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Preface

Flowing Matter is the term that probably best describes the macroscopic behaviour
emerging from the coordinated dynamics of microscopic entities. Flowing Matter,
therefore, goes well beyond the realm of classical fluid mechanics, traditionally
dealing with the dynamics of molecules in liquids, to include the dynamics of fluids
with a complex internal structure as well as the emergent dynamics of interacting
active agents.

Flowing Matter research lies at the border between physics, mathematics, chem-
istry, engineering, biology, and earth sciences, to cite a few. Flowing Matter also
involves an extensive range of different experimental, numerical, and theoretical
approaches. The three main research areas in Flowing Matter are complex fluids,
active matter, and complex flows:

– Complex fluids research aims at understanding the interplay between macro-
scopic rheological properties and changes in the internal fluid structure. Exam-
ples of complex fluids include dense fluid-fluid or solid-fluid suspensions,
nematic liquids, soft glasses, and yield stress fluids.

– Active matter covers the study of the behaviour of populations of active agents,
the development of mathematical models, and the quantification of the statistical
and fluid-dynamic properties of these systems. Active matter is an example of an
intrinsically out of equilibrium system.

– Complex flows emerge even in simple Newtonian fluids such as water and span a
wide range of chaotic, i.e., unpredictable, behaviours. Fully developed turbulence
is still considered to be one of the outstanding problems in classical physics.

Many relevant scientific and technological problems today lie across two or even
three of these major research areas. It is clear, therefore, that a multidisciplinary
approach is needed in order to develop a unified picture in the field. The Flowing
Matter MP1305 COST Action was established in 2014, aiming at bringing together
the scientific communities working on these areas and at helping to advance towards
a unified approach and understanding of Flowing Matter.

v



vi Preface

During the 4 years of its activity, Flowing Matter managed to foster scientific
exchange between researchers active in its different areas, filling what was a gap
in the communication network and facilitating the exchange of methods and best
practices.

This book is the last activity organised by the MP1305 COST Action and
represents just a small part of its heritage, beyond the many scientific meetings,
discussions, and publications that were fostered by the COST Action.

This book is meant for young scientists as well as for any researcher aiming at
broadening his/her view on Flowing Matter. This book reflects, in a very concise
way, the original spirit of the COST Action and covers, from its main topics,
different methodologies, experiments, theory, numerical methods, and applications.

Nuremberg, Germany Marcello Sega
Eindhoven, The Netherlands Federico Toschi
February 2019
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Chapter 1
Numerical Approaches to Complex
Fluids

Marco E. Rosti, Francesco Picano, and Luca Brandt

1.1 Introduction to Complex Fluids and Rheology

We are surrounded by a variety of fluids in our everyday life. Besides water and air,
it is common to deal with fluids with peculiar behaviours such as gel, mayonnaise,
ketchup and toothpaste, while water, oil and other so-called simple (Newtonian)
fluids “regularly” flow when we apply a force, the response is different for complex
fluids. In some cases, we need to apply a stress larger than a certain threshold for
the material to start flowing, for example, to extract toothpaste from the tube; the
same paste would behave as a solid on the toothbrush when exposed only to the
gravitational force. In other cases the history of past deformations has a role in the
present behaviour. Rheology studies and classifies the response of different fluids
and materials to an applied force, and to this end, how the macroscopic behaviour
is linked to the microscopic structure of the fluid. Hence, while simple fluids made
by identical molecules show a linear response to the applied forces, complex fluids
with a microstructure, such as suspensions, may show a very complex response to
the applied forces.

In this chapter, we introduce numerical approaches for complex fluids focusing
on the way the additional stress due to the presence of a microstructure is modelled
and how rigid and deformable intrusions can be simulated. We will assume the
reader has a solver for the momentum and mass conservation equations, typically
using a finite-difference or finite-volume representation. An alternative approach,
also very popular, are Lattice–Boltzmann methods; these will not be considered
here, thus the reader is referred to Refs. [1, 2].

M. E. Rosti · L. Brandt (�)
Linné FLOW Centre and SeRC, KTH Mechanics, Stockholm, Sweden
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2 M. E. Rosti et al.

Newtonian and Non-Newtonian Rheology

The macroscopic rheological behaviour of a viscous fluid is well characterised in
a Couette flow, i.e. the flow between two parallel walls of area A and at distance
b: the upper wall moving at constant (low) velocity U0 and the lower at rest. To
keep the upper wall moving at constant velocity we need to apply a force F which
is proportional to the wall area: F ∝ A. Therefore it is more general to consider
the stress τ = F/A instead of the force F itself. In a Newtonian fluid the shear
stress is proportional to the velocity of the upper wall and to the inverse of the wall
distance b, i.e. τ ∝ U0/b. This linear response defines Newtonian fluids, such as air,
water, oil and many others. Note that, in a simple Couette flow the ratio U0/b equals
the wall-normal derivative of the velocity profile and the shear (deformation) rate:
du/dy = γ̇ = U0/b. Thus, for a Newtonian fluid we can express the law relating
the applied force with the response, i.e. the shear stress τ with the shear rate γ̇ , as

τ = μγ̇ , (1.1)

where the proportionality coefficient μ is called dynamic viscosity with dimension
Pa s in the SI. Many Newtonian fluids exist, each with a different value of viscosity,
and therefore flowing at different velocity when subject to the same stress. The
viscosity coefficient of a Newtonian fluid does not depend on the shear rate, but may
vary with the temperature. Indeed, the viscosity usually increases with temperature
in gases, while it decreases in liquids. This behaviour is related to the effect of the
temperature on the molecular structure of the fluid, but this is outside the scope of
present chapter and the reader is refereed to specialised textbooks.

Fluids that exhibit a non-linear behaviour between the shear stress τ and the
shear rate γ̇ are called non-Newtonian and fluids whose response does not depend
explicitly on time but only on the present shear rate are denoted generalised
Newtonian fluids. In particular, when the shear stress increases more than linearly
with the shear rate, the fluid is called dilatant or shear-thickening, whereas in the
case of opposite behaviour, i.e. when the shear stress increases less than linearly
with the shear rate, the fluid is called pseudoplastic or shear-thinning. Examples of
typical profiles of the shear stress τ as a function of the shear rate γ̇ for Newtonian,
shear-thickening and shear-thinning fluids are shown in the left panel of Fig. 1.1. The
ratio of the applied stress and the resulting deformation rate is the so-called apparent
effective viscosity μe = τ/γ̇ : it increases with γ̇ for shear-thickening fluids, while
it reduces for shear-thinning ones, which means that the fluidity of shear-thickening
fluids reduces increasing the shear rate, while the opposite is true for shear-thinning
fluids. Examples of shear-thinning fluids are ketchup, mayonnaise and toothpaste,
while corn-starch water mixtures and dense non-colloidal suspensions usually
exhibit a shear-thickening behaviour. Note that, sometimes, the same fluids can have
plastic or elastic responses depending on the flow configuration.

Complex fluids may behave as solids, with a finite deformation, when the
applied stress is below a certain threshold τ0, while for stresses above it, they start
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Fig. 1.1 (left) Sketch of a plane Couette flow. (right) Sketch of the shear stress τ profile as a
function of the shear deformation rate γ̇ for different kind of fluids

flowing as liquids. These fluids are called yield stress or Bingham fluids: when
the applied stress exceeds the so-called yield stress, τ0, these fluids can exhibit
a linear relation between stress and deformation similar to Newtonian fluids or a
pseudoplastic response. These macroscopic behaviours are related to changes of
the microscopic structure of the fluid, and indeed these fluids are constituted by
a Newtonian fluid with one or more suspended phases, such as fibres, polymers,
trapped fluids (emulsions). From a qualitative point of view, the material hardly
flows and deforms when the connections and interactions between the phases
constituting the microstructure are intense. Changing the level of the stress τ

applied on these complex fluids may either strengthen, weaken or break these
interactions, thus altering their microstructure, and eventually reflecting in their non-
linear rheological behaviour.

In order to describe complex fluids, we need a relation as in Eq. (1.1) between
the applied stress, τ , and the deformation rate, γ̇ . A relation that can be used to
summarise the behaviours previously described for complex fluids is the Herschel–
Bulkley formula

τ = τ0 +K γ̇ n , (1.2)

where τ0 is the yield stress, n the flow index and K the fluid consistency index. A
Newtonian behaviour is recovered when τ0 = 0, n = 1 and K = μ, while values of
the flow index above and below unity, n > 1 and n < 1, denote shear-thickening and
shear-thinning fluids, respectively. Finally, yield-stress fluids are characterised by a
finite non-zero value of the yield stress τ0. The consistency index K measures how
strong the fluid responds to the imposed deformation rate. However, the consistency
index has the same dimension of a dynamic viscosity only when n = 1, and in
general its dimension is a function of n, so that it is not possible to compare different
values of K for fluids with different flow indexes n.

The fluid discussed so far are inelastic, since the stress is just a function of
the present value of the deformation rate, i.e. τ = τ(γ̇ ), and not on the previous
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4 M. E. Rosti et al.

history of the deformation rate (no memory effects). Another important class of non-
Newtonian fluids, which cannot be described by the Herschel–Bulkley formula, is
that of viscoelastic fluids. These materials have property similar to both a viscous
liquid and an elastic solid. Indeed, the deformation is not anymore permanent,
as in usual fluids, and depends on both viscous and elastic contributions. When
a constant stress τ is applied the deformation of a viscoelastic fluid increases
with time, but when the applied stress is removed, the fluid tends to recover
its original configuration (similarly to elastic solids). Polymer solutions usually
experience a viscoelastic behaviour, another culinary example being pizza dough:
when softly pressed it deforms, but when the pressure is removed the original
shape is recovered. However, if the dough is strongly deformed, we can rearrange
it in a new stable configuration similarly to what happens in fluids. Memory and
elastic effect are difficult to model, and typically require information about the
microstructure deformation.

In some applications, complex fluids can be successfully modelled just by
considering that their response is related to the memory of the deformation rate
history; in other words, they have a time-dependent viscosity if exposed to a
constant value of the shear rate. Two main kind of such fluids can be identified:
thixotropic fluids whose effective viscosity decreases with the accumulated strain
and rheopectic fluids, whose effective viscosity increases with the accumulated
strain. A classic example of a fluid characterised by a thixotropic behaviour is
painting whose apparent viscosity increases when the deformation rate reduces
in order to better adhere to a surface. Rheopectic fluids are less common, and an
example is the synovial fluid in our knees, whose property facilitates the absorption
of shocks. Thixotropic and rheopectic fluids are usually modelled by a time-
dependent viscosity, function of a scalar parameter that represents the evolution of
their microstructure.

1.2 Macroscopic Approaches

1.2.1 Eulerian/Eulerian Methods

Inelastic Shear-Thinning/Thickening Fluids

Shear-thinning and shear-thickening are possibly the simplest non-Newtonian
behaviours of fluids, when the viscosity μ decreases and increases under shear, i.e.
μ = μ(γ ); these behaviours are only rarely observed in pure materials, but can
often occur in suspensions. Despite its simplicity, this behaviour is able to capture
the main effects induced by a microstructure in many applications. Several models
have been developed to describe these fluids, an example of shear-thinning model
being the Carreau law, usually used to describe generalised fluid where viscosity
depends upon shear rate. The model is able to properly describe pseudoplastic fluid
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viscosity for many engineering application [3], and assumes an isotropic viscosity
proportional to some power of the shear rate [4]:

μ

μ0
= μ∞

μ0
+
(

1 − μ∞
μ0

)[
1 + (

λγ̇
)2] n−1

2
. (1.3)

In the previous relation, μ is the viscosity, μ0 and μ∞ the zero and infinite shear rate
viscosities, λ the relaxation time and n < 1 the power index; the second invariant
of the strain-rate tensor γ̇ can be determined as γ̇ = √

2 Sij : Sij , where Sij =
1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. At low shear rate (γ̇ � 1/λ) a Carreau fluid behaves as Newtonian,

while at high shear rate (γ̇ � 1/λ) as a power-law fluid. For shear-thickening fluid
a simple power-law model is frequently used,

μ

μ0
=Mγ̇ n−1, (1.4)

which reproduces a monotonic increase of the viscosity with the local shear rate for
n > 1. The constantM is called the consistency index and indicates the slope of the
viscosity profile. More details on the Carreau and power-law models can be found
in Ref. [4].

From a numerical point of view, implementation of a shear dependent vis-
cosity is often straightforward; however, high variations of viscosity may result
in significantly time step constraint when explicit schemes are used, and disrupt
the solution technique usually used to solve implicitly the viscous terms in the
momentum equation. Indeed, the diffusive term cannot be reduced to a constant
coefficient Laplace operator since the viscosity is now a function of space. Dodd
and Ferrante [5] have introduced a splitting operator technique able to overcome
this drawback, initially derived for the pressure Poisson equation; however, this
splitting approach can easily be extended to the Helmholtz equation resulting from
an implicit (or semi-implicit) integration of the diffusive terms as well. In particular,
the viscosity is split in a constant part and in a space-varying component, i.e.
μ (x) = μ0+μ′ (x), and the resulting diffusive term split consequently in a constant
coefficients operator that can be treated implicitly, and in a variable coefficients
operator which can be treated explicitly.

Viscoelastic Fluids

Viscoelasticity is the property of materials that exhibit both viscous and elastic
characteristics when undergoing deformation. Unlike purely elastic substances, a
viscoelastic substance has an elastic component and a viscous component, and the
latter gives the substance a strain rate dependence on time. Viscoelastic materials
have been often modelled in the past as linear combinations of springs and dashpots;
famous examples are the Maxwell model, represented by a purely viscous damper

www.dbooks.org
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6 M. E. Rosti et al.

0

a b c

Fig. 1.2 Sketch of the mechanical model of the (a) Kelvin–Voigt model, (b) Oldroyd-B viscoelas-
tic model and of the (c) elastoviscoplastic fluid proposed by Saramito

and a purely elastic spring connected in series, the Kelvin–Voigt model (Fig. 1.2a),
made by a Newtonian damper and a Hookean elastic spring connected in parallel,
and the standard linear solid model, which combines the Maxwell model and
a Hookean spring in parallel. In 1950 Oldroyd proposed a famous viscoelastic
model [6], often called Oldroyd-B model (Fig. 1.2b), where the fluid is assumed
to consist of dumbbells, beads connected elastic springs. In a frame-independent
form, it can be expressed in terms of the upper-convected derivative of the stress
tensor

λ

(
∂τij

∂t
+ uk

∂τij

∂xk
− τkj

∂ui

∂xk
+ τik

∂uj

∂xk

)
+ τij = 2ηmSij , (1.5)

where τij is the stress tensor, λ the relaxation time, ηm the material viscosity and
Sij the rate of strain tensor. Although the model provides good approximations
of viscoelastic fluids in shear flow, it has an unphysical singularity in extensional
flow, where the dumbbells are infinitely stretched [7]. In order to overcome this
problem, the finite elastic non-linear elastic (FENE) model has been proposed; it
consists of a sequence of beads with non-linear springs, with forces governed by the
inverse Langevin function. Subsequently, the finite elastic non-linear extensibility-
Peterlin (FENE-P) model has been developed, by extending the dumbbell version
of the FENE model and assuming the Peterlin statistical closure for the restoring
force. The model is suited for numerical simulations, since it removes the need
of statistical averaging at each grid point at any instant in time, and because the
polymer suspension is treated as a continuum and its dynamics represented by an
evolution equation of the phase-averaged configuration tensor Cij , a symmetric
second-order tensor defined as Cij =< qiqj >, where qi are the components
of the end-to-end vector for a polymer molecule. The evolution of the polymer
conformation is governed by the balance of stretching and restoring forces in an
Eulerian framework, such that the transport equation for the conformation tensor
can be expressed as

∂Cij

∂t
+ uk

∂Cij

∂xk
= Ckj

∂ui

∂xk
+ Cik

∂uj

∂xk
− τij , (1.6)
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where τij is the polymeric stress tensor, defined as

τij = 1

λ

⎛
⎝ Cij

1 − Ckk

L2

− δij

⎞
⎠ , (1.7)

with L the maximum polymer extensibility, δij the Kronecker delta and λ the
polymer relaxation time. A non-dimensional number can be defined based on the
polymer relaxation time λ, which is usually called Weissenberg number We, and is
defined as

We = λUref

Lref
. (1.8)

The previous transport equation is a balance between the advection of the con-
figuration tensor on the left-hand side, and the stretching and relaxation of the
polymer, represented by the first two terms and the last one on the right-hand side,
respectively. Polymer stresses result from the action of polymer molecules to keep
their configuration close to the highest entropic state, i.e. the coiled configuration
(see Refs. [3, 8]). The polymer stress is then added to the momentum equation, the
Navier–Stokes equation for an incompressible flow in the case of polymer solutions.

The numerical solution of Eq. (1.6) is cumbersome, and many researchers
showed that the numerical solution of a viscoelastic fluid is unstable, especially
in the case of high Weissenberg numbers, since any disturbance amplifies over
time [9–11]. Indeed, the numerical solution of this equation can easily diverge
and lead to the numerical breakdown since it is an advection equation without any
diffusion term [12]. One of the earliest solution to this problem has been to introduce
a global artificial diffusivity (AD) to the transport equation of the conformation

tensor [11, 13, 14] by adding to the right-hand side of Eq. (1.6) the term k
∂2Cij

∂xk∂xk
,

where k is a coefficient. Subsequently, global AD was replaced by local AD, where
the diffusion is applied only to locations where the tensor Cij experiences a loss of
positiveness. Recently, researchers started to use high-order weighted essentially
non-oscillatory (WENO) schemes [15] for the advection terms in the equation.
WENO scheme are non-linear finite-volume or finite-difference methods which
can numerically approximate solutions of hyperbolic conservation laws and other
convection dominated problems with high-order accuracy in smooth regions and
essentially non-oscillatory transition for solution discontinuities. Apart from that,
the governing differential equations can be solved on a staggered grid using a
second-order central finite-difference scheme. This methodology has been proved
to work properly by Sugiyama et al. [16] and also successfully used in Refs. [17–
19]. A comprehensive review on the properties of different numerical schemes for
the advection terms is reported by Min et al. [9].

An alternative methodology to overcome such problems is the so-called log-
representation of the conformation tensor that ensures the positive-definiteness
of the tensor Cij , even at high Weissenberg number [20–23]; this consists in

www.dbooks.org
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8 M. E. Rosti et al.

solving equivalent transport equations for Aij = logCij , instead of the ones for
the conformation tensor Cij . Following the notation used in Ref. [23], we write
A = log C = R log DRT , where D is a diagonal matrix containing the eigenvalues
of C and R an orthogonal matrix containing the eigenvectors of C. First, we define
a decompose of the velocity gradient such that (∇u)T = � + B + NC−1; note
that, � and N are antisymmetric and that B is traceless, symmetric and commutes
with C. Next, we introduce four new matrices, M̃ = RT (∇u)T R, �̃ = RT �R,
B̃ = RT BR and Ñ = RT NR, and rewrite the decomposition of the velocity
gradient as M̃ = �̃ + B̃ + ÑD−1. Note that, in order to ensure a unique
decomposition B̃ is diagonal, while �̃ and Ñ are antisymmetric matrices. Ñ and
�̃ can then be found by satisfying the equations

B̃ + 1

2

(
ÑD−1D−1Ñ

)
= 1

2

(
M̃ + M̃

T
)

(1.9)

and

�̃ + 1

2

(
ÑD−1 + D−1Ñ

)
= 1

2

(
M̃ − M̃

T
)
. (1.10)

Finally, the original transport equation for C is rewritten into an equivalent one
for A

∂A

∂t
+ (u · ∇)A − (

�A − A�
)− 2B = 1

We

(
e−A − I

) α

We

(
e−A − I

)2
,

(1.11)

where eA = RDRT and e−A = RD−1RT .

Plastic Effects

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent
inelastic behaviour of solids. Rate dependence in this context means that the
deformation of the material depends on the rate at which loads are applied.
The first viscoplastic rheological model based on yield stress (stress at which a
material begins to deform plastically) was proposed by Schwedoff [24] as a plastic
viscoelastic version of the Maxwell model:

⎧⎨
⎩
ε̇ = 0 if τ ≤ τ0

λ
dτ

dt
+ (τ − τ0) = ηmε̇ if τ > τ0

, (1.12)

where ε̇ is the rate of deformation, ηm the solid viscosity and τ0 the yield stress.
The previous model states that when the stress τ is less than the yield stress τ0, the
material is completely solid, and the rate of deformation is zero, while when the
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stress is greater than the yield value, it behaves as a fluid. Note that, at steady state,
we obtain τ = τ0 + ηmε̇. Bingham [25] proposed a similar model:

max

(
0,

|τ | − τ0

|τ |
)
τ = ηmε̇, (1.13)

which can be rewritten as⎧⎨
⎩
ε̇ = 0 if |τ | ≤ τ0|τ | − τ0

|τ | τ = ηmε̇ if |τ | > τ0
. (1.14)

Bingham model is exactly equivalent to the steady case of the one proposed
by Schwedoff for positive rates of deformation. In 1947, Oldroyd modified the
Bingham model and proposed the following constitutive equation [26]:

⎧⎨
⎩
τ = με if |τ | ≤ τ0|τ | − τ0

|τ | τ = ηmε̇ if |τ | > τ0
, (1.15)

which combines the yielding criterion with a linear Hookean elastic behaviour
before yielding and a viscous behaviour after yielding. Differently from the
previously described models, here when the stress is less than the yield value, the
material is not completely rigid. The numerical simulation of a Bingham fluid is not
a straightforward task, because of the mathematical non-smoothness of the model
and the indeterminacy of the stress tensor below the yield stress threshold [27].
Two kind of solution methods has been proposed in the literature, the regularisation
approach [28–32] and the augmented Lagrangian [33–40] algorithm. The former
solution method consists in modifying the constitutive equation in order to avoid
the numerical and mathematical complexities, while the second consists in solving
the whole problem as a minimisation of a functional with a step descent Uzawa
algorithm [41]. In other words, the former method consists in solving modified
equations which are computationally more permissive, while the second solves the
actual yield stress model, but is computationally much more expensive. Among the
first category of regularised approaches, in 1987, Papanastasiou [29] developed a
modified constitutive relation for Bingham plastics whose main feature is that the
tracking of the yield surfaces is completely eliminated. The model assumes

τ =
[
μ+ τ0

|γ̇ |
(

1 − e−M|γ̇ |)] γ̇ , (1.16)

where M is a constant that, when chosen sufficiently big, provides a quick stress
growth even at relatively low strain rates. This behaviour is consistent with materials
in their practically unyielded state, i.e. plastic material that exhibits little or no
deformation up to a certain level of stress determined by the yield stress. Due to
the fast growing stress, this model has been sometimes used to represent fluids that
exhibit extreme shear-thickening behaviour.
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Motivated by experimental observations, where yield-stress fluid have an elastic
response, Saramito [42, 43] combined the Bingham and Oldroyd models, and
proposed a model for elastoviscoplastic fluids (Fig. 1.2c)

λ
dτ

dt
+ max

(
0,

|τ | − τ0

|τ |
)
τ = ηmε̇, (1.17)

where the total stress is again σ = ηε̇ + τ . While Schwedoff proposed a rigid
behaviour when |τ | ≤ τ0 and Oldroyd a change of model when reaching the yield
value, Saramito assures a continuous change from a solid to a fluid behaviour of
the material. The mechanical model is composed by a friction element inserted
in the Oldroyd viscoelastic model: at stresses below the yield stress, the friction
element remains rigid, and the whole system predicts only recoverable Kelvin–
Voigt viscoelastic deformation due to a spring and a viscous element η in parallel.
Note that, the elastic behaviour τ = με is expressed in differential form and that
μ = ηm/λ is the elasticity of the spring. As soon as the strain energy exceeds the
level required by the von Mises criterion [44], the friction element breaks allowing
deformation of another viscous element (ηm), and the material is described by the
Oldroyd viscoelastic model.

After expanding the time derivative in the previous equation, the general
Saramito model can be written as

λ

(
∂τij

∂t
+ uk

∂τij

∂xk
− τkj

∂ui

∂xk
+ τik

∂uj

∂xk

)
+ max

⎛
⎝0,

|τdij | − τ0

|τdij |

⎞
⎠ τij = 2ηmSij ,

(1.18)

where τdij = τij− 1
N
τkkδij is the deviatoric part of τij , withN = 2 or 3 the dimension

of the problem at hand, and δij the Kronecker delta. Note that for yield stress τ0 = 0,
the Oldroyd-B model is recovered. A non-dimensional number can be defined based
on the field stress τ0, which is usually called Bingham number Bn, and is defined as

Bn = τ0L
ref

μUref
. (1.19)

The yield stress value of certain materials, for example, liquid metals, is a function
of the temperature [45, 46]. Indeed, while in crystal solids the yielding involves
bond switch in an orderly manner, in metallic glasses this should be determined
by bond breakage [47, 48]. By computing separately the mechanical and thermal
energies that are required for bond breakage, a simple relation between the yield
stress and the temperature can be obtained: τ0 = 50ρ/M

(
Tg − T

)
, where T is the

ambient temperature, ρ the density, M the molar mass and Tg the glass transition
temperature. Guan et al. [49] used molecular dynamic simulations and found that the
yield strength and the temperature are well correlated through a simple expression
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T

T0
+
(
τ

τ0

)2

= 1, (1.20)

where T0 and τ0 are viscosity-dependent, normalised constants.
The numerical solution of Eq. (1.18), similarly to Eq. (1.6), may be cumbersome.

The use of high-order WENO schemes for the advection terms in the equation
is suggested to have high-order accuracy in smooth regions and essentially non-
oscillatory transition for solution discontinuities [50, 51]. The previously discussed
log-representation of the equation can be used as well.

Fluid–Structure Interaction

A fully Eulerian formulation of a fluid structure problem can be obtained with a
technique similar to the one discussed in the previous sections. Indeed, we can
consider fluid and solid motion governed by the conservation of momentum and
the incompressibility constraint:

∂u
f
i

∂t
+ ∂u

f
i u

f
j

∂xj
= 1

ρ

∂σ
f
ij

∂xj
, (1.21a)

∂u
f
i

∂xi
= 0, (1.21b)

∂usi

∂t
+ ∂usi u

s
j

∂xj
= 1

ρ

∂σ s
ij

∂xj
, (1.21c)

∂usi

∂xi
= 0, (1.21d)

where the suffixes f and s are used to distinguish the fluid and solid phase. In
the previous set of equations, σij is the Cauchy stress tensor. The kinematic and
dynamic interactions between the fluid and solid phases are determined by enforcing
the continuity of the velocity and traction force at the interface between the two
phases

u
f
i = usi , (1.22a)

σ
f
ij nj = σ s

ij nj , (1.22b)

where ni denotes the normal vector. The problem at hand can be solved numerically
by using the so-called one-continuum formulation [52], where only one set of
equations is solved over the whole domain. This is achieved by introducing a
monolithic velocity vector field ui valid everywhere obtained by a volume averaging
procedure [53, 54], i.e.

ui =
(
1 − φs

)
u
f
i + φsusi , (1.23)
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where φs is an indicator function expressing the local solid volume fraction. Thus,
we can write the stress in a mixture form as

σij = (
1 − φs

)
σ
f
ij + φsσ s

ij . (1.24)

A fully Eulerian formulation is obtained after properly defining the fluid and solid
Cauchy stress, with examples given in [16–18, 55].

1.3 Microscopic Approaches

In this section we will discuss approaches used to perform interface-resolved
simulations of the intrusions defining the microstructures and thus at the origin
of the non-Newtonian behaviours described above. We will consider rigid and
deformable particles, as well as two-fluid systems. Indeed, recent developments in
computational power and efficient numerical algorithms have allowed the scientific
community to numerically resolve the microstructure of suspensions in fluids.

1.3.1 Eulerian/Lagrangian Methods

Eulerian/Lagrangian methods are often used to simulate suspension in fluids, and are
also called immersed boundary methods (IBM). The main feature of this method is
that the numerical grid does not need to conform to the geometry of the object,
which is instead replaced by a body force distribution f that mimics the effect
of the body on the fluid and restores the desired velocity boundary values on the
immersed surfaces. To do that, two separate grids coexist, the Eulerian fixed grid
where the flow is solved, and the Lagrangian grid representing the moving immersed
boundary (see Fig. 1.3a); a singular force distribution at the Lagrangian positions is
first determined and then applied to the flow equations in the Eulerian frame via a
regularised Dirac delta function.

The primary advantage of the IB method is associated with the simplification of
the grid generation task: indeed, grid complexity and quality are not significantly
affected by the complexity of the geometry. The advantage of the IB method
becomes eminently clear for flows with moving boundaries, where the process
of generating a new grid at each time step is avoided, because the grid remains
stationary and non-deforming. A drawback of this approach is that the grid lines
are not aligned with the body surface, so in order to obtain the required resolution,
higher number of grid points may be required. Many IBMs have been created so
far, which differ in the way the immersed boundary force is computed [56–60]. The
different methods are often grouped in two categories, continuous and direct forcing:
in the first approach the forcing is incorporated into the continuous equations
before discretisation, whereas in the second approach the forcing is introduced after
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Fig. 1.3 (a) Sketch of an immersed surface (grey) and of the Eulerian and Lagrangian grids used
in the immersed boundary method. (b) Sketch of the volume of fluid method. (c) Sketch of the
level-set method

the equations are discretised. The continuous forcing approach is very attractive
for flows with immersed deforming boundaries, whereas the direct one is more
commonly used to simulate rigid boundaries.

The original IB method was developed by Peskin [61] for the coupled simulation
of blood flow and muscle contraction in a beating heart and is generally suitable
for flows with immersed elastic boundaries. The IB is represented by a set of
elastic fibres and the location of these fibres is tracked in a Lagrangian fashion by a
collection of massless points moving with the local fluid velocity, i.e. the coordinate
Xk of the k-th Lagrangian point is governed by the equation

∂Xk

∂t
= u (Xk, t) , (1.25)

where u is the local fluid velocity. The stress (denoted by F ) is related to
deformation of these elastic fibres by a constitutive law, such as the Hooke’s law,
and the effect of the IB on the surrounding fluid is captured by transmitting the fibre
stress to the fluid through a localised forcing term in the momentum equations

f (x, t) =
∑
k

F k (t) δ
(|x − Xk|

)
, (1.26)

where δ is the Dirac delta function. Because the location of the fibres does not
generally coincide with the nodal points of the Cartesian grid, the forcing is
distributed over a band of cells around each Lagrangian point and added on the
momentum equations of the surrounding nodes. Thus, the sharp delta function is
replaced by a smoother distribution function, denoted here by d, so that the forcing
at any grid point xi,j is given by

f
(
xi,j , t

) =∑
k

F k (t) d
(|x − Xk|

)
. (1.27)
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The fibre velocity in Eq. (1.25) is also obtained through the use of the same smooth
function. The choice of the distribution function d is a key ingredient in this method,
and several different distribution functions have been derived and employed in the
past [61–64].

In the same spirit, Goldstein et al. [65] developed another model, called feedback
forcing, to simulate the flow around rigid and moving bodies, where the effect of the
body on the surrounding flow is modelled through a forcing term of the form

F (x, t) = α

∫ t

0

[
u (x, τ )− V (x, τ )

]
dτ + β

[
u (x, t)− V (x, t)

]
, (1.28)

where the coefficients α and β are selected to best enforce the boundary condition at
the immersed solid boundary, whose velocity is V . The above relation is a feedback
to the velocity difference u − V and behaves in such a way to enforce u = V

on the immersed boundary. Indeed, the first term on the right-hand side of the
equation tends to annihilate the difference between u and V , whereas the second
term can be interpreted as the resistance opposed by the surface element to assume
a velocity u different from V . In an unsteady flow the magnitude of α must be
large enough so that the restoring force can react with a frequency which is bigger
than any frequency in the flow; however, big values of α and β render the forcing
equation stiff and its time integration requires very small time steps. The method has
been used to simulate flexible filaments as well [66, 67]. Even if the original intent
behind Eq. (1.28) is to provide feedback control of the velocity near the surface,
from a physical point of view it can also be interpreted as a damped oscillator [68]
with frequency 1/ (2π)

√
α and damping coefficient −β/ (2√α

)
.

Immersed Boundary Methods for Suspensions of Rigid Particles

Uhlmann [56] proposed a computationally efficient numerical method based on the
IBM to simulate suspension of rigid particles. Firstly, the surface � of the immersed
surface delimiting the body is discretised using N markers, called Lagrangian points
X; note that, in general they do not correspond to the grid nodes x. The solution
of the incompressible Navier–Stokes is based on the fractional-step method [69].
Indeed, a simple prediction step is first performed, without taking into account
the immersed object. The obtained velocity field u∗ is then interpolated (with an
interpolator operator I) onto the embedded geometry �,

U∗ = I (u∗) . (1.29)

The values of U∗ are used to determine a distribution of singular forces along the
boundary of � that restore the prescribed boundary values U� as

F ∗ = U� − U∗

�t
. (1.30)
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The force field defined over � is then transformed into a body force distribution
applied to the Eulerian grid using a convolution operator C

f ∗ = C (F ∗) . (1.31)

The momentum conservation equation is then solved again with the computed vol-
ume force field added as a source term and the time advancement step is completed
with the usual solution of the pressure Poisson equation and the projection step
where velocity and pressure are corrected to ensure mass conservation. Note that,
this procedure is common to the most modern IB methods, and the step that defines
the method is the way in which the operators I and C are built: in particular, the
interpolation and spreading operations are based on the regularised Dirac delta
function by Roma et al. [70], which extends over three grid cells in all coordinate
directions.

The desired velocity U� at a location X on the interface between the fluid and
the immersed boundary is given by the rigid-body motion of the solid object:

U� = uc + ωc × r, (1.32)

where r = X − xc is the position vector relative to the particle centroid, uc is the
translational velocity of the particle centroid and ωc is the angular velocity of the
particle. The translational and angular velocities of a particle are described by the
Newton–Euler equations, which for a sphere reduce to

ρpVp

duc

dt
=
∫
δVp

τ · ndA+ (
ρp − ρf

)
Vpg −Vp∇p + F c, (1.33)

and

Ip
dωc

dt
=
∫
δVp

r × (τ · n) dA+ T c. (1.34)

In the previous two equations, Eqs. (1.33) and (1.34), ρp is the density of the
particle, Vp its volume (4/3πR3 for a sphere with radius R), τ the fluid stress
tensor, n the outward-pointing unit normal at the surface δVp of the particle, g the
gravitational acceleration and Ip the moment of inertia of the particle (2/5ρpVpR

2

for a solid sphere). F c and T c represent the force and torque acting on the particle
as a result of collisions and contact with other particles or solid walls.

Breugem [59] proposed two major improvements to the method discussed above.
The first is the so-called multidirect forcing scheme. The use of a regularised Dirac
delta function for the interpolation and spreading operations results in a diffuse
distribution of the IBM force around the interface and because of that, the influence
region of neighbouring Lagrangian points overlaps. Eulerian grid points in the
overlap region are used to enforce the boundary value multiple times; thus, the
resulting forcing is perturbed and the final distribution of the IBM force may not
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properly enforce the desired boundary condition. The remedy for this problem is to
iteratively determine the IBM forces on the relevant Eulerian grid points such that
they collectively enforce the desired boundary condition at the different Lagrangian
points [71, 72]. The second improvement suggested by Breugem is the inward
retraction of Lagrangian grid. The delta function of Roma et al. [70] has a width
of three grid cells, and because of that the (outer) radius of the particle actually
increases from R to R + 3�x/2; this effect results in an increase of the particle
drag force, which is partially balanced by an overall permeability of the particle due
to a non-perfect boundary condition. As shown by Breugem, the first inaccuracy
(increase in the effective radius) is stronger than the other one, and the suggested
solution is to slightly retract the Lagrangian points from the surface towards the
interior of the particle [73, 74].

In Eqs. (1.33) and (1.34), F c and T c are the force and torque acting on the
particle as a result of collisions and contact with other particles or solid walls.
A recent model for particle–particle and particle–wall interactions in interface-
resolved simulations of particle-laden flows is described by Costa et al. [75]. The
model consists of three different interactions: long- and short-range hydrodynamic
interactions, and solid–solid contact. The long-range interactions are directly
obtained by the immersed boundary method, while the short-range ones are based
on a lubrication model employed when the gap between particles is below the
grid size, and is based on asymptotic expansions of the analytical solution for
canonical lubrication interactions between spheres in the Stokes regime. Roughness
effects can be accounted for as well. This correction is applied until the particles
reach contact when a linear soft-sphere collision model is used. Note that, the
approach described above can be extended to particles of different shapes [76],
and that alternative collision models can be found in the literature, for example,
Refs. [77, 78].

Front-Tracking Methods for Suspensions of Deformable Droplets

The so-called front-tracking method is an evolution of the immersed boundary
method used to simulate viscous, incompressible, immiscible two-fluid systems,
first developed by Unverdi [79] and Tryggvason [80]. In such multiphase problems,
the density and viscosity fields of each fluid remain constant, but they are discon-
tinuous across the interface. In order to avoid numerical diffusion or oscillations
problems close to the jump, these fluid properties are not advected directly, but
instead a Lagrangian grid is created to describe the boundary between the different
fluids, which is then moved with the fluid velocity. Therefore, at every time step it
is necessary to reset the fluid properties and to do so, an indicator function F (x)

is also introduced, equal to 1 inside one fluid and 0 in the other one. This function
is constructed from the known position of the interface and is used to evaluate the
proper values of density and viscosity at each grid point:

ρ (x) = ρ1 + (
ρ2 − ρ1

)
F (x) and μ (x) = μ1 + (

μ2 − μ1
)
F (x) , (1.35)
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where the suffixes 1 and 2 indicate the two fluids. The jump in the indicator function
carried by the interface is spread to the grid points nearest to the interface, in order to
ensure that the fluid properties change smoothly across the interface. This generates
a grid-gradient field which is zero everywhere except near the interface and has a
finite thickness of the order of the mesh size. The spreading of the jump onto the
grid is done in such a way that the volume integral of the gradient is conserved, i.e.
if G (x) is the gradient of the indicator function evaluated at a stationary grid point
x, andD is a distribution function, such as the one introduced by Peskin [81], then

G (x) =
∑
k

D (x − Xk)Nk�Sk, (1.36)

where Nk is the unit normal vector to the interface element of area �Sk whose
centroid is at Xk . The indicator function is found everywhere by solving the
following Poisson equation:

∇2I = ∇ · G (1.37)

where the right-hand side is computed by simple numerical differentiation.
Since the fluid velocities are computed on the fixed grid and the front moves

with the fluid velocities, the velocity of the interface points must be found by
interpolation; thus, similarly to Eq. (1.36), to interpolate the velocity on the interface
Lagrangian points we use

U k =
∑
i

D (xi − Xk)ui , (1.38)

where the sum is now over the points on the stationary grid in the vicinity of the
considered k-th Lagrangian point. Finally, the new position of the interface is found
by solving a simple advection equation

dXk

dt
= U k. (1.39)

As the front moves, it deforms and stretches, and the resolution along some parts of
the interface can become inadequate or overly crowded. To maintain accuracy, either
additional elements must be added when the separation among points becomes too
large or points must be redistributed to maintain adequate resolution.

In those calculations where the surface tension σ is needed, the magnitude of
the surface tension force is obtained from the local curvature K of the interface:
F k = σKkNk�Sk . This force is then distributed onto the grid as

f (x) =
∑
k

D (x − Xk)F k. (1.40)
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Note that, alternative ways have been proposed to calculate the surface tension
without having to find the curvature, but only the local tangent defined by the
Lagrangian points on the interface [80].

1.3.2 Eulerian/Eulerian Methods

When dealing with moving and deformable boundaries, an alternative approach to
the IB front-tracking methods previously discussed are the so-called front-capturing
methods, which are fully Eulerian and handle topology changes automatically. A
strong advantage of such methods is that they are easier to parallelised and typically
achieve higher efficiency than their Lagrangian counterpart. However, interactions
between approaching particles and droplets are difficult to control and may depend
on the resolution adopted. Eulerian interface representations include essentially the
volume of fluid (VOF) [82] and level-set (LS) [83–85] methods, their variants and
combination. The VOF method defines different fluids with a discontinuous colour
function, and its main advantage is an intrinsic mass conservation; however, it
suffers from an inaccurate computation of the interface properties, such as normals
and curvatures [86, 87]. Contrary to the VOF, the LS method prescribes the interface
through a (Lipschitz-)continuous function which usually takes the form of the
signed distance to the interface. Thus, normals and curvatures can be readily and
accurately computed, while mass loss/gain may occur since the LS function has no
volume information. Furthermore, this approach requires a procedure to reshape the
LS into a distance function, i.e. the reinitialisation step. More recently, researchers
have started to develop coupled VOF-LS methods [88] in order to overcome the
disadvantages of both the techniques.

Volume of Fluids

We introduce an indicator (or colour) function H to identify a given fluid so that
H = 1 in the region occupied by fluid 1 and H = 0 in fluid 2. Considering that the
fluid is transported with the flow velocity, we update H in the Eulerian framework
by the following advection equation:

∂H

∂t
+ u · ∇H = 0, (1.41)

where u is the velocity vector. The cell-averaged value of the indicator function is
defined as the volume fraction or volume of fluid (VOF) function within a cell

φ = 1

δV

∫
δV

HdV. (1.42)
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Thus, the VOF function assumes values 0 ≤ φ ≤ 1 (see Fig. 1.3b). Combining the
two previous equations, we obtain the advection equation of the VOF function in
the divergence form:

∂φ

∂t
+∇ · (uH) = φ∇ · u. (1.43)

In a conventional VOF method, the interface separating different fluids is piecewise
reconstructed for each cell by straight line segments, which are then used to
calculate the numerical fluxes necessary to update the VOF function. This geometric
reconstruction effectively eliminates the numerical diffusion that smears out the
compactness of the transition layer of the interface. Different methodologies
have been proposed to accurately recover the exact surface geometry from the
discretised VOF function: the simple line interface calculation (SLIC) method [89],
the piecewise linear interface calculation (PLIC) [90, 91], the latter being further
modified by several authors [92–96]. Another technique is the tangent of hyperbola
for interface capturing (THINC) method [97]: this avoids the explicit geometric
reconstruction by using a continuous sigmoid function rather than the Heaviside
function, thus allowing a completely algebraic description of the interface and
enabling the computation of the numerical flux. An improvement was proposed by
combining the original THINC method with the first-order upwind scheme in the
so-called THINC/WLIC (THINC/weighted linear interface capturing) method [98].
Recently, the method has been further developed in the multi-dimensional THINC
(MTHINC) method where the fully multi-dimensional hyperbolic tangent function
is used to reconstruct the interface [99, 100]. The numerical fluxes can be directly
evaluated by integrating the hyperbolic tangent function which also prevents the
numerical diffusion that smears out the interface transition layer. Another advantage
of the method is that the normal vector, curvature and approximate delta function
can be directly obtained from the derivatives of the function, thus the standard
smoothing or convolution techniques used in conventional VOF methods is not
required.

The unit normal vector is defined as n = m/|∇φ|, being m the gradient of the
VOF function, i.e. m = ∇φ, which can be computed using the usual Young’s
approach [90, 91]. For example, in the 2D case, first the values of the derivative
at the four cell corners indexed as i ± 1

2 , j ± 1
2 are calculated by the VOF function

on its surroundings, for example,

mx

i+ 1
2 ,j+ 1

2
= φi+1,j + φi+1,j+1 − φi,j − φi,j+1

�xi +�xi+1
,

m
y

i+ 1
2 ,j+ 1

2
= φi,j+1 + φi+1,j+1 − φi,j − φi+1,j

�yj +�yj+1
,

(1.44)
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and then averaged to find the cell-centre value

mx
i,j =

(
mx

i− 1
2 ,j− 1

2
+mx

i− 1
2 ,j+ 1

2
+mx

i+ 1
2 ,j− 1

2
+mx

i+ 1
2 ,j+ 1

2

)
,

m
y
i,j =

(
m
y

i− 1
2 ,j− 1

2
+m

y

i− 1
2 ,j+ 1

2
+m

y

i+ 1
2 ,j− 1

2
+m

y

i+ 1
2 ,j+ 1

2

)
.

(1.45)

The curvature k is then found by taking the divergence of the normal vector

k = −∇ · n. (1.46)

The surface tension force f = σknδ can be computed using the continuum
surface force (CSF) model [101], where the 1D approximate delta function δ is
directly approximated by δ ≈ |∇φ|. Thus, we obtain

f = σknδ ≈ σk∇φ. (1.47)

Finally, the mixture density and dynamic viscosity are simply averaged in terms of
the VOF function (similarly to Eq. (1.35)):

ρ = ρ1φ + ρ2
(
1 − φ)

)
and μ = μ1φ + μ2

(
1 − φ

)
. (1.48)

Due to the non-uniformity of the density, the Poisson equation used to enforce a
divergence-free velocity field becomes

∇ ·
(

1

ρn+1
∇pn+1

)
= 1

�t
∇ · u∗, (1.49)

which is in an equation with variable coefficients. In order to utilise an efficient
FFT-based pressure solver with constant coefficients [5, 102], we use the following
splitting of the pressure term [103]:

1

ρk
∇pn+1 → 1

ρ0
∇pn+1 +

(
1

ρn+1 − 1

ρ0

)
∇
(

2pn − pn−1
)
, (1.50)

where ρ0 is a constant density equal to the lowest density between the two phase.
With this splitting, the Poisson equation can be rewritten as

∇ · ∇pn+1 = ∇ ·
[(

1 − ρ0

ρn+1

)
∇
(

2pn − pn−1
)]

+ ρ0

�t
∇ · u∗. (1.51)

Note that, the correction step of the fractional-step method needs to be modified
accordingly and that the term 2pn − pn−1 is a linear extrapolation consistent with
using a second-order scheme to integrate in time the momentum equation, for
example, Adams–Bashforth. The methodology can be extended to the Runge–Kutta
schemes by following Ref. [104].
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Level-Set Method

The level-set function φ approximates the signed distance from the interface, thus
φ = 0 denotes the interface and φ > 0 or φ < 0 the two different fluids separated by
it (see Fig. 1.3c). The motion of the interface is governed by the following transport
equation (formally similar to Eq. (1.41)):

∂φ

∂t
+ u · ∇φ = 0, (1.52)

where u is the flow velocity field. The equation is closed and allows to solve
the system of equations in a fully Eulerian fashion. Notwithstanding the formal
simplicity of the equation, its numerical solution is challenging. The time inte-
gration is often performed by a three-stage total variation diminishing third-order
Runge–Kutta scheme [105, 106], while the advection term of the equation is
usually discretised with one of the following schemes: the high-order upstream-
central (HOUC) scheme [107], the weighted essentially non-oscillatory (WENO)
scheme [108], the semi-Lagrangian scheme [109] or the semi-jet scheme [105].
Quantitative comparisons of these schemes in various test cases can be found
in Ref. [110]. As reported by Ge et al. [106], for flows involving moderate
deformations, the HOUC scheme is usually sufficient and the most efficient, while
for more complex flows, the WENO or the semi-Lagrangian/jet schemes combined
with grid refinement should be used. Note that, Eq. (1.52) does not need to be solved
over the entire computational domain, but only near the φ = 0 value, where the
interface is located and the normal and curvature are needed. Thus, in the so-called
narrow band approach [111, 112], the level set is computed and stored only around
the interface, and fast computation and low memory usage may be achieved.

Although the level-set function is initialised to be a signed distance, this property
is lost with time, causing numerical issues in the evaluation of the normal and
curvature [83]. These issue requires an additional treatment in order to reshape the
level-set function φ into a distance function, i.e. |∇φ| = 1. This is usually performed
by converting it into a time-dependent Hamilton–Jacobi equation [83]

∂φ

∂T
+ S(φ0)(|∇φ| − 1) = 0, (1.53)

φ0 being the level-set field before redistancing, T a pseudo-time and S(φ0) the
mollified sign function of the original level set. When the steady state solution of the
equation is reached, the zero level-set contour is unaltered, while the rest of the field
has re-obtained the property of being a signed distance function. In practice, this
equation is iterated only for few steps towards its steady state every certain number
of time steps. Although an alternative approach exists, i.e. the fast marching method
(FMM) [84], the reinitialisation procedure allows the use of high-order schemes and
is easy to parallelised; thus, it has been a much more popular choice.
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Finally, the unit normal vector n and the local mean curvature κ can be simply
computed directly from the LS function as follows:

n = ∇φ
|∇φ| and κ = −∇ · n, (1.54)

and the body force f due to surface tension, included in the momentum equation of
the Navier–Stokes equation, is expressed as

f = σκδ(φ)n, (1.55)

being δ the delta function and σ the surface tension. The density and viscosity
vary across the fluid interface, and can be expressed in a mixture form (similarly
to Eq. (1.35)) as

ρ = ρ1H(φ)+ρ2
(
1−H(φ)

)
and μ = μ1H(φ)+μ2

(
1−H(φ)

)
, (1.56)

where H(φ) is the regularised Heaviside function defined such that it is zero inside
one fluid and unity in the other one. In order to utilise an efficient FFT-based
pressure solver with constant coefficients, the technique described by Dodd and
Ferrante [5, 102] and discussed in the previous section can be easily used.

We conclude by noting that, although easy to implement, CSF effectively intro-
duces an artificial spreading of the interface. An alternative approach is the ghost
fluid method (GFM) [113–115], which provides a finite-difference discretisation of
the gradient operator even if the stencil includes shocks.

Phase-Field Methods

From a macroscopic point of view, the interface between two immiscible fluids
can be usually assumed to be sharp, since its thickness is of the order of few
nanometres. This aspect motivated the numerical methods discussed above, that,
however, need to overcome the difficulties associated with evolving a discontinuous
front through Eulerian fields. An alternative approach has been therefore proposed
and successfully used for different applications, the so-called phase-field (or diffuse
interface) method, where the interface is modelled as a thin layer across which
the fluid properties continuously change avoiding discontinuous fields. The original
idea can be attributed to Van der Waals who suggested that the interface thickness
in a binary mixture is determined by the balance of counteracting weakly non-
local terms in the free energy: these, on the one hand, provide diffusion and, on
the other hand, a sharpening of the interface. Cahn and Hilliard [116] used this
approach in the context of phase separation problems deriving an evolution equation
for the concentration field. The thermodynamic consistency of the coupled Cahn–
Hilliard/Navier–Stokes model [117] and its ability to handle topological changes
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are the main reasons that justify the increasing use of phase-field methods [118–
122]. The fundamental variable of phase-field models is a scalar �(xi, t) which
represents the relative quantity of one of the two phases, and whose extreme values,
� = ±1, correspond to the two pure fluids. Since the two fluids are immiscible,
the flow domain is essentially divided in subdomains containing only one of the
two phases, separated by an extremely thin interface where the two substances mix,
−1 < � < 1. The equation describing the evolution of the phases is

∂�

∂t
+ u · ∇� = ∇ · (M∇G) , (1.57)

where G = δF /δ� is the thermodynamic chemical potential defined as the func-
tional derivative of the free energy F with respect to �, and M is a proportionality
constant called mobility. The left-hand side of Eq. (1.57) represents the convective
transport of �, whereas the right-hand side the driving force from the chemical
potential, ensuring phase separation with the exception of the thin layer constituted
by the interface. The mobility M has no intuitive physical meaning and is related
to the time scale of the interface dynamics. In the limit of vanishing mobility, we
recover pure convection neglecting the inner interface dynamics, whereas for infinite
mobility the interface will reach equilibrium immediately and do not vary.

Following the seminal work of Cahn and Hilliard [116], it is possible to write the
free energy in the following form:

F =
∫

3

2
√

2
σ�

[
(�2 − 1)2

4ε2 + 1

2
|∇�|2

]
dV, (1.58)

with σ the surface tension and � the interface thickness. The form of the first
term between brackets in Eq. (1.58) guarantees the presence of two minima of
F for the two pure fluids at � = ±1. The gradient for the free energy drives
therefore the system towards phase separation. However, the second term in the
brackets is proportional to the square of |∇�|. Hence, when reducing the interface
thickness, the free energy increases because of the sharpening of the gradient of
�. The combination of these two terms tends to create an equilibrium interface
of finite thickness, mimicking what originally assumed by Van der Waals (see, for
example, [120] for more details). Using Eq. (1.58), the chemical potential G can be
explicitly written as

G = 3 σ
(
�3 −�− �2∇2�

)
/
(

2
√

2 �
)
, (1.59)

which can be directly inserted in Eq. (1.57) to compute the phase field. Eq. (1.57)
needs to be coupled with the Navier–Stokes equations (convection) which, in turn,
are influenced by the phase field because of surface tension. The surface tension
across the relatively thick interface between the two phases can be expressed in
terms of the free energy (and chemical potential). From the consideration that,
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without dissipation, the total energy of a systems needs to be conserved it is possible
to find the expression for the momentum forcing arising from the interface (surface
tension) [123],

F s = −δF /δu = −φ∇G. (1.60)

Considering Eqs.(1.57), (1.59) and (1.60), together with the incompressible Navier–
Stokes system, we can write the complete Navier–Stokes/Cahn–Hilliard model
for the immiscible fluid dynamics. In the following it is presented directly in
dimensionless form:

∇ · u = 0

(1.61)

∂u

∂t
+ u · ∇u = −∇p + 1

Re
∇2u + 3

2
√

2

1

We Cn

(
�3 −�− Cn2∇2�

)
∇�

(1.62)

∂�

∂t
+ u · ∇� = M∗

Cn
∇2
[
�3 −�− Cn2∇2�

]
.

(1.63)

Here, the equations have been made dimensionless using the typical flow scales, L
for length, U for velocity, μ and ρ for dynamic viscosity and density. We have also
introduced the Cahn number Cn = �/L as the dimensionless measure of the inter-
face thickness, the Weber number, We = ρU2L/σ as the ratio between convection
and surface tension effects, the dimensionless mobility M∗ = 3Mσ/(2

√
2UL2)

measuring the (dimensionless) mobility intensity and the Reynolds number Re =
ρUL/μ. When using the phase-field method it is important to correctly set the
Cahn Cn and mobility M∗ numbers. While the other dimensionless numbers used
above are classical and depend only on the macroscopic properties of the system,
the values of Cn and M∗ are set also by numerical considerations.

Since the physical thickness of the interface is usually on the nanometre scale,
realistic values of the Cahn number for micro- and macro-scale applications may
range between 10−3 and 10−10. As the interface needs to be resolved using 4 ÷ 5
control points for accurate numerical simulations, the use of the realistically tiny
values of the Cahn number is unpractical in simulations and an artificial thickening
of the interface is necessary. Clearly, a trade-off is necessary when deciding the
numerical interface thickness; to this end, it has been proved that the dynamics is
not affected by the artificial thickening if the typical interface size is well below the
smallest flow length scales. In other words, the Cahn number should be small, yet it
can be much larger than the real one, for example, around 10−2; this is the so-called
sharp-interface limit, [124]. In this limit, any further decrease of the Cahn number
does not produce appreciable differences in the macroscopic dynamics.
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More difficult is to precisely define or even measure the mobility M [123].
Moreover, it is crucial to determine how the mobility depends on the interface
thickness because of its artificial magnification necessary in simulations. Recently,
it has been found using matching asymptotic expansions that the optimal scaling
to recover the sharp-interface limit is M∗ = α Ca2 (α an order one constant), see
Ref. [120] for more details.

The main advantage of phase-field methods is in their strict thermodynamic
derivation and the ability to automatically handle interface topology changes, the
former opening also possibilities for direct simulations of phase changes. The main
drawback is represented by the high computational costs since it is important to
use at least 4 ÷ 5 points within the interface thickness which, in turn, needs to be
smaller than the flow length scales. The Navier–Stokes/Cahn–Hilliard model has
recently been adopted in several studies of immiscible fluids both in laminar and
turbulent conditions, for example, Refs. [122, 125–127]. Besides the Cahn–Hilliard
formulation, different phase-field methods have been proposed, based on alternative
forms of the free energy, see, for example, [128] for compressible flows with phase
change for cavitation problems. Similar methods exist also in the Lattice–Boltzmann
framework, for more details the reader is referred to [129–131] and the references
therein.

1.3.3 Other Approaches

In many applications the suspended objects are much smaller than the smallest
hydrodynamical scale; in these cases the so-called point particle method can be
used, in which the particle are treated as Lagrangian points moving with the local
flow velocity. When the volume fraction of the particles is small enough hydro-
dynamic interactions and collisions among particles can be effectively neglected,
while for large values of the particle-to-fluid density ratio, i.e. for significant mass
loads, the momentum exchange between the two phases is still significant and
must be accounted for. In general, the motion of the particles is described by a
set of ordinary differential equations for the particle velocity and position, with the
velocity depending on the Stokes drag and the buoyancy force [132] but also added
mass and history force can become important [133, 134]; note that, the Stokes drag
coefficient is sometimes corrected with empirical correlations when the particle
Reynolds number does not remain small. The interested readers are referred to
Refs. [135–138] for more details. Other approaches have been proposed to model
the feedback of the point particle on the flow, which should be independent of the
resolutions used; details can be found in Refs. [139–142].

In the recent years, various alternative methods have been proposed which
are modifications and/or combinations of the methods previously discussed. A
commonly used approach is the force coupling method: this is a bridge between
methods for Stokes flow and for low-Reynolds number conditions and is based on
a low-order, finite force multipole representation of the effect the particles have on
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the surrounding fluid flow. In particular, the full Navier–Stokes equations are solved
with an additional force density: the force monopole corresponds to the force the
particle transmits to the fluid if it were replaced by a rigid particle of mass with
the same density as the fluid, while the force dipole is a combination of a symmetric
stresslet and a torque that acts on the fluid: the torque is set in a similar manner as the
force monopole in terms of the angular momentum of the displaced fluid, while the
stresslet is chosen to ensure that the average rate of strain within the particle is zero.
The aim is to create a flow outside the particle that matches the actual flow within
a short distance from the surface. Note that, the fluid inside the particle volume is
an active part of the simulation and satisfies the same integral moments as a rigid
particle. The interested reader is referred to the detailed review in Ref. [143] and the
references therein.

Another technique is the so-called volume of fluid tensorial penalty method: the
method is based on the one-fluid formulation modified for dealing with particle
flows. In particular, the fluid and solid phases are treated as two fluids with different
rheological property and distinguished by a phase function, such as the solid volume
fraction. The solid particle behaviour is recovered in the Navier–Stokes equations
by properly decomposing of the stress tensor: in particular, the stress tensor is
rewritten in a way to separate the compression, tearing, shearing and rotation
contributions [144]. The decomposition is used to separate the stress components
operating in a viscous flow and to facilitate the implementation of a numerical
penalty method. In the solid phase it is imposed that the local flow admits no
shearing and tearing while preserving a constant rotation; these flow constraints are
implicitly transmitted to the particle sub-domain as they are solved with the fluid
motion. Note that, the previous viscous penalty method is formally equivalent to
choosing a viscosity much bigger than the fluid one, similarly to what previously
done when discussing plastic effects. However, on a discrete point of view, the
two formulations are not equivalent: when the dynamic viscosity is used to impose
the solid behaviour, a first-order convergence in space is usually obtained and a
rasterisation effect can be produced at the particle–fluid interface; on the other hand,
when the viscous stress tensor splitting is used, a more accurate fluid–solid interface
is used, thus reducing the rasterisation effect and a second-order convergence can
be achieved. To solve the unsteady Navier–Stokes equations together with the
incompressibility and solid constraints, the augmented Lagrangian method can be
applied. The interested readers are referred to Refs. [145–147].

1.4 Conclusions

In this chapter, we have introduced present numerical methods for complex fluids.
In the first part, we have discussed continuum approaches to viscoplastic and
viscoelastic fluids, whereas interface-resolved methods for the simulations of
suspensions of rigid and deformable particles, droplets, bubbles have been presented
in the second part.



1 Numerical Approaches to Complex Fluids 27

Continuum approaches require rheological models and constitutive equations
for the additional stresses due to the fluid microstructure. These are derived
theoretically or from experimental data; however, recently, the fast development
of computational resources has enabled us to also resolve the microstructure with
numerical simulations of the type described in the second part of this chapter.
Although important results are continuously reported on the behaviour of viscoplas-
tic and viscoelastic fluids, both in laminar and turbulent flows, these are somewhat
restricted to relatively simple geometries. It is therefore relevant to explore the
performance of the current numerical algorithms in more complex geometry and
thus come closer to industrial applications and natural flows as, for example,
avalanches. In addition, new and more sophisticated models are continuously
proposed, also thanks to the development of new experimental techniques able
to probe fluids subject to time varying shear or stress. From a numerical point
of view, these will pose new challenges which we may not be able to tackle
with the tools currently available. One such example is the isotropic kinematic
hardening idea, based on the concept that the material yield stress builds up and
evolves in time together with the flow field, where the steady state yield stress
is determined via the back stress modulus (a new material parameter) and the
deformation of microstructure (a hidden internal dimensionless evolution variable).
Another important point for industrial applications is represented by the case where
the fluid stress induces a breakage in a solid structure, i.e. hydraulic fracturing.
Once a break-up occurs, the fragment behaves as a suspended particle that may
contribute to additional solid breakage events. Despite its relevance in applications,
the (automatic) numerical handling of this complex dynamics is still challenging.

Examples of simulations of multiphase and multicomponent flows are numerous
and ever increasing, so that the approaches reported here constitute necessarily
a quick and limited overview. Two directions are seen here as emerging and of
potential interest. On one side the study of intrusions in a complex fluid, ubiquitous
in applications, and, on the other side, the need to improve short-range near-
contact interactions among particles/droplets. Indeed, when particles/bubbles are
significantly larger than the colloids or macromolecules providing plastic and elastic
effects, it is reasonable to model the complex fluid as intrusions in a non-Newtonian
matrix, thus combining the two types of approaches presented here, denoted as
macro and microscopic.

Although the approaches discussed here fully resolve the surface of the sus-
pended phase, rigid or deformable, solid or fluid, models are necessary for the short-
range interactions: (i) from a numerical point of view, the grid resolution inevitably
becomes coarse when two objects approach each other, and (ii) microscale chemical
and physical effects determine different interactions, for example, repulsive or
attractive forces, slippage, Marangoni effects and depletion forces associated with
the microstructure of the suspending phase. These become therefore truly multiscale
problems, ranging from nanoscale surface interactions to millimetre/centimetre
flows. Coupling of the numerical approaches mentioned here with nanoscale
simulations, for example, molecular dynamics, is, therefore, a very active research
area.
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We would like to conclude by saying that we believe it is fundamental to always
be aware of the limitations of the simulations one wishes to perform. This allows
the researcher to design configurations and propose, though sometimes unphysical,
numerical experiments that can unveil important physics, something which may not
be possible in laboratory experiments.
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Chapter 2
Basic Concepts of Stokes Flows

Christopher I. Trombley and Maria L. Ekiel-Jeżewska

2.1 Introduction

Stokes flows have many applications in both physical theory and practice. For
example, they have been used to describe dynamics of complex fluids in microflu-
idics, lab-on-chip technologies [1], medical applications [2, 3], design of innovative
materials [4–6] and micro-devices—e.g. to carry drugs [7, 8] or act as fuel
cells [9]—and in biological systems [10–15].

In this chapter, we discuss some fundamental properties of Stokes flows, namely:
negligibility of inertial forces, reversibility and the minimum energy dissipation
theorem. First we will briefly discuss how the neglecting of inertial forces simplifies
the nonlinear Navier–Stokes equations to the linear Stokes equations. We then
discuss two basic aspects of Stokes flows: reversibility and the minimum energy
dissipation theorem. In order to bring out the nature of the three principles,
we will demonstrate by example how these properties can be used to obtain
conclusions about investigated fluid systems without laborious construction of
analytical solutions. We then move beyond the Stokes approximation in various
ways in order to see how the principles work in a general context. Finally, we
conclude by discussing the logical structure of the principles as revealed by the
examples considered.
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2.2 Navier–Stokes and Stokes Equations

2.2.1 Navier–Stokes Equations

We start with the general Navier–Stokes equations for an incompressible fluid.
These are [16–18]

ρ
∂u
∂t

+ ρ(u · ∇)u = μ∇2u −∇p + F (2.1)

∇ · u = 0 (2.2)

where ρ is the density of the fluid, u is the velocity field of a fluid, μ is the dynamic
viscosity of the fluid, p is the fluid pressure field,1 and F captures the effects of
external forces. The left-hand side of this equation is the inertial forces, that is, the
acceleration of a fluid element with unit volume. The right-hand side is sum of the
viscous and pressure forces, μ∇2u and ∇p, respectively, exerted on surfaces of
this fluid element, and any external body forces F acting on the fluid element. The
second equation is based on the conservation of mass of a fluid element and achieves
its simple form because of incompressibility of the fluid element.

We use non-dimensionalisation in order to capture the relative scale of the forces.
DefineU to be a characteristic velocity of the fluid andL to be a characteristic length
scale. Other characteristic dimensional scales of the flow, for instance, a time scale
T = L/U , can be defined implicitly from these scales. There is still some freedom
when normalising pressure p and body forces F. We choose to normalise pressure
by a characteristic viscous force per unit area and F by a characteristic viscous force
per unit volume as in [18]. Using a star to denote non-dimensionalised objects, this
results in the following definitions:

u∗ = u
U

∇∗ = L∇
∂

∂t∗
= L

U

∂

∂t
(2.3)

p∗ = L

μU
p

F∗ = L2

μU
F

1In the presence of a gravitational field, p is the so-called modified pressure, which takes into
account also gravitational potential energy per unit fluid volume.
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With the above characteristic dimensional scales, the inertial force per unit volume

is estimated by ρU2

L
and the scale of the viscous force per unit volume is μU

L2 . The
Reynolds number, Re, a non-dimensional number defined as the ratio of inertial and
viscous forces in a fluid, takes the form

Re = (ρU2)/L

(μU)/L2 = ρUL

μ
(2.4)

The end result is the following non-dimensional version of the Navier–Stokes
equation (2.1):

Re

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= ∇∗2u∗ − ∇∗p∗ + F∗ (2.5)

The left-hand side is the inertial force and the right-hand side is the viscous, pres-
sure and body forces. Flows with the same Re are hydrodynamically similar [18].

A difficulty to using Eqs. (2.1) and (2.2) (or their non-dimensional form) in the
analysis of fluids is that the inertial forces are nonlinear in u. In terms of forces, the
so-called Stokes approximation can be understood as when the viscous and pressure
forces dominate the inertial forces absolutely. The Reynolds number allows one to
test the applicability of Stokes approximation to fluids. The Stokes approximation
holds exactly in the limit as this ratio goes to zero [17–22]. For this reason, Stokes
flows are often called low Reynolds number, non-inertial or viscous flows.

2.2.2 Stokes Flows

Taking the limit Re → 0 in Eq. (2.5) one obtains the non-dimensional steady Stokes
equations. In dimensional form, without external body forces, sources or sinks, they
read

μ∇2u −∇p = 0 (2.6)

∇ · u = 0 (2.7)

The first equation states the balance of forces in a non-accelerating fluid. The second
equation is, as in Eq. (2.2), the conservation of mass for incompressible fluids.

The Stokes equations (2.6) and (2.7) must be combined with boundary conditions
appropriate to the physical situation. The so-called stick or no-slip boundaries for
rigid walls and at the surfaces of particles are important examples. Consider a
surface S moving with local velocity w. It has no-slip boundary condition for the
fluid velocity u if on S one has

u(r) = w(r) for r ∈ S (2.8)
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There are many other important examples of boundary conditions, such as
the boundaries for a free surface [18], but we will focus on the stick boundary
conditions, which are sufficient for considering inertial forces, reversibility and the
minimum energy dissipation. When considering reversibility especially, one must
remember that boundaries can be time dependent. This means that the boundaries
move, such as in the classical Taylor–Couette experiment involving a fluid between
two rotating cylinders [23]. The Stokes equations (2.6) and (2.7) can also apply to
unbounded flow problems by the selection of an appropriate boundary at infinity.
For instance, a fluid can be constrained to be at rest at infinity, as in case of particles
settling in a quiescent fluid.

Equations (2.6)–(2.7) are linear, so that any linear combination of solutions
(u1, p1) and (u2, p2) is also a solution (u1 + u2, p1 + p2). Linearity allows for
classes of solutions to be constructed. One example is the case of flow around a
rigid sphere, where a complete set of elementary solutions to Eqs. (2.6) can be
constructed, as done by Lamb [16]. In his families of elementary solutions, the
pressure p is expanded in spherical harmonics and the velocity field u is written as
an infinite series of solid harmonics. This concept is used in the multipole method of
solving the Stokes equations for systems of particles moving in fluids [20, 24–30].

2.3 Reversibility of Fluid Flows

Because Stokes equations (2.6)–(2.7) are steady and linear, the motion they predict
is reversible in time. Mathematically, it means that the reversibility transformation
of any solution, that is, (u(x, t), p(x, t)) �−→ −(u(x, t), p(x, t)), will also give a
solution. This can be checked by simple algebraic manipulation of the governing
equations. G.I. Taylor explained in his film Low Reynolds Number Flows [31] the
physical meaning of reversibility—“low Reynolds number flows are reversible when
the direction of motion of the boundaries which gave rise to the flow is reversed”.
Actually, a reversed fluid flow can result from reversing velocity of the boundary
(equal to the fluid velocity at the surfaces of particles or walls) or from reversing
directions of the external and the opposite hydrodynamic forces. In the following,
we will show how reversibility allows to predict symmetries of fluid flows and
motion of particles in fluids.

2.3.1 Examples of Reversibility

One of the most dramatic presentations of reversibility is seen in the film mentioned
above [31]. In this experiment, the volume between two transparent cylinders is
filled with glycerine. Dyes are injected which form a compact coloured volume
into the glycerine to help visualise the flow. The inner cylinder is rotated causing
the dyes to stir and apparently mix. The inner cylinder is then rotated in the
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opposite direction and one sees the seemingly mixed fluids unstir themselves. This
experiment demonstrates the difficulty of mixing low Reynolds number fluids, an
important problem for microfluidics.

G.I. Taylor used this experiment to explain the concept of reversibility in the
following way: “On reversal of the motion of the boundary, every particle retracts
exactly the same path on its return journey as on the outward journey, and at every
point its speed is the same fraction of the boundary speed as it was at the same
point on its outward journey, so that when the boundary has returned to its original
position every particle in the fluid has also done so and the original pattern of dye is
reproduced” [32].

A very important consequence of reversibility in biology is that the ordinary
swimming motion done by an idealised swimmer with a rigid tail could not produce
forward motion in a non-inertial fluid, since any propulsion created by the swimmer
when the tail moves left is exactly cancelled when it moves right, as demonstrated
in [31]. This is a consequence of the “Scallop theorem” fundamental to the study
of the locomotion of microscale organisms [11].

One can use reversibility to derive basic properties of solutions to the Stokes
equations without finding the solutions explicitly. Take the case of a rotating, but not
translating, sphere immersed in fluid governed by Eqs. (2.6) and (2.7). This situation
is illustrated in Fig. 2.1. We might ask how much force such a sphere would feel.
Here we mean the force exerted by the fluid on the sphere owing to stick boundary
conditions on its surface. This hydrodynamic force needs to be balanced by the
opposite external (non-hydrodynamic) force acting on the sphere. Through the use

Fig. 2.1 A solid sphere rotating without translations near a solid wall. Reversibility implies that
the sphere does not feel any external force perpendicular to the wall
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of superposed reversibility and symmetry transformations, we can discover that in
this situation the answer is that the sphere would not feel any hydrodynamic force
in the direction perpendicular to the wall [33]. This can be proven by contradiction.
Suppose Fx �= 0. Notice that if we put the origin at the centre of the sphere, the
system is symmetric for the transformation y �−→ −y. This reflection reverses the
rotation of the sphere, but leaves the x-component of the force the same. Now apply
the reversibility transformation. The rotation is now reversed back to the original
sense. The force vector should have the opposite direction. The result is that the
sphere is at the same position, has the same physical rotation, but opposite Fx . This
is a contradiction. This argument shows how reversibility and symmetry arguments
can be combined to put strong restrictions on Stokes flow [33, 34].

We can also apply reversibility arguments again to the case of a sphere which
moves under a constant gravitational force parallel to a solid wall. Applying the time
reversal, we now reverse also the direction of the sphere velocity and force. By the
same argument above, i.e. by combining the time reversal with the reflection with
respect to the plane y = 0, there will be no velocity in the direction perpendicular
to the wall; the sphere will keep translating parallel to the wall [34]. This reasoning
applies to the study of sedimentation of a slowly moving particle of any shape and
material symmetric with respect to reflection in the plane y = 0 [33, 34]. We have
demonstrated that reversibility has observable consequences which do not require
elaborate constructions.

2.3.2 Irreversible Trajectories in Stokes Flow

Applying reversibility, one must take care that reversibility applies to time and
forces. In particular, the paths that particles take need not be reversible in time even
though the Stokes equation is reversible in time. As an example, consider the system
shown in Fig. 2.2: two spheres of the same radii—one fixed and another one settling
from above under gravity. For non-touching spheres, trajectories of the moving
sphere centre are symmetric with respect to reflection in the plane z = 0. Under
the time reversal, the gravitational force is reversed and the sphere centre moves
backwards along the same trajectory. However, reversibility of the trajectories is
broken when two spheres come so close to each other that their surfaces interact
by direct forces, such as van der Waals attraction or mechanical reaction of rough
surfaces at the contact [35–39]. The reason is that central direct forces are not
symmetric with respect to superposition of the time reversal with reflection in the
horizontal plane z = 0.
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Fig. 2.2 Experimentally observed trajectories of the centre of sphere settling under gravity in a
silicon oil towards another fixed sphere of the same radius. Top: reprinted by permission from
Ref. [36]. Copyright Kluwer Academic Publisher (2002). Bottom: reprinted with permission from
Ref. [37]. Initally, the line of the sphere centres is inclined with respect to gravity. For a large
inclination, the surfaces of the spheres are always separated by a fluid, and the trajectories are
reversible. However, if the initial inclination is small enough, after some time the surfaces come
into contact and the resulting direct forces break the reversibility of the trajectories
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2.4 Minimum Energy Dissipation Theorem

We will now give a “variational” view of Stokes flow. A solution to Stokes
equations (2.6) and (2.7) is the unique divergence-free vector field that minimises
the extensive energy dissipation rate (that is, the energy dissipated by the bulk
of the fluid) [20]. In this section, we will state this minimum energy dissipation
theorem precisely and sketch a proof. After that, we will apply it to derive “inclusion
monotonicity”, a principle about particles moving through Stokes flows.

2.4.1 Statement

Consider a fluid filling a volume V with an impermeable boundary ∂V = S. Let u be
the velocity of a Stokes flow defined by Eqs. (2.6) and (2.7). Let v be a divergence-
free vector field describing a flow in V with the same boundary conditions as u. The
minimum energy dissipation theorem is

εu ≤ εv (2.9)

where εu is the extensive energy dissipation rate of the Stokes flow and εv is the
extensive energy dissipation rate of the other flow.

For an excellent discussion of how these relations for the change of internal
energy over time are established physically, see section 3.4 of [18]. For now we will
simply use the fact that for an incompressible fluid, the intensive energy dissipation
rate (i.e. the energy dissipated per unit volume) � is

�u = 2μeu : eu (2.10)

�v = 2μev : ev (2.11)

where e is the rate of strain tensor for the Stokes flow u given component-wise as
eu
ij = 1

2 (
∂ui
∂xj

+ ∂uj
∂xi

) (and similarly for ev
ij ) and : is the double dot product. Integrating

� over V gives the extensive energy dissipation rates ε, so that

εu =
∫

�udV (2.12)

εv =
∫

�vdV (2.13)

Having thus connected the energy dissipation rate to the mechanical properties of
the flow, we can now discuss the proof of Eq. (2.9). Because the minimum energy
dissipation theorem is proven and discussed in many textbooks, such as [20], we
will only give a brief outline. One starts by demonstrating

∫
(ev
ij − eu

ij )e
u
ij dV = 0 (2.14)
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from Green’s theorem, the divergence theorem and Stokes equations (2.6) and (2.7).
Then one subtracts Eq. (2.14) from the extensive energy dissipation rate for v and
rearranges

2μ
∫

ev
ij e

v
ij dV = 2μ

∫ (
ev
ij e

v
ij − (ev

ij − eu
ij )e

u
ij

)
dV (2.15)

= 2μ
∫ (

eu
ij e

u
ij + (ev

ij − eu
ij )e

v
ij

)
dV (2.16)

= 2μ
∫ (

eu
ij e

u
ij + (ev

ij − eu
ij )e

v
ij − (ev

ij − eu
ij )e

u
ij

)
dV (2.17)

= 2μ
∫ (

eu
ij e

u
ij + (ev

ij − eu
ij )

2)dV (2.18)

Which shows that 2μ
∫ (

ev
ij e

v
ij − eu

ij e
u
ij

)
dV ≥ 0, which by Eqs. (2.10) and (2.11) is

the same as ∫ (
�v −�u

)
dV ≥ 0 (2.19)

By Eqs. (2.12) and (2.13), one sees that Eq. (2.19) is the same as Eq. (2.9), the
minimum energy dissipation theorem.

2.4.2 An Application of the Minimum Energy Dissipation
Theorem

One advantage of variational principles such as the minimum energy dissipation
theorem is that they can be used to describe the behaviour of general rigid bodies
in a Stokes flow. We will give an example through the principle of “inclusion
monotonicity”. If one particle is large enough to completely contain another particle,
then we can compare the magnitude of the so-called drag force resulting from a
Stokes flow. Inclusion monotonicity follows from the minimum energy dissipation
theorem, which we will now show in a manner following [20].

Let a rigid particle 1 take up a volume V1 with surface ∂V1 = S1 and compare
with the flow around rigid particle 2 taking up a volume V2 with a surface ∂V2 = S2.
They are undergoing the same translational motion with velocity w without rotation.
The fluid is described by Stokes equations (2.6) and (2.7). Further, the particles have
no-slip boundary conditions on their surfaces. The forces the fluid flow exerts on
these particles are

f1 =
∮

σ 1 · n1dS1 (2.20)

f2 =
∮

σ 2 · n2dS2 (2.21)
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where σ i is the fluid stress tensor and ni is the normal coming out of surface of
particle i. The force of the fluid on the particle has the same magnitude but opposite
direction.

Inclusion monotonicity principle: If V2 ⊂ V1, then f2 · w ≤ f1 · w
(2.22)

The drag is the component of the fluid force on the particle in the direction of
w [17]. One can see by dividing through by |w| that inclusion monotonicity relation
Eq. (2.22) gives that the magnitude of the drag force on particle 1 is greater than
magnitude of the drag force on particle 2. Proof of inclusion monotonicity principle
Eq. (2.22) is illustrated in Fig. 2.3 and given below.

Let u1 be the Stokes flow around the larger particle 1 and u2 be the Stokes flow
around the smaller particle 2. The energy dissipation rate per unit time in the fluid
is proportional to the drag [20]

εu1 = f1 · w (2.23)

εu2 = f2 · w (2.24)

Fig. 2.3 Proof of inclusion monotonicity principle, illustrated. Three panels are drawn with
particles in grey and fluid in white. In panel 1 and 2 particle 1 and particle 2 displace volumes
such that V2 ⊂ V1. The particles are moving with the same velocity w—shown with white tipped
arrows—creating fluid velocity fields u1 and u2 shown with black tipped arrows. The last panel
depicts a non-physical velocity field v which is equal to u1 outside of V1 and w in V1 − V2
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From the above equations it is easily seen that Eq. (2.22) is equivalent to εu2 ≤
εu1 . However because these are Stokes flows for different geometries, the energy
dissipation rates cannot be directly compared. Therefore, we will construct a (non-
physical) vector field v in order to compare the energy dissipated by the motion
of the two particles. Define v piecewise to be u1 outside of V1 and v = w, the
translational velocity, inside of V1 − V2. The vector field v is continuous because of
the no-slip boundary condition. Now we will compare the energy dissipation rates
of the different vector fields u2, u1 and v.

We start by comparing u1 and v. Because v is rigid body motion on V1 − V2, v
does not dissipate any energy there. Outside that set, v = u1. Therefore

εv = εu1 (2.25)

We now move on to the comparison between u2 and v. By definition, outside
of V1, v = u1 which is a divergence-less vector field. On V1 − V2, v is constant,
so it is automatically divergence free there. Therefore v is a divergence-free vector
field defined on the same volume of fluid as u2. Therefore, by minimum energy
dissipation theorem we have that v cannot dissipate less energy than u2, i.e.

εu2 ≤ εv (2.26)

Substituting the formulas for the energy dissipation rates Eqs. (2.23) and (2.24) into
the above gives inclusion monotonicity Eq. (2.22).

2.5 Limits of the Stokes Approximation

2.5.1 Example of a System Where the Stokes Approximation
Does Not Work

The examination of the validity of the Stokes approximation is very revealing of
the logical structure of the features of Stokes flow (negligibility of inertial forces,
reversibility and the minimum energy dissipation theorem). The most dramatic
setting to consider is the famous “Stokes paradox”. This paradox arises in the
uniform Stokes flow past an infinite rigid cylinder. Suppose that such a cylinder is
translating through a fluid with constant non-zero velocity u0 and has “no slip” on
its surface. We suppose that very far from the cylinder, the fluid is at rest: u(x) → 0
as x → ∞. Unfortunately, there is no solution to Eqs. (2.6) and (2.7) consistent
with these boundary conditions [16, 19]. In a more general context, Stokes paradox
occurs when a non-trivial two-dimensional solution of the Stokes equations (2.6)
and (2.7) has no-slip boundary conditions on an object whose surface is a simple
closed curve. The velocity is then necessarily logarithmically unbounded as one
gets far from the object [18, 40]. More physically, Stokes paradox occurs because
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the energy dissipated by the cylinder does not decline far from the particle—in other
words, due to the minimum dissipation principle.

Other Linear Flow Equations

Because the Stokes approximation is not always justified and Navier–Stokes
equations (2.1)–(2.2) are mathematically complicated, it is desirable to have other
linear equation systems for fluid flow. We will very briefly give two such example
systems in which Stokes paradox demonstrably does not occur but are still tractable:
the Oseen and Brinkman equations.

We start with the well-known Oseen equations [19]. Let there be some constant
background flow u∞ imposed on the fluid. As mentioned before, the Navier–Stokes
equations give that the inertial force have the nonlinear form ρ(u · ∇)u. If the
characteristic velocity of the flow is much less than |u∞|, then the main component
of inertia is the resistance of the fluid flow against the background flow. We can
decompose the local flow as u = u∞ + uO and call uO the Oseen flow. The inertial

force has therefore ρ
[
(u∞ + uO) · ∇

]
(uO+u∞) = ρ(u∞·∇)uO+ρ(u∞·∇)u∞+

ρ(uO · ∇)u∞ + ρ(uO · ∇)uO . Because u∞ is constant, the middle terms are zero.
Furthermore, we are looking for a linear equation, we assume that |uO | � |u∞|.
Therefore, we can neglect the nonlinear term. We use the term ρ(u∞ · ∇)uO to
incorporate inertial forces into linear equations. The equations resulting from the
addition of this term to Eq. (2.6) are termed the Oseen equations [41, 42]. The Oseen
equations for a steady, incompressible fluid have the form

ρ(u∞ · ∇)uO = μ∇2uO − ∇pO (2.27)

∇ · uO = 0

where pO is the pressure associated with such a flow.
There are considerations other than inertial forces that one can take into account

for fluid motion in systems described by linear equations. For example, fluid flows
in porous media can be described by linear equations. The solid skeleton causes an
additional hydrodynamic resistance, which in the Brinkman model of porous media
is introduced as a new term. This results in the following equations for fluid velocity
uB and fluid pressure pB :

μ∇2uB − ∇pB = cuB (2.28)

∇ · uB = 0

where c is the ratio of the fluid dynamic viscosity and the permeability of the porous
media.
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2.5.2 Departures from Reversibility Caused by Inertia

The Stokes approximation—which involves the deliberate neglecting of inertia—
cannot be applied to systems in which inertial forces materially contribute to motion.
This can be seen in flow visualisation. In symmetric environments, reversibility
implies that the flow will also be symmetric [33]. For non-Stokes flows (i.e.
Re � 0), the symmetry in the flow lines breaks down [43]. This departure from
reversibility grows with the Reynolds number [44].

Reversible flow was shown in Sect. 2.3.1 to have the interesting property that a
spherical particle under an external force parallel to a wall would not experience any
lateral motion. In an inertial flow, however, a spherical particle tends to drift away
from walls, breaking the reversibility, and causing the “tubular pinch effect” [44],
with a different pattern of fluid streamlines.

In the analysis given in Sect. 2.3.1, a sphere rotating in a non-inertial fluid was
considered. This leads to a reversible, time symmetric fluid flow [33]. However, a
sphere (or a cylinder) which experiences inertial effects while rotating will create
an irreversible flow. The inertial forces will cause the cylinder to irreversibly create
vortices, which then interact with the rotation of the cylinder in a complex, non-time
symmetric way, as shown in Ref. [45].

2.5.3 Accelerating Fluid Example

Even when the Stokes approximation is mathematically coherent, one should think
with care how to interpret their results. As an illustrative example, consider a fluid
contained within an infinite, impenetrable cylinder with radius R rotating with
angular velocity � and with no-slip boundary conditions at its surface. The explicit
solution of the Stokes equations has the form,

uS = �r θ̂ (2.29)

pS = c (2.30)

where c is a constant and θ̂ is the unit vector in the azimuthal direction of the
corresponding cylindrical coordinates. The flow velocity is, effectively, rigid body
rotation. Pressure is constant in space and therefore there are clearly no centrifugal
forces in the radial direction.

Moving on to consider the Navier–Stokes equations, we find that the solution
becomes

uNS = �r θ̂ (2.31)

pNS = 1

2
ρ �2r2 + c (2.32)
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Like the Stokes case, the fluid is undergoing rigid body rotation. But now a
centrifugal force appears in the form of a pressure gradient in the radial direction.
The Stokes solution (uS, pS) has no forces in the radial direction, but in practice
we would expect a centrifugal force in the presence of rotation. In the steady
Navier–Stokes case, the centrifugal force per unit fluid volume is pressure gradient.
Therefore, the centrifugal term pNS is much more realistic than the constant
term pS .

2.6 Conclusions

Summarising, various properties essential to the understanding of Stokes flow,
have been discussed, including negligibility of inertial forces, reversibility and
the minimum energy dissipation theorem. Illustrative examples related to these
properties have been provided: irreversible trajectories in Stokes flow, inertial terms
for the fluid flow generated by a rotating cylinder, force on a rotating sphere close
to a solid plane wall, Stokes paradox, energy dissipation for particles of different
shapes. The meaning and the limits of the Stokes approximation have been discussed
in the context of more general equations.

We will conclude with some analysis of the logical relationship between the
assumption of the negligibility of inertial forces, the assumption of reversibility and
the minimum energy dissipation theorem.

The assumption that a flow minimises the energy dissipation rate entails that the
flow satisfies the Stokes equations. This means that minimum energy dissipation
implies both reversibility and the negligibility of inertial forces. Stated contrapos-
itively, irreversible flows or flows with inertial forces dissipate more energy than
Stokes flows.

Furthermore, reversibility implies the negligibility of inertial forces. This is
equivalent to saying that the presence of inertial forces implies irreversibility. Any
term proportional to ρ(u·∇)u, the inertial force term in the Navier–Stokes equation,
will make a flow irreversible.

However, neither negligibility of inertial forces nor reversibility does not imply
the minimum energy dissipation theorem. Like the Stokes equations (2.6) and (2.7),
the Brinkman equations (2.28) and (2.29) are reversible and do not contain inertial
terms. But one can now simply apply the proof in Sect. 2.4.1 by substituting uB for
the general solenoidal vector field v to find that the Brinkman flow dissipates more
energy than the Stokes one. This also shows that, counterintuitively, reversibility is
not sufficient to achieve the minimum energy dissipation achieved by Stokes flows.
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Chapter 3
Mesoscopic Approach to Nematic Fluids

Žiga Kos, Jure Aplinc, Urban Mur, and Miha Ravnik

3.1 Introduction to Nematic Fluids

Nematic liquid crystalline fluids are complex anisotropic fluids characterised by
internal orientational order of its constituent building blocks [1, 2], which ranges in
scales from molecules, macromolecules like DNA, to colloidal rods or platelets.
Typically, the orientational order emerges at some temperature or concentration
range of building blocks as a result of the geometrical shapes of prolate or
oblate building blocks. More recently, nematic order emerged also as an important
characteristic of various active fluids, i.e. fluids that can self-propel. Nematic fluids
are inherently soft materials, with the orientational order responding as an effective
elastic medium to external perturbations, like surfaces or electromagnetic fields.
And it is this soft and—optically or structure wise—strong response to external
fields which makes nematic fluids potent materials in various applications, including
in the fields of optics, photonics, and sensors. The broadest range of applications
and experiments with nematic fluids is as at the scales of multiple building elements
(which, for example, for molecular nematics, is in the micrometre regime), where
mesoscopic approaches prove to be the strongest to describe the systems, as
compared to molecular and effective molecular approaches [3, 4], which are used
at smaller scales. In view of this, this chapter will present mesoscopic approach
to nematic fluids, based on continuum description of the nematic mechanisms and
phenomena.
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Nematic orientational order is characterised at the mesoscopic scale primarily
with the average orientation of the building blocks (also called nematogens), called
the director n with apolar n → −n symmetry. This symmetry can be seen
from the basic model system of nematic fluids, i.e. fluid of rods, where opposite
orientations of a rod are equivalent. The fluctuations and possible asymmetry
in the fluctuations of the individual building blocks open additional degrees of
freedom given by the nematic degree of order S and biaxiality which then are
embedded in the nematic tensor order parameter Q, which further will be defined
and explained in this chapter. Overall, the full anisotropic configuration of nematic
ordering can vary in three spatial dimensions and can be also time dependent [1].
Equilibrium nematic configurations correspond to a minimum of the free energy.
Uniform nematic ordering can be broken by electromagnetic fields or interaction
with the boundaries, such as cell or particle surfaces. To satisfy these constraints,
often regions of a frustrated orientational order—topological defects—emerge. In a
defect, the singularity in the director field is accompanied by a reduction of S, thus
effectively melting the nematic into the isotropic state. The shape of topological
defects ranges from point defects to line defects and defect walls [2]. Although the
topology of a local nematic field is given by the constraints at the boundary, the
shape and the metastability of the nematic structures are dictated by the free energy.

Out of the equilibrium nematic alignment is strongly coupled to the velocity
field. There are three main effects of the nematic ordering to the velocity field:
(1) the rotation of nematic molecules induces material flow, which is known as
backflow, (2) even at a fixed nematic configuration (i.e. fixed Q) the fluid viscosity
is anisotropic, (3) in active nematics active force dipoles drive the fluid flow. The
nematic ordering is affected by the fluid flow through the advection process and
the tumbling/aligning dynamics. The coupling between fluid flow and orientational
order shows remarkable complexity and provides another aspect to the low Reynolds
number fluid mechanics. Out of the equilibrium dynamics can be understood
as a competition between effective nematic elasticity, which drives the system
towards the equilibrium, and the velocity field and other time modulating fields
that promote further deformations of the orientational order. The solutions of such
competition range from low Reynolds number turbulence to complex mutually
interacting structures in both velocity and Q-tensor fields. Several approaches to
the coupled behaviour between fluid flow and nematic ordering were developed,
among the most commonly used are Beris–Edwards [5] and Qian–Sheng [6] model
of nematodynamics. Velocity effects on the Q-tensor are introduced through the
generalised advection terms that compete with the molecular forces that promote
the relaxation to the minimum of the free energy. The effect of the orientational
order on the fluid flow is given by the stress tensor that is included in the Navier–
Stokes equation. The above-mentioned models are based on full Q-tensor, but rather
extensively also models based on only director dynamics are used, such as Ericksen–
Leslie–Parodi model [1].

Orientational order and material flow of nematic fluids can be shaped into
complex microfluidic structures, as a result of combined soft response to the external
electromagnetic fields, confinement, and pressure boundary conditions, coupled
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with the internal effective elasticity and possibly even intrinsic activity [1, 2].
Fascinating field structures in nematic fluids are revealed by theory and experiments,
for example, in the context of assisted assembly of colloidal crystals [7], study of
complex topological states [8, 9], and sensing applications [10]. Studied systems out
of the equilibrium include quench transitions [11], back flow effects [12, 13], and
nematic flow in various Poiseuille geometries [14, 15]. Dependence of the nematic
viscosity on the director orientation can be used in microfluidic circuits to control
the direction of flow and transport of material with selected recent works including
defect line assisted transport of colloidal cargo [16] and nematic fluid resistance
tunable by electric field [17]. Optical sensors are developed in Ref. [18]. A lot
of attention has been also given to the subject of active nematics, both from the
experimental and theoretical point of view [19]. The rich variety of structures in
mutually coupled fields, each with its own intrinsic symmetry, calls for a deeper
understanding of their interactions and potential applications.

Defects in liquid crystals can form regular or irregular structures, depending on
the type of confinement, inserted colloidal particles, external fields, and flow [20–
23]. Confinement and the surface anchoring can impose and affect defects in liquid
crystal. If the confinement has a regular structure, the transition from regular to
irregular structures is controllable [20] and the created system can even have a
memory effect. Colloidal particles inserted in the liquid crystal introduce the topo-
logical defects on their surface. These defects attract each other, so if the colloids
have an appropriate design—such as geometry and surface imposed anchoring—
this can cause self-assembly of colloidal crystals [7]. Even the passive or active
flow itself can cause the reorientation of the director via backflow mechanism, at
certain circumstances this gives birth to the structures in the director field [24].
A recently developed system for studying topological defects in passive materials
uses confined nematics and nematic colloids [11, 20, 25, 26] where defects of high
complexity can be realised ranging from topological defect knots [27], handlebody
topological colloids [28], chiral nematic solitons of torons [22] and hopfions [29],
quasicrystalline colloidal tilings [30], and droplets with holes [31]. The joint feature
of these passive complex defect structures is that defects in 3D generally become
delocalised and emerge in the form of topological loops or even networks, called
nematic braids. In parallel to their observation, there was also a major development
of experimental and theoretical, especially topological, methods for characterisation
and control of these advanced defects [26, 32–34].

Complex materials based on nematic fluids are recently attracting a lot of atten-
tion, including because of novel ways to control birefringence and the possibility to
form complex topological structures. Notably, these specific systems include chiral
nematics [22, 27, 35–38] and lyotropic liquid crystals [39–42] which will not be
explained in this chapter due to space limitations. Additionally, active matter is
a major growing field of science, where nematicity is emerging as an important
characteristic of multiple systems. Finally, the goal of this chapter is to give basic
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introduction to mesoscopic approach to nematic fluids and show some selected
exciting fields of development in nematic fluids, such as nematic colloids, topology,
and microfluidics.

3.2 Nematic Order Parameters

Nematic liquid crystal fluids consist typically of rod-like or disk-like molecules
(building blocks) with no long-range positional order. Due to their anisotropic
shape, molecules exhibit orientational order and tend to align along some common
direction, usually referred as director n with both directions n and −n being
equivalent. The director is a vectorial-like order parameter, which corresponds to
the time or ensemble average of molecular orientations u (see Fig. 3.1).

The director n bears no information about the degree of orientational order,
i.e. the degree of fluctuations of molecular orientations u; therefore, nematic
degree of order (scalar order parameter) S is introduced. Nematic molecules in
thermodynamic equilibrium assume some direction according to some probability
distribution ρ(u). We want to characterise the alignment by one parameter, not
the full distribution function ρ(u), which can be quite general. Without loss of
generality one can choose z axis along n and characterise spatial directions of u
by azimuthal angles φ and polar angles θ . The first idea would be to use the average
〈a · n〉 = 〈cos θ〉, but this vanishes because the molecules have no distinction
between head and tail. The first non-trivial moment is the quadrupole, which is then
used to determine the nematic degree of order S as:

S = 〈
P2(cos θ)

〉 = 2π
∫ π

0
P2(cos θ)ρ(θ) sin(θ)dθ, (3.1)

where P2 is the associated Legendre polynomial of the second order and 〈·〉 average

over all molecular orientations. The values of S lie on the interval
[
− 1

2 , 1
]
. When

all the molecules are perfectly aligned with the director, the nematic degree of order
is S = 1, whereas S = 0 corresponds to the isotropic phase, in which the molecules
are oriented randomly, and S = − 1

2 represents the state where all the molecules are
aligned perpendicular to the director.

Fig. 3.1 Nematic ordering of
rod-like molecules along the
director n. θ is the tilt angle
of individual molecules with
respect to director
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The full orientational order in liquid crystals is described by the tensor order
parameter Qij that contains both degree of order S and director n and also possible
biaxiality P . Qij reads

Qij = S

2

(
3ninj − δij

)+ P

2

(
e
(1)
i e

(1)
j − e

(2)
i e

(2)
j

)
, (3.2)

where e(1) is the secondary director (perpendicular to n) that characterises the

biaxial ordering, and e(2) = n× e(1). Values of P are in the interval
[
− 3

2 ,
3
2

]
, where

P = 0 characterises uniaxial ordering and |P | = 3
2 corresponds to the perfect

ordering along the secondary director e(1). Order parameter tensor Qij is a real,
symmetric, and traceless tensor. It has five degrees of freedom: nematic degree of
order S, biaxiality P , orientation of the director n (two angles), and orientation of the
secondary director e(1) relative to the director (one angle). Order parameter tensor
has three eigenvalues, namely S, − 1

2 (S+P) and − 1
2 (S−P), with the corresponding

eigenvectors n, e(1), and e(2).

3.3 Landau–de Gennes Free Energy Approach

A strong approach at the mesoscopic level to characterise the equilibrium properties
of nematic fluids is to use the Landau–de Gennes free energy volume density f ,
which can be written as:

f = fNI + fE. (3.3)

The model consists of two main bulk free energy density contributions: first
contribution fNI describes the phase transition from nematic to isotropic mesophase
and second contribution fE accounts for the spatial elastic deformations of tensor
order parameter Qij .

3.3.1 Landau Theory of Nematic Phase Transition

The stability of nematic mesophases in most nematic fluids depends either on
temperature or concentration of the building blocks. In thermotropic nematic liquid
crystals, temperature drives the phase transition between the nematic phase with
orientational order and isotropic phase with no long-range orientational order, with
consequently the order parameter Qij abruptly dropping to zero. Phenomenological
Landau theory is a mean field theory and a well-established approach to model
phase transitions. The Gibbs free energy is expanded in vicinity of the transition
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with respect to the scalar invariants of the order parameter tensor Qij up to the
fourth order [1]. Expansion reads

fNI = 1

2
A(T )QijQji + 1

3
BQijQjkQki + 1

4
C(QijQji)

2, (3.4)

where A, B, and C are material parameters and summation over repeated indices
is assumed. Parameter A = a(T − T ∗) contains temperature dependence which
governs the nematic to isotropic transition [2]. In nematic phase, below the
temperature T ∗, both A and B are negative, but C must be positive to ensure that the
free energy density functional is bounded from below. Typical values for molecular
nematic liquid crystal are ≈106 J/m3. Free energy functional can be rewritten only
with S, assuming homogeneous n and no biaxiality, as:

f SI
NI = 3

4
a(T − T ∗)S2 + 1

4
BS3 + 9

16
CS4, (3.5)

where now the free energy functional exhibits dependence shown in Fig. 3.2. First
term drives the transition, second breaks the symmetry of S, and the third bounds the
fNI from below. The minimisation of the free energy gives the equilibrium nematic
degree of order Seq

Seq = 1

2

⎛
⎝− B

3C
+
√(

B

3C

)2

− 8A(T )

3C

⎞
⎠ (3.6)

that holds for T < Tc and homogeneous nematic under no external field.

S

fNI
T=T**

T=Tc

T=T*

T>T**

Fig. 3.2 Free energy density f SI
NI as a function of the nematic degree of order S for some typical

temperatures. Minimum of the free energy density changes with variation of temperature. For
T > Tc free energy has stable minimum at S = 0 (isotropic phase), but for T < Tc, the minimum
corresponds to S �= 0 (nematic phase). At temperature Tc, we have coexistence of both phases and
transition is of first order. Below the super-cooling temperature T ∗ the isotropic phase is unstable.
T ∗∗ represents super-heating temperature of nematic phase
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3.3.2 Elastic Free Energy

Organisation of nematic into a uniform and homogeneous pattern is energetically
preferred. However, such organisation is usually not compatible with boundary
conditions and external fields. While subjected to spatial variations of orientational
ordering, nematic material effectively acts as an elastic medium, where the elastic
deformation can be decomposed into three basic deformation modes, splay, twist,
and bend, presented in Fig. 3.3. The elastic free energy is an expansion in small
gradients of the order parameter tensor Q that penalise nematic distortions from the
uniform configuration. The terms are second order in derivatives because first-order
terms are disallowed by the symmetry of an achiral nematic [2]. Free energy density
reads

fE = 1

2
L1

∂Qij

∂xk

∂Qij

∂xk
+ 1

2
L2

∂Qij

∂xj

∂Qik

∂xk
+ 1

2
L3Qij

∂Qkl

∂xi

∂Qkl

∂xj
, (3.7)

where L1, L2, and L3 are tensorial elastic constants, xi are Cartesian coordinates,
and summation over repeated indices is assumed. Three elastic constants are
introduced to quantify all three basic elastic modes. More third-order terms in Q
are possible in Eq. (3.7), but the choice of three terms is sufficient for matching into
three Frank elastic constants. If one assumes uniaxial approximation of the order
parameter tensor Q (S = const. and P = 0), the free energy can be rewritten into
the Frank–Oseen free energy density, which is expressed in terms of director n and
its derivatives [43, 44]:

f FO
E = 1

2
K1(∇ · n)2 + 1

2
K2(n · (∇ × n))2 + 1

2
K3(n × (∇ × n))2, (3.8)

where the terms directly account for splay, twist, and bend deformation modes of
the nematic. By comparing both expansions [Eqs. (3.7) and (3.8)] one can get the
mapping between tensorial constants Li and Frank elastic constants Ki , which are
usually measured in experiments [45]:

K1 = 9S2

4
(2L1 + L2 − L3S), (3.9)

Fig. 3.3 Basic nematic elastic deformation modes: (a) splay, (b) twist, and (c) bend
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K2 = 9S2

4
(2L1 − L3S), (3.10)

K3 = 9S2

4
(2L1 + L2 + 2L3S). (3.11)

Usually, a single elastic constant approximation is used, which sets L1 = L,
L2 = L3 = 0, and K1 = K2 = K3 = K . The elastic free energy densities than
reduce to

fE =1

2
L
∂Qij

∂xk

∂Qij

∂xk
, (3.12)

f FO
E =1

2
K
[
(∇ · n)2 + (∇ × n)2

]
. (3.13)

The eligibility of one-constant approximation strongly depends on the choice of the
material. For a nematic liquid crystal such as 5CB, the values of elastic constants
are in the range 10−12–10−11 N and differ for around 40% [46]. Elastic constants
Ki can also be strongly temperature dependent, but usually not with the same rate;
therefore, ratios K3/K1 and K2/K1 typically also vary [47].

The effective ratio between the ordering free energy fNI and elastic fE con-
tribution to the Landau–de Gennes free energy determines a characteristic length
scale of nematics—the nematic correlation length ξN. Within single elastic constant
approximation and uniaxial order parameter tensor, ξN equals [48]

ξN =
√

L

A+ BSeq + 9
2CS

2
eq

. (3.14)

Nematic correlation length determines spatial length scale for the variation of
nematic degree of order; therefore, it roughly sets the defects size. For example,
in molecular nematics, ξN is of the order of few nm.

3.3.3 Surface Anchoring

The Landau–de Gennes free energy density (Eq. (3.3)) determines the distortion
energies in the bulk of the nematic fluids, and needs to be extended in the presence
of surfaces with also surface free energy terms. Surfaces surrounding the nematic
can affect the nematic ordering by imposing both preferred orientation and the
degree of order. Surfaces can in principle impose arbitrary direction in space,
with planar (tangential) anchoring and homeotropic (normal) anchoring being most
common [49].

Uniform surface anchoring (homeotropic or other fixed direction) can be well
described by using Rapini–Papoular like surface free energy density functional [50]:
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fH = 1

2
WH(Qij −Q0

ij )
2, (3.15)

which quadratically penalises all deviations from the surface-preferred order param-
eter tensor Q0

ij with the strength WH. Besides the preferred direction at the

surface, tensor Q0
ij imposes also surface degree of order and biaxiality. In case of

homeotropic anchoring, the preferred tensor is constructed using the surface normal
ν, so that Q0

ij = Seq
2 (3νiνj − δij ). Typically values of the anchoring strength WH

range from 10−3 J/m2 (strong anchoring) to 10−7 J/m2 (weak anchoring) [51].
Some surfaces favour planar degenerate anchoring, where molecules have

tendency to align along any direction within a plane, so all azimuthal angles are
equally possible. Such anchoring can be described by introducing surface free
energy potential [52]:

fPD = WPD

(
Q̃ij − Q̃⊥

ij

)2
, (3.16)

where WPD is a constant measuring surface anchoring strength. Model penalises any
deviations of Q̃ij = Qij+ Seq

2 δij from its projection to the surface Q̃⊥
ij = PikQ̃klPlj .

The projection matrix is defined using the surface normal νi as Pij = δij − νiνj .
The term quadratically penalises deviations of Q̃ij from its projection. Anchoring
strength is frequently characterised with the Kleman–de Gennes extrapolation
length ξS, which is defined as follows [1]:

ξS = K/W. (3.17)

It effectively measures relative strength between nematic elasticity and surface
anchoring. Typically, extrapolation length is of the order of 10 nm for surfaces with
strong anchoring and ranges to ξS ∼ 10 μm for surfaces with weak anchoring.

3.3.4 Electric Field Effects

Due to their polarisability, nematics are highly responsive to external electric fields.
In the Landau–de Gennes framework, the dielectric coupling between nematic and
external electric field can be introduced as an additional free energy contribution fD
as

fD = −1

2
ε0

(
ε̄δij + 2

3
εmol
a Qij

)
EiEj , (3.18)

where Ei is the external electric field, ε0 the dielectric vacuum permittivity constant,
ε̄ = (2ε⊥ + ε‖)/3 the average liquid crystal permittivity, and εmol

a = εmol‖ − εmol⊥
the molecular dielectric anisotropy, which is connected to macroscopic dielectric
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anisotropy εa = Sεmol
a . εmol⊥ and εmol‖ are eigenvalues of dielectric permittivity

tensor and correspond to eigenvectors perpendicular and parallel to the director.
Typical values for 5CB at room temperature are εa = 11 and S = 0.525, giving
εmol

a = 21 [53].
The strength of the electric field can be characterised by introducing another

length scale—the electric coherence length ξE. The comparison between free energy
due to the electric field [Eq. (3.18)] and elasticity (Eq. (3.7)) gives [1]

ξE = 1

E

√
L1

εaε0
, (3.19)

where E is a typical electric field in the sample. The effects of electric field are
perceptible when the ξE is small compared to the system size. In a typical nematic
(L1 ≈ 10−11 N, εa ≈ 10) and electric field E = 1 V/μm the electric coherence
length is ξE ≈ 0.3 μm.

The competition between elasticity and electric field can be more comprehen-
sively studied in the Fréedericksz cell [54]. It consists of nematic liquid crystal being
oriented between two solid plates with strong anchoring. The preferential direction
imposed by the surfaces may be parallel or perpendicular to the plates, whereas the
electric field is always applied perpendicular to the orientational axis imposed by
the surface anchoring. There are three different cell setups and each exactly refers to
one of the three basic elastic deformation modes (Fig. 3.3), namely splay, twist, and
bend [55]. If the electric field exceeds the threshold Ec, the director field deforms.
Critical electric field Ec is given as:

Ec = π

d

√
Ki

ε0|εa| , (3.20)

where ε0 is the vacuum permittivity, εa the dielectric anisotropy, d the thickness of
the cell, and Ki the elastic constant for splay, twist, and bend, respectively. In typical
liquid crystals (Ki ≈ 10−11 N and εa ≈ 10) in a Freedericksz cell with separation
d = 20 μm the critical electric field is Ec ≈ 0.05 V/μm.

3.3.5 Magnetic Field Effects

Many nematic fluids are diamagnetic. For example, the diamagnetism is especially
enhanced when the molecule is aromatic, because the benzene ring effectively acts
as a coil. Free energy contribution describing the diamagnetic coupling fH can be
introduced in analogous way as for the electric field, namely

fH = −1

2
μ0

(
χ̄δij + 2

3
χmol

a Qij

)
HiHj , (3.21)
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where Hi is the external magnetic field, μ0 the vacuum permeability constant,
χ̄ = (2χ⊥ + χ‖)/3 the average liquid crystal magnetic susceptibility, and χmol

a =
χmol‖ −χmol⊥ the molecular dielectric anisotropy, which is connected to macroscopic

magnetic susceptibility χa = Sχmol
a . χmol⊥ and χmol‖ are eigenvalues of magnetic

susceptibility tensor and correspond to eigenvectors perpendicular and parallel to
the director. Values for a typical representative of thermotropic molecular nematic
fluids MBBA at room temperature are χa = 1.23 × 10−7 and S = 0.525, giving
χmol

a = 2.34 × 10−7 [1].
The strength of the magnetic field can be characterised by introducing the

magnetic coherence length ξB which determines the relative comparison between
the free energy contributions due to the magnetic field [Eq. (3.21)] and the nematic
elasticity (Eq. (3.7)) gives [1]

ξB = 1

B

√
L1

χaμ0
, (3.22)

where B is typical magnetic field in the sample.

3.4 Topological Defects

Frustration of nematic ordering by opposing surfaces or external fields leads to
formation of defect regions, where molecular orientation is frustrated and has no
preferential orientation. Defect regions are characterised by severe drop of nematic
degree of order S (to S = 0) and strong spatial distortions of the nematic director
n. Defects in nematic liquid crystal can be either points or lines [56] and are usually
characterised by topological charges and winding numbers [2, 57–59].

Singular point defects form either in the bulk or on the surfaces. Frequently,
point defects in the bulk are named “hedgehogs”, whereas those on the surfaces are
called “boojums”. The topological charge q of point defects can be introduced as an
integral over a closed defect-free surface � surrounding the defect [2]

q = 1

8π

∮
�

εijkn ·
(
∂n
∂xj

× ∂n
∂xk

)
dSi, (3.23)

where εijk is the Levi-Civita totally antisymmetric tensor and xi are Cartesian
coordinates. Notice that q is odd in n, which causes that topological charge in
nematics is not uniquely defined due to the n → −n symmetry. Three typically
observed configurations of point defects with charge magnitude |q| = 1 are:
radial n = (x, y, z)/

√
x2 + y2 + z2, circular n = (y,−x, z)/√x2 + y2 + z2, and

hyperbolic n = (−x,−y, z)/√x2 + y2 + z2 hedgehog.
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The ± sign differentiates two vector fields with opposite topological charge (±),
but represents the same physical director field. This sign ambiguity is always present
in the nematic systems. Frequently, a convention of assigning +1 to the radial charge
and −1 to the hyperbolic is used, but in general, the vectors in the entire sample must
be oriented consistently and the topological charges assigned accordingly [33]. The
elastic free energy of isolated singular point defects scales as KR, where R is the
size of liquid crystal volume and K some value of Frank elastic constants.

Line defects, named also disclinations, are locally quantified with winding
number (strength) m which characterises the symmetry of surrounding director field
at some cross-section. For simplification let the disclination line be aligned parallel
with the z-axis and the director field is observed in plane perpendicular to it. The
in-plane director field can be parameterised with the director azimuthal angle α and
the integral over closed loop � gives local winding number

m = 1

2π

∮
�

dα. (3.24)

Winding number m can be integer and also half-integer, since the states n and
−n are physically indistinguishable (Fig. 3.4). Note that the definition of winding
number assumes that the director is confined to the 2D plane, perpendicular to the
disclination. The in-plane director field of a disclination at the coordinate origin can
be written as:

n = (cosα, sinα, 0) = (cos(mφ + c), sin(mφ + c), 0), (3.25)

with c being typically a constant, which sets the shape and relative orientation of the
director field regarding the coordinate frame.

Fig. 3.4 Schematic representation of director field surrounding disclination lines with various
winding numbers m. c = 0 was used
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By surface integrating the Frank–Oseen free energy density (Eq. (3.13)) over the
in-plane director field (using single elastic approximation), one can calculate free
energy per unit length of the disclination line [2]

Wdef(m) = πKm2 ln

(
R

rcore

)
+Wcore, (3.26)

where rcore is the core radius with energy per unit length Wcore ∼ πm2K , K is some
function of Frank elastic constants, and R is the system size. Frank–Oseen approach
does not apply for large gradients of the director; hence, the core is introduced
to avoid the discontinuity of the director field in the centre of disclination. The
proportionality W ∝ m2 implies that one disclination of strength m = ±1 bears two
times more energy than two disclinations of strength m = ±1/2. As a result in 2D
systems only ±1/2 disclinations are stable. Note that total energy of the disclination
line is linearly proportional with its length. Line defects can be also closed to loops.

3.4.1 Umbilic Defects

In contrast to the standard defects in liquid crystals, with a discontinuity of
the director field at the centre, umbilic defects are continuous everywhere and
have no melted (isotropic) core. However, the discontinuity emerges only in the
projection of the director field to a distinct plane (xy) perpendicular to the far-field
orientation (z-axis) [60]. Therefore, it is necessary to bear in mind that umbilics
are not fundamentally topological, as they can be continuously transformed into a
homogeneous field. Umbilic defects are most commonly created by using electric
fields in Hele-Shaw cells [61] with strong homeotropic anchoring, containing a
nematic monocrystal with a negative dielectric anisotropy. The external field (above
the critical value Ec (Eq. (3.20))), applied perpendicular to the cell surfaces, induces
bend distortions to the homogeneous alignment of the director field [55]. The
situation is reminiscent to the Fréedericksz transition, the molecules tend to lie
parallel to the surface in order to minimise free energy, but importantly no particular
direction is preferred in this plane. This degeneration of the tilt direction leads to
formation of umbilic defects (Fig. 3.5).

The distorted director field of umbilic defects can be written as [60–62]:

n = (cos(mφ + φ0) sin θ, sin(mφ + φ0) sin θ, cos θ), (3.27)

where φ is the azimuthal angle in xy plane, φ0 some arbitrary constant, and θ the
tilt angle. In Hele-Shaw cell of thickness d (plates being at −d/2 and d/2) the tilt
angle θ depends on the intensity of the electric field E and can be written as:

θ(z) = θ0 cos

(
πz

d

)
, (3.28)
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Fig. 3.5 Schematic representation of umbilic defects with φ0 = 0. (a) Hele-Shaw cell with the
side view of the umbilic defect m = +1. The discontinuity emerges only in the projection of the
director field to the plane parallel with the plates (purple). (b) Umbilic defects of various umbilic
charge (top view)

where

θ0 ≈ 2

√
E − Ec

Ec
. (3.29)

Direction of the tilt may be described with the two-dimensional unit vector c,
which resides in the xy plane, and gives the projected structure of the defect. The
tilt directions c and −c are not equivalent, because c is an oriented vector, as a
result umbilic charge m must be an integer. The core of umbilics is continuous,
which allows for a full calculation of the elastic free energy. For example, for
umbilics of strength m = +1, the free energy per unit length is proportional to
W ∝ K1 cos2 φ0 + K2 sin2 φ0, whereas for the umbilics of strength m = −1 it is
W ∝ K1+K2

2 [60, 63].

3.4.2 Basics of Topological Theory of Defects

A comprehensive topological description of defects in liquid crystals requires
involvement of the theory of homotopy [64]. The order parameter, namely the
director, is a map from a real space, excluding the singularities, to the ground
state manifold, which is the topological space of all possible states the director
can occupy. The ground state manifold of nematic is real projective plane RP 2,
the top half of a unit sphere with opposite points on the equator identified [58]. The
main consideration are mappings of i-dimensional spheres enclosing the defects
in real space. A line defect can be enclosed by a linear contour (i = 1), whereas
the point defect by a sphere (i = 2); therefore, they are mapped to RP 2 with
different homotopy groups Hi . Each element of homotopy group corresponds to a
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class of topologically stable defects, which can be continuously deformed one to the
other [2]. They are topological invariants, previously referred to as the topological
charges of the defects [59]. A defect-free state, where director field n is equivalent
to a constant, corresponds to an identity element of the homotopy group and zero
topological charge.

Defect loops and point defects can both be enclosed in a sphere S2 and thus
have a topological index in the second homotopy group. We say they are equivalent
in sense of topology as they can be continuously deformed one into another. The
winding number m defines the local symmetry of the director field surrounding the
defect loop. However, it is the topological charge of a loop q (Eq. (3.23)), as in the
case of point defects, that defines its global topological properties.

Topological charge needs to be preserved, also in the process of annihilation or
creation of defects. As a result defects in form of points or lines can be created and
annihilated in pairs of opposite sign. However, if the confining surfaces impose some
preferential direction, this may, in addition with the genus of the surface, determine
a non-zero net total topological charge. For example, in the case of droplet with
homeotropic anchoring at the surface, the total net topological charge of the nematic
within the droplet is q = 1. Similarly, the colloidal particles with certain surface
anchoring effectively behave as point defects of certain topological charge q. This
is compensated by the surrounding nematic with introduction of the defect with the
opposite sign −q in order to preserve the total topological charge.

3.5 Nematodynamics

In this section we shall discuss hydrodynamics of nematic liquid crystals, consider-
ing the coupling between the nematic orientational ordering and the material flow.
The flow field of nematic is given by the generalised Navier–Stokes equation

ρ

[
∂vi

∂t
+ (

vj ∂j
)
vi

]
= ∂jσij , (3.30)

where ρ is the density, v the velocity, and σ the stress tensor which includes beside
the standard pressure also the dependence on the anisotropic nematic order in the
system. The stress tensor can be written as a sum of the Ericksen stress tensor
σEr which includes the elasticity effects, and viscous stress tensor σ viscous. The
incompressibility condition

∂j vj = 0 (3.31)

is assumed. Equations (3.30) and (3.31) have to be complemented by the equation
for the evolution of the nematic order parameter, written either in the director or
in the Q-tensor form. In the presented formulation, we use typical assumptions
from the literature when considering dynamics of liquid crystals (in comparison
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to statics): two elastic constants and negligible moment of inertia of nematic
molecules. Also, we omit the contributions of the electric and magnetic fields to
the nematodynamics, which are sufficiently discussed elsewhere [1, 6].

3.5.1 Ericksen Stress Tensor

Elasticity of the nematic internal structure can transmit stresses through the bulk.
Consider, for instance, a pair of colloidal particles in a nematic held by an
external force at distance d apart. The distortion of the director field and the
nematic free energy depend on d. The force between colloidal particles is mediated
by the director field and can be calculated through the Ericksen stress tensor.
Ericksen stress tensor is derived by considering changes in the free energy due to
displacement of nematic molecules [1]. In the director formulation, Ericksen stress
is given by

σEr
ij = − δF

δ∂jnk
∂ink −

(
p0 − f

)
δij . (3.32)

In the tensorial formulation, a similar expression holds:

σEr
ij = − δF

δ∂jQkl

∂iQkl −
(
p0 − f

)
δij , (3.33)

where p0 is the external pressure, F the total free energy of the nematic, and f

the bulk free energy density (Eq. (3.3)). In equilibrium, nematic may exert stress
on the confining boundaries; however, equilibrium bulk forces, calculated from the
divergence of the stress tensor, are exactly zero.

3.5.2 Ericksen–Leslie–Parodi Approach

Ericksen–Leslie–Parodi (ELP) approach formulates the description of nematic
hydrodynamics, which determines the coupling between the nematic director field
and the velocity field. The model is written in terms of stress tensor σij , molecular
field hi = − δF

δni
, rotation rate of the director with respect to the background fluid

Ni = ṅi − (
(∇ × v)× n

)
i
/2, and symmetric velocity gradient tensor Aij =(

∂ivj + ∂j vi
)
/2. ELP approach relies on considering the processes that contribute

to the entropy production as expressions of thermodynamic forces (σij and hi) and
thermodynamics fluxes (Aij and Ni). Phenomenological relations between forces
and fluxes must reflect the nematic symmetry n → −n and obey the Onsager
reciprocal relations. The resulting expression for the molecular field is [1]
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hi = γ1Ni + γ2Aijnj , (3.34)

where γ1 and γ2 are the viscosity coefficients discussed below. The equation for the
time derivative of n, derived from Eq. (3.34) has to include a Lagrange multiplier �
to preserve the unit length of the director:

ṅi = 1

2

(
(∇ × v)× n

)
i
+ 1

γ1
hi − γ2

γ1
Aijnj −�ni. (3.35)

Stress tensor is written within the ELP theory as:

σ viscous
ij = α1ninjnknlAkl+α2njNi +α3niNj +α4Aij +α5njnkAik+α6ninkAjk.

(3.36)
The viscosity coefficients γ1 and γ2 are functions of the Leslie viscosities αi :

γ1 = α3 − α2, (3.37)

γ2 = α6 − α5 = α2 + α3. (3.38)

Six Leslie viscosities αi are constrained by Eq. (3.38), meaning that there are
five independent parameters within the ELP approach. For typical thermotropic
liquid crystals, such as 5CB or MBBA, they are of the order of magnitude 0.001–
0.1 Pa s [1] and can be measured by a variety of experimental techniques, such
as observing liquid crystals under laminar flow, sound attenuation, time-dependent
variation of orienting external fields, or scattering of light [1].

In order to better quantify nematic flow, one can construct and use relevant
dimensionless numbers, as is also extensively used in general fluid dynamics. In
experiments and simulation involving nematic flow, Reynolds number is typically
smaller than 1. Also, Reynolds number does not include effects of orientational
order. Better insight into nematic nature of flow is given by comparing elastic forces
to the viscous forces in Eq. (3.34), which gives the Ericksen number

Er = γ1v/l

K/l2
= γ1vl

K
, (3.39)

where v is a typical velocity of the problem and l a typical length scale. At small
Ericksen numbers, the director dynamics is governed by the elastic terms. At large
Ericksen numbers the dynamics is dictated by the velocity profile. Typical values for
Ericksen number are Er ∼ 1 when considering annihilation of defect pairs [12, 13]
or moderately slow flow in microchannels [14] and Er ∼ 20 for strong flow in
microchannels [14].

Looking at the governing equations of the ELP approach, one can identify
the basic mechanisms of nematic hydrodynamics. Below we show few selected
basic examples of nematic flows. In Sect. 3.3 we have discussed how the nematic
equilibrium orientation profile is defined by a minimum of the free energy. However,
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out of the equilibrium, nematic orientation field is deformed also by the velocity
effects, as described, for example, by Eq. (3.35). Within ELP approach, the director
field is distorted by velocity gradients that impose a hydrodynamic torque � = n×h
upon nematic molecules. At strong flows (i.e. strong Ericksen numbers) the director
tends to align in the direction where the hydrodynamic torque � vanishes. Director
tilt angle, at which this condition is satisfied, is in simple geometries given by the
Leslie angle θL = 1

2 arccos 1
λ

, where λ is the alignment parameter, calculated from
Leslie viscosities λ = − γ2

γ1
. Figure 3.6 shows director structure for (a) Couette and

(b) Poiseuille flow of a nematic fluid at Er ∼ 80 and λ = 1.1. The cell surface
imposes strong homeotropic anchoring and the director deforms in the bulk due to
hydrodynamic torques. For a Couette flow the director tilt angle in the middle of the
sample is close to Leslie angle; however, next to the surfaces, it is continuously
deformed to satisfy the boundary condition. Similar situation takes place in the
Poiseuille geometry, only that the director tilts in the opposite direction when the
shear is reversed. Alignment parameter λ typically reflects the shape of nematic
molecules. For |λ| < 1, hydrodynamic torque does not vanish and the director field
continuously deforms in time. An example of such tumbling motion is discussed in
Sect. 3.6. λ can also have negative values, in which case it is associated with discotic
molecules [65].

Viscous stress tensor (Eq. (3.36)) includes six terms that couple local viscous
losses to the director and its time derivative. The meaning of the anisotropy in the
stress tensor is clearly seen in a simple geometry, as first considered by Miesowicz.
In Miesowicz geometry a nematic is confined between parallel plates and subjected
to shear flow. Nematic director is fixed by a strong magnetic or electric field in
the direction (Fig. 3.7a) perpendicular to the flow and to the shear, (Fig. 3.7b)
along the flow, or (Fig. 3.7c) along the shear. In each of the three cases, stress
tensor is substantially simplified and an effective viscosity can be determined. For
MBBA, values for the Miesowicz viscosities are ηa ≈ 0.042 Pa s, ηb ≈ 0.024 Pa s,
and ηc ≈ 0.104 Pa s [1]. Measurement of Miesowicz viscosities is an important
contribution when determining a full set of Leslie viscosities αi in nematic fluids [1].
For MBBA, the lowest effective viscosity is in the case of the director pointing

Fig. 3.6 Director distortion in (a) Couette and (b) Poiseuille flow at Er ∼ 80. Hydrodynamic
torque due to velocity gradient tends to align the director tilt angle θ towards Leslie angle θL
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Fig. 3.7 Miesowicz geometry of shear flow in nematic microfluidics. Homogeneous director field
is fixed by a strong external field (a) perpendicular to the flow and the shear, (b) along the flow, or
(c) along the shear. An effective viscosity ηa , ηb, or ηc can be determined from the viscous stress
tensor

Fig. 3.8 Director and flow field during the annihilation process of two opposite-charged umbilic
defects. Director field is shown with white rods and flow field with green arrows. The position
of approaching −1 and +1 umbilic is indicated by red dots. Reprinted figure with permission
from [I. Dierking, M. Ravnik, E. Lark, J. Healey, G.P. Alexander, J.M. Yeomans, Phys. Rev. E 85,
21703 (2012)]. Copyright (2012) by the American Physical Society

along the velocity field. For example, this characteristic can be used in flow-guiding
through microfluidic junctions, as discussed in Sect. 3.6.

Viscous stress tensor (Eq. (3.36)) is dependent not only on the direction of the
director, but also on its time derivative, which means that time-variation of the
director field may induce flows in a nematic, as, for example, in the process of
relaxation to a free energy minimum or adaptation to time-varying external fields.
Such example is the annihilation of a defect pair, which induces a flow field due to
the relaxation of the orientational structure. Interestingly, the speed of the defects
is substantially altered by the presence of flow. In annihilation of a ± 1

2 defect pair,
in particular + 1

2 defect is advected by the flow, increasing the rate at which the
defects are approaching each other [12, 13]. Figure 3.8 shows an example of the
annihilation of two opposite-charged umbilic defects, which also approach each
other and annihilate [61].

ELP approach gives the nematic contribution to the material flow and velocity
contribution to the orientational dynamics in a formulation, where individual
mechanisms are easily recognisable. It is particularly useful when considering
analytical solutions to the problems of nematic hydrodynamics. However, it suffers
from the drawbacks of a director formulation, in particular the defect cores have to
be always exempt from the calculation, which can make modelling or theoretical
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analysis difficult. In the next two sections, we present Beris–Edwards and Qian–
Sheng models that not only recover the ELP equations at uniform degree of order S,
but also include the coupling between the flow field and the degree of order. These
two models are among most commonly used among many different formulations
of nematodynamics within the tensorial nematic order parameter [66–69]. Since
formulation of nematodynamic equations in terms of the tensor order parameter
eliminates the need for the special treatment of defects, it allows to explore problems
of further complexity.

3.5.3 Beris–Edwards Model

Beris and Edwards formulate their equations for nematic hydrodynamics through
tensorial description of nematic order, where they utilise a generalisation of the
Poisson bracket description of thermodynamics [5]. In a typical formulation, their
equations are written as [70]:

Q̇ij = Sij + �Hij , (3.40)

Sij = (ζAik −�ik)

(
Qkj + δkj

3

)
+
(
Qik + δik

3

)
(ζAkj +�kj )

− 2ζ

(
Qij + δij

3

)
Qkl

∂vk

∂xl
,

(3.41)

σ viscous
ij = −ζHik

(
Qkj + δkj

3

)
− ζ

(
Qik + δik

3

)
Hkj + 2ζ

(
Qij + δij

3

)
QklHkl

+QikHkj −HikQkj + 2ηAij ,

(3.42)
where �ij = (

∂ivj − ∂j vi
)
/2 and H is the molecular field defined as:

Hij = −1

2

(
δF
δQij

+ δF
δQji

)
+ 1

3
T r

(
δF
δQkl

)
δij . (3.43)

Beris–Edwards model as formulated above has three independent viscosity
parameters �, ζ , and η, from which Leslie viscosities can be determined [70]:

α1 = ζ 2

�

9S2

2

(
3S2 − 2S − 1

)
,

α2 = − ζ

�

S

4
(3S + 4)− 1

�

9S2

4
,

α3 = − ζ

�

S

4
(3S + 4)+ 1

�

9S2

4
,

α4 = ζ 2

�

(
S − 2

3

)2

+ 2η,

α5 = −ζ 2

�

S

4
(3S − 8)+ ζ

�

S

4
(3S + 4) ,

α6 = −ζ 2

�

S

4
(3S − 8)− ζ

�

S

4
(3S + 4) .

(3.44)
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The parameters in the Beris–Edwards model have a clear physical meaning.
Rotational diffusion constant � sets up the typical time scale of the dynamical
processes in the nematic at a given length scale. Parameter ζ is directly related to
the alignment parameter in the ELP representation λ = 3S+4

9S ζ , thus prescribing the
Leslie angle in the shear flow or tumbling nature of the nematic. Parameter η affects
the isotropic viscosity in the system.

3.5.4 Qian–Sheng Model

A different nematodynamic model based on Q-tensor was formulated by Qian and
Sheng [6]. Similar to ELP approach, in their derivation they follow the formalism
of thermodynamic fluxes and forces, only within the description of the tensorial
nematic order. Viscous stress tensor is written in Qian–Sheng formulation as:

σ viscous
ij = β1QijQklAkl + β4Aij + β5AikQkj + β6QikAkj

+ 1

2
μ2Nij − μ1NikQkj + μ2QikNkj ,

(3.45)

where Nij is the corotational derivative of the Q-tensor

Nij = Q̇ij +�ikQkj −Qik�kj . (3.46)

Time evolution of the Q-tensor is given by

Q̇ij = Hij

μ1
− μ2Aij

2μ1
+Qik�kj −�ikQkj . (3.47)

Note that from Eqs. (3.46) and (3.47) the corotational derivative Nij in the equation
for the stress tensor can be expressed in terms of the molecular field Hij , which is a
form more similar to Beris-Edwards expression (Eq. (3.42)).

Qian–Sheng model is formulated with six viscosity coefficients β1, β4, β5, β6,
μ1, and μ2, linked by relation β6 − β5 = μ2 The number of coefficients is exactly
the same as in the Ericksen–Leslie theory. At a constant degree of order, coefficients
can be exactly mapped between the two theories, thus allowing for the use of all of
the experimentally measured viscosity coefficients given within the ELP formalism.

3.5.5 Towards Active Nematics

Materials that exhibit inherent activity are chemically or biologically different than
standard nematic liquid crystalline fluids. However, selected active materials show
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nematic order, as, for example, kinesin driven microtubule, bacterial colonies, or
flocks of animals [19]. A possible approach to describe in particular dense suspen-
sions of such active constituents is to adapt equations of nematic hydrodynamics, as
discussed in previous sections, for example, by including an active stress tensor.
Active stress arises due to the force profiles that active particles apply on the
surrounding, and can be written in the form of [71]

σ active
ij = −αQij . (3.48)

The active stress is proportional to nematic tensor order parameter, with the pro-
portionality constant α being the activity. For active particles that exert contractile
stress α < 0, and for extensile α > 0. In such model, if nematic alignment is
homogeneous, divergence of the active stress tensor is zero and there are no effective
active forces present. However, even in homogeneous alignment, active nematics
and polar gels are prone to instabilities [72]. Active forces are particularly high
close to defects, where gradients of Q are high. As shown in Fig. 3.9, active forces
give rise to the self-propulsion of +1/2 defects, which is an important mechanism
in chaotic flows in active layers [73], or—at the interface with the passive nematic—
active defects can even drive the distortion of the passive medium [74]. Note that in
the addition to the presented there are other approaches for describing active nematic
systems, such as Vicsek-like models [75], multiscale approaches [76], and minimal
hydrodynamic models in terms of solely the velocity field [77].

Fig. 3.9 Active flow, developed around +1/2 topological defect for active extensile nematic in
cylindrical confinement. The director field (solid red lines) and the velocity field (blue arrows) show
the mechanism of self-propulsion of a +1/2 defect, which competes with the elastic forces on the
defect, leading to a fixed nematic structure in time. For contractile active nematics, the direction
of self-propulsion of +1/2 defects is exactly opposite. Reprinted figure with permission from
[M. Ravnik, J. Yeomans, Phys. Rev. Lett. 110, 26001 (2013)]. Copyright (2013) by the American
Physical Society
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3.6 Nematic Microfluidics

In this section we show selected examples of nematic flow in typically confined
environment. Fluidity of nematics can have important consequences in many
applications, such as in liquid crystal displays [78, 79], or it can lead to complex
pattern formation, as, for example, in the process of electroconvection [80, 81].
Rheological properties have been studied for variety of liquid crystalline materials,
ranging from thermotropic liquid crystals [14] to cholesterics [82] and suspensions
of viruses [83].

3.6.1 Nematic Flows in Channels

In Fig. 3.6 we showed nematic orientation in Couette and Poiseuille geometry
at large Ericksen number and with strong homeotropic anchoring at the walls.
Similar setup where the preferred alignment of the director at the walls is planar
and perpendicular to the flow was investigated by Pieranski and Guyon [84].
An undistorted configuration in such Poiseuille geometry is shown in Fig. 3.10a.
In particular at moderate Ericksen numbers, where nematic orientation is at a
competition between elastic and hydrodynamic effects, there are two possible
director orientations in such geometries of the shear flow, as shown in Fig. 3.10b.
These two conformations occur in nematics with Leslie viscosities α2 and α3 of
the same sign due to hydrodynamic torques that act on the director as soon as
it slightly fluctuates from the undistorted alignment in Fig. 3.10a [2]. Since these

Fig. 3.10 Instabilities in the Poiseuille flow in nematic channels with anchoring perpendicular to
the flow and flow gradient. (a) Geometry of the problem with the director field undistorted by the
flow. (b) Two possible configurations of the director in the weak shear gradient. Left cylinder shows
the alignment preferred by the nematic elasticity and surface anchoring. (c) Creation of the rolls
in the velocity field due to the force FA, two solutions shown in (b) alternate along the channel.
(d) Experimental photograph of flow instabilities in Poiseuille geometry. Reused and adapted with
permission from publisher [E. Guyon, P. Pieranski, Poiseuille flow instabilities in nematics. J. Phys.
Colloq. 36, C1 (1975)]
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director distortions compete with the planar anchoring at the surfaces, the transition
to the distorted state occurs after a certain finite shear threshold is exceeded [84].
Above the threshold the director configuration varies in the z direction, leading to
an additional force in the x direction FA = ∂zσxz that is shown in Fig. 3.10c. The
force leads to the creation of rolls in the velocity profile (Fig. 3.10c), which have a
well-defined wavelength. The rolls coincide with the two solutions for the director
reorientation. In fact, depending on the driving pressure difference and frequency,
a range of mechanisms can be found, which lead to hydrodynamic instability and
creation of rolls [84, 85]. Figure 3.10d shows a photograph, revealing rolls with
different wavelengths due to different hydrodynamic instabilities in nematics. This
example shows the creation of instabilities in the velocity field and in the nematic
orientation, once the coupling terms are introduced into the stress tensor and the
equation for the director orientation.

As discussed in Sect. 3.5.2, in nematics with alignment parameter |λ| > 1,
hydrodynamic torque disappears for certain angles of the director with respect
to shear flow. For |λ| < 1 this is no longer the case and the hydrodynamic
torque prefers to continuously rotate the director. In Ref. [86] two-dimensional
nematic channels were explored in aligning and in tumbling regime. In the aligning
regime, the director profile reaches a stationary orientation, which is not the case
for tumbling motion. For straight channels, tumbling regime shows a series of π
turns of the director across the channel. This turns are continuously generated and
annihilated in time. In channels with variable width, director structure with π turns
becomes unstable and pairs of opposite-charged defects are generated.

Dependence of the nematic viscosity on the director orientation can be used in
microfluidic circuits to control the direction of flow and transport of material. One
such example is given in Ref. [17], where electric field is used to switch nematic
orientation in a channel. In Ref. [17] the preferred alignment of the director is
along the channel, providing an effective Miesowicz viscosity ηb to the flow. Local
electric field was used to impose director alignment along the shear, effectively
increasing the viscosity for a factor of ∼4 to the Miesowicz value of ηc. When
flow reached a Y-junction, most of the nematic fluid flows to the branch with
the lower effective viscosity. It was shown that this mechanism could be used
for particle sorting by turning the electric field on and off in individual branches
of a Y-junction and by doing so controlling the flow through the junction. The
colloidal particles go into the channel which has a stronger flow rate. Note that
switching nematic orientation in the channel is not the only mechanism to transport
and guide the cargo in nematic microfluidic circuits. Sengupta and co-workers
demonstrated that in channels with hybrid anchoring conditions (anchoring along
the normal at three sides of the rectangular channel, and anchoring along the channel
at on side), a defect line can be guided through crossings of different channels.
Colloidal cargo is then pinned to the defect line and advected along it by the
flow [16].
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3.6.2 Nematic Microfluidic Junctions

Complex flow field profiles, as induced, for example, in junctions of nematic
microchannels, can be used to create and study topological nematic defects in a
controlled environment. In Ref. [87] junctions of 4, 6, and 8 microchannels are
used to create nematic defects with effective charge −1, −2, and −3, respectively
(Fig. 3.11a–c). The main mechanism for the creation of such defects is the fact that
in the centre of a nematic microchannel at sufficiently large Ericksen numbers, the
director turns along the channel, with the mechanism shown in Fig. 3.6b. Total
net topological charge of −2 and −3 imposed in the junctions is realised by
multiple defects with 3D topological charge of −1 as this is indeed energetically
more favourable state that cannot be further divided in smaller individual charges.
In observed microjunctions two topological structures are present—a defect in
the orientational field of the nematic and a stagnation point in the velocity field.
Figure 3.11d–g shows how the cross-talk between this two topological singularities
is probed by applying a pressure pulse in one of the channels. A fast shift of the
stagnation point is always followed by a slow response of the nematic defect. In a
stable configuration the position of both structures coincides. If the pressure was
reduced in one of the outflowing channels (Fig. 3.11e, g) nematic defect first moves

Fig. 3.11 Creation of topological defects within nematic microfluidic junctions [87]. One, two,
and three defects of charge −1 are created in junctions of 4, 6, and 8 microchannels, respectively.
(a) Polarisation micrograph of the nematic structure. (b) Hydrodynamic stagnation point in the
centre of a junction shown by epifluorescent imaging of fluorescent tracers. Panels (a and b) are
courtesy of A. Sengupta. (c) Details of the nematic structure revealed by numerical simulations.
The effective interaction between the stagnation point and the defect in the topological nematic
orientation is probed by inducing a pressure pulse in (d) West or (e) South channel. The pressure
pulse quickly shifts the stagnation point, marked by a white spot in the colourmap of the velocity
magnitude. In (d) the relocation of the stagnation point is followed by a gradual shift of the nematic
defect, as shown in (f). In (e and g) after the stagnation point is shifted, nematic defect first
moves away from the stagnation point and only then gradually moves towards it. In both cases
the stagnation point and the nematic defect return to original position after the pressure is restored
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downstream and then gradually approaches the stagnation point, moving against
the velocity direction. During the shift of the nematic defect, the stagnation point
is more or less stationary. This is an example of a cross-talk between topological
structures of different fields.

Nematic liquid crystals confined to porous networks are of particular interest
due to their memory effects and switching possibilities, providing a route towards
new optic and photonic materials [20, 88, 89]. The nematic alignment inside
porous confinement can be controlled by flow [90, 91]. In Fig. 3.12 we show
flow-induced dynamics of a defect structure inside a junction of six cylindrical
capillaries. In a cylindrical confinement with homeotropic anchoring and without
flow, nematic director prefers the escaped alignment, in which case the director
in the middle of the channel points along the channel direction. This leads to a
variety of equilibrium structures, depending on the direction of the director escape
in individual channels [89]. One of such structures is shown in the first snapshot
of Fig. 3.12, where a −1 topological defect resides in the centre of the junction.
Preferred nematic alignment in a capillary when flow is switched on is with the
direction of the director escape along the flow. This leads to the flow-induced

Fig. 3.12 Flow-induced nematic structures in porous microfluidic channel networks [92]. Trans-
formational dynamics of a −1 nematic defect in a junction of six cylindrical micropores is
observed with the direction of the director escape in the initial equilibrium configuration away
from the junction in left and right channel, and towards the junction in up, down, front, and back
channel. Transformational dynamics is characterised by flow-induced director escape reversal in
individual channels and merging of multiple defects into one. Time is measured in units of nematic

characteristic time scale τN = ξ2
N

�L
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reconfiguration of the defect structure in a microjunction (Fig. 3.12). Upon the
director escape reversal in left and right channel two +1 defects are created. They
merge with the −1 defect in the junction centre, forming a defect structure with
topological charge of +1. Similar process is repeated as a −1 defect is created in the
up and in the down channel which merge with the preexisting +1 defect, leading to
the formation of a −1 defect in the junction. The position of the defect is slightly off-
centre since it is advected by the flow. Fig. 3.12 shows a transformational dynamics
of a −1 nematic defect, induced by the flow through the channels. Depending on
the geometry of the initial equilibrium structure and the arrangement of the flow
towards and away from the junction, a variety of switching processes and flow-
stabilised structures is possible [92]. This example shows how porous networks with
microfluidic functionality can be turned into advanced platform for generation of
various topological field states.

3.6.3 Colloidal Particles in Nematic Microfluidic Environment

In nematic colloidal dispersions, the drag force exerted upon the spherical particles
is dependent on the particle velocity with respect to the director far field and the
nematic structure around the particle [93]. Similar to the viscosity in the Miesowicz
geometry, the effective viscosity for spherical particles is higher if they are dragged
perpendicular to the director, compared to the movement along the director. The
problem of drag force on spherical particles even gains in complexity, if colloids
are introduced in chiral nematic liquid crystals, as, for example, in Ref. [94],
where spherical particles with planar degenerate anchoring were dragged through
cholesteric by a constant force at small Ericksen numbers. It was observed that for
Er � 1 the drag force on the particle scales linearly with the velocity. However,
there is a distinct dependence on the particle radius R: for the motion along the
cholesteric pitch, effective viscosity scales as η(R) ∼ R0.7, while for the particle
motion perpendicular to the cholesteric pitch no definite scaling of η with particle
radius is observed [94]. In the next section we shall discuss further implications of
colloidal nematic systems, in particular in the view of self-assembly and nematic
configurations due to complex-shaped microparticles.

3.7 Nematic Colloids

Nematic colloids are a soft material composed of particles, droplets, or bubbles
embedded in a nematic fluid [21]. Nematic colloids attract great interest as they
show effective elastic interaction between the particles, which originates from
the nematic elasticity, shown in Sect. 3.7, in addition to conventional colloidal
interactions such as steric, Coulomb, and van der Waals interactions. The exact
profile, strength, and range of such elastic interactions are strongly affected by
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the surface properties of the particles, their shape, size, and topology, as well as
external confinement, geometry, and possible external field. Nematic colloids are
notably explored as novel materials with complex topological properties and as
novel birefringent photonic materials, including for use as photonic crystals and
metamaterials.

In this chapter we give review of selected nematic colloidal systems. First
possible nematic director field configurations around a single spherical particle
immersed in a liquid crystal are shown. Then elastic interparticle interactions are
explained, which allow to organise colloids into larger structures. In the last part we
introduce complex-shaped particles and particles with different topologies and their
features.

3.7.1 Single Spherical Particle

A colloidal particle immersed in a nematic deforms the director field where the
deformation depends strongly on the boundary conditions at the surface of the
particle. The resulting nematic configuration is typically governed by an interplay
between the bulk elastic and surface free energy.

In case of weak homeotropic anchoring (Fig. 3.13c), the surface terms in the total
free energy are smaller than the bulk terms and the director field remains almost
undistorted. No topological defects occur in the bulk. However, if the anchoring
is strong, the director around the particle typically imposes frustration on the
surrounding bulk orientation. Therefore, the nematic director cannot adapt to this
frustration without creating orientational singularities. A point like hyperbolic −1

Fig. 3.13 Director field profiles around a spherical particle with homeotropic anchoring immersed
in nematic fluid: (a) elastic dipole with hyperbolic −1 defect, (b) elastic quadrupole with singular
Saturn ring defect, and (c) elastic quadrupole with no singular defect
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defect (hedgehog) or a ring defect is formed around the particle with hometropic
surface anchoring to achieve net zero topological charge characteristic of uniform
field (Fig. 3.13a) [95]. The nematic configuration of particle accompanied with the
hyperbolic −1 defect has the symmetry and profile of an elastic dipole. Namely,
the defect causes the deformations of the nematic far-field director that mimic
the dipolar electric field caused by electric charge distributions and have the same
positional dependence in terms of multipolar expansion.

In addition to the elastic dipoles, an elastic quadrupole can form and is charac-
terised by a −1/2 disclination loop encircling the particle (Fig. 3.13b) [96]. Saturn
ring emerges in regimes of generally smaller anchoring strength, smaller particle
size, or stronger confinement with geometry or external fields. Effectively, it can be
pushed to the surface of the particle (or virtually even within the particle) if anchor-
ing is weak enough. By opening the point defect into a ring, the head–tail symmetry
is established when the ring reaches the equatorial plane and the defect structure
together with the sphere represents an elastic quadrupole. Note also, that hedgehog
−1 point defect is topologically equivalent to a −1/2 disclination loop (Saturn ring).
In case of degenerate planar anchoring, two surface—boojum—defects are formed
at the opposite poles of the particle, which also result in the quadrupolar nature of
the structure. The nematic elasticity of the liquid crystals causes highly anisotropic
interparticle interactions—i.e. with repulsive and attractive directions—and can lead
to self-assembly of particles into larger structures.

3.7.2 Interparticle Interactions

Elastic deformations of the nematic director field, caused by colloidal particles are
energetically unfavourable which leads to inter-interactions between the particles
that minimise regions of such distortions. The long-range orientational order of
liquid crystal is reflected also in long-range nematic interparticle interactions.

The type of long-range interactions depends on the symmetries of the distortions
in the director field, induced by particles. The force between two colloidal particles
in a nematic host medium can be measured experimentally and it has been shown
that the interaction potential between particles with strong surface anchoring, which
generates hedgehog defect, is anisotropic and proportional to the third power
of inverse distance between the particles, similar as dipole electrostatic interac-
tion [25]. The interaction potential between particles with weak anchoring or with
Saturn ring defect was shown to have quadrupolar symmetry and is proportional to
the fifth power of the inverse distance between the particles [97]. The binding energy
of approximately micron sized colloids can reach the order of 1000 kBT for dipolar
type interactions and of the order of 100 kBT for quadrupolar interactions. Landau–
de Gennes free energy approach—presented above—has been used to calculate
interparticle interaction, giving excellent agreement with the experiments [48, 98].

Two equally oriented elastic dipoles in a uniform nematic cell attract if they are
collinear (Fig. 3.14a). However, if oriented in the opposite directions they repel in
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Fig. 3.14 Micrographs, director field configurations, and polarisation micrographs for stable
particle pair configurations of (a) parallel elastic dipoles, (b) anti-parallel elastic dipoles, and (c)
elastic quadrupoles. From [S. Žumer, I. Muševic, M. Ravnik, M. Škarabot, I. Poberaj, D. Babič,
U. Tkalec, Nematic colloidal assemblies: towards photonic crystals and metamaterials, SPIE Proc.
6911, 69110C (2008)]. Reprinted with permission from SPIE Publications

the direction along the far-field director, but attract sideways (Fig. 3.14b). Because
there are only two attractive sites available around the sphere for dipoles oriented
in the same directions, they form linear chains along the direction of the director
(Fig. 3.15) [99, 100]. One should also note that the particles do not come in full
contact with each other—they are separated by a small margin, which indicates the
presence of short range repulsion. Typically, those short range repulsive interactions
are again of elastic origin resulting from significant short-particle distance director
field deformations.
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Fig. 3.15 Aggregation of dipolar nematic colloids. (a) Optical micrograph of a single colloidal
particle with the defect structure of dipolar symmetry. (b) Schematic presentation of the nematic
director field, where A denotes the actual hyperbolic point defect and B the virtual radial point
defect inside the particle. Together they form a topological dipole. (c) Elastic dipoles form linear
chains. (d) Chains bond together into 2D crystalline colloidal cluster. Letters denote different types
of bonds. Reprinted figure with permission from [M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec,
I. Poberaj, D. Babič, N. Osterman, I. Muševič, Phys. Rev. E 76, 51406 (2007) ] Copyright (2007)
by the American Physical Society

Elastic quadrupoles bind in different directions as elastic dipoles. Analogous
to the electric case, quadrupoles repel if they are perfectly aligned (θ = 0◦)
or perpendicular (θ = 90◦) to each other and attract for some finite angle θ

(Figs. 3.14c, 3.16a, b), which depends on multiple parameters and is generally
in the range of θ ∼20–30◦. Elastic quadrupoles form zig-zag chains, generally
perpendicular to the director field (Fig. 3.16c). The particles pairs can form via four
different attractive sites, as shown also in 2D colloidal crystals (Figs. 3.15d, 3.16d).
Typically, interactions of elastic quadrupoles are of one order of magnitude weaker
than the interactions of elastic dipoles [101].

Interparticle interactions strongly depend on the configuration of the director
field. In examples presented so far, colloidal particles were immersed in a nematic
cell with a uniform field. However, additional types of structures can be observed
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Fig. 3.16 Particles assemble along different directions and form (a) kinked chains, (b) linear
chains, (c) longer self-assembled chain structures and (d) 2D quadrupolar crystal-like structures.
Reprinted figure with permission from [M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj,
D. Babič, N. Osterman, I. Muševič, Phys. Rev. E 77(3), 31705 (2008)]. Copyright (2008) by the
American Physical Society

in more complex field configurations. As a strong example, multiple emulsions of
nematic liquid crystal and water droplets were used to study colloidal interactions
in a radial director field [101]. Conservation of topological charge was observed
experimentally and the effects of different types of anchoring were studied.

In addition to dipole and quadrupole interactions, colloidal particles can be
also bound by escaped defect lines, where the director escapes in the third
dimension. Two particles with homeotropic anchoring can share an escaped—i.e.
non-singular—line with an effective topological charge of −2 in a so-called bubble-
gum configuration [102] with the binding force being almost independent of the
separation between the particles. In a nematic cell such configuration is rarely
observed as the state is metastable; however, in twisted (chiral) cells such pairs form
spontaneously and can also connect into larger 2D colloidal crystals [103].

Differently, two particles with Saturn ring defect can be entangled by a single
escaped loop, acting as an elastic string [26]. Three different nematic config-
urations can be achieved by applying laser tweezers and thermally quenching
(Fig. 3.17) the nematic around the particles: figure-of-eight (Fig. 3.17a), figure-
of-omega (Fig. 3.17c, g), and figure-of-theta (Fig. 3.17d, h). The states are again
metastable in a uniform nematic cell, but enable binding multiple particles into
linear structures. Spontaneous entanglement can be realised in a twisted nematic
cell, which allowed for the investigation of the knot theory on the defect lines [104].

3.7.3 Assembly and Self-assembly of Colloidal Structures

Colloidal systems attract major interest also because of their ability to interact with
light [105]. Periodic structures of dielectric media with a cell size, comparable to
wavelength of light, also known as photonic crystals, enable guiding and control of
the light at the microscale level. Nematic colloids present an interesting platform
for development of soft matter photonics due to their self- and directed-assembly,
responsiveness to external stimuli, and strong binding interactions. They also
show interesting potential in the development and research of topological photonic
materials and metamaterials, including at nanoscale [106, 107].
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Fig. 3.17 Assembling entangled nematic colloidal pairs by thermal quench using light. (a) Figure-
of-eight. (b) Numerical simulation of the time evolution of entanglement measured in the number
of iteration steps. (c) Evolution of figure-of-omega state. (d) Figure-of-omega state transformed
into figure-of-theta. (e and f) Numerically calculated structures. Reprinted figure with permission
from [M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, I. Muševič,
Phys. Rev. Lett. 99, 247801 (2007)]. Copyright (2007) by the American Physical Society

A method to assemble larger colloidal structures is by directed assembly using
laser tweezers, which can capture and guide a single colloidal particle [99]. Particles
are manipulated into vicinity of each other, close enough that structural forces can
bind them into stable and ordered clusters. To create 2D crystal structures, thin
nematic cells with properly processed surfaces are used, so that only one layer
of colloids is formed in the middle of the cell. For example, clusters and 2D
colloidal crystals are assembled from elastically dipolar particles by joining two
oppositely oriented linear chains, which attract due to sideways dipolar attraction,
or from quadrupolar particles by joining several kinked chains, which attract due to
quadrupolar interactions [108].

In addition to homogeneous crystals, a range of binary structures were realised
by using combinations of elastic dipoles and quadrupoles [109] or by using different
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Fig. 3.18 Hierarchical
multi-particle nematic
colloidal structure. (a)
Smaller colloidal particles are
trapped into the topological
defect loop, twisting around a
larger colloidal pair. Images
are taken at different height of
focus. (b) Polarising
microscope image shows the
distortions of the director
field around the colloids.
Reprinted figure with
permission from
[M. Škarabot, M. Ravnik,
S. Žumer, U. Tkalec,
I. Poberaj, D. Babič,
I. Muševič, Phys. Rev. E 77,
61706 (2008)]. Copyright
(2008) by the American
Physical Society

sized particles, creating hierarchical superstructures (Fig. 3.18) [110]. 3D colloidal
crystal with tetragonal symmetry and interesting material properties, such as strong
electrostriction and electro-rotation, has also been assembled by joining anti-parallel
chains of elastic dipoles [7].

Approaches in which particles are controlled to occupy predesigned sites are
developed by creating spatially variable nematic profiles. Since minimal energy
configurations are different for particles with homeotropic or planar anchoring,
they tend to localise in different regions, such as particles with homeotropic
anchoring in regions of splay and particles with planar anchoring in regions of bend
deformations [111]. Also sculpting a flat surface with a cavity that is similar to the
particle in size and shape can change the sign of the interaction between the particle
and the surface and lead to key-lock mechanisms for trapping the particles [112].
Topographic modulation of the surfaces can be used to select and localise particles
by using convex and concave deformations [113].

The director field can also be altered by changing the geometry of the cell,
containing the nematic host medium, which can lead to emergence of variety of
defects, depending on the shape of the surface. For example, if a nematic medium
is introduced into the cell with an array of cylindrical microposts, defects occur
around them in the bulk and attract colloidal particles (Fig. 3.19a–g). Colloids
assemble to mimic the defect structure in the bulk even if they are remote, i.e. on the
surface of the liquid crystal layer in which microposts are submerged. In the case
of high packing fraction, a triangular colloidal lattice is formed (Fig. 3.19h) [114].
In a different study, colloidal chains of elastic dipoles were found to follow the
disclination lines and curved director field in the geometry of groovy cells [115].
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Fig. 3.19 If the geometry of the cell is altered by using microposts, the emergence of ring defects,
which guide the assembly of remote colloidal particles, is enforced. (a) The director field in the
corners of the cell with homeotropic anchoring can assume two different configurations with the
opposite 2D topological charges. (b–d) The bulk director field corresponds to the minimum of
free energy and has to satisfy the topological charge conservation. If the field in the corners has
the same topological charge, the ring defect occurs to neutralise it. (e) By curving the edge, the
configuration with positive winding number is favoured. (f) SEM image of experimentally realised
curved microposts. (g) At moderate surface coverage, ordered rings assemble around the micropost
due to attraction by the bulk defect and repel one another via long-range interparticle repulsion. (h)
At higher particle density elastic interactions force them into higher order structures. Reused and
adapted with permission from publishers [M. Cavallaro, M.A. Gharbi, D.A. Beller, S. Copar, Z.
Shi, T. Baumgart, S. Yang, R.D. Kamien, K.J. Stebe, Exploiting imperfections in the bulk to direct
assembly of surface colloids. Proc. Natl. Acad. Sci. 110, 18804 (2013)]

Nematic interparticle interactions depend strongly also on the shape of the
particles. For example, polygonal particle platelets with odd number of sides exhibit
dipolar symmetry and therefore dipolar interactions, while the ones with even
number of sides act as elastic quadrupoles [116]. Since nonspherical particles may
interact as dipoles/quadrupoles at long range, but their short range interactions
depend on the geometry, they are suitable for realising 2D and 3D crystalline,
quasicrystalline, and various locally ordered low-symmetry structures, which cannot
be assembled from colloidal spheres [30]. Similar results were observed when using
colloidal pyramidal cones and octahedrons made from thin nanofoil, which are
physical analogues of mathematical surfaces with boundaries and induce no defects
when flat [117]. Also switching between repulsion and attraction through re-pinning
the disclinations at different edges of polygonal prism using laser tweezers has been
demonstrated [118].

Among other ways of control, chemical treatment can be used to switch between
different types of cell surface anchoring even at the nanoscale and control colloids
by inducing defects [119] or to switch between anchoring types on colloids and
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therefore manipulate the type of interaction [120]. If ferromagnetic particles are
used, also magnetic field can be used to control the orientation of the particles and
their mutual interactions [121].

3.7.4 Complex-Shaped and Topological Colloids

The emergence of advanced chemical, physical, and biosynthetic methods in recent
years enabled creation of complex-shaped anisotropic colloidal particles and even
particles with different topologies. Combining such particles with liquid crystal
medium lead to a wide variety of topological field states and configurations. In com-
parison to low temperature and magnetic systems at atomic scale, where topological
phases also emerge, experiments with topology in liquid crystals can be observed at
much larger optical scales. Additionally, complex structure of topological particles
can lead to interesting assembly properties and interactions with light, which makes
them suitable for photonic applications based on topological materials.

Topological colloidal particles with non-zero genus g (i.e. effectively, the number
of holes in the particle) were demonstrated [28], which stabilise a wide variety of
complex nematic profiles when immersed in nematic liquid crystal. The topology
of the director field is governed by the topological charge conservation and by the
Gauss–Bonnet and Poincare–Hopf theorems, which must be obeyed. By integrating
the local Gaussian curvature K over the entire surface of the particle, its Euler
characteristic, which is directly connected to the genus g, can be calculated as [28]:

2(1 − g) = χ = 1

2π

∮
KdS. (3.49)

The Euler characteristic acts as a topological invariant, which means that is
preserved during the continuous transformations of the particle surface and also
equals the topological charge of the surface. Net topological charge of the defects
that emerge in the liquid crystal after the non-trivial particle is immersed in it is
exactly determined by topological charge conservation, but the exact number of
defects and their types depend on the shape and orientation of the particle with
respect to the bulk field, which is determined by the minimum of the total free
energy. Various possible configurations of defects in the vicinity of toroidal colloids
with different genus numbers have been demonstrated [28].

Knot-shaped colloidal particles present another interesting platform to study
interplay of the topologies of the particles, the nematic field, and the induced defects,
which lead to knotted, linked, and other topologically non-trivial field configura-
tions. Particle links in nematics were realised also as an example of topologically
conditioned nematic colloidal material [8]. An example of configuration of linked
rings, also known as Hopf link, with planar surface anchoring is shown in Fig. 3.20.
Topological transitions by changing the shape and genus of the knot particles have
been also studied numerically [122].
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Fig. 3.20 Hopf link colloidal particle with tangential anchoring in nematic. (a, b) Polarising
optical micrographs of a Hopf link in a nematic cell without and with a lambda plate, respectively,
with far-field nematic director n0 marked on the image. (c, d) Experimental and theoretical in-plane
cross-section with a director field around it. (e) Elastic free energy dependence on the deviation
from equilibrium angle and centre-to-centre distance of the two link components—rings. (f–h)
Three perspective views from mutually orthogonal directions of a numerically calculated director
field around the link. (i) Landau–de Gennes free energy vs. angle θ1,2 between bulk director
orientation and the plane bisecting the angle θ1,2 = 20◦ between the rings at fixed radius R and
d = 0.22, with the energy minimum corresponding to the configuration f. Inset in (i, j) Metastable
configurations. Reused and adapted with permission from publishers [A. Martinez, L. Hermosillo,
M. Tasinkevych, I.I. Smalyukh, Linked topological colloids in a nematic host. Proc. Natl. Acad.
Sci. 112, 4546 (2015)]

Current research in the field of nematic colloids is more and more directed
towards finding new possible interactions between particles, which are governed
by their topologically non-trivial or fractal shape [123] that induces tangled director
fields and defects in the liquid crystal medium. Such particles can nowadays be fab-
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ricated and used in experiments and show a lot of promise in photonic applications.
A strong recent direction is also in exploring motile “active” colloids in anisotropic
nematic background, which can be driven by external fields or internally via self-
propelled particles such as motile bacteria or molecular motors [74, 124, 125].

3.8 Conclusions

Nematic fluids cover a span of materials, from molecular fluids, colloidal dispersion
to viruses, with their main material characteristic being orientational order of the
building blocks. This orientational order is soft and as an effective elastic medium
responsive to external stimuli, including mechanical fields, pressure, light, electric
and magnetic fields. The strong susceptibility to external stimuli makes nematic
fluids potent materials in systems that require controllability and tunability, which is
today extensively used in display and optical applications, with strong development
also towards photonics and metamaterial applications.

A major emergent direction in nematic fluids are also active nematic materials,
which are inherently out-of-equilibrium systems based on motile building blocks
that can show nematic ordering. Active nematic systems include systems of kinesin
driven microtubules, bacterial colonies, or flocks of animals. Topological defects
in active fluids are emerging as major elements that determine the active material
properties. And there exists an interesting route for transfer of knowledge from
passive nematic fluids to active nematic fluids. For example, in terms of structure,
nematic braids realised by temperature quench in passive nematics are probably the
closest passive analogues to three-dimensional active turbulence, as one of the top-
level challenges in understanding of active nematics.

Finally, nematic fluids is a topic that is naturally in an interdisciplinary way
reaching towards other field of science and technology, notably including complex
flows and active fluids.
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32. S. Čopar, S. Žumer, Nematic Braids: topological invariants and rewiring of disclinations.
Phys. Rev. Lett. 106, 177801 (2011)

33. G.P. Alexander, B.G.G. Chen, E.A. Matsumoto, R.D. Kamien, Colloquium: disclination
loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys. 84, 497 (2012)

34. P.J. Ackerman, I.I. Smalyukh, Static three-dimensional topological solitons in fluid chiral
ferromagnets and colloids. Nat. Mater. 16, 426 (2017)

35. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals (Taylor & Francis, Boca
Raton, 2005)

36. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Polymer-stabilized liquid crystal
blue phases. Nat. Mater. 1, 64 (2002)

37. H.J. Coles, M.N. Pivnenko, Liquid crystal ‘blue phases’ with a wide temperature range.
Nature 436, 997 (2005)

38. J.A. Kelly, M. Giese, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan, The development of
chiral nematic mesoporous materials. Acc. Chem. Res. 47, 1088 (2014)

39. G.J. Vroege, H.N.W. Lekkerkerker, Phase transitions in lyotropic colloidal and polymer liquid
crystals. Rep. Prog. Phys. 55, 1241 (1992)

40. I. Dierking, S. Al-Zangana, Lyotropic liquid crystal phases from anisotropic nanomaterials.
Nanomaterials 7, 305 (2017)

41. D.Y. Kim, S.I. Lim, D. Jung, J.K. Hwang, N. Kim, K.U. Jeong, Self-assembly and polymer-
stabilization of lyotropic liquid crystals in aqueous and non-aqueous solutions. Liq. Cryst.
Rev. 5, 34 (2017)

42. L. van ’t Hag, S.L. Gras, C.E. Conn, C.J. Drummond, Lyotropic liquid crystal engineering
moving beyond binary compositional space – ordered nanostructured amphiphile self-
assembly materials by design. Chem. Soc. Rev. 46, 2705 (2017)

43. F.C. Frank, I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19
(1958)

44. S. Chandrasekhar, Liquid Crystals (Cambridge, Cambridge, 1992)
45. K. Schiele, S. Trimper, On the elastic constants of a nematic liquid crystal. Phys. Status Solidi

118, 267 (1983)
46. G.P. Chen, H. Takezoe, A. Fukuda, Determination of Ki (i = 1-3) and μj (j = 2-6) in 5CB by

observing the angular dependence of Rayleigh line spectral widths. Liq. Cryst. 5, 341 (1989)
47. N.V. Madhusudana, R. Pratibha, Elasticity and orientational order in some cyanobiphenyls:

Part IV. Reanalysis of the data. Mol. Cryst. Liq. Cryst. 89, 249 (1982)
48. M. Ravnik, S. Žumer, Landau-de Gennes modelling of nematic liquid crystal colloids. Liq.

Cryst. 36, 1201 (2009)
49. B. Jerome, Surface effects and anchoring in liquid crystals. Rep. Prog. Phys. 54, 391 (1991)
50. M. Nobili, G. Durand, Disorientation-induced disordering at a nematic-liquid-crystal-solid

interface. Phys. Rev. A 46, R6174 (1992)
51. L.M. Blinov, A.Y. Kabayenkov, A.A. Sonin, Invited lecture. Experimental studies of the

anchoring energy of nematic liquid crystals. Liq. Cryst. 5, 645 (1989)
52. J.B. Fournier, P. Galatola, Modeling planar degenerate wetting and anchoring in nematic

liquid crystals. Eur. Lett. 72, 403 (2005)
53. P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor and

Francis, London, 1997)
54. V. Fréedericksz, A. Repiewa, Theoretisches und Experimentelles zur Frage nach der Natur

der anisotropen Flüssigkeiten. Z. Phys. 42(7), 532 (1927)
55. B.J. Frisken, P. Palffy-Muhoray, Freedericksz transitions in nematic liquid crystals: The

effects of an in-plane electric field. Phys. Rev. A 40(10), 6099 (1989)
56. M. Kleman, Points, Lines and Walls (Wiley, New York, 1983)
57. M. Kleman, O.D. Lavrentovich, Topological point defects in nematic liquid crystals. Philos.

Mag. 86, 4117 (2006)
58. N. Mermin, The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591

(1979)



3 Mesoscopic Approach to Nematic Fluids 91

59. H.R. Trebin, The topology of non-uniform media in condensed matter physics. Adv. Phys.
31, 195 (1982)

60. A. Rapini, Umbilics : static properties and shear-induced displacements. J. Phys. Fr. 34, 629
(1973)

61. I. Dierking, M. Ravnik, E. Lark, J. Healey, G.P. Alexander, J.M. Yeomans, Anisotropy in the
annihilation dynamics of umbilic defects in nematic liquid crystals. Phys. Rev. E 85, 21703
(2012)

62. P. Pieranski, B. Yang, L.J. Burtz, A. Camu, F. Simonetti, Generation of umbilics by magnets
and flows. Liq. Cryst. 40, 1593 (2013)

63. M.G. Clerc, E. Vidal-Henriquez, J.D. Davila, M. Kowalczyk, Symmetry breaking of nematic
umbilical defects through an amplitude equation. Phys. Rev. E 90, 12507 (2014)

64. M. Kléman, L. Michel, Spontaneous breaking of Euclidean invariance and classification of
topologically stable defects and configurations of crystals and liquid crystals. Phys. Rev. Lett.
40, 1387 (1978)

65. G.E. Volovik, Relationship between molecule shape and hydrodynamics in a nematic
substance. JETP Lett. 31, 273 (1980)

66. S. Hess, Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular
liquids and in liquid crystals. Z. Naturforsch. Pt. A 30, 728 (1975)

67. P. Olmsted, P. Goldbart, Theory of the nonequilibrium phase transition for nematic liquid
crystals under shear flow. Phys. Rev. A 41, 4578 (1990)

68. H. Stark, T.C. Lubensky, Poisson-bracket approach to the dynamics of nematic liquid crystals.
Phys. Rev. E 67, 231 (2003)

69. A.M. Sonnet, P.L. Maffettone, E.G. Virga, Continuum theory for nematic liquid crystals with
tensorial order. J. Non-Newton. Fluid. 119, 51 (2004)

70. C. Denniston, E. Orlandini, J. Yeomans, Lattice Boltzmann simulations of liquid crystal
hydrodynamics. Phys. Rev. E 63, 56702 (2001)

71. R.A. Simha, S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspen-
sions of self-propelled particles. Phys. Rev. Lett. 89, 58101 (2002)

72. R. Voituriez, J.F. Joanny, J. Prost, Spontaneous flow transition in active polar gels. Eur. Lett.
70, 404 (2005)

73. T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Spontaneous motion in
hierarchically assembled active matter. Nature 491, 431 (2012)

74. P. Guillamat, Ž. Kos, J. Hardoüin, J. Ignés-Mullol, M. Ravnik, F. Sagués, Active nematic
emulsions. Sci. Adv. 4, eaao1470 (2018)

75. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a
system of self-driven particles. Phys. Rev. Lett. 75, 1226 (1995)

76. T. Gao, R. Blackwell, M.A. Glaser, M.D. Betterton, M.J. Shelley, Multiscale polar theory of
microtubule and motor-protein assemblies. Phys. Rev. Lett. 114, 242S (2015)

77. H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Lowen, J.M.
Yeomans, Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. 109, 14308 (2012)

78. D.W. Berreman, Liquid-crystal twist cell dynamics with backflow. J. Appl. Phys. 46, 3746
(1975)

79. C.Z. van Doorn, Dynamic behavior of twisted nematic liquid-crystal layers in switched fields.
J. Appl. Phys. 46, 3738 (1975)

80. N. Éber, P. Salamon, Á. Buka, Electrically induced patterns in nematics and how to avoid
them. Liq. Cryst. Rev. 4, 101 (2016)

81. K.A. Takeuchi, M. Sano, Universal fluctuations of growing interfaces: evidence in turbulent
liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)

82. O. Wiese, D. Marenduzzo, O. Henrich, Microfluidic flow of cholesteric liquid crystals. Soft
Matter 12, 9223 (2016)

83. Z. Dogic, S. Fraden, Ordered phases of filamentous viruses. Curr. Opin. Colloid Interface Sci.
11, 47 (2006)

84. E. Guyon, P. Pieranski, Poiseuille flow instabilities in nematics. J. Phys. Colloq. 36, C1 (1975)

www.dbooks.org

https://www.dbooks.org/


92 Ž. Kos et al.

85. E. Dubois-Violette, P. Manneville, in Pattern Formation in Liquid Crystals, ed. by A. Buka,
L. Kramer (Springer, New York, 1996), pp. 91–163

86. S.P. Thampi, R. Golestanian, J.M. Yeomans, Driven active and passive nematics. Mol. Phys.
113, 2656 (2015)

87. L. Giomi, Ž. Kos, M. Ravnik, A. Sengupta, Cross-talk between topological defects in different
fields revealed by nematic microfluidics. Proc. Natl. Acad. Sci. 114, E5771 (2017)

88. D. Kang, J. Maclennan, N. Clark, A. Zakhidov, R. Baughman, Electro-optic behavior of
liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment. Phys. Rev.
Lett. 86, 4052 (2001)

89. F. Serra, K.C. Vishnubhatla, M. Buscaglia, R. Cerbino, R. Osellame, G. Cerullo, T. Bellini,
Topological defects of nematic liquid crystals confined in porous networks. Soft Matter 7,
10945 (2011)

90. T. Araki, Dynamic coupling between a multistable defect pattern and flow in nematic liquid
crystals confined in a porous medium. Phys. Rev. Lett. 109, 257801 (2012)

91. J. Aplinc, S. Morris, M. Ravnik, Porous nematic microfluidics for generation of umbilic
defects and umbilic defect lattices. Phys. Rev. Fluids 1, 23303 (2016)

92. Ž. Kos, M. Ravnik, S. Žumer, Nematodynamics and structures in junctions of cylindrical
micropores. Liq. Cryst. 44, 2161 (2017)

93. H. Stark, Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep. 351, 387
(2001)

94. J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Colloids in cholesterics: size-
dependent defects and non-Stokesian microrheology. Phys. Rev. Lett. 105, 178302 (2010)

95. P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Novel colloidal interactions in anisotropic
fluids. Science 275, 1770 (1997)

96. E. Terentjev, Disclination loops, standing alone and around solid particles, in nematic liquid
crystals. Phys. Rev. E 51, 1330 (1995)

97. S. Ramaswamy, R. Nityananda, V.A. Raghunathan, J. Prost, Power-law forces between
particles in a nematic. Mol. Cryst. Liq. Cryst. 288(1), 175 (1996)

98. J.i. Fukuda, Liquid crystal colloids: a novel composite material based on liquid crystals. J.
Phys. Soc. Jpn 78(4), 41003 (2009)

99. M. Yada, J. Yamamoto, H. Yokoyama, Direct observation of anisotropic interparticle forces
in nematic colloids with optical tweezers. Phys. Rev. Lett. 92, 185501 (2004)

100. M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, I. Muševič,
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Chapter 4
Amphiphilic Janus Particles at Interfaces
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Acronyms

3-TSPM 3-(trimethoxysilyl)propyl methacrylate
APS (3-Aminopropyl)triethoxysilane
CA contact angle
DIW de-ionised water
HLB hydrophilic–lyophilic balance
HP homogeneous particle
IBA isobornyl acrylate
IFT interfacial tension
JP Janus particle
MMA methyl methacrylate
NP nanoparticle
OTS n-octadecyltrichlorosilane
P(3-TSPM) poly(3-(trimethoxysilyl)propyl methacrylate)
PA polyacrylate
PAA poly(acrylic acid)
PI polyisoprene
PMMA poly(methyl methacrylate)
pNA poly[N-isopropylacrylamide-co-(acrylic acid)]
PPA poly(propargyl-acrylate)
PPFBEM poly(2-(perfluorobutyl)ethyl methacrylate)
PPy polypyrrole
PS polystyrene
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PS-PDIPAEMA polystyrene-poly[2-(diisopropylamino)ethyl methacrylate
PtBA poly(tert-butyl acrylate)

4.1 Introduction

Janus particles (JPs) can be generally defined as asymmetric particles with at
least two surface regions or bulk composition differing in their physicochemical
properties. JPs can adopt different shapes, for example, perfectly spherical with
two hemispheres having different surface properties as depicted in Fig. 4.1, or
they can adopt different shapes, such as snowman [1], or dumbbell, hybridised-
like [2] orbitals, mushroom [3] with clear geometrical and topological asymmetries.
Under the same “Janus” category other particles, such as raspberry, [4] rods or
discs [5] have also been included and generally all asymmetric particles, as long
as there is a difference in composition or surface properties on the same particle
but on distinctive regions. Probably the most typical shape of a Janus particle is
that of a dumbbell or snowman, Fig. 4.1. Unlike homogeneous particles (HPs) the
JPs have some interesting properties and exhibit extra-functionality conferred by
their asymmetry. One example of such functionality is amphiphilicity. Due to the
inherent polarity contrast between two surface regions, they resemble surfactants
with one polar side and one-less polar; therefore, the JPs are promising as “solid

Fig. 4.1 Types of Janus particles
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state amphiphiles” or the next generation of amphiphiles. But unlike surfactants,
generally small molecules, or low molecular weight polymers, JPs exhibit some
significant differences. First, because they are solid-state particles and due to their
size, they have large interfacial attachment energies, on the order of thousands of kT
(parameter that scales with the R2, where R is the radius of the particle), meaning
that once adsorbed at the interface they remain trapped and secondly their diffusion
through the liquid is much slower. This can be an advantage because JPs can be
used as emulsifiers of oils and water and create ultrastable Pickering emulsions.
Pickering emulsions can also be generated with HPs but it has been shown that due
to their amphiphilicity the JPs are several times more interfacially active and thus
superior in such applications. Furthermore, the JPs are also active at the air–water
interface and this makes them attractive as stabilisers of air bubbles and foams.
Their size may also bring further advantages, for example, they can be used as
carriers of actives (small molecules serving as pharmaceutically active ingredients),
or smart catalysts moving in concentration gradients and even nanomotors for
transportation of “heavy” cargo, which molecular surfactants cannot do. JPs can
also be regarded as building blocks of matter that can self-assemble to give rise
to suprastructures. JPs can be multifunctional because they can carry different
properties on each lobe; this is especially attractive to creating new multifunctional
materials where the surface and bulk-like properties can be combined to obtain
unexpected functionalities. For example, it has been demonstrated that conductivity
and surface polarity of snowman-type JPs can be tuned by changing the lobe ratio
between a semiconductive lobe and an electrically insulating lobe [6]. This opens up
the path to new multifunctional materials made from Janus building block that carry
on the different lobes different functionalities, optic, magnetic, surface functional
groups, etc.

4.2 Short History of Asymmetric Janus Particles

Janus particles have a relatively short history and only came recently into existence
through the imagination of a handful of scientists in the late 1980s. The concept
of an asymmetric and amphiphilic particle was put forward by Casagrande, Veysié
and de Gennes. The first synthesis of micron-sized JPs was attributed to the former
two authors, while de Gennes baptised them after the Roman god Janus. Janus
was the two-faced god of transitions, gates, passages and new beginnings, after
which the month of January was named. Janus is a god in Roman mythology
and was considered to be the most important one because it provided passage
to the other gods. Janus is often depicted with two faces of an old man, but
initially this was depicted with the face of young man looking back and old man
looking forward, very suggestive of the time passage. In his famous Nobel Prize
talk [7] de Gennes also called the asymmetric particle Janus grains. Interestingly,
the amphiphilic nature of the Janus glass beads produced by Casagrande et al.
[8] could be probed directly for the first time by observing from photographs of
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breath-patterns “figures de soufflé” clearly showing droplets of water pearling up
on the hydrophobic side but making a contiguous film on the hydrophilic side. A
few years earlier, in 1985, Grünning et al. [9] filed a patent claiming a procedure
for the preparation of amphiphilic particles from 100 μm hollow beads, with the
exterior surface hydrophobised and hydrophilic side remaining in the interior,
which were then crushed to produce irregularly shaped glass shards that were
amphiphilic; this procedure was later detailed by one of the inventors, Rosmmy
in 1998 [10]. Remarkably, right from the beginning the inventors proposed the use
of such particles as surface active products, for emulsification, production of foams
and deployment in tertiary oil recovery. This was the first time when amphiphilic
particles were produced in large amounts. In 1991 Chen et al. [11] synthesised
biphasic snowman type polymeric particles by seeded emulsion polymerisation and
phase separation, but were probably unaware of the fact that they synthesised the
first polymeric JPs. Within the 1990s to 2000s the scientific community did not seem
to catch interest in these particles. It was then only much later, in the early of the first
decade of the twenty-first century when the new synthetic routes were published.
This was in part triggered by the theoretical work of Ondarçuhu [12] and later by
Binks and Fletcher [13] who showed by calculation that the interfacial activity of
spherical JPs at their maximum amphiphilicity (highest polarity contrast), in terms
of interfacial desorption energy should be up to three times larger than that of HPs
and much larger for snowman or dumbbell JPs. However, the desorption energy only
is not a proper gauge for measuring the interfacial activity, but rather the ability to
lower the interfacial tension, as it will be discussed later. Since then the research
on Janus particles grew exponentially, estimated from the increasing number of
publications each year. Initially the JPs could only be produced in very low amounts
and the synthetic challenges were preventing their use in applications. Currently
JPs can be produced in large amounts and therefore, their use in new applications
is being explored, such as emulsifiers, catalysts, foam stabilisers, polymer blend
compatibilisers, amphiphiles, building-blocks, etc. It turns out the Janus is not only
reserved for synthetic particles but also naturally occurring proteins, such as the
hydrophobins produced by fungi, HFBII from Trichoderma Reesei that is nearly
globular with a 3 nm diameter and 7.2 kDa [14]. Interestingly, it has been shown
that HFBII is an excellent foam stabiliser and is responsible for beer gushing. Beer
gushing is the phenomenon of beer foam gushing out of the bottle when opened or
mechanically shocked by hitting its bottom to the table, completely emptying the
bottle [15]. The HFBII ends up in malt by fungi infection.

4.3 General Synthetic Routes

JNPs can be prepared by chemical or physical methods. Next we give a short
overview of the methods used in the synthesis of JPs.
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4.3.1 Masking and Asymmetric Modification

This preparation method relies on a simple concept, in a first step one side of a
spherical particle is masked by a protective layer and in a second step chemical or
physical modification is performed on the unmasked part followed by the removal of
the masking layer. In this way the original HP particle is now a JP particle because it
has different surface properties, even though its bulk composition remains the same.
While the concept of the method is simple its implementation and scalability can be
an issue. The masking and modification method was first used by Casagrande et al.
[8] who used varnish to mask half of the micron-sized spherical glass beads and
performed silanisation/hydrophobisation on the other half of the spherical bead to
produce JPs. Instead of applying a varnish, a spherical particle can be deposited
on a flat surface or self-assembled in a monolayer followed by the deposition,
via evaporation, of a metal on the exposed part, Fig. 4.2. Due to the masking,
the metal will only deposit on one side of the particle facing away from the flat
substrate. In this way hybrid polymer/metallic, silica/metallic JPs can be made.
This is a highly effective method to produce JPs with tunable optical or electric
properties as the thickness of the metal layer deposited can be precisely controlled;
Kawaguchi et al. [16] applied this method to produce JPs with a functional gold
surface for control of surface plasmon resonance and thus the colour of the particles
with potential applications in paper displays. Other patchy JPs with tunable optical
properties were successfully prepared by Composto et al. [17]. Bimetallic Co/Ni
Ag/Au, Ni/Au Janus particles could be made using the same method by Carroll et al.
[18] from a single layer of self-assembled silica beads on a substrate in two steps:

Fig. 4.2 Masking and surface modification techniques for manufacturing of Janus particles
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first the particles were coated with one metal using e-beam evaporation, then the
beads were inverted and coated with another metal. The preparation of JPs from 2D
layers is highly effective but not scalable to produce large amounts. In this context
Granick’s group [19, 20] has succeeded in producing gram-scale amount of JPs
by first taking fused silica particles HPs (800 nm and 1.5 μm in diameter) and use
them to emulsify molten wax at high temperature. Then the obtained o/w emulsion
was cooled to room temperature to obtain solid wax colloidosomes that have HPs
trapped/embedded on their surface. Because the HPs were half protected by the wax
they could be chemically reacted with APS on the water exposed part, then after
dissolving the wax colloidosome they could be hydrophobised on the other side with
OTS. In this way gram-scale amounts of JPs could be obtained. Suzuki et al. [21]
used the same strategy to prepare large amounts of JPs from thermo-responsive pNA
microgels by first trapping them at the heptane/water via emulsification to create
o/w Pickering emulsions. Once at the interface of the oil droplets the microgel
particles were further reacted with water soluble only ethylenediamine (ED) and
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and amine
groups were introduced this way at the surface of the water exposed gel particles.
Smaller Au nanoparticles could be attached only on the -NH2 rich side of the
stimuli-responsive Janus microgel particles. Fujimoto et al. [22] prepared Janus
microspheres at the solid–liquid interface by allowing poly(methacrylic acid-co-
nitrophenyl acrylate) microspheres to interact with a substrate on which human
immunoglobulin (IgG) was previously adsorbed. After the microspheres settled on
the flat substrate, NaOH was added to activate the ester bonds by cleaving the p-
nitrophenol. The part of the microsphere touching the IgG-substrate reacted with
the amine and thiol bonds of the IgG molecule, while the other side remained
unmodified.

4.3.2 Seeded Emulsion Polymerisation and Phase Separation

The preparation of JPs by seeded emulsion polymerisation and phase separation
of polymers was first performed by Chen et al. [11] in 1991, although probably
unaware of the fact that these were being baptised Janus particles by P. de Gennes in
the same year. The procedure is simple in theory, and starts with monodisperse seed
latex polystyrene (PS) particles. Their methods were later revived and extended to
a multitude of different biphasic polymeric Janus particles. The method consists
of first preparing polymeric latex particles in the nanometre range, such as PS.
Then these are re-dispersed in water and a second monomer (partially soluble in
water) is added, such as MMA or 3-TSPM. Emulsification of the monomers is
necessary for the swelling of the latex particles to succeed. Then the mixture is
given some time for the swelling of the seed particle by the monomer to take
place, eventually the polymerisation is started. As the monomer polymerises the
newly created polymer, due to incompatibility with PS, bulges out from the seed
particles leading to the creation of a second lobe and the formation of snowman
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Fig. 4.3 Cartoon depicting the preparation of JPs via seeded emulsion polymerisation and phase
separation method. The second lobe grows as the monomer (M) from the reservoir is being
consumed

or dumbbell type biphasic Janus particles as depicted in Fig. 4.3. The degree of
phase separation as well as the final geometry of the obtained JPs depends on the
Flory–Huggins interaction parameter, wettability between the two polymers, cross-
linking degree, phase separation kinetics. Wettability between the polymers can also
be influenced by initiator type, addition of surfactant, etc. [11]. Several different
types of polymeric JPs could be made this way and with precisely tuned reaction
conditions snowman-type particles could be produced. JPs with hard and soft lobes
PtBA/PS JPs were prepared by Bon et al. [23], Daeyeon Lee et al. [24] prepared
PS/PPA JPs that can be subsequently modified via thiol-yne click reactions, Sun
et al. [25] obtained PS/PMMA with a hollow PS lobe, Hoffmann et al. [26] prepared
PMMA/PS JPs from PMMA seeds, Weitz et al. [27] synthesised PS/PMMA and
PS/PtBA seeds. Note the convention we have used, the initial seed particles are first
written followed by the second lobe.

4.3.3 Microfluidic and Capillary Electro-Jetting Methods

Multi-compartmented or multiphasic particles can be fabricated by microfluidic as
well as electro-jetting processes [28]. Droplet microfluidics refer to the preparation
and manipulation of discrete micron-sized droplets, double emulsions droplets,
microbubbles, etc., and the fabrication of polymeric JP by this method has been
extensively reviewed [29]. Black and white bicolored JPs with electrical anisotropy
were synthesised for the first time by Torii et al. [30] using a microfluidic co-flow
system. Pigments of carbon black and titanium oxide were dispersed in IBA then
were separately introduced into the Y-junction at the same volumetric flow rate to
form a two-colour stream followed by break-up into droplets due to surface tension
further down into the stream channel. The obtained Janus droplets were polymerised
outside of the microfluidic system by heating, but in principle polymerisation can
also be done in the microfluidic channel by UV exposure. Multicoloured JPs with
electrical anisotropy can be used in panel displays where the colour switch can be
done by changing the orientation of the JPs and this can be actuated between two
electrodes by applying voltage.
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The electrodynamic co-jetting methods consist of flowing two or more different
polymer solutions through a bi-compartmented metal capillary, while maintaining
a laminar flow, at the apex of the capillary tip the polymer solution comes together
to form a droplet to which a high electrical voltage is applied. The application of
the electric field causes the solutions to form a Taylor cone, which creates a spray
of individual droplets accelerating toward the counter electrode. During this, the
solvents from the droplet evaporate, resulting in polymeric nanoparticles that are
collected on the surface of the counter electrode. In this method due to the rapid
evaporation of the solvents, and because the process is very fast, the polymers
touching do not have sufficient time to mix, the resulting nanoparticles remain
bi-compartmented. These methods have the great advantage of high-throughput to
prepare large amounts of micrometre sized multiphasic Janus particles. Preparing
of monodispersed nano-sized particle is more challenging; however, Lahann et al.
[31] succeeded with the synthesis of PMMA/PtBMA biphasic Janus nanoparticles
having diameters d = 172 ± 28 nm and tri-phasic [32] from poly(ethylene oxide),
poly(acrylic acid) and poly(acrylamide-co-acrylic acid). Furthermore the individual
polymer phases can be independently loaded with biomolecules or selectively
modified with model ligands [33]. The resulting JPs are generally non-crosslinked,
but it is possible to crosslink these by using a photoinitiator and by UV exposure
after immediate generation of the oil droplets can lead to cross-linking of the
polymers [34].

4.3.4 Polymer Co-precipitation and Phase Separation

One of the most simple and feasible pathways to synthesise JPs is the phase
separation of polymeric solutions, such as A/B homopolymer/homopolymer and
AB/C copolymer/homopolymer blends dissolved under confinement followed by
the evaporation of the solvent. This method usually involves an oil-in-water (o/w)
emulsion system working as the confinement system, in which oil droplets comprise
two incompatible polymers with a large Flory–Huggins interaction parameter, such
as PS and PMMA, dissolved in a common solvent [35]. After evaporation, the
solvent leaves behind solid well-defined particles, with the two separated polymer
phases inside. Deng et al. [36] were able to prepare JPs with hierarchical structures
from AB/C polymer blends. The preparation of polymeric Janus nanoparticles
by this method involves first dissolving multiple, chemically distinct polymers in
a mutually favourable solvent and gradually altering the solubility character of
the solution until the polymer molecules co-precipitate as particles and different
polymers phase separate. Priestley et al. [37] succeeded in scaling up preparation
of JPs and multi-compartmented particles by co-precipitation and phase separation
method from dissimilar polymers to up to 1400 kg/day by designing a so-called
confined impinging jet mixer, a technique they called termed flash nanoprecipitation
(FNP). In the FNP method, the PS and PI (with a Flory–Huggins interaction
parameter χPS-PI= 0.07) were dissolved at a certain ratio in a common solvent
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THF and injected in one of the arms of a fluidic device, in the same time the
“anti-solvent”, DIW, was flown through a second arm of a fluidic device. The
two arms converged into a single one called the mixing region where the PI-PS
co-precipitated and phase separated as the solvent rapidly exchanges with an “anti-
solvent”. By changing the polymer feed concentration from 0.1 to 1.0 mg/mL they
could systematically increase the size of the Janus nanocolloids from �125 to
540 nm in diameter. Anisotropy of the produced particles could also be changed
by altering the PS–PI polymer ratio from 1:4 to 4:1 to produce multifaceted
colloids. The later technology proves to be highly versatile, with perhaps the only
disadvantage is that starting already from polymer chains the co-precipitation and
phase separation methods do not offer the possibility for polymer cross-linking
restricting the use of the obtained JPs, for example, as stabilisers in Pickering
emulsions in which case the JPs would likely disintegrate/dissolve upon interaction
with the oil.

4.4 Tuning the Surface Polarity in JPs

Unlike the HPs whose surface polarity can be changed only by chemical means,
tuning the surface polarity of the JPs can be done in a gradual and predictive way by
adjusting the geometric ratio or the surface area between the lobes having different
polarities. In this way, homologous series of JPs can be created, in analogy to
homologous series of molecular surfactants, for example, by increasing the amount
of the monomer to seed latex particles in seeded emulsion polymerisation, Fig. 4.4.

Wu and Honciuc [1] have synthesised a homologous series of PS/P(3-TSPM)
JPs by changing the volume of 3-TSPM monomer to the PS seed NPs, see Fig. 4.4,
and demonstrated that the PS lobe is the less polar than the P(3-TSPM) one;
by increasing the size of the more polar P(3-TSPM) they could achieve polarity
inversion in the homologous series purely by geometric means when the size of
the P(3-TSPM) became larger than that of the PS lobe. The polarity inversion in
the homologous series could be demonstrated from heptane–water emulsification
experiments, whereas the JPs with smallest P(3-TSPM) lobe have high affinity to
heptane, the largest P(3-TSPM) lobe JPs have higher affinity to water and as a
consequence an inversion of the emulsion phase from w/o to o/w occurs at the
middle of the homologous series. But the aspect ratio and implicitly the polarity
of the JPs can also be tuned dynamically by stimuli, such as in stimuli-responsive
particles that change both their geometry and polarity. One such example are the
shape-changing and pH-responsive particles PtBA/PS produced in Lee’s group [38]
which upon cleaving the -tBA group by hydrolysis in the PtBA lobe, pH-responsive
PA/PS JPs are obtained. At high pH the carboxyl groups are mostly ionised,
resulting in large intake of water and swelling of the PA lobe; as a consequence,
the particles become polar, have a good affinity to water and form o/w emulsions.
At low pH, below the pKa value, the -COOH groups are protonated, non-ionic and
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Fig. 4.4 SEM images of PS/P(3-TSPM) JPs with progressively enlarged P(3-TSPM) lobe (light-
grey/white) from the same seed PS NPs (dark-grey). (a)–(e) JPs with progressively larger lobes
obtained for a volume of 3-TSPM monomer (a) 0.5 mL, (b) 1 mL, (c) 2 mL, (d) 3 mL and (e) 4 mL
added to 1 g of PS seed NPs; (f) EDX spectra, normalised with respect to the reference carbon
peak of the PS seed NPs. (g) EDX mapping of “2 mL TSPM” JNPs obtained from larger seed PS
NPs, 320 ± 5 nm diameter, showing asymmetric distribution of oxygen, silicon elements, namely
a higher concentration in the P(3-TSPM) lobe in contrast to a symmetric distribution of carbon in
both Janus lobes. Reprinted with permission from Ref. [1]. Copyright 2016 American Chemical
Society
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there is no water intake of the lobe; the geometry of the lobe remains rigid and the
particles have higher affinity to the oil phase forming w/o emulsions.

Surface Polarity Contrast Between Lobes: Quantification of Amphiphilicity
The JPs are amphiphilic because of the inherent surface polarity contrast between
the lobes. The concept of amphiphilicity is however understood in a qualitative way
and it denotes the ability of the amphiphile to adsorb and partition at the oil/water
or air/water interfaces.

The earlier theoretical work of Ondarçuhu [12] already set the framework for
estimating the amphiphilicity balance of spherical JP adsorbed at an interface (oil–
water or air–water) by measuring its contact angle with reference to one of the
phases, usually the water phase. His geometrical model was parameterised as to
include the angle α that denotes the position of the boundary between the apolar
and polar regions of the Janus lobes, see Fig. 4.5. The contact angle of the JP with
the interface is given by β. For a perfectly spherical JP α is almost a measure
of its amphiphilicity, because zero amphiphilicity (corresponding to homogeneous
particles) corresponds to either α = 0 or 180◦. Strongest amphiphilicity is expected
when α = 90◦. Two additional parameters were introduced, namely θA and θP
which are the contact angle of one of the phases (depends on the chosen reference
but typically water is taken as a reference) with each of the lobes, the apolar and

Fig. 4.5 Model describing a spherical JP, apolar HP and polar HP at the oil–water interface. The
parameters can be defined as follows: α keeps track of the position of the boundary between the
apolar and polar regions of the JP, whereas β keeps track of the position of the oil–water interface
relative to the particle centre and it represents the contact angle with the water phase. The angle θA
is the water contact angle of the apolar HP corresponding to the apolar region of the JP, the θP is
the water contact angle of the HP corresponding to the polar region of the JP
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the polar, respectively. These angles can be better understood if HPs corresponding
to each of the JP lobes are depicted at the interface as in Fig. 4.5. For JPs no
amphiphilicity is expected when θA − θP = 0◦ and the strongest amphiphilicity
for θA− θP = 180◦, meaning that one lobe has a perfectly hydrophobic surface and
the other a perfectly hydrophilic surface, respectively.

Later Jiang and Granick [39] introduced the concept of Janus balance or “J-
value” to effectively quantify the amphiphilicity as the dimensionless ratio of
work to transfer an amphiphilic JP from the oil–water interface into the oil phase,
normalised by the work needed to move it into the water phase:

J = sin2 α + 2 cos θP (cosα − 1)

sin2 α + 2 cos θA(cosα + 1)
, (4.1)

where the angle α, θA and θP have the same meaning as those depicted in Fig. 4.5.
The above equation shows that Janus balance depends on the relative areas of
hydrophilic and hydrophobic lobe, quantified by α and on the hydrophobicity of
the two sides, quantified by θA and θP . When θA and θP are fixed, J increases as α
increases (because cos θP < 0 ) meaning a larger hydrophilic area. When α is fixed,
J increases when θA and θP increase, which corresponds to the hydrophilic part
becoming more hydrophilic or the hydrophobic part becoming less hydrophobic.
The larger the magnitude of J , the more hydrophilic is the JP, which follows the
same trend as that of the HLB[40] for surfactant molecules: larger HLB meaning a
higher affinity for water. The J value can be therefore calculated from the interfacial
contact angle and the geometry of Janus particles. However, the above model has
two caveats: first the model was deduced by assuming a perfect orientation of the
particle at the oil/water interface, i.e. the Janus axis perpendicular to the interface,
and second it assumed a perfectly spherical particle, but α loses its meaning for
a snowman, dumbbell or any other shape of the JP and the problem has to be re-
parameterised. Therefore, the above model is not generally applicable. Based on
these calculations Binks and Fletcher [13] have shown that the interfacial activity
of a JP can be up to three times larger than that of an HP. This is lately taken,
mistakenly, as an upper limit of what JPs can achieve but in fact the interfacial
activity of these dual particles can be significantly larger than a factor of three for
other geometries, as shown in simulations by Gao et al. [41]. However, it would be
more useful if amphiphilicity can be discussed quantitatively and can be measured.

In a different approach to quantify the amphiphilicity of any shape of JPs
Honciuc et al. [1, 6, 42] have proposed the direct calculation of the HLB balance
of a JP using Griffin’s approach [43], that is, the same model used to calculate the
HLB balance for a homologous series of surfactants [40] and adapted it for JPs:

HLB = 20
APolarF1

APolarF1 + AApolarF2
, (4.2)
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whereAPolar is the area of the polar lobe,AApolar is the area of the non-polar lobe and
in addition we have introduced the weighting factors Fi (i = 1, 2) accounting for
the “degree” of polarity of the lobes. The original approach of Griffin for surfactants
did not account for the polarity of the surfactant moieties, but only considers their
relative molecular weights 20Mw(polar)/Mw(molecule). The above equation takes the
value of 20 for F2 = 0 and 0 for F1 = 0, which are two limiting situations: strongly
polar and apolar particles, respectively, with no amphiphilicity. On the other hand
a value of F1= 1 (hypothetical 100% polar surface) and F2= 1 (hypothetical 100%
non-polar surface) assumes an “ideal” polarity contrast between the two surface
regions, see Fig. 4.6a, and thus, the HLB is decided by the geometry of the lobes,
i.e. their aspect ratio. The polarity weighting factors F can be calculated from the
ratio between the polar and apolar or dispersive surface energy components for each
of the Janus lobes, as depicted in Fig. 4.6:

F1 = γ
p

1

γ
p

1 + γ d
1

and F2 = γ d
2

γ
p

2 + γ d
2

, (4.3)

where the small Greek gammas are the surface energies and the superscripts “p”
and “d” indicate the polar and dispersive or apolar surface energy components
of the corresponding Janus lobes, subscripts 1-polar lobe and 2-apolar lobe. In
practice, to determine F one must know the surface energy and its polar and
dispersive components which is not trivial. Recently, Mihali and Honciuc [6] have
measured the surface energy and the polar/disperse components of each Janus lobes
in a homologous series of semiconducting PPy/P(3-TSPM) JPs with increasing
size of the polar lobe and with these values they have calculated the correspond-
ing weighting factors F and subsequently the HLB values, these are given in
Table 4.1.

Fig. 4.6 (a) Hypothetical amphiphilic dumbbell Janus particle displaying an ideal polarity
contrast between a purely dispersive surface and “purely polar” surface of the two Janus lobes,
where the polarity factors are F1 = F2 = 1; (b) the more realistic representation of a snowman
Janus particle with the surface polarity of the lobes departing from ideality and whose polarity
factors, F1 and F1 can be calculated with Eq. (4.3); (c) the parameters of a JNP used to calculate
areas of the lobes, radius R and height of the lobe h
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Table 4.1 Aspect ratio and HLB values in the homologous series of JNPs

JPs in increasing order
of the (3-TSPM) polar
lobe

aArea ×
1000/nm2,
PPy-lobe

aArea ×
1000/nm2,
P(3-
TSPM)-
lobe

Aspect
ratio
P(3-TSPM)
/PPy

bHLB
number cF1

c F2

dHLB
number
(weighted)

PPy/P(1 mL 3-TSPM) 177.6 83.2 0.5 6 0.93 0.92 6

PPy/P(2 mL 3-TSPM) 211.8 172.9 0.8 9 0.93 0.92 9

PPy/P(3 mL 3-TSPM) 164.1 318.9 1.9 13 0.93 0.92 13

PPy/P(4 mL 3-TSPM) 152.7 348.7 2.3 14 0.93 0.92 14
aThe areas of the lobes were calculated from the equation A = 2πRh, where h is the height of the
Janus lobe and R is its radius, Fig. 4.6c
bValues calculated with Eq. (4.2) with F1 = F2 = 1
cF1 and F2 were calculated with Eq. (4.2)
dValues calculated with Eq. (4.2)
From Ref. [6]. Copyright ©2017 by John Wiley Sons, Inc. Reprinted by permission of John Wiley
& Sons, Inc.

Interestingly the HLB values calculated for the JPs excluding the weighting
factors, in the 5th column of Table 4.1, are similar with those calculated after taking
into account the degree of polarity of the lobes, in the 8th column of Table 4.1.
That is because the measured F -values are close to unity and thus the JPs have an
almost ideal polarity contrast. Calculating HLB value this way for a homologous
series of JPs has the advantage of being able to predict the behaviour of JPs with
respect to their ability to act as w/o or o/w emulsifiers, discussed later. HLB range,
taking values from 1 to 20, is more readily understood by scientists working with
surfactants. For example, amphiphiles with values below 10 on the Griffin’s scale
are good w/o emulsifiers (good affinity to the oil phase), while those with HLBs
above 10 are good o/w emulsifiers, which was clearly shown by the emulsification
experiments [1]. We believe this method to quantify the Janus balance is universally
applicable because it makes no assumptions about the particle geometry, orientation
or its position at interface.

4.5 Interfacial Activity and Adsorption at Interfaces

It is well known that particles can spontaneously adsorb at liquid–liquid and air–
liquid interfaces and can thus lower the system’s Gibbs free energy, which translates
into the reduction of the interfacial IFT. By monitoring the decrease of the interfacial
tension with time, i.e. the dynamic surface tension, usually with pendant drop
tensiometry, one can obtain information about JPs’ interfacial adsorption kinetics.
The bulk diffusivity of any particles obeys the Stokes diffusion law. For particles
with appropriate wettability the bulk-to-surface diffusion may lead to the adsorption
and attachment at the interface if: (a) there is no strong electrostatic repulsion
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interaction between the interface and the particle (image charge repulsion) and (b)
the energy costs related to the surface dehydration and re-solvation of the surface
by the next solvent are not too high.

The adsorption kinetics of particle adsorption may operate in different regimes,
diffusion limited, activation energy limited or a combination of both. Therefore,
it is expected that the decrease in IFT vs. time is slower for larger particles as
compared to the smaller ones. Furthermore, according to the time evolution of
the interfacial tension, the adsorption is characterised by three adsorption stages,
depicted in Fig. 4.7: (I) the free diffusion of some particles to the interface (II)
continuous adsorption of Janus particles to form domains at the interface, and (III)
particle packing and rearrangement in compact domains/islands [41, 44].

Fig. 4.7 Cartoon depicting the time evolution of the IFT and the three main stages of JPs
adsorption: (I) JPs adsorb at a pristine oil–water interface, the diffusion from bulk-to-surface
may be the limiting step, but also a large activation energy barrier to adsorption, (II) continuous
adsorption of JPs at the interface and formation of domains and 2D islands and (III) full occupation
of the interface by JPs, particle–particle repulsive interactions contribute to increasing the energy
barrier to adsorption and interfacial re-organisation of the monolayer
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The magnitude of �IFT, which is the distance between the starting value at
t = 0 and tplateau at which IFT does not decrease anymore, Fig. 4.7, indicates how
effective the JPs are at lowering the interfacial tension. The magnitude of �IFT
encompasses several phenomena, such as the ability of the particles to pack in a
compact monolayer, surface and interfacial energy of the particles with both phases
and the particle–particle lateral interactions. Hypothetically, the JPs can lower the
IFT to almost zero if their interfacial energy with both phases is zero, perfect affinity
for each lobe for the oil and water phases, and have the ability to pack compactly
leaving no free oil–water interface. It has been predicted [13] and experimentally
demonstrated that JPs have a significantly higher ability to lower the IFT than the
HPs [45, 46]. The reason of that is that JPs constituted of two parts can achieve
better solvent-JP and water-JP compatibility (that translate in very low interfacial
energies), which cannot be achieved in HPs. In the case of JPs not only the size but
also the shape affects the �IFT. As the shape changes from sphere to disc and rod,
Gao et al. [41] observed different adsorption kinetics, different packing behaviours
and ultimately different �IFT values. For the three types of Janus particles with
the same surface area, the ability to decrease the interfacial tension increases from
Janus sphere to Janus disc to Janus rod. The particle-interface interaction has also
been shown to play a role, for example, the particle with a large zeta potential seems
to adsorb better at the interface due to an interfacial charge re-distribution due to
the strong electric field of the particle that locally inverts the charge density of the
air–water interface [47]. The way the JNPs can assemble at the oil–water interfaces
can be affected by their aspect ratio, i.e. the geometrical packing parameter and by
the polarity contrast, analogue to molecular surfactants.

4.5.1 Contact Angle and Interfacial Adsorption Energies of
HPs vs. JPs

The adsorption of the JPs at interfaces can be treated purely thermodynamically,
whereas only the initial and final states are taken into account regardless of the path
the system takes. For example, the Gibbs free energy of JPs’ adsorption at oil–water
interface can be calculated by taking into account the free energy of the particle in
one of the bulk phases as the initial state and the free energy of the particle at the
interface between two phases. The difference between the two will be the Gibbs free
energy of JPs’ adsorption or minus desorption energy. For an HP this can be easily
calculated, for example, at the air–water interface if we know its contact angle β

with water, Fig. 4.8.
The free energy can be calculated for any particle simply by multiplying its

interfacial energy also known as the energy density (mJ/m2) by its exposed area
to each liquid forming the interface and for the case in Fig. 4.8 the free energy at the
interface is:
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Fig. 4.8 Spherical particle adsorbed at the air–water interface. The contact angle with water β
can be determined in two equivalent ways: (left) between the position of the air–water interface
with the surface of the particle or (right) from the angle formed between the radius pointing at the
three-phase line. The parameters a and d ′ are the immersion depth of the particle in water measured
from the centre and apex of the particle, respectively, and d is the immersion of the particle in the
second phase, air or oil

Einterface = γ(HP,air)A(HP,air) + γ(HP,water)A(HP,water)

+ γ(air,water)A(circular base radius r).
(4.4)

The explicit expressions of the areas are:

A(HP,air) = 2πR(R−a) = 2πR[R−R sin(π/2−β)] = 2πR2(1−cosβ) (4.5)

A(HP,water) = 2πR(R + a) = 2πR[R + R sin(π/2 − β)] = 2πR2(1 + cosβ)
(4.6)

A(circular base radius r) = πr2 = π [R cos(π/2 − β)]2 = πR2 sin2 β, (4.7)

where the last expression accounts for the area of the excluded air–water
interfacial area.

Finally, the free energy of the HP at the interface is:

Einterface = γ(HP,air)2πR
2(1 − cosβ)+ γ(HP,water)2πR

2(1 + cosβ)

+ γ(air,water)πR
2 sin2 β.

(4.8)
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The Gibbs free energy of a single HP completely immersed in water will be:

Ewater = γ(HP,water)4πR
2. (4.9)

Therefore, the total interfacial adsorption energy only as a function of the contact
angle β will be:

Ewater − Einterface = γ(HP,air)2πR
2(1 + cosβ)− γ(HP,water)2πR

2(1 + cosβ)

− γ(air,water)πR
2 sin2 β.

(4.10)
Pieranski [48] was among the pioneers to attempt calculating the particle energies

at interfaces and the equations proposed were as a function of the HPs immersion
depth “a”, Fig. 4.8, which is the distance from the centre of the particle to the
interface. This can obviously also be determined directly without the need to
measure the contact angle directly from SEM of cryogenised particles trapped at
interfaces [49]. The above expression as a function of “a” would be:

Einterface = γ(Particle,air)2πR(R − a)+ γ(Particle,water)2πR(R + a)

+ γ(air,water)π(R
2 − a2),

(4.11)

which after rearrangement becomes:

Einterface = γ(Particle,air)2πR
2(1 − a/R)+ γ(Particle,water)2πR

2(1 + a/R)

+ γ(air,water)πR
2[1 − (a/R)2].

(4.12)
The depth a is related to the interfacial tension via the Young–Dupré contact

angle:

cosβ = a

R
= γ(HP,air) ± γ(HP,water)

γ(HP,water)
. (4.13)

The sign in parenthesis is the negative for β < 90◦ and positive for β > 90◦.
Very often in different works one finds the following expression as the energy

with which a small particle of radius R is held at the air–water or oil–water
interfaces[50]:

Einterface = γ(air,water)πR
2[1 ± cosβ]2, (4.14)

where the sign in parenthesis is the negative for β < 90◦ and positive for β >

90◦. This form of the last equation results from inserting the expression of cosβ
in Eq. (4.13), defined by the Young–Dupré expression, into the Einterface expression
Eq. (4.11) obtaining[51]:

www.dbooks.org

https://www.dbooks.org/


4 Amphiphilic Janus Particles at Interfaces 113

Einterface =γ(HP,air)2πR
2(1 − cosβ)+ γ(HP,water)2πR

2(1 + cosβ)

+ γ(air,water)πR
2 sin2 β

=2πR2 [γ(HP,air) + γ(HP,water) + cosβ(γ(HP,water) − γ(HP,air))
]

+ γ(air,water)πR
2 sin2 β

=2πR2
[
γ(HP,air) + 2γ(HP,water) − γ(HP,water) − γ(air,water) cos2 β

]

+ γ(air,water)πR
2 sin2 β

=4πR2γ(HP,water) + 2πR2
[
γ(air,water) cosβ − γ(air,water) cos2 β

]

+ γ(air,water)πR
2 sin2 β. (4.15)

Keeping in mind that sin2 β = 1 − cos2 β,

Einterface =4πR2γ(Particle,water) − πR2γ(air,water)

×
[
1 − 2 cosβ + 2 cos2 β − cos2 β

]

=4πR2γ(Particle,water) − πR2γ(air,water)(1 − cosβ)2, (4.16)

where the first term in the last equation is the interfacial energy of a sphere
completely immersed in water; therefore, the last term is the change in interfacial
energy of the particle attached to the air–water interface, i.e. the final state. For
example, if γ(air,water) = 75 mJ/m2 and R = 1 μm and β = 90◦, then the energy
holding the particle at the interface at room temperature would be 2.4 × 10−13 J
≈ 5.7 × 107 kT, where 1 kT = 4.114 × 10−21 J at 298 K.

In order to calculate the Gibbs free energy of JPs adsorption at air–water
interface, consisting of two hemispheres, one apolar (A) and one polar (P), one
needs to calculate the energy difference between the particle entirely immersed in
water and that adsorbed at air–water interface. This can be done following strictly
the Ondarçuhu [12] nomenclature, which assumes a perfectly spherical JP and its
adsorption at the interface occurs via partial dehydration of the surface of one lobe,
as depicted in Fig. 4.9.

A. Case of partial de-wetting of the A-lobe, θ > α and the general case α �= π/2.

In order to solve this, the expression of the energy for each interface must be
found. Next, we find the expressions of E(A,air), E(A,water), E(P,water) and E(air,water)
as a function of contact angle,

E(A,air) = γ(A,air)A(A,air) = γ(A,air)2πR
2(1 + cos θ), (4.17)
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Fig. 4.9 A perfectly spherical JP adsorbed at the oil–water interface. (Left) Case of partial de-
wetting of the A-lobe, for θ > α and the general case α �= π/2. (Right) Case of partial de-wetting
of the P-lobe, θ < α and the general case α �= π/2

where the area is given by

A(A,air) = 2πRd = 2πR(R − b)

= 2πR2[1 − sin(π/2 − β)] = 2πR2[1 − sin(π/2 − π + θ)]
= 2πR2[1 − sin(−π/2 + θ)] = 2πR2[1 + sin(π/2 − θ)]
= 2πR2(1 + cos θ),

(4.18)

and sin(−π/2 + θ) = − cos θ

E(A,water) = γ(A,water)A(A,water) = γ(A,water)2πR
2(cosα − cos θ), (4.19)

where

b = R sin(−π/2 + θ) = −R sin(π/2 − θ) = −R cos θ (4.20)

a = R sin(−π/2 + α) = −R sin(π/2 − α) = −R cosα (4.21)

A(A,water) = 2πR2(cosα − cos θ). (4.22)
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The surface area of the zone, excluding the top and bottom bases is: A(A,water) =
2πRh, where h = b − a and is the height of the zone.

E(P,water) = γ(P,water)A(P,water) = γ(P,water)2πR
2(1 − cosα), (4.23)

where the area is:

A(P,water) = 2πRd ′ = 2πR(R + a) = 2πR2(1 − cosα) (4.24)

E(air,water) = γ(air,water)A(circular base radius r) = γ(air,water)πR
2 sin2 θ. (4.25)

Therefore, the total Gibbs free energy of the JP at the interface is:

E = 2πR2
[
γ(A,air)(1 + cos θ)+ γ(A,water)(cosα − cos θ)

+ γ(P,water)(1 − cosα)− γ(air,water)
1

2
sin2 θ

]
.

(4.26)

This equation has several limiting cases, for example, if the Janus lobe is a perfect
hemisphere, then α = π/2 and the above equation becomes:

E = 2πR2
[
γ(A,air)(1 + cos θ)− γ(A,water) cos θ + γ(P,water)

− γ(air,water)
1

2
sin2 θ

]
.

(4.27)

Also, if instead of the parameters α and θ we use instead only the contact angle
β, where θ = π − β, then the equation becomes:

Einterface = 2πR2
[
γ(A,air)(1 − cosβ)+ γ(A,water) cosβ

+ γ(P,water) + γ(air,water) sin2(β)/2
]
.

(4.28)

B. Case of total de-wetting of the A-lobe and partial de-wetting of the lobe P, θ < α

and the general case α �= π/2.

E(A,air) = γ(A,air)A(A,air) = γ(A,air)2πR
2(1 + cosα), (4.29)

where

A(A,air) = 2πR(R − a) = 2πR
[
R − R sin(π/2 − β)

]
= 2πR

[
R − R sin(π/2 − π + α)

]
= 2πR

[
R + R sin(π/2 − α)

] = 2πR2(1 + cosα)

(4.30)
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E(P,air) = γ(P,air)A(P,air) = γ(P,air)2πR
2(cos θ − cosα), (4.31)

where

R − b = R − R sin(θ − π/2) = R + R sin(π/2 − θ) = R + R cos(θ) (4.32)

R − a = R + R sin(π/2 − α) = R + R cos(α) (4.33)

A(A,water) = 2πR2(cos θ − cosα) (4.34)

E(P,water) = γ(P,water)2πR
2(1 − cos θ)

A(P,water) = 2πRd ′ = 2πR(R + b) = 2πR2(1 − cos θ)
(4.35)

E(air,water) = γ(air,water)A(circular base radius r) = γ(air,water)πR
2 sin2 θ

A(circular base radius r) = πr2 = πR2 cos2(π/2 − π + θ) = πR2 sin2 θ.
(4.36)

Therefore, the total Gibbs free energy of the particle at the interface is:

Einterface = 2πR2
[
γ(A,air)(1 + cosα)+ γ(A,water)(cos θ − cosα)

+ γ(P,water)(1 − cos θ)− γ(air,water)(sin2 θ)/2
]
.

(4.37)

The surface energy of the Janus particles located completely in air(or oil) Eair(oil)
or water Ewater can be easily found by setting the angle β in the particle Gibbs
free energy equations to 0◦ or 180◦, respectively. Further, Binks and Fletcher
[13] also suggested that the interfacial activity of the particle should be evaluated
by the magnitude of its energy of interfacial detachment that should be equal to
Ewater − Einterface but this can be debated. Because the above energies scale with
R2, this criterion of evaluating the interfacial activity of the particle cannot be used
to compare particles of different size as the larger particle or even large particle,
let’s say a tennis ball would be the most interfacially active particle according to
this framework of thinking. Instead we proposed that the measurable effects in the
drop of the surface tension of the liquid or interfacial tension of oil–water should
be instead used as criterion for estimating the interfacial activity of particles. In
addition, this method is difficult to apply for JPs that are dumbbell shaped, for
example, because it is difficult to keep track of the position of the long axis, and
long axis tilt with the respect of surface normal, but in principle it can be done.
However, determining accurately the contact angle on particles it is very difficult and
therefore Ondarçuhu’s model is difficult to apply in practice. Therefore, determining
the Gibbs free energy of a particle at interface and especially of JPs is very
difficult.
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4.5.2 Inter-Particle Interaction at Interfaces vs. Lowering the
Interfacial Tension

Once adsorbed at the oil–water and air–water interfaces the HPs are capable of
interaction with other particles via electrostatic forces, van der Waals forces but also
capillary action due to the interface deformation that lead to repulsive and attractive
interactions. Because the latter is particularly true for the case of particles that
strongly deform the interface, or very rough particles that pin the interface line, due
to pinning the interface at a rough particle surface, for smooth colloids this is rarely
the case. Capillary interactions occur especially when large particles, depending
on their surface roughness, wettability by the liquid and buoyancy effect lead to
interfacial deformation, by changing the local curvature of the interface. The effect
of the capillary interaction can be attractive or repulsive depending on the local
curvature of the interface [52]. The capillary interaction forces between particles
bound at interfaces have been fully discussed by Kralchevsky and Nagayama [53].
This is also known as Cheerios effect, where the grains of cereals floating on the
milk clump together exactly due to this effect, deformation of the milk–air interface.

On the other hand, the surface charge on the JPs’ surface arises due to the
ionisation of the charged groups in water. The interaction between particles is
generally well described by the Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory. The expression for the overall electrostatic pair-potential interaction between
two point charges at the air–water interface was first derived by Stillinger [54] using
the Debye–Hückel theory. In non-aqueous solvents colloidal particles can also carry
charge, but in non-aqueous solvents this is typically much less than in water due
to lack of ionization of surface functional groups, therefore it is considered less
important in the stabilization of colloids. Therefore, upon adsorption the part of
the particle immersed in the water phase will remained charged, while the other
in the non-polar solvent or air will be neutral or less charged which leads to an
asymmetric formation of the double layer. This leads to the formation of a dipole
with its vector oriented perpendicular at the interface. The parallel orientation of the
dipolar interfacial vectors oriented in the same way leads to repulsion. Therefore the
overall contribution to the interaction pair-potential U(r) are the repulsive double-
layer interactions at the short range and dipole–dipole repulsion at longer range [55].
The magnitude of the dipole–dipole interaction is critical for particle assembly and
ordered 2-D crystal monolayer formation at the interface as noted by Pieranski [48].
Van der Waals interaction may also play a role but its effects are negligibly small
compared to the electrostatic repulsion.

With respect to interfacial tension or surface tension modification by particles
the adsorption of the HPs at the interface is expected to have some measurable
effects. In a recent study [56] the interfacial activity of simple non-amphiphilic silica
nanoparticles at air–water and hexadecane–water interface done with pendant drop
tensiometry has shown that indeed simple homogeneous particles produce a notable
effect in IFT drop upon interfacial adsorption. Silica HPs with most “favourable”
wetting, close to 90◦ reach the interface, are able to produce the strongest effect on
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the IFT drop. The magnitude in IFT drop is expected to be dependent on the bulk
particle concentration. Much earlier, Okubo [57] has shown the same effect on PS
nanoparticle, with most noticeable effect in IFT drop occurred when the particle
concentration was large enough that crystallites formation was already noticeable in
the bulk phase. Notable is also the work of Johnson et al. [58–60] that studied the
effects of TiO2 nanoparticle adsorption and found a similar dependence in IFT drop
with increase in HPs concentration. A measurable drop in the IFT of an air–water
or oil–water interface can occur as a consequence of the weakening of the cohesion
forces in the top-most interfacial layer, as it is the case for surfactants possessing an
alkyl tail which sticks out into the non-polar phase or air and is only able to weakly
interact with the neighbouring adsorbed particles, thus weakening the cohesion and
the IFT. Striolo et al. [61] have shown that the IFT decreases significantly when the
surface coverage is large enough that repulsive HP–HP interactions are expected.
The existence of strong inter-particle capillary interaction may lead to an increase
in the observed IFT as observed by Johnson and Dong [59].

Similar behaviour is expected for JPs, however with some differences. If the JPs
consist of the polar part and an apolar part decisive for their interfacial behaviour
is the polarity contrast between the Janus lobes and the role these play in JP–JP
interfacial interaction. Ignoring the interfacial deformation effects and excluding
the capillary interactions, the interfacial activity determined by the �IFT can be
more dramatic then say that observed for the HPs with the same size, surface
properties and composition as each of the Janus lobe. As pointed out earlier the
interfacial activity of the particles cannot be estimated solely by the interfacial
adsorption/desorption Gibbs free energy parameter because this scales with R2,
which becomes ambiguous when comparing particles that differ in size. Instead we
propose that the interfacial activity should be evaluated by the ability to decrease the
IFT of an interface—this is Janus effect. The Janus effect has been demonstrated by
Fernández-Rodríguez et al. [31] on PMMA/PtBMA JPs microparticles fabricated
by electrohydrodynamic co-jetting method and by us on PDIPAEMA/PS JPs
nanoparticles [62]. Yet, another example of enhanced interfacial activity of JPs
compared to the constituting HPs is that of Glaser et al. [45] which observed a
significant decrease in the IFT vs. time of Au/Fe2O3 JPs at hexane–water interface.
The ability of JPs to adsorb at interfaces and lower the IFT may find important
applications in oil recovery applications [63].

4.5.3 Activation and Adsorption Energies of JPs
Spontaneously Adsorbing at Interfaces

The adsorption of particles at interfaces is mostly entropically driven, the overall
free energy of the system decreases due to increase in the water entropy; the ordered
water layer on the surface of the particles becomes free upon particle interfacial
adsorption. The dehydration and re-solvation of the surface involves however some
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Fig. 4.10 Cartoon depicting the adsorption energy�E and the activation energyEa for interfacial
adsorption of JP at the oil–water. The JPs are drawn with a hypothetical orientation, long axis
perpendicular to the interface

energy costs and it is one of the factors contributing to the magnitude of the
activation energy barrier, Fig. 4.10. Activation energy can also arise due to particle-
interface electrostatic interactions, or between the incoming particles and already
adsorbed particles at the interface.

The adsorption energies of JNPs at interfaces can be calculated by first measuring
the contact angle of the JPs with the solvents from the two phases, adopting
a geometric model and performing the calculations as shown in Sect. 4.5.1. For
complex JP geometries such as dumbbell shape or disc shape, the contact angle with
each liquid phase is much more difficult to determine because it greatly increases
the complexity of the geometric model in Sect. 4.5.1, adding severe uncertainties
mainly due to many possible orientations of particles at the interface, the exact
value of the angle of the long axis of the particle with respect to the surface. A much
simpler way is to directly calculate the adsorption energy from the IFT vs. time
data using pendant drop tensiometry. In pendant drop tensiometry the IFT drop with
time can be monitored at oil–water interface for a long time. Same measurements
can be performed at the air–water interface but have the disadvantage of the liquid
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evaporation leading to relatively shorter observation times. Such measurements are
universally applicable to any interfacially active compound, for all types of particles
and surfactants. The IFT vs. time curves data represent the starting point and
opportunity to apply different kinetic models. The same kinetics models that apply
to HPs [44] also apply to JPs without restrictions. The dynamic IFT measurement
typically stops when �IFT remains constant over time, that is, a plateau equilibrium
value of the interfacial tension, γp, has been reached, Fig. 4.7.

Bulk particle concentration can influence the magnitude of the �IFT until
the interface becomes fully saturated. Determining the maximum �IFT achieved
at the highest concentration of particles is an important parameter for calculat-
ing the interfacial adsorption energy of the particle. A typical evolution of the
IFT vs. time function of concentration is given in Fig. 4.11 and corresponds to
PS-PDIPAEMA/P(3-TSPM) JPs at heptane–water interface [62]. Notice that γp
remains constant above a concentration of 10 mg/mL PS-PDIPAEMA/P(3-TSPM)-1
JPs meaning that the maximum �IFT was reached at this concentration. In addition,

Fig. 4.11 IFT vs. time curves of the heptane–water interface in the presence of PS-
PDIPAEMA/P(3-TSPM)-1 JPs at pH = 2: (a) 20 mg/mL, (b) 10 mg/mL, (c) 1 mg/mL, (d)
0.1 mg/mL and HNPs (e) at 10 mg/mL. Each data point is the average of three independent
measurements and the error bars in grey represent the standard deviation. The data was acquired at
21 ◦C. Reprinted with permission from Ref. [62]. Copyright 2017 American Chemical Society
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in the same figure the dynamic surface tension of JPs is compared to that of the HPs
of the same composition and size as each of the Janus lobe and can be concluded
that the latter are considerably less efficient than the JPs at lowering the IFT, in
agreement with other similar findings of Fernández-Rodríguez et al.[31], Glaser
et al. [45]. This demonstrates that the amphiphilicity of Janus particles enhances the
interfacial activity of the particles.

Dinsmore et al. [64] proposed that the lowest γp, reached when the interface
is fully saturated with particles, can be used to calculate the interfacial attachment
energy �E:

�E = −(γ0 − γp)πR
2/η, (4.38)

where γ0 is the IFT for the initial concentration of particles adsorbed at the
interface, Fig. 4.7, and R is the radius of the particles. Analysing the dynamic IFT
measurement curves in Fig. 4.11 for the polymeric JPs adsorbing at the heptane–
water interface, Wu and Honciuc [62] calculated energy of attachment �E using
Eq. (4.38) and the obtained values are compared to the values obtained at heptane–
water, toluene–water and air–water interfaces that are summarised in Table 4.2.
Interestingly the �E values for the JPs are larger than those of HPs at the
same interfaces within one order of magnitude, larger than those predicted by the
calculations of Binks and Fletcher [13].

The activation energy of adsorption can be determined from the same IFT
vs. time curves. As already mentioned the adsorption kinetics of any particle at
interfaces could be diffusion controlled, energy barrier controlled or a combination
of two [65–67]. The adsorption kinetics of HPs measured via pendant drop dynamic
IFT measurements are typically modelled using Ward and Tordai theory [68], which
considers that adsorption is controlled by the particle’s concentration and bulk
diffusivity followed by instantaneous adsorption at the interface. However, in the
presence of an energy barrier, the adsorption at the interface is much slower than
those predicted by purely diffusive models of Ward and Tordai. In order to account

Table 4.2 Activation energies of attachment of the PS-PDIPAEMA/P(3-TSPM) JPs and PS-
PDIPAEMA HPs at toluene–water, heptane–water and air–water interfaces and their diffusivity,
effective vs. actual

Interface D0 (m2 s−1) Deff (m2 s−1) Ea (kBT) �E (kBT)

JPs/toluene–water 1.65 × 10−12 5.41 × 10−15 5.8 −2.2 × 105

JPs/heptane–water 1.65 × 10−12 6.24 × 10−15 5.6 −2.9 × 105

JPs/air–water 1.65 × 10−12 1.47 × 10−15 7.1 −7.2 × 104

PDIPAEMA HPs/tol–water 4.94 × 10−12 3.39 × 10−15 7.3 −3.0 × 104

PDIPAEMA HPs/hep–water 4.94 × 10−12 1.23 × 10−14 6.0 −6.9 × 104

PPDIPAEMA-2 HPs/air–water 4.94 × 10−12 1.83 × 10−15 8.0 −2.0 × 104

Reprinted and adapted with permission from Ref. [62]. Copyright 2017 American Chemical
Society
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for this discrepancy Liggieri et al. [65] and Ravera et al. [66] proposed the effective
diffusion model that includes an activation energy barrier. In other words not all the
particles that arrive at the interface via diffusion also adsorb at the interface. Some
particles that have a low kinetic energy are not able to overcome the potential barrier
for surface adsorption and will diffuse back into the bulk, Fig. 4.7. The effective
diffusion model enables the calculation of the activation energy barrier from the
observed effective diffusion coefficient from the IFT vs. time data. The Deff can be
determined from the IFT vs. time data using the following equation [67]:

γ = γ0 − 2NAC0�E

√
Defft

π
, (4.39)

where C0 is the concentration of particles in bulk, γ0 is the surface tension of the
clean interface and �E is the attachment energy calculated with Eq. (4.38). By
fitting the earlier portion of the IFT vs.

√
t time curves one can calculate the Deff.

Fitting only the earlier portion of the curves is justified by the fact that the incoming
particles meet a pristine interface in the first stage of adsorption, at a later time
the electrostatic repulsion between the adsorbed and incoming particles dominates,
Fig. 4.7 [67]. The obtained effective diffusion coefficient Deff can be compared with
the ones calculated from the Stokes–Einstein equation:

D0 = kBT

6πμR
, (4.40)

where μ is the viscosity of water and R is the hydrodynamic radius of the particle.
The Deff is typically much lower than the Stokes–Einstein diffusivity if an energy
barrier is indeed present. Basavaraj et al. [67] obtained differences between Deff vs.
D0 as large as three orders of magnitude for 10 nm silica particles at dodecane–
water interface. The activation energy for attachment can be further calculated from
the equation:

Deff = D0 exp

(−Ea

kBT

)
, (4.41)

where Ea is the activation energy of attachment at interfaces. The calculated values
of �E, γp, Deff and D0 and Ea for PS-PDIPAEMA/P(3-TSPM) JPs and the PS-
PDIPAEMA HPs at three interfaces are compared in Table 4.2, whereas P(3-TSPM)
HPs are not interfacially active. A quick inspection of the data shows that the Deff
effective diffusion coefficient is three orders of magnitude lower in all cases than
for the Stokes diffusion coefficient calculated with Eq. (4.40), which can only be
explained by the existence of an activation energy barrier. The Ea values are the
largest for the air–water interface and the lowest for the adsorption at the heptane–
water interface which can be explained in part by the good ability of heptane to
“wet” and replace the water hydration layer from the JP surface, while at the air–
water interface the high cost of JPs’ surface dehydration remains uncompensated.
Further, the value of �E for JPs than HPs, up to ten times at the heptane–water
interface and up to three times at the air–water interfaces is larger than the three
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times upper limit predicted by the calculations of Binks and Fletcher [13]. The
reason for this discrepancy may lie in the shape of the particle, which is snowman
type while Binks and Fletcher have treated a perfectly spherical shaped JP.

4.6 Pickering Emulsions: Arrested JPs at Interfaces

Emulsions are mixtures of two immiscible liquids, typically oil and water, that find
many applications ranging from food, cosmetics, pharmaceuticals and enhanced
oil recovery. The emulsions destabilise via coalescence and Ostwald ripening
resulting in phase separation, therefore enhancing their stability and extending the
shelf-life of emulsion-based products represents an important topic for research
and development. Pickering emulsions are emulsions stabilised by particles and
have been named after the British chemist and horticulturist S.U. Pickering who
first discovered them in 1907. The particles adsorb at the interface between oil–
water and prevent the formed droplets from coalescing. When producing Pickering
emulsion typically external energy input is required in form of mechanical stirring or
ultrasonication. One advantage of the Pickering emulsions as compared to standard
surfactant emulsions is their stability. Pickering emulsions can be used in a variety of
applications from, drug delivery, scaffolding materials for tissue and bone growth,
environmentally responsive materials, catalysis [69]. Yang et al. gave a general
description of Pickering emulsions and their applications [69].

A variety of homogeneous and asymmetric nanoparticles can be used for
stabilising and forming Pickering emulsions. Particles are first dispersed in one of
the phases, but typically in water, and then oil is added and then high shear forces
are applied, either by ultrasonication, shaking or high-power stirring. For particles
that exhibit good interfacial activity the external energy input can also be lower
and gentle shaking by hand may suffice for producing emulsions. It is important
to note that when external energy is applied via ultrasonication or shearing forces,
particles acquire high kinetic energy, easily overcome the activation energy barrier
to interfacial attachment as depicted in the cartoon in Fig. 4.10. Due to the energy
input one of the phases becomes dispersed forming droplets whose interface is
then “bombarded” by particles and becomes quickly saturated. The particles are
irreversibly trapped at the interfaces, because the desorption energy is very high,
some refers to this as arrested particles at the interfaces or arrested adsorption.

Depending on the affinity to one phase or the other, oil-in-water (o/w) or water-
in-oil (w/o) emulsions can be obtained. The phase of the emulsion is determined by
the particles’ affinity to one phase or the other according to Finkle et al.[70] and
similar to the Bancroft rules [71]. For example, hydrophobic carbon black particles
are more likely to form w/o emulsions than the silica particles, due to their higher
affinity to the apolar phase than to water [72]. Affinity of the particle to one of
the phases translates into a preferred immersion depth into one phase or the other,
changing in this way the curvature of the interface toward one phase or the other,
as depicted in Fig. 4.12. Affinity of a particle to the interface has to do with its
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Fig. 4.12 Cartoon depicting the emulsion phase as function of the immersion depth (affinity) of
a particle into the oil phase or the water phase (left) formation of o/w emulsions when the affinity
of the particles is greater for water; (right) formation of w/o emulsion when the affinity of the
particles is greater for oil

wettability, contact angle and eventually the immersion depth at the interface. If the
immersion depth in one of the phases is stronger than the curvature of the interface
will be such that the dispersed phase becomes the phase in which the particles are
least immersed.

Why choosing JPs over HPs for Pickering emulsions? It has been demonstrated
that the JPs are more interfacially active than the HPs due to their amphiphilicity.
From the thermodynamic point of view the JPs stabilised emulsion are energetically
more favourable than the HPs due to the positive line tension acting at the three-
phase line oil–water–particle [73]. In addition, the surface polarity of HPs can be
hard to control by surface chemical modification, often involving surface capping
agents that are themselves surface active and do interfere in emulsification ability.
It is for this reason why the surfactant-free JPs are more attractive than HPs in
emulsification and other interfacial applications, because of the ability to precisely
and gradually tune their overall polarity. Their surface energy can be varied by
changing the aspect ratio between the lobes of different polarities to the desired
conditions without using modifying agents like surfactants.

For example, a homologous series of five nano-sized PS/P(3-TSPM) JPs with
different relative lobe sizes were tested for their emulsification ability of different
volumetric ratios of heptane:water mixtures (heptane is a purely apolar liquid)[74].
Photographs of the emulsions obtained with these JPs series and the corresponding
fluorescence microscopy images are presented in Fig. 4.13, whereby the top row
depicts the SEM images of each particle in the homologous series; the first particle
is PS HPs from which the second Janus lobe (brighter lobe) was generated, in
addition the oil phase is fluorescent and the dark phase is water. The yellow line
delimitates the boundary at which the emulsion phase inversion from w/o (top of
the line) to o/w (bottom of the line) emulsion takes place. The horizontal yellow
line depicts a transitional emulsion phase inversion that depends on the polarity of
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Fig. 4.13 Formulation—composition maps with photographs of emulsions in glass vials and their
corresponding fluorescence microscopy images (scale bar is 400 nm) obtained with PS/P(3-TSPM)
JPs. The top row depicts seed HPs and five PS/P(3-TSPM) JPs with increasing P(3-TSPM) lobe
sizes (scale bar is 200 nm), while the subsequent three rows represent a different volumetric ratio
of heptane to water and the six columns represent the emulsification results from each particle.
The yellow line indicates the w/o and o/w emulsion phase boundary; the vertical arrow indicates
the catastrophic and the horizontal the “static” transitional phase inversion. The fluorescent phase
is the oil phase and the dark phase the water. Reprinted with permission from Ref. [1]. Copyright
2016 American Chemical Society
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the particle, its affinity to one of the phases and eventually its immersion depth
according to the cartoon in Fig. 4.12. This is the principle behind creating stimuli-
responsive emulsions, discussed later. The vertical arrow indicates a catastrophic
phase inversion that depends on the volume oil:water; when the ratio of one of the
phases is considerably lower than the other phase, then the probability that this
becomes the dispersed phase is higher. Note that the catastrophic phase inversion
does not affect the particle immersion depth at the interface. From the results
in Fig. 4.13 it is clear that the HPs (first column) are apolar, because they are
only capable of forming w/o Pickering emulsions for all heptane:water ratios. A
transitional emulsion phase inversion from w/o to o/w takes place in the middle
of the homologous series, meaning that with the growth of the P(3-TSPM) the JPs
become more polar and the affinity of the largest lobe JPs is greater toward water.

Other types of oils differing in their polarity and viscosity can be emulsified
in water with JPs. Monomers, fragrant oils, polymers and organic solvents can
be emulsified into Pickering emulsions. Further, Honciuc et al. [42] have shown
that by changing the polarity of the emulsified oil the interfacial energy of the
particles with the oil and water can be estimated. If monomers are used instead as
oils, the Pickering emulsion can be subsequently polymerised resulting in solid-
state polymers with nanostructured surfaces, see Fig. 4.14, and other advanced
materials [42].

Fig. 4.14 (a) Polystyrene/JNP colloidosomes resulting from the polymerisation of a styrene-in-
water emulsion obtained with PS/P(3-TSPM) JPs. Reprinted with permission from Ref. [42]. (b)-
(d) zoomed in surface regions of the colloidosome, showing tight packing of the JPs monolayer.
Copyright 2017 American Chemical Society
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Stimuli-responsive Pickering emulsions can also be designed by using stimuli
responsive particles. Upon adsorption of particles at interfaces the emulsion gen-
erated acquires the functionality of the populating particles. For example, Tu and
Lee [38] have created stimuli-responsive Pickering emulsions from PS/PAA JPs
which are capable of phase inversion due to deprotonation at high pH of the -COOH
groups and thus polarity of the particle increases and becoming capable of forming
o/w emulsions.

In a different example, Pickering emulsions stabilised by PDIPAEMA/P(3-
TSPM) JPs it was also possible to induce an emulsion phase inversion by changing
in situ the pH value of the water phase below and above the pKa value of the -
NR3 groups at the surface of the PDIPAEMA JP lobe, Fig. 4.15. When the pH is
changed in situ and an already formed Pickering emulsion inverses its phase it is
called a dynamic transitional emulsion inversion [72] in contrast to static transitional
emulsion inversion that assumes the preparation of the emulsion at the given pH.
Such pH-responsive Pickering emulsion could be employed in encapsulations and
triggered release applications.

The use of Pickering emulsions in phase selective catalysis demonstrates the
potential advantages and opportunities offered by the asymmetric architecture of
the JPs. A conclusive example is that of Resasco et al. [75] which have produced
JPs and loaded them with Pd nanoparticles selectively only on the hydrophobic
side to produced Pd/JPs and non-selectively deposited everywhere to produce HPs.
Next with these two types of particles they have created Pickering emulsions from
decalin and water. The decalin phase contained benzaldehyde that was insoluble in

Fig. 4.15 Pickering emulsions stabilised by PDIPAEMA/P(3-TSPM) JPs showing dynamic
emulsion phase inversion with the pH: (a) as prepared o/w Pickering emulsion (toluene:water =
4:5 ratio, pH = 4.0) changing to w/o after addition of base; (b) as prepared w/o Pickering emulsion
(toluene:water = 4:5 ratio, pH = 10) changing to o/w after addition of acid. On top photographs
of the vials containing the Pickering emulsions, with 0.1% hydrophobic dye and bottom the
fluorescence microscopy images showing the corresponding Pickering emulsion type (scale bar =
200 μm). Reprinted with permission from Ref. [62]. Copyright 2017 American Chemical Society
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water and the water phase contained glutaraldehyde that is insoluble in oil. Next,
the two emulsions were hydrogenated and surprising results were obtained: when
the catalyst contained Pd on both sides of the Janus particles, high conversion
levels were obtained for both reactants, about 80% for glutaraldehyde in the
water phase and 100% for benzaldehyde in the oil phase. However, when the
catalyst had Pd selectively deposited on the hydrophobic side, the conversion of
benzaldehyde was kept at 100%, while the conversion of glutaraldehyde decreased
to 2%, demonstrating high phase selectivity, of JP stabilised Pickering emulsions.
Similarly, Liu et al. [76] used Au nanoparticle modified SiO2/PS-PDVB of the JPs as
interfacial catalysts for the catalytic reduction of 4-nitroanisole to 4-aminoanisole.

4.7 Self-Assembly of Janus Particles

Similar to molecular surfactants JPs can also self-assemble into suprastructures.
The key parameters behind the self-assembly of JPs are the right balance between
the repulsive/attractive forces and their geometry that greatly influences the type
of suprastructures formed [77, 78]. It is well known that HPs can assemble into
colloidal crystals with iridescent appearance and find use in photonics [79, 80],
electronics [81, 82], catalysis [83], (bio)sensing [84, 85], etc. In contrast, JPs
can give rise to a larger variety of self-assembled suprastructures [86], such as
trimmers [87], spherical micelles [88], capsules [89] and crystals [90], which can
be of great importance for obtaining novel reconfigurable materials and assemblies
at non-equilibrium also referred to as “active matter” that can perform different
functions [91]. The different variety of suprastructures that can be formed arise
from JPs anisotropy due to geometrical or topological constraints [92, 93], which
affect their interaction and packing. JPs may find analogues in nature such as
large proteins that exhibit polarity domains on their surface and exhibit anisotropy.
Anisotropic proteins form self-assembly structures with precise morphology and
specific functional role [94]. The ability of JPs to self-assembly into complex
and regular structures that show unusual and reconfigurable properties [91] is a
remarkable property and is one of the main driving motivations for further research
in this area [93].

The particle–particle interaction drives the self-assembly of JPs in monophasic
solvent, but their assembly can also be mediated by a minority liquid in a biphasic
system, such as, for example, by placing spherical Au/SiO2 JPs in a binary system of
water/2,6-lutidine binary fluid leading to 2D and 3D clusters or zig-zag chains [95].
Other examples of JPs self-assemblies mediated by liquids in water/n-dodecane
mixtures; in this case water was the minority liquid, mediating the self-assembly
formation via capillary forces due to the formation of water bridges between
particles. By progressively increasing the fraction water, a variety of structures from
micelles, worm-like micelles and spherical emulsion droplets of spherical Au/SiO2
JPs were obtained, Fig. 4.16 [96]. Eventually, when the minority liquid is large
enough these transform into colloidosomes of Pickering emulsions, Fig. 4.16g–j;
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Fig. 4.16 Optical
microscope images showing
α-dependence of the
morphology in
self-assembled structures,
where α is the fraction of
water (minority liquid) added
in n-dodecane. (a–i) Optical
microscope images of typical
structures formed at
respective α. (a) Random
aggregate. (b) Small
micelle-like cluster. (c–e)
Rod-shaped micelle-like
clusters. (f) Structure
observed at a value of α
where rod-shaped
micelle-like clusters and
spherical droplets coexist.
(g–i) Spherical droplets in
emulsions. (i) Hemispherical
droplet attached to the bottom
of the observation cell. (j)
Magnified image of the
framed region in (i). (k)
Diagram of the α-range of the
observed structures. The scale
bars are 5 μm in (a) and (b),
10 μm in (c)–(h) and (j) and
50 μm in (i). Reprinted with
permission from Ref. [96].
Copyright 2017 American
Chemical Society

in addition the JPs are oriented with their polar lobe toward water. Hu et al. [97]
showed that by further chemical alteration of the metallic side linkable Janus metal-
organosilica particles capable of forming dimers and trimers can be created.

Because JPs can adsorb at the air–water interface, they can also act as gas bubble
stabilisers and thus air bubbles can act as templates for the self-assembly. Gas
bubbles and emulsions have similar properties, e.g. the gas can be thought of as a
highly hydrophobic fluid. For example, Fujii et al. [98] obtained large mono-walled
vesicles from Au/SiO2 JPs; the orientation of JPs in the walls could be changed
by chemical modification of the Au lobe with different polymers, PS, PPFBEM
(Fig. 4.17).
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Fig. 4.17 SEM images of bubbles stabilised by the (a, d) Au-SiO2, (b, e) PS-g-Au-SiO2 and (c,
f) PPFBEM-g-Au-SiO2 Janus particles. Panels d–f are magnifications of panels a–c, respectively.
Reprinted with permission from Ref. [98]. Copyright 2017 American Chemical Society

4.8 JP-Based Nanomotors

Self-propelled, active colloidal systems are of great fundamental interest with
potential applications in nanomachineries, nanoscale assembly, catalysis and sens-
ing [99]. Due to their asymmetry JPs possess the right architectures for making
nanomotors [100] and the ways to power these externally have been extensively
discussed by Shields and Velev [100]. For self-propulsion a motor needs fuel and
in order to propel a Janus particle one side of it must be made apt for propelling
the particles. One way this can be achieved is by making one lobe of the JPs from
a metal that catalyses the decomposition of the H2O2 on its surface, such as Pt; the
resulting decomposition products O2 and H2O act as propelling jet for the JPs. In
this way the motion of the particle deviates from that of a pure Brownian motion
and enhances the diffusivity of the particle in the bulk solution. The self-propelled
JPs are also capable of transporting a cargo. Sanchez et al. [101] coated mesoporous
silica nanoparticles on one side by evaporation of 2 nm thin Pt metal. The resulting
JPs exhibited an enhanced diffusion coefficient of up to 100% and Rhodamine B
could be loaded into the pores of the silica nanoparticles. The presence of H2O2
may limit however their application in vivo for drug delivery. Wang et al. [102] used
a different fuel/metal system by deposition Ir-metal on one side of silica particles
and using hydrazine (well-known monopropellant for rocket motors); N2, H2 and
NH3 molecules are generated at the Ir surface as a result the JP motor moves
unidirectionally in the direction of the silica face. The group of Joseph Wang also
showed that the capabilities of cargo transport of JP self-propelled motors are not
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Fig. 4.18 Self-organised cargo loading. Time-lapse images (over 2 s) of the track lines of
motor/nonmotor assemblies: transport of 3 (a) and 6 (b) nonmotor spheres (taken from SI Video 7).
Scale bar, 5 μm. Reprinted with permission from Ref. [103]. Copyright 2013 American Chemical
Society

only limited to small molecules but to other particles; using H2O2 fuel and Pt/SiO2
JPs hydrophobised on the SiO2 side with OTS, they could observe that JP motors
can anchor HPs via hydrophobic interaction then transport them unidirectionally to
a different location [103]. Impressively, one JP motor could transport up to six HPs.
The mechanism of self-propulsion is well understood [104] and is achieved due to
an asymmetric catalytic reaction occurring on the surface of the JPs. The role of the
geometric shape in the unidirectional propulsion of JPs was also discussed [105]. By
trapping Pt/SiO2 JPs at the air/water surface Stocco et al. [106] were able to enhance
the unidirectional motion of JPs as compared to bulk due to slowing down of the
rotational diffusion at the interface and constraining it into a rotational well [36].

JPs’ capabilities to self-assemble and unidirectional motion can be combined
to achieve very unique operational functions, such as particle cargo applications
[102, 103]. In Fig. 4.18a it is depicted the asymmetric cluster formation between a
JP and three HPs; the three HPs are all attached to the alike JP lobe. The dark lobe
catalyses a chemical decomposition reaction that is able to cargo the other particles
and push them unidirectionally to a different location; one JP can transport up to 6
HPs, Fig. 4.18b.

4.9 Conclusions

Janus particles demonstrated a net superiority when compared to HPs in terms of
interfacial behaviour and are therefore attractive for use in a plethora of interfacial
applications. Stabilisation of Pickering emulsions, stabilisation of gas bubbles and
foams are typical applications in which JPs have revealed their versatility. Further,
due to their asymmetric architecture JPs open new horizons for particle applications.
A few such possibilities have been already demonstrated, such as the self-assembly
into reconfigurable suprastructures, paper display applications of bi-coloured JPs
or cargo loading operation and transport of up to six particles by a single JP from
point A to point B through chemically powered unidirectional motion. The future
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application potential of the JPs appears limitless and further research may uncover
even more extraordinary functions. The strength of these particles lies in the ability
to carry different and often contrasting properties and functionalities on each of
their lobes. These properties can be bulk-like properties or surface properties. For
example, one can combine electric, magnetic and optic properties on each Janus
lobes in addition to amphiphilicity, a surface property [6]. By doing this one can
couple surface and bulk properties and combine them in surprising new ways. Never
before, has the application potential of particles been more exciting than the one
opened by the Janus particles.
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Chapter 5
Upscaling Flow and Transport Processes

Matteo Icardi, Gianluca Boccardo, and Marco Dentz

5.1 Introduction

Countless environmental, industrial and biological applications involve fluids flow-
ing through complex media or heterogeneous environments. These can be soil, sand
and rocks in aquifers and reservoirs, industrial separation and filtration devices, bio-
logical membranes and tissues, composite materials. Although all the fundamental
laws and modelling approaches of fluid dynamics still apply, a completely different
perspective has to be taken to deal with geometrical and physical complexity and
multiscale structure of the underlying media. This is generally done by means of
upscaling or averaging techniques, not different than the ones used to deal with
the multiscale structure of turbulence. The main difference between flows through
porous media and turbulent flows lies in the fact that the latter is an emerging
phenomena purely due to the nonlinearity of the Navier–Stokes equations, while
the former inherits its multiscale complexity directly from the geometrical and
physical properties of the material. This means that, even starting from linearised or
simplified flow regimes (e.g., Stokes), interesting emergent macro-scale dynamics
can appear due to these properties. The ultimate scientific challenge is to develop a
quantitative link between the properties of the media and the upscaled parameters in
the macroscopic dynamics. Although a wide range of these emerging dynamics are
more easily observed and studied than the turbulent structures (which, by nature, are
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hardly reproducible),1 the high dimensionality of the set of all possible geometrical
structures makes a systematic research and a predictive model development (e.g.,
closures, parameter estimation, etc.) particularly challenging. As turbulence models
are naturally first developed and tested on clearly defined scenarios (such as the
periodic isotropic turbulence or wall-bounded flows), similarly upscaled porous
media models have traditionally been derived from simple granular materials, such
as sphere packings. While the former usually assume the existence of a continuum of
length scales, as dictated by the classical turbulence theory, the latter typically rely
on clearly defined and well-separated scales (usually two or possibly more). These
assumptions, however, are only very crude approximations of the actual natural and
engineered media, and can lead to significantly misrepresent the overall transport
processes.

In this chapter, while presenting the fundamentals of flow and transport through
porous media (intended in the classical sense) and some of the specific methodolo-
gies and challenges, we take a more general point of view, focused on the underlying
upscaling procedures and their assumptions, to help smooth out the still existent
barrier between porous media and fluid dynamics research.

5.2 Flow Through Porous and Heterogeneous Media

As already mentioned, although the concept of upscaling and averaging is present
in many fluid dynamics problems, particularly relevant to many applications is
the understanding of the emerging dynamics of fluid flowing through multiscale
(porous) materials. As we will discuss in Sect. 5.2.1, the peculiarity of this problem
is due to the presence of large surface areas where no-slip conditions generate, in the
first approximation, linear damping in the momentum equation, proportional to an
effective parameter known as permeability of the media. However, natural porous
materials, such as soil and rocks, can have a highly irregular and heterogeneous
structure, causing this emerging effect to be significantly space-dependent. Due to
the limited a priori knowledge of the exact geology, this space heterogeneity is often
modelled as a random field. This gives rise to another important upscaling problem,
namely understanding the effect of meso- and macro-scale heterogeneities in the
permeability. This is discussed in Sect. 5.2.3.

In both cases, crucial to the upscaling process is the solution of a closure problem,
solved on a representative elementary volume (REV). This can be understood at
different levels. The first simple definition of REV can be based solely based on
geometrical information such as the porosity of the material, φ, i.e., the volume
fraction of void space available for the fluid. This, being a very simple averaging
process, can be computed on different length scales �, i.e., φ = φ(�). For increasing

1For example, with the recent development of 3D printing, a wide range of porous media structures
can be synthetically recreated and tested.
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�, if the media has only finite-size heterogeneities (or well-separated scales) and
no fractal structure, this converges to a finite number 0 < φ0 < 1. This implicitly
defines a minimal REV of size �φ . Even assuming the existence of this well-defined
REV, the actual upscaling of transport and flow processes involves the average of
fluctuating quantities (or closure variables), which are solutions of a differential
model. This might require a much larger size to converge to a constant. For periodic
structures, in the assumption of stationary (fully developed) profiles and local
equilibrium (imposed through the pseudo-periodicity of the variables), the periodic
cell represents not only the geometric REV but also the right REV for all processes.
Relaxing these periodicity assumptions means allowing random “perturbation” in
the material that results in a larger geometrical REV, and, possibly, in perturbation
in the solution persisting over bigger scales. This means that, to obtain well-defined
(e.g., space-independent) macroscopic effective parameters, the existence and size
of the REV cannot be known a priori and could be significantly larger than the
one obtained from purely geometrical considerations. This consideration applies not
only to the upscaling of the flow discussed below (which could indeed need a REV
much larger than the geometrical one) but also to the upscaling of transport and
reaction processes (discussed in Sect. 5.3), and, more significantly to all non-linear
and more complex models (such as multiphase flows).

5.2.1 Darcy’s Law

The earliest approaches to the study of flow in porous media were directed to the
derivation of simple linear relation between pressure drop and superficial velocity,
and implicitly made use of a macroscopic description of a continuous (pseudo-
homogeneous) fluid–solid domain. Henry Darcy, who investigated the sand filter
system employed in the delivery of freshwater to the city of Dijon, first proposed
this relation, now known as Darcy’s law:

− δP

L
= μ

K
q, (5.1)

where δP is the integral pressure drop (or the so-called pressure head, including
hydrostatic pressure) across the porous medium, L is its length and thus char-
acterises flow in saturated porous media via its permeability, K , and the fluid
superficial velocity q. This law, originally derived on purely phenomenological and
experimental grounds, can be intuitively extended in three dimensions, as a force
balance between pressure gradient and linear wall stresses, neglecting the transient
and inertial term in an upscaled form of the Navier–Stokes equation:

− K∇P = μq , (5.2)
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where K can now be more generally a symmetric tensor, not necessarily isotropic,
i.e., pressure gradients in one direction can possibly cause flow to happen in an
arbitrary direction, due to non-symmetric porous structures. This result can also be
rigorously derived using the tools of homogenisation or volume-averaging [1, 2],
upscaling the incompressible Stokes’ law to obtain Darcy’s law. Equation (5.1),
while still being useful in many porous media systems, has been found to have its
limitations. The first is related to the relative magnitude of the superficial velocity q.
More appropriately, and by analogy with the usual analysis of the laminar–turbulent
flow transition, it can be expressed in terms of the Reynolds number where the
system’s characteristic length is the average grain diameter or pore width. As such,
in the vast majority of cases, Darcy’s law will find an upper range of validity at Re
ranging from one to ten [3]. Other cases, where a more complex equation has to be
used, include the already mentioned fractal porous media (where the permeability is
no more a constant but a non-local kernel), multiphase flows, non-Newtonian fluids,
non-equilibrium flows.

5.2.2 Extensions of Darcy’s Law

For high Reynolds numbers, the linear relationship expressed in Eq. (5.1) between
superficial velocity and the hydraulic gradient (δP/L) ceases to be valid, making
Darcy’s law unsuitable for describing the nonlinearities arising under these condi-
tions. Although there has been some controversies [4, 5] about the correct extension
of Darcy’s law to transitional and turbulent flows, the most commonly used equation
that can be used to that end is the Darcy–Forchheimer equation:

− δP

L
= μ

K
q + βρq|q|, (5.3)

where β is the so-called inertial flow parameter and, like K , is independent of
fluid properties and only depends on the microstructure of the porous medium.
Various attempts at an explanation of this phenomenon have been made: the most
intuitive of which would be to ascribe this nonlinearity to the onset of turbulence,
by immediate analogy with the relationship between head loss and fluid velocity
for the flow in pipes, which becomes non-linear right after the transition to the
turbulent region corresponding to higher Reynolds numbers. The problem with
this approach is that, while for the flow in pipes the laminar and turbulent zones
are clearly identifiable, the transition in the case of flow in porous media is much
smoother, with no clear separation between the two: this can be related to what is
known for flow around spheres, where the same behaviour is found. A number of
experiments were conducted in the past to identify the critical Reynolds number
associated with the transition to the turbulent zone in porous media, and found it to
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be several orders of magnitude higher than the Re at which the nonlinearities begin
to become apparent [6].

Beyond these difficulties caused by non-trivial changes in the fluid dynamic
structure at the pore-scale when transitioning to high Reynolds numbers, there are
also a number of other notable extensions, for which, brief pointers follow.

Multiphase and Unsteady Flows

While single-phase flow in porous media (also known as saturated) are generally
steady, a trivial extension is to add a time derivative term to model unsteadiness
caused, for example, by time-dependent pressure boundary conditions. However,
when dealing with multiphase flows, the time-dependence naturally appears. While
density-driven miscible Darcy’s flows are easily obtained, immiscible multiphase
extensions of the Darcy’s equation rely on much stronger assumptions (see also
the discussion in Sect. 5.5). The simplest form of multiphase flow is the Richards’
equation that describes a water plume travelling through a steady Darcian flow field.

Brinkman

One early and well-known approach to bridge the gap between the free flow
and the Darcy’s descriptions was put forward by Brinkman, whose eponymous
equation adds a viscous term to the Darcy’s equation (usually with an effective
viscosity which is not necessarily equivalent to the viscosity of the fluid). Rigorous
derivations of the Brinkman equation with homogenisation have been proposed [1],
with the contemporary presence of the Darcy and Brinkman terms, under a specific
scaling for the geometrical properties of the porous structure. Furthermore, the
Brinkman equation has found interesting applications as a unified numerical approx-
imation (e.g., penalisation approaches [7]) that, for limiting cases, can recover both
Stokes and Darcy equations.

Non-Newtonian

When considering non-Newtonian fluids, the Darcy’s law for low fluid velocities
is still used, with a modified “porous medium viscosity” comprising the non-
Newtonian effects. In the higher velocities ranges, the interplay between shear-
thickening effects and turbulent nonlinearities becomes more difficult to understand:
both formal attempts of upscaling via volume-averaging [8] and accurate computa-
tional pore-scale simulations in reconstructed geometries [9] have been presented.

Knudsen

Finally, the constant assumption of all the theory presented up until this point (and
henceforth, excluding this paragraph) has been that of considering the fluid as a
continuum and as such, to employ the mentioned no-slip condition on the solid
matrix boundary. In practice, many real-world systems (e.g., rarefied gases, shale
gas) are characterised by Knudsen flow, and are not treatable within the usual
framework, leading to non-trivial additions of slip-flow corrections to effective
permeability.
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5.2.3 Heterogeneous Media

As described in the previous section, the (space) averaged flow behaviour on
the scale of a REV is described by the Darcy’s equation. Here we consider the
transition from the Darcy to larger scales of heterogeneity. For geological porous
media, this means an order of metres or hundreds of metres. Here, spatial or
ensemble (considering random realisations of geological structures) averaging, or
a combination of both, can be used to study emerging macroscopic dynamics. We
denote here both averaging operation with the bracket notation 〈·〉 and we limit
our discussion to the steady state Darcy flow equation with heterogeneous medium
properties

q(x) = −K(x)
μ

∇P(x), ∇ · q(x) = 0. (5.4)

which is equivalent to a Laplacian equation for the pressure. This description implies
that the flow field is helicity-free, i.e., q(x) ·∇ ×q(x) = 0. This means that there are
no closed streamlines in d = 2 dimensional Darcy flow. For d = 3 dimensions, zero
helicity implies that streamlines are either closed or organised on two-dimensional
toruses [10]. These topological properties prohibit chaotic flow and thus have an
impact on the stretching of material lines and surfaces.

The systematic upscaling of flow and transport upscaling in heterogeneous
porous media has been performed with stochastic approaches in order to model the
spatial variability of permeability [11–13]. This is motivated, on the one hand, by the
incomplete knowledge of the small scale fluctuations of K(x), and on the other hand
by the desire to identify the large scale behaviour due to “typical” spatial random
fluctuations and quantify it in terms of only a few geo-statistical characteristics.
This requires certain assumptions such as statistical stationarity and ergodicity. In
this framework, the log-permeability f (x) = ln[K(x)] has been modelled as a
multi-Gaussian random field, which implies that K(x) is a multi-lognormal random
field. This can be understood as follows. Consider a set of f (x) values evaluated at
positions xi (i = 1, . . . , n) in the medium. The set {f (xi )}ni=1 is modelled now
as a spatial stochastic process, which is characterised by a joint Gaussian PDF
characterised by the covariance matrix Cij = C(xi − xj ),

P({f (xi )}) =
exp

[
−∑n

i,j=1 f (xi )C
−1
ij f (xj )/2

]
(2π)n

√
det(C)

. (5.5)

The variance of f (x) is given by σ 2
ff = C(0). The covariance C(x) is typically

modelled as a short-ranged function that decays on characteristic length scales, the
correlation lengths. For an overview of common covariance models, see Refs. [11–
13]. A statistically isotropic medium is characterised by a single correlation scale �.
For anisotropic media, the correlation scale depends on the spatial direction.
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In this framework flow is upscaled in terms of an effective permeability Ke

tensor [14, 15], which is defined by

〈q(x)〉 = −Ke

μ
〈∇P(x)〉. (5.6)

Here we focus on statistically isotropic media, for which Ke
ij = Keδij . Note that

Ke is in general not equal to the arithmetic average 〈K(x)〉.
In the following, we first report on some exact results for the effective perme-

ability for flow in layered media and two-dimensional multi-Gaussian permeability
fields. Then we discuss briefly perturbation theory results and conjectures for three-
dimensional media.

Exact Solutions
For layered porous media, permeability is constant along one of the coordinate
axis and variable in the other directions. This means the correlation length is
infinite along one coordinate axis. For simplicity, we consider the case of 2 spatial
dimensions. For a pressure gradient parallel or perpendicular to the layering exact
solutions for the effective permeability exist. The direction of the mean pressure
gradient in the following is aligned with the x-direction.

For flow aligned with the direction of stratification, the flow problem has an exact
solution, which is

q(y) = −K(y)〈∇P(x)〉. (5.7)

In this case, Ke = KA = 〈K(y)〉, the effective permeability is equal to the
arithmetic mean permeability. For flow perpendicular to stratification, the exact
solution is

q(x) = −
⎡
⎢⎣μ
L

L∫
0

dx′

K(x′)

⎤
⎥⎦

−1

〈∇P(x)〉. (5.8)

where L is the length of the flow domain. Here the effective permeability is given
by the harmonic mean Ke = KH = 1/〈K(x)−1〉.

For flow in isotropic two-dimensional multi-lognormal permeability fields with
finite correlation length, the effective permeability is exactly given by the geometric
mean [16, 17],

Ke = KG exp
(−〈f (x)〉) . (5.9)

This result can be derived based on a duality between stream function and flow
potential using the fact that both K(x) and 1/K(x) are lognormal distributed.
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Perturbation Theory

For three-dimensional heterogeneous porous media, the duality argument invoked
for two dimensions does not hold. Thus, the effective permeability has been
determined using perturbation theory in the fluctuations of log-permeability about
its mean value, f ′(x) = f (x)− 〈f (x)〉, which gives [18–20]

Ke = KG

⎛
⎝1 + σ 2

ff

6

⎞
⎠ , (5.10)

which is strictly valid only for σ 2
ff � 1. For larger values of σ 2

ff and d spatial
dimensions, Matheron [18] conjectured the expression

Ke = KG exp

[
σ 2
ff

(
1

2
− 1

d

)]
, (5.11)

which for d = 2 gives the exact result Ke = KG and in d = 3 and small σ 2
ff � 1 is

consistent with the perturbation theory result Eq. (5.10). The effective permeability
is bounded between the harmonic and arithmetic mean, KH ≤ Ke ≤ KA.

5.3 Macroscopic Transport Models

Transport in heterogeneous media can be described by the advection–dispersion
equation

∂c(x, t)
∂t

+∇ · v(x)c(x, t)−∇ · [D(x)∇c(x, t)] = 0. (5.12)

At the pore-scale, the velocity field v(x) is obtained from the Stokes equation
and the dispersion tensor reduces to D = DmI , where Dm is the molecular
diffusion coefficient and I the identity matrix. At the Darcy scale, a similar
equation can be derived by homogenisation or volume-averaging [1, 2], with the
flow velocity given by v(x) = q(x)/φ, where φ is porosity, which here is assumed
to be constant, and the dispersion tensor D(x) given by the solution of a closure
problem. Alternatively, dimensional and phenomenological arguments can lead to
the following parameterisation [21, 22]:

Dij = α0Dmδij +
d∑

k,l=1

αijkl
qk(x)ql(x)
‖q(x)‖ , (5.13)
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where α0Dm is the effective diffusivity (see Sect. 5.5), and αijkl are geometrical
dispersivities. For an isotropic medium, the αijkl are given by

αijkl = αII δij δkl + αI − αII

2

(
δikδjl + δilδjk

)
. (5.14)

This description of dispersion is valid at high Péclet numbers. The Péclet number
compares the relative strength of diffusive and advective transport mechanisms and
is here defined as Pe = VL/D, where L is a characteristic heterogeneity length
scale and V a characteristic velocity.

The advection–dispersion Eq. (5.12) is equivalent to a Ito’s stochastic differential
equation [23, 24] for the position x(t) of a solute particle

dx(t)
dt

= v[x(t)] + ∇ · D[x(t)] +√
2D[x(t)] · ξ(t), (5.15)

where ξ(t) is a Gaussian white noise of zero mean, 〈ξ(t)〉 = 0 and covariance
〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′). Equation (5.15) is the starting point for random walk
particle tracking simulations for the solution of advective–dispersive transport in
heterogeneous porous media.

A key issue for transport in heterogeneous media is to quantify the transport
behaviours on a scale larger than the characteristic heterogeneity scale. For the
transition from pore to Darcy scale, the observation scale is larger than the
characteristic pore length, for the transition from Darcy to regional scale, it is
larger than the correlation scale of permeability. In the following, we briefly report
on upscaling efforts in terms of Fickian transport formulations, the occurrence
of anomalous dispersion and modelling approaches to account for non-Fickian
transport.

5.3.1 Fickian Dispersion

Before discussing Fickian large scale transport formulations, we briefly summarise
some signatures of Fickian transport for one-dimensional transport at constant
velocity v0 and diffusion coefficient D0. Firstly, for a point-like solute injection,
the concentration distribution is Gaussian shaped as

c0(x, t) =
exp

[
− (x−v0t)

2

4D0t

]
√

4πD0t
. (5.16)

The first and second centred moments of c(x, t), denoted by m(t) and κ(t) evolve
linearly in time as m(t) = v0t and κ(t) = 2D0t . Solute breakthrough, i.e., the
distribution of solute arrival times at a control plane located at the distance x from
the plane at which solute is injected, is given by the inverse Gaussian distribution
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f0(t, x) =
x exp

[
− (x−v0t)

2

4D0t

]
√

4πD0t3
. (5.17)

Hydrodynamic Dispersion

As already mentioned, the upscaling of transport from the pore to the Darcy scale
can be approached by stochastic approaches [25], spatial averaging and homogeni-
sation. Under the assumption of local physical equilibrium, these approaches
derive for the (homogeneous) Darcy scale the advection–dispersion Eq. (5.12). The
hydrodynamic dispersion tensor D accounts for the impact of molecular diffusion
and pore-scale velocity fluctuations on Darcy-scale solute transport. It is in general
a function of the Péclet number. This has been observed both for the longitudinal,
i.e., the mean flow direction, and the transverse dispersion coefficients DL and DT .
For Pe � 1, DL/D ∼ 1, for 1 < Pe < Pec, it behaves as DL/D ∼ Peγ , with
1 < γ < 1.5, and for Pe > Pec it scales as DL/D ∼ Pe. The critical Péclet
number is Pec ≈ 400 − 500 [26, 27]. These behaviours can be described by the
expression [22]

DL = Dα + αI v
Pe

Pe + 2 + 4δ2 , (5.18)

where α accounts for the effect of the tortuous pore geometry on molecular diffusion
in the bulk and δ is a parameter that characterises the shape of the pore channels
and v is the average pore velocity. The second term on the right-hand side of
Eq. (5.18) is termed mechanical dispersion. It quantifies solute spreading due to the
tortuous streamlines and velocity variability of the pore-scale flow field. Bear [22]
proposes to use expression Eq. (5.18) also for the transverse dispersion coefficients
DT . Experimental data suggest that DT /D ∼ Pe0.95 for 1 < Pe < Pec [28].

Macro-Dispersion

For transport upscaling from the Darcy to the regional scale, stochastic perturbation
theory gives for macro-scale transport the advection–dispersion equation [20]

φ
∂c(x, t)

∂t
+ 〈q〉∂c(x, t)

∂x
− ∇ · [D∗∇c(x, t)] = 0, (5.19)

where the x-axis of the coordinate system is aligned with the mean hydraulic gradi-
ent. The Péclet number here is defined as Pe = 〈q〉�/DL. For a statistically isotropic
heterogeneous porous medium, the macro-dispersion tensor D∗ is diagonal. For
Pe � 1, the longitudinal macro-dispersion coefficient DL is given by

D∗
L = σ 2

ff �KG〈∇P(x)〉 + . . . , (5.20)

where the dots denote contributions of the order of DL and of order σ 2
ff . This

remarkable result relates the macroscopic dispersion effect due to local scale
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velocity fluctuations to the statistical medium properties in terms of the variance σ 2
ff

and correlation length � of log-permeability and the geometric mean permeability.
Perturbation theory in σ 2

ff predicts that D∗
T is of the order of DT , this means local

scale dispersion. While this is exact for two dimensions [29], observations and
numerical simulations suggest that it is not valid for three dimensions [30, 31]. In
fact, numerical results suggest that D∗

T ∝ σ 4
ff in the advection-dominated limit of

Pe → ∞. The reader is referred to the textbooks by [11–13] for a thorough account
of the macro-dispersion approach and stochastic perturbation theory for macro-scale
transport in heterogeneous porous media.

5.3.2 Anomalous Dispersion

Fickian dispersion predicts that the first and second centred moments of a solute
plume increase linearly with time that the solute distribution is Gaussian shaped, and
solute breakthrough can be described inverse Gaussian distributions. Furthermore,
within the Fickian dispersion paradigm, mixing is fully characterised by the constant
dispersion coefficients. For heterogeneous porous media, and heterogeneous media
in general, however, transport does not generally follow Fickian dynamics. Break-
through curves are characterised by strong tailing, dispersion evolves in general
non-linearly in time and spatial plumes do not show Gaussian shapes and are in
general characterised by forward or backward tails. Such behaviours are closely
related to the notion of incomplete mixing on the support scale. If the support scale
is not fully mixed, for example, due to mass transfer between sub-scale mobile and
immobile regions, or velocity variability, transport dynamics are history-dependent.
Non-Fickian and anomalous transport behaviours have been observed both on the
pore [32–34] and Darcy scales [35, 36].

The mechanism that mixes the support scale is diffusion (pore-scale) and
hydrodynamic dispersion (Darcy scale). Note that ultimately the mechanism that
attenuates concentration contrasts is diffusion. Mechanical dispersion quantifies the
spread of a solute distribution due to advective heterogeneity and the formation of
filaments, which facilitates the action of diffusion to homogenise concentration, and
is discussed further in Sect. 5.3.3. Thus, for high Péclet numbers, the characteristic
mixing time scales over the support scale may be significantly larger than the
time scale of interest. The prediction of transport in heterogeneous media requires
approaches that allow to quantify non-Fickian transport dynamics.

The moment equations and projector formalism approaches [37, 38] are obtained
from the stochastic averaging of the local scale heterogeneous transport problem,
Eq. (5.12), which yields space- and time-non-local integro-differential equations,
whose memory kernels are related to the heterogeneity statistic. Closed-form
expressions for the memory kernels are in general difficult to obtain. Fractional
advection–dispersion equations [39, 40] are characterised by spatio-temporal kernel
function with an asymptotic power-law scaling. This approach can be related to
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continuous time random walks and Levy flights [41]. In the following, we provide
a summary of the continuous time random walk (CTRW) and multi-rate mass
transfer (MRMT) frameworks to describe anomalous dispersion in porous media.
The CTRW [42–44], and related time domain random walk (TDRW) [45, 46]
frameworks, as well as the MRMT approach [47, 48] have been used for transport
upscaling in highly heterogeneous porous and fractured media. These approaches
account for the heterogeneity-induced distribution of advective and diffusive mass
transfer rates and residence times.

Continuous Time Random Walks

The continuous time random walk (CTRW) [49, 50] models particle motion as a
random walk in space and time. The concentration distribution, or equivalently, the
particle density c(x, t) is given by

c(x, t) =
t∫

0

dt ′R(x, t ′)
∞∫

t−t ′
dt ′′ψ(t ′′), ψ(t) =

∞∫
−∞

dxψ(x, t), (5.21)

where R(x, t)dxdt is the average number of times a particle is in [x, x+dx]×[t, t+
dt]; ψ(x, t) is the joint PDF of transition length and time. Thus, the right-hand side
of Eq. (5.21) denotes the frequency by which a particle arrives at a position x at time
t ′ times the probability that it stays (waits) there for a time smaller that t . R(x, t)
satisfies the Chapman–Kolmogorov type equation

R(x, t) = c(x, t)δ(t)+
∞∫

−∞
dx′

t∫
0

dt ′ψ(x − x′, t − t ′)R(x′, t ′). (5.22)

The first term on the right-hand side denotes the initial particle distribution at time
t = 0. Combining Eqs. (5.21) and (5.22) gives the generalised master equation [51]

∂c(x, t)

∂t
=

∞∫
−∞

dx′
t∫

0

dt ′K(x − x′, t − t ′)
[
c(x′, t)− c(x, t)

]
, (5.23)

where the memory kernel K(x, t) is defined by its Laplace transform [52] as

K∗(x, λ) = λψ∗(x, λ)
1 − ψ∗(λ)

. (5.24)

Laplace transformed quantities are denoted by an asterisk, the Laplace variable is
denoted by λ. For short-ranged spatial transitions, Eq. (5.23) can be localised in
space such that
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∂c(x, t)

∂t
+

t∫
0

dt ′
[
κ1(t − t ′) ∂

∂x
− κ2(t − t ′) ∂

2

∂x2

]
c(x, t) = 0, (5.25)

where the advection and dispersion kernels are defined by

κ1(t) =
∞∫

−∞
dxxK(x, t), κ2(t) = 1

2

∞∫
−∞

dxx2K(x, t), (5.26)

The fluctuating micro-scale transport dynamics are encoded in the joint PDF
ψ(x, t). For purely advective solute transport, for example, the transition length is
of the order of the correlation scale �c of the velocity magnitude v, and the transition
time is given kinematically by �c/v. The distribution ps(v) of the particle speed
sampled equidistantly along a streamline is related to the Eulerian velocity PDF by
flux-weighting as [53]

ps(v) = vpe(v)

〈ve〉 . (5.27)

Thus, the joint PDF of transition length and time is

ψ(x, t) = δ(x − �c)
�2
cpe(�c/t)

t3〈ve〉 . (5.28)

For transport at an average velocity v0 over the characteristic length �0 combined
with mass transfer into immobile zones, the transition time distribution is given in
Laplace space by Margolin et al. [54]

ψ∗(λ) = exp

(
λτ0 + γt τ0

[
1 − p∗

f (λ)
])

, (5.29)

where τ0 = �0/v is the advective transition time, γt the trapping rate and pf (t) the
distribution of residence times in the immobile regions.

We briefly summarise the transport characteristics for an uncoupled CTRW, this
means ψ(x, t) = �(x)ψ(t), characterised by a power-law long-time scaling of the
transition time distribution as ψ(t) ∼ t−1−β with 0 < β < 2. Such heavy tailed
transition distributions imply strong particle retention and thus memory effects.
The power-law in ψ(t) directly relates to the solute breakthrough curves. Note
that the breakthrough time at a control plane is the sum of n transition times τi ,
where n may be approximated by the average number of spatial steps needed to
arrive at the control plane. Thus, the generalised central limit theorem implies
that the breakthrough curve scales as f (t, x) ∼ t−1−β . The first and second
centred moments of the solute distribution scale asymptotically as m(t) ∼ tβ and
κ2(t) ∼ t2β for 0 < β < 1 and as m(t) ∼ t and κ2(t) ∼ t3−β .
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For advective transport upscaling, the CTRW framework has been used together
with Markov models for series of velocity magnitudes along streamlines [55–57],
which allow for the evolution of the transition time distribution with increasing step
number and for the conditioning of transport on initial particle velocities [53]. The
CTRW framework has been employed for transport modelling in a wide range of
fluctuating environments ranging from the diffusion of charge carriers in impure
semi-conductors [50] to diffusion in living cells [58], see also [41, 59].

Multi-Rate Mass Transfer

The multi-rate mass transfer (MRMT) approach [47, 48] separates the support scale
into a mobile continuum and a suite of immobile continua, which communicate
through linear mass transfer. At each point, the immobile concentration cim(x, t) is
related to the mobile concentration cm(x, t) through the linear relation [48]

cim(x, t) =
t∫

0

dt ′ϕ(t − t ′)cm(x, t ′). (5.30)

The evolution of the mobile concentration is given by the advection–dispersion
equation [47]

φm
∂cm(x, t)

∂t
+ q

∂

∂x
cm(x, t)−Dφm

∂2

∂x2 cm(x, t) = −φim ∂cim(x, t)
∂t

, (5.31)

where φim and φm are the immobile and mobile volume fractions. The memory
function ϕ(t) encodes the mass transfer mechanisms between the mobile and
immobile continua. For diffusive mass transfer into slab shaped immobile regions,
the memory function is defined by its Laplace transform as [48, 60]

ϕ∗(λ) = tanh(
√
λτD)√

λτD
, (5.32)

where τD is the characteristic diffusion time across the slab. For spherical inclusions,
the memory function is

ϕ∗(λ) = 3√
λτD

[
coth(

√
λτD)− 1√

λτD

]
. (5.33)

For purely diffusive mass transfer the MRMT approach is equivalent to transport
under matrix diffusion [61], which describes transport in fractured media under
diffusive mass transfer between the fracture and the rock matrix. In general for

www.dbooks.org

https://www.dbooks.org/


5 Upscaling Flow and Transport Processes 151

diffusive mass transfer, the memory function is obtained from the solution of a
diffusion problem in a heterogeneous immobile domain [62].

For first-order mass transfer at a single rate ω the memory is given by

ϕ(t) = ω exp(−ωt). (5.34)

Oftentimes, the mass transfer processes and the geometries of immobile regions are
not known in detail. The memory has then been modelled by a superposition of
multiple first-order memory functions as [35, 47, 48]

ϕ(t) =
∞∫

0

dωP(ω)ω exp(−ωt), (5.35)

where P(ω) is the rate distribution, which may be related to the volume fractions
of the immobile zones, for example. Other approaches use parametric forms for the
memory function, such as truncated power-laws [63].

In this framework, the behaviour of solute breakthrough at asymptotic times
follows the time derivative of the memory function

f (t, x) = −x

q

φm

φim

dϕ(t)

dt
. (5.36)

This means, for a memory function, which asymptotically behaves as a power-law
ϕ(t) ∼ t−β , the breakthrough curve scales as f (t, x) ∼ t−1−β [35, 64]. For matrix
diffusion into a semi-infinite slab, the memory function scales as ϕ(t) ∼ t−1/2 and
consequently the breakthrough curve as f (t, x) ∼ t−3/2, which is a signature of
matrix diffusion.

Both the CTRW and MRMT frameworks share similar phenomenology in that
they account for memory effects due to a distribution of characteristic mass transfer
time scales. The correspondence between the two pictures was discussed in [64–
67]. The time behaviour of the spatial moments of the concentration distribution is
similar to the ones described by an uncoupled CTRW [64].

5.3.3 Mixing and Chemical Reactions

In this section, we are concerned with mixing and reactions in heterogeneous porous
media. As chemical reactions are contact processes, mixing and dispersion are
key processes for the sound quantification of chemical reactions in heterogeneous
media. This refers both to homogeneous, i.e., fluid–fluid, reactions, and to heteroge-
neous, i.e., fluid–solid, reactions, as outlined in the following. We will first discuss
the notions of mixing and dispersion, and specifically the difference between these
two processes. Then, we discuss chemical reactions under spatial heterogeneity.
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Mixing, Diffusion and Dispersion

In Fickian transport descriptions, the process that leads to the mixing of initially
segregated solutes or the mixing of an initially concentrated solute into the ambient
fluid is mass transfer due to diffusion or dispersion. From expression Eq. (5.16) we
obtain directly that the maximum concentration cm(t) in one dimension decays as
cm(t) = 1/

√
4πDt . In d spatial dimensions one finds that cm(t) = 1/(4πDt)d/2.

Mixing due to molecular diffusion on mesoscopic length scales L is in general slow.
The characteristic mixing time is given by τm = L2/D. For a free fluid, stirring
or chaotic flow accelerates the mixing process in that it generates laminar struc-
tures [68] whose size l(t) increases exponentially fast with time, l(t) = l0 exp(λt),
where λ here is the Lyapunov exponent. The width of the lamellar structures is
limited by stretching and diffusion to the Batchelor scale sB = √

D/λ [69]. The
number of lamellae in a closed area of size A = L2 increases exponentially fast as
n(t) ∼ �(t)/L, while each lamella occupies an area of A� ∼ sBL. Complete mixing
is achieved when n(t)A� ∼ L2. This gives a mixing time τm = λ−1 ln(L2/�0sB)

which is in general much shorter than the mixing time by diffusion only.

Mixing and Spreading in Porous Media

Here we are concerned with mixing in flows through heterogeneous porous
media. We have seen above that solute transport has been quantified in terms
of hydrodynamic dispersion (pore to Darcy scale) and macro-dispersion (Darcy
to regional scale), which simulates that the support scale is well-mixed. This
Fickian paradigm, however, breaks down for transport in heterogeneous media, for
which anomalous or non-Fickian transport behaviours are observed. These involve
history-dependence, which implies that the support scale cannot be considered well-
mixed. Unlike for stirring in a free fluid, for porous media flows, the “stirring”
is done by the medium itself, whose structure leads to tortuous path-lines and
velocity heterogeneity. Chaotic flow patterns are in general prohibited topologically
for steady two-dimensional flows. In three dimensions, steady pore-scale flow is
chaotic [70], which may lead to similar mixing as in chaotic flow in a free fluid [71].
The existence of low velocity regions, stagnant zones in the wake of solute grains,
velocity variability between pores and intra-grain mass transfer, however, leads to
incomplete mixing on the REV scale and thus history-dependent transport [72, 73].

The topological properties of Darcy-scale flow through porous media prohibit
chaotic flow [74], see also Sect. 5.2.3. Thus, while the action of the spatially variable
flow velocity leads to the creation of lamellar structures [75], their lengths cannot
increase exponentially fast [76]. In fact, the extension of a solute distribution due
to such advection-induced spreading can be measured by the concept of macro-
dispersion. When lamellae form along the mean flow direction, the separation
distance between them is given by the characteristic transverse heterogeneity length
scale �. Thus, the time scale to mix the heterogeneous concentration distribution is
given by the time for transverse dispersion over the distance �, τD = �2/DT . These
mechanisms are accounted for by effective dispersion coefficients [77, 78]. Unlike
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macro-dispersion, the concept of effective dispersion does not account for the effect
of purely advective spreading [79, 80], but quantifies the combined effect of local
scale dispersion and advective heterogeneity, which eventually leads to mixing.

Scalar Dissipation and Concentration Statistics

In order to illustrate the relative role of local scale dispersion and spreading as
quantified by macro-dispersion in solute mixing, we consider the evolution of the
variance of the concentration fluctuation about its ensemble mean value, c′(x, t) =
c(x, t)− 〈c(x, t)〉, defined here by

σ 2
c (t) =

∫
dx〈c′(x, t)2〉. (5.37)

From the Darcy-scale advection–dispersion Eq. (5.12) one can derive [81]

dσ 2
c (t)

dt
= − 2

φ

∫
dx〈∇ c̃(x, t) · D∇ c̃(x, t)〉+

+ 2

φ

∫
dx∇〈c(x, t)〉 · D∗∇〈c(x, t)〉.

(5.38)

The first term on the right-hand side is denoted as scalar dissipation rate. It quantifies
the destruction of concentration variance due to local dispersive mass transfer. The
second term on the right-hand side quantifies the creation of concentration variance
due to spreading as quantified by macro-dispersion.

The mixing process can also be described in terms of the evolution of the PDF of
concentration values c(x, t) in the heterogeneous mixture, which can be defined by

p(c; x, t) = 〈δ[c − c(x, t)]〉. (5.39)

Based on the advection–dispersion Eq. (5.12) one can derive the following evolution
equation for the PDF [82]:

φ
∂p(c; x, t)

∂t
+ 〈q〉 · ∇p(c; x, t)− ∇ · D∗∇p(c; x, t) =

= − ∂

∂c
〈∇ · D∇c(x, t)|c〉p(c; x, t).

(5.40)

The term on the right-hand side is the average over the local dispersive flux terms
conditional to concentration, which represents a closure problem. The celebrated
interaction by exchange with the mean (IEM) closure [83] approximates this
expression as

〈∇ · D∇c(x, t)|c〉 = γIEM

2

(
c − 〈c(x, t)〉) , (5.41)
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where γIEM is a rate constant that may be related to local scale dispersion and the
local dissipation scales. This closure implies for the scalar dissipation rate

2

φ

∫
dx〈∇c′(x, t) · D∇c′(x, t)〉 = γIEMσ 2

c (t). (5.42)

This closure approximation has been applied to predict mixing in heterogeneous
porous media, but is not able to match the numerically observed evolution of the
scalar dissipation rate [84]. The IEM closure has several shortcomings for porous
media mixing. Firstly it implicitly assumes that the concentration PDF is Gaussian
shaped or approximately Gaussian, while in porous media they are typically highly
non-Gaussian [75]. Secondly, it assumes a constant local mixing scale, while
the mixing scale in porous media evolves with time [85]. Alternative approaches
employ parametric forms for the concentration PDF, such as beta-distributions,
which can be parameterised by the concentration mean and variance [86], mapping
approaches [87] and stochastic mixing models for the evolution of concentra-
tion [88].

Lamellar Mixing
Recently, the problem of mixing in porous media has been addressed using a
lamellar mixing approach [75, 89]. The mixing process can be roughly separated in
two regimes. In an early time regime, the initial solute distribution spreads out and
advective heterogeneity generates a lamellar organisation of the concentration field.
In the late time regime, the lamellar organisation is destroyed due to coalescence
of adjacent lamellae. In both regimes, the concentration PDF can be constructed in
terms of the concentration contents of individual lamellae and their interactions.

In the early time regime, lamellae are non-interacting and the evolution of the
concentration content of the mixture can be understood by the superposition of
the concentration contents of isolated lamellae, which is fully determined by fluid
stretching and local scale dispersion [69, 90]. The concentration across a stretched
lamella is Gaussian shaped and given by [75]

c(z, t) =
c0 exp

(
z2�(t)2

s2
0 [1+4θ(t)]

)
√

1 + 4θ(t)
, θ(t) = D

φs2
0

t∫
0

dt ′�(t ′)2, (5.43)

where z is the coordinate across the lamella, �(t) = l(t)/ l(0) the relative strip
elongation and s0 the initial strip width. Note that the concentration here depends
on the elongation �(t). The PDF of concentration values across a strip is then given
by

p(c|cm) = 1

2c
√

ln(cm/ε) ln(cm/c)
, (5.44)
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where ε is a lower concentration cut-off and cm(t) = c(z = 0, t) is the maximum
strip concentration, which again depends on elongation �(t). For heterogeneous
media, the strip elongation �(t) is the result of the random deformations a strip expe-
riences as it is transported through the medium. For heterogeneous porous media,
elongation is dominated by intermittent shear events along a trajectory [76]. The
mean elongation may follow power-law behaviours 〈�(t)〉 ∼ tα with 1/2 < α < 2.
The maximum concentration can be approximated by cm(t) ≈ 1/�(t)

√
Dt [75],

because it decays at the same rate as the area of the lamella increases. Thus, the PDF
of elongation can be mapped onto the PDF pm(cm, t) of maximum concentrations,
and the global concentration PDF is obtained through superposition of the local
laminar PDFs as

p(c, t) =
∫

dcmpm(cm, t)p(c|cm). (5.45)

The decisive step here is to recognise that the concentration field at early times is
organised in a lamellar structure and that the concentration content of a lamella
depends explicitly on the strip elongation. This allows obtaining the concentration
PDF by mapping from the PDF of strip elongations.

With increasing time, the length of the lamellae becomes larger than the mixing
support, which increases slower than the lamella elongation (∼ √

t for dispersive
growth), or is constant in the case of a confined domain. Thus, the lamellae need
to fold back to each other, which in the late time regime leads to diffusive overlap
and the formation of lamella aggregates through a random aggregation process. The
PDF of maximum concentrations of lamella aggregates after n aggregations is given
by the gamma distribution [69]

pm(cm, t) =
(
cm/〈cm(t)〉

)n−1 exp
(−cm/〈cm(t)〉)

�(n)〈cm(t)〉 . (5.46)

In the centre of the plume, the number n(t) of lamellae in the aggregate is related
to the average maximum concentration as n(t)〈cm(t)〉 ∼ 1/

√
κ∗(t), where κ∗(t) is

the spatial variance of the average solute concentration, which can be described by
macro-dispersion. This sets the concentration PDF at the plume centre as a result of
random aggregation of lamellae. The evolution equation for the PDF p(c, t) of the
concentration content in the mixture as a result of random aggregation is discussed
in [69].

Chemical Reactions

In this section, we will briefly discuss the upscaling of chemical reactions in
heterogeneous porous media and the influence of mixing on the reaction efficiency.
Chemical reactions are contact processes and thus depend on the availability of
reacting species and on the mechanisms that bring them into contact. In a well-
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mixed reactor, in which stirring-induced mixing is exponential as described above,
mass transfer is not a limiting process. For a heterogeneous porous medium, in
which mixing is much slower, reactions may be limited by the transport rate,
i.e., the efficiency by which they are brought into contact. In the former case, the
chemical reaction is rate limited, in the latter transport limited. These situations are
distinguished by the Damköhler number

Da = krτm, (5.47)

where kr is a reaction rate and τm a characteristic mass transfer time scale. For
Da < 1, the chemical reaction is rate limited, for Da � 1 it is mixing, or transport
limited.

Incomplete Mixing
A key issue for reaction upscaling in porous media is the notion of a well-mixed
support scale. We have seen in the previous sections that mixing in porous media
is slow because the “stirring” by the porous medium is much less efficient than
stirring-induced chaotic advection in a free fluid. Spatial heterogeneity and con-
sequently slow mass transfer between different compartments of a heterogeneous
porous medium leads to reactant segregation and thus to a reduction of the reaction
rate compared to a well-mixed system. We have seen in Sect. 5.3.2 that incomplete
mixing on the support scale leads to non-Fickian transport and history-dependent
transport phenomena. The same mechanisms lead to reaction behaviours that are
different from the ones measured in well-mixed laboratory environments [91, 92].
However, traditional Darcy-scale reactive transport modelling is based on the
advection–dispersion equation for the species concentration ci combined with a
kinetic rate law determined for a well-mixed environment,

φ
∂ci(x, t)

∂t
+ q · ∇c(x, t)− ∇ · [D∇c(x, t)] =∑

j

νij rj [c(x, t)]), (5.48)

where νij are stoichiometric coefficient, rj is the reaction rate of the j th reaction
and c(x, t) is the vector of concentrations of the reacting species. This formulation
assumes that the support scale is a well-mixed environment. This means that the
time scale by which the concentration on the support scale homogenises after a
concentration perturbation due to mass transfer is smaller than the reaction time
scale. Only under these conditions can the reaction rate on the right-hand side
be identified with the one obtained in a well-mixed environment. The upscaling
of reactive transport from the pore to the Darcy scale can be formally studied,
for example, using volume-averaging [93, 94] or homogenisation theory [95].
The validity of Darcy-scale reaction–dispersion models such as Eq. (5.48) have
been investigated in detail by Kechagia et al. [96] and Meile and Tuncay [97].
These studies systematically show discrepancies between the average reaction
rates and reaction rates predicted by the advection–dispersion reaction equation.
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Similar observations have been made for the upscaling from Darcy to regional
scale [98–101]. Incomplete mixing on the support scale leads in general to the
reduction of the mixing efficiency compared to equivalent Fickian large scale
models. The segregation of reactants on the support scale can be addressed using
multi-continuum approaches [102, 103], which resolve concentration variability on
the support scale due to subregions of slow and fast mass transfer.

An illustrative example for the impact of chemical heterogeneity on reactivity
is diffusion in a medium characterised by a spatial distribution of specific reactive
surfaces σr(x) at which species A reacts to C. The concentration cA of A evolves
according to the reaction–diffusion equation

∂cA(x, t)
∂t

−D∇2cA(x, t) = −kσr(x)cA(x, t). (5.49)

We consider σr(x) = 0, 1 randomly distributed in space with a characteristic
distance �c and Da = kL2/D � 1, this means fast chemical reactions. Thus one
would assume that the effective reaction rate is given by the mean diffusion time
between reactive spots, ke = 1/τD , where τD = �2

c/D is the average diffusion
time between reaction spots. However, the total mass of A decays at long times as a
stretched exponential [104],

cA ∼ exp
[
−β (t/τD)d/(d+2)

]
, (5.50)

with β being a constant. It decays slower than the exponential decay predicted
by τD . This is due to the fact that the space between reaction spots has a finite
probability to be arbitrarily large. Thus, segregation due to spatial heterogeneity
leads to a slower decay than what would be predicted by mean field theory.

Mixing-Limited Reactions
For mixing-limited chemical reactions, i.e., for high Da, the “stirring” action of
the heterogeneous porous medium enhances the mixing efficiency compared to
purely diffusive mass transfer and may lead to the formation of localised mixing and
reaction hotspots [105, 106]. At high Da, the reaction rate is directly proportional
to the mixing rate and the reactive transport problem can be mapped onto a
conservative transport problem plus a speciation relation [107]. We illustrate this
briefly for a fast reversible bimolecular reaction A+ B � C ↓ on the Darcy scale.
Chemical equilibrium is described by the mass action law

cAcB = K, (5.51)

where cA and cB are the concentrations of species A and B and K is the equilibrium
constant. The reactive transport problem is described by Eq. (5.48) for each species
(i = A,B), which for a heterogeneous medium reads as
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φ
∂ci(x, t)

∂t
+∇ · q(x)ci(x, t)− ∇ · D(x)∇ci(x, t) = −r(x, t), (5.52)

where we have assumed the same dispersivity for both species, and where r(x, t)
denotes the “equilibrium” reaction rate. It is determined by observing that ξ =
cA − cB is a conserved variable (sometimes called mixture fraction) and obeys the
conservative advection–dispersion equation

φ
∂ξ(x, t)

∂t
+ ∇ · q(x)ξ(x, t)−∇ · D(x)∇ξ(x, t) = 0. (5.53)

Secondly, both cA and cB depend only on u through the mass action law, Eq. (5.51),

cA(u) = ξ

2
+
√
ξ2

4
+K, (5.54)

and analogously for cB . Using this relation Eq. (5.52) together with Eq. (5.53) gives
the following equation for the reaction rate:

r(x, t) = 1

φ

d2cA(ξ)

dξ2

[∇ξ(x, t) · D(x)∇ξ(x, t)] , (5.55)

The expression in the square brackets is identical to the scalar dissipation rate,
see Eq. (5.38), which measures the rate of mixing of dissolved substances. This
expression illustrates the direct dependence of the reaction rate at high Da with
the mixing rate as quantified by the scalar dissipation rate. The impact of medium
heterogeneity on the reaction rate has been investigated using the PDF of the
conserved components ξ(x, t), which can be mapped directly on the PDF of the
species concentrations via Eq. (5.54) [108, 109].

5.4 Multiphase and Surface Processes

In the previous sections, we presented the challenges related to the dispersion and
the upscaling of bulk reactions in the fluid. These, when the Fickian assumption
is not valid, can be conveniently approximated with multi-continuum models.
This is not dissimilar from what is obtained in proper multiphase systems. For
example, conjugate heat transfer problems, that would require the coupled solution
of heat transfer in the fluid and solid region, can be averaged to obtain two-phase
formulations with appropriate transfer terms. However, these transfer terms are
local (in time and space) and linear only under local equilibrium conditions in both
phases. An alternative approach is to perform the upscaling in two steps. First the
phase which relaxes faster to equilibrium is approximated macroscopically with
an equivalent heat transfer coefficient (possibly non-constant) at the solid boundary.
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This first upscaling reduces the dimensionality of the fast dynamics in a sub-domain,
effectively representing it as a surface process, leaving us with the task of averaging
transport in one phase only with complex boundary conditions.

Among these surface processes we can identify the following three categories:

• Dynamic conditions: One of the most general surface process is the one
encountered in adsorption–desorption processes that can be modelled with the
following boundary conditions:

j · n = (u −Dm∇) c · n = b (c, s) ,

where j is the flux, b represents the adsorption/desorption/transfer processes, r
is a source/sink describing chemical reactions and s = s(x, t) is the adsorbed
concentration on the surface. This has been solved separately with a surface
ordinary differential equation

∂ s

∂t
= −b (c, s) .

• Mixed conditions: When the time scale defined by b is fast enough, one can
explicitly find s = s(c) such that b(c, s) = 0. This means that the above
conditions simplify to a, possibly non-linear, mixed boundary condition of the
type

j · n = (u −Dm∇) c · n = b
(
c, s (c)

) = f (c).

Linearising f we obtain a mixed (Robin) boundary condition

j · n = f0 + f ′c. (5.56)

• Simple conditions: Assuming infinitely slow adsorption/reaction process f , the
condition above reduces to a fixed flux (Neumann) condition

j · n = f0,

while, in the opposite case of infinitely fast surface process, we can retrieve a
simple fixed concentration (Dirichlet) condition.

Clearly, the validity of these increasingly simplifying assumptions has to be verified
case by case, and we consider this as part of the upscaling process. In all three
cases, however, standard upscaling techniques (such as volume-averaging and
homogenisation) can be applied only when the surface process is slow compared
to advection and diffusion. When instead this is not the case, more advanced
techniques have to be used [110, 111]. This is similar to the case of diffusion-limited
bulk reactions (see above) that generally results in upscaled dispersion and velocity
coefficients significantly different from the non-reactive case.
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5.4.1 Mass and Heat Transfer

The transport and deposition of particles in porous media are fundamental mul-
tiscale phenomena present in a number of natural and engineered processes.
Although we refer here to the transport of physical particles, the discussion below
conceptually applies, with minor modifications, also to heat transfer mechanisms.

The classical theoretical framework typically used is the colloid filtration theory
but, more in general, advances in this field generally belong to the so-called soft
matter physics. Several complex physical mechanism, in fact, can arise due to the
complex particle–particle and particle–wall interaction. In this chapter, however, we
focus on a simple advection–diffusion description, in the dilute limit, with negli-
gible Stokes and Reynolds numbers. Therefore most hydrodynamical interactions
(sometimes called hydrodynamic retardation effects) between the particles and the
surface of the solid grains, and the DLVO interactions happen at a very small scale
and are therefore taken into account only at the boundaries, by modified boundary
conditions. This is known as the Smoluchowski–Levich approximation that results
in the molecular diffusion coefficient Dm being constant, obtained, for example, via
the Stokes–Einstein relation for diffusion of spheres in liquids. For larger particles
instead, one should consider many other effects that act possibly also far from the
wall, such as modified suspension viscosity, lift forces arising in small Reynolds
number flows, the Faxen correction, due to the perturbed flow around the particles,
and possibly also particle rotation, particle collisions, etc. Although some of these
additional physics can easily be included in the upscaling, we limit ourselves to the
effect of a surface process in the upscaling, namely in the equivalent macroscopic
dispersion and reaction coefficients.

In the dimensional analysis of mass transfer phenomena, the most used dimen-
sionless quantity is the Sherwood number, describing the ratio between convective
mass transfer and diffusive transport, which is the analogue of the Nusselt number
used in heat transfer. It is defined as:

Sh = hL

Dm

, (5.57)

where L is a characteristic length (in porous media application generally taken to
be equal to the pore or grain size), and Dm is the molecular diffusion coefficient.
The mass transfer coefficient h is defined as the molar flux through the surface per
unit surface, normalised by �C the concentration driving force. This representation
implicitly considers the mass transfer as an equivalent diffusion process through the
surface. If this is more often true at the micro-scale, after the upscaling, this effective
transfer coefficient scaled by the diffusion strongly depends on the other transport
mechanisms, such as advection, gravity and all the other external forces.

In the earlier studies of filtration, the most common upscaling approach was
to determine a single parameter describing the filter effectiveness: this is obtained
from its features and the operating conditions under investigation, and is defined the
collector efficiency ηD [112]. This efficiency coefficient is then assumed to be the
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product of two separated effects: the so-called attachment efficiency α, describing
the probability of a particle that has reached the solid grain to be adsorbed, and
the purely fluid-dynamical term η0 to model the transport the bulk of the fluid to
the surface of the grains. The latter is the often decomposed as a sum of different
contributions due to, for example, Brownian diffusion, steric interception and
inertial (and gravitational) effects. Some early works [113] analytically obtained,
for Sh in idealised geometries, expressions such as

Sh = As
1
3 Pe

1
3 , η = 4As

1
3 Pe−

2
3 ,

where As is a parameter depending on the porous medium porosity φ. Many
other such relationships are available connecting the system features, in terms
of geometrical features and fluid dynamic conditions, to an approximate particle
deposition efficiency ηD [114]. There are a number of issues facing these models;
first of all they are most often based on a single idealised geometrical model
representing the porous medium, thus failing to grasp the pore-scale complexities
and heterogeneity and its effect on particle filtration. Another conceptual hurdle
in the application of these models is the difficult translation of the obtained
efficiency parameter ηD into an effective macro-scale reaction term employable in a
macroscopic transport equation [115], and to understand its dependence on the flow
parameters and its inseparable connection with the effective dispersion and velocity.

From Surface Processes to Averaged Reaction Rates

We follow here [115], showing how to obtain a stationary effective reaction rate for
a periodic geometry and its dependence on the (reactive) boundary condition and
flow parameters, for arbitrary reaction/deposition regimes. To this aim, we consider
Eq. (5.12) and we assume that the detailed surface processes can be averaged in
a small boundary layer around the solid matrix and approximated with a generic
effective linearised mixed boundary condition (see Eq. (5.56)) of the type:

−Dm∇c · n = −r α

α − 1
c + r0 on�, (5.58)

where α is the deposition/attachment efficiency, � is the porous matrix surface area,
r is the surface transfer coefficient and r0 is a constant surface flux. When α = 1,
Eq. (5.58) is equivalent to a Dirichlet conditions c = 0 on the solid grains (perfect
sink). In a particle-based Lagrangian framework, such as the one considered when
performing random walk simulations, this efficiency α can be interpreted as related
to the probability of a single colloidal particle of attaching to the collector surface
upon collision [116].

Applying a simple volume-average over a fixed REV �, defined as · = 1
V

∫ · dv
(with V being the total volume), the divergence theorem and the boundary condition,
Eq. (5.58), we obtain
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∂c

∂t
+ 1

V

∫
∂�

(c u · n −Dm∇c · n) ds = − 1

V

∫
�

r
α

α − 1
c ds + r0. (5.59)

Considering a box with periodic boundary conditions on y− and z−directions,
and no accumulation (stationary, local equilibrium hypothesis), it is possible to
identify the second surface integral on the LHS of Eq. (5.59) with the total flux
F through the x−boundaries of the domain (inlet and outlet in this case). Being the
starting equation linear, it is reasonable to assume the above quantity (the average
mass flux) to be a linear function of the average concentration, with a macroscopic
effective reaction rate R defined as:

R = F − r0

cV
. (5.60)

This quantity is simply computable from a micro-scale simulation on the periodic
cell, simply looking at inlet–outlet fluxes and averaged volume concentration, even
in the case of perfect sink (r → ∞) condition. Assuming a Fickian macroscopic
dispersion (see sections above), we can therefore postulate a closed-form for
the one-dimensional macroscopic advection–diffusion–reaction equation for c =
(c/c∞), in dimensionless form

∂C

∂tdiff
+ εPe

∂C

∂X
− D

Dm

∂2C

∂X2
= −DaDC + Da0, (5.61)

where X represents the (dimensionless) macroscopic space variable and we have

defined tdiff = tDm

L2 , and the Damköhler numbers as Da = Rs L
2

Dm
, and Da0 = r0 L

q
.

For a periodic FCC packing [115] we obtain the following qualitative upscaling
law for the long-time effective macroscopic reaction rate, as a function of the

microscopic Damköhler number Dam = rL2

D
:

Da =

⎧⎪⎪⎨
⎪⎪⎩
K1(Dam) for Pe � 10

K2(Dam)Pe0.15 for Pe � 10,Dam � 1

K3(Dam) for Dam � 1

with constants Ki . This qualitative behaviour is universal, although the exponent
0.15 and the constants could possibly depend on the specific geometry. The
dependence of Da with respect to Dam, on the other hand, is linear (independent
of Pe) for slow surface processes while, for infinitely fast processes, it saturates to a
constant (that depends on Pe). This is the typical behaviour for reactions happening
on a localised lower-dimensional manifold where mixing can totally control the
reaction.
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5.5 Conclusions

In the previous sections we highlighted the most important physical models and
macroscopic equations that can be relevant in porous and heterogeneous materials.
We identified several assumptions and limitations of the upscaling processes.

Non-Equilibrium and Lack of Scale Separation

When no upscaling is available that can decouple the physical scales or when
transition out-of-equilibrium effects are important at the micro-scale, alternative
techniques can be used such as numerical multiscale approaches such as multiscale
FEM, variational, heterogeneous or hybrid multiscale methods. These methods
allow for a generic system to be solved efficiently explicitly accounting for
some micro-scale information. They usually rely on a pre-processing offline step
(similarly to the cell-problems in classical upscaling) or on an online dual-resolution
computational approach.

Suspensions and Interfacial Flows

Multiphase flows such as suspensions and interfacial flows can be upscaled with
the approaches described above, only under local equilibrium, and when the forces
acting on each phase are relatively small. The presence of complex momentum
transfer (in the case of suspensions) and strong localised forces, such as surface
tension (in the case of interfacial flows), makes the standard upscaling inadequate.
An intuitive interpretation of this inadequacy is the fact that volumetric/ensemble
averages cannot properly represent interfacial forces and configuration-dependent
forces. Time-dependent, non-linear, non-local and memory effects can arise at the
macro-scale.

Appendix A: Homogenisation and Two-Scale Expansions

In this section we briefly sketch the main ideas and steps in the formal derivation
of macroscopic equations using the method of periodic homogenisation with two-
scale asymptotic expansion. The method has been initially proposed in theoretical
mechanics for the study of composite materials and subsequently extensively
studied in mathematical analysis, for elliptic (diffusion) operators and variational
problems [117–121]. Quite interestingly, the first results in the area were developed
in parallel both for periodic and random (stationary ergodic) media. Being the
underlying mathematical techniques significantly different, the latter is also called
stochastic homogenisation and has lately seen important developments [122–124],
making it, in some cases, a more realistic and conceptually deeper alternative to
the former. While the formal steps of periodic homogenisation are easily accessible
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with a basic background of asymptotic methods and PDEs, the mathematical proofs
concerning the existence of a macroscopic limit (and the convergence towards
it, [125]) require extensive knowledge of functional analysis and PDE theory and
a much more complex notation, clearly beyond the scope of this chapter. For porous
media applications we refer to [1] for a comprehensive, yet accessible, treatise.

We can identify the following steps that are usually needed to perform the two-
scale expansion and derive a homogenised equation:

1. Define the scale separation parameter ε = �
L

, where L is a characteristic
macroscopic length (e.g., the total domain size) and � is a microscopic length
(e.g., the size of the pores). While mathematical homogenisation theory deals
with the existence, uniqueness, form and convergence rate of the problem when
ε → 0, the more applied approach is to guess such a limit exist and constructively
find its form and validity (measured in terms of corrections of the order of ε).

2. Put the (microscopic) equations in dimensionless form, to highlight and recog-
nise the scaling, which is the crucial assumption for the validity of what follows.
This is not strictly necessary but one of the advantages of homogenisation theory
is, in fact, the clear identification of validity regimes of the macroscopic equation.

3. Write down spatial (and possibly temporal) coordinates, derivatives and fields as
an asymptotic expansion in terms of ε. Neglecting time, given a spatial coordinate
x ∈ � ∈ [0, L]d and a field c = c(x), a two-scale expansion is performed as
follows:

x = x0 + εx1 (5.62a)

c(x) ≈ c0(x)+ εc1(x)+ ε2c2(x) = c0(x0, x1)+ εc1(x0, x1)+ ε2c2(x0, x1)

(5.62b)

∇c =
(
∇x0 + 1

ε
∇x1

)
c ≈ 1

ε
∇x1c0 + (∇x0c0 + ∇x1c1

)+ ε
(∇x0c1 +∇x1c2

)
,

(5.62c)

where x0 ∈ � ∈ [0, L]d defines the macro-scale and x1 the (periodic with
period [0, �]d ) micro-scale. While this expansion is formally always valid, its
usefulness, as we will further explain below, relies on a wide separation of scales
in the domain which is not always satisfied in real porous media.

4. Starting from the lowest power of ε, hierarchically define and solve (when a
solution is trivially found) the cascade of equations for c0, c1, . . . . Usually it is
enough to solve for the first two terms2 to get a closed-form and computable
parameters of the macroscopic limit (c0). However, to achieve that, additional
assumptions have to be made to close the system of equations. In particular, a
simplified dependence of c1 on the macro-scale c0 has to be assumed (when it is
not obtained formally), guessing a separable structure of the type:

2With a total of three equations for three lowest powers of ε, in the case second-order PDEs.
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c1(x0, x1) = w · ∇x0c0 + c1, (5.63)

where the vectorial field w = w(x1), periodic and with zero average, w = 0,
is also called corrector and can be found by solving the so-called cell-problem,
usually derived, after some manipulation, from the first correction equation for
c1. This decomposition c1 well represents the scale-separation hypothesis.

5. Depending on the problem, also an average on c0 (or, when c0 is constant on
the micro-scale, on c0 + εc1) might be defined to get rid of the micro-scale
dependence, defining a new macroscopic field

c0(x0) = c0(x0, x1) =
∫
[0,�]d

c0(x0, x1)dx1

and a macroscopic evolution equation for c0 (or c0 + εc1) can be derived from
the terms of order ε0.

Example: Reaction–Diffusion in a Perforated Domain

It is important to notice that the steps outlined above are a constructive formal
approach for homogenisation that is attractive (at least as a first approach) for new
problems but does not cover the large number of possible problems for which a
homogenised limit exists. This is much less general than, for example, variational
approaches in which a given macroscopic limit is guessed and proven to be the
correct limit. As an example, we illustrate the steps above for the simple case of
pure diffusion with slow superficial reaction (or equivalently, heat transfer with a
prescribed heat flux at the boundary), i.e.,

∇ · (D∇c(x)) = f (x) (5.64)

with constant diffusion3 coefficient D, and a generic space-dependent source/sink
term f . The equation is defined on a perforated (porous) domain � ∈ [0, L]d in
d-dimensions, with periodic microstructure (cell) �ε ∈ [0, �]d . For simplicity we
assume also periodicity in � but this can be easily replaced with any other simple
(macroscopic) boundary conditions. On the internal boundaries (the porous matrix)
we impose a linear mixed (normal flux) condition:

D∇nc = kc + r, (5.65)

3Traditionally, homogenisation is performed on continuous domains with space-dependent oscil-
lating diffusion coefficient. However, the case studied here, more relevant to porous media
applications, can be interpreted as a limiting case in which the diffusion coefficient tends to a
patch-wise constant. This is what is done practically when solving porous media problems with
immersed boundaries, penalisation or diffuse domain methods.



166 M. Icardi et al.

where k is a superficial reaction term (or heat transfer coefficient), and r is a
constant superficial source (or sink) term. Despite its simplicity, this includes
already important applications such as linear isotherm adsorption or heat transfer.
The extension to the mass or heat transfer through an interface within two domain
or two phases, instead of a boundary condition, is a possible extension which is
discussed in Sect. 5.4.

Inserting the expansions Eq. (5.62) into Eq. (5.64), yields

∇x0 ·
[
D

(
∇x0 + 1

ε
∇x1

)
(c0 + εc1)

]
+

+1

ε
∇x1 ·

[
D

(
∇x0 + 1

ε
∇x1

)
(c0 + εc1)

]
=

= f0(x0, x1)+ εf1(x0, x1),

while the expansion of the boundary condition can be rewritten as

D

(
n · ∇x0 + 1

ε
n · ∇x1

)
(c0 + εc1) = kc0 + εkc1 + r.

At this point, since we have not put the equation in dimensionless form, it is
important to identify the regime of interest. We will focus here on the simplest
regime for which the homogenisation approach outlined above works seamlessly.
This is the case when all coefficients (D, f ) are of the same order, namely of order
one, and the boundary coefficients (k = εk1, r = εr1) are of order ε1.

Collecting now terms with equal power of ε, and taking into account the
assumptions on the coefficients, the only term of order ε−2 leads to the linear
homogeneous equation

∇x1 · (D∇x1c0
) = 0

that turns out to be a simple (linear homogeneous) equation for the variable c0 at
the micro-scale, i.e., in each periodic cell �ε (since only derivatives with respect
to x1 appear). The largest terms in the boundary condition, i.e., a simple no-
flux (homogeneous Neumann) condition, are n · ∇x1c0 = 0 on the internal solid
boundaries, with periodic boundary conditions on the external boundaries. This
equation is trivially satisfied by a constant, i.e., a function c0 = c0(x0) which is
a function of x0 only.

For the terms of order ε1, we obtain the following equation:

∇x0 · (D∇x1c0
)+∇x1 · (D∇x0c0

)+ ∇x1 · (D∇x1c1
) = 0.
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Given the conclusion above, i.e., c0 constant at the micro-scale, the first term
disappears and, replacing the assumption Eq. (5.63),4 we obtain the equation

∇x1 ·
(
D∇x1

(
w · ∇x0c0

)+D∇x0c0

)
= 0

or, since this has to hold for an arbitrary ∇x0c0, equivalently written as a vectorial
cell-problem for the corrector w

∇x1 ·D (∇x1 w + I
) = 0 (5.66)

with I being the identity matrix, with boundary condition

Dn ·
(
∇x1

(
w · ∇x0c0

)+∇x0c0

)
= Dn · (∇x1w + I

) · ∇x0c0 = 0

or, equivalently, in vectorial form,

Dn · (∇x1w + I
) = 0. (5.67)

The next scale, ε0, reads

∇x0 ·
(
D
(∇x0c0 + ∇x1c1

))+∇x1 ·
(
D
(∇x0c1 + ∇x1c2

)) = f0(x0, x1)

that, by using Eq. (5.63), the conclusions obtained above and the boundary condi-
tions

Dn · (∇x0c1 + ∇x1c2
) = k1c0 + r1

can be averaged over the periodic cell to obtain the effective equation

∇x0 · (D∇x0c0
) = f0(x0, x1)− α

φ

(
k1c0

� + r1

)
, (5.68)

where α is the specific surface area, φ is the porosity of the porous material, D
is the (tensorial anisotropic) effective diffusion coefficient D = DI + ∇x1w that
is computed from the cell-problem defined above. This gives us a macroscopic
governing equation for c0 + εc1 (which, in this case, is equivalent to c0, being it
constant over x1, and c1 with mean zero), where surface terms integrated over the
surface (c0

� is, in fact, a surface average which, in this case, is again equivalent to
c0) appear in the right-hand side, together with f0, as bulk reaction terms.

4Which, in this case, is a unique and exact decomposition since this equation is defined up to an
additive constant, c1, and a multiplicative constant, ∇x0c0.



168 M. Icardi et al.

Physical Interpretation and Limitations

With respect to other upscaling techniques, the steps performed above do not to have
a direct physical motivation and, therefore, it might be hard to understand and assess
the validity of the underlying assumptions. However there are a few considerations
that can be made:

• Despite the apparent complexity, the cell-problem Eqs. (5.66) and (5.67) has a
clear physical interpretation, being each component of w a harmonic function
(i.e., a solution of the Laplace equation, while in other cases it would be
the solution of the underlying microscopic physics), with periodic boundary
conditions and a fixed gradient at the boundary.5 These periodic cell-problems
can often be shown to be equivalent to more intuitive closure problem, similar
to the ones obtained in volume-averaging, where a concentration gradient is
imposed at the external boundaries, respectively, in the x-, y- or z-direction.
The periodicity, however, enforces also that a fully developed concentration
profile (and not just a constant) is obtained while, as we will discuss in the next
section, more general closure problems can be obtained by volume-averaging,
with arbitrary boundary conditions.

• Two often overlooked assumptions for homogenisation, possibly more important
than the separation of scales or the periodicity of the geometry (which can
be simply assumed as a first-order approximation) are the local equilibrium
and stationarity conditions, implicitly assumed when imposing periodicity of
all fields. This is particularly relevant for processes with long pre-asymptotic
transition times (lengths) to equilibrium. In those cases, homogenisation is only
able to retrieve the asymptotic stationary macroscopic model which might be
significantly inaccurate for studying the initial times of processes like mixing.
Even if, in principle, homogenisation can include explicitly the time-dependence
both in the macro- and microscales, the periodic assumption implicitly defines
steady closure (cell) problems. Generalisations of the homogenisation techniques
to overcome these assumptions have been recently proposed [126, 127].

• Another limitation is the particular scaling chosen which, on the one hand,
clearly states the validity of the model, but, on the other hand, can be very
restrictive. This aspect is also often overlooked when, for example, non-linear
models, multiphase or fast reactions are considered. In those cases, additional
terms arise in the leading orders that, only in some cases, can be tamed by ad hoc
homogenisation techniques.

• Homogenisation should be thought of as a rigorous and robust analysis of the
multiscale features of the model (convergence properties to the macroscopic
solution, identification of validity regimes and approximation errors) and not

5Also a source term on the right-hand side would appear to counterbalance advection or faster
reaction and obtain a periodic solution.
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only as generic way of discovering emerging macroscopic equations. For more
complex models, it is usually advisable to first tackle the problem with more
phenomenological macroscopic models based, for example, on mixture theory
and variation principles, using conservation laws and the second law of thermo-
dynamics. Complementarily, volume-averaged computational results can be used
to compute the parameters of these models, while homogenisation gives directly
explicit formulas for upscaled parameters. From the practical point of view, both
approaches require the solution a microscopic cell/closure problem.

Appendix B: Volume/Ensemble Averaging

An upscaling approach, developed extensively for porous media in the last
30 years [2, 128–130], is the theory of volume-averaging with its many variants.
This is conceptually equivalent to the techniques more commonly used in
fluid dynamics, turbulence, combustion and multiphase flows [82, 131, 132],
such as the large eddy simulation. Closer instead to the Reynolds averaging
in the RANS equations is instead the concept of ensemble averaging used
predominantly in a surprisingly abundant amount of theoretical work in stochastic
hydrology [11, 12, 133, 134]. These approaches have been separately developed by
the porous media and fluid dynamics communities without significant connections.
While it is out of the scope of this chapter to explain any of these approaches in
detail, we offer here a very brief introduction and some general comments about
the applicability, similarities, differences and meaning of these methodologies. The
interested reader is referred to the previously cited works and to the review [135].

Both spatial averaging and ensemble/perturbation methods rely on the following
steps:

• Write the heterogeneous coefficients of the governing equation (e.g., velocity
field, diffusion/dispersion coefficient) with a simple decomposition into a mean
and fluctuating term, which for a generic quantity g reads

g(x) =
∫
�

w(y)g(x + y)dy + g̃(x) = g(x)+ g̃(x)

for volume-averaging (better denoted, in this formulation, as generalised volume-
averaging or space convolution filter), where w(x) is function with a compact
and localised support such that

∫
�
w(y)dy = 1. The size of the support, �, which

defines the averaging length scale, should be related to the REV size (when the
REV exists). Alternatively, for ensemble averaging, assuming that now g is a
random field, we can similarly define

g(x, ω) =
∫
ω

g(x, ω)dμ(x, ω)+ g′(x) = 〈
g
〉
(x)+ g′(x),
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where μ(x, ω) is the probability associated with the random field measure, ω is
a random event. While the first averaging is well-defined both for pore-scale
(i.e., perforated) and macro-scale (i.e., continuous) domains, the second one
strictly applies only to macro-scale (e.g., permeability) heterogeneities, although
extensions are possible.

• Applying the averaging operator to a generic transport equation for the field c, an
unclosed equation for the mean (which we denote here generally with c for both
averages) is found, where the unclosed terms are either non-linear terms (for both
volume and ensemble averages) or boundary terms (for volume-averaging). In
fact, while in standard single-phase turbulence modelling, the averaging volume
only contains fluid, in porous media the so-called spatial averaging theorem
applies

∇c = ∇c + α

ε
cn�,

where, as discussed in the homogenisation section, ·� denotes an average over the
fluid–solid interface, and n the normal to the surface. A generalisation is possible
when dealing with generic multiphase systems whose interfaces between phases
can be mobile. In that case, a more complex treatment has been used to derive
upscaled equations for all phases [2, 131, 136].

• To obtain a first-order upscaled model, the unclosed equation for c is closed with
a combination of geometrical6 and physical/phenomenological arguments, and
by the solution of the closure problem for the fluctuations g̃. The latter can be
easily obtained by subtracting the equation for g from the initial equation. This,
however, often contains other unclosed terms that could be written in terms of
higher order moments of coefficients, e.g., g, and variables, e.g., c.

• Higher order approximations can be obtained either by defining new problems
for the higher order moments or, exploiting the linearity (or linearisation) of
the transport equation, in defining a new sequence of problems to find an
approximation for c of the type:

c = c0 + c1 + c2 + . . . ,

where, for example, c0 is obtained by neglecting all unclosed terms in the
equation for c.

6Here is where the hypotheses on the porous media structure are introduced, through estimates

of the (tensorial) spatial moments nyj
�

with j = 0, 1, 2, . . . denoting the order of the tensorial
product and y being the spatial coordinate.
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Chapter 6
Recent Developments in Particle
Tracking Diagnostics for Turbulence
Research

Nathanaël Machicoane, Peter D. Huck, Alicia Clark, Alberto Aliseda,
Romain Volk, and Mickaël Bourgoin

6.1 Introduction

Flow velocity measurements based on the analysis of the motion of particles
imaged with digital cameras have become the most commonly used measurement
technique in contemporary fluid mechanics research [1, 2]. Particle image velocime-
try (PIV) and particle tracking velocimetry (PTV) are two widely used methods
that enable the characterisation of a flow based on the motion of particles, from
Eulerian (PIV) or Lagrangian (PTV) points of view. Several aspects influence the
accuracy and reliability of the measurements obtained with these techniques [2]:
resolution (temporal and spatial), dynamical range, the capacity to measure 2D or
3D components of velocity in a 2D or 3D fluid domain, statistical convergence,
etc. These imaging and analysis considerations depend on the hardware (camera
resolution, repetition rate, on-board memory, optical system, etc.) but also on the
software (optical calibration relating real-world coordinates to pixel coordinates,
particle identification and tracking algorithms, image correlation, dynamical post-
processing, etc.) used in the measurements. In this context, particle tracking
velocimetry can provide highly resolved, spatially and temporally, measurements
of the flow velocity (if the particles are flow tracers) or of particle velocities
(if the particles immersed in the flow have their own dynamics) in experimental
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fluid mechanics research and applications [2–5]. A frequent implementation of
this method in the laboratory is based on taking a pair of images (with double
exposure cameras, typical of PIV) in rapid succession followed by a larger time
interval before the next pair of images. A second common implementation of this
method starts with the capture of a long sequence of images, all equally separated
by a small time interval (with high-speed cameras). In the first case, the particle
tracking velocimetry technique provides a single vector per particle in a pair of
consecutive images, with subsequent velocity measurements in other image pairs
being uncorrelated. The high-speed image sequence, on the contrary, provides the
opportunity to track the same particle over multiple (n) images and provides several
(n-1) correlated velocity (or n-2 acceleration) measurements, at different locations
but along the same particle trajectory.

There are three recent contributions implemented by the authors and summarised
in this chapter that apply equally to both versions of the particle tracking velocimetry
technique: each one advances important aspects in one of the stages of the
measurement of velocity from particle images. The first contribution (Sect. 6.2)
provides an optical-model-free calibration technique for multi-camera particle
tracking velocimetry and potentially also for particle image velocimetry. This
method is simpler to apply and provides equal or better results than the pinhole
camera model originally proposed by Tsai in 1987 [6]. In the context of particle
tracking with applications in fluid mechanics, particle centre detection and tracking
algorithms have been the focus of more studies [7, 8] than optical calibration
and 3D position determination. Although many strategies with various degrees
of complexity have been developed for camera calibration [9–13], most existing
experimental implementations of multi-camera particle tracking use Tsai pinhole
camera model as the basis for calibration. Using plane-by-plane transformations, it
defines an interpolant that connects each point in the camera sensor to the actual
light beam across the measurement volume. As it does not rely on any a priori
model, the method easily handles potential complexity and non-linearity in an
optical setup while remaining computationally efficient in stereo-matching 3D data.
In opposition, Tsai approach, sketched in Fig. 6.1, is based on the development on
a physical model for the cameras arrangement with several parameters (the number
depending on the complexity). The model assumes that all ray of light received on
the camera sensor pass through an optical centre (pinhole) for each camera. The
quality of the inferred transformation will therefore be sensitive to variations of
the setup leading to calibration data which may no longer match the model due to
optical distortions, for instance. Besides, Tsai model requires non-linear elements to
account for each aspect of the optical path. In practice, realistic experimental setups
are either complex and time-consuming to model via individual optical elements in
the Tsai method or over-simplified by ignoring certain elements such as windows,
or compound lenses, with loss of accuracy.

The second contribution (Sect. 6.3) addresses the reconstruction of trajectories
from the set of particle positions detected in the image sequence, an important aspect
of particle tracking velocimetry [8, 14–17]. It describes the practical implementation
of two recent developments: shadow particle velocimetry using parallel light
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Fig. 6.1 Sketch of Tsai pinhole camera model and stereo-matching: the position of a particle in
the real world corresponds to the intersection of 2 lines �1 and �2, each emitted by the camera
centres O1 and O2 and passing through the position of particles P1 and P2 detected on each camera
plane �1 and �2

combined with pattern tracking [18, 19] and trajectory reconstruction based on an
extension of the four-frame best estimate (4BE) method. While the former was
developed originally to access the size, orientation, or shape of the tracked particles,
the latter is an extension of previous tracking algorithms [17] (which also extended
previous algorithms) and which can be easily implemented as an add-on to an
existing tracking code.

Finally, Sect. 6.4 describes a method to estimate noiseless velocity and accelera-
tion statistics from particle tracking velocimetry tracks. This is a crucial step because
imaging techniques may introduce noise into the detection of particle centres,
which is then amplified when computing successive temporal or spatial derivatives.
The position signal is then usually time-filtered prior to differentiation [5, 20], a
procedure that increases the signal-to-noise ratio at the cost of signal alteration. The
method described here, inspired by work in this area [21, 22], is based on computing
the statistics of the particles displacements with increasing time lag, does not require
any kind of filter, and allows for the estimation of noiseless statistical quantities both
in the Lagrangian framework (velocity and acceleration time correlation functions)
and in the Eulerian framework (statistics of spatial velocity increments) [23, 24].

Note that this chapter does not intend to review all the possible extensions of
particle tracking velocimetry and has been limited to some recent developments
from the authors’ groups, which we believe can be useful and easily implemented to
improve the accuracy of already operational PTV systems in other groups or which
may help users developing new PTV experiments. Many other interesting advances
have been developed over the past decade. We can, for instance, mention the use
of inverse-problem digital holography [25–27], which allows to track particles in
3D with one single camera, new algorithms allowing to track particles in highly
seeded flows such as the shake the box method [28] or the tracking of particles
with rotational dynamics [29, 30], which allows to investigate simultaneously the
translation and rotation of large objects transported in a flow.
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6.2 A Model-Free Calibration Method

6.2.1 Principle

3D particle imaging methods require an appropriate calibration method to perform
the stereo-matching between the 2D positions of particles in the pixel coordinate
system for each camera and their absolute 3D positions in the real-world coordinate
system. The accuracy of the calibration method directly impacts the accuracy of the
3D positioning of the particles in real-world coordinates.

The calibration method proposed here (further discussed in [31]) is based on
the simple idea that no matter how distorted a recorded image is, each bright point
on the pixel array is associated with the ray of light that produced it. As such, the
corresponding light source (typically a scatterer particle) can lie anywhere on this
ray of light. An appropriate calibration method should be able to directly attribute
to a given doublet (xp, yp) of pixel coordinates its corresponding ray path. If
the index of refraction in the measurement volume of interest is uniform (so that
light propagates along a straight line inside the measurement volume) each doublet
(xp, yp) can be associated with a straight line d (defined by 6 parameters in 3D:
a position vector O�(xp, yp) and a displacement vector V�(xp, yp)), regardless
of the path outside the volume of interest, which can be very complex as material
interfaces and lenses are traversed. The calibration method described here builds
a pixel-to-line interpolant I that implements this correspondence between pixel

coordinates and each of the 6 parameters of the ray of light: (xp, yp)
I−→ (O�,V�).

While this method may seem similar to Tsai approach which also designates a ray of
light for each doublet (xp, yp), there is a significant difference in that Tsai approach
assumes a camera model and is sensitive to deviations in the actual setup from
this idealised optical model. The proposed approach does not rely on any a priori
model and is only based on empirical interpolations from the actual calibration data.
Thus, the new method implicitly takes into account optical imperfections, media
inhomogeneities (outside the measurement volume) or complex lens arrangements.
Additionally, the generalisation of the method to cases where light does not
propagate in a straight line is straightforward: it is sufficient to build the interpolant
with the parameters required to describe the expected curved path of light in the
medium of interest (for instance, a parabola in the case of linear stratification).

6.2.2 Practical Implementation

An implementation of the method proposed is used to build the interpolant I from
experimental images of a calibration target with known patterns at known positions.
The process described here concerns only one camera for clarity. In general, in
a realistic multi-camera system, the protocol has to be repeated for each camera
independently.
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A calibration target, consisting of a grid of equally separated dots, is translated
perpendicularly to its plane (along the OZ axis) using a micropositioning stage,
and is imaged at several known Z positions by every camera simultaneously. In
total, NZ images are taken by each camera: Ij is the calibration image when the
plane is at position Zj (with j ∈ [1, NZ]). For an example highlighting the quality
of the calibration method, NZ = 13 planes were collected across the measurement
volume. The calibration protocol, sketched in Fig. 6.2, then proceeds as follows:
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1
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Fig. 6.2 Sketch of the calibration method. (a) Image Ij of the calibration target (over Nx×Ny pix-
els) located at one position Zj (in real-world coordinates). From this image the centre of the images
of the calibration dots in pixel coordinates ((xkj , y

k
j )k∈[1;Nj ]) is determined. (b) Corresponding

known location of the centre of the calibration points in real-world coordinates ((Xk
j ,X

k
j )k∈[1;Nj ]).

From (xkj , y
k
j )k∈[1;Nj ] and (Xk

j ,X
k
j )k∈[1;Nj ], the coefficients of the transformation Tj connecting

pixel and real-world coordinates of the target located at Zj are evaluated (the procedure is repeated
for several target positions Zj∈[1,Nz]) using least squares methods [32]. From a practical point of
view the transformations Tj can be easily determined using ready to use algorithms, such as the
fitgeotrans function in Matlab R©. Note that for the simplicity of the illustration of the method,
we show here a situation with no optical distortion and no perspective deformation, where the
plane-by-plane transformation Tj is just given by a magnification factor Mj between pixel and
real-world coordinates. In an actual experiment, perspective effects would require at least a linear
projective transformation, defined by a 2×2 matrix Mαβ

j with at least 4 coefficients to be estimated
for each plane position Zj . More realistic situations would require higher order polynomial
transformations including a larger number of coefficients [32]; a third polynomial transformation
embeds, for instance, 10 coefficients per plane). (c) Stacks of calibration planes at 3 different
positions (Zj=1,2,3) in 3D real-world coordinates (for simplicity, only 3 planes are illustrated,
although in an actual calibration more planes may be used for better accuracy). The 3 coloured
crosses illustrate the 3 projections (one on each of the 3 planes, the colour of the points corresponds
to the colour of the plane onto which it is projected) in real-world coordinates ((X, Y,Z)j=1,2,3)
of an arbitrary point (x, y) in pixel coordinates to which the 3 transformations Tj=1,2,3 have been
applied. These projections are distributed along a path of light corresponding to the line in real-
world coordinates that projects onto the point (x, y) in the camera pixel coordinates. Since in a
homogeneous medium light propagates in straight lines, the path of light is simply determined by a
linear fit (dashed line), in 3D real-world coordinates, of the three points ((X, Y,Z)j=1,2,3). Using
more calibration planes leads to more points for the linear fit and hence to a better accuracy. This
procedure then directly connects the pixel coordinate (x, y) into the corresponding ray of light
that produces it. Note that the fit is only done within the calibration volume where the target is
translated along the Nz planes and does not extend to the cameras
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1. Dot centres detection. For each calibration image Ij the dot centres are
detected, giving a set (xkj , y

k
j )k∈[1;Nj ] of pixel coordinates. Nj is the number

of dots actually detected on each image Ij . Real-world coordinates of the dots
(Xk

j , Y
k
j , Z

k
j )k∈[1;Nj ] are known. Lowercase coordinates represent pixel coordi-

nates, while uppercase coordinates represent absolute real-world coordinates.
2. 2D Plane-by-plane transformations. For each position Zj of the calibration

target, the measured 2D pixel coordinates (xkj , y
k
j )k∈[1;Nj ] and the known 2D

real-world coordinates (Xk
j , Y

k
j )k∈[1;Nj ] are used to infer a spatial transformation

Tj projecting 2D pixel coordinates onto 2D real-world coordinates in the plane
XOY at position Zj . Different type of transformations can be inferred, from a
simple linear projective transformation, to high order polynomial transformations
if non-linear optical aberrations need to be corrected (common optical aberra-
tions are adequately captured by a third-order polynomial transformation). This
is a standard planar calibration procedure, where an estimate of the accuracy
of the 2D plane-by-plane transformation can be obtained from the distance, in

pixel coordinates, between (xkj , y
k
j )k∈[1;Nj ] and T−1

j

(
Xk
j , Y

k
j , Zj

)
k∈[1;Nj ]

. The

maximum error for the images used here is less than 2 pixels, corresponding in
the present case to a maximum error of about 1/10th of the diameter of the dots
in the calibration image.

3. Building the pixel-line interpolant and stereo-matching. The key step in the
calibration method is building the pixel-to-line transformation. For a given pixel
coordinate (for instance, corresponding to the centre of a detected particle), this is
simply done by applying the successive inverse plane-by-plane transformations
T−1
j to project the pixel position to real space at each plane. This builds a set

of points (one per plane) which define the line of sight corresponding to the
considered pixel coordinate. The line is then determined by a linear fit of these
points. For practical purposes, instead of repeating this procedure every time for
every detected particle, we rather chose to build a pixel-line interpolant, I, which
directly connects pixels coordinates to a ray path. To achieve this, a grid of NI
interpolating points in pixel coordinates (xIl , y

I
l )l∈[1,NI] is defined, for which

the ray paths have to be computed. The inverse transformations T−1
j are then

used to project each point of this set back onto the real-world planes (X, Y,Zj ),
for each of the NZ positions Zj . Each interpolating point (xIl , y

I
l ) is therefore

associated with a set of NZ points in real world (XIl , Y
I
l , Zj ). Conversely, these

points in real world can be seen as a discrete sampling of the ray path which
impacts the sensor of the camera at (xIl , y

I
l ). If light propagates along a straight

line, theNZ points (XIl , Y
I
l , Zj ) should be aligned. By a simple linear fit of these

points, each interpolating point (xIl , y
I
l ) is related to a line �l , defined by a point

O�l
= (X0

l , Y
0
l , Z

0
l ) and a vector V�l

= (V xl, Vyl, V zl) (hence 6 parameters
for each interpolating point). Each of these rays from the NI interpolation points
is used to compute the interpolant I, which allows any pixel coordinate (x, y)

in the camera to be connected to its ray path (O�,V�) corresponding to all
possible positions of light sources that could produce a bright spot in (x, y).
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Stereo-matching, or finding the 3D position of a point (or particle), is performed
by finding a set of rays from each camera that cross (or almost cross) in the
vicinity of the same spot in the volume of interest. The most probable 3D location
of the corresponding particle is then taken as the 3D position that minimises
the total distance to all those rays. The interpolant described in the method is
created using every pixel in the cameras, as this step is done only once, but
the method can be applied with a subset of the pixel array. For a setup with
moderate optical distortion, a loose interpolating grid with a few hundreds points
(typically, 20× 20) is largely sufficient. As a matter of fact, using the interpolant
is not mandatory, as all the calibration information is embedded in the plane-
by-plane transformations. Third-order polynomial plane-by-plane transformation
embeds 10 parameters each (5 polynomial coefficients for each of the X and
Y transformations). If, instead, 7 calibration planes are used, the calibration
information embeds about 70 parameters in total. Using the interpolant approach
is above all a practical solution, while the interpolation information embeds a
massive number of hidden parameters (6 per interpolation point) and is therefore
expected to be highly redundant. Therefore, it is generally unnecessary to build
the interpolant on a too refined grid (however, the added computational cost is
minimal as the interpolant is only built once per calibration procedure, and can be
stored in a small file for later use). This may happen for systems with important
small-scale and heterogeneous optical distortions, in which case higher order
plane-by-plane transformations (hence embedding more parameters) would also
be necessary.

6.2.3 Results: Comparison with Tsai Model

The calibration procedure proposed by Tsai [6] has been widely used to recover
the optical characteristics of an imaging system to reconstruct the 3D position of
an object. The accuracy of the proposed imaging calibration procedure is assessed
by comparing it with a simple implementation of Tsai model. A camera model
accounting only for radial distortion is used. While improved optical elements
in Tsai model could increase the accuracy, they come at an increased operator
workload.

Our stereoscopic optical arrangement (see Refs. [31, 33] for more details), typical
of PTV in a 1 cm thick laser sheet, focuses on the geometrical centre of a water
flow inside an icosahedron, with both cameras objectives mounted in a Scheimpflug
configuration. A plate mounted parallel to the laser sheet with 2 mm dots, attached
to a micrometric traverse (with 10 μm accuracy), is used as a target. Both calibration
methods use 13 target images, 1 mm apart from each other along the Z axis.

The calibration method uses the 2D positions of the target dots, and provides a
series of positions that cannot exactly match the 3D real coordinates because, in both
methods, the model parameters are obtained by solving an over-constrained linear
system in the least-square sense. The calibration error, i.e., the absolute difference
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between the (known) real coordinates and the transformed ones, is computed to
evaluate the calibration accuracy. This error can be estimated along each direction

or as a norm: d =
√
d2
X + d2

Y + d2
Z (Table 6.1). Figure 6.3 plots the total 3D error

averaged over the 13 planes used, for both the proposed method and Tsai model.
The accuracy of the proposed calibration is superior to that of the Tsai method

(in its simplest implementation). The error is at least 300% smaller (depending on
which component is considered) and is reduced to barely 0.5 pixel. It is important to
note that the error map obtained with the Tsai method (Fig. 6.3b) seems to display
a large bias along Y that could be due to the use of Scheimpflug mounts, which
are typically not included in this Tsai calibration, and to the angle between the
cameras and the tank windows. This hypothesis was verified by comparing the two
calibrations procedures in more conventional conditions, where they give similar
results with a very small error.

For the present optical arrangement and the new calibration method, the error in
the Y positioning is the smallest. Indeed, due to the shape of the experiment (an
icosahedron), the y axis of the camera sensor is almost aligned with the Y direction
so that this coordinate is fully redundant between the cameras, while the x axes of
each camera sensor form an angle α � π/3 with theX direction so that the precision
on X positioning is lower. This directly impacts the precision on the Z positioning,
whose error is almost equal to the X positioning error.

Table 6.1 Spatial average of the absolute deviation from the expected position of the targets

dX (μm) dY (μm) dZ (μm) d (μm)

Proposed calibration 32.7 12.6 39.2 59

Tsai model 121 171.1 112.7 266.6

(a) (b)

Fig. 6.3 Calibration error averaged along Z using the proposed calibration method (a) or Tsai
model (b)
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6.2.4 Discussion

Up to 13 planes were used to build the operator that yields the camera calibration.
While two planes are the minimum required for the method, a larger number
of planes imaged provide better accuracy. In this case study, the major sources
of optical distortion were the Scheimpflug mounts, the imperfect lenses, and the
non-perpendicular interfaces. 7 planes provided an optimal trade-off between high
accuracy and simplicity, with an error only 2% larger than the 13 planes setup, while
using only 3 planes yields an 10% larger error. The fact that few planes are sufficient
to obtain a good accuracy of the calibration is likely related to the fact that the third-
order polynomial plane-by-plane transformations are sufficient to handle most of
the distortions, including those originating from the optics, from the tilt and shift
system and from the refraction at the air–water interface, so that the projection of
a pixel position to real space is accurately aligned along a line which defines the
corresponding line of sight. Few points are then needed to accurately fit the line
parameters (using more points essentially ensures a more robust fit with respect
to small errors in the plane-by-plane transformations). When dealing with a more
complex experiment, i.e., with a refraction index gradient, increasing the number of
planes in the calibration would improve the results allowing to accurately capture
the curvature of the light rays.

The proposed calibration method has several advantages that make it worth
implementing in a multi-camera particle imaging setup. First, it requires no model
or assumption about the properties of the optical path followed by the light in the
different media outside the volume of interest. It only requires light to propagate
in straight line. The method simply computes the equation for propagation of light
in space. This ray line equation is fully determined by the physical location of the
calibration dots located at known positions in space. Note that the present calibration
method is versatile enough so that the linear propagation constraint can be easily
relaxed. This can be useful, for instance, to calibrate stratified flows, with spatial
variations of optical index. It is then sufficient to change the linear fit used to
determine the line of sight (from the projected pixel coordinates to the planes), by
an appropriate curved path of light (a polynomial fit may often be a good enough
approximation). Second, this method is turnkey for any typical optical system. The
implementation of the new method is easily done and can be used retroactively using
previous calibration images.

Let us briefly discuss the improved accuracy of the calibration, compared to
the model of Tsai. The reason for the improved accuracy is mainly hidden in the
higher number of (hidden) parameters actually defining both calibration methods.
As pointed out earlier, in the new proposed calibration all the calibration parameters
are embedded in the plane-by-plane transformations, with 10 parameters for each
third-order polynomial transformation. Using 13 calibration planes ends up with
130 hidden calibrating parameters. These reduce to 70 when using 7 planes. In any
case this is much larger than the number of parameters embedded in the Tsai model
(which has typically 6 external parameters defining the position and the orientation
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of the equivalent pinhole camera) and several internal parameters (focal length,
pixel aspect ratio, optical distortion parameters, etc.), typically of order 10. It is
therefore not surprising that the present method gives better accuracy. Note also that
the present comparison may be unfair to the Tsai model, as we have not considered
more sophisticated pinhole camera models, properly accounting, for instance, for
tilt and shift corrections, and which would naturally embed a larger number of
parameters and an increased accuracy. Such extension of the pinhole approach is
based on sophisticated physical and geometrical models, with algorithms that tend to
be tedious to implement. A big advantage of the present calibration is its versatility
and ease of algorithmic implementation, which remains identical whatever the
complexity of the optical path. Finally, note that while the proposed method has
a larger number of parameter, they only come from empirical determination and
are obtained automatically through the calibration process, and there is no need to
prescribe a priori a set of parameters tightened to a specific model requiring choices
from the user. This makes the method not only more accurate but also adaptable and
objective.

To conclude, the model-free calibration method proposed can be easily imple-
mented with both the calibration image acquisition and spatial detection of target
points currently standard in the field. The calibration algorithm and the operator
calculation to convert pixel locations to physical locations, with minimal errors, can
easily be programmed in any language available to experimentalists (the reader can
contact the authors for source codes to implement the calibration algorithms). The
new method is at least equally, and frequently more, accurate than the commonly
used Tsai model, and it can be used more easily and in a wider range of optical
configurations. As experimental setups become more complicated with more optical
and light refraction elements, this method should prove simpler to implement and
more accurate than the model-based Tsai one.

6.3 Particle Tracking Algorithms

Section 6.3.1 describes the implementation of particle tracking velocimetry in a
von Kármán flow using parallel light beams and two cameras forming an angle of
90◦. As described below, the originality of this implementation of PTV is in the
combination of parallel illumination and of pattern tracking (rather than particle
tracking), which makes the calibration and the matching particularly simple and
accurate. It is well suited to the tracking of small objects in a large volume using
only two standard LEDs as light sources. In this setup, tracking is performed
independently on the 2 views using a nearest neighbour algorithm prior to stereo-
matching 2D tracks. Section 6.3.2 describes recent improvements of the tracking
algorithms which use more than two consecutive frames in order to increase track
lengths.
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6.3.1 Shadow Particle Tracking Velocimetry

Experimental Setup

Particle tracking has been performed in a tank with a 15 cm× 15 cm square cross-
section, where a von Kármán flow is created between two bladed discs, of radius
R = 7.1 cm and separated by 20 cm, counter-rotating at constant frequency �

(Fig. 6.4a). The flow has a strong mean spatial structure arising from the counter-
rotation of the discs. The azimuthal component resulting from this forcing is of order
2πR� near the discs’ edge and zero in the mid-plane (z = 0), creating a strong
axial gradient (Fig. 6.4a). The discs also act as centrifugal pumps ejecting fluid
radially outward in their vicinity, resulting in a large-scale poloidal recirculation
with a stagnation point in the geometrical centre of the cylinder (Fig. 6.4b). Using
water to dilute an industrial lubricant, UconTM, a mixture with a viscosity ν =
8.2 10−6 m2 s−1 and a density of ρ = 1000 kg m−3 allows for the production
of an intense turbulence with a Taylor-based Reynolds number Rλ = 200 and
a dissipative length scale η = 130 microns (see Table 6.2 for more details on
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Fig. 6.4 (a) Sketch of the counter-rotating von Kármán flow. Arrows indicate the topology of the
mean flow, the dashed line indicates the mid-plane of the vessel. (b) Schematic cut of the vessel
along the (z, x) or (z, y) plane. (c) Optical setup for S-PTV with 2 identical optical arrangements
forming an angle θ = 90 degrees (only the vertical arm is described). The 1W LED source is
imaged in the focus of a parabolic mirror to form a large collimated beam. A converging lens and a
diaphragm are used to make the LED a better point-like source of light. Light propagates through
the flow volume passing through a beam splitter (BS) before being collected using a 15 cm large
lens that redirects the collimated light into the camera objective. The optical system [L2+objective]
is focused on the camera sides of the vessel, marked with a dashed-dotted line
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Table 6.2 Parameters of the flow

� v′
x v′

y v′
z v′ τη η ε Rλ Re

Hz mmss−1 mmss−1 mmss−1 mmss−1 ms μm W.kg−1 – –

4.2 0.39 0.37 0.24 0.34 2.9 154 1.0 155 16,200

5.5 0.50 0.49 0.33 0.45 2.0 128 2.1 190 21,200

6.9 0.62 0.62 0.41 0.56 1.5 111 3.6 225 26,700

�, rotation rate of the discs; the dissipative time scale is estimated from the zero-crossing (t0 =
(t0x + t0y + t0z)) of the acceleration auto-correlation functions: t0 � 2.2τη [36], the dissipation
rate ε is estimated as ε = ν/τ 2

η , and the dissipative length scale is η = (ν3/ε)1/4. The rms
velocities are obtained at the geometrical centre of the flow using data points situated in a ball

with a 1 cm radius. The Taylor-based Reynolds number is estimated as Reλ =
√

15v′4/νε with

v′ =
√
(v′

x
2 + v′

y
2 + v′

z
2)/3. The large-scale Reynolds number is Re = 2πR2�/ν. The kinematic

viscosity of the water-UconTM mixture is ν = 8.2 10−6 m2s−1 with a density ρ = 1000 kg m−3

the flow parameters). This setup allows for the tracking of Lagrangian tracers
(250 μm polystyrene particles with density ρp = 1060 kg m−3) in a large volume
6 × 6 × 5.5 cm3 centred around the geometrical centre of the flow ((x, y, z) =
(0, 0, 0)). Two high-speed video cameras (Phantom V.12, Vision Research, Wayne,
NJ.) with a resolution of 800 × 768 pixels, and a frame rate up to fs = 12 kHz
are used. This sampling frequency is sufficient to resolve particle accelerations,
calculated by taking the second derivative of the trajectories.

The camera setup uses a classical ombroscopy configuration [34], with parallel
illumination. We have recently used such a setup (depicted in Fig. 6.4c) for
Lagrangian studies of turbulence [35]; we will use the data from this experiment
to illustrate the present section. It consists of 2 identical optical configurations with
a small LED located at the focal point of a large parabolic mirror (15 cm diameter,
50 cm focal length) forming 2 collimated beams which are perpendicular to each
other in the measurement volume. A converging lens and a diaphragm are used
to make the LED a better point-like source of light. This large parallel ray of
light then reflects on a beam splitter and intersects the flow volume before being
collected by the camera sensor using a doublet consisting of a large lens (15 cm
in diameter, 50 cm focal length) and a 85 mm macro camera objective. All optical
elements are aligned using large (homemade) reticles, which also precisely measure
the magnification in each arrangement. When placing an object in the field of view,
it appears as a black shadow on a white background, corresponding to the parallel
projection of the object on the sensor. Thanks to the parallel illumination, the system
has telecentric properties. The particle size and shape do not depend then on the
object-to-camera distance, as opposed to classical lighting schemes where due to
perspective the apparent object size changes with the object-to-camera distance.
The telecentricity also makes the calibration of each camera trivial as there is a
simple, unique, and homogeneous magnification factor relating the (x, y) pixel
coordinates to the (X,Z) real-world coordinates for one camera and to (Y, Z)

real-world coordinates for the other camera. In addition, the optical arrangement
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is rigorously implemented so that the Z real-world coordinate is exactly redundant
between the 2 cameras. This makes the matching step (detailed below) both simple
and accurate. When particles are tracked, camera 1 will provide their (x1, z1) 2D
positions, while camera 2 will measure their (y2, z2) positions. As the z coordinate
is redundant, a simple equation z2 = az1 + b accounts for slight differences in the
magnification and centring between both arrangements.

The Trajectory Stereo-Matching Approach

Given the magnification of the setup (1/4, 1 px equals 90 μm), the depth of field
of the optical arrangement is larger than the experiment. As both beams do not
overlap in the entire flow domain, particles situated in one light beam but outside
the common measurement volume can give a well-contrasted image on one camera
while not being seen by the other. Such a situation could lead to an incorrect stereo-
matching event when many particles are present. This is illustrated in Fig. 6.5a,
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Fig. 6.5 (a) Scheme of the intersecting parallel light beams showing individual particle stereo-
matching is not reliable. The black dots are two particles at the same z position outside of the
beams overlapping region and the dashed circle is a particle at the same z position within the
region (both situations being measured identically by the cameras). (b) Time evolution of the raw
z (redundant) coordinate of the same particles as obtained with 2D tracking with camera 1 and
camera 2. Only 38 matched trajectories are plotted. (c) Affine relation between z2 = az2 + b

(a = 0.98, b = 15.6 px) measured with 1900 trajectories corresponding to 6× 105 data points. (d)
A random sample of 150 trajectories in the vessel obtained from the same movie
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where the shadows left by two particles situated at the same z position but outside of
the beams overlap (black dots) could be interpreted as one “ghost” particle within
the overlapping region (dashed circle). To mitigate these errors, we construct 2D
trajectories for each camera using the (x1, z1) and (y2, z2) coordinates separately.
Once tracked in time, these trajectories, instead of individual particle positions, may
be stereo-matched. This approach is similar to the “pattern matching” originally
proposed by Guezennec et al. [16], in contrast with the particle-matching strategy,
used in many recent studies, which perform stereo-matching on individual particles
before tracking. The advantage of this method, in particular when it is combined
with telecentric illumination, is that neither stereo-matching nor tracking errors are
made, as will be detailed below. However, one must track many more 2D trajectories
that are stereo-matched. Another drawback is the projection of 3D positions into
a plane, which strongly decreases the inter-particle distance making the apparent
particle overlap an issue when the particle diameter becomes large with respect to
the effective measurement volume. However, the presence of redundancy in the
z coordinate may be used to overcome such indetermination when the apparent
proximity results only from the projection.

We implement a 2D tracking scheme using a simple method inspired from
previous works [8, 17, 20]. This tracking procedure searches for particles in frame
n + 1 whose distance from particles in frame n is smaller than a specified value.
If only one particle is found in the vicinity of the last point of a track, this track is
continued. When multiple candidates are found, the track is stopped and new tracks
are initiated with these new particles. Particles in frame n+1 which do not match
with any of the existing tracks in frame n initiate new trajectories. This procedure,
whose improvement is described in the next subsection, results in a collection of 2D
trajectories with various lengths.

Stereo-matching is then performed by identifying trajectories with z1(t) �
z2(t) using the relation z2 = az1 + b as shown in Fig. 6.5b. This calibration
relation is determined recursively using a dilute ensemble of particles for which
the initial identification of a single pair of 2D trajectories gives a first estimate
of the relationship between z2 and z1. As more trajectories are found, the affine
relationship is refined until the maximum possible amount of trajectories for a
single experiment is obtained. In this recursive manner, the tracking algorithm is
self-calibrating. Here, the parameters are a = 0.98, b = 15.6 px estimated from
1900 matched trajectories, corresponding to 6 106 data points as shown in Fig. 6.5c.
Together with the pixel-to-mm conversion from one of the cameras, this method
provides all relevant information about particle positions in world coordinates. Note
that the temporal support for the 2D tracks z1(t) and z2(t) for a given particle may
not be identical (the track may be longer on one camera than on the other or may
start and end at slightly different times). When it comes to analysing 3D Lagrangian
statistics, only the portions of trajectories over a common temporal interval are
kept. In addition, only trajectories with sufficient temporal overlap (typically 70
time-steps, i.e., approximately 2.5τη) are matched, in order to prevent anomalous
trajectories due to possible ambiguities when matching short patterns. Such an
occurrence becomes increasingly unlikely as the trajectory duration threshold is
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increased. A false trajectory can only occur when the relationship z2 = az1 + b

becomes undetermined, which may happen, for instance, when two particles are
close to colliding and the matching of the two nearby particles becomes ambiguous.
Such a situation remains however an extraordinarily rare event in dilute situations.
After tracking and stereo-matching, each pair of movies gives an ensemble of
trajectories from which all single particle statistics can be computed as shown in
Fig. 6.5d.

Flow Measurements

Measurements are performed in a volume (6× 6× 5.5 cm3) larger than one integral
scale (Lv = v′3ε−1 � 4.8 cm) of an inhomogeneous flow. As the statistics are
subsampled spatially and temporally, a large number of trajectories are then needed
to achieve a good statistical convergence. We record 200 sets of movies with a
duration of 1.3 s at 12 kHz and obtainO(1000) tracer trajectories per set. A statistical
ensemble of O(105) trajectories with mean durations 〈t〉 ∼ 0.25/� permits the
spatial convergence of both Eulerian and Lagrangian statistics. The flow properties
are obtained from the PTV data and are given in Table 6.2 together with the
energy dissipation ε. The latter quantity is estimated by calculating the zero-crossing
time τ0 of the acceleration auto-correlation curves which is empirically known to
be related to the Kolmogorov time scale τη (τ0 � 2.2τη) [36] and thus, energy
dissipation. The fluctuating velocity of the flow is found to be proportional to the
propeller frequency � (Table 6.2) due to inertial steering at the bladed discs which

forces the turbulence that becomes full-developed, provided Re = 2πR2�
ν >

3300 [37]. In what follows, we focus our analysis on the case � = 5.5 Hz.
of trajectories, each containing the temporal evolution of the Lagrangian velocity
at the particle position. Based on this ensemble of trajectories, one may reconstruct
the mean velocity field in 3D,

〈v〉(x, y, z) =(〈vx〉, 〈vy〉, 〈vz〉),

and the rms fluctuations of each velocity component (v′x, v′y, v′z). This is achieved

by an Eulerian averaging of the Lagrangian dataset on a Cartesian grid of size 123,
which corresponds to a spatial resolution of 5 mm in each direction. The choice of
the grid size must fulfil several criteria: it must be small compared to the typical
scale of the mean flow properties (here, Lv ∼ 4.8 cm), but large enough so that
statistical convergence is achieved. Here, the grid size was chosen so that there are
at least O(1000) trajectories in each bin, enough to converge both mean and rms
values.

Figure 6.6a, b displays two cross-sections of the reconstructed mean flow in two
perpendicular planes, the mid-plane �xy = (x, y, z = 0) and �yz = (x = 0, y, z),
a horizontal plane containing the axis of rotation of the discs. We observe a
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mean flow structure that is close to the schematic view of Fig. 6.4a. The flow is
almost radial and convergent with 〈vz〉 ∼ 0 in �xy , with a z component which
reverses under the transformation z → −z (Fig. 6.6b). We also observe a strong y-
component of the velocity in �yz which reverses under the transformation y → −y
and corresponds to the differential rotation imposed by the discs. These cross-
sections also reveal that the flow has the topology of a stagnation point at the
geometric centre (0, 0, 0), as was shown in another von Kármán flow with a circular
section [38]. With a 3D measurement of the mean flow, it is possible to compute
spatial derivatives along all directions. This leads to ∂x〈vx〉 ∼ ∂y〈vy〉 � −1.5 � for
the stable directions, and ∂z〈vz〉 ∼ 3.0 � for the unstable direction. Note that the
sum of these terms must be zero because this quantity is the divergence of the mean
flow. This condition is found to be well satisfied although the velocity components
were computed independently without any constraint. The verification that the flow
is divergence-free is then an a posteriori test that the reconstruction of the mean
flow is physically sound. Figure 6.6c, d displays rms values of velocity fluctuations

Fig. 6.6 Cuts of the 3D reconstructed Eulerian mean velocity (a, b) field and rms velocity (c, d).
The reconstruction is achieved by computing the mean 〈 v 〉 and rms values (v′x, v′y, v′z) of the

velocity in each bin of a Cartesian grid of size 123. (a) �xy = (x, y, z = 0) plane. Arrows are
(〈vx〉, 〈vy〉), the colour coding for the 〈vz〉. (b) �yz = (x = 0, y, z) plane. Arrows are (〈vy〉, 〈vz〉),
the colour coding for the 〈vx〉. (c) rms value of velocity fluctuations v′ =

√
(v′x2 + v′y2 + v′z2)/3

in the �xy = (x, y, z = 0) plane. (d) rms value of velocity fluctuations in the �yz = (x = 0, y, z)
plane
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v′ =
√
(v′x2 + v′y2 + v′z2)/3 in �xy = (x, y, z = 0) and �yz = (x = 0, y, z).

These maps reveal that the flow properties are anisotropic and inhomogeneous at
large scales, as previously observed in similar setups [39].

6.3.2 Improved Four-Frame Best Estimate

As mentioned in the previous section, using only two frames and a nearest neighbour
criterion may lead to multiple candidates for a given track or wrong matches
when increasing the number of particles in the field of view. To overcome such
limitation, four-frame tracking methods were developed, as, for instance, the “four-
frame minimal acceleration method” (4MA), developed by Maas et al. [14], which
minimises the change in acceleration along the track, or the further extension by
Ouellette et al., known as “four-frame best estimate” particle tracking method (4BE)
which minimises the distance between the prediction of particle position two time-
step forward in time and all the particles detected at that time [17]. The 4BE method
was shown [17] to have an improved tracking accuracy compared to the 4MA
method. The 4BE method builds on a nearest neighbour approach and three-frame
tracking methods to improve tracking performance by utilising location predictions
based on velocities and accelerations.

The 4BE method uses four frames (n−1, n, n+1, and n+2) to reconstruct particle
trajectories, as illustrated in Fig. 6.7a. Individual tracks are initialised by using the
nearest neighbour method, which minimises the distance between a particle in frame
n − 1 and frame n. Once a track is started, the first two locations in the track are
used to predict the position x̃n+1

i of the particle in frame n+ 1:

x̃n+1
i = xni + ṽni �t, (6.1)

where xni is the position of the particle in frame n, ṽni is the predicted velocity, and
�t is the time between frames. A search box is then drawn around this predicted
location to look for candidates to continue the track. The size of the search box is
set to be as small as possible (usually a few pixels) since it is expected that the actual
particle location will be close to the prediction. Additionally, if the flow statistics are
anisotropic, the search box can be adjusted to be larger along the axis with higher
velocity fluctuations and smaller in the directions with smaller fluctuations. This
decreases computational costs because it limits the number of particles found in the
initial search, thus limiting possible track continuations. The particles found within
this bounding box can then be used to predict a set of positions x̃n+2

i in frame n+2:

x̃n+2
i = xni + ṽni (2�t)

2 + 1

2
ãni (2�t)

2 , (6.2)
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where xni , ṽni , and �t are the same as above, and ãni is the predicted acceleration. As
in the previous frame, n+1, a search box is drawn around each of the x̃n+2

i predicted
locations. Each of these bounding boxes is then interrogated for particles. Using
these particle locations, the track is determined by minimising the cost function φnij :

φnij = ||xn+2
j − x̃n+2

i ||. (6.3)

Equation (6.3) minimises the distance between the actual (xn+2
j ) and predicted

(x̃n+2
i ) particle locations, thus minimising changes in acceleration for a given track.

An optional upper threshold, typically half the length of the search box, can be set
on the cost function to help limit tracking error. The particle, and, therefore, the
track that minimises this cost function and falls within the threshold is then defined
as the correct track and all other possible tracks are discarded. It is also important to
note that a track is discarded if at any point it does not contain any particles in the
search box in frames n+ 1 or n+ 2.

While 4BE with nearest neighbour initialisation (4BE-NN) is a very good
compromise between tracking accuracy and efficiency (low computational cost),
there are certain cases where it starts to fail. For instance, it is not suitable for
situations where the particle displacement starts to be comparable to the inter-
particle distance. Therefore, we have developed a modified initialisation (MI)
method for 4BE (4BE-MI) that is more effective at detecting tracks than the
current nearest neighbour initialisation [40]. Figure 6.7b shows the modified 4BE
algorithm. This method uses a search box based on the estimated maximum particle

Fig. 6.7 (a) 4BE-NN. Particle locations are denoted with filled symbols, whereas predicted
particle locations are denoted with hollow symbols. The boxes represent the bounding boxes used
in the algorithm. The predicted path is overlaid in the figure. (b) 4BE-MI. The initial bounding
box (now shown in the figure) allows for more potential tracks to be examined when searching for
the correct track. (c) Comparison of tracking performance for 4BE-NN and 4BE-MI methods. At
values of ξ < 0.2, the tracking error is zero for 4BE-MI
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displacement between two frames to initialise tracks. The size of this search box
is determined based on the flow characteristics (instantaneous spatial-averaged
velocity, velocity fluctuations in all three directions, etc.), but it is always larger
than the size of the search box used for track continuation (which is only aimed at
accounting for the error in evaluating the next position in the track). This allows the
algorithm to explore multiple possible trajectories for each particle and eliminates
the assumption that the closest particle in the next frame is the only option when
starting a track. It also enables a track to be constructed based on knowledge of the
flow physics as a feature of the initialisation.

The performance of the 4BE algorithm both with and without the modified
initialisation scheme was analysed using direct numerical simulation (DNS) data
of a turbulent channel available through the Johns Hopkins University Turbulence
Databases [41]. The DNS was performed in a 8π × 2 × 3π domain using periodic
boundary conditions. The Reynolds number was Re = Uch

ν
= 2.2625 × 104, where

Uc and h are, respectively, the channel centre-line velocity and height. The flow was
initially seeded with tracer particles throughout the entire volume. The particles
were then advected through the channel for each time-step based on the resolved
DNS flow field. The trajectories were cut in a subdomain of the channel, creating
an ersatz of particle entering and leaving the measurement volume as is typical in
experiments. The trajectories generated were then used to benchmark the tracking
scheme by comparing tracking results to the known trajectories.

Several datasets were generated by varying the distances that the particles moved
between frames. This generated data over a wide range of ξ , defined as the ratio of
the average distance each particle moves between frames to the average separation
between particles in a frame. When ξ is small, tracking is easy because the particles
move very little between frames and there are not many particles to consider for
track continuation. However, as this ratio increases, tracking becomes more difficult
because the particles move a large amount between frames and there are many
particles per frame. Figure 6.7c shows the tracking error Etrack plotted against ξ .
The tracking error is defined as:

Etrack = Nimperfect

Ntotal
, (6.4)

where Nimperfect is the total number of imperfect tracks and Ntotal is the total number
of tracks in the dataset generated. A perfect track must start at the same point as the
actual track and must contain no spurious locations.

Figure 6.7c shows how the tracking error Etrack is decreased when using
the modified initialisation scheme. Etrack is equal to zero, meaning there are
no erroneous tracks computed, up to approximately ξ = 0.2 for the modified
initialisation scheme. Additionally, at all values of ξ , the modified initialisation
scheme performs better than the nearest neighbour initialisation scheme. This shows
the advantage of the modified initialisation scheme in creating trajectories in flow
with large particle displacements or high particle density.
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6.4 Noise Reduction in Post-Processing Statistical Analysis

Particle tracking velocimetry leads to a collection of tracks, (xj (t))j∈[1,N ], from
which turbulent statistics, such as the mean flow and velocity fluctuations, may be
computed. Most of the desired quantities have in common that they require taking
the derivative of the particle positions, which inevitably leads to noise amplification.
In the Lagrangian framework, single particle (two-time) statistics such as velocity or
acceleration auto-correlation functions are of great interest; they will be considered
in Sect. 6.4.1. In the Eulerian framework, moments of velocity differences separated
by a distance r (structure functions) are of great importance; these two particle
statistics will be addressed in Sect. 6.4.2.

The method presented below seeks to obtain unbiased one- and two-point
statistics of experimental signal derivatives without introducing any filtering. It is
valid for any measured signal whose typical correlation scale is much larger than
the noise correlation scale. While one aims to obtain the real signal x̂, the presence
of noise b implies that one actually measures x(t) = x̂ + b. For simplicity, we
consider the case of a temporal signal x(t) that is centred, i.e., 〈x〉 = 0, and is
obtained by considering x(t)− 〈x〉, where 〈·〉 is an ensemble average.

The method is based on the temporal increment dx of the signal x over a time dt
that we express as dx = x(t +dt)−x(t) = dx̂+db. Assuming that the increments
of position and noise are uncorrelated, the position increment variance is written as〈
(dx)2

〉
=
〈
(dx̂)2

〉
+
〈
(db)2

〉
. Introducing the velocity v̂ and acceleration â through

a second-order Taylor expansion x̂(t + dt) = x̂(t)+ v̂ dt + â dt2/2 + o(dt2), one
obtains:

〈
(dx)2

〉
=
〈
(db)2

〉
+ 〈v̂2〉dt2 + 〈

â.v̂
〉
dt3 + o(dt3), (6.5)

where
〈
(db)2

〉
= 2

〈
b2
〉

in the case of a white noise [24, 42]. In Eq. (6.5)
〈
(dx)2

〉
is

a function of dt so that one can recover the value of the velocity variance 〈v̂2〉 by

calculating time increments of
〈
(dx)2

〉
(dt) over different values of dt followed by

a simple polynomial fit in the form of Eq. (6.5). If the noise is coloured,
〈
(db)2

〉
=

2
〈
b2
〉
−2

〈
b(t)b(t + dt)

〉
. In this case, the method requires the noise to be correlated

over short times when compared to the signal correlation time. As a result, only the

lowest values of
〈
(dx)2

〉
(dt) are biased by

〈
b(t)b(t + dt)

〉
and a fit still successfully

allows for the evaluation of the root mean square (rms) velocity, v̂′ = √〈v̂2〉. For
an experimentally measured signal x, equally spaced at an acquisition rate fs , the
minimal value of dt is 1/fs ; we can then obtain the values of dx for different
values of dt = n/fs . For this method, a value of the acquisition rate fs higher
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than usual is required, in order to be able to access derivatives of the signal without
aliasing error.

We can extend the previous calculation to higher order derivative statistics by
considering higher order increments. The second-order increment d2x = x(t +
dt) + x(t − dt) − 2x(t), which is related to the acceleration variance 〈â2〉 here,
yields, for instance:

〈
(d2x)2

〉
=
〈
(d2b)2

〉
+ 〈â2〉dt4 + 1

6

〈
â
d2â

dt2

〉
dt6 + o(dt6), (6.6)

where
〈
(d2b)2

〉
= 6

〈
b2
〉

in the case of a white noise [24, 42], but otherwise

introduces additional noise correlation terms which are functions of dt .

6.4.1 Lagrangian Auto-Correlation Functions

The approach developed above is not restricted to one-time statistics of the signal
derivatives but can be generalised to estimate the noiseless first- and second-order
derivative auto-correlation functions of the signal Cv̂v̂ = 〈

v̂(t)v̂(t + τ)
〉

and Cââ =〈
â(t)â(t + τ)

〉
. This is done by considering the correlations of first- and second-

order increments
〈
dx(t)dx(t + τ)

〉
and

〈
d2x(t)d2x(t + τ)

〉
which are functions of

dt and τ . Noiseless velocity and acceleration correlation functions are estimated,
respectively, for each time lag τ using a polynomial fit of the signal time increment
dt with the following expressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cdxdx(τ, dt) = Cv̂v̂(τ )dt
2 + 1

2

(
Cv̂â(τ )+ Câv̂(τ )

)
dt3+

+Cdbdb(τ, dt)+ o(dt3)

Cd2xd2x(τ, dt) = Cââ(τ )dt
4 + 1

12

(
Câ(d2â/dt2)(τ )+ C(d2â/dt2)â(τ )

)
dt6+

+Cd2bd2b(τ, dt)+ o(dt6),

(6.7)

where Cfg = 〈
f (t)g(t + τ)

〉
is a cross-correlation function. It can be noted that the

case of the rms values corresponds to τ = 0 and it is noted that 〈(dx)2〉 and 〈(d2x)2〉
are functions of dt . In the previous expressions and in the case of a white noise, we
can write auto-correlation functions of the first- and second-order increments of the
noise. With the signal sampled at a frequency fs , one has dt = n/fs and τ = m/fs .
The correlation functions of the digitised noise increments are written as:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cdbdb

(
τ = m

fs
, dt = n

fs

)
=
〈
b2
〉
(2δm,0 − δm,n),

Cd2bd2b

(
τ = m

fs
, dt = n

fs

)
=
〈
b2
〉
(6δm,0 − 4δm,n + δm,2n),

(6.8)

where δm,n is the Kronecker symbol. For both derivatives, the white noise magnitude
in the first-order derivative auto-correlation functions is the highest for τ = 0
and is an additive term. The noise then yields a negative term for m = n. In the
case of second-order derivatives (for acceleration in the case of Lagrangian tracks),
the noise magnitude has a larger weight and the noise also contributes to a third
time point of the function (m = 2n) with a positive term of smaller amplitude.
Considering white noise terms up to dt6, all other values of τ will directly yield the
function without noise.

Results

The method has been applied to the material particle trajectories from Ref. [43].
It has been tested successfully for different particle diameters (from 6 to 24 mm),
Reynolds numbers (350 < Reλ < 520), and two density ratios (0.9 and 1.14), as
well as for neutrally buoyant particles from Ref. [44]. We will focus only on the case
of particles 6 mm in diameter and of density ratio 1.14 at a Reynolds number Reλ =
520 in this example. The position trajectories are obtained by stereo-matching of
successive image pairs obtained, thanks to two cameras and ambient lighting. The
particles appear as large, bright discs on a uniform dark background which yields
sub-pixel noise for the trajectories (the apparent particle diameter is about 20 pixels)
and is not correlated with the particle position as the background is uniform (nor
with its velocity as the exposure time is short enough to fix the particles on the
images). In practical situations, the presence of sub-pixel displacements can lead to
a short-time correlation of the noise, typically over a few frames.

Figure 6.8 shows the evolution of
〈
(dx)2

〉
and

〈
(d2x)2

〉
with dt . A simple linear

function of dt2 is enough for
〈
(dx)2

〉
and a sixth-order one suits better

〈
(d2x)2

〉
.

The first points of
〈
(d2x)2

〉
do not follow Eq. (6.6), which may be due to the fact

that we are not dealing with a purely white noise as will be shown in Fig. 6.9b.
Using the estimated values of the rms acceleration, a′, and 〈(d2b)2〉, we can define
a noise-to-signal ratio b′f 2

s /a
′ = 11.9, where we have defined b′ = √〈(d2b)2〉/6

by analogy with the white noise case. When considering the noise weight on the
velocity signals, we of course find a much smaller magnitude b′fs/v′ = 0.14 as it
is only a first-order derivative (v′ being the rms of the velocity estimated with this
method).
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Fig. 6.8 (a) Evolution of
〈
(dx)2

〉
with (dt/τa)

2, where τa = 8.1 ms is the particle acceleration

time scale (integral of the positive part of the particle acceleration auto-correlation function). The

dashed line is a linear fit over the range 0 < dt/τa ≤ 0.25. (b) Evolution of
〈
(d2x)2

〉
with

dt/τa . The dashed-dotted and dashed lines are fourth and sixth order fits (α + β(dt/τa)
4 resp.

α+β(dt/τa)
4 +γ (dt/τa)

6) over the range 0 < dt/τa ≤ 0.62. The insets are zooms on low values
of dt/τa



Fig. 6.9 (a) Auto-correlation functions of the velocity or acceleration (b) estimated from the
proposed method (dashed line) and directly computed by differentiating the position signal
obtained by PTV (continuous line). The insets are zooms on the low values of τ . The fit ranges used
to obtain the functions are the same that used in Fig. 6.8. The dashed-dotted line in figure (b) is the
correlation estimated from filtered trajectories using a Gaussian kernel K = Aw exp(−t2/2w2),
where w = 12 points and Aw is a normalisation factor
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Figure 6.9 shows the auto-correlation function of both the velocity and accel-
eration estimated with the proposed method, compared to the raw functions. With
the low level of noise in this configuration, the velocity is almost unbiased and
both functions are indistinguishable except for the first points of the raw function
that are offset by the noise. On the second-order derivative, it can be observed
in Fig. 6.9b that the raw acceleration auto-correlation function is biased for more
than the three first points only (see inset). This is because the noise is not white
but has a short correlation time compared to the signal. Combined with the finite
duration of the trajectories, the raw correlation function is noisy over the whole
range of time lags τ . This curve is plotted together with the one estimated with the
method, fitting the coefficient up to dt = 5 ms which corresponds to 30% correlation
loss in acceleration signals (same range as in Fig. 6.8b, but the precise choice is
not critical). Although the signal-to-noise ratio is poor, the estimated correlation
function seems to be following the median line between the peaks caused by noise
and crosses zero at the location that seems to be indicated by the raw function. It
is also close to the auto-correlation function from Ref. [43], estimated by filtering
the data with a Gaussian kernel K = Aw exp(−t2/2w2) (with w = 12 points and
a compact support of width 2w, Aw is a normalisation factor). It should be stressed
that the value w = 12 was chosen arbitrarily as a compromise between suppressing
oscillations at small lags without altering too much the shape of the function at
larger lags.

With the new method, we compute an acceleration time scale τa = 8.1 ms and an
acceleration magnitude a′ = 12.4 mmss−2, which is close to the values τa = 8.8 ms
and a′ = 12.9 mmss−2 found for the filtered data [43]. However, in the latter case,
the value of a′ depends strongly on the choice of the filter width w, so that one
usually estimates a′ by computing it for different filter widths which can then allow
to extrapolate a best estimate value (as introduced in [5]).

Discussion

The present de-noising method estimates moments and auto-correlation functions
of experimental signal derivatives. This method relies on two main assumptions:

1. The signal is correlated on a longer time scale than the noise.
2. The sampling frequency, fs , is high enough so that the first and second

derivatives of the signal can be computed by taking increments over several (N )
points.

We have tested the method in the context of Lagrangian particle tracks in turbulence
for which the noise is correlated on times much shorter than the signal, considering
both first- and second-order derivatives of a time dependent signal. The results are
in good agreement to what is obtained by classical filtering processes which require
a long bias study specific to the data type [5, 45], and we believe them to be more
accurate. The method avoids subjective tuning of the filter width and choice of filter
type while yielding unbiased quantities by requiring data fits in an appropriate range.
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While the fit range is still an adjustable parameter, we observed its impact on the
results to be smaller than when filtering the data. Another advantage of the method
is an easy access to the noise magnitude. While building a new experimental setup,
one can gather just enough statistics to converge second-order moments to estimate
the noise magnitude and try and improve the setup iteratively.

6.4.2 Eulerian Structure Functions

Method

The method presented above can be extended to compute Eulerian statistics,
such as structure functions, from the collection of tracks (that can be two-frame
displacement vectors in PIV). From particle positions x, which are measured with
some noise b (x = x̂ + b, where x̂ are the actual positions), we define a 3D
Lagrangian displacement field between two consecutive images taken at instants
t and t + dt is then dx = x(t + dt)− x(t) = dx̂ + db. This displacement field can
be conditioned on a Cartesian grid so that its first moment

〈dx〉 = 〈
v̂
〉
dt + 〈

b
〉+ o(dt2) (6.9)

is computed in each bin of the grid to compute the mean flow
〈
v̂
〉
. We then compute

the centred second-order moment of the displacement field

〈
(dx − 〈dx〉)2

〉
=
〈
v̂′2〉

dt2 + 2
〈
b′2〉+ 〈

â′ · v̂′〉
dt3 + o(dt3), (6.10)

where the prime stands for fluctuating quantities. Note that this formula is easily
extended to centred cross-component second-order moments which are linked to
the components of Reynolds stress tensor in each point of the grid.

The de-noising strategy is applied to data obtained from a pair of images taken
with standard PIV cameras, one experimental set corresponds to a single value

of dt . The moments 〈dx〉 and
〈
(dx)′2

〉
=
〈
(dx − 〈dx〉)2

〉
are then calculated for

multiple experimental sets where images of the particles in the flow are collected

at increasing values of dt . When the evolution of
〈
(dx)′2

〉
with dt is fitted by a

polynomial of the form c1dt
2 + c2 in each bin, the leading coefficient is the field〈

v̂′2〉. The third-order correction is negligible because dimensional analysis gives〈
v̂′2〉

/
〈
â′ · v̂′〉

τη ∼ Reλ, where τη = √
ν/ε is the dissipative time and Reλ is

the Reynolds number at the Taylor length scale. In turbulent flows,
〈
â′ · v̂′〉 is well

approximated by the dissipation rate ε. Taking dt smaller than the dissipative time
ensures that the displacement field variance is well approximated. The advantage
of this method is that it uses all the measurements taken at different values of
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dt without having to choose any particular dt , as would be done in a classical
PIV experiment. And unlike PIV, there is no filtering of the data in the form of
windowing.

This method can be extended to higher order moments of the displacement field,
as well as to recover increment statistics, for example, the longitudinal second-

order structure function of the velocity (Ŝ2 =
〈
[(v̂(x + r)− v̂(x)) · er ]2

〉
, with

er = dx/|dx|), by fitting the evolution of
〈
[(dx(x + r)− dx(x)) · er ]2

〉
with a

polynomial Ŝ2(|r|)dt2 + c2:

〈
[(dx(x + r)− dx(x)) · er ]2

〉
=
〈
[(db(x + r)− db(x)) · er ]2

〉
+

+
〈
[(v̂(x + r)−−v̂(x)) · er ]2

〉
dt2 + · · ·+

+ 〈[(v̂(x + r)− v̂(x)) · er ][(â(x + r)− â(x)) · er ]
〉
dt3 + o(dt3).

(6.11)

Note that the structure function computation does not require the conversion of
displacements to Eulerian coordinates, but rather to bin the inter-particle distance
|r|. This means that measuring structure functions is possible at arbitrarily small
separations |r|, without any requirements on the Eulerian spatial binning. This
method requires only a statistical convergence in the number of particles N at a
certain range of inter-particle distance (a number that is proportional to N2). This
represents a significant advantage over methods for structure function computation
that carry an associated increase in measurement noise at small separations |r|.

The second-order moment of the velocity fluctuations and second-order structure
function are presented here as examples of what the expansion of statistical
moments, combined with data collected at different dt can achieve. Higher order
moments for the velocity fluctuations and higher order structure functions can be
easily computed by this method with reduced noise, although they will contain
residual noise from the computation of lower order moments (o(dt3) terms above).

Results

Particle displacements measured in a homogeneous, isotropic turbulence experi-
ment [33, 46] are used to demonstrate the validity and accuracy of the method. Two
CMOS cameras with a resolution of 2048×1088 pixels were used in a stereoscopic
arrangement. Images were collected in double-frame mode, separated by a time-step
dt from 0.05τη to 0.2τη. Alternatively, using a very fast acquisition/illumination
rate using high-speed camera and kHz pulsed lasers allows us to collect a single
image sequence and then take a variable dt in the analysis by skipping an increasing
number of images in the sequence. Measurements were obtained in a volume of
10× 10× 1 cm3 using a Nd:YAG laser. For each experiment, approximately 10,000
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Fig. 6.10 (a) Longitudinal second-order structure functions of the raw displacement field against
the separation |r| normalised by the Kolmogorov length scale η for different values of dti equally
spaced from 0.05 to 0.2 τη at Reλ = 291. (b) Same quantities but plotted at a given separation |r|
(indicated by the vertical dashed lines on (a); ascending order is for different values of dt), as a
function of the inter-frame time-step value dt . The lines are fits of the form c1dt

2 + c2

pairs of image sets per time-step (each set providing the 3D position of several
hundred particles in the flow) were collected to ensure statistical convergence.

The different results for the longitudinal second-order structure function of dx
(Fig. 6.10a) at different time-steps, dt , show a strong dependency on how the noise
affects the signal for different values of dt . The displacement correlation plotted at
fixed separations (five different values) are all quadratic in dt (Fig. 6.10b), showing
that this approximation is robust for different levels of measurement noise. The trend
c1dt

2 + c2 from Eq. (6.11) is followed at different values of the separation |r|, with
the positive values of c2 being proportional to the variance of the noise (Eq. (6.10)).
The quadratic coefficient c1 is the second-order function of the velocity with the
noise removed. The presence of the inertial range is highlighted by the 2/3 slope in
Fig. 6.11a, over approximately one decade, in good agreement with the prediction
of Kolmogorov for the second-order structure function in homogeneous isotropic
turbulence (Ŝ2 ∼ ε2/3|r|2/3) [47]. Turbulence variables extracted from velocity
measurements would be subject to a significant level of uncertainty and inaccuracy
(seen in Fig. 6.10a) if the noise were not removed by the method proposed here.

Figure 6.11b shows the estimation of the dissipation rate of turbulent kinetic

energy, εr = Ŝ2
3/2

/|r| for three different Reynolds numbers studied in this exper-
imental implementation of this de-noising method. The plateau values obtained
confirm the presence of the inertial range and their values correspond to the
ensemble average of the local dissipation rate. The estimations of ε, as well as u′
(spatial average of the fluctuating velocity map), for different Reynolds numbers
compare well with those in [33], obtained by 2D3C PIV, confirming the accuracy of
the method. In fact, the values of u′ and ε are slightly lower than those obtained by
PIV. This discrepancy can be explained, qualitatively, based on the physics of the
measurements and the effect of the noise on these metrics when it is not eliminated
from the displacement measurements. Previous velocity measurements in the same
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Fig. 6.11 (a) Second-order structure functions of the velocity extracted with the proposed method
for different Reλ. The black dashed line corresponds to a power law of exponent 2/3. (b) Energy

dissipation rate estimated as εr = Ŝ2
3/2

/|r|

experiment, conducted by traditional PIV [33], corresponded well with the actual
velocity measured with this technique, but with the noise variance retained. The
structure function (and hence ε) measured with traditional techniques was also
subject to this erroneous increase in the value due to the contribution of noise
to the computation of this statistical value. Equation (6.11) shows that the term〈
[(db(x + r)− db(x)) · er]2

〉
will increase the value ε due to noise. To determine

the importance of this term, it is expanded into 4
〈
b2
〉
(1−Cb(|r|)), where Cb(|r|) is

the noise spatial correlation, bounded between (−1, 1). Regardless of the value of
Cb, it will erroneously increase the value of the structure function yielding a higher
value of ε. As the value of Cb depends on spatial separation, it will not uniformly
raise it for all values of |r| and the slope of the structure function may evolve with
separation, making the value of ε noisier.

Discussion

The comparison of the flow statistics with a previous 2D3C PIV study [33] allows
for the validation of the proposed method. In fact, the measurements show better
results, with no need to tune arbitrary filtering parameters to remove noise (the
interrogation window size, for instance). The only parameters that must be chosen
for the method proposed here are the different values of dt that are accessible for a
given flow and camera/illumination available, the form of the fit function, and finally
the binning in space to compute the Eulerian average and fluctuating velocities (if
so desired), and in separation distance to compute the structure function.

The values of dt are subject to two limitations. They must be high enough
so that particles move more than the measurement error while keeping the large
displacements associated with highest dt from interfering with the ability of the
particle tracking algorithm to identify individual particles [48]. As mentioned, a
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maximum value of dt � τη ensures that the third-order correction remains small,〈
v̂′2〉 / 〈â′ · v̂′

〉
τη ∼ Reλ. This was verified in the present experimental setup and

we found this correction to be negligible when compared to the second-order term.
This was also the case for the structure function provided the separation lies in the
inertial range |r| � η. In such cases, the best agreement between fit functions and
the data overall was found when using a quadratic function of dt . As for the number
of time-step values needed, the value of ε when using only the three larger values
of dt was only 5% lower than when using all five datasets. Using only the lowest
value and largest values of dt allowed for a simple calculation of ε that was only
2% higher than with the full experimental set.

The displacement vector field obtained from particle tracking in this multiple
time-step method is computed in a Lagrangian frame of reference. To compute the

values of
〈
(dx)2

〉
against dt , the displacement field must be binned into a spatial

grid, converting it to an Eulerian frame of reference. Although the number of
particles per image, or Eulerian grid cell, is relatively small in these PTV images,
the velocity is estimated independently for each particle pair. Thus, the statistical
convergence in the method is reached relatively quickly (without the need for a
very large number of image pairs). The computation of the structure functions
highlights this advantage. As pointed out above, the structure function could in
principle be computed to arbitrarily small separation between particles. However,
great care should be taken in doing so because: (1) it is difficult to achieve statistical
convergence in finding particles with small separations; (2) the second and third-
order terms in Eq. (6.11) are of the same order of magnitude when the separation is
in the dissipation range (|r| ∼ 10η). These reasons explain why an increase of the
structure functions at small separations is observed in Fig. 6.10a.

6.5 Conclusions

We have presented recent developments in the characterisation of flows in laboratory
experiments using particle tracking velocimetry, one of the most accurate techniques
in experimental fluid mechanics. By tracking simultaneously hundreds of particles
in 3D, it allows the experimentalist to address crucial questions related, for instance,
to mixing and transport properties of flows.

The main aspects of particle tracking are addressed. A new optical calibration
procedure based on a plane-by-plane transformation, without any camera model,
is presented. It is at least as precise as Tsai model though more versatile as it
naturally accounts for optical distortions and can be used in very complex con-
figurations (such as Scheimpflug arrangement, for instance). Tracking algorithms
are at the heart of PTV, and the practical implementation of two of their recent
development is described: shadow particle tracking velocimetry using parallel light
and trajectory reconstruction based on a four frames best estimate method (4BE)
with improved initialisation. While the former was developed originally to access
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the size, orientation, or shape of the tracked particles, the latter is a natural extension
of classical PTV setup and can be easily implemented as an add-on of any existing
code.

A drawback of particle imaging techniques, as opposed to direct methods such
as hot wire anemometry, is that they rely on measuring particle displacement. They
are inevitably subject to noise amplification when computing spatial or temporal
derivatives. We present recent developments addressing this important question
which are based on computing statistics of the particle displacement with increasing
time lag. They do not require any kind of filtering, and allow for the estimation
of noiseless statistical quantities both in the Lagrangian framework (velocity and
acceleration time correlation functions) and in the Eulerian framework (statistics of
spatial velocity increments).

We conclude by mentioning that experimental techniques in fluid mechanics are
continuously being improved, as new ideas combined with technological advances
increase the resolution and the range of existing methods: for instance, cameras
are becoming ever faster and sensors better resolved; an important breakthrough in
high-resolution optical tracking is expected in the coming years, thanks to FPGA
(field programmable gate array) technology which allows to process images on-
board and hence to increase the effective data rate. Such a technique has been
pioneered by Chan et al. [49] and further developed by Kreizer et al. [50] to achieve
on-board particle detection, allowing to directly stream particle positions to the hard
drive of the control computer, avoiding the usual memory limitation of high-speed
cameras, and making the recording duration virtually unlimited.
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Chapter 7
Numerical Simulations of Active
Brownian Particles

Agnese Callegari and Giovanni Volpe

7.1 Introduction

Active particles differ from their passive counterparts for their ability to propel
themselves. In Fig. 7.1 examples of active particles are given, classified with respect
to their size and their propulsion speed. Living microorganisms propel themselves
for different purposes such as finding food, escaping from predators or other
dangers, and patrolling a territory [1]. Inspired by these microorganisms, researchers
have recently developed several artificial particles capable of self-propelled motion
activated by localised light, concentration, temperature gradients [2]. Despite the
variety of possible self-propulsion mechanisms, we can identify some key features
to describe the motion of a self-propelling micro- or nanosized particle: (1)
directionality over a characteristic time interval, (2) orientational noise, and (3)
absence of inertia. We note that in the case of living organisms the self-propulsion
mechanism often implies a deformation in their shape; however, for simplicity, this
aspect will not be taken into account in this chapter. Even if active particles are
obviously three-dimensional and their motion also happens in 3D, here we will
mainly consider motion in two dimensions, as in many real situations the motion
of active particles is in a quasi-2D environment; for example, the case of motile
bacteria moving above the lower horizontal surface of a sample slide. However, we
will provide details on how to handle the motion of active particles in 3D as well. It
is worth noting that in some cases 2D-confinement on active particles can give rise
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Fig. 7.1 Examples of active particles. Both living organisms and man-made particles are capable
of propelling themselves. Here are represented biological and artificial particles of micro- and
nanoscopic size. Their speed ranges from a few μm s−1 to mm s−1. Adapted from Bechinger et al.
[2]

to unexpected features that are not present in the case the active particles are moving
in the bulk of a solution, i.e., full 3D motion with no confinement [3].

7.2 Passive Brownian Motion

Typical active particles are motile bacteria or artificial self-propelling microparti-
cles, which perform their motion in a liquid environment. Since they are immersed
in a fluid, active particles are subject to viscous force, always opposite to their
velocity, and to thermal noise that is generated by the molecules constituting
the fluid, which, because of the microscopic size of the particles, results in a
non-negligible effect. Therefore, before entering into the details of how various
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models can describe the motion of active particles, we will discuss how the passive
Brownian motion of a spherical particle can be described using Langevin equations
and simulated using finite-difference equations [4].

Numerical simulations of Brownian dynamics date back to the 1970s and
1980s. Seminal works in this field are [5–7]. A comprehensive review is [8] and
fundamental reference books are [9–11]. A reference for the numerical methods
is [12], where the method with finite differences, better known as Euler–Maruyama
scheme, is explained among other schemes. Here, we report the essential basics of
passive Brownian dynamics and we invite the reader to refer to the milestone works
cited above for a deeper insight and a comprehensive review.

Let us assume we have a spherical microscopic particle (for example, a trans-
parent silica particle of 3 μm diameter) floating in a droplet of liquid solution (for
example, a water solution) deposited on a microscopic glass slide. The mass of the
particle is m ≈ 10−14 kg. If we observe it with a microscope, we will see that
the particle moves erratically, hovering above the flat glass surface of a microscope
slide. If we track the particle by recording its position at times regularly separated by
a fixed time interval �t , we will find that its translational motion is purely diffusive,
with translation diffusion constant for each of the two main directions Dt given by

Dt = kBT

γt
, (7.1)

where kB is the Boltzmann’s constant, T is the absolute temperature, and γt is the
friction coefficient of the particle for translational displacements (in the bulk of a
liquid solution, γt = 6πηR, where η is the viscosity of the fluid and R the radius
of the particle). This equation is the simplest expression of Einstein’s fluctuation–
dissipation relation.

In the case of a homogeneous spherical particle with a perfectly smooth surface,
it is not easy to experimentally detect the particle orientation. However, if we
manage to measure the particle orientation, we will find that, in addition to an erratic
translational motion, also the orientation of the particle changes randomly. If we can
record the orientation, we will see that also the rotational motion is purely diffusive,
this time with a different constant, the rotational diffusion constant Dr given by

Dr = kBT

γr
, (7.2)

where γr = 8πηR3 is the rotational friction coefficient of the particle.
The cause of these translational and rotational erratic motions lies in the

interactions of the suspended colloidal particle with the molecules constituting the
fluids, which are affected by the temperature and, at equilibrium, present a velocity
partition function distributed according to Maxwell’s distribution [13]. Because of
the collisions with the fluid molecules, the particle experiences a force and a torque
that perturb its motion (thermal noise).
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The translational dynamics of a particle in a fluid environment is described by
the Langevin equation:

ma = −γtv + Fth, (7.3)

where the term −γtv is the viscous friction force of the fluid, and Fth is the stochastic
thermal force, which has zero average and variance 2 kBT γt.

Because of the tiny mass of a microscopic particle, often inertia can be neglected.
In fact, the characteristic time needed to forget the inertial effects is the relaxation
time τrel = m/γt, which increases with the mass of the particle m, and decreases
with the friction coefficient γt. For microscopic particles like the prototype silica
particle of 2 μm diameter, the relaxation time τrel is of the order of magnitude of
0.1 μs. Such relaxation time is several orders of magnitude below the time intervals
typically sampled in experiments (for example, the time interval between two frames
in an acquisition via a standard CMOS camera is of the order of some milliseconds).
Therefore, Eq. (7.3) can be simplified to the overdamped Langevin equation:

γtv = Fth, (7.4)

where the inertial term ma on the right side of Eq. (7.3) has been dropped. In all
systems where �t � τrel, Eq. (7.4) is sufficient to capture the relevant measurable
physical features. In fact, it is possible to demonstrate that the solution of Eq. (7.3)
converges to Eq. (7.4) in the limit m → 0 [14].

Often, Langevin equation (7.4) is rewritten as:

dr = √
2Dt dW , (7.5)

where dW is the derivative of a Wiener process, with zero average and variance 1
[4, 15]. The simplest, though effective, way to a numerical solution of Eq. (7.5) is
to use a finite-difference approach. In 2D, the variables in Eq. (7.5) can be explicitly
written as:

⎧⎪⎨
⎪⎩
dx = √

2Dt dWx

dy = √
2Dt dWy

. (7.6)

By writing the velocities as vx = �x/�t and vy = �y/�t , Eq. (7.6) takes the
form [4, 15]

⎧⎪⎨
⎪⎩
�x = √

2Dt�t Wx

�y = √
2Dt�t Wy

, (7.7)
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where Wx and Wy are realisations of independent stochastic processes with average
0 and standard deviation 1 [4, 15]. By writing explicitly �x = xn+1 − xn and
�y = yn+1 − yn, we are led to the finite-difference equation

⎧⎪⎨
⎪⎩
xn+1 = xn +√

2Dt�t Wx,n

yn+1 = yn +√
2Dt�t Wy,n

, (7.8)

where, for a given �t , we obtain the sequence {xn, yn} representing the trajectory
of the passive Brownian particle in the plane.

7.3 Active Particles

7.3.1 Active Brownian Motion

One of the simplest models of active motion is active Brownian motion. Let us
consider a spherical particle that self-propels with a constant speed v along a
given internal orientation direction in 2D. Just like a passive Brownian particle,
this particle is also affected by thermal noise, which affects both its translation
and rotation. The configuration of the active Brownian particle is described by
three variables: two spatial coordinates x and y for the position according to the
lab reference frame, and one rotational coordinate θ for the orientation of the
particle with respect to the lab reference frame [16]. The equations determining
the dynamics are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = v cos θ + ξx

ẏ = v sin θ + ξy

θ̇ = ξθ

. (7.9)

The finite-difference equations relative to Eqs. (7.9) are therefore the following:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 = xn + v cos θ �t +√
2Dt�t Wx,n

yn+1 = yn + v sin θ �t + √
2Dt�t Wy,n

θn+1 = θn + √
2Dr�t Wθ,n

. (7.10)

Figure 7.2 depicts typical trajectories for an active Brownian particle with 3 μm
diameter with characteristic self-propulsion speed between v = 0 μm s−1 (passive
Brownian particle) and 12 μm s−1.
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Fig. 7.2 From passive to active Brownian motion. (a) Passive Brownian motion (v = 0 μm s−1)
and (b–e) active Brownian motion for increasing self-propulsion speeds (from v = 3 μm s−1 to
v = 12 μm s−1). All trajectories last for the same amount of time

An important quantity for characterising the motion of microscopic systems is
the mean square displacement (MSD). Considering a 2D motion, the MSD of a
particle as a function of the time lapse t is

�2(t) =
〈
(x(t1 + t)− x(t1))

2 + (y(t1 + t)− y(t1))
2
〉
, (7.11)

where the average is often performed over time.1 The MSD over a given time
t represents, therefore, the average quadratic displacement from the position the
particle had a time t before. From the MSD, we can gain a lot of insights about the
dynamics of a system.

The MSD of an active Brownian particle, i.e., for a trajectory governed by
Eq. (7.9), is

�2(t) =
(

4Dt + v2tr

)
t + v2t2r

2

(
e
− 2t

tr − 1

)
, (7.12)

where tr = D−1
r is the characteristic time scale for the rotational diffusion, that, for

a prototype particle with 3 μm diameter, is of about 20 s. If we write explicitly the
expression above for the limits t � tr and t � tr, we have

�2(τ ) =

⎧⎪⎨
⎪⎩

4 Dt t + v2 t2 t � tr(
4 Dt + v2 tr

)
t t � tr

. (7.13)

For a prototype particle with 3 μm diameter, the translational diffusion coeffi-
cient Dt ≈ 0.3 μm2 s−1. If we consider an active particle with speed v = 5 μm s−1,
then v2 = 25 μm2 s−2. If we consider the case t = 0.01tr = 0.2 s � tr, then the
diffusive contribution to the MSD (4 Dt t ≈ 0.1 μm2) is an order of magnitude

1In ergodic systems, the time average of a quantity coincides with the ensemble average, i.e.,
the average over all possible configurations, which, in this case, are all possible realisation of a
trajectory.
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smaller than the velocity contribution to the MSD (v2 t2 ≈ 1 μm2). The two
contributions become comparable, when t ≈ 0.001tr = 0.02 s. For smaller values of
the time lapse t , the diffusive contribution prevails. However, if the reference active
speed is faster than the v = 5 μm s−1, as it happens in many cases (for example,
compare typical speeds given in Fig. 7.1), and the size is bigger than 3 μm diameter
(again, compare typical swimmers sizes given in Fig. 7.1), then the range for the
time lapse where the velocity contribution prevails starts from few hundredths of
second.

Therefore, the experimentally observed dependence on the time interval t is
essentially ballistic (i.e., quadratic, ∝ v2t2) for time scales smaller than the
rotational diffusion time scale tr, and diffusive (i.e., linear, ∝ t) for time scales
much longer than tr. In the latter case, the rotational diffusion plays a role in the
randomisation of the propulsion direction over long times, and acts as an effective
enhancement of the diffusion proportional to v2 tr, so that the long-term effective
diffusion coefficient is

Deff = Dt + v2 tr

4
. (7.14)

If there is no self-propulsion (i.e., v = 0), the dynamics is that of a passive Brownian
particle and the MSD is linear at all time scales. Figure 7.3 represents the MSD
corresponding to trajectories obtained from the numerical integration of Eq. (7.9),
for different values of the self-propulsion velocity v.

It is an interesting exercise to calculate the MSD also for the cases of run-and-
tumble motion, chiral active Brownian motion, and active motion with Gaussian

Fig. 7.3 Mean square
displacement as a function of
the propulsion velocity, from
v = 3 μm s−1 to
v = 12 μm s−1. The
quadratic and diffusive
regions are indicated. The
vertical dashed line represents
the rotational diffusion time
scale tr. The MSD for the
passive Brownian particle
(v = 0 μm s−1) is also
represented, and is linear over
all the range of time delays
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noise reorientation mechanism, which will be described in the following subsec-
tions. Even though the microscopic locomotion mechanism differs at short time
scales, the resulting MSDs present some universal features such as a ballistic
behaviour at short time scales and an enhanced diffusive behaviour at long time
scales.

7.3.2 Run-and-Tumble Motion

In the case of living organisms like motile bacteria, the observed motion can be
described as a sequence of rectilinear forward steps and, occasionally, a sudden stop
in the motion followed by a reorientation and by rectilinear motion along the new
direction. Such kind of motion is known as run-and-tumble motion [1]. During the
“runs”, the bacterium moves forward because of the rotational motion of its flagella,
which are tangled in a bunch. During the “tumbles”, one of the flagella changes
rotation direction breaking the bunch and the bacterium reorients itself. After this
reorientation, the flagella form again a bunch and a new run starts. Run-and-
tumble motion is a typical strategy of chemotactic organisms, i.e., organisms that
calibrate their motion according to the presence or absence of determined chemical
substances, usually an attractant or a repellent, often following the concentration
gradient. The mechanism of run-and-tumble motion has been thoroughly studied in
E. coli [17, 18] and various models have been developed to simulate it, from simple
ones [19] to more complex ones [20].

In the absence of the chemical substance to which the chemotactic organism
is responding, the reorientation events happen with a timing well-described by a
Poisson process, characterised by the probability distribution:

Pλ(N = n) = e−λ λ
n

n! , (7.15)

where N is the number of events observed in the time interval �t , λ is the average
number of events expected in �t , and n is a natural number. In this framework, the
probability that tumbling happens is

Ptumble = 1 − Pλ(N = 0) = 1 − e−λ . (7.16)

If we want to describe the system dynamics in a finite-difference equations
approach, we have to add another variable to the set (x, y, θ), because we have
to know if the bacterium is running or tumbling. Therefore, we add then the discrete
variable  that keeps track of the status of the bacterium (1: run, 0: tumble), and each
time step�t has a probability Ptumble to be set to 0 and probability Prun = 1−Ptumble
to be set to 1. The set of finite-difference equations is then:
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Fig. 7.4 Models for active
motion: (a) active Brownian
motion; (b) run-and-tumble
motion; (c) dextrogyre and
(d) levogyre chiral active
Brownian motion; (e)
Gaussian noise reorientation
motion

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = xn +  n v cos θ �t + √
2Dt�t Wx,n

yn+1 = yn +  n v sin θ �t +√
2Dt�t Wy,n

θn+1 = θn + (1 −  n) �!tumble,n

 n+1 = 0 or 1 with probability 1 − e−λ and e−λ each time step

.

(7.17)
An example of the appearance of a run-and-tumble trajectory is given in Fig. 7.4b.

7.3.3 Chiral Active Brownian Motion

It is not uncommon to observe that bacteria explore their environment by moving
in circles. For example, E. coli bacteria have been shown to prefer to perform
their quasi-circular motion in a clockwise fashion, when swimming close to a solid
boundary, while they move counterclockwise when swimming near to an interface
(for example, an air–liquid interface) [21–25]. The resulting motion is a chiral
active Brownian motion. The term chiral, referring to the lack of symmetry of
an object under mirror-reflection, is used to describe the tendency of swimmers to
swim in circles either in a clockwise or a counterclockwise fashion. Therefore, the
term chiral used in combination with the terms active Brownian motion indicates
instead that the active particle tends to move in a well-defined way (clockwise or
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counterclockwise) with respect to a defined normal direction to the surface where
the motion happens. Chiral motion is not only observed in living microorganisms,
but also in artificial swimmers [26]. If we want to describe the dynamics of such a
chiral active particle, we have to take into account that now the orientation varies
with a defined angular velocity ω:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = v cos θ + ξx

ẏ = v sin θ + ξy

θ̇ = ω + ξθ

. (7.18)

According to the standard convention on the direction of angles, ω > 0 will
be associated with a counterclockwise motion, while ω < 0 will characterise a
clockwise motion. When translated to a finite-difference equation formalism, we
have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 = xn + v cos θ �t +√
2Dt�t Wx,n

yn+1 = yn + v sin θ �t + √
2Dt�t Wy,n

θn+1 = θn + ω �t +√
2Dr�t Wθ,n

. (7.19)

An example of the appearance of a chiral trajectory is given in Fig. 7.4c, d, for
dextrogyre and levogyre chiralities, respectively.

7.3.4 Gaussian Noise Reorientation Model

Active motion is not only related to particles that are able to propel themselves in a
strict sense. In fact, it has been observed that passive colloids in an active bath (for
example, in a solution containing motile bacteria) present an effective dynamics
that is quite different from standard passive Brownian dynamics. The presence in
the solution of motile living microorganisms changes the motion of the suspended
colloidal particles in such a way that they behave as effective active colloids for
which the reorientation mechanism can present an enhanced diffusion constant [27–
30]. The model commonly used for describing such a situation is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = v cos θ + ξx

ẏ = v sin θ + ξy

θ̇ = "θ

. (7.20)
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This equation is practically Eq. (7.9), with the only difference that the noise term
"θ is not characterised by the rotational diffusion constant Dr = kBT/(8πηR3),
but by a different D̃r, usually larger than the one dictated by the size of the particle.
Because the dependence of the noise term is still a Gaussian, the model with
enhanced diffusion constant for the orientation is referred as Gaussian noise model.
An example of the appearance of a Gaussian noise trajectory is given in Fig. 7.4e.

7.4 More Complex Models

Until now, we have learned to model the active motion of a single spherically
symmetric particle in a 2D homogeneous environment. In this section, we will
extend the model to include (1) the 3D case of a single spherically and non-
spherically symmetric particle, (2) the presence of external fields, (3) the presence
of multiple interacting particles, and (4) the presence of a multiplicative noise (that
is, noise that depends on the state of the system and not only on external variables
like the temperature). All these extensions are used widely in simulations for the
description of the behaviour of real active systems. For example, one can have a
colloidal solution of Janus particles that are concentrated enough to come close
to each other, so that their (steric, electrostatic, hydrodynamic) interaction should
be considered for a correct description of their collective behaviour [31–33] or a
colloidal particle in a bacterial bath in the presence of an external optical potential
inducing on the particles a driving force in the direction of the light intensity
gradient [30]. Another common case are active dynamics of non-spherical particles
like elongated rods [34–37] or chiral particles [38–40] in 3D or the presence of a
boundary [41, 42] that alters the value of the diffusion constant in its proximity via
a diffusion gradient [43].

7.4.1 Non-Spherical Particles

If the particle is non-spherical, then the effect of the thermal noise is described by a
diffusion matrix D of dimension 6×6, which takes into account all the translational
and rotational modes of the non-spherical particle and possible correlations between
them, including purely translational and purely rotational modes [44, 45]. The
diffusion matrix D is always symmetrical (D = D

T ) and is represented as:

D =
[
Dtt Dtr

Drt Drr

]
, (7.21)

where Dtt is the diffusion term for the purely translational modes, Drr is the
diffusion term for the purely rotational modes, and Dtr and Drt are the off-diagonal
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terms describing roto-translational effect of the thermal agitation that might arise
for particular particles shapes breaking mirror symmetry. With the same diffusion
matrix formalism, we can describe the Brownian motion of a spherical particle, in
which case D is a diagonal matrix, with Dtt = DtI3×3 and Drr = DrI3×3.

In case the passive motion of the spherical particle is in three dimensions,
an equation analogous to Eq. (7.5) describes the dependence along all the three
translation coordinates. However, because purely rotational and roto-translational
terms may affect the orientation of the particle, it is a good practice to consider all
the 6 degrees of freedom together. The analogue of Eq. (7.5) in 3D is

⎡
⎢⎣

ṙ

θ̇

⎤
⎥⎦ =

⎡
⎢⎣

ξ t

ξ r

⎤
⎥⎦ (7.22)

that, rewritten in the finite-difference formalism, becomes

⎡
⎢⎣
�r

�θ
,

⎤
⎥⎦ =

⎡
⎢⎣

	t

	r

⎤
⎥⎦ (7.23)

where the noise terms
[
	t, 	r

]
are generated each step through a multi-varied

Gaussian random number distribution satisfying the requirement of average equal
to (0, 0, 0, 0, 0, 0) and variance matrix equal to 2 D �t .

The increments �r represent the displacement of the centre of mass of the
particle with respect to the previous position.

The angular increments �θ need to be handled with more care. The rotation of
the particle is a free 3D rotation. Therefore, the increment �θ represents a set of
three increment, one for each rotation axis (that is, one for each of the unit vectors
defining the set of axis of the particle reference frame) [45]. As the composition of
rotations among different axes is not commutative, one should choose a time step
�t such that the various increments �θ are small enough to ensure commutativity,
within a certain error range. Each time step a rotation R = Rx Ry Rz will be
applied to the unit vectors determining the particle reference frame in order to find
the rotated configuration. The rotation leaves the position of the centre of mass
unaltered and, for the dynamics to make sense, should be such that the composition
of the rotation matrices Rx , Ry , and Rz is the same, within the order of �t .

A cleaner approach to the issue takes into account the algebra of the generators of
the rotation matrix group. A rotation of an angle φ around the x, y, z axis is written,
in 3D, as a matrix acting on the component of a vector along the base unit vectors,
and in the specific case is
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Rx(φ) =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

⎤
⎥⎥⎥⎥⎦ Ry(φ) =

⎡
⎢⎢⎢⎢⎣

cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

⎤
⎥⎥⎥⎥⎦

Rz(φ) =

⎡
⎢⎢⎢⎢⎣

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎤
⎥⎥⎥⎥⎦

(7.24)

Each of this matrices can be written as an exponential of the generator matrices
Gx , Gy , Gz:

Gx =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 −1

0 1 0

⎤
⎥⎥⎥⎥⎦ Gy =

⎡
⎢⎢⎢⎢⎣

0 0 1

0 0 0

−1 0 0

⎤
⎥⎥⎥⎥⎦ Gz =

⎡
⎢⎢⎢⎢⎣

0 −1 0

1 0 0

0 0 0

⎤
⎥⎥⎥⎥⎦ (7.25)

in the following way:

Rx(φ) = eφ Gx =
+∞∑
n=0

φn

n! G
n
x; Ry(φ) = eφ Gy =

+∞∑
n=0

φn

n! G
n
y;

Rz(φ) = eφ Gz =
+∞∑
n=0

φn

n! G
n
z . (7.26)

Instead of performing a small finite rotation about one axis at a time, where we
might have issues because of non-commutativity, it is wiser to perform directly a
rotation around the axis individuated by the vector ω

ω = (ωx, ωy, ωz) =
(
�θx

�t
,
�θy

�t
,
�θz

�t

)
(7.27)

of the angle θ =
√
(�θx)2 + (�θy)2 + (�θz)2 = �t |ω| that is exactly the rotation

acting on the particle. Such rotation matrix can be written as the exponential of the
skew-symmetric matrix θ×:

Rω̂(θ) = eθ× = I+
+∞∑
n=1

1

n! θn×, (7.28)
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where

θ× = �t

⎡
⎢⎣

0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

⎤
⎥⎦ =

⎡
⎢⎣

0 −�θz �θy

�θz 0 −�θx
−�θy �θx 0

⎤
⎥⎦ (7.29)

Because of the properties of θ×, namely θ3× = −θ2 θ×, can be written as:

Rω̂(θ) = eθ× = I+ sin θ

θ
θ× + 1 − cos θ

θ2 θ2×. (7.30)

Equation (7.30) is the Rodrigues formula [46] for the rotation of an angle θ

around a direction ω̂ that is exactly the rotation of the axes of the particle reference
frame due to a rotational noise term (stochastic rotational torque) of ξ r.

7.4.2 External Fields

In many situations the particles feel the effects of external force or torque fields. In
the case of colloidal particles suspended in a solution, these external fields can be
due to the optical force generated by the presence of an optical potential [47], the
presence of a hydrodynamic flux [48], the combined effect of weight and buoyancy
that, for particles with an asymmetric mass distribution, can give rise to a torque
leading to gravitaxis [49, 50], or the presence on an external magnetic field for
paramagnetic particles [51–53]. Moreover, in many current realisations of artificial
microswimmers electric [54], magnetic [55, 56], and acoustic fields [57, 58],
or a combination of them [59, 60], play an important role to activate the self-
propelling mechanism, to control the swimming behaviour, or to confine the active
particles [61]. A variety of models have been developed in order to understand the
mechanism of the self-propulsion and its proper simulation [62–65]. When writing
the equations of motion for the total force Ftot and torque Ttot acting on a particle,
we need to include the contributions of the external fields Fext and Text as:

⎧⎨
⎩

Ftot = −γt v + Fext + Fthermal

Ttot = −γr ω + Text + Tthermal

(7.31)

that, in the overdamped limit, become

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v = Fext

γt
+ ξ t =

Dt

kBT
Fext + ξ t

ω = Text

γr
+ ξ r =

Dr

kBT
Text + ξ r

. (7.32)
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In the case of an active Brownian particle in 2D, the presence of an external force
Fext and/or torque Text,z is included in the equations as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v cos θ + Dt

kBT
Fext,x + ξx

ẏ = v sin θ + Dt

kBT
Fext,y + ξy

θ̇ = Dr

kBT
Text,z + ξθ

. (7.33)

In the general case of an active particle in a 3D environment, the effect of an
external force Fext and torque Text is included as follows:

⎡
⎢⎣

ṙ

θ̇

⎤
⎥⎦ = D

kBT

⎡
⎢⎣

Fext

Text

⎤
⎥⎦+

⎡
⎢⎣

ξ t

ξ r

⎤
⎥⎦ . (7.34)

This formalism takes into account the effect of possible roto-translational effects,
and reduces to the standard set of separable equations in the case translational
and rotational motion are independent from each other. Besides the mathematical
formalism, the presence of an external field might induce important features in the
behaviour of a system of active Brownian particles. We will see an example of this
in more details after discussing the modalities of simulating systems with more than
one particle.

7.4.3 Interacting Particles

The study of the behaviour of a single active Brownian particle is an important
starting point for understanding the behaviour of a system of multiple particles.
When multiple particles are present, interactions among the particles may signifi-
cantly change the dynamics. Such interactions, moreover, can affect the collective
behaviour of the system, by determining the emergence of cooperative phenomena,
like, for example, phase separation or the formation of dynamic clusters. Moreover,
the presence of activity itself might change dramatically the behaviour of a system:
the same interactions present in a system of active or passive particles may give rise
to totally different outcomes, just because in one case we have the additional feature
of self-propulsion.

Usually interactions among active particles are divided into two main categories:
non-aligning and aligning interactions. Non-aligning interactions might be attrac-
tive or repulsive, might depend on the relative position of the particles, but are
independent on their direction of motion. Aligning interactions instead depend on
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the particles’ direction of motion as well. Often such interactions tend to align the
particles in their direction of motion, favouring phenomena such as swarming, like,
for example, in the Vicsek model [66]. Theoretically, it has been predicted that active
particles responding to chemical signalling or to hydrodynamic interactions may
interact mutually with an effective aligning interaction [67–70].

We start our brief overview of interacting active particles with steric interactions,
which prevent the particles from occupying the same volume, and we continue with
two kind of aligning interaction, one characterising the Vicsek model, and another
one giving a torque on particles at very short distance from one another.

Steric Interactions
Usually colloidal particles have a well-defined, rigid shape, and it is not possible
for them to overlap. This steric interaction, that is present between passive and
active colloids, together with the presence of active particles might give rise to
interesting phenomena, like the formation of metastable clusters, even though the
interaction itself is not attractive. For example, a set of passive colloids does not
form spontaneously any cluster except that in the presence of a strong attractive
interaction or of a driving force that pushes the passive particles all in the same
space [30]. A set of active particles, instead, because of their activity can form
metastable cluster in dilute suspensions even in the presence of repulsive mutual
interactions [71–74]. In fact, depending on the propulsion velocity v and on the
rotational diffusion time τr, two active particles might collide together and stay
locked because of the persistency of their active motion. Such clusters then can
break apart over a time scale dictated by τr because the reorientation process makes
one of the particle to point away [75, 76].

For what concerns the simulations of the cases where the particles are rigid
and have a finite dimension, steric interactions can be implemented via the so-
called hard-sphere correction, shown in Fig. 7.5, in order to avoid non-physical
situations where the particles overlap and share in part the same volume. This is

Fig. 7.5 Steric interactions. Schematic for hard-spheres interaction between two particles, where
the particles are displaced away from each other whenever they get superposed
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done by checking the mutual distance between couples of particles after each time
step: if an overlap is found (for example, when the distance between the particles’
centres is smaller than the diameter of the particles), then both particles are moved
away from each other along the direction connecting the centres in such a way
that their distance becomes exactly one diameter, so they touch each other, but are
not superposed. This procedure has been used in [77] and, although it does not
implement an elastic collision among particles like the other approaches [9] where
conservation of energy and momentum is enforced, it is computationally lighter.
However, the allowed superposition among the superposing particles is usually a
small fraction of the particle volume, so, the time step of the simulation should
be accordingly small, not to lead to unphysical effects, like a state of excessive
superposition or to the unphysical conditions of two nearby particles that, instead
of colliding, miss each other because of an excessive value of the calculated
displacement. In case numerous particles are in close contact to each other, like, for
example, when they are part of a cluster, one should check iteratively each couple of
neighbouring particles, so to ensure that, after each readjusting move, the condition
of non-superposition remains valid. Such implementation has been shown to be
equivalent to introduce a short-range repulsive potential that prevents superposition.
However, computationally the hard-spheres correction is preferred, because for the
correct dynamics with the short-range, repulsive potential one would have to use a
much smaller time step, which is unpractical.

Vicsek Model
The Vicsek model [66] is one of the simplest models to feature alignment and
swarming in a system of active particles. In the Vicsek model, the particles move
with constant speed and interact via the following aligning interaction: each particle
can sense the orientation of the particles within a determined flocking radius
Rflocking, and at each step reorients itself according to the average value of the
neighbouring particles’ orientation (Fig. 7.6). If, for each particle i in the system,
we define Si as the set of neighbouring particles at the considered instant in time,
then the equations describing the system are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi = v cos θi

ẏi = v sin θi

θi =
〈
θj
〉
j∈Si + ξθ,i

. (7.35)

Varying the range of the parameters describing the system, within this model one
can obtain a phase transition from undirected motion to unidirectional motion, as
a function of the particles’ density: beyond a given density, whatever the initial
conditions on position and orientation, the particles will come to move in the same
direction, thanks to the aligning interaction. If we include in Vicsek model the steric
interaction, we can obtain crystallisation at high densities and low-noise intensity.
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Fig. 7.6 Vicsek model: reorientation mechanism. The status at a given instant is represented. For
establishing the orientation at the following instant of the particle represented in orange, one has
to take the average of the orientations of the particles lying within the flocking radius (green area).
In the second panel the new orientation is shown in red. The previous orientation is shown in light
blue, for a comparison

Short-Range Aligning Interactions
Here we present another mechanism of aligning interaction [78], which can describe
the effective behaviour of particles interacting with some aligning hydrodynamic
interactions, or of bacteria moving in a background of colloidal particles, or of
people moving in a crowd. We have a set of finite-size active particles in 2D
which, when closer than a given distance Ralign, interact by means of a torque.
The behaviour featured by a particle is a tendency to reorient the direction of its
active displacement towards the particles in the forward direction of motion, and
away from the particles that are lying backwards. If k̂ is the unit vector direction
perpendicular to the plane of motion, the torque acting on a given particle will be
along k̂. The torque acting on a given particle n because of the presence of another
particle i within the interaction distance is proportional to the cosine of the angle
formed by the direction connecting the centre of the particle to the particle i (r̂ni)
with the direction of the velocity of the particle n (v̂n), and inversely proportional to
the square of the distance among the particles.

In order to implement the behaviour described above, the torque should be along
the vector v̂n×r̂ni , and proportional to (v̂n·r̂ni)/r2

ni . Such coefficient can be positive,
negative, or zero, depending on v̂n · r̂ni , and this is the ingredient that gives the
wanted behaviour of reorienting towards particles set in the front, and turning away
from the particles lying at the back (Fig. 7.7).

Expressing the total torque on a particle using the coefficient along the given
k̂ direction, we have that the total torque felt by the particle n can be modelled
according to:
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Fig. 7.7 Short-range aligning interaction: reorientation mechanism. In (a) a finite set of relative
positions and relative motions are shown. The particle represented in red (centre of the scheme)
exerts a torque on the particle in black. Such torque obeys the mechanism in Eq. (7.36) and the
reorientation angle it induces is represented, for the various case considered, by a red oriented
arc. In (b–e) a few cases characteristic of the induced dynamics with two and three particles are
represented. In particular, it is shown the situations leading to stable clusters of 2 particles (b, f)
and 3 particles (g–i). In the cases represented in (c–e), the relative arrangement of the particles does
not allow to form any cluster, but part away from each other (c, e) or proceed at constant speed and
constant distance, with one of the particles following the other one. Reproduced from Nilsson and
Volpe [78] (licenced under CC BY 3.0)

Tn = T0

∑
i∈S

v̂n · r̂i
r2
i

v̂ × r̂i · k̂, (7.36)

where S is the set of particles within the radius of interaction Ralign from particle
n, and T0 is a parameter setting the strength of the interaction. So, in general, the
model is described by the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋn = v cos θn + ξx,n

ẏn = v sin θn + ξy,n

θ̇n = Tn + ξθ,n

. (7.37)

where Tn is the torque obtained from Eq. (7.36) for each particle n. We note that in
this specific model the rotational friction coefficient that usually is present in front
of the torque is set to 1.
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Such a model, though simple, displays a rich set of behaviours. In fact, depending
on the rotational noise conditions and on the particle concentration, we can find
a gaseous phase, where the particles are moving independently, a phase where
metastable clusters composed by few particles are present, and a more pronounced
clustering phase where clusters of more particles are formed. It has been shown [78]
that the clustering transition occurs for the critical noise level of T0/4R2

align. We
expect also that the density should have an effect on the clustering transition;
however, this aspect has not been investigated in the original paper. It has been also
shown that in a mixed system of a few active and many passive particles, where the
active particles interact with an alignment term as in Eq. (7.36) with the other active
particles and with a term of the opposite sign where interacting with the passive
particles, the interaction can lead to the formation of metastable channels [78].

7.4.4 Multiplicative Noise

In all the previous examples we have dealt with a uniform diffusion constant and
therefore with noise conditions uniform in time, independent from the status of the
system. However, in many real systems the noise may depend on the configuration
of the system: for example, it is known that the presence of a rigid planar wall
induces a gradient in the thermal diffusion coefficient, in such a way that the closer
the particle to the planar boundary, the smaller the diffusion coefficient [79–82].
In particular, for the direction perpendicular to the planar surface, the diffusion
coefficient D⊥ becomes zero when the particle finds itself in contact with the
wall [79, 83]. An analogous effect happens also when two particles in the bulk
of a solution come close to each other: the presence of one of the particle in the
proximity of the other alters the diffusion coefficient of the second particle, and vice
versa [84].

In general, a multiplicative noise is described as:

ξ = √
(2 D(x))W, (7.38)

where the diffusion constant depends on the value of the variable describing the
status of the system. To fix our ideas, let us suppose it indicates the distance of
a particle from the planar wall. In such cases, the full Langevin equation for the
particle would be Eq. (7.3), with the only difference that the noise term has a
dependence on the variable x. The corresponding equation is [15]2

ẋ = D(x)

kBT
Fext + dD(x)

dx
+ ξ(x), (7.39)

2The equation here is written in the Îto form. Alternative forms are possible, see details in Ref. [15].
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where the additional term dD
dx is the spurious drift and is necessary for the correct

convergence of the solution to the original Langevin equation with multiplicative
noise [14]. Finally, the corresponding finite-difference equation describing a particle
in a gradient of diffusion is

xn+1 = xn + dD(xn)

dx
�t +√

2D(xn)�t Wn. (7.40)

7.5 Numerical Examples

Here we show two examples of collective behaviours emerging in a system of self-
propelling particles.

7.5.1 Living Crystals

We have performed a simulation of a system ofN = 100 active particles considering
steric interaction and a short-range phoretic attraction on the line of the model
employed in [85], which was proposed to reproduce the experimentally observed
living crystals emerging in a solution with light-activated colloids. In this model, the
phoretic attractive force, due to the advective flow generated by the decomposition
of hydrogen peroxide on the exposed hematite surface, induced an attractive velocity
vP (r) for the active particles that scales according to the inverse of the square
distance among the particles:

vP (r) = vP0
r2

0

r2 . (7.41)

Such dependence is the expected behaviour for a phoretic attraction to a reaction
source, and fit well the observed experimental behaviour [85].

Varying the strength of this attractive interaction, which is the magnitude vP0
of the attractive velocity at a given reference distance r0, and the self-propulsion
velocity of the particle v, in the case particles are clustering, we can observe the
formation of clusters of different average sizes. Such clusters are actively changing
and rearranging themselves, and their stability depends also on the relative ratio
of the interaction velocity at short distances (comparable with the diameter of the
particles) with the self-propulsion velocity of the single active particle. For a given
active velocity v, if the attractive reference velocity vP0 for a given r0 equal to
the diameter of the particles is comparable to (or bigger than) the self-propulsion
velocity v, then the clusters will tend to form. The bigger the reference value vP0 of
the attractive phoretic interaction, the more stable and bigger the cluster formed.
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In Fig. 7.8 we provide two examples of simulations of active Brownian particles
interacting via an attractive phoretic force that induces an attractive phoretic velocity
given by Eq. (7.41). The radius of the particles is set to R = 1.0 μm, and their speed
is set to v = 2 μm s−1. In both the simulation presented, the initial configuration
of positions and orientations is randomly generated. We consider a square arena
with a side of L = 100 μm (concentration of φV = 0.03) with periodic boundary
conditions; the concentration of the particles can be adjusted by varying the size of
the arena. The time step of the simulation is set to �t = 0.1 s. With these parameters
we observe the formation of metastable clusters as in Ref. [85]. By decreasing the
strength of the interaction, we can see that the clusters become less stable. In Fig. 7.8
a few screenshots of the time evolution are presented.

In the dynamics represented in Fig. 7.8a–c, the reference phoretic velocity vP0 is
set to 2 μm s−1 at a distance between colloids of r0 = 2 μm, and the radius of the

Fig. 7.8 Living crystals. Simulation of 100 active particles of radius R = 1.0 μm with phoretic,
short-range attractive interaction. The system forms metastable clusters. Depending on the particle
concentration, on the noise conditions, and on the strength of the attractive interaction, the clusters
may become more or less stable. In the simulation, the noise affecting the position and the
orientation is set to the thermal noise felt by a spherical particle at equilibrium in a thermal bath.
In (a–c), the phoretic interaction is set in such a way to give a phoretic attractive velocity equal to
the speed of the active particle at a reference distance of 2.0 μm between the particles; the clusters
formed are of the size of 10–20 particles, and are not too tightly bond and visibly evolve in the
time scale of the simulation. In (d–f), the phoretic interaction was set to give a phoretic attractive
velocity equal to the speed of the active particle at a reference distance of 2.5 μm between the
particles; in this case the clusters formed are more compact, and, as the time pass, tend to form
bigger clusters
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interaction is set to Rint,phor = 10 μm [85]. We can observe that there is a tendency
to form clusters, but they are not bigger than 20–30 particles each, and a consistent
fraction of the particles are still freely moving. In the dynamics represented in
Fig. 7.8d–f, instead, the reference phoretic velocity vP0 is set to 2 μm s−1 at a
reference distance between colloids of r0 = 2.5 μm, i.e., the attractive interaction is
stronger. Also in this case the radius of the interaction is set to Rint,phor = 10 μm. As
the attractive interaction is stronger, now the particles tend to form bigger clusters
and less particles are freely moving independently.

7.5.2 Colloids with Short-Range Aligning Interaction

We consider a system of active particles interacting via the aligning interaction
described in Eq. (7.36) and with a dynamics described by Eq. (7.37), following [78],
where we explicitly take into account the proper value of the friction coefficient
of a spherical particle in water for calculating the effect of the torque. We perform
a simulation with N = 400 particles in a low-noise condition, with colloids of
dimension R = 1.0 μm, setting the interaction radius Ralign = 2.5 μm, a speed
of v = 0.1 μm s−1, and torque T0 = 0.5 rad μm2 (Eq. (7.36)). With a simulation
time step �t = 0.05 s, we observe that clusters start forming and, because of the
low-noise level, persist for a long time. In Fig. 7.9 a few screenshots of the time
evolution are presented. In the chosen conditions of noise, range of the interaction,
and strength of the interaction, we observe that mainly small clusters of two, three
particles are formed. We observe also that some simple configurations like the
ones shown in the circled regions of Fig. 7.9b–c (cluster of two particles facing
each other with opposite orientation, and cluster of three particles organised in
an equilateral triangle configuration with their orientation facing the centre of the
triangle) are quite stable in time, and they do not move, and this happens because of

Fig. 7.9 Short-range aligning interactions. Screenshot of a simulation with initial random distribu-
tion of position and velocities. Stable clusters up to five particles form in the time of the simulation.
As expected, small clusters of 2 and 3 particles are quite stable in time, given the low-noise level
condition chosen, as can be seen comparing the configurations of the clusters evidenced in the
circles
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the interaction mechanisms that tends to preserve the configuration and the relative
low level of noise. Such small stable clusters break apart or transform only when
a travelling particle or cluster comes in their proximity and, driven by the aligning
interaction, targets them, as it is shown in the Supplementary Movies of Ref. [78].
Varying the conditions of noise, the strength of the interaction, the range of the
interaction, one can reproduce various regimes, from a gaseous phase, with mainly
small clusters and single isolated particles, to a cluster phase, with mainly clusters of
various dimensions, the distribution of the size of the cluster being determined by the
chosen condition of noise, strength of the interaction, and range of the interaction.

7.6 Conclusions

We have provided a concise, self-contained introduction to the simulation of active
Brownian systems using Brownian dynamics and finite-difference equations. We
have illustrated how to describe the dynamics of a micron-sized active particle
starting from a model spherical particle, how to account for white thermal noise for
translational and rotational motion, and active displacement, starting from a motion
in two dimensions. We have briefly explained the way to proceed to simulate the full
3D motion, with the proper formalism also for non-spherically symmetric objects,
and reviewed a few type of interactions that have been used in the description of
the dynamics of active systems, and, depending on the choice of the parameters,
present a variety of complex behaviours. We have tried to provide an overview that
gives hints of the up-to-date research on active system, where simulation is often
an important tool to test the understanding of the key mechanism determining the
behaviour of the particular system under investigation. At the same time, we have
kept the discussion as simple as possible and given a few numerical examples to
provide an effective starting point for the students approaching numerical simulation
of Brownian dynamics for the first time.
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Chapter 8
Active Fluids Within the Unified
Coloured Noise Approximation

Umberto Marini Bettolo Marconi, Claudio Maggi, and Alessandro Sarracino

8.1 Introduction

The aim of this chapter is to provide an overview of some recent advances and
open problems in the statistical description of active particles. In particular, we
shall illustrate a theoretical approach based on the so-called unified coloured noise
approximation (UCNA).

Active matter is composed of systems which are able to convert energy from the
environment into directed motion. Every element of an active matter system can be
considered out of equilibrium, in contrast to boundary driven systems, like those
subject to a concentration gradient which are locally equilibrated [1–3].

Active systems abound in nature, ranging from flock of birds, structure-forming
cytoskeletons of cells to bacterial colonies, but can also be man-made in a laboratory
using biological building blocks or synthetic components. Being at the crossroads
between biology, chemistry and physics, the subject has drawn the attention of
scientists of different areas. In this article, we shall discuss active systems whose
behaviour is assimilable to that of some bacteria or self-propelled particles and
whose constituents are driven by an external random force and constantly spend
energy to move through a viscous medium.
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Run and tumble [4, 5] and active Brownian particle (ABP) models [6] have been
initially proposed to interpret experiments conducted on bacterial suspensions. More
recently, the Gaussian coloured noise (GCN) model has gained a lot of attention. It
was introduced with the idea of capturing the peculiar aspect of run and tumble and
ABP models (i.e. the persistence of the trajectories of the active particles) and of
reducing their mathematical complexity. In the GCN the components of the active
force have a Gaussian distribution and are exponentially correlated in time with a
characteristic time, τ . By applying to the GCN model an adiabatic elimination of
the fast degrees of freedom one obtains the UCNA [7, 8].

The UCNA [9] has the special property that its configurational steady state
distribution is known, and that many stationary properties can be estimated.
Employing this approximation, we present a description of a model of N mutually
interacting active particles in the presence of external fields and characterise its
steady state behaviour. Within the UCNA, we show that it is possible to develop
a statistical mechanical approach similar to the one employed in the study of
equilibrium liquids and to obtain the explicit form of the many-particle distribution
function by means of the multidimensional unified coloured noise approximation.
Such a distribution plays a role analogous to the Gibbs distribution in equilibrium
statistical mechanics and provides a complete information about the microscopic
steady state of the system. From here we develop a method to determine the one-
and two-particle distribution functions in the spirit of the Born–Green–Yvon (BGY)
equations of equilibrium statistical mechanics [10]. The resulting equations which
contain extra-correlations induced by the activity allow determining the stationary
density profiles in the presence of external fields, the pair correlations and the
pressure of active fluids. In the low-density regime we obtain the effective pair
potential φ acting between two isolated particles separated by a distance, r , showing
the existence of an effective attraction. We apply the equations to different problems
ranging from the study of the swim pressure, its relation to the mobility, to the
investigation of the stationary state induced by a moving object in a “bath” of active
particles.

Before closing this short introduction, we mention the fact that the UCNA
method has been applied to the study of the effect of self-propulsion on a mean-
field order–disorder transition [11]. Starting from a φ4 scalar field theory subject to
an exponentially correlated noise, the UCNA allows us to map the non-equilibrium
active dynamics onto an effective equilibrium one. One can study the evolution of
the second-order critical point as a function of the noise parameters: the correlation
time, τ , and the noise strength, D. Our results suggest that the universality class of
the φ4 equilibrium model remains unchanged.

8.1.1 The Genesis of the UCNA Model of Active Particles

In order to understand the physical motivations of the model we shall discuss, it is
necessary to give a brief historical account. In modern times, H.C. Berg was the
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first to introduce a model to describe the motion of bacteria in a viscous medium
at small Reynolds number, the so-called run and tumble model, where the bacteria
swim with constant velocity until a random tumble event suddenly decorrelates the
orientation [4]. The active Brownian particles (ABP) model introduced to make
analytical progress describes particles swimming at fixed speed u that rotates by
slow angular diffusion. The two models have been shown to possess the same
coarse-grained fluctuating hydrodynamics by Cates and Tailleur [12]. An advantage
of the ABP is the possibility of taking into account external fields acting on the
bacteria such as obstacles or gravity and interactions among them. For the n-th
particle one has

ṙn(t) = v0en(t)− ∇nU

γ
, (8.1)

where U represents the total potential energy of an N particle systems, whereas
γ v0ei is the so-called active force, whose modulus is fixed, but whose direction
en(t) changes in time by rotational diffusion according to the law

ėn(t) =
√
Dr ηn × en(t), (8.2)

where ηn(t) are Gaussian distributed with zero mean and have time correlations
〈ηn(t)ηm(t ′)〉 = 2Iδmnδ(t − t ′), where Dr is a rotational diffusion coefficient.

In spite of the great progress achieved using the ABP, the so-called active
Ornstein–Uhlenbeck (AOU) or Gaussian coloured model has gained a great pop-
ularity because it has a simpler mathematical structure and lends itself to some
analytical treatments due to the Gaussian character of the fluctuations of the active
force [13]. The governing equations of such model are very similar to Eq. (8.1)

ṙn(t) = un(t)− ∇nU

γ
(8.3)

and

u̇n(t) = −1

τ
un(t)+

√
D

τ
ηn(t) (8.4)

with the difference that the active force γ v0en(t) is replaced by γun(t), where the
components of un(t) vary between −∞ and ∞.

〈un(t)〉 = 0, 〈un(t)um(t ′)〉 = δmnI
D

τ
e−|t−t ′|/τ . (8.5)

Within the AOUP we can obtain a series of useful results and in some cases we
can solve exactly the equations, As, for instance, in the case of harmonic potentials
where the equilibrium distribution is known. In the free-particle case U = 0 the free
mean squared displacement is 〈(r(t)−r(0))2〉 = 2Dτ [t+τ(1−e−t/τ )]. Thus, a free
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particle moves ballistically with typical speed v = √
D/τ at short times (t � τ)

and diffusively with diffusion constant D at long times (t � τ).
The typical distance travelled by a particle during a ballistic flight is the

persistence length L = √
Dτ . If one observes the system on scales larger than

L its properties will be almost indistinguishable from those of a system subject to
standard thermal noise with an effective temperature T = Dγ .

8.2 The Unified Coloured Noise Approximation (UCNA)

In the following, we consider the evolution equation relative to the GCN and from
this we shall derive the UCNA equation. For the sake of simplicity, we introduce the
vector x of components xi of index i ≡ (α, n), where α is the Cartesian component
associated with the coordinate of the n-th particle. We first differentiate w.r.t.
time Eq. (8.3) and eliminate the active force γun(t) using Eq. (8.4). The resulting
equation has the form of an underdamped Langevin equation

τ
d2xi

dt2
+
∑
j

(
δij + τ

γ

∂2U

∂xi∂xj

)
dxj

dt
= − 1

γ

∂U

∂xi
+√

Dηi(t), (8.6)

with space dependent friction matrix:

�ij = δij + τ

γ

∂2U

∂xi∂xj
. (8.7)

Neglecting the acceleration term in Eq. (8.6) we shall obtain the so-called unified
coloured noise approximation, which is analogous to the Kramers to Smoluchowski
reduction and is exact in the limits τ → 0 and τ → ∞.

One can derive the UCNA equation by the original method of Hänggi and
Jung [7]: on a new time scale s = tτ−1/2 one can recast the Langevin equation
into the form

d2xi

ds2 +
∑
j

�ij
dxj

ds
= − 1

γ

∂U

∂xi
+

√
D

τ 1/4 ηi(s), (8.8)

with 〈ηi(s)ηj (s′)〉 = 2δij δ(s − s′) and �ij = ( 1
τ 1/2 δij + τ 1/2

γ
∂2U

∂xi∂xj
). If det�ij is

positive definite the damping is large for both small and large correlation times τ

and in both cases one can set d2xi
ds2 = 0 and obtain a Markovian approximation of

the coloured noise process of the form
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dxi

ds
= −

∑
j

�−1
ij

(
1

γ

∂U

∂xj
−

√
D

τ 1/4 ηj (s)

)
, (8.9)

which is to be interpreted in the Stratonovich sense.

8.2.1 Kinetic Approach

It is straightforward to write the equation of evolution for the N -particle probability

distribution density of positions x associated with the overdamped limit d2xi
dt2

= 0. It
reads

∂PN(x, t)
∂t

=
∑
ij

∂

∂xi
�−1
ij (x, t)

⎛
⎝D∑

k

∂

∂xk
�−1
jk (x, t)+

1

γ

∂U

∂xj

⎞
⎠PN(x, t).

(8.10)

It is, however, instructive to derive such an equation from a kinetic argument. We
consider Eq. (8.6), define the velocity variable vi = ẋi and write the following
(stochastically equivalent to Eq. (8.6)) Kramers equation describing evolution of
phase-space distribution of N particles, �N(xi, vi, t):

∂�N

∂t
+
∑
i

vi
∂�N

∂xi
−
∑
i

1

γ τ

∂U

∂xi

∂�N

∂vi
= 1

τ

∑
i

∂

∂vi

⎛
⎝D

τ

∂

∂vi
+
∑
k

�ikvk

⎞
⎠�N.

(8.11)

This kind of equation occurs in the study of colloidal solutions and is treated by
multiple time scale methods. In general, we cannot solve Eq. (8.11) which involves
both the velocity and the position variables. However, we can attack the problem by
assuming that the velocity degrees of freedom evolve much faster than the positional
degrees of freedom. This type of assumption is done when one reduces the Kramers
phase-space equation to the Smoluchowski configurational equation. In fact, we
make the ansatz that the phase-space distribution factorises in a spatial part and a
velocity part. We construct a time-independent trial phase-space distribution having
a factorised form:

�N(x, v, t) = �(v|x, t)PN(x, t), (8.12)

where � is the conditional velocity distribution when the particles positions
are fixed at x. PN(x) corresponds to the distribution of the particles and is
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the marginalised distribution giving the distribution of positions of the particles
regardless their velocities:

PN(x, t) =
∫

dv�N(x, v, t). (8.13)

In order to determine PN we integrate Eq. (8.11) with respect to all velocities and
obtain the continuity equation relating the probability density PN and the probability
current Ji

∂PN(x, t)
∂t

+
∑
i

∂Ji(x, t)
∂xi

= 0 , (8.14)

where the current Ji(x, t) is the dN-dimensional vector:

Ji(x, t) =
∫

dv vi�N(x, v, t). (8.15)

After multiplying Eq. (8.11) by vi and integrating over the dN velocities, we obtain
the momentum balance equations

∂Ji(x, t)
∂t

+
∑
k

∂pik(x, t)
∂xk

+ 1

γ τ

∂U

∂xi
PN(x, t) = −1

τ

∑
k

�ik(x, t)Jk(x, t),

(8.16)

where pik(x, t) ≡
∫
dvvivj�N Eqs. (8.14) and (8.16) are an Nd + 1 system which

is not closed because one does not know the explicit form of the tensor pik(x, t)
in terms of PN and Ji . A simplifying ansatz is to assume that the velocities have a
local distribution similar to the one they would have in an equilibrium system; this
is the following multivariate Gaussian distribution:

�(v|x) ≈
(

τ

2πD

)N/2 √
det� exp

⎛
⎝− τ

2D

∑
ij

vi�ij (x)vj

⎞
⎠ . (8.17)

It is important to notice that the variance depends on the positions of the particles in
contrast with equilibrium systems and is consistent with the fact that the friction
is position dependent. Within the Gaussian ansatz we can rewrite the balance
Eq. (8.16) as

∂Ji

∂t
+ D

τ

∑
k

∂

∂xk
�−1
ik PN + 1

γ τ

∂U

∂xi
PN = −1

τ

∑
k

�ikJk. (8.18)
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Finally, we assume that the time derivative of the current vanishes on a faster time
scale than the time derivative of the density so that dropping the time derivative in
Eq. (8.18) and expressing Ji in terms of PN in Eq. (8.14) we obtain Eq. (8.10)

∂PN(x, t)
∂t

= D
∑
ij

∂

∂xi
�−1
ij (x, t)

⎛
⎝∑

k

∂

∂xk
�−1
jk (x, t)+

1

Dγ

∂

∂xj
U(x)

⎞
⎠PN(x, t)

= −
∑
i

∂

∂xi
Ji(x, t). (8.19)

The advantage of such a derivation is that we have obtained not only the
distribution function of positions, but also the approximate form of the distribution
of the velocities of the particles. The latter is peculiar because it depends on the
positions of all the particles at variance with the equilibrium case.

8.2.2 Stationary Solution in the Absence of Current

Let us consider the configurational distribution function PN(x) in the steady
state associated with Eq. (8.10). In order to realise the steady state there are
two possibilities, namely when the divergence of the probability flux vanishes,∑

i ∂iJi = 0, or when the flow, J, itself vanishes. Since only the configurational
space is considered in such a reduced description and the positional variables, xi ,
are even under time-reversal transformation, the condition Ji = 0 for arbitrary i

is equivalent to the detailed balance condition [14]. In detail, if the matrix �−1 is
non-singular, Ji = 0 implies

D
∑
k

∂

∂xk
�−1
ik (x)PN(x)+

1

γ

∂U

∂xi
PN(x) = 0, (8.20)

which can be rewritten as:

∂

∂xi
PN(x) = − 1

Dγ

∑
k

�ik(x)
∂U(x)
∂xk

PN(x)+ ∂

∂xi
ln det�(x)PN(x). (8.21)

The detailed balance implies a stronger condition than the one represented by having
a stationary distribution, since it implies that there is no net flow of probability
around any closed cycle of states. Such a situation is no longer true when we
consider the phase-space probability density of the original GCN problem, as
discussed in Appendix 2.
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From the above equation, one can find an exact expression for the probability
density, which reads

PN(x) = 1

ZN

exp

⎧⎪⎨
⎪⎩− 1

Dγ

⎡
⎣U(x)+ τ

2γ

N∑
k

(
∂U(x)
∂xk

)2
⎤
⎦

+ ln

∣∣∣∣∣∣det

(
δik + τ

γ

∂2U(x)
∂xi∂xk

)∣∣∣∣∣∣

⎫⎪⎬
⎪⎭ ,

(8.22)

where ZN is a normalisation constant.
Such a formula, in principle, fully describes within the unified colour approx-

imation the steady state distribution of a system of interacting particles subject to
coloured noise. In the white-noise limit τ → 0 the formula reduces to the Boltzmann
distribution corresponding to the potential U . For finite values of τ , instead, the
distribution maintains a Boltzmann-like distribution but with the effective potential
given by Eq. (8.22). The presence of the additional terms

(
∂U(x)
∂xk

)2 and ln det�
has repercussions in the form of the steady state configuration. Such a form of
distribution is at a first glance surprising since in equilibrium systems, energy is
exchanged reversibly with the environment and the form of PN(x) is determined
by the potential and the temperature of the environment. On the contrary, in non-
equilibrium systems, energy is exchanged irreversibly with the environment and
in general there is no one-to-one correspondence between potential and PN(x).
The vanishing of all components of the probability current (see Eq. (8.20)) is
tantamount of the existence of the detailed balance condition, i.e. of the microscopic
reversibility in the dynamics of the active system. This is reflected in the Boltzmann-
like form of the distribution function. One may ask whether this is an artefact of the
UCNA treatment of the dynamics or is a genuine property of the system. As we shall
discuss below, by considering an elementary case, the detailed balance condition is
violated by the original GCN dynamics by terms proportional to the persistence
time, τ .

For a total potential, U , consisting of the sum of purely repulsive pair potentials
the overall result is to create a sort of effective attractive potential among the
particles. The origin of such an attraction can be understood as follows: the drag
force on each particle is determined by the bare friction with the solvent medium
plus an additional contribution stemming from the interactions. The non-equilibrium
force is an attraction between self-propelled particles causing them to cluster. In the
case of Ji �= 0 and

∑
i ∂iJi = 0, it is not possible in general to obtain explicit

solutions apart from some special cases which will be discussed later.

8.2.3 Fox Approximation

The approximate treatment obtained by applying the UCNA method is not unique.
An alternative method has been put forward by Fox [15] who employed functional
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calculus in order to derive the effective equation for the distribution function P(x, t)
corresponding to the GCN model. The resulting equation of evolution is valid in the
small τ regime and has been applied to active fluids by Farage et al. [16]. It reads

∂P
f ox
N (x, t)

∂t
= D

∑
i

∂

∂xi

(∑
k

∂

∂xk
�−1
ik (x, t)P

f ox
N (x, t)

+ 1

Dγ

∂

∂xi
U(x)P f ox

N (x, t)

)
.

(8.23)

Interestingly, the Fox and the UCNA approaches in the case of a single coloured
noise yield the same steady state distribution function, whereas the approach to
such a solution is different in the two cases. In the case where the particles are
subject to different types of noises, each characterised by its own relaxation time,
the UCNA approximation does not give the correct equation of motion even in the
small τ limit, whereas the Fox method correctly reproduces such a limit. Therefore,
in order to describe mixtures of active particles or of passive and active particles it
is convenient to apply Fox’s approach in spite of the fact that it only describes the
small τ regime [17, 18].

8.2.4 Entropy Production in UCNA

The detailed balance requires that the probability of making a transition forward
in time equals the probability of making the reverse transition, backward in time,
when the system is in the steady state. It is easy to verify that within the UCNA
approximation the condition of detailed balance holds if the probability current
vanishes, J = 0 in the steady state. The vanishing of J implies the existence of
an effective potential Ueff which fully determines the distribution. We shall see in
Sect. 8.7 that this is not the case when J �= 0. This is the reason why the UCNA
steady state distribution has a form similar to a Boltzmann distribution, although
with an effective potential which depends on the persistence time.

A measure of the distance from thermodynamic equilibrium is provided by the
entropy production, so that it is interesting to study such a quantity in the steady
state of the UCNA evolution equation. To this purpose, let us consider the rate of
change of the Shannon entropy (for the sake of simplicity we study the case with
N = 1 of Eq. (8.10)).

Ṡ(t) = −
∫

dx
∂

∂t
P (x, t) lnP(x, t)

=
∫

dx lnP(x, t)∇J (x, t) = −
∫

dx
∇P
P

J,

(8.24)
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where we obtained the last equality by partial integration. We decompose Ṡ into two
contributions:

Ṡ = Ṡs + Ṡm,

where Ṡs is the entropy production due to irreversible processes occurring inside
the system and Ṡm is the entropy flux from the environment to the system. We shall
show that Ṡs is positive definite, whereas Sm can have either sign. In the steady state
the rate of change of the entropy vanishes so that Ṡm = −Ṡs . From Eq. (8.19) for
N = 1 we have

∂P (x, t)

∂t
= ∇

[
D

�(x, t)

(
∇ P(x, t)

�(x, t)
+ 1

Dγ
∇U(x)P (x, t)

)]
= −∇J (x, t),

(8.25)
with the following probability current:

J (x, t) = − D

�(x, t)

(
∇ P(x, t)

�(x, t)
+ 1

Dγ
∇UP(x, t)

)
,

where

�(x) = 1 + τ

γ
∇2U(x). (8.26)

We can eliminate ∇P from Eq. (8.24) and obtain the following expression in terms
of the current:

Ṡ(t) =
∫

dx
(�(x, t)J (x, t))2

DP(x, t)
+
∫

dxJ (x, t)
∇Ueff(x, t)

Dγ
, (8.27)

with

Ueff(x) = U + τ

2γ
(∇U)2 −Dγ ln�.

We now identify the first term in Eq. (8.27)

Ṡs(t) = 1

D

∫
dx

�2(x, t)J 2(x, t)

P (x, t)
(8.28)

as an entropy production rate always non-negative, and the second term

Ṡm(t) = 1

T

∫
dxJ (x, t)∇Ueff(x, t) (8.29)
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with the entropy flux due to heat exchanges between the system and the surround-
ings and the temperature T = Dγ .

We identify the heat flux with the average change of effective potential energy,
Ueff, of the system in the unit time evaluated as follows:

〈Q̇(t)〉 = d

dt

∫
dx Ueff(x)P (x, t)

=
∫

dx Ueff(x)Ṗ (x, t) = −
∫

dx Ueff(x)∇J (x, t).
(8.30)

After an integration by parts we obtain

〈Q̇(t)〉 =
∫

dx J (x, t)∇Ueff(x), (8.31)

and by comparing Eqs. (8.31) and (8.29), we find the following relation:

Ṡm(t) = 1

T
〈Q̇(t)〉. (8.32)

Finally, we have

Ṡ(t) = 1

T
〈Q̇(t)〉 + 1

D

∫
dx

�2(x, t)J 2(x, t)

P (x, t)
. (8.33)

Notice that now the temperature entering the formula connecting Ṡm and 〈Q̇〉 is
uniform and given by T .

Let us remark that due to the detailed balance condition both Ṡs and Ṡm vanish in
the steady state UCNA, showing that the UCNA method maps the underlying GCN
non-equilibrium description into an equilibrium one. At variance with the UCNA,
in the GCN both Ṡs and Ṡm are non-vanishing in the steady state.

8.2.5 H-Theorem

The following calculation proves the approach to the stationary distribution in terms
of the entropy functional. One sees immediately that the entropy flux

Ṡm(t) = −
∫

dxJ (x, t)∇ lnPsteady(x), (8.34)

so that using Eq. (8.24) we can rewrite
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Ṡs(t) = Ṡ(t)− Ṡm(t) = −
∫

dxJ (x, t)∇ ln
P(x, t)

Psteady(x)

= −
∫

dx ln
P(x, t)

Psteady(x)

∂P (x, t)

∂t
.

(8.35)

The quantity Ṡs is nothing else but the rate of change of the Kullback–Leibler
entropy, SKL ≡ − ∫ dxP (x, t) ln(P (x, t)/Psteady(x)), which is positive due to the
sign of Ṡs and vanishes at equilibrium

ṠKL(t) = Ṡs(t) ≥ 0. (8.36)

Thus the Kullback–Leibler entropy of the UCNA process is an ever increasing
function and satisfies an H-theorem. The relative entropy SKL(t) is a functional
of the non-equilibrium probability distribution and generalises the ordinary thermo-
dynamic entropy which is defined for equilibrium states.

8.3 Born–Green–Yvon Hierarchy in the Steady State

We go back now to the multidimensional case and adopt indices to specify
components and particles. We focus attention on the steady state properties of
the system as described by the UCNA. We must remark that formula, Eq. (8.22)
refers to N particles and therefore is not of practical use when the particles are
mutually interacting. We need to derive from it expressions for the one-body and
two-body distribution functions. The procedure is similar to the one employed in
equilibrium statistical mechanics. We shall use the steady condition, Eq. (8.20), to
derive a set of equations similar to the BGY hierarchy for distribution functions in
equilibrium systems. The hierarchy becomes of practical utility in conjunction with
a suitable truncation scheme in order to eliminate the dependence on the higher
order correlations.

In the following, the Cartesian components (from 1 to d) are identified by the
indices α and β, and the particles are identified by Latin indices. The total potential
is assumed to be the sum of the mutual pairwise interactions w(r − r′) between the
particles and of the potential exerted by the external field u(r): U(r1, . . . , rN) =∑N

i>j w(ri , rj )+∑N
i u(ri ).

The hierarchy follows from Eq. (8.10) and considering the reduced probability
distribution functions of order n:

P
(n)
N (r1, r2, . . . , rn) ≡

∫
drn+1 . . . drNPN(r1, r2, . . . , rN). (8.37)

When we integrate Eq. (8.10) over (N−2) coordinates we obtain an equation which
relates the two-body marginal distribution P

(2)
N (r1, r2) to marginal distributions of
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different orders

− T

∫ ∫
dr3 . . . drN

∑
β

∑
n

∂

∂rβn
[�−1

α1,βn(r1, . . . , rN)PN(r1, . . . , rN)]

= P
(2)
N (r1, r2)

(∂u(rα1)

∂rα1
+ ∂w(r1 − r2)

∂rα1

)
(8.38)

+
∑
k>2

∫
drkP

(3)
N (r1, r2, rk)

∂w(r1 − rk)
∂rα1

.

The equation for P (2)
N has a structure similar to that of a standard equilibrium gas

but for the term containing �−1
α1,βn and unless we introduce approximations it is of

little practical use.
We write

�αi,βk =
(
δαβ + τ

γ
uαβ(ri )+ τ

γ

∑
j

wαβ(ri − rj )
)
δik − τ

γ
wαβ(ri − rk)(1 − δik),

(8.39)
and we remark that in the limit of small (τ/γ ) the matrix �−1

α1,βn can be
approximated as [19]:

�−1
αi,βk ≈

(
δαβ − τ

γ
uαβ(ri )− τ

γ

∑
j �=i

wαβ(ri − rj ))
)
δik = �̃−1

αβ (ri )δik, (8.40)

where uαβ ≡ ∂2u(r)
∂rα∂rβ

and wαβ ≡ ∂2w(r)
∂rα∂rβ

. We substitute this approximation and recast

Eq. (8.38) in terms of the n-th order density distributions ρ(n)(r1, r2, . . . , rn) =
N !

(N−n)!P
(n)
N (r1, r2, . . . , rn) and find

T
∑
β

∂

∂rβ1

[
ρ(2)(r1, r2)δαβ − τ

γ

(
ρ(2)(r1, r2)uαβ(r1)+ ρ(2)(r1, r2)wαβ(r1 − r2)

+
∫

drkρ(3)(r1, r2, rk)wαβ(r1 − rk)
)]

= −ρ(2)(r1, r2)
(∂u(r1)

∂rα1
+ ∂w(r1 − r2)

∂rα1

)
−
∫

drkρ(3)(r1, r2, rk)
∂w(r1 − rk)

∂rα1
,

(8.41)

which represents the BGY equation for the pair density distribution ρ(2). By
integrating also over the coordinate 2 we find the BGY equation for the one-body
density:
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Ts
∑
β

∂

∂rβ1

[
δαβρ

(1)(r1)− τ

γ
ρ(1)(r1)uαβ(r1)

− τ

γ

∫
dr2ρ

(2)(r1, r2) wαβ(r1 − r2)
]

= −ρ(1)(r1)
∂u(r1)

∂rα1
−
∫

dr2ρ
(2)(r1, r2)

∂w(r1 − r2)

∂rα1
,

(8.42)

that in the limit of τ → 0 is just the BGY equation for the single-particle distribution
function.

The r.h.s. of Eq. (8.42) contains the coupling to the external field and the so-
called direct interaction among the particles, whereas the l.h.s. besides the ideal gas
term contains a term proportional to the activity parameter.

8.4 Active Pressure

A natural way to define the pressure in a system of active spherical particles driven
by coloured noise is by using the virial theorem which relates the virial of the
external forces confining the particles in a given volume to the pressure exerted
on the walls by the particles themselves. The forces exerted by the bounding walls
of the container are macroscopically described as external pressure [20, 21]. Each
oriented area element dS exerts a force −p(r)dS so that

N∑
i

〈Fext
i · ri〉 = −

∮
p(r)r · dS = −p̄V d, (8.43)

where p̄ is the average pressure over the boundary surface, r is the position vector
of the surface element and the last equality follows from the divergence theorem
(∇ · r = d).

Now, in order to evaluate the external force virial, Eq. (8.43), we multiply
Eq. (8.38) by rα1, integrate over r1 and r2 and sum over indices. After an integration
by parts we obtain the following equation:

N∑
i

〈(Fext
i + Fint

i ) · ri〉 + T
∑
αi

〈�−1
αi,αi〉 = 0, (8.44)

where the forces are separated in two parts: wall and interparticle forces, F ext
αi =

− ∂u(r1)
∂rα1

and F int
αi = −∑k

∂w(r1−rk)
∂rα1

, respectively, and the symbol 〈·〉 stands for an
average over the stationary distribution PN .

In the case where the confining vessel has constant curvature one finds: p̄ = p(r).
In general, when the linear size of the vessel is much larger than the persistence
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length, the standard virial definition of pressure based on the assumption of the
constancy of the pressure on the boundary of the system is correct [20, 21]. In order
to obtain a closed expression for the pressure, we write the term stemming from the
internal forces as:

N∑
i

〈Fint
i · ri〉 = 1

2

∑
i

′∑
j

〈Fij · (ri − rj )〉, (8.45)

and approximate the average of the trace of �−1 as:

T

N∑
i

d∑
α

〈�−1
αi,αi〉 ≈ Ts

d∑
α

∫
dr �̃−1

αα (r)ρ
(1)(r), (8.46)

where in the second equality we have used Eq. (8.40). We now write

pv = T

dV

d∑
α

∫
dr �̃−1

αα (r)ρ
(1)((r)

− 1

2dV

d∑
α

∫
dr
∫

dr′(rα − r ′α)ρ(2)(r, r′)∂w(r − r′)
∂rα

,

(8.47)

where the second term in Eq. (8.47) is analogous to the direct contribution to the
pressure in passive fluids stemming from interactions. Finally, we obtain the explicit
representation

T

dV

d∑
α

∫
dr �̃−1

αα (r)ρ
(1)(r) ≈ T

V

[
N − 1

d

τ

γ

∫
dr
∑
α

uαα(r)ρ(1)(r)

− 1

d

τ

γ

∫
dr
∫

dr′ρ(2)(r, r′)
∑
α

wαα(r − r′)
]
.

(8.48)

The first term in the r.h.s. of Eq. (8.48) represents an ideal gas-like contribution to
the pressure, TN/V , also referred to as the swim pressure, due to the rotational
degrees of freedom. The second and third term in Eq. (8.48) represent indirect
interaction contributions, and take into account the slowing down of active fluids
near a boundary and in regions of high density, respectively. The indirect interaction
pressure involves the interplay between the rotational degrees of freedom and the
interparticle forces and is a non-equilibrium effect. In fact, in the limit of τ → 0 the
quantity Eq. (8.48) reduces to TtN/V , the ideal gas contribution to the pressure.

Besides the virial method, for the UCNA there exist two other approaches to
evaluate not only the pressure but also the surface tension. In the first of approach,
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these can be identified with the volume and area derivatives, respectively, of
the partition function associated with the stationary non-equilibrium distribution.
The second alternative method is a mechanical approach and is related to the
work necessary to deform the system. The pressure is obtained by comparing the
expression of the work in terms of local stress and strain with the corresponding
expression in terms of microscopic distribution. This work is determined from
the force balance encoded in the Born–Green–Yvon equation and can be used
to obtain a formula for the local pressure tensor and the surface tension even in
inhomogeneous situations. Nicely, the three procedures lead to the same values of
the pressure, and give support to the idea that the UCNA partition function is more
than a formal property of the system, but determines the stationary non-equilibrium
thermodynamics of the model. For further details the reader may consult ref. [9].

8.5 Velocity Correlations

The kinetic derivation of the UCNA has shown that a system of active particles
displays velocity correlations. Within the present treatment these correlations have
been approximated by means of a Gaussian multivariate distribution whose variance
depends on the potential.

We consider N interacting particles in 1d. We perform numerical simulations
of systems with N = 1000 composed by GCN-driven particles interacting via the
potential φ(x) = ∑

i>j (xi − xj )
−12 for several values of the density ρ = N/L, of

D and τ .
The velocity variance depends on the configuration of the particles, so that by

averaging it over the positions we obtain the overall velocity variance of a GCN-
driven system:

〈v2〉 = 1

dN

∫
dxPN(x)

∫
dv v · v �(v|x). (8.49)

The 〈v2〉 computed numerically via Eq. (8.49) is plotted in Fig. 8.1b (full lines) as a
function of the 1d density ρ = N/L of the system and for several values of D (at
fixed τ ). In all these simulations we compute the variance 〈ẋ2〉 and report the results
in Fig. 8.1 as connected symbols.

To test the validity of the Gaussian ansatz for the velocity distribution given by
Eq. (8.17), we compute the average over positions in Eq. (8.49) directly from the
coordinates obtained numerically, instead of using the theoretical PN of Eq. (8.22).
This is plotted in Fig. 8.1 as dashed lines and follows well the numerical curves,
although some expected deviation [7] is observed upon increasing D to very high
values. If we assume a uniform density and long-ranged interactions (mean-field
approximation) the velocity distribution Eq. (8.17) simplifies substantially since all
the out-of-diagonal term of ∂α∂βw(ri − rj ) are of order one and can be neglected
with respect to the terms on the main diagonal that are of order N [19]. This yields
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Fig. 8.1 Normalised velocity variance for a 1d system of many interacting active particles.
Symbols are the results of numerical simulations for several values of τ andD (see legend). Dashed
lines are the theoretical velocity variances obtained by averaging Eq. (8.49) over the coordinates
obtained numerically. Thick lines are the result of a homogeneous density approximation. Dashed-
dotted lines represent the small-τ approximation connecting the variance to the pair distribution
function. Dotted lines are the velocity variances obtained by mapping the system onto a harmonic
model (see ref. [22])

the density-dependent variance:

〈v2(ρ)〉
(D/τ)

= 1

1 + τ
γ
w2ρ

= 1

1 + ρL
, (8.50)

where w2 = ∫∞
σ

dx w′′(x) is the mean potential curvature integrated from the
diameter σ andL = √

Dτ is the characteristic length of the active motion. In the last
equality of Eq. (8.50) we have used the fact that, for a generic repulsive potential,
σ corresponds roughly to the distance where the interaction force balances the self-
propulsion force (i.e. |w′(σ )| ≈ γ v = γ

√
D/τ ) and w2 = w′(∞) − w′(σ ) ≈

γ
√
D/τ . This is plotted in Fig. 8.1 as a thick line for the largest D and follows well

the data when L is large. To first order in τ we obtain the results plotted as dashed-
dotted lines in Fig. 8.1 and the theory compares well with the numerical simulations.
However, by fixing τ and increasing D this approximation deviates strongly from
the simulations. We can now derive an expression for pressure by a kinetic argument
by identifying it with

p = ρ〈v2(ρ)〉 = D

τ

ρ

1 + ρL
. (8.51)

8.6 Simple Applications

8.6.1 Active Elastic Dumbbells

Let us consider N mutually noninteracting elastic dumbbells, i.e. two point particles
bound together by an elastic spring of constant α2, moving in a vessel represented by
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a harmonic weak confining potential, of spring constant ω2 [23, 24]. Such a model,
similar to the harmonic trap model [25–27], was proposed long ago by Riddell and
Uhlenbeck. It contains the minimal ingredients to observe the competition between
internal forces and confining potential and can be solved without introducing further
approximations. The potential energy reads [28]:

U(r1, r2) = w(r1 − r2)+ u(r1)+ u(r2)

with w(r) = 1
2α

2r2. By setting u(r) = k
2

r2

L2 , one introduces a volume dependence
in the spring constant associated with the confining potential and for simplicity of
notation we shall use ω2 = k

L2 .
The virial pressure is obtained by applying the general formula Eq. (8.47)

pdLd = −〈F ext
1 · r1 +F ext

2 · r2〉 = dT 〈�−1
11 +�−1

22 〉 + 〈F 12 · (r1 − r2)〉. (8.52)

By simple algebraic manipulations we find

p = T

Ld

[
1

1 + τ
γ
ω2 + ω2

ω2 + 2α2

1

(1 + τ
γ
(ω2 + 2α2))

]
. (8.53)

In the limit of τ → 0 and α → 0 the pressure reduces to the expected ideal gas
pressure of a system of 2N noninteracting particles in a vessel of volume Ld . On
the other hand, one can see that the pressure decreases with increasing values of τ ,
i.e. if the persistence length L = √

Dτ exceeds the typical size of the vessel the
particles do not explore the whole space of the vessel, but remain localised at the
bottom.

8.6.2 Pressure of N Noninteracting Active Particles
Surrounded by Harshly Repulsive Walls

As a second example we consider an assembly of N noninteracting active particles
constrained in a region of space near the origin by a spherically symmetric external
potential in three dimensions. Using Eq. (8.42) one can derive the following exact
formula expressing the mechanical balance condition:

d

dr
pN(r)+ 2

r
(pN(r)− pT (r)) = −ρ(1)(r)u′(r), (8.54)

where the components of the pressure tensor normal (N) and tangential (T) to the
walls are
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pN(r) = Ts
ρ(1)(r)

1 + τ
γ
u′′(r)

, (8.55)

and

pT (r) = Ts
ρ(1)(r)

1 + τ
γ
u′(r)
r

. (8.56)

The density profile according to Eq. (8.22) can be written explicitly as:

ρ(1)(r) = ρ0 exp

[
−u(r)

Ts
− τ

2γ Ts
(u′(r))2

](
1 + τ

γ
u′′(r)

)(
1 + τ

γ

u′(r)
r

)2

,

(8.57)
so that we can fully determine the components of the pressure tensor.

8.7 Active Particles in a Time-Dependent Potential

The results presented in the previous sections concern static cases, where the
external potential is constant in time. In this section we address the interesting issue
of a time-dependent external potential [29]. In particular, we shall consider a shifting
potential U(x, t) = U(x − ct) in one dimension, moving at constant speed c and
inducing a stationary current in the system. The potential barrier interacts with a
fluid of active particle, see the sketch depicted in Fig. 8.2. The effect of a moving
potential on a particle fluid is a general problem in modelling the motion of a driven
obstacle in a medium, in several different fields, such as in the active microrheology
of colloidal systems or in the translocation dynamics of polymer chains through
nanopores.

Fig. 8.2 Sketch of the system: a potential barrier moves at constant velocity c in a channel with a
noninteracting active particle fluid, producing a density profile which is non-uniform along the x
direction [29]
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In the case of the GCN model, we will show that the coupling of self-propulsion
(namely a finite persistence time τ ) with the stationary current gives place to an
effective dynamical potential, which vanishes in both the limits of c → 0, and
τ → 0 (passive particles). The main physical effect we observe in this model, which
is accounted for by a generalised UCNA scheme, consists in a much enhanced
accumulation of active particles at the interface fluid/obstacle, with respect to the
static case or with respect to the behaviour of a passive particle fluid.

8.7.1 Effective Potential

As shown in Sect. 8.3, the first step in deriving UCNA equations is to take the time
derivative in Eq. (8.3). For the sake of simplicity, we consider a one-dimensional
system and a shifting time-dependent potential of the form U(x, t) = U(x − ct).
We have

ẋ(t) = v(t), (8.58)

v̇(t) = −1

τ
�(x − ct)v(t)+ 1

τγ
F ∗(x − ct)+

√
D

τ
η(t), (8.59)

F ∗(x) = F(x)− τc
dF (x)

dx
= −dU(x)

dx
+ τc

d2U(x)

dx2 , (8.60)

�(x) = 1 + τ

γ

d2U(x)

dx2 . (8.61)

By comparing with Eq. (8.6) we note that a new term appears in Eqs. (8.61): an
effective force F ∗(x), which reduces to −dU/dx when c = 0. As we shall show,
this additional contribution in the force term due to the finite velocity of the obstacle
c > 0 is responsible for new dynamical effects.

8.7.2 Dynamical UCNA and Particle Density Profile

In order to show how these effects can be described within a generalised UCNA
scheme, it is useful to consider the associated Fokker–Planck equation. It is
time saving to adopt non-dimensional variables for positions, velocities and time,
and rescale forces accordingly. We define vT = √

D/τ , measure lengths using
the characteristic length, �, of the potential, and introduce the following non-
dimensional variables:

t̄ ≡ t
vT

�
, v̄ ≡ v

vT
, x̄ ≡ x

�
, F̄ (x̄, t̄ ) ≡ �F (x, t)

Dγ
,
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(8.62)

ζ = �

τvT
, �̄ = vT ��, c̄ = c

vT
,

where ζ plays the role of a non-dimensional friction. To lighten the notation we shall
drop the bar over the non-dimensional variables without incurring in ambiguities.
For the probability distribution of position and velocity �(y, v) we thus obtain

∂

∂t
�(y, v)+ v

∂

∂y
�(y, v)+ F ∗(y) ∂

∂v
�(y, v) = ζ

∂

∂v

[
∂

∂v
+ �(y)v

]
�(y, v),

(8.63)
where we have introduced the shifted variable y = x − ct . We, now, look for an
approximate solution to this equation. We start by eliminating the v dependence of
the phase-space distribution �(y, v), by multiplying by powers of v and integrating
w.r.t. v. Thus, one obtains a set of coupled first order ordinary differential equations,
the so-called Brinkman hierarchy, whose first two members are the continuity
equation and the momentum balance equation, respectively:

− c
dρ(y)

dy
+ dJ (y)

dy
= 0, (8.64)

− c
dJ (y)

dy
+ d�(y)

dy
− F ∗(y)ρ(y)+ ζ�(y)J (y) = 0. (8.65)

Here we have introduced the density ρ(y), the current J (y) and the momentum
current �(y), defined as:

ρ(y) =
∫

dv�(y, v), (8.66)

J (y) =
∫

dvv�(y, v), (8.67)

�(y) =
∫

dvv2�(y, v). (8.68)

According to the continuity Eq. (8.64) the current must be a linear function of the
density, yielding

J (y) = c[ρ(y)− ρ̄], (8.69)

where ρ̄ is a constant such that the solution is periodic at ρ(L) = ρ(−L), where 2L
is the system size. As we shall see later, for large systems L � l, ρ̄ ≈ ρ(±L) and
the current is almost vanishing at the boundaries.

From the analysis of the case of static potentials, discussed in the previous
sections, we know that the solution of Eq. (8.63) in regions where F ∗(y) = 0 and
�(y) = 1 can be written as (see Eq. (8.17)):
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�(y, v) =
[
ρ(y)− ρ̄

]
H0(v − c)+ ρ̄ H0(v), (8.70)

where

H0(v) =
√

1

2π
exp

(
− 1

2
v2
)

(8.71)

is a Hermite function of zero order. Indeed, by substituting the form Eq. (8.70) in
Eq. (8.63) (with F ∗ = 0), we obtain a solution provided ρ(y) satisfies the following
condition:

dρ(y)

dy
= −ζc[ρ(y)− ρ̄]. (8.72)

Next, we insist in looking for a solution of Eq. (8.63) even in the region where
F ∗(y) �= 0 of the form:

�(y, v) =
[
ρ(y)− ρ̄

]
H0(y, v − c)+ ρ̄ H0(y, v), (8.73)

where we have introduced the following (non-uniform) Hermite function, which is
position dependent through the trial function β(y):

H0(y, v) =
√
β(y)

2π
exp

(
− β(y)

2
v2
)
. (8.74)

Substituting now the trial distribution Eq. (8.73) into Eq. (8.63), we get

H1(y, v − c)
1√
β(y)

{
ρ′(y)− β(y)[F ∗(y)− ζ�(y)c][ρ(y)− ρ̄]

− β ′(y)
β(y)

[ρ(y)− ρ̄]
}
−H1(y, v)

1√
β(y)

[
β(y)F ∗(y)ρ̄ + β ′(y)

β(y)
ρ̄

]

+ ζ [�(y)− β(y)][(ρ(y)− ρ̄)H2(y, v − c)+ ρ̄H2(y, v)]

− β ′(y)
2
√
β3(y)

[
(ρ(y)− ρ̄)H3(y, v − c)+ ρ̄H3(y, v)− cβ1/2H2(y, v)

]
= 0,

(8.75)

where prime denotes derivative w.r.t. y, and H1(y, v), H2(y, v) and H3(y, v) are the
Hermite functions of order 1, 2 and 3, respectively, defined by the recursion relation:

Hν+1(y, v) = − 1√
β(y)

∂Hν(y, v)

∂v
.
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The trial solution fails to solve Eq. (8.63). However, if we limit ourselves to consider
only the two lowest moments of the probability distribution, i.e. if after multiplying
by (v − c), we integrate Eq. (8.75) over v, we obtain the following condition which
gives the equation for the density profile:

1

β(y)

dρ(y)

dy
− [F(y)− ζc]ρ − β ′(y)

β2(y)
ρ − ζc�(y)ρ̄ = 0. (8.76)

If we continue the projection procedure beyond the first order in (v − c) there will
be an error in the equation for the second moment, which becomes inconsistent with
the value of the second moment imposed by the trial distribution (which, in fact, is
already fixed by the trial form and therefore does not contain enough parameters to
satisfy the extra conditions.)

The ansatz for the phase-space distribution gives the following expression for the
momentum flux:

�(y) = ρ(y)

β(y)
+ c2[ρ(y)− ρ̄]. (8.77)

Note that Eq. (8.76) is perfectly equivalent to Eq. (8.65) when the latter is endowed
with a closure, indeed represented by Eq. (8.77). The static UCNA approximation is
recovered by setting the arbitrary function β(y) = �(y) and c = 0, (i.e. J = 0).

In order to deal with possible zeroes of the function β(y) let us solve the non-
linear differential equation for the profile using the auxiliary function:

n(y) = ρ(y)

β(y)
(8.78)

that satisfies the equation

dn(y)

dy
= [

F(y)− ζc
]
β(y)n(y)+ ζc�(y)ρ̄. (8.79)

Then, defining the effective potential

w(y) =
∫ y

−L
dsβ(s)

dU(s)

ds
+ ζc

∫ y

−L
ds[β(s)− 1]

allows us to rearrange Eq. (8.79) as follows:

dn(y)

dy
=
[
− d

dy
w(y)− ζc

]
n(y)+ ζc�(y)ρ̄. (8.80)

The solution of the inhomogeneous equation is then
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n(y) = Ae−w(y)−ζcy + ζcρ̄e−w(y)−ζcy
∫ y

−L
dsew(s)+ζcs�(s), (8.81)

A = n(−L)ew(−L)−ζcL. (8.82)

By construction w(−L) = 0 and one may verify that n(L) = n(−L), but w(L) �=
w(−L). Eventually, one has

n(y) = n(L)e−[w(y)−w(−L)]−cζ(y+L)

×
⎧⎨
⎩1 + [e2ζcLew(L)−w(−L) − 1]

∫ y
−L dse

w(s)+cζ s�(s)∫ L
−L dsew(s)+cζ s�(s)

⎫⎬
⎭ ,

(8.83)

and, from Eq. (8.78), the density profile reads

ρ(y) = ρ(L)

β(L)
β(y)e−[w(y)−w(−L)]−cζ(y+L)

×
⎧⎨
⎩1 + [e2ζcLew(L)−w(−L) − 1]

∫ y
−L dse

w(s)+cζ s�(s)∫ L
−L dsew(s)+cζ s�(s)

⎫⎬
⎭ ,

(8.84)

where ρ(L) is fixed by the normalisation. The explicit expression for the density ρ̄

is

ρ̄ = 1

ζc

ρ(L)

β(L)

ew(L)+cζL − ew(−L)−cζL∫ L
−L dyew(y)+cζy�(y)

.

We empirically set β(y) = �(y) in the regions where �(y) ≥ 0, and β(y) = 0
otherwise. Then, the expression (8.84) can be evaluated numerically and in Fig. 8.3
we compare the analytical prediction with numerical simulations, in the case of the
following external potential:

U(y) = U0

[
tanh

(
y + 1

ξ

)
− tanh

(
y − 1

ξ

)]
, (8.85)

characterised by the steepness 1/ξ .

8.7.3 Average Drag Force

Our analytical approach allows us to obtain an estimate for the average drag force
exerted by the active fluid on the moving wall, defined as:
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Fig. 8.3 Density profiles for the static case c = 0 (left) and for the moving potential with c =
0.2 (right). Red lines represent analytical predictions, while black dots are numerical simulations.
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simulations (symbols) for the average drag force exerted by the active fluid on the moving wall.
Right: Comparison between the maximal drag force computed in the active and passive case [29]

〈F 〉 =
∫ L

−L
dyF(y)ρ(y). (8.86)

The comparison of the analytical prediction with numerical simulations for the drag
force is shown in Fig. 8.4. Note the non-monotonic behaviour of the force–velocity
relation is characterised by a maximum value of the force 〈F 〉max for a particular
velocity c∗.

In order to highlight the new physical effects arising due to the coupling of self-
propulsion and a stationary current, it is useful to compare the behaviour observed in
the active particle model with the one obtained in the case of a moving potential in a
(passive) thermal bath. In the latter situation, the noise term acting in the stochastic
equation for the particle velocity is a delta-correlated noise of amplitude 2/ζ . In
the right panel of Fig. 8.4 we show the maximum value of the drag force 〈F 〉max
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as a function of 1/(ξζ ) in both models. The qualitative difference between the two
behaviours relies on the observation that in the active case the average drag force can
increase indefinitely by reducing the parameter ξ , which characterises the steepness
of the travelling potential.

8.8 Conclusions

In this chapter, we have reviewed the recent developments of the theory of active
particles driven by coloured noise within an approximate scheme, the UCNA.
Such a method has the great advantage of providing predictions and equations
much simpler with respect to other methods. The reason is that the adiabatic
approximation at the basis of the method eliminates the faster degrees of freedom,
the velocity in the case of the GCN and of the ABP.

Appendix 1: Entropy Production and Heat Flux in the GCN

Let us consider the elementary case of a single active particle in one dimen-
sion driven by Gaussian coloured noise, with phase-space distribution function
p(x, v, t). We derive the equations for the entropy production and entropy flux in
phase-space (x, v) and we shall use small letters to distinguish probabilities and
thermodynamic variables from the configurational variables of UCNA. We start
from the Fokker–Planck equation

∂p

∂t
+ v

∂p

∂x
− 1

γ τ

∂U

∂x

∂p

∂v
= 1

τ

∂

∂v

(D
τ

∂

∂v
+ �v

)
p. (8.87)

Within the GCN, we consider the time derivative of the total Shannon entropy
production defined as

ṡ(t) = −
∫∫

dxdv
∂

∂t
p(x, v, t) lnp(x, v, t)

=
∫∫

dxdv lnp(x, v, t) divI =
∫∫

dxdvdiv

(
I
p

)
p,

(8.88)

where the (x, v) components of the current vector I are:

Ix = vp(x, v, t) (8.89)

Iv = − 1

γ τ

∂U

∂x
p − �

τ
vp − D

τ 2

∂p

∂v
(8.90)
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Let us define the temperature T = D/τ and the local temperature θ(x) = T/�(x).
Now, the total time derivative of the entropy Eq. (8.88) can be written as the sum,
ṡ(t) = ṡs (t) + ṡm(t) (see Sect. 2.4). Explicitly, we find after integrating by parts
Eq. (8.88) the following expressions:

ṡs (t) = 1

τ

1

T

∫∫
dxdv

1

p

(
�(x)vp + T

∂p

∂v

)2

(8.91)

and the entropy flux

ṡm(t) = −
∫∫

dxdv
1

θ(x)

�(x)

τ

[
v2p(x, v, t)+ θ(x)v

∂

∂v
p(x, v, t)

]
. (8.92)

The dimensional form of the total energy ε(x, v) and of the heat flux are,
respectively:

ε(t) = 1

2
v2 + U(x)

τγ
, (8.93)

and

〈q̇(t)〉 =
∫∫

dxdvε(t)
∂

∂t
p(x, v, t) (8.94)

〈q̇〉 = −
∫∫

dxdv
�(x)

τ

[
v2p(x, v, t)+ θ(x)v

∂

∂v
p(x, v, t)

]
. (8.95)

It is suggestive to rewrite

q̇(t) =
∫

dx ˙̃q(x, t), (8.96)

ṡm(t) =
∫

dx
1

θ(x)
˙̃q(x, t), (8.97)

with a local density of heat flux defined as

˙̃q(x, t) = −�(x)

τ

∫
dv
[
v2p(x, v, t)+ θ(x)v

∂

∂v
p(x, v, t)

]

= −1

τ

T

θ(x)
n(x, t)

[
〈v2〉x − θ(x)

]
,

(8.98)

where n(x, t) = ∫
dvp(x, v, t) and n(x, t)〈v2〉x = ∫

dvv2p(x, v, t) , with 〈v2〉x
the mean squared velocity at given position. Expression Eq. (8.97) represents an
interesting connection between the local entropy production of the medium (or

www.dbooks.org

https://www.dbooks.org/


266 U. M. B. Marconi et al.

entropy flux) and the local heat flux divided by the same local temperature θ(x) =
T/�(x) featuring in the approximate detailed balance solution, Eq. (8.103).

Define the dissipative components of the current as:

Ĩx(x, v) = 0,

Ĩv(x, v) = −�

τ
vp − T

τ

∂p

∂v
.

It is clear that in the GCN in the steady state while the time derivative of the
entropy vanishes ṡ = 0, its two contributions are not necessarily zero.

ṡs (t) = τ

T

∫∫
dxdv

Ĩ 2
v (x, t)

p(x, v, t)
(8.99)

ṡm(t) =
∫∫

dxdv
1

θ(x)
v Ĩv(x, v, t) (8.100)

ṡs is an entropy production rate which is always non-negative, while ṡm is the
entropy flux due to heat exchanges between the system and the surroundings and
can have either signs.

Appendix 2: Absence of Detailed Balance Condition
in the GCN

As in Appendix 1, let us consider the elementary case of a single active particle
in one dimension driven by Gaussian coloured noise. The probability current,
I(x, v), is the two dimensional vector, comprising both reversible and irreversible
contribution given by Eq. (8.90). Let ps(x, v) be a steady state solution of the
Fokker–Planck equation, such that

divI = ∂Ix

∂x
+ ∂Iv

∂v
= 0. (8.101)

The detailed balance condition requires that in the steady state [30] the irreversible
part of the current, represented by the terms proportional to ζ , must vanish:

− �(x)

τ
vps(x, v)− T

τ

∂ps

∂v
= 0 (8.102)
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ps must be the product of a function of the position, π(x), times a “local”
Maxwellian whose velocity variance is also position-dependent:

ps(x, v) = π(x) exp

(
−�(x)

2T
v2
)
. (8.103)

In virtue of Eq. (8.101) the reversible part of the current vector (vps,−U ′ps/(τγ ))
must fulfil the condition:

[
v
∂

∂x
− 1

τγ

dU(x)

dx

∂

∂v

]
ps(x, v) = 0. (8.104)

Plugging the distribution Eq. (8.103) into Eq. (8.104) we obtain:

v

(
1

π(x)

dπ(x)

dx
+ 1

τγ

dU(x)

dx

�(x)

T
− 1

2

d�(x)

dx

v2

T

)

π(x) exp

(−�(x)
2T

v2
)

�= 0, (8.105)

and conclude that a function π(x) satisfying Eq. (8.104) only exists when �(x) is
a constant �0. This condition occurs for τ → 0, which is the equilibrium limit
of the model, or when the potential is a linear or parabolic function of x. In
conclusion, apart from the special case �0, the Kramers equation (8.11) does not
satisfy the detailed balance condition. However, we can determine an approximate
steady solution consistent with the UCNA under the form:

πtrial(x) = �3/2(x) exp

⎛
⎝−U(x)+ τ

2γ U
′(x)2

Dγ

⎞
⎠ . (8.106)

In spite of the fact that such trial solution is not divergence-free, i.e. divI �= 0, the
first three velocity moments, obtained by multiplying the divergence by (1, v, v2),
respectively, and integrating w.r.t. v, vanish, so that in this subspace the zero
divergence condition holds.
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Chapter 9
Quadrature-Based Lattice Boltzmann
Models for Rarefied Gas Flow

Victor E. Ambrus, and Victor Sofonea

9.1 Introduction

At non-negligible values of the Knudsen number Kn (defined as the ratio between
the mean free path of the fluid particles in a gas and the characteristic length of
the domain), the Navier–Stokes equations lose applicability [1, 2]. Such rarefied
gas flows can be approached within the framework of the Boltzmann equation [3–
5]. This equation describes the six-dimensional phase-space evolution of the
distribution function f , where f (t, x,p)d3xd3p gives the number of particles at
time t which are contained in an infinitesimal volume d3x centred on x, having
momenta in an infinitesimal range d3p about p. Because of its complexity, the
Boltzmann equation can be solved analytically only in a very limited number
of cases. Alternatively, numerous well-established approaches to the numerical
solutions of the Boltzmann equation are now currently used for academic or
engineering purposes, of which we only mention the direct simulation Monte Carlo
(DSMC) technique [6], the discrete velocity models (DVMs) [7–9], the discrete
unified gas-kinetic scheme (DUGKS) [10–12] and the lattice Boltzmann (LB)
models [13–20].

The LB models are a particular type of DVMs and are derived from the
Boltzmann equation using a simplified version of the collision operator, as well
as an appropriate discretisation of the momentum space, which ensure the recovery
of the moments of the distribution function f up to a certain order N . Originally
derived nearly 30 years ago from the lattice gas automata [17, 19, 20], the LB
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models were primarily designed to recover the hydrodynamics of fluid systems at
the Navier–Stokes level. The LB models inherited the collision-streaming concept
from their ancestors, according to which the velocities of the fluid particles are
aligned along the lattice links such that after one time step δt , each particle arrives
at a neighbouring node [13, 14, 17, 19, 21, 22].

One disadvantage of the collision-streaming paradigm is the increasing difficulty
to approach fluid systems far from equilibrium (e.g., rarefied gases or micro/nano-
scale flowing fluids) using suitable LB models. In this case, the accurate recovery
of specific effects in channel flow at large values of Kn, such as the velocity
slip and the temperature jump at the channel walls [1, 2], requires that higher
order moments of the single particle distribution function f are ensured. Since the
moments of f are derived by integration in the momentum space, their numerical
computation involves the use of convenient quadrature methods. When using a
quadrature method, the moments of the single particle distribution f (up to a certain
order N ) are exactly recovered by sums over a finite set of momentum vectors
pk , 1 ≤ k ≤ K [13, 14, 17–19, 21–26]. As the fluid system is farther from
the equilibrium and the characteristic value of the Knudsen number increases, the
number K of the momentum vectors (i.e., the quadrature points) should also be
increased, as it will be shown later. This task becomes more and more elaborated if
one wants to keep the particles hopping from a lattice node to another one during a
single time step [27–30].

An alternative to the collision-streaming paradigm is provided by the off-lattice
LB models, where the distribution functions are evolved in the lattice nodes
using finite-difference, finite-volume or interpolation schemes [31–34]. A fourth-
order, off-lattice LB model for the simulation of thermal flows in the continuum
regime (small values of the Knudsen number), where the fluid density, velocity
and temperature fields are derived from a single set of distribution functions, was
proposed by Watari and Tsutahara [35] for 2D flows and subsequently extended to
the 3D case [36–38]. Off-lattice LB models of any order N can be easily constructed
using the Gauss quadrature method in the velocity space [18, 23, 25, 26, 39, 40].

Another challenge for microfluidics simulations is due to the implementa-
tion of boundary conditions. In general, the particle–wall interaction governs the
distribution of particles emerging from the wall back into the fluid. Since the
distribution of particles travelling from the fluid towards the wall is essentially
arbitrary, the distribution function becomes discontinuous near the wall [41, 42].
Examples of boundary conditions include the diffuse-spectral [9] and Cercignani–
Lampis [43] particle–wall interaction models; however, for simplicity, we restrict
the analysis to the simpler diffuse reflection model, which is a limiting case of
both models mentioned above. According to the diffuse reflection paradigm, the
reflected particles follow a Maxwell–Boltzmann distribution corresponding to the
wall temperature and velocity. In order to accurately compute the incident and
emergent fluxes required to impose diffuse reflection (kinetic) boundary conditions,
it is convenient to discretise the velocity set based on half-range Gauss quadrature
methods. Such techniques were also used in the frame of DVMs [44, 45] and more
recently, they were adapted for the LB method [24, 26, 46, 47].
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9.2 Generalities

The Boltzmann equation for a force-driven flow reads:

∂tf + p
m

· ∇f + F · ∇pf = −1

τ
(f − f eq), (9.1)

where on the right-hand side we have used the Bhatnagar–Gross–Krook (BGK)
single-relaxation time approximation of the collision term [48]. The distribution
function f ≡ f (x,p, t) represents the density of particles at position x and time t ,
having momentum p, while

f eq = ngxgygz, (9.2)

gα = 1√
2πmkBT

exp

[
− (pα −muα)

2

2mkBT

]
, α ∈ {x, y, z} (9.3)

is the Maxwell–Boltzmann equilibrium distribution function corresponding to local
thermal equilibrium. The force F ≡ F(x) in Eq. (9.1) encapsulates all external forces
acting on these particles.

The local quantities describing the gas flow at the macroscopic level, namely the
particle number density n, the velocity u, the stress tensor Tαβ (α, β = 1, 2, 3) and
the heat flux q, can be obtained as moments of f :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

ρu

Tαβ

q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∫

d3p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

p

ξαξβ/m

ξξ2

2m2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
f, (9.4)

where ξα = pα −muα is the peculiar momentum and ρ = mn is the mass density.
The pressure P is defined through:

P = 1

3

∑
α

Tαα, (9.5)

while the temperature is obtained via T = P/nkB , which represents the equation of
state for an ideal gas (kB is the Boltzmann constant). More generally, it is convenient
to introduce the following notation for the moments of f and f eq:
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⎛
⎜⎝
Msx,sy ,sz

M
(eq)
sx ,sy ,sz

⎞
⎟⎠ =

∫
d3p

⎛
⎜⎝

f

f eq

⎞
⎟⎠ (px)

sx (py)
sy (pz)

sz . (9.6)

Since mass m, momentum p and energy p2/2m are collision invariant quantities, we
have:

n = M0,0,0 = M
(eq)
0,0,0 , (9.7)

⎛
⎜⎜⎜⎜⎜⎝

ρux

ρuy

ρuz

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

M1,0,0

M0,1,0

M0,0,1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

M
(eq)
1,0,0

M
(eq)
0,1,0

M
(eq)
0,0,1

⎞
⎟⎟⎟⎟⎟⎠
, (9.8)

3

2
nKBT + 1

2
ρu2 = 1

2m

(
M2,0,0 +M0,2,0 +M0,0,2

)

= 1

2m

(
M

(eq)
2,0,0 +M

(eq)
0,2,0 +M

(eq)
0,0,2

)
.

(9.9)

The basic steps for the construction of an off-lattice LB model are [49]:

1. discretising the momentum space;
2. replacing the equilibrium distribution function f eq in the collision term of

Eq. (9.1) by a truncated polynomial with respect to the particle velocity ;
3. replacing the momentum derivative of the distribution function f in Eq. (9.1)

using a suitable expression [see Eq. (9.23)];
4. choosing a numerical method for the time evolution and spatial advection;
5. implementation of the boundary conditions.

A common feature of all LB models is that the conservation equations for the
particle number density n, macroscopic momentum density ρu and temperature T
(for thermal models) are exactly recovered. Regardless of the chosen discretisation
of the momentum space, the Boltzmann–BGK equation (9.1) is replaced by a set of
K equations:

∂tfk + pk
m

· ∇fk + F · (∇pf )k = −1

τ
(fk − f

eq
k ), (9.10)

where fk (k = 1, 2, . . . K) represents the distribution function corresponding to the
discrete momentum pk . The total number K of discrete momenta are chosen such
that the moments Eq. (9.6) are exactly recovered:
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⎛
⎜⎝
Msx,sy ,sz

M
(eq)
sx ,sy ,sz

⎞
⎟⎠ =

K∑
k=1

⎛
⎜⎝
fk

f
eq
k

⎞
⎟⎠ (pk,x)sx (pk,y)sy (pk,z)sz . (9.11)

The order N of a given LB model is related to the maximum value of the exponents
sx, sy, sz for which the above equality holds.

9.3 One-Dimensional Quadrature-Based LB Models

In this section, the procedure for implementing the full-range and half-range Gauss–
Hermite quadratures on a single axis of the momentum space will be discussed in
Sects. 9.3.1 and 9.3.2, respectively. For convenience, in this section we will refer to
the one-dimensional (1D) equivalent of the Boltzmann–BGK equation (9.1):

∂tf + p

m
∂xf + F∂pf = −1

τ
(f − f eq). (9.12)

After discretisation, this equation is replaced by a set of K = Q equations, where Q
is the number of quadrature points on the entire axis:

∂tfk + pk

m
∂xfk + F(∂pf )k = −1

τ
(fk − f

eq
k ). (9.13)

The general expression of the total number K of discrete momenta employed by a
D-dimensional LB model will be introduced in Sect. 9.4.

9.3.1 Full-Range Gauss–Hermite Quadrature

Let us consider integrals of f and f eq along the axis of the 1D momentum space:

⎛
⎜⎝

Ms

M
(eq)
s

⎞
⎟⎠ =

∫ ∞

−∞
dp

⎛
⎜⎝

f

f eq

⎞
⎟⎠ps. (9.14)

For the purpose of this section, we can consider f eq = ng, where g is expressed as
in Eq. (9.3), but without using the subscript α. The function g can be expanded with
respect to the full-range Hermite polynomials {H�(p), � = 0, 1, . . . } as follows
[25, 26]:
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g = ω(p)

p0

∞∑
�=0

1

�!G�H�(p), G� =
��/2 ∑
s=0

�!
2ss!(�− 2s)!

(
mKBT

p2
0

− 1

)s(
mu

p0

)�−2s

,

(9.15)

where �· is the floor function, G� is the �-th expansion coefficient and p = p/p0
is the particle momentum expressed with respect to some arbitrary momentum
scale p0. The full-range Hermite polynomials [18, 26, 39, 40] satisfy the following
orthogonality relation with respect to the weight function ω(p):

∫ ∞

−∞
dp ω(p)H�(p)H�′(p) = �! δ�,�′ , ω(p) = 1√

2π
e−p2/2. (9.16)

The expansion coefficients G� given in Eq. (9.15) were obtained according to:

G� =
∫ ∞

−∞
dp g H�(p). (9.17)

Substituting Eq. (9.15) into Eq. (9.14) gives:

M
(eq)
s = ps0

∞∑
�=0

1

�! G�
∫ ∞

−∞
dp ω(p)H�(p) p

s. (9.18)

At finite values of s and �, the Gauss–Hermite quadrature can be applied to recover
the integral over p on the entire momentum axis, using the following prescription:

∫ ∞

−∞
dp ω(p)Ps(p) �

Q∑
k=1

wH
k Ps(pk), (9.19)

where Ps(p) is a polynomial of order s in p and the Q quadrature points pk (k =
1, 2, . . . ,Q) are the roots of the Hermite polynomial of order Q, i.e., HQ(pk) = 0.
Note that K = Q = Q holds only in a one-dimensional LB model based on full-
range Gauss–Hermite quadratures.

Since these roots correspond to the integration over the full momentum space
axis, in the case of the full-range Gauss–Hermite quadrature, the number of
quadrature points on the entire axis Q is equal to the quadrature order Q. The
quadrature weights wH

k are given by:

wH
k = Q!

[HQ+1(pk)]2
. (9.20)

The equality in Eq. (9.19) is exact if 2Q > s. In an LB simulation, Q is fixed at
runtime. Thus, in order to ensure the exact recovery of M(eq)

s in Eq. (9.18), the sum
over � in Eq. (9.15) must be truncated at a finite value � = N . Setting Q > N

ensures the exact recovery of the first N + 1 moments (i.e., s = 0, 1, . . . N) of
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f eq, since the terms of higher order in the expansion of g are orthogonal to all
polynomials Ps(p) of orders 0 ≤ s ≤ N , by virtue of the orthogonality relation
given by Eq. (9.16). This allows M(eq)

s to be obtained as:

M
(eq)
s =

Q∑
k=1

f
eq
k psk, f

eq
k = ngHk , gHk = wH

k p0

ω(pk)
gH,(N)(pk), (9.21)

where pk = p0pk are the discrete momenta and the notation gH,(N)(p) indicates
that the polynomial expansion in Eq. (9.15) of g(p) is truncated at order � = N

with respect to the full-range Hermite polynomials. For definiteness, we list below
the expression for gHk [25, 26]:

g
H,(N)
k = wH

k

N∑
�=0

H�(pk)

��/2 ∑
s=0

1

2ss!(�− 2s)!

(
mT

p2
0

− 1

)s (
mKBT

p0

)�−2s

.

(9.22)
The momentum derivative ∂pf can be written as:

(∂pf )k =
Q∑

k′=1

Kk,k′fk′ , (9.23)

where the kernel Kk,k′ has the following components [49, 50]:

Kk,k′ = −wH
k

p0

Q−2∑
�=0

1

�!H�+1(pk)H�(pk′). (9.24)

9.3.2 Half-Range Gauss–Hermite Quadrature

The half-range paradigm is inspired from the discontinuous nature of the distribution
function due to the interaction with the channel walls. Such discontinuities naturally
induce a split of the momentum space integration domain in two hemispheres,
corresponding to particles travelling towards and away from the wall. In order
to encompass the discontinuous nature of the distribution function in a one-
dimensional LB model for confined fluid flow, it is convenient to introduce the
half-range moments M±

s and M
(eq),±
s (s = 0, 1, 2, . . . ) of f and f (eq) through:

⎛
⎜⎝

M+
s

M
(eq),+
s

⎞
⎟⎠ =

∫ ∞

0
dp

⎛
⎜⎝

f (p)

f eq(p)

⎞
⎟⎠ps,

⎛
⎜⎝

M−
s

M
(eq),−
s

⎞
⎟⎠ =

∫ 0

−∞
dp

⎛
⎜⎝

f (p)

f eq(p)

⎞
⎟⎠ps.

(9.25)
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The recovery of the half-range integrals in Eq. (9.25) can be achieved using the half-
range Gauss–Hermite quadrature, defined with respect to the weight function ω(p):

∫ ∞

0
dp ω(p)Ps(p) �

Q∑
k=1

wkPs(pk), ω(p) = 1√
2π

e−p2/2, (9.26)

where the equality is exact if the number of quadrature points Q satisfies 2Q > s.
The quadrature points pk (k = 1, 2, . . .Q) are the Q (positive) roots of the half-
range Hermite polynomial hQ(p), while the quadrature weights wk are given by [25,
26, 39, 40]:

w
h

k = pka
2
Q

h2
Q+1(pk)

[
pk + h2

Q,0/
√

2π
] , (9.27)

where aQ = hQ+1,Q+1/hQ,Q and h�,s represents the coefficient of ps in h�(p), i.e.,

h�(p) =
�∑

s=0

h�,sp
s. (9.28)

In our convention, the half-range Hermite polynomials are normalised according to:

∫ ∞

0
dp ω(p)h�(p)h�′(p) = δ�,�′ . (9.29)

In order to apply the half-range Gauss–Hermite quadrature prescription,
Eq. (9.26), f and f eq must be expanded with respect to the half-range Hermite
polynomials. Since the half-range Hermite polynomials are defined only on half
of the momentum axis, f can be split with the help of the Heaviside step function
θ(p) as follows [49]:

f (p) = θ(p)f+(p)+ θ(−p)f−(p), θ(p) =
⎧⎨
⎩

1, p > 0,

0, p < 0.
(9.30)

The functions f+(p) and f−(p) are defined only on the positive and negative
momentum semiaxis, respectively, such that they can be expanded with respect to
the half-range Hermite polynomials as follows:

f+ = ω(p)

p0

∞∑
�=0

F +h�(p), f− = ω(−p)
p0

∞∑
�=0

F −h�(−p), (9.31)
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where the coefficients F ± can be obtained using the orthogonality given in
Eq. (9.29) of the half-range Hermite polynomials:

F +
� =

∫ ∞

0
dp f (p)h�(p), F −

� =
∫ 0

−∞
dp f (p)h�(−p). (9.32)

The expansion in Eq. (9.31) with respect to the half-range Hermite polynomials
h� can be substituted in Eq. (9.25), yielding:

⎛
⎜⎝
M+

s

M−
s

⎞
⎟⎠ = ps0

∞∑
�=0

1

�!

⎛
⎜⎝
F +
�

F −
�

⎞
⎟⎠
∫ ∞

0
dp ω(p) h�(p)(±p)s. (9.33)

Truncating the expansion in Eq. (9.31) at � = Q − 1 ensures that a quadrature
of order Q can recover the moments in Eq. (9.33) for 0 ≤ s ≤ Q. Since Q

quadrature points are required on each semiaxis of the momentum space, the
discrete momentum set of the 1D half-range Gauss–Hermite LB model has K =
Q = 2Q elements (twice as in the full-range model of the same order), which are
defined as:

pk = p0pk, pk+Q = −pk (1 ≤ k ≤ Q). (9.34)

Thus, the half-range moments in Eq. (9.25) are recovered as:

M+
s =

Q∑
k=1

fkp
s
k, M−

s =
2Q∑

k=Q+1

fkp
s
k, (9.35)

where

fk = w
h

k p0

ω(pk)
f (pk), fk+Q = w

h

k p0

ω(pk)
f (−pk) (1 ≤ k ≤ Q). (9.36)

Let us now consider the expansion of f eq with respect to the half-range Hermite
polynomials, by writing g(p) = θ(p)g+(p)+ θ(−p)g−(p), where

g± = ω(
∣∣p∣∣)
p0

∞∑
�=0

G±
� h�(

∣∣p∣∣). (9.37)

The expansion coefficients G±
� can be obtained in analogy to Eq. (9.32).

Following the convention of Eq. (9.34), the momentum space is discretised using
Q = 2Q elements with pk > 0 (for the positive semiaxis) and pk+Q = −pk (for the
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negative semiaxis), where 1 ≤ k ≤ Q. The corresponding equilibrium distributions
f

eq
k = ng

h,(N)
k are constructed using

g
h,(N)
k = w

h

k

N∑
�=0

G+
� h�(pk), g

h,(N)
k+Q = w

h

k

N∑
�=0

G−
� h�(pk), (9.38)

where the expansion order 0 ≤ N < Q is a free parameter of the model which
represents the order up to which the half-range moments of f eq can be exactly
recovered. The coefficients G±

� can be found using the orthogonality relation in
Eq. (9.29):

G+
� =

∫ ∞

0
dp g h�(p), G−

� =
∫ 0

−∞
dp g h�(−p). (9.39)

The integrals above can be performed analytically, such that gh,(N)
k and g

h,(N)
k+Q

become [25, 26]:

g
h,(N)
k = w

h

k

2

N∑
s=0

(
mT

2p2
0

)s/2

�N
s (pk)

[
(1 + erfζ )P+

s (ζ )+ 2√
π
e−ζ 2

P ∗
s (ζ )

]
,

g
h,(N)
k+Q = w

h

k

2

N∑
s=0

(
mT

2p2
0

)s/2

�N
s (pk)

[
(erfc ζ )P+

s (−ζ )+ 2√
π
e−ζ 2

P ∗
s (−ζ )

]
,

(9.40)

where ζ = u
√
m/2KBT , erf ζ = 2√

π

∫ ζ
0 dz e−z2

is the error function, �N
s (pk) is

defined as:

�N
s (pk) =

N∑
�=s

h�,sh�(pk), (9.41)

where h�,s is defined in Eq. (9.28), while P+
s (ζ ) and P ∗

s (ζ ) represent polynomials
of orders s and s − 1, respectively, defined through:

P±
s (ζ ) = e∓ζ 2 ds

dζ s
e±ζ 2

, P ∗
s (ζ ) =

s−1∑
j=0

(
s

j

)
P+
j (ζ )P−

s−j−1(ζ ). (9.42)

The momentum derivative of f can be projected on the space of the half-range
Hermite polynomials as discussed in Sect. 9.3.1. Since this projection is not relevant
for the further development of this chapter, we refer the reader to Refs. [49, 50] for
further details.
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9.4 LB Models in the Three-Dimensional Momentum Space

In the three-dimensional (3D) momentum space, the discretisation procedure can
be conducted using a direct product rule. On each Cartesian axis α ∈ {x, y, z},
one can choose a specific Gauss–Hermite (full-range or half-range) quadrature of
order Qα , depending on the characteristics of the flow (e.g., the existence of a
noticeable wall-induced discontinuity of the distribution function along the α axis).
Let pα,kα , 1 ≤ kα ≤ Qα , be the quadrature points on the Cartesian axis α (note
that Qα ∈ {Qα, 2Qα} as mentioned in Sect. 9.3). These quadrature points are
the components of the 3D vectors pk , k = (kz − 1)QxQy + (ky − 1)Qx + kx ,
1 ≤ k ≤ K = QxQyQz. Following Refs. [25, 26], we generally refer to the
resulting models as mixed quadrature LB models. The numerical solution of the
discretised form Eq. (9.10) of the Boltzmann equation can be obtained following
the steps described in Sect. 9.3, which will be detailed further.

In this contribution we restrict ourselves to the LB simulation of Couette and
force-driven Poiseuille flows of rarefied gases between parallel plates. In these
cases, the flow is homogeneous along the z axis and the computational effort can
be significantly decreased by taking advantage of the reduced distribution functions
introduced in Sect. 9.4.1. Section 9.4.2 discusses the construction of the mixed
quadrature LB models for the investigation of rarefied Couette and force-driven
Poiseuille flows using the reduced distribution functions and the resulting evolution
equations are presented in Sect. 9.4.3. The section ends with a discussion of our
non-dimensionalisation convention, presented in Sect. 9.4.4.

9.4.1 Reduced Distributions

In this chapter, we only consider the planar Couette and the force-driven Poiseuille
flows between parallel plates. Considering that the walls are perpendicular to the x
axis, these flows can be considered homogeneous with respect to the y and z axes,
such that the Boltzmann equation (9.1) reduces to:

∂tf + px

m
∂xf + Fy∇pyf = −1

τ
(f − f eq). (9.43)

The force term is present only in the case of the Poiseuille flow. Assuming that the
fluid flows along the y direction, the only non-vanishing component of the force is
along the y axis (see Sect. 9.5.2 for more details).

Since the flows considered in this chapter are trivial with respect to the z axis,
the pz degree of freedom can be eliminated from Eq. (9.43) [44, 51]. This helps to
reduce the computational costs, especially when dealing with LB models involving
high order quadratures. Defining:



282 V. E. Ambrus, and V. Sofonea

φ =
∫ ∞

−∞
dpz f, χ =

∫ ∞

−∞
dpz f

p2
z

m
, (9.44)

the following two equations are obtained:

∂t

⎛
⎜⎝
φ

χ

⎞
⎟⎠+ px

m
∂x

⎛
⎜⎝
φ

χ

⎞
⎟⎠+ Fy

∂

∂py

⎛
⎜⎝
φ

χ

⎞
⎟⎠ = −1

τ

⎛
⎜⎝
φ − φeq

χ − χeq

⎞
⎟⎠ , (9.45)

where χeq = kBT φ
eq and φeq can be factorised using the functions gα Eq. (9.3) as

follows:

φeq = ngxgy = n

2πmkBT
exp

[
− (px −mux)

2 + (py −muy)
2

2mkBT

]
. (9.46)

Note that the reduction procedure introduced above can be used also for the 3D
pressure-driven Poiseuille flow between parallel plates, provided that there are no
variations along the z axis.

9.4.2 Mixed Quadrature LB Models with Reduced Distribution
Functions

In the mixed quadrature LB models, the momentum space is constructed using
a direct product rule. This allows the quadrature on each axis to be constructed
independently by taking into account the characteristics of the flow. When the gas
flow is homogeneous along the z axis, the reduced distribution functions evolve in
a two-dimensional space and thus, the elements of the discrete set of momentum
vectors can be written as pij = (px,i , py,j ). The indices i and j run from 1 to
Qα (α ∈ {x, y}), where Qα = Qα or Qα = 2Qα when a full-range or a half-range
quadrature of order Qα is employed on the α axis. As shown in Refs. [25, 26], a full-
range Gauss–Hermite quadrature of order Qy = 4 is sufficient on the y axis in order
to capture exactly the evolution of the velocity, temperature and of heat flux fields.
For low Mach flows, the quadrature order Qx can be taken to be Qx = 4 in the
Navier–Stokes regime, where the full-range Gauss–Hermite quadrature is efficient.
As Kn is increased, Qx must also be increased in order to retain the accuracy of the
simulation results. In the case of the channel flows considered in this chapter, the
discontinuity in the distribution functions φ and χ induced by the diffuse-reflective
walls becomes significant for sufficiently large Kn. Hence, the full-range Gauss–
Hermite quadrature on the x axis becomes inefficient compared to the half-range
Gauss–Hermite quadrature, as demonstrated in Refs. [25, 26]. In this chapter, we
only consider the half-range Gauss–Hermite quadrature of order Qx on the x axis.
The resulting models are denoted HHLB(Qx) × HLB(4) following the convention
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in Ref. [26], employing 8Qx velocities and 16Qx distinct populations (φij and χij ),
as discussed below.

9.4.3 The Lattice Boltzmann Equation

The reduced distribution functions φij and χij corresponding to the momentum
vector pij = (px,i , py,j ) are linked to φ and χ through the direct extension of
Eq. (9.36):

⎛
⎜⎝
φij

χij

⎞
⎟⎠ =

(
wx
i p0,x

ω(px,i)

)⎛
⎝ w

y
j p0,y

ω(py,j )

⎞
⎠
⎛
⎜⎝
φQx,Qy (px,i , py,j )

χQx,Qy (px,i , py,j )

⎞
⎟⎠ . (9.47)

The weights wx
i and w

y
j are given by Eqs. (9.27) and (9.20), respectively. After the

discretisation of the momentum space, Eq. (9.45) becomes:

∂t

⎛
⎜⎝
φij

χij

⎞
⎟⎠+ px,i

m
∂x

⎛
⎜⎝
φij

χij

⎞
⎟⎠+ Fy

Qy∑
j ′=1

Kj,j ′

⎛
⎜⎝
φi,j ′

χi,j ′

⎞
⎟⎠ = −1

τ

⎛
⎜⎝
φij − φ

eq
ij

χij − χ
eq
ij

⎞
⎟⎠ ,

(9.48)

where the kernel Kj,j ′ is given in Eq. (9.24). In particular, for the case Qy = 4
considered in this chapter, Kj,j ′ has the following elements:

Kj,j ′

= 1

p0,y

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

√
3 + √

6
√

3+√
3

2(3+√
6)

−
√

3−√
3

2(3+√
6)

1
2

√
1 −

√
2
3

−
√

5+2
√

6
2(3−√

3)
1
2

√
3 − √

6 1
2

√
1 +

√
2
3 −

√
27+11

√
6−

√
3+√

6
2
√

6√
27+11

√
6−

√
3+√

6
2
√

6
− 1

2

√
1 +

√
2
3 − 1

2

√
3 − √

6
√

27+11
√

6+
√

3+√
6

2
√

6

−
√

3−√
6

2
√

3

√
3−√

3
2(3+√

6)
−

√
3+√

3
2(3+√

6)
− 1

2

√
3 + √

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(9.49)

Numerically, the above expression reduces to:

Kj,j ′ � 1

p0,y

⎛
⎜⎜⎜⎝

1.1672 0.1996 −0.1033 0.2142
−1.9757 0.3710 0.6739 −1.0227

1.0227 −0.6739 −0.3710 1.9757
−0.2142 0.1033 −0.1996 −1.1672

⎞
⎟⎟⎟⎠ . (9.50)
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The equilibrium distribution φ
eq
ij = ng

h,(Nx)
i g

H,(Ny)

j is obtained as the product

between the expansions g
h,(Nx)
i from Eq. (9.40) and g

H,(Ny)

j from Eq. (9.22),
performed with respect to the half-range and full-range Hermite polynomials,
respectively. For this particular case, the orders of the expansions are Nx = 3 and
Ny = 3. For definiteness, we list below the exact expression for gH,(3)

j :

g
H,(3)
j = wH

j

[
1 + py,jUy + 1

2
(p2

y,j − 1)(U2
y + Ty)

+1

6

(
p3
y,j − 3py,j

)
Uy(U

2
y + 3Ty)

]
,

(9.51)

where Uy and Ty are defined as [26]:

Uy = muy

p0,y
, Ty = mKBT

p2
0,x

− 1. (9.52)

Similarly, gh,(3)i is given by Ambrus, and Sofonea [25]:

g
h,(3)
i = w

h

i

2

{
(1 + erfζx,i)

[
�3

0(|px,i |)+ 2ζx,iTx�3
1(|px,i |)

+ 2T 2
x (2ζ

2
x,i + 1)�3

2(|px,i |)+ 4ζx,iT 3
x (2ζ

2
x,i + 3)�3

3(|px,i |)
]

+ 2e−ζ 2
α√

π
Tx
[
�3

1(|px,i |)+ 2ζx,iTx�3
2(|px,i |)

+4T 2
x (ζ

2
x,i + 1)�3

3(|px,i |)
]}

,

(9.53)

where ζx,i = uxσx,i
√
m/2KBT , σx,i is the sign of px,i and Tx =

√
mKBT/2p2

0,x ,

while the functions �3
s (z) are given below:

�3
0(z) =

2π(9π − 28)− z
√

2π(21π − 64)+ 2πz2(10 − 3π)− z3
√

2π(16 − 5π)

32 − 29π + 6π2 ,

�3
1(z) =

2πz(15π − 44)− √
2π(21π − 64)− z2

√
2π(16 − 3π)+ 2πz3(10 − 3π)

32 − 29π + 6π2 ,

�3
2(z) =

2π(10 − 3π)− z
√

2π(16 − 3π)+ 2πz2(3π − 7)− z3
√

2π(3π − 8)

32 − 29π + 6π2
,
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�3
3(z) =

−√
2π(16 − 5π)+ 2πz(10 − 3π)− z2

√
2π(3π − 8)+ 2πz3(π − 3)

32 − 29π + 6π2
.

(9.54)

Finally, the macroscopic moments Eq. (9.4) can be written in terms of φij and
χij as follows:

n =
∑
i,j

φij =
∑
i,j

φ
eq
ij ,

(
ρux

ρuy

)
=
∑
i,j

φij

(
px,i

py,j

)
=
∑
i,j

φ
eq
ij

(
px,i

py,j

)
,

3

2
nKBT + 1

2
ρu2 =

∑
i,j

⎡
⎣φij p

2
x,i + p2

y,j

2m
+ 1

2
χij

⎤
⎦

=
∑
i,j

⎡
⎣φeq

ij

p2
x,i + p2

y,j

2m
+ 1

2
χ

eq
ij

⎤
⎦ .

(9.55)

It can be seen that χij appears only in the definition of the temperature field. It is
essential to track the evolution of φij and χij simultaneously in order to correctly
compute the temperature field appearing in the definition of φeq given in Eq. (9.46),
as well as in the definition of χeq.

9.4.4 Non-Dimensionalisation Procedure

In order to perform numerical simulations, we non-dimensionalise all quantities
with respect to the following parameters:

• The wall temperature, such that Tw = 1.
• The particle mass, such that m = 1.
• The reference speed cref = √

kBTw/m.
• The channel width, such that L = 1.
• The average particle number density, such that the total number of particles

obeys:

Ntot =
∫ 1/2

−1/2
dx n(x) = 1. (9.56)

The reference time is tref = L/cref and we set p0,x = p0,y = 1 for the rest of this
chapter. With the above conventions, the relaxation time τ is set to
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τ = Kn

nT
, (9.57)

which ensures that the viscosity μ = τnT = Kn is constant throughout the
simulation domain.

9.5 Simulation Results

The advantage of the quadrature-based approach to LB modelling quickly becomes
apparent when considering rarefied flows. An excellent arena for this type of tests
is represented by channel flows. In particular, we will restrict the discussion to
the Couette and the force-driven Poiseuille flows between parallel plates, which
have become canonical benchmark problems in the microfluidics community. In the
context of these flows, the distribution function becomes discontinuous due to the
diffuse reflection interaction with the boundary. Thus, at large values of Kn, half-
range quadratures are much more efficient than the more traditional full-range ones
[25, 26, 52, 53]. More complex flows, where the application of half-range Gauss–
Hermite quadrature is essential are investigated in Refs. [50, 54, 55].

9.5.1 Couette Flow Between Parallel Plates

In this section, we consider the Couette flow between parallel plates. The geometry
of this flow can be seen in Fig. 9.1. The system consists of two parallel plates at

Fig. 9.1 Left: Setup for the Couette flow problem, highlighting the slip velocity uslip = uw −
u(1/2). Right: Boundary conditions and grid characteristics. The fine dotted lines show a grid
comprised of S = 8 cells, stretched according to Eq. (9.58) with A = 0.95. Only one cell is used
along the y direction
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rest located at x = ±1/2.1 The gas between these plates is initially in thermal
equilibrium at the wall temperature Tw = 1. At t = 0, the left and right plates are set
into motion with velocities −uw = (0,−uw, 0) and uw = (0, uw, 0), respectively,
as shown in Fig. 9.1 (left). The evolution of the fluid is simulated using the LB
algorithm described in Sect. 9.4, until the stationary state is reached. The analysis
presented in this section is restricted to the stationary state.

In the stationary state of Couette flow, rarefied gases exhibit a non-linear velocity
profile in the proximity of the moving walls. This nonlinearity originates from
the wall-induced discontinuity of the particle distribution function and its spatial
extension (i.e., the width of the so-called Knudsen layer, where the discontinuity
induced through interparticle collisions) is of the order of the mean free path of the
fluid particles [1, 2]. Diffuse reflection boundary conditions are used to capture this
wall-induced discontinuity [24–26], as shown in Fig. 9.1 (right).

Mathematically, diffuse reflection boundary conditions entail that the distribution
functions for the particles emerging from the walls back into the fluid satisfy
f (x = ±L/2,p, t) = f eq(p;±uw), which is valid for ±px < 0, respectively.
Noting that f eq(−p;u) = f eq(p;−u), it can be seen that the solution of the
Boltzmann equation (9.12) possesses the symmetry f (−x,p, t) = f (x,−p, t).
This symmetry allows only the right half of the channel to be considered, provided
that bounce back boundary conditions are implemented at the channel centre-
line [i.e., f (0,−p, t) = f (0,p, t)]. This simplification effectively halves all
computation times. Moreover, since the system is homogeneous along the y axis,
no advection is performed in this direction and a discretisation using a single node
is sufficient. In fact, this corresponds to implementing periodic boundary conditions
along the y axis. The pz degree of freedom is integrated out, as explained in
Sect. 9.4.1, and no advection is performed along the z direction. The right panel
of Fig. 9.1 presents schematically the implementation of the Couette flow geometry.

In order to capture the Knudsen layer, it is convenient to use a grid which is more
refined in the vicinity of the wall. This can be achieved by employing a standard
grid-stretching procedure [56, 57]. In this chapter, we follow Refs. [50, 54, 55]
and perform an equidistant grid discretisation with respect to the non-dimensional
parameter η, defined through:

x(η) = 1

2A
tanh η, (9.58)

where 0 ≤ η ≤ arctanh(A) and 0 < A < 1 controls the stretching such that
when A → 0, the grid becomes equidistant with respect to x, while as A → 1, the
grid points accumulate towards the right boundary. For a discretisation employing
S points, we have:

1All quantities presented in this section are non-dimensionalised according to the conventions
presented in Sect. 9.4.4.
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ηs = 1

S

(
s − 1

2

)
arctanh(A), xs = 1

2A
tanh ηs, (9.59)

where the points with 1 ≤ s ≤ S lie within the flow domain. For the simulations
presented in this section, we found that S = 16 points with A = 0.98 are sufficient
to yield accurate results. The stretching procedure is illustrated in Fig. 9.1 (right) for
a grid with S = 8 cells, when A = 0.95.

In order to employ the finite-difference scheme described in the Appendix, three
ghost nodes are required on either side of the simulation domain. The bounce back
boundary conditions [17, 19, 20] employed on the left side of the domain can be
written as:

φ0;ij = φ1;̃ıj̃ , φ−1;ij = φ2;̃ıj̃ , φ−2;ij = φ3;̃ıj̃ , (9.60)

and similarly for χs;ij . The notation ı̃ (j̃ ) refers to the component px,̃ı (py,j̃ ) defined
through:

px,̃ı = −px,i , py,j̃ = −py,j . (9.61)

On the right boundary, the diffuse reflection concept [24–26] is imposed. This
requires that the flux of particles coming from the boundary cell at s = S + 1

2
towards the first fluid node at s = S is Maxwellian:

⎛
⎜⎝
�
S+ 1

2 ;ij

X
S+ 1

2 ;ij

⎞
⎟⎠ = px,i

m

⎛
⎜⎝
φ

eq
w;ij

χ
eq
w;ij

⎞
⎟⎠ , pi,x < 0, (9.62)

where φeq
w;ij is the reduced equilibrium distribution Eq. (9.46) corresponding to the

wall parameters nw, uw and Tw = 1 and χ
eq
w;ij = φ

eq
w;ij . In the above, the notations

�
S+ 1

2 ;ij and X
S+ 1

2 ;ij represent the fluxes corresponding to the reduced distributions
φij and χij , which can be computed using Eq. (9.76) by replacing px with px,i and
Fs with φij ;s and χij ;s , as required. Equation (9.62) can be achieved in the frame of
the WENO-5 scheme [50] described in the Appendix, when

φS+1;ij = φS+2;ij = φS+3;ij = φ
eq
w;ij , px,i < 0. (9.63)

Similar relations hold also for χs;ij . The distributions of the particles travelling from
the fluid towards the wall are obtained by quadratic extrapolation with respect to the
equidistant η coordinate from the fluid towards the wall:

φS+1;ij = 3φS;ij − 3φS−1;ij + φS−2;ij , φS+2;ij = 6φS;ij − 8φS−1;ij + 3φS−2;ij .
(9.64)

The same relations are valid for χs;ij . The wall density nw can be obtained by
imposing mass conservation:
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∑
i,j

�
S+ 1

2 ;ij = 0 ⇒ nw = −

∑
i,j,px,i>0

�
S+ 1

2 ;ij

∑
i,j,px,i<0

φ
eq
w;ij
nw

px,i

m

. (9.65)

It can be seen that the accurate computation of nw requires the recovery of half-
space quadrature sums, which is the reason why we choose the half-range Gauss–
Hermite quadrature on the x axis.

We illustrate the capabilities of our models by considering the velocity profile
for a low Mach number flow (uw = 0.1) and perform simulations at various
values of Kn. While the Navier–Stokes equations predict a straight-line velocity
profile uy = 2xuw/L [60, 61], the kinetic analysis shows that in the vicinity of
the boundary, there is always a Knudsen layer, having an extension of the order of
the particle mean free path, where the velocity profile curves along the wall [42].
Figure 9.2 (left) shows the excellent agreement between our LB results and the
benchmark linearised Boltzmann–BGK results reported in Ref. [58]. These results
are also presented in Ref. [53], but with less accuracy and for a smaller range of
values of Kn. The dependence of the slip velocity with respect to Kn is shown in
Fig. 9.2 (right), where our results are compared with the linearised Boltzmann–
BGK results reported in Refs. [58, 59]. Excellent agreement is found in both
cases. In order to compare our simulation results with those reported in Ref. [58],
we employed the relation Kn = k/

√
2 between the Knudsen number defined in

Eq. (9.57) and the parameter k employed in Ref. [58]. The quadrature orders used in
these simulations were Qx = 4 (k ≤ 0.1), 5 (k = 0.3), 10 (k = 1), 11 (k = 2), 20
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Fig. 9.2 Validation of the LB results (lines) in the context of the Couette flow. Left: Comparison
of the velocity profile in the half-channel 0 ≤ x ≤ 1/2 with the benchmark results reported
in Ref. [58] at various values of k = Kn

√
2 (points). Right: Comparison of the slip velocity as a

function of Kn with the linearised Boltzmann–BGK results reported in Refs. [58] (circles) and [59]
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(k = 5) and 40 (k = 30). As k is increased, the fluid velocity at the wall approaches
0 (its free-streaming value). Since the slip velocity can be recovered accurately even
if the velocity profile presents visible deviations with respect to the benchmark data,
the results presented in the right panel of Fig. 9.2 were obtained using a quadrature
order Qx = 21 for all values of Kn.

9.5.2 Force-Driven Poiseuille Flow Between Parallel Plates

In this section, we consider the force-driven Poiseuille flow between parallel plates.
The geometry of this flow can be seen in Fig. 9.3 (left). The system consists of
two parallel plates at rest which are taken to be perpendicular to the x axis. The
gas between these plates is initially in thermal equilibrium at the wall temperature
Tw = 1. At t = 0, a constant force F = (0,ma, 0) is applied throughout the
fluid domain. According to the non-dimensionalisation discussed in Sect. 9.4.4, the
acceleration a is expressed in units of c2

ref/L and m = 1. The evolution of the fluid
is simulated using the LB algorithm presented in Sect. 9.4.

The flow geometry, the boundary conditions and the Boltzmann equation (9.12),
possess the symmetry property f (−x, px, py, t) = f (x,−px, py, t). As was the
case for the Couette flow, this symmetry allows only half of the channel to be
simulated (0 ≤ x ≤ 1

2 ), while the symmetry f (0, px, py, t) = f (0,−px, py, t) is
ensured using specular boundary conditions [17, 19, 20], as shown in Fig. 9.3 (right).
In order to implement specular boundary conditions, the distribution functions in the
nodes to the left of the flow domain, having indices s = 0,−1,−2, are populated
according to:

Fig. 9.3 Left: Setup for the force-driven Poiseuille flow problem, highlighting the slip velocity
uslip = u(1/2). The mass flow rate is shown in the shaded area. Right: Boundary conditions and
grid characteristics. The fine dotted lines show a grid comprised of S = 8 cells, stretched according
to Eq. (9.58) with A = 0.95. Only one cell is used along the y direction
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φ0;ij = φ1;̃ıj , φ−1;ij = φ2;̃ıj , φ−2;ij = φ3;̃ıj , (9.66)

where only the x component of the momentum is reversed in the right-hand side
of the above equations, as shown in Eq. (9.61). On the right boundary, the diffuse
reflection concept is imposed, as discussed in Sect. 9.5.1. Furthermore, the grid is
stretched using Eq. (9.58), with A = 0.98. In order to accurately capture the main
features of the flow, we employed S = 32 nodes along the x axis, distributed in the
right half of the channel.

In the case of the force-driven Poiseuille flow, we discuss two features which
manifest at non-negligible values of Kn. The first one refers to the Knudsen paradox,
according to which the flow rate through the channel decreases with Kn from its
value in the Navier–Stokes limit down to a minimum, after which it increases
towards infinity as the ballistic regime settles in. The non-dimensionalised mass
flow rate Qflow can be computed as follows:

Qflow =
√

8

a
√
π

∫ 1/2

−1/2
dx ρ(x)uy(x). (9.67)

For small values of Kn, Cercignani [62] derived the following approximation for
Qflow:

Qflow � 1

6K̃n
+ s + (s2 − 1)K̃n, (9.68)

where s = 1.01615 and K̃n is defined as:

K̃n = Kn

√
π

2
. (9.69)

While accurate at small values of Kn, Eq. (9.68) predicts a linear increase of Qflow
with K̃n, which is not confirmed by experiments or numerical simulations.

An empirical fitting formula was given by Sharipov in Eq. (11.136) of Ref. [9]:

G∗
P = − ln δ√

π
+ 0.376 − (1.77 ln δ + 0.584)δ + 2.12δ2. (9.70)

In this formula, which extends the asymptotic term − ln δ/
√
π derived by Cercig-

nani [62], the rarefaction parameter δ and G∗
P are related to Kn and Qflow through:

δ = 1

Kn
√

2
=

√
π

2K̃n
, Qflow = G∗

P

√
4

π
. (9.71)

Our numerical results for Qflow, together with the approximations Eq. (9.68) and
Eq. (9.71), as well as various other semi-analytical or numerical results are shown in
Fig. 9.4 (left). These results were obtained using the mixed LB model described in
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Sect. 9.4.2 with the order of the half-range Gauss–Hermite quadrature set to Qx =
21. Since the velocity profile, and hence the mass flow rate, do not scale linearly
with a at large values of a, we used a = 0.01 throughout the simulations in order to
ensure good agreement with the validation data.

The second remarkable microfluidics specific effect occurring in the force-
driven Poiseuille flow refers to the development of a dip (local minimum) in the
temperature profile T (x) at the centre x = 0 of the channel. The dip occurrence was
predicted by the kinetic theory at the super-Burnett level and observed by DSMC
simulations [1, 65–71].

Using a moments method approach, Mansour et al. [67, 68] derived analytically
the following dependence of the temperature profile on the distance x from the
centre of the channel:

T (x) = T0 + αx2 + βx4. (9.72)

Using a numerical fit, we found an excellent match between the above functional
form and our simulation results. For clarity, Fig. 9.4 (right) shows the half-channel
profile of [T (x) − 1]/(T0 − 1), where Tw = 1 is the wall temperature and T0
represents the temperature at the centre of the channel, as determined by fitting
Eq. (9.72) to the numerical data. The values of the parameters T0, α and β for the
values of Kn considered in Fig. 9.4 (right) are given in Table 9.1. In these simulations
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Fig. 9.4 Validation of the LB results in the context of the force-driven Poiseuille flow. Left:
Comparison between the LB results (continuous line) for the flow rate Qflow, defined in Eq. (9.67),
and the asymptotic formulae in Eqs. (9.67) and (9.68) due to Cercignani [62] and Sharipov [9]
(dashed lines), the results of Cercignani, Lampis and Lorenzani (CLL) [63] (dashed line with filled
squares), the DVM results from Ref. [64] (hollow circles), as well as the DSMC results reported by
Feuchter and Scheifenbaum in Ref. [52] (filled circles). The results are represented with respect to
K̃n, defined in Eq. (9.69). Right: Illustration of the dip in the temperature profile at various values of
Kn. The lines represent the best fits of the analytic expression, Eq. (9.72) to the LB results (points),
as described in Sect. 9.5.2 and in Table 9.1
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Table 9.1 Values of the
coefficients T0, a and b

obtained by fitting Eq. (9.72)
to the simulation results
shown in Fig. 9.4

Kn T0 a b

0.032 1.00778861 0.0020561 −0.0887483

0.05 1.00397973 0.00143734 −0.0393261

0.1 1.00171142 0.000749203 −0.0117178

0.2 1.000997806 0.000434946 −0.00385886

Only the points inside the domain 0 < x/L < 0.4 are
taken into account when performing the fit

we used a = 0.05 in order to enhance the development of the temperature dip. We
employed the mixed quadrature LB model described in Sect. 9.4.2 where we set
Qx = 4 for Kn ∈ {0.032, 0.05, 0.1}, while at Kn = 0.2, we used Qx = 7.

9.6 Conclusions

In this chapter, we presented a systematic procedure for the construction of high
order mixed quadrature LB models based on the full-range and half-range Gauss–
Hermite quadratures. A particular attention was given to the case when the flow is
homogeneous along the z axis, when reduced distribution functions can be used
in order to minimise the computational effort. The capabilities of these models
are demonstrated in the context of the Couette and force-driven Poiseuille flows
between parallel plates at various values of Kn. Excellent agreement is found
between our results and benchmark data available in the literature from the Navier–
Stokes level up to the transition regime.

The success of our models relies on the accurate recovery of half-range integrals
required for the implementation of diffuse reflection. Such integrals are exactly
recovered by employing the half-range Gauss–Hermite quadrature.

Our numerical method for solving the LB evolution equations employs finite-
difference techniques. In particular, we implemented the advection using the fifth-
order weighted essentially non-oscillatory (WENO-5) scheme and the time-stepping
was performed using the third-order Runge–Kutta (RK-3) method. This allowed us
to obtain accurate results using a small number of nodes (16 for the Couette flow
and 32 for the force-driven Poiseuille flow).

Taking advantage of the homogeneity of the flows studied in this chapter with
respect to the z axis, we eliminated the z axis degree of freedom by integrating
the Boltzmann–BGK equation with respect to pz. In order to correctly track
the evolution of the temperature and heat flux fields, we employed two reduced
distribution functions, φ and χ , obtained by integrating with respect to pz the
Boltzmann distribution f multiplied by 1 and p2

z/m, respectively. The extension of
the methodology presented in this chapter to more complex flow domains is straight-
forward since the mixed quadrature paradigm allows the type of quadrature and the
quadrature orders to be adjusted for each axis separately. The treatment of complex
boundaries can be performed by using the standard staircase approximation [72, 73]
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or the more recent vielbein approach [50]. Finally, more complex relaxation time
models, such as the Shakhov model [74, 75], can be implemented as described in,
e.g., Refs. [54, 55].

We conclude that the models described in this chapter can be used to obtain
numerical solutions of the Boltzmann–BGK equation for channel flows at arbitrary
values of the Knudsen number.

Appendix: Numerical Scheme

The simulation results presented in this chapter were obtained using an explicit
third-order total variation diminishing (TVD) Runge–Kutta (RK-3) time marching
procedure [76–79], together with the fifth-order weighted essentially non-oscillatory
(WENO-5) scheme [80, 81] for computing the advection.

In order to implement the time-stepping algorithm, it is convenient to cast the
Boltzmann–BGK equation (9.1) in the following form:

∂tf = L[f ], L[f ] = −p

m
· ∇f − F · ∇pf − 1

τ
(f − f eq). (9.73)

Following the discretisation of the time variable using equal time steps δt , the
distribution function at time step l is fl ≡ f (tl), when the time coordinate has
the value tl = lδt , taken with respect to the initial time t0 = 0. For simplicity,
the dependence of the distribution function on the spatial coordinates and on the
momentum degrees of freedom was omitted. The third-order Runge–Kutta TVD
integrator described using the Butcher tableau summarised in Table 9.2 gives the
following algorithm for computing the value fl+1 of the distribution function at
time tl+1:

f
(1)
l = fl + δt L[fl],

f
(2)
l = 3

4
fl + 1

4
f
(1)
l + 1

4
δt L[f (1)

l ],

fl+1 = 1

3
fl + 2

3
f
(2)
l + 2

3
δt L[f (2)

l ]. (9.74)

For more information regarding the Butcher tableaux representation, we refer the
reader to Ref. [82].

Table 9.2 Butcher tableau
for the third-order
Runge–Kutta time-stepping
procedure described in
Eq. (9.74)

0

1 1

1/2 1/4 1/4

1/6 1/6 2/3
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The advection term is computed, as follows:

p

m
· ∇f = px

m
∂xf + py

m
∂yf + pz

m
∂zf. (9.75)

Since the flows considered in this chapter are effectively one-dimensional (being
homogeneous with respect to the y and z axes), the discussion on the implementa-
tion of the WENO-5 scheme for the computation of the above derivatives will cover
only the derivative with respect to the x coordinate. Considering that the spatial
domain is discretised equidistantly with respect to the η coordinate Eq. (9.59), the
derivative with respect to x can be written as:

(
px

m
∂xf

)
s

= Fs+1/2 − Fs−1/2

xs+1/2 − xs−1/2
. (9.76)

The flux Fs+1/2 corresponding to the interface between the cells centred on xs ≡
x(ηs) and xs+1 is computed in an upwind-biased approach using the WENO-5
algorithm [50, 80, 83], which we summarise below for the case when the advection
velocity px/m > 0:

Fs+1/2 = ω1F 1
s+1/2 + ω2F 2

s+1/2 + ω3F 3
s+1/2. (9.77)

The interpolating functions F q

s+1/2 (q = 1, 2, 3) are given by:

F 1
s+1/2 = px

m

(
1

3
fs−2 − 7

6
fs−1 + 11

6
fs

)
,

F 2
s+1/2 = px

m

(
−1

6
fs−1 + 5

6
fs + 1

3
fs+1

)
,

F 3
s+1/2 = px

m

(
1

3
fs + 5

6
fs+1 − 1

6
fs+2

)
, (9.78)

while the weighting factors ωq are defined as:

ωq = ω̃q

ω̃1 + ω̃2 + ω̃3
, ω̃q = δq

σ 2
q

. (9.79)

The ideal weights δq are:

δ1 = 1/10, δ2 = 6/10, δ3 = 3/10, (9.80)

while the indicators of smoothness σq are given by:

σ1 = 13

12

(
fs−2 − 2fs−1 + fs

)2 + 1

4

(
fs−2 − 4fs−1 + 3fs

)2
,
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Table 9.3 The values of the
weighting factors ωq defined
in Eq. (9.79) when one, two
or all three of the σi
(i = 1, 2, 3) functions have
vanishing values

ω1 ω2 ω3

σ1 = σ2 = σ3 0.1 0.6 0.3

σ2 = σ3 = 0 0 2/3 1/3

σ3 = σ1 = 0 1/4 0 3/4

σ1 = σ2 = 0 1/7 6/7 0

σ1 = 0 1 0 0

σ2 = 0 0 1 0

σ3 = 0 0 0 1

σ2 = 13

12

(
fs−1 − 2fs + fs+1

)2 + 1

4

(
fs−1 − fs+1

)2
,

σ3 = 13

12

(
fs − 2fs+1 + fs+2

)2 + 1

4

(
3fs − 4fs+1 + fs+2

)2
. (9.81)

In the case when one, two or all three of the σq indicators vanish, the computation
of the functions ω̃q using Eq. (9.79) implies illegal division by zero operations. In
this case, the weighting factors ωq can be computed directly as shown in Table 9.3.
Alternatively, a small quantity ε � 10−6 can be added to the σq functions. A more
thorough discussion on the side effects of this approach can be found in Ref. [77].
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A
Active Brownian motion

configuration of, 215
finite-difference equations, 215
MSD, 216–218
self-propulsion speed, 215–216

Active Brownian particle (ABP) models, 240,
241

Active microrheology, 257
Active Ornstein-Uhlenbeck particle (AOUP)

model, 241–242
Active particles, 128

ABP model, 241
active Brownian motion, 215–218
active pressure, 252–254
AOUP model, 241–242
chiral active Brownian motion, 219–220
colloids, 233–234
elastic dumbbells, 255–256
examples of, 211–212
external fields, 224–225
Gaussian noise reorientation model,

219–221
interactions among particles, 225

short-range aligning interactions,
228–230

steric interactions, 226–227
Vicsek model, 227–228

Janus particles, 221
living crystals, 231–233
multiplicative noise, 230–231
N noninteracting active particles, 256–257
non-spherical particles

angular increments Δθ , 222
diffusion matrix, 221–222

finite-difference formalism, 222
increments Δr, 222
rotation matrix group, 222–223
roto-translational, 222
skew-symmetric matrix, 223–224

run and tumble model, 218–219, 240–241
time-dependent external potential

auxiliary function, 261
average drag force, 262–264
Brinkman hierarchy, 259
continuity equation, 259
density profile, 262
effective potential, 258
Hermite function, 260–261
inhomogeneous equation, 261–262
momentum balance equation, 259
non-dimensional variables, 258–259
numerical simulations, 262
phase-space distribution, 261
potential barrier, 257
self-propulsion, 258
static potentials, 259–260
trial distribution, 260

Active pressure, 252–254
AD, see Artificial diffusivity
Adsorption, activation energy of, 121–122
Aligning interactions, 225–228
Amphiphilicity, 96–97, 105–108
Angular velocity, 220
Anomalous dispersion

CTRW models, 148–150
fractional advection–dispersion equations,

147
mechanical dispersion, 147
MRMT approach, 150–151
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Anti-solvent, 103
AOUP model, see Active Ornstein-Uhlenbeck

particle model
Artificial diffusivity (AD), 7
Asymmetric Janus particles, 97–98
Augmented Lagrangian algorithm, 9

B
Bancroft rules, 123
Beris–Edwards model, 70–71
Bimetallic Janus particles, 99
Bingham fluid, 3
Bingham number, 10
Boltzmann–BGK equation, 294
Boltzmann distribution, 246
Born–Green–Yvon (BGY) hierarchy, 250–252
Brinkman hierarchy, 259
Brownian dynamics

active particles (see Active particles)
features, 211
passive Brownian motion

Einstein’s fluctuation–dissipation
relation, 213

Euler–Maruyama scheme, 213
finite-difference approach, 214–215
Langevin equation, 214
non-negligible effect, 212
particle orientation, 213
translational and rotational erratic

motions, 213
Bulk diffusivity, 108

C
Cahn–Hilliard/Navier–Stokes model, 22
Cahn number, 24
Capillary electro-jetting methods, 101–102
Carreau fluid, 5
Chiral active Brownian motion, 219–220
Commutativity, 222
Complex fluids

force coupling method, 25–26
Herschel–Bulkley formula, 3, 4
macroscopic approaches (see

Eulerian/Eulerian methods,
macroscopic approach)

microscopic approaches
Eulerian/Eulerian methods (see

Eulerian/Eulerian methods,
microscopic approach)

Eulerian/Lagrangian methods (see
Immersed boundary methods
(IBM))

microstructure, 1
point particle method, 25
rheology

macroscopic behaviour, 1, 2
Newtonian and non-Newtonian

rheology, 2–4
volume of fluid tensorial penalty method,

26
Consistency index, 5
Continuous time random walk (CTRW)

models, 148–150
Continuum surface force (CSF) model, 20
Couette flow, 2, 3

diffuse reflection boundary conditions,
287

equidistant grid discretisation, 287–288
finite-difference scheme, 288
geometry of, 286–287
Knudsen layer, 287–289
mass conservation, 288–289
reduced distributions, 281–282, 288
velocity profile, 289–290

D
Damköhler number, 156, 162
Darcy-scale reaction–dispersion models, 156
Darcy’s law, 139–142
Derjaguin–Landau–Verwey–Overbeek

(DLVO) theory, 117
Dilatant shear, 2
Dipole–dipole repulsion, 117
Dirac delta function, 12, 13
Direct numerical simulation (DNS), 195
Direct simulation Monte Carlo (DSMC)

technique, 271, 292
Discrete unified gas-kinetic scheme (DUGKS),

271
Discrete velocity models (DVMs), 271–272
Divergence-free velocity field, 20

E
Effective active colloids, 220
Effective potential energy, 249
Electrodynamic co-jetting methods, 102
Ericksen–Leslie–Parodi (ELP) approach,

66–70
Ericksen stress tensor, 66
Eulerian/Eulerian methods, macroscopic

approach
fluid–structure interaction, 11–12
inelastic shear-thinning/shear-thickening

fluids, 4–5
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viscoelastic fluids
conformation tensor, 7–8
finite elastic non-linear elastic model, 6
global AD, 7
Kelvin–Voigt model, 6
Oldroyd-B model, 6
polymeric stress tensor, 7
strain rate dependence on time, 5
Weissenberg number, 7
WENO schemes, 7

viscoplasticity
augmented Lagrangian algorithm, 9
Bingham number, 10
elastoviscoplastic fluids, 6, 10
general Saramito model, 10
Oldroyd viscoelastic model, 10
regularisation approach, 9
Uzawa algorithm, 9
yield stress, 8–9

Eulerian/Eulerian methods, microscopic
approach

LS method, 18, 21–22
phase-field methods, 22–25
VOF method, 18–20

Eulerian framework
advantage of, 202–203
Cartesian grid, 202
Lagrangian frame of reference, 206
limitations, 205–206
results, 203–205
second-order moments, 202–203
separation distance, 205–206
statistical convergence, 203
third-order correction, 202

F
Fast marching method (FMM), 21
Fickian dispersion

hydrodynamic dispersion, 146
inverse Gaussian distribution, 145–146
macro-dispersion, 146–147
one-dimensional transport, 145

Fifth-order weighted essentially non-
oscillatory (WENO-5) scheme,
294–295

Finite elastic non-linear elastic (FENE) model,
6

Finite elastic non-linear extensibility-Peterlin
(FENE-P) model, 6

Flash nanoprecipitation (FNP), 102
Flory–Huggins interaction parameter, 101, 102
Force coupling method, 25–26

Four-frame best estimate (4BE) method,
193–195

4BE with nearest neighbour initialisation
(4BE-NN), 194

Four-frame minimal acceleration method
(4MA), 193

Fox method, 247
Front-tracking methods, 16–18
Full-range Hermite polynomials, 275–277
F -values, 108

G
Gaussian coloured noise (GCN)

active force, 241–242
balance condition, 266–267
entropy production and heat flux, 264–266
See also Unified coloured noise

approximation (UCNA)
Gaussian noise model, 219–221
Ghost fluid method (GFM), 22
Gibbs free energy, 110–116

H
Half-range Hermite polynomial, 278–280
Hard-sphere correction, 226–227
Helmholtz equation, 5
Hermite function, 260–261
Herschel–Bulkley formula, 3, 4
Hexadecane–water interface, 117
Hierarchical multi-particle nematic colloidal

structure, 84
High-order upstream-central (HOUC) scheme,

21
Homogeneous particles (HPs)

amphiphilicity, 96–97
contact angle and interfacial adsorption

energies, 110–116
Pickering emulsions, 97

Hopf link colloidal particle, 86, 87
H-theorem, 249–250
Hydrodynamic similarity, 37
Hypothetical amphiphilic dumbbell Janus

particle, 107

I
Immersed boundary methods (IBM)

advantages and disadvantages, 12
Dirac delta function, 12, 13
Eulerian grid, 12, 13
feedback forcing, 14
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Immersed boundary methods (IBM) (cont.)
front-tracking methods, 16–18
Lagrangian grid, 12, 13
rigid particles, suspension of, 14–16

Incomplete mixing, 156–157
Inward retraction of Lagrangian grid, 16

J
Janus balance, 106
Janus particles (JPs)

at air–water interface, 97
amphiphilicity, 96–97
asymmetric, 97–98
definition, 96
Gibbs free energy, 110–116
interfacial activity and adsorption

adsorption kinetics, 108–109
bulk diffusivity, 108
contact angle and interfacial adsorption

energies, 110–116
dynamic surface tension, 108
IFT vs. time, 109
inter-particle interaction, 117–118
magnitude of ΔIFT, 110
spontaneous adsorption at interfaces,

118–123
nanomotors, 130–131
Pickering emulsions, 97

advantage, 123
catastrophic phase inversion, 126
coalescence, 123
formulation, 124, 125
vs. HPs, 124
Ostwald ripening, 123
particle affinity, 123–124, 126
polystyrene/JNP colloidosomes, 126
stimuli-responsive Pickering emulsions,

127–128
self-assembly, 128–130
synthetic preparation routes

masking and asymmetric modification,
99–100

microfluidic and capillary electro-jetting
methods, 101–102

polymer co-precipitation and phase
separation, 102–103

seeded emulsion polymerisation and
phase separation, 100–101

tuning surface polarity
aspect ratio and HLB values, 107, 108
homologous series, 103
PS/P(3-TSPM) JPs, 103, 104

surface polarity contrast, 105–108
types, 96

J -value, see Janus balance

K
Kelvin–Voigt model, 6
Knot-shaped colloidal particles, 86
Knudsen layer, 287–289
Kullback–Leibler entropy, 250

L
Lagrangian framework

assumptions, 201
filtering processes, 201, 202
first-order increments, 197, 198, 201
noiseless velocity and acceleration,

197–198
noise magnitude, 202
results, 198–201
second-order increments, 197, 198, 201

Lagrangian points, 14
Lamellar mixing, 153–155
Landau–de Gennes free energy approach

elastic free energy, 57–58
electric field effects, 59–60
magnetic field effects, 60–61
phase transition, 55–56
surface anchoring, 58–59
volume density, 55

Lattice Boltzmann (LB) models
one-dimensional model

Boltzmann–BGK equation, 275
full-range Gauss–Hermite quadrature,

275–277
half-range Gauss–Hermite quadrature,

277–280
quadrature points, 275

simulation results
Butcher tableaux representation, 294
Couette flow, 286–290
force-driven Poiseuille flow, 290–293
indicators of smoothness, 295–296
interpolating functions, 295
third-order Runge–Kutta TVD

integrator, 294
time-stepping algorithm, 294
weighting factors, 295–296
WENO-5 scheme, 294–295

three-dimensional momentum space
equilibrium distribution, 284–285
kernel, 283
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macroscopic moments, 285
momentum vector, 283
non-dimensionalisation procedure,

285–286
reduced distributions, 281–283

Level-set (LS) method, 18, 21–22
Lipschitz-continuous function, 18

M
Macroscopic effective reaction rate, 162
Macroscopic transport models

anomalous dispersion
CTRW models, 148–150
fractional advection–dispersion

equations, 147
mechanical dispersion, 147
MRMT approach, 150–151

Fickian dispersion
hydrodynamic dispersion, 146
inverse Gaussian distribution, 145–146
macro-dispersion, 146–147
one-dimensional transport, 145

in heterogeneous media
advection–dispersion equation, 144,

145
isotropic medium, 145
Péclet numbers, 145

mixing and chemical reactions
diffusion and dispersion, 152
in heterogeneous porous media,

155–156
incomplete mixing, 156–157
lamellar mixing, 153–155
mixing-limited chemical reactions,

157–158
scalar dissipation and concentration

statistics, 153–154
and spreading in porous media,

152–153
Markovian approximation, 242–243
Mean square displacement (MSD), 216–218
Microfluidic co-flow system, 101
Microposts, 84, 85
Minimum energy dissipation theorem

divergence-free vector field, 42
extensive energy dissipation rate, 42–43
inclusion monotonicity principle, 43–45
intensive energy dissipation rate, 42

Mixed quadrature LB models, 282–283
Mixing and chemical reactions

diffusion and dispersion, 152
in heterogeneous porous media, 155–156
incomplete mixing, 156–157

lamellar mixing, 153–155
mixing-limited chemical reactions,

157–158
scalar dissipation and concentration

statistics, 153–154
and spreading in porous media, 152–153

Modified initialisation (MI) method for 4BE
(4BE-MI), 194

MSD, see Mean square displacement
Multi-dimensional THINC (MTHINC)

method, 19
Multidirect forcing scheme, 15
Multi-Gaussian random field, 142
Multi-rate mass transfer (MRMT) approach,

150–151
Multivariate Gaussian distribution, 244

N
Nanomotors, 130–131
Navier–Stokes/Cahn–Hilliard model, 24, 25
Navier–Stokes equation, 22–24, 36–37
Nematic colloids, 77–78

assembly and self-assembly, 82–86
complex-shaped and topological colloids,

86–88
interparticle interactions

bubble-gum configuration, 82
dipolar nematic colloids aggregation,

81
director field configurations, 79–81
elastic quadrupoles, 81
escaped defect lines, 82
hedgehog defect, 79
homeotropic anchoring, 82
long-range interactions, 79
micrographs, 79, 80
nematic configurations, 82, 83
polarisation micrographs, 80
Saturn ring defect, 79, 82

single spherical particle, 78–79
Nematic fluids

active fluids, 51, 52
active matter, 53
colloids (see Nematic colloids)
equilibrium nematic configurations, 52
field structures, 53
Landau–de Gennes free energy approach

elastic free energy, 57–58
electric field effects, 59–60
magnetic field effects, 60–61
phase transition, 55–56
surface anchoring, 58–59
volume density, 55
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Nematic fluids (cont.)
microfluidics

colloidal particles in, 77
flows in channels, 73–74
junctions, 75–77
rheological properties, 73

nematic ordering, effects of, 52
nematic order parameters, 54–55
nematodynamics, 52

active nematics, 71–72
Beris–Edwards model, 70–71
Ericksen–Leslie–Parodi approach,

66–70
Ericksen stress tensor, 66
flow field, 65
incompressibility condition, 65
Qian–Sheng model, 71
stress tensor, 65

nematogens, 52
orientational order, 51
Q-tensor, velocity effects on, 52
topological defects

line defects, 62–63
regular/irregular structures, 53
shape of, 52
singular point defects, 61–62
topological theory, 64–65
umbilic defects, 63–64

Nematic order parameters, 54–55
Nematodynamics, 52

active nematics, 71–72
Beris–Edwards model, 70–71
Ericksen–Leslie–Parodi approach, 66–70
Ericksen stress tensor, 66
flow field, 65
incompressibility condition, 65
Qian–Sheng model, 71
stress tensor, 65

Nematogens, 52
Newton–Euler equations, 15
Newtonian rheology, 2–4
Noise reduction

Eulerian structure functions
advantage of, 202–203
Cartesian grid, 202
Lagrangian frame of reference, 206
limitations, 205–206
results, 203–205
second-order moments, 202–203
separation distance, 205–206
statistical convergence, 203
third-order correction, 202

experimental signal derivatives, 196

Lagrangian auto-correlation functions
assumptions, 201
filtering processes, 201, 202
first-order increments, 197, 198, 201
noiseless velocity and acceleration,

197–198
noise magnitude, 202
results, 198–201
second-order increments, 197, 198, 201

optical calibration, 178
second-order Taylor expansion, 196–197
temporal increment, 196

Non-aligning interactions, 225
Non-commutativity, 223
Non-Newtonian rheology, 2–4

O
Oldroyd-B model, 6
Oldroyd viscoelastic model, 10
One-dimensional (1D) quadrature-based LB

model
Boltzmann–BGK equation, 275
full-range Gauss–Hermite quadrature,

275–277
half-range Gauss–Hermite quadrature,

277–280
quadrature points, 275

P
Particle image velocimetry (PIV), 177–178
Particle-to-fluid density ratio, 25
Particle tracking velocimetry (PTV)

4BE method, 193–195
model-free calibration method

accuracy, 185–186
advantages, 185
air–water interface, 185
dot centres detection, 182
image acquisition and spatial detection,

186
pixel coordinate system, 180
pixel-line interpolant, 182
a priori model, 180
protocol, 180–181
real-world coordinate system, 180–181
Scheimpflug mounts, 185
stereo-matching, 179, 183
Tsai model, 179, 184–186
2D plane-by-plane transformation, 182

noise reduction (see Noise reduction)
shadow particle tracking velocimetry, 186
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experimental setup, 187–189
flow measurements, 191–193
stereo-matching, 189–191

Passive Brownian motion
Einstein’s fluctuation–dissipation relation,

213
Euler–Maruyama scheme, 213
finite-difference approach, 214–215
Langevin equation, 214
non-negligible effect, 212
particle orientation, 213
translational and rotational erratic motions,

213
Passive particles

MSD, 217
passive Brownian motion, 212–215
spherical particles, 222
steric interactions, 226–227

PDIPAEMA/P(3-TSPM) JPs, 127
Péclet numbers, 145
Phase-field methods, 22–25
Phase-space distribution, 243–244
Photonic crystals, 82
Pickering emulsions, JPs, 97

advantage, 123
catastrophic phase inversion, 126
coalescence, 123
formulation, 124, 125
vs. HPs, 124
Ostwald ripening, 123
particle affinity, 123–124
polystyrene/JNP colloidosomes, 126
stimuli-responsive Pickering emulsions,

127–128
PIV, see Particle image velocimetry
PMMA/PS JPs, 101
PMMA/PtBMA biphasic Janus nanoparticles,

102
Point particle method, 25
Poiseuille flow

boundary conditions, 290–291
geometry of, 290
Knudsen paradox, 291–292
microfluidics specific effect, 292
moments method approach, 292
parameter values, 292–293
reduced distributions, 281–282
validation of, 292

Poisson equation, 20
Poisson process, 218–219
Polymer co-precipitation, 102–103
Polystyrene/JNP colloidosomes, 126
Probability distribution, 218–219
Pseudoplastic fluid, 2

PS/P(3-TSPM) JPs, 103, 104
PS/PMMA JPs, 101
PS/PPA JPs, 101
PS/PtBA seeds, 101
PtBA/PS JPs, 101
PTV, see Particle tracking velocimetry

Q
Qian–Sheng model, 71

R
Rarefied gases

challenge for, 272
disadvantage of, 272
generalities, 273–275
LB models (see Lattice Boltzmann models)

Representative elementary volume (REV),
138–139

Reversibility of fluid flows
examples, 38–40
irreversible trajectories, 40–41

Reynolds number, 37
Rheopectic fluids, 4
Rodrigues formula, 224
Run and tumble model, 218–219, 240–241

S
Scalar dissipation, 153–154
Scallop theorem, 39
Seeded emulsion polymerisation, 100–101
Shannon entropy, 247–248
Sharp-interface limit, 24
Shear-thickening fluid, 2, 5
Shear-thinning fluid, 2, 4–5
Simple line interface calculation (SLIC)

method, 19
Stimuli-responsive Pickering emulsions,

127–128
Stokes approximation, 37

accelerating fluid, 47–48
Brinkman equations, 46
inertial flow, 47
linear equations, 46
Oseen equations, 46
Stokes paradox, 45–46

Stokes diffusion law, 108
Stokes drag coefficient, 25
Stokes flows

minimum energy dissipation theorem
divergence-free vector field, 42
extensive energy dissipation rate, 42–43
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Stokes flows (cont.)
inclusion monotonicity principle, 43–45
intensive energy dissipation rate, 42

Navier–Stokes equations, 36–37
non-dimensional steady Stokes equations,

37
no-slip boundary condition,

37–38
reversibility of fluid flows

examples, 38–40
irreversible trajectories, 40–41

solid harmonics, 38
spherical harmonics, 38
Stokes approximation

accelerating fluid, 47–48
Brinkman equations, 46
inertial flow, 47
linear equations, 46
Oseen equations, 46
Stokes paradox, 45–46

unbounded flow problems, 38
Swim pressure, 253

T
Tangent of hyperbola for interface capturing

(THINC) method, 19
Taylor-based Reynolds number, 187–188
Third-order Runge–Kutta TVD integrator, 294
Thixotropic fluids, 4
Three-dimensional (3D) momentum space

equilibrium distribution, 284–285
macroscopic moments, 285
momentum vector, 283
non-dimensionalisation procedure,

285–286
reduced distributions, 281–283

Time-dependent Hamilton–Jacobi equation, 21
Tracking error, 195
Tsai model, 179, 184–186
Tubular pinch effect, 47
Turbulence models, 138

See also Particle tracking velocimetry
(PTV)

U
Umbilic defects, 63–64
Unified coloured noise approximation (UCNA)

active particles (see Active particles)
BGY hierarchy, 250–252
entropy production, 247–249
Fox method, 247
functional calculus, 246–247

GCN
balance condition, 266–267
entropy production and heat flux,

264–266
H-theorem, 249–250
kinetic approach, 243–245
Markovian approximation, 242–243
space dependent friction matrix, 242
stationary solution, 245–246
underdamped Langevin equation, 242
velocity correlations, 254–255

Unit normal vector, 19
Upscaling flow

assumptions and limitations
non-equilibrium and lack of scale

separation, 163
suspensions and interfacial flows, 163

homogenisation
physical interpretation and limitations,

168–169
reaction–diffusion in perforated

domain, 165–167
stochastic homogenisation, 163
two-scale expansions, 164–165

macroscopic transport models (see
Macroscopic transport models)

multiphase and surface processes
dynamic conditions, 159
mass and heat transfer, 160–162
mixed conditions, 159
simple conditions, 159

permeability, 138
random field, 138
through heterogeneous media

covariance matrix, 142
multi-Gaussian random field, 142
permeability, 143
perturbation theory, 144
REV, 138–139
spatial stochastic process, 142
steady state Darcy flow equation, 142

through porous media
Darcy’s law, 139–140
extensions of Darcy’s law, 140–142
REV, 138–139

volume/ensemble averaging, 169–170
Uzawa algorithm, 9

V
Van der Waals interaction, 117
Vicsek model, 227–228
Viscoelastic fluids, 4

conformation tensor, 7–8
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finite elastic non-linear elastic model, 6
global AD, 7
Kelvin–Voigt model, 6
Oldroyd-B model, 6
polymeric stress tensor, 7
strain rate dependence on time, 5
Weissenberg number, 7
WENO schemes, 7

Viscoplasticity
augmented Lagrangian algorithm, 9
Bingham number, 10
elastoviscoplastic fluids, 6, 10
general Saramito model, 10
Oldroyd viscoelastic model, 10
regularisation approach, 9
Uzawa algorithm, 9
yield stress, 8–9

Volume/ensemble averaging, 169–170

Volume of fluid (VOF) method, 18–20
Volume of fluid tensorial penalty method, 26
von Kármán flow, 187–188

W
Weighted essentially non-oscillatory (WENO)

scheme, 7, 21
Weighted linear interface capturing (WLIC)

method, 19
Weissenberg number, 7
Wettability

bulk-to-surface diffusion, 108
between polymers, 101

Y
Yield stress fluid, 3
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