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Introduction

In this monograph the theory of boundary triplets and their Weyl functions is
developed and applied to the analysis of boundary value problems for differential
equations and general operators in Hilbert spaces. Concrete illustrations by means
of weighted Sturm—Liouville differential operators, canonical systems of differential
equations, and multidimensional Schrodinger operators are provided. The abstract
notions of boundary triplets and Weyl functions have their roots in the theory of
ordinary differential operators; they appear in a slightly different context also in
the treatment of partial differential operators.

Before describing the contents of the monograph it may be helpful to explain
the ideas in this text by means of the following simple Sturm-Liouville differential
expression

d2

L=-05+V, (1)
where it is assumed that the potential V' is a real measurable function. The context
in which this differential expression will be placed serves as an example as well as
a motivation. The first step is to associate with L some differential operators in
a suitable Hilbert space. Assume, e.g., that (1) is given on the positive half-line
RT = (0, 00) and assume for simplicity that the real function V is bounded. Define
the linear space ®pax by

Omax = {f € L*(R") : f, f" absolutely continuous, Lf € L2(]R+)}
and define the minimal operator S associated with L by
Sf=—f"+Vf,  domS ={f€ Dmax: f(0) = f'(0) =0}.

Then S is a closed densely defined symmetric operator L2(R*); in fact, it is the
closure of (the graph of) the restriction of S to C§°(R™). It can be shown that the
adjoint operator S* is given by

S*f=—f"+Vf, dom S* = Dax,

which is usually called the mazimal operator associated with L. Roughly speaking,
S is a two-dimensional restriction of S* by means of the boundary conditions
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f(0) =0 and f/(0) = 0. Note that the maximal domain D,,,x coincides with the
second-order Sobolev space H2(RT).

The notion of boundary triplet will now be explained in the present situation.
For this consider f, g € dom S* and observe that integration by parts leads to

(S*f, @) 2@y — (f.S*9) 2@y = — ' (2)g(x) :OJrf(iU)m :O

= f(0)9(0) — £(0)g'(0),

where it was used that the products f’g and fg’ vanish at oo. Inspired by the
above identity, define boundary mappings

o,y :domS* = C, fr=Tof:=f(0) and f—Tyf:= f(0), (2)
so that for all f, g € dom S* one has

(S*f,9) 2@y — (f,979) L2@+) = (T1f,Tog)e — (Tof, T19)c, (3)

which is the so-called abstract Green identity in the definition of a boundary triplet;
note that on the right-hand side of (3) the scalar product in the (boundary) Hilbert
space C is used. This abstract Green identity is the key feature in the notion of
a boundary triplet and it is primarily responsible for the succesful functioning of
the whole theory. Note also that the combined boundary mapping

(Ty,T'1) " : dom §* — C?

is surjective, which is understood as a maximality condition in the sense that the
image space of the boundary maps is not unnecessarily large. Observe that one
has dom S = kerI'g NkerI';. The operator realizations A of the Sturm-Liouville
differential expression L which are intermediate extensions, that is, S C A C S*,
can be described by boundary conditions expressed via the boundary maps. More
precisely, for 7 € C U {oo} the operator A, is defined by

A f=5"f, dom A, = ker (I'; — 71), (4)
which in a more explicit form reads
A f =—f"+ V], domAT:{fE@maxif/(o):Tf(O)}?
the case 7 = 0o is understood as the boundary condition ker I'g, that is,
Af=—f"+V}, dom A = {f € Dpnax : f(0) =0}. (5)

In the definition (4) the quantity 7 plays the role of a boundary parameter
that links the boundary values T'gf = f(0) and T’y f = f/(0) of the functions
f € dom S*, which determine the Dirichlet and Neumann boundary conditions,
respectively. The properties of the boundary parameter are directly connected with
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the properties of the corresponding operator A.; in particular, the realization A,
is self-adjoint in L2(R*) if and only if 7 € R U {oo}.

The next main goal is to motivate and illustrate the definition of the Weyl
function as an analytic object corresponding to a boundary triplet, which is indis-
pensable in the spectral theory of the intermediate extensions. For this, let A € C
and consider first the unique solutions ¢, and v, of the boundary value problems

=y FVon=Apx,  oa(0) =1, ©4(0) =0,
—1/)3( + V'L/)A = /\w>u 1/)>\(0) = 07 1/’;(0) = 1a

and note that in general py, 1y ¢ L2(RT). It was shown by H. Weyl more than a
century ago that for A € C\ R there exists m(X) € C such that

z = () = oa(z) + m(A)a(z) € L*(RY), (7)

and it turned out that the function m : C\ R — C is holomorphic and has a
positive imaginary part in the upper half-plane C*. This function and its interplay
with spectral theory were later studied extensively by E.C. Titchmarsh; hence the
frequently used terminology Titchmarsh-Weyl m-function. It plays a key role in
the spectral analysis of Sturm-Liouville differential operators. E.g., the (real) poles
of m coincide with the isolated eigenvalues of the self-adjoint Dirichlet operator
Ao in (5) and the absolutely continuous spectrum of A, is, roughly speaking,
given by those A € R for which Imm(A + ¢0) > 0. In a similar way one can
also characterize the continuous spectrum, the embedded eigenvalues, and exclude
singular continuous spectrum of A.

Observe that for each A € C\ R the function = — fx(x) in (7) belongs to
dom S* = Dyax and that, in fact, —f{ + Vfy = Af\ for A € C\R; in other
words, fy € ker (S* — X). Let {C,T'g,I'1 } be the boundary triplet for S* with the
boundary mappings defined in (2). From the choice of ¢ and 9y in (6) it is clear
that

(6)

m(M)Lofx = m(A)fa(0) =m(A) =T'1fx,  fx € ker (5" = A). (8)
In the general theory this identity is used as the definition of the Weyl function
corresponding to a boundary triplet. In other words, the Weyl function corre-
sponding to the boundary triplet {C,To,T'1} is defined as the function m that
satisfies (8) for all A € C\ R (and even for the possibly larger set of A belonging
to the resolvent set of the self-adjoint Dirichlet operator A.,) and hence coincides
with the Titchmarsh-Weyl m-function introduced via (7). Here the Weyl function
maps Dirichlet boundary values of L?-solutions of the equation — L+ Vi= A
onto the corresponding Neumann boundary values and therefore m(\) acts for-
mally like a Dirichlet-to-Neumann map. Besides the Weyl function, one asso-
ciates to the boundary triplet {C,I'g,I'1} the so-called «y-field as the mapping
(A) : C — L2(R™) that assigns to a prescribed boundary value ¢ € C the solution
hy € dom S* of the boundary value problem

7h‘/): + Vh/\ = )\h)\7 Foh/\ = h/\(o) = C.
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Since y(A)e = hy = cfy, it is clear that m(\) = I'1y(A). Moreover, one can show
with the help of the abstract Green identity that the adjoint y(\)* : LZ(R*) — C
is given by y(A)* = I'1 (A5 —A) 1. The Weyl function and v-field associated to the
boundary triplet {C,I'g,I'1} appear in the perturbation term in Krein’s formula

(Ar =07 = (Ao = )7+ YN (T = m(N) Ty (V)

where, for simplicity, it is assumed that A is a self-adjoint realization of L as in (4)
corresponding to some boundary parameter 7 € R and A € p(A;)Np(As). Krein’s
formula in this particular case provides a description of the resolvent difference of
A, and the fixed self-adjoint extension A.. It is important to note that () and
’y(X)* in the perturbation term provide a link between the original Hilbert space
L?(RT) and the boundary space C, but do not affect the resolvents of A, and
A, Therefore, if A € p(Ap), then the singularities of the resolvent A — (A, —\)~!
are reflected in the singularities of the term A +— (7 — m(\))~! and vice versa. In
fact, the function A — (7 —m()\))~! is connected with the spectrum of A, in the
same way as the function A — m(\) is connected with the spectrum of A,.

There is another efficient technique to associate differential operators with the
differential expression L, which is based on the sesquilinear form t corresponding
to L,

t[f: g] = (flag/)Lz(]RJr) + (Vf7 g)L2(R+)7 (9)
defined on, e.g.,

© = {f € L*(R") : f absolutely continuous, f’ € L*(R")}, (10)

and the first representation theorem for sesquilinear forms. In fact, one verifies
that t in (9)—(10) is a densely defined closed semibounded form in L?(R*), and
hence there exists a uniquely determined self-adjoint operator S; with dom S; C ©
such that

(S1fs9) L2y = Hf, 9], f €domSy, g € dom®D. (11)

Note that here the form domain ® coincides with the first-order Sobolev space
HY(R™"). It can be shown that the self-adjoint operator Sj is actually an extension
of the minimal operator S. Instead of the domain ® in (10) one may consider
the sesquilinear form t on the smaller domain ¢ = {f € © : f(0) = 0}, which
also leads to a densely defined closed semibounded form in L?(R*). Again, via
the first representation theorem, there is a corresponding self-adjoint operator Sy
with dom Sy C ®¢ determined by

(SOf7 g)L2(]R+) = t[fa g]: f € dom Sy, g € dom Dy (12)

One verifies that the self-adjoint operator Sy in (11) coincides with the self-adjoint
realization of L determined by the boundary condition kerI'y and that the self-
adjoint operator Sy in (12) coincides with the self-adjoint realization of L deter-
mined by the boundary condition kerI'g in (4), that is, S; corresponds to the
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boundary parameter 7 = 0 and Sy is the Dirichlet operator corresponding to
the boundary parameter 7 = oco. Furthermore, in the situation discussed here
the self-adjoint operator Sy in (12) is the Friedrichs extension of the minimal (or
preminimal) operator associated to L.

The concept of boundary triplet is supplemented by the notion of boundary
pair, which is inspired by the form approach indicated above. More precisely, in
the present situation it turns out that {G, A}, where § = C and

A:D—=C,  fe Af=£(0), (13)

is a boundary pair for the minimal operator S (corresponding to S). For this, one
has to ensure that the mapping A defined on the form domain of S; is continuous
with respect to the Hilbert space topology generated by the closed form t on D,
and that ker A coincides with the form domain corresponding to the Friedrichs
extension of S. Note also that in the present situation the mapping A in (13) is an
extension of the boundary mapping I'g : dom S* — C to the form domain ©. With
the help of the boundary pair {C, A} one can parametrize all densely defined closed
semibounded forms corresponding to semibounded self-adjoint extensions of S via

t[f, 9] = tlf, gl + (TAf, Ag)c, [9eD, (14)

where 7 € RU {oo}, and the case 7 = oo corresponds to the boundary condition
Af =0in ®g. The boundary pair and the boundary triplet are connected via the
first Green identity

(S*f7 g)LZ(R+) = t[f7 g] + (F1f7 Ag)C7 f € dOmS*, g€ D.

The first Green identity makes it possible to identify the closed semibounded forms
in (14) with the corresponding self-adjoint operator realizations A, of L described
via boundary conditions in (4). For f € dom A, and g € D, the first Green identity
reduces to

(ATf7 g)L2(R+) = t[f7 g} + (TFOfa Ag)c = t[f7 g} + (TAf: Ag)C7

and the expression (7Af, Ag)c on the right-hand side can also be interpreted as a
sesquilinear form in the boundary space C. In this sense the theory of boundary
pairs for semibounded symmetric operators complements the theory of boundary
triplets in a natural way: it provides a description of the closed semibounded forms
corresponding to semibounded self-adjoint extensions of the minimal operator S.

Methods to treat Sturm—Liouville problems such as the one discussed above
go back to H. Weyl [758, 759, 760], whose papers on this topic appeared in
1910/1911; see also [761]. The interpretation of a Sturm-Liouville expression as an
operator in a Hilbert space can already be found in the 1932 book of M.H. Stone
[724]. In this monograph Stone gave an abstract treatment of operators in a Hilbert
space including the work of J. von Neumann [610, 611] from 1929 and 1932, who
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had also introduced the extension theory of densely defined symmetric operators
and found the formulas which carry his name: self-adjoint extensions correspond
to unitary mappings between the defect spaces. The von Neumann formulas are
abstract, since they are formulated in terms of the defect spaces of the symmetric
operator, and they needed to be related to concrete boundary value problems.
With this in mind another approach involving abstract boundary conditions was
developed by J.W. Calkin [187] in his 1937 Harvard doctoral dissertation, which
was written under the direction of Stone, who suggested the topic. Calkin was
also advised by von Neumann. Calkin’s work on boundary value problems did not
receive the attention it might have deserved. It seems that he never returned to
it; his later mathematical work was related to World War II and the Manhattan
project in Los Alamos.

Another way to deal with the self-adjoint extensions of a symmetric operator
is via Krein’s resolvent formula. The early background of this formula can be found
in the idea of perturbation of self-adjoint operators. Krein’s formula describes the
resolvent of a self-adjoint extension in terms of the resolvent of a fixed self-adjoint
extension and a perturbation term which involves a so-called Q-function and a
parameter describing the self-adjoint extension. The @Q-function uniquely deter-
mines the underlying symmetry and the fixed self-adjoint extension, up to unitary
equivalence, and thus reflects their spectral properties. The original Krein formula
for equal finite defect numbers goes back to M.G. Krein [191, 192] in the middle
of the 1940s; only in 1965 it was finally established for the case of equal infinite
defect numbers by S.N. Saakyan [679]. In fact, the self-adjoint extensions were al-
lowed to be in a Hilbert space which contains the original Hilbert space as a closed
subspace. This type of extension appeared after 1940 in papers by M.G. Krein and
M.A. Naimark [605, 606, 607]. Later A.V. Straus in the 1950s and 1960s described
such exit space extensions in the framework of the von Neumann formulas via holo-
morphic contractions between the defect spaces [731]. The Q-function in Krein’s
formula can be seen as an abstract analog of the Titchmarsh-Weyl function in the
above Sturm—Liouville example; it was extensively studied in the 1960s and 1970s
by M.G. Krein and H. Langer [197]-[504], also in the context of Pontryagin spaces.

From the early 1940s on E.C. Titchmarsh turned his attention to the singular
Sturm—Liouville equation. He put aside Weyl’s method of handling the Sturm-—
Liouville problem on the basis of integral equations and also bypassed the use
of the general theory of linear operators in Hilbert spaces as in Stone’s book
[739]. Instead, Titchmarsh used contour integration and the Cauchy calculus of
residues, influenced by the work of E. Hilb [417, 418, 419], a contemporary of
Weyl. In this way he found a simple formula to determine the spectral measure;
this last formula was also discovered by K. Kodaira around the same time [169,
170]. A complete survey of the work of Titchmarsh, both for ordinary and partial
differential operators, is given in his two books on eigenfunction expansions [740,
741]. A different approach, followed by B.M. Levitan [541, 542], N. Levinson [539,
540], and K. Yosida [780, 781], is based on the fact that the resolvent operator of the
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self-adjoint realization of a singular differential operator can be approximated by
compact resolvents corresponding to Sturm-Liouville problems for proper closed
subintervals. Closely connected with this is an abstract approach to eigenfunction
expansions generated by differential operators that was introduced by Krein [4195]
in the form of directing functionals.

Influenced by questions from mathematical physics, von Neumann posed the
following problem in the middle of the 1930s: can one extend a densely defined
semibounded symmetric operator to a self-adjoint operator with the same lower
bound? There were contributions by M.H. Stone [724] and K.O. Friedrichs [310]
(whose work was simplified by H. Freudenthal [309]). The Friedrichs extension
was the solution to von Neumann’s problem. For Sturm-Liouville operators the
Friedrichs extension was determined in various cases by K.O. Friedrichs [311] in
1935 and by F. Rellich [654] in 1950. Another semibounded extension, the so-called
Krein—von Neumann extension (going back to Stone) has particularly interesting
properties. It was Krein [193, 494] who established a complete theory of semi-
bounded extensions. In the middle of the 1950s this circle of ideas was carried
forward, and it inspired contributions by M.S. Birman [139], and also M.I. Vishik
[747], who was particularly interested in the case of elliptic partial differential
operators. Building on the work of J.L. Lions and E. Magenes [544] on Sobolev
spaces and trace mappings G. Grubb [352, 353] gave a characterization of all closed
extensions of a minimal elliptic operator by nonlocal boundary conditions in her
1966 Stanford doctoral dissertation, written under the direction of R.S. Phillips.

The context of symmetric operators which are densely defined was soon felt
to be too restrictive. Already in 1949 M.A. Krasnoselskii [190] described all self-
adjoint operator extensions of a not necessarily densely defined symmetric oper-
ator. The appearance of the work on linear relations by R. Arens [42] in 1961
made all the difference. B.C. Orcutt [619] in a 1969 dissertation written under
the direction of J. Rovnyak treated the spectral theory of canonical systems of
differential equations in terms of linear relations. Subsequently, E.A. Coddington
[202] in 1973 gave a description of all self-adjoint relation extensions of a sym-
metric relation. In fact, it turned out that many of the earlier results concerning
extensions of symmetric operators could be put in the framework of relations. The
new context made it also possible to consider nonstandard boundary conditions
(involving integrals, for instance). Furthermore, in terms of relations the Krein—
von Neumann extension of a semibounded relation could be simply expressed in
terms of the Friedrichs extension. There has been an abundance of papers devoted
to linear relations in Hilbert spaces, and later also to linear relations in indefinite
inner product spaces.

In the middle of the 1970s boundary triplets were introduced independently
by V.M. Bruk [176] and A.N. Kochubei [166] as a convenient tool for the descrip-
tion of boundary values of abstract Hilbert space operators; they applied them
to, e.g., Sturm-Liouville operators with an operator-valued potential. The main
feature is that under a given boundary triplet there is a natural correspondence
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between self-adjoint extensions of a symmetric operator and self-adjoint relations
in the parameter space. An overview of the theory with applications to differential
operators is contained in the 1984 book by M.L. Gorbachuk and V.I. Gorbachuk
[346]. Around the same time V.A. Derkach and M.M. Malamud [244, 246] con-
tinued the work on boundary triplets by associating the notion of Weyl function
to a boundary triplet; their later work was written in the context of symmetric
operators that are not necessarily densely defined. The Weyl function is a very
useful tool in spectral analysis; it turns out to be a special choice of a @-function
(which is uniquely determined by the boundary triplet) and hence the analytic
properties and the limit behavior of the Weyl function towards the real line reflect
the spectral properties of the self-adjoint extensions. Broadly speaking, boundary
triplets and Weyl functions placed the work of Titchmarsh, and others, in a more
abstract setting while retaining the flavor of concrete boundary value problems.
The link to form methods and the Birman—Krein—Vishik approach to semibounded
self-adjoint extensions is made with the help of so-called boundary pairs. The ori-
gin of the concept of boundary pair lies in the work of Krein and Vishik; it was
formalized and studied by V.E. Lyantse and O.G. Storozh [552] in the early 1980s.
Its connection with boundary triplets was later established by Yu.M. Arlinskif [414].

It is the main objective of this monograph to present the theory of boundary
triplets and Weyl functions in an easily accessible and self-contained manner. The
exposition is detailed and kept as simple as possible; the reader is only assumed to
be familiar with the basic principles of functional analysis and some fundamentals
of the spectral theory of self-adjoint operators in Hilbert spaces. The monograph
is divided into the abstract part Chapters 1-5, the applied part Chapters 6-8, and
Appendices A-D. The heart of the monograph is Chapter 2 and it is complemented
by Chapter 5; for a rough idea on the general techniques the reader may first look
through these chapters and examine one of the applications (which may also be
read independently) afterwards: Sturm—Liouville operators, canonical systems, or
Schrodinger operators — up to personal taste and preferences.

®\
_—

The monograph opens in Chapter 1 with a detailed introduction to the theory
of linear operators and relations in Hilbert spaces. A large part of this material is
preparatory and may be used for reference purposes in the rest of the text.
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The heart of the matter in this book is contained in Chapter 2, where bound-
ary value problems are presented as extension problems of symmetric operators
or relations. Here the notions of boundary triplets and their Weyl functions are
introduced, and the fundamental properties of these objects are provided. Par-
ticular attention is paid to the question of existence and uniqueness of boundary
triplets. Closely connected with a boundary triplet is Krein’s resolvent formula for
canonical extensions and self-adjoint extensions in larger Hilbert spaces.

Chapter 3 is a continuation and further refinement of the techniques in the
previous chapter. Here the main objective is to give a detailed description of the
complete spectrum of the self-adjoint extensions of a symmetric relation in terms
of the Weyl function. The connection between the limit properties of the Weyl
function and the spectrum of the self-adjoint extension is explained via the Borel
transform of the spectral measure.

Most of the topics in Chapter 4 are supplementary to the main text as they
are concerned with a certain type of inverse problem. More precisely, it will be
shown that any (uniformly strict) operator-valued Nevanlinna function can be
realized as the Weyl function corresponding to a boundary triplet for a symmetric
relation in a reproducing kernel Hilbert model space. Of independent interest is
the discussion around the orthogonal coupling of boundary triplets with a view to
exit space extensions.

Another central theme in this monograph is presented in Chapter 5, where
the important case of semibounded symmetric relations is treated in more detail;
here the general methods from Chapter 2 are further developed. The chapter starts
with an introduction to closed semibounded forms and the corresponding represen-
tation theorems, and continues with the Friedrichs extension, the so-called Krein
type extensions, and the Krein—von Neumann extension. The ultimate result is a
description of the semibounded self-adjoint extensions of a semibounded relation
via the notions of a boundary triplet and a boundary pair; this establishes the
connection with the Krein-Birman—Vishik theory.

The general theory is applied to boundary value problems for differential
operators in Chapters 6-8 in three different situations. In each case the presen-
tation follows a similar scheme: After the necessary preparations to keep these
chapters mostly self-contained, explicit boundary triplets and Weyl functions for
the particular operators or relations under consideration, are provided. A further
spectral analysis, depending on the nature of problem is presented. The class of
Sturm-Liouville operators that is discussed in Chapter 6 covers also the example
given earlier in this introduction. A good deal of preparation is needed to construct
closed semibounded forms and corresponding boundary pairs in the singular situ-
ation. Chapter 7 deals with 2 x 2 canonical systems of differential equations and
also illustrates the role of linear relations in the analysis of such systems. Finally,
in Chapter 8 Schrodinger operators on bounded domains 2 C R"™ are treated,
where one of the main challenges is to construct Dirichlet and Neumann traces on
the maximal domain.
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For the reader’s convenience a number of appendices have been added: they
contain material concerning Nevanlinna functions and some useful elementary ob-
servations on operators and subspaces in Hilbert spaces. At the end of the text a
few notes and some (historical) comments, as well as a list of recent and earlier
references, can be found. Here the reader is also referred to some recent literature
for topics that go beyond this monograph.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 1

Linear Relations in Hilbert Spaces

A linear relation from one Hilbert space to another Hilbert space is a linear sub-
space of the product of these spaces. In this chapter some material about such
linear relations is presented and it is shown how linear operators, whether densely
defined or not, fit in this context. The basic terminology is provided in Section 1.1
and afterwards the spectrum, resolvent set, the adjoint, and operator decompo-
sitions of linear relations are discussed in Section 1.2 and Section 1.3. Linear
relations with special properties, such as symmetric, self-adjoint, dissipative, and
accumulative relations, are investigated in Sections 1.4, 1.5, and 1.6. More details
on self-adjoint and semibounded relations can be found in Chapter 3 and Chap-
ter 5. Intermediate extensions and the classical von Neumann formulas describing
self-adjoint extensions of symmetric operators and relations can be found in Sec-
tion 1.7. In Section 1.8 it is shown that there is a natural indefinite inner product
by means of which the notion of adjoint relation corresponds to the notion of or-
thogonal companion. Strong graph convergence and strong resolvent convergence
of sequences of linear relations are discussed in Section 1.9 and parametric repre-
sentations of linear relations are studied in Section 1.10. Finally, in Section 1.11
some useful properties of a resolvent-type operator of a linear relation are given,
and in Section 1.12 the class of so-called Nevanlinna families, a natural extension
of the class of Nevanlinna functions (see Appendix A) is studied.

1.1 Elementary facts about linear relations

Let $§ and K& be Hilbert spaces over C. The Hilbert space inner product and
the corresponding norm are usually denoted by (-,-) and || - ||, respectively, and
sometimes a subindex will be used in order to avoid confusion. The inner product
is linear in the first entry and antilinear in the second entry. The orthogonal
complement will be denoted by L, sometimes a subindex will be used to indicate
the relevant space. The product $ x & will often be regarded as a Hilbert space
with the standard inner product (-, )+ (-, )& and all topological notions in £ x £
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are understood with respect to the topology induced by the corresponding norm.
The product space $) x K will also be written as $ @ K, and $ and K are then
regarded as closed linear subspaces in ) & £ which are orthogonal to each other.

A linear subspace of $ x £ is called a linear relation from $) to R. If H is
a linear relation from $) to K the elements h € H will in general be written as
pairs {h,h'} with components h € $ and i’/ € R. If & = $ one speaks simply of a
linear relation in $). After this introductory section the adjective linear is usually
omitted and one speaks of relations when linear relations are meant.

The domain, range, kernel, and multivalued part of a linear relation H from

) to K are defined by
domH = {h € $:{h W} € H for some b’ € R},
ran H = {W' € &: {h,h'} € H for some h € §},
ker H={h€:{h,0} € H},
mulH = {h € R:{0,h'} € H},
respectively. The closure of the linear space dom H will be denoted by dom H and,
likewise, the closure of the linear space ran H will be denoted by ran H. Note that
each linear operator H from §) to K is a linear relation if the operator is identified

with its graph,
H = {{h,Hh}: h € domH },

and that a linear relation H is (the graph of) an operator if and only if the
multivalued part of H is trivial, mul H = {0}. The inverse H~* of a linear relation
H from $) to R is defined by

H™'={{W h}: {h,W} € H},

so that H~! is a linear relation from £ to §. In the next lemma some obvious
facts concerning the inverse relation are collected.

Lemma 1.1.1. Let H be a linear relation from $ to K. Then the following identities
hold:

dom H~! = ran H, ran H~' = dom H,
ker H~! = mul H, mul ™! = ker H.

There is a linear structure on the collection of linear relations from $ to f.
For linear relations H and K from $) to K the componentwise sum is the linear
relation from $) to K defined by

H¥ K={{h+kW+k}:{hW'}eH {kk}eK}, (1.1.1)

while the product N\H of H with a scalar A\ € C is the linear relation from £ to &
defined by
ANH = {{h)\h’} :{h,h'} € H}
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Note that the componentwise sum H F K is the linear span of the graphs of H
and K, and

dom (H ¥ K)=dom H +dom K, ran(H ¥ K)=ranH + ran K.
Likewise, if A € C, one has
domAH =dom H and for A#0 ran\H =ranH.

Note that by definition 0 H = Ogom g, where Ogom g stands for the zero operator
on dom H. It is useful to note that

(HYK)'=H'T K, (\H)™ ! = %H‘l, A #0.

Let H and K be linear relations from $ to & If H C K, then H is called a
restriction of K and K is an extension of H.

Proposition 1.1.2. Let H and K be linear relations from § to K and assume that
H C K. Then

domH =domK <« K=H + ({0} xmulK), (1.1.2)
and, analogously,
ranH =ranK & K=H7 (ker K +{0}). (1.1.3)

Proof. Note that H C K is equivalent to H~! C K~!. Hence, in order to prove
(1.1.3) one just applies (1.1.2) with H and K replaced by H~! and K !, respec-
tively. Thus it suffices to show (1.1.2). The implication (<) is trivial. To show
(=), observe that H C K yields H F ({0} x mul K) C K and hence it suffices to
show that K ¢ H F ({0} x mul K). Let {h,h'} € K. Since h € dom K = dom H,
there exists an element &’ € 8 such that {h,k’'} € H and from H C K it follows
that also {h,k’} € K. Hence, with ¢/ = b’/ — k& one has

{h, W'} = {h K"} +{0,¢'},
and thus {0,¢'} € K, i.e., ¢’ € mul K. O

Corollary 1.1.3. Let H and K be linear relations from $) to & and assume that
H cC K. Then

domH =domK and mulH=mulK <+ H=K, (1.1.4)
and, analogously,

ranH =ran K and kerH =ker K <& H=K. (1.1.5)
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Proof. 1t suffices to show (1.1.4), as (1.1.5) follows by taking inverses in (1.1.4).
Clearly, the implication (<) is trivial. For the implication (=) apply (1.1.2). Then
dom H = dom K and mul H = mul K give successively

K=H+ ({0} xmulK)=H + ({0} xmul H) C H,
which together with H C K implies H = K. (]
Let H and K be linear relations from $ to &. The usual (operatorwise) sum
H + K is defined by
H+K={{h,h +1"}:{h,h'} € H, {h,h'} € K},

where dom (H + K) = dom H Ndom K. Note that mul (H + K) = mul H + mul K.
If H is a linear relation in §), then for A € C the sum H + A, where I denotes the
identity operator in £, is usually simply written as H + A\ and has the form

H+ M= {{h,} +\h}: {h,h'} € H},

with dom (H + A\) = dom H. Note that mul (H + \) = mul H.

Let H be a linear relation from §) to £ and let K be a linear relation from &
to &, where & is another Hilbert space. Then the product KH of K and H is the
linear relation from $) to & defined by

KH={{h,h"}:{h,l'} € H, {W,h"} € K}.

Note that for A € C the notation N\H agrees with (AI)H, where I denotes the
identity operator in &. It is straightforward to check that (KH) ! = H=1K~1

The following lemma shows an important feature of sums and products of
linear relations. The notation Igy stands for the identity operator on the linear
subspace MM, while Ogy stands for the zero operator on 9.

Lemma 1.1.4. Let H be a linear relation from $ to R. Then

H+ (—H) = Odom + ({0} x mul H), (1.1.6)
where the sum is direct. Moreover, the identities
HH™' = Lanpg + ({0} x mul H) (1.1.7)
and
H™'H = Iyom ur + ({0} x ker H) (1.1.8)

hold, and both sums are direct.

Proof. First the identity (1.1.6) will be shown. For an element on the left-hand
side of (1.1.6) one has

{h,h' — 1"} ={h,0} +{0,h — "},
where {h, '}, {h,h"} € H, so that {h,0} € Ogom g and {0, ' —h"} € {0} xmul H.

www. dbooks. or g


https://www.dbooks.org/

1.1. Elementary facts about linear relations 15

Conversely, let {h,k} € Ogom m + ({0} xmul H). Then {h, k} = {h,0}+{0, k}
with h € dom H and k € mul H. Hence, {h,h'} € H for some h’' € 8 so that also
{h,h — k} € H. Consequently,

{h,k} ={h,W — (W = k)} € H+ (—H),

which completes the proof of (1.1.6).

The assertion (1.1.8) follows from (1.1.7) by replacing H with H~!. Hence,
only the identity in (1.1.7) has to be proved. By definition, the linear relation
HH™! is given by

HH™ ' = {{h,n"} : {h,W'} e H™', {h',h""} € H}.
Therefore, if {h,h"} € HH~! with some {h,h'} € H=! and {W',h"} € H, then
{h,h"} = {h,h} + {0,h" — h}.
As {W, h} € H, it follows that h € ran H and
{0,h" — R} = {W,h"} — [N h} € H,

ie., B/ —h € mul H. Thus, {h,h""} € Lang + ({0} x mul H).

Conversely, given an element {h,h} + {0,k} € Lanpm + ({0} x mul H) with
h € ran H and k € mul H, there exists ' € dom H such that {h',h} € H or,
equivalently, {h,h'} € H~L. Since {0,k} € H it follows {h',h + k} € H, so that
{h,h+k}c HH L. O

Thus far the Hilbert space structure of the spaces has not been used; only the
linear space structure played a role. Now an interpretation of the componentwise
sum H + K in (1.1.1) will be given as an orthogonal componentwise sum. Let §;,
92, Ry, and Ky be Hilbert spaces and let ) = 1 ® H2 and R = R ® Ky. Here and
in the following $; and ) are viewed as closed linear subspaces of §), and &; and
Ry are viewed as closed linear subspaces of 8. Assume that H is a linear relation
from $1 to K1 and that K is a linear relation from $s to K. The orthogonal sum
H & K is defined as

H& K={{h+kW+k}:{hn}eH {kk}eK}.

In other words, H & K is just the componentwise sum H ¥ K of H and K, when
these linear relations H and K are interpreted as linear relations from $) = £ ® -
to R=R1 D KRe. If H =K and H; = Ry, H2 = Ko, then this definition implies

(H® K)?=H*& K2 (1.1.9)

A linear relation H from $ to £ is called bounded if there is a constant
C > 0 such that ||h/||g < C||h||g for all {h,h'} € H. In this case it is clear that
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mul H = {0}, so that H is a bounded operator. Thus, there is no distinction be-
tween bounded linear relations or bounded linear operators. The set of everywhere
defined bounded linear operators from $ to 8 will be denoted by B($), 8). If § = &
the notation B(9) is used instead of B($), 9).

A linear relation from $) to K is called closed if it is closed as a linear subspace
of $§ x R The closure H of the linear relation H as a linear subspace of $ x £
is itself a closed linear relation. Tt follows that mul H C mul H; if mul H = {0}
implies that mul H = {0}, then the operator H is called closable (as an operator).
The following useful observations are easily verified.

Lemma 1.1.5. Let H be a linear operator from $) to K. Then the following state-
ments hold:

(i) Let H be closable. If dom H s closed, then H is closed.
(ii) Let H be bounded. Then H is closable.
(iii) Let H be bounded. Then dom H is closed if and only if H is closed.

A linear relation H from $) to £ is called contractive if ||h'||g < ||h]|s for
all {h,h'} € H and it is called isometric if ||h'||g = ||h]|s for all {h,h’'} € H. In
each case mul H = {0} and H is an operator which is bounded and thus closable;
cf. Lemma 1.1.5. Hence, there is no distinction between contractive relations or
operators. Likewise, there is no distinction between isometric relations or opera-
tors. Clearly, the closure of a contractive or isometric operator is again contractive
or isometric. Recall that a contraction H has the following useful property: if
|Hk| s = ||k||s for some k € dom H, then

(Hh,Hk)g = (h,k)s forall he domH. (1.1.10)
To see this, note that for all A € C

0 < [|h+ Mk[I3, — [ H (R + k)%
= [|hll% — 1HA|% — 2Re (A[(Hh, Hk)s — (h, k)g] ),

which implies that (1.1.10) holds.

For many combinations of linear relations the closedness is preserved. For
instance, if H is a closed linear relation from $) to &, then H~! is a closed linear
relation from R to $. Likewise, for A # 0 the product AH is closed. If H and K
are closed linear relations from $) to &, then the componentwise sum H F+ K is
not necessarily closed (see Appendix C), while the orthogonal componentwise sum
H & K of H and K is closed. The sum H + K of two closed linear relations H
and K is not necessarily closed. However, in the special case that H is closed and
K € B(9, f) the sum

H+ K = {{h,h/ + Kh} : {h,h'} € H}

is also closed. In particular, the linear relation H in ) is closed if and only if H 4+ A
is closed for some, and hence for all A € C. The product KH of closed linear
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relations K and H is not necessarily closed. However, in the special case that K
is closed and H € B($), &) the product

KH = {{h,h"}: {Hh,h'"} € K}

is also closed.

The above material will be used throughout the text. The rest of this section
will be devoted to two specific items, namely, a discussion of questions around the
so-called resolvent identity, and one involving Mobius transformations of linear
relations.

For a linear relation H in $) and A € C, the resolvent relation is defined by
(H — \)~ L. Clearly, H is closed if and only if (H — X)~! is closed for some, and
hence for all A € C. The resolvent relation has a number of properties which will
now be explored. First the A-independence of ker (H — A\)~% and mul (H — \) is
stated.

Lemma 1.1.6. Let H be a linear relation in $ and let A € C. Then
ker (H — \)~! = mul (H — \) = mul H.

For practical purposes it is worthwhile mentioning the analogs of (1.1.7) and
(1.1.8) for the resolvent relation of H. Using Lemma 1.1.6 one sees that

(H = A)(H =N = Lan (- T ({0} x mul H),
and, likewise,
(H—=X)""(H = X) = Ljomu + ({0} x ker (H — X)).
In particular, when ker (H — X) = {0} for some X\ € C, one has
(H =27 H = X) = Liom n-

The resolvent identity in the next proposition involves a combination of the sum
and the product of the resolvent relations (H — \)~!' and (H — pu)~!.

Proposition 1.1.7. Let H be a linear relation in £ and let A\, € C. Then
(H =N = (H— )™ = (H =\ (A= p)(H — )" (1.1.11)
If ker (H — ) = {0} and ker (H — u) = {0}, then (H — X\)™* and (H — )~ are

linear operators defined on ran (H —\) and ran (H — 1), respectively, with the same
kernel mul H. Moreover, if X # p, then (1.1.11) may be written as

(H=N""=(H-p)™ == p)(H =N H = p) " (1.1.12)
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Proof. For the inclusion (C) in (1.1.11) let
{h,h/ —n"}ye (H-XN)""'—(H—-p)™',
with {h,h'} € (H — X)~! and {h,h"} € (H — p)~'. This gives
{W,h+ X'}y € H and {h" h+uh"} € H,
which shows {h' —h", AR/ — uh”} € H, and thus {h' —h", (A= p)h""} € H— X and
{A=ph" W —n"} e (H-N"".

Since {h,h"} € (H — p)~1, one sees that {h, (A — p)h""} € (A — p)(H — p)~ 1, as
{R", (AN —p)h"} € (A — p)I. Hence, the element {h,h’ — h”} belongs to the linear
relation (H — A\)7Y(\ — p)(H — p)~%, which shows the inclusion.

For the inclusion (D) in (1.1.11), let {h,h'} € (H — A\)"Y (A — p)(H — )~ 1. Then
by definition there exists k € $ such that

{hky e (H—p)™" and {(A—pkh'} e (H-N"",

as {k,(\ — w)k} € (A — p)I. In addition, it is clear from {k,h} € H — u that
{k,h+ (n— Nk} € H— X and

(h+ (u— Nk, k) e (H— )L

Thus, it follows that {h,h’ + k} € (H — \)~L. Hence, {h,h'} = {h,h + k — k}
belongs to (H — A\)~! — (H — u)~1, which shows the inclusion. This completes the
proof of (1.1.11). If X # p this leads to (1.1.12).

The remaining statements follow directly from Lemma 1.1.6. (]

Note that in general the identity in (1.1.12) is not valid for A = p. In this
case the right-hand side of (1.1.12) clearly equals Ogom (zr—x)-2, While by (1.1.6)
the left-hand side equals Ogom (F7—x)-1 F ({0} xmul (H —X)~1). Hence, in (1.1.12)
the right-hand side is contained in the left-hand side.

The following result shows that every linear relation H can be represented by
means of a pair of operators expressed in terms of its resolvent operator (H —\)~*.
This kind of representation of a linear relation will be considered in this text in
various situations.

Lemma 1.1.8. Let H be a linear relation in $ and assume that ker (H — X) = {0}
for some A € C. Then

H={{(H=XN""k,(I+XH-X""k}: keran(H—\)}, (1.1.13)

where the right-hand side is well defined since dom (H — \)™! =ran (H — \).
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Proof. Denote the linear relation on the right-hand side of (1.1.13) by K. To see
that H C K, let {h,h'} € H. Then {h' — Ah,h} € (H — \)~! and from the
assumption mul (H — \)~! = ker (H — \) = {0} it follows that

h=(H—X\"*h — \h).
Therefore,
{h, W'} = {h,h' — A\h + A}
={(H—=XN)""W = Ah), (I +XH = N)"")(h = Ah)},

where b/ —Ah € ran (H —\). Hence, {h,h'} € K, so that H C K. Now the equality
follows from Corollary 1.1.3, since

dom K =ran (H — \)~! = dom (H — \) = dom H,

while
mul K =ker (H —\)~! = mul (H — \) = mul H.

This completes the proof. ]

Another algebraic identity involving the resolvent relations (H — A\)~! and
(H — p)~! is contained in the next lemma; see also Corollary 1.2.8 in the next
section. The formula in the lemma can also be checked via the M&bius transform
to be defined below.

Lemma 1.1.9. Let H be a linear relation in $ and let A\, € C. Then
(T+ N =) (H=X)") " =T+ (u—A)(H—p) " (1.1.14)
Proof. Tt is easy to see that
T+ N —p)(H - X" ={{) = 1 —ph}: {h,h'} € H},
and by symmetry
T+ (=N (H—p) " ={{} —ph, k' —An}: {h,k'} € H}.
This yields (1.1.14). O

Next, Mobius transformations of linear relations will be defined. For a Hilbert
space ) and a 2 X 2 matrix

M= (f; ?) , afB7,0eC, (1.1.15)

the scalar Mébius transform M in $2 = § x § is given by
M:52 5 H%  {hK}— {ah+ BH ,vh + 6K}

The meaning of M, either as a matrix or as a transformation, will be clear from
the context. The scalar M6bius transform of a linear relation is defined as follows.
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Definition 1.1.10. Let H be a linear relation in £ and let M be a 2 x 2 matrix as
in (1.1.15). Then the scalar Mdbius transform of H is the linear relation M[H] in
$ defined by

M[H] = {{ah+ BN ,yh+ 6h'} : {h,h'} € H}. (1.1.16)

Note that the domain and range of the scalar Mobius transform M[H] are
given by

dom M[H] = {ah + 8K : {h,h'} € H},
ran M[H| = {vh + 6h' : {h,h'} € H}.

If the 2 x 2 matrix M in Definition 1.1.10 is multiplied by a constant n € C\ {0},
then the corresponding Mobius transform M[H| and (nM)[H] coincide.
Let M and N be 2 x 2 matrices. Then the identity

NIM[H]] = (N o M)[H] (1.1.17)

holds for any linear relation H in ). If det M # 0, then

-1 1 6 —p
ATy <—v a)

and the Mobius transform corresponding to M ™! is given by
M [H] = {{6h— BN ,—yh +al'} : {h,h'} € H}.
Thus, for any linear relation H one has
MTHM[H]] = H = MM [H]];

cf. (1.1.17). Note that in general M~1[H] and M[H]! are different relations. In
the case det M # 0 it clearly follows that

M[H] is closed if and only if H is closed. (1.1.18)

Observe that the linear relations AH, H — X\, H~! correspond to the Mobius
transforms determined by the following matrices

1 0 1 0 01

0 X))’ - 1) 1 0)°
respectively. Thus, for instance, the linear relations I + (A — u)(H — A\)~! and
I+ (p—A)(H — p)~! correspond to Mébius transforms of H determined by the

matriees COG )00 -G
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(b6 W) 0o ()= ()

respectively. This also confirms the identity (1.1.14).

and

For a 2 x 2 matrix M as in (1.1.15) with det M # 0 define the function

Ao M = Ziig a+AB#0. (1.1.19)

Since the linear relation M[H] — M[\] corresponds to the matrix

1 0\ (o« B _ Q B
M 1)\ 8) T\ A

one sees from (1.1.16) that for o + A3 # 0,

M[H] — M[N] = {{ah +BH, 4D /\h)} {h, WY € H} .

This identity yields, in particular, for a + S\ # 0, that
ker (H — \) = ker (M[H] — M[)]), (1.1.20)
ran (H — \) = ran (M[H] — M[)]). o

If, in addition, 5 # 0, then it follows from (1.1.16) that
mul M[H] = ker (H + af™1), mul H = ker (M[H] —687"),
and in the case § = 0 it is easy to see that mul M[H] = mul H.

Proposition 1.1.11. Let H be a linear relation in $ and let M be a 2 X 2 matrix
as in (1.1.15) with det M # 0. Then for a + A8 #0

a+28)B  (a+AB)?
det M det M

Proof. Use the abbreviation A = det M. It suffices to see that the left-hand side
corresponds to the matrix

—AA A
0 1 1 0 « ﬁ _ ot B Py
1 0)\-M[N\] 1)\~ o « 8 )’
while the right-hand side corresponds to the matrix

(71 O) ) o (O 1) ( : O) ( o 1 )
(0 28)8 +A8)? _ = | aerrs)  Blatas) |-
BN 1) \o @B J1 0)\-) 1 alot ot

Since these matrices coincide up to a nonzero multiplicative constant the assertion
follows. 0

(M[H] = M[A)) ™ ! (H— M\t (1.1.21)
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It is clear that the following useful consequence of Proposition 1.1.11 is ob-
tained by means of the special choice

0 1
(1)
so that det M = —1, M[H] = H~!, and M[\] = 1/\, A # 0.
Corollary 1.1.12. Let H be a linear relation in $) and let A € C\ {0}. Then

(H ' =AY = X=X (H -, (1.1.22)

Next the Cayley transform and inverse Cayley transform of a linear rela-
tion will be introduced. These special M&bius transforms will be used later in
Sections 1.5, 1.6, and 1.7.

Definition 1.1.13. Let H and V be linear relations in § and let 1 € C \ R. Then the
Cayley transform C, of H and the inverse Cayley transform JF, of V are defined
by

Cu[H] = {{W — ph, I/ — ik} : {h,h'} € H},

FulV]= {{k' — K ik — pk'}  {k, K'Y € V}. (1.1.23)

Notice that the domain and range of the Cayley transform €, and the inverse
Cayley transform J, are given by

dom €, [H] =ran (H — p), ran C,[H] = ran (H — f),

domJ,[V] =ran(I —V), rand,[V] =ran (g — pV). (1.1.24)

It is clear that the Cayley transform €, and the inverse Cayley transform J,
are Mobius transforms corresponding to the matrices

1 1 -1\ .
C,= <—,17 1) and F, = <ﬁ —,u) =(n—pe,", (1.1.25)

where det C,, = 1 — 1 was used. Note also that

A—n
CulA] :ﬁv A F# .

Thus, Proposition 1.1.11 leads to the following result.
Corollary 1.1.14. Let H be a linear relation in $) and let yn € C\ R. Then

(i) — e, = A o

_ -1
TR H-=XN", A#p (1.1.26)
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1.2 Spectra, resolvent sets, and points of regular type

The resolvent set, spectrum, point, continuous, and residual spectrum, and the
points of regular type of a linear relation or operator are defined. A priori it is not
assumed that the linear relation is closed. Here and in the rest of the text linear
relations will be referred to simply as relations and linear subspaces as subspaces.

Definition 1.2.1. Let H be a relation in $. Then A € C is said to be a point of
regular type of H if (H — \)~! is a (in general not everywhere defined) bounded
operator. The set of points of regular type of H is denoted by ~v(H).

Some straightforward consequences of Definition 1.2.1 are presented in the
next lemma.

Lemma 1.2.2. Let H be a relation in $). Then X\ € v(H) if and only if there exists
a positive constant c, depending on A, such that

Rl < el = Anfl,  {h,h'} € H. (1.2.1)

Moreover, if v(H) # 0, then H is closed if and only if ran (H — \) is closed for
some, and hence for all A € v(H).

Proof. Assume that A\ € y(H), so that (H — \)~! is a bounded operator. Let
{h,h'} € H; then {W' — Ah,h} € (H — X)~! and

IRl = 1(H = \) 7 (R = AR)|| < ellh” = Ahl],

which gives (1.2.1). Conversely, assume that (1.2.1) holds. To see that (H — X)~*
is a bounded operator let {f, f'} € (H — X)~!. Then {f, f'} = {k' — Ah,h} for
some {h,h'} € H and (1.2.1) shows ||f'|| < c||f|| for all {f, f'} € (H — X\)~!. This
implies that (H — A)~! is an operator that is bounded or, equivalently, A € v(H).

Assume that H is closed, so that also (H — \)~! is closed. Then the relation
(H — M)~ is a closed and bounded operator for all A € y(H). This immediately
implies that ran (H — \) = dom (H — \)~! is closed; cf. Lemma 1.1.5. Conversely,
if ran (H — \) = dom (H — \)~! is closed for some A\ € y(H), then (H — \)~!
is a bounded operator defined on a closed subspace. It follows that (H — A)~! is
closed, cf. Lemma 1.1.5, and hence H is closed. (|

Definition 1.2.3. Let H be a relation in $). A point A € C is said to belong to the
resolvent set p(H) of H if (H — X\)~! is a bounded operator and Tan (H — \) = §).
The spectrum o(H) of H is the complement of p(H) in C. The spectrum o(H)
decomposes into three disjoint components: the point spectrum o, (H), continuous
spectrum o.(H), and residual spectrum o.(H ), defined by

op(H) ={X € C:ker (H —\) #{0}},
oc(H)={AeC:ker(H—-\) ={0}, Tan(H — \) =9, A& p(H)},
or(H)={AeC:ker (H—\)={0}, Tan (H — \) # H}.
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Let H be a relation in $. It follows from Definition 1.2.1 and Definition 1.2.3
that p(H) C ~(H). Moreover, it follows from (1.2.1) that v(H) = ~(H) and the
equivalence

rTan(H—-\) =9 &

implies p(H) = p(H).

The following state diagram is useful when discussing the spectral subsets
and the resolvent set of H. The top row shows all possibilities for the range of
H —\. The first (second) rows show all possibilities for points A such that (H —\)~*
is a bounded (unbounded) operator and the bottom row shows all possibilities for
eigenvalues .

ran(H—\) =9

ran (H —A) | ran(H — A) | ran(H — \)
=9 dense, # not dense
H— )1
bouilded ol))erator p(H) p(H) Y(H) Now(H)
(H-N""
unbounded operator oe(H) ae(H) ox(H)
H -1
nE)t oper)ator op(H) op(H) op(H)

Now assume that H is a closed relation. Then it follows with the help of the closed
graph theorem and Lemma 1.1.5 applied to the operator (H — \)~! that two cases
(marked by X below) in the above state diagram are not possible:

H ran (H —A) | ran(H — ) | ran(H — \)
closed relation =9 dense, # 9 not dense
bouElIc:{ed_ (/)\1));rlator p(H) X Y(H) Mo (H)
unbofli[d;dA());;rator X oo(H) ox(H)

ng)lglo;e);“)ax_ttl)r op(H) op(H) op(H)

In particular, for a closed relation the continuous spectrum is given by
oc(H)={AeC:ker(H—\)={0}, tTan (H — \) = $, ran (H — \) # H}.

Lemma 1.2.4. A relation H in $) is closed if and only if ran (H — \) = §) for some,
and hence for all X € p(H). In this case the following statements hold:
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(i) p(H)={reC:(H-)N"eB®)}:
(i) H={{(H-N""f,(I+MH=X)"")f}: f €} for A& p(H).

Proof. 1f H is closed, then for all A € C also (H—\)"! is closed. Hence, if A € p(H),
then (H — \)~! is a bounded and closed operator, and therefore

dom (H —\)~' =ran(H — \)

is closed and coincides with §); cf. Lemma 1.1.5. Conversely, if A\ € p(H) and
ran (H — \) = $, then (H — \)~! is a bounded operator defined on $ and hence
(H — X)~! is closed by Lemma 1.1.5. This implies that also H is closed. Assertion
(i) is now immediate and assertion (ii) follows from (1.1.13) in Lemma 1.1.8. O

In the next theorem the so-called defect of a relation H is studied. The proof
uses the notions of opening and gap of closed subspaces from Appendix C.

Theorem 1.2.5. Let H be a relation in $). Then the set v(H) of points of regular
type of H is an open subset of C and the defect

na(H) := dim (ran (H — X))~ (1.2.2)
of H s constant for all X in a connected component of y(H).
Proof. Step 1. Let € v(H) and let ¢, > 0 be any positive constant such that
I8l < cullh” = phll, {h,h'} € H; (1.2.3)
cf. Lemma 1.2.2. Hence, if A € C and |A — ple, < 1, then
A= plllBll < X = pley Ih" = ph| < [|h" = ph].
In this case h' — Ah = h' — ph — (A — p)h yields
1B = AR > I = hll = [ = pallhl] >0,
and together with (1.2.3) this leads to

ulll! = Ml > el = bl = X = ple ]
> [|All = A = pleu Al
= (L =[x = pley) 1]
Since all elements of (H — \)~! are of the form {h’ — Ah,h} with {h,h'} € H, it

follows from this inequality that (H —\)~! is a bounded operator. In fact, one has
for |A — pley, < 1

I = X)) < —

Cu -1
% g, gedom(H—N"" 1.2.4
el (H ) (124)

In particular, it follows that A € v(H) for |\ — ple, < 1. Therefore, v(H) is an
open subset of C.
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Step 2. Let p € v(H) and let P, be the orthogonal projection onto Tan (H — ).
For each f € § one obtains

P,f, W — b
HP/,LfH — sup ‘( Hf g)| — up |(f - /1’ )|7
geram (H—p\{o} |19l {hhyemo,0y 1B — phll

since ran (H — p) = {h' — ph : {h,h'} € H}. Now choose A € C and write
B —ph=h"— Ao+ (XA — p)h.

If, in particular, f € ran (H —\)*, then |(f, A’ —uh)| = |\—u||(f, h)| and it follows
that

h
[Bufll = A=l sup M

{h,h'}€H\{0,0} A — phl|

Al
< A= pl £l sup A
(hhyer\{o,03 | — phl|

Let ¢, be as in Step 1, so that [|h| < cu||h’ — phl| for {h,h'} € H; cf. (1.2.3).
Thus, for any A € C one has

1PLfIl < X = pleullfll,  f € ran (H = X)*. (1.2.5)
Step 3. Let € y(H) and |\ — plc, < 1. By Step 1, A € v(H). Therefore, by
symmetry, one obtains from Step 2 that
1PAgll < IA = pleallgll, g € ran (H — p)*, (1.2.6)
where ¢, is any positive constant such that
|(H — N7 k|| < ex|k|| for k& dom (H — )"t
Due to the estimate (1.2.4) one may take

Cu

A= Ty T
1—[A—pleu

and then one concludes from the estimate (1.2.6) that

A — ple
1Pagll < 1 T uTc lgll, g € ran (H — p)*, (1.2.7)
n

for |\ — ple, < 1.

Step 4. Let pu € v(H) and assume that | — ¢, < C for some number 0 < C' < 3.
Then A € v(H) by Step 1, and

1P.fI < CUFNL - f € ran (H = M),

C
[ Prgll < mHgH, g €ran (H — p)*,
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by (1.2.5) and (1.2.7) in Step 2 and Step 3. Therefore,
w(ran (H — p),ran (H - \)*) = |P.(I-Py)| < C < 1

and

w(ran (H — \),ran (H — p)*) = |Px(I = P,)| < <1,

1-C
where w stands for the opening between closed linear subspaces; cf. Definition C.5.
For the gap in Definition C.9 one obtains

g(tan (H — p),tan (H — X)) < 1
from Proposition C.10, and hence Theorem C.12 applied to the closed linear sub-
spaces M = tan (H — p) and N = ran (H — ) implies

€L

dim (ran (H — )\))J' = dim (ran (H — p)) (1.2.8)

for € y(H) and |A — plc, < C for some 0 < C < &.

Step 5. Now let T' be a connected open component of v(H). Then T is arcwise
connected and each pair of points {A1, A2} in I' can be connected by a (piecewise)
connected compact curve. Each point p of the curve is the center of an open disc
such that (1.2.8) holds for all A in the disc. By compactness, finitely many such
open discs form a cover of the curve and hence

dim (ran (H — /\1))J_ = dim (ran (H — Ag))L,
that is, the defect of H is constant in each connected component of v(H). |

The next theorem is concerned with the properties of points in the resolvent
set of a relation. This leads to the resolvent identity.

Theorem 1.2.6. Let H be a relation in ). The resolvent set p(H) is an open subset
of C. The resolvent identity

(H-=N""'=(H-p) ' =H-N"A=p)(H-p" (1.2.9)

holds for \,p € p(H); here (H — X)~% and (H — p)~' are bounded operators
defined on ran (H — \) and ran (H — p), respectively. If, in addition, H is closed,
then (H —X\)"Y, (H — p)~t € B(9) for A\, € p(H), and (1.2.9) can be written as

(H=N""'=H-p) == p)(H =N (H—p) (1.2.10)
for all A\, € p(H).
Proof. Recall that the inclusion p(H) C «(H) holds. In fact, the resolvent set p(H)
of H is made up of the components of v(H) where the defect ny(H) in (1.2.2) is
zero. It follows in the same way as in Step 1 of the proof of Theorem 1.2.5 that

for € p(H) and A € C such that |A — u|||[(H — )Y < 1 one has A € p(H), and
hence p(H) is open. The identity (1.2.9) follows from Proposition 1.1.7. O
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Corollary 1.2.7. Let H be a closed relation in $ and assume that p € p(H) and
IA—pl||(H — )~ < 1. Then X € p(H) and

oo

(H=XN)""=> (A=w"(H—p)~ "+, (1.2.11)
n=0

where the series converges in B($)). In particular, the mapping
A= (H— N1
is holomorphic on p(H) and the limit

1 _ 1
L H N ()
A—p A — 1

= (H —p)~*
exists in B(9).

Proof. With the notation R(\) = (H — X\)~! it follows from the resolvent identity
(1.2.10) and induction that

k
Z (A= )" R(p)" ™ + (A = )" P RO R(p)* L. (1.2.12)

The last term on the right-hand side of (1.2.12) obeys the estimate

1O = W ROVR()F | < IR (1A — sl RGN,

and hence the condition |\ — p|||R(u)|| < 1 implies that it tends to 0 in B($)) as
k — oo. This implies (1.2.11) and the holomorphy of A — (H — A)~!. The last
assertion follows from (1.2.10). O

Corollary 1.2.8. Let H be a closed relation in $ and let A\, € p(H). Then the
operator I + (X — p)(H — \)~t € B(9) is invertible and

(T+ A=) (H =N =T (= N (H =)~

Proof. The formal identity in terms of relations follows from Lemma 1.1.9. Since
both I+ (XA —pu)(H—A)"!and I+ (p—\)(H — 1) ~! belong to B($), the assertion
is clear. (|

The resolvent identity in (1.2.10) characterizes the closed relation H in a
specific way.

Proposition 1.2.9. Let € C C be a nonempty set and assume that the mapping
A= B(A) from € to B(9) satisfies the identity

B(\) - B(n) = (A= W)BV)B(n), Aucee. (1.2.13)
Then there exists a closed relation H in $ such that € C p(H) and
B\ =(H-X\N"' Xe&.
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Proof. Define for A € € the relation H(\) by
H\) =B\ + A\

Since B(A\) € B($), one sees that B(\) and thus also B(A)~! are closed. Hence,
also the relation H () is closed. Note that

ran (H(A\) — \)) =ran B(\)~! = dom B(\) = §,

while
ker (H(A\) — \)) =ker B(A\)~! = mul B(\) = {0},

so that A € p(H(N)).
Now let A, i € & and let {h,h'} € H(X). Then h = B(\)(h' — Ah) and due
to the identity (1.2.13) (with g and X interchanged) one gets

h = B(\)(h — \h)
= B(p)(M — Ah) = (= N B(u) B\ (A — Ah)
= B(u)(h' — ph).

This implies {h,h'} € H(u). Therefore, H(\) C H(p) which, by symmetry, leads
to H(X) = H(u). One concludes that H(A) does not depend on A € €. Thus, one
sees that

(H—-X)"'=B(\) and \cp(H),

which completes the proof. [l

Let again H be a relation in $), let M be a 2 x 2 matrix as in (1.1.15) such
that det M # 0, and let

M[H] = {{ah+ Bh/,yh + 6K’} : {h,W'} € H}

be the corresponding Mobius transform of H in Definition 1.1.10. The question is
how the spectrum of H behaves under the M&bius transformation. Let the function
M[A] be defined by (1.1.19).

Proposition 1.2.10. Let H be a relation in $ and let M be a 2 X 2 matriz as in
(1.1.15) with det M #£ 0. Then the following statements hold for oo+ A3 # 0:

(i) A€ p(H) if and only if M[\] € p(M[H]);
(ii) X € y(H) if and only if M[\] € v(M[H]);
(i) A € oy(H) if and only if M[A] € o;(M[H]), where i = p,c,r.

If the relation H is closed and the equivalent assertions in (i) hold, then the oper-
ators in the identity (1.1.21) belong to B($).
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Proof. (i) Assume that A € p(H), that is, ran (H— ) is dense in $ and (H—\) ! is
a bounded operator. Then the identities in (1.1.20) imply that ran (M[H] — M[)])
is dense in $ and that (M[H] — M[A])~! is an operator. It follows with (1.1.21)
that (M[H] — M[A])~! is a bounded operator. This shows M[\] € p(M[H]). The
converse statement follows by applying M~1.

(ii) and (iii) are now straightforward consequences from (1.1.20), (1.1.21), and the
above considerations. g

Let H be arelation in ) and let A € C. Then it follows from Proposition 1.2.10
that for A # 0
Nep(H) < MXlepH™?), (1.2.14)

in which case the resolvent operators in (1.1.22) belong to B($)). Likewise, it
follows from Proposition 1.2.10 that for A # p

AeEp(H) < CuN\ € p(CLlH]),

in which case the resolvent operators in (1.1.26) belong to B($).

1.3 Adjoint relations

Here the adjoint of a relation will be introduced, again as a relation, which will be
automatically linear and closed. If the original relation is the graph of an operator,
its adjoint will be the graph of an operator precisely when the original operator is
densely defined.

Definition 1.3.1. Let H be a relation from $ to K. The adjoint H* of H is defined
as a relation from K to $ by

H*={{f,f}Y €& x9H: (f,h)s = (f,h)g forall {h,h'} € H}.
Let J be the flip-flop operator from $ x & to K x §) defined by
LY== {ffesoxa (1.3.1)
Then it is clear from Definition 1.3.1 that
H* = (JH)* = JH*, (1.3.2)

where the orthogonal complements refer to the componentwise inner product in
R x $H and H x R, respectively. Note that

AxH=JH®(JH)" and HxR=HoH"

Clearly, if H and K are relations with H C K, then K* C H*. It also follows from
(1.3.2) that H* is a closed linear relation from £ to ). Note that (1.3.2) gives
JIH* = H' e,

(Jle*)L _ HLL _ ﬁ
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Since J ! is the flip-flop operator from £ x $) to § x &, the left-hand side coincides
with H** and hence

H** — H
so that the double adjoint of H gives the closure of H in ) x K. As a byproduct,

one obtains H* = (H)*. It follows directly from the definition that

)

(H*) ™t = (H Y, (1.3.3)

and sometimes the notation H~* := (H*)~! = (H~1)* will be used. These facts
and some further elementary properties of adjoint relations are collected in the
next proposition.

Proposition 1.3.2. Let H be a relation from $ to K. Then the following statements
hold:

(i) H* is a closed linear relation, (H)* = H*, and H = H**;
(i) (dom H)* = mul H* and (dom H*)* = mul H;
(iii) ker H* = (ran H)* and (ker H*)* =Tan H.

It is a direct consequence of Proposition 1.3.2 that
dom H = dom H** and tanH =rtan H*".

The domain and range of the adjoint relation can be characterized as follows.

Lemma 1.3.3. Let H be a relation from $ to K. Then dom H* C R andran H* C §)
are characterized by

dom H* = {f € (mul H)" : |(f,h')| < M|h| for all {h,h'} € H},
and
ran H* = {f" € (ker H)" : |(f',h)| < My||W|| for all {h,h'} € H},
where My and My are nonnegative constants depending on f and f', respectively.

Proof. The first identity will be proved; the second identity follows from the first
one by using H ! instead of H, and (1.3.3). So let f € dom H*. Then there exists
an element f' € § with {f, f’} € H*. For {0,h'} € H there exists {h,,h],} € H
with {h,,h,} — {0,h'}. Hence, it follows from

(f/7 hn) = (f7 h;L)

that (f, ') = 0. Thus, f 1 mul H. Furthermore, for all {h, '} € H it follows that
|(f,h)] = |(f",h)] < My||h||. Hence, dom H* is contained in the right-hand side.

To prove the converse inclusion, let f belong to the right-hand side. Since
f € (mul H)*, the linear relation from  to C given by

o= {{h, (W, f)}: {h,W} € H}}, dom® =domH,
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is the graph of a linear functional, which is bounded because
(W, )] < Myl[h| for all {n, '} € H.

Its closure ® is a bounded linear functional on dom H, and by the Riesz represen-
tation theorem there exists an element f’ € dom H such that

$h = (h,f'), hedomH.

In particular, this shows that (', f) = (h, f’) for all {h,h'} € H, which means
that {f, f'} € H*. O

Proposition 1.3.2 and Lemma 1.3.3 immediately yield the following corollary.

Corollary 1.3.4. Let H be a relation from $ to K. Then the following statements
hold:

(i) H* is an operator if and only if dom H is dense in $);

(ii) H is an operator if and only if dom H* is dense in K;

(iii) if H € B($, R), then H* € B({,9).
Proof. Items (i) and (ii) are immediate from Proposition 1.3.2. To prove (iii),
assume H € B($), &). Since dom H = § it follows that H* is a (closed) opera-
tor. Moreover, since mul H = {0} and H is bounded, Lemma 1.3.3 shows that
dom H* = R. Now the closed graph theorem implies H* € B(R, 9). d

Occasionally the following situation comes up. Let 9t C $ and 9 C R be
(not necessarily closed) linear subspaces and let H = 9 x 91. Then

H* = (JO x 0)) " = (0 x M)~ =9tk x mL. (1.3.4)

Note that by the same argument H** = O+ x N+ = M x N, which is of course

clear from H** = H.

Let H and K be closed linear relations from ) to K. Then the componentwise
sum H T+ K is closed if and only if H+ + K= is closed (see Theorem C.3). Since
H* = JH* and K* = JK*, this implies

HFK closed < H*FK* closed. (1.3.5)

The next theorem is a variant of the closed range theorem in the general context
of linear relations.

Theorem 1.3.5. Let H be a closed relation from $ to 8. Then the following state-
ments hold:

(i) dom H is closed if and only if dom H* is closed;

(ii) ran H is closed if and only if ran H* is closed.
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Proof. Since H and {0} x R are closed linear subspaces in $) x &, it follows from
the equivalence (1.3.5) that

HT ({0} x &) =dom H x &
is closed if and only if
H* ¥ ({0} x ) = dom H* x §

is closed; cf. (1.3.4). This implies that dom H is closed if and only if dom H* is
closed, that is, (i) holds. Assertion (ii) follows immediately by applying (i) to the
inverse H~1. (]

An operator H from $) to R is unitary if H is isometric and dom H = §) and
ran H = K. The next result gives criteria for a relation from $) to £ in terms of its
adjoint to be the graph of an isometric or unitary operator.

Lemma 1.3.6. Let H be a relation from $ to K. Then the following statements
hold:

(i) H=' ¢ H* if and only if H is an isomelric operator;
(i) H=' = H* if and only if H is a unitary operator.

Proof. (i) Assume that H=* C H*. For {h,h'} € H one has {h/,h} € H~! C H*
which implies [|h]| = ||#'|| for {h,h'} € H. This shows that H is an isometric
operator. Conversely, let H be an isometric operator and {h’,h} € H~'. Then
{h,h'} € H and one has (h,k) = (b, k') for all {k,k’} € H by polarization. This
implies {h/,h} € H* and hence H~* C H*.

(i) Assume that H~! = H*. Then H is closed and by (i) H is an isometric
operator. Therefore, dom H is closed by Lemma 1.1.5, and

(dom H)* = mul H* = mul H ' = ker H = {0}

implies dom H = $). Note that H ! satisfies (H~1)~! = (H*)™! = (H~Y)* and
hence by the above argument dom H ! = &. This implies ran H = & and it follows
that H is a unitary operator. Conversely, assume that the operator H is unitary.
Then H € B(H,8), H ! € B(&,9), and H* € B(&,§) by Corollary 1.3.4. Since
H is isometric, one has H=* C H* by (i) and equality follows as both H~! and
H* belong to B(&, H). O

Unitary operators are often used to identify different relations or Hilbert
spaces.

Definition 1.3.7. Let H be a relation in $ and let K be a relation in K. Then
H and K are said to be unitarily equivalent if there exists a unitary operator
U € B(9, &) such that K = UHU™ or, equivalently,

K = {{Unh,UN}: {h,h'} € H}. (1.3.6)
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Assume that the relations H in $) and K in 8 satisfy (1.3.6). Then one has
{k,k'} € K* if and ounly if (U*K’,h) = (U*k,1’) for all {h,h'} € H, that is,
{U*k,U*K'} € H*. By setting {k,k'} = {Uh,UR’} it also follows from this that
{Uh,UR'} € K* if and only if {h,h'} € H*. Hence, one has

H* = {{U"k, UK} : {k,k'} € K}
and

K* = {{Uh, UL} : {h,h'} € H*}. (1.3.7)

Lemma 1.3.8. Let H be a closed relation in $, let K be a closed relation in K,
assume that p(H) N p(K) # 0, and that U € B($, R) is unitary. Then H and K
are unitarily equivalent if and only if

(K-\N"'=UH-)N"tU* (1.3.8)
for some, and hence for all A € p(H) N p(K).
Proof. Assume that K = UHU*. Then for all A € p(H) N p(K) one has

K- \A=U(H-\U".

Taking inverses yields (1.3.8). Conversely, assume that the identity (1.3.8) holds
for some A € p(H) N p(K). Then
H={{(H-N"f,(I+XH=N)"")f}: fen}
and
K={E-N""g,I+XMK-X")g}: g€ 8}
by Lemma 1.2.4. Therefore,

E={(K-NTULUT+ME-X)"Uf}: fen}
={UMH =N LUT+MH =N f}: feny
= {{Uh, UM} : {h,W} e H}
=UHU",
which completes the argument. O

The next proposition concerns the adjoint of the sum and of the product of
relations in Hilbert spaces.

Proposition 1.3.9. Let H and K be relations from $ to K, and let L be a relation
from R to &. Then the following statements hold:

(i) H* + K* C (H+ K)*, and if K € B($, 8), then H* + K* = (H + K)*;
(i) H*L* C (LH)*, and if L € B(&, &), then H*L* = (LH)*.
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Proof. (i) To show the inclusion H* + K* C (H + K)* assume that
{f.f'+4¢}e H + K*, where {f f'}eH* {f¢}eK"
Next consider {h,h' +k'} € H + K, where {h,h'} € H and {h,k'} € K. Then
(f'sh) = (f,n') and (g',h) = (f, k'), and hence
(f/+g/7h) - (fvhl+kl) = (f/zh) - (f:h/) + (glah) - (fak/) =0,
that is, {f, f/+¢'} € (H+ K)*. Now it will be shown that K € B($), &) implies the
inclusion (H+ K)* C H*+ K*. Let {f, f'} € (H+ K)*. Then (f',h) = (f, ' + k)
for all {h,h'} € H and {h,k'} € K. Since K € B(9,R) and K* € B(R{,$), it
follows that k' = Kh and
(f'sh) = (£, 1)) + (f, Kh) = (f,1) + (K" f, h),
and hence (f' — K*f,h) = (f,h') holds for all {h,h'} € H. Therefore, one sees
{f,[/—K*f} € H* and {f, f'} € H* + K*.

(ii) First the inclusion H*L* C (LH)* will be shown. Let {f, f'} € H*L*, so
that {f,¢'} € L* and {¢/, f'} € H* for some ¢’ € & Counsider {h,l'} € LH,
where {h,h'} € H and {I/,I'} € L for some h' € & Then (¢',h') = (f,I') and
(f';h) = (¢',h') and hence
(fla h) - (fa ll) = (gla h/) - (g/7hl) =0
for any {h,l’} € LH. This shows {f, f'} € (LH)*. Assume now that L € B(&, ®)
and hence L* € B(®,R). In order to show the inclusion (LH)* C H*L*, let
{f, '} € (LH)*. For {h,h'} € H one has {h, Lh'} € LH and hence
(f',h) = (f,Lh) = (L"f, 1)

This implies {L*f, f'} € H* and together with {f, L*f} € L* one concludes
{f,f'y € HL*. O

Let H be a relation from $ to K and A € C. The following consequences of
Proposition 1.3.9 will prove useful:
(AH)* = \H*,

and for $ = g, B
(H—\)*=H* -\
Hence, according to Proposition 1.3.2 (iii) one has
ker (H* — X) = (ran (H — \))~ and Tan (H — \) = (ker (H* = X)), (1.3.9)
Furthermore, by (1.3.3),

(H-N)"Y =@ -1

In the next proposition the connection between the spectra of H and H* is
discussed.
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Proposition 1.3.10. Let H be a relation in $ and let X € C. Then the following
statements hold:

(i) Xep(H) & A€ p(H*);
(ii) A€ o(H) & X € o(H).
If, in addition, the relation H is closed, then

(ili) A € op(H) and Tan (H — A\)# $ < X € 0p(H*) and Tan (H* — \)# $;
(iv) N€op,(H) and Tan (H — \) = $H & X € o (H*);
(v) A€ oo(H) & \€o(H").

Proof. (i) & (ii) If A € p(H), then (H — A)~! is a bounded operator with dense
domain ran (H — ), and hence it admits a continuous extension

(H-\N)"1=(H-\N"'ecB(®). (1.3.10)

Thus, also (H* —\)~! = (H—)\)"!)* € B($) and X € p(H*) follows. Conversely,
for X € p(H*) one has (H* —X)~! € B($)) since H* is closed. Hence, also (1.3.10)
holds and from this it is clear that (H — A\)~! is a bounded operator with dense
domain ran (H — A). This gives (i), and (ii) follows immediately from (i).

(iii)—(v) are direct consequences of (1.3.9). O

In the next lemma it turns out that the scalar Mobius transform in Def-
inition 1.1.10 behaves under adjoints as scalar multiplication does. In order to
formulate the result, let the conjugate of a 2 x 2 matrix M be defined by

ﬁz(? ?) when Mz(i ?)

The scalar Mobius transform corresponding to M will be denoted by M. The
special case of the following lemma for the Cayley transform is particularly useful.

Lemma 1.3.11. Let H be a relation in $ and let M be a 2 x 2 matriz as in (1.1.15),
and assume that M is invertible. Then

(M[H])* = M[H"].
In particular, for any p € C\ R,
(CulH])™ = CqlH"].

Proof. First observe that (M[H])* € M[H*]. To see this let, {f, f'} € (M[H])*.
Then, by definition, one has for all {h,h'} € H

0= (f/aah+/8h‘/) - (f77h+5hl) = (77f+af,ah) - (Sfi/gf/ahl)a
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which shows that

Multiplication by M leads to

(1)=(z oo
and so (M[H])* € M[H"].

To see the reverse inclusion M[H*] € (M[H])*, let {f, f'} € M[H*], so that
for some {p, ¢’} € H*

{f.1'} = {ap + B¢, 30 + 0¢'}.
Then for all {h,h’'} € H one has that
(f';ah+ BR') = (f,vh + 0h') = (@5 — BY)[(¢', k) — (¢, k)] = 0.

This implies that M[H*] C (M[H])*.
The statement about the Cayley transform follows with the special choice
a=—p,v=—M,and f =06 =1; cf. (1.1.25). O

The adjoint of the componentwise sum of linear relations is determined in
the following proposition. Here the notation clos H is used for the closure of a
relation H. Recall that if H and K are closed, then H F K is closed if and only if
H* T K* is closed; cf. (1.3.5).

Proposition 1.3.12. Let H and K be relations from $ to K. Then one has
(H+¥K)" =H"NK* and clos(HTK)=(H" NK*)". (1.3.11)

Proof. To verify the inclusion (H + K)* ¢ H*NK*, let {f, f'} € (H ¥ K)*. Then
for every {h,h'} € H and {k,k'} € K one has

(f' h+ k)= (f, 1 +F).

In particular, (f’,h) = (f,1') for all {h,h'} € H and (f',k) = (f,k') for all
{k,K'} € K. It follows that {f, f'} € H* N K*. Conversely, if {f, f'} € H* N K*,
then
(fh)=(f,h)  and  (f k) = (f,F)

hold for all {h,h'} € H and {k,k'} € K. Adding these two identities one obtains
(f',h+k) = (f,h/ +k') and hence {f, f'} € (H + K)*. This shows the first identity
in (1.3.11). The second identity in (1.3.11) follows from the first identity by taking
adjoints. 0

The adjoint of an orthogonal sum of relations behaves like the orthogonal
complement of a sum of orthogonal subspaces.



38 Chapter 1. Linear Relations in Hilbert Spaces

Proposition 1.3.13. Let H be a relation from $1 to Ry, let K be a relation from
o to Ko, and let H 3 K be their orthogonal sum. Then

(H® K)"=H"® K*,
where the adjoint in each case is taken in the corresponding Hilbert spaces.

Let H be a relation from $ to K. Recall that the closure of H is given by H**
and that H is a closable operator if and only if mul H** = {0}. The orthogonal

decomposition
RA=dom H* ®mul H**

implies a related range decomposition of the relation H itself.

Theorem 1.3.14. Let H be a relation from $ to R and let Q be the orthogonal
projection in 8 onto dom H*. Then H admits the sum decomposition

H=QH+(I-Q)H, (1.3.12)

where the relations QH and (I — Q)H have the following properties:

(i) QH is a closable operator;
(ii) clos(({ — Q)H) = dom H x mul H**.

Proof. As to the decomposition (1.3.12) it is clear that H C QH + (I — Q)H.
For the converse, consider {h,Qh" + (I — Q)h"} for some {h,h'},{h,h"} € H.
Observe that {0,h' — 1"} € H, i.e., ' —h” € mul H C mul H** = ker Q. Hence,
Q(W — h') =0 and this leads to

{h,QW + (T —=Q)h"} = {h, QW —h")+h"} ={h,h"} € H.
Hence, also QH + (I — Q)H C H. Thus, (1.3.12) holds.
(i) By Corollary 1.3.4, it suffices to show that dom (QH)* is dense in R. Observe
that (QH)* = H*@Q by Proposition 1.3.9, and hence
dom (QH)* = dom H*Q) = dom H* @ ker Q. (1.3.13)

To see the last identity in (1.3.13) first observe that h € dom H*Q if and only
if Qh € dom H*. Hence, if h € dom H*Q, then h = Qh + (I — Q)h shows that
h € dom H* @ ker Q. Conversely, if h € dom H* & ker @), then h = f + g, where
f € dom H* and g € ker Q. Hence, Qh = f € dom H* and thus h € dom H*Q.
This shows the last identity in (1.3.13). Now observe that ker Q = (dom H*)* and
the identity (1.3.13) takes the form

dom (QH)* = dom H* & (dom H*)*,

which implies that dom (QH)* is dense in 8.
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(ii) First it will be shown that
H*(I - Q)=dom H* x mul H*. (1.3.14)

For the inclusion (C), let {h,h'} € H*(I — Q). Then {(I —Q)h,h’'} € H* and since
(I —Q)h € (dom H*)*, it follows that (I —Q)h = 0. Thus, h = Qh € dom H* and
h' € mul H*. For the inclusion (D) in (1.3.14), let h € dom H* and h' € mul H*.
Then (I — @Q)h = 0 and hence {(I — Q)h,h'} = {0,h'} € H*. This implies that
{h,h'} € H*(I — Q).

It follows from Proposition 1.3.9 that (I — Q)H)* = H*(I — Q) and together
with (1.3.14) one obtains

clos ( )

(T-QH)™

= (H"(I-Q)

(dom H* x mul H*)"
(mul H*)* x (dom H*)*
= dom H x mul H**;

here (1.3.4) was used in the last but one step. This completes the proof of (ii). O

The sum decomposition in (1.3.12) is called the Lebesgue decomposition of
the relation H into the regular part QH and the singular part (I — Q)H. The
closure of the regular part QH is (the graph of) an operator, while the closure of
the singular part (I — Q)H is a product of closed subspaces. This decomposition
is the abstract variant of the Lebesgue decomposition of a measure.

The Lebesgue decomposition (1.3.12) for a relation H from $ to K gives rise
to a componentwise direct sum decomposition when mul H = mul H**.

Theorem 1.3.15. Let H be a relation from $ to R and let Q be the orthogonal
projection in K onto dom H*. Assume that

mul H = mul H**, (1.3.15)

so that & can be decomposed as & = dom H* @ mul H. Then QH C H and the
relation H has the direct sum decomposition

H=QH + ({0} x mul H), (1.3.16)

where QH is a closable operator from $ to 8 and {0} x mul H is a purely mul-
tivalued relation in mul H. Moreover, if the relation H is closed, then (1.3.15) is
automatically satisfied and the operator QH is closed.

Proof. Note that any element {h,h'} € H can be written as

{h, W'} = {h, QW'Y + {0, (I — Q)I}. (1.3.17)
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Under the assumption (1.3.15) the orthogonal projection I — () maps onto mul H
and hence the relation H is contained in the right-hand side of (1.3.16). The
identity (1.3.17) also implies QH C H and it follows that the right-hand side of
(1.3.16) is contained in H. According to Theorem 1.3.14, QH is a closable operator
and hence the sum in (1.3.16) is direct.

Now assume that the relation H is closed. In order to show that QH is closed,
let {h,,hl,} € H be a sequence such that {h,, Qhl} — {¢,¥}. Since QH C H,
it follows that {p,v} € H. Moreover, Qh], — v implies ¢» = Qv and hence

{0} = {p,Qv} € QH. 0

According to the above theorem, the closable operator Q H acts as an operator
part of the relation H in the direct sum decomposition (1.3.16). Note that

domQH =domH and ranQH C dom H". (1.3.18)

The following theorem continues this line of thought in the special but useful
situation where & = ), i.e., when H is a relation in §). Recall from Theorem 1.3.15
that if the relation H is closed then actually the operator QH is closed.

Theorem 1.3.16. Let H be a relation in $, let Q) be the orthogonal projection onto
dom H*, and assume mul H = mul H**. Suppose, in addition, that

dom H C dom H*  or, equivalently, mul H C mul H*. (1.3.19)

Then the closable operator QH acts in the Hilbert space dom H* and H has the
orthogonal sum decomposition

H=QH & ({0} x mul H). (1.3.20)
Moreover, QH 1is densely defined in dom H* if and only if mul H = mul H*.

Proof. Since the condition (1.3.15) is assumed, Theorem 1.3.15 applies, and so the
direct sum decomposition (1.3.16) holds, where QH is a closable operator in $
and {0} x mul H is a purely multivalued relation in mul H.

Now the equivalence in (1.3.19) will be shown. If dom H C dom H*, it follows
by taking orthogonal complements that mul H = mul H** C mul H*. Conversely,
if mul H = mul H** C mul H*, it follows by taking orthogonal complements that
dom H** € dom H* and, in particular, dom H C dom H*.

The conditions (1.3.19) and (1.3.18) imply that the closable operator QH
acts in the Hilbert space dom H* and hence the componentwise decomposition
of H in (1.3.16) is actually a componentwise orthogonal sum, i.e., (1.3.20) holds.
Furthermore, since dom QH = dom H by (1.3.18), it follows that the operator Q H
is densely defined in dom H* if and only if dom H = dom H*, which is equivalent
to mul H = mul H*. O
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The message of this theorem is that when mul H = mul H**, the Hilbert
space decomposes in §) = dom H* @ mul H, and the regular part of the relation H
serves as a not necessarily densely defined (orthogonal) operator part of H in the
Hilbert space dom H*. In the rest of this text the following notation will be used:

~60p = dOIIlH*7 f.)mul =mul ™ = mlﬂHa

and, similarly,
Ho, = QH, Hpy = {0} x mul H.

With these notations one has
fJ:fJop @S/’Jmul» H:Hop é\aHmul;

cf. Theorem 1.4.11, Theorem 1.5.1, and Theorem 1.6.12. The relation Hp, is
purely multivalued and self-adjoint in the Hilbert space $mu by (1.3.4), that is,

Hya = (Hmu )™
From Proposition 1.3.13 one then obtains
H* = (Hop)" & Huu
and hence the adjoint (Hop )* of Hyp in $)op satisfies
(HOP)* =H"N (5013 X 57301))
and its multivalued part in o, is mul H* N $,p, . Note that
mul H* = mul (H,p, )* @ mul Hy,y = (mul H*N f_)op) @ mul H.

This section ends by introducing the Moore—Penrose inverse of a relation; cf.
Appendix D.

Definition 1.3.17. Let H be a relation from $) to £. Then the Moore—Penrose
inverse H-Y of H from R to § is defined as the relation

H(71> = P(kerH)J-H71 = P(mulH*1)J-H71'

In fact, the Moore—Penrose inverse H(~1) of H is an operator. To see this, let
{0,k} € HY. Then {0,h} € H~! and {h,k} € Per ryr for some h € . Since
k = Pyer gyt h and h € ker H, it follows that k& = 0. Furthermore, if H is closed,
then Theorem 1.3.15 applied to H~! (in which case Q = Piyer iy ) shows that

H™' = Pyermy» H™' + ({0} x ker H).

Hence, the Moore—Penrose inverse H(™Y) coincides with the operator part of H™1.
Moreover, if H is closed then ran H is closed if and only if H(-V takes ran H
boundedly into (ker H)*, in which case H(~1) € B(ran H, (ker H)*). Note that for
H € B(9, &) the Moore-Penrose inverse coincides with the usual Moore-Penrose
inverse, see Appendix D.
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Example 1.3.18. Let T be a closed relation in $) and assume that A € p(7"). Then
H = (T —)\)"! € B($) with ker H = mulT and ran H = dom T, so that the
Moore—Penrose inverse of H is the operator given by

HY =1, —

which maps dom 7 into (mul7)*.

1.4 Symmetric relations

Symmetric relations are the building stones of this text. Here the basic properties
of such relations will be developed. The special case of self-adjoint relations will
be treated in more detail in the next section.

Definition 1.4.1. A relation S in § is called symmetric if S C S*, and self-adjoint
if §' = 5*. A symmetric relation S in § is said to be maximal symmetric if every
symmetric extension S’ of S in § satisfies S’ = S.

It follows immediately from the definition of the adjoint relation that a rela-
tion S is symmetric if and only if

(f,9)=(fg") forall {f f'},{g,9'}€S. (1.4.1)

The following lemma provides a slightly stronger statement and an easily
verifiable condition for the symmetry of a relation.

Lemma 1.4.2. A relation S in $) is symmetric if and only if

Im(f',f)=0  forall {f,f}€S. (1.4.2)

Proof. If S C S*, then (1.4.1) implies (1.4.2). Conversely, assume that (1.4.2)
holds. Let {f, f'},{g9,¢'} € S and let A € C. Then {f + Ag, f' + \¢'} € S and it
follows from

(f' +2d' f+2g) = (f, )+ A(f'9) + Mg, ) + M (d, 9),
and the assumption Im (f' + A¢’, f + Ag) = 0 that
Im [A(f',9) + Mg, /)] = 0.
By putting A = 1 and A = ¢, respectively, one obtains
Im (f',9) = =Im(¢", f), Re(f',g9) =Re(d', f),

which leads to the equality (f',9) = (¢/,f) = (f.¢'). Hence, the relation S is
symmetric by (1.4.1). O
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If S is symmetric, then clearly also S C 8*, since S* is closed. Hence, the
closure S is also symmetric. In particular, if S is maximal symmetric, then S is
closed. Thus, every self-adjoint relation is maximal symmetric.

Lemma 1.4.3. Let S be a symmetric relation in $). Then mul S C mul S*. If S is
mazimal symmetric, then mul S = mul S*.

Proof. Let S be symmetric. Then it follows directly from Definition 1.4.1 that
mul S C mul S*.

Now assume S is maximal symmetric. It suffices to show mul S* C mul S. If
k € mul S* = (dom S)*, then

S F span{0,k} = {{h,} +k}: {h,h'} € S}

is a symmetric extension of S, as Im (b’ +k,h) = Im (h',h) = 0 for all {h,h'} € S.
Since S is maximal symmetric, it follows that {0,k} € S and k& € mul S. Thus,
mul $* C mul S. |

As an example consider the relation S defined by S = {0} x 91, where 9 C $
is a linear subspace. It follows from (1.3.4) that S* = N+ x § and S** = {0} x N.
Hence, S is symmetric, while

mulS =9, mulS =9 mulS* =49,

which shows that if S is closed the inclusion mul S C mul S* in Lemma 1.4.3 is
in general strict. Moreover, in the present example S is self-adjoint if and only if
I = 9. If S is maximal symmetric then according to Lemma 1.4.3 one has 91 = §),
so that S is self-adjoint.

In the rest of this text the interest will often be in extensions that are closed;
in particular, in relations H that are self-adjoint extensions of a given symmetric
relation S,

SCH=H"CS".

Observe that H is a self-adjoint extension of S if and only if H is a self-adjoint
extension of the closure S. In that sense it will often be assumed without loss of

generality that S is closed; recall that v(S) = v(95).

Proposition 1.4.4. Let S be a symmetric relation in $. Then C\ R is contained in
v(8) and, in particular, the defect ny(S) = dim (ran (S — A\))* is constant for all
A € Ct and all X € C. Furthermore, op(S)Uoc(S) CR and

15 = ) th) <

h 1.4.
< a1 (1.43)

for all h € dom (S — \)~! =ran(S — \) and A € C\ R.
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Proof. Let A € C\R and {f, f'} € S, so that {f' —Af,f} € (S—A)"!. As Sis
symmetric, one has Im (f/, f) = 0 by Lemma 1.4.2, and hence

0 < [ImA|(f, f) = M (f" = Af, O < 17 = AL
and for f # 0 this implies
0 < [Im A[[[f < If" = AfIl-

Therefore, (S— )1 is an operator and (1.4.3) holds for all h € dom (S —X)~! and
A € C\ R. This also shows C\ R C «(S) and it follows from Theorem 1.2.5 that
the defect ny(S) is constant on C* and C~. It is clear that the point spectrum
a,(S) is contained in R, and since (S — A)~! is bounded for A € C\ R, also the
continuous spectrum o¢(.S) is contained in R. O

The defect numbers ny(S) of a symmetric relation S are defined as
n+(S) := dim (ran (S F z))l = dim (ker (S* + 1)), (1.4.4)

where according to Proposition 1.4.4 the point +i in (1.4.4) can be replaced by
any A € C*.

In the case where the symmetric relation S is bounded from below in the
sense of the next definition it follows that v(S) N R # () and thus v(S) consists
of one component only; cf. Proposition 1.4.6. In particular, the defect numbers
n4(S) and n_(S) coincide in this case.

Definition 1.4.5. Let S be a relation in §). Then S is said to be bounded from below
if there exists a number 77 € R such that

(f',f) zn(f, f) forall {f f'}es. (1.4.5)
The lower bound m(S) of S is the largest number 1 € R for which (1.4.5) holds:
D }

The inequality (1.4.5) will be written as S > nI, which will be further abbreviated
to S >n. If S >0, then S is called nonnegative (and S may have a positive lower
bound).

For a relation S that is bounded from below also the terminology semibounded
relation will be used. If S is bounded from below, then it follows directly from
Lemma 1.4.2 that S is symmetric. Moreover, if (1.4.5) is satisfied for all € R,
then n[|f[12 < [I£IIf] for {f,f'} € S and n € R shows that dom S = {0} and
hence S is a purely multivalued relation.
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Proposition 1.4.6. Let S be a symmetric relation in $ which is bounded from below
with lower bound m(S) € R. Then C\[m(S), c0) is contained in~v(S) and the defect
nx(S) = dim (ran (S — X)) is constant for all X € C\ [m(S),00). Furthermore,
op(S)Uoc(S) C [m(S),o0) and

(S —w»)~'n| < Al (1.4.6)

m(S) — V|
for all h € dom (S — v)~1 and v < m(S).
Proof. For {f, f'} € S and v < m(S) the assumption (f' —m(S)f, f) > 0 implies

(m(S) = v)(£, f) < (f' =m(S)f + (m(S) =) f, f) = (f' = v/, [)
<" =vfllf-

Hence, if f # 0 it follows that (m(S) —v)||f|| < ||/ — v f| holds for all {f, f'} € S
and v < m(S). This shows that (S—v)~! is an operator and (1.4.6) holds. Recalling
Proposition 1.4.4, one has C\ [m(S),00) C v(S5), and Theorem 1.2.5 implies that
the defect n)(S) is constant on C\ [m(S),00), and op,(S) U o.(S) C [m(S),o0)
holds. g

Lemma 1.4.7. Let S be a closed symmetric relation in $ and let X € v(S). Then
ran (S* — ) = 9.
Proof. Let A € 4(S), then also A € (S) (for A € C\ R this follows from Propo-

sition 1.4.4). This implies that ran (S — \) is closed according to Lemma 1.2.2.

Hence, ran (S* — A) is closed by Theorem 1.3.5. Moreover, A € (S) implies
ker (S — A) = {0} and therefore

(ran (5% — \)) " = ker (S — X) = {0},
that is, ran (S* — A) is dense in $. It follows that ran (S* — \) = 9. O

In the next proposition the Cayley transform and the inverse Cayley trans-
form of symmetric relations are considered.

Proposition 1.4.8. Let p € C\ R and let €, and F,, be the Cayley transform and
inverse Cayley transform in Definition 1.1.13. Let S and V be relations in $) such
that V= €,[S] or, equivalently, S = F,[V]. Then the following statements hold:

(i) S is a (closed) symmetric relation if and only if V is a (closed) isometric
operator;

(i1) S is a mazimal symmetric relation if and only if V is an isometric operator
such that domV = $ orranV = §).

Proof. (i) Let S and V' be relations such that V = €,[S] with p € C\ R. Then
(1.1.23), (1.1.25), and Lemma 1.3.11 show that

V71 = ep[S] and V* = Gﬁ[s*]
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These equalities and an application of the inverse Cayley transform give
ViCcVr e CuS]ceust] & ScSt.

Now Lemma 1.3.6 shows that S is a symmetric relation if and only if V is an
isometric operator. Moreover, by (1.1.18), S is closed if and only if V! = €3[9]
is closed, which completes the proof of (i).

(ii) Let S be maximal symmetric and let V' = €,[S]. Assume that V"’ is an isometric
extension of V' in $). Then S" = F,[V’] is a symmetric extension of S and hence
S’ = S. This implies V/ = V and hence domV = §) or ranV = §). The converse
statement is proved by the same argument. (|

It follows from Proposition 1.4.8 (ii) and (1.1.24) that a symmetric relation
S in $ is maximal symmetric if and only if

ran (S —pu) =9 (1.4.7)

for some, and hence for all u € C* or for some, and hence for all € C~.

Definition 1.4.9. Let S be a symmetric relation in $) and let A € C. The spaces
My (S7) :=ker (S* —A) and  IMA(S™) = {{fr, Afa} : fr € M(S")}
are called defect subspaces of S at the point A € C.
Note that the defect numbers ny (S) in (1.4.4) satisfy
nt(S) = dim N, (S*) = dim N, (S¥), AeCT.

Since the adjoint relation S* is closed by Proposition 1.3.2, the defect sub-
spaces My (S*) C dom S* and ,(S*) C S* are closed subspaces of $ and $2,
respectively. The notation in Definition 1.4.9 will be used throughout the text.
Besides the defect subspaces 91, (5*) and 91, (S*) also the spaces

M(S) ;=ker (S —A) and  I\(S) := {{fr,Ai} : fr € M(S)}
for a symmetric relation S will be used. Moreover, let
No(S) :=mul S and Noo(S) := {{0, f'} : f' € N ()}

Lemma 1.4.10. Let S be a closed symmetric relation in $ and let H C S* be a
closed extension of S such that p(H) # 0. Then for A\, € p(H)

T+ \—p)(H—-)\""! (1.4.8)

is boundedly invertible with inverse I + (u — \)(H — p)~t. For u € p(H) the
mapping (1.4.8) is holomorphic in X\. Moreover, for X\, € p(H) the operator in
(1.4.8) maps M, (S*) bijectively onto M (S*).
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Proof. Let A\, u € p(H). Then the first assertion follows from Corollary 1.2.8. The
holomorphy of A + I + (A — pu)(H — A)~! follows from the holomorphy of the
resolvent; cf. Corollary 1.2.7. As to the defect spaces, it is first verified that for
fu € ML (S*) one has

A=+ =p)H =X [ € M(S*) =ran (S — N)* . (1.4.9)
To see this, let {g,¢'} € S and consider

(fag = Ag) = (T + A= p)(H =N fu.g' = Ag)
= (fu: T+ A =m)H" =N (g = Ag))-

Since A € p(H*) according to Proposition 1.3.10 and S C H* it follows that

(H* = X)~'(¢' — Ag) = g, and so

(g =2g) = (fu, g = Xg+ (A =R)g) = (fu,g' — fig) =0.

Hence, (1.4.9) is clear. It follows that the operator in (1.4.8) maps 91,(S*) to
M) (S*). The same reasoning with A and p interchanged shows that the map is in
fact onto. 0

Closed symmetric relations can be written as orthogonal sums of closed sym-
metric operators and self-adjoint purely multivalued linear relations. This is a
straightforward consequence of Theorem 1.3.16.

Theorem 1.4.11. Let S be a closed symmetric relation in $. Decompose $) as
N = Hop D At s Hop = (mul S)t and Hyw = mul S, and denote the orthog-
onal projection from $ onto Hep by Pop. Then S is the direct orthogonal sum
Sop D Sl of the closed symmetric operator

Sop = {{f: Pop '} : {f, '} € 5}

in Hop and the self-adjoint purely multivalued relation

Smut = {{0, f'}: f € Omu } = {{0.(I = Pop ) f'} : {f. [’} €5}

N Hmul - Moreover, the operator So, is densely defined in $Hop if and only if
mul S = mulS*. If the relation S is mazimal symmetric, then Sop is a densely
defined mazimal symmetric operator in Hop -

Proof. By assumption the relation S is closed and symmetric, which implies that
mul § = mul $** and dom .S C dom S*. Thus, Theorem 1.3.16 applies and yields
the indicated decomposition and the criterion for the denseness of S, follows.

If S is maximal symmetric, then mul S = mul S* by Lemma 1.4.3. Hence,
in this case the operator S, is densely defined. Assume that S; is a symmetric
extension of Sy, in Hep, . Then Sy @ Sy 1s & symmetric extension of S and hence
coincides with S. This implies S,,, = S1 and therefore S,;, is a maximal symmetric
operator in Hep - O
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1.5 Self-adjoint relations

For self-adjoint relations there is always an orthogonal decomposition into a self-
adjoint operator and a self-adjoint purely multivalued part. This reduction allows
one to apply the spectral theory for self-adjoint operators in the present context,
see also Chapter 3. This section contains a brief introduction and a number of
consequences of this approach; in particular, nonnegative and semibounded self-
adjoint relations will be considered.

The following reduction result is a specialization of Theorem 1.4.11 for self-
adjoint relations.

Theorem 1.5.1. Let H be a self-adjoint relation in $). Decompose the space §) as
5 =Hop B HNoo, where

Hop :=dom H = (mulH)J‘ and  $Hpa = mul H,

and denote the orthogonal projection from $ onto $Hop by Pop. Then H is the
direct orthogonal sum Ho, © Hyu of the (densely defined) self-adjoint operator

Hop = {{f Pop f'}: {f. "} € H}
in Hop and the self-adjoint purely multivalued relation
Hmul = {{Oaf/} : f/ 6f.)mul} = {{Ov(I_Pop)fl} : {faf/} € H}
m YJmul .

Observe that for A € C\ R the resolvent of H in Theorem 1.5.1 admits the
matrix representation

(H -2 = <Pop (H = 2o 8) _ <(Hop i 8) (1.5.1)

with respect to the space decomposition $ = Hop © Hmul - Here o, denotes the
canonical embedding of ), in .

In the following it is explained how the spectral theory and the functional
calculus for self-adjoint operators extend via Theorem 1.5.1 to self-adjoint rela-
tions. First of all it is clear that the finite (real) spectrum of a self-adjoint relation
H=H,, @ Hypy is the same as that of the self-adjoint operator part H,p . Note
that p(Hmu) = C and that o(H_ ! ) consists only of the eigenvalue 0. The es-
sential spectrum oess(H) and discrete spectrum oq(H) of a self-adjoint relation H
are defined as the essential spectrum and discrete spectrum of its operator part
H,,,, respectively. Recall that the discrete spectrum consists of all isolated eigen-
values of finite multiplicity and the essential spectrum is the remaining part of
the spectrum; it consists of the continuous spectrum, eigenvalues embedded in the
continuous spectrum, and isolated eigenvalues of infinite multiplicity. It is useful
to observe that A € o4(H) if and only if dimker (H — \) < co and ran (H — \) is
closed.
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The spectral measure E,, (-) of the self-adjoint operator H,, is defined for the
Borel sets in R with orthogonal projections in )., as values, and the corresponding
spectral function is defined as ¢ — FEo,((—00,t)). Then one has

Hopf:/ﬂgtdEop(t)fv

dom Hyp, = {feﬁop :/}Rth(Eop(t)f,f) < oo}.

Furthermore, for a bounded measurable function A : R — C the bounded operator
h(Hop ) € B(9op ) is defined via the functional calculus for self-adjoint operators
in Hep :

h(H,,) = / h() dBop (1). (1.5.2)
R
In particular, the spectral calculus leads to the formula
1
(Hop — Nt = / ﬁconp (t), A€ p(Hop). (1.5.3)
Rt —

The spectral projection E,p, ((a, b)) can be obtained with the help of the resolvent
of Ho, and Stone’s formula

. . 1 e o —1 o —1
T i /m (Hop — (t +6)) ™ = (Hop — (t — i) ") dt,  (15.4)

where the limits exist in the strong sense.
The spectral measure of a self-adjoint relation will be defined on R as the
orthogonal sum of the spectral measure of H,, and the zero operator in $mui -

Definition 1.5.2. Let H = H, @ Hpu be a self-adjoint relation in the Hilbert
space ) = Hop ®Hmul and denote the spectral measure of the self-adjoint operator
Hop in $op by Eop (+). Then the spectral measure E(-) of H is defined as

E() = (Eoo(') 8)

with respect to the decomposition $ = $op @ Himul -

Now the functional calculus for the self-adjoint operator H,;, yields the func-
tional calculus for the self-adjoint relation H = H,p @ Hypu . More precisely, for
a bounded measurable function h : R — C one defines

h(H) = / h(t) dE(1)
R
in accordance with (1.5.2). It follows directly from Definition 1.5.2 and (1.5.2) that

h(H) = h(HOp) é\a OmulH (155)
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is an everywhere defined bounded operator in §). In particular, for the resolvent
of H in (1.5.1) one has

1
(H-X\N"'= [ ——dE(t), \ep(H); (1.5.6)
rRL—A
cf. (1.5.3). Note that the spectral projection E((a,b)) of H is also given by Stone’s
formula

. . 1 [ ey —1 oy —1
i dim L /m (H = (t+i0) " = (H - (t—i0) Dydt,  (1L5.7)

which again follows from the decomposition of the resolvent of H in (1.5.1); as in
(1.5.4), the limits are understood in the strong sense. A proof of Stone’s formula
(in the weak sense) can also be found in Example A.1.4.

The next lemma on the strong convergence follows from the properties of the
functional calculus of self-adjoint operators; cf. [619, Theorem VIIL5] and (1.5.5).
It will be used in Chapter 3.

Lemma 1.5.3. Let h, : R — C be a sequence of bounded measurable functions
which converge pointwise to h such that ||hy|leo is bounded. Then
nh~>néo hn(Hop )f = h(Hop)fv f S fJopv

and

Jim h,(H)g=h(H)g, g€
The next proposition on the Cayley transform of self-adjoint relations com-
plements Proposition 1.4.8.

Proposition 1.5.4. Let p € C\ R and let C, and F, be the Cayley transform and
inverse Cayley transform defined in (1.1.23). Let S and V be relations such that
V = €,[S] or, equivalently, S = F,[V]. Then S is a self-adjoint relation if and
only if V is a unitary operator.

Proof. As in the proof of Proposition 1.4.8 one obtains for V' = €,,[S] and p € C\R

that
viloyvr o CrlS] =Cz[S"] & S=057,

and now the assertion follows from Lemma 1.3.6. O

The following theorem is useful when one needs to prove that a given relation
is self-adjoint. It is often easy to check that a relation is symmetric and hence it is
convenient to have equivalent conditions for a symmetric relation to be self-adjoint
available.

Theorem 1.5.5. Let S be a closed symmetric relation in $. Then the following
statements are equivalent:
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(i) §=5%

(ii) ker (S* — X) = {0} = ker (S* — u) for some, and hence for all X € CT and
peC;

(ili) ran (S — X\) = $ = ran (S — p) for some, and hence for all A\ € C* and
peC;

(iv) C\R C p(S).

If the closed symmetric relation S is bounded from below by m(S) € R or, more
generally, v(S)NR # 0, then X, p1 in (ii) and (iii) can also be chosen in (—oo, m(S))
or v(S) NR, respectively, such that X\ = p. In the case S > m(S) item (iv) can be
replaced by C\ [m(S),c0) C p(9).

Proof. (i) = (ii) From Proposition 1.4.4 it follows that ker (S — ) = {0} for
A€ C\R, and as S = 5* one concludes (ii).

(ii) < (iii) follows from the identity (ran (S — \))* = ker (S* — \) and the fact
that ran (S — A) is closed for A € C\ R by Proposition 1.4.4 and Lemma 1.2.2.
Note also that ran (S — A) = § for some A € C* implies ran (S — \) = § for all
A € C* by Theorem 1.2.5 and C* C ~(S5).

(iii) = (iv) Since C\ R C ¥(S) by Proposition 1.4.4 and ran (S—X\) = 9, A € C\ R,
is closed, it follows that (S — A\)~! € B(£)), A € C\ R. Now Lemma 1.2.4 implies
C\R C p(5).

(iv) = (i) It suffices to show S* C S. For this let {f, f'} € S* and A € C\ R. As
A € p(S), there exists {g,¢'} € S such that

"= X =49 =X

Hence? {f _g7>‘(f _g)} = {fﬂfl} - {g7gl} € 5" and

f—g€ker(S* —\) = (ran (S — \)*.

Since with A € p(S) also A € p(S), it follows that f = g and hence f’ = ¢/, that
is, {f.f'} € 5.

If S is bounded from below with lower bound m(S), then C\ [m(S),00) C v(5)
by Proposition 1.4.6. Hence, if A = p < m(S), then ran (S — A) = $ implies
ran (S —A) = 9 for all A € C\ [m(S),00) by Theorem 1.2.5. It is also clear that
for A = 1 < m(S) one has (ran (S — \))* = ker (S* — \), and that ran (S — \) is
closed. This shows the equivalence of (ii) and (iii), and the argument remains true
in the more general situation v(S) NR # . As above one concludes in the case

S > m(S) from C\ [m(S),00) C v(S) that (iii) implies C\ [m(S),c0) C p(S). O

Note also that if a closed symmetric relation S is self-adjoint and bounded
from below with lower bound m(S) € R, then one has o(S) C [m(S),o0) by
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Theorem 1.5.5 (iv). In fact, one verifies with the help of the spectral measure of
S or of its operator part S, that

m(S) = mino(S).
In some cases it is useful to have the following variant of the equivalence of
(i) and (iii) in Theorem 1.5.5 in which S is not assumed to be closed.

Proposition 1.5.6. Let S be a symmetric relation in . Then S is self-adjoint if
and only if ran (S — \) = $ = ran (S — u) for some, and hence for all X € C*
and p € C—. If S is semibounded with lower bound m(S) or, more generally,
Y(S)NR # 0, then X and p can also be chosen in (—oo,m(S)) or v(S) N R,
respectively, such that A = p.

Proof. Note that by Lemma 1.2.2 the condition ran (S —\) = $ for some X € (S5)
implies that S is closed. Now the assertions follow from Theorem 1.5.5. ]

Let S be a symmetric relation in §). Then it is easy to see that
SFN(S*), 2€R, and S F Neo(SY)

are also symmetric relations in §). The next lemma provides a necessary and suffi-
cient condition for the self-adjointness of these relations, which applies, in partic-
ular, when v(S) N R # 0.

Lemma 1.5.7. Let S be a symmetric relation in $ and let x € R.
(i) The symmetric relation S F &Z(S*) is self-adjoint if and only if
ran (S — ) =Tan (S — z) Nran (S* — z).
In particular, if van (S — x) is closed, then S F ‘?II(S*) is self-adjoint.
(ii) The symmetric relation S + ‘3\100(5*) is self-adjoint if and only if
dom S = dom S Ndom S*. (1.5.8)
In particular, if dom S is closed, then S F &m(S*) 1s self-adjoint.
Proof. (i) This assertion is a consequence of item (ii). In fact, consider the sym-
metric relation 7' = (S — x)~%, note that 7% = (S* — )~} and mul T* = N, (S*),
and observe that the following statements (a)—(c) are equivalent

L( *) is self-adjoint;
(b) ( ) 1( +(5*) x {0}) is self-adjoint;
13 ({0} x0M,(S*)) =T + ({0} x mulT*) is self-adjoint.
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Now (ii) shows that (a)—(c) are equivalent to

(d) domT = domT NdomT™;
(e) ran (S —z) =Tan (S — z) Nran (S* — z),

which implies (i).
(i) Observe first that the relation S F Ms (S*) = S F ({0} x mul %) is symmetric
and by Proposition 1.3.12 and (1.3.4) its adjoint is given by
(S F N (5%)" = (S T ({0} x mul §%))" = §* N (dom S x H). (1.5.9)
Now assume that S + ‘ftoo(S*) is self-adjoint. Then

S T ({0} x mul %) = §* 1 (dom S x ),

which implies (1.5.8). Conversely, assume that (1.5.8) holds. Since S F ‘)/;{OO(S*)
is symmetric, it suffices to show that

5* N (dom S x H) € S F ({0} x mul 5*); (1.5.10)

cf. (1.5.9). Let {f, f'} belong to the left-hand side of (1.5.10). Then it follows
from (1.5.8) that f € dom S, so that {f,g} € S C S* for some g € §). Therefore,

{0, /=gt ={f. 1"} —{f, 9} € S*, so that f' — g € mul S* and
{(f,fY={f.g}+{0,f —gteSF ({0} X mulS*).
This shows that (1.5.10) holds. Hence, S + i)A?oo(S*) is self-adjoint. O

The rest of this section is devoted to self-adjoint relations that are semi-
bounded; cf. Chapter 5. In particular, the square root of a nonnegative self-adjoint
relation is constructed. The material presented here will play an essential role later
in the text.

Lemma 1.5.8. Let H be a closed relation from $ to K. Then the relations H*H
and HH* are nonnegative and self-adjoint in § and R, respectively.

Proof. In order to see that H*H > 0, let {h,h'} € H*H. Then {h,l} € H and
{l,h'} € H* for some [ € R, so that
(W' h)=(1,1) > 0.

Hence, H* H is nonnegative and, in particular, symmetric.

In order to show that H* H is self-adjoint in $) it suffices to verify the identity
ran (H*H + I) = $; cf. Proposition 1.5.6. For this let f € $ and note that
AxR=HBgxaH*, as H is closed. It follows that there is a unique decomposition

{f,0y ={h,0'} +{k,k'}, {n,W}€H, {kk}ecH".
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Hence,
f=h+k 0=n+F,

which leads to {—k, h'} = {—k, —k'} € H* and {I/,k} = J{—k,I'} € JH* = H*,
where J is the flip-flop operator in (1.3.1). Thus, {h,h'} € H and {h',k} € H*
imply {h,k} € H*H and

{h,f} ={h,k+h} e HH+1,

so that f € ran (H*H + I). Thus, ran (H*H +I) = $.

Applying what was established above to H* (instead of H) and taking into
account Proposition 1.3.2 (i) one concludes that HH* = H**H* is also nonnega-
tive and self-adjoint. |

In the next theorem it will be shown that a nonnegative self-adjoint relation
possesses a unique nonnegative square root.

Theorem 1.5.9. Let H be a nonnegative self-adjoint relation in $). Then there exists
a unique nonnegative self-adjoint relation K in $), denoted by K = H%, such that
K? = H. Moreover, H? has the representation

H? = (Hop)? & Hpul. (1.5.11)

Proof. If H is a self-adjoint relation in §), then by Theorem 1.5.1 one has the
orthogonal decomposition
H=H,, @& Hyu - (1.5.12)

Since H is assumed to be nonnegative, it follows that H,, is a nonnegative self-
adjoint operator in §),, which possesses a unique nonnegative square root (Hop )%
in $op . Now clearly K defined by the right-hand side of (1.5.11) is a nonnegative
self-adjoint relation with mul K = mul H. Since dom Hy,, = {0}, it is clear that
(Humu )? = Hypu - It follows from (1.1.9) that

-~

)2 & (Hmul)2 - Hop é; Hmul =H.

[N

K? = ((Hop)

In order to show uniqueness, let K be a nonnegative self-adjoint relation in
$ such that K2 = H. Then mul K = mul H. In fact, the inclusion mul K C mul H
is clear as {0,p} € K and {0,0} € K show {0,¢} € K2 = H. To show that
mul H C mul K, let {0,¢} € H = K2. Then {0,%} € K and {1, p} € K for some
P € 9. As K is self-adjoint, (¢,) = (0,¢) = 0, that is, ¢ = 0 and {0, ¢} € K, as
needed. Therefore,

mul K =mulH and dom K = dom H.
Decompose the self-adjoint relation K as in Theorem 1.5.1

K=Ky @& Kpul s (1.5.13)
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where K, is a nonnegative self-adjoint operator in dom K = dom H. Furthermore,
observe from (1.5.13) and (1.1.9) that

~

H=K?=(Ky)* 3 (Kmu)? = (Kop)? & Kupul - (1.5.14)
Moreover, comparing (1.5.14) with (1.5.12) shows that
HOP = (K0p)27 Hmul = Kmula

and since the square root of a nonnegative self-adjoint operator is uniquely deter-
1
mined, it follows that Ko, = (Hop 2. a

Let H be a nonnegative self-adjoint relation in §. Since Theorem 1.5.9 implies
that mul H2 = mul H, it follows that

1

(HE)OP = (HOP) )

[N

1
so that the notation Hg, is unambiguous.
In the next lemma the square root of H — z for a semibounded relation H is
considered.

Lemma 1.5.10. Let H be a semibounded self-adjoint relation in $) with lower bound
n=m(H) and let x <n. Then the following statements hold:

1) dom H,, s a core for the operator (Ho,, — x)2, that is, the closure of the
i) dom Hyp i for th Hop — x)2, that is, the cl f th
restriction )
(Hop — )2 [ dom H,p, (1.5.15)
coincides with (Hop — )% ;
(i) dom (H — )2 = dom (H — )2 ;
(iii) for all h € dom (H — z)? = dom (H — 1),

o=

I(Hop = 2)2hl* + @[lh]|* = [|(Hop —m)=hl|* +nlA]>. (1.5.16)

Proof. (i) First observe that H,, is a self-adjoint operator in $),, with the same
lower bound as H, and hence H,, — z, x <7, is a nonnegative operator in $p, .
It suffices to show that the graph of the operator in (1.5.15) is dense in the graph
of the operator (H,, — ). Therefore, assume that for some k € dom (Hyp — )2
and all h € dom H,;, one has

0= (h, k) + ((Hop — )% h, (Hop — 2)5k) = (h, k) + ((Hop — 2)h, k).

Then k is orthogonal to ran ((Ho, — ) + I) and as @ — 1 < 7, it follows that
ran ((Hop — ) + I) = Hop . Hence, k = 0. This implies (i).

(ii) & (iii) Note first that for h € dom H = dom H,), the identity
((Hop —2)h, h) +a(h, h) = ((Hop —n)h, h) +n(h, h)
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can be rewritten in the form
[(Hop — 2)2h||* + z||hl® = ||(Hop — m)Zh|? + nl|R]?, h€domH, (1.5.17)

which coincides with (1.5.16) on dom H.
In order to show the inclusion (C) in (ii), assume that

h € dom (H — x)% = dom (Hop — as)%.
According to (i), there exists a sequence h,, € dom H,, such that
By —h and  (Hey — )7 hy, — (Hop — )2 h. (1.5.18)

Therefore, it follows from (1.5.17) that (Hop, — 1)2h,, is a Cauchy sequence in
$Hop - Since h, — h and the operator (Hop — 17)% is closed, one concludes that
h € dom (H,p, — n)2 = dom (H —1)2. The other inclusion in (ii) is shown in the
same way.

It remains to verify (1.5.16). Choose h € dom (H — )2 = dom (H —7)2 and
use (i) to get a sequence h, € dom H,, as in (1.5.18). Then (1.5.17) shows that
(Hop — n)2h,, is a Cauchy sequence in $Hop » and as (Hop — )2 is closed one has

(Hop = 0)2hn = (Hop —1)%h, 1 — 00, (1.5.19)

From (1.5.17) applied with h,,, together with (1.5.18) and (1.5.19) one obtains
(1.5.16). O

In the next proposition two semibounded self-adjoint relations are considered.
It turns out that the inclusion of the square root domains implies a strong norm
inequality for the operator parts.

Proposition 1.5.11. Let Hy and Hy be semibounded self-adjoint relations in $
with lower bounds m(Hy) and m(Hs) and let x < min{m(H,), m(Hz)}. Then the
inclusion

dom (Hy — :L‘)% C dom (H; — ;r)%, (1.5.20)
together with the inequality
|(Hrop = 2)2¢ll < pll(Haop —2)7¢]l, ¢ € dom(Hy )7, (15.21)
where p > 0, are equivalent to the inequality
(Hy — )"t < p*(Hy —2) % (1.5.22)

Moreover, if the inclusion (1.5.20) holds, then there exists p > 0 for which the
inequality (1.5.21) is satisfied.
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Proof. Let x < min {m(H;),m(H2)}, so that
A=(Hy—z)™' and B=(H, —z)*

are nonnegative operators in B($)). Note that their square roots are given by
Az = (Hy — 2)"7 and Bz = (H; — )~ 2. Hence, the Moore—Penrose inverses of
Az and B2 are given by

A2 = (Hyop — )2, B2 = (Hy,p — )7,
cf. Definition 1.3.17 and Example 1.3.18, where it was used that
ker Az =ker A =mulH, and ker B2 = ker B = mul H;.

In terms of the operators A and B, the statements in (1.5.20) and (1.5.21) mean
that

ran A7 C ran B? and |\B(_%)<p|\ < pHA(_%)tpH, p € ran A%, (1.5.23)
while the statement in (1.5.22) means that

A< p*B. (1.5.24)

The equivalence of (1.5.23) and (1.5.24) follows from Proposition D.8. Moreover,

Proposition D.8 also shows that (1.5.20) implies (1.5.21) for some p > 0, which

completes the proof. O

The next lemma characterizes the domain of the square root of a nonnegative
self-adjoint relation.

Lemma 1.5.12. Let H be a nonnegative self-adjoint relation in $ and let ¢ € $.
Then the function

T ((H*1 - x)flga,np) , x € (—00,0),

is nondecreasing, and

. N
lim (H™! —2)"'p,p) =4 [Hpell @ €domHz, (1.5.25)
z10 0, otherwise.

Proof. Since H is a nonnegative self-adjoint relation, so is H~!, and each resolvent
operator in the identity

(H ' —2)™t = S (H - )_1, x <0, (1.5.26)
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belongs to B($)) by Corollary 1.1.12 and (1.2.14). Since ker (H —1/x)~! = mul H,
it follows from (1.5.26) that for each x < 0 and ¢ € §

- - 1 1
(H™ = 2) " p,0) = = — (I = Pop)el* = — [ Pop o®

1 1\ ! (1.5.27)
_l’2<<H_SU) PopSDaPOpSD>7

where P,, is the orthogonal projection from § onto dom H. Let E(-) be the
spectral measure of H, so that Ho, = fooo t dEop (t). Then the formula (1.5.27)
can be rewritten for each z < 0 and ¢ € §) as

(B = 2)6.0) = — 2 Il(T — Pop )ol?

oy (1.5.28)
- /0 d(Eop (t)Pop 2 Pop ‘P)'

tr —1

In particular, (1.5.28) shows that the function in (1.5.25) is nondecreasing for
x € (—00,0).

Furthermore, by the nonnegativity of the terms in (1.5.28), the limit as z 7 0
of the left-hand side in (1.5.28) is finite if and only if the limit of each of the
terms on the right-hand side of (1.5.28) is finite. The first limit is finite if and
only if (I — Pop )¢ = 0, i.e., Popp = ¢ and hence ¢ € dom H. By the monotone
convergence theorem, the limit of the second term is equal to fooo td(Eop (), ¢),
which is finite and equal to

1
1 HS ol?
if and only if ¢ € dom H=. O

1.6 Maximal dissipative and accumulative relations

In this section the basic properties of dissipative and accumulative relations are
discussed. Of special interest are dissipative and accumulative relations which are
maximal with this property. Such relations admit an orthogonal decomposition
into a maximal dissipative or maximal accumulative operator and a self-adjoint
purely multivalued part.

Definition 1.6.1. A relation H in $) is said to be dissipative (accumulative) if
Im(f',f) > 0 (Im(f',f) < 0) for all {f, '} € H. The relation H is said to
be mazimal dissipative (mazimal accumulative) if every dissipative (accumulative)
extension H' of H in §) satisfies H' = H.

It is easy to see that if a relation H in §) dissipative or accumulative, then so
is the closure H. Hence, maximal dissipative or maximal accumulative relations
are automatically closed.
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Note that a linear relation H is dissipative (maximal dissipative) if and only
if the relation —H is accumulative (maximal accumulative). Thus, it suffices to
state results for dissipative relations; the corresponding results for accumulative
relations follow immediately.

Lemma 1.6.2. Let H be a dissipative relation in $. Then mul H C mul H*. If H
is maximal dissipative, then mul H = mul H*.

Proof. Let k € mul H and let {h, '} € H. Since {0, \k} € H for every A € C, one
has {h,h' + Ak} € H. Since H is dissipative one has

Im (h',h) + Im (A(k, h)) = Im (b’ + Ak,h) >0, A eC.

In this inequality A € C is arbitrary and hence one concludes (k, h) = 0. Therefore,
mul H C (dom H)* = mul H*.

If H is dissipative and k € mul H* = (dom H)*, then it follows that
H ¥ span {0, k}

is a dissipative extension of H. Hence, if H is maximal dissipative, then {0, k} € H
and k € mul H. O

The next proposition is the analog of Proposition 1.4.4. Its proof is almost
the same, and depends on the estimate

0<—TImA(f, f) <Im(f" = Af, f) < [1F = AfIILIS
which is valid for A € C™ and {f, f'} € H such that Im (', f) > 0.

Proposition 1.6.3. Let H be a dissipative relation in . Then C~ is contained in
v(H) and, in particular, the defect ny(H) = dim (ran (H — \)*1) is constant for
all A € C~. Furthermore,

1

H-)N"1h <
I =70 < —

2]

for all h € dom (H — \)~! =ran(H — \) and A € C™.
For dissipative relations Theorem 1.5.5 reads as follows.

Theorem 1.6.4. Let H be a closed dissipative relation in $). Then the following
statements are equivalent:
(i) H is mazimal dissipative;
(ii) ker (H* — X) = {0} for some, and hence for all A € C~;
(iii) ran (H — X) = § for some, and hence for all A € C~;
(iv) C~ C p(H).
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Proof. (ii) < (iii) = (iv) follow with the same arguments as in the proof of The-
orem 1.5.5.

(i) = (iii) As H is closed, also ran (H — \) is closed for all A € C~ by Lemma 1.2.2
since C~ C v(H) by Proposition 1.6.3. Now assume that ran (H — \) is a proper
subspace of §) for some A € C~ and define the relation H’ in $ by

H = {f + [, A} £} € H, fx € 5(HN)L
where N5 (H*) = ker (H* — \) = (ran (H — \))*. Then clearly H C H’', and as
ran (H' =) = {f' = Af + A= Nfx: {f. f'} € H, fx € N(H")}
=ran(H - \) &N (H") =9
and N5 (H*) # {0}, it follows that H’ is a proper extension of H in 9, H # H'.
Since f5 € Ny (H*) implies {f5, \f5} € H*, one sees that
(f' fz) = (f.AfR) = Af fx)
for all {f, f'} € H. Hence,
(f'+ M5+ 1) = (FL )+ (F )+ Afx ) + A fx)
= (f',f) + 2Re (A(f, fx)) + A(fx. f3)

and from the assumptions that H is dissipative and A € C~ one concludes that

Im (f/+XfX7f+fX) = Im(flvf) +ImX(f;,f;) >0,

i.e., H is a proper dissipative extension of H in §. Thus, H is not maximal
dissipative. This proves (iii) for all A € C™.

(iv) = (i) Suppose that H' is a dissipative extension of H, and let {f, f'} € H’
and A € C~. As C~ C p(H), there exists {g,¢'} € H such that

f'=Af =g =X

This implies {f — g, f" — ¢} € H’ and hence f — g € ker (H' — \). As H' is
dissipative and A € C~, it follows from Proposition 1.6.3 that f = g, which also
gives f' = ¢'. This shows {f, f'} € H and hence H' = H. Therefore, H is maximal
dissipative. ([l

Corollary 1.6.5. Let H be a relation in $). Then the following statements hold:
(i) If H is mazimal dissipative (mazimal accumulative), then (H —X)~1 € B($)
is accumulative (dissipative) for each A € C~ (A € CT).

(i) If H is closed, C~ C p(H) (C* C p(H)), and (H — \)~! € B(H) is accumu-
lative (dissipative) for all X € C~ (XA € C1), then H is maximal dissipative
(mazimal accumulative ).
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Proof. (i) Assume that H is maximal dissipative, which implies C~ C p(H). Let
{f, '} € H. Then for A € C~ the identity

Im (H = N)7'(f = Af), f' = Af) =TIm (f, f' = Af)
=—Im(f' = M, f) (1.6.1)
=—Im(f', f) +ImA(f, f)

shows that (H — \)~! € B($) is accumulative.

(ii) Assume that H is closed, C~ C p(H), and (H — \)~! € B($) is accumulative
for all A\ € C~. Then (H — A)~Y(f' = \f) = f for all {f, f'} € H and A € C~, and
hence the identity (1.6.1) shows that

Im (f', f) >ImA(f, f) forall AeC™.

This implies that H is dissipative and, since H is closed and C~ C p(H), it follows
from Theorem 1.6.4 that H is maximal dissipative. O

In the next proposition the Cayley transform and the inverse Cayley trans-
form of accumulative, dissipative, maximal accumulative, and maximal dissipative

relations are considered. This proposition is the counterpart of Proposition 1.4.8
and Proposition 1.5.4.

Proposition 1.6.6. Let u € C\ R and let C, and F, be the Cayley transform and
inverse Cayley transform in Definition 1.1.13. Let H and V' be relations in $ such
that V- = C,[H] or, equivalently, H = F,[V]. Then the following statements hold:
(i) If p € C (u € C"), then H is a dissipative (accumulative) relation if and
only if V is a, in general not everywhere defined, contractive operator.
(i) If u € C~ (u € C1), then H is a mazimal dissipative (mazimal accumulative )
relation if and only if V' is a contractive operator defined on $).

Proof. (i) Let H be dissipative or accumulative and for p € C\ R define

V=CuH = {{f —nf. [ —af}:{[. [y € H}. (1.6.2)
Then a straightforward computation shows that
1f = BfIP = 11 = nf|* = 2Re (7 = m)(£', 1)
= 4(Im ) Im (f", f)

for all {f,f'} € H. Hence, ||f' — af|| < [|f/ — nf]] when p € C~ and H is
dissipative, or when u € C* and H is accumulative. This implies that V in (1.6.2)
is a contractive operator.

Conversely, let V' be a contractive operator and for p € C\ R define

H=5,[V]={{k—F gk —pk'} : {k,k'} eV} (1.6.3)
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Then a computation shows
(nk — pk' k — k') = fi(k, k) — 2Re (u(K', k)) + p(k', k'),
and consequently
Im (pk — pk', k — k') = =Im p(|| k> — |]|?). (1.6.4)

Since ||K'|| < ||k|| for {k,k'} € V, it follows from (1.6.4) that H in (1.6.3) is
dissipative for 4 € C~ and accumulative for u € C*.

(i) If H is maximal dissipative or maximal accumulative, then ran (H — p) = $
for u € C~ or p € C*, respectively; cf. Theorem 1.6.4. Hence, V in (1.6.2) satisfies
domV = §.

Conversely, if domV = §), then (1.6.3) implies ran (H — p) = $, and Theo-
rem 1.6.4 then implies that H is maximal dissipative or maximal accumulative. [

The following result is sometimes useful.

Proposition 1.6.7. Let H be a closed relation in $. Then H is mazimal dissipative
if and only if H* is maximal accumulative.

Proof. Let H be a maximal dissipative relation. Then Proposition 1.6.6 shows that
for 4 € C~ the Cayley transform C,[H] is a contractive operator defined on $).
But then also the adjoint is a contractive operator defined on all of §. Observe
that by Lemma 1.3.11

(€u[H])" = exlH"),

which, since i € CT, implies by Proposition 1.6.6 that H* is maximal accumula-
tive. The converse is proved in the same way. |

The next proposition is of a slightly different nature than the previous results
and complements Lemma 1.5.7. It shows that a closed symmetric relation always
admits maximal dissipative and maximal accumulative extensions.

Proposition 1.6.8. Let S be a closed symmetric relation in $, let X € C\ R, and
let
H =28 T M\(5). (1.6.5)

Then H is a closed extension of S and the sum is direct. Moreover,

(i) if A\ € C*, then H is mazimal dissipative;

(i) if A € C, then H is mazimal accumulative.

Proof. Since the eigenvalues of S are real, the sum in (1.6.5) is direct. In order to
verify (i) and (ii) note that a typical element in H is of the form {f+ f, f' -+ Afa}
with {f, f'} € S and {fx,\fa} € S*. Therefore, as S is symmetric,

(f's fx) = (fL M)
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Hence, the identity

(f/ + Af)\?f + f)\) = (flvf) + 2Re ()‘(fkvf)) + A(f)\’f)\)
together with Im (f’, f) = 0 shows that

Im (f" 4+ Xfx, £+ fa) = (ImA)(fa, fr).

Therefore, H is dissipative for A € C* and accumulative for A € C~. Finally,
observe that (1.6.5) implies

ran (H — \) = ran (S — \) @ ker (S* — \) = 6,

and Theorem 1.6.4 shows that H is maximal dissipative for A € C* and maximal
accumulative for A € C™. In particular, H is closed. O

The next proposition provides a direct sum decomposition of §) based on the
construction in Proposition 1.6.8.

Proposition 1.6.9. Let S be a closed symmetric relation in $ and let p € C\ R.
Then for X\ in the same half-plane as p there is the direct sum decomposition

$H=ran (S — \) + ker (5" — ). (1.6.6)

Proof. Let the relation H(f) be defined by H () = S F ‘ﬁﬁ(S*). A straightfor-
ward calculation involving the Cayley transform

Cu[H(m)] = {{N — ph+n,n —ph}: {h,h'} €5, neNz(5*)}
yields the identity

_Aw

1= 5 CulH ()

= {{h’—uhw,%(h’—m)w}: {h,1'} € 8, nemﬁ(s*)}, (16.7)

Note that the domain and the range of this relation are given by
ran (S — pu) @ker (S*— ) =$H and ran(S — \) + ker (S* — 1), (1.6.8)

respectively.

Now observe that by Proposition 1.6.8 the relation H () is maximal dissi-
pative for ;1 € C~ or maximal accumulative for 4 € C*, and thus the Cayley
transform C,[H(p)] is a contraction defined on $); cf. Proposition 1.6.6. Due to
the assumption about A, one has |\ — p| < |A — | and hence the left-hand side of
(1.6.7) is a bijection from $) onto $). Therefore, the decomposition (1.6.6) in the
lemma is now concluded from the second identity in (1.6.8). To see that the de-
composition (1.6.6) is direct, assume that the second component on the right-hand
side of (1.6.7) is zero. Then the first component must be zero, so that b’ = ph and
n = 0. Since S is symmetric, it follows from {h,h’'} € S and b’ = ph that h =0
and A’ = 0. Thus, indeed, the sum in (1.6.6) is direct. |
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The next assertion is a special case of Lemma 1.4.10 for maximal dissipative
and maximal accumulative extensions.

Lemma 1.6.10. Let S be a closed symmetric relation in $ and let H C S* be a
mazimal dissipative (mazimal accumulative) extension of S. Then for A\, € C~
(A, € CF)

T+ \—p)(H—-X\""! (1.6.9)

is boundedly invertible with inverse I + (u — A\)(H — p)~'. For fized u € C~
(u € CT), the mapping (1.6.9) is holomorphic in A € C~ (A € CT). Moreover, the
operator in (1.6.9) maps N, (S*) bijectively onto Ny (S*).

The following useful fact about the closed span (denoted by span) of the
defect spaces of a symmetric relation will be used in Chapter 3.

Lemma 1.6.11. Let S be a closed symmetric relation in $). Let U~ C C~ be a set
which has an accumulation point in C~, and let UT C CT be a set which has an
accumulation point in CT. Then

span {‘ﬂ,\ e lu” } = Span {‘ﬁ/\ e C™ } (1.6.10)

and
span {MA(S*) : A € UT} =span {M,(S*): A e CH}. (1.6.11)

Proof. The equality (1.6.10) will be shown, the proof of (1.6.11) is analogous. Note
also that the inclusion (C) in (1.6.10) is clear and hence it remains to verify the
inclusion (D) in (1.6.10). It is sufficient to show that

(span {M5(S*) : A € u*})L C (span {M\(S*): A € (Cf})l (1.6.12)

holds. Fix a maximal dissipative extension H of S, see Proposition 1.6.8, and
assume that f € § belongs to the left-hand side of (1.6.12). Then for all A € U™
and fy € 91,(S*) one has (fy, f) = 0. By Lemma 1.6.10, for 4 € C~ the mapping

AT+ A= p)(H -1 (1.6.13)

is holomorphic in C~ and the operator in (1.6.13) maps 9,(S*) bijectively onto
MA(S*). Fix p € C~ and f, € M, (S*), and consider the element

A=+ =p)H =N
Then for all A € U™ one has
(T+ N =w)H =X ) = ) =0.

Since the function A — ((I + (A —u)(H —A)"Y) fu, ) = (fx, f) is holomorphic on
C~ and vanishes on U™, one must have for all A € C~

(I + A=) (H = XN"Nfu f) = (Fr. /) =0.
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Since f, € M,(5*) was arbitrary and (1.6.13) maps ,(S*) bijectively onto
N (S*) it follows that (fy, f) =0 for all f € 91,(S*) and all A € C™. Therefore,
f belongs to the right-hand side of (1.6.12). O

Here is a variant of the decomposition in Theorem 1.3.16 for closed dissipative
(accumulative) relations; cf. Theorem 1.4.11 and Theorem 1.5.1.

Theorem 1.6.12. Let H be a closed dissipative (accumulative) relation in $ and
decompose ) as H = Hop B Huut s Hop = (mul H)* and Hu = mul H, and
denote the orthogonal projection from $ onto Hop by Pop. Then H is the direct
orthogonal sum H,y, 3 Hypul of the closed dissipative (accumulative) operator

Hop = {{f,Pop f'}: {f. '} € H}

in Hop and the self-adjoint purely multivalued relation

Hpya :{{Oafl}:fleﬁmul}:{{Ov(lfpop)f/}:{fafl}eH}

N Hmul - Moreover, the operator Hop is densely defined in $op if and only if
mul H = mul H*. If the relation H is maximal dissipative (mazimal accumulative ),
then Hop is a densely defined mazimal dissipative (mazimal accumulative) oper-
ator in $Hep -

Proof. The proof follows the proof of Theorem 1.4.11 for symmetric relations.
In order to apply Theorem 1.3.16 now one has to recall that mul H = mul H**
and the inclusion mul H C mul H* holds by Lemma 1.6.2. The assertion about
maximality follows from Lemma 1.6.2. (|

1.7 Intermediate extensions and
von Neumann’s formulas

In this section intermediate extensions of a symmetric relation will be studied, with
special attention paid to disjoint and transversal extensions. Furthermore, some
important decompositions of intermediate extensions and the adjoint relation will
be discussed. In particular, these investigations lead to the von Neumann formulas
in the context of relations, which provide a description of accumulative, dissipa-
tive, symmetric, and self-adjoint extensions in terms of contractive, isometric, and
unitary operators between the defect spaces of the symmetric relation.

The first result is a decomposition of a relation in a Hilbert space which has a
closed restriction with nonempty resolvent set. As in Definition 1.4.9, the following
notations are associated with the eigenspace of a relation T at A € C:

MA(T) =ker (T'—X) and M\(T) = {{fx. M} : fr € (D)}
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Theorem 1.7.1. Let T be a relation in $ and let the relation H be a restriction of
T. Ifran (H — \) = 9 for some A € C, then

T=HFM(T) and HNN\(T)=N\(H). (1.7.1)

Assume, in addition, that H is closed and X\ € p(H). Then the decomposition in
(1.7.1) holds, the sum is direct, and

T is closed if and only if MA(T) is closed.

Proof. Since s)%A(T) C T, one has the inclusion H F ‘?I)\(T) C T. To see the
opposite inclusion, let {f, f'} € T. Since ran (H — \) = §), there exists an element
{h,W'} € H C T such that f' — A\f = h’ — Ah. It follows that

{Ffy = {n WYy ={f —h f =W} ={f —B,A(f — h)} € M\(D),

which shows that {f, '} € H + M\(T) and thus T C H + 9, (T). The statement
HnN s/f\t,\(T) = ‘flA(H) is immediate.

Now assume that the relation H is closed and A € p(H). Then the conditions
ran (H — \) = $ and ker (H — \) = {0} are satisfied and hence the decomposition
in (1.7.1) holds and the sum is direct. If T is closed, then clearly 91,(7") is closed.
To prove the converse implication consider the linear mapping B : $ X ) — $
defined by B{f, f'} = f' — Af. Clearly, B is a bounded operator with ran B = )
and

ker B={{f,A\f}: [ €9}

Consider the relation H as a closed subspace of £ x . Then
BH =ran(H —\)=$ and HnNker B=N,(H) = {0}

since A\ € p(H). Hence, BH is closed, which implies that the sum H F ker B is
closed by Lemma C.4. Moreover, the sum H ¥ ker B is direct. By assumption,
M\ (T) is a closed subspace of ker B, which implies that also H + 9\ (T) = T is
closed; cf. Corollary C.7. O

The next preliminary lemma contains some useful observations.
Lemma 1.7.2. Let H and K be closed relations in ). Then, for all A € p(H)Np(K),
ran (HNK)— ) =ker (K —X\)"'—(H-X\)"")

and
ker (H + K)—X) =ran ((K —\)"' = (H-X"").

Proof. In order to prove the first equality let A € p(H) N p(K) and assume that
g €ran ((HNK) —M\). Then g = ' — Ah for some {h,h'} € HN K and it follows
that

(H—=XN)"Yh —Ah)=h and (K —\)"'(h' —\h) =h.
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Hence, ((K — A)~! — (H — A\)~!)g = 0 and this shows the inclusion
ran (HNK)— ) Cker (K—X)""'—=(H-X)").

To prove the opposite inclusion, let g € ker (K — A)™! — (H — A\)™!). Then with
k= (H-X\"1g=(K—)"git follows that {k,g+ Ak} € HN K. Consequently,
g €ran ((H N K) — A) and therefore

ker (K —A)"" = (H—XA)"") Cran ((HNK) = \).

As to the second equality, let A € p(H) N p(K) and {f, f'} € H ¥ K. Then
according to Lemma 1.2.4 one has the representation

{£, 1 ={(K =N ""hh+A(K — )" 'h}
+{(H =Nk, k+XH - X"k}

for some h,k € $. Clearly, {f,A\f} € H ¥ K if and only if h + k = 0 or, equiv-
alently, f = (K — A\)"'h — (H — \)7h for some h € $. This proves the second
equality. a

Let H and K be closed relations in $). Then the intersection H N K is closed,
but the componentwise sum H + K is in general not closed; cf. Proposition 1.3.12
and (1.3.5). An application of Theorem 1.7.1 and Lemma 1.7.2 gives the following
characterization.

Theorem 1.7.3. Let H and K be closed relations in $) such that p(H) N p(K) # 0.
Then the sum H ¥ K is closed if and only if

ran (K —A)~'— (H—\)"1)
is closed for some, and hence for all X € p(H) N p(K).
Proof. Let X € p(H) N p(K). Then by Lemma 1.7.2

ran (K —A)~'— (H—\)"")

is closed if and only if ker (H + K — \) is closed. Now note that the relation
H is closed, that A\ € p(H), and that H is a restriction of H F K, so that by
Theorem 1.7.1 R

H+K=H+M(H+ K).
Moreover, it follows from Theorem 1.7.1 that ker (H 3 K — ) is closed if and only
if H F K is closed. O

Next follow some consequences of Theorem 1.7.1 and Theorem 1.7.3 in the
context of closed symmetric relations. They are stated in terms of intermediate
extensions.
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Definition 1.7.4. Let S be a closed symmetric relation in $). A relation H is said
to be an intermediate extension of S if S C H C S*.

For instance, H defined in (1.6.5) is an intermediate extension of S. In gen-
eral, an extension H of S need not be a restriction of S*. However, if H is sym-
metric, then H C H*, and it follows from S C H and H* C S* that S C H C S™*.
Hence, symmetric and self-adjoint extensions of S are intermediate.

For intermediate extensions with nonempty resolvent set one obtains the
following decomposition from Theorem 1.7.1.

Corollary 1.7.5. Let S be a closed symmetric relation in . If H is a closed inter-
mediate extension of S such that p(H) # 0, then

5* = H T M\(5%) (1.7.2)

for all X € p(H), and the sum in the decomposition (1.7.2) is direct. Furthermore,
if H € B(9), then

S* = H F Nuu(SY), (1.7.3)
and the sum in the decomposition (1.7.3) is direct.

Proof. The direct sum decomposition (1.7.2) follows from Theorem 1.7.1. In order
to prove (1.7.3), note that the inclusion (D) is clear. For the inclusion (C) take
{f,f'} € S*. Then {f,Hf} € H c S* and hence {0,f — Hf} € S*. Thus,

(LY ={f Hf} +{0,f —Hf} € H T N (5%). O

Next the notions of disjointness and transversality of two intermediate ex-
tensions are defined.

Definition 1.7.6. Let S be a closed symmetric relation in $. If H and K are closed
intermediate extensions of S, then they are called disjoint if H N K = S, and they
are called transversal if they are disjoint and H + K = S*.

Let H and K be closed intermediate extensions of S. By Proposition 1.3.12,
(HNK)* = clos(H* ¥ K*) and hence H and K are disjoint if and only if
S* = clos (H* T K *). In the next lemma self-adjoint intermediate extensions are
considered.

Lemma 1.7.7. Let S be a closed symmetric relation in $ and let H and K be
self-adjoint extensions of S. Then the following statements hold:

(i) H and K are disjoint if and only if S* = clos (H ¥ K);
(ii) H and K are transversal if and only if S* = H ¥ K.

Consequently, if H and K are disjoint, then they are transversal if and only if
H + K 1is closed.
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Proof. (i) follows from the discussion before the lemma and the assumption that
H and K are self-adjoint.

(ii) The implication (=) is clear and hence only the implication (<) has to be
checked. But if $* = H + K, then Proposition 1.3.12 implies

S=(H+K)=H'NnK*=HnNK,

and hence H and K are disjoint. Together with S* = H + K this shows that H
and K are transversal. ]

The next theorem provides useful criteria for disjointness and transversality
of self-adjoint extensions.

Theorem 1.7.8. Let S be a closed symmetric relation in $ and let H and K be
self-adjoint extensions of S. Then the following statements hold:

(i) H and K are disjoint if and only if
ran (S — A) =ker (K —\)"' = (H-\)"") (1.7.4)
for some, and hence for all X € p(H) N p(K);
(ii) H and K are transversal if and only if
ker (S* —A) =ran (K —A)"' = (H—-\)"") (1.7.5)
for some, and hence for all A € p(H) N p(K).

Proof. (i) If S = HNK, then (1.7.4) holds for all A € p(H)Np(K) by Lemma 1.7.2.
Conversely, if (1.7.4) holds for some A € p(H) N p(K), then Lemma 1.7.2 shows
that

ran (S — ) =ran ((H N K) — A).

Since A € p(H) and both H N K and S are restrictions of H, one has
ker (HNK)—X) = {0} = ker (S5 — \).

Clearly, S — A C (H N K) — A and now the equality S — A = (H N K) — A follows
from Corollary 1.1.3. This implies S = H N K.

(i) If S* = H & K, then (1.7.5) holds for all A € p(H) N p(K) by Lemma 1.7.2.
Conversely, assume that (1.7.5) holds for some A € p(H) N p(K) and let

T=H7TK.
Since H C S* and H C T, it follows from Theorem 1.7.1 that
S*=H T NM\(S*) and T =H F N\(T).

By Lemma 1.7.2, the assumption (1.7.5) means that ker (S* — A) = ker (T" — \).
Therefore, Ny (S*) = M\(T) and S* =T = H + K. Now Lemma 1.7.7 (ii) implies
that H and K are transversal. O
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In the next result a closed intermediate extension H with p(H) # () of S is
decomposed into the direct sum of S and another closed subspace in H. Recall
that in Proposition 1.6.8 it was shown that there always exist closed intermediate
extensions with this property.

Proposition 1.7.9. Let S be a closed symmetric relation in $ and let X € C\ R.
Let H be a closed intermediate extension of S with A\ € p(H). Then

H=S+{H-N""f T+ XH-=N"Nf}: fx € Nx(5)} (1.7.6)
and the sum is direct.

Proof. In order to show (1.7.6) observe that by Lemma 1.2.4 and S C H the
right-hand side is contained in H. To see the opposite inclusion, let {h,h'} € H.
Since A € C\ R, one has

H=ran (S — \) @ ker (S* —\) =ran (S — \) ® Ny (5*).
Due to this decomposition, there exist {f, f’} € S and f5 € 91(5*) such that
B —=Xh=f"—Xf+ f5.
Hence, it follows from {h — f,h' — f'} € H that {h — f, fx} € H — X,
h—f=(H-N""5 and W —f = fx+MH—-N"'f,
and therefore
(WY = LF 1} = {h— F 0 — £ = {(H = N s (T4 ACH = X)L fs )

Thus, {h, h'} belongs to the right-hand side of (1.7.6).
In order to show that the sum in (1.7.6) is direct, assume that

{(H-N""f, U+ MH-N)"Dfs}es
for some fy € M5 (S*). Then since {fx, \f5} € S* it follows that
((T+MH=N)"Nf5f5) = ((H =N A 05),
which leads to f5 = 0. 0

The next statement is a consequence of Corollary 1.7.5 and Proposition 1.7.9.

Corollary 1.7.10. Let S be a closed symmetric relation in $ and let A € C\ R. Let
H be a closed intermediate extension of S with A\ € p(H). Then

S =8 F{{H - N5, (I +MH =N f5}: fx € M5(5%) } T M (S*)

and all sums are direct.
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The following result is von Neumann’s first formula, stated in the context of
a closed symmetric relation S. This decomposition of S* into the direct sum of
S and two defect subspaces corresponding to two points in the upper and lower
half-plane can be viewed as a consequence of Corollary 1.7.5 and Proposition 1.6.8.

Theorem 1.7.11. Let S be a closed symmetric relation in $ and let \,un € C\ R
be in the same half-plane. Then

S* =87 ‘)A?,\(S*) F ‘JA?E(S*), direct sums. (1.7.7)
The sums are orthogonal in $% when A = p = +i.
Proof. Assume that A, u € C*. By Proposition 1.6.8, the relation

H=257F Mu(5%)

is a maximal accumulative intermediate extension of S, and the sum is direct.
Since CT C p(H) by Theorem 1.6.4 and A € C*, it follows from Corollary 1.7.5
that S* = H T My (S*) and the sum is direct. Hence, (1.7.7) follows. The case
where A\, u € C™ is completely similar.

It is a simple calculation to show that ‘.YI;(S*) and ﬁ,i(S*) are orthogonal
in $2. The orthogonality of S and 9.4;(S*) in $2 follows from

(f7 f:l:z) + (f/7 :tzf:tl) = (f7 f:tz) + Z.(f/, fiz) = (f7 j:l:z) + Z(jv :l:zf:tz) = 07
where it was used that {f, f} € S and Ny, (S*) C S*. O

The next result is von Neumann’s second formula, stated in the context of a
closed symmetric relation S. It describes all symmetric extensions of S in terms
of isometric operators between the defect spaces 9z(S*) and N, (S*) appearing
in Theorem 1.7.11. The following notation will be useful. Let A € C\ R and let

My be a closed linear subspace of 91,(S*). Then ﬁ,\ denotes the closed linear
subspace of 91 (S*) defined by

My = {{r A} €52 fre M.
Now let g € C\ R and let W be a bounded linear mapping from a closed linear
subspace My of MN;(S*) to 9M,(S*). Then W induces a linear mapping W from
ﬁﬁ to ‘5\1/,,(5*) by
WS if} = (W fo W i}

Clearly, W is bounded and HWH = ||W]|. In fact, every bounded linear mapping
from ﬁﬁ to ‘)AlH(S*) is of this form. To see this, it suffices to observe that if
W{fﬁ,ﬁfﬁ} = {9u, 119, }, then the mapping fz € Mz — g, € N, (S¥) is linear.
Moreover, this mapping is also bounded since

VI+[aP gl < WV + B2 1l

thanks to the boundedness of W and the structure of the standard inner product.
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Theorem 1.7.12. Let S be a closed symmetric relation in ) and let p € C\ R. Then
H is a closed symmetric extension of S if and only if there exists an isometric
operator W mapping a closed subspace Mz C Nz (S*) onto a closed subspace
M, CNL(S*), such that

H=8FI-W)M. (1.7.8)

The closed symmetric extension H is mazimal if and only if My = N;(S*) or
M, = N, (S*) holds. Furthermore, the extension H is self-adjoint if and only if
My = Nz(S*) and M, = N,(S*) hold.

Let Mz C Ng(S*) and M, € N, (S*) be closed subspaces and observe that
isometric operators W from 9M; onto M, exist if and only if the dimensions of
the spaces My and M, coincide. This implies the following statement.

Corollary 1.7.13. Let S be a closed symmetric relation in $. Then S admits self-
adjoint extensions H in $ if and only if

dim 91, (S5*) = dim Nz (S™)
for some, and hence for all up € C\ R.

Proof of Theorem 1.7.12. (=) Let H be a closed symmetric extension of S, let
1 € C\ R, and consider the Cayley transforms

V= CuS] = {{f — uf. f' —ufy : {f. f'} € S}

and

= Cu[H] = {{W — ph, I/ — ik} : {h,h'} € H}

of S and H, respectively. Accordmg to Proposition 1.4.8, V is a closed isometric
operator from the closed subspace ran (S — ) onto the closed subspace ran (S — ),
and U is an isometric extension of V' from the closed subspace ran (H — p) onto
the closed subspace ran (H — fi). It follows that there exist closed subspaces

My C N(S*) =ran (S — ) and M, C N,(S*) =ran (S — a)*,
such that
ran (H —p) =ran(S — p) ® My and ran(H — ) =ran (S —p) ¢ M,.

Let W be the restriction of U to 9Mp. Then W maps My isometrically onto M,

and
U= (‘(j IEI)/> . (Tani()iﬁ— M)) N (rani()i#— M)) (1.7.9)
Taking the inverse Cayley transform leads to
H =5,[U] = F,[V] + F.[W]
=8 {T=W)fa. (17— 1W)fa}: fr € My}
=S T {{fufifa} — W fa,uW fa} : fa € My},
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which implies (1.7.8). In the case where the closed symmetric extension H is
maximal, ran (H — p) = $ or ran(H — ) = $ by (1.4.7), and hence one has
My = Nz (S*) or M, = N, (S*), respectively. If H is self-adjoint, then it is clear
that ran (H —p) = $) = ran (H — ) by Theorem 1.5.5 and therefore My = Nz (S*)
and M, = N, (S*).

(<) Let u € C\ R, assume that W is an isometric operator from a closed subspace
My C ‘)T,,(S*) onto a closed subspace M, C N,(S*), and consider the relation
H=S%(I- W)im Let V be the Cayley transform of S, define the operator U
as in (1.7.9), and note that

H=S8%(I-W)M; =5,[V] T F.[W] =7F,[U]

holds. Since U is isometric and closed, it follows from Proposition 1.4.8 that H
is a closed symmetric relation. If Mz = Nz (S*) or M, = 9,(S*), then one has
dom U = § or ran U = ), respectively, and therefore one sees that ran (H —pu) = 9
or ran (H — fi) = $, respectively, so that H is a maximal symmetric relation.
Finally, if Mz = Np(S*) and M, = N,(S*), then U is unitary and hence H is
self-adjoint; cf. Proposition 1.4.8. O

The second von Neumann formula in Theorem 1.7.12 has a natural exten-
sion, which describes all accumulative (dissipative) extensions of S in terms of
contractive operators between the defect spaces.

Theorem 1.7.14. Let S be a closed symmetric relation in $. Then H is a closed
accumulative (closed dissipative) extension of S if and only if for some u € C*
(1 € C7), there exists a contraction W mapping a closed subspace My C Ny (S™)
to M,,(S*), such that

H=287F1—-W)M,. (1.7.10)

The closed accumulative (closed dissipative) extension H is maximal if and only
if My = Ny (S*) holds for pe Ct (e C).

Proof. (=) Let H be a closed accumulative extension of S and let y € CT. Define
the Cayley transform V' = €,[S] of S, so that V' is a closed isometry from the closed
subspace ran (S — ) onto the closed subspace ran (S—). By Proposition 1.6.6 and
(1.1.18), the Cayley transform U = €,[H] of H is a closed contractive extension
of V from the closed subspace ran (H — ) onto the subspace ran (H — ). Then
there exists a closed subspace My C MNz(S*) such that

ran (H — p) = ran (S — pu) @ My.

Let W be the restriction of U to M. It will be shown that U is of the form

U= (‘g I%) : (rangﬁ— “)) - (ragtifs_*)ﬁ)> . (1.7.11)
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For this it suffices to verify that the contractive operator W is a mapping from
My to M, (S*) = ker (S* — p). To see this, note that the restriction V' of U is
isometric. Hence, by (1.1.10),

Vo, Uy) = (p,0), pedomV CdomU, € domU. (1.7.12)

Observe that if 1) € My, then (p,1)) = 0 for all ¢ € dom V. Thus, (1.7.12) implies
that W = Utp € (ranV)* = 9, (S*). This yields (1.7.11).

Taking the inverse Cayley transform of U in (1.7.11) leads (in the same way
as in the proof of Theorem 1.7.12) to

H=5,[U] = F,[V] + F,[W]
= S F{{fa ifz} — AW fa, bW f} : fz € Mz},

which implies (1.7.10). If H is maximal accumulative, then ran (H — u) = $ and
hence Mz = Nz (5).

(<) Let 4 € CT and assume that W is a contractive operator from a closed
subspace My C Nz (S*) to N, (S*) and consider the relation H =S F (I—W)M.
Let V be the Cayley transform of S, define the operator U as in (1.7.11), and note
that

H=S+(I-W)M; =75,[V] + F.[W] =F,[U].

Since U is a closed contractive operator, it follows from Proposition 1.6.6 and
(1.1.18) that H is a closed accumulative extension of S. If My = Nz (S*), then
dom U = $ and hence ran (H — p) = $), so that H is maximal accumulative. [

1.8 Adjoint relations and indefinite inner products

The adjoint of a relation in a Hilbert space $) has a natural interpretation in
terms of a certain indefinite inner product [, ] on the product space £ x 9. It
will be shown that surjective operators which are isometric with respect to such
indefinite inner products and have a closed domain are automatically bounded.
Furthermore, some geometric transformation properties of operator-valued Mobius
transformations which are unitary with respect to indefinite inner products will
be studied.

Let H be a relation in §). The adjoint relation H* in Definition 1.3.1 satisfies
H* = (JH)* = JH*, where J is the flip-flop operator in (1.3.1) and the orthog-
onal complement refers to the componentwise inner product in the product space
$H x $; cf. (1.3.2). Define the operator J on the product space H%as J = —iJ,
where J is the flip-flop operator:

(0 Iy [0 —ils
) "
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Sometimes the notation Jg is used to indicate the underlying Hilbert space.
Clearly, the operator J in (1.8.1) has the properties

d=0"=7"eB(®?),

so that J is unitary and self-adjoint. The operator J gives rise to an inner product
[-,-] on 2 as follows

(F] = @By 0= (p) 5= () eot  s2)

where for convenience h and k are written in vector notation. In the following
sometimes an index is used to indicate in which space the indefinite inner product
is defined, e.g., [, -] 2. Explicitly the new inner product is given by

[hF] = —i((W,k) — (hK)), = (}’?) . <,f,) €S, (183)

and note that
[h,h] =2Im (K,h), = (:,) € n. (1.8.4)
This shows that the new inner product on $? is indefinite; and, in fact, ($2,[-,])

is a so-called Krein space. It follows from (1.8.2) that the inner product [-,-] is
continuous: if h,L — h and k:,n ~kin $?2 in the usual sense, then clearly

|[hn,km]] — [[h,k]], as m,n — oo.
For a linear subspace H of $2, the [-, ]-orthogonal companion is given by
HY = hes?: [hk] =0 forall ke H}.

Hence, it follows from (1.8.3) that the adjoint H* (with respect to the standard
inner product) of the relation H in ) coincides with the orthogonal companion
HI (with respect to the indefinite inner product [-,-]) of the subspace H in $*:

H* = HIM, (1.8.5)

The indefinite inner product [-,-] on $2 provides an appropriate tool to
describe certain fundamental notions and identities. A linear subspace H in the
space (92, [,]) is said to be

(i) nonnegative if [[ﬁ,ﬁ]] >0 for all h € H;

(ii) nonpositive if [[ﬁ,?z]] <0 forall h € H;
(iiil) neutral if [[ﬁ,/ﬁ]] =0forallhe H or, equivalently, H ¢ HILI:
(iv)

the equivalence in (iii) follows from (1.8.4), (1.8.5), and Lemma 1.4.2. A linear
subspace H in the space (92, [-,-]) is mazimal nonnegative, marimal nonpositive,

hypermazimal neutral if H = HIH,
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or mazimal neutral if the existence of a linear subspace with H C H', where H’
is nonnegative, nonpositive, or neutral, respectively, implies that H' = H.

By considering a relation H as a subspace of $? with the usual inner product
or as a subspace of $2 with the inner product [-, -], the following correspondence
is an immediate consequence of (1.8.4) and (1.8.5):

(i) H is a (maximal) dissipative relation in £ if and only if H is a (maximal)
nonnegative subspace of ($2, [, -]);

(ii) H is a (maximal) accumulative relation in §) if and only if H is a (maximal)
nonpositive subspace of ($%,[-,-]);

(ili) H is a (maximal) symmetric relation in $ if and only if H is a (maximal)
neutral subspace of (§2,[,-]);

(iv) H is a self-adjoint relation in $ if and only if H is a hypermaximal neutral
subspace of ($2,[,]).

Let U be a linear operator from $? to &2. Then U is said to be isometric
from (57)27 II': ]]) to (ﬁ27 |I'7 ]]) if
[Uh,Uk] = [h k], forall hkedomU. (1.8.6)
In addition, U is said to be unitary from ($2,[,-]) to (82, [-,]) if U is isometric
from ($2,[,-]) to (82, [,-]) and dom U = $? and ranU = &2.

Lemma 1.8.1. Let $ and K be Hilbert spaces and let U be an isometric operator
from (92, [,-]) to (82,]-,-]). Assume that dom U is closed and that U is surjective.
Then U is bounded.

Proof. To see that the operator U is bounded, it suffices to show that U is closed
and to apply the closed graph theorem. Let (h,,) be a sequence in dom U such that

T —h, Uhy,— &
for some h € $2 and @ € &2, Since dom U i is closed, it follows that h € domU.
As U is surjective, one can choose for each w € &2 an element k € dom U such
that Uk = 3ﬁ¢, here Jg is defined in the same way as in (1.8.1) and is a unitary

and self-adjoint operator in &2. Then it follows from the identity (1.8.6) and the
continuity of [, -] . that

(3,%)g2 = nan;O(Uﬁn,aglU%)ﬁzz lim [Uhn, Uk] o = lim [, k],
= [h k], = [URUR] o = [Uh,d50] o = (U, ¥) e

Since z/ﬁ\ € £2 is arbitrary, this gives § = Uh. Tt follows that the operator U is
closed, and since dom U is closed, one sees that U is bounded. O

Proposition 1.8.2. Let $ and K be Hilbert spaces and let U be an operator from
$2 to 82. Then the following statements are equivalent:
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(1) U s unitary fmm (‘627 [['7 ]) to (ﬁ27 II'a ]])7
(i) U € B(H2, R?) satisfies the identities
U'dqU =Jy and UJsaU* = Jg; (1.8.7)
(ili) U € B($2, 82) is surjective and U*JgU = J holds.

Proof. (i) = (ii) It follows from Lemma 1.8.1 that the operator U is bounded and
hence U € B($?, 82). Moreover, (1.8.6) implies

(U33U3,9) 5o = [UB, U] o = [3:9] 52 = (858,9) 12 (1.8.8)

for all 3,9 € $H2, which yields the first identity in (1.8.7). To prove the second
identity in (1.8.7), let 3,v € &2 and choose 7} € $2 such that $ = JxzU7, which
is possible as U is surjective. It follows from the first identity in (1.8.7), and the
identities Jg = 351 and Jg = 3;1, that

( Ugf)U* Av &)fy = ( UgS’JU*gﬁUﬁa {p\)ﬁ2 = ( Uﬁv /J;)ﬁ'z = (3&3@7 /(Z)Rr
This implies the second identity in (1.8.7).

(if) = (iii) The second identity in (1.8.7) yields that U is surjective, and hence
(iii) holds.

(iii) = (i) The identity U*JsqU = Jg and the reasoning in (1.8.8) show that (1.8.6)
holds, and hence U is isometric from ($2, [,-]) to (82, [,-]). As U is surjective, it
follows that U is unitary from ($2,[-,-]) to (82, [, ]). O

An important feature of operators which are isometric or unitary in the
present sense is the way they transform certain classes of subspaces. Let H be a
linear subspace of (2, [+, -]) which is nonnegative, nonpositive, or neutral. If U is a
linear operator from $2 to &2 which is isometric from ($2,[-,-]) to (82, [, -]), then
it follows directly from the definition that U maps H Ndom U into a nonnegative,
nonpositive, or neutral subspace of (&2, [-,-]), respectively.

Lemma 1.8.3. Let U be a unitary operator from (H2%,[-,-]) to (82,[,-]). Then U
provides a one-to-one correspondence between (mazimal) nonnegative, (mazximal)
nonpositive, (mazimal) neutral, and hypermazimal neutral subspaces in (92, [-,])
and (8%, [-,]), respectively.

Proof. Only the statement about hypermaximal neutral subspaces needs atten-
tion. For it, one observes that for any subspace H of $? one has

(UH)H = yH).
Thus, H = HI if and only if UH = U(HM) = (UH)HL, O
Let $ and & be Hilbert spaces and let W € B($) x §), & x K) have the matrix

decomposition
Wi Wig
W= . 1.8.9
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In much the same way as the scalar Mobius transform in Definition 1.1.10, the
operator W induces the transformation

WZf) ><f)—>ﬁ><ﬁ, {h,h/}H {W11h+W12h/,W21h+W22h/}.

The meaning of W, either as a matrix of operators or as a transformation, will be
clear from the context.

Definition 1.8.4. Let W € B($ x £, 8 x £) have the matrix decomposition as
in (1.8.9) and let H be a relation in $). Then the Mdébius transform of H is the
relation W[H] in R defined by

WIH] = {{Wi1h + Wiah!,Warh + Wasl'} : {h,h'} € H}.
Note that the domain and range of the Mobius transform are given by
dom W[H]| = {WH}H— Wiah! @ {h, 1} € H},
ran W H] = {Warh + Wah': {h,h'} € H}.
Moreover, if & is a further Hilbert space and V € B(R x |, & x &), then one has
VIW[H]] = (Vo W)[H]. For the case where $ = & and W™ € B($ x $) it follows

that the inverse Mobius transform exists and is given by the inverse of W. In this
case it also follows that

W[H] is closed if and only if H is closed. (1.8.10)

If W in Definition 1.8.4 is unitary with respect to the indefinite inner prod-
ucts [-,-] in $% and K2 (see Proposition 1.8.2), then the corresponding Mobius
transform has useful additional geometric properties.

Theorem 1.8.5. Let W € B(H x 9, R x R) have the matriz decomposition in (1.8.9)
and assume that W satisfies the identities

W IaW =Jg and WIgW* = Ja. (1.8.11)

Then W provides a one-to-one correspondence between (maximal) dissipative,
(mazimal) accumulative, (maximal) symmetric, and self-adjoint relations in $
and (mazimal) dissipative, (mazimal) accumulative, (mazimal) symmetric, and
self-adjoint relations in R, respectively.

Proof. By Proposition 1.8.2, the operator W is unitary from ($% [, ]) to
(82,',-])- Recall that the notions of (maximal) dissipative, (maximal) accumu-
lative, (maximal) symmetric, and self-adjoint relations correspond to the notions
of (maximal) nonnegative, (maximal) nonpositive, (maximal) neutral, and hyper-
maximal neutral relations, respectively. Therefore, the asserted results follow from
Lemma 1.8.3. (|

Note that in the case where W € B($) x 9, R x R) satisfies (1.8.11) the inverse
WL e B(& x & § x §) is given by

_ Wiy =W
w1 — ( 22 *12> ]
W3 Wh
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1.9 Convergence of sequences of relations

This section is devoted to the convergence of sequences of relations in a Hilbert
space. There are two notions to be discussed: strong graph convergence and strong
resolvent convergence. It will be shown via the uniform boundedness principle
that under certain circumstances these notions are equivalent. In particular, the
equivalence holds for sequences of self-adjoint or maximal accretive (dissipative)
relations.

First recall the following well-known result for bounded linear operators.
Let H, € B($,8) be a sequence of bounded linear operators and assume that
lim,, oo H,h exists in R for all h € $. An application of the uniform bounded-
ness principle shows that there is a uniform bound: ||H,| < C for some C > 0.
Moreover,

Hoh = nll)nolo H,h, he$, (1.9.1)
defines an operator Hy, € B($),8) and ||[Hx| < C. A sequence of operators
H, € B($,R) is said to converge strongly to Hy, € B(9,R) if H,h — H.h for
all h € $; in this case there is a uniform bound ||H,|| < C for some C' > 0. These
results will be used frequently in this section. In the special case & = ) the limit
result (1.9.1) leads to the identity

(Hoh,h) = lim (Hoh,h), h €. (1.9.2)

Hence, if all H,, € B($) are self-adjoint (dissipative, accumulative), then (1.9.2)
shows Ho, € B(9) is self-adjoint (dissipative, accumulative, respectively).

Also recall the following situation. Let H,, be a nondecreasing sequence of
nonnegative operators in B($)) bounded above by H' € B($)):

0 < (Hpnh,h) < (Hpyh,h) < (H'h,h), he®H, n>m. (1.9.3)

Then clearly ||H,| < ||H'| and it follows from the Cauchy-Schwarz inequality for
the nonnegative inner product ((H,, — Hy,)-,) that

(o~ Hy B < | Hy — Hy[((H — Hy ), 1) Lo
< 2 H'|[((Hy — Ho )b h)

for all h € . Consequently, there exists an operator H., € B($)) such that
0< H, < Hy < H and H,h — Hoh for all h € $ as n — oo. Note that a
similar observation is valid for a nonincreasing sequence of nonnegative operators

in B(9).

Now one introduces two notions of convergence for relations from £ to &:
strong graph convergence and strong resolvent convergence. First one defines the
notion of strong graph limit.
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Definition 1.9.1. Let H,, be a sequence of relations from $ to &. The strong graph
limit is the linear relation Ho, consisting of all {h,h'} € $ x & for which there
exists a sequence {h,,h)} € H, such that {h,,h,} — {h,h'} in $ x R The
sequence H,, is said to converge to H., in the strong graph sense if H., is the
strong graph limit of H,,.

By definition, the strong graph limit H,, always exists, it is a uniquely de-
termined relation from $ to &, and H, is closed. In fact, let {h,h'} be the limit
of {kn,kl,} € Hs. Then for each n € N there exist elements {hy,h}} € H,, with

[k, K3}~ (B <

Clearly, {hn,h),} — {h,h'} and it follows that {h,h'} € Hs. Thus, He is closed.
A similar argument shows that the strong graph limits of a sequence H,, and its
closures H, coincide. Note also that the strong graph limit may coincide with the
zero set {0,0} in ) x K. Furthermore, if H is the strong graph limit of H,,, then
(Hoo)™t is the strong graph limit of (H,)~!. Finally, note that if Hy, € B($), 8)
is the strong limit of H,, € B($), R), then (the graph of) H., is the strong graph
limit of H,,

In general, the strong graph convergence H,, — H, does not imply the strong
graph convergence of the adjoints (H,)* to (Hw)*. But there is the following
observation.

Lemma 1.9.2. Let H,, and H, be relations from $) to K. Assume that H,, converges
to Ho in the strong graph sense. Let K be the strong graph limit in & X § of the
sequence (Hy)*. Then

K C (Hy)"

Proof. Assume that {f, f'} € K. Then there exist {f,, f,} € (H,)* such that
{fu, [1.} = {f. f'}. Now let {h,h'} € Ho, so that there exist {h,,h]} € H, such
that {hn,, h),} — {h,h'}. In particular, one sees that (f,, hyn) = (fn,h),), which in
the limit gives

(f',h) = (f:0'), {h,h'} € He.
In other words, {f, f'} € (Hs)* and thus K C (Hy)*. 0

In order to define strong resolvent convergence of a sequence of relations H,
in $ to a relation H, in §) the following set is needed:

Poo = p(Hoo) N ﬂ p(Hy),

and, whenever it is used, it is tacitly assumed that it is nonempty. Next the notion
of strong resolvent limit is defined.
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Definition 1.9.3. A sequence of closed relations H,, in § is said to converge to a
closed linear relation Ho, in $ in the strong resolvent sense at the point A € poo
if forall h € 9

(Hp —N)"'h — (Hoo — \) " th. (1.9.5)

In the case of strong resolvent convergence there is also an interplay between
the convergence of H,, and that of (H,)~!. Let the closed relations H,, converge
in the strong resolvent sense to the closed relation H, at the point A € p. Then
it follows from (1.2.14) that for A # 0

+ €)™ 0 () pl(H) ),
n=1

and Corollary 1.1.12 implies that (H,,)~! converges to (H..) ™! in the strong resol-
vent sense at 1/\. Of course, when A € p., and A = 0 the operators (H,,)~ € B($)
converge strongly to (Hy, )™t € B(9).

Strong graph convergence and strong resolvent convergence are closely related
in the presence of a uniform bound, as described below.

Theorem 1.9.4. Let H,, and H, be closed linear relations in $. Then the following
statements hold:

(i) Assume that H,, converges to Hu, in the strong resolvent sense at the point
A € poo. Then H,, converges to Hs, in the strong graph sense and there exists
Cy > 0 such that for alln € N

[(Hn =X < Co (1.9.6)

(ii) Assume that H, converges to Ho, in the strong graph sense. Let X € poo be
any point for which there exists Cx > 0 such that (1.9.6) holds for all n € N.
Then H, converges to Hs in the strong resolvent sense at the point .

Proof. (i) Assume that (1.9.5) holds for some A € ps. In particular, then one has
(H, — \)~! € B($). Recall that (1.9.5) implies that the uniform estimate (1.9.6)
holds, via the uniform boundedness principle.

Let I" be the strong graph limit of the sequence H,,. Let {h,h'} € Hy,. Then
the sequence

{(H, = N)"N (W = Ah), (I +A(H, — X)W —Ah)} € H,
converges to
{(Hoo = N)7HRH = AR), (I + M Hoo — X)) (W = AR)} = {h, W'}

Hence, {h,h'} € T', which shows that H,, C T.
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Conversely, let {h,h'} € T' and let {h,,h} € H, be a sequence such that
{hn,hl,} = {h,h'}. Then
(Hoo — N)"H (R, — Xhy) — hy,
= (Hoo — N\) 1R, — M) — (Hy, — N)7H(AL, — Mh)
= [(Hoo — A" = (Hn — N) 7] ((hl, = Ahy) — (B — AR))
+ [(Hoo = A) 7' = (Ho = A) 7Y (K = AR),
and the terms on the right-hand side tend to 0 as n — oo due to the pointwise
bound ||(H,, — A)~}|| < C and the strong resolvent convergence. Hence, it follows
that
(Hoo — N\) (R — A\R) = h,

so that {h,h'} € Ho. This shows that I' C Hy.
(ii) Assume that H. is the strong graph limit of the sequence H,. Let A € ps

and let h € $. Then, since A € p(Hx), there is an element {f, f'} € Hy with
f" = A\f =h, so that

(Hoo = N)'h=(Hoe = N7 (f' = Af) = .
Since H,, is the strong graph limit of the sequence H,, there exists a sequence
{fn, f}} € H,, with the property that {f,, f,} — {f, f’}. Then
(Hp —N)"'h — (Hoo — N th
= (Hp = N)7H(f = M) = (fn = M)
+ (Hn = N7 = M) = (Hoo = N7 = M)
= (Hy = N7 = M) = (fo = Afa)) + fu — ],

and, since for A € po there is the bound (1.9.6), the right-hand side tends to 0 as
n — oo. Hence, H,, converges to H., in the strong resolvent sense at . O

The following result is a useful consequence of Theorem 1.9.4.

Corollary 1.9.5. Let H,, and H,, be closed relations in $) and let H, satisfy the
uniform bound

[(Hn = N)7H < C (1.9.7)
for some \ € poo. Assume that the relation H is a restriction of Hoo which satisfies
(i) ran(H — X) is dense in $);
1) for eac , € H there exists € 9 such that {h, € H, an —
ii h{h,h'} € H th hl, h that {h,h},} € H dhl, — n
n £.

Then H is dense in Hy and H, converges to H. in the strong graph sense or,
equivalently, in the strong resolvent sense at A € poo.
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Proof. Let {h,h'} € H C Hy and {h,h],} € H, such that h/, — h'. Then for
A € poo One has

{h' = Ah,h} € (Hoo — \)™" and  {h), — Ah,h} € (H, — )",

so that
(Hoo — N) "1 (R — AR) = (H, — X\) " (hl, — \h).

Consequently,

(Hp — N)" (R — Mh) — (Hoo — N1 (W — AR)
= (Hp— N7 (W' = Ah) — (Hy — X) "' (hy, — AR)
= (Hp, = N0 = hy),

and therefore, by the uniform bound,
[(Hp = A)7H (W = AR) — (Hoo = A) 7' (W = AR)|| < Cx|[B' = By, ||

for all {h,h'} € H. Since ran (H — \) is dense in £, it follows from (1.9.7) that H,
converges to H, in the strong resolvent sense at A € poo, and hence also in the
strong graph sense.

It remains to show that H is dense in H,. Observe that H C H., implies
(H—X)"'C (Hs — X)L Since A € po and ran (H — ) is dense in ), it follows
that (H — \)~! is a densely defined bounded operator in §. Thus, its closure
coincides with (Hs — A) ™!, which gives H = H.. O

Let H, and H., be closed relations in £. When all these relations are self-
adjoint or maximal dissipative (accumulative), then there is automatically a uni-
form bound of the form (1.9.6).

Corollary 1.9.6. Let H,, and H., be relations in §. Then the following statements
hold:

(i) Assume that H,, and Hs are self-adjoint. Then H,, converges to Hy in the
strong resolvent sense for some, and hence for all X € C\ R if and only if
H,, converges to Hy, in the strong graph sense.

(i1) Assume that H, and Hs, are semibounded and self-adjoint in $ and assume
that v is a common lower bound. Then H, converges to Hy, in the strong
resolvent sense for some, and hence for all X € C\ [y,00) if and only if H,
converges to Hy in the strong graph sense.

(iii) Assume that H,, and Hs, are maximal dissipative (mazimal accumulative).
Then H,, converges to Ho, in the strong resolvent sense for some, and hence
for all \ € C= (A € C*) if and only if H, converges to Hy, in the strong
graph sense.
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Proof. The proof follows from Theorem 1.9.4 when one recalls that in case (i) one

has
1

H, - N7 <—=, AeC\R,
I, =27 < s A€C
while in case (ii) one has in addition
I =N € —— A<
=0T

cf. Proposition 1.4.4 and Proposition 1.4.6. In case (iii) with maximal dissipative
relations H,, one has

1

H, -\ <—
(Hn =71 <

AeCy
cf. Proposition 1.6.3. The case of maximal accumulative relations is analogous. [

In the definition of convergence in strong resolvent sense the limit relation is
included. There are situations when the limit is not known beforehand.

Theorem 1.9.7. Let H,, be a sequence of closed relations. Let

€ c ﬁ p(H,) (1.9.8)

be a nonempty set such that for all A € & and all h € $ the sequence (H,, — \)~1h
converges. Then there is a closed relation Ho with & C p(Hu) such that H,
converges to Hyo in the strong resolvent sense for each X € €.

Proof. Let A € &, so that the sequence (H, — \)~!h converges for all h € §.
Since (H, —A\)~' € B(9), it follows from (1.9.1) (with H,, in (1.9.1) replaced by
(H,, — A)~!) that there exists an operator B(\) € B($)) such that for all h € §

(H, —\)"'h — B(\)h.
Define the relation Hoo(\) by
Hoo(\) = BA) ™t + A

Then Ho()\) is closed, B(A) = (Hx(X\) — A\)7L and A € p(Huso(N)). In other
words, H,, in § converges to H () in § in the strong resolvent sense at the point
A € €. By Theorem 1.9.4, Ho. () is the strong graph limit of H,,. Hence, Ho(\)
is independent of the choice of A € €. O

Theorem 1.9.7 gives rise to the following weakening of Corollary 1.9.6.

Corollary 1.9.8. Let H,, be a sequence of relations in ). Then the following state-
ments hold:
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(i) Assume that all H,, are self-adjoint and that for some A =A™ € C* and for
some A=\~ € C~ and all h € § the sequence (H, —\)~1h converges. Then
there exists a self-adjoint relation H., such that H, converges to H, in the
strong resolvent sense on C\ R.

(ii) Assume that all H, are semibounded and self-adjoint with lower bound -,
and that for some A € C\ [y,00) and all h € $ the sequence (H, — \)"th
converges. Then there exists a semibounded self-adjoint relation Ho. bounded
below by v such that H, converges to Hs in the strong resolvent sense on
C\ [y, 00).

(iii) Assume that all H, are mazimal dissipative (mazimal accumulative) and
that for some A € C~ (X € C*) and all h € $ the sequence (H, — X\)~*h
converges. Then there exists a mazimal dissipative (maximal accumulative )
relation Ho, such that H,, converges to Hs in the strong resolvent sense on

C- (CH).

Proof. Let H, be any sequence of closed relations in $) such that for all h € §
the sequence (H, — \)~!h converges for each A\ € €, where & is a nonempty set
satisfying (1.9.8). According to Theorem 1.9.7, there is a closed relation H,, which
is the limit of H,, in the strong resolvent sense on &, such that

ran (Hoo —A\) =9, A€ (1.9.9)

If there is a uniform bound as in (1.9.6), then Theorem 1.9.4 implies that the
limit H is also the strong graph limit of H,,. Hence, every {h,h'} € Ho can be
approximated by {h,,h),} € Hy,, which implies that

(W', h) = Jlrgo(h;,,hn), (1.9.10)
and thus also
Im (h',h) = lim Im (k] h,). (1.9.11)
n—oo

(i) Assume that all H,, are self-adjoint. Then the set & = {AT, A"} with some
AE € CF satisfies (1.9.8) and since all H,, are symmetric, it follows from (1.9.11)
that the closed relation Ho is symmetric. Hence, (1.9.9) with & = {A*, A~} shows
that H., is self-adjoint; cf. Theorem 1.5.5. Due to Corollary 1.9.6, one sees that
H,, converges to Hy, in the strong resolvent sense on C \ R.

(ii) Assume that all H, are semibounded and self-adjoint with common lower
bound 4. Then the set & = {A} with some A € C\ [y,00) satisfies (1.9.8) and,
since (h),, hn) > v(hy, hy) for {hy, h,} € H,, it follows from (1.9.10) that the
closed relation Ho, is bounded below with lower bound ~. Hence, (1.9.9) shows
that H is self-adjoint; cf. Theorem 1.5.5. In view of Corollary 1.9.6, H,, converges
to Hy in the strong resolvent sense on C \ [, 00).

(iii) Assume that all H, are maximal dissipative. Then the set & = {A} with
some A € C~ satisfies (1.9.8) and since all H,, are dissipative it follows from
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(1.9.11) that the closed relation H, is dissipative. Hence, (1.9.9) shows that H
is maximal dissipative; cf. Theorem 1.6.4. Due to Corollary 1.9.6, one sees that
H,, converges to H., in the strong resolvent sense on C~. The case where H,, is
maximal accumulative is treated analogously. O

The following result is an illustration of the methods involving convergence
in the graph sense and in the resolvent sense. In Chapter 5 this result will be used
extensively.

Proposition 1.9.9. Let H,, be a sequence of semibounded self-adjoint relations with
common lower bound v in $. Assume that for m > n and some \ < vy

0<(Hp—N"'<(H,— NN (1.9.12)

Then there exists a semibounded self-adjoint relation H, with lower bound v such
that H,, converges to Hy, in the strong resolvent sense on C\ [y, 00), and

0< (Hoo — N ' < (H,— M) (1.9.13)
Proof. Let A <~y and let h € §. By (1.9.12),
0< ((Hp—A)""h,h) < ((H, —\)"'h,h)

for m > n and now it follows in the same way as in (1.9.3)—(1.9.4) that the sequence
(H,, — A\)~'h converges for h € . Then by Corollary 1.9.8 there is a self-adjoint
relation H., bounded below by ~, such that H,, converges to H., in the strong
resolvent sense on C \ [y,00). It follows from (1.9.12) that (1.9.13) holds. O

Before moving to a corollary of Proposition 1.9.9, recall the following simple
antitonicity result. Let A, B € B($) satisfy 0 < A < B and let A be boundedly
invertible. Then B is boundedly invertible, 0 < B~!, and B~t < A~'. To see
the last inequality, note that (A-,-) is a nonnegative semi-inner product, thus one
obtains for any ¢, € 9:

[(Ap,¥) > < (Ap, ) (A, ¥) < (Ap, 0)(Bi, ).

Let h € $ and choose ¢ = A~'h and ¢y = B~'h. Then this inequality leads to
0<B'<AL

The following corollary deals with the situation from the beginning of this
section. However, now the nondecreasing sequence of self-adjoint operators in B($)
does not necessarily have an upper bound.

Corollary 1.9.10. Let H,, € B($)) be a sequence of self-adjoint operators which is
nondecreasing, i.e., for all h € §

(Hph,h) < (Hphyh), n<m, (1.9.14)
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and let v € R be the lower bound of Hy. Then there exists a semibounded self-
adjoint relation Ho, bounded below by ~y, such that H, converges to Hy in the
strong resolvent sense on C\ [y, ), and

0<(Ho =N ' <(H,—N)7Y A<y (1.9.15)

Proof. Let v € R be the lower bound for H;. Then v is a common lower bound
for all H,, i.e., v(h,h) < (H,h,h) for all h € §. Furthermore, (1.9.14) gives for
n <m:

0< ((Hn - /\)h7 h) < ((Hm - )‘)ha h)a A< v-

Since H,, — A with A < 7 is boundedly invertible for all n € N, this implies by
antitonicity that (1.9.12) holds. Thus, (1.9.15) follows from Proposition 1.9.9. O

1.10 Parametric representations for relations

The discussion in this section is centered on the question when a relation from $)
to K can be seen as the range of a bounded column operator or as the kernel of
a bounded row operator. The results will be used in the description of boundary
value problems in Chapter 2.

Let $), R, and € be Hilbert spaces and let A € B(€&,9), B € B(€&, R). Then
H defined by
H = {{Ae,Be} :ec €} (1.10.1)

is a relation from $) to R The representation of the relation H in (1.10.1) is
called a parametric representation and is denoted by H = {A, B}. It is sometimes
convenient to rewrite (1.10.1) as

H = ran (;l), (1.10.2)

that is, H is the range of the corresponding bounded column operator from € to
£ x K. Not all relations from $) to & can be represented in the form (1.10.1); below
the ones that do will be characterized.

An interesting feature of parametric representations is how they show up in
adjoints. Namely, if H is given by (1.10.1) or, equivalently, by (1.10.2), then the
adjoint H* of H satisfies

H* ={{f, f} e RxH: B f=A*f'}, (1.10.3)

or, equivalently,
H* =ker (B* —AY),

that is, H* can be written as the kernel of the corresponding bounded row operator
from & x 9 to €.
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The following theorem uses the notion of operator range. An operator range
R in a Hilbert space X is defined as the range of a bounded everywhere defined
operator from some Hilbert space 2 to X.

Theorem 1.10.1. A relation H from $) to & is of the form (1.10.1) with A € B(€&, $)
and B € B(€, R) if and only if H is an operator range. In particular, every closed
relation H from $ to 8 is of the form (1.10.1).

Proof. Let H be given by (1.10.1) and define the column operator R by

=) ()

where the column on the right stands for the Hilbert space $) x 8 Then R belongs
to B(€, 9 x R) and clearly ran R coincides with (the graph of) the relation H; i.e.,
H is an operator range in $ x K.

Conversely, assume that H is an operator range in $) x £, so that (the graph
of) H coincides with ran R for some R € B(€&,$ x &). Let Py and Py be the
orthogonal projections from ) x K onto § and R, respectively. Then

A= P_@R and B :PRR
define a pair of bounded operators A € B(€, ) and B € B(&, K) such that

H={Rf:fe¢}={{Af,Bf}: e}
Hence, H has the form (1.10.1).
Finally, every closed relation H from $) to £ is of the form (1.10.1), since it

coincides with the range of the orthogonal projection from £ x & onto (the closed
graph of) H. O

In the general operator representation (1.10.1) there clearly exists some re-
dundancy: the closed linear subspace

ker <J§) =kerANkerB C &

does not contribute to H. Thus, one can restrict the operators A and B to the
orthogonal complement of ker ANker B in €. The representing pair H = {A, B} is
called tight if ker A Nker B = {0}. All tight representations H = {A, B} are easily
characterized.

Lemma 1.10.2. Let H;, j = 1,2, be relations from $) to R. Assume that the repre-
sentations

H; = {{Aje,Bje} :ec €}, j=1,2,
where A; € B(€;,9), B; € B(&;,8), and €; are Hilbert spaces, are tight. Then

the equality Hy = Hy holds if and only if there exists a bounded bijective operator
X € B(¢y, €;) such that

-Al :A2X7 31 :BQX
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Proof. Since the representations of H;, j = 1,2, are tight, one has

(AN AN (AT A\\'
ran(Bl) —<ker<gl>> =¢; and ran(B2) —(ker<32>> = &,.

Now assume that H; = Hs, so that

Then Corollary D.4 and the discussion preceding it show that there exists a bound-
edly invertible operator X € B(€, ;) such that

A Ao
= X.
(31) (32)
The converse is clear. O

The question comes up when relations of the form (1.10.1) are closed. The
following result gives a necessary and sufficient condition.

Proposition 1.10.3. Let H be a relation from $ to & of the form (1.10.1) with
A€ B(€,9) and B € B(&,R). Then H is closed if and only if

¢ =ran (A*A + B*B)

is closed in €. In this case there exists a tight representation {A’, B'} of H, where
A" e B(¢,9), B’ € B(¢, R), such that

(A/)*A/ _|_ (3/)*3/ — IG’-

AN (A , X
ran<B) <B>—ra11(ﬂ A+ B*B)

together with Lemma D.1 and Lemma D.2 shows that ran (A*A + B*B) is closed

if and only if
A
H =r:
ran < 3>

is closed. Now assume that H is closed or, equivalently, that ran (A*A + B*B) is
closed. Since A*A + B*B is self-adjoint the space € has the orthogonal decompo-
sition

Proof. The identity

¢ =ran (A"A+ B*B) @ ker (A" A + B*B).
It follows from the identity

. ey (AN (AN (A
ker (A*A + B B)-ker(B) <fB>7ker(B>’
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that the restrictions A and By of A and B to ¢ = ran (A* A+ B*B) form a tight
representation of H. Moreover, it can be seen that AjAg + BBy coincides with
the restriction of A*A + B*B onto ¢ and hence it follows that AjAg + BEBo is a
bounded bijective nonnegative operator in ¢’. Now define

X = (ALAo + BiBo) % € B(¢),

and set A’ = ApX € B(¢,9), B’ = BoX € B(¢, 8). Then it follows that H can
be represented in the form

H={{Ae,B'e} e € ¢},
where the pair {A’, B’} is normalized by
(A A"+ (B)*B = X*(AgAo + ByBo) X = I

Since the representing pair H = {Ag, Bo} is tight, so is the representing pair
H={A" B} O

A direct by-product of Theorem 1.10.1 is the following representation of a
relation in terms of the kernel of a bounded row operator.

Proposition 1.10.4. A relation H from $) to K is of the form
H={{f,f'}eHxf:Mf=Nf}, (1.10.4)

where M € B($,5), N € B(&,5), and § is a Hilbert space if and only if H is
closed. In this case the Hilbert space § can be chosen such that

§ = span {ran M, Tan N}, (1.10.5)

where M and N are uniquely determined up to left-multiplication by a bounded
bijective operator.

Proof. Note first that for any relation H from $) to K the adjoint H* is a closed
relation from R to §. Hence, by Theorem 1.10.1, there exist a Hilbert space § and
a pair C € B(§, R) and D € B(F, ), such that

H* = {{Ce,De} : e € §}.
Then it follows from (1.10.3) that
H*={{f, [} eHxR:Df=C*"f}.

Now assume that H is a closed relation from $ to 8. Then H = H** and hence
(1.10.4) is valid with M = D* € B($,F) and N = C* € B(&,F). For the converse
assume that H has the form (1.10.4), where M € B($,§) and N € B(R,§). Then
it follows directly that H is closed.
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If H is given by (1.10.4), then it follows that H* has the representation
H* = {{N*e,M*e} : e € §}

with N* € B(§, &) and M* € B(F, $). By Proposition 1.10.3, this representation
can be assumed to be tight. Then one has

{0} = ker (ﬁ) - (ran (;\i))L = (ran (N M),

which gives (1.10.5).
Likewise, assume that H is given by

H={{f,f} eHxK:Mf=Nf},

where §; is a Hilbert space, My € B(9,51), and N; € B(R,F1), and that the
condition §; = span {ran M;,tan N7 } holds. Then H* also has the following tight
representation

H* = {{(N1)%e, M1) e} te € 51 ).

By Lemma 1.10.2, there exists a bounded bijective operator X € B(F1,F) such
that
M)" = M)"X, (N1)"=N)"X,

or
My = XM, Ny =X"N,
with X* € B(F,&1) is bijective. This completes the proof. O

Let H be a closed relation from $) to & Then it has a representation as
in (1.10.1) and a representation as in (1.10.4). The interest is now in explicitly
connecting these representations. The first main result concerns the case when the
resolvent set of the relation is nonempty.

Theorem 1.10.5. The relation H in $ is closed with p € p(H) if and only if H
has a representation
H = {{Ae,Be} e € H} (1.10.6)

with A, B € B(9), such that (B — pA)~' € B(§). This representation is automat-
ically tight. Moreover, in this case the pair {A, B} may be chosen such that H*
has the tight representation

H* = {{A%¢,B*¢} : e € O}, (1.10.7)
so that H can also be written as

H={{f.fYenxn :Bf=Af}. (1.10.8)
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Proof. Let H be the relation in (1.10.6) and assume that (B — pA)~! € B().
Then it is clear that

(H—p) ' ={{(B—pAe,Ae} :e € H} = A(B — pnA) ",

which implies that p € p(H) and that H is closed. The representation is tight,
since Ae = 0 and Be = 0 imply (B — uA)e = 0, and hence e = 0.

Conversely, let H be closed and assume that p € p(H). Then, by Lemma 1.2.4,
H has the representation

H={{(H-p) ' f,(L+nH—-p) ")f}: e}
Hence, one gets (1.10.6) by taking A = (H — p)~' and B = I + pu(H — p)~ %, in

which case B — A = I is boundedly invertible. Since 11 € p(H*), one also has, by
Lemma 1.2.4,

H*={{(H*—p)"'g,(I + u(H — ) ")g} : g € H},

which then leads to (1.10.7). It also follows that this representation is tight. The
assertion (1.10.8) follows from (1.10.7), (1.10.3), and H = H**. O

Note that a possible choice for (1.10.6) and (1.10.7) (and hence also (1.10.8))
to hold is given by

A=(H—-p)™ " and B=T+pu(H —p) ', we p(H). (1.10.9)
In the next statement, starting from an arbitrary representing pair {A, B} for H
in (1.10.6) a representing pair {X *A*, X *B*} for H* as in (1.10.7) is obtained.

In fact, Corollary 1.10.6 is an immediate consequence of (1.10.9), Lemma 1.10.2
and Theorem 1.10.5.

Corollary 1.10.6. Let H be a closed relation in $) with p € p(H) given in the form
(1.10.6) with A, B € B($), such that (B — pA)~t € B(). Then

A=H-p)'X, B=(T+pH-p X,

for some bijective X € B(9), and the pair {X ~*A*, X *B*} represents the adjoint
H* as in (1.10.7). In particular, H is given by

H={{f,f'}eH: BX'f=AX""f}.

For a given representation H = {A,B} as in (1.10.6) and some bijective
operator X € B($)), Lemma 1.10.2 shows that also

A = AX, B =BX,
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is a tight representation of H. With {A,B} in (1.10.9) and X = g — p, where
w € p(H)NC\R, one gets the following representing pair {A’, B’} for H in terms
of the Cayley transform in Definition 1.1.13:

A= (= ) (H — p)™ =T~ €,[H],

. 4 _ (1.10.10)
B =(n—p)(I+p(H—p)~") =@~ pe,H]
The next proposition is also closely related to Theorem 1.10.5.
Proposition 1.10.7. Let H be a closed relation in $) of the form
H={{ff'YeHxnH:Mf=Nf"}, (1.10.11)

where § is a Hilbert space and M, N € B(9,F), and assume that (1.10.5) is satis-
fied. Then p € p(H) if and only if M — uN € B(9,F) is bijective. In this case H
has the parametrization (1.10.6) with

{A, B} = {(M — uN)""N, (M — uN) "M}, (1.10.12)

Proof. Assume that p € p(H), so that also i € p(H*) and hence one has the
parametrization H* = {(H* — )™Y', I + a(H* — )~ '}. Define the relation K in
9 by

K = {{N*e,M*e} : e € §}.
Then it follows from (1.10.3) that H = K*. Furthermore, one sees that the rep-

resentation of K = H* is tight due to (1.10.5). Hence, there exists a bijective
operator X € B(F, $)) such that

N'=H"-p)'X and M*=(I+pH"—p) "X,
and therefore
M=X*(IT+pH-p)™") and N=X*(H-p) " (1.10.13)

It follows that
M— N = X*, (1.10.14)

and hence M — uN € B(9, §) is bijective.
Conversely, assume that M — uN € B($),5§) is bijective. It follows from
(1.10.11) that

H—p={{f.f'~uf} €5 x5:Mf =Nf'}.

Then it is clear that ker (H — p) = {0}. To show that ran (H — ) = $, let h € H
and define
f=M—=uN)"'Nh and f = puf+h.
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From this definition one sees that
Nf' = pNf +Nh = pNf + (M — N f = M,

which shows {f, f’} € H. Furthermore one sees that f — pf = h, which then
implies that ran (H — p) = $. Hence, u € p(H).

It remains to show the parametrization (1.10.12) if 4 € p(H) or, equivalently,
(M —uN)~t € B(F, ). For this note that H = {(H —p) = I+ pu(H — )71}, and
that (1.10.13) and (1.10.14) imply

(H—p) b =M —pN)"'N and T+ p(H—p) = (M- puN)"'M.
This gives (1.10.12). O

In the next corollary the self-adjoint, maximal dissipative, and maximal ac-
cumulative relations are treated.

Corollary 1.10.8. Let H be a relation in $. Then the following statements hold:
(i) H is self-adjoint if and only if there exist A, B € B($), such that
H = {{Ae,Be}:e€H} (1.10.15)

holds with
Im(A*B) =0 and (B-—pA)"'eB(#H)
for some, and hence for all p € C* and for some, and hence for all € C~.
(il) H is mazimal dissipative if and only if there exist A,B € B($), such that
(1.10.15) holds with
Im(A*B) >0 and (B—pA) ' eB(®H)

for some, and hence for all € C™.
(i) H 4s mazimal accumulative if and only if there exist A, B € B($), such that
(1.10.15) holds with
Im(A*B) <0 and (B-—pA)~'eB(#H)
for some, and hence for all p € C*.

If A,B € B(9) are chosen such that also (1.10.7) is satisfied, then H has the
representation

H={{f,fYenHxn:Bf=Af'}.
Proof. 1t has been shown in Theorem 1.10.5 that a relation H is closed with
wu € p(H) if and only if it admits the representation (1.10.15) with A, B € B(9)
such that (B — pA)~! € B(H). Note that when H is given in this way, then
{f,f'} € H if and only if {f, f'} = {Ae, Be} for some e € . The identity

(f', f) = (Be, Ae) = (A" Be, e)

www. dbooks. or g


https://www.dbooks.org/

1.10. Parametric representations for relations 95

shows that H is dissipative, accumulative, or symmetric if and only if

Im(A*B) >0, Im(A*B)<0, or Im(A*B)=0, respectively.
Furthermore, it is clear that H is maximal dissipative if p € C~, maximal accu-
mulative if g € CT, and self-adjoint if 4 € CT and p € C™. O

The next corollary provides a special representing pair {A, B} for a self-
adjoint relation H.

Corollary 1.10.9. Let H be a relation in $). Then H is self-adjoint if and only if
there exist A, B € B($)) such that

A*B =B*A, AB*=BA", AA+B"B=1=AHAA" + BB*. (1.10.16)
Proof. Assume that H is self-adjoint and define

A= 1(I—€,i[H]) and B =

—5 (i+i€7i[H])v

N | =

where C_;[H] denotes the Cayley transform of H (with respect to the point
@ = —i) in Definition 1.1.13. A straightforward calculation using the identity
(C_;[H])~! = Cy[H] = (C_;[H])* (see Lemma 1.3.11) shows that the properties in
(1.10.16) are satisfied.

Conversely, it suffices to remark that for p = +i

(B+pA) (B+pA)=1=(B+ pA)(B+ pA)”

follows from (1.10.16). This shows (B + pA)~! € B($) for p = +i. Furthermore,
the first condition in (1.10.16) shows Im (A*B) = 0 and now Corollary 1.10.8 (i)
implies that H is self-adjoint. O

In Theorem 1.10.5 and afterwards special attention was paid to representa-
tions of H of the form (1.10.6) and (1.10.8) under the assumption that p(H) # (.
In the next proposition this assumption is dropped.

Proposition 1.10.10. Let the relation H = {A, B} from $ to & be given by (1.10.1)
with A € B(€,9), B € B(€, R), and assume that

A*A+B*B =1. (1.10.17)
Then the adjoint H* from 8| to $) has the parametrization
H* = {{(I - BB")p+ BA* Y, AB* o+ (I —AA" )} : p € &, ¥ € H}.
Consequently, H is given by all {f, f'} €  x & for which

(I—AA")f = AB*f', BA*f=(I—BB*)f. (1.10.18)



96 Chapter 1. Linear Relations in Hilbert Spaces

Proof. The assumption (1.10.17) and Proposition 1.10.3 imply that the relation
H = {A, B} is closed. Let J{h,k} = {k, —h} be the flip-flop operator from § x &
to x 9 in (1.3.1). Then JH = {B, —A} is a closed relation from £ to . It follows
from (1.10.17) that

B\ (B B\ "
<—A> (—A) =1, and hence ran (—A) — ¢

This implies that the orthogonal projection Py in 8 x $ onto JH has the form

po_ (3 B\ [ BB* -—BA*
TE=\-A)\-A) — \-AB* AA* )"
Since H* = (JH)* by (1.3.2), the orthogonal projection onto H* is given by

I — BB* BA*
PH*:I_PJH:( AB* I—.A.A*)7

and this leads to the form of H* in the proposition. It then follows from (1.10.3)
that H** = H consists of all {f, '} € $ x & for which (1.10.18) holds. O

1.11 Resolvent operators with respect
to a bounded operator
Many of the results in this chapter are phrased for (H —\)~1, where H is a relation

in $ and A\ € C. In the rest of this text there will be several occasions to use similar
results phrased for (H — R)™! when R € B($)). A brief survey is offered.

For a relation H in $) recall that the difference H — R is a well-defined relation
in § given by
H—R={{h, — Rh}: {h,W} € H},

and that H — R is closed whenever H is closed. It is clear that
ker (H — R)™' = mul (H — R) = mul H. (1.11.1)
The next lemma is a variant of Lemma 1.1.8 in the present context. The

proof is not repeated.

Lemma 1.11.1. Let H be a relation in $. If R € B($H) and ker (H — R) = {0},
then

H={{(H-R)™"f,(I+RH—-R)")f}: fecran(H - R)}.

The next proposition is concerned with the resolvent identity as in Proposi-
tion 1.1.7, but in the present context.
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Lemma 1.11.2. Let H be a relation in $ and let R, S € B(9). Then

(H-Ry '~ (H-S)'=(H-R Y R-9)(H-S5)". (1.11.2)
Ifker (H — R) = {0} and ker (H — S) = {0}, then (H — R)~! and (H —S)~! are
linear operators with the same kernel mul H.
Proof. For the inclusion (C), let {h,h' — K"} € (H — R)~' — (H — S)~! with
{h,W'} € (H—R)~" and {h,h"} € (H — S)~'. This gives

{W,h+Rh'}€eH and {h" ,h+Sh"}€H,
which shows that {h’ — h”, Rh' — Sh"} € H, and thus
{(R—=S)W' ;W —h'y e (H-R)™

Since {h,h"} € (H — S)~! and {n”,(R — S)h""} € R — S, one concludes that
{h,(R— S)h"'} € (R — S)(H — S)~!. Hence, the element {h,h’ — h""} belongs to
the relation (H — R)~*(R — S)(H — S)~!, which shows the inclusion.

For the inclusion (D), let {h,h'} € (H — R)"'(R — S)(H — S)~!. Then by
definition there exists k € $) such that

{h,k} € (H—-S)"' and {(R-S)k,h}ec(H—-R)',
as {k,(R—S)k} € R—S. It is clear from {k,h} € H — S that
{h+(S—R)k,k} € (H—-R)™".

Thus, it follows that {h,h’ + k} € (H — R)~!. Hence, {h,h'} = {h, W + k — k}
belongs to (H — R)~! — (H — S)~!, which shows the inclusion.

The last statements follow directly from (1.11.1). d

Observe that if (H—R)~! and (H —S)~! belong to B($), then the resolvent

identity (1.11.2) involves only operators from B($)) defined on all of §. Hence, the
following lemma can be verified by direct computation.

Lemma 1.11.3. Let H be a closed relation in $), let R, S € B(9), and assume that
(H-R)™' and (H-S)"'eB($).
Then the operator I + (H — R)™*(R — S) € B(§) is boundedly invertible, with
inverse given by
[[+(H-R) " (R-S)] '=I—(H-S) "(R-S5). (1.11.3)

Likewise, the operator I — (R — S)(H — S)™! € B(§) is boundedly invertible, with
inverse given by

1

[I—(R-8S)H-8)"'] =I+(R-S)(H-R)™" (1.11.4)
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Under the conditions of Lemma 1.11.3 it follows by rewriting the resolvent
identity (1.11.2) that

(H-R)y'=[I+H-RR-9]H-9)" (1.11.5)
and
(H-R)'[I-(R-S)(H-S)""=(H-5"7" (1.11.6)

here the factors are bounded and boundedly invertible by Lemma 1.11.3. Hence,
the identities (1.11.3) and (1.11.4) lead to the following useful result, expressing
the resolvent difference (Hy —R) ™' —(Hzy—R) ™! in terms of the resolvent difference
(Hy —S)™' — (Hy— 9)~%

Lemma 1.11.4. Let Hy and Hs be closed relations in $), and let R and S be op-
erators in B($)). For i = 1,2 assume that (H; — R)™* and (H; — S)~! belong to
B($). Then the bounded operators

I—(H —-S) ™Y (R-S), I—(R-S)(Hy—S)"
are boundedly invertible, and
(H,—R)y™' —(Hy—R)™*
=[I—(Hi-8) " (R-9)]"
[(H, = S)™' = (Hy = S) | [T = (R—S)(Hs— )] "

Proof. Tt follows from the identities (1.11.5)~(1.11.6) and Lemma 1.11.3 that

(Hy—R)y™' = [I—(H = 8) " (R—9)] "(H; —5)"
and

(Hy— R)™' = (Hy— 8) "' [I = (R— S)(Hy — 5)~] .

Subtracting these identities yields the desired result. O

The question arises for what relations H in $j and R € B($)) one can conclude
that (H — R)™! € B($). The following lemma presents some sufficient conditions.

Lemma 1.11.5. Let H be a closed relation in $ and let R € B($)) with InR > ¢
for some € > 0. Then the following statements hold:

(i) if H is mazimal accumulative, then (H — R)™! € B(9) is dissipative;

(ii) if H is mazimal dissipative, then (H — R*)™1 € B($) is accumulative;

(iii) if H is self-adjoint, then (H — R)™' € B($) and (H — R*)™! € B($) are
accumulative and dissipative, respectively.
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Proof. (i) Since the relation H is maximal accumulative, it follows that H is
closed, which implies that the relation (H — R)™! is closed. In order to show that
(H — R)™!is a bounded operator, let {f, f’} € (H—R)~'. Then {f, f+Rf'} € H
and, since H is accumulative and Im R > ¢, this shows that

Im (f, /') +ellf|I> <Tm (f, /) + (Am R) f', f') = Im (f + Rf', f') <0, (1.11.7)
which leads to

elfI7 < ~Im (f, f') = Im (£, ) < [IFI[I£]-

This implies that the closed relation (H — R)~! is a bounded operator. Note also
that (1.11.7) implies Tm (f, f/) < 0 for {f, '} € (H — R)~'. Hence, Im (f', f) > 0
and (H — R)™! is dissipative.

To show that (H—R)~* € B($) it therefore suffices to verify that ran (H — R)
is dense in §. Note that (ran (H — R))* = ker (H* — R*) by Proposition 1.3.2 and
Proposition 1.3.9. Now observe that ker (H* — R*) = {0}. To see this, assume
that f € ker (H* — R*) or, equivalently, {f, R*f} € H*. Since H* is maximal
dissipative by Proposition 1.6.7 one obtains that

0<Im(R"f, f) =Im(f, Rf) = —~((ImR)f, f) < —<]|f|I*,
which gives f = 0.
(ii) & (iii) The proofs are similar. d

Let H be a closed relation in $) and let A € B(€, ), B € B(€, ) be a tight
representing pair for H, that is,

H = {{Ae,Be}: e ¢} (1.11.8)

and ker A Nker B = {0}; cf. Theorem 1.10.1 and Proposition 1.10.3. Note that
if for some ;1 € C one has (B — uA)~! € B(€), then the tightness condition
ker A Nker B = {0} is automatically satisfied.

Lemma 1.11.6. Let H be a closed relation in § and assume that H has the tight
representation (1.11.8), where A,B € B(€, ). Then for any R € B($) one has
that

(H-R)™'eB(H) < (B-RA)'eB(H,¢), (1.11.9)
in which case
(H—-R)™' = A(B - RA).. (1.11.10)
Proof. One sees by the definition of H — R that
H — R = {{Ae,(B— RA)e} : e € €}, (1.11.11)

and thus it follows directly that
ran (H — R) =ran (B — RA) and ker (H — R) = Aker (B — RA).
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Furthermore, it is clear that in general
ker (B — RA)={0} = ker(H — R) = {0}.
Moreover, under the assumption ker A Nker B = {0} one concludes that
ker (H— R) ={0} = ker(B— RA)={0}.
To see this, let h € ker (B — RA), which means that Bh = RAh. Due to
ker (H — R) = Aker (B — RA)

one has Ah € ker (H — R) = {0} and thus also Bh = 0. The tightness condition
now implies that h = 0.

In order to prove the equivalence (1.11.9), assume that H has the tight rep-
resentation (1.11.8). Then it is clear that ker (H — R) = {0} and ran(H — R) = $
if and only if ker (B — RA) = {0} and ran (B — RA) = §. This implies (1.11.9).
Moreover, (1.11.11) yields (1.11.10). O

1.12 Nevanlinna families and their representations

Let $ be a Hilbert space and let N : C\ R — B($)) be a holomorphic function.
Then N is a Nevanlinna function (or B($))-valued Nevanlinna function) if

(ImA)(ImN(A\) >0, AeC\R, (1.12.1)

and N satisfies the symmetry condition N(\) = N()\)* for all A € C \ R; see Def-
inition A.4.1. If, in addition, the imaginary part Im N(\) is boundedly invertible
for some, and hence for all A € C\ R, then the Nevanlinna function N is said to
be uniformly strict; cf. Definition A.4.7. Observe that by (1.12.1) the operators
N()) € B(9) are dissipative (accumulative) for A € CT (XA € C7). In this section
the notion of a Nevanlinna function is extended to a so-called Nevanlinna family,
that is, a family of relations Z(\), A € C\ R, in $ which are maximal dissipative
or maximal accumulative for A € Ct or C~, respectively, and satisfy a symmetry
condition and a holomorphy condition.

Definition 1.12.1. A family of relations Z(\), A € C\ R, in § is called a Nevanlinna
family if the following conditions are satisfied:

(i) Z(X) is maximal dissipative (maximal accumulative) for A € CT (A € C™);

(i) Z(\) = Z(\)*, A€ C\R;

(iii) there exists u € C* such that A = (Z()\) + p)~! is holomorphic on C* and
A (Z(X) + )~ is holomorphic on C~.
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Note that condition (i) in this definition and Theorem 1.6.4 ensure that
C™ Cp(Z(N), reCH, and Ct cp(Z(N), xeC . (1.12.2)

In particular, one has (Z(\)+p)~! € B($) in (iii). The condition Z()\) = Z()\)* in
(ii) leads to the following conclusions. First of all, it follows from Proposition 1.6.7
that Z(\) is maximal accumulative for A € C~ if and only if Z(\) is maximal
dissipative for A € C*. Secondly, A — (Z(\) + 1)~ ! is holomorphic on C~ if
and only if A = (Z(A\) + p)~! is holomorphic on C*; this follows from the fact
that for a B($)-valued function H one has that A — H()) is holomorphic if and
only if A\ + H())* is holomorphic. Furthermore, each element Z()) is a closed
relation in $ and therefore it has a tight operator representation by Theorem 1.10.1
and Proposition 1.10.3. In particular, one has the following general representation
result.

Proposition 1.12.2. Let Z(\), A € C\ R, be a Nevanlinna family in . Then Z(\)
has the tight representation

A) = {{ANh, B(A)h}: he H}, AeC\R. (1.12.3)
Here {A, B} is a pair of B(9)-valued functions on C\ R which satisfies:
(a) the mappings A — A(X\) and X — B(\) are holomorphic on C\ R;
(b) (ImA)Im (A(X\)*B(\)) >0, A € C\R;
(c) AQN)*B(\) = B(A\)*A(\), A€ C\R;
(d) there exists p € Ct such that (B(\) + pA(N))™! € B($) for A € CT and
(B(A) + gA\)L € B(9) for A e C™.

If the pair {C, D} is another tight representation of the Nevanlinna family Z(X),
A € C\ R, with the above properties, then there exists a bounded and boundedly
invertible holomorphic operator family X (\), A € C\ R, such that

C\) = ANX(\), D) =BMNX(\), AeC\R. (1.12.4)

Proof. Let Z()\), A € C\ R, be a Nevanlinna family, choose g € CT as in Defini-
tion 1.12.1, and define A(X\) and B(\) by

_ )N+t xect,
AN = {(Z(/\) Ll Aec (1.12.5)
and
_ I- :U’(Z()‘) +:u’)71’ A€ (C+7
B(\) = {I_M(Z(A) Lat aec- (1.12.6)

Then it follows from (1.12.2) that A(A\) and B(\) belong to B($)), and Lemma 1.2.4
shows that Z(A) has the representation (1.12.3). Definition 1.12.1 (iii) implies
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that the mappings A — A()\) and A — B(A) are holomorphic, which shows (a).
Furthermore, it follows from (1.12.5) and (1.12.6) that B(A\) +pA(\) = I, A € CT,
and B(\) + nA(N\) = I, A € C, which shows (d). Since by (i) Z()) is dissipative
(accumulative) for A € CT (X € C7) it follows from

Im (A(A\)*B(Mh,h) = Im (B(\)h, A(\)h), A€C\R, he$H,  (1.12.7)
that (b) holds. It is a direct consequence of (1.12.3) that

ZON)* = {{k, K} €HxH: BA)k=ANF};

cf. (1.10.2) and (1.10.3). Since by (ii) Z(X) = Z(N\)* it follows from (1.12.3) that
(¢) holds.

The representation in (1.12.3) with A(X) and B(\) in (1.12.5)-(1.12.6) is
tight for each A € C\ R, that is,

ker A\) Nker B(A) = {0}, A eC\R.

In order to see this, assume that A(A)g = 0 and B(A\)g = 0 for some A\ € C*
with some g € $). Then (B(\) + pA(N))g = 0 and hence (d) implies that g = 0.
Likewise, the same conclusion holds when A\ € C™.

Now assume that {C, D} is another tight representation of the same Nevan-
linna family Z(\), A € C\ R, i.e., assume that Z(\) is also given by

Z(\) = {{C(\h, DA} : h e 8}

It follows from Lemma 1.10.2 that there exist bounded bijective operators X (),
A € C\ R, such that (1.12.4) holds. In particular, for A € C* one has

D)+ uO() = (B + pAN) X ()
and hence the function
A X(N) = (BO) +pAN) (D) +uC(N), reCh,
is holomorphic on C*. Similarly, on C~ the function X has the form
A X(A) = (B +EAN) (D) +EC(N), AeCT,

and is holomorphic. O

Definition 1.12.3. Let {A, B} be a pair of B($))-valued functions on C \ R. Then
{4, B} is called a Nevanlinna pair if it satisfies the properties (a), (b), (c), and
(d) in Proposition 1.12.2.

Hence, by Proposition 1.12.2 each Nevanlinna family is represented by a
Nevanlinna pair. The converse is also true: each Nevanlinna pair defines a Nevan-
linna family.
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Proposition 1.12.4. Let {A, B} be a Nevanlinna pair in 8. Then Z(\), A € C\ R,
defined by (1.12.3) is a Nevanlinna family in $).

Proof. Let {A, B} be a Nevanlinna pair and define the family Z(\), A € C\ R,
by (1.12.3). Then (b) implies that Z()) is dissipative (accumulative) for A € CT
(A€ C); cf. (1.12.7). Tt follows from (d) and the definition of Z()\) that one has

(Z(N) + ) = AN (B +pA() ' €B(®), AecCH,
(Z(N) + 1)~ = AN (BO) +EAN) " €B(®), AeC,

(1.12.8)

for some p € C*. With (a) this shows that the holomorphy condition (iii) is
satisfied. Moreover, from (1.12.8) and Theorem 1.6.4 it is now clear that Z(\) is
maximal dissipative (maximal accumulative) for A € C*t (A € C7), which is (i).
From (c) one concludes

AN (BO) +EAN)) = (BO)* +EAN))AQN), AeC\R.
For A € C* and p € CT this reads
(BOY* +EAN*) AN = AN (B + EAN)
so that
(ZOA) + )~ = (B +RAN) T A"

< N - 1 Ty, e
— AN (BM) +EAN) T = (Z() + 1)
However, the left-hand side is equal to (Z(\)* + )~!, and hence it follows that

Z(A\)* = Z(\) for A € Ct. A similar reasoning is valid for A\ € C~. Hence, (ii)
follows and therefore Z(X\), A € C\ R, defined by (1.12.3) is a Nevanlinna family

in 9. O

In the next lemma it turns out that the conditions (iii) in the definition of
a Nevanlinna family and the conditions (d) in the definition of a Nevanlinna pair
hold for all 4 € C\ R.

Lemma 1.12.5. Let Z(\), A € C\ R, be a Nevanlinna family in $ and let {A, B}
be a Nevanlinna pair in ). Then the following statements hold:

(i) for all p € C* the mapping A — (Z(\)+ u)~! is holomorphic on C* and for
all p € C~ the mapping A — (Z()\) + p)~t is holomorphic on C~;
(i) for all p € C* one has (B(A) + pA(N))~! € B($) on CT and for all p € C
one has (B(A) + pA(\)~L € B(§) on C~.
Proof. (i) Assume that Z(\) satisfies (i) in Definition 1.12.1, so that, (1.12.2)

holds. Fix v, in the same half-plane as A € C\ R. Then one has —v € p(Z()))
and —p € p(Z(\)) According to the resolvent formula one has

(ZN) + ) = (ZN) + )7 = = m(Z) + )T EZN) + )7
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Assume that for some ;1 € CT the mapping A — (Z()\) + p)~! is holomorphic on
C*. Let v € C*. Then it follows from the resolvent formula (1.12.9) that

ZWN+w =T+ = ZN)+w) ) ZN) +v)h

The factor T + (v — p)(Z(\) + p)~* is holomorphic in A € C* and according to
Lemma 1.6.10 it is boundedly invertible. Hence, its inverse is also holomorphic in
A € Ct and one obtains for A € C*

ZN) +v) = T+ = m(ZN) +m) ™) (Z0) + )

Hence, A — (Z(\) +v)~! is holomorphic on C*. The corresponding statement for
the half-plane C~ follows from the symmetry of the Nevanlinna family.

(ii) Assume that for some u € C* one has (B(\) + pA(A)™! € B($). Define
Z(N\), A € C*, by (1.12.3), and note that this representation is tight. Then Z()),
A € CT, is maximal dissipative and hence (Z(\) + p)~! € B() for all p € C*.
Now Lemma 1.11.6 yields (B(A) + pA(M)~t € B($) for all p € C*. A similar
reasoning holds for € C~. ]

Now the conditions (iii) in Definition 1.12.1 and, likewise, the conditions (d)
in Definition 1.12.3 will be further relaxed in a useful way.

Proposition 1.12.6. Let Z(\), A € C\ R, be a Nevanlinna family and let {A, B}
be a Nevanlinna pair in ) such that the representation (1.12.3) holds. Let N be a
uniformly strict Nevanlinna function with values in B($)). Then the conditions in
(iii) in Definition 1.12.1 may be replaced by

A= (Z(N) + N(A))71i5 holomorphic on C\ R with values in B(9).
Moreover, the conditions in (d) in Definition 1.12.3 may be replaced by
(BOA) + N(MAN) T €B($), AeC\R.

In particular, the choice N(X) = X is allowed for these statements. Moreover,

—(ZO)+NW) = =AM (BOA) + N(VAN) ', A€C\R, (1.12.10)

defines a Nevanlinna function with values in B($).

Proof. The proof will be given in three steps. In Step 1 it is shown how condition
(iii) in Definition 1.12.1 and condition (d) in Definition 1.12.3 give rise to the
stated conditions in the proposition. In Step 2 and Step 3 the reverse direction is
traversed for Nevanlinna families and Nevanlinna pairs, respectively.

Step 1. Let Z(\) be a Nevanlinna family in $ and let { A, B} be a Nevanlinna pair
in § as in Definition 1.12.1 and Definition 1.12.3, respectively, such that (1.12.3)
holds. Then for A € C\ R

(ZOW)+NW) ' eB®) and (B +NMWAW) ' €B®H), (1.12.11)
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and the identity (1.12.10) holds and defines a Nevanlinna function with val-
ues in B($). In fact, for A € C*' the first assertion in (1.12.11) follows from
Lemma 1.11.5 (i) with H = —Z(\) and R = N(\). Similarly, for A € C~
Lemma 1.11.5 (ii) yields the first assertion in (1.12.11). The second assertion in
(1.12.11) and the identity in (1.12.10) follow from Lemma 1.11.6. Since the func-
tions A, B, and N are holomorphic, the identity in (1.12.10) defines a holomorphic
function and Lemma 1.11.5 implies

(ImX) Im (—(Z(X\) + N(\))"'h, k) >0, AEC\R, hes$.
Furthermore, for A € C\ R one has —(Z(\) + N(A\))™* = —(Z(\) + N(\))~* by
Definition 1.12.1 (ii) and the fact that N is a Nevanlinna function. Now it follows
that the function in (1.12.10) is a Nevanlinna function with values in B($)).

Step 2. Let Z(X\), A € C\ R, satisfy (i) and (ii) of Definition 1.12.1, and assume
that
A= (Z(N) + N(A))i1 is holomorphic with values in B($)).

Define A(\) and B(A) for A € C\ R by
AN = (ZOW)+NW) ™" and B =1—-NM)(Z(N) +NW) 5

then it follows from Lemma 1.2.4 that the family Z(\), A € C\ R, has the repre-
sentation (1.12.3). Note that by assumption A(A) and B()) belong to B($)) and
that each of the mappings A — A(\) and A — B(\) is holomorphic. Since Z(\) is
maximal dissipative (maximal accumulative) for A € C* (A € C7) it follows from
Lemma 1.11.6 that for u € CT the operator (B()\) + uA(M\))~! belongs to B($)
when \ € CT, the operator (B(A\) + zA(M))~! belongs to B(£)) when A € C~, and

(ZO)+ ™" = AN (BO) + uA(V) ", Ae T,

(Z\) +p) =AM\ (BN +RAN) T, reC .
Since A — A(A) and A — B(\) are holomorphic, it follows that the mapping
A= (Z(\) 4+ )t is holomorphic on C* with values in B($)) and the mapping

A= (Z(X\) + p)~t is holomorphic on C~ with values in B(). Hence, (iii) in
Definition 1.12.1 is satisfied.

Step 3. Let {A, B} satisfy (a), (b), and (c) of Definition 1.12.3, and assume that

-1

(BO) + N(WAW) ™ € B().

Define the family Z(\), A € C\ R, by (1.12.3). It will be shown first that Z(\),
A € C\ R, is a Nevanlinna family. In fact, it follows from the definition that

(ZO) +NW) ™ = AN (B + N(AAN) ™ € B(),
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and via (a) one sees that
A= (Z(N\) + N(/\))_1 is holomorphic with values in B($)). (1.12.12)

Note that (b) shows that Z()) is dissipative (accumulative) for A € C* (A € C™).
In fact, Z()\) is maximal dissipative (maximal accumulative) for A € CT (A € C™).
To see this, let Z’()\) be an extension of Z(\) which is dissipative for A € C*. Then
clearly

(ZOW)+NW) " (Z0)+NW) (1.12.13)

the left-hand side is an operator in B(f)), and the right-hand side defines an
operator. In fact, if {0,k} € (Z/(\) + N(A\))™1, then {k,—N(\)k} € Z’(\) and
as Z'()\) is dissipative, it follows that Im (—N(A)k, k) > 0. On the other hand,
one has Im (N(N)k,k) > 0 as N is a Nevanlinna function. Hence, k& = 0 and
(Z'(A) + N()\))~! is an operator. It follows that the inclusion in (1.12.13) is an
equality and therefore Z'(\) = Z()) for A € C*. Thus, Z()) is maximal dissipative
for A € CT. A similar argument shows that Z()) is maximal accumulative for
A € C™. Hence, (i) in Definition 1.12.1 has been shown. It clearly follows from (c)

that Z(\) € Z(A\)*, which implies that

1 1 Ty —*

(ZW+NW)  Cc(ZW+NWN)  =(ZAN)+NWN)

where in the last step it was used that N(\) = N(X)*. The above inclusion is in
fact an equality, since the operators on the left and on the right belong to B($)).
Therefore, Z(\) = Z(\)*, and hence (ii) in Definition 1.12.1 holds. Now it follows
from (1.12.12) and Step 2 of this lemma that also (iii) in Definition 1.12.1 holds.
Therefore, one concludes that Z(A), A € C\ R, defined by (1.12.3) is a Nevanlinna
family.

Now it follows from Proposition 1.12.2 that {A, B} is a Nevanlinna pair and
thus, in particular, condition (d) holds. O
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Chapter 2

Boundary Triplets and Weyl Functions

The basic properties of boundary triplets for closed symmetric operators or re-
lations in Hilbert spaces are presented. These triplets give rise to a parametriza-
tion of the intermediate extensions of symmetric relations, in particular of the
self-adjoint extensions. Closely related is the Krein formula which describes the
resolvent operators of such intermediate extensions. The introduction of bound-
ary triplets and a discussion of corresponding boundary value problems can be
found in Section 2.1 and Section 2.2. Associated with a boundary triplet are the
~-field and the Weyl function, and these analytic objects are treated in Section 2.3.
The existence and construction of boundary triplets is discussed in Section 2.4;
their transformations are the contents of Section 2.5. Section 2.6 on Krein’s resol-
vent formula for canonical extensions and a description of their spectra is central
in this chapter. Furthermore, a discussion of self-adjoint exit space extensions,
Straus families, and the Krein-Nafmark formula can be found Section 2.7. Some
related perturbation problems are treated in Section 2.8.

2.1 Boundary triplets

The following definition introduces a boundary triplet, one of the key objects in
this text. It is based on the well-known Green or Lagrange formula together with
an additional maximality condition.

Definition 2.1.1. Let S be a closed symmetric relation in a Hilbert space $. Then

{G,To, 1} is a boundary triplet for S* if G is a Hilbert space and T'g,T'y : S* — §

are linear mappings such that the mapping I : S* — G x G defined by
Ff:{rof7rlf}7 f:{fyf/}65*7

is surjective and the identity

(f',9)s = (f:9)5 = (T1F,Tod)s — (Tof, T19)g (21.1)
holds for all fz {,.f'Y,a={g9.d'} 5"
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Note that a symmetric relation S is densely defined if and only if S* is an
operator. In this case the boundary mappings I'g and I'; can be defined on dom S*
instead of (the graph of) S*. More precisely, if {G,T9,T'1} is a boundary triplet for
S*, then one defines boundary mappings I'g and I'; on dom S* by the following
identifications

Lof =Dof, Dif =T1f, f={f.f}es"

In the following treatment whenever S is a densely defined operator, boundary
mappings defined on S* and on dom S* will be identified in this sense. After this
identification (2.1.1) turns into

(Sf,9)5 — (f,S"9)s = (T'1f,Tog)s — (Tof,T'19)s, (2.1.2)

where f,g € dom S*. This formalism will be used in Chapter 6 and Chapter 8 in
the treatment of ordinary and partial differential operators.

The identity (2.1.1) or the identity (2.1.2) is sometimes called the abstract
Green identity or the abstract Lagrange identity; in this text mostly the terminology
abstract Green identity will be used. This identity has a geometric interpretation
which is best expressed in terms of the indefinite inner products

0 —il
[ ] =000 )5 5= (ifﬁ oﬁ)’
L (0 —ilg
I['ﬂ']gz = (39'>'>92a Hgi(i[g 0 )7

where J5 = J5 = 35" € B(H?) and Jg = 35 = J5" € B(G?); cf. Section 1.8. By
means of these inner products, the identity (2.1.1) can be rewritten as

[/.9)s = [T].15] . (2.1.4)

for f ={f, '}, §={g.9'} € S*. Later the scalar products in (2.1.1), (2.1.2), and
(2.1.4) will be used without indices $ and G, respectively, when there is no danger
of confusion. Recall that the adjoint A* of a relation A in $ can be written as an
orthogonal complement with respect to the inner product [-, -], that is A* = AL,
cf. Section 1.8.

(2.1.3)

Some elementary but important properties of the boundary mappings are
collected in the following proposition.

Proposition 2.1.2. Let S be a closed symmetric relation in $ and assume that
{G,To,T'1} is a boundary triplet for S*. Then the following statements hold:

(i) the mappings T' : S* — G x G and I'y,Ty : S* — G are surjective and
continuous;
(ii) kerI' = S.
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Proof. (i) The continuity of I" : S* — G x § is essentially a consequence of the fact
that T is isometric in the sense of (2.1.4). More precisely, by definition the mapping
I is surjective, and since domI" = S* is closed it follows from Lemma 1.8.1 that T’
is continuous. Clearly, the mappings I'g and I'; are also surjective and continuous.

(ii) In order to show that kerI' C S, let f € ker . Then it follows from (2.1.4) that
[[f,:d]] = [[1"?7 I'g] = 0 for all g € S*, which implies fe (89 = §** = S since
S is closed. Hence, ker I' C S has been shown. To show that S C ker T, let fe S.
Since T is surjective, for arbitrary fixed ¢ € § x g one can choose g € §* = S
such that I'g = Jg@, with Jg as in (2.1.3). Since feSandge S* it follows from
(2.1.4) that

(f.@)g2 = (Tf,85'TG) o = [TF.TG] o = [ £.5] 2 =

for all ¢ € G2, which leads to l"f: 0. Thus, S C kerI" has been shown. |

By means of a boundary triplet {G, 0,1} for S* the intermediate exten-
sions of S defined in Section 1.7 can be described via relations in the space G. In
particular, the one-to-one correspondence in the next theorem preserves adjoints,
which is a consequence of the abstract Green identity (2.1.4).

Theorem 2.1.3. Let S be a closed symmetric relation in $ and let {9,T0,T1} be a
boundary triplet for S*. Then the following statements hold:

(i) there is a bijective correspondence between the set of intermediate extensions
Ao of S and the set of relations © in G, via

Ao :={fes* :I'feo) (2.1.5)

(ii) Ao = Ag and, in particular, the relation Ag is closed if and only if the
relation © is closed;

(iii) Ag = ker (Fl @FO);

(iv) (Ae)* = Ae- for every relation © in G;

)
)

(v) Ao C Ao if and only if © C ©', when © and ©' are relations in G;
)

(vi) Ae is an operator if and only if S is an operator and
©NT ({0} x mul 5*) = {0,0}. (2.1.6)

Proof. (i) & (ii) The relation S* C $?2 is equipped with the Hilbert space inner
product of $2. Now let 91 C $? be the orthogonal complement of S in S*, so that
S @ M = S*. Since kerI" = S, the restriction IV of T to M is an isomorphism
between 9 and § x G. Hence IV gives a one-to-one correspondence between the
subspaces H’ of 91 and the subspaces © of § x § via

© =T'H' or, equivalently, (I")™'© = H'. (2.1.7)
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Clearly, this gives rise to a one-to-one correspondence between all intermediate
extensions H of S and all subspaces H' of 9 via H = S @ H’, which is expressed
in (2.1.5). Moreover, since I is an isomorphism it also follows from (2.1.7) that

© = I"H' = I"H’ and hence the closure H of H corresponds to the closure © of
©. This implies via (2.1.5) that Ae = Ag.

(iii) Let Ag be defined by (2.1.5). It will be verified that
Ae = ker (I'y — ©Ly) (2.1.8)

holds for any relation © in §. Note that (2.1.8) is clear in the special case that ©

is an operator, since 1“]?: {Fof, Plf} € © means that @Fof: Flf. Now assume
that © is a relation.

First the inclusion ( ) in (2.1.8) will be shown. For this consider f € Ao.
Hence, f € S* and {Fof I‘lf} € ©. Then {f Fof} € I'o gives {f Flf} € Or.
Since {J, Flf} € I'y one finds {f 0} € I'; —OT. In other words f € ker (I'1—OTY).

For the inclusion (D) in (2.1.8) consider f € ker (I'y — ©