flip it, we
get 12 , its reciprocal. This works for any fracࢢons; if we want to divide by

5
6 , we

can instead mulࢢply by its reciprocal, 65 .
Addiࢢon and subtracࢢon of fracࢢons can be a bit more complicated. With a

fracࢢon, we can think of working with pieces of a whole. The denominator tells
us howmany pieces we split the item into, and the numerator tells us howmany
pieces we are using. For example, 34 tells us that we split the item into 4 pieces
and are using 3 of them. In order to add or subtract fracࢢons, we need to work
with pieces that are all the same size, so our first step will be geࢰng a common
denominator. We will do this by mulࢢplying by 1 in a sneaky way. Mulࢢplying
by 1 doesn’t change the meaning of our expression, but it will allow us to make
sure all of our pieces are the same size.

Example 12 Addiࢢon and Subtracࢢon of Fracࢢons
Evaluate

1
2
− 1
3
+
1
4

Soluࢢon Since we only have addiࢢon and subtracࢢon, we will work
from le[ to right. This means that our first step is to subtract 1

3 from
1
2 . The

denominators are different, so we don’t yet have pieces that are all the same
size. Tomake sure our pieces are all the same size, we will mulࢢply each term by
1; we will mulࢢply 1

2 by
3
3 and we will mulࢢply

1
3 by

2
2 . Since we are mulࢢplying

by the “missing” factor for each, both will have the same denominator. Once
they have the same denominator, we can combine the numerators:

1
2
− 1
3
+
1
4
=
1
2
× 3
3
− 1
3
× 2
2
+
1
4

=
3
6
− 2
6
+
1
4

=
3− 2
6

+
1
4

=
1
6
+
1
4

=
1
6
× 2
2
+
1
4
× 3
3

Notes:
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=
2
12

+
3
12

=
2+ 3
12

=
5
12

A[er combining the first two fracࢢons, we had to find a common denomina-
tor for the remaining two fracࢢons. Here, we found the smallest possible com-
mon denominator. We did this by looking at each denominator and factoring
them. The first denominator, 6, has 2 and 3 as factors; the second denominator,
4 has 2 as a repeated factor since 4 = 2×2. These means our common denom-
inator needed to have 3 as a factor and 2 as a double factor: 3 × 2 × 2 = 12.
We don’t have to find the smallest common denominator, but it o[en keeps the
numbers more manageable. We could have instead done:

1
6
+
1
4
=
1
6
× 4
4
+
1
4
× 6
6

=
4
24

+
6
24

=
4+ 6
24

=
10
24

=
5
12

We sࢢll end up with the same final answer:

1
2
− 1
3
+
1
4
=

5
12

Like fracࢢons, decimals can also be difficult to work with. Note that all re-
peaࢢngdecimals and all terminaࢢngdecimals canbewri�en as fracࢢons: 0.333 =
1
3 and 2.1 = 2+ 1

10 = 20
10 +

1
10 = 21

10 . You can convert these into fracࢢons or you
can work with them as decimals. When adding or subtracࢢng decimals, make
sure to align the numbers at the decimal point. When mulࢢplying, first mulࢢply
as though there are no decimals, aligning the last digit of each number. Then,
as your final step place the decimal point so that it has the appropriate number

Notes:
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of digits a[er it. For example,
1.2

× 1.1 5
6 0
1 2

1 2
1.3 8 0

Because 1.2 has one digit a[er the decimal place and 1.15 has 2 digits a[er the
decimal place, we need a total of 1+ 2 = 3 digits a[er the decimal place in our
final answer, giving us 1.380, or 1.38. It is important to note that we placed the
decimal point before dropping the zero on the end; our final answer would have
quite a different meaning otherwise.

Computaࢢons with Units

So far, we have only looked at examples without any context to them. How-
ever, in calculus you will see many problems that are based on a real world
problem. These types of problems will come with units, whether the problem
focuses on lengths, ,meࢢ volume, or area. With these problems, it is important
to include units as part of your answer. When working with units, you first need
to make sure all units are consistent; for example, if you are finding the area of
a square and one side is measured in feet and the other side in inches, you will
need to convert so that both sides have the same units. You could use measure-
ments that are both in feet or both in inches, either will give you a meaningful
answer. Let’s look at a few examples.

Example 13 Determining Volume
Determine the volumeof a rectangular solid that has awidth of 8 inches, a height
of 3 inches, and a length of 0.5 feet.

Soluࢢon First, we need to get all of our measurements in the same
units. Since two of the dimensions are given in inches, wewill start by converࢢng
the third dimension into inches as well. Since there are 12 inches in a foot, we
get

0.5 [× 12 in
1[

=
0.5× 12 [× in

1 [

=
6 [× in
1 [

= 6 in

In the last step we simplify our fracࢢon. We can simplify 6
1 as 6, and we can

Notes:
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simplify [× in
[ as in. This means that we know our rectangular solid is 8 inches

wide, 3 inches tall, and 6 inches long. The volume is then

V = (8 in)× (3 in)× (6 in)
= (8× 3× 6)× ( in× in× in)
= (24× 6)× ( in× in× in)

= 144 in3

Since all three measurements are in inches and are being mulࢢplied, we end
up with units of inches cubed, giving us a final answer of

V = 144 in3

Units can also give you hints as to how a number is calculated. For instance,
the speed of a car is o[en measured in mph, or miles per hour. We write these
units in fracࢢon form as mileshour , which tells us that in our computaࢢons we should
be dividing a distance by a .meࢢ Someࢢmes, however, a problem will start with
units, but the final answer will have no units, meaning it is unitless. We will run
across examples of this when we discuss trigonometric funcࢢons. Trigonomet-
ric funcࢢons can be calculated as a raࢢo of side lengths of a right triangle. For
example, in a right triangle with a leg of length 3 inches and a hypotenuse of 5
inches, the raࢢo of the leg length to the hypotenuse length is 3 in

5 in = 3
5 . Since

both sides are measured in inches, the units cancel when we calculate the raࢢo.
We would see the same final answer if the triangle had a leg of 3 miles and a
hypotenuse of 4 miles; they are similar triangles, so the raࢢos are the same.

In this secࢢon, we have examined how to work with basic mathemaࢢcal op-
eraࢢons and how these operaࢢons interact with each other. In the next secࢢon
we’ll talk about how to make specialized rules or operaࢢons through the use of
funcࢢons. In the exercises following this secࢢon, we conࢢnue our work with or-
der of operaࢢons and pracࢢce these rules in situaࢢons with a bit more context.
Note that answers to all example problems are available at the end of this book
to help you gauge your level of understanding. If your professor allows it, it is
a good idea to check the answer to each quesࢢon as you complete it; this will
allow you to see if you understand the ideas andwill prevent you from pracࢢcing
these rules incorrectly.

Notes:
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Exercises 1.1
Terms and Concepts
1. In your own words, what does “mulࢢplicaࢢon and division
are on the same level” mean?

2. In an expression with both addiࢢon and mulࢢplicaࢢon,
which operaࢢon do you complete first?

3. In your own words, what is meant by “implied parenthe-
ses”? Provide an example.

4. T/F: In an expression with only addiࢢon and subtracࢢon re-
maining, youmust complete all of the addiࢢon before start-
ing the subtracࢢon. Explain.

5. T/F: In the expression −22, only “2” is squared, not “−2.”
Explain.

Problems
In exercises 6 – 15, simplify the given expressions.

6. −2(11− 5)÷ 3+ 23

7.
3
5
+
2
3
÷ 5
6

8.
(
2
3

)2
− 1
6

9. (13+ 7)÷ 4− 32

10.
(
5− 1

2

)3

11. (2)(−2)÷ 1
2

12.
2− 4(3− 5)
6− 7+ 3

−
√
25− 9

13.

√
22 + 32 + 5
2− (−1)3 − 2+ 6

14.
4− 1(−2)

1
2 + 1

− 2

15. −42 + 52 − 2× 3+ 1

In exercises 16 – 21, evaluate the described mathemaࢢcal
statement, or determine how the described changes affect
other variables in the statement as appropriate.

16. A runner leaves her home and runs straight for 30 minutes
at a pace of 1 mi every 10 minutes (a 10-minute mile). She
makes a 90-degree le[ turn and then runs straight for 40

minutes at the same pace. What is the distance between
her current locaࢢon and her home?

17. The Reynold’s number, which helps idenࢢfy whether or not
a fluid flow is turbulent, is given by Re = ρuD

µ
. If ρ, u, and D

are held constant while µ increases, does Re increase, de-
crease, or stay the same?

18. Consider a square-based box whose height is twice the
length of the base of the side. If the length of the square
base is 3 [, what is the volume of the box? (Don’t forget
your units!)

19. The velocity of periodic waves, v, is given by v = λf
where λ is the length of the waves and f is the frequency
of the waves. If the wavelength is held constant while the
frequency is tripled, what happens to the velocity of the
waves? Be as descripࢢve as possible.

20. The capacitance, C, of a parallel plate capacitor is given by
C = kε0A

d where d is the distance between the plates. If k,
ε0, and A are held constant while the distance between the
plates decreases, does the capacitance increase, decrease,
or stay the same?

21. Consider a square-basedboxwhose height is half the length
of the sides for the base. If the surface area of the base is
16 [2, what is the volume of the box?

In exercises 22 – 25, evaluate the given work for correctness.
Is the final answer correct? If not, describe the error(s) in the
soluࢢon.

22.

12÷ 6× 4− (3− 4)2 = 12÷ 6× 4− (−1)2

= 12÷ 6× 4+ 1
= 12÷ 24+ 1

=
1
2
+ 1

=
3
2

23.

−32 + 6÷ 2+ (−4)2 = −9+ 6÷ 2+ (−4)2

= −9+ 6÷ 2+ 16
= −9+ 3+ 16
= 10

16



24.

2+ (3− 5)
2− 2(6+ 3)

+
√
64+ 36 =

2+ (−2)
2− 2(6+ 3)

+
√
64+ 36

=
2− 2
2− 2(9)

+
√
64+ 36

=
2− 2
2− 2(9)

+ 8+ 6

=
2− 2
2− 18

+ 8+ 6

=
0

−16 + 14

= 14

25.

(−3+ 1)(2(−3))− ((−3)2 − 3)(1)
(−3+ 1)2

=
(−3+ 1)(2(−3))− ((−3)2 − 3)(1)

(−2)2

=
(−2)(−6)− ((−3)2 − 3)(1)

(−2)2

=
(−2)(−6)− (9− 3)(1)

(−2)2

=
(−2)(−6)− (6)(1)

4

=
−12− 6

4

=
−18
4

=
−9
2
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Chapter 1 Numbers and Funcࢢons

1.2 Introducࢢon to Funcࢢons
This secࢢon introduces ideas and notaࢢon for funcࢢons. Much of the work in
calculus relies heavily on understanding the meaning of a funcࢢon and a proper
understanding of funcࢢon notaࢢon. Here we’ll talk about these ideas and work
through several examples involving funcࢢon notaࢢon and how they relate to
calculus.

What is a Funcࢢon?

In mathemaࢢcs, we look for pa�erns to help explain the world around us.
Mathemaࢢcians o[en use funcࢢons to express these pa�erns succinctly. For
example, we learn in geometry that the area of a square with sides of length 2
in is 2 × 2 = 4 in2. Similarly, if the square has sides of length 3 in, it’s area is
3 × 3 = 9 in2. This shows us a pa�ern for determining the area of a square: if
we know the side length, we simply mulࢢply the side length by itself to get the
area. Rather than wriࢢng out what this rule looks like for all sorts of different
side lengths, we can express the pa�ern as a funcࢢon:

A(x) = x× x

= x2
(1.13)

This funcࢢon tells us that the area of a square with sides of length x has an
area of x2. This is a lot more compact than wriࢢng out a table with all sorts of
different side lengths and areas.

Funcࢢon Notaࢢon

Herewe say that x is the input of the funcࢢonA(x) (read as “A of x”), and that
x2 is the corresponding output. Noࢢce that since we get to choose the “name”
of the funcࢢon, A, we used something that has some meaning for our example;
our funcࢢon gives us area, so calling the funcࢢon A makes that clearer than if
we had chosen something like l(x), where you might be tempted to think l for
length.

Mathemaࢢcians will o[en use le�ers like f, g, and h to name their funcࢢons,
but you can name your funcࢢons anyway you like. In fact, some funcࢢons that
you may already be familiar with have longer names, like sin for the sine func-
onࢢ or cos for the cosine funcࢢon. Similarly, mathemaࢢcians will o[en use x to
represent the input of the funcࢢon, but you can choose any name you want. In
our example above, we could use l as our input to stand for “length”, giving us
A(l) = l2. This looks a li�le different than using A(x), but it provides the same
meaning for mathemaࢢcians: take your input and square it

Notes:
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O[en, mathemaࢢcians will use “the funcࢢon A” and “the funcࢢon A(x)” in-
terchangeably. Both tell us to use the same rule that is shown in (1.13), but the
second gives us an added bit of informaࢢon; it tells us that for the funcࢢon A, x is
our input variable. For our example funcࢢon, this informaࢢon isn’t parࢢcularly
useful because the only le�er on the right side of our funcࢢon is x, but some
funcࢢons will have other le�ers that aren’t input variables. We’ll run into this
fairly o[en in calculus. For example, suppose we want to know the height of a
ball that has been thrown into the air. Physics (and calculus) gives us a funcࢢon
for this:

h(t) = h0 + v0t+
1
2
at2 (1.14)

Since the le[ side has h(t), we know that t is our input variable, but we
have lots of other le�ers on the right side. These le�ers all have meaning for
this problem: h0 is the iniࢢal height of the ball, v0 is the velocity it was thrown
at, and a is the acceleraࢢon due to gravity. While they all have meaning and
can change based on the parࢢcular instance of a ball being thrown, they are
considered parameters of the funcࢢon, and not input variables. Why? Well, as
soon as the ball is thrown, h0, v0, and a won’t change for that ball. Only the
meࢢ the ball has been in the air changes; the ball has a different height a[er
t = 2000 seconds than it did a[er only t = 2 seconds. Therefore, only t is an
input variable for this funcࢢon. While it might not seem like a big deal to write A
instead of A(x), we can see that wriࢢng h instead of h(t) could lead to confusion,
so it’s good to be careful and include that input variable when it’s not perfectly
clear.

Evaluaࢢng a Funcࢢon

Now that we are familiar with why we use funcࢢons let’s look at how to
evaluate a funcࢢon. We’ll start with evaluaࢢng a funcࢢon for a single value.

Example 14 Evaluaࢢng a Funcࢢon at a Point
Determine the value of f(−2) if f(x) = x2 + 4x− 10.

Soluࢢon First, we noࢢce that the le[ side tells us that our input is
x. Since we want to determine the value of f(−2), we’ll replace every x on the
right side with (−2).

f(−2) = (−2)2 + 4(−2)− 10
= (4) + 4(−2)− 10
= 4− 8− 10 = −14

(1.15)

So, we find that

Notes:
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f(−2) = −14

It’s good to noࢢce that the quesࢢon in Example 14 can be wri�en in several
different ways. All of the following require the same work, but are worded in
slightly different ways:

• Determine the value of f(−2)

• Determine the value of f(x) for x = −2

• Evaluate f(−2)

• Evaluate f at−2

There are probably more ways to ask this quesࢢon, but these are some of
the most common ones. Let’s look at an example where the funcࢢon has pa-
rameters.

Example 15 Evaluaࢢng a Funcࢢon with Parameters
Using the height formula in equaࢢon (1.14), determine the height of a ball 5
seconds a[er it was thrown.

Soluࢢon First, let’s make sure we have the correct equaࢢon. The
(1.14) label is next to h(t) = h0 + v0t + 1

2at
2, so that tells us we are work-

ing with that funcࢢon. The le[ side tells us that t is our input variable since the
funcࢢon is called h(t). That means we need to subsࢢtute (5) for t everywhere t
appears in the funcࢢon:

h(5) = h0 + v0(5) +
1
2
a(5)2

= h0 + 5v0 +
1
2
a(25)

= h0 + 5v0 +
25
2
a

Noࢢce that our answer includes all three parameters. This is to be expected
because we weren’t given values for these parameters, so we’ll leave them as
le�ers rather than making up numbers to use. This gives us the flexibility to
determine the height a[er 5 seconds for a variety of parameter values, and gives
a final answer of

Notes:
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h(5) = h0 + 5v0 +
25
2
a

Noࢢce that in Example 14, we replaced x not just with −2, but with (−2)
and in Example 15 we replaced twith (5). This helps in a couple of ways. First, it
makes surewe don’tmiss any implied parentheseswhenwe square x in Example
14. Second, it makes sure we replace x and twith the enࢡre input. This becomes
very important in calculus. In differenࢢal calculus, you will spend a lot of meࢢ
looking at how quickly funcࢢon outputs change when the input only changes a
nyࢢ bit. You will do this by looking at a difference quoࢡent for the funcࢢon. The
general form of difference quoࢢent for the funcࢢon f(x) that you will use is:

f(x+ h)− f(x)
h

(1.16)

Noࢢce that the numerator starts with f(x + h). This means that every x on
the right side needs to be replaces with x + h. Here, the parentheses make
a big difference even with a simple funcࢢon like p(x) = x2. If we include the
parentheses, we get that

p(x+ h) = (x+ h)2

= (x+ h)× (x+ h)

= x2 + 2xh+ h2
(1.17)

However, if we don’t include the parentheses, we would get x + h2, which
is a very different (and incorrect) answer. Let’s look at an example of finding a
difference quoࢢent for a more complicated funcࢢon.

Example 16 Finding a Difference Quoࢢent
Find the difference quoࢢent for g(t) = 2t2 − 3t+ 1

Soluࢢon Here we have a funcࢢon called g, with t as its input. That
means that in our difference quoࢢent, we will have g instead of f and t instead

Notes:
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of x, but h will sࢢll be h. So, our difference quoࢢent will look like

g(t+ h)− g(t)
h

=

[
2(t+ h)2 − 3(t+ h) + 1

]
−
[
2t2 − 3t+ 1

]
h

=

[
2(t2 + 2th+ h2)− 3(t+ h) + 1

]
−
[
2t2 − 3t+ 1

]
h

=

[
2t2 + 4th+ 2h2 − 3t− 3h+ 1

]
−
[
2t2 − 3t+ 1

]
h

=
2t2 + 4th+ 2h2 − 3t− 3h+ 1−

[
2t2 − 3t+ 1

]
h

=
2t2 + 4th+ 2h2 − 3t− 3h+ 1− 2t2 + 3t− 1

h

=
4th+ 2h2 − 3h

h
= 4t+ 2h− 3

There are a few important things to noࢢce here. First, when we replaced t
with (t + h) in the first term, we included those parentheses to make sure we
used the whole input. Second, from line 3 to line 5, we dropped all parentheses;
when we did this we made sure to distribute the negaࢢve to everything inside
the second set of parentheses, and not just the first term. We end up with a
final answer of

g(t+ h)− g(t)
h

= 4t+ 2h− 3

Common Types of Funcࢢons

There are several different types of funcࢢons that get use commonly in cal-
culus. In this secࢢon, we’ll briefly describe each. Later, we’ll talk about how we
can combine these in different ways, what types of inputs these funcࢢons can
take, and what their graphs look like.

Power Funcࢢons

A power funcࢡon is any funcࢢon that involves a variable raised to a power:

f(x) = axb (1.18)

Notes:
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Here, the le[ side tells us that x is the variable; a and b are parameters that
can be any real numbers. Because a and b can be anything, this is a very general
funcࢢon type meaning that the properࢢes of the funcࢢon can be very different
based on these values of a and b.

A monomial is a special type of power funcࢢon where b is a non-negaࢢve
integer; this means b can be 0, 1, 2, 3, etc. We call b the degree of the funcࢢon.
f(x) = 2x has degree 1, g(x) = 45x13 has degree 13, and h(x) = 12 = 12x0
has degree 0. Later, we’ll see that the degree helps us to quickly determine the
shape of the funcࢢon when we graph it.

If we take one or more monomials and add them together, we get a polyno-
mial. That means that f(x) = 2x, g(x) = 45x13, and h(x) = 12 = 12x0 are not
only monomials, but also polynomials, and if we add them all together we get a
new polynomial: p(x) = 45x13 + 2x + 12. We could get a different polynomial
by taking the difference (subtracࢢng) them: q(x) = −45x13−2x−12. There are
many more polynomials we could make from the three funcࢢons with various
combinaࢢons of addiࢢon and subtracࢢon.

Tradiࢢonally, polynomials arewri�enwith the highest degreemonomial first
because for big values of x it becomes the most important term. The highest
degree monomial also tells us the degree of the polynomial: p(x) and q(x) both
have degree 13. If the degree of the polynomial is 3, like with r(θ) = 4θ3 +
2θ2 − 5θ + 2, we can call it a cubic funcࢢon, and if the degree is 2, we call it a
quadraࢡc funcࢢon. If the degree is 1, like with n(t) = 5t − 2, we simply call it
a linear funcࢢon, and if the degree is 0, we say it’s a constant funcࢢon. These
four all have special names because they get used very o[en in mathemaࢢcs.

Root Funcࢢons

Later, we’ll talk more about the importance of root funcࢢons, but for now
we’ll focus on what they look line in their general form. A root funcࢢon is any
funcࢢon that looks like f(x) = x1/n where n is a natural number (a posiࢢve inte-
ger, or counࢢng number like 1, 2, 3, 4, etc.). This means that root funcࢢons are
a special type of power funcࢢon. The most commonly used root funcࢢon is the
square root funcࢢon, f(x) = x1/2. You’ve most likely seen this wri�en in a dif-
ferent form: f(x) =

√
x. There are many other root funcࢢons like the cube root

funcࢢon (g(x) = x1/3 = 3
√
x) and the fourth root funcࢢon (h(x) = x1/4 = 4

√
x).

In general, we say that x1/n is the nth root of x, so x1/7 would be called the sev-
enth root of x. These can someࢢmes be tricky to evaluate. You probably know
that 91/2 =

√
9 = 3 because 32 = 9, but few people know a good approxima-

onࢢ for 51/2. In these situaࢢons, it’s usually best to leave your answer as 51/2
or

√
5 rather than using a calculator to turn it into a decimal because it’s more

precise (and quicker to write than 2.2360679775).

Notes:
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Exponenࢢal Funcࢢons

Exponenࢡal funcࢢons have the form f(x) = bx, with b > 0 and b ̸= 1. Noࢢce
that like a power funcࢢon, an exponenࢢal funcࢢon involves an exponent, but
there is a big difference. For a power funcࢢon, the input variable, x is the base
with a parameter as the exponent. For an exponenࢢal funcࢢon, the roles are
swapped: the base is a parameter and the input variable is the exponent.

Logarithmic Funcࢢons

Logarithms, or logarithmic funcࢢons are quite important in many applica-
onsࢢ of calculus because each logarithmic funcࢢon is the inverse of an exponen-
alࢢ funcࢢon. They have the form f(x) = logb (x). Just like with exponenࢢals, we
need b > 0 and b ≠ 1. There are two very commonly used logarithms. The
first is log10 (10), read as “log base 10 of x.” Someࢢmes you will see this writ-
ten as just log (x) instead of log10 (x). The second commonly used logarithm is
loge (x), “log base e of x”, also know as the natural logarithm (commonly wri�en
as ln (x)).

Trigonometric Funcࢢons

Trigonometric funcࢢons are funcࢢons that relate the angles of a triangle to
the length of the sides in that triangle. They can also be used to describe many
natural phenomena like waves (sound, light, and water waves) and harmonic
moࢢon (moࢢon that repeats the same pa�ern over and over, also know as cyclic
moࢢon). The trigonometric funcࢢons that are most commonly used are sine
(sin (x)), cosine (cos (x)), and tangent (tan (x)). We’ll talk about these funcࢢons
and their applicaࢢon more later in this text.

Combining Funcࢢons

While each of these funcࢢon types has its own set of special uses, o[en
combinaࢢons of these funcࢢons are needed to accurately model events. For
this secࢢon, we will use three different funcࢢons to help provide examples of
how we can combine and modify funcࢢons:

f(x) = 3x2 (1.19)

g(x) = x− 4 (1.20)

h(x) =
√
x+ 6 (1.21)

In differenࢢal calculus it is very important to be able to recognize how func-
onsࢢ are combined. How they are combined greatly impacts how you take the

Notes:
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derivaࢢve of the funcࢢon. This text will not cover derivaࢢves, but they are one
of the most important topics in calculus, so being able to recognize these com-
binaࢢon methods will be quite useful in calculus.

Scalar Mulࢢples of Funcࢢons

The first way we can modify funcࢢons is with scalar mulࢡplicaࢡon. This sim-
ply means mulࢢplying the funcࢢon by a constant (a number). For example,

• 4f(x) = 4(3x2) = 12x2;

• 4g(x) = 4(x− 4) = 4x− 16;

• 4h(x) = 4(
√
x+ 6) = 4

√
x+ 24.

There’s nothing special about the number 4, we could mulࢢply by anything:
negaࢢve numbers, posiࢢve numbers, whole numbers, fracࢢons, decimals, or
even zero (even though that would make for a pre�y boring result). Noࢢce that
for each of these we used parenthesis around the whole funcࢢon when wemul-
.pliedࢢ This makes sure that we really mulࢢplied the enࢢre funcࢢon by 4, and
not just part of the funcࢢon. This is parࢢcularly important with g(x) and h(x)
since they each had two terms already and we had to distribute the 4 to both
terms.

Sums and Differences of Funcࢢons

One way to combine funcࢢons is to add them (sums) or subtract them (dif-
ferences) from each other. For example, the sum of f(x) and g(x) is f(x)+g(x) =
3x2 + x− 4. Sums are nice to work with for many reasons; mathemaࢢcians use
sums of funcࢢons to get be�er and be�er approximaࢢons when working with
complicated data, and with sums order doesn’t change the result. If we did
g(x) + f(x) instead of f(x) + g(x), we get g(x) + f(x) = x− 4+ 3x2; if we rear-
range terms so that the highest degree comes first, we get 3x2 + x− 4 which is
exactly the same as f(x) + g(x).

With differences, we have to be a li�le more careful because the order will
make a difference. Let’s take a look:

• f(x)− g(x) = 3x2 − (x− 4) = 3x2 − x+ 4

• g(x)− f(x) = x− 4− (3x2) = x− 4− 3x2 = −3x2 + x− 4

Here we see that f(x) − g(x) and g(x) − f(x) give us different results. Like
with scalar mulࢢplicaࢢon, we were again careful to put parentheses around the
enࢢre funcࢢon when we wrote the second funcࢢon. This is because subtracࢢng

Notes:
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it really involves mulࢢplying it by −1 and we want to make sure we distribute
that negaࢢve to the enࢢre funcࢢon.

With both sums and differences, we can use as many funcࢢons as we want:

f(x)−h(x)−g(x) = 3x2−(x−4)−(
√
x+6) = 3x2−x+4−

√
x−6 = 3x2−x−

√
x−2

We can also mix between addiࢢon and subtracࢢon:

h(x) + g(x)− f(x) =
√
x+ 6+ x− 4− (3x2) = −3x2 + x+

√
x+ 2

Products of Funcࢢons

Another way of combining funcࢢons is through products (mulࢢplicaࢢon) of
funcࢢons. Like with sums of funcࢢons, order doesn’t make a difference, so
f(x)g(x) = g(x)f(x). We won’t show the details here, but try to verify it on
your own. (Note: it is common for college level mathemaࢢcs textbooks to state
a property like this without showing the details. This means that the author(s)
believe you are capable of working through the steps on your own, and working
through these statements is a good way to verify that you do understand the
steps involved.) With products of funcࢢons, we again will want to use parenthe-
ses to make sure we are using the enࢢre funcࢢon as one unit. This is parࢢcularly
important when the funcࢢon has mulࢢple terms:

• g(x)f(x) = (x− 4)(3x2) = (x)(3x2)− 4(3x2) = 3x3 − 12x2

• h(x)g(x) = (
√
x+6)(x−4) = (

√
x)(x−4)+6(x−4) = x

√
x−4

√
x+6x−24

Quoࢢents of Funcࢢons

Next, we can combine funcࢢons by through division. We call the funcࢢon
f(x)
g(x) the quoࢡent of f and g. Aswith differences, orderma�ers here; the quoࢢent
of f and g is different than the quoࢢent of g and f. (Reminder: this is another
good place to try verifying a property on your own. Showing that things are
different can be just as useful as showing that they are the same.) Remember
that with fracࢢons we have implied parenthesis around the enࢢre numerator
and around the enࢢre denominator so we don’t need to explicitly include those
parentheses here. Typically we won’t have to worry about much simplificaࢢon
with quoࢢents of funcࢢons; later we’ll see how to idenࢢfy when wemay be able
to simplify, but for now it’s safer to not simplify these types of combinaࢢons.
Let’s look at a few examples:

•
f(x)
g(x)

=
3x2

x− 4
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•
g(x)
f(x)

=
x− 4
3x2

•
h(x)
g(x)

=

√
x+ 6
x− 4

Composiࢢon of Funcࢢons

The last way we can combine funcࢢons is quite different. With all of our
previous methods, we could take the output from one funcࢢon and use arith-
meࢢc to combine it with the output from another funcࢢon. For example, if we
wanted to know f(4) + g(4) but didn’t care about the funcࢢon f(x) + g(x) in
general, we could simply find f(4) (f(4) = 3(42) = 3(16) = 48) and g(4)
(g(4) = (4) − 4 = 0) and add them together: f(4) + g(4) = 48 + 0 = 48.
With composiࢢon of funcࢢons, we are going to use the output of one funcࢢon
as the input for another funcࢢon. The composiࢡon of f(x) with g(x) is wri�en
as f(g(x)), or as (f ◦ g)(x), using mathemaࢢcal notaࢢon and is read as “ f of g
of x.” If we look at the notaࢢon, we see that funcࢢon f is going to take g(x)
as it’s input variable. g(x) will someࢢmes be referred to as the “inside” func-
onࢢ and f(x) as the “outside” funcࢢon because g(x) goes “inside” of f. As an
example, let’s look at f(g(4)) (“f of g of 4”). This tells us that we want to find
the value of f when we input g(4). Well, we know from above that the value of
g(4) is 0, so let’s see what happens when we input 0 into f. We would get that
f(0) = 3(02) = 3(0) = 0. To show this work using only mathemaࢢcal notaࢢon,
we would write

f(g(4)) = f(0), since g(4) = 0

= 3(02)
= 3(0)
= 0

(1.22)

That’s great if we just care about one point, but what if we want to know
what f(g(x)) looks like at several different points?

Example 17 Composing Two Funcࢢons
Using f(x) and g(x) from above, determine j(x) = f(g(x)).

Soluࢢon Since g(x) is our input, we need to replace every x in f with

Notes:
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(x− 4). This gives us

j(x) = f(g(x)) = f(x− 4)

= 3(x− 4)2

= 3(x− 4)(x− 4)

= 3(x2 − 8x+ 16)

= 3x2 − 24x+ 48

(1.23)

Our final result is

j(x) = 3x2 − 24x+ 48

We can verify that this agrees with the single point we looked earlier:

j(4) = 3(42)− 24(4) + 48
= 3(16)− 24(4) + 48
= 48− 96+ 48
= 0

Composiࢢon of funcࢢons is another place where order can make a differ-
ence. Let’s take a look at g(f(x)).

Example 18 Composing Two Funcࢢons
Using f(x) and g(x) from above, determine k(x) = g(f(x)).

Soluࢢon Since f(x) is our input, we need to replace every x in g with
(3x2). This gives us

k(x) = g(f(x)) = g(3x2)

= (3x2)− 4

= 3x2 − 4

(1.24)

Our final result is

k(x) = 3x2 − 4

Notes:
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We can see that j(x) and k(x) are very different funcࢢons; we already saw
that j(4) = 0, andwe can see that k(4) = 3(4)2−4 = 3(16)−4 = 48−4 = 44.

Funcࢢon composiࢢon is not limited to using different funcࢢons for the inside
funcࢢon and the outside funcࢢon. We could look at composiࢢons like f(f(x)),
g(g(x)), or h(h(x)). We work with these the same way we worked with f(g(x))
and g(f(x)); replace every x in the outside funcࢢon with the enࢢre inside func-
.onࢢ Nor is funcࢢon composiࢢon restricted to only two funcࢢons; we could look
at composiࢢons with many layers. Let’s take a look at an example with 3 layers.

Example 19 Composing Three Funcࢢons
Using f(x) and g(x) from above, determinem(x) = f(g(g(x))).

Soluࢢon With mulࢢple layers of composiࢢon, it’s typically easiest to
start on the inner layer first and then work your way out. Here the outermost
funcࢢon is f(x), then g(x) in themiddle, and g(x) on the inside. We already know
what g(x) looks like by itself, and the first composiࢢon we run into is g(g(x)).
Let’s call thisminside(x):

minside(x) = g(g(x)) = g(x− 4)
= (x− 4)− 4
= x− 4− 4
= x− 8

(1.25)

Just like before, we took the inside funcࢢon, (x − 4) and used it to replace
every x in the outside funcࢢon. Now, we’ve done the first layer of composiࢢon.
We can nowwritem(x) = f(g(g(x)) = f(minside(x)). Nowwe have one last com-
posiࢢon to worry about, with minside as the inside funcࢢon and f as the outside
funcࢢon:

m(x) = f(minside(x)) = f(x− 8)

= 3(x− 8)2

= 3(x− 8)(x− 8)

= 3(x2 − 16x+ 64)

= 3x2 − 48x+ 192

(1.26)

This gives our final result:

m(x) = 3x2 − 48x+ 192

Notes:
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Mulࢢple Combinaࢢons of Funcࢢons

We’ve talked about many different ways to combine funcࢢons. It is impor-
tant to note that all of the combinaࢢon methods can be mixed together. We
could create a combinaࢢon like f(x)[g(x)+h(x)]where we add g and h and then
mulࢢply the result with f, or a combinaࢢon like g(2f(x)) where we mulࢢply f by
a scalar and then use that as the input for g. As when we work with numbers,
we must sࢢll use our same order of operaࢢons rules when we work with func-
.onsࢢ For example, in the combinaࢢon [f(x) + g(x)][h(g(x))] we would need to
complete the combinaࢢons inside of each set of brackets before mulࢢplying the
results.
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Exercises 1.2
Terms and Concepts
1. What does “the funcࢢon f(t)” tell you that “the funcࢢon f”
does not?

2. T/F: If g(x) = x2, then g(2) = g(−2).

3. T/F: You can’t combine funcࢢons using both composiࢢon
and quoࢢents in the same funcࢢon.

4. T/F: In the combinaࢢon g(f(x)), f(x) is the input for g(x).

Problems
Let f(x) = x3, g(x) = x + 4, and h(x) = sin (x). Each of ex-
ercise 5 – 8 is some combinaࢢon of f(x), g(x), and h(x). De-
termine the type of combinaࢢon and write it using funcࢢon
notaࢢon. For example, x3 + x + 4 is the addiࢢon of f(x) and
g(x) and can be wri�en as f(x) + g(x).

5. x3
sin (x)

6. sin (x+ 4)

7. sin (x) + 4

8. (2x3)(x+ 4)

In exercises 9 – 11, determine the input variable of each func-
,onࢢ any parameters of the funcࢢon, and the type of func-
.onࢢ

9. C(A) = kε0A
d

10. v(t) = −9.8t+ v0

11. A(t) = P(1+ r
n )

nt

In exercises 12 – 17, evaluate the given expression.

12. Given f(x) = 2x2 and g(x) = x− b, find 5f(3a)− g(4)

13. Given f(x) = x2−3 and g(x) = x−b, find f(y+h)−3g(5)

14. Given f(x) = 5−x and g(x) = −x4+p, find f(y+h)−3g(y)

15. Given f(θ) = θ+3
θ−2 and g(θ) = θ2 + 4, find g(f(3))

16. Giveng(x) = x2−4 and f(x) =
√
x+ 8, find g(x+h)−2f(8)

17. Given f(y) = y−5 and g(y) = h−y2, find g(f(y))− f(g(y))

In exercises 18 – 21, determine the difference quoࢢent of
each of the following funcࢢons.

18. h(r) = 2r+ 4

19. g(y) = 4y− 7

20. y(x) = x2 + 6

21. f(t) = 4t2 + x
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1.3 Factoring and Expanding

First, we will look at how to correctly expand a product of polynomials. Once
we have discussed this skill, we will look at factoring polynomials. Expanding
and factoring are inverse ideas; both work with the same two forms and help
us switch back and forth between these two forms. Expanding works off of the
ideas we saw when we looked at order of operaࢢons, but typically involves vari-
ables or parameters in such a way that we can’t write the expression without
using addiࢢon or subtracࢢon.

Expanding

When we learn how to mulࢢply two two-digit numbers together, we are us-
ing the same ideas that get used in expanding. Let’s take our first look at howwe
will expand products of funcࢢons by seeing thosemethods, but withmulࢢplying
two two-digit numbers together instead of mulࢢplying two funcࢢons. This will
show you the methods we will use, but with a problem you already know how
to do. These methods will show you a new way of looking at this problem that
will help us expand funcࢢons correctly.

Example 20 Mulࢢplying Two Two-Digit Numbers
Evaluate (40+ 2)(30+ 1).

Soluࢢon Typically, we would start this problem by looking at our or-
der of operaࢢons. Our order of operaࢢons tells us to do everything inside the
parentheses first, which would give us (42)(31), and then we would mulࢢply
these. However, we are going to use the distribuࢡve property instead. The dis-
tribuࢢve property tells us that every term in the first set of parentheses must
get mulࢢplied with the second set of parentheses:

(40+ 2)(30+ 1) = 40(30+ 1) + 2(30+ 1)
= 40× 30+ 40× 1+ 2× 30+ 2× 1
= 1200+ 40+ 60+ 2
= 1302

(1.27)

A[ermulࢢplying the second set of parentheses by every term in the first set, we
then use the distribuࢢve property again. In this second step, we distributed 40
to both 30 and 1 and distributed 2 to both 30 and 1. A[er these mulࢢplicaࢢons
are formed, we end up with four terms. Here, all four terms are just numbers
and can be added together to get the final answer:

Notes:
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(40+ 2)(30+ 1) = 1302

Clearly, for this problem, this is not the easiest way to get the final answer,
but it illustrates how we can correctly use the distribuࢢve property. Use of the
distribuࢢve property becomes very important when we have variables or pa-
rameters involved and can’t simplify inside of the parentheses.

Example 21 Expanding the Product of Linear Funcࢢons
Expand f(x)g(x), where f(x) = 2x− 1 and g(x) = x+ 5.

Soluࢢon First, we need to make sure we are correctly using paren-
theses in this problem. We want to expand the product of f(x) and g(x), each of
which has two terms. This means that we need to include a set of parentheses
around f(x) and a set around g(x) to make sure the we mulࢢply with the whole
funcࢢon. A[er that, we will use the distribuࢢve property, just like we did in the
previous example.

f(x)g(x) = (2x− 1)(x+ 5)
= 2x(x+ 5)− 1(x+ 5)

= 2x2 + 10x− x− 5

= 2x2 + 9x− 5

(1.28)

Just like in our previous example, we distributed by first mulࢢplying each term
from the first set of parentheses to the second set of parentheses. In the end,
we were able to combine like-terms because we had two linear terms: 10x and
−x. No other terms could be combined because there was only one quadraࢢc
term and only one constant term, giving us a final answer of

f(x)g(x) = 2x2 + 9x− 5

Many people will skip the step of wriࢢng out 2x(x + 5) − 1(x + 5) and will
jump directly to 2x2 + 10x− x− 5. One way you can make this jump is by using
the acronym FOIL. FOIL stands for First, Outside, Inside, Last. It says that you
should mulࢢply the first term from each set of parentheses together, then the
“outside” terms, then the “inside” terms, and then the last terms. This works
very well when each set of parentheses only has two terms in it. However, if
the parentheses have more than two terms each, FOIL can be a bit mislead-
ing. Instead, we like to think about starࢢng with the first term in the first set

Notes:
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of parentheses and mulࢢplying it by the first term of the second set, then the
second term of the second set, then the third term of the second set, etc. Then,
we move to the second term in the first set, and do the same thing. Let’s see
this in acࢢon:

Example 22 Expanding the Product of Quadraࢢc Funcࢢons
Expand g(t)h(t) for g(t) = 2t2 + 3t+ 4 and h(t) = t2 − t− 3.

Soluࢢon Like before, weneed tomake sure to put parentheses around
each of the funcࢢons before we mulࢢply; this gives us:

g(t)h(t) = (2t2 + 3t+ 4)(t2 − t− 3)

= 2t2(t2 − t− 3) + 3t(t2 − t− 3) + 4(t2 − t− 3)

= 2t4 − 2t3 − 6t2 + 3t3 − 3t2 − 9t+ 4t2 − 4t− 12

= 2t4 + t3 − 5t2 − 13t− 12

(1.29)

Here we had a fair bit of combining of like-terms to take care of a[er we finished
mulࢢplying; there was one t4 term, two t3 terms, three t2 terms, two t terms,
and one constant term. A[er combining the like-terms, we get

g(t)h(t) = 2t4 + t3 − 5t2 − 13t− 12

In each of our examples so far, we’ve only worked with two sets of parenthe-
ses. We can expand on this process to work in situaࢢons where we have three
or more sets of parentheses. Personally, we like working from le[ to right, so
we start by expanding the first two sets of parentheses. Then, we take that re-
sult and expand it with the next set. We conࢢnue unࢢl everything has been
expanded. We make sure to combine like terms as part of each expansion be-
cause otherwise the numbers of terms gets really big, really fast. As we saw in
our expansion of quadraࢢcs, we had nine terms before we combined like-terms;
a[er combining, we only had five.

Example 23 Expanding with Three Set of Parentheses
Expand f(x)g(x)h(x) where f(x) = x− 4, g(x) = −x+ 3, and h(x) = 2x+ 1,

Soluࢢon We’ll work le[ right; we’ll expand the first two sets of paren-
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theses and then that result with the third set.

f(x)g(x)h(x) = (x− 4)(−x+ 3)(2x+ 1)

= (−x2 + 3x+ 4x− 12)(2x+ 1)

= (−x2 + 7x− 12)(2x+ 1)

= −2x3 − x2 + 14x2 + 7x− 24x− 12

= −2x3 + 13x2 − 17x− 12

(1.30)

Noࢢce that we did not show every single step of the process here. Realisࢢ-
cally, this is the level of detail you would typically see on this type of problem.
Unࢢl you are fully confident with the process we do recommend showing every
step, but once you are comfortable with the ideas, you can show work like we
did in this problem. Noࢢce that we did combine any like terms a[er the first
distribuࢢon step, and then again at the very end, giving us a final answer of

f(x)g(x)h(x) = −2x3 + 13x2 − 17x− 12

These methods will work, no ma�er how many sets of parentheses you are
working with and no ma�er how many terms are in each set. There are a few
other situaࢢons where we will need to use these techniques that may not be
obvious. For example, if we have f(x) = x+ 3 and g(x) = x2, we know that we
could combine these two funcࢢons in many ways. If we do the composiࢢon of
g with f, we would have g(f(x)) = (x+ 3)2. We could leave the funcࢢon in this
form, but there may be situaࢢons where we want to expand it. Here we would
need to remember that (x + 3)2 is the same as (x + 3)(x + 3), since squaring
means we should mulࢢply the term by itself. Similarly, if we have h(x) = x3 and
want to find the composiࢢon of h with f, we would have h(f(x)) = (x + 3)3, or
h(f(x)) = (x+ 3)(x+ 3)(x+ 3). Be careful in these situaࢢons to work one step
at a ;meࢢ many students are tempted to write things like (x+ 3)2 = x2 + 32 or
(x+ 3)3 = x3 + 33, but through the process of expanding, you can see that this
shortcut is no good because it gives us a false statement.

Common Expansion Pa�erns

There are some expansions that show up very frequently in mathemaࢢcs.
You may find it useful to memorize some of these pa�erns, however be sure to
expand each by hand at least once so that you can see and understandwhy these
pa�erns are correct. Here are three expansions that you may see frequently:

• (a+ b)2 = a2 + 2ab+ b2
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• (a+ b)(a− b) = a2 − b2

• (a+ b)3 = a3 + 3a2b+ 3ab2 + b3

In each of these pa�erns, a and b can be anything. Let’s take a look at working
with one of these pa�erns when a and b are a bit complicated.

Example 24 Expanding Using Expansion Rules
Using the expansion rules given above, expand (2xy− 3xyz)2

Soluࢢon Since here we are squaring, the closest form is the the first
rule, (a+ b)2 = a2 + 2ab+ b2. However, in the first rule, the terms are added,
and in our problem the second term is subtracted. However, we can fix this by
wriࢢng (2xy+(−3xyz))2 instead of (2xy−3xyz)2, since a and b can be anything,
posiࢢve or negaࢢve. Next, we need to idenࢢfy what we should use for a and for
b. In the rule, the first term is a, and our first term is 2xy, so we should use
a = 2xy. The second term in the pa�ern is b, and our second term is−3xyz, so
we should use b = −3xyz. Noࢢce that our b includes the negaࢢve. Now that
we’ve idenࢢfy the rule we need and every part of the rule, we can complete our
expansion. As we do this, we will put parentheses around each a and each b to
make sure everything gets used correctly.

(2xy− 3xyz)2 = (2xy+ (−3xyz))2

= (2xy)2 + 2(2xy)(−3xyz) + (−3xyz)2

= (2xy)(2xy) + 2(2xy)(−3xyz) + (−3xyz)(−3xyz)
= 4x2y2 − 12x2y2z+ 9x2y2z2

(1.31)

Noࢢce that we were very careful in the places where we were working with
negaࢢve signs. A common mistake is to leave off a negaࢢve sign, but this can
drasࢢcally change your final answer. Here, we can’t combine any terms because
the exponents on z are different for each of the terms, so our final answer is

(2xy− 3xyz)2 = 4x2y2 − 12x2y2z+ 9x2y2z2

Factoring

As menࢢoned at the start of this secࢢon, expanding and factoring are in-
verse acࢢons; expanding moves us from the product of polynomials to a single,
expanded, polynomial, and factoring moves us from that single expanded poly-
nomial back to the product of polynomials. We move back and forth between
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the two forms because someࢢmes one form is much more useful than another.
Expanding o[en comes in handy in calculus when you are taking derivaࢢves or
evaluaࢢng an integral, and factoring can be used to simplify raࢢonal funcࢢons
(funcࢢons that are the quoࢢent of polynomials) and to determine where a func-
onࢢ is equal to zero (also know as finding its roots). Mostly we will work on
factoring quadraࢢc and cubic funcࢢons; higher degree funcࢢons can be very dif-
ficult to factor and are only rarely need to be factored in calculus. Also, we will
only look at exampleswhere there is no obvious factor that is shared by all terms;
for example, h(t) = 2t3+14t2+20t has 2t as a factor for each term, so the first
step would be to factor out the 2t. This would give h(t) = (2t)(t2 + 14t+ 20).
Your first step in factoring should always be to look for common factors and deal
with those first. In this secࢢon, we will discuss how to find the less-obvious fac-
tors.

In order to factor, it is important to be comfortablewith expanding since they
are inverse acࢢons. We’ll start by looking at how to factor a quadraࢢc funcࢢon
where the leading term, x2 has a coefficient of one. Quadraࢢcs can’t always be
factored (we’ll get back to this later), but quadraࢢcs of this form are the easiest
to work with. When we factor a quadraࢢc, we will end up with the product of
two linear funcࢢons, called factors, if it is possible to factor the quadraࢢc. For
higher degree polynomials, our factors may be linear or quadraࢢc. A polynomial
can only have as many linear factors as its degree, so a cubic can have at most
three linear factors, and a fourth degree polynomial can have a most four linear
factors, Let’s take a quick look at what the product of two linear funcࢢon looks
like:

(x+ a)(x+ b) = x2 + bx+ ax+ ab

= x2 + (a+ b)x+ ab
(1.32)

Here, we are only looking at situaࢢonswhere a and b are both integers. They can
be posiࢢve, negaࢢve, or zero. Let’s idenࢢfy some key characterisࢢcs of equaࢢon
1.32. We see that in each linear term, x has a coefficient of one. In the expanded
form, the x2 comes from mulࢢplying the two x terms together, so it also has a
coefficient of one. In the expanded form, the constant term is a product of a
and b, and the x term’s coefficient is a + b. The combinaࢢon of these facts will
help us factor quadraࢢcs. We know that if we look at the constant term in the
expanded version, it will be the product of the constants from the linear terms.
This will give us a good starࢢng point to look for factors. We can then limit the
possibiliࢢes some by looking at the x term in the expanded form. Its coefficient
is the sum of these two constants. For example, if we have x2+ 5x+ 4, we have
several pairs of integers that could bemulࢢplied together to give us 4. Let’s look
at how we can eliminate some of these pairs:
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Example 25 Factoring a Quadraࢢc
Factor the quadraࢢc funcࢢon f(x) = x2 + 5x+ 4.

Soluࢢon Aswe noted above, the best starࢢng point is to look for pairs
of integers that we can mulࢢply to get the constant term. We know that to get
4, we could mulࢢply any of the following pairs to get 4:

(A) 4 and 1

(B) 2 and 2

(C) -4 and -1

(D) -2 and -2

Now, we’ll look at the x term in the quadraࢢc. It has a coefficient of 5, so we
need to figure out which pair of numbers will add up to 5. We can pre�y quickly
see that the only pair that can add up to 5 is 4 and 1. That tells us that the factors
of x2+5x+4 are x+4 and x+1. We o[en like to verify that we factored correctly
by mulࢢplying and expanding the factors. Let’s check:

(x+ 4)(x+ 1) = x2 + x+ 4x+ 4

= x2 + 5x+ 4
= f(x)

This verifies that our factors are correct, and verifies that our final answer is

x2 + 5x+ 4 = (x+ 4)(x+ 1)

Let’s look at a few more examples so that we can compare them and look
for some pa�erns that might help us factor more quickly.

Example 26 Factoring a Quadraࢢc
Factor the quadraࢢc funcࢢon g(x) = x2 − 5x+ 6.

Soluࢢon We’ll start likewe did in our last example by looking for pairs
of integers that mulࢢply to give us 6:

(A) 6 and 1

(B) 3 and 2

(C) -6 and -1

(D) -3 and -2

Out of these pairs, only -3 and -2 add to give us -5, the x coefficient in the
quadraࢢc. This tells us that the factors are x− 3 and x− 2. So, we have
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x2 − 5x+ 6 = (x− 3)(x− 2)

Example 27 Factoring a Quadraࢢc
Factor the quadraࢢc funcࢢon h(x) = x2 − 7x− 18.

Soluࢢon We’ll start likewe did in our last example by looking for pairs
of integers that mulࢢply to give us -18:

(A) -18 and 1

(B) -9 and 2

(C) -6 and 3

(D) -3 and 6

(E) -2 and 9

(F) -1 and 18

Out of these pairs, only -9 and2 add to give us -7, the x coefficient in the quadraࢢc.
This tells us that the factors are x− 9 and x+ 2. So, we have

x2 − 7x− 18 = (x− 9)(x+ 2)

Example 28 Factoring a Quadraࢢc
Factor the quadraࢢc funcࢢonm(x) = x2 + 3x− 18.

Soluࢢon We’ll start likewe did in our last example by looking for pairs
of integers that mulࢢply to give us -18:

(A) -18 and 1

(B) -9 and 2

(C) -6 and 3

(D) -3 and 6

(E) -2 and 9

(F) -1 and 18

Out of these pairs, only -3 and6 add to give us 3, the x coefficient in the quadraࢢc.
This tells us that the factors are x− 3 and x+ 6. So, we have

x2 + 3x− 18 = (x− 3)(x+ 6)
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Noࢢce that in examples 25 and 26, the constant term in the quadraࢢc is posi-
.veࢢ This tells us that our integers in our pairs both need to have the same sign.
What about in examples 27 and 28? What relaࢢonship does the constant in the
quadraࢢc have with the integers in our pairs? In examples 27 and 28, is there
anything about the coefficient on x in the quadraࢢc that relates to the signs of
the integers in the pairs? Youmay find idenࢢfying some of these pa�erns useful,
and it will help you understand the ideas in factoring more deeply. Don’t feel
like you have to memorize these pa�erns; it’s much be�er to be comfortable
with the process of factoring than to remember rules that you don’t understand
the applicaࢢon of.

Factors and Roots

Whenwe find the factors of a polynomial, we are only a couple of steps away
from finding the roots of the funcࢢon. The roots are the inputs of the funcࢢon
that have zero for their output. For example, f(x) = x2 + 5x + 4 from example
25 has x = −1 and x = −4 as roots because f(−1) = 0 and f(−4) = 0. We
saw in example 25 that the factors of f(x) are x+ 1 and x+ 4. We can use these
factors to find the roots and vice versa. If we set each factor equal to 0 and solve
for the input variable, x, we will get the roots of the funcࢢon:

x+ 1 = 0
x = −1

x+ 4 = 0
x = −4

Similarly, we can go backwards and find the factors from the roots:

x = −1
x+ 1 = 0

x = −4
x+ 4 = 0

This relaࢢonship between factors and roots is quite handy because there is a
nice formula that will help us determine the roots of a quadraࢢc: the quadraࢢc
formula. The quadraࢢc formula tells us that the roots of the funcࢢon f(x) =
ax2 + bx+ c are:

x =
−b±

√
b2 − 4ac
2a

(1.33)

The± sign tells us that we will have two roots; one root we find by using+ and
the second root we find by using −. This is a more compact way of expressing
the formula for the roots, rather than wriࢢng it as two separate formulas. The
quadraࢢc funcࢢon is quite useful when we can’t easily find the factors like in our
earlier examples. Problemswill rarely tell you that you need to use the quadraࢢc
formula; it is up to you to make that decision. In fact, some people prefer using
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the quadraࢢc formula all the meࢢ rather than factoring like we did earlier. Let’s
take a look at its use.

Example 29 Factoring a Quadraࢢc
Factor the quadraࢢc funcࢢon h(t) = 6t2 − 7t+ 2.

Soluࢢon Here, our funcࢢon has t instead of x, but it really is in the
form we need to use the quadraࢢc formula; we’ll just make sure to give the
answer with t instead of x. We’ll find our roots, and then use those to help us
find our factors. We’ll start by idenࢢfying the values for a, b, and c, and then
plugging them into the quadraࢢc formula. The coefficient on t2 is 6, so that tells
us a = 6. The coefficient on t is -7, so that tells us b = −7. Lastly, the constant
is 2, so c = 2. We’ll take these values and plug them into our formula:

t =
−(−7)±

√
(−7)2 − 4(6)(2)
2(6)

=
−(−7)±

√
49− 48

2(6)

=
−(−7)±

√
1

12

=
7± 1
12

From here, we’ll split into two formulas so we get both roots:

t =
7+ 1
12

=
8
12

=
2
3

t =
7− 1
12

=
6
12

=
1
2

This tells us our two roots: 12 and
2
3 . If we rewrite to find our factors, we get t−

1
2

and t− 2
3 as factors. However, These are not quite enough. If we mulࢢply them

out, t2 only has a coefficient of 1, not 6, like in h(t). This tells us that we also
have 6 as a factor, so our final answer is

h(t) = 6
(
t− 1

2

)(
t− 2

3

)

Many people might not like this final answer and may factor slightly differ-
ently. We could rewrite this answer a bit:

Notes:

41



Chapter 1 Numbers and Funcࢢons

h(t) = 6
(
t− 1

2

)(
t− 2

3

)
= 2× 3×

(
t− 1

2

)(
t− 2

3

)
=

[
2
(
t− 1

2

)][
3
(
t− 2

3

)]
= (2t− 1)(3t− 2)

Both of these answers are equally valid; some prefer the second form because
there are no fracࢢons. Some prefer the first form because it’s easier to idenࢢfy
the roots, t = 1

2 and t =
2
3 . Either way, the funcࢢon h(t) is considered factored.

Irreducible Quadraࢢcs

As we menࢢoned earlier, not all quadraࢢcs can be factored. If a quadraࢢc
cannot be factored, we say it is irreducible, meaning it can’t be “reduced” into
the product of linear funcࢢons. These quadraࢢcs can be idenࢢfied through use
of the quadraࢢc formula. If a quadraࢢc is irreducible, we’ll run into a problem
using the quadraࢢc formula. The discriminant, the part under the square root,
will be negaࢢve. This will tell us that the funcࢢon has no real number roots,
only a pair of imaginary roots. If you are factoring a polynomial and run into
an irreducible quadraࢢc, just leave it alone. The irreducible quadraࢢc would be
considered one of the factors of the polynomial.

Factoring Cubic Funcࢢons

Factoring cubic funcࢢons can be a bit tricky. There is a special formula for
finding the roots of a cubic funcࢢon, but it is very long and complicated. In fact,
it very rarely gets used. Instead, mathemaࢢcians build off of the ideas we’ve al-
ready learned this secࢢon. Typically, the first place to start with a cubic funcࢢon
is by finding one of the roots. To do this, we start by lisࢢng all integer factors
of the constant term. Then, we plug each of these factors into the funcࢢon to
see if any of them are roots. We start by trying the numbers that are easiest
to work with like 1, −1, and other small integers. Once we find one root, we’ll
stop plugging in factors of the constant term because we knowwe’ve found one
factor of the polynomial. Before we worry about the next step of the process,
let’s see this first step.

Example 30 Finding a Factor of a Cubic Funcࢢon
Find a factor of the funcࢢon f(x) = x3 + 8x2 + 21x+ 18.
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Soluࢢon Here, the constant term of the cubic is 18, so we’ll start by
lisࢢng all of its factors, posiࢢve and negaࢢve. The factors are: 18, 9, 6, 3, 2, 1,
-1, -2, -3, -6, -9, and -18. There are a bunch, so as menࢢoned above, we’ll start
by checking the “easy” numbers to see if any of them are roots.

• f(1) = (1)3 + 8(1)2 + 21(1) + 18 = 1+ 8+ 21+ 18 ̸= 0

• f(−1) = (−1)3 + 8(−1)2 + 21(−1) + 18 = −1+ 8− 21+ 18 ̸= 0

• f(−2) = (−2)3 + 8(−2)2 + 21(−2) + 18 = −8+ 32− 42+ 18 = 0

Since f(−2) = 0, we know that x = −2 is a root of f(x), telling us that

x+ 2 is a factor of f(x)

Noࢢce that in the previous example, we started with the easy numbers first.
Also, we can eliminate half of these factors pre�y quickly. In f(x), every term has
a posiࢢve coefficient. We know that if x is posiࢢve, x3 and x2 are also posiࢢve,
and we can’t add up a bunch of posiࢢve numbers and get 0, so we don’t need
to check any of the posiࢢve factors, only the negaࢢve factors.

This gives us one factor, but it doesn’t help us fully factor this polynomial. We
could try looking for other roots, but we already know that it’s possible to have
an irreducible quadraࢢc as a factor, or even just a quadraࢢc that doesn’t have
integer roots. The most reliable method of finding other the other factors of a
cubic is with polynomial long division. Polynomial long division works similarly
to regular long division with numbers. We’ll finish factoring f(x) = x3 + 8x2 +
21x+ 18 as an example, and we’ll describe each step in detail. First, we want to
start with the same kind of set up we use for long division, but this meࢢ we will
be dividing x3 + 8x2 + 21x+ 18 by x+ 2, the factor we already found.

Example 31 Factoring a Cubic Funcࢢon
Completely factor the funcࢢon f(x) = x3 + 8x2 + 21x+ 18.

Soluࢢon In example 30, we found that x = −2 is a root of f(x), telling
us that x+2 is a factor of f(x). Now that we have one factor, we can use polyno-
mial long division to help find the remaining factors. We’ll start by seࢰng up the
polynomial long division. The iniࢢal setup is just like long division with numbers:

|x+ 2|x3 + 8x2 + 21x + 18

With polynomial long division, we will focus on the highest power of x at
each step. Iniࢢally, the highest power term of our dividend, x3+ 8x2+ 21x+ 18
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is x3, and the highest power term of the divisor, x+ 2, is x. If we divide x3 by x,
we get x2. This will go above the line, and we will subtract x2(x+ 2) = x3 + 2x2
from the dividend:

x2
|x+ 2| x3 + 8x2 + 21x + 18
−(x3 + 2x2)

6x2 + 21x

When we do the subtracࢢon, we are le[ with 6x2, and we bring down the next
highest power term from the dividend, 21x. Again, we will only look at the high-
est power terms, 6x2, and x. If we divided 6x2 by x, we get 6x. This goes above
the line, and we will subtract 6x(x + 2) = 6x2 + 12x from what’s le[ of the
dividend:

x2 + 6x
|x+ 2| x3 + 8x2 + 21x + 18
−(x3 + 2x2)

6x2 + 21x
− (6x2 + 12x)

9x + 18

This subtracࢢon leaves us with 9x, andwe bring down the last term fromour div-
idend, 18. Looking at the highest power terms, we have 9x and x. If we divided
9xby x, we get 9. This goes above the line, andwewill subtract 9(x+2) = 9x+18
from what’s le[ of the dividend:

x2 + 6x+ 9
x+ 2| x3 + 8x2 + 21x + 18

−(x3 + 2x2)
6x2 + 21x

− (6x2 + 12x)
9x + 18

− (9x + 18)
0

A[er we complete the subtracࢢon, we get 0 and we have no other terms le[
from our dividend. This means we are done with the polynomial long division
and have no remainder. The lack of remainder verifies that x + 2 is a factor of
f(x); if there were a remainder, it would not be a factor. So far, we have that
f(x) = (x+ 2)(x2 + 6x+ 9).

We’re not quite done yet, becausewe have a quadraࢢc term, andwe haven’t
checked to see if we can factor it or if it’s irreducible. We’ll try to factor it first.
We see that the constant term is 9; our factor pairs of 9 are: 9 and 1, 3 and 3, -3
and -3, and -9 and -1. The pair 3 and 3 adds to 6, so we see that x2 + 6x+ 9 =
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(x + 3)(x + 3). We can condense this a li�le bit by wriࢢng (x + 3)2 instead of
(x+ 3)(x+ 3).

Altogether, we have that

f(x) = (x+ 2)(x+ 3)2

We won’t show how to factor polynomial with a degree higher than 3, but
the process is very similar. You would start by trying to find a root; once you find
a root you can rewrite to get a factor and you can do polynomial long division.
The polynomial long division will tell you a second factor. Keep repeaࢢng those
steps unࢢl you only have quadraࢢc and linear factors.

Factoring by Grouping

In some special circumstances, we can use a different method for factoring
cubics, called factoring by grouping. With this method, we will “group” the x3
and x2 terms together and factor out any common terms, and we will “group”
the x and the constant terms together and factor any common terms from those.
Thismethod is fast and efficientwhen itworks, but it does not alwayswork. We’ll
look at an example where it does work and one where it doesn’t.

Example 32 Factoring a Cubic Funcࢢon
Completely factor f(t) = t3 + t2 − 4t− 4.

Soluࢢon We will start by grouping and then factoring each group:

f(t) = t3 + t2 − 4t− 4 = (t3 + t2) + (−4t− 4)

= t2(t+ 1) + (−4)(t+ 1)

= t2(t+ 1)− 4(t+ 1)

= (t2 − 4)(t+ 1)

Noࢢce that a[er factoring each group, we were le[ with t + 1 for each. This
means that t + 1 is a factor of f(t). What we factored out, t2 and −4, combine
to give us another factor, t2 − 4. This is a quadraࢢc, so we need to see if it can
be factored. The factor pairs of the constant, −4, are -4 and 1, -2 and 2, and -1
and 4. We see that -2 and 2 add to zero, telling us that the factors of t2 − 4 are
t− 2 and t+ 2. In total, we get

f(t) = (t+ 1)(t− 2)(t+ 2)
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To see an example where factoring by grouping doesn’t work, let’s look back
at the funcࢢon from Example 31, f(x) = x3 + 8x2 + 21x + 18. We can start by
grouping and factoring each group:

f(x) = x3 + 8x2 + 21x+ 18 = (x3 + 8x2) + (21x+ 18)

= x2(x+ 8) + 3(7x+ 6)

Noࢢce that what’s le[ a[er pulling out the common factors are x + 8 and
7x + 6. These are two very different terms, and neither looks like any of the
factors we found earlier: x + 2 and x + 3. Since these are different, we are
not able to find any factors of f(x) this way. It can be a good idea to try out
factoring by grouping before diving into the polynomial long division method,
but factoring by grouping is not guaranteed to help you find the factors of your
funcࢢon. As we saw in Example 32, when factoring by grouping works, it works
well and is very quick, but it’s downfall is that it is not guaranteed to find a factor.

Common Pa�erns

In our secࢢon on expanding, we saw some common pa�erns that can be
used as shortcuts when expanding certain forms. These pa�erns work equally
well in the opposite direcࢢon; if we see something that fits one of the expanded
forms, we’ll know from the pa�ern what the factors are. Here are those pat-
terns, and a few others, wri�en with the expanded form first.

• a2 + 2ab+ b2 = (a+ b)2

• a2 − b2 = (a+ b)(a− b)

• a3 + 3a2b+ 3ab2 + b3 = (a+ b)3

• a3 + b3 = (a+ b)(a2 − ab+ b2)

• a3 − b3 = (a− b)(a2 + ab+ b2)

It’s good to note here that a and b can be anything, integers or decimals,
posiࢢve or negaࢢve, and they can include variables. For example, a[er com-
pleࢢng the polynomial division, we ended up with f(x) = (x + 2)(x + 6x + 9).
The quadraࢢc fits one of our pa�erns: if we let a = x and b = 3, it fits the first
pa�ern. This pa�ern then tells us that x2 + 6x + 9 = (x + 3)3, which we were
able to find with our earlier methods. Memorizing these pa�erns can be useful
and save some ,meࢢ but it’s much more important to be comfortable with the
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other methods we discussed. Let’s take a look at an example of using a pa�ern
where a and b are a bit more complicated.

Example 33 Factoring Using Pa�erns
Factor g(t) = 8t3 − 1

27 completely.

Soluࢢon Here we see that g(t) has only two terms, and that one of
them has t3. This points me towards the last two pa�erns: they both have parts
raised to the third power and only have two terms each. With g(t), we have
subtracࢢon, not addiࢢon, so this points us to the last rule. We need to figure
out what a and b could be. The pa�ern starts with a3 and g(t) starts with 8t3,
so it looks like we have a3 = 8t3. This works out if a = 2t since (2t)3 = 8t3.

Next, we need to figure out b. The second term in the pa�ern is b3 and the
second term in g(t) is 1

27 . This tells us that b
3 = 1

27 , or that b = 1
3 .

Now, we can use the pa�ern:

g(t) = 8t3 − 1
27

= (2t)3 −
(
1
3

)3
=

[
2t− 1

3

][
(2t)2 + (2t)

(
1
3

)
+

(
1
3

)2]
=

(
2t− 1

3

)(
4t2 +

2t
3

+
1
9

)
Wedon’t need to go any further. Normally, wewould check to see if the quadraࢢc
can be factored or if it is irreducible, but the pa�erns have all been fully reduced,
meaning that we will never be able to factor the quadraࢢc in this pa�ern.

Notes:
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Exercises 1.3
Terms and Concepts
1. In your own words, explain the relaࢢonship between fac-
tors and roots.

2. If x = 2, x = 5,and x = −1 are the only roots of the func-
onࢢ f(x), what are the factors of f(x)?

3. What does it mean for a quadraࢢc to be irreducible?

4. What is the maximum number of linear factors that g(t) =
t6 + t4 − 2t2 + 1 could have?

5. What is the maximum number of roots that g(t) = t6 +
t4 − 2t2 + 1 could have?

Problems
In exercises 6 – 12, expand and simplify the given expressions.

6. 3a(2b+ 5)(a− 2b)

7. (2t+ 7)2

8. 2(x2 + 3x+ 4)(2x+ 3)

9. (t2 − 3t+ 1)(2t)− (t2 + 2)(2t− 3)

10. (x3 + x− 2)(2)− (2x+ 1)(3x2 + 1)

11. (x2 + 3x− 1)(4x) + (2x2 − 5)(2x+ 3)

12. 3(θ2 + 4)2(2θ)

In exercises 13 – 20, factor each funcࢢon completely.

13. g(x) = 4x2 + 4x+ 1

14. y(z) = z2 − 7z+ 10

15. f(k) = k4 − 27k

16. θ(γ) = 6γ2 − γ − 2

17. x(z) = 3z3 + 6z2 − 24z

18. y(x) = x3 + 8

19. f(x) = 2x3 − x2 − 5x− 2

20. f(y) = y3 − 5y2 − 2y+ 24

In exercises 21 – 24, determine the difference quoࢢent of the
given funcࢢon.

21. g(t) = t3 + 1

22. y(x) = 2x2 − 5

23. f(x) = x3 + x2 − x

24. g(x) = 4x2 + 2x

In exercises 25 – 27, find all real roots of the given funcࢢon.

25. g(x) = 4x2 + 2x

26. f(x) = x3 + x2 − x

27. y(x) = 4x2 − 5

In exercises 28 – 30, factor the given funcࢢon, and relate the
factors with the roots found in exercises 25 -27.

28. g(x) = 4x2 + 2x

29. f(x) = x3 + x2 − x

30. y(x) = 4x2 − 5
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1.4 Radicals and Exponents

1.4 Radicals and Exponents

In this secࢢon, we will look at properࢢes of exponents. Here, these rules apply
to any type of funcࢢon that involves exponents, namely power funcࢢons and
exponenࢢal funcࢢons. However, this secࢢon will mostly focus on power func-
,onsࢢ funcࢢons where the base is the variable and the exponent is a constant.
We’ll discuss several exponent rules, show you how to use them, and explain
the reasoning behind these rules.

In this secࢢon, we are assuming that all variables are strictly pos-
iࢢve, meaning that they cannot be negaࢢve nor can they be zero.

This is to ensure that we won’t run into any issues with dividing by zero or trying
to take a square root of a negaࢢve number. Later, when we discuss funcࢢons
domains, we will revisit these problems and explain how to deal with general
variables and not just variables that are strictly posiࢢve. Before we dive into the
different rules, we need to have a solid understanding of what exponents are
and what they mean.

When we first start learning math, we o[en start with addiࢢon. We then
quickly see that repeated addiࢢon can be useful. We run into problems like:
“You have 4 dogs and want to give each dog 3 treats. How many treats do you
need?” We solve these with repeated addiࢢon: 3 + 3 + 3 + 3 = 12, or three
treats for each of the four dogs. We then learn that repeated addiࢢon happens
o[en, so we develop a new notaࢢon, mulࢢplicaࢢon. For our example problem,
we would do 3× 4 to say we need to add three, four .mesࢢ Exponents take this
one step further. When we need to do repeated mulࢢplicaࢢon, like if we need
to find the volume of a cube, we can shorten the notaࢢon by using exponents.
To find our volume, we would mulࢢply the side length by itself three mesࢢ to
get length mesࢢ width mesࢢ height, but with a cube these lengths are all the
same. We can write V(x) = (x)(x)(x) = x3. Here, the exponent tells us how
many mesࢢ to do the mulࢢplicaࢢon.

The first exponent rule we will examine is

xaxb = xa+b (1.34)

Here, the first term, xa tells us tomulࢢply x by itself a mesࢢ and the second term
tells us to mulࢢply it b .mesࢢ Together, that says we need to mulࢢply x a total
of a+ b ,mesࢢ giving us xa+b. As an example, x2x3 = x2+3 = x5.

Next, let’s look at

x−a =
1
xa

(1.35)

Notes:
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This rule build off of our last rule. If we have x5x−2, rule 1.34 tells us we really
have x5+(−2) = x5−2 = x3. We went from having xmulࢢplied 5 mesࢢ to having
xmulࢢplied only 3 terms, meaning we have removed two of the mulࢢplicaࢢons.
We removed a mulࢢplicaࢢon through a division:

x5

x2
=

(x)(x)(x)(x)(x)
(x)(x)

= (x)(x)(x) = x3

This shows us that a negaࢢve exponent tells us we have division rather thanmul-
.onࢢplicaࢢ We can also combine this rule with some of our rules from fracࢢons.
If we have 1

x−a , we can start by replacing x−a with 1
xa . This gives us

1
x−a =

1
1
xa

From our fracࢢons rules, we know that dividing by a fracࢢon is the same as mul-
plyingࢢ by its reciprocal, so we have

1
x−a =

1
1
xa

= 1× xa

1
= xa

The third rule we will discuss is

(xa)b = xab (1.36)

This rule builds directly off of our first rule as well. (xa)b tells us we need to
mulࢢply xa by itself b .mesࢢ Since xa mulࢢplies x by itself a ,mesࢢ (xa)b tells us
to mulࢢply x by itself a total of ab .mesࢢ For example, (x2)3 = (x2)(x2)(x2) =
x2+2+2 = x(2)(3) = x6. We can also use this rule when there is a product or
quoࢢent inside the parentheses, but not if there is an addiࢢon or subtracࢢon.

For example, we can say that (x2y3)2 = (x2)2(y3)2 = x4y6, and that

(
x2

y3

)2

=

(x2)2

(y3)2
=

x4

y6
, but we cannot apply this rule to (x2 + y3)2. Here, we would need

to rewrite as (x2+ y3)(x2+ y3) and distribute as we saw in our previous secࢢon
on expanding.

Our last rule focuses on the inverse funcࢢon, or how to “undo” an exponent.
We’ve seen these funcࢢons before. These are our root funcࢢons. A square root
“undoes” squaring and a cube root “undoes” cubing. In general, we have

Notes:
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(xa)1/a = x (1.37)

and

(x1/a)a = x (1.38)

Both of these come from rule 1.36. Addiࢢonally, you might see x1/a wri�en as
a
√
x. Mathemaࢢcians call a

√
x the radical form and x1/a the exponenࢡal form.

Both of these have the same meaning, they just look a bit different. Anyࢢme
you see a

√
x, you can replace it with x1/a and vice versa.

These rules will all be quite handy in calculus. In both integral and differen-
alࢢ calculus, we will have rules that work well when we have a power funcࢢon,
but won’t work for other forms of funcࢢons. By being able to rewrite funcࢢons
like f(x) = 1

x2 , as power funcࢢons (f(x) = x−2 here), other calculaࢢons will be
simplified. Our rules are summarized below.

Exponent Rules

• xaxb = xa+b

• x−a =
1
xa

•
1

x−a = xa • (xa)b = xab

• x1/a = a
√
x

Let’s look at a few examples of working with exponent rules.

Example 34 Simplifying Exponents

Simplify

(
x2y4

x
√
y

)2

Soluࢢon Anyࢢmewe simplify, we need to remember our order of op-
eraࢢons. The order of operaࢢons tells us to start with terms that are inside of
parentheses, so we will work on simplifying the fracࢢon before we worry about
the exponent on the outside. First, we will write everything using exponents
rather than radicals so we can use our exponent rules more easily in the rest of
the problem. (

x2y4

x
√
y

)2

=

(
x2y4

xy1/2

)2

Next, wewill eliminate the fracࢢonby using negaࢢve exponents on the terms
that are in the denominator. A[er rewriࢢng, we will combine any like terms.

Notes:
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(
x2y4

xy1/2

)2

=
(
x2y4x−1y−1/2

)2
=
(
x2x−1y4y−1/2

)2
=
(
x2−1y4−1/2

)2
=
(
x1y8/2−1/2

)2
=
(
xy7/2)2

Now that everything inside the parentheses is simplified asmuch as possible,
we will use our third exponent rule to finish simplifying. Our third rule says that
(xa)b = xab. We need to make sure we distribute the exponent that is outside
of the parentheses to each term inside of the parentheses. This give us

(
xy7/2

)2
= (x)2(y7/2)2

= x2y14/2

= x2y7

So, in the end, we get that

(
x2y4

x
√
y

)2

= x2y7

Example 35 Simplifying Exponents

Simplify
(√

y+
√
x
)2
.

Soluࢢon We’ll start again by focusing on the terms inside the paren-
theses and rewriࢢng all radicals as exponents. This gives us(√

y+
√
x
)2

=
(
y1/2 + x1/2

)2
There is nothing thatwe can simplify inside the parentheses, sowenowneed

to apply the exponent on the outside of the parentheses. Inside the parentheses

Notes:
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1.4 Radicals and Exponents

we have two terms that are added, so we can’t apply an exponent rule here. We
will need to rewrite and then expand.

(
y1/2 + x1/2

)2
=
(
y1/2 + x1/2

)(
y1/2 + x1/2

)
= (y1/2)2 + 2y1/2x1/2 + (x1/2)2

= y+ 2y1/2x1/2 + x

We don’t have any like terms, so we can’t simplify any further. We could
rewrite slightly, but this is a ma�er of personal preference. We have three other
ways we could write this final answer. We could use exponent rules to rewrite
the middle term since y1/2x1/2 = (yx)1/2, giving us y + 2(yx)1/2 + x. We could
also use radicals andwrite either y+2

√
y
√
x+x or y+2

√
yx+x. All of these four

answers are fully simplified, and are equally valid. Probably the most common
form is

(√
y+

√
x
)2

= y+ 2
√
yx+ x

Many people struggle with evaluaࢢng radicals or fracࢢonal exponents by
hand. Let’s take a look at how we can evaluate these types of terms.

Example 36 Evaluaࢢng Radicals
Evaluate 82/3.

Soluࢢon As first glance, this looks like we won’t be able to do much
with it. However, we can use our exponent rules to help us evaluate it. We can
rewrite this as (82)1/3 or as (81/3)2. We prefer the second version. With the first
version we would have (82)1/3 = (64)1/3, but this is tricky to deal with by hand
because not many people have perfect cubes memorized, so we would need to
factor 64.

If we use the second version, (81/3)2, we would start by finding the cube
root of 8. When we factor, we get 8 = 2× 2× 2, which show us that 2 = 81/3.
This gives us (81/3)2 = (2)2 = 4, so our final answer is

82/3 = 4

Notes:
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Exercises 1.4
Terms and Concepts

1. Do exponent rules apply to root funcࢢons? Explain.

2. Explain why a negaࢢve exponents moves the term to the
denominator and gives it a posiࢢve exponent.

3. Is 3x(2x+ 3)−5/3 in radical or exponenࢢal form?

4. Is
3x

3
√

(2x+ 3)5
in radical or exponenࢢal form?

Problems
In exercises 5 – 7, write the given term without using expo-
nents.

5. (8x1 − 5x2 + 11)−1/3

6. (−2x+ y)−1/5

7. (5x− 2)1/4

In exercises 8 – 10, simplify and write the given term without
using radicals.

8.

(
√
x+

1√
x

)2

9. (
√
x)2 +

(
1√
x

)2

10.

(
3
√
x+ 1

)3

In exercises 11 – 17, simplify the given term and write your
answer without negaࢢve exponents.

11.

(
−5x−1/4y3

x1/4y1/2

)2

12.

(
−2x2/3y2

x−2y1/2

)6

13.

(
−3s2/3t2

4s3t5/3

)3

14. −3(x2 + 4x+ 4)−4(2x+ 4)

15.
1
3
(x4)−2/3(4x3)

16.
(ex+3)2

e−x

17.
ex

2−1

ex+1

In exercises 18 – 20, simplify and write the given term in ex-
ponenࢢal form.

18.
4x− 1

3
√

(3x+ 2)2

19. 3

√√√√(e4θ−6y2

eθy−4

)

20. 4

√√√√( x2y5

y−3

)2
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1.5 Logarithms and Exponenࢢal Funcࢢons
In this secࢢon, we will discuss logarithmic funcࢢons and exponenࢢal funcࢢons.
The exponent rules we learned last secࢢon also apply to the exponents we see in
exponenࢢal funcࢢons, so here we will focus on the relaࢢonship between expo-
nenࢢal and logarithmic funcࢢons. As we menࢢoned previously, these funcࢢons
are inverses of each other, in the same sense that square roots and squaring are
inverses of each other.

Logarithmic funcࢢons and exponenࢢal funcࢢons are both used to describe
many applicaࢢons such as populaࢢon growth and value of investments over
.meࢢ Logarithmic are very prevalent in later courses like differenࢢal equaࢢons,
so a solid understanding of their properࢢes now will help you prepare for these
later courses.

TheRelaࢢonship Between Logarithmic and Exponenࢢal Funcࢢons

Wesawearlier that an exponenࢢal funcࢢon is any funcࢢonof the form f(x) =
bx, where b > 0 and b ̸= 1. A logarithmic funcࢢon is any funcࢢon of the form
g(x) = logb (x), where b > 0 and b ̸= 1. It is no coincidence that both forms
have the same restricࢢons on b because they are inverses of each other. This
means that, for the same value of b, blogb (x) = x for x > 0 and logb bx = x.

We also discussed two commonly used logarithmic funcࢢons that have spe-
cial notaࢢon. The logarithmic funcࢢon f(x) = log (x) is a special way of wriࢢng
f(x) = log10 (x) and g(x) = ln x is a special way of wriࢢng g(x) = loge (x). These
also have special names; log (x) is called the common logarithm and ln (x) is
called the natural logarithm. Note that e is just a number: e ≈ 2.71828; e is an
irraࢢonal number, just like π, meaning it can’t be wri�en as a fracࢢon of whole
numbers.

Let’s look at some concrete examples to help illustrate this relaࢢonship. Let’s
look at b = 2. For b = 2, f(x) = 2x. Then, we can see that f(3) = 23 = 8. Since
they are inverse funcࢢons, g(8) = log2 (8) = 3. In general this is explained as:

If a = bc, then c = logb (a). (1.39)

newpage
Another way of thinking about it is to use the quesࢢon “y is b raised to what

power?” when you see logb (y). For example, when we see log2 (16), we ask
“16 is 2 raised to what power?” Through a bit of guess and check we get 21 = 2,
22 = 4, 23 = 8, and 24 = 16. This tells us that 2 raised to the 4th power gives
us 16, so log2 (16) = 4. Let’s look at a few more examples.

Example 37 Evaluaࢢng Logarithmic Funcࢢons
Evaluate each of the following statements:

Notes:
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1. log3 (9)

2. log3
(
1
9

)
3. log9 (3)

4. log2 (2)

5. log2
(
1
2

)
6. log2 1

Soluࢢon We’ll work on these one at a .meࢢ

1. For this statement, we are answering the quesࢢon “9 is 3 raised to what
power?” We can see through a li�le bit of trial and error that 32 = 9, so
we get that

log3 (9) = 2

2. For this statement, we are answering the quesࢢon “ 19 is 3 raised to what
power?” We saw in the previous quesࢢon that log3 (9) = 2 which gives
us a hint that our answer is related to 2, but that we need 32 to be in the
denominator. Since 3−2 = 1

9 , we get that

log3

(
1
9

)
= −2

3. For this statement, we have a different base. Here our base is 9, so we are
answering the quesࢢon “3 is 9 raised to what power?” You may recognize
that

√
9 = 3; we saw in our last secࢢon that another way of wriࢢng

√
9 is

91/2. This tells us that

log9 (3) =
1
2

4. For this statement, we are answering the quesࢢon “2 is 2 raised to what
power?” We can quickly see that 21 = 2, so we get that

log2 (2) = 1

Notes:
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5. For this statement, we are answering the quesࢢon “ 12 is 2 raised to what
power?” This one is a bit tricky, but we’ve seen something similar in ques-
onࢢ 2. In quesࢢon 2, we saw that because we had a fracࢢon with a power
of 3 (the base we were working with) in the denominator, that our final
answer was negaࢢve. Here if we try 2−1, we get 12 . This tells us that

log2

(
1
2

)
= −1

6. For this statement, we are answering the quesࢢon “1 is 2 raised to what
power?” We know our answer can’t be a posiࢢve integer because 2 raised
to a posiࢢve integer gets bigger, andwe know it can’t be a negaࢢve integer
since 2 raised to a negaࢢve integer gives numbers less than 1. Let’s see
what happens if we try zero: 20 = 1, so we have that

log2 (1) = 0

We recommend looking through these quesࢢons and idenࢢfying pa�erns.
When did we get a posiࢢve answer? When did we get a negaࢢve answer? When
did we get a fracࢢonal answer? Can you try out some similar problems and
see if your answers fit the pa�erns you idenࢢfied? We didn’t have any answers
that were negaࢢve fracࢢons; can you come up with such a problem? Noࢢce
that all of our quesࢢons had posiࢢve inputs; it is not possible to find an answer
with a negaࢢve input. Why? Let’s think back to the quesࢢon we asked for each
problem above. If we try to evaluate log2 (−2) we would ask “-2 is 2 raised to
what power?” Is there an exponent, say x, where 2x = −2? No! We can’t take
a posiࢢve number and raise it to a power and end up with a negaࢢve number.

Logarithm Rules

We have five main rules that we will need to use when working with log-
arithms. These rules are all based off of the rules we have for exponents. Be
sure to be careful of the details in each of these rules; in some of them all of
the logarithms have the same base, but in others the base changes to show the
relaࢢonship between different logarithmic funcࢢons. As we have already seen,
the base plays a big role in the specific meaning of the funcࢢon, so be aware
of the rules that have the same base everywhere and the rules where the base
changes. Addiࢢonally, remember that every basemust be posiࢢve and not equal
to one; also, all inputs must be posiࢢve.

Notes:
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• logb (xa) = a logb (x)

• logb (xy) = logb (x) + logb (y)

• logb

(
x
y

)
= logb (x)− logb (y)

• loga (b) =
1

logb (a)

• logb (x) =
logc (x)
logc (b)

All of these rules can be used in either direcࢢon; you can start with the form
on the le[ and rewrite as the form on the right or you can start with the form
on the right and rewrite as the form on the le[. We won’t explain all of these in
detail, but we will illustrate examples for the first two.

With the first rule, we can get insight from the quesࢢon we used earlier to
evaluate our logarithms. We’ll look at a concrete example rather than a general
case. Suppose we want to evaluate log2 (84). Before we get to our quesࢢon,
let’s rewrite this a bit. We can write log2 (84) = log2 ((23)4) since 8 = 23. Next,
we can use our exponent rules to get log2 ((23)4) = log2 (212). Now, answering
our quesࢢon “ 212 is 2 raised to what power?,” we get 12. So, overall, we have
log2 (84) = 12. Now, working on the other side, we have

12 = 4× 3
= 4 log2 (8)

Puࢰng both pieces together, we have log2 (84) = 4 log2 (8).
The second rule also follows from exponent rules. Let’s take a look:

log2 (23) + log2 (24) = 3+ 4 from the definiࢢon of log base 2
= 7

= log2 (27)

= log2 (23 × 24) from our exponent rules

We illustrated each of these rules using some easy to work with values, but
they are true for all values, as long as we have a posiࢢve base that is not one
and avoid negaࢢve inputs. The other rules can all be illustrated in similar ways.
(Note: you may want to try to come up with your own examples for these rules
to help you understandwhy these rules are true.) Let’s look at an examplewhere
we put these rules to use.

Notes:
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Example 38 Combining Logarithms
Write 5 log2 (x) + 3 log2 (2y) as a single logarithm.

Soluࢢon Currently, this term is the sum of two logarithms, both with
the same base, and we want to write it as a single logarithm. It looks like we
may want to start with the second rule, logb (xy) = logb (x) + logb (y). It looks
like we are already in the form on the right side. However, there is one issue.
Currently, both of our logarithms are mulࢢplied by a constant, and the second
rule doesn’t have coefficients on the logarithms. We’ll need to use the first rule
to move these coefficients inside of the logarithms before we use the second
rule. We get

5 log2 (x) + 3 log2 (2y) = log2 (x5) + log2 ((2y)3)

= log2 (x5) + log2 (8y3)

= log2 [(x5)(8y3)]

= log2 (8x5y3)

Noࢢce that when the 3 on the second term came inside, we were careful to
apply it as an exponent to everything inside of the logarithm, and not just the y.
We get that

5 log2 (x) + 3 log2 (2y) = log2 (8x5y3)

Someࢢmes we will want to go in the opposite direcࢢon and split a single
logarithm into the sum or different of many logarithms. Let’s take a look at an
example.

Example 39 Spliࢰng Logarithms

Expand ln

(
2x3y3

wz5

)
into the sum and/or difference of mulࢢple logarithms.

Soluࢢon Here, we want to rewrite as many simpler logarithms. First,
we see that the logarithms has a quoࢢent inside, so we can use the third rule to
split it:

ln

(
2x3y3

wz5

)
= ln (2x3y3)− ln (wz5)

Notes:
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Now, we have products inside of both terms, so we can use the second rule
to split these:

ln (2x3y3)− ln (wz5) = ln (2) + ln (x3y3)− ln (wz5)

= ln (2) + ln (x3) + ln (y3)− ln (wz5)

= ln (2) + ln (x3) + ln (y3)− [ln (w) + ln (z5)]

= ln (2) + ln (x3) + ln (y3)− ln (w)− ln (z5)

Now, for the last step, we can bring the exponents to the outside of each
term, giving us

= ln (2) + 3 ln (x) + 3 ln (y)− ln (w)− 5 ln (z)

Noࢢce that we were careful to use parentheses around ln (wz5) when we
split it because of the negaࢢve sign. In the original form we are dividing by w
and by z3 so we need to make sure both of these terms are subtracted when
we split the logarithms. Also, we did not evaluate ln (2). Since ln (2) is really
loge (2) and 2 is not made by raising e to an integer or fracࢢon, ln (2) is a non-
repeaࢢng decimal. This means it is be�er to leave ln (2) in our answer than to
use a calculator to evaluate it because this form ismore precise. This means that
our final answer is

ln

(
2x3y3

wz5

)
= ln (2) + 3 ln (x) + 3 ln (y)− ln (w)− 5 ln (z)

Solving Exponenࢢal Statements

Logarithms are also used to solve exponenࢢal statements, statementswhere
the variable is part of an exponent. When solving an exponenࢢal statement, we
first need to isolate the exponenࢢal term. Oncewehave isolated the exponenࢢal
term, we can take a logarithm of both sides. We don’t want to take just any
logarithm, we want to use a logarithm that has the same base as the exponent
so that we can easily simplify our final answer. A[er we have taken a logarithm
of both sides, we can use our logarithm rules to bring the exponent (which has
the variable) outside of the logarithm so that we can solve for the variable. Let’s
take a look.

Example 40 Solving an Exponenࢢal Statement
Solve 53x−1 − 2 = 0 for x.

Notes:
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Soluࢢon First, we will need to isolate the exponenࢢal term, 53x−1.
Then, we will take log base 5 of both sides since the exponent has 5 as its base.

53x−1 − 2 = 0

53x−1 = 2

log5
(
53x−1

)
= log5 (2)

Now, wewill use our logarithm rules to bring x outside of the logarithm. This
gives

(3x− 1) log5 (5) = log5 (2)
(3x− 1)(1) = log5 (2)

3x− 1 = log5 (2)
3x = log5 (2) + 1

x =
log5 (2) + 1

3

Noࢢce that when we brought the exponent outside of the logarithm, we
kept the enࢢre exponent inside of parentheses. This is to make sure that we do
not incorrectly distribute terms. Addiࢢonally, noࢢce that our final answer sࢢll
includes a logarithm term. This is because log5 (2) does not evaluate to a “nice”
number, so it is more precise to write our final answer this way rather than using
a calculator or computer to evaluate that term. Our final answer is

53x−1 − 2 = 0 solves to give x =
log5 (2) + 1

3

Noࢢce that in this example, we end up with log5 (5) as part of our work. We
know that this simply evaluates to 1. This is why we used log base 5, and not a
different logarithm. Any logarithm would allow us to solve for x, but using log
base 5 makes it easier to simplify our final answer.

Someࢢmes you will need to solve for a statement that has two exponenࢢal
terms. When this happens, you may be able to employ a useful technique to
solve. Let’s take a look at an example.

Example 41 Solving an Exponenࢢal Statement
Solve 42y+1 = 2y−1 for y.

Notes:

61



Chapter 1 Numbers and Funcࢢons

Soluࢢon With these types of problems, wewant to look at both bases
and see if they are related in any way. Here, we have a base of 2 on the right
and a base of 4 on the le[. You’ll probably noࢢce that 4 = 22; we can use this
to our advantage when solving. Let’s start by rewriࢢng our statement using this
fact.

42y+1 = 2y−1

(22)2y+1 = 2y−1

22(2y+1) = 2y−1

24y+2 = 2y−1

Noࢢce thatweare using our exponent rules here, specifically the rule (xa)b =
xab. This allows us to rewrite the statement so that both terms have the same
base. Since the two terms have the same base and are equal to each other, we
know that they must have equal exponents. This gives us

4y+ 2 = y− 1
3y = −3
y = −1

Our final answer is

42y+1 = 2y−1 solves to give y = −1

We could solve this problemwithout using this technique. Wewouldwant to
take either log base 2 of both side or log base 4 of both sides. Then, we would
need to use logarithm rules to simplify and bring the y terms outside of the
logarithm before we solve. Both methods result in the same answer; you can
pracࢢce your logarithm skills by using this alternaࢢve method and comparing
your final answer to the one above; they should be idenࢢcal.

Solving Logarithmic Statements

A logarithmic statement is a statement in which the variable of interest is
an input to a logarithm. As we know, logarithms and exponenࢢal funcࢢons are
closely related, so it’s no surprise that we will use exponenࢢal funcࢢons to help
solve logarithmic statements. Here, we will again use the fact that they are in-
verse funcࢢons, as shown by our definiࢢon of a logarithm. Let’s look at an ex-
ample.

Notes:
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Example 42 Solving a Logarithmic Statement
Solve log5 (2x+ 3) = 2 for x.

Soluࢢon Here, the logarithm is already isolated on one side, so we
can start off by using the definiࢢon of logarithms shown in equaࢢon 1.39 to
remove the logarithm from our equaࢢon.

log5 (2x+ 3) = 2, then, from our definiࢢon,

2x+ 3 = 52

2x+ 3 = 25
2x = 22
x = 11

Our final answer is

log5 (2x+ 3) = 2 solves to give x = 11

Remember when working with either logarithms or exponenࢢal funcࢢons
that they are strongly edࢢ together: when solving a logarithmic statement we
need to use exponents and when solving exponenࢢal statements we need to
use logarithms.

Notes:
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Exercises 1.5
Terms and Concepts

1. Explain the relaࢢonship between logarithmic funcࢢons and
exponenࢢal funcࢢons.

2. What quesࢢons are you answering when you evaluate
log5 (25)?

3. What is the value of the base for ln (x)?

4. Explain why logarithms help solve exponenࢢal statements.

Problems
Evaluate the given statement in exercises 5 – 8.

5. log3 (81)

6. ln (e5.7)

7. e− ln (x)

8. 4log2 (2
2)

Write the given statement as a single simplified logarithm in
exercises 9 – 12.

9. 4 log3 (2x)− log3 (y
2)

10.
2
3
ln (x) + 3 ln (2y)

11. (2x) log2 (3) + log2 (5)

12. 3 ln (xy)− 2 ln (x2y)

In exercises 13 – 17, solve the given problem for x, if possible.
If a problem cannot be solved, explain why.

13. 5x = 25

14. 5x = −5

15. 5x = 0

16. 5x = 0.2

17. 5x = 1

In exercises 18 – 25, solve the given problem for x.

18. 3x−6 = 2

19. 42x−5 = 3

20. 25x+6 = 4

21. 6x+π = 2

22.
(
1
6

)−3x−2

= 36x+1

23. −15 = −8 ln (3x) + 7

24. 2x = 3x−1

25. 8 = 4 ln (2x+ 5)
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Figure 2.1: A line with a posiࢢve slope.
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Figure 2.2: A line with a negaࢢve slope.
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Figure 2.3: A line with a slope of 0.

2: Basic Skills for Calculus
In this chapter, we will look at several basic skills and topics that will be used of-
ten in calculus: linear funcࢢons, solving inequaliࢢes, funcࢢon domains, graphs
and graphing, and compleࢢng the square. Lines and linear funcࢢons appear
quite o[en in calculus. Secant lines are used to determine how fast a funcࢢon is
changing over an interval, tangent lines are used to determine how fast a func-
onࢢ is changing at a single point, and linear funcࢢons are used to approximate
more complicated funcࢢons. You will need to solve inequaliࢢes to help deter-
mine key characterisࢢcs of a funcࢢon, such aswhen it is increasing andwhen it is
decreasing. Funcࢢon domainswill be useful inworkingwith applied problems to
make sure your model has both real world and mathemaࢢcal meaning. Graphs
and graphing will help you idenࢢfy key features of funcࢢons like maximum and
minimum values. Compleࢢng the square will show up in integral calculus when
you need to have your funcࢢon in a parࢢcular form.

2.1 Linear Funcࢢons

In this secࢢon, we will discuss linear funcࢢons. A linear funcࢡon is a polyno-
mial with degree 1. In calculus, you will learn how to use lines to approximate
more complicated funcࢢons in order to be�er understand their behavior at or
near a point. These linear approximaࢢons can help us evaluate nearby points on
the complicated funcࢢon more easily and can tell us how quickly the funcࢢon is
changing. Linear approximaࢢons can also be used to help us determine the area
of irregular shapes.

Properࢢes of Lines

Every line can be uniquely defined based on two keep features: the slope of
the line and a point contained by the line. The slope of the line tells us about
its steepness, and the point gives us a place to anchor the line. If the points on
a line go up as you move to the right, it has a posiࢢve slope, and the bigger the
slope is the faster the line increases, or the steeper it is. You can see an example
of a line with posiࢢve slope in Figure 2.1. If the points on a line go down as you
move to the right, it has a negaࢢve slope. Amore negaࢢve slope indicates that it
decreases faster. If the points neither go up nor down as you move to the right,
it has a slope of 0, indicaࢢng that the line is horizontal.

Visually, it’s straigh�orward to determine if the slope is posiࢢve, negaࢢve,
or 0. Typically, we need more detailed informaࢢon and will need to calculate
the slope. To do this from a graph, we need to find two points on the line. We’ll
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Figure 2.6: The y-intercept of a line.

Chapter 2 Basic Skills for Calculus

call these two points (x1, y1) and (x2, y2). Noࢢce that each point includes two
values, an x-value and a y-value. When you pick two points, youmay use any two
disࢢnct points you like; no ma�er what you pick you will always get the same
result for the slope. Mathemaࢢcians typically use m as the symbol for slope.
The formula is:

m =
y1 − y2
x1 − x2

(2.1)

The numerator tells us howmuch changewe have in y (verࢢcal change) between
the points and the denominator tells us how much change we have in x (hori-
zontal change). Someࢢmes, you’ll see the formula wri�en like this:

m =
∆y
∆x

(2.2)

The symbol∆ (the capital Greek le�er “delta”) tells us we are looking at change,
so∆ymeans change in y and∆xmeans changes in x. Formulas 2.1 and 2.2 have
the same meaning, they just look a li�le different.

Example 43 Finding Slope
Determine the slope of the line in Figure 2.1.

Soluࢢon To determiner the slope, we will need two points from the
graph. Any two points will work, but we will use (−2,−2) and (5, 3) since both
x and y are integer values at these points. We’ll call (−2, 2) our first point; this
means x1 = −2 and y1 = −2. We’ll call (5, 3) our second point; this means
x2 = 5 and y2 = 3. Then, we just need to plug into the formula for slope:

m =
y1 − y2
x1 − x2

=
−2− 3
−2− 5

=
−5
−7

=
5
7

Therefore, the slope of the line in Figure 2.1 is

m =
5
7

Earlier, we talked about how a line is defined by its slope and a point, but
slope itself is determined by two points on the line. This means that we can also

Notes:
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Figure 2.7: The x-intercept of a line.

2.1 Linear Funcࢢons

uniquely define a line from two points that are on the line. We can take both to
find the slope, and then use either of the points as our anchor.

If two lines have the same slope, we say they are parallel. Parallel lines will
never intersect each other since they have the same steepness (unless they are
really the same line). If two lines are not parallel, they have to intersect at one
point. If the lines form a right angle (90◦) when they intersect, they are perpen-
dicular. Like parallel lines wherem1 = m2 (the slope of line 1 is the same as the
slope of line 2), perpendicular lines also have related slopes. Here, if line 1 and
line 2 are perpendicular,m1 = − 1

m2
. We could rearrange this equaࢢon to solve

for m2 and we would get m2 = − 1
m1
. Noࢢce that the formula looks the same,

except m1 and m2 are swapped. This relaࢢonship is described as “negaࢢve re-
ciprocal;” negaࢢve since the sign is opposite and reciprocal since we invert the
relaࢢonship. We’ll see this property used in example 46.

When we look at a line, we can use any two points to describe it, but there
are two points that mathemaࢢcians are more likely to use. The first (and most
commonly used) is the y-intercept. This is the point where the line crosses (“in-
tercepts”) the y-axis. Since x = 0 on the y-axis, this point looks like (0, yint).
Similarly, the x-intercept is frequently used. The x-intercept is the point where
the line crosses the x-axis, so it has y = 0 and looks like (xint, 0). These two
points are commonly used because they are easier to work with since one of
the coordinates is 0.

Expressing Linear Funcࢢons

There are two commonways of expressing linear funcࢢons, point-slope form
and slope-intercept form. As you can probably guess from the names, both of
these forms will require that you first know the slope. Slope-intercept form re-
quires knowing the y-intercept of the funcࢢon, and point-slope form allows you
to use any point on the line. It’s good to be comfortable working with both
forms and with switching between them because someࢢmes one form will be
more useful than the other. In calculus, point-slope form o[en comes in handy
because wewill be looking at lines over a small region that won’t always contain
the y-intercept of the line. Slope-intercept form is:

y = mx+ b (2.3)

where m is the slope of the funcࢢon and b is the y-coordinate of the y-
intercept. Point-slope form is:

y− y1 = m(x− x1) (2.4)

wherem is the slope and (x1, y1) is any point on the line. Let’s take a look at
an example of how to work with both of these forms.

Notes:
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Example 44 Wriࢢng an Equaࢢon for a Line
Write the equaࢢon for the line that passes through (2, 4) and is parallel to 3x+
y = 6 in slope-intercept form.

Soluࢢon Let’s analyze the informaࢢon we so far. First, we know that
our line goes through the point (2, 4). We know we also need its slope.

We’re told it’s parallel to 3x+y = 6, so itwill have the same slope as that line.
However, this line isn’t in either of our forms, so it’s not immediately clear what
the slope is. We’ll start by puࢰng this line, 3x+ y = 6 into slope-intercept form
(because it requires less algebra than puࢰng it into point-slope form would). To
put it into slope-intercept form,weneed to isolate y. We’ll do that by subtracࢢng
3x from both sides. That gives

y = 6− 3x

If we rearrange the right side, we get y = −3x+ 6. Now, it’s in slope-intercept
form and we can see that the slope is−3.

Now, we have the slope of our line,m = −3, and a point on our line, (2, 4),
and our goal is to express the line in slope-intercept form. There’s a slight prob-
lem with this- we don’t know the y-intercept. Luckily, we do have enough infor-
maࢢon to express the line in point-slope form, so we’ll start with that and use
algebra to get it into slope-intercept form. In point-slope form, we have:

y− 4 = −3(x− 2)

We’ll use algebra to rewrite this in slope-intercept form (i.e., we’ll isolate y):

y− 4 = −3x+ 6
y = −3x+ 6+ 4
y = −3x+ 10

So, in slope-intercept form, the line is y = −3x + 10. This also tells us that the
y-intercept of this line is (0, 10). Our final answer, in slope-intercept form, is

y = −3x+ 10

This isn’t the only way to answer this quesࢢon, so let’s try a second method.
The two methods will always give you the same result, so it’s enࢢrely a ma�er
of preference when choosing which method to use.

Example 45 Wriࢢng an Equaࢢon for a Line- A Second Method
Write the equaࢢon for the line that passes through (2, 4) and is parallel to 3x+
y = 6 in slope-intercept form.

Notes:
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Soluࢢon From our previous work on this problem, we know that our
line goes through the point (2, 4) and that it has a slope of −3. We also know
that slope-intercept form looks like

y = mx+ b

and that this statement holds for every (x, y) pair that are on the line. We know
m, but we are missing b. However, we do know that (2, 4) is on the line, so

y = −3x+ b

needs to be true for x = 2 and y = 4. We’ll subsࢢtute these values into our
equaࢢon and solve for b:

4 = −3(2) + b
4 = −6+ b
10 = b

(2.5)

Now, we know b, so our final answer, in slope-intercept form, is again

y = −3x+ 10

Let’s look at one more example, this meࢢ working with a perpendicular line.

Example 46 Perpendicular Line
In slope-intercept form, write the equaࢢon of a line with a y-intercept of 5 that
is perpendicular to y− 4 = 6(x− 2).

Soluࢢon Let’s look at the informaࢢonwe have so far. We are told that
the line we are interested in has a y-intercept of 5. We know that x = 0 for the
y-intercept, so this really means that the y-intercept is the point (0, 5). Next, we
know that we are perpendicular to the line y − 4 = 6(x − 2). This line is given
in point-slope form and has a slope of 6.

The slope of our line has to be − 1
6 since it’s perpendicular to a line with a

slope of 6. Overall, that gives us that the equaࢢon of our line, in slope-intercept
form, is

y = −1
6
x+ 5

Notes:
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Exercises 2.1
Terms and Concepts

1. Explain the difference between point-slope form and slope-
intercept form.

2. To uniquely determine a line, what informaࢢon do you
need?

3. What is the slope of a horizontal line?

4. A line goes through the point (0, 6). Is this the y-intercept
of the line or the x-intercept of the line? Explain.

5. Line 1 has a slope of m1 = 2. If line 2 is parallel to line 1,
what ism2?

6. Line 1 has a slope ofm1 = −4. If line 2 is perpendicular to
line 1, what ism2?

Problems
In exercises 7 – 16, write an equaࢢon for each line in the in-
dicated form.

7. Write the equaࢢon in point-slope form for the line that
passes through (1, 2) and is parallel to the line 2x+ y = 5

8. Write the equaࢢon of the line in slope-intercept form pass-
ing through the points (1, 2) and (−1, 4).

9. Write the equaࢢon in point-slope form for the line that
passes through (0, 4) and is perpendicular to the line x −
2y = 6.

10. Write the equaࢢon of the line in slope-intercept form pass-
ing through the points (−1, 0) and (3, 6).

11. Write the equaࢢon of the line in slope-intercept form pass-
ing through the points (−2, 1) and (2, 7).

12. Consider the linear funcࢢon f(x) = 2x − 8. What is the
value of the funcࢢon when x = 0.1?

13. Write the equaࢢon in slope-intercept form for the line that
passes through (−2, 2) and is perpendicular to the line
x+ 3y = 8.

14. Write the equaࢢon in point-slope form of the line that pass-
ing through the points (3, 6) and (7, 4).

15. Write the equaࢢon of the line passing through the points
(−4, 4) and (0,−4) in slope-intercept form.

16. Write the equaࢢon of the line parallel to y = 6x + 4 that
has a y-intercept of 2 in point-slope form.

In exercises 17 – 20, answer each quesࢢon about the prop-
erࢢes of the given line(s).

17. Consider the linear funcࢢon g(x) = −4x + 5. What is the
slope of the funcࢢon when x = 4?

18. Determine the x-intercept of the line y = 4x− 8.

19. Determine the y-intercept of the line y = 4x− 8.

20. Which line has a steeper slope: y = 5x + 10 or the line
passing through the points (−5, 0) and (0, 11)?

70



2.2 Solving Inequaliࢢes

2.2 Solving Inequaliࢢes

In this secࢢon, we will look at solving inequaliࢢes. You will o[en work with in-
equaliࢢes in calculus, parࢢcularly when you work with derivaࢢves. A derivaࢢve
is a funcࢢon that tells you how quickly a related funcࢢon is changing. A posiࢢve
derivaࢢve tells you the funcࢢon is increasing and a negaࢢve derivaࢢve tells you
the funcࢢon is decreasing. This means you will need to be able to idenࢢfy when
the derivaࢢve is greater than zero and when it is less than zero.

When solving inequaliࢢes, mathemaࢢcians express their answers using in-
terval notaࢢon, a special way of expressing an interval of numbers. The intervals
will tell us when the inequality is a true statement, i.e., they tell us all the input
values that make the inequality valid. You will also hear mathemaࢢcians use the
phrase “the inequality holds for...’; this is another way of saying that these are
the inputs that make the inequality true. Let’s familiarize ourselves with interval
notaࢢon before we look at inequaliࢢes.

Interval Notaࢢon

Before we get to solving inequaliࢢes, we’ll discuss interval notaࢢon. Interval
notaࢡon provides us with a way to describe ranges of numbers concisely. Un-
like order of operaࢢons, with interval notaࢢon parentheses and brackets have
different meaning. For example, [1, 4.5] is the range of numbers between 1 and
4.5, including those endpoints. For example, 1, 2, π, and 4.5 are all included
in that interval, but -1.2, 85, and 4.5000001 are not. However, if we look at
(1, 4.5), 2 and π are sࢢll in this interval but 1 and 4.5 are not. Brackets tell us
we include the endpoint and parentheses tell us that we don’t.

With interval notaࢢon, we can mix parentheses and brackets if we need to
include one endpoint but not the other. For example, [1, 4.5) contains 1 but not
4.5 and (1, 4.5] contains 4.5 but not 1.

Example 47 Interval Notaࢢon
Determine if each of the following numbers is included in the interval [−5, 27).

1. 2

2. π

3. −5

4. −8

5. 27

6. 32

7. −5.000001

8. −4.999999

Soluࢢon For each of these, we need to determine if the number is
between the two numbers given in the interval.

Notes:
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1. 2 is bigger than−5 and smaller than 27 so it is in the interval.

2. π is bigger than−5 and smaller than 27 so it is in the interval.

3. −5 is one of our endpoints, so we need to see if it has a bracket or a
parenthesis on that end. It has a bracket, so it is included in the interval.

4. −8 is smaller than−5, so it is not included in the interval.

5. 27 is one of our endpoints, so we need to see if it has a bracket or a paren-
thesis on that end. It has a parenthesis, so it is not included in the interval.

6. 32 is bigger than 27, so it is not included in the interval.

7. −5.000001 is smaller than−5, so it is not included in the interval.

8. −4.999999 is bigger than−5 and smaller than 27 so it is in the interval.

2, π,−5, and−4.999999 are in the interval
−8, 27, 32, and−5.000001 are not in the interval

We can also use interval notaࢢon to express ranges that don’t have an upper
bound. For example, if we wanted to use interval notaࢢon to write the range for
all posiࢢve numbers, we would write (0,∞). We know there’s no limit to how
big a posiࢢve number can get, so we use∞ to indicate that we are just looking
at numbers bigger than 0. Similarly, we can write (−∞, 0) to express the range
for all negaࢢve numbers. Note that for both of these we use a parenthesis with
the infinity symbol and not a bracket since infinity isn’t a number.

Addiࢢonally, we canuse interval notaࢢon to expressmore complicated ranges
of numbers. We can combine ranges using ∪, the shorthand mathemaࢢcal way
of wriࢢng “or”. For example, [1, 3]∪ (4,∞)means the range of values between
1 and 3, including the endpoints, as well as any numbers bigger than 4. So 2, 4.1,
and 20 are all in this interval, but -2, 3.5, and 4 are not. We can also use notaࢢon
to limit ranges using ∩, the shorthand mathemaࢢcal way of wriࢢng “and also.”
For example, if we have two ranges, say (1, 4] and [2, 8), and are only interested
in the numbers that are in both ranges, we can write (1, 4] ∩ [2, 8). We can use
this symbol to help show our work, but for our final answer we should always
simplify so that we don’t need to use the∩ symbol (it’s fine, and quite common,
to use the∪ symbol as part of your final answer). We said that∩means we only
want the numbers that are in both intervals; the smallest number contained by
both intervals is 2 and the largest is 4, so we can write (1, 4] ∩ [2, 8) = [2, 4]
instead.
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Interval Notaࢢon and Inequaliࢢes

Interval notaࢢon also gives us another way of expressing an inequality. For
example, x ≥ 2 can be wri�en as x ∈ [2,∞). Here the ∈ symbol is read as the
word “in”. We would read this out loud by saying “x is greater than or equal to
2” is the same as “x is in the range from 2, inclusive, to infinity.” The statement
x ∈ (2,∞) is a bit different; it’s the same as x > 2 sincewe don’t want to include
2 as part of our range. Here, we would read the range as “x in 2, exclusive,
to infinity.” The symbols we learned earlier, ∪ and ∩ are read as “union” and
“intersect,” respecࢢvely.

Whenworkingwith inequaliࢢes, wewill start all inequality problems by turn-
ing them into equality problems. Thiswill allowus to use some techniqueswe’ve
already seen when we discussed factoring and roots of a funcࢢon. The solu-
on(s)ࢢ to the equality problem will tell us the “break points,” the input values
where the inequality may switch from being true to being false. We’ll test values
on both sides of each break point to see where the inequality is true. We will
work carefully to make sure we find all the break points because we don’t want
tomiss any placeswhere the inequality could switch from true to false. Let’s look
at a few straigh�orward examples before we move onto the more complicated
inequaliࢢes.

Example 48 Polynomial Inequality
Solve x2 − 6x+ 8 > 0.

Soluࢢon Our first step is to convert this into an equality statement by
changing the> symbol to an= symbol:

x2 − 6x+ 8 = 0

Now, we can use any soluࢢon method we learned for finding the roots of a
quadraࢢc funcࢢon to solve. Here we have a quadraࢢc that factors nicely, so we
will take that approach, but you could use the quadraࢢc formula if you prefer.

x2 − 6x+ 8 = 0
(x− 2)(x− 4) = 0

x = 2, 4

This tells us that the break points are x = 2 and x = 4. These are the only
places that the inequality could change from being true to being false for this
type of funcࢢon. We’ll test values on each side of both break points; this means
we need to test a value that is less than 2, a value between 2 and 4, and a value
bigger than 4. We like to work from le[ to right, so we will start with tesࢢng a

Notes:
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value less than 2. We can pick any number that is less than 2, but we will use 0
because it is easy to work with. If we subsࢢtute in x = 0 we get:

x2 − 6x+ 8 = (0)2 − 6(0) + 8 = 8 > 0

We get 8, which is bigger than 0, so the inequality is true for all values less
than 2. Next, we need to test a value between 2 and 4; 3 seems like the easiest
opࢢon.

x2 − 6x+ 8 = (3)2 − 6(3) + 8 = 9− 18+ 8 = −1 < 0

We get a negaࢢve number, so the inequality is false for everything between
2 and 4. Now, we need to test something bigger than 4. We’ll use 5, but you can
pick any number, as long as it’s bigger than 4.

x2 − 6x+ 8 = (5)2 − 6(5) + 8 = 25− 30+ 8 = 3 > 0

The result is posiࢢve, so the inequality is true. Now, we have that the in-
equality is true for numbers less than 2 and numbers greater than 4. It is not
true for x = 2 or x = 4 since both of these make the le[ side 0 and we want the
le[ side to be bigger than 0, not equal to it. In interval notaࢢon, we have:

x ∈ (−∞, 2) ∪ (4,∞)

In this example, we have a strict inequality. We say it is strict because it
is > and not ≥. Similarly, we would say an inequality with < is strict. With
strict inequaliࢢes, our final answer will not include the break points, so we will
use parentheses at these break points because we do not want to include these
points.

Many people will use a number line when working with inequaliࢢes. When
using a number line, youwouldmark each break point, and then shade or other-
wise mark the intervals where the inequality is true. For the previous problem,
this would look like the following:

2 4

Since we have a strict inequality (meaning we have> or< so that we are strictly
greater than or strictly less than), we use open circles to mark our break points.
This reminds us that we do not include these points in our intervals. Some peo-
ple will use check-marks and X’s instead, with a check-marks indicaࢢng where
the inequality holds and a X where it doesn’t. This would look like the following:

Notes:
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2 4

3 37

These number lines become quite useful if you have a lot of break points. They
make it very clear so that you can be sure to test a point in each interval. We can
also use a table to summarize results, rather than using a number line. The table
has a few key advantages: it clearly summarizes your work making your thought
process easier to follow and will help eliminate careless errors from your work.
A table for the previous example might look like:

(−∞, 2) (2, 4) (4,∞)
Value to check: 0 3 5

Result: 8 > 0 −1 > 0 3 > 0
T/F: True False True

Any of these methods are appropriate for clearly showing your work; the
one you choose is a ma�er of personal preference.

Incorporaࢢng Undefined Points

We noted earlier that our inequality can change from true to false at our
break points, the points where the equality statement is true. The inequality
can also change from true to false at places where the funcࢢon is undefined.
For example, we know that the funcࢢon f(x) = 1

x is posiࢢve when x is posiࢢve
and negaࢢve when x is negaࢢve. This means that the inequality 1

x > 0 holds,
or is true, only for x ∈ (0,∞). However, there are no places where f(x) = 0.
Since f(x) is undefined at x = 0, it introduces a different type of break point; one
where the graph of the funcࢢon “breaks” because it cannot be graphed where
it is undefined. Let’s take a look at an example where we have to incorporate
undefined points by including addiࢢonal break points.

Example 49 Solving a Raࢢonal Inequality
Solve

x− 5
x2 − 4

≥ 0.

Soluࢢon We’ll start by turning the inequality into an equality state-
ment and solving for x. To help solve for x, we will get rid of the fracࢢon by
mulࢢplying both sides by the full denominator; this will allow us to cancel the
denominator on the le[ side.

Notes:
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x− 5
x2 − 4

= 0

(x2 − 4)

(
x− 5
x2 − 4

)
= (x2 − 4)(0)

x− 5 = 0
x = 5

This gives us a break point at x = 5. Next, we will need to see if the func-
onࢢ is undefined at any points. Since it is a raࢢonal funcࢢon (a fracࢢon with a
polynomial in the numerator and a polynomial in the denominator), we know
it is undefined anywhere that the denominator equals zero. Let’s look for these
points:

x2 − 4 = 0
(x− 2)(x+ 2) = 0

x = 2,−2

We see that x−5
x2−4 is undefined for x = 2 and x = −2. This gives us two

addiࢢonal break points. That means we have three break points: x = 5, x =
2, and x = −2. Let’s mark these on a number line. Since this is not a strict
inequality, we will use closed circles to mark the break point at x = 5. However,
we sࢢll need to use open circles at x = 2 and x = −2 because the funcࢢon is
undefined at these points and we will not include them in our intervals.

2 5−2

Now, we need to check values in each interval. First, we’ll check something
less than −2; we’ll use x = −3. Subsࢢtuࢢng, gives (−3)−5

(−3)2−4 = −8
5 . This is less

than 0; this means we can place an x-mark over this interval:

2 5−2

7

Now, to check something between −2 and 2. We’ll use x = 0. Subsࢢtuࢢng
gives (0)−5

(0)2−4 = −5
−4 = 5

4 > 0. This means we can place a check-mark over this
interval:

Notes:
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2 5−2

7 3

Now, we need to check a value between 2 and 5. We’ll use x = 3. We get
(3)−5
(3)2−4 = −2

5 < 0, so this interval gets an x-mark.

2 5−2

7 3 7

Lastly, we need to check a value greater than 5. We’ll use x = 6. This gives
(6)−5
(6)2−4 = 1

32 > 0, so this interval gets a check-mark.

2 5−2

7 3 7 3

We now have a mark over every interval, so we can determine our final an-
swer. We can see that the inequality is true for x ∈ (−2, 2) ∪ [5,∞). Note that
we included x = 5 since it has a closed circle and excluded x = −2 and x = 2
since they have open circles. Our final answer is

x− 5
x2 − 4

≥ 0 holds for x ∈ (−2, 2) ∪ [5,∞)

Notes:
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Exercises 2.2
Terms and Concepts
1. In your own words, explain the what is meant by a strict
inequality.

2. In your own words, describe the two ways we can have
break points.

3. Does a statement always switch from true to false at a break
point? Give an example to support your argument.

4. What methods can you use to find the break points of a
quadraࢢc equality?

Problems
In exercises 5 – 11, write each statement in simplified interval
notaࢢon.

5. −3 ≤ x ≤ 10

6. x ≥ −5 and x > 2

7. x ≥ −5 and x < 2

8. x ≤ −5 and x > 2

9. x ≥ −5 or x > 2

10. x ≤ 4 and x > −6

11. x > 4 or−2 > x

In exercises 12 – 14, write each statement using inequaliࢢes.

12. x ∈ [3, 4) ∪ (4,∞)

13. x ∈ [−2, 4)

14. x ∈ (5, 6] ∪ [7, 8)

In exercises 15 – 26, solve the given inequality and express
your answer in interval notaࢢon.

15.
x− 2
x− 4

≤ 0

16. x2 − 2x+ 8 ≤ 2x+ 5

17. x2 + 2x > 15

18. −x2 + 7x+ 10 ≥ 0

19.
x+ 3
x− 2

− 2 ≤ 0

20. 2x2 − 4x− 45 ≤ −4x+ 5

21.
3x+ 1
x− 2

≤ 2

22. 1+ x < 7x+ 5

23. θ2 − 5θ ≤ −6

24. y3 + 3y2 > 4y

25. x3 − x2 ≤ 0

26.
x2 + 3x+ 2
x2 − 16

≥ 0
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2.3 Funcࢢon Domains

This secࢢon covers funcࢢon domains. In calculus, we will use domains to help
idenࢢfy any disconࢢnuiࢢes in funcࢢons and perform a full analysis of a func-
.onࢢ Funcࢢon domains will also help idenࢢfy verࢢcal asymptotes, places where
a funcࢢonmay switch between increasing and decreasing, and places where the
concavity (general curvature) of a funcࢢon may change.

Funcࢢon Domains

The domain of a funcࢢon is the set of all possible real number inputs that re-
sult in a real number output for that funcࢢon. Domains are typically expressed
using interval notaࢢon, labeled with “D:”. With domains, it’s o[en easier to
look for inputs that will cause problems, rather than looking for “good” inputs.
By making a list of trouble points, we will determine the domain by looking at
what’s le[. We’ll start by looking at the domain for each of our common func-
onsࢢ discussed in Secࢢon 1.2.

Domains of Power Funcࢢons

For power funcࢢons, the domain will depend on the value of the exponent.
In Secࢢon 1.2, we said that power funcࢢons have the form f(x) = axb where
a and b can be any real numbers. We’ll start by looking at where we could run
into trouble with certain inputs.

The first place we can run into trouble is if b is negaࢢve. This will always
cause a problem for x = 0 because the negaࢢve exponent means we would be
dividing by 0 (and we can’t do that!).

The second place where we can run into trouble is when b is not a whole
number. Here we’ll focus on raࢢonal numbers, i.e., any number that can be
wri�en as a fracࢢon. Say b = p

q where p and q are whole numbers with no
common factors. If q is odd, we won’t have any trouble with any inputs, but if
q is even we can have problems. If we try to take an even root of a negaࢢve
number (like

√
−4 = (−4)1/2) we don’t get a real number. We’ll have this

trouble with any negaࢢve input value if q is even, so in this situaࢢon, we can’t
input any negaࢢve numbers.

By combining these two trouble spots, we can find the domain of any power
funcࢢon you’re likely to run into:

Example 50 Power Funcࢢon Domains
Determine the domain for each of the following power funcࢢons:

Notes:
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1. f(x) = x2/3

2. g(x) = 4x−2

3. h(x) = −5x8

5. w(t) =
1
2
t−1/3

6. y(t) = t−3/4

7. z(t) = −2t3/4

Soluࢢon For each of these, we need to look at the exponent only;
scalar mulࢢplicaࢢon of a funcࢢon does not affect the domain.

1. For f(x), b = 2
3 . This is a fracࢢon, so we need to look at the denominator.

The denominator is 3, an odd number. This tells us that negaࢢve inputs
are fine. Since b is posiࢢve, we know that 0 is also fine. So, we have

D: (−∞,∞)

2. For g(x), we have b = −2. This is a whole number, so we only need to
look at its sign. It’s negaࢢve, so this tells us that 0 will cause trouble. So,

D: (−∞, 0) ∪ (0,∞)

3. For h(x), b = 8. This is a posiࢢve whole number, so we don’t have any
trouble inputs since we can only run into trouble if b is negaࢢve or a frac-
.onࢢ So,

D: (−∞,∞)

4. For w(t), we have b = − 1
3 . It’s negaࢢve, so 0 is a problem, but it’s a

fracࢢon with an odd denominator, so negaࢢve inputs are fine. Thus,

D: (−∞, 0) ∪ (0,∞)

5. For y(t), b = − 3
4 . This is negaࢢve, so 0 is a problem. It’s a fracࢢon with

an even denominator, so negaࢢve inputs are also a problem. That leaves

D: (0,∞)

Notes:
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6. For z(t), b = 3
4 . This is posiࢢve, so 0 is fine, but again it’s a fracࢢon with

an even denominator so negaࢢve inputs are a problem. That means

D: [0,∞)

Noࢢce that the domain for z(t) has a bracket, so it includes 0, but the do-
main for y(t) has a parenthesis so it doesn’t include 0.

Domains of Exponenࢢal Funcࢢons

Next on our list of common funcࢢons are exponenࢢal funcࢢons, funcࢢons
of the form f(x) = bx, with b > 0 and b ̸= 1.. For exponenࢢal funcࢢons, we
can use any real number input and get a real number as output, so the domain
is always (−∞,∞).

Domains of Logarithmic Funcࢢons

For logarithmic funcࢢons, only posiࢢve inputs give us real number outputs,
so the domain of logb (x) is (0,∞) for every valid base, b. Note that 0 is not in
the domain.

Domains of Trigonometric Funcࢢons

The last type of common funcࢢonwe discussedwas trigonometric funcࢢons.
Here the domain depends on the exact funcࢢon you are using; we’ll discuss
these more later in this text.

Domains for Combined Funcࢢon

When we look at combined funcࢢons, we will start by looking at the domain
for each individual funcࢢon. If an input is a problem for one of the individual
funcࢢons, it will also be a problem for the combined funcࢢon. Addiࢢonally,
other problems can be introduced depending on how the funcࢢons are com-
bined. Scalar mulࢢplicaࢢon, addiࢢon, subtracࢢon, and mulࢢplicaࢢon do not in-
troduce other problems, but quoࢢents and composiࢢons can.

With quoࢢents, for every input we are evaluaࢢng a fracࢢon. We can run into
a new problem if the denominator is 0. So, as part of determining the domain of
a quoࢢent, we will need to see when, if anywhere, the denominator is 0. Let’s
take a look:

Notes:
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Example 51 Quoࢢent Funcࢢon Domains
Determine the domain of

f(θ) =
θ2 + 4√
θ − 1

Soluࢢon First, let’s look at each of the individual funcࢢons. The nu-
merator has θ2 + 4. This is the addiࢢon of two monomials: θ2 and 4. The addi-
onࢢ doesn’t introduce any problems. θ2 is a power funcࢢonwhere b is a posiࢢve
whole number, so it doesn’t introduce any problems. 4 doesn’t depend on an
input, so it doesn’t introduce any problems.

The denominator is
√
θ − 1. This is the difference of

√
θ and 1. Like with

addiࢢon, the difference doesn’t introduce any problems. The funcࢢon 1 doesn’t
introduce any problems.

√
θ is another way of wriࢢng θ1/2. This is a power

funcࢢon where b is posiࢢve, so 0 is fine. However, b is a fracࢢon with an even
denominator so negaࢢve inputs cause a problem.

So far, the only issue we have comes from the square root. However, since
we have a quoࢢent, we need to see if the denominator is ever 0. We’ll do this
by solving:

√
θ − 1 = 0

Adding 1 to both sides gives
√
θ = 1

Squaring both sides gives us

θ = 12 = 1

This tells us that we will also have a problem when θ = 1. All together then,
we have problems with negaࢢve inputs and with 1, so

The domain of f(θ) is θ ∈ [0, 1) ∪ (1,∞)

Noࢢce that in Example 51, 0 is part of the domain even though we have a
quoࢢent. A quoࢢent doesn’t mean that 0 as an input is a problem, rather that
any inputs that make the denominator 0 are problems.

Composiࢢonof funcࢢons can drasࢢcally change domains. With composiࢢon,
you’ll have to restrict the output of the inside funcࢢon to make sure it’s suitable
to be an input of the outside funcࢢon. This can give extra restricࢢons on the
overall domain.

Notes:
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Example 52 Domain of a Funcࢢon Composiࢢon
Determine the domain of

f(x) =
√
6− x+ 12x

Soluࢢon Overall, we have the addiࢢon of two funcࢢons,
√
6− x and

12x. Addiࢢon doesn’t introduce any problems. The second funcࢢon, 12x has
no problem inputs because it’s a power funcࢢon where b is a posiࢢve whole
number. However, we know that the square root funcࢢon can’t use negaࢢve
inputs since it’s really a power funcࢢons with b = 1

2 . Since the square root is
a composiࢢon with 6 − x as the inside funcࢢon, we’ll need to determine when
6− x is negaࢢve to find which values of x are a problem. To do that, we’ll solve
the inequality

6− x < 0

Luckily, this isn’t too complicated; we’ll add −x to both sides to get 6 < x,
or x > 6. This tells us that any input bigger than 6 is going to be a problem for
f(x). So, the domain of f(x) is (−∞, 6].We use a bracket on the right since we
can use 6 as an input. So, altogether, we have that

The domain of f(x) =
√
6− x+ 12x is x ∈ (−∞, 6]

The hardest part of finding domains is working carefully and methodically.
You probably noࢢced that all of these examples seem to have an awful lot of
wri�en explanaࢢon for math problems. While we don’t typically write out com-
plete sentences in our own work, we will include notes like “ln(x): problems
with 0 and x < 0”. We also keep a running list of problem points on the side of
the page as we work through more complicated funcࢢons to make sure we get
all of the problem inputs so that we can exclude them from the domain.
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Terms and Concepts

1. What does it mean if x = 2 is in the domain of f(x)?

2. What does it mean if x = 4 is not in the domain of f(x)?

3. T/F: The domain of f(g(x)) depends only on the domain of
g(x). Explain.

4. T/F: The domain of f(x)
g(x) depends only on where g(x) = 0.

Explain.

Problems
In exercises 5 – 16, express the domain of the given funcࢢon
using interval notaࢢon.

5.
√
3− x
x+ 9

6.
√
x+ 11
x− 11

7.
ln (x− 6)
2x− 26

8.
2t√
t− 5

9. ln (
√
x+ 3)

10. θ3 + 4θ2 − 2θ + π

11.
log3 (x− 4)
log3 (2x)

12.
x

log2 (2x− 1)

13. f(x) = ln (4− x2)

14. f(x) = ln (x2 − 4)

15. f(x) =
√

(x+ 3)2 − 4

16. f(x) = 3
√

(x− 2)3 + 1
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2.4 Graphs and Graphing

In calculus, we will be analyzing graphs to learn more about the funcࢢons they
represent. It is important that we have a good understanding of the relaࢢonship
between a funcࢢon and its graph. Specifically in differenࢢal calculus, we will
learn to use derivaࢢves (which is a rate of change or the local slope) to determine
where a graph is increasing or decreasing. Also, in integral calculus, you might
learn how to calculate thework required to pump a fluid, which gives a chance to
explore the value of using different locaࢢons for the origin, effecࢢvely resulࢢng
in a shi[ of the funcࢢon and its graph.

Graphs of General Funcࢢons

Many people take a very tedious approach to graphing; for the domain they
are interested in graphing, they take each possible integer value of x, evalu-
ate the funcࢢon for that value, and then graph a single point. A[er they have
graphed several points across the domain, they will “connect the dots.” While
this method is reliable, it is meࢢ consuming, and can be difficult depending on
the funcࢢon. In this secࢢon, we will give an overview of the general shape
of common funcࢢons and then talk about how these general funcࢢons can be
shi[ed, stretched, and flipped in order to quickly sketch related funcࢢons. Addi-
,onallyࢢ wewill talk about piecewise funcࢢons and how to graph them correctly.

Lines

The quickest way to graph a line is by using a point and the slope. This is
largely because both forms, slope-intercept and point-slope, provide you with
this informaࢢon. Start by ploࢰng the point. Then, from that point use the slope
to plot a second point. For example, if the slope is − 2

3 , you would start at the
iniࢢal point, move 3 units to the right (because the horizontal change is 3), and
thenmove down 2 units in the y-direcࢢon (because the slope is negaࢢve and the
verࢢcal change is 2). (Note: you can also move verࢢcally and then horizontally,
either way gives the same result.) Plot this new point, and then use a straight-
edge to connect both points. Be sure to conࢢnue past each of the points. If the
slope is a whole number, move that many units verࢢcally and only one unit to
the right to plot your second point.

Example 53 Graphing a Line
Graph the line y = 2x− 3

Soluࢢon Let’s start by idenࢢfying the slope and a point. We are in
slope-intercept form, so we can see that the slope ism = 2 and the y-intercept

Notes:
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is (0,−3). We’ll starࢢng by ploࢰng a point at (0,−3). Then, we’ll move to the
right 1 unit and up 2 units and plot a second point. Then, we use the two points
to draw our line. The full process is shown in the following three graphs:

−2 2

−4

−2

2

4

x

y

Plot the y-intercept

−2 2

−4

−2

2

4

x

y

Use the slope to plot a second point

−2 2

−4

−2

2

4

x

y

Complete the line
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Figure 2.8: The graph of f(x) = x2.

−2 −1 1 2

−5

5

x

y

Figure 2.9: The graph of f(x) = x3.
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Figure 2.10: The graph of f(x) = −x4 +
2x2 + 1, an even polynomial.

2.4 Graphs and Graphing

Quadraࢢc Funcࢢons

The most basic quadraࢢc funcࢢon is f(x) = x2.Later, we will discuss how
every other quadraࢢc funcࢢon can be graphed by shi[ing and stretching this
funcࢢon. The general shape of this funcࢢon is a “U” and it is symmetric over the
y-axis, meaning that the le[ and right sides of the graph are a reflecࢢon of each
other. This funcࢢon grows quickly; this means that as x gets big, f(x) gets big
faster than x does. It has no horizontal asymptotes, meaning that as x gets big,
f(x) doesn’t level off.

Cubic Funcࢢons

The most basic cubic funcࢢon is f(x) = x3. Similarly to the quadraࢢc func-
,onsࢢ every other cubic funcࢢon can be graphed by shi[ing and stretching this
funcࢢon. This funcࢢon has rotaࢢonal symmetry around the origin; if you treat
(0, 0) like a pivot point and rotate the graph 180◦, it will looks exactly the same.
For posiࢢve values of x, this funcࢢon grows quickly, but for negaࢢve values of x
it becomes more and more negaࢢve. It also has no horizontal asymptotes.

Even Polynomials

An even polynomial is any polynomial where every monomial has an even
degree. For example, f(x) = x6 + 3x4 − 5x2 + 7 is an even polynomial because
the degrees are 6, 4, 2, and 0. However, g(x) = x4 − x2 + x − 4 is not an even
polynomial because it has x as a term (and x has degree 1). Even polynomials
share features with the basic quadraࢢc funcࢢon: they are symmetric about the
y-axis and both “tails” of the funcࢢon have the same sign. This means that as x
gets very big or very negaࢢve, f(x) will have the same sign; either both tails are
posiࢢve or both tails are negaࢢve. This is a key feature of even polynomials. The
sign on the highest degree term tells you if both of the tails will be posiࢢve or if
both will be negaࢢve.

A related, but slightly different, type of funcࢢon is a polynomial of even order,
also knownas a polynomial of even degree. Here, weonly care about the highest
degree term being even, so both f(x) and g(x) from above are polynomials of
even order. These polynomials don’t have to be symmetric about the y-axis, but
they do exhibit the same “end” behavior where either both tails are posiࢢve or
both tails are negaࢢve.

Odd Polynomials

An odd polynomial is any polynomial where every monomial has an odd de-
gree. For example, f(x) = 4x5 + 2x3 − 7x is an odd polynomial because the
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Figure 2.11: The graph of f(x) = x3 − x,
an odd polynomial.
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Figure 2.12: The graph of f(x) = 2x, a ba-
sic exponenࢢal funcࢢon.
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Figure 2.13: The graph of f(x) = log2 (x),
a basic logarithmic funcࢢon.
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degrees are 5, 3, and 1. However, g(x) = 2x3 + x − 7 is not and odd polyno-
mial because it has−7 as a term (and−7 has degree 0). Odd polynomials share
features with the basic cubic funcࢢons: they have rotaࢢonal symmetry about
the origin and the tails have opposite signs. Odd polynomials always have one
posiࢢve tail and one negaࢢve tail.

Again, we have a related type of funcࢢon, a polynomial of odd order, also
knownas a polynomial of odd degree. For these polynomials, the highest degree
must be odd, but smaller degree terms can be even, as in h(x) = x3+2x2. These
polynomials aren’t all symmetric about the origin, but the tailswill have opposite
signs.

Exponenࢢal Funcࢢons

For a basic exponenࢢal funcࢢon, f(x) = bx, b must be a posiࢢve real num-
ber with b ̸= 1. All basic exponenࢢal funcࢢons with b > 1 share some key
features: they all contain the point (0, 1), they all contain the point (1, b), they
grow quickly for posiࢢve values of x, and for negaࢢve values of x they get close
to y = 0, the x-axis. A basic exponenࢢal funcࢢon will never cross the x-axis, it
will only get closer and closer as x gets more and more negaࢢve. This long-term
behavior is described as having an horizontal asymptote at y = 0. When graph-
ing an exponenࢢal funcࢢon, we plot the two key points listed above and use the
general shape to guide the rest of our graph.

Logarithmic Funcࢢons

Logarithmic funcࢢons have the same shape as basic exponenࢢal funcࢢons,
but reflected over the line y = x. This means that the key features of funcࢢons
of the form f(x) = logb (x) are: they all contain the point (1, 0); they all contain
the point (b, 1); for very small posiࢢve values of x, f(x) becomes increasingly
negaࢢve if b > 1 and increasingly posiࢢve if b < 1; as x becomes very large,
so does f(x) if b > 1 and very negaࢢve if b < 1. It’s important when graphing
logarithmic funcࢢons to remember that their domain is only (0,∞); you should
graph nothing for negaࢢve values of x and nothing for x = 0. Logarithmic func-
onsࢢ have a verࢡcal asymptote at x = 0, the y-axis. The graph gets very close to
this verࢢcal line, but it will never cross it.

Trigonometric Funcࢢons

A key feature of the trigonometric funcࢢons sin (x), cos (x), and tan (x) is
that all three are periodic funcࢢons; they exhibit the same pa�ern over and over.
Addiࢢonally, the sine and cosine funcࢢons never grow without bound; their y
values are always between −1 and 1. The tangent funcࢢon does grow without
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bound and has repeat verࢢcal asymptotes. For all three funcࢢons, there are key
points when x is a mulࢢple of π, such as x = π

2 , x = π, x = 3π
2 , and x = 2π.

Addiࢢonally, youmight noࢢce that the graphs of sine and cosine are very similar.
In fact, if you take the graph of sine and shi[ it to the le[ by π

2 you would get
the graph of cosine. In fact, this is a trigonometric idenࢢty that can be seen just
from the graphs. The graphs of these three funcࢢons can be seen below:
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The graph of f(x) = sin (x) The graph of f(x) = cos (x) The graph of f(x) = tan (x)

Modifying Funcࢢons

Now that we’ve seen the shapes of some basic funcࢢons like f(x) = x2, let’s
talk about how we can use these basic shapes to help graph many funcࢢons.
We’ll need to be able to idenࢢfy the base funcࢢon we are working with and to
idenࢢfy how it’s been modified. We’ll break these down into two main types
of modificaࢢons: verࢢcal modificaࢢons and horizontal modificaࢢons. Verࢢcal
modificaࢢons will, as the name says, will affect the funcࢢons verࢢcally, either
shi[ing the funcࢢon up or down, or stretching or shrinking the funcࢢon’s height.
Similarly, horizontal modificaࢢons will affect the funcࢢon horizontally, shi[ing it
le[ or right, or stretching or shrinking its “width.”

Verࢢcal Modificaࢢons

The first type of verࢢcal modificaࢢons we will discuss are shi[s, where every
point on the funcࢢons gets shi[ed up or down by the same distance. This is
one of the easiest modificaࢢons to spot; all we have to do is add or subtract a
constant to the funcࢢon. Let’s take a look at an example.

Example 54 Shi[ing a Funcࢢon Verࢢcally
Graph the funcࢢon f(x) = x2 + 3.

Notes:
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Soluࢢon Here we can see that we have a funcࢢon with a constant
added to it; this tells us that we need to graph x2, but with a verࢢcal shi[. The
constant, +3 tells us that we will take this base funcࢢon and shi[ it up 3 units
(if this was−3 we would shi[ the funcࢢon down by 3 units).

−2 2

5

x

y

Here, the graph shows both our base funcࢢon, x2 (do�ed) and our desired,
shi[ed funcࢢon, f(x) = x2 + 3 (solid). If you take a piece of wire and shape it
to match the graph of x2, you can move the wire up 3 units and see that you get
exactly the graph of f(x) = x2 + 3.

Noࢢce that with a verࢢcal shi[, the shape of the funcࢢon does not change
at all, only its posiࢢoning relaࢢve to the x axis changes. With our next mod-
ificaࢢon, verࢢcal stretching and shrinking, we don’t change its posiࢢoning, or
the shape, but we do change how steep the funcࢢon is. With verࢢcal stretches,
everything on the x-axis is fixed, so the posiࢢoning doesn’t change. The shape
doesn’t change in the sense that every quadraࢢc will sࢢll look like a “U” and ev-
ery sine or cosine will sࢢll look like never-ending waves (similarly for our other
funcࢢons). So howdowe recognizewhen a funcࢢon is being stretched or shrunk
verࢢcally? We’ll have a base funcࢢon that is being modified with scalar mulࢢpli-
caࢢon, such as f(x) = 3 sin (x) or g(t) = − 1

2 t
3.Here, if we mulࢢply by a number

bigger than 1 or less than −1, we will stretch the funcࢢon and make it steeper.
If we mulࢢply it by anything between−1 and 1, it will shrink and get less steep.
If we mulࢢply by a negaࢢve number, not only is the funcࢢon being stretched or
shrunk, it will also be flipped; everything above the x-axis will be reflected to
below the x-axis and everything below will be reflecࢢon to above the x-axis.

Example 55 Stretching/Shrinking a Funcࢢon Verࢢcally
Graph the funcࢢons f(x) = 1

2x
3 and g(x) = − 1

2x
3.

Soluࢢon For both f(x) and g(x) we have the same base funcࢢon, x3.
Since f(x) is formed by mulࢢplying this by 1

2 , it is being shrunk, but not flipped.

Notes:
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Here we can see our base funcࢢon, x3 (do�ed) and f(x) = 1
2x
3 (solid). You’ll

see that the shape and posiࢢon are sࢢll the same, but f(x) stays closer to the
x-axis; it does not get tall as quickly as x3 does because we shrunk the graph
verࢢcally. Now that we’ve shrunk the graph, flipping it will give us the graph of
g(x) (solid):
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This graph has both f(x) (do�ed) and g(x) (solid); both have the same posi-
onࢢ and the same steepness, but g(x) is upside-down.

The previous example shows how to shrink and flip a graph. Here, you could
do either step first; if you flip and then shrink you would get the exact same
result. We recommend making very quick sketches in the margins of your page
when dealing with mulࢢple transformaࢢons at the same ;meࢢ it makes it easier
for me to make sure we draw the final graph accurately by capturing each stage,
however, a[er pracࢢce you may feel comfortable doing both steps at once.

We’ve now seen how we verࢢcal modificaࢢons work individually, but what
happens when we combine them?

Example 56 Mulࢢple Verࢢcal Modificaࢢons
Graph h(x) = 2 sin (x)− 1.

Notes:
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Soluࢢon First, let’s idenࢢfy our base funcࢢon. Here, we are working
with sin (x). We see that we are mulࢢplying by 2 and subtracࢢng 1; this tells us
we have a verࢢcal stretch and a verࢢcal shi[. Which should we do first? The
answer comes from our order of operaࢢons: mulࢢplicaࢢon should be done be-
fore subtracࢢon. We’ll follow that same rule here by stretching sin (x) and then
shi[ing it. Sincewe have 2 sin (x) in our funcࢢon, wewill start by graphing sin (x)
(do�ed) and thenmaking it twice as “tall” (i.e., twice as far from the x-axis; solid
graph).
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Now that we’ve stretched it, we can take care of the addiࢢon and shi[ it
down 1 unit:
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Horizontal Modificaࢢons

We can make the same modificaࢢons horizontally that we made verࢢcally:
stretching, shrinking, and shi[ing. With verࢢcalmodificaࢢons, themodificaࢢons
showed up on the outside of the funcࢢon, with shi[s added to the end and with
stretches coming as mulࢢplicaࢢon out front. With horizontal changes we will

Notes:
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work on the inside of the funcࢢon. For example, if we want to shi[ the funcࢢon
f(x) 2 units to the le[, we would graph f(x+2). This moves the graph of f to the
le[ because, in essence, we always looking at a bigger input than what x really
is, e.g., if x = 4, really we are looking at f(4+ 2) = f(6). Similarly, if we want to
shi[ f to the right, we would use a subtracࢢon: f(x− 2).

Similarly, if wewant to stretch or shrink the funcࢢon horizontally, the change
will also show up on the inside. To stretch a funcࢢon by a > 0, we would graph
f( 1ax). We use

1
a because in order to stretch it horizontally we need x to change

more slowly. In order to shrink it by a factor of a > 0wewouldmulࢢply: f(ax). If
we want to flip the graph horizontally, we will sࢢll mulࢢply by a negaࢢve: f(−x).
Noࢢce that many of the horizontal modificaࢢons don’t immediately work the
way you would expect, unlike the verࢢcal modificaࢢons. If you are feeling a
bit confused by these, we would recommend graphing a few using the point by
point method. Similarly,the process for dealing with mulࢢple modificaࢢons is a
bit different than what youmight expect: first we will idenࢢfy the base funcࢢon,
then include any shi[s, and then include any stretches or shrinking. Let’s look
at an example:

Example 57 Mulࢢple Horizontal Modificaࢢons
Graph the funcࢢon f(x) = 4x2 + 4x+ 1 = (2x+ 1)2.

Soluࢢon Our base funcࢢon here is x2 (do�ed). We don’t have any
verࢢcal modificaࢢons, just horizontal modificaࢢons since everything is happen-
ing inside the funcࢢon. We see we have a shi[ le[ of 1, due to the+1, and then
we need to shrink by a factor of 2 since x is mulࢢplied by 2. First, we include the
shi[ (solid):
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then, we shrink the funcࢢon horizontally (solid):

Notes:
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Noࢢce that whenwe shrink it, the point on the y-axis, (0, 1), is the only point
that is the same between both graphs. This is because we shrink and stretch
around the y-axis, not around the center of the graph. We can see this also
by seeing that the x-intercept changes from (−1, 0) to (− 1

2 , 0) (labeled with an
open dot).

If a funcࢢon is being modified both verࢢcally and horizontally, you should
take care of all the horizontal changes first. Let’s see how this looks.

Example 58 Graph Transformaࢢon
Graph the funcࢢon g(x) = −( 12x+ 2)2 + 3.

Soluࢢon As with our previous examples, the first step is to idenࢢfy
the base funcࢢon. Here our base funcࢢons is x2 (do�ed). We said thatwe should
start with horizontal changes, so let’s look at those first. With horizontal mod-
ificaࢢons, we need to work with the shi[ and then the stretch. Inside of our
funcࢢon we have+2; this tells us we start by shi[ing le[ 2 units (solid):
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Next, we will stretch our graph horizontally (solid) by a factor of 2 since x is
mulࢢplied by 1

2 on the inside of the funcࢢon:

Notes:
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Now that we have completed all horizontal changes, we can work on verࢢcal
changes. We have two: a flip and a shi[. We need to do the flip first (solid):
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The last modificaࢢon to complete is a shi[ up 3 units (solid):
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In all of our examples so far, we’ve been given the transformed funcࢢon and
asked to graph it. What if we are asked to come up with the new funcࢢon?

Notes:
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Example 59 Funcࢢons for a Transformaࢢon
Determine the equaࢢon for the graph of f(x) = x3 a[er it has been shi[ed 2
units to the right, flipped verࢢcally, and shi[ed 2 units up.

Soluࢢon Here the transformaࢢons have been given in the same order
that we would apply them. Our first step, is to shi[ the funcࢢon to the right, so
wewill change to (x−2)3. Next, wewant to flip the funcࢢon verࢢcally, so we get
−(x− 2)3. Finally, we want to shi[ up 2 units, so we get g(x) = −(x− 2)3 + 2
as our new funcࢢon. we gave the funcࢢon a new name g, instead of f so that we
won’t get confused by using the same name for both.

Graphs of Piecewise Funcࢢons

The last graphing topic we will discuss in this secࢢon is graphing piecewise
funcࢢons. A piecewise funcࢢon is a funcࢢon that is defined in pieces; for part
of its domain it is defined one way and for other parts it is defined differently.
When graphing these funcࢢons, the trickiest part is making sure you use the
correct piece of the funcࢢon definiࢢon for each part of the domain. To make
this a li�le easier to keep straight, we make sure to only graph one piece at a
.meࢢ

When switching between different pieces, it is important to do so properly.
Someࢢmes the “end” point of that piece is not actually included. This happens
when the domain for that piece is open, i.e., it doesn’t include that final point.
This is indicated by a parenthesis or a “<” or a “>” telling us that the end point
should not be included. Here, we would plot an open dot, a circle with a white
interior, to show that it is not included. If the endpoint is included, we will plot
a closed dot, a circle with a filled in interior, to show that it is included. If the
funcࢢon’s domain for a piece conࢢnues all the way to ∞ or to −∞, we will
indicate this by drawing a small arrow pࢢ at the edge of the graph to show that
it conࢢnues forever.

Example 60 Graphing a Piecewise Funcࢢon

Graph the funcࢢon f(x) =
{
3− x 0 < x ≤ 1
x2 1 < x < 2

Soluࢢon This funcࢢon has two pieces: a line when x is in (0, 1] and a
quadraࢢc funcࢢon when x is in (1, 2). We like to work from le[ to right, so we
will graph the line first, but you could graph the pieces in any order.

Notes:
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Here, we graphed the line by ploࢰng the two end points and connecࢢng
them. Since they are the endpoints, we don’t want to move past them. Since
the line applied when 0 < x ≤ 1, we plo�ed an open dot for x = 0 to show that
it is not included and a closed dot for x = 1 to show that it is included.

Next, we’ll add the quadraࢢc piece to this graph.
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With the quadraࢢc, both ends are open since this piece only applies when
1 < x < 2. This means we need open dots at both ends.

Notes:
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Exercises 2.4
Terms and Concepts

1. Why do changes on the inside of the funcࢢon produce hor-
izontal changes?

2. Whydo changes on the outside of the funcࢢonproduce ver-
calࢢ changes?

3. In graphing the funcࢢon g(x) = 2 ln (x) + 4, which trans-
formaࢢon should you apply first?

4. In graphing the funcࢢon f(x) = (2x − 1)3, which transfor-
maࢢon should you apply first?

5. In graphing the funcࢢon h(t) = 3t+4, what is the base func-
onࢢ and how is it being transformed?

Problems
Graph each of the funcࢢons in exercises 6 – 10.

6. f(x) = −x2 + 1

7. f(x) =
{

2x+ 8 x ≤ −1
−x+ 7 x > −1

8. f(x) =
{

−x2 x < 0
(x− 1)2 0 ≤ x < 3

9. f(x) = ex + 1

10. f(x) =
{

sin (x) x < π
cos (x) x > π

In exercises 11 – 15, graph and write an equaࢢon for each of
the described funcࢢons.

11. The result of shi[ing g(x) = x2 up three units and to the
le[ two units

12. Any even degree polynomial that is posiࢢve for −2 ≤ x ≤
4.

13. The result of shi[ing f(θ) = −2θ + 3 down two units and
right 5 units.

14. The piecewise funcࢢon that consists of t2, shi[ed down one
unit for t ≤ −2 and of the line with a slope of 3 and a y-
intercept of 3 for t > −2.

15. The line with a slope of 2
3 that passes through the point

(1, f(2)), where f(x) = x2 − 1.

In exercises 16 – 18, factor the given funcࢢon, and graph the
funcࢢon.

16. b(x) = x3 + 6x2 + 12x+ 8

17. y(t) = t2 − 6t+ 9

18. f(x) = x2 + 4x+ 4

For each of

• f(x) = x2 − 3x,

• η(θ) = cos (θ), and

• g(w) = 3w − w3,

write the equaࢢon for the new funcࢢon that results from the
transformaࢢon(s) stated in exercises 19 – 24.

19. Shi[ up 3 units

20. Shi[ right 2 units

21. Shi[ down 2 units and le[ 1 unit

22. Shi[ down π units and right e units

23. Flip across the x-axis

24. Flip across the y-axis

Answer each quesࢢon in exercises 25 – 26 using the provided
graphs.

25. Based on the shape of the graph of f(x) shown, below,
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(a) could f(x) be an even polynomial? Why or why not?

(b) could f(x) be an odd polynomial? Why or why not?

(c) could f(x) be an exponenࢢal funcࢢon? Why or why
not?

(d) could f(x) be a trigonometric funcࢢon? Why or why
not?

26. Based on the shape of the graph of g(x) shown, below,
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y (a) could g(x) be an even polynomial? Why or why not?

(b) could g(x) be an odd polynomial? Why or why not?

(c) could g(x) be an exponenࢢal funcࢢon? Why or why
not?

(d) could g(x) be a trigonometric funcࢢon? Why or why
not?

99



Chapter 2 Basic Skills for Calculus

2.5 Compleࢢng the Square
In this secࢢon, wewill discuss anotherwayofwriࢢng a quadraࢢc funcࢢon through
a process called compleࢢng the square. Compleࢢng the square lets us write any
quadraࢢc funcࢢon in the form (x+ a)2 + b. This parࢢcular form is quite handy;
not only will this making graphing quadraࢢcs easier since it allows us to use
graph transformaࢢons, it’s also a commonly used form in calculus. In integral
calculus, there are special rules that allow us to more easily integrate raࢢonal
funcࢢons if their denominator is in the form, but we aren’t always given the
funcࢢon in that form. It also gets used when working with Laplace Transforms
in differenࢢal equaࢢons. Since it appears so frequently in later courses, it’s a
good idea to master this skill now.

The ideas behind the techniques we will use for compleࢢng the square build
off of our ideas from expanding. We looked at common pa�erns, and one of the
ones we discussed was

(u+ v)2 = u2 + 2uv+ v2

Wewill use this pa�ern to help us change quadraࢢc funcࢢons of x into the form
(x+ a)2 + b. If we use this expansion pa�ern, we see that

(x+ a)2 = x2 + 2ax+ a2 (2.6)

Wewill use the coefficient on the x term of our quadraࢢc funcࢢon to help us find
a. Once we have a, we can calculate a2 and use it to help us determine what b
needs to be to write our quadraࢢc in the form (x+ a)2 + b. Let’s give it a try.

Example 61 Compleࢢng the Square
Write f(x) = x2 + 4x+ 6 in the form (x+ a)2 + b.

Soluࢢon We saw in equaࢢon 2.6 that (x+ a)2 = x2+ 2ax+ a2. We’ll
use the coefficient on x from our funcࢢon to determine a.

In f(x), x has a coefficient of 4 and in the expanded pa�ern x has a coefficient
of 2a. We want these to match, so we get 4 = 2a, or a = 2. Let’s see what our
pa�ern looks like with a = 2:

(x+ 2)2 = x2 + 4x+ 4

This is pre�y close to what f(x) looks like; the only difference is the constant
term. Remember, our end goal is to write f(x) in the form (x + a)2 + b. We’ve
already figured out a; now we need to figure out b. With the addiࢢon of b, we
can expand our goal form to get

(x+ a)2 + b = x2 + 2ax+ a2 + b

Notes:
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This tells us that b influences our constant term. We want the constant terms to
match, so we have 6 = a2 + b. We know a = 2, so really we have 6 = 4 + b,
giving us that b = 2. That means we have

f(x) = (x+ 2)2 + 2

This example shows the line of thinking we used with this problem, but is a
fairly wordy explanaࢢon. Mathemaࢢcians like to keep things concise, so let’s see
how we could show this work mathemaࢢcally, without using much of a verbal
descripࢢon. Typically, you will see work like this:

f(x) = x2 + 4x+ 6

= x2 + 2(2x) + 6

= x2 + 2(2x) + (22)− (22) + 6

= (x+ 2)2 − (22) + 6

= (x+ 2)2 − 4+ 6

= (x+ 2)2 + 2

(2.7)

This work shows the same steps we did above, but in a different form, and with-
out explicitly saying what a and b are. However, you can see that these steps are
working towards the form we want by using our pa�ern. In the second line, we
write 2(2x) instead of 4x to figure out a. Then, since we knowwe have a2 as part
of our constant, we add 22 and subtract 22 in the same step. Why? Well, this
makes sure we add zero, that we don’t change the meaning of the funcࢢon, just
the way it’s wri�en. Then, we have the correct pa�ern to write the first three
terms as (x + 2)2. Lastly, we simplify the constants outside of the parentheses
to find b.

In pracࢢce, most mathemaࢢcians may combine a couple of the steps into
one, but unࢢl you really get comfortable with this line of thinking it’s best to
write out all the steps.

Most people learn compleࢢng the square as an algorithm, a set of steps that
must be performed exactly as described and in the correct order to get the final
answer. We are intenࢢonally avoiding such an algorithm here; algorithms can
be difficult to memorize, but are easy to forget. If you instead think of this as a
puzzle where you figure out one part at a ,meࢢ it’s more likely that you will sࢢll
be able to accurately complete the square in later courses.

We’ve looked at one example of compleࢢng the square that had all “nice”
numbers in it, now let’s take a look at one that’s a bit messier.

Notes:
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Example 62 Compleࢢng the Square
Complete the square for g(t) = t2 − 7t+ 10.

Soluࢢon There is one big difference between this problem and our
previous example: our input variable has changed. That means instead of our
goal looking like (x+ a)2 + b, our goal looks like (t+ a)2 + b. Regardless, we’ll
follow the same thought process we used in the previous example. We know
that if we expand our goal form, we get (t+ a)2 + b = t2 + 2at+ a2 + b. Like
before, we’ll figure out a value for a first, and then a value for b. To find a, we
will use the t term. The expanded goal form has 2at and g(t) has−7t. This tells
us that 2a = −7, or a = − 7

2 . In the expanded goal form, the constant term is
a2+b; we know a now, so really we have 49

4 +b. Note that whenwe square awe
get a posiࢢve number (think back to the invisible parentheses we talked about
earlier). In g(t), our constant term is 10. Matching our constant terms gives us
the equality 49

4 + b = 10. If we subtract 494 from both sides, we get b = − 9
4 .

Altogether, we have a = − 7
2 and b = − 9

4 , so we have

g(t) =

(
t− 7

2

)2

− 9
4

A Variaࢢon on Compleࢢng the Square

In all of the examples we have discussed in this secࢢon, the squared term
has a coefficient of 1. However, someࢢmes we will run into situaࢢons where
this coefficient isn’t 1, and wewill need to be able to work with these situaࢢons.
When a quadraࢢc in x (meaning a quadraࢢc funcࢢon that has x as its variable)
has a leading coefficient (the coefficient on the highest power term) other than
1, we canwrite it as c(x+a)2+b. Thismeans that wewill have three parameters
we need to find: a, b, and c. In our earlier examples we found a first because
only it showed up on the x term, and the x2 termwas already taken care of since
it automaࢢcally had a coefficient of 1. Here, we will want to find c first since
it shows up in the quadraࢢc term and affects the linear term and the constant
term. This is a common soluࢢon technique in mathemaࢢcs: start by working
with the highest power terms first, and thenmove onto the lower degree terms.
Before we look at an example problem, let’s see what this modified form looks
like a[er expansion. We have
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2.5 Compleࢢng the Square

c(x+ a)2 + b = c(x2 + 2ax+ a2) + b

= cx2 + 2acx+ ca2 + b
(2.8)

There are somekey featuresweneed to note thatwill be handywhendealing
with these types of quadraࢢcs. In this form c impacts the x2, x, and constant
terms. For this form, we will start by “matching” coefficients with the x2 term,
then the x term, and then the constant term. Let’s take a look:

Example 63 Compleࢢng the Square- Variaࢢon
Write f(x) = 4x2 + 12x− 3 in the form c(x+ a)2 + b.

Soluࢢon Since we want our answer in the form c(x + a)2 + b, we
will use equaࢢon 2.8. In equaࢢon 2.8, we see that the coefficient on x2 in the
expanded form is c. For f(x), the x2 coefficient is 4, so we have c = 4.

Next, we’ll work with the x term. In equaࢢon 2.8, the x term has a coefficient
of 2ac. We are using c = 4, so really this coefficient is 2a(4) = 8a. For f(x), the
x coefficient is 12, so we get 8a = 12, or a = 3

2 .
Lastly, we’ll work with the constant terms. In equaࢢon 2.8, the constant is

ca2+b. Since we have a = 3
2 and c = 4, this constant really is 4( 32 )

2+b = 9+b.
In f(x), the constant is−3, so we have 9+ b = −3, or b = −12.

We’ve now found all three parameters, so we are done and have that

f(x) = 4
(
x+

3
2

)2
− 12

We could also solve this problem a bit differently. We could start by factor-
ing out the coefficient on the x2 term and then compleࢢng the square on what
remains. Let’s take a look:

Example 64 Compleࢢng the Square- Variaࢢon
Write f(x) = 4x2 + 12x− 3 in the form c(x+ a)2 + b.

Soluࢢon We’ll start by factoring 4 out from the equaࢢon and com-
pleࢢng the square on the remaining quadraࢢc factor. By factoring out the 4, x2

Notes:
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will have a coefficient of 1 and we can work like we did in our earlier examples.

f(x) = 4x2 + 12x− 3 = 4

[
x2 + 3x− 3

4

]

= 4

[
x2 + 2

(
3
2

)
x+

(
3
2

)2
−
(
3
2

)2
− 3
4

]

= 4

[(
x+

3
2

)2
− 9
4
− 3
4

]

= 4

[(
x+

3
2

)2
− 12

4

]

= 4

[(
x+

3
2

)2
− 3

]

We’re close to the form we want, but we have an extra set of parentheses.
Wewill need to redistribute the 4 to the rest of the statement to be in the correct
form. This gives us

f(x) = 4
(
x+

3
2

)2
− 12

As you can see, we end up with the exact same answer either way, but used
a different method. With the first method, we expanded the general form we
wanted and found the values of a, b, and c one by one. With the secondmethod,
we started with our specific funcࢢon f(x), and rearranged it to look like the form
we want. With the second method, the values of a, b, and c can be idenࢢfied
from our final answer.

When trying to rewrite a funcࢢon into a different form, it’s very important to
pay close a�enࢢon to how the form is wri�en, parࢢcularly if that form is used as
part of a rule that you need to fully solve the problem you are working on. The
parameters may not always be in alphabeࢢcal order and mixing up the parame-
ter values could drasࢢcally change your final answer. Addiࢢonally, some books
do not always use the same le�ers in the same posiࢢons, even if it’s the same
rule. Many rules will reuse the same le�ers as parameters, but they quite o[en
are filling different roles.
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Exercises 2.5
Terms and Concepts
1. How would compleࢢng the square on a quadraࢢc funcࢢon
help you graph it?

2. A[er compleࢢng the square, you get f(x) = (x − 2)2 + 3.
Is x = 2 considered a root of f(x)? Explain.

3. One of the variaࢢons on compleࢢng the square gives you
the form (cx + a)2 + b. Does c represent a verࢢcal
stretch/shrink or a horizontal stretch/shrink of the funcࢢon
x2?

4. A[er compleࢢng the square you get that g(t) = (t+2)2−6.
What are the values of a and b if your goal form is (x+a)2+
b?

Problems
In exercises 5 – 11, write each funcࢢon in the form (x+a)2+b
and idenࢢfy the values of a and b.

5. f(x) = x2 − 4x+ 6

6. g(x) = x2 + 20x+ 40

7. h(x) = x2 − 8x+ 5

8. m(x) = x2 − 22x− 4

9. n(x) = x2 − 6x− 2

10. p(x) = x2 + 11x+ 4

11. p(x) = x2 + 13x

In exercises 12 – 16, write each funcࢢon in the form c(x +
a)2 + b and idenࢢfy the values of a, b, and c.

12. f(x) = 9x2 − 12x+ 12

13. g(x) = x2 − 2x+ 2

14. h(x) = 4x2 − 4x− 4

15. w(x) = 4x2 + 4x+ 6

16. y(x) = 9x2 + 18x+ 4

In exercises 17 – 20, complete the square and use your result
to help you graph the funcࢢon.

17. f(t) = t2 + 2t+ 3

18. p(q) = q2 − 2
3q

19. y(x) = x2 + 4x+ 2

20. f(x) = x2 − 4x+ 6

In exercises 21 – 24, expand and graph the funcࢢon.

21. f(x) = (x− 1)2 − 2

22. g(x) = −(x+ 3)2 + 4

23. h(x) = (−x+ 3)2 + 4

24. x(y) = (y+ 2)2 − 1
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3: Solving and Trigonometric
Funcࢢons
In this chapter, wewill look at some special types of funcࢢons that are commonly
used in calculus: trigonometric funcࢢons. Addiࢢonally, we will look at solving
complicated equaࢢons for a given variable and finding all of the points where
two funcࢢons intersect each other. Each of these skills are quite important in
calculus. Trigonometric funcࢢons helpmodel natural phenomena such as sound
and light waves, and are used in related rates to determine how quickly some-
thing, like an angle, is changing. Because of the varied applicaࢢons you will see
in calculus, familiarity with these funcࢢons is a must. We will also look at a way
that we can take a raࢢonal funcࢢon and write it in a different form. Someࢢmes,
one of these forms will be more useful to us than another form, parࢢcularly in
integral calculus where we will have rules that only work for certain funcࢢon
forms. When we look at the intersecࢢons of two funcࢢons, we will mostly focus
on polynomials in this chapter since they are commonly used funcࢢons in sci-
enࢢfic fields. Intersecࢢons will be used frequently in integral calculus when we
are determining the area enclosed by two or more funcࢢons.

3.1 Solving for Variables

In many math and science courses, you will need to be able to isolate, or solve
for, a variable. This skill gets used in many places: in differenࢢal calculus it will
help you idenࢢfy the maximum or minimum value of a funcࢢon and when you
perform implicit differenࢢaࢢon where you will need to express one variable in
terms of several variables and parameters; in integral calculus you will use it
when you work to idenࢢfy intersecࢢon points, and in the many physics based
problems you will see in differenࢢal calculus such as equaࢢons working with
spring moࢢon. In many of these situaࢢons, you will either have mulࢢple vari-
ables, lots of parameters, or fairly complicated funcࢢons. In all of these situa-
,onsࢢ the first step to solving for a variable involves figuring out what type of
expression or funcࢢon that you are working with. The type of expression guides
the soluࢢon process; we take a different approach for quadraࢢcs than we do
for linear expression and a different approach yet for trigonometric expressions.
Wewill learn some of these approaches in this secࢢon, but we won’t discuss ap-
proaches for trigonometric funcࢢons unࢢl we discuss these funcࢢons in greater
detail, and we’ve already seen how to solve logarithmic and exponenࢢal func-
onsࢢ (see Secࢢon 1.5).

When idenࢢfying the type of expression, you’ll need to make sure you are
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focusing on your variable of interest. For example, we’ve looked at a formula for
the height of a ball that has been thrown into the air, formula 1.14:

h(t) = h0 + v0t+
1
2
at2

We discussed how this funcࢢon has one variable, t, and several parameters: h0,
v0, and a. Here, since t is our variable, we naturally focus on t and say that
we have a quadraࢢc funcࢢon of t. However, there may be situaࢢons where our
focus shi[s. For example, you may want the ball to have a certain height, say 10
meters, a[er t = 30 seconds and you are able to adjust the iniࢢal velocity, v0,
that the ball is thrown with. In this situaࢢon our focus is really on v0 and not on
t. This would give us the equaࢢon

10 = h(30) = h0 + v0(30) +
1
2
a(30)2, or

10 = h0 + 30v0 + 450a
(3.1)

Here, our equaࢢon sࢢll includes the parameters h0, v0, and a, but we’ve subsࢢ-
tuted 30 for t, and we are looking for the value of v0 that makes this statement
true. Since we are focusing on v0, we really only have a linear equaࢢon of v0. In
general, we would say that h(t) is linear in v0, meaning that if everything else is
treated like a parameter, the highest degree of v0 is 1, so it is linear. Similarly,
h(t) is a linear funcࢢon of h0 and a linear funcࢢon of a. Let’s take a look at a few
more examples.

Example 65 Determining Statement Type
The statement y3 sin (w) = 4y2z+ 2x2y+ xy+ 10 is what type of statement in
termsof

1. the le�er w?

2. the le�er x?

3. the le�er y?

4. the le�er z?

Soluࢢon

1. Here, our focus is on the le�er w. The le�er w only appears on the le[-
hand side in the term y3 sin (w). Since w is inside of the sine funcࢢon,

This statement is trigonometric in w

2. Here, our focus is on the le�er x. The le�er x appears in two terms: 2x2y
and xy. The remaining terms, y3 sin (w), 4y2z, and 10 do not involve x, so
they are considered to be constant terms when we focus on x. Out of the
terms that include x, we have an x2 term and an x term. This tells us that
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The statement is quadraࢢc in x

3. Now, we are focusing on y. The le�er y shows up in every term except 10.
We have a y3 term, a y2 term, two y terms, and a constant term. We could
rewrite the statement so that there only looks like one y term by gathering
like terms and rewriࢢng 2x2y+ xy as (2x2+ x)y. Since we only have these
four different types of terms,

This statement is cubic in y

4. Lastly, we’ll look at z. The le�er z only shows up in the term 4y2z; every
other term counts as a constant when we focus on z. This tells us that

The statement is linear in z

Note that in the previous example, we do not know if each le�er is repre-
senࢢng a variable or a parameter because we are given no context for the state-
ment. Since we are unsure, we just referred to “le�ers” so that we did not add
meaning that may not be correct.

Idenࢢfying the type of statement or equaࢢon for our variable of interest is
our first step in solving for the variable. Next, we’ll look at how to solve whenwe
have linear statements, quadraࢢc statements, or special kinds of higher degree
polynomials. We’ll also discuss the first steps for solving trigonometric func-
,onsࢢ but we won’t learn how to fully solve these unࢢl later secࢢons.

Solving a Linear Statement

Solving a linear statement is rather straigh�orward. For this explanaࢢon,
we’ll use x as our variable of interest. Start by moving every term that doesn’t
have an x to one side, and every term that does have an x to the other side of
the statement. Then, factor the x out of every termwith x. Lastly, divide the side
without x by the coefficients on x. Let’s take a look at solving a linear statement.

Example 66 Solving a Linear Statement
Solve the statement xz+ 2yz− 4 = sin (x) + y2 + y2z for z.

Soluࢢon Here we see that we do have a linear statement in z: the
highest degree of z in the statement is 1, and z does not appear inside of any
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other funcࢢons. We’ll start by gathering every term with a z on the le[ side by
subtracࢢng y2z from both sides:

xz+ 2yz+ y2z− 4 = sin (x) + ys

Next, we’ll gather all terms that don’t have a z on the right side:

xz+ 2yz+ y2z = sin (x) + y2 + 4

We did this by adding 4 to both sides. Next, we’ll factor out z on the le[ side
since it is a common factor for all of those terms:

z(x+ 2y+ y2) = sin (x) + y2 + 4

Lastly, we’ll divide the right side by the z coefficient on the le[ side:

z =
sin (x) + y2 + 4
x+ 2y+ y2

Solving a Quadraࢢc Statement

When we solve quadraࢢc statements, we’ll build off of the skills we learn
with factoring quadraࢢcs and with finding the roots of quadraࢢcs. We know
that if we want to find the roots of a funcࢢon, we are really looking for all inputs
that give us an output of zero. So, we take the funcࢢon and set it equal to zero
and use the quadraࢢc formula. We know we could instead find the factors of
the funcࢢon and use those to find the roots. Here, we will focus on using the
quadraࢢc formula since we are dealing with fairly complicated expressions that
will be more difficult to factor. With either method, we are building off of this
idea of finding roots/factors, which relies on a statement where one side is zero.
This means that whenwework with quadraࢢc statements, wewill need tomove
all of our terms to one side before we do anything else. This is a common trip-
ping point for people working with quadraࢢcs. Rather than developing a whole
new set of techniques, mathemaࢢcians like to use old techniques as much as
possible, and here that means we need one side to be zero.

Once we’ve moved all terms to one side, then we can gather our like terms.
We know that our quadraࢢc formula relies on knowing the coefficients of the x2
term, the x term, and the constant term, so we will want to gather all x2 terms
together, to gather all x terms together,and to gather all constant terms together.
From each set, we will factor out the x’s to find these coefficients. Let’s take a
look.
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Example 67 Solving a Quadraࢢc Statement
Solve the statement xz+ 2yz− 4 = sin (x) + y2 + y2z for y.

Soluࢢon We saw this statement in our last example, but there we
were solving for z. Here, wewant to solve for y. We can see that this statement is
quadraࢢc in y becausewe only have y2 terms, y terms, and constant terms. We’ll
start by moving every term on the right to the le[ (you could move everything
to the right instead; you would end up with the same final answer).

xz+ 2yz− 4− sin (x)− y2 − y2z = 0

Now, we will rearrange the order of our terms to gather all of the like terms.
We’ll start with the y2 terms, then the y terms, then the constant terms.

−y2 − y2z+ 2yz+ xz− 4− sin (x) = 0

Now we will factor out the y2 from the first two terms, then the y from the next
term.

y2(−1− z) + y(2z) + xz− 4− sin (x) = 0

Noࢢce that when we factored y2 out of the first two terms, we did not factor out
the negaࢢve, even though both terms are negaࢢve. This is because we want the
negaࢢve to be part of the y2 coefficient in order to be in the right form to use
the quadraࢢc formula. Now, we can use the quadraࢢc formula. In the quadraࢢc
formula, a is the coefficient on the squared term, so here we have a = −1− z.
Next, b is the coefficient on the y term, so b = 2z. Lastly, c is the constant term,
so we have c = xz−4− sin (x). Subsࢢtuࢢng into the quadraࢢc formula, we get:

y =
−b±

√
b2 − 4ac
2a

=
−(2z)±

√
(2z)2 − 4(−1− z)(xz− 4− sin (x))

2(−1− z)

=
−2z±

√
4z2 − 4(−1− z)(xz− 4− sin (x))

−2− 2z

=
−2z±

√
4z2 + (4+ 4z)(xz− 4− sin (x))

−2− 2z

=
−2z±

√
4z2 + 4xz− 16− 4 sin (x)− 4xz2 − 16z− 4z sin (x)

−2− 2z

Since this cannot be easily simplified, we will leave the answer as it is, giving
us a final answer of
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y =
−2z±

√
4z2 + 4xz− 16− 4 sin (x)− 4xz2 − 16z− 4z sin (x)

−2− 2z

As you probably noࢢced, the answer to this example is quite complicated,
which shows us that trying to find factors for this quadraࢢc, rather than the
roots, is quite difficult. It’s important to noࢢce that we get two answers here:

y =
−2z+

√
4z2 + 4xz− 16− 4 sin (x)− 4xz2 − 16z− 4z sin (x)

−2− 2z

y =
−2z−

√
4z2 + 4xz− 16− 4 sin (x)− 4xz2 − 16z− 4z sin (x)

−2− 2z

We get two answers because of the±; this tells us that one answer comes from
using + and the other from using −. This shows us that every quadraࢢc state-
ment will have two soluࢢons. Someࢢmes these soluࢢons will look the same (if
we solve (x−1)2 = 0 both answers will be x = 1), and thenmathemaࢢcians say
there is one repeated soluࢡon (or one repeated root). This repeࢢࢢon of the root
does make a difference in other properࢢes of the funcࢢon that you will discuss
in differenࢢal calculus. For the previous example, if the square root evaluates to
zero, we would have one repeated soluࢢon. If we end up with the square root
of a posiࢢve number, we would have two disࢡnct (different) soluࢡons (or roots),
and if we end up with the square root of a negaࢢve number, we would have a
complex conjugate pair of soluࢡons (roots). Complex means that our answers
involve imaginary numbers (any number that involves i =

√
−1) and conjugate

pair means that they are related, and the only difference is that for one answer
we use the + part of the ± and for the other we use the − part of the ±. This
shows that for this example, our final answer could change drasࢢcally depending
on the values of x and z.

For quadraࢢcs, these are our only opࢢons for classifying our answers. In
later courses like differenࢢal equaࢢons, the type of answer will tell you about
properࢢes of related funcࢢons. Noࢢce that for a quadraࢢc, we have 2 answers
and the degree of the statement is 2. For linear statements, we only have one
answer, and the degree of the statement is 1. This pa�ern conࢢnues; for cubic
statements you have 3 answers and the degree is 3, for quarࢢc statements you
have 4 answers and the degree is 4. With any polynomial with degree of 2 or
more, we could have soluࢢons that are repeated, or complex conjugate pairs,
as well as disࢢnct soluࢢons. The complex conjugate pairs give you two answers;
for a cubic if you have a complex conjugate pair of soluࢢons, your other soluࢢon
must be a real soluࢢon. Let’s take one look at a quadraࢢc that has complex

Notes:

112



3.1 Solving for Variables

conjugate soluࢢons so you can see how to write your answer using i, which is
the most common way to express these answers.

Example 68 Solving a Quadraࢢc Statement
Solve x(x− 4) = −13 for x.

Soluࢢon From the formof the statementweare given, it’s not enࢢrely
obvious that we are working with a quadraࢢc. We’ll need to expand the le[ side
before we do anything else so that we can easily see that it is a quadraࢢc and
so we can correctly determine all of the coefficients. Expanding gives x2 − 4x =
−13. Our next step is to move everything to one side:

x2 − 4x+ 13 = 0

Now, we can pick out our values of a, b, and c for the quadraࢢc formula. x2
has a coefficient of 1, so a = 1; x has a coefficient of −4, so b = −4; and the
constant is−13, so c = −13. The quadraࢢc formula gives us

x =
−b±

√
b2 − 4ac
2a

=
−(−4)±

√
(−4)2 − 4(1)(13)
2(1)

=
4±

√
16− 52
2

=
4±

√
−36
2

Now, we’ll need to deal with that negaࢢve under the square root before
we simplify our answer. We can deal with this by factoring the square root:√
−36 =

√
(−1)(36) =

√
−1

√
36 = i

√
36. Now, we can conࢢnue simplifying

our answers:

x =
4±

√
−36
2

=
4± i

√
36

2

=
4± i(6)

2

=
4± 6i
2

= 2± 3i

Notes:
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So, we end up with a complex conjugate pair:

x = 2+ 3i and x = 2− 3i

Solving Higher Degree Statements

For higher degree polynomial statements that do not include parameters,
we can build off of the strategies we used when factoring and finding roots. For
these, we can solve by moving all of the terms to one side, and then finding the
roots. These roots will be the same as the soluࢢons to the original statement.
However, solving higher degree statements can be quite difficult if they have
many parameters. For cubic funcࢢons, there is a formula (akin to the quadraࢢc
formula) that will allow you to solve if you move all terms to one side, but the
formula is long and hard to simplify. Few mathemaࢢcians could tell you this
formulawithout looking it up because it is rarely used; because of thiswewill not
cover it, but it is good to know that it exists. Similarly, an evenmore complicated
formula exists to find a root of a quarࢢc funcࢢon; once you find the first root you
would then have to use the cubic funcࢢon formula. For any funcࢢons of degree
5 or higher, there is no known formula to help you solve. Since these higher
degree funcࢢons are quite difficult to work with, we will not work with them.
We have, however, already looked at solving special cases of them when we
discussed exponents in Secࢢon 1.4.

Solving Non-polynomial Statements

Lastly, wewill briefly discuss solving non-polynomial statements, statements
where our le�er of interest is an input for a trigonometric funcࢢon, a logarith-
mic funcࢢon, or an exponenࢢal funcࢢon. Trigonometric statements require the
use of tools and ideas that we have not yet discussed, so the full details will be
covered in later secࢢons. However, for all of these, the first half of the process
is the same as solving for a linear statement. We start by isolaࢢng the funcࢢon
that involves our le�er of interest by moving all other terms to the other side,
and then dividing by any coefficients on our term of interest. For example, if we
wanted to solve the statement ln (a)b3cx − 7 + sin (b) = 2x2 for a, we would

start by isolaࢢng ln (a), and would end up with ln (a) =
2x2 + 7− sin (b)

b3cx
. This

doesn’t tell us what a is, but we’re nearly there. We’ve already seen how to
solve for a, now that ln (a) is isolated, in Secࢢon 1.5. Now, you have the tools
you need to solve most statements you will encounter in calculus.

Notes:
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Exercises 3.1
Terms and Concepts
1. Is it possible to solve a cubic statement?

2. What are the possible types of soluࢢons when solving a
quadraࢢc statement?

3. What is the maximum number of different soluࢢons that a
seventh degree statement could have?

4. T/F: A cubic statement can have only complex soluࢢons. Ex-
plain.

Problems
In exercises 5 – 10, determine the type of statement in terms
of the given variable.

5. x3y+ 2x2yz− 6xz2 = yz2 − 10 in terms of x

6. x3y+ 2x2yz− 6xz2 = yz2 − 10 in terms of y

7. x3y+ 2x2yz− 6xz2 = yz2 − 10 in terms of z

8. xt+ cos (θ) = x4t3 − 6t in terms of θ

9. xt+ cos (θ) = x4t3 − 6t in terms of x

10. xt+ cos (θ) = x4t3 − 6t in terms of t

In exercises 11 – 18, determine if it is possible to solve the
statement for the given variable. If it is possible, solve but do
not simplify your answer(s). If it is not possible, explain why.

11. xy2 − xy = 5y− 3x for x

12. xy2 − xy = 5y− 3x for y

13. 3t2 − 5mq = 8qt+ 2m3 for q

14. 2a2bc3 + 3abc2 + 4a2c2 − 3b = 4c for a

15. 2a2bc3 + 3abc2 + 4a2c2 − 3b = 4c for b

16. log2 (xy) = x+ ez for x

17. log2 (xy) = x+ ez for y

18. log2 (xy) = x+ ez for z

In exercises 19 – 27, solve for x. Be sure to list all possible
values of x.

19. x2 − 16 = 0

20. x2 + 16 = 0

21. x2 − 4x− 7 = 2

22. x2 − 2x+ 7 = 2

23. 5x2 + 2x = −1

24. x3 = 8

25. x3 + x2 = 4x+ 4

26. 2(x− 3)2 − 7 = −4x+ 9

27. (x+ 2)3 = 2x2 + 8x+ 7

In exercises 28 – 32, Classify the type(s) of soluࢢon(s) from
the given exercise.

28. Exercise 19

29. Exercise 20

30. Exercise 21

31. Exercise 24

32. Exercise 25
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3.2 Intersecࢢons

In many problems in integral calculus you will be finding the area enclosed by, or
between, several funcࢢons. As part of finding the area, you will need to idenࢢfy
where the funcࢢons intersect each other, i.e., the (x, y) coordinate pairs where
the curves cross. The points of intersecࢡon of two funcࢢons, f(x) and g(x), are
the (x, y) coordinate pairs forwhich the input, x, results in the sameoutput value
from both funcࢢons. In this secࢢon, we will address three different methods for
finding the points of intersecࢢon for two graphs. The first two methods we will
discuss rely heavily on this skills you learned in the previous secࢢon where you
learned how to solve for variables.

Note that while we have mostly been using funcࢢon notaࢢon like f(x), here
we will o[en indicate the output of the funcࢢon as y. One reason why we are
using y here is that some of our funcࢢons will be defined implicitly. When a
funcࢢon is defined implicitly, it means that the output of the funcࢢon is not
isolated; we’ve seen this before with the point slope form of a line. When the
output is isolated, we say our funcࢢon is defined explicitly, as in slope intercept
form.

Subsࢢtuࢢon

Subsࢢtuࢢon ismost commonly usedwhen one or both funcࢢons are defined
implicitly, or when both funcࢢons have a term in common. With this method,
we will solve one equaࢢon for one of the variables and then subsࢢtute the so-
luࢢon into the second equaࢢon and solve for the remaining variable. In this
course, we are only interested in real number soluࢢons. Here, it is a ma�er of
personal preference when choosing which funcࢢon to work with iniࢢally, and
which variable to solve for. However, we recommend starࢢng with the equa-
onࢢ that is “simpler;” if one equaࢢon is linear and the other is quadraࢢc, it is
typically less complicated to start with the linear funcࢢon. Let’s take a look at
an example.

Example 69 Points of Intersecࢢon: Subsࢢtuࢢon
Find the points of intersecࢢon for 4x2 + y2 = 4 and y− 1 = 2(x− 1).

Soluࢢon Here, the first equaࢢon, 4x2 + y2 = 4 is quadraࢢc in both x
and in y, but the second equaࢢon, y− 1 = 2(x− 1) is linear in both x and in y.
Because of this, we will start our work with the second equaࢢon.

Addiࢢonally, in the second equaࢢon y is already nearly isolated, so we will
first isolate y in this equaࢢon.

Notes:
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3.2 Intersecࢢons

y− 1 = 2(x− 1)
y = 2(x− 1) + 1
= 2x− 2+ 1
= 2x− 1

Now that we have y isolated, we will replace every y in the equaࢢon 4x2 +
y2 = 4 with 2x − 1. As when we evaluated funcࢢons, we will be sure to put
parentheses around the term, (2x− 1), so that we can simplify correctly.

4x2 + y2 = 4

4x2 + (2x− 1)2 = 4

4x2 + (4x2 − 4x+ 1) = 4

8x2 − 4x− 3 = 0

This doesn’t look like it is likely to factor nicely, so we will use the quadraࢢc
formula:

x =
−(−4)±

√
(−4)2 − 4(8)(−3)
2(8)

=
4±

√
16+ 96
16

=
4±

√
112

16

=
4± 4

√
7

16

=
1+

√
7

4
,
1−

√
7

4
This only gives us the x coordinates; we also need the y coordinates. To

get the corresponding y coordinates, we will use the linear equaࢢon where we
already solved for y in terms of x. We could use the earlier form of this equaࢢon,
or we could even use the quadraࢢc equaࢢon, but either of these would require
more work. The first y coordinate is:

y = 2x− 1

= 2

(
1+

√
7

4

)
− 1

Notes:
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=
1+

√
7

2
− 2
2

=
−1+

√
7

2
The second y coordinate is:

y = 2x− 1

= 2

(
1−

√
7

4

)
− 1

=
1−

√
7

2
− 2
2

=
−1−

√
7

2
Now, we have both of the points of intersecࢢon:(

1+
√
7

4
,
−1+

√
7

2

)
and

(
1−

√
7

4
,
−1−

√
7

2

)

Someࢢmes, we can be a bit creaࢢve about using subsࢢtuࢢon. Depending on
the equaࢢons you are working with, it may someࢢmes be quicker to not solve
for a variable completely, but rather for a term that shows up in both equaࢢons.
Let’s take a look at an example.

Example 70 Points of Intersecࢢon: Subsࢢtuࢢon
Find all points of intersecࢢon of x− 4 = y2 and x2 − 4x = −y2.

Soluࢢon Herewe can see that the only “easy” place to start by solving
would be to solve for x in the first equaࢢon, but once we subsࢢtute into the
second equaࢢon, things will get messy quickly. However, both equaࢢons have a
y2 term, andnoother y terms. Thismeans thatwe can save somework by solving
for y2 in one equaࢢon and subsࢢtuࢢng into y2 in the other equaࢢon. Since the
first equaࢢon already has y2 isolated, we really just have to do the subsࢢtuࢢon.
We will subsࢢtute x− 4 into the second equaࢢon in the place of y2:

x2 − 4x = −y2

x2 − 4x = −(x− 4)

x2 − 4x = −x+ 4

Notes:
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3.2 Intersecࢢons

x2 − 3x− 4 = 0
(x− 4)(x+ 1) = 0

x = −1, 4

Now that we have our x coordinates, we need to find the corresponding y
coordinates. We’ll use the first equaࢢon, since it’s a bit simpler to work with.
Subsࢢtuࢢng in x = 4 gives us 0 = y2, or y = 0. Subsࢢtuࢢng in x = −1 gives
−5 = y2. Here, this gives us an imaginary answer for y, so we do not get an
addiࢢonal intersecࢢon point. The only intersecࢢon point for these equaࢢons is

(4, 0)

Equaࢢng the Funcࢢons

The next method we will discuss works well when both funcࢢons are ex-
plicit, or are given in funcࢢon notaࢢon. For this method, we will first solve each
equaࢢon for the same variable, set the two equal to each, and solve.

Example 71 Points of Intersecࢢon: Equaࢢng
Find all points of intersecࢢon of f(x) = x2 + 1 and g(x) = x+ 1

Soluࢢon Here, both equaࢢons are given using funcࢢon notaࢢon; this
means that really f(x) tells us the value of the y coordinate at x, so we can re-
place it with y: y = x2 + 1. Similarly, g(x) tells us the value of the y coordinate
at x for the other funcࢢon: y = x+ 1. Since y is isolated in both, we will set the
two equal to each other and solve for x:

x2 + 1 = x+ 1

x2 − x = 0
x(x− 1) = 0

x = 0, 1

Now, we just need to find the y coordinates. We can use either f(x) or g(x)
to do this; g(x) is simpler so we will use it. We get that g(0) = 1 and g(1) = 2.
Therefore, we have two points of intersecࢢon:

(0, 1) and (1, 2)

Notes:
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Eliminaࢢon

The thirdmethodwewill discuss is a bit different than the othermethodswe
have seen. This method also requires strong algebra skills. The main advantage
of this method won’t be obvious unࢢl the next secࢢon of this book, because it is
the most useful when we have a system of two or more linear equaࢢons. Here,
we will only show how to use it with two variables, but the idea extends nicely
(this means that it is easy to adapt this method to othermore complicated situa-
.(onsࢢ For eliminaࢢon, we will take each equaࢢon, mulࢢply the enࢢre equaࢢon
by a constant, and add the equaࢢons together in such a way that one variable is
eliminated.

Example 72 Points of Intersecࢢon: Eliminaࢢon
Find all points of intersecࢢon of 2x+ 3y = 2 and−x+ y = 4.

Soluࢢon Wewill first try to eliminate x from both equaࢢons. The first
equaࢢon has 2x and the second has −x. If we mulࢢply the second equaࢢon by
2 and add it to the first, the x terms will cancel out:

2x+3y=2
+2(−x+ y =4)

or:
2x +3y= 2

+(−2x+2y= 8 )
5y=10

Noࢢce thatwe lined up our variables and treated this like a big addiࢢon problem.
Keeping the variables lined up makes our work easier to follow.

Now, we can take the result and easily solve for y, geࢰng y = 2. We can
now use y to find x. Either equaࢢon will work, but we will use the second one:
−x+ (2) = 4, or x = −2. This gives use one point of intersecࢢon at

(−2, 2)

Eliminaࢢon is a parࢢcularly flexible method. To illustrate this, we will solve
the problem again, but this meࢢ we will eliminate y first.

Example 73 Points of Intersecࢢon: Eliminaࢢon
Find all points of intersecࢢon of 2x+ 3y = 2 and−x+ y = 4.

Soluࢢon The first equaࢢon has 3y and the second has y. We will mul-
plyࢢ the first equaࢢon by− 1

3 and add it to the second equaࢢon:

Notes:
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3.2 Intersecࢢons

− 1
3 ( 2x +3y= 2 )

+ ( −x + y = 4 )

− 5
3x = 10

3

Solving − 5
3x = 10

3 gives us x = −2, and subsࢢtuࢢng into either equaࢢon
gives us y = 2. We get the same intersecࢢon point:

(−2, 2)

Addiࢢonally, we could have mulࢢplied the second equaࢢon,−x+ y = 4, by
3 and subtracted from the first to eliminate y first. With eliminaࢢon, it is best to
do a li�le planning to figure out what variable will be easiest to eliminate first,
and what combinaࢢons will keep the numbers simple.

Graphing

Now, we will briefly discuss a common method used by students: graphing.
While graphing is a great way to help determine how many points of intersec-
onࢢ exist and the approximate coordinates, it will not give you an exact set of
coordinates, unless you use a calculator or computer. In calculus, having the
exact values is necessary. In example 69, we ended up with two points of inter-
secࢢon: ( 1+

√
7

4 , −1+
√
7

2 ) and ( 1−
√
7

4 , −1−
√
7

2 ). If we had graphed to find these
points, we would not have found the exact coordinates, and at best would have
ended up with approximaࢢons. For this reason, we do not recommend relying
solely on graphing for finding points of intersecࢢon. Someࢢmes the coordinates
will be integers and the graph will be easy to read, but as in this example, o[en
it is impossible to get the answer you need from the graph.

Notes:
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Exercises 3.2
Terms and Concepts

1. In which situaࢢons is subsࢢtuࢢon a more appropriate solu-
onࢢ method than equaࢢng the funcࢢons?

2. Is y = x3+5x−7 an implicitly or explicitly defined funcࢢon?
Explain.

3. Is xy + y2 − y = 2x + 6 an implicitly or explicitly defined
funcࢢon? Explain.

4. Describe the pros and cons of using graphing to find the
point(s) of intersecࢢon.

Problems
In exercises 5 – 8, determine the maximum possible number
of intersecࢢons for the described funcࢢons.

5. Two linear funcࢢons with different slopes

6. A linear funcࢢon and a quadraࢢc funcࢢon

7. Two explicitly defined quadraࢢc funcࢢons

8. A cubic funcࢢon and a constant funcࢢon

In exercises 9 – 12, determine the minimum possible number
of intersecࢢons for the described funcࢢons.

9. Two linear funcࢢons with different slopes

10. A linear funcࢢon and a quadraࢢc funcࢢon

11. Two explicitly defined quadraࢢc funcࢢons

12. A cubic funcࢢon and a constant funcࢢon

In exercises 13 – 18, find all points of intersecࢢon between
the given funcࢢons.

13. y = x2 − 1 and y = x− 1

14. x2 + y2 = 1 and 4y = 3x

15. y− 1 =
√
3x and y = x+ 1

16. y = x2 − 3x+ 2 and the x-axis

17. y = x2 − 3x+ 2 and y = 5

18. y+ 2x = 5 and y+ 3 = x3 − 7x2 + 12x

In exercises 19 – 22, sketch the region bounded by the given
funcࢢons and determine all intersecࢢon points.

19. y = x2 and y = x

20. y = x2 and y = x+ 2

21. y = x2 and y =
√
x

22. 3y+ 2x = 6, the x-axis, and the y-axis (hint: sketch before
looking for the intersecࢢon points)
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3.3 Fracࢢons and Parࢢal Fracࢢons Decomposiࢢon

In calculus, you will run into many situaࢢons where you need to simplify frac-
;onsࢢ in differenࢢal calculus, when you take a derivaࢢve of a quoࢢent of two
funcࢢons, the result will be an even more complicated quoࢢent that will re-
quire simplificaࢢon. Addiࢢonally, when working with raࢢonal funcࢢons (func-
onsࢢ that are a quoࢢent of two polynomials), simplifying can help idenࢢfy key
features of the funcࢢon. In integral calculus and when working with inverse
Laplace transforms in differenࢢal equaࢢon, you will need to take a fracࢢon and
split it into several simpler fracࢢons through a process called parࢢal fracࢢon de-
composiࢢon. In this secࢢon, we will discuss many of the skills you will need
when working with fracࢢons in calculus.

Simplifying Fracࢢons

When mathemaࢢcians talk about simplifying fracࢢons they can be referring
to combining fracࢢons that are being added into a single fracࢢon, removing any
common factors from the numerator and denominator, and/or rewriࢢng frac-
onsࢢ that have nested fracࢢons in the numerator or denominator. First, we’ll
discuss how to combine mulࢢple fracࢢons.

When adding or subtracࢢng any fracࢢons, the first step is to get a common
denominator. This builds off of the ideas we learn about fracࢢons as a child; the
denominator tells us howmany pieces we split the item into and the numerator
tells us how many pieces we are using. For example, 23 means we split the item
into 3 pieces and are using 2 of them. Beforewe can combine fracࢢons, we need
tomake sure all of the pieces are the same size by having the same denominator.
As we saw in Secࢢon 1.1, we canmake sure that are denominators are the same
by mulࢢplying by 1 in a sneaky way; for example if we want to add 2

3 and
1
8 ,

we can mulࢢply by 8
8 and by

3
3 respecࢢvely. Since we are mulࢢplying by the

“missing” factor for each, both will have the same denominator: 1624 and
3
24 . We

can do the same even when our fracࢢon contains variables.

Example 74 Combining Fracࢢons
Simplify

3
x+ 2

− x+ 1
x− 2

.

Soluࢢon First, we will mulࢢply by the missing factors. We will mulࢢ-

ply the first term by
x− 2
x− 2

and the second term by
x+ 2
x+ 2

. This gives us:

Notes:
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3
x+ 2

− x+ 1
x− 2

=
3

x+ 2
× x− 2

x− 2
− x+ 1

x− 2
× x+ 2

x+ 2

=
3(x− 2)

(x+ 2)(x− 2)
− (x+ 1)(x+ 2)

(x− 2)(x+ 2)

=
3x− 6
x2 − 4

− x2 + 3x+ 2
x2 − 4

Noࢢce that when we mulࢢplied we were careful to include parentheses since
we know that we have implied parentheses when we work with fracࢢons. Now
that both fracࢢons have the samedenominator, we can combine them. Wemust
do this carefully; we are subtracࢢng so we will need to distribute the negaࢢve
correctly.

3x− 6
x2 − 4

− x2 + 3x+ 2
x2 − 4

=
3x− 6− (x2 + 3x+ 2)

x2 − 4

=
−x2 − 8
x2 − 4

Our final answer is

3
x+ 2

− x+ 1
x− 2

=
−x2 − 8
x2 − 4

Simplifying a fracࢢon can also mean that we are looking for common fac-
tors of the numerator and the denominator. If we examine the result from
our previous example, we see that the denominator can be factored: x2 − 4 =
(x+2)(x−2). However, the numerator is irreducible. This means that it has no
linear factors, so the numerator and denominator have no factors in common
and cannot be simplified any further.

This type of simplifying can be confusing for students; it’s really tempࢢng to

see a fracࢢon like
x2 + 1
x+ 1

and to “simplify” it by crossing out the ones. However,

this is not correct because it ignores the implied parentheses:
(x2 + 1)
(x+ 1)

. The

one is edࢢ to the rest of the terms and cannot be separated in this manner. This
becomes a bit clearer if you try subsࢢtuࢢng in a number for x, such as x = 2.
Let’s look at an example where we do have common factors.

Notes:
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Example 75 Simplifying a Fracࢢon

Simplify
2x3 + 10x2 + 12x

2x3 − 8x
.

Soluࢢon The first step here is to factor both the numerator and the
denominator. Wewon’t show those steps here, but you should verify our result.
Once we have factored both, we will see if we have any common factors; if we
do we can remove them from both the numerator and the denominator.

2x3 + 10x2 + 12x
2x3 − 8x

=
2x(x+ 3)(x+ 2)
2x(x+ 2)(x− 2)

=
x+ 3
x− 2

, x ̸= 0,−2

We see that both the numerator and the denominator have 2x and x+ 2 as
factors; this means we can eliminate these terms. Noࢢce that we have to add
a domain restricࢢon. The original form of the fracࢢon is not defined at x = 0
or x = 2 since both values make the denominator 0. In order to truly have
the same meaning as the original funcࢢon, we need to note that we cannot use
these values of x. This is why we have the addiࢢonal note of x ̸= 0,−2 as part
of our soluࢢon. There are no other common factors, so our final answer is

2x3 + 10x2 + 12x
2x3 − 8x

=
x+ 3
x− 2

, x ̸= 0,−2

Now, let’s take a look at simplifying when we have complex fracࢢons. Here,
complex does not mean that we are working with imaginary numbers, rather
that we have a fracࢢon nested inside of a fracࢢon. When we have complex
fracࢢons, the first step is to make sure the enࢢre numerator is as simplified as
possible and that the enࢢre denominator is as simplified as possible. We’ll work
three different examples that already have simplified numerators and simplified
denominators, but do not neglect this first step as it is criࢢcal in working these
problems correctly.

Example 76 Complex Fracࢢons
Simplify

x+ 1
x−1
x2

.

Soluࢢon Again, note that both the numerator and denominator are
as simplified as possible. Here, the nested fracࢢon is in the denominator. When

Notes:
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dividing by a fracࢢon, we can instead mulࢢply by the reciprocal (think about
dividing a number by 1

2 ; it is equivalent to mulࢢplying by
2
1 ).

x+ 1
x−1
x2

= (x+ 1)÷ x− 1
x2

= (x+ 1)× x2

x− 1

=
(x+ 1)(x2)

x− 1

=
x3 + x2

x− 1

There are no common factors, so we are done, and our final answer is

x+ 1
x−1
x2

=
x3 + x2

x− 1

Example 77 Complex Fracࢢons

Simplify
2

x+1

x+ 2
.

Soluࢢon Here, the nested fracࢢon is in the numerator. For this case,
we can simply rewrite a li�le bit; instead of dividing by x+2, we can mulࢢply by
1

x+2 . This is analogous to mulࢢplying by one half instead of dividing by 2; both
have the same meaning.

2
x+1

x+ 2
=

2
x+ 1

÷ (x+ 2)

=
2

x+ 1
× 1

x+ 2

=
2(1)

(x+ 1)(x+ 2)

=
2

x2 + 3x+ 2

Notes:
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There are no common factors, so we are done.

2
x+1

x+ 2
=

2
x2 + 3x+ 2

Example 78 Complex Fracࢢons

Simplify
x

x+1
x−2
x−1

.

Soluࢢon Here we will use the ideas from both of the previous exam-
ples. We will mulࢢply the numerator by the reciprocal of the denominator:

x
x+1
x−2
x−1

=
x

x+ 1
÷ x− 2

x− 1

=
x

x+ 1
× x− 1

x− 2

=
(x)(x+ 1)

(x− 1)(x− 2)

=
x2 + 1

x2 − 3x+ 2

There are no common factors, so we are done.

x
x+1
x−2
x−1

=
x2 + 1

x2 − 3x+ 2

Parࢢal Fracࢢon Decomposiࢢon

Our next topic is parࢢal fracࢢon decomposiࢢon. With parࢢal fracࢢon de-
composiࢢon, our goal is to take a fracࢢon with a polynomial numerator and a
polynomial denominator and write it as the sum of several fracࢢons that have
simpler denominators. For example, we can write 6x+16

x2+5x+6 as
2

x+3 + 4
x+2 (this
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is a good place to pracࢢce your fracࢢon combining skills by verifying that these
are equal). In many situaࢢons, parࢢcularly when performing integraࢢon, this
second form is much easier to work with. To do this, our first step is to factor
the denominator. When we factor, we will end up with linear factors and/or
irreducible quadraࢢc factors. These factors may only appear once, or may be
repeated (for example, for x2 + 2x + 1, we say x + 1 is repeated twice since
x2 + 2x+ 1 = (x+ 1)2).

With our decomposiࢢon, wewant towrite the original fracࢢon as the sum of
many fracࢢons; we will need one fracࢢon for each factor. If a factor is repeated,
it will need one fracࢢon for each meࢢ it is repeated. The factors will be the
denominators of the new fracࢢons. Remember, the factors used to make the
new fracࢢon denominatorsmust combine, throughmulࢢplicaࢢon, to give us the
original denominator. For linear factors, the numerator will be a constant and
for quadraࢢc factors the numerator will be linear. Once we have determined
how we are spliࢰng up (“decomposing”) our original fracࢢon, we will use our
algebra skills to determine exactly what the numerators look like. Let’s look at
some examples; in all of our examples the denominator will already be factored;
in pracࢢce you will o[en need to do the factorizaࢢon as your first step.

Example 79 Parࢢal Fracࢢon Decomposiࢢon: Linear Factors
Perform a parࢢal fracࢢon decomposiࢢon on

3
(x+ 1)(x− 2)

.

Soluࢢon Since the denominator has two factors, we will be decom-
posing into two fracࢢons. Each term is linear, so each of our new fracࢢons will
have a constant numerator. We’ll use A and B as the numerators for now, and
we will solve for these two values later. So far, we have:

3
(x+ 1)(x− 2)

=
A

x+ 1
+

B
x− 2

(3.2)

It does not ma�er which fracࢢon comes first, nor does it ma�er what le�ers
we use in the numerators, so long as we don’t use the same le�er twice. Our
next step is to determine the appropriate values for A and B. Tomake this easier,
we will mulࢢply everything in equaࢢon 3.2 by (x + 1) and by (x − 2). This will
eliminate all of the fracࢢons.

(x+ 1)(x− 2)

[
3

(x+ 1)(x− 2)

]
= (x+ 1)(x− 2)

[
A

x+ 1
+

B
x− 2

]

3(x+ 1)(x− 2)
(x+ 1)(x− 2)

=
A(x+ 1)(x− 2)

x+ 1
+

B(x+ 1)(x− 2)
x− 2

3 = A(x− 2) + B(x+ 1)

Notes:
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You might be tempted to distribute on the right side, but it will be easier
to solve for A and B if we don’t. If we have the right values of A and B, this last
statement, 3 = A(x−2)+B(x+1), is true for all values of x. Wewill exploit this.
Right now, we are mulࢢplying A by (x− 2). We can make this A term disappear
if we subsࢢtute in x = 2. When we do this, we get:

3 = 0+ B(2+ 1)
3 = 3B
B = 1

We can use a similar technique by subsࢢtuࢢng in x = −1 and making B
disappear:

3 = A(−1− 2) + 0
3 = A(−3)
A = −1

Now that we have the values of A and B, we can complete the decomposi-
:onࢢ

3
(x+ 1)(x− 2)

=
−1
x+ 1

+
1

x− 2

With parࢢal fracࢢon decomposiࢢon, the order of the mesࢢ is up to you. We
could have started out this problem with

3
(x+ 1)(x− 2)

=
A

x− 2
+

B
x+ 1

instead of

3
(x+ 1)(x− 2)

=
A

x+ 1
+

B
x− 2

The values for A and B would be different, but the final answer would be the
same.

As we noted above, we may have repeated factors in our denominator, and
when we do we will need a separate fracࢢon for each meࢢ it is repeated. These
fracࢢons will all have this repeated factor in the denominator, but raised to a
higher power each :meࢢ in the first fracࢢon we will just have the factor, in the
second fracࢢon we will have the factor squared, in the third we will have the
factored cubed, etc. Let’s take a look at an example.
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Example 80 Parࢢal Fracࢢon Decomposiࢢon: Repeated Factors

Perform a parࢢal fracࢢon decomposiࢢon on
5x3 + 16x2 + 16x+ 6

(x+ 2)(x+ 1)3
.

Soluࢢon Here, the denominator is already factored for us, so the first
step is already complete. We see that we have one factor that is only repeated
once, x+ 2, and another factor that is repeated three ,mesࢢ x+ 1. This means
wewill decompose into four fracࢢons, with denominators of x+2, x+1, (x+1)2,
and (x+ 1)3. Since both factors are linear, each fracࢢon will have a constant in
the numerator. So, the decomposiࢢon will look like:

5x3 + 16x2 + 16x+ 6
(x+ 2)(x+ 1)3

=
A

x+ 2
+

B
x+ 1

+
C

(x+ 1)2
+

D
(x+ 1)3

As in the previous example, we will mulࢢply both sides by the denominator
of the original fracࢢon, (x+ 2)(x+ 1)3. This will eliminate the fracࢢons.

(x+ 2)(x+ 1)3
[
5x3 + 16x2 + 16x+ 6

(x+ 2)(x+ 1)3

]
=

= (x+ 2)(x+ 1)3
[

A
x+ 2

+
B

x+ 1
+

C
(x+ 1)2

+
D

(x+ 1)3

]

Then,

(5x3 + 16x2 + 16x+ 6)(x+ 2)(x+ 1)3

(x+ 2)(x+ 1)3
=

=
A(x+ 2)(x+ 1)3

x+ 2
+

B(x+ 2)(x+ 1)3

x+ 1
+

C(x+ 2)(x+ 1)3

(x+ 1)2
+

D(x+ 2)(x+ 1)3

(x+ 1)3

Finally,

5x3+16x2+16x+6 = A(x+1)3+B(x+2)(x+1)2+C(x+2)(x+1)+D(x+2)

Now, we’ll use the samemethodwe used in the previous example; by choos-
ing appropriate values of x to subsࢢtute into our equaࢢon, we will be able to
eliminate terms. Every term except for the A term is being mulࢢplied by (x+2),
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so if we subsࢢtute x = −2, the B, C, and D terms will all become zero:

5(−2)3 + 16(−2)2 + 16(−2) + 6 = A(−2+ 1)
5(−8) + 16(4) + 16(−2) + 6 = A(−1)

−40+ 64− 32+ 6 = −A
−2 = −A
A = 2

Next, by subsࢢtuࢢng x = −1, we can find the value for D:

5(−1)2 + 16(−1)2 + 16(−1) + 6 = D(−1+ 2)
5(−1) + 16(1) + 16(−1) + 6 = D(1)

−5+ 16− 16+ 6 = D
1 = D

We now have values for A and for D, but unfortunately our method will not
work to help us find B and C since each of these terms is mulࢢplied by both
factors. We’ll take a similar approach, however. We noted that these statements
are true for all values of x, so we can choose some easy-to-work-with values to
subsࢢtute in. Currently, we have

5x3+16x2+16x+6 = 2(x+1)3+B(x+2)(x+1)2+C(x+2)(x+1)+ (x+2)

We’ll start by subsࢢtuࢢng in x = 0 since this keeps the arithmeࢢc easy. We get

5(0)3 + 16(0)2 + 16(0) + 6 = 2(0+ 1)3 + B(0+ 2)(0+ 1)2 + C(0+ 2)(0+ 1) + (0+ 2)

6 = 2(1)3 + B(2)(1)2 + C(2)(1) + 2
6 = 2+ 2B+ 2C+ 2
2 = 2B+ 2C
1 = B+ C

This doesn’t give us enough informaࢢon to find values for B and C, so we will
need another equaࢢon. To get this equaࢢon, we will subsࢢtute x = 1:

5(1)3 + 16(1)2 + 16(1) + 6 = 2(1+ 1)3 + B(1+ 2)(1+ 1)2 + C(1+ 2)(1+ 1) + (1+ 2)

5+ 16+ 16+ 6 = 2(23) + B(3)(2)2 + C(3)(2) + 3
43 = 16+ 12B+ 6C+ 3
24 = 12B+ 6C
4 = 2B+ C

Now, we have two equaࢢons: 1 = B + C and 4 = 2B + C. We can now
use the methods we learned when finding points of intersecࢢon; we have two
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equaࢢons with 2 values that we need to find. We will use eliminaࢢon to solve
since both equaࢢons have C with the same coefficient, but you can use any of
the methods we learned. We will subtract 1 = B + C from 4 = 2B + C to get
3 = B. We can subsࢢtute B = 3 into 1 = B + C and solve for C to get C = −2.
Finally, we have:

5x3 + 16x2 + 16x+ 6
(x+ 2)(x+ 1)3

=
2

x+ 2
+

3
x+ 1

+
−2

(x+ 1)2
+

1
(x+ 1)3

As you can see, parࢢal fracࢢon decomposiࢢon can be a tedious process. The
biggest issues people encounter when performing a parࢢal fracࢢon decompo-
siࢢon are algebra/arithmeࢢc mistakes and copy errors. These errors tend to be
caused by rushing; with a process like parࢢal fracࢢons, it is be�er towork slowly,
carefully, andmethodically to avoid these errors, lest you have to start over from
the beginning.

We’re not quite done with parࢢal fracࢢon decomposiࢢons yet. We’ve cov-
ered how to deal with linear factors, even with repeࢢࢢons, but we haven’t yet
seen how to work with irreducible quadraࢢc factors. As with linear factors, we
will decompose into one fracࢢon per factor. The difference is in the numerator.
For the irreducible quadraࢢc factors, the numerators need to be linear. Let’s
take a look:

Example 81 Parࢢal Fracࢢon Decomposiࢢon: Quadraࢢc Factors

Perform a parࢢal fracࢢon decomposiࢢon on
5x2 − x+ 2

(x− 1)(x2 + 1)
.

Soluࢢon Let’s dive right in and start our decomposiࢢon. We have two
factors, so we will decompose into two fracࢢons:

5x2 − x+ 2
(x− 1)(x2 + 1)

=
A

x− 1
+

Bx+ C
x2 + 1

As always, the linear factor gets a constant in the numerator. The quadraࢢc
factors get a linear numerator. We’ll mulࢢply by the original fracࢢon’s denomi-
nator to eliminate the fracࢢons:

(x− 1)(x2 + 1)

[
5x2 − x+ 2

(x− 1)(x2 + 1)

]
= (x− 1)(x2 + 1)

[
A

x− 1
+

Bx+ C
x2 + 1

]
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(5x2 − x+ 2)(x− 1)(x2 + 1)
(x− 1)(x2 + 1)

=
A(x− 1)(x2 + 1)

x− 1
+

(Bx+ C)(x− 1)(x2 + 1)
x2 + 1

5x2 − x+ 2 = A(x2 + 1) + (Bx+ C)(x− 1)

Noࢢce the parentheses around Bx+ C in the last line; without these paren-
theses we would not be mulࢢplying correctly. We’ll start off with our favorite
method and subsࢢtute x = 1 to eliminate the Bx+ C term:

5(1)2 − (1) + 2 = A((1)2 + 1) + (B(1) + C)(1− 1)
5(1)− 1+ 2 = A(1+ 1) + 0

6 = 2A
A = 3

Finding B and C will be fairly quick. We already have a value for A, and if we
subsࢢtute x = 0, we can eliminate B (since it is mulࢢplied by x). Let’s take a
look:

5(0)2 − (0) + 2 = A(02 + 1) + (B(0) + C)(0− 1)
2 = A(1) + (C)(−1)
2 = A− C

Since we know A = 3, we get C = 1. Now that we know A and C, we can
subsࢢtute in a third value for x to find B, or we can simplify both sides to find B.
We’ll show this second method.

5x2 − x+ 2 = A(x2 + 1) + (Bx+ C)(x− 1)

5x2 − x+ 2 = (3)(x2 + 1) + (Bx+ (1))(x− 1)

5x2 − x+ 2 = 3x2 + 3+ Bx2 − Bx+ x− 1

5x2 − x+ 2 = (3+ B)x2 + (−B+ 1)x+ 2

Using the x2 terms, we have 5x2 = (3 + B)x2, so 5 = 3 + B, or B = 2. We
get the same result if we match the x terms. Altogether, we have:

5x2 − x+ 2
(x− 1)(x2 + 1)

=
3

x− 1
+
2x+ 1
x2 + 1

Lastly, we could have a fracࢢon with repeated irreducible quadraࢢcs. We
won’t show the full soluࢢon for one of these, but we will show the iniࢢal setup.
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Just like with repeated linear factors we will need a fracࢢon for each meࢢ the
quadraࢢc is repeated, and just like the previous example, they will each have a
linear numerator. For example, we would have the following decomposiࢢon:

2x+ 6
(x2 + 4)2(x+ 1)

=
A

x+ 1
+

Bx+ C
x2 + 4

+
Dx+ E
(x2 + 4)2

We would then solve for A, B, C, D, and E using the same methods we have
used in our other examples.
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Exercises 3.3
Terms and Concepts

1. Can the fracࢢon
x+ 2
x2 + 2

be simplified? Explain.

2. In the fracࢢon
2

(x+ 3)2(x+ 2)
are there any repeated fac-

tors? If so, what factor(s) are repeated, and how many
?mesࢢ

3. What is meant by an irreducible quadraࢢc?

4. Give an example of an irreducible quadraࢢc.

Problems
Simplify the given expression in exercises 5 – 9.

5.
5
18

− 5
12

6.
x
b
− b

x

7.
x
y2

− x
x+ y

8.
1
x −

x+2
x2

4
x2 −

x2+1
x3

9.
1

x−b − 1
x

b

In exercises 10 – 16, decompose the given fracࢢon. Do not
solve for A, B, etc.

10.
x− 8

(x+ 2)3

11.
4

(s− 1)2(2s− 5)(s+ 3)

12.
5t2 + 11t− 9

(t+ 1)3(t2 + 1)2

13.
6x

(x− 4)(x2 + x+ 5)

14.
3x− 7
x4 − 1

15.
2s

s3 + 1

16.
11

t2 − 6t+ 5

In exercises 17 – 22, fully decompose the given fracࢢon.

17.
x+ 5

x2 + x− 2

18.
1

x2 − a2

19.
2s2 − s+ 4
s3 + 4s

20.
y− 1

y2 + 3y+ 2

21.
4x

x3 − x2 − x+ 1

22.
x2 + 2x− 1
2x3 + 3x2 − 2x
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3.4 Introducࢢon to Trigonometric Funcࢢons
In this secࢢon, we will introduce trigonometric funcࢢons. We will examine rela-
onshipsࢢ between these funcࢢons and will discuss how to evaluate these func-
onsࢢ for commonly used inputs. Trigonometric funcࢢons are used frequently
in calculus and later courses due to the wide range of phenomena that can be
modeled by these funcࢢons, everything from airflow in our bronchial tubes to
earthquake vibraࢢons in a building.

Trigonometric Definiࢢons

In this secࢢon, we will focus on six trigonometric funcࢢons: sine, cosine,
tangent, cosecant, secant, and cotangent. These funcࢢons are all related to each
other, and typicallymathemaࢢcians focus on sine and cosine since the other four
funcࢢons can all be expressed in terms of sine and cosine. These relaࢢonships
are:

• tan (θ) =
sin (θ)
cos (θ)

• csc (θ) =
1

sin (θ)

• sec (θ) =
1

cos (θ)

• cot (θ) =
cos (θ)
sin (θ)

Here tan (θ) is the notaࢢon commonly used for the tangent funcࢢon; csc (θ)
is the notaࢢon for the cosecant funcࢢon; sec (θ) is the notaࢢon for the secant
funcࢢon; and cot (θ) is the notaࢢon for the cotangent funcࢢon. Noࢢce that each
of these take an input value; by itself “sin ” has no more meaning than “√” has;
they are all funcࢢons and all require an input. Addiࢢonally, noࢢce that we use θ
(the Greek le�er theta) as our input variable. Mathemaࢢcians typically (but not
always) use Greek le�ers when referring to angles, so you will o[en see θ and
other Greek le�ers used to label angles, like α (alpha) and β (beta).

The Unit Circle

All trigonometric funcࢢons have repeaࢢng pa�erns; as such, most mathe-
maࢢcians use a tool known as the unit circle to help evaluate these funcࢢons.
The unit circle is a circle of radius 1 where we will label key points. Before we
see the unit circle, let’s talk a bit about how to use the unit circle.
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For each trigonometric funcࢢon, mathemaࢢcians typically think of the input
as measuring an angle. You probably are used to measuring angles in degrees,
but in calculus we will measure angles with a unit called radians. Radians are
just a different type of unit for measuring angles, just like feet and meters are
different units for measuring distance. You are probably familiar with the idea
that a complete circle has 360◦; in radians this is the same as 2π radians. Math-
emaࢢcians prefer radians to degrees for several reasons. First, is that radians
relate angles to arc length, the distance around the circle. For a full circle, we
have a special name for the arc length: circumference. You may remember that
the formula for circumference is C = 2πr; with radians this is the same as saying
the size of the angle mesࢢ the radius. A second reasonwill show itself in calculus
when you learn derivaࢢves.

When using the unit circle, wemeasure the angle as wemove counter clock-
wise, using the posiࢢve x-axis as our starࢢng point. This means that by the meࢢ
we reach the posiࢢve y-axis we have gone a quarter of the way around the cir-
cle; we have swept over an angle of 2π4 = π

2 radians. This is illustrated in Figure
3.1. If we move around the circle in the opposite direcࢢon, clockwise, we say
the angles are negaࢢve. This means that we have swept over− 3π

2 radians if we
move to the posiࢢve y-axis in the clockwise direcࢢon.

x

y

(x, y)

y

x

θ

Figure 3.1: Measuring angles; reproduced from APEX Calculus, Version 3.0

Once we have swept over the angle we are interested in, we will need to
know the x and y coordinates of the associated point on the circle. The x coordi-
nate at the point is the value of cos (θ) for that angle and the y coordinate is the
value of sin (θ) for that angle. The unit circle, shown in Figure 3.2, shows these
coordinates for a variety of common inputs. Here, the unit circle is shown with
both angles measured in both degrees and radians, but remember that we are
focusing on radians.
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y
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Figure 3.2: The unit circle; reproduced from APEX Calculus, Version 3.0

Let’s look at a few examples of how to use the unit circle to evaluate trigono-
metric funcࢢons. Remember, the unit circle will help us determine which x and
y coordinates pair with each angle. The x coordinate gives us the value of cosine
for the angle and the y coordinate gives us the value of sine for the angle.

Example 82 Evaluaࢢng Trigonometric Funcࢢons
Evaluate each of the following:

1. sin ( π4 )

2. tan ( π6 )

3. sec (3π)

4. cos (− 3π
4 )

5. csc ( 2π3 )

6. cot ( 5π6 )

Soluࢢon Let’s get started:

1. Here, our input angle is π
4 . This corresponds to the coordinate pair (

√
2
2 ,

√
2
2 ).

We are interested in the value of sine, so we want to look at the y coordi-
nate. This gives us
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3.4 Introducࢢon to Trigonometric Funcࢢons

sin
(
π

4

)
=

√
2
2

2. Here, our input angle is π
6 which corresponds to the coordinate pair (

√
3
2 , 12 ).

The coordinate pairs give us the values for cosine and sine, but doesn’t di-
rectly give us a value for tangent, so we will need to use our definiࢢon of
tangent. We have

tan
(
π

6

)
=
sin ( π6 )
cos ( π6 )

=

√
3
2
1
2

=

√
3
2

× 2
1

=
√
3

So, our final answer is

tan
(
π

6

)
=

√
3

3. Here, our input angle is 3π. There is no angle labeled as 3π on the unit
circle, so this one requires a bit more thought. We said earlier that the
circle has 2π radians, so if we completely go around the circle, we have
covered 2π. We need to go another 3π − 2π = π radians, so we can use
the coordinates at π radians to get our values for 3π radians. At π radians,
our coordinates are (−1, 0). This gives us:

sec (3π) =
1

cos (3π)

=
1
−1

= −1

So, we have

Notes:
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Chapter 3 Solving and Trigonometric Funcࢢons

sec (3π) = −1

4. Here, our input angle is− 3π
4 . Thismeanswe are covering the unit circle by

moving in a clockwise direcࢢon. We need to start at 0 radians, and move
3π
4 radians clockwise. This would put us at 5π4 radians. The coordinates
are (−

√
2
2 ,−

√
2
2 ), so

cos (−3π
4
) = −

√
2
2

5. Here, our input angle is 2π3 radians, which gives coordinates of (−
1
2 ,

√
3
2 ).

Cosecant relies on sine, so we have

csc
(
2π
3

)
=

1
sin ( 2π3 )

=
1
√
3
2

=
2√
3

=
2√
3
×

√
3√
3

=
2
√
3
3

Noࢢce that we raࢢonalized the denominator. This means that we rewrote
the fracࢢon so that it would not have an irraࢢonal number,

√
3, in the

denominator. This is a common last step in mathemaࢢcs to standardize
the form of the answer. Most answer keys will write the answer in the
raࢢonalized form, so it is a good habit to raࢢonalize the denominator so
that you can check your answers. Our final answer is

csc
(
2π
3

)
=
2
√
3
3

Notes:
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3.4 Introducࢢon to Trigonometric Funcࢢons

6. Here, we have an angle of 5π6 , which has coordinates (−
√
3
2 , 12 ). This gives

us

cot
(
5π
6

)
=
cos ( 5π6 )
sin ( 5π6 )

=
−

√
3
2
1
2

=
−
√
3

2
× 2
1

= −
√
3

cot
(
5π
6

)
= −

√
3

Properࢢes of Trigonometric Funcࢢons

Noࢢce that on the unit circle, the values of the x and y coordinates range
between -1 and 1. Since these are the output values of the sine and cosine
funcࢢons, we say that the range, or the output values, of sine and cosine is
[−1, 1], meaning that the output can get as small as -1 and as large as 1. Addi-
,onallyࢢ sine and cosine are defined for any input value, so for each the domain
is (−∞,∞).

The other four trigonometric funcࢢons are all defined in terms of sine and
cosine, where either sine or cosine is in the denominator of a fracࢢon. This
means that the domains of these funcࢢons are limited. Both secant and tangent
have cosine in the denominator, meaning that they will be undefined anyࢢme
cosine is 0. Cosine is 0 at the odd mulࢢples of π

2 . This tells us that these odd
mulࢢple of π

2 , values like − 3π
2 , −

π
2 ,

π
2 , and

3π
2 are not part of the domain for

tangent or for secant. Like sine and cosine, the output values of secant is limited;
its range is (−∞,−1]∪ [1,∞), but the range for tangent is not limited; its range
is (−∞,∞).

Cosecant and cotangent both have sine in the denominator for their defini-
;onsࢢ this means they are undefined whenever sine is 0. Sine is 0 at the integer
mulࢢples of π: −5π, −3π, −π, π, 3π, etc. As with secant, the output values of
cosecant are limited so its range is also (−∞,−1] ∪ [1,∞); the range of cotan-
gent is not limited and is (−∞,∞).

Notes:
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Exercises 3.4
Terms and Concepts

1. Explain why the domain of tangent is restricted.

2. Explain why the domain of cosecant is restricted.

3. Explain what is meant by the range of a funcࢢon.

4. What do the coordinates on the unit circle tell you?

5. Sketch the unit circle frommemory. Use Figure 3.2 to check
your work and add in any values you could not remember.

Problems
Evaluate each statement given in exercises 6 – 10.

6. tan
(
π

4

)

7. cos
(
−π

4

)

8. sin
(
3π
4

)

9. csc
(
−3π
4

)

10. sin
(
3π
2

)
Determine the range of each funcࢢon given in exercises 11 –
14.

11. f(x) = −2 sin (4x) + 3

12. g(x) = 6 cos (2x)− 8

13. h(x) = − sin (x)− 1

14. f(θ) = 4 sin (θ − π)

In exercises 15 – 18, use the unit circle to help you answer the
given quesࢢon.

15. Find the ordered pair for the point on the unit circle asso-
ciated with θ = 5π

4

16. Sketch the a unit circle and the angle represented by θ =
7π
6 . Find the ordered pair where this line intersects the unit
circle and label this point on your sketch.

17. Sketch the a unit circle and the angle represented by θ =
− 2π

3 . Find the ordered pair where this line intersects the
unit circle and label this point on your sketch.

18. Find the equaࢢon of the line that intersects the unit circle
at θ = π and at θ = π

3 . Answer in slope intercept form.
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3.5 Trigonometric Funcࢢons and Triangles

3.5 Trigonometric Funcࢢons and Triangles

In this secࢢon, we will further discuss trigonometric funcࢢons. We will exam-
ine the relaࢢonship between trigonometric funcࢢons and right triangles, and
examine some more properࢢes of trigonometric funcࢢons.

Right Triangles

In the last secࢢon, we focused on the relaࢢonships between the trigonomet-
ric funcࢢons and the unit circle. Now, we will examine the relaࢢonship of these
funcࢢons and the unit circle with right triangles. In Figure 3.3, we start by draw-
ing a unit circle with an angle θ and marking the corresponding coordinates on
the circle. If we drop down from these coordinates to the x axis, we can form a
right triangle.

x

y

(x, y)

y

x

1

θ

Figure 3.3: Right triangle inside of the unit circle

This triangle has a hypotenuse of 1 because the hypotenuse is the same
length as the radius of the unit circle, and side lengths of x = cos (θ) and
y = sin (θ). If we apply the Pythagorean Theorem to this triangle, we discover
an interesࢢng idenࢢty:

Notes:
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Chapter 3 Solving and Trigonometric Funcࢢons

a2 + b2 = c2

(x)2 + (y)2 = (1)2

(cos (θ))2 + (sin (θ))2 = 12

cos2 (θ) + sin2 (θ) = 1

(3.3)

There is nothing special about the choice of θ shown in Figure 3.3; this iden-
tyࢢ is true for all inputs. Noࢢce that the input for cosine and the input for sine
are the same; if the inputs are different, we cannot guarantee that the sum will
be equal to 1.

This right triangle also gives us a different way of evaluaࢢng trigonometric
funcࢢons, in general. With the unit circle, we saw that cos (θ) is the x coordinate
and sin (θ) is the y coordinate, and our right triangle has a hypotenuse of 1. If
we scale the triangle, the side lengths will also scale, but the size of the angles
will remain the same, so the values of cos (θ) and sin (θ) should also remain the
same. In order for this to be true, we can’t just say that cosine is the length of
the adjacent side and sine is the length of the opposite; instead, we will need to
divide both by the length of the hypotenuse to adjust for the scaling (see Figure
3.4 for a visual explanaࢢon of the opposite and adjacent sides). This gives us the
following idenࢢࢢes:

θ

adjacent

opposite
hypotenuse

Figure 3.4: Using a right triangle to evaluate trigonometric funcࢢons

1. sin (θ) = opposite
hypotenuse

2. cos (θ) = adjacent
hypotenuse

3. tan (θ) = opposite
adjacent

4. csc (θ) = hypotenuse
opposite

5. sec (θ) = hypotenuse
adjacent

6. cot (θ) = adjacent
opposite

Notes:
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3.5 Trigonometric Funcࢢons and Triangles

Many people summarize the first three of these with SOH-CAH-TOA to help
remember the idenࢢࢢes. SOH-CAH-TOA stands for Sine is Opposite over Hy-
potenuse; Cosine is Adjacent over Hypotenuse, and Tangent is Opposite over
Adjacent. The remaining three idenࢢࢢes can then be formed from the defini-
onsࢢ of cosecant, secant, and cotangent. Let’s take a look at how we can use
right triangles to help us evaluate our trigonometric funcࢢons.

Example 83 Using a Right Triangle
Suppose that cos (θ) = 12

13 . Determine all possible values of sin (θ).

Soluࢢon To help find the possible values of sin (θ), we will draw a
right triangle and label it using the values we already know. We know that
cos (θ) = 12

13 , so we can use 12 as the length of the adjacent side and 13 as
the length of the hypotenuse:

θ

12

opposite
13

Now, we can use the Pythagorean Theorem to find the missing side length:

a2 + b2 = c2

(12)2 + b2 = 132

144+ b2 = 169

b2 = 25
b = ±5

Now, we can update our drawing:

Notes:
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θ

12

5
13

In our drawing, we labeled all of the sides with posiࢢve values becausewhen
wemeasure the side of a trianglewewill get a posiࢢve length. From this triangle,
we get sin (θ) = opposite

hypotenuse = 5
13 . However, this is not the only possible value of

sin (θ). We do not know the true value of θ and in our drawing assumed that it
is between 0 and π

2 . In reality, it could also be between
3π
2 and 2π. This would

mean that sin (θ) could also have a negaࢢve value.

The possible values of sin (θ) are
5
13

and− 5
13

Inverse Trigonometric Funcࢢons

O[en, we will have informaࢢon about the side lengths of the triangle, but
will want to know the value of the angle. This is where we will need the inverse
trigonometric funcࢢons. Each trigonometric funcࢢon has an inverse, but the
inverses of sine, cosine, and tangent are the most commonly used. The nota-
onࢢ for the funcࢢons is a bit tricky. We’ve seen that we can write (sin (θ))2 as
sin2 (θ), however, the notaࢢon sin−1 (θ) is o[en used to represent the inverse
sine funcࢢon rather than the funcࢢon 1

sin (θ) . In this book, wewill instead use the
notaࢢon arcsin (x) to represent the inverse sine funcࢢon. This eliminates con-
fusion over notaࢢon, but you should be aware that not all references do this.
Similarly, we use arccos (x) for the inverse cosine funcࢢon and arctan (x) for the
inverse tangent funcࢢon. These can be referred to as arcsine, arccosine, and
arctangent in wriࢢng.

Noࢢce that for each of these inverse trigonometric funcࢢons, we used x as
our input rather than θ. This is because we are no longer inpuࢰng an angle,
but rather a raࢢo of lengths. For these funcࢢons, our output will be an angle.

Notes:
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3.5 Trigonometric Funcࢢons and Triangles

Remember, when we say that two funcࢢons are inverses, we mean that there is
a relaࢢonship like the following: arccos (cos (θ)) = θ and cos (arccos (x)) = x.
Another way of expressing this relaࢢonship is to say that if cos (θ) = x, then
arccos (x) = θ. However, this is not exactly true here. When we look at trigono-
metric funcࢢons, we know that there are lots of angles that all result in the same
value for sine, lots of angles that result in the same value for cosine, and lots of
angles that result in the same value for tangent. Because we only want one out-
put for each input, the inverse trigonometric funcࢢons use restricted outputs.
Arccosine is restricted to output values between 0 and π, meaning that its range
is [0, π]. This works because every possible output of cosine shows up once for
angles from 0 to π. Arcsine and arctangent are restricted to output values be-
tween − π

2 and
π
2 , meaning that they each have a range of [−

π
2 ,

π
2 ]. For both

tangent and sine, every possible output value appears once for angles between
− π
2 and

π
2 . By restricࢢng the ranges, we make sure these funcࢢons are well-

defined, meaning they only produce one output for each input.
In pracࢢce, we can sࢢll use the unit circle to help evaluate inverse trigono-

metric funcࢢons. For example, if we want to evaluate arcsin ( 12 ), we will want
to look at the unit circle to see where sin (θ) = 1

2 . We get two angles:
π
6 and

5π
6 .

Since the range of arcsine is restricted to [− π
2 ,

π
2 ], we say that arcsin (

1
2 ) = π

6 .
Similarly, we would say that arccos ( 12 ) =

π
3 , and arctan (1) =

π
4 .

Notes:
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Exercises 3.5
Terms and Concepts
1. Sketch a right triangle that can be associated with θ = − π

6
and evaluate sin (θ).

2. Explain why the range of arcsin (x) is restricted to [− π
2 ,

π
2 ].

3. Explain how the unit circle helps evaluate inverse trigono-
metric funcࢢons.

4. True or false: sin2 (5x)+ cos2 (5x) = 5. If false, correct the
statement.

Problems
Evaluate each statement given in exercises 5 – 9.

5. arcsin (
√
3
2 )

6. arccos (−
√
3

2 )

7. arctan (−1)

8. arctan (
√
3)

9. arcsin (0)

Use your knowledge of the trigonometric funcࢢons and their
relaࢢonships to right triangles to answer the quesࢢons in ex-
ercises 10 – 19.

10. Consider a right triangle with a hypotenuse of length 5
inches. If one of the sides measures 3 inches, what is the

tangent of the angle that is opposite of that side?

11. Consider a right triangle with a hypotenuse of length 5
inches. If one of the sides measures 2 inches, what is the
sine of the angle that is opposite that side?

12. Imagine a circle with a radius of 2 units centered around
the origin. What are the angles associated with the inter-
secࢢon(s) of this circle and the line x = 1?

13. Sketch a right triangle that can be associated with θ = − 2π
3

and evaluate tan (θ).

14. Sketch a right triangle that can be associated with θ = 5π
4

and evaluate cot (θ).

15. Sketch a right triangle that can be associated with θ = − π
6

and evaluate sin (θ).

16. Suppose that sin (θ) = 3
5 . What are all possible values of

cos (θ)?

17. Suppose that cos (θ) = 5
13 . What are all possible values of

tan (θ)?

18. Suppose that tan (θ) = −1. What are all possible values of
csc (θ)?

19. A classic calculus problem involves a ladder leaning against
a wall. The base of the ladder starts sliding away from the
wall causing the top of the ladder to slide down the wall. If
you know that the ladder has a length of 13 feet, find the
value of cos (θ)when the base of the ladder is 12 feet away
from the wall.
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A: Soluࢢons To Problems
Chapter 1
Secࢢon 1.1

1. Answers will vary.

2. Mulࢢplicaࢢon

3. Answer will vary.

4. F; you should complete them from le[ to right

5. T; there are no parentheses, so you first square 2 and then make
the answer negaࢢve..

6. 4

7.
7
5

8.
5
18

9. −4

10.
729
8

11. −8

12. 1

13. 8

14. 2

15. 4

16. 5 miles

17. Re decreases.

18. 54 [3

19. The velocity is tripled.

20. The capacitance increases.

21. 32 [3

22. The final answer is not correct. There are two errors: in the
second step,−(−1)2 should give−1, not+1; in the third step,
the division should have been done before the mulࢢplicaࢢon.

23. The final answer is correct.

24. The final answer is not correct. In the square root, 64 and 36
should be added before the square root is taken.

25. The final answer is not correct. In the fi[h step, (−2)(−6) should
be 12, not−12.

Secࢢon 1.2

1. It tells us that t is the input for the funcࢢon f.

2. True.

3. False.

4. True.

5. Quoࢢent of f(x) and h(x); f(x)
h(x)

6. Composiࢢon of h(x) with g(x); h(g(x))

7. Composiࢢon of g(x) with h(x); g(h(x))

8. Product of a scalar mulࢢple of f(x) with g(x); (2f(x))(g(x))

9. The input variable is A. The parameters are k, ε0, and d. This is a
monomial of degree 1.

10. The input variable is t. The only parameter is v0. This is a
polynomial of degree 1.

11. The input variable is t. The parameters are P, r, and n. This is an
exponenࢢal funcࢢon.

12. 90a2 − 4+ b

13. y2 + 2yh+ h2 − 18+ 3b

14. 5− y− h+ 3y4 − 3p

15. 40

16. x2 + 2xh+ h2 − 12

17. 10y− 20

18. 2

19. 4

20. 2x+ h

21. 8t+ 4h

Secࢢon 1.3

1. Answers will vary.

2. The factors are x− 2, x− 5, and x+ 1.

3. It means it has no real number roots and that it cannot be
factored.

4. It can have a maximum of 6 linear factors since it is a sixth degree
polynomial.

5. It can have a maximum of 6 roots since it is a sixth degree
polynomial.

6. 6a2b− 12ab2 + 15a2 − 30ab

7. 4t2 + 28t+ 49

8. 4x3 + 18x2 + 34x+ 24

9. −3t2 − 2t+ 6

10. −4x3 − 3x2 − 5

11. 8x3 + 18x2 − 14x− 15

12. 6θ5 + 48θ3 + 96θ

13. g(x) = (2x+ 1)2

14. y(z) = (z− 5)(z− 2)

15. f(k) = k(k− 3)(k2 + 3k+ 9)

16. θ(γ) = (3γ − 2)(2γ + 1)

17. x(z) = 3z(z+ 4)(z− 2)

18. y(x) = (x+ 2)(x2 − 2x+ 4)

19. f(x) = (2x+ 1)(x− 2)(x+ 1)

20. f(y) = (y− 3)(y− 4)(y+ 2)

21. 3t2 + 3th+ h2

22. 4x+ 2h

23. 3x2 + 3xh+ h2 + 2x+ h− 1

24. 8x+ 4h2 + 2

25. x = 0 and x = − 1
2

26. x = 0, x = −1+
√
5

2 , and x = −1−
√
5

2

27. x =
√
5
2 and x = −

√
5
2

28. g(x) = 2x(2x+ 1); the factor x pairs with the root x = 0 and the
factor 2x+ 1 pairs with the root x = − 1

2



29. f(x) = x(x+ 1−
√
5

2 )(x+ 1+
√
5

2 ); the factor x pairs with the root

x = 0, the factor x+ 1−
√
5

2 pairs with the root x = −1+
√
5

2 , and

the factor x+ 1−
√
5

2 pairs with the root x = −1−
√
5

2

30. y(x) = 4(x−
√
5
2 )(x+

√
5
2 ); the factor x−

√
5
2 pairs with the

root x =
√
5
2 and the factor x+

√
5
2 pairs with the root x = −

√
5
2

Secࢢon 1.4

1. Yes, a root funcࢢon is just a power funcࢢon with a fracࢢonal
exponent.

2. A posiࢢve exponent means we are mulࢢplying that term
repeatedly, a negaࢢve exponent means we are dividing by that
term repeatedly.

3. Exponenࢢal form

4. Radical form

5.
1

3√8x1 − 5x2 + 11

6.
1

5√−2x+ y

7. 4√5x− 2

8. x+ 2+
1
x

9. x+
1
x

10. x+ 3x2/3 + 3x1/3 + 1

11.
25y5

x
, y ̸= 0

12. 64x16y9; x, y ̸= 0

13.
−27t
64s7

, t ̸= 0

14.
−6

(x+ 2)7

15.
4x1/3

3

16. e3x+6

17. ex
2−x−2

18. (4x− 1)(3x+ 2)−2/3

19. eθ−2y2, y ̸= 0

20. xy4, y ̸= 0

Secࢢon 1.5

1. For the same base, they are inverses of each other.

2. 25 is 5 raised to what power?

3. e

4. Logarithms help solve exponenࢢal statements because logarithms
and exponenࢢals are inverse funcࢢons.

5. 4

6. 5.7

7.
1
x

8. 16

9. log3
(16x4

y2
)

10. ln (8x2/3y3)

11. log2 (5(3
2x))

12. ln
( y
x

)
13. x = 2

14. Not possible; we cannot raise a posiࢢve number to a power and
get a negaࢢve number

15. Not possible; we cannot raise a posiࢢve number to a power and
get a zero

16. x = −1

17. x = 0

18. x = 6+ log3 (2)

19. x =
5+ log4 (3)

2

20. x =
−4
5

21. x = log6 (2)− π

22. x = 0

23. x =
1
3
e11/4

24. x = −
ln (3)

ln (2)− ln (3)

25. x =
e2 − 5
2

Chapter 2
Secࢢon 2.1

1. Answers will vary

2. A point and a slope, or two points

3. m = 0

4. This is the y-intercept because x = 0 so it is where the line crosses
the y-axis.

5. m2 = 2

6. m2 =
1
4

7. y− 2 = −2(x− 1)

8. y = −x+ 3

9. y− 4 = −2(x− 0)

10. y = 3
2 x+

3
2

11. y = 3
2 x+ 4

12. −7.8

13. y = 3x+ 8

14. y− 4 = 1
2 (x− 7), or y− 6 = − 1

2 (x− 3)

15. y = −2x− 4

16. y− 2 = 6(x− 0)

17. m = −4

18. (2, 0)

19. (0,−8)

20. The line y = 5x+ 10 has a steeper slope.

Secࢢon 2.2

1. A strict inequality means we have> or<.

2. We have break points when the equality statement is true or
where the statement is undefined.

A.2



3. No, the statement x2 > 0 is always true, but has a break point at
x = 0.

4. We need to move everything to one side, and then we can factor
or use the quadraࢢc formula to find the roots.

5. x ∈ [−3, 10]

6. x ∈ (2,∞)

7. x ∈ [−5, 2)

8. no values of x saࢢsfy this statement

9. x ∈ [−5,∞)

10. x ∈ (−6, 4]

11. x ∈ (−∞,−2) ∪ (4,∞)

12. 3 ≤ x < 4 or x > 4

13. −2 ≤ x < 4

14. 5 < x ≤ 6 or 7 ≤ x < 8

15. x ∈ [2, 4)

16. x ∈ [1, 3]

17. x ∈ (−∞,−5) ∪ (3,∞)

18. x ∈
[7−√

89
2

,
7+

√
89

2

]
19. x ∈ (−∞, 2) ∪ [7,∞)

20. x ∈ [−5, 5]

21. x ∈ [−5, 2)

22. x ∈ (−23 ,∞)

23. θ ∈ [2, 3]

24. y ∈ (−4, 0) ∪ (1,∞)

25. x ∈ (−∞, 1]

26. x ∈ (−∞,−4) ∪ [−2,−1] ∪ (4,∞)

Secࢢon 2.3

1. It means that 2 is a valid input for the funcࢢon f.

2. It means that 4 is not a valid input for the funcࢢon f.

3. False; it depends on both the domain of f(x) and the domain of
g(x).

4. False; if g(x) = 0, f(x)
g(x) is not defined, but f(x)may not be defined

everywhere

5. x ∈ (−∞,−9) ∪ (−9, 3]

6. x ∈ [−11, 11) ∪ (11,∞)

7. x ∈ (6, 13) ∪ (13,∞)

8. t ∈ (5,∞)

9. x ∈ (−3,∞)

10. θ ∈ (−∞,∞)

11. D: (4,∞)

12. D: ( 12 , 1) ∪ (1,∞))

13. D: (−2, 2)

14. D: (−∞,−2) ∪ (2,∞)

15. D: (−∞,−5] ∪ [−1,∞)

16. D: (−∞,∞)

Secࢢon 2.4

1. Answers will vary, but should include the idea that changes on the
inside are changes to the inputs, which are on the horizontal axis

2. Answers will vary, but should include the idea that applying
changes on the outside of the funcࢢon affects the outputs, which
are the y values (height of the graph)

3. The verࢢcal stretch

4. The horizontal shi[

5. The base funcࢢon is 3t and it is being shi[ed 4 units to the le[

6.

−2 2

−8

−6

−4

−2

2

x

y

7.

−2 2

2

4

6

8

x

y

8.

−2 2

2

4

6

8

x

y

9.

A.3



−2 2

2

4

6

8

x

y

10.

− 3π
2

−π − π
2

π
2

π 3π
2

−1

1

x

y

11.

−4 −2 2

2

4

6

8

x

y

h(x) = (x+ 2)2 + 3

12. Answers will vary, but an example is

−2 2

5

10

x

y

h(x) = x2 + 1

13.

−2 2

5

10

15

θ

y

g(θ) = −2(θ − 5) + 3− 2 = −2θ + 11

14.

−4 −2 2 4

5

10

15

t

y

f(t) =

 t2 − 1 t ≤ 2

3t+ 3 −2 < x

15.

−4 −2 2 4

2

4

6

x

y

y− 3 = 2
3 (x− 1), or y = 2

3 x+
7
3

16. b(x) = (x+ 2)3;

−4 −2

−5

5

x

y

17. y(t) = (t− 3)2;
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2 4 6

5

t

y

18. f(x) = (x+ 2)2;

−6 −4 −2 2

5

x

y

19. x2 − 3x+ 3; cos (θ) + 3; 3w − w3 + 3

20. (x− 2)2 − 3(x− 2); cos (θ − 2); 3w−2 − (w− 2)3

21. (x+ 1)2 − 3(x+ 1)− 2; cos (θ + 1)− 2; 3w+1 − (w+ 1)3 − 2

22. (x− e)2 − 3(x− e)− π; cos (θ − e)− π; 3w−e − (w− e)3 − π

23. (−x)2 − 3(−x); cos (−θ); 3−w − (−w)3

24. −(x2 − 3x);− cos (θ);−(3−w − w3)

25. (a) no; it is not symmetric about the y-axis

(b) yes; it has rotaࢢonal symmetry

(c) no; it does not have a horizontal asymptote

(d) no; it does not have a periodic (repeaࢢng) pa�ern

26. (a) no; it is not symmetric about the y-axis

(b) no; it does not have rotaࢢonal symmetry

(c) yes; it does not have a horizontal asymptote on one side
and grows without bound on the other

(d) no; it does not have a periodic (repeaࢢng) pa�ern

Secࢢon 2.5

1. A[er compleࢢng the square, you can quickly idenࢢfy the
horizontal and verࢢcal shi[s

2. x = 2 is not a root of f(x) because f(2) = 3, not 0.

3. It represents a horizontal stretch/shrink because it is on the inside
of the funcࢢon.

4. a = 2 and b = −6

5. f(x) = (x− 2)2 + 2; a = −2; b = 2

6. g(x) = (x+ 10)2 − 60; a = 10; b = −60

7. h(x) = (x− 4)2 − 11; a = −4; b = −11

8. m(x) = (x− 11)2 − 125; a = −11; b = −125

9. n(x) = (x− 3)2 − 11; a = −3; b = −11

10. p(x) = (x+ 11
2 )

2 − 105
4 ; a = 11

2 ; b = − 105
4

11. p(x) = (x+ 13
2 )

2 − 169
4 ; a = 13

2 ; b = − 169
4

12. f(x) = 9(x− 2
3 )
2 + 8; a = − 2

3 ; b = 8; c = 9

13. f(x) = (x− 1)2 + 1; a = −1; b = 1; c = 1

14. h(x) = 4(x− 1
2 )
2 − 5; a = − 1

2 ; b = −5; c = 4

15. w(x) = 4(x+ 1
2 )
2 + 5; a = 1

2 ; b = 5; c = 4

16. y(x) = 9(x+ 1)2 − 5; a = 1; b = −5; c = 9

17. f(t) = (t+ 1)2 + 2;

−4 −2 2

5

10

t

f(t)

18. p(q) = (q− 1
3 )
2 − 1

9 ;

−2 2 4

5

q

p(q)

19. y(x) = (x+ 2)2 − 2;

−4 −2 2

−2

2

4

6

x

y(x)

20. f(x) = (x− 2)2 + 2;

2 4

5

10

x

y(x)
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21. f(x) = x2 − 2x− 1

−2 2 4

−2

2

4

6

x

f(x)

22. g(x) = −x2 − 6x− 5

−6 −4 −2

−4

−2

2

4

x

g(x)

23. h(x) = x2 − 6x+ 13

2 4

2

4

6

x

h(x)

24. x(y) = y2 + 4y+ 3

−4 −2

−2

2

4

6

8

y

x(y)

Chapter 3
Secࢢon 3.1

1. Yes, but it can be quite difficult, especially if it has many
parameters

2. 2 disࢢnct real roots; 1 repeated real root; a complex conjugate
pair of roots

3. 7

4. F; it must have at least one real soluࢢon since complex soluࢢons
come in pairs

5. cubic

6. linear

7. quadraࢢc

8. trigonometric

9. quarࢢc, or a statement of degree 4

10. cubic

11. It is possible to solve; x =
5y

y2 − y+ 3

12.
x+ 5±

√
−11x2 + 10x+ 25
2x

13. It is possible to solve; q =
3t2 − 2m3

8t+ 5m
14. It is possible to solve;

a =
−(3bc2)±

√
(3bc2)2 − 4(2bc3 + 4c2)(−3b− 4c)

2(2bc3 + 4c2)

15. It is possible to solve; b =
4c− 4a2c2

2a2c3 + 3ac2 − 3
16. Not possible to solve for x; it is inside of a logarithm and has a

linear term

17. It is possible to solve; y = 2x+ez−log2(x) or y =
2x+ez

x
18. It is possible to solve; z = ln [log2(xy)− x]

19. x = −4, 4
20. x = −4i, 4i
21. x = 2+

√
13, 2−

√
13

22. x = 1+ 2i, 1− 2i

23. x =
−1+ 2i

5
,
−1− 2i

5
24. x = 2

25. x = −2,−1, 2
26. x = 2−

√
3, 2+

√
3

27. x = −1,
−3+

√
5

2
,
−3−

√
5

2
28. Two real soluࢢons

29. A complex conjugate pair

30. Two real soluࢢons

31. One repeated soluࢢon

32. Three real soluࢢons

Secࢢon 3.2

1. When one or both funcࢢons are defined implicitly

2. Explicitly; y is isolated

3. Implicitly; y is not isolated

4. Answers will vary, but graphing helps you determine how many
intersecࢢons points exist, but does not always clearly show the
exact values

5. 1

6. 2

7. 2

8. 3

9. 1

10. 0
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11. 0

12. 1

13. (0,−1) and (1, 0)
14. ( 45 ,

3
5 ) and (−

4
5 ,−

3
5 )

15. (0, 1) and (3, 4)

16. (1, 0) and (2, 0)

17. ( 3+
√
21

2 , 5) and ( 3−
√
21

2 , 5)

18. (1, 3), (2, 1), and (4,−3)
19.

−1 1 2

−1

1

2

x

y

Points of intersecࢢon are (0, 0) and (1, 1)

20.

−2 2

5

x

y

Points of intersecࢢon are (−1, 1) and (2, 4)
21.

−1 1 2

−1

1

2

x

y

Points of intersecࢢon are (0, 0) and (1, 1)

22.

2 4

−1

1

2

3

x

y

Points of intersecࢢon are (0, 0), (0, 2), and (3, 0)

Secࢢon 3.3

1. No, the numerator and denominator have no common factors

2. Yes, x+ 3 is repeated twice

3. A quadraࢢc that has no real valued roots

4. Answers will vary; x2 + a is an example if a > 0

5.
−5
36

6.
x2 − b2

xb

7.
x2 + xy− xy2

xy2 + y3

8.
− 2x

−x2 + 4x− 1
, x ̸= 0

9.
1

x2 − bx
, b ̸= 0

10.
A

x+ 2
+

B
(x+ 2)2

+
C

(x+ 2)3

11.
A

s− 1
+

B
(s− 1)2

+
C

2s− 5
+

D
s+ 3

12.
A

t+ 1
+

B
(t+ 1)2

+
C

(t+ 1)3
+

Dt+ E
t2 + 1

+
Ft+ G

(t2 + 1)2

13.
A

x− 4
+

Bx+ C
x2 + x+ 5

14.
A

x+ 1
+

B
x− 1

+
Cx+ D
x2 + 1

15.
A

s+ 1
+

Bs+ C
s2 − s+ 1

16.
A

t− 5
+

B
t− 1

17.
−1
x+ 2

+
2

x− 1

18.
1/(2a)
x− a

−
1/(2a)
x+ a

19.
1
s
+

s− 1
s2 + 4

20.
3

y+ 2
−

2
y+ 1

21.
−1
x+ 1

+
1

x− 1
+

2
(x− 1)2

22.
1/2
x

+
1/5
2x− 1

−
1/10
x+ 2

Secࢢon 3.4

1. Tangent is undefined whenever cosine is 0.

2. Cosecant is undefined whenever sine is 0.

3. The range describes the possible output values of the funcࢢon.

4. The x coordinate tells you the value of cosine for that angle and
the y coordinate tells you the value of sine for that angle.

5. See Figure 3.2.

6. 1

7.
√
2
2

8.
√
2
2
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9. −
√
2

10. −1

11. [1, 5]

12. [−14,−2]

13. [−2, 0]

14. [−4, 4]

15. (−
√
2
2 ,−

√
2
2 )

16.

x

y

(−
√
3

2 ,− 1
2 )

17.

x

y

(− 1
2 ,

−
√
3

2 )

18. y =
√
3
3 x+

√
3
3

Secࢢon 3.5

1.

x

y

(
√
3
2 ,− 1

2 )

sin (− π
6 ) = − 1

2

2. The range of arcsin (x) is restricted so that every input only has
one output.

3. You can look through the coordinates to see when the regular
funcࢢon is equal to the input of the inverse funcࢢon.

4. False, sin2 (5x) + cos2 (5x) = 1.

5. π
3

6. 5π
6

7. −π
4

8. π
3

9. 0

10. ± 3
4

11. 2
5

12. θ = π
3 ,

5π
3

13.

x

y

(− 1
2 ,

−
√
3

2 )

tan (− 2π
3 ) =

√
3

14.

x

y

(−
√
2
2 ,−

√
2
2 )

cot ( 5π4 ) = 1

15.

x

y

(
√
3
2 ,− 1

2 )

sin (− π
6 ) = − 1

2

16. 4
5 and−

4
5 .

17. 12
5 and−

12
5 .

18.
√
2 and−

√
2

19. 12
13 if θ is the angle between the ladder and the floor;

5
13 if θ is the

angle between the ladder and the wall
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