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1 INTRODUCTION 1

1 Introduction

1.1 What is Direct Energy Conversion?

Energy conversion devices convert between electrical, magnetic, kinetic, po-
tential, optical, chemical, nuclear, and other forms of energy. Energy con-
version processes occur naturally. For example, energy is converted from
optical electromagnetic radiation to heat when sunlight warms a house,
and energy is converted from potential energy to kinetic energy when a
leaf falls from a tree. Alternatively, energy conversion devices are designed
and manufactured by a wide range of scientists and engineers. These en-
ergy conversion devices range from tiny integrated circuit components such
as thermocouples which are used to sense temperature by converting mi-
crowatts of power from thermal energy to electricity to enormous coal power
plants which convert gigawatts of energy stored in the chemical bonds of
coal into electricity.

A direct energy conversion device converts one form of energy to an-
other through a single process. For example, a solar cell is a direct energy
conversion device that converts optical electromagnetic radiation to elec-
tricity. While some of the sunlight that falls on a solar cell may heat it up
instead, that e�ect is not fundamental to the solar cell operation. Alterna-
tively, indirect energy conversion devices involve a series of direct energy
conversion processes. For example, some solar power plants involve con-
verting optical electromagnetic radiation to electricity by heating a �uid
so that it evaporates. The evaporation and expansion of the gas spin a
rotor of a turbine. The energy from the mechanical motion of the rotor is
converted to a time varying magnetic �eld which is then converted to an
alternating electrical current in the coils of the generator.

This text focuses on direct energy conversion devices which convert be-
tween electrical energy and another form. Because of the wide variety of
devices that �t in this category, energy conversion is a topic important
to all types of electrical engineers. Some electrical engineers specialize
in building instrumentation systems. Many sensors used by these engi-
neers are direct energy conversion devices, including strain gauges used to
measure pressure, Hall e�ect sensors which measure magnetic �eld, and
piezoelectric sensors used to detect mechanical vibrations. The electrical
energy produced in a sensor may be so small that ampli�cation is required.
Other electrical engineers specialize in the production and distribution of
electrical power. Batteries and solar cells are direct energy conversion de-
vices used to store and generate electricity. They are particularly useful
in remote locations or in hand held gadgets where there is no easy way



2 1.2 Preview of Topics

to connect to the power grid. Relatedly, direct energy conversion devices
such as thermoelectric devices and fuel cells are used to power satellites,
rovers, and other aerospace systems. Many electrical engineers work in
the automotive industry. Direct energy conversion devices found in cars
include batteries, optical cameras, Hall e�ect sensors in tachometer used
to measure rotation speed, and pressure sensors.

Direct energy conversion is a fascinating topic because it does not �t
neatly into a single discipline. Energy conversion is fundamental to the
�elds of electrical engineering, but it is also fundamental to mechanical
engineering, physics, chemistry, and other branches of science and engi-
neering. For example, springs are energy storage devices often studied by
mechanical engineers, capacitors are energy storage devices often studied
by electrical engineers, and batteries are energy storage devices often stud-
ied by chemists. Relatedly, energy storage and energy conversion devices,
such as springs, capacitors, and batteries, are not esoteric. They are com-
monplace, cheap, and widely available. While they are found in everyday
objects, they are active subjects of contemporary research too. For exam-
ple, laptop computers are limited by the lifetime of batteries, and cell phone
reception is often limited by the quality of an antenna. Batteries, antennas,
and other direct energy conversion devices are studied by both consumer
companies trying to build better products and academic researchers trying
to understand fundamental physics.

1.2 Preview of Topics

This book is intended to both illustrate individual energy conversion tech-
nologies and illuminate the relationship between them. For this reason, it
is organized in two parts. The �rst part is a survey of energy conversion
processes. The second part introduces calculus of variations and uses it as
a framework to relate energy conversion processes.

Due to the wide variety, it is not possible to discuss all energy conversion
devices, even all direct devices, in detail. However, by studying the example
direct energy conversion processes, we can gain an understanding of indi-
rect processes and other applications. The devices discussed in this book
involve energy conversion between electrical form and another form. Addi-
tionally, devices involving magnets and coils will not be discussed. Many
useful devices, including motors, generators, wind turbines, and geothermal
power plants, convert energy electromagnetically using magnets and coils.
Approximately 90% of power supplied to the electrical grid in the United
States comes from generators that use magnets and coils [1]. Also, about
2/3 to 3/4 of energy used by manufacturing facilities goes towards motors
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[2, ch. 1]. However, plenty of good resources discussing these topics exist.
Furthermore, this book emphasizes device that operate near room temper-
ature and at relatively low power (<1 kW). Many interesting devices, such
as nuclear power plants, operate at high temperatures. One reason not to
discuss more powerful devices is that the vast majority of large electrical
generators in use today involve turbines with coils and magnets. Another
reason is that these devices are often limited by material considerations.
Finding materials to construct high temperature devices is a challenging
problem, but it is not the purpose of this book. Additionally, only technolo-
gies commercially available on the market today are discussed in this book.
Also, many quality texts exist on the topics of renewable and alternative
energy sources. For this reason, this book will not focus on renewable or
alternative energy technologies. Topics like wind turbines, which involve
electromechanical energy conversion with magnets and coils, are not dis-
cussed. Solar cells, piezoelectric devices, and other direct energy conversion
devices are discussed and can be considered both direct energy conversion
devices and renewable energy devices.

While a few books on direct energy conversion exist, there are few
things which set this book apart. First, many of the books on direct en-
ergy conversion, including [3] and [4], are written at the graduate level
while this book is aimed at a more general audience. This book is used
for the course Direct Energy Conversion taught at Trine University, which
is a junior undergraduate level course for electrical engineers. This book
is not intended only for electrical engineering students. It is also aimed
at researchers who are interested in how energy conversion is studied by
scientists and engineers in other disciplines. The idea of energy conversion
is fundamental to physics, chemistry, mechanical engineering, and multiple
other disciplines. This book discusses fundamental physics behind energy
conversion processes, introduces terminology used, and relates concepts of
material science used for building devices. The chapters were written so
that someone who is not an antenna designer, for example, can read the
relevant chapter as an introduction and gain insights into some of the ter-
minology and key concepts used by electromagnetics researchers. Second,
a number of good books on the topic, including [3] and [5] were written
decades ago. The concepts of these books remain relevant, and these books
often predicted which technologies would be of interest. However, there is
a need for a book which discusses the most accessible and commonplace
direct energy conversion technologies in use today. Additionally, many of
these classic texts are out of print, and contemporary texts are needed.

The reader is assumed to be familiar with introductory chemistry and
physics. Background in electrical circuits and materials may also be helpful.
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Math through Calculus I is used in the �rst part of the book, and math
through Calculus III (including partial derivatives) is used in the second
part. Many topics in this text are discussed qualitatively. No attempt
is made to be mathematically rigorous, and proofs are not given. The
physics of devices is emphasized over excessive mathematics. Additionally,
all physical systems will be discussed semiclassically, which means that
explanations will involve electrons and electromagnetic �elds, but the wave-
particle duality of these quantities will not be discussed. While quantum
mechanical, quantum �eld theoretical, and other more precise theories exist
to describe many physical situations, semiclassical discussions will be used
to make this book more easily accessible to readers without a background
in quantum mechanics.

Chapters 2 - 10 comprise the �rst part of this book. As mentioned
above, they survey various direct energy conversion processes which convert
to or from electricity and which do not involve magnets and coils. Table
1.1 lists many of the processes studied along with where in the text they
are discussed, and Table 1.2 lists some of the devices detailed. This text
is not intended to be encyclopedic or complete. Instead, it is intended
to highlight the physics behind some of the most widely available and
accessible energy conversion devices which convert to or from electrical
energy. One way to understand energy conversion devices used to convert
to or from electricity is to classify them as most similar to capacitors,
inductors, resistors, or diodes. While not all devices �t neatly in these
categories, many do. The second column of Table 1.2 lists the category for
various devices. Similarly, energy conversion processes may be capacitive,
inductive, resistive, or diode-like.

Capacitive energy conversion processes are discussed in Chapters 2 and
3. Capacitors, piezoelectric devices, pyroelectric devices, and electro-optic
devices are discussed. A piezoelectric device is a device which converts
mechanical energy directly to electricity or converts electricity directly to
mechanical energy [6] [3]. A material polarization and voltage develop
when the piezoelectric device is compressed. A pyroelectric device converts
a temperature di�erential into electricity [6]. The change in temperature
induces a material polarization and a voltage in the material. Electro-optic
devices convert an optical electromagnetic �eld to energy of a material po-
larization. In these devices, an external optical �eld typically from a laser
induces a material polarization and a voltage across the material. Chap-
ters 4 and 5 discuss inductive energy conversion devices including antennas,
Hall e�ect devices, and magnetohydrodynamic devices. An antenna con-
verts electrical energy to an electromagnetic �eld or vice versa. A Hall

e�ect device converts a magnetic �eld to or from electricity. A magnetohy-
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Process Forms of
Energy

Example
Devices

Discussed
in
Section

Piezoelectricity Electricity
l

Mechanical
Energy

Piezoelectric
Vibration
Sensor, Electret
Microphone

2.3

Pyroelectricity Electricity
l

Heat

Pyroelectric
Infrared
Detector

3

Electro-optic E�ect Optical Electro-
magnetic
Energy
l

Material
Polarization

Controllable
Optics, Liquid
Crystal Displays

3.3

Electromagnetic
Transmission and
Reception

Electricity
l

Electromagnetic
Energy

Antenna 4

Hall E�ect Electricity
l

Magnetic
Energy

Hall E�ect
Device

5

Magnetohydrody-
namic E�ect

Electricity
l

Magnetic
Energy

Magnetohydrody-
namic
Device

5.3

Absorption Optical Electro-
magnetic
Energy
↓

Electricity

Solar cell,
Semiconductor
Optical
Photodetector

6

Table 1.1: Variety of energy conversion processes.
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Process Forms of
Energy

Example
Devices

Discussed
in
Section

Spontaneous
Emission

Electricity
↓

Optical Electro-
magnetic
Energy

Lamp, LED 7.3

Stimulated
Emission

Electricity
↓

Optical Electro-
magnetic
Energy

Laser, Optical
Ampli�er

7.4

Thermoelectric
E�ects (Incl.
Seebeck, Peltier
and Thomson)

Electricity
l

Heat

Thermoelectric
cooler, Peltier
device,
Thermocouple

8.8

(Battery or Fuel
Cell) Discharging

Chemical
Energy
↓

Electricity

Battery, Fuel
Cell

9

(Battery or Fuel
Cell) Charging

Electricity
↓

Chemical
Energy

Battery, Fuel
Cell

9

Thermionic
Emission

Heat
↓

Electricity

Thermionic
Device

10.2

Electrohydrody-
namic E�ect

Electricity
l

Fluid �ow

Micro�uidic
Pump, Valve

10.6

Table 1.1 continued: Variety of energy conversion processes.
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Device Similar to
Compo-
nent

Forms of Energy Discussed
Section

Piezoelectric
Device

Capacitor Electricity
l

Mechanical Energy

2.3

Pyroelectric Device Capacitor Electricity
l

Heat

3

Electro-optic
Device

Capacitor Optical Energy
l

Material Polarization

3.3

Antenna Inductor Electricity
l

Electromagnetic

4

Hall E�ect Device Inductor Electricity
l

Magnetic Energy

5

Magnetohydrody-
namic Device

Inductor Electricity
l

Magnetic Energy

5.3

Solar Cell Diode Optical Energy
↓

Electricity

6

LED, Laser Diode Electricity
↓

Optical Energy

7

Thermoelectric
Device

Diode Electricity
l

Heat

8.8

Geiger Counter Diode Radiation
↓

Electricity

10.3

Resistance Temp.
Detector

Resistor Heat
↓

Electricity

10.5

Potentiometer Resistor Electricity
↓

Heat

10.5

Strain Gauge Resistor Mechanical Energy
↓

Electricity

10.5

Table 1.2: Variety of energy conversion devices.
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drodynamic device converts kinetic energy of a conducting material in the
presence of a magnetic �eld into electricity.

Optical devices are discussed in Chapters 6 and 7. These chapters dis-
cuss devices made from diode-like pn junctions such as solar cells, LEDs,
and semiconductor lasers as well as other types of devices such as incandes-
cent lamps and gas lasers. Thermoelectric devices convert a temperature
di�erential into electricity [3, p. 146]. They are also made from junctions
of materials in which heat and charges �ow at di�erent rates, and they are
discussed in Chapter 8. Batteries and fuel cells are discussed in Chapter 9.
A battery is a device which stores energy as a chemical potential. Batteries
range in size from tiny hearing aid button sized batteries which store tens
of milliamp-hours of charge to large car batteries which can store 10,000
times as much energy. A fuel cell is a device which converts chemical en-
ergy to electrical energy through the oxidation of a fuel [3]. During battery
operation, the electrodes are consumed, and during fuel cell operation, the
fuel and oxidizer are consumed instead. A variety of resistor-like energy
conversion devices, among other devices, are discussed brie�y in Chapter
10.

Chapters 11 - 14 comprise the second part of this book. These chapters
are more theoretical, and they establish a mathematical framework for un-
derstanding energy conversion. This mathematics allows relationships to
be studied between energy conversion devices built by electrical engineers,
mechanical engineers, chemists, and scientists of other disciplines. Chap-
ters 11 and 12 introduce the idea of calculus of variations and apply it to
a wide variety of energy conversion processes. Chapter 13 applies the idea
of calculus of variations to energy conversion within an individual atom.
Chapter 14 shows how a study of the symmetries of the equations pro-
duced from calculus of variations can provide further insights into energy
conversion processes.
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1.3 Conservation of Energy

Energy conservation is one of the most fundamental ideas in all of sci-
ence and engineering. Energy can be converted from one form to another.
For example, kinetic energy of a moving ball can be converted to heat by
friction, or it can be converted to potential energy if the ball rolls up a
hill. However, energy cannot be created or destroyed. The idea of energy
conservation will be considered an axiom, and it will not be questioned
throughout this book. Sometimes people use somewhat loose language
when describing energy conversion. For example, one might say that en-
ergy is lost to friction when a moving block slides along a table or when
electricity �ows through a resistor. In both cases, the energy is not lost
but is instead converted to heat. Thermoelectric devices and pyroelectric
devices can convert a temperature di�erential back to electricity. Someone
might say that energy is generated by a coal power plant. What this phrase
means is that chemical energy stored in the coal is converted to electrical
energy. When a battery is charged, electrical energy is converted back to
chemical energy. This imprecise language will occasionally be used in the
text, but in all cases, energy conservation is assumed. While it might seem
like an abstract theoretical law, energy conservation is used regularly by cir-
cuit designers, mechanical engineers modeling mechanisms, civil engineers
designing pipe systems, and other types of engineers.

E�ciency of an energy conversion device, ηeff , is de�ned as the power
output of the desired energy type over the power input.

ηeff =
Pout
Pin

(1.1)

E�ciency may be written as a fraction or a percent. For example, if we say
that an energy conversion device is 75% e�cient, we mean that 75% of the
energy is converted from the �rst form to the second while the remaining
energy either remains in the �rst form or is converted to other undesired
forms of energy. Energy conversion devices are rarely 100% e�cient, and
some commercial energy conversion devices are only a few percent e�cient.
Multiple related measures of e�ciency exist where the input and output
powers are chosen slightly di�erently. To accurately compare e�ciency
measures of devices, consistent of input and output power must be used.
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1.4 Measures of Power and Energy

This book brings together topics from a range of �elds including chemistry,
electrical engineering, and thermodynamics. Scientists in each branch of
study use symbols to represent speci�c quantities, and the choice of vari-
ables by scientists in one �eld often contradict the choice by scientists in
another �eld. In this text, di�erent fonts are used to represent di�erent
symbols. For example, S represents entropy, $ represents the Seebeck co-
e�cient, and S represents action. A list of variables used in this text along
with their units can be found in Appendix A. Use the tables in the appendix
as tools.

Power P and energy E are fundamental measures. Power absorbed by
a system is the derivative of the energy absorbed with respect to time.

P =
dE

dt
(1.2)

In SI units, energy is measured in joules and power is measured in watts.
While these are the most common measures, many other units are used.
Every industry, from the petroleum industry to the food industry to the
electrical power industry, seems to have its own favorite units. Tables 1.3
and 1.4 list energy and power conversion factors. Values in the tables are
from references [7] and [8].

Conversions between joules and some units, including calories, ergs,
kilowatt hours, and tons of TNT are exact de�nitions [7]. The calorie
is approximately the energy needed to increase the temperature of one
gram of water by a temperature of one degree Celsius, but it is de�ned to
be 4.1868 J [7]. Note that there is both a calorie and food calorie (also
called kilocalorie). The food calorie or kilocalorie is typically used when
specifying the energy content of foods, and it is a thousand times as large
as the (lowercase c) calorie. Other conversions listed in Table 1.3, including
the conversion for energy in barrels of crude oil, are approximate average
values instead of exact de�nitions [8]. Values in Table 1.3 are listed to
the signi�cant precision known or to four signi�cant digits. Other inexact
values throughout this text are also speci�ed to four signi�cant digits. The
unit 1

cm, referred to as wave number, is discussed in Ch. 6. The conversion
value listed in Table 1.3 for the therm is the US, not European, accepted
value [7]. A barrel, used in the measure of crude oil, is 42 US gallons [8].
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1 J = 6.241508 · 1018 electron Volt,
eV

1 eV = 1.602176 · 10−19 J

1 J = 107 erg 1 erg =10−7 J

1 J =0.7375621 foot pound-force 1 foot pound-force =1.355818 J

1 J = 0.23885 calories 1 calorie =4.1868 J

1 J = 9.47817 · 10−4 British thermal
units, Btu

1 Btu =1055.056 J

1 J = 2.3885 · 10−4 kilocalories
(food calories)

1 kilocalorie =4186.8 J

1 J = 9.140 · 10−7 cubic feet of
natural gas

1 cubic foot of nat. gas
=1.094 · 106 J

1 J = 2.778 · 10−7 kilowatt hour,
kW·h

1 kW·h = 3.6 · 106 J

1 J = 6.896 · 10−9 gallons diesel fuel 1 gallon diesel fuel =1.450 · 108 J

1 J = 9.480434 · 10−9 therm (US) 1 therm (US) =1.054804 · 108 J

1 J = 7.867 · 10−9 gallons motor
gasoline

1 gallon motor gasoline
=1.271 · 108 J

1 J = 2.390 · 10−10 ton of TNT 1 ton of TNT =4.184 · 109 J

1 J = 1.658 · 10−10 barrels crude oil 1 barrel crude oil =6.032 · 109 J

1 J = 4.491 · 10−11 metric ton of
coal

1 metric ton coal =2.227 · 1010 J

1 J = 1.986447 · 10−23 1
cm 1 1

cm = 5.03411 · 1022 J

Table 1.3: Energy unit conversion factors.

1 W = 1 J
s 1 J

s = 1 W

1 W = 1 · 107 erg
s 1

erg
s = 10−7 W

1 W = 1.34 · 10−3 horsepower 1 horsepower =7.46 · 102 W

1 W = 2.655224 · 103 foot
pound-force per h

1 foot pound-force per h
= 3.766161 · 10−4 W

Table 1.4: Power unit conversion factors.
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1.5 Properties of Materials

1.5.1 Macroscopic Properties

To understand energy conversion devices, we need to understand materi-
als both microscopically on the atomic scale and macroscopically on large
scales. A macroscopic property is a property that applies to large pieces of
the material as opposed to microscopic sized pieces.

One way to classify materials is based on their state of matter. Materials
can be classi�ed as solids, liquids, gases, or plasmas. A plasma is an ionized
gas. Other more unusual states of matter exist such as Bose Einstein
condensates, but they will not be discussed in this book.

Crystalline Amorphous Polycrystalline

Figure 1.1: Illustration of crystalline, amorphous, and polycrystalline
atomic structure.

We can further classify solids as crystalline, polycrystalline, or amor-
phous based on the regularity of their atomic structure [9]. Figure 1.1
illustrates these terms. In a crystal, the arrangement of atoms is periodic.
The atoms may be arranged in a cubic array, hexagonal array, or some other
way, but they are arranged periodically in three dimensions. In an amor-

phous material, the arrangement of the atoms is not periodic. The term
amorphous means glassy. A polycrystalline material is composed of small
crystalline regions. These de�nitions can apply to materials made of single
elements or materials made of multiple elements. Many energy conversion
devices are made from very pure crystalline, amorphous, or polycrystalline
materials. For example, amorphous cadmium telluride is used to make so-
lar cells, and crystalline silicon is used to make Hall e�ect devices. Many
materials, including both silicon and silicon dioxide, can be found in all
three of these forms at room temperature. In crystalline and amorphous
silicon, for example, the silicon atoms may have the same number of near-
est neighbors, and the density of atoms in both materials may be the same,
but there is no medium-range order in the amorphous material. Electrical
properties of crystalline, amorphous, and polycrystalline forms of a mate-
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rial may di�er. Electrons can �ow more easily through a pure crystalline
material while electrons are more likely to be scattered or absorbed as they
�ow through an amorphous material, crystalline materials with impurities,
or a crystalline material with crystal defects.

We can further classify crystals as either isotropic or anisotropic [10,
p. 210]. A crystal is isotropic if its macroscopic structure and material
properties are the same in each direction. A crystal is anisotropic if the
macroscopic structure and material properties are di�erent in di�erent di-
rections.

We can also classify materials based on how they behave when a voltage
is applied across the material [11]. In a conductor, electrons �ow easily
in the presence of an applied voltage or electric �eld. In an insulator,
also called a dielectric, electrons do not �ow in the presence of an applied
voltage or electric �eld. In the presence of a small external voltage or
electric �eld, a semiconductor acts as an insulator, and in the presence of a
strong voltage or electric �eld, a semiconductor acts as a conductor. Both
solids and liquids can be conductors, and both solids and liquids can be
insulators. For example, copper is a solid conductor while salt water is a
liquid conductor.

1.5.2 Microscopic Properties

The electron con�guration lists the energy levels occupied by electrons
around an atom. The electron con�guration can describe neutral or ion-
ized atoms, and it can describe atoms in the lowest energy state or excited
atoms. For example, the electron con�guration of a neutral aluminum atom
in the lowest energy state is 1s22s22p63s23p1. The electron con�guration
of an aluminum Al+ ion in the lowest energy state is 1s22s22p63s2, and the
electron con�guration of a neutral aluminum atom with an excited electron
can be written as 1s22s22p63s24s1.

Electrons are labeled by four quantum numbers : the principle quantum
number, the azimuthal quantum number, the magnetic quantum number,
and the spin quantum number [6] [12]. No two electrons around an atom
can have the same set of quantum numbers. The principle quantum number
takes integer values, 1, 2, 3 and so on. All electrons with the same principle
quantum number are said to be in the same shell. The large numbers in
the electron con�guration refer to principle quantum numbers. The neutral
aluminum atom in the lowest energy state has two electrons in the 1 shell,
eight electrons in the 2 shell, and three electrons in the 3 shell. For most
atoms, especially atoms with few electrons, electrons with lower principle
quantum numbers both are spatially closer to the nucleus and require the
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most energy to remove. However, there are exceptions to this idea for some
electrons around larger atoms [13] [14].

Azimuthal quantum numbers are integers, and these values de�ne sub-
shells. For shells with principle quantum number n , the azimuthal quantum
number can take values from 0 to n−1. In the electron con�guration, values
of this quantum number are denoted by lowercase letters: s=0, p=1, d=2,
f=3, and so on. Magnetic quantum numbers are also integers, and these
values de�ne orbitals. For a subshell with azimuthal quantum number l,
the magnetic quantum number takes values from −l to l. In the electron
con�guration, superscript numbers indicate the magnetic quantum num-
ber. Spin quantum numbers of electrons can take the values 1

2
and −1

2
.

They are not explicitly denoted in the electron con�guration.
Consider again the neutral aluminum atom in the lowest energy state.

This atom has electrons with principle quantum numbers n=1, 2, and 3.
For electrons with principle quantum number 1, the only possible values for
both the azimuthal quantum number and the magnetic quantum number
are zero. The spin quantum number can take the values of 1

2
and −1

2
. Only

two electrons can occupy the 1 shell, and these electrons are denoted by
the 1s2 term of the electron con�guration. For the electrons with principle
quantum number 2, the azimuthal quantum number can be 0 or 1. Two
electrons can occupy the 2s orbital, and six electrons can occupy the 2p
orbital. For the 3 shell, the azimuthal quantum number can take three
possible values: s=0, p=1, and d=2. However since aluminum only has 13
electrons, electrons do not have all of these possible values, so the 3 shell
is only partially �lled. The atoms in the rightmost column of the periodic
table have completely �lled shells. They are rarely involved in chemical
reactions because adding electrons, removing electrons, or forming chemical
bonds would require too much energy.

Valence electrons are the electrons that are most easily ripped o� an
atom. Valence electrons are the electrons involved in chemical reactions,
and electrical current is the �ow of valence electrons. Other, inner shell,
electrons may be involved in chemical reactions or electrical current only in
cases of unusually large applied energies, and these situations will not be
discussed in this text. Valence electrons occupy the subshell or subshells
with the highest quantum numbers, and valence electrons are not part of
completely �lled shells. For the example of the neutral aluminum atom
in the lowest energy state, the three electrons in the 3 shell are valence
electrons.

Where are the electrons around the atom spatially? This question is
of interest to chemists, physicists, and electrical engineers. If we know the
orbital of an electron, we have some information on where the electron
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is likely to be found spatially around an atom. However, identifying the
location of an electron with any degree of precision is di�cult for multiple
reasons. First, atoms are tiny, roughly 10−10 m in diameter. Second, at
any temperature above absolute zero, atoms and electrons are continually
in motion. Third, electrons have both particle-like and wave-like properties.
Fourth, according to Heisenberg's Uncertainty Principle, the position and
momentum of an electron cannot simultaneously be known with complete
precision. At best, you can say that an electron is most likely in some
region and moves with some range of speed. Fifth, in many materials
including conductors and semiconductors, valence electrons are shared by
many atoms instead of bound to an individual atom [10, p. 544].

1.6 Electromagnetic Waves

1.6.1 Maxwell's Equations

In this text, V and I denote DC voltage and current respectively while v
and i denote AC or time varying voltage and current. In circuit analysis,
we are unconcerned with what happens outside these wires. We are only
interested in node voltages and currents through wires. Furthermore, the
voltages and currents in the circuit are described as functions of time t
but not position (x, y, z). Devices like resistors, capacitors, and inductors
too are assumed to be point-like and not extended with respect to position
(x, y, z). This set of assumptions is just a model. In reality, if two nodes in
a circuit have a voltage di�erence between them, then necessarily a force
is exerted on nearby charges not in the path of the circuit. This force per
unit charge is the electric �eld intensity

−→
E . Similarly, if there is current

�owing through a wire, there is necessarily a force exerted on electrons in
nearby loops of wire, and this force per unit current element is the magnetic
�ux density

−→
B . Energy can be stored in an electric or magnetic �eld. In

later chapters, we will discuss devices, including antennas, electro-optic
devices, photovoltaic devices, lamps, and lasers, that convert energy of an
electromagnetic �eld to or from electricity.

Four interrelated vector quantities are used to describe electromagnetic
�elds. These vector �elds are functions of position (x, y, z) and time t. The
four vector �elds are

−→
E (x, y, z, t)=Electric �eld intensity in

V
m

−→
D(x, y, z, t)=Displacement �ux density in

C
m2
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−→
H (x, y, z, t)=Magnetic �eld intensity in

A
m

−→
B (x, y, z, t)=Magnetic �ux density in

Wb
m2

In these expressions, V represents the units volts, C represents the units
coulombs, A represents the units amperes, and Wb represents the units
webers. Additional abbreviations for units are listed in Appendix B.

Coulomb's law
−→
F =

Q1Q2âr
4πεr2

(1.3)

tells us that charged objects exert forces on other charged objects. In this
expression, Q1 and Q2 are the magnitude of the charges in coulombs. The
quantity ε is the permittivity of the surrounding material in units farads
per meter, and it is discussed further in Sections 1.6.3 and 2.2.3. The
quantity r is the distance between the charges in meters, and âr is a unit
vector pointing along the direction between the charges. Force in newtons
is represented by

−→
F . Opposite charges attract, and like charges repel.

Electric �eld intensity is force per unit charge, so the electric �eld intensity
due to a point charge is given by

−→
E =

Qâr
4πεr2

(1.4)

These vector �elds can describe forces on charges or currents in a circuit
as well as outside the path of a circuit. Maxwell's equations relate time
varying electric and magnetic �elds. Maxwell's equations in di�erential
form are:

−→∇ ×−→E = −∂
−→
B

∂t
Faraday's Law (1.5)

−→∇ ×−→H =
−→
J +

∂
−→
D

∂t
Ampere's Law (1.6)

−→∇ · −→D = ρch Gauss's Law for the Electric Field (1.7)

−→∇ · −→B = 0 Gauss's Law for the Magnetic Field (1.8)

The additional quantities in Maxwell's equations are the volume current
density

−→
J in A

m2 and the charge density ρch in C
m3 . In this text, we will not

be solving Maxwell's equations, but we will encounter references to them.
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The quantity
−→∇ is called the del operator. In Cartesian coordinates, it

is given by
−→∇ = âx

∂

∂x
+ ây

∂

∂y
+ âz

∂

∂z
. (1.9)

When this operator acts on a scalar function,
−→∇f , it is called the gradient.

The gradient of a scalar function returns a vector representing the spatial
derivative of the function, and it points in the direction of largest change in
that function. In Maxwell's equations,

−→∇ acts on vector, instead of scalar,
functions. The operation

−→∇×−→E is called the curl, and the operation
−→∇ ·−→E

is called the divergence. Both of these operations represent types of spatial
derivatives of vector functions. The del operator obeys the identity

∇2 =
−→∇ · −→∇ . (1.10)

The operation ∇2f is called the Laplacian of a scalar function, and it
represents the spatial second derivative of that function.

1.6.2 Electromagnetic Waves in Free Space

Electromagnetic waves travel through empty space at the speed of light in
free space, c = 2.998 · 108 m

s , and through other materials at speeds less
than c. For a sinusoidal electromagnetic wave, the speed of propagation is
the product of the frequency and wavelength

|−→v| = fλ (1.11)

where |−→v | is the magnitude of the velocity in m
s , f is the frequency in Hz,

and λ is the wavelength in meters. In free space, Eq. 1.12 becomes

c = fλ. (1.12)

The speed of light in free space is related to two constants which describe
free space.

c =
1√
ε0µ0

(1.13)

The permittivity of free space is given by ε0 = 8.854 · 10−12 F
m where

F represents farads, and the permeability of free space is given by µ0 =

1.257 · 10−6 H
m where H represents henries. (Constants speci�ed in this

section and in Appendix A are rounded to four signi�cant digits.)
In free space, the electric �eld intensity

−→
E and the displacement �ux

density
−→
D are related by ε0.

−→
D = ε0

−→
E (1.14)
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Relatedly in free space, the magnetic �eld intensity
−→
H and the magnetic

�ux density
−→
B are related by µ0.

−→
B = µ0

−→
H (1.15)

.

1.6.3 Electromagnetic Waves in Materials

Electromagnetic �elds interact very di�erently with conductors and with
insulators. Electromagnetic �elds do not propagate into perfect conduc-
tors. Instead, charges and currents accumulate on the surface. While no
materials are perfect conductors, commonly encountered metals like cop-
per and aluminum are very good conductors. When these materials are
placed in an external electromagnetic �eld, surface charges and currents
build up, and the electromagnetic �eld in the material quickly approaches
zero. Electromagnetic �elds propagate through perfect insulators for long
distances without decaying, and no charges or currents can accumulate
on the surface because there are no electrons free from their atoms. In
practical dielectrics, electromagnetic waves propagate long distances with
very little attenuation. For example, optical electromagnetic waves remain
strong enough to detect after propagating hundreds of kilometers through
optical �bers made of pure silicon dioxide [10, p. 886].

Resistance R in ohms, capacitance C in farads, and inductance L in
henries describe the electrical properties of devices. Resistivity ρ in Ωm,
permittivity ε in F

m, and permeability µ in H
m describe the electrical prop-

erties of materials. The quantities ρ, ε, and µ describe properties of materi-
als alone while the quantities R, C, and L incorporate e�ects the material,
shape, and size of a device.

Resistivity ρ is a measure of the inability of charges or electromagnetic
waves to propagate through a material. Conductors have a very small
resistivity while insulators have a large resistivity. Sometimes electrical

conductivity, σ = 1
ρ
in units 1

Ωm, is used in place of the resistivity. For a
device made of a uniform material with length l and cross sectional area
A, resistance and resistivity are related by

R =
ρl

A
. (1.16)

Resistance is a measure of the inability of charges or electromagnetic waves
to �ow through a device while resistivity is a measure of the inability to
�ow through a material.
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Parallel Plate Capacitor Partial Turn Inductor

dthick

l

w

dthick

l

w

Figure 1.2: Geometry of a parallel plate capacitor and partial turn inductor.

Permeability µ is a measure of the ability of a material to store energy
in the magnetic �eld due to currents distributed throughout the material.
Materials can also be described by their relative permeability µr, a unitless
measure.

µr =
µ

µ0

(1.17)

While permeability describes amaterial, inductance describes a device. The
magnetic �ux density in a material is a scaled version of the magnetic �eld
intensity. −→

B = µ
−→
H (1.18)

Often insulators have permeabilities close to µ0 while conductors used to
make permanent magnets have signi�cantly larger permeabilities. The right
part of Fig. 1.2 shows a partial turn coil in a vacuum with length l, thickness
dthick, and width w. The inductance and permeability of this device are
related by [11, p. 311]

L =
µdthickl

w
. (1.19)

Permittivity ε is a measure of the ability of a material to store energy
as an electric �eld due to charge separation distributed throughout the
material. Materials can also be described by their relative permittivity εr,
a unitless measure.

εr =
ε

ε0
(1.20)

The displacement �ux density in a material is a scaled version of the electric
�eld intensity. −→

D = ε
−→
E (1.21)

Some insulators have a permittivity hundreds of times larger than the per-
mittivity of free space. Permittivity is a measure of ability to store energy
in a material while capacitance is a measure of the ability to store energy
in in a device.
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A uniform parallel plate capacitor with cross sectional area of plates
A = l · w and distance between plates dthick, is shown on the left part of
Fig. 1.2, and it has capacitance

C =
εA

dthick
(1.22)

where ε is the permittivity of the insulator between the plates.
Permittivity, permeability, and resistivity, depend on frequency. In

some contexts, the frequency dependence can be ignored, and through-
out most of this text, these quantities will be assumed to be constants.
In other contexts, the frequency dependence can be quite signi�cant. For
example, the permittivity of semiconductor materials is a strong function
of frequency for frequencies close to the semiconductor energy gap. The
permittivity ε(ω) and resistivity ρ(ω) are not independent. If one of them is
known as a function of frequency and µ is assumed constant, the other can
be derived. This relationship is known as the Kramers Kronig relationship
[10] or occasionally as the dielectric dispersion formula [15].

When discussing electrical properties of a device, resistance, inductance,
and capacitance are combined into one complex measure, the impedance.
Similarly, some authors �nd it convenient to combine resistivity, permit-
tivity, and permeability into a pair of complex measures of the electrical
properties of materials [6]. The complex permittivity is de�ned ε∗ = ε+jρ,
and the complex permeability is de�ned µ∗ = µ + jρmag . The quantity
ρ represents the resistivity which is a measure of the energy converted to
heat as a charge �ows through a material due to an applied electrical �eld.
The quantity ρmag represents an analogous measure of energy converted to
heat from currents in an applied magnetic �eld. Complex permittivity and
permeability will not be used in this text.
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1.7 Problems

1.1. A Ford Focus produces 160 horsepower [16]. Calculate the power
produced in watts, and calculate the approximate energy produced
by the vehicle in one hour.

1.2. A gallon of gas contains 1.21 · 105 Btu and weighs 6 pounds [8].
Calculate the energy stored in the gallon of gas in joules, and calculate
the speci�c energy in joules per kilogram.

1.3. An Oreo cookie has 53 food calories and weighs 11 grams [17]. A ton
(2000 pounds) of TNT contains approximately 4.184 · 109 J of energy
[7]. Calculate the speci�c energy of the cookie in joules per kilogram,
and calculate the speci�c energy of the TNT in joules per kilogram.
(Yes, the value for the cookie is higher.)

1.4. Find the electron con�guration of an isolated indium atom in the
lowest energy state. How many electrons are found around the atom?
Repeat for a Cl− ion.

1.5. Use a periodic table for this problem.

(a) Which element has the electron con�guration
1s22s22p63s23p64s23d2?

(b) List two elements which have exactly two valence electrons.
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Part I

Survey of Energy Conversion

Devices

2 Capacitors and Piezoelectric Devices

2.1 Introduction

This chapter begins with a discussion of material polarization, and then it
discusses capacitors and piezoelectric devices. The next chapter discusses
pyroelectric devices and electro-optic devices. All of these devices are all
constructed from a thin dielectric layer, and operation of all of these devices
involves establishing a material polarization, charge build up, throughout
this dielectric material. In piezoelectric materials, mechanical strain causes
a material polarization. As with many energy conversion devices, piezoelec-
tric devices can work both ways, converting mechanical energy to electricity
or converting electricity to mechanical vibrations. In pyroelectric devices, a
temperature gradient causes the material polarization, and in electro-optic
devices, an external optical electric �eld causes the material polarization.

Why start the discussion of energy conversion devices with a discussion
of capacitors? Capacitors are familiar to electrical engineers, and they are
energy storage devices. How do capacitors work? What are the components
of a capacitor? What materials are capacitors made out of? What are the
di�erences between di�erent types of capacitors such as mica capacitors
and electrolytic capacitors? In an introductory circuits course, a capacitor
is a device where the relationship between the current i and voltage v is
given by

i = C
dv

dt
(2.1)

and the capacitance C is just a constant. The only di�erence between one
capacitor and another is the capacitance value. In order to answer these
questions further, we need to go beyond this model. Through this study,
we will gain insights into piezoelectric devices, pyroelectric devices, and
electro-optic devices too.
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2.2 Capacitors

2.2.1 Material Polarization

When an external voltage is applied across an insulator, charges separate
throughout the material, and this charge separation is called a material

polarization. Material polarization can be de�ned more precisely in terms
of the electric �eld intensity

−→
E and the displacement �ux density

−→
D , two

vector �elds which show up in Maxwell's equations, Eqs. 1.5 - 1.8. These
vector �elds are related by −→

D = ε
−→
E . (2.2)

Why do we de�ne two electric �eld parameters when they are just scaled
versions of each other? It is useful to separate the description of the elec-
tric �eld inside a material from the description of the �eld in free space.
Similarly, two vector �elds describe magnetic �eld, the magnetic �eld inten-
sity
−→
H and magnetic �ux density

−→
B , and these �elds show up in Maxwell's

equations for the same reason. Material polarization,
−→
P in units C

m2 , is

de�ned as the di�erence between the electric �eld in the material
−→
D and

the electric �eld that would be present in free space
−→
E . More speci�cally,

−→
P =

−→
D − ε0

−→
E (2.3)

or −→
P = (ε− ε0)

−→
E . (2.4)

These expressions involve the permittivity of free space ε0 and the permit-
tivity of a material ε which were de�ned in Sec. 1.6.3.

Scientists overload both the words capacitance and polarization with
multiple meanings. See Appendix C for more details on the di�erent uses
of these terms.

2.2.2 Energy Storage in Capacitors

When a capacitor is charged, energy is converted from electrical energy to
energy stored in a material polarization which is energy of the charge sep-
aration. When it is discharged, energy is converted from energy stored in
the material polarization back to electrical energy of �owing electrons. Ca-
pacitors are made from an insulating material between conducting plates.
As we supply a voltage across the insulator, charges accumulate on the
plates. The voltage built up is proportional to the charge accumulated on
the plates.

Q = Cv (2.5)
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In Eq. 2.5, Q is the charge in coulombs, v is the voltage, and the constant of
proportionality is the capacitance C in farads. If we take the derivative with
respect to time, we get the more familiar expression relating the current
and voltage across the capacitor.

dQ
dt

= i = C
dv

dt
(2.6)

The capacitance of a capacitor is related to the permittivity of the
dielectric material between the conductors. Permittivity is a measure of the
amount of energy that can be stored by a dielectric material. As described
by Eq. 1.22, for a parallel plate capacitor this relationship is

C =
εA

dthick
(2.7)

where A is the area of the plates and dthick is the distance between the
plates. The energy E stored in a capacitor as a function of voltage applied
across it is given by

E =
1

2
Cv2 =

1

2
Qv. (2.8)

The capacitance of a vacuum-�lled parallel plate capacitor is described by
Eq. 2.7 with permittivity ε = ε0, the permittivity of free space. As we
charge the capacitor, charges accumulate on the plates, and no change
occurs to the vacuum between the plates. If we replace the vacuum with
a dielectric with ε > ε0, the capacitance becomes larger. The dielectric
�lled capacitor can store more energy, all else equal, because the dielectric
material changes as the capacitor charges. More speci�cally, the material
polarizes. In an insulator, electrons are bound to their atoms, and current
cannot �ow. Instead, the electrons in a dielectric move slightly with respect
to their nuclei while still staying bound to the atoms. Electrons are always
in motion for materials at temperatures above absolute zero, but when a
material polarizes, the net location of electrons with respect to the nuclei
changes. As the capacitor charges, the electrons are slightly displaced from
their atoms, balancing the charges on the plates, and more energy is stored
in the dielectric for a given voltage. We say that this process induces
electric dipoles. The larger the permittivity, ε, the more the material can
store energy by polarizing in this way. For this reason, capacitors are
often �lled with dielectric materials like tantalum dioxide Ta2O5 which has
ε = 25ε0 [18]. A material with ε = 25ε0, for example, will be able to store
25 times the energy of an air �lled capacitor of the same size with the same
applied voltage.
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2.2.3 Permittivity and Related Measures

For historical reasons, the permittivity may be expressed by di�erent mea-
sures. The electric susceptibility χe, relative permittivity εr, index of re-
fraction n, and permittivity ε all describe the ability of a material to store
energy in the electric �eld. Electric susceptibility is a unitless measure
related to the permittivity by

χe =
ε

ε0
− 1 (2.9)

and relative permittivity is another unitless measure de�ned by

εr =
ε

ε0
. (2.10)

With some algebra, we can write the material polarization in terms of the
relative permittivity or the electric susceptibility.

−→
P = (εr − 1)ε0

−→
E = ε0χe

−→
E (2.11)

Scientists studying optics often use index of refraction, another unitless
measure which represents the ratio of the speed of light in free space to the
speed of light in the material.

n =
c

|−→v | =
speed of light in free space
speed of light in material

(2.12)

Since electromagnetic waves cannot travel faster than the speed of light
in free space, index of refraction of a material is greater than one, n > 1.
Assuming a material is a good insulator and µ = µ0, which are typically
safe assumption for optics, the relationship between index of refraction and
permittivity simpli�es to

n =
√
εr. (2.13)

Table 2.1 lists relative permittivities of some insulators used to make
capacitors or piezoelectric devices. The values are all approximates. See
the references cited for more detailed information.

In the de�nitions of Section 1.6.3 and in Table 2.1, permittivity is
treated as a scalar constant, but in some contexts a more complicated
description is needed. In a crystalline material, a voltage applied along one
crystallographic axis may induce charge separation throughout the material
more easily than a voltage of the same size applied along a di�erent axis.
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Material Relative
permittivityεr

Reference

Vacuum 1.0 [3, p. 20]
Te�on 2.1 [3, p. 20]
Polyethylene 2.3 [3, p. 20]
Paper 3.0 [3, p. 20]
SiO2 3.5 [18]
Mica 6.0 [3, p. 20]
Al2O3 9 [18]
AlP 10.2 [9]
ZrSiO4 12.5 [19]
Si 11.8 [9]
Ge 16 [9]
Ta2O5 24 [20]
ZrO2 25 [18]
HfO2 40 [18]
TiO2 50 [18]
PbS 161 [9]
PbSe 280 [9]
BaSrTiO3 300 [18]
PbTe 360 [9]

Table 2.1: Approximate values of relative permittivity of various materials.
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âx

ây

âz

No applied voltage With applied voltage

Figure 2.1: Illustration of material polarization.

In such cases, the material is called anisotropic. Permittivity of anisotropic
materials is more accurately described by a matrix. εxx εxy εxz

εyx εyy εyz
εzx εzy εzz


The left part of Fig. 2.1 shows some atoms of a crystal. The small black
circles represent the location of the nuclei of atoms in the crystals, and
the gray circles represent the electron cloud surrounding the nuclei of each
atom. If an electric �eld is applied in the âz direction, the material po-
larizes, so the electrons are slightly displaced with respect to the nuclei as
shown in the �gure on the right. Since the spacing of atoms is di�erent in
the âx and ây direction than the âz direction, the external �eld required to
get the same charge displacement will be di�erent in the âx and ây direc-
tions than the âz direction for this material. For this reason, the material
illustrated in the �gure is anisotropic, and the permittivity is best described
by a matrix as opposed to a scalar quantity.

2.2.4 Capacitor Properties

Capacitors are energy conversion devices used in applications from stabiliz-
ing power supplies, to �ltering communication signals, to separating out a
DC o�set from an AC signal. Though capacitors and batteries both store
electrical energy, energy in batteries is stored in the chemical bonds of
atoms of the electrodes while energy is stored in capacitors in the material
polarization from bound charges shifting in a dielectric layer.

The �rst two measures to consider when selecting a capacitor to use in
a circuit are the capacitance and the maximum voltage. A capacitor can
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Figure 2.2: Range of capacitance and maximum voltage values for various
capacitor types, following [21] and [22].

be damaged if it is placed in a circuit where the voltage across it exceeds
the maximum rated value. Approximate ranges for these parameters for
capacitors with di�erent dielectric materials are shown in Fig. 2.2. Capac-
itance ranges are on the vertical axis, and maximum voltage ranges are on
the horizontal axis. For example, electrolytic capacitors often can be found
with capacitance values ranging from 10−7 to 1 F and maximum voltage
ratings in the range of 1 to 1000 V. Similarly, ceramic capacitors can of-
ten be found with capacitance values ranging from 10−13 to 5 · 10−4 F and
maximum voltage ratings in the range of 1 to 50,000 V.

While capacitance and maximum voltage rating are important param-
eters to consider, they are not the only considerations. Another factor to
consider is temperature stability. Ideally, the capacitance will be indepen-
dent of temperature. However, all materials have a nonzero temperature
coe�cient. Ceramic and electrolytic capacitors tend to be more sensitive to
temperature variation than polymer or vacuum capacitors [22]. Accuracy,
or precision, is also important. Just as resistors are labeled with tolerances,
capacitors may have tolerances of, for example, ±5% or ±10%. Another
factor to consider is equivalent series resistance [23, ch. 1]. All materi-
als have some resistivity, so all capacitors have some �nite resistance. To
account for the internal resistance, we can model any physical capacitor
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Figure 2.3: Natural mica.

as an ideal capacitor in series with an ideal resistor, and the value of the
resistor used is called the equivalent series resistance. Also, leakage of a
capacitor should be considered [22]. If a capacitor is able to retain its
stored charge for a long period of time, the capacitor has small leakage.
If the capacitor discharges quickly even when disconnected from a circuit,
it has large leakage. An ideal capacitor has no leakage [22]. Capacitors
are also di�erentiated by their lifetime. An ideal capacitor operates for
decades without degradation. However, some types of capacitors, such as
electrolytic capacitors, are not designed to have long lifetimes [22]. Other
factors to consider include cost, availability, size, and frequency response
[22].

Ceramics, glasses, polymers, and other materials are used as the di-
electric [22]. Often capacitors are classi�ed by the dielectric material they
contain [22]. Ceramic capacitors are small, cheap, and readily available
[22]. They can often tolerate large applied voltages [22]. They typically
have small capacitance values, poor accuracy, poor temperature stability
and moderate leakage [22]. They have low equivalent series resistance and
can withstand a lot of current, but they can cause transient voltage spikes,
[23, ch. 1]. Some ceramic capacitors are piezoelectric. If these capacitors
are vibrated, or even tapped with a pencil, noise will be introduced in the
circuit due to piezoelectricity [23, ch. 12].

Mica is an interesting material which is used as a dielectric in capacitors.
Figure 2.3 shows naturally occurring mica collected at Ruggles Mine near
Grafton, New Hampshire. Mica comes in di�erent natural forms including
biotite and muscovite KAl2(AlSi3O10)(OH)2 [24]. Mica is a �aky mineral
with a layered structure [24], so mica capacitors can be made with very
thin dielectric layers. Mica capacitors often have good accuracy and small
leakage [22].

Capacitor dielectrics have been made from many types of polymers in-
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Figure 2.4: Through-hole size capacitors.

cluding polystyrene, polycarbonate, polyester, polypropylene, Te�on, and
mylar [22]. These capacitors often have good accuracy, temperature stabil-
ity, and leakage characteristics [22].

Not all capacitors have solid dielectrics. A vacuum is a dielectric. Ca-
pacitors with a vacuum dielectric are used in applications which involve
high voltage or which require very low leakage [22]. Capacitors with liq-
uid dielectrics made of oil are used in similar situations [22]. Electrolytic
capacitors often have dielectrics which are a combination of solid materi-
als with liquid electrolytes. An electrolyte is a liquid through which some
charges can �ow more easily than others. Electrolytic capacitors are polar-
ized, meaning that they have positive and negative terminals, so, similar to
a diode, the orientation of the capacitor in a circuit is important. Inside an
electrolytic capacitor is a junction of multiple materials. The initial appli-
cation of voltage in the factory chemically creates an oxide layer which is
the dielectric. Reversing the voltage will dissolve the dielectric and destroy
the capacitor. One advantage of electrolytic capacitors is that a small de-
vice can have a large capacitance. However, they often have poor accuracy,
temperature stability, and leakage [22]. Also, electrolytic capacitors have a
�nite lifetime because the liquid can degrade over time.

2.3 Piezoelectric Devices

Can we induce a material polarization in an insulator in a way that does
not involve applying a voltage? If so, then this method can charge a ca-
pacitor, and we can discharge the capacitor as usual to produce electricity.
Any device that accomplishes this task is an energy conversion device.
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Piezoelectric, pyroelectric, and electro-optic devices all involve this type
of energy conversion, and they are all currently available as sensors and
as other products. In piezoelectric devices, discussed in this section, a
mechanical stress causes a material polarization.

If a large enough strain is exerted on a material, the crystal structure
will change. For example, at high enough temperature and pressure, coal
will crystallize into diamond, and when the pressure is removed, the mate-
rial stays in diamond form. Steel can be hardened by repeatedly hitting it
in a process called shot peening. A signi�cant amount of energy is needed
to permanently change the crystal structure of a material. In this section,
we are not discussing this e�ect. Instead, we are discussing an e�ect that
typically requires little energy. When a mechanical strain is exerted on
a piezoelectric device, a material polarization is established. The valence
electrons are displaced, but the nuclei of the material and other electrons
do not move. When we release the stress, the material polarization goes
away.

2.3.1 Piezoelectric Strain Constant

We can describe the material polarization of a piezoelectric insulating ma-
terial by incorporating a term which depends on the applied mechanical
stress, [25]. −→

P =
−→
D − ε0

−→
E + d−→ς (2.14)

In this equation,
−→
P is material polarization in C

m2 ,
−→
D is displacement �ux

density in C
m2 , ε0 is the permittivity of free space in F

m,
−→
E is the applied

electric �eld intensity in V
m, d is the piezoelectric strain constant in m

V, and
−→ς is the stress in pascals. Stress can also be given in other units.

1 Pa = 1 J
m3 = 1

N
m2

(2.15)

For many materials, the piezoelectric strain constant d is zero, and for
many other materials, d is quite small. Barium titanate is used to make
piezoelectric sensors because it has a relatively large piezoelectric strain
coe�cient, d ≈ 3 · 10−10 m

V [25, p. 408]. Additional example coe�cients
are given in the next chapter in Table 3.1.

Mechanical strain is a unitless measure of de�ection or deformation
while stress has units pascals. Without an external electric �eld, these
quantities are related by Young's elastic modulus which has units N

m2 .

strain =

(
1

Young's elastic modulus

)
· stress (2.16)
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If an electric �eld is also applied, stress and strain are related by

strain =

(
1

Young's elastic modulus

)
· stress +

−→
E · d (2.17)

where d is the piezoelectric strain constant.
The energy stored in a piezoelectric device under stress −→ς is given by

E = |−→ς | · A · l · ηeff (2.18)

where A is the cross sectional area of a device in m2, l is the deformation in
m, and ηeff is the e�ciency. Devices which are bigger, are deformed more,
or are made from materials with larger piezoelectric constants store more
energy.

According to Eq. 2.14, the material polarization of an insulating crys-
tal is linearly proportional to the applied stress. While this accurately
describes many materials, it is a poor description of other materials. For
other piezoelectric crystals, the material polarization is proportional to the
square of the applied stress∣∣∣−→P ∣∣∣ =

∣∣∣−→D ∣∣∣− ε0 ∣∣∣−→E ∣∣∣+ d |−→ς |+ dquad |−→ς |2 (2.19)

where dquad is another piezoelectric strain constant. To model the material
polarization in other materials, terms involving higher powers of the stress
are needed.

2.3.2 Piezoelectricity in Crystalline Materials

To understand which materials are piezoelectric, we need to introduce some
terminology for describing crystals. Crystalline materials may be composed
of elements, such as Si, or compounds, such as NaCl. By de�nition, atoms
in crystals are arranged periodically. Two components are speci�ed to
describe the arrangement of atoms in a crystal: a lattice and a basis [25,
p. 4]. A lattice is a periodic array of points in space. An n-dimensional
lattice is speci�ed by n lattice vectors for integer n. We can get from one
lattice point to every other lattice point by traveling an integer number of
lattice vectors. Three vectors, −→a1 ,

−→a2 , and
−→a3 , are used to describe physical

lattices in three-space. The choice of lattice vectors is not unique. Lattice
vectors which are as short as possible are called primitive lattice vectors. A
cell of a lattice is the area (2D) or volume (3D) formed by lattice vectors.
A primitive cell is the area or volume formed by primitive lattice vectors,
and it is the smallest possible repeating unit which describes a lattice.
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BasisLattice Crystal structure

−→a 1

−→a 2

Figure 2.5: Two dimensional illustration of the terms lattice, basis, crystal
structure, and primitive lattice vector.

To specify the structure of a material, we attach one or more atoms to
every point in the lattice. This arrangement of atoms is called a crystal

basis. The lattice and crystal basis together de�ne the crystal structure

[25]. Figure 2.5 shows a two dimensional example of a lattice, crystal
basis, and crystal structure. Since this example is two dimensional, only
two lattice vectors are needed to specify the lattice. Two primitive lattice
vectors are shown, and a primitive cell is shaded.

There are 14 possible three dimensional lattice types, and these are
called Bravais lattices [25]. Each of these possible lattices has a descriptive
name. Figure 2.6 shows four of the possible Bravais lattices: simple cubic,
body centered cubic, face centered cubic, and asymmetric triclinic. In the
simple cubic lattice, all angles between line segments connecting nearest
neighbor points are right angles, and all lengths between nearest neighbor
points are equal. In the asymmetric triclinic lattice, none of these angles
are right angles, and none of these lengths between nearest neighbor points
are equal. Figure 2.6 shows lattice cells, but the cells for the body centered
cubic and face centered cubic lattices are not primitive cells because smaller
repeating units can be found.

Consider some example lattices and crystal structures. The crystal
structure of sodium chloride, for example, involves a face centered cubic
lattice and a basis composed of one sodium and one chlorine atom. An-
other example is silicon which crystallizes in what is known as the diamond
structure [25]. This crystal structure involves a face centered cubic lattice
and a basis composed of two silicon atoms, at location (0, 0, 0) and

(
l
4
, l

4
, l

4

)
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Simple cubic: Body centered cubic:

Face centered cubic: Asymmetric triclinic:

Figure 2.6: Illustration of some Bravais lattices.

where l is the length of the primitive cell. Carbon, Si, Ge, and Sn all crys-
tallize in this diamond structure with cell lengths of l = 0.356, 0.543, 0.565,
and 0.646 nm respectively [25].

While there are only 14 possible three dimensional lattices, there are
signi�cantly more possible crystal structures because the crystal structure
also incorporates the basis. It is not possible to list all possible crystal
structures. Instead, they are classi�ed based on the symmetries they con-
tain. Possible symmetry operations are 2-fold, 3-fold, 4-fold, and 6-fold
rotations, horizontal and vertical mirror planes, and inversion. Crystal
structures are grouped based on the symmetry elements they contain into
classes called crystal point groups. There are 32 possible crystal point
groups, and they are listed in the Table 2.2.

Some authors classify crystal structures into crystal space groups instead
of crystal point groups [6] [26]. While there are 32 crystal point groups,
there are 230 crystal space groups. Crystal space groups are based on
symmetry transformations which can incorporate not only rotations and
mirror planes but also combination of translations along with rotations
and mirror planes. Crystal space groups will not be discussed further in
this text.
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Table 2.2: Summary of crystal point groups.
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Table 2.2 continued: Summary of crystal point groups.
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Figure 2.7: Shapes used to illustrate symmetry elements.

As an example of identifying symmetry elements, consider the 2D shapes
in Fig. 2.7. The T-shaped �gure has one symmetry element, a mirror plane
symmetry. The shape looks the same if it is re�ected over the mirror plane
shown in the �gure by a dotted line. The Q-shape has no symmetry ele-
ments. The hexagon has multiple symmetry elements. It contains 2-fold
rotation because it looks the same when rotated by 180◦. It also has 3-fold
and 6-fold rotation symmetries because it looks the same when rotated by
60◦ and 30◦ respectively. It also has multiple mirror planes shown by dot-
ted lines in the �gure. In this example, symmetry elements of 2D shapes
are identi�ed, but material scientists are interested in identifying symme-
tries of 3D crystal structures to gain insights in the properties of materials.
Materials are classi�ed into categories called crystal point groups based on
the symmetries of their crystal structures.

We generalize about crystalline materials based on whether or not their
crystal structure possesses inversion symmetry. What is the inversion op-
eration? In 2D, inversion is the same as a rotation by 180◦. In 3D, a
shape or crystal structure contains inversion symmetry if it is identical
when rotated by 180◦ and inverted through the origin [24, p. 269]. More
speci�cally, draw a vector

−→
V from the center of the shape to any point

on the surface. If the shape has inversion symmetry, then for any such
vector

−→
V , the point a distance −−→V from the origin is also on the surface

of the shape. The example on the left of Fig. 2.8 has inversion symmetry
because for any such vector

−→
V from the center of the shape to a point on

the surface, there is a point on the surface a vector −−→V away from the
origin too. The example on the right does not contain inversion symmetry
as illustrated by the vector

−→
V shown by the arrow.

If a crystal structure has inversion symmetry, we say the crystal has
a center of symmetry otherwise we say it is noncentrosymmetric. Crystal
structures are classi�ed into classes called crystal point groups, and twenty-
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With Inversion Symmetry Without Inversion Symmetry

Figure 2.8: The shape on the left contains inversion symmetry while the
shape on the right does not.

one of the 32 point groups have no center of symmetry thus do not contain
inversion symmetry [24, p. 35]. Twenty of these crystal point groups have
a polar axis, some axis in the crystal with di�erent forms on opposite ends
of the axis. These twenty one crystal point groups are speci�ed as noncen-
trosymmetric in the sixth column of Table 2.2. If we mechanically stress
these materials along the polar axis, di�erent amounts of charges will build
up on the di�erent sides of the axis. Dielectric crystalline materials whose
crystal structure belongs to any one of these 21 of these noncentrosymmet-
ric crystal point groups are piezoelectric [24].

Table 2.2 lists all crystal point groups and summarizes whether crys-
talline materials whose crystal structure belongs to each group can be
piezoelectric, pyroelectric, and Pockels electro-optic. Pyroelectricity and
electro-optics are discussed in the next chapter. Information in the table
comes from references [24] [26] [27] [28]. The left two column list the 32
possible crystal point groups. There are two di�erent, but equivalent, ways
of labeling the crystal point groups. The �rst column names the crystal
point groups using Hermann-Mauguin notation. This notation dates to the
1930s and is used by chemists, mineralogists, and some physicists. The
second column names the crystal point groups using Schoen�ies notation.
Schoen�ies notation dates from 1891 [29], and it is used by mathematicians,
spectroscopists, and other physicists.

The third column of Table 2.2 lists the crystal system. As shown in Fig.
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a

b

c

α

β

γ

Figure 2.9: Labels on a primitive cell of a lattice.

2.9, the angles of a primitive cell of a lattice are labeled α, β, and γ, and
the lengths of the sides are labeled a, b, and c. Crystal point groups can
be classi�ed based on the angles and lengths of the primitive cell of the
lattice which belongs to that group. The literature contains multiple sub-
tly di�erent ways of de�ning crystal systems [30]. The information in the
third column follows reference [28]. The fourth column gives relationships
between the angles of the primitive cell. The �fth column gives relation-
ships between the lengths of sides of the primitive cell. Combinations of
angles and lengths are not unique to a speci�c row. For example, classes
C2 and C1h both have α = 90◦, β 6= 90◦, γ = 90◦, and a 6= b 6= c. However,
crystal structures belonging to these crystal point groups contain di�erent
symmetry elements. For more details on speci�cally which symmetry el-
ements are contained in which crystal point group, see [24] [26] [27] [28].
The sixth column lists whether or not the crystal point group has inver-
sion symmetry. Crystal structures with no inversion symmetry or center of
symmetry, called noncentrosymmetric, are both piezoelectric and Pockels
electro-optic. The last column lists whether or not crystalline materials
whose crystal structure belongs to the various crystal point groups can be
pyroelectric.

It is possible to start with a crystal structure of a material, derive
the symmetry elements it contains, derive whether or not the material is
piezoelectric, and derive whether or not the material is pyroelectric. Fur-
thermore, it is possible to derive along which axes piezoelectricity or py-
roelectricity can occur in the material. However, this derivation is beyond
the scope of this book. For further details, see [6] [27] [28] [31].

To predict whether or not a dielectric crystalline material is piezoelec-
tric, identify its lattice and crystal basis to identify its crystal structure.
Identify the symmetries of the crystal structure to classify its crystal struc-
ture into a particular crystal point group. If that crystal structure contains
inversion symmetry, the material can be piezoelectric. We often do not
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have to go through all of these steps because the crystal point group for
many crystalline materials is tabulated [32]. Even if the crystal structure
for a material contains inversion symmetry, the piezoelectric e�ect and the
piezoelectric strain coe�cient d may be too small to measure.

The e�ect may only occur when you stress the material along some
particular axis, and it may not occur for a mechanical stress of an arbi-
trary orientation with respect to the direction of the crystal axes. There is
only one crystal point group, called asymmetric triclinic, where a random
stress will produce a material polarization [24]. For all other point groups,
only stresses along certain axes will produce a material polarization [24].
Furthermore, in most crystals a given amount of stress along one axis of
the crystal will produce a di�erent amount of material polarization than
the same amount of stress applied along a di�erent crystallographic axis.
Qualitatively, compressing a crystal along one axis may cause more charge
displacement than compressing a crystal along a di�erent axis. For this
reason, it is more accurate to treat the piezoelectric strain coe�cient as a
matrix. This 3x6 matrix has elements

dik =

(
∂strain along k

∂electric �eld along i

)∣∣∣∣
for a given stress

. (2.20)

where electric �eld has x, y, and z components, and the stress can be
applied along the xx, xy, xz, yy, yz, or zz directions.

2.3.3 Piezoelectricity in Amorphous and Polycrystalline Mate-

rials and Ferroelectricity

The previous section discussed piezoelectricity in crystals. We can discuss
symmetries of the crystal structure of crystalline materials, but we can-
not even de�ne a crystal structure for amorphous materials. However, it is
possible to make piezoelectric devices out of polycrystalline and amorphous
materials. In a dielectrics, if we apply an external electric �eld, a material
polarization is induced. Electric dipoles form because the electrons and
nuclei of the atoms displace slightly from each other. Coulomb's law tells
us that charge buildups, such as these electric dipoles, induce an electric
�eld. So, if we apply an external electric �eld to a dielectric, this primary
e�ect induces a material polarization, and this material polarization will,
as a secondary e�ect, induce additional material polarization in the ma-
terial. Once one atom polarizes forming an electric dipole, nearby atoms
will polarize. Small regions of the same material polarization are called
electrical domains.
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In certain dielectric materials, an external mechanical stress induces a
local material polarization. The charge buildup of this material polarization
induces a material polarization in nearby atoms forming electrical domains
[23]. This piezoelectric e�ect can occur whether the original material is
crystalline, amorphous, or polycrystalline [23]. In noncrystalline materials,
this e�ect is necessarily nonlinear, so these materials are not well described
by Eqs. 2.14 or 2.19.

The nonlinear process of a material polarization of one atom inducing
a material polarization of nearby atoms causing the formation of electrical
domains is called ferroelectricity. Ferroelectric materials may be crys-
talline, amorphous, or polycrystalline. We will see in the next chapter that
materials can be ferroelectric pyroelectric and ferroelectric electro-optic in
addition to ferroelectric piezoelectric. The ferroelectric e�ect is limited by
temperature. For many ferroelectric materials, these e�ects occur only be-
low some temperature, called the Curie temperature. When the materials
are heated above the Curie temperature, the ferroelectric e�ect goes away
[33]. The material polarization of a ferroelectric material may depend on
whether or not a material polarization has previously been induced. If the
state of a material depends on its past history, we say that the material has
hysteresis. Ferroelectric materials may have a material polarization even
in the absence of an external mechanical stress or electric �eld if a source
of energy has previously been applied.

While the pre�x ferro- means iron, most ferroelectric materials do not
contain iron, and most iron containing materials are not ferroelectric. The
word ferroelectric is used as an analogy to the word ferromagnetic. Some
iron containing materials are ferromagnetic. If an external magnetic �eld is
applied across a ferromagnetic material, an internal magnetic �eld is set up
in the material. Ferromagnetic materials can have a permanent magnetic
dipole even in the absence of an applied magnetic �eld. We can model an
electric dipole as a pair of charges. We can model a magnetic dipole as a
small current loop. Ferromagnetic materials exhibit hysteresis, and they
have magnetic domains where the magnetic dipoles are aligned.

Originally, a piezoelectric ferroelectric material has randomly aligned
electrical domains and no net material polarization, so it starts out as
neither piezoelectric or ferroelectric. The process of causing a material
to exhibit piezoelectricity and ferroelectricity is called poling. To pole
a material, place it in a strong external electric �eld [23], for example,
across the poles of a battery, hence the term. Poling does not change
the atomic structure, so if the material was originally amorphous, it will
remain amorphous. During this process, electrical domains form, and these
domains remain even when the external �eld is removed. A material that is
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piezoelectric due to this type of poling is sometimes called an electret [15,
p. 297]. After the material is poled, it may have a net material polarization
throughout. Furthermore after poling, it is piezoelectric and ferroelectric,
so an external mechanical stress induces a material polarization locally and
throughout the material.

2.3.4 Materials Used to Make Piezoelectric Devices

What makes a good material for a piezoelectric sensor or piezoelectric en-
ergy conversion device? First piezoelectric devices are made from electrical
insulators. When an external voltage is applied across a conductor, va-
lence electrons are removed from their atoms, so no material polarization
accumulates. Second, piezoelectric devices are made from materials with
large piezoelectric strain constants. The piezoelectric strain constant is so
small that it cannot be detected in many crystals with crystal structures
from one of the 21 crystal point groups known to be piezoelectric, and it
is zero in crystals from the other crystal point groups. Third, piezoelectric
devices should be made from materials that are not brittle so that they can
withstand repeated stressing without permanent damage. Thermal prop-
erties may also be important [33]. There is no material that is best in all
applications.

Quartz, crystalline SiO2, was the �rst material in which piezoelectricity
was studied. Pierre and Jacques Curie discovered the e�ect in quartz in the
1880s [3]. Today, many piezoelectric devices, including crystal oscillators,
are made from quartz. Lead zirconium titanate is another material used due
to its relatively high piezoelectric strain constant [3] [34]. In applications
which require �exibility and the ability to withstand repeated mechanical
stress without damage, polymers such as polyvinylden�uoride are used [25].
Piezoelectricity has also been studied in materials including barium titanate
BaTiO3, lithium niobate, tourmaline

(Na,Ca)(Li,Mg,Al)3(Al,Fe,Mn)6(BO3)3(Si6O8)(OH)4,

and Rochelle salt
KNaC4H4O6 · 4H2O

[3] [23] [24] [34].
Manufacturers of piezoelectric devices do not often label their products

to say whether they are made from crystalline, amorphous, or polycrys-
talline materials, but there are advantages and disadvantages to the dif-
ferent types of materials. An advantage of making piezoelectric devices
from polycrystalline or amorphous materials is that the devices can be
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made more easily into di�erent shapes such as cylinders and spheres [33].
However, the materials used often have lower melting temperatures, higher
temperature expansion coe�cients, and are more brittle [33]. Crystalline
materials, such as quartz, have the advantages of being harder and having
a higher melting temperature [33].

2.3.5 Applications of Piezoelectricity

A number of electrical components involve piezoelectricity. When a voltage
is applied across a piece of piezoelectric material, it mechanically bends and
deforms. When the voltage is released, it springs back at a natural reso-
nant frequency. This material can be integrated with a feedback circuit
to produce oscillations at a precise frequency. Electrical oscillators of this
type are often made from crystalline quartz. A more recent application
is the piezoelectric transformer. These devices are used in the cold cath-
ode �uorescent lamps which are used as backlight for LCD panels [23, p.
289]. The lamps require around a thousand volts to turn on and hundreds
of volts during use. Transformers made of magnets and coils can achieve
these high voltages, but piezoelectric transformers are much smaller, small
enough to be mounted on a printed circuit board. A traditional trans-
former involves a pair of coils, and it converts AC electricity to magnetic
energy to AC electricity at a di�erent voltage. Similarly, a piezoelectric
transformer also involves multiple energy conversion processes. In such a
device, AC electricity is converted to mechanical vibrations and then to
AC electricity at a di�erent voltage. Energy is conserved in these devices,
so they can produce high voltages with low currents. Figure 2.10 shows
a piezoelectric transformer that can convert an input of 8 to 14 V to an
output up to 2 kV [35]. Figure 2.11 shows an example of some small piezo-
electric circuit components. Starting in the upper left and going clockwise,
a microphone, ultrasonic transmitter and receiver, vibration sensor, and
oscillator are shown.

E�ciency of energy conversion devices is hard to discuss because every
author makes di�erent assumptions. However by any measure, e�ciency of
a commercial piezoelectric device is low, often 6% or less [36]. Due to this
low e�ciency, many piezoelectric devices are used as sensors. Regardless
of this low e�ciency, other devices are used for energy harvesting. For
example, one train station embedded piezoelectric devices in the platforms
to generate electricity. Piezoelectric devices also have been used to convert
the energy from the motion of a �uid or from wind directly to electricity
[36].

There is interest in using piezoelectric devices for biomedical applica-
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Figure 2.10: A piezoelectric transformer that takes an input of 8-14 V and
produces and output of up to 2 kV. This picture is used with permission
from [35].

Figure 2.11: Example small piezoelectric devices. Clockwise from top left:
electret microphone, ultrasonic distance sensor, vibration sensor, oscillator
crystal.
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tions. Quartz is piezoelectric, and it is durable, readily available, and
nontoxic. Engineers have developed piezoelectric devices designed for use
outside of the body and to be implanted inside the body. Some piezoelectric
devices are used as sensors. For example, piezoelectric sensors can monitor
knees or other joints [3]. Also, ultrasonic imaging is a common diagnostic
technique. Piezoelectric devices are used both to generate the ultrasonic
vibrations and to detect them [33]. Other biomedical piezoelectric devices
are used as a source of electrical power. Arti�cial hearts, pacemakers, and
other devices require electricity, and they are often limited by battery tech-
nology available to supply the energy [36]. Piezoelectric generators have
no moving parts to wear out, and they can avoid the problem of needing
to change the batteries. Physical activity can be classi�ed as continuous,
such as breathing, or discontinuous, such as walking. Both types of physi-
cal activity can be used as a source of mechanical energy for piezoelectric
devices [36]. The amount of power required for di�erent biomedical devices
varies quite a bit. For example, an arti�cial heart may require around 8 W
while a pacemaker may require only a few microwatts [36]. Piezoelectric
devices may be able to capture energy from typical physical activity and
convert it into electrical energy to power the device. A piezoelectric device
in an arti�cial knee has produced 0.85 mW [36], and a device in a shoe has
generated 8.4 mW from walking [36].

Piezoelectric devices are used in other types of imaging systems besides
biomedical imaging systems. One of the earlier applications was in sonar
systems. Around the time of WWI, the military actively developed sonar
systems to detect boats and submarines. Today, sonar systems are used to
detect �sh and to measure the depth of bodies of water [33]. Sonar imaging
is also used to analyze electrical circuits and to detect imperfections and
cracks in steel and in welds [33].

Piezoelectric devices are used in a variety of other applications too.
Piezoelectric sensors are used in some buttons and keyboards [36]. Piezo-
electric devices are used to make accelerometers [37, p. 353], and they are
used to measure pipe �ow [33]. Speakers, microphones and buzzers can all
be made from piezoelectric devices, and they can operate at both audio
and ultrasonic frequencies. Piezoelectric devices that generate ultrasonic
signals can be used to emulsify dyes, paints, and food products like peanut
butter [33]. Also, they are used in some barbecue grill ignitions where
mechanical stress induces an electric spark [23, ch. 15].
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2.4 Problems

2.1. A parallel plate capacitor has a capacitance of C = 10 pF. The plates
have area 0.025 cm2. A dielectric layer of thickness dthick = 0.01 mm
separates the plates. For the dielectric layer, calculate the permit-
tivity ε, the relative permittivity εr, and the electric susceptibility
χe.

2.2. We often assume that the capacitance of a capacitor and the permit-
tivity of a material are constants. However, sometimes these quan-
tities are better described as functions of frequency. Consider a ca-
pacitor made from parallel plates of area 0.025 cm2 separated by 0.01
mm. Assume that for ω . 106 rad

s , the capacitance is well modeled
by

C(ω) = 8 · 10−11 + 3 · 10−15ω

in farads. For the dielectric material between the plates of the capac-
itor, calculate the permittivity ε(ω), the relative permittivity εr(ω),
and the electric susceptibility χe(ω).

2.3. A cylindrical sandwich cookie has a radius of 0.75 in. The cookie is
made from two wafers, each of thickness 0.15 in, which are perfect
dielectrics of relative permittivity εr = 2.8. Between the wafers is a
layer of cream �lling of thickness 0.1 in which is a perfect dielectric
of relative permittivity εr = 2.2. Find the overall capacitance of the
cookie.
Hint: Capacitances in series combine as 1

1
C1

+ 1
C2

.

2.4. A parallel plate capacitor has a capacitance of 3 µF.

(a) Suppose another capacitor is made using the same dielectric
material and with the same cross sectional area. However, the
thickness of the dielectric between the plates of the capacitor is
double that of the original capacitor. What is its capacitance?

(b) Suppose a third capacitor is made with the same cross sectional
area and thickness as the �rst capacitor, but from a material
with twice the permittivity. What is its capacitance?
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2.5. A piezoelectric material has a permittivity of ε = 3.54 · 10−11 F
m and

has a piezoelectric strain constant of d = 2 · 10−10 m
V. If the material

is placed in an electric �eld of strength |−→E | = 70 V
m and is subjected

to a stress of |−→ς | = 3.5 N
m2 . Calculate the material polarization.

2.6. A piezoelectric material has permittivity εr = 2.5. If the material is
placed in an electric �eld of strength |−→E | = 2 ·103 V

m and is subjected

to a stress of |−→ς | = 200 N
m2 , the material polarization of the material

is 3.2 · 10−8 C
m2 . Calculate d, the piezoelectric strain constant.

2.7. Consider two piezoelectric devices of the same size and shape. The
dielectric material of the �rst device has a permittivity of ε = 2.21 ·
10−11 F

m and a piezoelectric strain constant of d = 8 · 10−11 m
V. The

dielectric material of the second device has an electric susceptibility
of χe =3.2 and a piezoelectric strain constant of d = 2 · 10−10 m

V .

(a) Find εr, the relative permittivity, for each device.

(b) Find C1

C2
, the ratio of the capacitance of the �rst device to the

capacitance of the second device.

(c) The devices are placed in an external electric �eld of strength

|−→E| = 32 V
m . No stress is placed on the devices. Calculate the

material polarization,
−→
P for each device.

(d) The devices are placed in an external electric �eld of strength

|−→E| = 32 V
m , and a stress of |−→ς | = 100 N

m2 is applied to the

devices. Calculate the material polarization,
−→
P for each device.

(e) Which device would you expect is able to store more energy?
Explain your answer.

2.8. A particular piezoelectric device has a cross sectional area of 10−5 m2.

When a stress of 800 N
m2 is applied, the device compresses by 10 µm.

Under these conditions, the device can generate 2.4·10−9 J. Calculate
the e�ciency of the device.

2.9. A particular piezoelectric device has a cross sectional area of 10−5 m2

and an e�ciency of 5%. When a stress of 1640 N
m2 is applied to the

device, it oscillates with an average velocity of 0.01 m
s . Calculate the

power that can be generated from the device.
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2.10. A piezoelectric device is placed in an electric �eld of strength |−→E | =
500 V

m. The device is tested twice. In the �rst test, a stress of

|−→ς | = 1000 N
m2 was put on the device, and the material polarization

was measured to be |−→P | = 2.75 ·10−8 C
m2 . In the second test also with

|−→E | = 500 V
m, a stress of |−→ς | = 100 N

m2 was put on the device, and the

material polarization was measured to be |−→P | = 6.50 · 10−9 C
m2 . Find

the piezoelectric strain constant d, and �nd the relative permittivity
of the material εr.

2.11. According to the data sheet, a piezoelectric device is 3% e�cient. A
coworker says that energy is not conserved in the device because 97%
of the energy is lost when it is used. Explain what is wrong with your
coworker's explanation.

2.12. Match the material property with its de�nition. (Not all de�nitions
will be used.)

1. A mechanical stress will cause a
(material) polarization in this type of
material.

A. Amorphous

2. This type of material is glassy and
noncrystalline.

B. Dielectric

3. Charges do not easily �ow through
this type of material

C. Ferroelectric

4. In the presence of a weak external
voltage, charges do not �ow in this type
of material. In the presence of a strong
external voltage, charges �ow easily.

D. Piezoelectric

5. A material polarization in one atom
induces material polarization in nearby
atoms in this type of material.
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2.13. Consider a piezoelectric material in an external electric �eld
−→
E in

units V
m. The �gure shows the magnitude of the material polariza-

tion,
∣∣∣−→P ∣∣∣ in units C

m2 , as a function of the strength of the external

electric �eld when no mechanical stress is applied. The material has
a piezoelectric strain constant of d = 5 · 10−10 m

V.

(a) Find the relative permittivity εr, and �nd the electric suscepti-
bility χe.

(b) Find and plot an expression for the magnitude of the material
polarization as a function of the external electric �eld strength
when a stress of 1000 N

m2 is applied. Label the axes of your plot
well.

(c) This material is used to make a piezoelectric device with a cross
sectional area of 1 cm2. When this device is compressed a dis-
tance of 1 mm, an energy of 2 · 10−10 J is stored. Find the
e�ciency of the device.

|−→E |

|−→P |

100 200

800ǫ0

1600ǫ0
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2.14. Consider the 2D crystal structure, shown in the �gure, composed of
a lattice and a crystal basis. The crystal basis is composed of two
atoms of type A and one atom of type B.

(a) Sketch the crystal basis.

(b) Sketch the 2D lattice.

(c) Draw two primitive vectors ~a1 and ~a2 on your sketch.

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

A

A

B

2.15. Consider the illustrations of the crystal structure of two 2D materials
where X and O represent the location of di�erent types of atoms. Do
the materials have the same crystal structure? basis? lattice? crystal
point group? Answer yes or no, and explain.

X O X O X O X O

X O X O X O X O

X O X O X O X O

Material 1: Material 2:

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX
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2.16. The �gure below illustrates two possible crystal lattices: a face cen-
tered cubic lattice and a body centered cubic lattice. The solid arrows
represent lattice vectors, but not primitive lattice vectors, and the
cells shown are not primitive cells. The dotted vectors in the �gure
show primitive lattice vectors. In the case of the face centered cubic
lattice, the primitive lattice vectors go from a corner point to a point
on in the middle of one of the faces of the cube. In the body centered
cubic lattice, the primitive lattice vectors go from a corner point to
a point in the center of a cell bordering that corner. Suppose that
the solid vectors have length 0.4 nm. Find the length of the primitive
lattice vector in the face centered cubic lattice, and �nd the length
of the primitive lattice vector in the body centered cubic lattice.
Face Centered Cubic Body Centered Cubic
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3 Pyroelectrics and Electro-Optics

3.1 Introduction

Electrical engineers interested in materials often focus their study on semi-
conductors or occasionally conductors. However, energy conversion devices
are made out of all types of materials. In the last chapter we discussed ca-
pacitors and piezoelectric devices. Both are constructed from a layer of
insulating material between conductors. The properties of this dielectric
layer determine the properties of the resulting devices. This chapter dis-
cusses two additional types of devices that involve material polarization
of insulators, pyroelectric devices and electro-optic devices. As with other
types of energy conversion devices, these can operate two ways. Pyroelec-
tric devices can convert a temperature di�erence to a material polarization
and therefore electricity, or they can convert a material polarization to a
temperature di�erence. Electro-optic devices can convert optical electro-
magnetic radiation to a material polarization or vice versa. As with the
devices studied in the last chapter, these devices are constructed around
a dielectric layer, and the choice of material in the dielectric layer deter-
mines the behavior of the device. Studying these devices is worthwhile
even though they are encountered signi�cantly less often than capacitors
and piezoelectric devices because this study illustrates the variety of energy
conversion devices that engineers have produced.

If a solid is heated enough, it melts. Some materials have multiple
crystal structures that are stable at room temperature. These materials
may be converted from one crystal structure to another by heating and
cooling. Similar e�ects can occur if energy is supplied by shining a strong
enough laser on the material instead of heating it. This chapter is not

concerned with e�ects involving melting or thermally changing the crystal
structure from one phase to another. Instead, we consider the case when a
small amount of energy is supplied, by heat or by electromagnetic radiation.
The energies involved are enough to change the material polarization and
the internal momentum of electrons but not the location of the nuclei of
the material, for example.

3.2 Pyroelectricity

3.2.1 Pyroelectricity in Crystalline Materials

Pyroelectric devices are energy conversion devices which convert a temper-
ature di�erence to or from electricity through changes in material polariza-
tion. The pyroelectric e�ect was �rst studied by Hayashi in 1912 and by
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Material Chemical
composi-
tion

Piezoelectric
strain const.
d in m

V from
[38] [39]

Pyroelectric
coe�. |−→b | in
C

m2K from
[38] [39]

Pockels
electro-optic
coe�. γ in m

V
from [27]

Sphalerite ZnS 1.60 · 10−12 4.34 · 10−7 1.6 · 10−12

Quartz SiO2 2.3 · 10−12 1.67 · 10−6 0.23 · 10−12

Barium
Titanate

BaTiO3 2.6 · 10−10 12 · 10−6 19 · 10−12

Table 3.1: Example piezoelectric strain constants, pyroelectric coe�cients,
and Pockels electro-optic coe�cients. Values for sphalerite assume the 43m
crystal structure. Pockels coe�cients assume a wavelength of λ = 633
nm. Average values speci�ed in the references are given. See the cited
references for additional assumptions. The Pockels electro-optic coe�cient
γ is de�ned in Sec. 3.3.1.

Rontgen in 1914 [3] [40]. This e�ect occurs in insulators, so it is di�erent
from the thermoelectric e�ect. The thermoelectric e�ect, to be discussed in
Chapter 8, is a process that converts between energy of a temperature dif-
ference and electricity and occurs because heat and charges �ow at di�erent
rates through junctions.

If an insulating crystal is placed in an external electric �eld, the material
will polarize. The electrons will displace slightly forming electric dipoles,
and energy can be stored in this material polarization. In some pyroelectric
materials, heating or cooling will also cause the material to polarize. We
can model the material polarization by adding a term to Eq. 2.14 to account
for the temperature dependence [3, p. 327].

−→
P =

−→
D − ε0

−→
E +

−→
b ∆T. (3.1)

As in Eq. 2.14 ,
−→
P represents material polarization in C

m2 ,
−→
D represents

displacement �ux density in C
m2 ,
−→
E represents electric �eld intensity in V

m ,

and ε0 is the permittivity of free space in F
m. The pyroelectric coe�cient

−→
b has units C

m2·K, and ∆T represents the change in temperature. The

coe�cient
−→
b is a vector because the material polarization may be di�erent

along di�erent crystal directions. Table 3.1 lists example values for the
pyroelectric coe�cient as well as for other coe�cients. (Note that this

de�nition of
−→
b is similar but not identical to the de�nition in [3].) In some

materials, the material polarization depends linearly on the temperature
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as described by Eq. 3.1. In other materials, more terms are needed to
describe the dependence of the material polarization on temperature.

−→
P =

−→
D − ε0

−→
E +

−→
b ∆T +

−−→
bquad (∆T )2 ... (3.2)

Many materials exhibit pyroelectricity only below a temperature known as
the pyroelectric Curie temperature.

In the last chapter, we saw that we could determine whether or not a
crystalline material was piezoelectric from its crystal structure. To do so,
we identi�ed the symmetries of the crystal structure. Crystal structures are
grouped into 32 classes called crystal point groups based on the symmetries
they contain. Crystal structures in the 21 of the crystal point groups that
do not have a center of symmetry can be piezoelectric. We can use a simi-
lar technique to determine if a crystalline material is or is not pyroelectric.
All pyroelectric crystals are piezoelectric, but not all piezoelectric crystals
are pyroelectric. To determine if a crystalline material can be pyroelec-
tric, identify its crystal structure and determine the corresponding crystal
point group. Crystals in the 10 crystal point groups listed in Table 2.2 are
pyroelectric [3, p. 366] [26, p. 557].

3.2.2 Pyroelectricity in Amorphous and Polycrystalline Materi-

als and Ferroelectricity

In the Sec. 2.3.3 we saw that some materials, called ferroelectric piezo-
electric materials, had a material polarization that depended nonlinearly
on the mechanical stress applied. These materials could be crystalline,
amorphous, or polycrystalline. When a charge separation occurred in one
atom, the charges from that electric dipole induce dipoles to form in nearby
atoms, and electrical domains with aligned material polarization form in
the material. This e�ect depends on the mechanical stress applied to the
material previously, and the dependence on past history is called hysteresis.

Materials can also be ferroelectric pyroelectric, and these materials can
be crystalline, amorphous, or polycrystalline. In these materials, the ma-
terial polarization depends nonlinearly on the temperature, as opposed to
the mechanical stress. As with the piezoelectric version of this e�ect, po-
larization of one atom induces a material polarization in nearby atoms.
Such materials can have a material polarization even when no temperature
gradient is applied, and they can exhibit hysteresis.

3.2.3 Materials and Applications of Pyroelectric Devices

Pyroelectricity has been studied in a number of materials including barium
titanate BaTiO3, lead titanate PbTiO3, and potassium hydrogen phosphate
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KH2PO4 [25] [26]. It has also been studied in chalcogenide glasses which are
sul�des, selenides, and tellurides such as GeTe [25] [26]. When selecting a
pyroelectric material for an application, the pyroelectric coe�cient should
be considered. Thermal properties are important too. The material should
be able to withstand repeated heating and cooling, and it should have a
relatively high melting temperature to be useful.

The pyroelectric e�ect does not have many applications. Some optical
detectors designed to detect infrared light are made from pyroelectric ma-
terials [41] [42]. However, most optical detectors are photovoltaic devices
made from semiconductor junctions, and this technology will be discussed
in Chapter 6. While sensors using the pyroelectric e�ect could be used to
measure temperature, other types of temperature sensors, such as thermo-
couples, are typically used. Thermocouples, which operate based on the
thermoelectric e�ect which is discussed in Chapter 8, are more convenient
to build and operate. Additionally, in many pyroelectric materials, the ef-
fect is nonlinear while linear sensors are easier to work with and calibrate.

3.3 Electro-Optics

3.3.1 Electro-Optic Coe�cients

Typically, the magnitude of material polarization in a dielectric is propor-
tional to the strength of an applied electric �eld.

−→
P =

−→
D − ε0

−→
E = ε0χe

−→
E (3.3)

In this equation χe is the electric susceptibility, and it is unitless. It is
de�ned in Sec. 2.2.3 and related to permittivity by Eq. 2.9. However in
other materials, the material polarization depends nonlinearly on the ap-
plied electric �eld. Materials for which the material polarization depends
linearly on the external electric �eld are called linear materials while others
are called nonlinear or electro-optic materials. The electro-optic e�ect oc-
curs when an applied external electric �eld induces a material polarization
in a material where the amount of polarization depends nonlinearly on the
external �eld. The name involves the word optic because the external �eld
is often due to a visible laser beam. However, the external �eld can be
from any type of source at any frequency, and a material polarization will
occur even with a constant applied electric �eld. A large enough external
electric �eld will cause a material to melt or to crystallize in a di�erent
phase, but this e�ect is not the electro-optic e�ect. Instead, the electro-
optic e�ect only involves a change in the material polarization, not the
crystal structure, and the change involved is not permanent.
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We can write the magnitude of the material polarization as a function
of powers of the applied external �eld.∣∣∣−→P ∣∣∣ = ε0χe

∣∣∣−→E ∣∣∣+ ε0χ
(2)
∣∣∣−→E ∣∣∣2 + ε0χ

(3)
∣∣∣−→E ∣∣∣3 + ... (3.4)

The quantity χ(2) is called the chi-two coe�cient, and it has units mV . The

quantity χ(3) is called the chi-three coe�cient, and it has units m
2

V2 [27] [42,

ch. 1].
If an in�nite number of terms are included on the right side of Eq. 3.4,

any arbitrary material can be described. In most materials, only the �rst
term of Eq. 3.4 is needed while χ(2), χ(3), and all higher order coe�cients
are negligible, and these materials are not electro-optic. Materials with
χ(2), χ(3) or other coe�cients nonzero are called electro-optic. It is rare to
need more coe�cients than χe, χ(2), and χ(3) to describe a material.

The e�ect due to the ε0χ(2)
∣∣∣−→E ∣∣∣2 term is called the Pockels e�ect or

linear electro-optic e�ect. It was �rst observed by Friedrich Pockels in
1893 [3, p. 382] [10]. In this case the material polarization depends on

the square of the external �eld. The e�ect due to the ε0χ(3)
∣∣∣−→E ∣∣∣3 term is

called the Kerr e�ect or the quadratic electro-optic e�ect. In this case,
the material polarization depends on the cube of the external electric �eld.
John Kerr �rst described this e�ect in 1875 [3, p. 382] [10].

While some authors use the coe�cients χe, χ(2) and χ(3), this e�ect is
most often studied by optics scientists who instead prefer index of refraction
n, a unitless measure introduced in Sec. 2.2.3. In electro-optic materials,
the index of refraction is a nonlinear function of the strength of the external
electric �eld. Instead of expanding the material polarization in a power
series as a function of the external �eld strength as in Eq. 3.4, the index of
refraction is expanded. Pockels and Kerr coe�cients are de�ned as terms
of this expansion.

As described by Eq. 2.3, material polarization is the di�erence in C
m2

between an external electric �eld in a material and the �eld in the absence
of the material.

|−→P | = |−→D | − εo|
−→
E | (3.5)

With some algebra, we can identify the displacement �ux density compo-
nent and the overall index of refraction. Add two terms which sum to zero
to Eq. 3.4.∣∣∣−→P ∣∣∣ = ε0χe

∣∣∣−→E ∣∣∣+ ε0|
−→
E |+ ε0χ

(2)
∣∣∣−→E ∣∣∣2 + ε0χ

(3)
∣∣∣−→E ∣∣∣3 − ε0 ∣∣∣−→E ∣∣∣ (3.6)
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The �rst two terms can be combined, and ε0|
−→
E | can be distributed out.∣∣∣−→P ∣∣∣ =

[
(χe + 1) + χ(2)

∣∣∣−→E ∣∣∣+ χ(3)
∣∣∣−→E ∣∣∣2 + ...

]
ε0

∣∣∣−→E ∣∣∣− ε0 ∣∣∣−→E ∣∣∣ (3.7)

The �rst term is the displacement �ux density.

−→
D = εr eo

−→
E =

[
(χe + 1) + χ(2)

∣∣∣−→E ∣∣∣+ χ(3)
∣∣∣−→E ∣∣∣2 + ...

]
ε0

∣∣∣−→E ∣∣∣ (3.8)

The quantity in brackets in Eq. 3.8 is the relative permittivity, εr eo. Since
we are considering electro-optic materials, it depends nonlinearly on the
applied external �eld. Assuming the material is a perfect dielectric with
µ = µ0, the index of refraction is the square root of this quantity. It
represents the ratio of the speed of light in free space to the speed of light
in this material, and it also depends nonlinearly on the applied external
�eld.

neo =
√
εr eo (3.9)

The index of refraction must be larger than one because electromagnetic
waves in materials cannot go faster than the speed of light, so the quantity

1
εr eo

must be less than one.
Some authors expand the term 1

εr eo
in a Taylor expansion instead of the

material polarization, and electro-optic coe�cients are de�ned with respect
to this expansion [42].

1

εr eo
=

1

εr x
+ γ

∣∣∣−→E ∣∣∣+ s
∣∣∣−→E ∣∣∣2 + .... (3.10)

The coe�cient γ is called the Pockels coe�cient, and it has units mV . The

coe�cient s is called the Kerr coe�cient, and it has units m2

V2 . In the
absence of nonlinear electro-optic contributions, we can denote the relative
permittivity as εr x and the index of refraction as nx where

εr x = n2
x = χe + 1. (3.11)

The expansion of Eq. 3.10 is guaranteed to converge because 1
εr eo

< 1.
Example values of the Pockels electro-optic coe�cient are listed in Table
3.1.

With some algebra, the overall index of refraction neo can be written in
terms of the Pockels and Kerr coe�cients. Equations 3.9 and 3.10 can be
combined.
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neo =

(
1

εr x
+ γ

∣∣∣−→E ∣∣∣+ s
∣∣∣−→E ∣∣∣2 + ...

)−1/2

(3.12)

neo =

[
1

εr x

(
1 + γεr x

∣∣∣−→E ∣∣∣+ sεr x

∣∣∣−→E ∣∣∣2 + ...

)]−1/2

(3.13)

neo = nx

[
1 + γn2

x

∣∣∣−→E ∣∣∣+ sn2
x

∣∣∣−→E ∣∣∣2 + ...

]−1/2

(3.14)

The quantity of Eq. 3.14 in brackets can be approximated using the bino-
mial expansion and keeping only the �rst terms.(

1 + γn2
x

∣∣∣−→E ∣∣∣+ sn2
x

∣∣∣−→E ∣∣∣2 + ...

)−1/2

≈
(

1− 1

2
γn2

x

∣∣∣−→E ∣∣∣− 1

2
sn2

x

∣∣∣−→E ∣∣∣2)
(3.15)

Finally, the overall index of refraction can be written as a polynomial ex-
pansion of the strength of the external electric �eld [10, p. 698].

neo ≈ nx

(
1− 1

2
γn2

x

∣∣∣−→E ∣∣∣− 1

2
sn2

x

∣∣∣−→E ∣∣∣2) (3.16)

The Pockels electro-optic e�ect is called the linear electro-optic e�ect while
the Kerr e�ect is called the quadratic e�ect due to the form of the equation
above.

3.3.2 Electro-Optic E�ect in Crystalline Materials

As with the piezoelectric e�ect, we can determine which crystalline insulat-
ing materials will exhibit the Pockels e�ect by looking at the symmetries
of the material. To determine if a crystal can show the Pockels e�ect, de-
termine the crystal structure, identify the symmetries, and determine its
crystal point group. The Pockels e�ect occurs in noncentrosymmetric ma-
terials, materials with a crystal structure with no inversion symmetry. Of
the 32 crystal point groups, 21 of these groups may exhibit the Pockels
electro-optic e�ect. For materials in these crystal point groups, χ(2) and
the Pockels coe�cient γ are nonzero. These 21 groups are also the piezo-
electric crystal point groups [10, ch. 18], and they are listed in Table 2.2.
In some crystalline materials which belong to these crystal point groups,
the Pockels e�ect is nonzero but too small to be measurable.

From Table 2.2 we can see that all materials that are piezoelectric are
also Pockels electro-optic and vice versa. Also, all materials that are pyro-
electric are piezoelectric but not the other way around. Thus, if a device is
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used as an electro-optic device, and the device is accidentally mechanically
stressed or vibrated, the material polarization will be induced by piezo-
electricity. In many devices, these e�ects simultaneously occur, and it can
be di�cult to identify the primary cause of a material polarization when
multiple e�ects simultaneously occur.

Tables of Pockels electro-optic coe�cients for crystals can be found in
reference [27] and [42].

The Kerr electro-optic e�ect can occur in crystals whether or not they
belong to a crystal point group which has a center of symmetry, so some
materials exhibit the Kerr e�ect but not the Pockels e�ect. In many ma-
terials, the Kerr e�ect is quite small.

3.3.3 Electro-Optic E�ect in Amorphous and Polycrystalline Ma-

terials

Table 2.2 only applies to crystalline materials because only crystalline ma-
terials have a speci�c crystal structure and can be classi�ed into to a crystal
point group. However, crystalline, polycrystalline, and amorphous mate-
rials can all be electro-optic. In amorphous and polycrystalline materials,
the electro-optic e�ect is necessarily nonlinear. When an external electric
�eld, for example from a laser, is applied, a material polarization devel-
ops. The charge separation in that region induces a material polarization
in nearby atoms. Just as materials can be ferroelectric piezoelectric and
ferroelectric pyroelectric, amorphous and polycrystalline materials can be
ferroelectric electro-optic.

3.3.4 Applications of Electro-Optics

Some controllable optical devices are made from electro-optic materials.
Examples of such devices include controllable lenses, prisms, phase mod-
ulators, switches, and couplers [10]. Operation of these devices typically
involves two laser beams. One of these beams controls the material polar-
ization of the device. The intensity, phase, or electromagnetic polarization
of the second optical beam is altered as it travels through the device [10,
p. 698-700]. Combinations of these electro-optic devices are used to make
controllable optical logic gates and interconnects for optical computing ap-
plications [10, ch. 21] [31, ch. 20].

Most memory devices are not made from electro-optic materials, but
some creative memory device designs involve electro-optic materials. For
example, electro-optic materials are used for some rewritable memory [10,
p. 712] [27, p. 534] and for hologram storage [10, ch. 21] [27, ch. 20].
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Also, electro-optic materials are used in liquid crystal displays [10, ch. 18].
Liquid crystals are electro-optic materials because an external voltage alters
their material polarization [10, ch. 18].

Electro-optic materials are also used to convert an optical beam at one
frequency to an optical beam at a di�erent frequency. Second harmonic
generation involves converting an optical beam with photons of energy E
to a beam with photons at energy 1

2
E [10, ch. 19] [27, ch. 18] [31, ch. 16].

Electro-optic materials are used in the second harmonic generation process
as well as in the related processes of third harmonic generation, three wave
mixing, four wave mixing, optical parametric oscillation, and stimulated
Raman scattering [10, ch. 19].

3.4 Notation Quagmire

This text attempts to use notation consistent with the literature. However,
consistency is a challenge because every author seems to have a di�erent
name for the same physical phenomena. Furthermore, the same term used
by di�erent authors may have completely di�erent meanings. For example,
as described by Eq. 2.19, in some materials, a mechanical stress induces a
material polarization proportional to the square of that stress. This text
calls this phenomenon piezoelectricity, or to be more speci�c, quadratic
piezoelectricity. However, references [3] and [6] call this phenomenon elec-
trostriction. To make matters worse, reference [33] calls this e�ect ferro-
electricity. Some authors make di�erent assumptions when using terms too.
For example, when reference [26] uses the term ferroelectricity, it assumes
crystalline materials, but it makes no assumptions about whether the e�ect
is linear or not.

Table 3.2 summarizes the notation used in this text to describe energy
conversion processes involving material polarization. The �rst column lists
the name used here to describe the e�ect. The second column lists what
e�ect causes a material polarization. The third column describes whether
the e�ect occurs in crystals only. The fourth column describes whether the
material polarization varies linearly or not with the parameter described
in the second column. The next column lists references which call this
e�ect ferroelectricity. The last column gives names used by other references
to describe this particular phenomenon. The last two columns are quite
incomplete because a thorough literature survey was not done. However,
these columns show quite a variety to the terminology even for the small
fraction of the literature reviewed.

You might think that you can avoid confusion of terminology by looking
for Greek or Latin roots. While many of the terms introduced in the preced-
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Table 3.2: Terminology related to processes involving material polarization.
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ing chapters do have etymological roots, looking at the roots of the words
does not help and sometimes makes matters worse. As discussed above,
the pre�x ferro- means iron. However, the ferroelectric e�ect has nothing
to do with iron, and ferroelectric materials rarely contain iron. This name
is an analogy to ferromagnetics. Some forms of iron are ferromagnetic. In
ferromagnetics, an external magnetic �eld changes the permeability of a
material. In ferroelectrics, an external electric �eld in�uences the permit-
tivity. To make matters worse, iron has the periodic table symbol Fe while
iridium has the symbol Ir. In this text, the term pyroelectric e�ect follows
Roentengen's terminology which dates 1914 [3]. The root pyro-, showing
up in pyroelectricity, also shows up in pyrite and pyrrhotite which are iron
containing compounds.

Sometimes the terms phase change and photodarkening are applied to
the electro-optic e�ect in amorphous materials, but not crystalline mate-
rials. More speci�cally, sul�des, selenides, and tellurides, referred to as
chalcogenides, are sometimes called phase change materials. Examples in-
clude GeAsS, GeInSe, and so on. The word chalcogenide is itself a mis-
nomer. The pre�x chalc- comes from the Greek root meaning copper [24].
They are named in analogy to CuS, chalcosul�de. The name phase change
material was popularized by a company that made CDs and battery com-
ponents. While crystalline materials can also be electro-optic, the name
phase change is not typically applied to crystals.

Sometimes the terminology used in the literature can be quite di�erent
from the terminology of this text. For example, reference [44] describes
material polarization in chalcogenide glasses by saying that when exposed
to external optical electric �elds, a material stores energy by �a transient
exciton which can be visualized as a transient intimate valence alternation
defect pair.� ... �This means essentially that macroscopic anisotropies
result from geminate recombination of electron-hole pairs, which do not
di�use out of the microscopic entity in which they were created by absorbed
photons.� An exciton is a bound electron-hole pair. In other words,
the material polarizes. When an external optical electric �eld is applied,
electric dipoles form throughout the material. When reading the literature
related to piezoelectricity, pyroelectricity, and electro-optics, be aware that
there is not much consistency in the terminology used.
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3.5 Problems

3.1. For each of the three crystalline materials below

• Find the crystal point group to which it belongs.
(Hint: use http://www.mindat.org )

• Using Table 2.2, determine whether or not the material is piezo-
electric.

• Using Table 2.2, determine whether or not the material is pyro-
electric.

• Using Table 2.2, determine whether or not the material is Pock-
els electro-optic.

(a) ZnS (sphalerite)

(b) HgS (cinnabar)

(c) Diamond

3.2. Cane sugar, also called saccharose, has chemical composition
C12H22O11 and belongs to the crystal point group given by 2 in
Hermann-Maguin notation [38]. Reference [38] lists values speci�ed
in cgse units for its piezoelectric constant as 10.2 · 10−8 esu

dyne and its

pyroelectric coe�cient as 0.53 esu
cm2·0C. Convert these values to the

SI units of mV and C
m2·K respectively.

Hint: The electrostatic unit or statcoulomb is a measure of charge [7]
where

1 esu = 1 statC = 3.335641 · 10−10 C

and the dyne is a measure of force where 1 dyne = 10−5 N.

3.3. A material has relative permittivity εr x when no external electric
�eld is applied. The coe�cient χ(2) is measured in the presence of
an external electric �eld of strength |−→E |. Assume that χ(3) and all
higher order coe�cients are zero. Find the Pockels coe�cient γ as a
function of the known quantities εr x, χ(2), and |−→E |.

http://www.mindat.org


3 PYROELECTRICS AND ELECTRO-OPTICS 65

3.4. The �rst �gure below shows the displacement �ux density
∣∣∣−→D ∣∣∣ as

a function of the strength of an applied electric �eld intensity
∣∣∣−→E ∣∣∣

in a non-electro-optic material. The second �gure below shows the

displacement �ux density
∣∣∣−→D ∣∣∣ as a function of the strength of an

applied electric �eld intensity
∣∣∣−→E ∣∣∣ in a ferroelectric electro-optic ma-

terial. The solid line corresponds to an unpoled material. The dotted
line corresponds to the material after it has been poled in the âz di-
rection, and the dashed line corresponds to the material after it has
been poled in the −âz direction.

(a) For the non-electro-optic material, �nd the relative permittivity,
εr. Also �nd the magnitude of the material polarization,

−→
P .

(b) Assume the ferroelectric electro-optic material is poled by a
strong external electric �eld, and then the �eld is removed. Find

the magnitude of the material polarization
∣∣∣−→P ∣∣∣ after the exter-

nal �eld is removed.

(c) Assume the ferroelectric material is poled in the−âz direction by
a strong external �eld, and then the �eld is removed. A di�erent
external electric �eld given by

−→
E = 100âz

V
m is applied. Find

the approximate relative permittivity of the material.

−→
E in V/m

−→
D in C/m2

100

200 · ǫ0

400 · ǫ0
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−→
E in V/m

−→
D in C/m2

100

200 · ǫ0

400 · ǫ0
unpoled

poled along 

poled along 

âz

−âz

3.5. A crystalline material is both piezoelectric and pyroelectric. When
an external electric �eld of |−→E | = 100 V

m is applied, the material

polarization is determined to be |−→P | = 1500ε0
C
m2 . When both a

stress of |−→ς| = 30 N
m2 and an external electric �eld of |−→E | = 100 V

m
are applied, the material polarization is determined to be |−→P | =

6.0123 · 10−6 C
m2 . When a temperature gradient of ∆T = 50 0C, a

stress of |−→ς| = 30 N
m2 , and an external electric �eld of |−→E | = 100 V

m
are applied, the material polarization is determined to be |−→P | =

6.3 · 10−6 C
m2 . Find:

• The relative permittivity of the material

• The piezoelectric strain constant

• The magnitude of the pyroelectric coe�cient



4 ANTENNAS 67

4 Antennas

4.1 Introduction

In the previous two chapters we discussed energy conversion devices which
are made from insulators and which are related to capacitors. In Chapters
4 and 5 we discuss energy conversion devices involving conductors and
related to inductors. Maxwell's equations say that time varying electric
�elds induce magnetic �elds and time varying magnetic �elds induce electric
�elds. If a permanent magnet moves near a coil of wire, the time varying
magnetic �eld will induce a current in the coil of wire. This idea is the
basis behind motors and electrical generators, which are some of the most
common energy conversion devices. However, they are outside the scope
of this text because they involve magnets and coils. Instead, we will study
two other types of energy conversion devices based on this same principle.
In this chapter we discuss antennas, and in the next chapter we will discuss
Hall e�ect devices.

Antennas are energy conversion devices that convert between electrical
energy and electromagnetic energy. Antennas can act as both transmitters
and receivers. Transmitters convert electrical energy of the �ow of elec-
trons to energy of electromagnetic waves. Receivers convert energy from
electromagnetic waves to the electrical energy of electrons in a circuit. The
same physical antenna can operate in both ways depending on how it is
used.

Antennas are all around us. Cell phones and laptops have antennas,
and antennas are mounted on the roofs of most cars. Antennas relay infor-
mation about the electrical grid to the local power utility, and antennas on
satellites transmit weather maps to weather stations on earth. Antennas
are even built into RFID tags on shirts in stores, and these tags are used
to track inventory and prevent theft.

Electrical engineers study both electrical energy and electromagnetic
energy, and the words used to describe these phenomena are similar. Is this
really an energy conversion process? The answer is yes. Electrical energy
involves the �ow of electrons through a wire. We often think of electrons as
particles. We often use the term electromagnetic wave to describe the �ow
of electromagnetic energy transmitted by an antenna. However, electrons
have both wave-like and particle-like properties. Similarly, electromagnetic
waves have both wave-like and particle-like properties. The wavelengths
involved are orders of magnitude apart, so it is convenient to only discuss
either the wave-like or the particle-like properties. There are fundamental
di�erences between electricity and electromagnetic waves. Fermions are
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Center-fed half-wave dipole:  Quarter-wave monopole:

Conducting

plane

Transmission

Line

Transmission

Line

Figure 4.1: Center-fed half-wave dipole and quarter-wave monopole anten-
nas.

elementary particles with half integer spin quantum numbers and with
quantum mechanical wave functions which are antisymmetric when two
particles are interchanged [46, p. 391]. Bosons are elementary particles
with integer spin quantum numbers and with wave functions which are
symmetric when two particles are interchanged [46, p. 391]. Electrons
are fermions while electromagnetic waves are bosons. So, antennas are
energy conversion devices. A complete discussion of the di�erences between
fermions and bosons requires the study of quantum mechanics and quantum
�eld theory which are beyond the scope of this book.

An antenna may be as simple as a single metal rod, it may be a copper
trace on a printed circuit board, it may be a cone shaped horn, or it may be
a complicated arrangement of multiple wires. Some antennas even resemble
planar or volume fractals [47] [48]. Hundreds of types of antennas have
been developed. Seventy �ve types are discussed in [49], and 91 types are
discussed in [50].

The simplest antenna is just a piece of wire. It may be straight and
taut, or it may be carelessly strung from a tree. For an antenna designed to
operate at wavelength λ, the length of the antenna is often approximately
λ
2
. A straight antenna of length λ

2
with signal supplied to the center is

called a center-fed half-wave dipole or a λ
2
dipole. Some antennas are placed

above a conducting plate, or above a conductive surface, which acts as a
re�ector. A straight antenna of around length λ

4
supplied by a signal at

one end with a re�ector beneath is called a quarter-wave monopole or a
λ
4
monopole. Figure 4.1 illustrates both dipole and monopole antennas.

While a random wire will act as an antenna, an antenna with frequency
response, impedance, radiation pattern, and electromagnetic polarization
designed for the speci�c application will perform much more e�ciently, and
these factors are discussed below in Sec. 4.4.
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4.2 Electromagnetic Radiation

4.2.1 Superposition

The physics of antenna operation is described by Maxwell's equations. Am-
pere's law, one of Maxwell's equations, was introduced in Section 1.6.1.

−→∇ ×−→H =
−→
J +

∂
−→
D

∂t
(4.1)

In Eq. 4.1,
−→
H is the magnetic �eld intensity in A

m,
−→
D is the displacement

�ux density in C
m2 , and

−→
J is the current density in A

m2 . In the case of
a transmitting antenna, the current density in the antenna comes from a
known source, and the electromagnetic �eld, described by

−→
D and

−→
H , can

be derived.
Using Maxwell's equations, we can algebraically derive the electromag-

netic �eld only for very simple antennas. The simplest antenna is an in-
�nitesimal dipole antenna, also known as a Hertzian dipole. References
[11] derives the electric �eld intensity,

−→
E in units V

m, for an in�nitesimal
dipole antenna with length dl and sinusoidal current I0 cos(ωt). The result
is given in spherical coordinates is

−→
E = 2I0·dl·cos θ

4πεω

[
sin(ωt− 2π

λ
r)

r3
+

2π
λ

cos(ωt− 2π
λ
r)

r2

]
âr

+ I0·dl·sin θ
4πεω

[
sin(ωt− 2π

λ
r)

r3
+

2π
λ

cos(ωt− 2π
λ
r)

r2
− ( 2π

λ )
2

sin(ωt− 2π
λ
r)

r

]
âθ.

(4.2)

In this expression, ω is frequency in rad
s , λ is the wavelength in meters,

ε is the permittivity of the material surrounding the antenna in F
m, and

(r, θ, φ) are the coordinates of a point speci�ed in spherical coordinates.
For complicated antennas, superposition is used to make the computa-

tion feasible. To derive the electromagnetic radiation from a complicated
antenna, small straight antenna segments are considered [15, ch. 10]. The
electromagnetic radiation from each piece is found, and the principle of

superposition is the idea that the radiation from the entire antenna is the
sum of these pieces. The same idea applies to linear circuits. If a circuit has
a complicated input, the input can be broken up into simpler components.
Any voltage in the circuit can be found by �nding the contribution due to
each of these components then summing.

4.2.2 Reciprocity

Reciprocity is the idea that the behavior of an antenna as a function of
angle is the same regardless of whether the antenna is being used to send
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Figure 4.2: Illustration of power radiating from an isotropic antenna.

or receive a signal [15, ch. 10]. A plot of the strength of the �eld radiated
from a transmitter as a function of the angles θ and φ is called a radiation

pattern plot. Similarly, a plot of the strength of the signal received by
a receiving antenna as a function of angles θ and φ assuming a uniform
�eld strength is also called a radiation pattern plot. Consider two identical
antennas, one being used as a transmitter and the other as a receiver. The
radiation pattern plots will be the same for these two antennas.

Regardless of the idea of reciprocity, it is often a bad idea to swap the
transmitting and the receiving antennas of a system because a transmitter
may be designed to handle much more power than a receiver [15, p. 479]. A
receiving antenna of e�ective area A at a distance r from an antenna which
transmits uniformly in all directions receives at most only the fraction A

4πr2

of the transmitted power [49, p. 4].

Prec = Ptrans
A

4πr2
(4.3)

For example, consider an antenna that transmits 20 kW of power uni-
formly in all directions. Assume a receiving antenna has an e�ective area
of 10 cm2 and covers a portion of a spherical shell as shown in Fig. 4.2.
What is the power received assuming that the antenna is at a distance of
r = 1 m, and what is the power received assuming a distance of r = 1 km?

The surface area intercepted by the receiver is 10 cm2 = 10−3 m2. In
the �rst case, this surface area is the fraction 10−3

4π·12 of the surface sphere of
radius 1 m. At most, the antenna can receive this fraction of the power.

P = 20 · 103 · 10−3

4π · 12
= 1.6 W (4.4)
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In the second case, this surface area is the fraction 10−3

4π·(103)2
of the surface

of the sphere of radius 1 km. At most, this antenna can receive

P = 20 · 103 · 10−3

4π · (103)2 = 1.6 µW. (4.5)

From this example, we can already see some of the advantages and chal-
lenges in using electromagnetic waves for communication, and we can see
some of the consequences of antenna design. The transmitted power in this
example is orders of magnitude larger than the received power. In such a
situation, the transmitting circuitry and receiving circuitry will look very
di�erent due to the amount of power and current expected during opera-
tion. The antennas used will likely also look very di�erent. An antenna
transmitting kilowatts of power may need to be mounted on a tower while
a receiving antenna that receives milliwatts of power may be built into a
portable hand held device.

A typical radio station may want to transmit throughout a city, a radius
much larger than 1 km. Furthermore, no energy conversion device is 100%
e�cient. The electrical power at the receiver 1 m away is therefore going to
be less than 1.6 W, and the power at the receiver 1 km away is going to be
less than 1.6 µW. Also, all radio receivers are limited by noise. Suppose, for
example, that this transmitter is placed at the center of a city of radius 1
km and the receiver can only successfully receive signals with power above
1 µW due to 1 µW of background noise. A receiver placed 1 km away at
the edge of the city may be able to receive the signal successfully, while
a receiver further away in the suburbs may not. However, many receivers
placed 1 km away with this surface area of 10 cm2 could simultaneously
detect the radio signal.

If no building in the city is taller than 10 stories, no receivers are likely
to be found at a height over 30 m, for example, above the surface of the
earth. However, the transmitter in this example radiates power uniformly
in all directions including up. We can design antennas which radiate power
in some directions more than others. If we could focus all power from this
antenna at altitudes below 30 m, the power at a particular receiver may
be larger than we calculated above, so a receiver farther away may be able
to detect the signal. The radiation pattern of an antenna is the spatial
distribution of the power from the antenna. Radiation pattern plots are
discussed further in Sec. 4.4.3.

This example also provides some insights on the safety of working with
antennas. The 10 cm2 surface area in this example is, to an order of
magnitude, the surface area of a human hand. A typical microwave oven
uses less power than the transmitter in this example. Kilowatts of power
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are enough to cook with, so for this reason, it would be dangerous to touch
or even, depending on the frequency, be close to the transmitting antenna.
The antenna in this example needs to be mounted on an antenna tower
not only for mechanical reasons but also for safety reasons. The amount
of power through this surface depends on distance from the transmitter as
1
r2
, so the danger level is strongly dependent on distance from the antenna.

4.2.3 Near Field and Far Field

The region within about a wavelength of an antenna is called the near �eld
region. The region beyond multiple wavelengths from an antenna is called
the far �eld or Fraunhofer region. For aperture antennas, instead of wire

antennas, distances larger than
2(aperture size)2

λ
are considered in the far

�eld [15, p. 498]. The radiation pattern in the near �eld region and in
the far �eld region are quite di�erent. Near �eld electromagnetic radiation
is used for some specialized applications including tomographic imaging of
very small objects [51]. However, receiving antennas used for communica-
tion signals almost always operate in the far �eld region from transmitting
antennas. As an example of the di�erence between near �eld and far �eld
behavior of an antenna, consider the in�nitesimal dipole antenna. The
electric �eld intensity is given in Eq. 4.2. The near �eld electric �eld from
this in�nitesimal antenna is found by taking the limit as r → 0.

−→
E =

I0 · dl · cos θ

4πεω
· sin

(
ωt− 2π

λ
r
)

r3
(2âr + âθ) (4.6)

The far �eld electric �eld is found by taking the limit as r →∞.

−→
E =

−I0ω · dl · sin θ
4πε

· sin
(
ωt− 2π

λ
r
)

r
âθ (4.7)

4.2.4 Environmental E�ects on Antennas

The electromagnetic radiation from an antenna is a�ected by the envi-
ronment surrounding the antenna, speci�cally nearby large conductors.
Sometimes conductors are purposely placed nearby to make an antenna
directional. Other times, the conductors, like metal roofs or bridges, just
happen to be nearby. If an antenna is placed near a salty lake, the lake
surface will re�ect the electromagnetic radiation. In other cases, the electri-
cal properties of soil underneath an antenna will a�ect the electromagnetic
radiation [50, ch. 8] [15, p. 635].
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Environment Conductivity σ in 1
Ωm Relative permittivity εr

Industrial city 0.001 5

Sand 0.002 10

Rich soil 0.01 14

Fresh water 0.001 80

Salt water 5 80

Table 4.1: Conductivity and relative permittivity of di�erent environments,
[50, ch. 8].

Numerical simulations are used to understand how an antenna behaves
near metal roofs, nearby lakes, or other objects. The e�ects of the environ-
ment are modeled by assigning nearby materials an electrical conductivity
σ, permittivity ε, and permeability µ. Often the surroundings have µ ≈ µ0,
but the other parameters can vary widely. Table 4.1 lists values of electrical
conductivity and relative permittivity used to model di�erent environments
as suggested by reference [50, ch. 8]. The values listed are approximates
due to the variety of environments within each category. Additionally, the
conductivity can vary from day to day. For example, electromagnetic waves
may interact with farmland very di�erently on a snowy winter day, after a
spring rainfall, and during a dry spell in summer. Also, even for a single
uniform material, conductivity and permittivity are functions of frequency.

4.3 Antenna Components and De�nitions

Antennas used for radio frequency communication are made from conduct-
ing wire elements. These elements may be classi�ed as driven or parasitic
[50]. All antennas have at least one driven element. In a transmitting an-
tenna, power is supplied to the driven element. Current �owing through
the antenna induces an electromagnetic �eld around the antenna. In a re-
ceiving antenna, the driven element is connected to the receiving circuitry.
Some antennas also have parasitic elements. These elements a�ect the an-
tenna's radiation pattern, but they are not connected to the power supply
or receiving circuitry [50]. The electric �eld inside a perfect conductor is
zero, so putting a good conductor near an antenna in�uences the antenna's
radiation pattern. Parasitic elements may be included in the antenna to fo-
cus the electromagnetic �eld in a particular direction, alter the bandwidth
of the antenna, or for other reasons. Antennas are often mounted on a
metal rod for mechanical support, and this rod is called a boom.
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Antennas may be used individually or as part of an array. Arrays may
also be driven or parasitic. In a driven array, all elements are connected
to the power supply or receiving circuitry [50]. In a parasitic array, one or
more of the elements are parasitic and not connected [50]. Arrays are also
classi�ed based on the direction of radiation compared to the axis of the
array. In a broadside array, radiation is mostly perpendicular to the axis of
the array while in an end �re array, radiation is mostly along the direction
of the axis of the array [50].

A transmission line is a pair of conductors which is used to transmit
a signal and which is very long compared to the wavelength of the signal
being sent. Communications engineers and power systems engineers both
use the term transmission line, but they make di�erent assumptions. To
a communications engineer, it is a long pair of conductors over which a
signal is sent. To a power systems engineer, it is a cable that is part of the
power grid. The communications de�nition will be used in this text. The
conductors of a transmission line may be a pair of parallel wires, they may
be a waveguide formed by a pair of parallel plates, they may be a coax
cable, or they may have another geometry. Coax cable is formed by a wire
and cylindrical tube separated by an insulator, both with the same axis,
so they are coaxial. For example, a coax cable connecting a transmitter
operating at a frequency of f = 88 MHz on the �rst �oor of a building and
an antenna on the top of the tenth �oor of the building is a transmission
line because the length of the cable is long compared to the wavelength of
λ = 3.4 m. As another example, a pair of wires connecting a transmitting
circuit operating at f = 4 GHz on one end of a printed circuit board and
an antenna on the other end 25 cm away is also a transmission line because
the length of the wires is long compared to the wavelength of λ = 7.5 cm.

Some antennas have a balun. Balun is a contraction for balanced/ un-
balanced. It is used between balanced loads and unbalanced transmission
lines [15, p. 406] [50]. A typical transmission line, made up of a coax
cable, is constructed from an inner conductor and an outer conductor.
These conductors have di�erent radii, so they have di�erent impedances.
The transmission line is called unbalanced due to this impedance di�er-
ence. Suppose that this transmission line is connected to a dipole antenna
formed from two symmetric conductors. The impedance of the two arms
of the dipole are equal, so we say that it is a balanced load. A balun can
used in this type of situation when a balanced antenna is connected to an
unbalanced transmission line. By properly choosing the impedance of a
balun, re�ections at the interface between the antenna and transmission
line can be reduced so that more energy gets to or from the antenna and
less remains stored in the transmission line.
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Frequency Abbreviation Name

30-3000 Hz ELF Extremely Low Frequency
3-30 kHz VLF Very Low Frequency
30-300 kHz LF Low Frequency
300 kHz -3 MHz MF Medium Frequency
3-30 MHz HF High Frequency
30-300 MHz VHF Very High Frequency
300 MHz-3 GHz UHF Ultra High Frequency
3-30 GHz SHF Super High Frequency
30-300 GHz EHF Extremely High Frequency

Table 4.2: Names of electromagnetic frequency ranges [15] [54].

4.4 Antenna Characteristics

Four main factors which di�erentiate antennas are frequency response,
impedance, directivity, and electromagnetic polarization. When selecting
an antenna for a particular application, these factors should be considered.
In this section, these and other factors which in�uence antenna selection
are discussed.

4.4.1 Frequency and Bandwidth

Electromagnetic waves of a wide range of frequencies are used for commu-
nication. Di�erent names are given to electromagnetic signals at di�erent
frequency ranges. Table 4.2 lists the name used to refer to various frequency
bands for which antennas are used.

Electromagnetic waves are rarely used for communication at the lowest
frequency band listed in Table 4.2. However, one example was Project
ELF (short for Extremely Low Frequency). It was a US military radio
system used to communicate with submarines, and it operated at 76 Hz
[52]. The array involved 84 miles of antennas spread out near a transmitting
facilities in northern Wisconsin and the upper peninsula of Michigan [52],
and it operated from 1988 to 2004 [53]. It had an input power of 2.3 MW,
but only 2.3 W of electromagnetic radiation was transmitted due to the
fact that the length of the antenna elements used was a small fraction of
the wavelength. The few watts transmitted were able to reach submarines
under the ocean throughout the world [52]. Three letter messages took
15-20 minutes to transmit or receive [52].

Antennas are commonly used to transmit and receive electromagnetic
radiation in the frequency range from 3 kHz . f . 3 THz. However, an
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antenna designed to operate at 3 kHz looks quite di�erent from an antenna
designed to operate at 3 THz. Wire-like antennas are used for signals
roughly in the frequency range 3 kHz . f . 3 GHz. Solid cone, plate-
like, or aperture antennas are used to transmit and receive signals in the
frequency range 3 GHz . f . 3 THz [15, ch. 15]. To understand the need
for di�erent techniques, consider the wavelengths involved. A signal with
frequency f = 30 kHz, for example, has a wavelength λ = 1.00 · 104 m.
The length of an antenna is often of the same order of magnitude as the
wavelength. While we can construct wire antennas of this length, they not
portable. As another example, a wi� signal which operates at 2.5 GHz
has a wavelength of λ = 12.5 cm. Wire antennas which are this length are
easy to build and transport. However, wire antennas designed for signals at
higher frequencies can be di�cult to construct accurately due to their small
size. For this reason, wire antennas are typically used at lower frequencies
while cone or plate-like antennas are used higher frequencies.

A human eye can detect electromagnetic radiation with frequencies and
wavelengths in the range

4.6 · 1014 Hz . f . 7.5 · 1014 Hz or 400 nm . λ . 650 nm

Antennas are not used to receive and transmit optical signals due to the
small wavelengths involved even though optical signals obey the same fun-
damental physics as radio frequency electromagnetic radiation. Green light,
for example, has a wavelength near λ = 500 nm and a frequency near 6·1014

Hz. An antenna designed to transmit and detect this light would need to be
approximately of length λ

2
≈ 250 nm. An atom is around 0.1 nm in length,

so an antenna designed for green light would be only approximately 2500
atoms long. Antennas of this size would be impractical for many reasons.
Another reason that di�erent techniques are needed to transmit and re-
ceive optical signals is that electrical circuits cannot operate at the speed
of optical frequencies. Techniques for transmitting and detecting optical
signals are discussed in Chapters 6 and 7.

When selecting an antenna, the range of frequencies that will be trans-
mitted or received as well as their bandwidth should be considered. Some
antennas are designed to operate over a narrow range of frequencies while
other antennas are designed to operate over a broader band of frequencies.
An antenna with a narrow bandwidth would be useful in the case when an
antenna is used to receive signals only in a speci�c frequency band while
an antenna with a broad bandwidth would be useful when an antenna is
to receive signals over a wider frequency range. For example, an antenna
designed to receive over the air television signals in the US should be de-
signed for the broad range from 30 MHz - 3 G Hz because television signals
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fall in the VHF and UHF ranges.
Like all sensors, antennas detect both signal and noise. Noise in a radio

receiver may be internal to the receiving circuitry or due to external sources
such as other nearby transmitters [49, p. 4]. An antenna with a broad
bandwidth will receive more noise due external sources than an antenna
with a narrow bandwidth. Noise characteristics of an antenna in�uence the
ability to receive weak signals, so they should be considered in selecting an
antenna for an application [50].

4.4.2 Impedance

Both antennas and transmission lines have a characteristic impedance. The
term transmission line is de�ned in Sec. 4.3 as a long pair of conductors. If
the length of the conductors is long compared to the wavelength of signal
transmitted, the voltage and current may vary along the length of the line,
and energy may be stored in the line. For this reason, transmission lines
are described by a characteristic impedance in ohms. The characteristic
impedance gives the ratio of voltage to current along the line, and it pro-
vides information on the ability of the transmission line to store energy
in the electric and magnetic �eld. Typical values for the impedance of
transmission lines used for communications are 50 or 75 Ω. Similarly, each
antenna has its own characteristic impedance, measured in ohms, which
represents the ratio of voltage to current in the antenna.

Why is the impedance important? Transmitting antennas are often
physically removed from the signal source and connected by a transmission
line. Similarly, receiving antennas are often in a di�erent location than
receiving circuitry and connected by a transmission line. To e�ciently
transmit a signal between transmitting or receiving circuitry and an an-
tenna, the impedance between the antenna and transmission line should
be matched. In this case, where the characteristic impedance of the line
and antenna are equal, energy �ows along the transmission line between
the circuitry and the antenna. Transmission lines are made from good, but
not perfect, conductors. A small amount of energy may be converted to
heat due to the resistance in the lines, but this amount of energy is often
trivial. However, if there is an impedance mismatch between the antenna
and the transmission line, re�ections will be set up at the transmission line
antenna interface. Less energy will be transmitted to or from the antenna
because energy will be stored in the line, and the amount of energy involved
may be signi�cant. In a properly designed system were the impedances of
the antenna and the transmission line are matched, no re�ection occurs, so
as much energy as possible is transmitted to or from the antenna.
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Impedance of an antenna is a function of frequency. Antennas transmit
and receive communications signals which are almost never sinusoids of a
single frequency. Often, however, the signals contain only components with
frequencies within a narrow band. For example, a radio station may have a
carrier frequency of 100 MHz, and it may transmit signals with frequency
components 99.99 MHz < f < 100.01 MHz. In this case, the impedance of
the antenna may be approximated by the impedance at 100 MHz.

4.4.3 Directivity

Antennas can be designed to radiate energy equally in all directions. Al-
ternatively, antennas can be designed to radiate energy primarily along a
single direction. Directivity D is a unitless measure of the uniformity of
the radiation pattern plot. It is de�ned as the ratio of the maximum power
density over the average power density.

D =
Maximum power density radiated by antenna
Average power density radiated by antenna

(4.8)

An antenna which radiates equally in all directions is called isotropic.
An antenna that radiates equally in two, but not the third, direction is
called omnidirectional [15]. For example, an omnidirectional antenna may
radiate equally in all horizontal directions but not the vertical direction.
Isotropic antennas have D = 1 while all other antennas have D > 1. Some
applications require an isotropic antenna. For example, a radio station in
the center of a town might use an isotropic or omnidirectional antenna
to transmit to all of the town. In other cases, a directional antenna is
preferred. A stationary weather station that transmits data to a �xed base
station would be wasting energy using an isotropic antenna because it could
use less transmitted power with the same received power using a directional
antenna.

Received power may be larger than given by Eq. 4.3 if directional
antennas are used instead of isotropic antennas. For a transmitting antenna
with gain Gtrans and a receiving antenna with gain Grec compared to an
isotropic antenna, Eq. 4.3 becomes

Prec = PtransGtGr

(
λ

4πr

)2

(4.9)

where the e�ective area is assumed to be related to the receiver gain by

Gr =
4πA

λ2
. (4.10)
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Equation 4.9 is known as the Friis equation [55]. Received power will be
less than given by Eq. 4.3 or 4.9 due to losses in the air or other material
through which the signal travels and due to a di�erence in electromagnetic
polarization between the transmitter and receiver [49, p. 4].

Directivity is a rough measure of an antenna. A more accurate mea-
sure is a radiation pattern plot. The radiation pattern plot is a graphical
representation of intensity of radiation with respect to position throughout
space. A radiation pattern plot may be a 3D plot or a pair of 2D plots. In
the case where two 2D plots are used, one of the plots is an azimuth plot
and the other is an elevation plot. The azimuth plot shows a horizontal
slice of the 3D radiation pattern, parallel to the xy plane. The elevation
plot shows a vertical slice, perpendicular to the xy plane. Most radiation
pattern plots, including all shown in this text, are labeled by the ampli-
tude of the electric �eld [15] [56]. However, occasionally they are labeled by
the amplitude of the power instead. The radiation pattern of an antenna
is quite di�erent in the near �eld, at a distance less than about a wave-
length, and in the far �eld, with distances much greater than a wavelength.
Radiation pattern plots illustrate the far �eld behavior only.

Figure 4.3 shows the radiation pattern plot for a half-wave dipole an-
tenna in free space, and it was plotted using the software EZNEC [56]. The
acronym NEC stands for Numerical Electromagnetics Code. The �gure in
the upper left is the azimuth plot, the �gure in the upper right is the ele-
vation plot, the �gure in the lower left is a 3D radiation pattern plot, and
the �gure in the lower right is the antenna layout.

Figure 4.4 shows the radiation pattern plots for a 15-meter quad an-
tenna. Distinct lobes and nulls are apparent.

Front to back ratio (F/B ratio) is a measure related to directivity that
can be found from the azimuth radiation pattern plot. By de�nition, it is
the ratio of the strength of the power radiated in the front to the back.
Often, the front direction is chosen to be the direction of largest magni-
tude in the radiation pattern plot, and the back direction is the opposite
direction. F/B ratio can be speci�ed either on a log scale in units of dB or
on a linear scale which is unitless. It can also be de�ned either as a ratio
of the strength of the electric �eld intensities or as a ratio of the strengths
of the powers, but most often power is used.

F/B ratio=

[
Pfront
Pback

]
dB

= 10 log10

[
Pfront
Pback

]
lin

= 20 log10


∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

lin

(4.11)
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Figure 4.3: Radiation pattern plots for a half-wave dipole antenna.
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Figure 4.4: Radiation pattern plots for a 15-meter quad antenna.
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F/B ratio=

[
Pfront
Pback

]
dB

= 2


∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

dB

(4.12)

The F/B ratio for the example of Fig. 4.4 can be calculated from the
azimuth plot. The strength of the �eld in front direction is 9 dB stronger
than the strength of the �eld in the back direction.

∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

dB

= 9 dB (4.13)

From this information, we can calculate the strength of the �eld in the
front direction to the strength of the �eld on a linear scale.

∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

dB

= 10 log10


∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

lin

(4.14)


∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

lin

= 10

1
10
·
[ |−→E front|
|−→E back|

]
dB (4.15)


∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

lin

= 10
9
10 = 7.94 (4.16)

If this antenna is being used as a transmitter, signal in the front direction
is 7.9 times as strong as the signal in the back direction. The front to back
ratio speci�es the power ratio, and for this antenna, it is 18 dB.

F/B ratio=

[
Pfront
Pback

]
dB

= 2


∣∣∣−→E front

∣∣∣∣∣∣−→E back

∣∣∣

dB

= 18 dB. (4.17)

When selecting an antenna, many decisions related to the antenna di-
rectivity are needed. A particular application may require an isotropic or
a directional antenna. If a directional antenna is needed, the magnitude
of the directivity must be decided. Additionally, the orientation of the
antenna must be decided so that nodes and nulls are in the appropriate
directions. Both the azimuth angle and the elevation angle of the nodes
and nulls should be considered [50, p. 22-1].
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4.4.4 Electromagnetic Polarization

The electromagnetic wave emanating from a transmitting antenna is de-
scribed by an electric �eld

−→
E and a magnetic �eld

−→
H . The wave neces-

sarily has both an electric �eld and a magnetic �eld because, according to
Maxwell's equations, time varying electric �elds induce time varying mag-
netic �elds, and time varying magnetic �elds induce electric �elds. At any
point in space and at any time, the direction of the electric �eld, the di-
rection of the magnetic �eld, and the direction of propagation of the wave
are all mutually perpendicular. More speci�cally,(

Direction of
−→
E
)
×
(
Direction of

−→
H
)

= (Direction of propagation) .

(4.18)
An electromagnetic wave which varies with position in the same way

that it varies with time is called a plane wave because planar wavefronts
propagate at constant velocity in a given direction. For example, a sinu-
soidal plane wave which travels in the positive âz direction is described
by −→

E = E0 cos
(
106t− 300z

)
âx. (4.19)

For this plane wave,
−→
E is directed along âx,

−→
H is directed along ây, and

the wave propagates in the âz direction. As another example, consider the
plane wave described by

−→
E = E0 cos

(
106t− 300z

)( âx + ây√
2

)
. (4.20)

For this plane wave, the direction of
−→
E is 450 from the âx axis, the direction

of
−→
H is 450 from the ây axis, and again it propagates in the âz direction.

Both of these electric �elds describe sinusoidal plane waves because the
electric �eld varies with position as it does with time, sinusoidally in both
cases.

We can classify plane waves by their electromagnetic polarization. Plane
waves can be classi�ed as linearly polarized, left circularly polarized, right
circularly polarized, left elliptically polarized, or right elliptically polarized.
In a previous chapter, we encountered the distinctly di�erent idea of mate-
rial polarization. Appendix C discusses overloaded terminology including
the term polarization.

Both of the electromagnetic waves described by Eq. 4.19 and by Eq.
4.20 are linearly polarized. In both cases, the direction of the electric �eld
remains constant as the wave propagates with respect to both position and
time. If the direction of the electric �eld rotates uniformly around the
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axis formed by the direction of propagation, the wave is called circularly

polarized. If the direction of the electric �eld rotates nonuniformly, the wave
is called elliptically polarized. For circularly polarized waves, the projection
of the wave on a plane perpendicular to the axis formed by the direction
of propagation is circular. For elliptical waves, the projection is elliptical.
To determine if the polarization is left or right, point your right thumb in
the direction of propagation, and compare the rotation of the electric �eld
to the rotation of your �ngers. If the rotation is along the direction of the
�ngers of your right hand, the wave is right polarized. Otherwise, it is left
polarized. For example, the wave described by

−→
E = E0 cos

(
106t− 300z

) âx√
2

+ E0 sin
(
106t− 300z

) ây√
2

(4.21)

is right circularly polarized. As another example, the wave

−→
E = E0 cos

(
106t− 300z

) âx
2

+ E0 sin
(
106t− 300z

) ây√3

2
(4.22)

is right elliptically polarized. The wave

−→
E = E0 cos

(
106t− 300z

) âx√
2
− E0 sin

(
106t− 300z

) ây√
2

(4.23)

is left circularly polarized. These de�nitions are illustrated in the Fig. 4.5.
What does electromagnetic polarization have to do with antennas? An-

tennas may be designed to transmit linearly, circularly, or elliptically polar-
ized signals. Antennas designed to transmit or receive circularly polarized
signals often contain wires that coil in the corresponding direction around
an axis. If a signal is transmitted with an antenna designed to transmit lin-
early polarized waves, the best antenna to use as a receiver will be one that
is also designed for linearly polarized waves. The signal can be detected by
an antenna designed for signal of a di�erent electromagnetic polarization,
but the received signal will be noisier or weaker. Similarly, if a signal is
transmitted with an antenna designed for right circular polarization, the
best receiving antenna to use will be one also designed for right circular
polarization.
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Figure 4.5: Illustration of types electromagnetic polarization for a plane
wave traveling in the âz direction.
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4.4.5 Other Antenna Considerations

Antennas are made from good conductors. In Chapters 2 and 3, we saw
that the materials that make up many energy conversion devices strongly
in�uence the behavior. While the conductivity of conductors vary, overall
the material that an antenna is made from does not signi�cantly a�ect its
behavior. In addition to bandwidth, impedance, directivity, and electro-
magnetic polarization, other factors, such as size, shape and con�guration,
distinguish one antenna from another. Mechanical factors should be consid-
ered too. An ideal antenna may be one that is easy to construct or mount
in the desired location, is portable, or requires little maintenance [50]. If an
antenna is to be mounted outside, the antenna should be able to withstand
snow, wind, ice, and other extreme weather [50]. While Maxwell's equa-
tions are useful for predicting the radiation pattern of an antenna, they do
not provide information about these other factors.

There is no perfect antenna. In one case, the best antenna may be a
Yagi which is very directional and designed to operate within a narrow
frequency band. In another application, the best antenna may be me-
chanically strong and mounted in a way to withstand extreme wind [50,
p. 17-29]. In another case, the best antenna may be portable and easy
to set up by one person regardless of its radiation pattern [50, p. 21-26].
In another case, the best antenna may be a wire of an arbitrary length
hanging from a tree because it was the easiest and quickest to construct.
As with any branch of engineering, antenna design involves trade o�s. For
example, the best antenna to detect an 800 MHz linearly polarized signal
is an antenna that is designed to detect 800 MHz signals, is designed to
detect linearly polarized signals, is oriented in the proper direction, and
has an impedance matched to the impedance of the transmission line used.
The signal can still be detected using an antenna designed for a di�erent
frequency, designed for a di�erent electromagnetic polarization, improperly
directed, or with mismatched impedance. However, in all of these cases, a
less intense signal will be received.
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Figure 4.6: A snow covered dish antenna.

4.5 Problems

4.1. An antenna is designed to operate between 4.98 GHz and 5.02 GHz,
for a bandwidth of ∆f = 0.04 GHz. Find ∆λ, the wavelength range
over which the antenna is designed to operate.
Hint: The answer is NOT 7.5 m.

4.2. Use the �gure to �nd the following information. (Wires connecting
to receiver or transmitter are not shown.)

(tree)

(house)

(you)

Antenna a

Antenna b

Drawn approximately to scale.

(a) Approximate the wavelength that antenna a is designed to op-
erate at.

(b) Approximate the frequency that antenna b is designed to operate
at.

(c) Which antenna most likely has parasitic elements: antenna a,
antenna b, both, or neither? Explain your choice.
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(d) Which antenna do you expect to be more isotropic: antenna
a, antenna b, or would they be about the same? Explain your
choice.

(e) Which antenna is more likely to be used as a receiver than
a transmitter: antenna a, antenna b, or both antennas about
equal? Explain your choice.

4.3. Some speculate that alien civilizations might be able to watch TV
programs that escape the earth's atmosphere. To get an idea of the
likelihood for this to occur, consider an isotropic antenna in outer
space transmitting a 200 MHz TV signal.

Assume that the alien civilization uses an antenna with surface area
0.5 m2 and has the technology to detect a signal with power as low as
5 · 10−22 W. What is the minimum power that must be transmitted
for detection to occur at a distance of 1.0 light year?

4.4. Project ELF, described in Sec. 4.4.1, was an extremely low frequency,
76 Hz, radio system set by the military to communicate with sub-
marines. It had facilities near Clam Lake, Wisconsin and Republic,
Michigan, 148 miles apart [52]. Because these facilities were located
a fraction of a wavelength apart, antennas at these locations acted as
part of a single array. The length of all antenna elements was 84 miles
[52]. Assume it took 18 minutes to transmit a three letters message
using 8 bit ASCII, and assume signals travel close to the speed of
light in free space.

(a) Calculate the ratio of the distance between the transmitting fa-
cilities to the wavelength.

(b) Calculate the ratio of the length of all antenna elements to the
wavelength.

(c) What was the speed of communication in bits per second?

(d) How many wavelengths long were each bit?
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4.5. Match the following plots or antenna descriptions with their azimuth
plots.
1. An antenna with 3D plot shown below

2. An isotropic antenna
3. An antenna with nulls at ±900

4. An antenna with a gain of around 19dB

A. B.

C. D.

4.6. Radiation pattern plots are for a particular transmitting antenna are
shown. They were plotted with EZNEC. The azimuth plot is on the
left, and the elevation plot is on the right. The antenna is designed
to operate at at 360 MHz. Use the plots to answer the following
questions.
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(a) Assume a person 100 m away and receiving signal from the an-
tenna in the front direction (along the âx axis) receives a signal
of 15 W. Approximately how strong of a signal would the person
receive by standing 100 m away from the transmitter along the
ây axis (in watts)?

(b) Find the (power) F/B ratio in dB.

(c) According to the azimuth plot, at approximately what angle are
the nulls for this antenna?

(d) What wavelength is this antenna designed to operate at?

4.7. Figure 4.4 show the radiation pattern plots for a quad antenna de-
signed to operate at f = 21.2 MHz. The upper left plot shows the
azimuth plot, the upper right plot shows the elevation plot. The
lower left plot shows the 3D radiation pattern, and the lower right
plot shows the antenna elements. They were plotted with EZNEC
software.

(a) Find the wavelength the antenna is designed to operate at.

(b) Find

[
|−→Efront|
|−→E back|

]
dB

, the �eld front to back ratio of the antenna in

dB.

(c) Find
[
Pfront
Pback

]
dB
, the power front to back ratio in dB.

(d) Find
[
Pfront
Pback

]
lin
, the power front to back ratio on a linear scale.

(e) Assume the electric �eld intensity 50 m away measured along

the φ = 450 axis (in the z = 0 plane) is 5 V
m. Find the electric

�eld intensity 50 m away measured along the φ = 1350 axis (in
the z = 0 plane).
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4.8. Radiation pattern plots for a particular transmitting antenna are
shown. They were plotted with EZNEC. The azimuth plot is on
the left, and the elevation plot is on the right.

(a) Is this antenna isotropic? Justify your answer.

(b) The antenna is designed to operate at a frequency of 187 MHz.
What is the corresponding wavelength?

(c) Find the (power) F/B ratio in dB.

(d) The signal 100 m from the transmitting antenna in the front

direction (φ = 0) is measured to be |−→E | = 50 V
m. What is

the electric �eld strength of the signal in V
m at 100 m from the

antenna in the φ = 450 direction?

(e) Radiation pattern plots do not apply for all distances from the
antenna. Roughly for what distances away are the radiation
plots valid?

4.9. Determine if the following electromagnetic waves are linearly polar-
ized, right circularly polarized, left circularly polarized, right ellipti-
cally polarized, or left elliptically polarized. All of these waves travel
in the âz direction, and ω is a constants. (This is a modi�ed version
of P3.34 from [11].)

(a)
−→
E = 10 cos (ωt− 8z) âx + 10 sin (ωt− 8z) ây

(b)
−→
E = 10 cos

(
ωt− 8z + π

4

)
âx + 10 cos

(
ωt− 8z + π

4

)
ây

(c)
−→
E = 10 cos (ωt− 8z) âx − 20 sin (ωt− 8z) ây

(d)
−→
E = 10 cos (ωt− 8z) âx − 10 sin (ωt− 8z) ây



5 HALL EFFECT 91

5 Hall E�ect

5.1 Introduction

In this chapter we discuss another type of inductive energy conversion de-
vice, the Hall e�ect device. While these devices may be made from con-
ductors, they are more often made from semiconductors, like silicon, which
are easily integrated into microelectronics. The Hall e�ect was discovered
using gold by Edwin Hall in 1879 [57]. The �rst practical devices were
produced in the 1950s and 1960s when uniform semiconductor materials
were �rst manufactured [57].

Hall e�ect sensors are used to measure some hard to observe quantities.
Without external tools, humans cannot detect magnetic �eld. However, a
small, inexpensive Hall e�ect sensor can act as a magnetometer. Also, the
Hall e�ect can be used to determine if a semiconductor is n-type or p-type.
One of the �rst applications of Hall e�ect devices was in computer keyboard
buttons [57]. Today, Hall e�ect devices are used to measure the rotation
speed of a motor, as �ow rate sensors, in multiple types of automotive
sensors, and in many other applications.

5.2 Physics of the Hall E�ect

Hall e�ect devices are direct energy conversion devices that convert energy
from a magnetic �eld to electricity. The physics behind these devices is
described by the Lorentz force equation. This discussion follows references
[3] and [9]. If we place a charge in an external electric �eld, it will feel a
force parallel to the applied electric �eld. If we place a moving charge in
an external magnetic �eld, it will feel a force perpendicular to the applied
magnetic �eld. The Lorentz force equation

−→
F = Q

(−→
E +−→v ×−→B

)
(5.1)

describes the forces on the moving charge due to the external electric and
magnetic �elds. In the above equation,

−→
F represents force in newtons on

a charge moving with velocity −→v in units m
s . The quantity

−→
E represents

the electric �eld intensity in units V
m, and

−→
B represents the magnetic �ux

density in units Wb
m2 . Charge in coulombs is denoted by Q. Notice that the

force on the charge due to the electrical �eld points in the same direction
as the electrical �eld while the force on the charge due to the magnetic �eld
points perpendicularly to both the velocity of the charge and the direction
of the magnetic �eld.
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The Hall e�ect occurs in both conductors and semiconductors. In con-
ductors, electrons are the charge carriers responsible for the e�ect while in
semiconductors, both electrons and holes are the charge carriers respon-
sible for the e�ect [9]. A hole is the absence of an electron. Consider a
piece of semiconductor oriented as shown in Fig. 5.1a. Assume the length
is speci�ed by l, the width is speci�ed w, and the thickness is speci�ed
by dthick. For a typical Hall e�ect device, these dimensions may be in the
millimeter range. Furthermore, assume the semiconductor is p-type with
hole concentration p in units m−3. The charge concentration represents the
net, or excess, charge density above a neutral material. Materials with a
net negative charge, excess valence electrons, will have a positive value for
the electron concentration n and are called n-type. Materials with a net
positive charge, an excess of holes, will have a positive value for the hole
concentration p which represents the density of holes in the material and
are called p-type. Overall charge density is related to n and p by

ρch = −qn+ qp (5.2)

where q is the magnitude of the charge of an electron.
Assume the semiconductor is placed in an external magnetic �eld ori-

ented in the âz direction, with magnetic �ux density
−→
B = Bzâz.

Also assume a current is supplied through the semiconductor in the âx
direction. The positive charge carriers in the semiconductor, holes, move
with velocity −→v = vxâx because current is the �ow of charge per unit
time. These measures are illustrated in Fig. 5.1b. Hall e�ect devices are
typically used as sensors as opposed to energy harvesting devices because
power must be supplied from this external current and because the amount
of electricity produced is typically quite small.

The force on the charges can be found from the Lorentz force equation.
The force due to the external magnetic �eld on a charge of magnitude q is
given by

q−→v ×−→B = qvxâx ×Bzâz = −qBzây (5.3)

and is oriented in the −ây direction. Positive charges accumulate on one
side of the semiconductor as shown in Fig. 5.1c. This charge build up
causes an electric �eld oriented in the ây direction which opposes further
charge build up. Charges accumulate until an equilibrium is reached when
the forces on the charges in the ây direction are zero.

−→
F = 0 = Q

(−→
E +−→v ×−→B

)
(5.4)
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Figure 5.1: Illustration of Hall e�ect.
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The electric �eld intensity can be expressed as a function of the voltage
VAB measured across the width of the device, in the ây direction.

−→
E =

VAB
w

ây (5.5)

q
−→
E = −q−→v ×−→B (5.6)

VAB
w

= vxBz (5.7)

While the magnitude of the velocity of the charges vx is often not known,
the applied current, Ix, in units amperes, is known. The current density
through a cross section of the device is the product of the charge concen-
tration, the strength of the charges, and the velocity of the charges.

current density = Ix
w·dthick = q · vx · p (5.8)

From the above expression, velocity can be expressed in terms of the cur-
rent.

vx =
Ix

w · dthick · q · p
(5.9)

Equations 5.7 and 5.9 can be combined.

VAB =
w · Ix ·Bz

w · dthick · q · p
(5.10)

A magnetometer is a device that measures magnetic �eld. To use a
Hall e�ect device as a magnetometer, start with a piece of semiconductor
of known dimensions and known charge concentration, and then apply a
current. If the voltage perpendicular to the current is measured, the mag-
netic �eld can be calculated. The measured voltage is proportional to the
strength of the external magnetic �ux density.

Bz =
dthick · q · p · VAB

Ix
(5.11)

Voltage is easily measured with a voltmeter, so no specialized tools are
needed. To reliably measure this voltage, it is often ampli�ed.

Alternatively, if the strength of an external magnetic �eld is known, the
Hall e�ect can be used to measure the concentrations of holes or electrons
in a piece of semiconductor. With some algebra, we can write the hole con-
centration as a function of the dimensions of the semiconductor, the known
magnetic �eld strength, the applied current, and the measured voltage.

p =
Ix ·Bz

dthick · q · VAB
(5.12)
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An analogous expression can be found if electrons instead of holes are the
dominant charge carrier. The sign of this measured voltage is also used to
determine whether a piece of semiconductor is n-type or p-type [58].

The Hall resistance RH is a parameter inversely proportional to the
charge concentration, and it has the units of ohms [9] [59]. For the as-
sumptions above, the Hall resistance is de�ned as

RH =
Bz

qp
· w

l · dthick
. (5.13)

By combining Eqs. 5.12 and 5.13, it can be written in terms of the measured
voltage and applied current.

RH =
VAB
Ix
· w
l

(5.14)

As an example, suppose that a piece of silicon with a hole concentration
of p = 1017 cm−3 is used as a Hall e�ect device. The device has dimensions
l = 1 cm, w = 0.2 cm, and dthick = 0.2 cm, and it is oriented as shown
in Fig. 5.1. The material has a resistivity of ρ = 0.9 Ω·cm. A current
of I = 1 mA is applied in the âx direction. The device is in an external
magnetic �eld of

−→
B = 10−5âz

Wb
cm2 . If a voltmeter is connected as shown

in the �gure, what voltage VAB is measured?

VAB =
IxBz

q · dthick · p
=

1−3 · 10−5

1.6 · 10−19 · 0.2 · 1017
= 3.1 · 10−6 V (5.15)

Signals in the millivolt range are easily detected with a standard voltmeter,
yet signals in the microvolt range often can be measured with some ampli-
�cation. What output power is generated by this device? We can calculate
the resistance along the ây direction. The resistivity of the silicon was given
in the problem, and resistance R and resistivity ρ are related by

R =
ρ · length
area

. (5.16)

The resistance across the width of the device is

Rwidth =
ρw

ldthick
=

0.09 · 0.2
1 · 0.2 = 0.09 Ω (5.17)

We can use this calculated resistance and the measured voltage to �nd the
power converted from the magnetic �eld to electrical power of the device.

P =
V 2
AB

Rwidth

= 1.1 · 10−11 W (5.18)
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This amount of power is tiny. While this device can make a useful sensor,
it will not make a useful energy harvesting device. It generates tens of
picowatts of power, and a 1 mA current must be supplied to generate the
power.

5.3 Magnetohydrodynamics

A magnetohydrodynamic device converts magnetic energy to or from elec-
trical energy through the use of a conductive liquid or plasma. Similar to
the Hall e�ect, the fundamental physics of the magnetohydrodynamic e�ect
is described by the Lorentz force equation, Eq. 5.1. The di�erence is that
the magnetohydrodynamic e�ect occurs in conductive liquids or plasmas
while the Hall e�ect occurs in solid conductors or solid semiconductors. An-
other related e�ect, which is also described by the Lorentz force equation,
is the electrohydrodynamic e�ect, discussed in Sec. 10.6. The di�erence
is that the magnetohydrodynamic e�ect involves magnetic �elds while the
electrohydrodynamic e�ect involves electric �elds.

Matter can be found in solid, liquid, or gas state. A plasma is another
possible state of matter. A plasma is composed of charged particles, but a
plasma has no net charge. When a solid is heated, it melts into a liquid.
When a liquid is heated, it evaporates into a gas. When a gas is heated, the
particles will collide with each other so often that the gas becomes ionized.
This ionized gas is a plasma [3]. When ions in either a conductive liquid
or a plasma �ow in the presence of a magnetic �eld perpendicular to the
�ow of ions, a voltage is produced.

This magnetohydrodynamic e�ect was �rst observed by Faraday in 1831
[3]. In the 1960s, there was interest in building magnetohydrodynamic de-
vices where the conducting medium was a plasma. These devices typically
operated at high temperatures, in the range of 3000-4000 K [60]. Progress
was limited, however, because few materials can withstand such high tem-
peratures. More recently, engineers have used this principle to build pumps,
valves, and other devices for micro�uidic systems [61] [62]. These room
temperature devices can control the �ow of conducting liquids through the
use of an external magnetic �eld.



5 HALL EFFECT 97

5.4 Quantum Hall E�ect

Around a hundred years after the discovery of the Hall e�ect, the quantum

Hall e�ect was discovered. Klaus von Klitzing discovered the integer quan-
tum Hall e�ect in 1980 and won the physics Nobel prize for it in 1985 [63].
In 1998, Robert Laughlin, Horst Störmer, and Daniel Tsui won the physics
Nobel prize for the discovery of the fractional quantum Hall e�ect [64]. The
integer quantum Hall e�ect is observed in two dimensional electron gases
which can occur, for example, in an inversion layer at the interface between
the semiconductor and insulator in a MOSFET [59]. As in the Hall e�ect,
a current is applied in one direction, and the Hall voltage is measured in
the perpendicular direction. Following Fig. 5.1, assume that a current is
applied along the âx direction in the presence of an external magnetic �eld
in the âz direction. The voltage VAB is measured, and Hall resistance RH

is calculated. The quantum Hall e�ect is observed at low temperatures and
in the presence of strong applied magnetic �elds. In such situations, the
Hall resistance has the form

RH =
h

q2 · n (5.19)

where h = 6.626 · 10−34 J·s is the Planck constant and n is an integer [59].
This e�ect is called the quantum Hall e�ect because RH can take only dis-
crete values corresponding to integer values. Values of the Hall resistance
can be measured extremely accurately, to 2.3 parts in 1010 [59]. The frac-
tional quantum Hall e�ect is observed in highly ordered two dimensional
electron gases in the presence of very strong magnetic �elds, and it involves
quantum mechanical electron-electron interactions [65].

The formal de�nition of the ohm relies on de�nitions of the meter, kilo-
gram, and second. The kilogram is de�ned with respect to the weight of
a physical object made of platinum and iridium housed in the Interna-
tional Bureau of Weights and Measures in France [59]. Multiple national
labs, including the National Institute of Standards and Technology in the
United States, have come up with an experimental means of de�ning the
ohm involving the quantum Hall e�ect. This standardized de�nition of the
ohm is accurate to one part in 109 which is more accurate than previous
de�nitions involving the kilogram, meter, and second [59]. Because of the
high accuracy with which the integer quantum Hall e�ect can be measured,
scientists have proposed using experiments involving it to standardize the
measurement of the Planck constant and the de�nition of the kilogram
instead of relying on a de�nition involving a physical object. These new
standards have not been adopted yet, but they may be implemented as
early as 2019 [66].
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5.5 Applications of Hall E�ect Devices

A Hall e�ect device is a simple device. It is essentially a piece of semicon-
ductor with leads connected and calibrated for use. For this reason, Hall
e�ect devices are inexpensive, small, and readily available. As with most
integrated circuits, these devices are durable and long lasting because they
have no mechanical moving parts [57].

Hall e�ect devices are available in two types: analog and digital. Analog
Hall e�ect devices are typically integrated with an ampli�er and circuitry
to make the output more linear [57]. Some devices also contain circuitry
to make the devices stable over a wider temperature range because the
output of Hall e�ect sensors may be slightly temperature dependent [57].
The operating output voltage range of these devices is often limited by the
ampli�er circuit as opposed to the Hall e�ect sensor [57]. Digital Hall e�ect
devices contain the Hall e�ect sensor integrated with additional circuitry
such as a comparator to produce a digital output [57].

Analog Hall e�ect devices are used to sense magnetic �eld, temperature,
current, pressure, position, and other parameters [57]. To make a Hall
e�ect temperature sensor, for example, a magnet is mounted on a material
that contracts or expands in the presence of a temperature change. As
the magnet moves, it changes the magnetic �eld in a nearby Hall e�ect
device and thereby generates a voltage across the Hall e�ect device. The
same e�ect can be used to measure pressure or other parameters using
a material that expands or contracts when the pressure changes or other
parameter changes. Current �owing through a wire generates a magnetic
�eld surrounding the wire. For this reason, the Hall e�ect can be used to
make an ammeter that can be mounted nearby, as opposed to in the path
of, the current.

Digital Hall e�ect devices are used as switches or as buttons in a key-
board. If a small magnet is mounted in a button, a Hall e�ect device can
be used to sense when that magnet is pressed down near the Hall e�ect
sensor. Hall e�ect devices can also be used as proximity sensors to detect
the presence of nearby ferromagnetic objects [57]. Additionally, digital Hall
e�ect devices are used in magnetic card readers [57]. One of the most com-
mon applications is in tachometers, devices that measure rotation speed.
To measure the rotation speed of a motor for example, the Hall e�ect sen-
sor is mounted near a ferromagnetic gear. See Fig. 5.2. As a gear tooth
passes the sensor, the magnetic �eld at the sensor changes, and a volt-
age is induced across the Hall e�ect device. Hall e�ect sensors are used
to measure rotation speed of motors, fans, tape machines, and disk drives
[57]. Relatedly, Hall e�ect devices are used as �ow rate sensors. These
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motor

Hall effect device

Figure 5.2: Placement of Hall e�ect sensor used as a tachometer.

sensors are found in devices ranging from water softeners to ocean current
monitors [57]. To detect �ow rate, a blade is mounted so that it rotates
in the water �ow. Magnets are mounted on the blade, and the Hall e�ect
sensor is mounted nearby. When the blade passes the sensor, the magnetic
�eld at the sensor changes and induces a voltage in the Hall e�ect sensor.
Following the same principle, Hall e�ect sensors are used to measure the
speed of paper �ow in copiers, needles in sewing machines, drill bits in
drilling machines, and bottles in bottling factories [57].

Multiple types of Hall e�ect devices are used in cars. Hall e�ect sensors
are used as rotation sensors to detect transmission speed [57]. They are
used as proximity sensors to detect the shift lever position, crank shaft
position, and throttle position [57]. They are also used in door interlocks,
in brake skidding detection, and in traction control systems [57].
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5.6 Problems

5.1. Suppose that you are using a piece of semiconductor as a Hall e�ect
device to measure a magnetic �eld. You supply a DC current through
the device. You would like to replace the piece of semiconductor with
another one that will give a larger output for the same external mag-
netic �eld. List two ways you can change the piece of semiconductor
so that the output would increase. (Specify both the property and
whether it would need to be increased or decreased.)

5.2. A piece of p-type semiconductor is used as a Hall e�ect device. The
device has a thickness of dthick = 1 mm. It is placed in an external
magnetic �eld of |−→B | = 10−5 Wb

cm2 . A Hall voltage of 5 µV is measured
when a current of 3 mA is applied. Calculate p, the charge (hole)
concentration in units 1

cm3 .

5.3. A Hall e�ect device is used to measure the strength of an external
magnetic �eld. The device is oriented in the way described in Fig.
5.1. It is made from a cube of p-type silicon with hole concentration
5 · 1015 cm−3 where the length of each side of the cube is 1 mm. A
current of 3 mA is applied through the device. The voltage measured
across the device is 2.4 mV. Find the strength of the external magnetic
�ux density, |−→B |.

5.4. A Hall e�ect device is used to measure the strength of an external
magnetic �eld. The device is oriented in the way described in Fig.
5.1. It is made from a material of length l = 3 mm, width w = 0.5
mm, and thickness dthick = 0.5 mm. It has a hole concentration of
p = 1020 m−3. In an experiment, the devices was placed in an external

magnetic �eld of
∣∣∣−→B ∣∣∣ = 2.5 Wb

m2 and a voltage of 9 mV was measured.

What current was used in the experiment?

5.5. Two expressions were given for the Hall resistance:
RH = Bz

qp
· w
l·dthick and RH = h

q2n
.

Show that both expressions have the units of ohms.
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6 Photovoltaics

6.1 Introduction

This chapter discusses solar cells and optical detectors, both of which are
devices that convert optical electromagnetic energy to electricity. The next
chapter discusses lamps, LEDs, and lasers which convert energy in the op-
posite direction. The photovoltaic e�ect is the idea that if a light shines on
a pure piece of semiconductor, electron-hole pairs form. In the presence of
an external electric �eld, these charges are swept apart, and a voltage de-
velops across the terminals of the semiconductor. It was �rst demonstrated
in 1839 by Edmond Becquerel. In a photovoltaic device, also called a solar
cell, this e�ect typically occurs at a semiconductor pn junction. This same
e�ect occurs on a smaller scale in photodiodes used to detect light and
in optical sensors in digital cameras. To understand the physics behind
these devices, we need to further study crystallography in semiconductors.
Energy level diagrams, which illustrate the energy needed to remove an
electron from a material, are another topic studied in this chapter.

Unlike fossil fuel based power plants, photovoltaic cells produce energy
without contributing to pollution. The solar power industry is growing at
a fast pace. Worldwide as of April 2017, photovoltaic cells were capable of
generating over 303 GW of power, and 75 GW of this total was installed
within the past year [67]. This generating capacity was su�cient to satisfy
1.8% of the worldwide demand for electricity [67]. In the United States as
of April 2017, photovoltaic cells installed were capable of generating 14.7
GW [67].

6.2 The Wave and Particle Natures of Light

The physics of electromagnetic radiation is described by Maxwell's equa-
tions, Eqs. 1.5 - 1.8, and discussed in Sections 1.6.1 and 4.4.1. Optical
energy is electromagnetic energy with wavelengths roughly in the range

400 nm . λ . 650 nm.

This wavelength range corresponds to the frequency range

4.6 · 1014 Hz . f . 7.5 · 1014 Hz.

We often think of electromagnetic radiation as behaving like a wave. How-
ever, it has both wave-like and particle-like behavior.

One way to understand light is to think of it as composed of particles
called photons. A quantum is a small chunk, and a photon is a quantum,
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small chunk, of light. A related quantity is a phonon, which is a quanta,
or small chunk, of lattice vibrations. We will discuss phonons in a later
section, and they do not relate to light. Although, phonons can perturb
light, and that is the basis for acousto-optic devices. The second way to
understand light is to think of it as a wave with a wavelength λ measured
in nm. White light has a broad bandwidth while the light produced by a
laser has a very narrow bandwidth.

These two descriptions of light complement each other. A photon is the
smallest unit of light, and it has a particular wavelength. The energy of a
photon of light with wavelength λ is given by

E = hf =
hc

λ
. (6.1)

The quantity h is called the Planck constant, and it has a tiny value,
h = 6.626 · 10−34 J · s. The quantity c is the speed of light in free space,
c = 2.998 · 108 m

s .
In SI units, energy is measured in joules. However, other units are some-

times used by optical engineers because the energy of an individual photon
is tiny compared to a joule. Another unit that is used is the electronvolt,
or eV. The magnitude of the charge of an electron is q = 1.602 · 10−19 C.
The electronvolt is the energy acquired by a charge of this magnitude in
the presence of a voltage di�erence of one volt [68, p. 8]. Energy in joules
and energy in eV are related by a factor of q.

E[J ] = q · E[eV] (6.2)

Equations 6.1 and 6.2 can be combined to relate the energy of a photon in
eV and the corresponding wavelength in nm.

1240

λ[nm]

= E[eV]. (6.3)

Sometimes, energy is speci�ed in the unit of wave number, cm−1, which
represents the reciprocal of the wavelength of the corresponding photon.
Energy in joules and energy in wave number are related by

E[J] =
hc

λ
(6.4)

E[J] =
6.626 · 10−34 J · s · 2.998 · 108 m

s · 100 cm
m

λ[cm]

(6.5)

E[J] = 1.986 · 10−23E[cm−1]. (6.6)
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The human eye can sense light from approximately λ = 400 nm to
λ = 650 nm. Using the expressions above, we can calculate in di�erent units
the energy range over which the human eye can respond. An individual
red photon with λ = 650 nm has energy

Ered = 3.056 · 10−19 J = 1.908 eV = 1.538 · 104 cm−1 (6.7)

in the di�erent units. Similarly, an individual blue photon with λ = 400
nm has energy

Eblue = 4.966 · 10−19 J = 3.100 eV = 2.500 · 104 cm−1. (6.8)

We can calculate the energy of individual photons of electromagnetic
radiation at radio frequencies, at microwave frequencies, or in other fre-
quency ranges too. For example, the radio station WEAX broadcasts with
a frequency f = 88 MHz. This corresponds to a wavelength of λ = 3.407 m.
An individual photon at this frequency has energy

E = 5.831 · 10−26 J = 3.640 · 10−7 eV. (6.9)

As another example, wi-� operates at frequencies near f = 2.4 GHz which
corresponds to the wavelength λ = 0.125 m. Each photon at this frequency
has energy

E = 1.590 · 10−24 J = 9.927 · 10−6 eV. (6.10)

Ultraviolet light has a wavelength slightly shorter than blue light. A photon
of ultraviolet light with wavelength λ = 350 nm, which corresponds to
frequency f = 8.57 · 1014 Hz, has energy

E = 5.676 · 10−19 J = 3.543 eV. (6.11)

X-rays operate at wavelengths near λ = 10−10 m. An x-ray photon with
wavelength λ = 10−10 m has energy

E = 1.986 · 10−15 J = 1.240 · 104 eV. (6.12)

Why do we talk about radio waves but not radio particles while we treat
light as both wave-like and particle-like? A person is around 1.5 to 2 m
tall. The wavelength of the radio station broadcast in the example above
was λRF ≈ 3.4 m while the wavelength of blue light was λblue light ≈ 400
nm. Both radio frequency and optical signals are electromagnetic radiation.
Both are well described by Maxwell's equations. Both have wave-like and
particle-like properties. Humans typically talk about the wave-like nature
of radio waves because they are on a scale we can measure with a meter
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stick. However, with the correct tools, we can observe both the wave-like
and particle-like behavior of light.

Why is UV light more dangerous than visible light? Why are x-rays so
dangerous? Each photon of x-ray radiation has around a thousand times
more energy than a photon of green light. This type of radiation is called
ionizing radiation because each photon has enough energy to rip an elec-
tron from skin or muscles. UV radiation also has enough energy per photon
to rip an electron o� while red light and blue light do not have enough en-
ergy. Photons of radio frequency and microwave electromagnetic radiation
contain nowhere near enough energy per photon to do this damage. These
types of radiation can still pose a safety hazard if enough photons land on
your skin. Microwave ovens are used to cook food. However, they do not
pose the hazards of ionizing radiation.

6.3 Semiconductors and Energy Level Diagrams

6.3.1 Semiconductor De�nitions

Some semiconductors are made up of atoms of a single type like pure Si
or pure Ge. Others contain a combination of elements in column 13 and
column 15 of the periodic table. Semiconductors of this type include AlAs,
AlSb, GaAs, and InP. Other semiconductors contain a combination of el-
ements in columns 12 and 16 of the periodic table. Examples of this type
include ZnTe, CdSe, and ZnS [9]. Most semiconductors involve elements
located somewhere near silicon on the periodic table, but more complicated
compositions and structures are also possible. Materials made from three
di�erent elements of the periodic table are called ternary compounds, and
materials made from four elements are called quaternary compounds.

To understand the operation of devices like solar cells, photodetectors,
and LEDs, we need to study the �ow of charges in semiconductors. Electri-
cal properties in semiconductors are determined by the �ow of both valence
electrons and holes. Valence electrons, as opposed to inner shell electrons,
are the electrons most easily ripped o� an atom. A hole is an absence
of an electron. Valence electrons and holes are known as charge carri-

ers because they are charged and they move through the semiconductor
when an external voltage is applied. At a �nite temperature, electrons are
continuously in motion, and some electron-hole pairs may form an exci-

ton. These electron-hole pairs naturally combine, also called decay, within
a short time. However, at any time, some charge carriers are present in
semiconductors at temperatures above absolute zero due to the motion of
charges.
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Crystalline semiconductors can be classi�ed as intrinsic or extrinsic [9,
p. 65]. An intrinsic semiconductor crystal is a crystal with no lattice
defects or impurities. At absolute zero, T = 0 K, an intrinsic semiconductor
has no free electrons or holes. All valence electrons are involved in chemical
bonds, and there are no holes. At �nite temperature, some charge carriers
are present due to the motion of electrons at �nite temperature. The
concentration of these charge carriers is measured in units electronsm3 , holesm3 ,
electrons
cm3 or holes

cm3 . The intrinsic carrier concentration is the density of
electrons in a pure semiconductor, and it is a function of the temperature T .
At higher temperatures, more charge carriers will be present even if there
are no impurities or defects in the crystalline semiconductor due to more
motion of charges. If we apply a voltage across an intrinsic semiconductor
at T = 0 K, no charges �ow. When the equilibrium concentration of
electrons n or holes p is di�erent from the intrinsic carrier concentration
ni then we say that the semiconductor is extrinsic. If either impurities or
crystal defects are present, the material will be extrinsic. If a voltage is
applied across an extrinsic semiconductor at T = 0 K, charges will �ow. If
a voltage is applied across either an extrinsic or intrinsic semiconductor at
temperatures above absolute zero, charge carriers will be present and will
�ow.

The process of introducing more electrons or holes into a semiconductor
is called doping. A semiconductor with an excess of electrons compared
to an intrinsic semiconductor is called n-type. A semiconductor with an
excess of holes is called p-type. Silicon typically has four valence electrons
which are involved in bonding. Phosphorous has �ve valence electrons, and
aluminum has three. When a phosphorous atom replaces a silicon atom in
a silicon crystal, it is called a donor because it donates an electron. When
an aluminum atom replaces a silicon atom, it is called an acceptor. Column
15 elements are donors to silicon and column 13 elements are acceptors. If
silicon is an impurity in AlP, it may act as a donor or acceptor. If it replaces
an aluminum atom, it acts as a donor. If it replaces a phosphorous atom,
it acts as an acceptor.

How can we dope a piece of silicon? More speci�cally, how can we dope
a semiconductor with boron? Boron is sold at some hardware stores. It is
sometimes used as an ingredient in soap. Start with a silicon wafer, and
remove any oxide which has formed on the surface. Each silicon atoms
forms bonds with four nearest neighbors. At the surface though, there is
no fourth neighbor, so silicon atoms bond with oxygen from the air. Smear
some boron onto the wafer, or place a chunk of boron on top of the wafer.
Place it in a furnace at slightly less than silicon's melting temperature,
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around 1000 ◦C. Some boron will di�use in and replace silicon atoms.
Remove the excess boron. The same procedure can be used to dope with
other donors or acceptors. What is the most dangerous part of the process?
Etching the oxide o� the silicon because hydro�uoric acid HF, a dangerous
acid, is used [69].

Sometimes it is possible to grow one layer of a semiconductor mate-
rial on top of a layer of a di�erent type of material. A stack of di�erent
semiconductors on top of each other is called a heterostructure. Not all
materials can be made into heterostructures. GaAs and AlAs have almost
the same atomic spacings, so heterostructures of these materials can be
formed. The spacing between atoms, also called lattice constant, in AlAs is
0.546 nm, and the spacing between atoms in GaAs is 0.545 nm [9]. If the
atomic spacing in the two materials is too di�erent, mechanical strain in
the resulting material will pull it apart. Even moderate mechanical strain
can negatively impact optical properties of a device because defects may
be introduced at the interface between the materials. These defects can
introduce additional energy levels which can trap charge carriers.

6.3.2 Energy Levels in Isolated Atoms and in Semiconductors

In a solar cell, light shining on a semiconductor causes electrons to �ow
which allows the device to convert light to electricity. How much energy
does it take to cause an electron in a semiconductor to �ow? To answer
this question, we will look at energy levels of:

• An isolated Al atom at T = 0 K

• An isolated P atom at T = 0 K

• Isolated Al atom and P atoms at T > 0 K

• An AlP crystal at T = 0 K

• An AlP crystal at T > 0 K

Aluminum has an electron con�guration of 1s22s22p63s23p1. It has 13 total
electrons, and it has 3 valence electrons. More speci�cally, it has two va-
lence electrons in the 3s subshell and one in the 3p subshell. Phosphorous
has an electron con�guration of 1s22s22p63s23p3, so it has 5 valence elec-
trons. Ideas in this section apply to materials regardless of whether they
are crystalline, amorphous, or polycrystalline.
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Figure 6.1: Energy level diagram of an isolated aluminum atom at T = 0 K
plotted using data from [70].
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Figure 6.2: Energy level diagram of isolated aluminum and phosphorous
atoms at T = 0 K plotted using data from [70].
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Energy Levels of Electrons of Isolated Al and Isolated P Atoms

at T = 0 K

To understand the interaction of light and a semiconductor, start by con-
sidering an isolated Al atom and an isolated P atom at absolute zero,
T = 0 K. How much energy does it take to rip o� electrons of Al? It takes
signi�cantly less energy to rip o� a valence electron than an electron from
an inner shell. In fact, when we say an electron is a valence electron, or
an electron is in a valence shell, we mean that the electron is in the shell
for which it takes the least energy to rip o� an electron. We do not mean
that the electron is further from the nucleus, although often it is. When
we say an electron is in an inner shell, we mean the electron is in a shell
for which it takes more energy to rip o� an electron. This text focuses on
energy conversion devices which operate at moderate energies, so all of the
devices discussed involve interactions of only valence electrons. Inner shell
electrons will not be involved. It is also possible to excite, but not rip o�,
an electron. When an electron is excited, its internal momentum changes
and its quantum numbers change. The terms valence electron and quantum
number were both de�ned in Sec. 1.5.2. Less energy is required to excite
than rip o� an electron. The energy required to excite or rip o� electrons
can be supplied by thermal energy, an external voltage, an external optical
�eld, or other external sources.

Figure 6.1 is a plot of the energy required to excite or remove electrons
from an isolated neutral Al atom at T = 0 K. The �gure was plotted
using data from [70]. While energy levels are drawn using actual data,
the thickness of the lines is not drawn to scale. Energy is on the vertical
axis. Allowed energy levels are shown by horizontal lines. Each electron
can only have energy corresponding to one of these discrete possible energy
levels. At T = 0 K, electrons occupy the lowest possible energy levels. One
electron can occupy each line, so the lowest 13 energy levels are occupied by
electrons. While not shown due to the resolution of the �gure, the density
of allowed energy levels increases as energy approaches zero at the top of
the �gure. Since we are considering the case of absolute zero temperature,
these upper energy levels are not occupied by electrons.

The left side of Fig. 6.2 replots the allowed energy levels of the electrons
in an isolated Al atom at T = 0 K. The energy levels are also labeled. The
right side of the �gure plots the allowed energy levels of electrons in an
isolated P atom also at T = 0 K. Data on phosphorous energy levels also
comes from [70]. As with the Al atom, the electrons of the P atom can
only occupy certain speci�c discrete energy levels. Since the atoms are at
absolute zero, the electrons occupy the lowest energy levels possible. Figure
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6.3 contains the same information, but is zoomed in vertically to show the
valence electron levels more clearly.

The P atom has two more electrons than the Al atom. Phosphorous
atoms have more protons, so the electrons are a bit more tightly bound to
the nucleus. For this reason, it takes a bit more energy to rip the electrons
o�, and the allowed energy levels are a bit di�erent than for Al.

The amount of energy required to rip a 3p electron o� the atom is
the vertical distance from the 3p level to the ground line at the top of the
�gure. The amount of energy required to rip a 2p electron o� is the vertical
distance from the 2p level to the ground line. As expected, these �gures
show that it requires more energy to rip o� the inner shell 2p electron than
the valence shell 3p electron. If enough energy is supplied, an electron will
be ripped o�, and the electron will �ow freely through the material. If
some energy is supplied but not enough to rip o� the electron, the electron
can get excited to a higher energy level. The energy required to excite an
electron is given by the vertical distance in the �gure from an occupied to
an unoccupied energy level. In either case, we say that an electron-hole pair
forms. If the amount of energy supplied is too small to excite an electron
from a �lled to un�lled state, the external energy will not be absorbed.

Energy Levels of Electrons of Isolated Al and Isolated P Atoms

at T > 0 K

How do the energy levels change when the Al and P atoms are at tem-
peratures above absolute zero, where electrons are continuously vibrating
and moving? First, the energy levels broaden. The electrons can still only
take certain energy levels, but there is a wider range to the allowed en-
ergy levels. Second, occasionally, electrons spontaneously get excited into
higher states. For example, a 3p electron may get excited into the 4s state
temporarily. If it does, it will quickly return to the ground state.

Energy Levels of AlP at T = 0 K

How much energy does it take to rip an electron o� an AlP crystal at
T = 0 K? The three valence electrons of each Al atom and the �ve valence
electrons of each P atom form chemical bonds. The energy required to rip
o� these electrons is slightly di�erent than the energy required to rip o�
the equivalent electrons of isolated Al and isolated P atoms. Figure 6.4
illustrates the energy levels of the valence electrons of AlP. Unlike in the
previous �gures, these energy levels do not come from actual data. Instead,
they are meant as a rough illustration of the e�ect. The amount of energy
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minum and phosphorous atoms at T = 0 K plotted using data from [70].
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Figure 6.4: Energy level diagram at T = 0 K of an isolated aluminum
atom, AlP crystal, and isolated phosphorous atom. Energy levels for the
isolated atoms are from [70]. Energy levels for AlP are a rough illustration
and not from actual data.
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Valence Band

Conduction Band

Energy gap

Figure 6.5: Energy level diagram of a semiconductor zoomed in to show
only the conduction and valence band.

required to rip o� an electron is represented on the energy level diagram
by the vertical distance from that level to the ground level at the top of
the diagram. The energies needed to remove inner shell electrons do not
signi�cantly change from the energy levels of isolated atoms.

Energy levels due to electrons shared amongst atoms in a solid semi-
conductor are called energy bands. The �lled energy level closest to the
top of an energy level diagram for a semiconductor is called the valence

band. The energy level above it is called the conduction band. The energy
gap Eg, also called the bandgap, is the energy di�erence from the top of
the valence band to the bottom of the conduction band. The term valence

electron refers to an outer shell electron while the term valence band refers
to a possible energy level it may occupy. At T = 0 K, the valence band is
typically �lled, and the conduction band may be empty or partially empty.
We often are only interested in the valence and conduction bands because
we are interested in energy conversion processes involving small amounts
of energy. For this reason, we often plot energy level diagrams zoomed in
vertically to just show these two energy levels as shown in Fig. 6.5.

If the AlP crystal has defects or impurities, the energy levels broaden
a bit because the electrical potential (in volts) seen by each Al and each P
atom is slightly di�erent from the potential seen by other Al and P atoms
in the crystal. Thus, it takes slightly di�erent amounts of energy to rip o�
each electron. For this reason, energy levels in amorphous materials are
quite a bit broader than energy levels in crystals of the same composition
[10]. If the AlP crystal has defects or impurities, additional allowed energy
levels may be present. Some of these energy levels may even fall within the
energy gap.

Energy Levels of AlP at T > 0 K

As with isolated atoms, there are two di�erences between energy levels for
crystals such as AlP at T > 0 K compared to at T = 0 K. First, energy
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levels broaden. Second, some electrons get excited to higher energy levels
and quickly, perhaps in a few microseconds, decay back down.

6.3.3 De�nitions of Conductors, Dielectrics, and Semiconduc-

tors

Conductors, dielectrics, and semiconductors were de�ned in section 1.5.1.
Now that we have seen example energy level diagrams, we should revisit
these de�nitions as well as de�ne the term semimetal. In the presence of an
applied external voltage, electric �eld, optical �eld, or other energy source,
valence electrons �ow easily in a conductor [10, p. 429] [11, ch. 4]. In a
conductor, the conduction band is partially �lled with electrons, so there
are many available energy states for electrons remaining in the conduction
band. With just a little bit of external energy, possibly even from vibrations
that naturally occur at T > 0 K, valence electrons �ow easily. Inner shell
electrons can be ripped o� their atoms and �ow, but signi�cantly more
energy is needed to rip o� inner shell than valence electrons.

In the presence of an applied external voltage, electric �eld, optical �eld,
or other energy source, electrons do not �ow easily in an insulator [10, p.
429] [11, ch. 4]. The valence band is �lled and the conduction band is
empty. The energy gap between valence band and conduction band in an
insulator is typically above 3 eV. A little heat or energy from vibrations is
not enough to excite an electron from one allowed energy state to another.
If a large enough external source of energy is applied, though, an electron
can be excited or ripped o� of an insulator.

In Sec. 3.3, electro-optic materials were discussed. Some insulators
are electro-optic which means that in the presence of an external electric
or optical �eld, the spatial distribution of electrons changes slightly which
cause a material polarization to build up. Photons of the external electric
or optical �eld in this case do not have enough energy to excite electrons
in the insulator, so the internal momentum of electrons in the material
does not change. The electro-optic e�ect occurs in insulators and involves
external energies too small to excite electrons from one allowed energy state
to another while the a�ects discussed in Sec. 6.3 involve semiconductors
and external energies large enough to excite electrons from one energy level
to another.

At T = 0 K in a semiconductor, the valence band is full, and the
conduction band is empty. The energy gap of a semiconductor is small, in
the range 0.5 eV . Eg . 3 eV. In the presence of a small applied voltage,
electric �eld, or optical �eld, a semiconductor acts as an insulator. In the
presence of a large applied voltage or other energy source, a semiconductor
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acts as a conductor, and electrons �ow. Photodiodes and solar cells are
made from semiconductors. If enough energy is supplied to a photodiode,
for example from an optical beam, the valence electrons will �ow. More
speci�cally, the photons of the external optical beammust have more energy
than the energy gap of the semiconductor for the valence electrons to �ow.

The term semimetal is used to describe conductors with low electron
concentration. Similar to conductors, in a semimetal at T = 0 K, there
is no energy gap because the conduction band is partially �lled with elec-
trons, and there are plenty of available energy states. The concentration of
electrons for semimetals, however, is in the range n < 1022 electrons

cm3 while
n is greater for conductors [26, p. 304].

6.3.4 Why Are Solar Cells and Photodetectors Made from Semi-

conductors?

Energy level diagrams for AlP were illustrated above. The energy gap of
AlP is Eg = 2.45 eV, so it is a semiconductor [9] [10, p. 432,543]. If a beam
of light with photons of energy E < 2.45 eV is applied to a piece of AlP, the
photons will not be absorbed, and no electrons will be excited. If a beam
of light with photons of energy E ≥ 2.45 eV is applied to a piece of AlP,
some of those photons may be absorbed. When a photon is absorbed, an
electron will be excited from the valence band to the conduction band. A
blue photon with energy E = 3.1 eV will be absorbed by AlP, for example,
but a red photon with energy E = 1.9 eV will not. When the electron is
excited, the internal momentum of the electron necessarily changes. The
excited electron quickly spontaneously decays back to its lowest energy
state, and it may emit a photon or a phonon in the process. If a beam
of light with photons of signi�cantly higher energy is applied to a piece of
AlP, it is possible to rip o� electrons entirely from their atom.

Why are solar cells and optical photodetectors made from semicon-
ductors instead of insulators? Sunlight is composed of light at multiple
wavelengths, and it is most intense at wavelengths that correspond to yel-
low and green light. Green photons have energies near E ≈ 2.2 eV, and
visible photons have energies in the range 1.9 eV < E < 3.1 eV. Solar
cells are made from materials with an energy gap less than the energy of
most of the photons from sunlight. Semiconductors are used because the
energy of each photon is large enough to excite the electrons in the mate-
rial. Insulators are not used because most of the photons of visible light do
not have enough energy to excite electrons in the material. The material
should not have an energy gap that is too large otherwise photons will not
be absorbed.
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Material Gap in
eV

Material Gap in
eV

Material Gap in
eV

AlP 2.45 ZnS 3.6 GaP 2.26
GaP 2.26 ZnSe 2.7 GaAs 1.43
InP 1.35 ZnTe 2.25 GaSb 0.70

Table 6.1: Energy gap of various semiconductors.

Why are solar cells and optical photodetectors made from semiconduc-
tors instead of conductors? When light shines on a solar cell or photodetec-
tor, photons of light are absorbed by the material. If the photon absorbed
has energy greater than the energy gap of the material, the electron quickly
decays to the top of the conduction band. With some more time, it de-
cays back to the lowest energy state. In a solar cell or photodetector, a pn
junction is used to cause the electrons to �ow before decaying back to the
ground state. The amount of energy converted to electricity per excited
electron depends on the energy gap of the material, not the energy of the
incoming photon. Only energy Eg per photon absorbed is converted to
electricity regardless of the original energy of the photon. Thus, the energy
gap of the material used to make a solar cell or photodetector should be
large so that as much energy per excited electron is converted to electricity
as possible. The material should not have an energy gap that is too small
otherwise very little of the energy will be converted to electricity. The elec-
tron and hole will release the excess energy, hf − Eg, quickly in the form
of heat or lattice vibrations called phonons.

Each semiconductor has a di�erent energy gap Eg. Many solar cells and
photodetectors are made from silicon, which is a semiconductor with Eg =
1.1 eV. Predicting the energy gap of a material is quite di�cult. However,
all else equal, if an element of a semiconductor is replaced with one below
it in the periodic table, the energy gap tends to get smaller. This trend is
illustrated in Table 6.1. Data for the table comes from [9]. This trend is
also illustrated in Fig. 6.6, which plots the energy gap and lattice constant
for various semiconductors. Figure 6.6 is taken from reference [71]. The
horizontal axis represents the interatomic spacing in units of angstroms,
where one angstrom equals 1010 meters. The vertical axis represents the
energy gap in eV. This �gure illustrates energy gaps and lattice constants
for materials of a wide range of compositions. For example, the energy
gap for aluminum phosphide can be found from the point labeled AlP, and
the energy gap of aluminum arsenide can be found from the point labeled
AlAs. Energy gap for semiconductors of composition AlAsxP1−x can be
found from the line between these points.
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Figure 6.6: Energy gap versus interatomic spacing for multiple semicon-
ductors. Used with permission from [71].

Some solar cells are made from layered material with the largest energy
gap material on the top. For example, a solar cell could be made from a top
layer of ZnS, a middle layer of ZnSe, and a bottom layer of ZnTe. Photons
with energy E > 3.6 eV would be absorbed in the ZnS layer. Photons
with energy 2.7 eV< E <3.6 eV would be absorbed by the ZnSe layer, and
photons with energy 2.25 eV< E <2.7 eV would be absorbed by the ZnTe
layer. Each photon of energy absorbed by the ZnS layer and converted
to electricity would have more energy than each photon absorbed by the
ZnSe layer. Solar cells made from layers in this way can be more e�cient at
converting energy from optical energy to electricity than equivalent solar
cells made of a single material.

The photo in Fig. 6.7 shows naturally occurring zinc sul�de, also called
sphalerite, collected near She�er's Rock shop near Alexandria, Missouri.
The dark mineral embedded in the middle of the rock is the sphalerite.

6.3.5 Electron Energy Distribution

The Fermi energy level of a semiconductor, denoted Ef , represents the
energy level at which the probability of �nding an electron is one half [9]
[10, p. 432,543]. The Fermi level depends on temperature, and it depends
on the impurities in the semiconductor. Chemists sometime call the Fermi
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Figure 6.7: The dark mineral embedded in the rock is naturally occurring
zinc sul�de.

level by the name chemical potential, µchem.
In a pure semiconductor at T = 0 K, all electrons occupy the lowest

possible states. The valence band is completely �lled, and the conduction
band is completely empty. The Fermi level, Ef , is the energy level at the
middle of the energy gap. No electrons are found at energy Ef because no
electrons can have an energy inside the energy gap. However, the Fermi
level is a useful measure to describe the material.

In a pure semiconductor at T > 0 K, some electrons are excited into
higher energy levels. As the temperature increases, more electrons are likely
to be found at higher energy levels more often. The probability that an
electron is in energy level E varies with temperature as e−E/kBT [9] [10].
The quantity kB is the Boltzmann constant.

kB = 1.381 · 10−23 J
K

= 8.617 · 10−5 eV
K

(6.13)

The Fermi level for a material with T > 0 K is slightly higher than the
Fermi level for a material with T = 0 K because more electrons are likely
to be excited.

The probability of �nding an electron at energy level E at temperature
T is

F (E, T ) =
1

1 + e(E−Ef )/kBT
. (6.14)

Equation 6.14 is called the Fermi Dirac distribution, and like any probabil-
ity, it ranges 0 ≤ F ≤ 1. For energy levels far above the conduction band,
(E − Ef ) is large and positive, so electrons are quite unlikely to be found,
F ≈ 0. For energy levels far below the valence band, (E−Ef ) is large and
negative, so electrons are quite likely to be found, F ≈ 1.
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The concentration and type of impurities in�uence the energy of the
Fermi level. A p-type material has a lack of electrons. For this reason in
a p-type material, Ef is closer to the valence band than the middle of the
energy gap. An n-type material has an excess of electrons. For this reason
in a n-type material, Ef is closer to the conduction band.

6.4 Crystallography Revisited

6.4.1 Real Space and Reciprocal Space

Physicists and chemists are often interested in where electrons or nucleons
of atoms are likely to be found with respect to position in real space. Ideas
of a lattice, basis, and crystal structure were discussed in Sec. 2.3.2. To
review, a lattice describes the arrangements of points. The basis describes
how atoms are arranged at each lattice point. The lattice and basis together
form the crystal structure. A 3D lattice is described by three lattice vectors
−→a1 ,
−→a2 , and

−→a3 . If they are chosen as short as possible, they are called
primitive lattice vectors. The magnitude of a primitive lattice vector may
be around 0.1 nm. The primitive lattice vectors de�ne a cell called a
primitive cell. Since a lattice is periodic, if we know how to describe one
primitive cell, we can describe the entire lattice.

For each lattice, there is a corresponding reciprocal lattice de�ned by
a set of vectors. Both contain the same information in di�erent forms.
For a 3D lattice with primitive vectors −→a1 ,

−→a2 , and
−→a3 , the vectors of the

reciprocal lattice are labeled by the vectors
−→
b1 ,
−→
b2 , and

−→
b3 .

−→
b1 =

2π−→a2 ×−→a3
−→a1 · −→a2 ×−→a3

(6.15)

−→
b2 =

2π−→a3 ×−→a1
−→a1 · −→a2 ×−→a3

(6.16)

−→
b3 =

2π−→a1 ×−→a2
−→a1 · −→a2 ×−→a3

(6.17)

Notice that
−→
b1 is perpendicular to −→a2 and −→a3 . Also,

−→
b1 is parallel to −→a1 .

More speci�cally, |−→b1 | · |−→a1 | = 2π. (Factors of 2π show up due to choice of

units, cyclesm vs rad
m .) Thus if vector −→a1 is long,

−→
b1 will be short. Just as

we can get from one lattice point to another by traveling integer multiples
of the −→an lattice vectors, we can get from any one point to the next of
the reciprocal lattice by traveling integer multiples of the

−→
bn lattice vector.
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Lattice vectors in real space have units of length, m. Lattice vectors in
reciprocal space have units m−1.

The reciprocal lattice gives information about the spatial frequency of
atoms. If the planes of atoms in a crystal are closely spaced in one direction,

|−→a1| is relatively small. The corresponding reciprocal vector |
−→
b1 | is relatively

large. The reciprocal lattice represents the spatial frequency of the atom

in units m−1. If the planes of atoms in a crystal are far apart, |−→a1| is large
and |−→b1 | is small.

If a beam of light shines on a crystal where the wavelength of light
is close to the crystal spacing, light will be di�racted, and the di�raction
pattern is related to the reciprocal lattice. The Brillouin zone is a primitive
cell for a reciprocal lattice. The volume of a unit cell in reciprocal space
over a unit cell in real space is given by

vol. Brillouin zone
vol. primitive cell in real space

=

−→
b1 ·
−→
b2 ×

−→
b3

−→a1 · −→a2 ×−→a3

= (2π)3 . (6.18)

As for the real space lattice, to understand the reciprocal space lattice,
we need to only understand one cell because the reciprocal space lattice is
periodic.

6.4.2 E versus k Diagrams

The energy level diagrams, discussed in Section 6.3, plot allowed energies
of electrons where the vertical axis represented energy. No variation is
shown on the horizontal axis. The most useful energy level diagrams for
semiconductors are zoomed in so that only the valence and conduction
band are shown. In many cases, it is useful to plot energy level diagrams
versus position in real space. For such a diagram the vertical axis represents
energy, and the horizontal axis represents position. It is also useful to plot
energy level diagrams versus position in reciprocal space.

Kinetic energy is given by

Ekinetic =
1

2
m|−→v |2 =

1

2m
|−→M |2 (6.19)

where −→v represents velocity in m
s and m represents mass in kg. Momen-

tum is given by
−→
M = m−→v in units kg·m

s = J·s
m . Electrons in crystals at

T > 0 K vibrate, and certain vibrations are resonant in the crystal. The
crystal momentum

−→
M crystal represents the internal momentum of due to

vibrations. It can be expressed as
−→
M crystal = ~

−→
k (6.20)
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Figure 6.8: Energy plotted vs. |−→k | for a direct and indirect semiconductor.

and has units of momentum kg·m
s . The quantity

−→
k is called the wave

vector, and it has units m−1. It represents change in spatial frequency, a
distance in reciprocal space. The constant

~ =
h

2π
(6.21)

is called h-bar and is the Planck constant divided by 2π. Kinetic energy
can be written in terms of the wave vector.

Ekinetic =
~2|−→k |2

2m
(6.22)

Equation 6.22 describes how energy of an electron varies with wave vector
|−→k | which incorporates information about lattice vibrations. The energy

is quadratic in wave vector, so plots of energy versus |−→k | are parabolic.
Equation 6.22 is just a model, and it applies best near the top of the
valence band and bottom of the conduction band.

Energy versus |−→k | diagrams plot allowed energy levels. Think of the

|−→k | axis as change in position in reciprocal space. If the top of the valence

band and bottom of the conduction band occur at the same |−→k | value
in a semiconductor, we say that it is direct. If the top of valence band
and bottom of conduction band occur at di�erent |−→k | values, we say that
the semiconductor is indirect . The left part of Fig. 6.8 shows an energy
versus |−→k | diagram for a direct semiconductor, and the right part of Fig.
6.8 shows one for an indirect semiconductor. GaAs, InP, and ZnTe are
direct semiconductors. Si, Ge, AlAs, and GaP are indirect semiconductors.
Along di�erent crystal axes, the band structure changes somewhat. The
horizontal axis of an energy versus |−→k | diagram may be speci�ed along a
particular axis in reciprocal space.



122 6.5 Pn Junctions
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Figure 6.9: Two possible mechanisms of photon absorption in an indirect
gap semiconductor.

What happens when we shine light on a direct semiconductor? A pho-
ton of su�cient energy can excite an electron from the valence band to the
conduction band to create an electron-hole pair. What happens in an indi-
rect semiconductor? Figure 6.9 illustrates two possibilities. As illustrated
by the longer arrow, an electron can be excited directly from the valence to
conduction band. However, this requires a photon of more energy than the
vertical distance between the top of the valence band and the bottom of
the conduction band [25, p. 200]. Alternatively, as illustrated by the other
two arrows, excitation from the top of the valence band to the bottom of
the conduction band may involve a photon and a phonon. Both energy and
momentum must be conserved, so a change in crystal momentum is needed
to excite an electron in this case. Solar cells and photodetectors may be
made from either direct or indirect semiconductors.

6.5 Pn Junctions

Many devices, including photovoltaic devices, LEDs, photodiodes, semi-
conductor lasers, and thermoelectric devices are essentially made from pn
junctions. To understand photovoltaic devices and these other energy con-
version devices, we need to understand pn junctions. Consider a semicon-
ductor crystal composed of an n-type material (with excess electrons) on
one side and a p-type material (lacking electrons, in other words, with an
excess of holes) on the other side. The junction of the p-type and n-type
materials is called a pn junction. Assume the junction is abrupt and is at
thermal equilibrium.

Some pn junctions are made from elemental semiconductors like Si, and
other pn junctions are made from compound semiconductors like GaAs.
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Figure 6.10: Energy level diagram of p-type and n-type semiconductors.

Some pn junctions have the same material on both sides while other pn
junctions have di�erent materials on either side. For example, a pn junction
can be made from an n-type layer of GaAs and a p-type layer of GaAs. It
can also be made from an n-type layer of GaAs and a p-type layer of AlAs.

What happens when we put a p-type material and an n-type material
together to form a pn junction? Valence electrons and holes move. Nuclei
and inner shell electrons do not. Some excess electrons from the n-type
region go towards the p-type region. Some excess holes from the p-type
region go towards the n-type region. These charge carriers di�use, are
swept away from, a region near the junction. This region near the junction
which is lacking charge carriers is called the depletion layer [10, p. 564].
As shown in Fig. 6.10, the Fermi level Ef is near the valence band for
p-type materials. P-type material lacks electrons, so the energy where it is
equally likely to �nd an electron state occupied and unoccupied is closer
to the valence band. For a similar reason, the Fermi level Ef is near the
conduction band for n-type materials. Figure 6.11 shows the energy level
diagram versus position for the pn junction, and Fermi levels of the two
materials are lined up in this �gure.

Consider a junction where the n-type material is silicon doped with
phosphorous atoms and the p-type material is silicon doped with aluminum
atoms. The n-type side of the pn junction has an excess of positive charges
because some phosphorous atoms replace Si atoms in the material. Phos-
phorous atoms have one more proton than silicon atoms. They also have
one more electron, but the valence electron is a charge carrier which dif-
fuses away from the junction. Similarly, the p-type side of the junction has
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an excess of negative charges because some aluminum atoms replace silicon
atoms. Aluminum atoms have one less proton than Si atoms. They also
have one less electron, but the hole is a charge carrier which also di�uses
away from the junction.

An electric �eld forms across the junction due to the net charge dis-
tribution near the junction. Electric �eld intensity is the force per unit
charge, and it has the units V

m. There is also necessarily a voltage drop
across a pn junction in equilibrium, and this voltage is called the contact
potential V0 in the units of volts. While the contact potential is a voltage,
it cannot be measured by placing a voltmeter across a pn junction because
additional junctions would be formed at each lead of the voltmeter with
additional voltages introduced [9, p. 141].

Figure 6.11 illustrates the energy level diagram of a pn junction. The
horizontal axis represents position, and the vertical axis represents energy.
It is related to the �gures in Section 6.3. However, Fig. 6.11 is zoomed in
vertically, and it is plotted versus position near the junction. It also shows
the relationship between the energy level diagram and the circuit symbol
for a diode, and the depletion layer is labeled. The vertical distance qV0 ,
also labeled in Fig. 6.11, represents the amount of energy required to move
an electron across the junction [9, p. 141].

Figure 6.12 shows the energy level diagram for a forward biased pn
junction. In a forward biased pn junction, current �ows from the p-type to
n-type side of the junction. More speci�cally, holes �ow from the p-type
to n-type region, and some of these holes neutralize excess charges in the
depletion layer. The depletion layer becomes narrower. The electric �eld
preventing the �ow of charges gets smaller, and the voltage drop across the
junction gets smaller. The energy q (V0 − Vx) is labeled in Fig. 6.12 for a
forward biased pn junction where the voltage Vx is the voltage supplied.
This energy represents the energy needed to get charges to �ow across the
junction, and it is smaller than the corresponding energy in the case of the
unbiased junction. Charges �ow more easily in the case of a forward biased
pn junction, and the diode acts as a wire.

Figure 6.13 shows the energy level diagram for a reversed biased pn
junction. For a reverse biased pn junction, the voltage across the junction
V0 + Vx is larger than for an unbiased junction, and the energy needed for
charges to �ow q (V0 + Vx) is larger than for an unbiased junction. Reversed
biased pn junctions act as open circuits, and charges do not �ow due to
this amount of energy required.

A light emitting diode (LED) is a device that converts electricity to
optical electromagnetic energy, and it is made from a semiconductor pn
junction. In use, a forward bias is put across the LED as shown in Fig.
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Figure 6.11: Energy level diagram of an unbiased pn junction.
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Figure 6.12: Energy level diagram of a forward biased pn junction.
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Figure 6.13: Energy level diagram of a reversed biased pn junction.

6.12. Holes �ow from the p-type to n-type region. Some of these holes
combine with electrons in the depletion layer. In an LED, photons are
emitted in this process. The energy of the emitted photon corresponds to
the energy of the energy gap. Some LEDs have an additional intrinsic,
undoped, layer at the junction, between the p-type and n-type layers to
improve the e�ciency of the device.

A solar cell and an optical photodetector are also essentially pn junc-
tions. Both of these devices convert optical electromagnetic energy to elec-
tricity. When light shines on these devices, electron-hole pairs are created
at the junction. Due to the charge distribution across the junction, many
of the electrons and holes created are swept away from the junction before
they can recombine [9]. This �ow of charges is a current, so the optical
electromagnetic energy is converted into electricity. When light shines on
a photovoltaic device, a voltage can be measured across the junction, and
this e�ect is called the photovoltaic e�ect [9, p. 212].

The vertical distance between the conduction band and the valence
band on an energy level diagram is the energy gap Eg. The energy gap
of the material used to make a solar cell or photodetector determines the
properties of the device. Photons with energy greater than the energy gap
have enough energy to form electron-hole pairs while photons with less
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Figure 6.14: Diagram of atmospheric windows� wavelengths at which elec-
tromagnetic radiation will penetrate the Earth's atmosphere. Chemical
Notation (CO2, O3) indicates the gas responsible for blocking sunlight at
a particular wavelength. This �gure is used with permission [72].

energy cannot.
If a temperature gradient is applied across a pn junction, charges �ow.

When one side of the device is heated, charges move more rapidly and these
energetic charges di�use to the cooler side. This e�ect, called the Seebeck
thermoelectric e�ect, is discussed in Chapter 8.

6.6 Solar Cells

6.6.1 Solar Cell E�ciency

Energy conversion devices are never 100% e�cient. E�ciency is de�ned as
the output power over the input power. E�ciency of a solar cell is often
de�ned as the ratio of electrical power out to optical power in to the device.

ηeff =
Pelectrical out
Poptical in

(6.23)

Not all sunlight reaches a solar cell because some of it is absorbed by
the earth's atmosphere. This atmospheric absorption is strongly depen-
dent on wavelength. Figure 6.14 is a plot of the transmissivity of the
atmosphere as a function of wavelength. It plots the percent of light which
passes through the atmosphere without getting absorbed. Some gases in
the atmosphere, such as water vapor and CO2, absorb a signi�cant amount
of energy at particular wavelengths. The �gure indicates which gas is re-
sponsible for atmospheric absorption at some particular wavelengths. For
example, ozone O3 absorbs ultraviolet light. Ozone in the atmosphere o�ers
bene�ts because ultraviolet light can damage eyes and skin. The intensity
of the optical power from the sun that is hits a solar cell varies from day
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to day and location to location. In a bright sunny area, a solar cell may
receive around 0.1 W

cm2 [73, p. 7].
Even if energy from the sunlight reaches a solar cell, the energy is not

converted to electricity with perfect e�ciency. There are multiple reasons
for this ine�ciency, and some of these reasons relate to the fact that not
all light that hits a solar cell is absorbed. Light may heat up the solar
cell instead of exciting electrons to create electron-hole pairs [74]. Alter-
natively, light may be re�ected o� the solar cell surface [74]. Many solar
cells have an antire�ection coating to reduce re�ections, but they are not
eliminated. The surface of other solar cells are manufactured to be rough
instead of smooth to reduce re�ections. Furthermore, if a photon hits an
electron that is already excited, the photon will not be absorbed. Addition-
ally, solar cells have wires throughout the surface to capture the produced
electricity. These wires are often thin and in a �nger-like con�guration.
Light that hits these wires does not reach the semiconductor portion of
the solar cell and is not e�ciently converted to electricity. To reduce this
issue, wires of some solar cells are made from materials that are partially
transparent conductors, such as indium tin oxide or tin oxide SnO2 [74]. In-
dium tin oxide is a transparent conductor with a moderately high electrical
conductivity of σ = 106 1

Ω·m [75].
Other reasons that solar cells are not perfectly e�cient have to do with

what happens after a photon excites an electron. An electron may be
excited, but it may decay before it gets swept from the junction [74]. A
photon may excite an electron to a level above the conduction band, but the
electron may quickly decay to the top of the conduction band losing some
energy to heat. Internal resistance in the bulk n-type or p-type regions
may convert electricity to heat. There may also be internal resistance of
wiring in the system. Also unmatched loads make solar cells less e�cient
than matched loads [74].

The voltage across and the current produced by an illuminated solar
cell are both functions of temperature. Reference [76] demonstrates, both
theoretically and experimentally, that e�ciency of a solar cell decreases
as temperature increases. A number of mechanisms occurring in a solar
cell are dependent on temperature. First, as the temperature increases,
the allowed energy levels broaden. For this reason, the energy gap Eg,
which is proportional to the voltage produced by the solar cell, is smaller
at higher temperatures. As temperature increases, this voltage produced
by the solar cell decreases roughly linearly [76]. Second, the current due
to recombination of electron-hole pairs at the junction is a function of
temperature. At higher temperatures, more electron-hole pairs recombine
at the junction, so the overall current produced by the solar cell is less. For
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this reason, as temperature increases, the overall current produced by the
solar cell decreases roughly exponentially [76]. This e�ect on the current is
the main reason that solar cell e�ciency depends on temperature. Other
mechanisms are temperature dependent, but are less signi�cant [76].

6.6.2 Solar Cell Technologies

There are four major solar cell technologies being developed: crystalline,
thin �lm, multijunction cells, and emerging photovoltaic technologies [77].
However, these categories are not distinct because some solar cells �t into
multiple categories simultaneously. Figure 6.15, from [77], compares solar
cells of these technologies. More speci�cally, it shows record e�ciencies
for each of these types of solar cells as well as the year the records were
achieved.

The �rst category is crystalline, and these cells may be made from sin-
gle crystals or from polycrystalline material [78]. The �rst generation of
solar cells was made with this technology. For a simple recipe for how to
produce a crystalline solar cell, see [69]. Most solar cells produced today,
around 80% of the market, are silicon cells in this category. Typical e�-
ciency of a crystalline solar cell available today may be around 20% [78].
Polycrystalline solar cells are often cheaper and a bit less e�cient than
single crystalline cells.

The second category is thin �lm. To make these solar cells, thin �lms
of semiconductors are deposited on a substrate such as glass or steel. The
substrate may be rigid or �exible. The solar cell itself may be made of
layers of material only a few microns thick. Thin �lm solar cells may be
cheaper than other types of solar cells [78]. Often they are less e�cient
than crystalline cells, but they have other advantages [78]. One material
used to make thin �lm solar cells is amorphous silicon. Another material
in use is CdTe, which has a energy gap 1.45 eV. Cadmium and tellurium
are both toxic, but they may be easier to deposit in thin �lms than silicon.

The third category is multijunction, also called compound, solar cells.
These solar cells are made of a dozen or more layers of semiconductor
stacked on top of each other [78]. These layers form multiple pn junc-
tions. Larger gap semiconductors are on the upper layers, and smaller gap
semiconductors are closer to the substrate. These solar cells can be quite
e�cient. Cells with e�ciency up to 46% have been demonstrated in labs
[77].

The last category is emerging technology solar cells. Multiple creative
strategies are being used to develop solar cells. Nanotechnology strategies
include using solar cells made from carbon nanotubes and from quantum
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dot based materials [78]. Organic solar cells also fall into this category.
The active part of these solar cells is a thin, often 100-200 nm, layer of
an organic material [79]. One advantage of organic solar cells is that their
processing may not require as high of temperatures as the processing of
solar cells made from pn junctions of inorganic semiconductors [79].

6.6.3 Solar Cell Systems

Solar cells are used in a wide range of devices. Inexpensive lawn ornaments
with solar cells are available at hardware stores for less than a dollar. Small
photovoltaic devices used as optical sensors are equally inexpensive. On
the other extreme, solar cells power the NASA Mars rovers Spirit and
Opportunity as well as satellites orbiting the earth. Also, large arrays of
solar cells are used to generate electricity.

A typical solar cell produces around a watt of electrical power while
a typical house may require around 4 kW of power [73]. To produce the
necessary power, individual solar cells are connected together into modules,
and the modules are connected together into solar panels. In a typical in-
stallation on the roof of a house, a panel may be composed of around 40
solar cells, and 10 or 20 panels may be mounted roof [73]. A typical solar
panel installation on the roof of a building has a number of components
in addition to the solar panel arrays. The additional components are of-
ten referred to as the balance of the system, and they consist of batteries,
mounting or tracking hardware, solar concentrators, and power condition-
ers. These components are illustrated in Fig. 6.16.

The mounting system is composed of the foundation, mechanical sup-
ports, brackets, and wiring needed to physically mount and connect the
solar panel. Some solar panels are mounted in a �xed position. Other
solar panels are mounted on systems that angle the panels towards the
sun. Some tracking systems rotate the panel around a single east-west
axis. Others have two axes. Two axis tracking systems are often used with
solar concentrators. A concentrator is a mirror or lens system designed to
capture more of the sun's light onto the panels.

Solar panel systems require batteries or some other energy storage mech-
anism to provide electrical power at night, on cloudy days, and other times
when inadequate sunlight falls on the solar panels. Solar panels can last
30 years or more with only about 1% or 2% degradation per year. Also,
solar panels rarely need maintenance, and they cannot easily be repaired.
If a solar panel fails, the entire panel is replaced. However, batteries have
a typical lifetime of three to nine years, and they are often the �rst part of
a solar panel system that needs replacement [73].
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Figure 6.15: Best e�ciency of various types of solar cells. This plot is
courtesy of the National Renewable Energy Laboratory, Golden, CO [77].
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Figure 6.16: Components of a solar panel system.

The power conditioning system consists of an inverter which converts
DC electricity to AC and, for grid tied systems, a system to match the phase
of the produced AC power to the phase of the grid. Power conditioning
systems also contain a system to limit the current or voltage to maximize
the power delivered. Also, they include safeguards such as fuses to prevent
injury or damage to equipment. The typical lifetime for the electronics
may be around 10-15 years [73].

6.7 Photodetectors

6.7.1 Types of Photodetectors

Photodetectors are sensors used to convert light, at optical or other nearby
frequencies, to electricity. One way to classify photodetectors is by their
type of active material, which may be a solid or a gas. The �rst type of
detectors are semiconductor photodetectors made from solid semiconduc-
tor pn junctions. The choice of semiconductor in�uences the wavelengths
of light which can be absorbed because only photons with energy greater
than or equal to the energy gap of the semiconductor can be absorbed. For
example, silicon has an energy gap of 1.11 eV, so it is able to absorb the
photons in both the visible range 1.9 eV < E < 3.1 eV as well as photons in
the near infrared range 1.1 eV < E < 1.9 eV. In some semiconductor pho-
todetectors, a thin intrinsic (undoped) layer is added between the p-type
material and the n-type material at the junction. In these semiconductor
p-i-n junction photodetectors, the added layer widens the depletion layer.
It also decreases the internal capacitance of the junction thereby increasing
the detector response time [10, p. 660]. The second type of detectors are
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made from gas �lled vacuum tubes, and these detectors are called pho-

totubes [10, p. 646]. A voltage is placed across electrodes in the tubes.
When light shines on the phototube, energy from a photon of light can rip
o� an electron from a gas atom. The electron and ion �ow towards the
electrodes, thereby producing electricity. The most common type of pho-
totube is the photomultiplier tube. This device has multiple electrodes, and
when an electron hits one of these electrodes, additional electrons are emit-
ted. These electrons can hit additional electrodes to produce even more
electrons. Because each incoming photon produces a cascade of electrons,
photomultiplier tubes have high internal ampli�cation.

Another way to classify photodetectors depends on whether incoming
photons have enough energy to rip o� electrons or just excite them. The
�rst type of detectors are called photoelectric detectors, and they operate
based on a process called photoelectric emission [10, p. 645] [27, p. 171].
In these detectors, incoming light has energy greater than or equal to the
energy from the valence band to the ground level at the top of an energy
level diagram. These detectors convert light to electricity because incoming
photons of light rip electrons o� their atoms, and the �ow of the resulting
electrons is a current. The second type of detectors are called photoconduc-
tive detectors or sometimes photovoltaic detectors, and they operate based
on a process called photoconductivity [10, p. 647]. In these detectors, in-
coming light has energy equal to the di�erence between the valence and
conduction bands, not enough to rip o� electrons. These detectors con-
vert light to electricity because incoming photons excite electrons, and the
conductivity of the detector is higher when light shines on it. Solid semi-
conductor photodetectors can operate based on either photoelectric emis-
sion or photoconductivity, but most operate based on photoconductivity.
Phototubes typically operate based on photoelectric emission.

Some photodetectors have a single element while others are made from
an array of elements. A digital camera may contain millions of individual
photodetectors. These elements are integrated with a charge-coupled device
(CCD), which is circuitry to sequentially transfer the electrical output of
each photodetector of the array [9, p. 359]. The CCD was invented in 1969
by Willard S. Boyle and George E. Smith. For this invention, they shared
the 2009 Physics Nobel Prize with Charles K. Kao, who was awarded the
prize for his work on optical �bers [80].

Eyes in animals are photodetectors. The retina of the human eye is an
array composed of around 120 million rod cells and 6 to 7 million cone cells
[81]. These cells convert light to electrical impulses which are sent to the
brain.
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6.7.2 Measures of Photodetectors

The frequency response is one of the most important measures of a photode-
tector. Often it is plotted versus wavelength or photon energy instead of
frequency. A photodetector is only sensitive within a particular wavelength
range, and the frequency response is often not �at.

As with all types of sensors, signal to noise ratio is another important
measure. While photodetectors have many sources of noise, one major
source is thermal noise due to the random motion of charges as they �ow
through a solid [9, p. 220]. To mitigate thermal noise in photodetectors
used to detect very weak signals, the detectors are cooled with thermoelec-
tric devices or using liquid nitrogen. A measure related to signal to noise
ratio is the noise equivalent power. It is de�ned as the optical power in
watts that produces a signal to noise ratio of one [82].

Another measure of a photodetector is the detectivity, denoted D*, in

units
cm·(Hz1/2)

W . It is a measure of the strength of the output assuming a
one watt optical input. By de�nition, it is equal to the square root of the
area of the sensor times the bandwidth under consideration divided by the
noise equivalent power [82] [83, p. 654].

D∗ =

√
Area · Bandwidth

Noise Equivalent Power

Figure 6.17 shows detectivity versus wavelength for optical detectors made
of various semiconductors.

Photodetectors are also characterized by their response times. Response
time is de�ned as the time needed for a photodetector to respond to a step-
like optical input [82]. Typical response times can range from picoseconds
to milliseconds [83, p. 656]. There may be a tradeo� between response
time and sensitivity, so some detectors are designed for fast operation while
others are design for higher sensitivity [9, p. 220].



6 PHOTOVOLTAICS 135

Figure 6.17: Spectral response of a variety of photodetectors. This �gure
is used with permission from Hamamatsu [82].
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6.8 Problems

6.1. Rank the materials from smallest energy gap to largest energy gap:

• Indium arsenide, InAs

• Aluminum arsenide, AlAs

• Gallium arsenide, GaAs

6.2. The energy level diagram for a silicon pn junction is shown in the
�gure below. Part of the device is doped with Ga atoms, and part of
the device is doped with As atoms. Label the following:

• The valence band

• The conduction band

• The energy gap

• The n-type region

• The p-type region

• The depletion layer

• The part of the device doped with Ga

• The part of the device doped with As
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6.3. The �gure in the previous problem shows the energy level diagram
for a semiconductor pn junction.

(a) If this pn junction is used in an LED, what will be the wavelength
in nm of the light emitted by the LED?

(b) If this pn junction is used as a solar cell, what range of wave-
lengths of light will be absorbed by the solar cell?

6.4. A semiconductor is used to make an LED that emits red light at
λ = 630 nm.

(a) Find the energy gap in eV of the semiconductor.

(b) Find the energy in joules of a photon emitted.

(c) Find the energy in joules for Avogadro constant number of these
photons.

6.5. The �gure below shows the energy level diagram for a gallium arsenide
LED.

(a) Find the energy gap.

(b) Find the energy of a photon emitted by the LED.

(c) Find the frequency in Hz of a photon emitted by the LED.

Ef

Position

E
n
e
r
g
y
 
i
n
 
e
V

3.0

2.5

2.0

1.5

1.0

0.5



138 6.8 Problems

6.6. Use Fig. 6.6 to answer this question.

(a) Suppose you would like to make an LED that emits red light with
a wavelength of 650 nm. Suggest three possible semiconductor
materials that could be used.

(b) Suppose you would like to make a layered solar cell using layers
of the following materials: InP, In0.5Ga0.5As , and AlAs0.5Sb0.5,
Which layer would be on top, in the middle, and on the bottom
of the device, and why?

6.7. Use Fig. 6.6 to answer this question.

(a) Find the energy gap of InP0.1As0.9 in the units of joules.

(b) If InP0.1As0.9 is used to make an LED, �nd the expected fre-
quency, in Hz, of the photons emitted.

(c) Would it be better to make a solar cell out of gallium phosphide
or indium phosphide? Why?

6.8. A solar panel produces an average power of 800 W. The panel is in a
location which receives an average of 0.07 W

cm2 of optical energy from
the sun. Assume the panel has an e�ciency of 9%.

(a) Calculate the surface area of the solar panel in units m2.

(b) Calculate the average amount of energy (in eV) produced in one
week.

6.9. A solar panel has an area of 50 m2, and it produces an average of 4
kW of power. The panel is in a location which receives an average of
0.085 W

cm2 of optical energy from the sun. Calculate the e�ciency of
the panel.
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7 Lamps, LEDs, and Lasers

7.1 Introduction

Chapter 6 discussed devices that convert light to electricity. In this chapter,
we discuss devices that convert electricity to light. These devices vary
widely in size and shape from tiny Light Emitting Diodes (LEDs) and
semiconductor lasers to large high power gas lasers. In addition to LEDs
and lasers, lamps and optical ampli�ers are also discussed.

We take lamps for granted now because they are present in practically
all buildings. However, their invention dramatically improved human pro-
ductivity because lamps allowed people to constructively use indoor spaces
at night. Similarly, lasers have improved productivity in many activities.
We encounter them almost daily in our use of communications networks,
DVD players, medical devices, and in other applications.

7.2 Absorption, Spontaneous Emission, Stimulated Emis-

sion

Absorption, spontaneous emission, and stimulated emission are three re-
lated energy conversion processes. Chapter 6 discussed devices based on
absorption including solar cells and photodetectors. Devices which operate
based on spontaneous emission include LEDs and lamps. Optical ampli�ers
and lasers operate based on stimulated emission.

7.2.1 Absorption

Absorption is the process in which optical energy is converted to internal
energy of electrons, atoms, or molecules. When a photon is absorbed, the
energy may cause an electron in an atom to go from a lower to a higher
energy level, thereby changing the internal momentum of the electron and
the electron's internal quantum numbers. This process was illustrated in
Chapter 6 by energy level diagrams. Energy in a solar cell or photodetector
is then converted to electricity because the excited charge carriers can travel
more freely through the material. The electrons absorbing the energy may
be part of atoms which make up solids, liquids, gases, or plasmas. They
may be around isolated neutral atoms, ionic compounds, or complicated
organic molecules. Furthermore the electrons absorbing the energy may be
part of conductive, insulating, or semiconducting materials. The photons
absorbed may be optical photons, with individual energies in the range 1.9
to 3.1 eV that can be detected by human eyes. Alternatively, they may have
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energies that are multiple orders of magnitude larger or smaller than the
energy of a visible photon. For example, in isolated neutral neon atoms in
the ground state, electrons occupy the 2p energy level but not the 3s energy
level. These energy levels are separated by an energy gap of Eg = 1.96 eV
which corresponds with energy of red photons of wavelength 632.8 nm [31].
If a photon of this energy impinges upon neon gas, the photon may be
absorbed, and an electron of a neon atom would be excited to the higher
energy level. Photons of smaller energy would not be absorbed. Photons
of larger energy may be absorbed depending on allowed energy levels. As
another example, the energy gap of the semiconductor gallium phosphide,
GaP, is 2.2 eV which corresponds with the energy of a green photon of
wavelength 549 nm. If a photon of this energy impinges on a piece of
gallium phosphide, it may be absorbed.

7.2.2 Spontaneous Emission

Spontaneous emission is an energy conversion process in which an excited
electron or molecule decays to an available lower energy level and in the pro-
cess gives o� a photon. This process occurs naturally and does not involve
interaction of other photons. The average time for decay by spontaneous
emission is called the spontaneous emission lifetime. For some excited en-
ergy levels this spontaneous decay occurs on average within nanoseconds
while in other materials it occurs within a few seconds [10, p. 480]. As
with absorption, this process can occur in isolated atoms, ionic compounds,
molecules, and other types of materials, and it can occur in solids, liquids,
and gases. Energy is conserved when the electron decays to the lower level,
and that energy must go somewhere. The energy may be converted to
heat, mechanical vibrations, or electromagnetic photons. If it is converted
to photons, the process is called spontaneous emission, and the energy of
the photon produced is equal to the energy di�erence between the electron
energy levels involved. The emitted photon may have any direction, phase,
and electromagnetic polarization.

There are many ways in which an electron can be excited to a higher
energy level [10, p. 455]. Spontaneous emission processes may be classi�ed
based on the source of energy which excites the electrons, and these classes
are listed in Table 7.1. If the initial source of energy for spontaneous emis-
sion is supplied optically, the process is called photoluminescence. Glow in
the dark materials emit light by this process. If the initial form of energy
is supplied by a chemical reaction, the process is called chemiluminescence.
Glow sticks produce spontaneous emission by chemiluminescence. If the
initial form of energy is supplied by a voltage, the process is called electro-
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Spontaneous emission energy source

Photoluminescence Optical electromagnetic waves
Chemiluminescence Chemical reactions
Electroluminescence Applied voltages
Sonoluminescence Sound waves
Bioluminescence Biological processes

Table 7.1: Spontaneous emission is classi�ed based on the source of energy
[10, p. 455].

luminescence. LEDs emit light by electroluminescence. If the initial form
of energy is caused by sound waves, the process is called sonoluminescence.
If the initial form of energy is due to accelerated electrons hitting a target,
this process is called cathodoluminescence. If spontaneous emission occurs
in a living organism, such a �re�y, the process is called bioluminescence.

At temperatures above absolute zero, some electrons in atoms are ther-
mally excited to energy levels above the ground state. These electrons decay
and emit a photon by spontaneous emission. Any object at a temperature
above absolute zero naturally emits photons by spontaneous emission, and
this process is called blackbody radiation. In 1900, Max Planck derived a
formula for the energy density per unit bandwidth of a blackbody radiator
by making the assumption that only discrete energies are allowed [10, p.
453]. His work agreed with known experimental data, and it is one of the
fundamental ideas of quantum mechanics. More speci�cally, the spectral
energy density per unit bandwidth, u in units J·s

m3 , is given by

u =
8πf 2

c3
· hf

e(hf/kBT ) − 1
. (7.1)

Equation 7.1 includes a number of constants including c the speed of light
in free space, h the Planck constant, and kB the Boltzmann constant. Ad-
ditionally, f is frequency in Hz, and T is temperature in kelvins. For a nice
derivation, see [84, p. 186]. The �rst term represents the number of modes
per unit frequency per unit volume while the second term represents the
average energy per mode. The expression can be written as a function of
wavelength instead of frequency with the substitution f = c

λ
.

Photons emitted by a blackbody radiator have a relatively wide range of
wavelengths, and this bandwidth depends on temperature. Figure 7.1 plots
the energy density per unit bandwidth for blackbody radiators as a function
of wavelength at temperatures 3000, 4000, and 5000 K. Room temperature
corresponds to around 300 K. Visible photons have wavelengths between
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Figure 7.1: Spectral energy density of a blackbody radiator. This �gure is
in the public domain [85].

400 nm < λ < 650 nm. From the �gure, we can see that black body
radiators at higher temperatures emit both more photons and have a larger
fraction of photons emitted fall in the visible range.

7.2.3 Stimulated Emission

Stimulated emission is the process in which an excited electron or molecule
interacts with a photon, decays to an available lower energy level, and in
the process gives o� a photon. As with the other processes, this process
can occur in isolated atoms, ionic compounds, organic molecules, and other
types of materials, and it can occur in solids, liquids, and gases. If an in-
coming photon, with energy equal to the di�erence between allowed energy
levels, interacts with an electron in an excited state, stimulated emission
can occur. The energy of the excited electron will be converted to the
energy of a photon. The stimulated photon will have the same frequency,
direction, phase, and electromagnetic polarization as the incoming photon
which initiated the process [10, p. 436].
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Figure 7.2: Energy level diagrams illustrating absorption, spontaneous
emission, and stimulated emission.

7.2.4 Rate Equations and Einstein Coe�cients

The processes of absorption, spontaneous emission, and stimulated emis-
sion are illustrated by energy level diagrams in Fig. 7.2. Energy is on the
vertical axis, and nothing is plotted on the horizontal axis. Only two energy
levels are shown, so this diagram illustrates only a small fraction of possi-
ble energy levels of a material. The lower energy level is labeled 1. It may
represent, for example, the highest occupied energy level of an electron in
an isolated atom, or it may represent the valence band of a semiconductor.
The higher energy level is labeled 2, and it may represent the lowest un-
occupied energy level of an electron in an isolated atom or the conduction
band of a semiconductor. The dot represents an electron occupying the
energy level at the start of the process. The squiggly arrows represent a
photon absorbed or emitted by the process. The vertical arrow shows how
the internal energy of the electron changes in the process. During absorp-
tion, an electron takes energy from an incoming photon, and the internal
energy of the electron increases. During spontaneous emission, the inter-
nal energy of an electron decreases, and a photon is emitted. Stimulated
emission occurs when a photon, with energy equal to the energy gap of the
levels, interacts with the electron. In the process, the electron decays to
the lower energy level, and a photon is produced with the same frequency,
direction, phase, and electromagnetic polarization as the original photon.
The �gures do not illustrate a change in position of the electrons. Instead,
they illustrate a change in energy and internal momentum.

The descriptions of the processes above involve changes in energy levels
of an electron. However, absorption, spontaneous emission, and stimulated
emission can instead involve vibrational energy states of molecules. For ex-
ample, a photon may be absorbed by a molecule, and the energy may cause
the molecule to go from one allowed vibrational state to another with higher
internal energy. Similarly, this molecule may spontaneously decay from the
higher energy state to a lower energy state emitting a photon by sponta-
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neous emission or by stimulated emission. An example involving molecular
vibration states is a carbon dioxide laser. This laser produces infrared light
by stimulated emission at λ = 10.6 µm, and the stimulated emission oc-
curs between allowed vibrational energy levels of the CO2 molecule [31, p.
217]. However, to simplify the discussion in this text, we will assume that
electron energy levels are involved. This assumption is true in most, but
not all, energy conversion devices.

What factors determine the rate of these processes? Assume only two
energy levels are involved. The number of electrons per unit volume in the
lower state will be denoted n1, and the number of electrons per unit volume
in the upper state will be denoted n2. The rate of absorption will be denoted
dn2

dt

∣∣
abs
, the rate of spontaneous emission will be denoted dn2

dt

∣∣
spont

, and the

rate of stimulated emission will be denoted dn2

dt

∣∣
stim

. Since only two energy
levels are involved in this system, we can describe the rates of the processes
either in terms of the upper or lower energy levels. For example, we can
write the rate of absorption either as the change in population density with
respect to time of the upper state or the change in population density with
respect to time of the lower state.

dn2

dt

∣∣∣∣
abs

= − dn1

dt

∣∣∣∣
abs

(7.2)

Absorption can only occur if there is an electron present in the lower
energy level. Furthermore, the rate of absorption is proportional to the
number of electrons in the lower state. Additionally, the rate of absorption
depends on the number of incoming photons. As in Eq. 7.1, u represent
the spectral energy density per unit bandwidth in units J·sm3 . We can model
the rate of absorption in terms of these factors [84, ch. 6] [86, ch. 7].

dn2

dt

∣∣∣∣
abs

= − dn1

dt

∣∣∣∣
abs

= B12n1u (7.3)

The constant of proportionality B12 is called an Einstein B coe�cient, and
it has units m3

J·s2 .
Spontaneous emission depends on the number of electrons in the upper

energy level. We can model the rate of spontaneous emission as

dn2

dt

∣∣∣∣
spont

= − dn1

dt

∣∣∣∣
spont

= −A21n2 (7.4)

The constant of proportionality A21 is called the Einstein A coe�cient, and
it has units 1

s
[84, ch. 6] [86, ch. 7]. No photons are needed to initiate

spontaneous emission.
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We can model the rate of stimulated emission as

dn2

dt

∣∣∣∣
stim

= − dn1

dt

∣∣∣∣
stim

= −B21n2u. (7.5)

The constant of proportionality B21 is known as another Einstein B co-

e�cient, and it also has units m3

J·s2 [84, ch. 6] [86, ch. 7]. The rate of
stimulated emission is dependent on the number of electrons in the upper
energy level. Stimulated emission requires an incoming photon, so the rate
also depends on the spectral energy density per unit bandwidth u.

By considering the factors that a�ect the rate of absorption, sponta-
neous emission, and stimulated emission, we can see some similarities and
di�erences in the processes. As absorption occurs, the population of elec-
trons in the upper energy level increases, and the population of the lower
energy level decreases. As both spontaneous and stimulated emission oc-
curs, the population of the upper energy level decreases, and the population
of the lower energy level increases. Both the rate of absorption and the rate
of stimulated emission depend on both the population of electrons in an
energy level and the energy of incoming photons while the rate of sponta-
neous emission does not depend on the energy of incoming photons. This
similarity between absorption and stimulated emission is re�ected in the
rate equations, Eqs. 7.3 and 7.5.

Einstein showed that if one of the coe�cients describing the absorp-
tion, spontaneous emission, or stimulated emission is known, the other
coe�cients can be calculated from it. We can combine the terms above to
�nd the overall upper state population rate.

dn2

dt
= −A21n2 +B12n1u−B21n2u (7.6)

At equilibrium, where photons are absorbed and emitted at the same rate,
this population rate is zero.

dn2

dt

∣∣∣∣
equilibrium

= 0 = −A21n2 +B12n1u−B21n2u (7.7)

We can solve for the energy density per unit bandwidth, u.

B12n1u−B21n2u = A21n2 (7.8)

u =
A21

n1

n2
B12 −B21

(7.9)
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In the expression above, n1

n2
represents the electron density in the lower

energy state divided by the electron density in the upper state in equilib-
rium. This quantity is a function of temperature. Assuming many allowed
energy states, the number of occupied states decreases exponentially with
temperature, an idea known as Boltzmann statistics.

n2

n1

=
g2

g1

e
−hf
kBT (7.10)

The quantity g2
g1

represents the degeneracy level which is the number of
allowed electrons in the upper state over the number of allowed electrons
in the lower state [84, p. 186]. In this expression, g1 and g2 are unitless
measures of the number of ways electrons can occupy an energy states.
Equations 7.10 and 7.11 can be combined.

u =
A21(

g1
g2
e

hf
kBT

)
B12 −B21

(7.11)

u =
A21

B21

g1B12

g2B21
e

hf
kBT − 1

(7.12)

Consider a blackbody radiator, a conducting wire which is continually
supplied with heat so that it remains at temperature T in equilibrium.

dn2

dt

∣∣∣∣
equilibrium

= 0 (7.13)

One expression for the energy density per unit bandwidth of this system is
given by Eq. 7.1. Equation 7.12 gives a second expression for the energy
density per unit bandwidth, and it was found by considering the relative
rates of absorption, spontaneous emission, and stimulated emission. These
equations can be combined to relate the rates of the di�erent processes.

8πhf 3

c3
· 1

e(hf/kBT ) − 1
=

A21

B21

g1B12

g2B21
e

hf
kBT − 1

(7.14)

The above equation is true for the conditions

A21

B21

=
8πhf 3

c3
(7.15)

and
g1B12

g2B21

= 1. (7.16)
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If we know one of the Einstein coe�cients, we can quickly calculate the
other two Einstein coe�cients from Eqs. 7.15 and 7.16.

These equations provide further insight into the operation of lasers and
other devices based on stimulated emission. The overall nonequilibrium
upper state population rate is given by

dn2

dt
= −A21n2 +B21

g2

g1

n1u−B21n2u (7.17)

which can be simpli�ed with some algebra.

dn2

dt
= −A21n2 − uB21

(
n2 −

g2

g1

n1

)
(7.18)

The term in parenthesis is the net upper state population. Optical ampli-
�cation and lasing can only occur when the term in parenthesis is positive.
The condition

n2 −
g2

g1

n1 > 0 (7.19)

is called a population inversion [86, p. 189]. It only occurs when enough
energy is being supplied to the system, by optical, electrical, or thermal
means, so that there are more electrons in the upper energy level than the
lower energy level. Population inversion has nothing to do with inversion
symmetry discussed in Sec. 2.3.2. See Appendix C for a discussion of
inversion and other overloaded terms.

7.3 Devices Involving Spontaneous Emission

Spontaneous emission occurs in many commercially available consumer
products. This section discusses three categories of devices that convert
electricity to light by spontaneous emission: incandescent lamps, gas dis-
charge lamps, and LEDs.

7.3.1 Incandescent Lamps

An incandescent lamp is a device that converts electricity to light by black-
body radiation. These devices are typically constructed from a solid metal
�lament inside a glass walled vacuum tube. A current passes through the
�lament which heats it to a temperature of thousands of degrees. High
temperatures are used because the visible spectral response of daylight is
close to the visible spectral response of a blackbody radiator at a temper-
ature of 6500 K [87]. The main limitation of incandescent lamps is their
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e�ciency. Much of the electromagnetic radiation emitted by a blackbody
radiator falls outside the visible range.

The main advantage of incandescent lamps over other technologies is
their simplicity. For this reason, incandescent lamps were some of the
earliest lamps developed. Humphry Davy demonstrated that blackbody
radiation could be used to produce visible light in 1802, and practical in-
candescent lamps date to the 1850s [88]. In order to develop these practical
incandescent lamps, vacuum pumping technology had to be developed, and
technology to purify the metal used to make lamp �laments was required
[88].

In some ways, an incandescent lamp is similar to an antenna. In both
cases, the input takes the form of electricity, and this electrical energy is
converted to electromagnetic energy by passing through a conducting wire.
In an antenna, the input is time varying to encode information, and the
output is at radio or microwave frequencies. However, in an incandescent
lamp, the input is typically AC and does not contain information. The
desired output of an incandescent lamp is visible light, but it also produces
heat and electromagnetic radiation at infrared frequencies and at other
non-visible frequencies. Additionally, antennas are typically designed to
operate at a wavelength close to the length of the antenna, and such an-
tennas can produce waves with speci�c electromagnetic polarization and
radiation patterns. Spontaneous emission in incandescent lamps, however,
is necessarily unpolarized and incoherent.

7.3.2 Gas Discharge Lamps

A gas discharge occurs when a conducting path forms through a plasma,
an ionized gas [89]. Gas discharge devices convert electricity to light by
spontaneous emission when this type of conducting path forms. In 1802
in addition to demonstrating blackbody radiation and proposing the idea
of a fuel cell, Humphry Davy demonstrated a gas discharge device [3, p.
222] [88]. W. Petrov demonstrated a gas discharge around the same time
[88]. One of the �rst practical gas discharge lamps, a carbon arc lamp, was
built by Leon Foucoult in 1850, and it was used for theater lighting [88].
Development of gas discharge lamps required the ability to purify gases in
addition to the development of vacuum pumping technology [88]. Examples
of gas discharge devices in use today include include sodium vapor lamps,
mercury arc lamps, �uorescent lamps, and neon advertising signs [89].

A gas discharge lamp is made from a sealed tube containing two elec-
trodes and �lled by a gas. The glass tube contains the gas, maintains the
gas pressure, and keeps away impurities. The pressure of the gas inside the
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tube can range from 10−4 Pa to 105 Pa for di�erent lamps [87, p. 206].
Typical electrode spacing is on the order of centimeters [87]. Some neon
bulbs have an electrode spacing of 1 mm while many �uorescent tubes have
an electrode spacing over 1 m. Hundreds to millions of volts are applied
across the electrodes [89]. Transformers are used to achieve these high
voltage levels. The voltage between the electrodes ionizes the gas inside
the tube and provides a supply of free electrons which travel along the
conducting path between the electrodes [89]. The gas may be ionized, and
electrons supplied, by other methods such as chemical reactions, a static
electric �eld, or an optical �eld instead [87, Ch. 5]. Electrons may also
be supplied to the gas by thermionic emission, boiling electrons o� the
cathode.

The optical properties of the lamp are determined by the gas inside
the tube. Energy supplied by the electric �eld across the electrodes, or
other means, excites electrons of the gas atoms to higher energy levels.
Spontaneous emission occurs between distinct allowed energy levels only,
so the emission occurs over relatively narrow wavelength ranges. Gases are
chosen to have allowed energy level transitions in the desired wavelength
range. Typical gases used include helium, neon, sodium, and mercury [87,
p. 514].

Gas discharge lamps are classi�ed as either glow discharge devices or arc
discharge devices. Figure 7.3 shows an example plot of the current between
electrodes as a function of voltage. As shown in the �gure, the current-
voltage characteristic of a gas discharge tube is quite nonlinear. However,
it can be broken up into three general regions, denoted the dark region, the
glow region, and the arc region. The regions are distinguished by a change
in slope of the current-voltage plot. This �gure is used with permission
from [89] which provides more details on the physics of gas discharges.

The dark region of operation corresponds to low currents and voltages,
and devices operating in this region are said to have a dark or Townsend
discharge. Optical emission from devices operating in this region are not
self sustaining. While atoms of the gas may ionize and collide with other
atoms, no chain reaction of ionization occurs. The transition between the
dark and glow discharges is called the spark [87, p. 160]. In Fig. 7.3,
VS is the sparking voltage. The second region, corresponding to higher
currents, is called the glow region, and this region is called self sustaining
because ions collide and ionize additional gas atoms producing more free
electrons in an avalanche process. Signi�cant spontaneous emission occurs
in the glow discharge region [87] [89]. The third region, corresponding to
even higher current, is called the arc region. Arc discharges are also self
sustaining [87, p. 290], and spontaneous emission is produced. Once the
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Figure 7.3: Example current-voltage characteristics of a gas discharge
lamp. Figure used with permission from [89].

arc discharge is established, relatively low voltages are required to maintain
it compared to the voltages needed to maintain the glow discharge.

Fluorescent lamps are a type of gas discharge device that involves the
use of chemicals with desired optical properties, called phosphors [87, p.
542]. The gas and electrode voltage used in �uorescent lamps is chosen
to so that the spontaneous emission produced is at ultraviolet frequencies.
These UV photons may be produced by either an arc or glow discharge.
The UV photons produced are absorbed by the phosphor molecules, and the
phosphor molecules emit light at lower frequencies. Examples of phosphors
used include zinc silicate, calcium tungstate, and zinc sul�de [87, p. 542].

7.3.3 LEDs

LEDs are devices that convert electricity to light by spontaneous emis-
sion. They are made from pn junctions in semiconductors. Pn junctions
were discussed in Section 6.5. When a forward bias is applied across a pn
junction, electrons and holes are injected into the junction. The energy
from the power supply excites electrons from the valence to the conduction
bands. These excited electrons can �ow through the material much more
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easily than unexcited electrons. Some of the electrons and holes near the
junction combine and spontaneously emit photons in the process. Some
LEDs have a thin intrinsic, undoped, layer between the p-type and n-type
layers at the junction to improve e�ciency.

LEDs emit light over a relatively narrow range of frequencies. The
frequency of light emitted is determined by the energy gap of the semi-
conductor. Semiconductors are used because the energy gap of semicon-
ductors corresponds to the energy of near ultraviolet, visible, or infrared
photons. While light emitted by an LED has a narrow range of frequencies,
lasers emit light with a much narrower range of frequencies. LEDs emit
light within a narrow frequency range, but applications, such as residential
lighting, require white light with a broader bandwidth. One strategy used
to produce white light from an LED is to use phosphors. In such a device,
an LED converts electricity to near UV or blue light. The phosphors ab-
sorb the blue light and emit light at lower energies, at wavelengths in the
visible range. For this reason, blue LEDs were particularly important for
generating white light. It took decades from the invention of red LEDs in
the 1960s until reliable blue LEDs were developed in the 1980s and 1990s.
In 2014, Isamu Akasaki, Hiroshi Amano and Shuji Nakamura were awarded
the Nobel Prize in physics for their work developing blue LEDs. This e�ort
required the development of deposition technology for new materials like
gallium nitride, and it required being able to deposit these materials in
very pure layers without mechanical strain tearing the materials apart [90].

A related device which emits light by spontaneous emission is an or-
ganic light emitting diode, OLED. In an OLED, a voltage excites electrons
in a thin layer, 100-200 nm, of an organic material, and the type of organic
material used determines the wavelength of light emitted [91]. Some �at
panel displays are made from arrays of OLEDs. White light in these dis-
plays is achieved from a combination of red, green, and blue OLEDs near
to each other [91].

LEDs are small devices that can often �t into a cubic millimeter. For
this reason, they can be integrated into electronics more easily than devices
like incandescent lamps and gas discharge lamps which require vacuum
tubes. LEDs require low voltages electricity to operate. Since they require
a small amount of input electrical power, they produce a small amount of
output optical power. Incandescent lamps and gas discharge lamps have
advantages in high power applications, but arrays of LEDs can also be used
in these applications. Another advantage of LEDs is that they have a longer
useful lifetime. In gas discharge lamps, the electrodes sputter, depositing
material onto the surface of the tube, limiting the lifetime of the device.



152 7.4 Devices Involving Stimulated Emission

7.4 Devices Involving Stimulated Emission

7.4.1 Introduction

Lasers are devices that produce optical energy through stimulated emis-
sion and involve optical feedback. The word laser is an acronym for Light
Ampli�cation by Stimulated Emission of Radiation. Lasers come in a wide
range of sizes and shapes. Some lasers produce continuous output power,
denoted cw for continuous wave, and other lasers operate pulsed. One ad-
vantage of pulsed operation is that the peak intensity of the light produced
can be extremely high even with moderate average input power. Some
lasers are designed to operate at room temperature while other lasers re-
quire external cooling.

The development of many energy conversion devices required techno-
logical breakthroughs. The development of lasers, however, was preceded
by breakthroughs in understanding of energy conversion processes in atoms
and molecules. The idea of ampli�cation by stimulated emission was �rst
developed in the mid 1950s, [31, p. 183] [83, p. 687]. A maser, which oper-
ated at microwave frequencies, was demonstrated only a few years later by
Gordon, Zeiger, and Townes in around 1955 [83, p. 687]. In 1960, a ruby
laser with visible output at λ = 694 nm was demonstrated by Maiman,
[83, p. 687]. Lasing in semiconductors was predicted in 1961 [92] and
demonstrated within a year in gallium arsenide [93]. The development of
semiconductor lasers required both the theoretical prediction as well as de-
velopment in the ability to deposit pure thin semiconductor layers. Thin
crystalline layers grown on top of a substrate are called epitaxial layers.
Early semiconductor lasers were made by growing epitaxial layers from a
liquid melt, through a process called liquid phase epitaxy [94]. In sub-
sequent years, other methods which allowed more control and precision
were developed including molecular beam epitaxy [95] and metal organic
chemical vapor deposition [96].
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Figure 7.4: Components of a laser.

7.4.2 Laser Components

Lasers have three main components: a power supply also called a pump,
an active material, and a cavity. These components are illustrated in Fig.
7.4 where mirrors form the cavity. Input energy from the power supply
excites electrons or molecules in the active material. A photon interacts
with the excited electrons or molecules of the active material stimulating
the emission of a photon at the same frequency, phase, direction, and elec-
tromagnetic polarization. The cavity re�ects the photon back to the active
material so that it can stimulate another photon, and this process continues
to occur as these photons stimulate additional identical photons.

Pumps

Laser power supplies are called pumps. Energy may be supplied to lasers
in di�erent ways. For many lasers, energy is supplied electrically. For
example, the pump of a semiconductor laser is typically a battery which
supplies a DC current. These lasers are energy conversion devices which
convert the input electricity to light. For other lasers, energy is supplied
optically, so the pump is a lamp or another laser. These lasers are energy
conversion devices which convert light with large energy per photon to light
with smaller energy per photon. The power supply of early ruby lasers were
�ashlamps [86, p. 351]. As another example, argon ion lasers are used to
pump titanium doped sapphire lasers. Argon ion lasers can be tuned to
emit photons with energy 2.54 eV (λ = 488 nm). These photons excite
electrons in titanium doped sapphire. Titanium doped sapphire lasers are
tunable solid state lasers which emit near infrared light [86, p. 392].
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Active Materials

Active materials can be solids, liquids, or gases, and lasers can be classi�ed
based on the state of matter of the active material. The active material of
a laser has multiple allowed energy levels, and energy conversion occurs as
the active material transits between energy levels. When an electron tran-
sits between energy levels, its internal momentum changes, not its spatial
position. Typically, the pump excites an electron from a lower to higher
allowed energy level, and a photon is emitted when the electron goes from
a higher to lower energy level. In some lasers such as carbon dioxide lasers,
however, molecular vibration states are involved instead of electron energy
states.

Optical ampli�cation and lasing can only occur when there is a popula-
tion inversion in the active material. The term population inversion means
that more electrons are in the upper energy level than the lower energy
level. The condition for a population inversion was de�ned by Eq. 7.19. A
photon begins the process of stimulated emission, and another photon is
produced in the process. Only in the case of a population inversion can the
resulting photon be more likely to stimulate another photon than decay by
spontaneous emission, by emitting phonons, or by other means.

In some lasers, called two level lasers, the pump excites an electron
from a lower energy level to a higher energy level, and lasing occurs as
the electron transits back and forth between the same two levels. In other
lasers, more energy levels must be considered. Figure 7.5 illustrates possible
electron transitions in two, three, and four level lasers, but other three and
four level schemes are possible too. In the three level system illustrated in
the �gure, the pump excites electrons from level one to level three. The
electrons quickly decay to level two, possibly emitting heat, and lasing
occurs as electrons transit from level two to level one. In the four level
scheme illustrated, the pump excites electrons from level one to four. The
electrons quickly decay from level four to three, emitting heat in the process.
Lasing occurs between energy levels three and two. The electrons then
decay between levels two and one, again emitting heat, vibration, or some
other form of energy. Some four level systems lase more easily than two
level systems because a population inversion may be easier to achieve in
four than two level systems. Lasing requires a population inversion, and
level two may be less likely to be occupied than level one.
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Figure 7.5: Example energy level diagram for two, three, and four level
lasers.

Cavities

Laser cavities have two main functions. They con�ne photons to the active
material and they act as optical �lters. The simplest optical cavity is made
from two mirrors as shown in Fig. 7.4. This type of cavity is called a Fabry
Perot cavity. More complicated cavities have multiple mirrors, lenses, and
other optical components to focus the desired photons within the active
material and reject photons at frequencies other than the desired frequency.
Semiconductor lasers do not use separate mirrors to form the cavity. In
some semiconductor lasers, the edges of the semiconductors act as mirrors
because the index of refraction of the semiconductor is larger than that
of the surrounding air thereby re�ecting a portion of the light back inside
the semiconductor. The edges of these lasers are formed by cleaving along
crystal planes to produce extremely �at surfaces. In other semiconductor
lasers, multiple thin layers of material act as mirrors.

Even without an active material present, an optical cavity acts as an
optical �lter that selectively passes or rejects light of di�erent wavelengths.
To understand this idea, consider the rectangular cavity shown in Fig. 7.6.
Assume that the cavity has partial mirrors on the left and right side so that
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Figure 7.6: The solid arrow shows the longitudinal direction while the
dotted arrows show the transverse directions. The solid sinusoid shows an
allowed longitudinal mode. The cavity length in the longitudinal direction
is equal to 3λ

2
. The dotted sinusoids show allowed transverse modes. The

cavity lengths in the transverse directions are equal to λ
2
.

some light can enter the cavity on the left side and some light can exit the
cavity on the right. The direction along the length of the cavity, illustrated
by the solid arrow, is called the longitudinal direction. The other two
directions, illustrated by dotted arrows, are called transverse directions. If
the longitudinal length of the cavity is exactly equal to an integer number
of half wavelengths of the light, the wave will constructively interfere with
itself. However, if the longitudinal length of the cavity is not equal to
an integer number of half wavelengths, it will destructively interfere. The
same ideas apply in the transverse directions. In the �gure, the longitudinal
length of the cavity is equal to three half wavelengths shown by the solid
sinusoid. The transverse lengths are both equal to one half wavelength
shown by the dotted sinusoids. Because of this constructive or destructive
interference, cavities selectively allow certain wavelengths of light to pass
through while they attenuate other wavelengths of light. In a typical laser
cavity, the ratio of the longitudinal length to the transverse lengths is much
larger than is shown in Fig. 7.6. Figure 7.6 illustrates a rectangular cavity
while many lasers have cylindrical cavities instead. The same ideas apply,
so only certain allowed longitudinal and transverse modes propagate in
cylindrical cavities too [86, p. 133,145].

If there is a pump and an active material in a cavity, this �ltering e�ect
encourages lasing to occur at speci�c wavelengths due to the feedback the
cavity provides. As discussed above, stimulated emission occurs when a
photon interacts with an excited electron. The result is another photon of
the same frequency, electromagnetic polarization, phase, and direction as
the original photon. When the pump �rst turns on, electrons are excited,
but no photons are present. Very soon, some photons are produced by
spontaneous emission. Some of these photons stimulate the emission of ad-
ditional photons. Since the cavity selectively attenuates some wavelengths
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but not others, photons produced by stimulated emission are more likely
to occur at certain wavelengths corresponding to modes in the longitudinal
direction. For these modes, the cavity length is equal to an integer multiple
of half wavelengths. Due to the feedback of the laser cavity, these photons
go on to stimulate additional identical photons. For this reason, the output
of a laser necessarily has a very narrow wavelength range.

7.4.3 Laser E�ciency

The overall e�ciency of a laser is the ratio of the output optical power
over the input power. Many lasers are electrically pumped, and the overall
e�ciency, also known as the wall plug e�ciency, for these lasers is the ratio
of the output optical power over the input electrical power [10, p. 604].

ηeff =
Poptical out
Pelectrical in

(7.20)

The pump, active material, and cavity all a�ect a laser's e�ciency. The
overall e�ciency is the product of a component due to the pump ηpump, a
component due to the active material ηquantum, and a component due to
the cavity ηcavity [86].

ηeff = ηpump · ηquantum · ηcavity (7.21)

These factors vary widely from one type of laser to another.
In an optically pumped laser, a lamp or another laser excites the elec-

trons of the active material. In this case, some of the pump light may
get re�ected from the surface or transmitted through instead of absorbed
by the active material. Also, some of the pump energy may be converted
directly to heat. Additionally, especially in the case of lamps which emit
light over a wide range of frequencies, the pump light may have too little
energy per photon to excite the electrons, or the light may have too much
energy per photon thereby exciting electrons to a di�erent upper energy
level. Also, some of the pump light may interact with electrons that are
already in excited energy states. In an electrically pumped laser, electricity
excites the electrons of the active material. Some of the electrical energy
may be converted to heat instead of exciting the electrons. All of these fac-
tors involving the pump contribute to ηpump and the overall laser e�ciency
ηeff .

The contribution to the overall laser e�ciency due to the active mate-
rial ηquantum is more commonly known as the internal quantum e�ciency.
Some fraction of excited electrons decay to a lower energy level and emit
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a photon by spontaneous or stimulated emission. Alternatively, other ex-
cited electrons decay to a lower energy level while emitting heat or lattice
vibrations instead. The internal quantum e�ciency is the ratio of the rate
with which excited electrons decay and produce a photon over the rate at
which all excited electrons decay [10, p. 562]. It depends on temperature,
the concentration of impurities or crystalline defects, and other factors [10,
p. 596].

E�ciency is also determined by the laser cavity. A laser cavity re�ects
photons towards the active material. However, the laser cavity must let
some light exit. In many lasers, the cavity is formed by mirrors. While
these mirrors re�ect most of the light, some light is absorbed and some light
is transmitted through the mirrors as laser output. Many lasers which use
mirrors include lenses, prisms, and other optical components in the cavity
to focus or �lter light to the active material. These components may also
re�ect or absorb some light and thereby decrease the laser e�ciency. As
mentioned above, the cavity of many semiconductor lasers is formed by
the interface between the active material and the surrounding air. While
external mirrors can re�ect over 99% of photons [86, p. 159], mirrors formed
by semiconductor air interfaces are much less e�cient. The amount of light
re�ected depends on the index of refraction of the material. In gallium
arsenide, for example, the index of refraction is 3.52 which corresponds to
only 31% of light re�ected at each interface [97].

The in�uence on e�ciency of internal absorption and mirror re�ectivity
can be summarized in a single relationship [98].

ηeff = ηeff−other
ln
(

1

R

)
αl + ln

(
1

R

) (7.22)

In this equation, R is the unitless mirror re�ectivity, α is the absorption
coe�cient of the active material in units m−1, and l is the length of the
active material in m. The term ηeff−other represents the e�ciency due to
all other factors besides absorption and mirror re�ectivity, and ηeff is the
overall e�ciency. Equation 7.22 can be rewritten with some algebra.

ηeff = ηeff−other

1− 1

1 + 1
αl

ln
(

1

R

)
 (7.23)

These e�ciency concepts generalize to other energy conversion devices
which produce light. Equation 7.20 also describes the overall e�ciency of
LEDs and lamps in addition to electrically pumped lasers. The concepts
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of e�ciency due to the pump and internal quantum e�ciency also apply to
LEDs and lamps. However, ηcavity is not useful in describing these devices
because LEDs and lamps do not contain a cavity.

7.4.4 Laser Bandwidth

Compared to LEDs and gas discharge lamps, incandescent lamps emit light
over a much wider range of wavelengths. Compared to these devices, lasers
emit light over a much narrower range of wavelengths. One reason that
lasers emit over such a narrow wavelength range is that photons generated
by stimulated emission have the same wavelength as the stimulating pho-
ton. As explained above, another reason is that only light at integer half
multiples of the length of an optical cavity constructively interfere.

This narrow bandwidth of lasers compared to other sources of light
is a major advantage in many applications. For example, lasers generate
communication signals sent down optical �bers. Multiple signals can si-
multaneously be sent down a single �ber with each signal produced by a
laser at a slightly di�erent frequency. Due to the narrow bandwidth, these
signals can be separately detected at the receiver.

Bandwidth of devices which emit light is typically speci�ed by the full
width half maximum bandwidth (FWHM). More speci�cally, intensity of
light emitted is plotted as a function of wavelength where optical intensity
is proportional to the square of the electric �eld. To �nd the FWHM, iden-
tify the wavelength of maximum intensity, and identify the wavelengths
corresponding to half this intensity. The wavelength di�erence between
these points of half intensity is called the FWHM, and this quantity is
speci�ed in meters or more likely nanometers. Sometimes FWHM is spec-
i�ed in units of Hz instead. A frequency response plot, showing intensity
of light emitted versus frequency, is used to �nd FWHM in Hz. Again two
points at half maximum intensity are identi�ed on the plot. The frequency
di�erence between these points of half intensity is the FWHM in Hz. A
related measure is called the quality factor, and lasers with narrow band-
width have high quality factor. It is de�ned as the ratio of the wavelength
in nm of peak intensity emitted over the FWHM in nm. Alternatively, it
is de�ned as the ratio of the frequency of peak intensity over the FWHM
in Hz.

Quality factor =
λpeak intensity in nm

FWHM[nm]
=
fpeak intensity in Hz

FWHM[Hz]
(7.24)

As an example, consider Figs. 7.7 and 7.8 which are from [99]. Figure
7.7 relates to a dye laser where the active material is a liquid solution of
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Figure 7.7: Optical intensity versus wavelength for a dye laser with an
active material of rhodamine 6G mixed with silver nanoparticles. The
curves correspond to two di�erent pump energies, one above the lasing
threshold and the other below the lasing threshold. This �gure is used
with permission from [99].

Figure 7.8: Optical intensity versus pump energy for dye lasers. Curve
a describes a laser with rhodamine 6G as the dye while the other curves
describe a laser with rhodamine 6G mixed with various nanoparticles. This
�gure is used with permission from [99].
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the organic dye rhodamine 6G mixed with silver nanoparticles. Curve a of
Fig. 7.8 relates to a dye laser with rhodamine 6G as the active material.
The other curves of Fig. 7.8 relate to dye lasers with active materials
made from rhodamine 6G doped with various nanoparticles. Typically,
lasing will only occur if the active material is pumped strongly enough. If
less energy is supplied, spontaneous emission occurs. Above a threshold,
some spontaneous emission still occurs, but stimulated emission dominates.
Figure 7.7 plots the intensity of light emitted at two di�erent pumping
levels, above and below the threshold for lasing. From this �gure, we
can see that the bandwidth of light emitted when the device is producing
only spontaneous emission is much broader than the bandwidth of light
emitted when the device is lasing. The FWHM and quality factor in each
case can be approximated from this �gure. For the spontaneous emission
curve, FWHM[nm] ≈ 45 nm and quality factor ≈ 13. For the stimulated

emission curve, FWHM[nm] ≈ 5 nm and quality factor ≈ 115. While these

values are for dye lasers, other types of lasers, especially gas lasers, can
have FWHM values which are orders of magnitude smaller, and values of
0.01 nm are achievable [83, p. 625]. Figure 7.8 illustrates another feature
typical of lasers. Consider curve a which shows the intensity of the output
versus pump energy supplied. The arrow in the �gure near 65 mJ indicates
the lasing threshold. Once lasing occurs, the intensity of the light emitted
increases due to the optical feedback, so a discontinuity in the slope of plots
of this type can be seen at the lasing threshold.

7.4.5 Laser Types

Engineers have developed many types of lasers utilizing a wide range of ac-
tive materials. Lasers can be classi�ed based on the type of active material
as gas lasers, dye lasers, solid state lasers, or semiconductor lasers. Most
lasers �t into one of these four categories, but there are exceptions such as
free electron lasers where lasing occurs between energy levels of unbound
electrons [31, p. 277] [86, p. 417].

Gas lasers

In a gas laser, the active material is a gas, and lasing occurs between
energy levels of a neutral or ionized atom. Gas lasers are constructed from
a gas �lled glass tube. Electrodes inside the tube supply power to excite
electrons of the gas atoms, and external mirrors form the cavity. One of the
more common gas lasers is the helium neon laser, which typically operates
at 632.8 nm [31, ch. 10]. However, the laser cavity may be designed so
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that lasing occurs at 3.39 µm and at other wavelengths too [31, ch. 10].
Another example of a common gas laser is the argon ion laser in which
lasing occurs between energy levels of ionized argon. One advantage of
gas lasers compared to other types of lasers is that they can be electrically
pumped. Another advantage is that gas lasers can be designed to have
high output powers. For this reason, gas lasers are used in applications
requiring high power such as cutting, welding, and weaponry [86, p. 405].
Carbon dioxide lasers can produce hundreds of kilowatts of power when
operating continuous wave and terawatts of power when operating pulsed
[86, p. 405]. However, gas lasers are often physically large in size and not
as portable as semiconductor lasers. High power gas lasers typically also
require water cooling or another form of cooling.

Dye Lasers

In dye lasers, the active material is a solute in a liquid, and dye lasers are
often optically pumped by other lasers [86, p. 386]. Lasing may occur
between molecular vibration energy levels as opposed to electron energy
levels [31, p. 225] [86, p. 386]. An advantage of dye lasers is that they may
be tunable over a wide range of wavelengths. However, dye lasers require
regular maintenance because the dyes have a �nite useful lifetime [86, p.
391]. One example of a dye used is the organic molecule rhodamine 6G,
and lasers using this dye are tunable from 570 < λ < 610 nm [31, p. 228]
[86, p. 387]. Figures 7.7 and 7.8 illustrate the behavior of a dye laser of
this type.

Solid state lasers

The active material of a solid state laser is a solid insulating material, often
a high purity crystal, doped with some element. Lasing occurs between
electron energy levels of the dopant embedded in the solid. External mirrors
are used to form the cavity. Solid state lasers are typically optically pumped
by lamps or other lasers. A ruby laser is a solid state laser with an active
material made from a crystal of sapphire, Al2O3, doped with around 0.05%
by weight of chromium Cr3+ ions [31, ch. 10 ]. Ruby lasers are three level
lasers [10, p. 476]. Another common solid state laser is a neodymium
yttrium aluminum garnet laser, often denoted Nd:YAG, which is a four
level laser. The active material of this laser is yttrium aluminum garnet
Y3Al5O12 doped with around 1% of neodymium Nd3+ ions, and this laser
produces infrared light at λ = 1.0641 µm [10, p. 478] [31, p. 208] [86, p.
539]. Another common laser is the titanium doped sapphire laser, denoted
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Ti:Sapph. The active material of this laser is sapphire Al2O3 doped with
about one percent of titanium ions Ti3+. This laser is tunable in the range
700 < λ < 1020 nm [86, p. 392]. Tuning is achieved through an adjustable
prism inside the laser cavity and through coatings on the mirrors of the
cavity. Due to the tunability, these lasers are used for spectroscopy and
materials research.

Semiconductor lasers

The active material of a semiconductor laser is a solid semiconductor pn
junctions. An intrinsic, undoped, layer may be added between the p-type
layer and the n-type layer at the junction to increase the width of the de-
pletion region and improve overall e�ciency [10, p. 567]. As with diodes
and LEDs, the entire device typically �ts inside a cubic millimeter. The
wavelength emitted depends on the energy gap of the semiconductor. The
�rst semiconductor lasers were made from gallium arsenide and produced
infrared light [93]. Since then, semiconductor lasers emitting at all visible
frequencies have been produced. It took over thirty years from the time the
�rst semiconductors were produced to the time reliable blue lasers were pro-
duced [90] [100]. The �rst blue semiconductor lasers were produced using
ZnMgSSe, and more commonly now GaN is used. Developing this technol-
ogy required the ability to deposit very pure layers of the semiconductors
without developing mechanical strain in the layers.

Almost all semiconductor lasers are made from direct semiconductors.
It is for this reason that the �rst semiconductor lasers were made from GaAs
even though silicon processing technology was more developed at the time
[93]. Direct semiconductors were de�ned in Section 6.4 and illustrated in
Fig. 6.8. In a direct semiconductor, the top of the valence band and the
bottom of the conduction band line up in a plot of energy levels versus
wave vector |−→k |.

Figure 7.9 is a sketch of energy levels versus wave vector for a direct
semiconductor and an indirect semiconductor. In both cases, an electron
is excited to the conduction band. In both cases, the electron can decay
by spontaneous emission from the conduction band to the valence band.
In both cases, both energy and momentum must be conserved. In the
direct semiconductor case, the electron can decay by emitting a photon.
The electron does not need to change momentum in the process. While
it is not shown in the �gure, the electron can also decay by stimulated
emission. In the indirect case, spontaneous emission can occur, but this
process necessarily requires a change in momentum of the electron too.
While it is possible that spontaneous emission can occur and produce a
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Figure 7.9: Energy level diagram vs. wave vector illustrating spontaneous
emission in a direct and indirect semiconductor.

photon, often the electron decays by producing heat or vibrations instead
of a photon of light [86, p. 444]. For this reason, stimulated emission is
signi�cantly less likely to occur in indirect than direct semiconductors.

As discussed above, semiconductor lasers do not have external mir-
rors. Semiconductor lasers can be broadly classi�ed into two categories,
edge emitters and vertical cavity surface emitting lasers (VCSELs) [101]
depending on whether the optical emission is from the edge or the surface
of the device. In edge emitting lasers, the cavity is often formed by the
edges of the semiconductor. In other edge emitting lasers called distributed
feedback semiconductor lasers, a grating, which acts as an optical �lter, is
etched into the semiconductor. In vertical cavity surface emitting lasers,
multiple epitaxial layers of di�erent materials form mirrors above and below
the active material.

A main advantage of semiconductor lasers over other types of lasers is
their small size. They can be integrated into both consumer devices like
laser pointers and DVD players as well as industrial equipment and com-
munication networks. Another large advantage is that they are electrically
pumped. They also often do not need external cooling due to their rela-
tively high overall e�ciency. Another advantage is that the output wave-
length can be designed by selecting the composition. For example, semi-
conductor lasers of composition In1−xGaxAs1−yPy produce infrared light in
the range 1.1 µm < λ < 1.6 µm. This frequency range is particularly use-
ful for optical communication networks. Fiber optic cables are made from
SiO2 glass, a material with very low but nonzero absorption. Absorption
is a function of wavelength, and the absorption minimum of silica glass is
near 1.55 µm [10, p. 882]. These �bers also have low, but nonzero disper-
sion. Dispersion refers to the spread of pulses as they propagate through
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the �ber. The dispersion minimum in silica glass is around 1.3 µm. [10,
p. 879]. Semiconductor lasers producing light in this range can be used to
transmit signals down optical �bers, and these signals will have very low
absorption and dispersion. A limitation is power output. While a semi-
conductor laser can produce over a watt of power, gas lasers can produce
orders of magnitude more power.

7.4.6 Optical Ampli�ers

Optical ampli�ers are quite similar to lasers, and they can be made from all
types of active materials used to make lasers including gases, solid state ma-
terials, semiconductors, and dyes [10, p. 477]. An optical ampli�er consists
of a pump and active material, but it does not have a cavity. The pump
excites electrons of the active material to an upper energy level. Photons
of an incoming optical signal cause additional photons to be generated by
stimulated emission. Ampli�cation occurs because these incoming photons
generate additional photons, but lasing does not occur without the optical
feedback provided by the cavity.

Erbium doped �ber ampli�ers are one of the most useful types of optical
ampli�ers because of their use in optical communication networks [10, p.
882]. These devices can amplify optical signals without the need to con-
vert them to or from electrical signals. They are solid state devices where
stimulated emission occurs between energy levels of erbium, a dopant, in
silica glass �bers. Energy from a semiconductor laser acts as the pump
which excites electrons of the erbium atoms. Erbium doped �ber ampli-
�ers are very useful because they can amplify optical signals near the �ber
absorption minimum at 1.55µm.

7.5 Relationship Between Devices
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Figure 7.10: Devices which convert between electricity and light can be
classi�ed based on whether they involve absorption, spontaneous emission,
or stimulated emission. Thick borders indicate categories of devices while
thin borders indicate example types of devices.
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categories of devices while thin borders indicate example types of devices.
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Scientists have come up with a wide variety of devices that convert
between electricity and light, and they have come up with a wide variety
of applications for these devices. Covering all such devices and all their
applications is beyond the scope of this text. However, this chapter has
shown some of the variety of devices. One way to classify devices which
convert between electricity and light is to group them into categories based
on whether they primarily involve absorption, spontaneous emission, or
stimulated emission. Figure 7.10 illustrates how to classify many of the
devices discussed in this chapter in this way. Ovals indicate absorption,
rounded rectangles indicate spontaneous emission, and rectangles indicate
stimulated emission. In the �gure, thick borders indicate categories of de-
vices while thin borders indicate example types of devices. Dotted lines
indicate devices with gaseous active materials, dashed lines indicate semi-
conducting active materials, mixed dotted and dashed lines indicate solid
state active materials, widely spaced dotted lines indicate conductive active
materials, and solid lines indicate mixed or other active materials.

This diagram is far from complete because many other categories of
devices exist, and these categories may be broken into further subcategories.
Furthermore, only a handful of example devices are shown relating to some
of the speci�c devices discussed above. This diagram includes absorption
based devices discussed in Chapter 6. It also includes antennas discussed in
Chapter 4. Light is a form of electromagnetic radiation with frequencies in
the visible range. Light can be absorbed by a solar cell and spontaneously
emitted by an LED, for example. Similarly, electromagnetic waves at longer
wavelengths can be absorbed or spontaneously emitted by antennas which
are devices with conductive active materials.

A di�erent way of classifying devices which convert between electricity
and light is to classify them based on the type of active material. All of
these devices involve the interaction of light and atoms. The atoms involved
may be part of a gas, may be dopants inside an insulating solid, may be
part of a bulk semiconductor material, or may be part of a conductive
solid. This way of classifying devices is illustrated in the Fig. 7.11. Dotted
lines indicate devices with gaseous active materials, dashed lines indicate
semiconducting active materials, mixed dotted and dashed lines indicate
solid state active materials, widely spaced dotted lines indicate conductive
active materials, and solid lines indicate mixed or other active materials.
As in the previous �gure, ovals indicate absorption, rounded rectangles
indicate spontaneous emission, and rectangles indicate stimulated emission.
Antennas are shown twice in the conductor based devices category because
receiving antennas involve absorption while transmitting antennas involve
spontaneous emission. Also as in the previous �gure, thick borders indicate
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categories of devices while thin borders indicate example types of devices.
Again, this �gure does not show a complete list of all possible devices or
device categories, but it does illustrate relationships between some devices
discussed in this chapter.

Devices are usually designed to involve only one of these processes of
absorption, spontaneous emission, or stimulated emission. However, it is
possible for multiple of these processes to occur in a single device depend-
ing on how it is operated. For example, a semiconductor laser converts
electricity to light by stimulated emission when current above the lasing
threshold is supplied. If a weaker current is supplied, the device will act
as an LED which converts electricity to light by spontaneous emission. If
light shines on the device and the voltage across the device is measured,
the same device acts as a photodetector which converts light to electricity
by absorption. Similarly, photomultiplier tubes, gas discharge lamps, and
gas lasers all involve tubes of gas with electrodes to supply or measure
electricity. Like many energy conversion devices, these devices may con-
vert electricity to light when operated in one direction and convert light to
electricity when operated in reverse.

7.6 Problems

7.1. Identify whether the devices below operate based on spontaneous
emission, stimulated emission, or absorption.

• Light emitting diode

• Gas discharge lamp

• Argon ion laser

• Solar panel

• Semiconductor laser

7.2. Consider a blackbody radiator at a temperature of 6500 K. Use Mat-
lab, or similar software, to answer this question.

(a) Find the frequency which corresponds to peak spectral energy
density per unit bandwidth.

(b) Find the wavelength which corresponds to peak spectral energy
density per unit bandwidth.
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(c) Find the value of the spectral energy density per unit bandwidth

in J·s
m3 at the frequency found in part a.

7.3. A semiconductor laser which emits λ = 500 nm light has a length of
800 µm. The width is 12 µm, and the thickness is 5 µm. How many
wavelengths long is the device in the longitudinal direction? How
many wavelengths long is the device in each transverse direction?

7.4. Assume a semiconductor laser has a length of 800 µm. Laser emission
can occur when the cavity length is equal to an integer number of
half wavelengths. What wavelengths in the range 650 nm < λ <
652 nm can this laser emit, and in each case, list the cavity length in
wavelengths.

7.5. Assume two energy levels of a gas laser are separated by 1.4 eV, and
assume that they are equally degenerate (g1 = g2). The spontaneous
emission Einstein coe�cient for transitions between these energy lev-
els is given by A12 = 3 · 106 s−1. Find the other two Einstein coe�-
cients, B12 and B21.

7.6. The energy gap of AlAs is 2.3 eV, and the energy gap of AlSb is 1.7
eV [9, p. 19]. Energy gaps of materials of composition AlAsxSb1−x
with 0 ≤ x ≤ 1 vary approximately linearly between these values
[9, p. 19]. Suppose you would like to make a semiconductor laser
from a material of composition AlAsxSb1−x. Find the value of x that
speci�es the composition of a material which emits light at wavelength
λ = 640 nm.

7.7. Laser spectra are often modeled by Lorentzian functions. A Lorentzian
function centered at the origin with area under the curve of unity has
equation

y(x) =
1

π
· 0.5 · FWHM

x2 + (0.5 · FWHM)2

where FWHM is the full width at half maximum. The maximum
value of this function is 2

π·FWHM. The laser spectrum of Fig. 7.7
is centered near λ = 570 nm, has a FWHM of 5 nm, and it has a
maximum luminescence intensity of 49. Find a Lorentzian equation
that can model this particular spectrum.
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7.8. As discussed in the previous problem, laser spectra are often modeled
by Lorentzian functions. To better understand Lorentzian functions,
use Matlab or similar software for this problem.

(a) Plot a Lorentzian function centered at the origin with FWHM
5 and maximum amplitude of unity. On the same axis, plot a
Gaussian function also centered at the origin with FWHM 5 and
maximum amplitude of unity.

(b) Repeat part a, but put the vertical axis of your plots on a log
scale.

7.9. The �gure illustrates a laser spectrum. Approximately �nd:

(a) The wavelength of peak intensity

(b) The FWHM

(c) The quality factor
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7.10. Three main components of a laser are the pump, active material, and
cavity. Four main types of lasers are gas lasers, semiconductor lasers,
dye lasers, and solid state lasers. Match the example component with
the best description of the type of component and type of laser it is
found in speci�ed. (Each answer will be used once.)

Example Component
1. Edges of a AlGaAs crystal
2. Rhodamine 6G liquid solution
3. External mirror made of SiO2 glass coated with
aluminum
4. Battery of a laser pointer
5. SiO2 glass doped with 1% Er atoms
6. CO2 gas in an enclosed tube
7. Pn junction made from InGaAs
8. Argon ion laser used to supply energy to excite
electrons of a Ti doped Sapphire

Description

A. Cavity of a semiconductor laser
B. Cavity of a gas laser
C. Active material of a semiconductor laser
D. Active material of a gas laser
E. Active material of a dye laser
F. Active material of a solid state laser
G. Pump of a semiconductor laser
H. Pump of a solid state laser

7.11. The intensity from sunlight on a bright sunny day is around 0.1 W
cm2 .

Laser power can be con�ned to a very small spot size. Assume a
laser produces a beam with spot size 1 mm2. For what laser power
in watts will the intensity of the beam be equivalent to the intensity
from sunlight on sunny day? Staring at the sun can damage an eye,
so staring at a laser beam of this intensity is dangerous for the same
reason.
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8 Thermoelectrics

8.1 Introduction

A thermoelectric device is a device which converts a temperature di�erential
to electricity, or vice versa, and it is made from a junction of two di�er-
ent conductors or semiconductors. To understand thermoelectric devices,
we need to understand the fundamentals of heat transfer and thermody-
namics. This chapter begins by discussing these fundamental ideas. Next,
thermoelectric e�ects and thermoelectric devices are discussed.

Many common processes heat an object. Rubbing blocks together, for
example, heats them by friction. Burning a log converts the chemical energy
in the wood to thermal energy, and applying a current to a resistor also
heats it up. How can we cool an object? If we supply electricity to a
thermoelectric device, one side heats up and the other cools down. We can
place the object we want to cool near the cooler side of the thermoelectric
device.

Thermoelectric devices, pyroelectric devices, and thermionic devices all
convert energy between a temperature di�erence and electricity. Pyroelec-
tric devices were discussed in Sec. 3.2. They are made from an insulat-
ing material instead of from a junction of conductors or semiconductors.
Thermionic devices are discussed in Sec. 10.2, and they involve heating a
cathode until electrons evaporate o�. Thermoelectric devices, discussed
in this chapter, are much more common than pyroelectric devices and
thermionic devices due to their e�ciency and durability.

8.2 Thermodynamic Properties

A container of air of �xed mass con�ned to a volume stores energy. We can
shrink the volume of the air. This process requires energy, and the shrunken
volume of air stores more energy. We can increase the gas pressure, for
example, by exerting a force on a piston within which air is con�ned. This
process requires energy, and the air under pressure stores more energy. We
can take the �xed volume of air and heat it too. It takes energy to heat
the air, and the hotter air stores more energy. Similarly, we can shake
the container of air. Again, this process requires energy, and the energy
from shaking is stored in the internal energy, the random motion, of the
air molecules.

To talk about thermodynamic energy conversion, we need to de�ne four
fundamental properties of a system: volume, pressure, temperature, and
entropy. All of these properties depend on the current state, not the past
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Units for Pressure

1 N
m2 = 1 Pa

1 bar = 105 Pa

1 mmHg= 133.322 Pa

1 atm = 101, 325 Pa

1 psi = 6.894757 · 103 Pa

Table 8.1: Pressure unit conversion factors [68].

history, of the sample. These properties can be classi�ed as intensive or
extensive [2, p. 10]. An intensive property is independent of the size or
extent of the material. An extensive property depends on the size or extent
[2, p. 10].

Volume V is an extensive property measured in m3 or liters where 1 L =
0.001 m3. Pressure P is an intensive property measured in the SI units of
pascals where 1 Pa=1 N

m2 . Pressure is also measured in a wide variety
of other, non-SI, units such as bars, millimeters of mercury, or standard
atmospheres as listed in Table 8.1. Pressure measures are often speci�ed in
comparison to the lowest possible pressure, of a complete vacuum, and such
pressure measurements are called absolute pressure measurements [102, p.
15-17]. In some cases, values are speci�ed as the di�erence above the local
atmospheric pressure, and these measurements are called gauge pressure
measurements [102, p. 15-17]. In other cases, values are speci�ed as the
di�erence below the local atmospheric pressure, and these measurements
are called vacuum pressure measurements [102, p. 15-17]. Unless otherwise
speci�ed, the term pressure in this text refers to absolute pressure, not
gauge or vacuum pressure.

Symbol Quantity Unit Ext/int

V Volume m3 Extensive

P Pressure Pa Intensive

T Temperature K Intensive

S Entropy J
K Extensive

Table 8.2: Thermodynamic properties.
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Symbol Name Value and Unit

kB Boltzmann constant 1.381 · 10−23 J
K

R Molar gas constant 8.314 J
mol·K

Na Avogadro constant 6.022 · 1023 1

mol

Table 8.3: Values of the Boltzmann constant, the molar gas constant, and
the Avogadro constant.

Temperature T is an intensive property measured in either the SI units
of degrees Celsius or kelvins. By de�nition, we can relate the two units by

T[◦C] = T[K] − 273.15 (8.1)

[68]. We can also measure temperature in the non-SI unit of degrees Fahren-
heit. Temperature in degrees Celsius and temperature in degrees Fahren-
heit are related by

T[◦C] =

(
T[◦F] − 32

1.8

)
. (8.2)

As with absolute pressure measurements, temperature in kelvins is said to
be measured on an absolute temperature scale because the lowest possible
temperature is given by zero kelvin. All temperatures are either absolute
zero or have positive values. We use the term temperature to describe
a property of a system. We use the term heat transfer to describe the
process of transferring energy from a hot to a cold object. Entropy S is
measured in units J

K , and it is an extensive property. Intuitively, entropy
is a measure of the lack of order or organization of a material. The atoms
in an amorphous material are less ordered than the atoms in a crystal of
the same composition, so the amorphous material has more entropy.

Some further de�nitions will be needed. The symbol N represents the
number of atoms or molecules of a substance. While it is not usually
considered a fundamental thermodynamic property, it is a useful property
of a sample. Sometimes it is speci�ed in the units of mols instead of by the
number of atoms or molecules. The Avogadro constant

Na = 6.022 · 1023 1

mol
(8.3)

is a constant which is used to convert a number given to the number per
mol. The molar gas constant is

R = 8.314
J

mol ·K . (8.4)
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Material Bulk
modulus
B in GPa

Thermal
cond. κ
in W

m·K

Electrical cond. σ
in 1

Ω·m

Ref.

Diamond 539 300 1 · 10−12 − 1 · 10−2 [104]

Stainless steel 143 15.5 1.3 · 106 − 1.5 · 106 [105]

Graphite 18.6 195 1.6 · 104 − 2.0 · 107 [106]

Silicone rubber 1.75 1.38 1·10−14−3.2·10−12 [107]

Table 8.4: Bulk modulus, thermal conductivity, and electrical conductivity
of some materials. The references list ranges of values for bulk modulus
and thermal conductivity while this table lists their averages.

The Boltzmann constant is

kB = 1.381 · 10−23 J
K . (8.5)

These three constants are related by

kB =
R
Na

. (8.6)

8.3 Bulk Modulus and Related Measures

The bulk modulus B describes how a gas, liquid, or solid changes as it is
compressed [103]. More speci�cally, bulk modulus per unit volume is the
change in pressure required to get a given compression of volume,

B = −V ∂P
∂V

(8.7)

and bulk modulus is speci�ed in the SI units of pascals or N
m2 . The bulk

modulus is greater than zero (B > 0) even though there is a minus sign in
Eq. 8.7 because volume shrinks when pressure is applied. Table 8.4 lists
example bulk modulus values.

Assuming constant temperature, the inverse of the bulk modulus 1
B ,

is also called the isothermal compressibility [108]. There is a relationship
between this compressibility and the permittivity ε discussed in Chapter
2. If we take an insulating material and apply an external electric �eld,
a material polarization is established, and energy is stored in this charge
accumulation. The permittivity is a measure of the charge accumulation
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per unit volume for a given strength of external electric �eld, in units of
F
m. It is the ratio of the displacement �ux density

−→
D to the electric �eld

intensity
−→
E .

ε =
|−→D |
|−→E|

(8.8)

If we take a material and apply an external pressure, the material com-
presses and energy is stored in this compressed volume. The inverse of the
bulk modulus per unit volume is a measure of the change in volume for a
given external pressure

1(B
V

) = −∂V
∂P

(8.9)

in units of m
Pa

3
. Both Eqs. 8.8 and 8.9 can be called constitutive rela-

tionships because they describe how a material changes when an external
in�uence is applied.

Multiple other measures describe the variation of a gas, liquid, or solid,
with respect to variation of a thermodynamic property. The speci�c heat

describes the ability of a material to store thermal energy, and it has units
J
g·K [109, p. 98]. More speci�cally, the speci�c heat over temperature is

equal to the change in entropy with respect to change in temperature [108].
It may be given either assuming a constant volume or assuming a constant
pressure.

Speci�c heat at constant volume = Cv = T
∂S

∂T

∣∣∣∣
V

(8.10)

Speci�c heat at constant pressure = T
∂S

∂T

∣∣∣∣
P

(8.11)

The Joule-Thomson coe�cient is de�ned as the ratio of change in tem-
perature to change in pressure for a given total energy of the system

Joule-Thomson coe�cient =
∂T

∂P
, (8.12)

and it has units K
Pa [102, p. 685]. When a pressure is applied and overall

energy is held �xed but entropy is allowed to vary, some materials cool and
others heat. So, this coe�cient may be positive, negative, or even zero at
an inversion point. Additionally, the volume expansivity is de�ned as

Volume expansivity =
1

V
∂V
∂T

∣∣∣∣
P

(8.13)

[108].
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8.4 Ideal Gas Law

In most materials, if we know three of the four thermodynamic properties,
volume, pressure, temperature, and entropy, we can derive the fourth prop-
erty as well as other thermodynamic measures. Such materials are called
simple compressible systems [109, 102]. For such materials, the ideal gas

law relates pressure, volume, and temperature.

PV = NRT. (8.14)

While this is not a mathematical law, it is a good description of gases, and
it can be used as a rough approximation for liquids and solids. Consider
a container �lled with a gas. If the volume of the container is compressed
while the temperature is kept constant, the pressure increases. If the gas is
heated and the pressure is kept constant, the volume increases. The energy
stored in a gas that undergoes change in volume at constant temperature
is given by

E =

ˆ
PdV (8.15)

where the change in energy is speci�ed by

∆E = P∆V. (8.16)

The ideal gas law can be written incorporating entropy as

PV = ST. (8.17)

For example, consider a 10 L tank that holds 5 mol of argon atoms. The
argon gas is at a temperature of T = 15 ◦C. Find the pressure in the tank
in pascals and in atm. We begin by converting the volume and temperature
to more convenient units, V = 0.01 m3 and T = 288.15 K. Next, the ideal
gas law provides the pressure in Pa.

P =
NRT
V

=
5 mol · 8.314 J

mol·K · 288.15 K

0.01 m3
= 1.20 · 106 Pa (8.18)

Finally, we convert the pressure to the desired units.

P = 1.20 · 106 Pa · 1 atm
101325 Pa

= 11.8 atm (8.19)

As another example, consider a container that holds neon atoms at a
temperature of T = 25 ◦C. Assume that the pressure in the container is 10
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kPa, and the mass of the neon in the container is 3000 g. Find the volume
of the container. The temperature is 298.15 K. From a periodic table, the
atomic weight of a neon atom is 20.18 g

mol. Thus, the container holds 148.7
mol of neon atoms. Next, we use the ideal gas law to �nd the volume.

V =
NRT
P

=
148.7 mol · 8.314 J

mol·K · 298.15 K

104 Pa
= 36.86 m3 (8.20)

8.5 First Law of Thermodynamics

The idea of energy conservation was introduced in Sec. 1.3. Most dis-
cussions of thermodynamics also begin with the same idea. The �rst law
of thermodynamics is a statement of energy conservation. Energy can be
stored in the material polarization of a capacitor, the chemical potential
of a battery, and in many other forms. People studying thermodynamics
and heat transfer, however, often make some drastic assumptions. They
classify all energy conversion processes as heat transfer or other where the
primary component of the latter is mechanical work. At the beginning
of introductory thermodynamics courses, all forms of energy besides heat
transfer and mechanical work are ignored. Charging a capacitor, discharg-
ing a battery, and all other energy conversion processes are grouped in with
mechanical work when writing the �rst law of thermodynamics. The �rst
law of thermodynamics is typically written as

(change in int. energy) = (heat in)− (work and other forms) . (8.21)

∆U = Q−W (8.22)

Each term of the Eq. 8.22 has the units of joules. The symbol Q represents
the energy supplied in to the system by heating, and −W , with the minus
symbol, represents the mechanical work in to the system as well as all
other forms of energy into the system. The quantity ∆U represents the
change in internal energy of the system. In a closed system the total energy
is conserved. In a closed system, energy is either stored in the system
(for example as potential energy or another form of internal energy), is
transfered in or out as heat, or is transfered in or out as another form such
as mechanical work [109, p. 51].
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heater

+
-

heater

Figure 8.1: Illustration of closed systems containing energy conversion de-
vices.

As an example, consider the closed system shown on the left part of
Fig. 8.1 comprised of a cylinder with a piston and a heater. Assume the
cylinder contains a �xed volume of gas inside. Suppose the heater is used
to transfer 100 J of energy into the piston in an hour while the piston is
forced to remain in a �xed position. After the hour, the internal energy of
the gas will be 100 J greater than before. Again suppose the heater is used
to transfer 100 J of energy into the gas, but this time assume the piston
is allowed to move thereby expanding the gas volume. After the hour, the
internal energy of the gas will be the original energy of the gas, plus the
100 J supplied by the heater, and minus a factor due to the mechanical
work done by the piston.

The �rst law of thermodynamics says two things. First, energy is con-
served. Second, energy can be stored, converted to mechanical work, or
converted to heat. We know energy can be converted to other forms too,
like electrical or electromagnetic energy. While introductory thermody-
namics classes do not usually do so, we can add other devices to the piston
as shown on the right part of Fig. 8.1. We can include a battery and put a
resistor inside to convert the chemical energy to electrical energy, and the
resistor can heat the air in the piston. We can put a mass and a spring in
the piston and convert potential energy of a compressed spring to kinetic
energy by removing a clip which holds the spring compressed. In a closed
system when all energy conversion processes are considered, energy must
be conserved.

8.6 Thermoelectric E�ects

8.6.1 Three Related E�ects

In the 1800s, three e�ects were experimentally observed. At �rst, it was
not obvious that these experiments were related, but soon they were found
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Seebeck Effect Peltier Effect Thomson Effect

hot cold

I

hot cold

1 2

+ ∆V12 −

1 2

I

heating/cooling heating/cooling

Figure 8.2: The Seebeck e�ect, Peltier e�ect, and Thomson e�ect.

to be three aspects of the same phenomenon [5, p. 113].
The �rst e�ect, now called the Seebeck e�ect, was discovered in 1821

by Thomas Seebeck [5, p. 113]. It is observed in a junction of two di�er-
ent metals or semiconductors. As discussed in Section 6.5, junctions are
also used to make photovoltaic devices, LEDs, and semiconductor lasers.
When the di�erent sides of the junction are held at di�erent temperatures,
a voltage develops across the junction. The Seebeck coe�cient $, in units
V
K, is de�ned as the ratio of that voltage to the temperature di�erence.
More speci�cally, consider a junction where one side is held at a hotter
temperature than the other, as shown in the left part of Fig. 8.2. The dif-
ference between the Seebeck coe�cient in material one $1 and the Seebeck
coe�cient in material two $2 is given by the measured voltage across the
junction ∆V12 divided by the temperature di�erence between the materials
∆T12 [110, p. 24].

$1 − $2 =
∆V12

∆T12

(8.23)

The di�erence between the Seebeck coe�cients can be positive or negative
because both the temperature di�erence and the measured voltage can be
positive or negative. However, for any given material, the Seebeck coe�-
cient is positive. To �nd the Seebeck coe�cient for an unknown material,
form a junction between that material and a material with known Seebeck
coe�cient, heat one end of the junction hotter than the other, and mea-
sure the voltage established. For most materials, the Seebeck coe�cient is

less than 1 µV
K . Some of the largest values of the Seebeck coe�cient are

found in materials containing tellurium. For example, (Bi0.7Sb0.3)2 Te3 has

$ ≈ 230 µV
K and PbTe has $ ≈ 400 µV

K [3].
To understand the physics behind the Seebeck e�ect, consider the �ow

of charges across this diode-like device. In metals, valence electrons are the
charge carriers, and in semiconductors, both valence electrons and holes
are the charge carriers. These charge carriers di�use from the hot to the
cold side of the junction. Consider a junction of two metals with no net
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charge on either side initially. If an electron moves from the hot side to the
cold side, the hot side then will have a net positive charge, and the cold
side will have a net negative charge. This movement of charges sets up an
electric �eld and hence a voltage.

If we let the sample reach an equilibrium temperature, no voltage will
be measured. A voltage is measured only during the time when charge
carriers have di�used from one material to the other but when the material
has not reached a uniform temperature. Thus, for a material to have a

large thermoelectric e�ect, it must have a large electrical conductivity and

small thermal conductivity. Thermoelectric devices are typically made from
metals or semimetals because these materials satisfy this condition.

The second e�ect was discovered by Jean Peltier in 1834 [5, p. 113].
The Peltier e�ect is also observed in a junction of two di�erent metals,
semimetals, or semiconductors. It is illustrated in the middle part of Fig.
8.2. When a current, I in amperes, is supplied across a junction, heat is
transferred. This e�ect occurs because charges from the supplied current
�ow through di�erent materials with di�erent thermal conductivities on
the di�erent sides of the junction. The e�ect is quanti�ed by the Peltier
coe�cient for the junction, Π12, or Peltier coe�cients for the materials
forming the junction, Π1 and Π2. More speci�cally, the Peltier coe�cient
is de�ned as

Π12 = Π1 − Π2 =

(
dQ
dt

)
I

(8.24)

in the units of volts [110, p. 24]. The term dQ
dt

represents the rate heat is

transferred in J
s , and it may be positive or negative because the thermal

conductivity in the �rst material may be higher or lower than in the second
material. The Seebeck coe�cient and the Peltier coe�cient are related by

Π1 − Π2 = ($1 − $2)T. (8.25)

PbTe is a material with a relatively high Seebeck coe�cient. At room

temperature, it has coe�cients $ = 400 µV
K and

Π = 400
µV
K
· 300K = 0.12 V. (8.26)

The third e�ect was �rst discovered by William Thomson in the 1860s
[3]. Thomson also derived the relationship between these three e�ects. It
is illustrated on the right part of Fig. 8.2. When a current passes through
a uniform piece of material which has a temperature gradient, heating or
cooling will occur, and this result is known as the Thomson e�ect [3, p.
148] [110, p. 24] [5, p. 115]. To observe this e�ect, apply a temperature
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gradient across a piece of metal or semiconductor and also apply a current
through the length of the material. Heating or cooling can be measured,
and this e�ect is described by another coe�cient. The Thomson coe�cient

τ also has units V
K. It is de�ned as the rate of heat generated over the

product of the current and temperature di�erence.

τ =
dQ
dt

I (Th − Tc)
(8.27)

The Thomson and Seebeck coe�cients for a single material are related by

ˆ T

0

τ

T ′
dT ′ = $ (8.28)

where the integral is over temperature [110, p. 24].
These e�ects work both ways. We can use the Peltier e�ect, for example,

to make either a heating or a cooling device. We can supply a current
across a junction to produce a temperature di�erential, or we can supply
a temperature di�erence to generate a current. All three e�ects relate to
the fact that when the electrical conductivity is larger than the thermal
conductivity, energy can be converted between a temperature di�erential
and electricity. As an aside, materials with low electrical conductivity and
high thermal conductivity are also used to make energy conversion devices.
Components of motors and generators are often made from layers of metal
and dielectrics with these properties [111, ch. 8].

8.6.2 Electrical Conductivity

Electrical conductivity σ, in units 1
Ω·m, is a measure of the ability of charges

to �ow through a material. Resistivity is the inverse of electrical conductiv-
ity, ρ = 1

σ
. Example electrical conductivity values are listed in Table 8.4,

found in Section 8.3. Few tools are needed to measure these quantities.
An ohmmeter can be used to �nd the resistance R, in ohms, of a sample
with known length l and cross sectional area A. The conductivity can be
calculated directly,

σ =
l

AR
. (8.29)

Electrical conductivity is the product of the number of charges �owing
and their mobility. For conductors, valence electrons are charge carriers
that �ow, so conductivity can be expressed as [9, p. 84]

σ = nqµn. (8.30)
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In this expression, n is the concentration of valence electrons in units
electrons

m3 , and it was introduced in Sec. 5.2. The magnitude of the charge
of an electron is q = 1.6 · 10−19 C. Mobility of electrons, µn, is the ease
with which charge carriers drift in a material, and it has units m2

V·s . By
de�nition, mobility is the ratio of the average drift velocity of electrons to
the applied electric �eld in V

m [9, p. 84].

µn =
−avg drift velocity of electrons∣∣∣−→E ∣∣∣ (8.31)

For semiconductors, both electrons and holes act as charge carriers, and
both contribute to the conductivity,

σ = q (nµn + pµp) (8.32)

where µp is the mobility of the holes, and p is the concentration of holes.
To understand which materials have large electrical conductivities, and

hence make good thermoelectric devices, we need to consider the charge
concentrations n and p. Conductors and semiconductors have charges that
can move through the material while insulators do not. Thus conduc-
tors and semiconductors have large electrical conductivity and are used
to make thermoelectric devices. Furthermore, a doped semiconductor has
more charge carriers than an undoped, also called intrinsic, semiconductor.
Thus, doped semiconductors usually have higher electrical conductivity
than undoped semiconductors of the same material [110].

Electrical conductivity σ is proportional to the electron and hole mo-
bilities, µn and µp, and the mobilities are a strong function of temperature
[9]. For this reason, the electrical conductivity is a function of temper-
ature. At low temperature, mobilities are limited by impurity scattering
while at high temperatures, they are limited by phonon scattering. At
some intermediate temperature, mobility and conductivity are maximum,
and this peak occurs at di�erent temperatures for di�erent materials. Mo-
bility also depends on whether a material is crystalline or amorphous and
on the degree of crystallinity. Mobility and electrical conductivity are both
typically higher in crystals than glasses because charges are more likely to
get scattered in amorphous materials.

8.6.3 Thermal Conductivity

Thermal conductivity κ is a measure of the ability of heat to �ow through a
material, and it has units W

m·K [109, p. 793]. Example thermal conductivity
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Figure 8.3: Components used to measure thermal conductivity.

values are listed in Table 8.4, found in Section 8.3. Understanding thermal
conductivity is complicated because a number of mechanisms are respon-
sible for the conduction of heat. Heat may be transported by phonons,
photons, electrons, or other mechanisms, and each mechanism depends on
temperature and the properties of the material. Good thermoelectric de-
vices have small thermal conductivity. Often metals have large thermal
conductivity and insulators have small thermal conductivity.

The apparatus to measure thermal conductivity consists of a heater, a
heat sink, and a number of thermocouples [110] [112]. To measure thermal
conductivity experimentally, start with a bar of material with a known
cross sectional area A. Heat one end of the bar with respect to the other,
wait for a steady thermal state, and measure the temperature at each end
of the bar. Next, calculate the temperature gradient dT

dx
in units K

m along
the length of the bar. Also measure the rate that heat is supplied to the
bar, dQ

dt
, in units Js . By de�nition, thermal conductivity is the ratio

κ =
(power dissipated in heater)(distance between thermocouples)

(cross sectional area)(change in temp)
(8.33)

[109, p. 49]. The thermal conductivity can be calculated from

κ =
−
(
dQ
dt

)
A
(
dT
dx

) . (8.34)

This technique works well for low to moderate temperatures and materials
with high thermal conductivity. Other methods exist to measure thermal
conductivity and are advantageous for di�erent temperature or conductiv-
ity ranges.

Another way to understand thermal conductivity is to think of it as
the product of the amount of heat transported by some particle times the
velocity of that particle. This viewpoint applies whether or not actual
particles are involved in the heat transport. More speci�cally, thermal
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conductivity is given by
κ = Cv|−→v |l (8.35)

The symbol Cv represents the speci�c heat at constant volume in J
g·K, and

the symbol |−→v | represents the magnitude of the transport velocity in m
s .

The scattering length is represented by l in m.
Regardless of whether electrons, phonons, or something else transports

heat through a material, the ability of that heat to get from one end to
the other without being scattered or blocked in�uences the thermal con-
ductivity. Thus, crystals typically have higher thermal conductivity than
amorphous materials [113]. The thermal conductivity of a crystal can be
lowered by exposing the material to radiation which destroys the crys-
tallinity and increases the likelihood that the heat carrier will be scattered
[110]. For glasses, scattering length is roughly the interatomic spacing [112].
Also, thermal conductivity of glasses is less temperature dependent than
crystals because high temperatures distort the perfect crystallinity, thereby
lowering the thermal conductivity for crystals but not glasses [113].

All the contributing factors, Cv,
−→|v |, and scattering length l, are temper-

ature dependent, so the thermal conductivity is a function of temperature.
The temperature dependence of the factors is discussed in reference [110].
Thermal conductivity, like electrical conductivity, is low at low tempera-
tures then rises to a maximum before decreasing again at higher tempera-
tures [112].

8.6.4 Figure of Merit

The �gure of merit of a thermoelectric device, Z, is a single measure that
summarizes how good a material is for making thermoelectric devices. It
is de�ned as

Z =
$2σ

κ
, (8.36)

and it has units K−1. It depends on the Seebeck coe�cient $, electrical
conductivity σ, and thermal conductivity κ. A large value of Z indicates
that the material is a good choice for use in construction of a thermoelectric
device.

The �gure of merit depends on temperature because the parameters
$, σ, and κ are strong functions of temperature. Thus, the best choice ma-
terial for a thermoelectric device operating near room temperature may not
be the best choice for a device operating at other temperatures. Sometimes
ZT is used as a measure instead of just Z to account for the temperature
dependence.
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The �gure of merit does not incorporate all of the temperature related
factors to consider in selecting materials for thermoelectric devices. Melt-
ing temperature is also important. A thermoelectric device converts more
energy when a larger temperature di�erence is placed across the device.
The Seebeck coe�cient is inversely proportional to the temperature di�er-
ential, $ = ∆V

∆T
. However, too large of a temperature di�erential will melt

the hot end of the device, and di�erent materials can have very di�erent
melting temperatures. For example, lead telluride PbTe melts at 924 ◦C,
and Bi2Te3 melts at 580 ◦C [114, p. 4-52, 4-71].

The �gure of merit also depends on doping level because the electrical
conductivity is directly proportional to the charge concentrations n and p
[110]. Thus, a thermoelectric device made from a doped semiconductor has
a higher electrical conductivity and thermoelectric e�ciency than a device
made from an undoped semiconductor of the same material. The Seebeck
coe�cient is also dependent on doping level but not as strongly [110]. Ther-
mal conductivity is not a strong function of charge concentrations n and p
[110]. Thus, thermoelectric materials are often made from heavily doped
semiconductors or from conductors.

The �gure of merit also depends on degree of crystallinity. Typically,
both the electrical conductivity and thermal conductivity are much higher
in crystals than glasses because charge and heat carriers are less likely to
get scattered as they travel through crystals than glasses [113]. Since both
electrical and thermal conductivity are in�uenced, the e�ect of degree of
crystallinity on the �gure of merit can be complicated.

Thermoelectric devices are typically made from junctions of two dif-
ferent metals or semiconductors. Essentially, a thermoelectric device is a
diode. Common materials used include bismuth telluride, lead telluride,
and antimony telluride, all of which are semimetals. Bi, Sb, and Pb are all
located near each other on the periodic table. Other materials studied for
use in thermoelectric devices include [110], BiSeTe, LiMnO, LiFeO, LiCoO,
LiNiO, PbS, and ZnSb. These materials are either small gap semiconduc-
tors or semimetals. In semiconductor materials with small energy gaps, the
ratio of electrical conductivity to thermal conductivity is large. However,
this fact must be balanced against the fact that smaller gap semiconductors
tend to have lower melting temperatures than larger gap semiconductors
[110, ch. 1].

Recently, layered materials and superlattices have been considered as
materials for thermoelectric devices [115] [116]. The layers can be tailored
to a�ect the thermal and electrical properties di�erently and can act like
a �lter to select out di�erent conduction mechanisms. Understanding of
the conductivity mechanisms is a prerequisite to understanding such more



188 8.7 Thermoelectric E�ciency

complicated structures.

8.7 Thermoelectric E�ciency

8.7.1 Carnot E�ciency

Many devices convert a temperature di�erence to another form of energy.
For example, thermoelectric devices and pyroelectric devices convert a tem-
perature di�erence to electricity, and Stirling engines and steam turbines
convert a temperature di�erence to mechanical work. There is a funda-
mental limit to the e�ciency of any device that converts a temperature
di�erence into another form of energy. The Carnot e�ciency is the maxi-
mum possible e�ciency of such an energy conversion process.

Consider a thermoelectric device made from a junction of two materi-
als that converts a temperature di�erence to electricity using the Seebeck
e�ect. Assume that one end of the device is connected to a heater, and the
other end of the device is connected to a heat sink so that it is at a lower
temperature. The temperature of the hot side of the device is denoted Th,
and the temperature of the cold side of the device is denoted Tc. Both
temperatures are measured in kelvins, K (or another absolute temperature
measure such as Rankine). Assume that the only energy conversion process
that occurs converts energy from the temperature di�erence to electricity.
Furthermore, assume that energy is continuously supplied from the heater
at a constant rate to maintain the hot end of the device at temperature
Th. The heater is supplying heat to the room it is in. However, assume
that the room is so large and the amount of heat from the heater is so
small that the temperature of the room remains roughly constant. For this
reason, we say that the room is a thermodynamic reservoir. Also, assume
that we have waited long enough that the temperature of the device has
reached a steady state. The temperature is not constant along the length
of the device, but it no longer varies with time.

The input to this system is the thermal energy supplied from the heater,
Ein. The output of this system is the electrical energy extracted out, Eout.
The device is not used up in the process, so the number of atoms in the
device remains constant. As long as energy is supplied from the heater
at a constant rate to maintain the hot side at temperature Th, we can
extract electrical energy out of the system at a constant rate. Heat transfer
scientists call this type of process a thermodynamic cycle or a heat engine.
A thermodynamic cycle is a sequence of energy conversion processes where
the device begins and ends in the same state. In a thermodynamic cycle,
energy is supplied in one form and is extracted in another form. The device
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or mass involved starts and ends in the same state, so the processes can
continue inde�nitely as long as the input is continually supplied.

How much energy is supplied in to the system from the heater? The
amount of energy required to maintain the hot side at temperature Th is
given by

Ein = kBTh. (8.37)

The device is composed of atoms. Each of these atoms has some internal
energy. A device at temperature T contains kBT joules of energy where
kB is the Boltzmann constant. Energy �ows from the hot side to the cold
side of the device. Above, we assumed that the device was in a room that
was so large that the heat from the heater did not raise the temperature of
the room. Thus, we must continually supply this energy at a constant rate
to keep the hot side of the device at temperature Th. While the cold side
of the device is at a lower temperature Tc, it maintains that temperature
regardless of the fact that there is a heater in the room.

How much energy is extracted out of the system as electrical energy?
In the Seebeck device, the hot side is held �xed at temperature Th, and
because of the environment it is in, the cold side remains at temperature Tc.
Energy is conserved in this system. Thus, the electrical energy extracted
from the device is given by

Eout = kBTh − kBTc. (8.38)

What is the e�ciency of this system? Above we assumed that no other
energy conversion processes occur, so this is an idealized case. The result-
ing e�ciency that we calculate represents the best possible e�ciency of
a thermoelectric device operating with sides at temperatures Th and Tc.
E�ciency is de�ned as

ηeff =
Eout
Ein

. (8.39)

Using Eqs. 8.37 and 8.38 and some algebra, we can simplify the e�ciency
expression.

ηeff =
Eout
Ein

=
kBTh − kBTc

kBTh
(8.40)

ηeff =
Th − Tc
Th

(8.41)

ηeff = 1− Tc
Th

(8.42)
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Eq. 8.42 is known as the Carnot e�ciency. It provides a serious limita-
tion on the e�ciency of energy conversion devices which involve converting
energy of a temperature di�erence to another form. The Carnot e�ciency
applies to thermoelectric devices, steam turbines, coal power plants, py-
roelectric devices, and any other energy conversion device that convert a
temperature di�erence into another form of energy. It does not, however,
apply to photovoltaic or piezoelectric devices. If the hot side of a device is
at the same temperature as the cold side, we cannot extract any energy. If
the cold side of a device is at room temperature, then the e�ciency cannot
be 100%. The Carnot e�ciency represents the best possible e�ciency, not
the actual e�ciency of a particular device because it is likely that other
energy conversion processes occur too. We can extract more energy from a
steam turbine with Th = 495 K than Th = 295 K. However, in both cases,
the amount of energy we can extract is limited by the Carnot e�ciency.
Note that when using Eq. 8.42, Tc and Th must be speci�ed on an abso-
lute temperature scale, where T = 0 is absolute zero. In SI units, we use
temperature in kelvins.

As an example, consider a device that converts a temperature di�erence
into kinetic energy. The cold side of the device is at room temperature,
Tc = 300 K. How hot must the hot side of the device be heated to so that
the device achieves 40% e�ciency?

ηeff = 1− Tc
Th

(8.43)

0.4 = 1− 300

Th
(8.44)

According to Eq. 8.42, we �nd that Th = 500 K.
As another example, suppose we want to convert a temperature dif-

ferential to electrical energy using a thermoelectric device. Assume that
the cold side of the device is at room temperature of Tc = 72 ◦F and the
hot side is at human body temperature of Th = 96 ◦F . What is the best
possible e�ciency? First the temperatures must be converted from degrees
Fahrenheit to kelvins. The resulting temperatures are Tc = 295 K and
Th = 309 K. Next, using Eq. 8.42, we �nd the best possible e�ciency is
only 4.5%.

ηeff = 1− 295

309
= 0.045 (8.45)

As another example, assume that the temperature outside on a De-
cember day is Tc = 20 ◦F and inside room temperature is Th = 72 ◦C.
What is the Carnot e�ciency of a thermoelectric device operating at these
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temperatures? Again we begin by converting the temperatures to kelvins,
Tc = 266 K and Th = 295 K.

ηeff = 1− 266

295
= 0.098 (8.46)

8.7.2 Other Factors That A�ect E�ciency

The e�ciency of practical energy conversion devices is always lower than
the Carnot e�ciency because it is very unlikely that only a single energy
conversion process occurs. All practical materials, even good conductors,
have a �nite resistance, so energy is converted to thermal energy as charges
travel through the bulk of the device and through wires connected to it.
Furthermore, heat �ows through the device, so if a heater is connected to
one side of a device, the other side will be at a higher temperature than
the room it is in. For this reason, not all energy supplied by the heater can
be converted to electricity.

As an example, consider a material with length l = 1 mm = 10−3 m
and cross sectional area A = 1 mm2 = 10−6 m2. Assume the material has
a resistivity of ρ = 10−5 Ω·m which is typical for a moderate conductor.
Assume a current of I = 3 mA �ows through the sample. How much power
is converted to heat due to resistive heating? The electrical conductivity
of the sample is σ = 1

ρ
= 105 1

Ω·m. The resistance of the device is given by

R = ρl
A
. Power is

P = I2R = I2ρl

A
=
(
3 · 10−3

)2 10−5 · 10−3

10−6
= 9 · 10−8 W. (8.47)

While this amount of power may seem small, it is another factor which
diminishes the e�ciency of the device. Even if we convert energy from a
temperature di�erential to electricity at the junction of the thermoelectric
device, some resistive heating occurs. This heat is wasted in the sense that
it isn't converted back to electricity.

The e�ciency of most thermoelectric devices is less than 10% [5, p. 140]
[117]. As seen by Eq. 8.42, e�ciency depends heavily on the temperatures
Tc and Th, and e�ciency can be increased by increasing Th. For many
devices, the maximum temperature is limited by material considerations
including the melting temperature.
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8.8 Applications of Thermoelectrics

Thermoelectric devices are used to cool electronics, food, and people. Com-
puter CPUs, graphics cards, and other types of electronics all generate heat,
and these components can be damaged by excessive heat. Small thermo-
electric devices can increase the reliability and lifetime of such compo-
nents. Thermoelectric refrigerators have been used in RVs and submarines
[3]. These devices are often less e�cient than traditional refrigerators, but
they can be small and quiet and require low maintenance. Some butter and
cream dispensers in restaurants use thermoelectric devices to keep perish-
able foods cool [118], and truck-sized thermoelectric refrigerators are used
to keep pharmaceuticals cool [118]. Engineers have tried making air condi-
tioning units out of these devices [110]. They are better for the environment
than traditional air conditioning units which require freon or other chem-
icals. However, they are not often used because the e�ciencies are a few
percent at best [110]. Thermoelectric devices have also been incorporated
into military clothing to keep soldiers cool [118].

Thermoelectric devices are used both to make sensors and to control
the temperature of sensing circuits. A thermocouple is a small thermo-
electric device made from a junction of two materials that is used as a
temperature sensor. It converts a small amount of energy from a temper-
ature di�erence to electricity, and it can be used to measure temperature
very accurately. Thermocouples are very common and often inexpensive.
Thermoelectric devices are used to cool scanning electron microscopes and
other types of imaging devices. Cooling is needed when imaging very small
objects because heat causes atoms to vibrate, which can smear out micro-
scopic images. Liquid nitrogen was used to cool imaging devices before
thermoelectric devices became available, and it was much less convenient
to use. The response of many types of sensors depend on temperature.
A thermoelectric device may be part of a control circuit which keeps the
sensor at a �xed temperature, so the sensitivity is accurately known.

Thermoelectric devices are used to generate power for satellites and
planetary rovers because thermoelectric devices have no moving parts and
do not require regular refueling. The Mars rover Curiosity is powered
by NASA's Multi-Mission Radioisotope Thermoelectric Generator [119].
Figure 8.4 illustrates its major components. This power supply contains
around 10 pounds of plutonium 238 in the form of plutonium dioxide. The
plutonium decays naturally and produces heat. The heat interacts with a
thermoelectric device and produces electricity, and the electricity is stored
in a battery until use. The power supply produces around 2 kW of heat
and around 120 W of electrical power, so the overall e�ciency is around
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Figure 8.4: Labeled pull-apart view showing the major components of the
NASA Multi-Mission Radioisotope Thermoelectric Generator. This �gure
is used with permission [120].

6% [119]. This technology is not new. The Apollo 12 mission in 1969 used
a similar type of power supply, but that supply produced only 70 W and
had a lifetime of 5-8 years. Thermoelectric devices have also been used
in nuclear power plants as a secondary system to recover some electricity
from heat produced [5].

While thermoelectric e�ects are often fundamental to the operation of
sensors and power supplies, the e�ects are sometimes unwanted [23, p. 457].
Electrical circuits contain junctions of wires made out of di�erent metals.
Such a junction occurs, for example, when an aluminum trace on a printed
circuit board meets the tin wire of a resistor or when a tin lead solder joint
meets a copper wire. The Seebeck e�ect occurs at all of these junctions.
The Seebeck coe�cient at a junction of copper and tin lead solder, for

example, is 2 µV
K [23, p. 457]. These unwanted voltages that develop can

introduce noise or distortions into sensitive circuits.

Electrical engineers often think of heat as �wasted energy�. Almost
every electrical circuit contains resistors which heat up when current �ows
through them. In some applications, this heating is the desirable outcome.
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For example, some train stations have heat lamps for the use in winter,
and a concert hall on a winter evening �lls with people and heats up from
the bodies. However, usually the heat is just considered a waste product
or a nuisance.

In the long time limit, systems will reach an equilibrium temperature,
but on short time scales, temperature di�erentials often exist. The inside
of a car may be at a hotter temperature than the air outside. The air
near an incandescent light bulb may be hotter than air elsewhere in a
room, and so on. At one time in the past, we assumed that the earth
had a nearly in�nite amount of petroleum, coal, and other fossil fuels.
Today, we know that these resources are �nite. Recently, there has been
increased interest in energy harvesting both for environmental reasons and
for economic reasons, and thermoelectric devices can be used to convert
this heat to usable electricity.
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8.9 Problems

8.1. In a 1 mm3 volume, 1015 atoms of argon are at a temperature of
T = 300 K. Calculate the pressure of the gas.

8.2. Argon gas is enclosed in a container of a �xed volume. At T = 300 K,
the pressure of the gas is 50,000 Pa. At T = 350 K, calculate the
pressure of the gas.

8.3. A balloon is �lled with helium atoms at room temperature, 72 ◦F. It
has a volume of 5 ·10−5 m3, and the gas in the balloon has a pressure
of 106 N

m2 . How many helium atoms are in the balloon, and what is
the mass of the gas?

8.4. A resistive heater is used to supply heat into an insulated box. The
heater has current 0.04 A and resistance 1 kΩ, and it operates for
one hour. Energy is either stored in the box or used to spin a shaft.
If the box gains 2,500 J of energy in that one hour, how much energy
was used to turn the shaft?

8.5. Qualitatively, explain the di�erence between each pair of related
quantities.

(a) Seebeck e�ect and Peltier e�ect

(b) Thermal conductivity and electrical conductivity
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8.6. Match the description with the quantity measured.

A. Electrical conductivity
B. Peltier coe�cient
C. Seebeck coe�cient
D. Thermal conductivity
E. Thomson coe�cient
1. A bar is made from a junction of two metals. A current of 1
mA is placed through the bar. The temperature at each end of
the bar is measured as a function of time. The rate of heat
generated across the bar divided by the current is what
quantity?
2. A bar is made from a junction of two metals. One end of
the bar is held at a temperature of 20 ◦C while the other is
held at 45 ◦C. The voltage between the ends of the bar is
measured with a voltmeter. This voltage divided by 15 ◦C is
what quantity?
3. One end of a metal bar of is held at 45 ◦C while the other
end is held at 20 ◦C. A current of 1 mA is placed through the
bar. The rate of heat generated across the bar is measured.
The rate of heat generated divided by the product of 1 mA
and 1 ◦C is which quantity?
4. One end of a metal bar of cross sectional area A is heated
to a temperature of 45 ◦C. A thermocouple is placed 3 cm
down the bar away from the heater. The product of the power
dissipated in the heater times 3 cm divided by the product of
A and temperature di�erence measured is what quantity?
5. A current of 1 mA is put through a metal bar of cross
sectional area A. The voltage drop across the bar is measured
with a voltmeter. The current times the length of the bar
divided by the product of the voltage measured and A is what
quantity?

8.7. Explain how to measure each of the following quantities, and list the
tools needed to make the measurement.

(a) Electrical conductivity

(b) Thermal conductivity

(c) Peltier coe�cient
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8.8. A thermoelectric device has a �gure of merit of Z = 0.7 K−1. A
second device is made out of the same semiconducting materials, but
it has been doped so that the electrical conductivity is 20% higher.
Find the �gure of merit of the second device.

8.9. A thermoelectric device is made from a material with resistivity 5 ·
10−8 Ω·m and Seebeck coe�cient 8.5 · 10−5 V

K. A cube, 1 cm on each
side, was used to determine the thermal conductivity. One side of the
cube was heated. At a steady state, the rate of energy transfer by
conduction through the cube is 1.8 W. The temperature distribution
through the material is linear, and a temperature di�erence across is
measured to be 20 K across the cube. Find the thermal conductivity
κ, and �nd the �gure of merit Z for the material.

8.10. As shown in Fig. 8.3, a heater supplies heat to one side of an iron rod.
The rod is cylindrical with length 30 cm and radius 2 cm. The heater
supplies 2 W of power to the edge of the rod. Iron has a thermal
conductivity of κ = 80 W

m·K . Two thermocouples are are spaced 15
cm apart as shown in the �gure. What is the di�erence in temperature
(in degrees Celsius) measured between the two thermocouples?

8.11. A thermoelectric device is used to build a small refrigerator that can
hold two pop cans. When the device is operating, the cold side of
the device is at T = 10 ◦C while the hot side of the device, outside
the refrigerator, is at T = 42 ◦C. What is the maximum possible
e�ciency of this device?

8.12. The cold side of a thermoelectric device, used to generate electricity, is
at a temperature of 100 ◦C. What is the minimum temperature of the
hot side of the device needed to achieve an e�ciency of ηeff = 15%?

8.13. The Carnot e�ciency describes the limit of the e�ciency for some
devices. Does it apply to the following types of devices? (Answer yes
or no.)

• Hall e�ect device

• Semiconductor laser

• Photovoltaic device

• Piezoelectric device

• Pyroelectric device

• Thermoelectric device used as a temperature sensor
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• Thermoelectric device used as a refrigerator

• Thermoelectric device used to generate electricity for a sensor
system

8.14. The �gures show Seebeck coe�cient $(T ), electrical resistivity ρ(T ) =
1

σ(T )
, and thermal conductivity κ(T ) plotted versus temperature T for

a family of materials known as skutterudites. These materials have
the composition TlxCo4−yFeySb12 and TlxCo4Sb12−ySny where x and
y range from zero to 1. The �gures used with permission from ref-
erence [121]. Recently, scientists have been studying the possibility
of making thermoelectric devices from these materials. Using the
data in the �gures, approximate the thermoelectric �gure of merit Z
in units K−1 at a temperature of T = 200 K for the material with
x = 0.1.
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Figure 8.5

8.15. Consider the data in the �gures of the previous problem over the range
50 < T < 300 K for the material with x = 0.1. At what temperature,
within this range, is the product of the �gure of merit times the
temperature, ZT , the largest, and what is the corresponding value of
ZT? Show your work.

8.16. The �gures show the Seebeck coe�cient, electrical resistivity, and
thermal conductivity for three di�erent materials. Assume that we
would like to use these materials to build thermoelectric devices which
generate electricity where the cold side of the device is slightly below
T ≈ 400 K, and the hot side is slightly above T ≈ 400 K. The �gures
are used with permission from reference [122].

(a) Approximately, calculate the Peltier coe�cient and the Thom-
son coe�cient for CeFe4As12 near T ≈ 400 K.

(b) Assume you have a cube of CeFe4As12, 1 cm on each side. What
is the resistance R of the cube?

(c) What is the thermoelectric �gure of merit Z for CeFe4As12 near
T ≈ 400 K. Include units in your answer.

(d) All else equal, which of the three materials would produce the
largest voltage for a given temperature di�erence. Justify your
answer.

(e) Which of the three materials has the largest thermoelectric �g-
ure of merit? Justify your answer.
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Figure 8.6
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9 Batteries and Fuel Cells

9.1 Introduction

This chapter discusses two related energy conversion devices: batteries
and fuel cells. A battery is a device which converts chemical energy to
electricity, and one or both of the electrodes of the battery are consumed
or deposited in the process. A fuel cell is a device which converts chemical
energy to electricity through the oxidation of a fuel. The fuel, but not the
electrodes, is consumed in the operation of a fuel cell. Oxidation is the
process of losing an electron while reduction is the process of gaining an
electron. Both batteries and fuel cells contain three main components: an
anode, cathode, and electrolyte. The electrode which electrons �ow toward

is called the cathode. The electrode which electrons �ow away from is called
the anode anode. The electrolyte is a material though which ions can �ow
more easily than electrons.

In many ways, current technology is limited by battery technology. For
example, the battery of the Apple iPhone X weighs 42 g and has a speci�c
energy of 246 W·h

kg . It accounts for 24 % of the weight of the phone [123]

[124]. Similarly, the batteries of the Tesla Model S electric vehicle weigh

580 kg and have an overall speci�c energy of 141 W·h
kg . They account for

27% of the weight of the car [125]. Relatedly, technology companies have
been rocked by problems in battery manufacture. In July of 2015, more
than half a million hoverboards produced by ten di�erent companies were
recalled due to battery explosions [126]. Also, Samsung recalled millions
of Galaxy Note 7 smart phones in 2016, costing the company billions of
dollars [127]. The batteries were manufactured by one of two di�erent
suppliers. Manufacturing issues in batteries produced by both suppliers
made the phones susceptible to catching on �re [127].

Due to the importance of battery technology to the consumer product
industry, electric vehicle industry, and other technology sectors, money and
e�ort have been pouring into battery research, development, and manufac-
turing. Rechargeable lithium ion battery development, in particular, is an
intense area of e�ort and investment. All of the examples in the previ-
ous paragraph involve these lithium batteries. In 2009, $13 billion worth
of lithium batteries were sold, and 163 billion lithium batteries were pro-
duced [128, ch. 15]. In 2014 Tesla, one of multiple manufacturers, began
construction of a new factory named the Gigafactory. Upon completion,
Tesla aims for this facility to be the largest building in the world and for
it to annually produce lithium batteries with a combined capacity of 35
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gigawatt hours [129]. More recently, industry-wide investment has only
grown larger.

9.2 Measures of the Ability of Charges to Flow

The idea of �ow of charges is fundamental to both electrical engineering
and chemistry. However, electrical engineers and chemists make di�erent
assumptions, and they use di�erent notations to describe closely related
phenomena. Engineers prefer to work with solids because solids are durable.
Electrical engineers assume all discussions involve solids unless otherwise
speci�ed. Chemists, however, are quite interested in, and assume all dis-
cussions involve, liquids, with special focus on aqueous solutions. Batteries
and fuel cells typically involve charge �ow through both liquids and solids,
so to understand these devices, we have to be familiar with notations and
assumptions from both �elds of study.

In solid conductors, valence electrons �ow. Inner shell electrons are
assumed to be so tightly bound to atoms that their movements can be
ignored. Nuclei are so much heavier than electrons that their movements
can also be ignored. In solid semiconductors, both valence electrons and
holes �ow. Electrical engineers measure the ability of charges to �ow in
materials by the electrical conductivity.

Positive and negative ions can �ow more easily in liquids than solids, so
chemists are concerned with the �ow of both electrons and ions. Semicon-
ductor physicists tend to use the terms electrical conductivity, resistivity,
Fermi level, and energy gap. Chemists are so interested in the ability of
charges to �ow that they have many interrelated measures to describe it.
We'll discuss the following measures:

• Mulliken electronegativity

• Ionization energy

• Electron a�nity

• Electronegativity

• Chemical potential

• Chemical hardness

• Redox potential

• pH
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Figure 9.1: An energy level diagrams labeled in two ways.

9.2.1 Electrical Conductivity, Fermi Energy Level, and Energy

Gap Revisited

Electrical conductivity σ is measured in units 1
Ω·m , and it was discussed in

Sec. 8.6.2. The inverse is resistivity ρ = 1
σ
measured in Ω · m. Electrical

conductivity and resistivity are measures of the ability of electrons to �ow
through a material. As described by Eq. 8.32, electrical conductivity is
directly proportional to the number of charges present and the mobility of
the charges. Conductors have large electrical conductivity, and insulators
have small electrical conductivity. These measures can describe liquids and
gases as well as solids. Also, gases, liquids, and solids can all be classi�ed
as conductors, dielectrics, or semiconductors.

Fermi energy level, energy gap, valence band, and conduction band
were de�ned in Section 6.3. The left part of Fig. 9.1 shows an energy level
diagram zoomed in so that only some levels are shown, and these terms
are illustrated in the �gure. At T = 0 K, energy levels are �lled up to
some level called the valence band. The energy level above it, which is
un�lled or partially un�lled, is called the conduction band. The amount of
energy needed to completely remove an electron from the valence band is
represented by the vertical distance from that energy level to the ground
state, labeled 0 eV, at the top of the �gure. The energy gap, Eg, is the
vertical distance between the valence and conduction bands. It represents
the minimum amount of energy needed to excite an electron. The Fermi



204 9.2 Measures of the Ability of Charges to Flow

energy level represents the energy level at which the probability of �nding
an electron is 0.5. At T = 0 K, it is at the middle of the energy gap.
In the �gure, it is shown as a dotted line. Qualitatively, it represents
the amount of energy needed to remove the next electron. No electrons
have exactly that energy because there are no allowed states in the gap.
For a doped semiconductor, a semiconductor with crystalline defects, or
a semiconductor not at absolute zero temperature, the Fermi level is near
but not quite at the middle of the gap.

The right part of the �gure shows the same energy level diagram la-
beled using terms more commonly used by chemists to describe isolated
atoms than by physicists to describe solid semiconductors. Chemists some-
times use the term highest occupied energy level instead of valence band.
This term is most often used to refer to energy levels of isolated atoms or
molecules because some authors reserve the term band for an energy level
shared between neighboring atoms. Similarly, chemists sometimes use the
term lowest unoccupied energy level in place of conduction band. As dis-
cussed below in Secs. 9.2.3 and 9.2.4, the term chemical potential µchem
is used in place of Fermi energy level Ef , and the energy gap Eg may be
called twice the chemical hardness.

9.2.2 Mulliken Electronegativity

One measure that chemists use to describe the ability of charges to �ow is
electronegativity, and this term has multiple de�nitions in the literature.
One de�nition is by Mulliken in 1934 [130], and this measure will be referred
to as the Mulliken electronegativity. Mulliken approximated the energy in
a chemical bond by averaging the ionization energy Iioniz and the electron
a�nity Aaff . Mulliken electronegativity is de�ned

χMulliken =
Iioniz + Aaff

2
. (9.1)

Ionization energy is the energy needed to remove an electron from an atom
or ion, and electron a�nity is the energy change when an electron is added
to an atom or ion [12]. All of these quantities, χMulliken, Iioniz, and Aaff ,

are measured in the SI units of J
atom or occasionally in other units like

eV
atom or kJ

mol .
This de�nition is simpler than other de�nitions of electronegativity, and

reference [131] calls this an �operational and approximate� de�nition. It is
useful because it involves strength of chemical bonds, and we can relate it to
the measures used by semiconductor researchers. Qualitatively, ionization
energy is represented by the energy needed to rip o� an electron. In Fig.
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9.1, it is the vertical distance from the valence band or highest occupied
state to the ground state at the top of the �gure. Sometimes chemists
call this amount of energy the work function instead [60, ch. 6] [108]. In
Fig. 9.1, the electron a�nity is represented by the vertical distance from
the conduction band or lowest unoccupied state to the ground state at the
top of the �gure. The magnitude of the Mulliken electronegativity is the
average of these two energies, so it is the magnitude of the Fermi energy
at T = 0 K. By convention, it has the opposite sign.

χMulliken = −Ef |T=0 K (9.2)

Fundamentally, electrical engineering is the study of �ow of charges.
Chemistry is the study of the strength of chemical bonds. The electrical
conductivity of a material is high when the chemical bonds holding that
material together are easily broken so that many free charges can �ow.
The electrical conductivity of a material is low when chemical bonds hold-
ing atoms together require lots of energy to break. Electronegativity is a
measure of the energy required to break chemical bonds, so fundamentally,
it tells us similar information to electrical conductivity.

9.2.3 Chemical Potential and Electronegativity

Another way of de�ning electronegativity follows the de�nition introduced
by Pritchard in 1956 [132]. This de�nition is one of the more common ones,
and it is used by both chemists [131] [133] and by other scientists [2, p.
124.]. The electronegativity of an atom is de�ned as

χ = −
(
∂U
∂N

)∣∣∣∣
V,S,

(9.3)

where U is the internal energy relative to a neutral atom and N repre-
sents the number of electrons around the atom. An atom is composed of a
charged nucleus and charged electrons moving around the nucleus, so there
is an electric �eld, and hence an electrical potential V in volts, around
an atom. This potential signi�cantly depends on the number of electrons
around the atom. Also, when the atom is at a temperature above abso-
lute zero, the electrons and nuclei are in motion, so the atom has some
entropy S. Electronegativity involves ∂U

∂N
at constant electrical potential

and entropy. It applies whether the atoms are part of a solid, liquid, or
gas.

The chemical potential µchem is de�ned as the negative of this elec-
tronegativity.

µchem = −χ (9.4)
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In SI units, both chemical potential and electronegativity are measured
in J

atom, but sometimes they are also expressed in eV
atom or kJ

mol . As if
the three names, chemical potential, negative of the electronegativity, and
Fermi energy level, weren't enough, this quantity is also known as the
partial molar free energy [60, p. 145].

Electronegativity is used to describe a collection of atoms, molecules,
or ions all of the same ionization state [131]. Less energy is required to
rip the �rst electron o� an atom than the second or third electron. The
de�nition of electronegativity is speci�c to potential V , in volts, due to the
nucleus and electrons around an atom. For example, we can talk about
the electronegativity, energy required to rip o� the electron, of a neutral
magnesium atom. We can also talk about the electronegativity, energy
required to rip o� an electron, from a Mg+ ion. The electric �eld, and
hence potential V , around a neutral Mg atom and the electric �eld, and
hence potential V , around a magnesium ion Mg+ are necessarily di�erent
because of the number of electrons present. The energies required to rip
o� the next electron from these atoms will also necessarily be di�erent.
So, electronegativity of a material always refers to a speci�c ionization
state. Electronegativity incorporates both the energy required or gained
by ripping o� an electron and the energy required or gained by acquiring an
electron. Qualitatively, it is the average of the ionization energy required
to rip o� an electron and the electron a�nity released when an electron
is captured. In the case of the Mg atom from the example above, the
energy gained by releasing an electron is the signi�cant term, but that is
not always the case.

In most energy conversion devices, and most chemical reactions, we are
interested in only the valence electrons. So, even if an atom has dozens
of electrons around it and the energy to rip o� each electron is di�erent,
we are just interested in the �rst few valence electrons. We will see that
batteries and fuel cells involve energy stored in chemical bonds. Only
the valence electrons are involved in the reactions of batteries and fuel
cells, so in studying batteries and fuel cells, we are most interested in the
electronegativity of neutral or singly ionized atoms.

Equation 9.3 de�nes electronegativity as the energy required to rip o�
the next electron from the atom. Again consider Fig. 9.1. The energy level
known as the valence band to semiconductor physicists and the highest
occupied state to chemists is �lled with electrons. The next highest band,
called either the conduction band by semiconductor physicists or lowest
unoccupied state by chemists, is not �lled with electrons. The electronega-
tivity according to this de�nition is the energy required to rip o� the next
electron. On average, it is again graphically represented by the Fermi level.
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Both electronegativity de�ned by Eq. 9.3 and Mulliken electronega-
tivity de�ned by Eq. 9.1 have the same units. However, multiple other
de�nitions of electronegativity can be found in the literature. One of the
oldest de�nitions is due to Pauling in 1932 [134], and that de�nition is
measured instead in the units of square root of joules on a relative scale.
Reference [135] expanded on Pauling's de�nition to show variation with
ionization state and atom radius. Reference [133] also contains a di�erent
de�nition of electronegativity also with its own units.

9.2.4 Chemical Hardness

Chemists sometimes use the term hardness when semiconductor physicists
would use the term half the energy gap. Chemical hardness has nothing to
do with mechanical hardness. As with electronegativity, there are multiple
related de�nitions of hardness. The Mulliken hardness is de�ned as [131]

Mulliken hardness =
Iioniz − Aaff

2
. (9.5)

A more careful de�nition of chemical hardness is [131] [136, p. 93]

hardness =
1

2

(
∂µchem
∂N

)∣∣∣∣
V,S,

. (9.6)

It is half the change in chemical potential for the next electron, and quali-
tatively it is represented by half the energy gap. As with electronegativity,
it is speci�ed for a given potential in volts around the atom and a given
entropy. Liquids may be classi�ed as hard or soft. Hard acids and hard
bases have large energy gaps, so they are electrical insulators. Soft acids
and soft bases have small energy gaps, so they are electrical conductors. No
additional variable will be introduced for hardness because this quantity
can be represented by half the energy gap, Eg

2
.

9.2.5 Redox Potential

Redox (from REDuction-OXidation) potential Vrp is yet another measure
used by chemists to describe the ability of electrons to be ripped o� their
atoms and �ow in the presence of an applied voltage, nearby chemical, op-
tical �eld, or other energy source. As de�ned above, the process of ripping
o� electrons is called oxidation. The process of gaining electrons is called
reduction. Together, they form redox reactions. Instead of being measured
in joules like electronegativity, it is measured in volts where a volt is a joule
per coulomb. Redox potential represents the energy stored in a chemical
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bond per unit charge. It is more often used by experimentalists than the-
orists, and it is often used to describe solids instead of liquids. Redox
potential is a macroscopic property, describing a larger piece of material as
opposed to describing just an individual atom. It is also sometimes called
oxidation reduction potential or the standard electrode potential [137]. It
is a relative measure of the ability of a substance to lose an electron. A
list of redox potentials can be found in references [60, p. 158] and [137].
There are di�erent ways of de�ning redox potential in the literature. The
de�nitions vary in their choice of a ground reference voltage, and they vary
in their sign conventions. American and European researchers tend to use
di�erent de�nitions.

Redox potential is measured on a relative scale. To measure redox
potential [138], electrodes are put in the system being studied. A potential
is applied to balance the internal voltage. By measuring this externally
applied voltage, the potential of an electrode is determined with respect
to a reference electrode. Often, the potential of a platinum electrode is
used as a reference and said to have zero volts at standard conditions of
T = 25 0C and P = 1 atm. The reaction at the platinum electrode is

H2 → 2H+ + 2e−. (9.7)

9.2.6 pH

pH is a unitless measure of the likelihood that a water molecule is bonded
or has been ionized in a liquid solution. It is used to classify liquids as
acidic or basic. When discussing pH, we assume the material under test is
a liquid solution at a temperature of 25 ◦C and a pressure of 1 atm [12]
[81]. A liquid solution is a mixture of water and another material called a
solute. More speci�cally, pH is de�ned as

pH = log10

(
1[
H+
]) . (9.8)

The quantity
[
H+
]
is the amount concentration of hydrogen ions in the

units of molL [68, p. 39].

[
H+
]

=
concentration H+ions, mol
volume of solution in L

(9.9)

This quantity was formerly called molarity or molar concentration, but
these terms are no longer recommended for use [68, p. 39]. pH is a measure
often used by experimentalists.
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The concept of pH is fundamentally related to the �ow of charges, a
concept which is very important to electrical engineers. Water is composed
of H2Omolecules. In pure water, some of these molecules fall apart, ionizing
into H+ ions (protons) and OH− ions. However, most of the molecules
remain intact. If some solutes are mixed with the water, more of the H2O
molecules will ionize than in pure water. For example, carbon dioxide will
bond with OH− ions forming carbonic acid HCO−3 causing an increase in
H+ ions. Since pH is the negative log of H+ ion activity, increasing H+ ion
concentration is equivalent to a pH decrease. If ammonia, NH3, is added to
water, NH+

4 is formed, and the number of OH− ions increases resulting in
an increase in pH. Since water is a liquid, both these positive and negative
ion charge carriers can move about relatively easily. If an external voltage
is applied across the liquid, ions will �ow. Electrical conductivity will be
higher in a liquid with more ions present than in liquids with fewer ions
present.

As an example, consider what happens when neutral sodium atoms are
added to water. (For obvious reasons, don't try this at home [139].) It is
energetically favorable for the sodium atoms to ionize to Na+ giving up an
electron. In the process, some more water molecules ionize, and some H+

ions become neutral H atoms.

Na + H2O→ Na+ + H + OH− (9.10)

By adding the solute sodium, the solution has fewer H+ ions.
Consider what happens when neutral chlorine atoms are added to water.

It is energetically favorable for a chlorine atom to acquire an electron to a
form Cl− ion.

Cl + H2O→ Cl− + H+ + OH (9.11)

By adding the solute chlorine, the solution has more H+ ions. While these
examples involve adding neutral atoms, the concept of pH applies to solutes
which are molecules too.

Solutions with pH less than 7 are called acidic. If a solution has a high
concentration of H+ ions, it will have a low pH and be acidic. In strongly
acidic solutions, molecules of the solute rip apart many water molecules,
so lots of ions are present. Solutions with pH greater than 7 are called
alkaline or basic. If a solution has a low concentration of H+ ions, and
hence a high concentration of OH− ions, it will have a high pH and be
alkaline. In strongly alkaline solutions, molecules of the solute rip apart
many water molecules, so again lots of ions are present. Neutral solutions
have a pH near 7, and some neutral solutions may be electrical insulators.
Solutions with a pH much below or much above 7 necessarily have many
ions present, and they are good electrical conductors.
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As an example, let's �nd the pH of a solution with 1015 ions of H+ in 1
L of water.[

H+
]

=
1015 ions

1 L
· 1

6.022 · 1023 ions
mol

= 1.66 · 10−9 mol
L

(9.12)

pH = log

(
1

1.66 · 10−9

)
≈ 9 (9.13)

Notice that the exponent of
[
H+
]
is -9, and the pH is 9. Qualitatively, the

pH tells us the negative of the order of magnitude of the amount concen-
tration of hydrogen ions. The solution in this example is alkaline.

As a related example, let's �nd the pH of a solution with 1020 ions of
H+ in 1 L of water.[

H+
]

=
1020 ions

1 L
· 1

6.022 · 1023 ions
mol

= 1.66 · 10−4 mol
L

(9.14)

pH = log

(
1

1.66 · 10−4

)
≈ 4 (9.15)

This example has more hydrogen ions in the solution, so it is more acidic.
The pH of 4 tells us that the solution has approximately 10−4 mol

L of
hydrogen ions.

How many hydrogen ions are found in a 1 L solution with a pH of 7?

7 = log

(
1

[H+]

)
(9.16)

[
H+
]

= 10−7 ions
mol

(9.17)

10−7 mol
L
· 1 L · 6.022 · 1023 ions

mol
= 6.022 · 1016 ions H+ (9.18)

A neutral solution, with a pH of 7, still contains H+ ions.
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9.3 Charge Flow in Batteries and Fuel Cells

9.3.1 Battery Components

The �ow of both positive and negative charges must be considered to un-
derstand the operations of batteries and fuel cells. The simplest battery
contains just an anode, cathode, and electrolyte. These components are
illustrated in Fig. 9.2.

Anode Cathode

- +

Electrolyte

Separator

Load

Seal

Figure 9.2: Battery components.

Both of the electrodes must be good conductors. They are often porous
to increase the surface area where the reaction occurs. The cathode is a
sink for electrons and positive ions, and both of these types of charges are
attracted towards this terminal. The cathode is the positive electrode of
a discharging battery. The anode is source for electrons and positive ions,
and both of these types of charges �ow away from the anode. The anode
is the negative electrode of a discharging battery.

The electrolyte has high ionic conductivity but low electrical conductiv-
ity. For this reason, during discharge of a battery, ions �ow from the anode
to the cathode through the electrolyte. Meanwhile, electrons are forced
to �ow from the anode to the cathode through the load. The electrolyte
is often a liquid but sometimes a thin solid. Batteries are contained in a
package. If the electrolyte is liquid, a seal is included to prevent it from
spilling or escaping [140].

Most batteries also contain a separator, which is typically made from
a thin polymer membrane [140]. The separator allows some but not other
ions to �ow through, and it is a physical barrier that prevents the electrodes
from contacting and shorting out the battery.
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Battery components Optional components for protection
Anode Diode
Cathode Fuse or circuit breaker
Electrolyte Vent
Separator Microcontroller
Seal Thermocouple

Table 9.1: Battery Components.

Additional components are often added to improve device safety, and
Table 9.1 lists some of these optional components. A user may mistakenly
insert a battery backwards. To prevent damage due to this error, some bat-
teries incorporate a diode [128, ch. 5.1]. The voltage across the terminals
of a battery with an internal diode will necessarily be less than the voltage
across an equivalent battery without the diode present. Other batteries,
like typical 9V batteries, incorporate connectors that can only be attached
one way. A battery may also be damaged if the terminals are shorted.
Most batteries include vents so gases can safely escape when a battery is
damaged due to shorting the terminals, attempting too much current draw,
or overheating for other reasons [128, ch. 5.1]. Some batteries include a
fuse or circuit breaker in the package to prevent damage in these cases too.
Additionally, rechargeable batteries can be damaged if the recharging pro-
cess is not properly controlled [128, ch. 5.1]. Some rechargeable batteries
have a thermocouple and microcontroller built into the package to control
the recharging process and prevent overheating during recharging [128, ch.
5.1]. Users should not try to recharge nonrechargeable batteries. While the
chemical reaction can often go in either direction, the package and structure
of a primary battery are not designed to withstand the charging process
and will typically be damaged [128, ch. 5.1].

9.3.2 Charge Flow in a Discharging Battery

As a battery discharges, chemical energy stored in the bonds holding to-
gether the electrodes is converted to electrical energy in the form of current
�owing through the load. Consider an example battery with a magnesium
anode and a nickel oxide cathode. The reaction at the anode is given by

Mg + 2OH− → Mg(OH)2 + 2e− (9.19)

which has a redox potential of Vrp = 2.68 V [137] [140]. The reaction at
the cathode is given by

NiO2 + 2H2O + 2e− → Ni(OH)2 + 2OH− (9.20)
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Mg NiO
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e− I
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OH

ions

-
Anode Cathode

Figure 9.3: Charge �ow in a discharging battery.

which has a redox potential of Vrp = 0.49 V [140]. The overall reaction is
given by

Mg+NiO2 + 2H2O→ Mg(OH)2+Ni(OH)2

This reaction occurs in alkaline solutions that contain OH− ions available
to react, so an electrolyte such as potassium hydroxide, KOH, can be used
[140]. Other reactions may simultaneously occur at these electrodes [137],
but for simplicity these other reactions will be ignored.

Figure 9.3 illustrates the charge �ow in the battery during normal oper-
ation. A complete circuit is formed not just by the �ow of electrons but by
a combination of the �ow of electrons and ions [128]. Electrons �ow away
from the negative terminal (anode) through the load. Negative OH− ions
�ow away from the positive terminal (cathode) through the electrolyte.
The separator should allow the OH− to �ow from the positive terminal to
the negative terminal. For some electrodes, though not in this example,
positive ions, instead of negative ions, complete the circuit by �owing away
from the negative terminal. As shown in the �gure, the direction of current
�ow is opposite to the direction of electron �ow. The battery continues to
discharge until one of the electrodes is used up [3, p. 226].

9.3.3 Charge Flow in a Charging Battery

Figure 9.4 illustrates the �ow of charges when the battery is charging. Dur-
ing charging, energy is converted from electrical energy due to the external
voltage source back to chemical energy stored in the chemical bonds hold-
ing together the electrodes. Again, the �ow of both electrons and ions, not
just electrons, must be considered. As above, the direction of the current
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Mg NiO
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OH
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- AnodeCathode

Figure 9.4: Charge �ow in a charging battery.

is the opposite of the direction of the �ow of electrons. Reactions occurring
are the opposite of the reactions given by Eqs. 9.19 and 9.20. By de�nition,
the cathode is the electrode which electrons �ow towards, and the anode
is the electrode which electrons �ow away from. During charging, unlike
during discharging, the cathode is the negative terminal and the anode is
the positive terminal. For this example, the reaction at the cathode is

Mg(OH)2 + 2e− → Mg + 2OH− (9.21)

and the reaction at the anode is

Ni(OH)2 + 2OH− → NiO2 + 2H2O + 2e−. (9.22)

In this example, OH− ions �ow away from the cathode during charging.
However, in some reactions, both the �ow of negative ions away from the
cathode and positive ions away from the anode must be considered during
charging.

9.3.4 Charge Flow in Fuel Cells

A fuel cell contains many of the same components as a battery [3, p. 226]
[128, p. 376] [141]. Like a battery, a fuel cell contains an anode and a
cathode. These electrodes must be good conductors, and they are often
porous so that they have a large surface area. Electrodes are in a liquid
or solid electrolyte through which ions can �ow. The electrodes are often
coated in a catalyst, such as platinum, to speed up chemical reactions
[141]. A fuel cell contains a separator, typically called a membrane, which
selectively allows ions to �ow. As with the separator of a battery, it is
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Figure 9.5: Charge �ow in a fuel cell.

typically made from a thin polymer. Fuel is added at the anode, and an
oxidizer is added at the cathode. Typically, both the fuel and oxidizer
are liquids or gases. They get consumed during operation while the anode
and cathode are not consumed as they are in a discharging battery. These
components are illustrated in Fig. 9.5.

As an example, a fuel cell may use H2 gas as the fuel and O2 gas as the
oxidizer. The anode may be carbon cloth [141], and this reaction is sped
up by a platinum catalyst [108]. An alkaline solution such as KOH can be
the electrolyte. For this fuel in an alkaline electrolyte, the reaction at the
anode is

H2 + 2OH− → 2H2O + 2e− (9.23)

and the reaction at the cathode is

1

2
O2 + 2e− + H2O→ 2OH− (9.24)

[108].
Figure 9.5 also illustrates charge �ow in an example fuel cell [3, p. 226]

[128, p. 376] [141]. Oxidation, the process of ripping electrons o� the fuel
leaving positive ions, occurs at the anode. These electrons �ow from the
anode to the cathode through the load. At the cathode, the oxidizer is
reduced. In other words, at the cathode, the oxidizer reacts incorporating
these electrons to form negative ions. These negative ions �ow from the
cathode to the anode, and positive ions �ow from the anode to the cathode.
The membrane prevents charges from �owing in the reverse direction, and
it prevents the positive ions and negative ions from combining with each
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other directly. A fuel cell can continue to operate as long as the fuel and
oxidizer are added and the oxidation products are removed.

9.4 Measures of Batteries and Fuel Cells

9.4.1 Cell Voltage, Speci�c Energy, and Related Measures

Just as chemists have multiple measures of the ability of charges to �ow,
they have multiple measures of energy or charge stored in a device. In this
section, the following measures of batteries and fuel cells are de�ned:

• Cell voltage in volts

• Speci�c energy in J
g or W·hkg

• Energy density in J
m3 or W·hL

• Capacity in mA·h or C

• Speci�c capacity in mA·h
g or C

kg

• Charge density in mA·h
L or CL

De�nitions throughout this section follow references [128, ch. 1] and [140].
If these measures are calculated using knowledge of chemical reactions

and quantities found in the periodic table, they are called theoretical values.
If these quantities are experimentally measured, they are called practical

values. Practical values are necessarily less because no energy conversion
device is ever completely e�cient. Measures preceded by the word speci�c

are given per unit mass. Measures followed by the word density are give
per unit volume. For example, speci�c energy is measured in the SI units
of joules per gram and energy density is measured in the SI units of joules
per meter cubed. However, these rules are not closely followed, so the term
energy density is sometimes used to mean energy per unit weight instead
of per unit volume. It is safest to explicitly specify the units of measure to
avoid this confusion.

Theoretical cell voltage, Vcell measured in volts, is the voltage between
the anode and the cathode in a battery or fuel cell. It is the sum of the
redox potential for the half reaction at the anode and the redox potential
for the half reaction at the cathode. It represents the voltage between the
terminals of a completely charged battery or fuel cell. Many authors call
this measure theoretical cell potential instead of cell voltage, and symbols
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E0 or Ξ0 are also used in the literature. As discussed in Appendix C, the
word potential is overloaded with multiple meanings. The word voltage
and the symbol Vcell are used here to emphasize that this quantity is essen-
tially voltage. Since redox potentials for many half reactions are tabulated
[128, app. B] [137], theoretical cell voltage can be quickly calculated for
many reactions. While we can calculate the theoretical cell voltage, we can
measure the practical cell voltage with a voltmeter. The theoretical cell
voltage will always be slightly larger than the practical cell voltage because
the theoretical cell voltage ignores a number of e�ects including internal
resistance and other factors discussed in the next section. Reactions with
Vcell > 0 occur spontaneously [12, ch. 18].

Three related measures are capacity, speci�c capacity, and charge den-
sity. Capacity is measured in ampere hours or coulombs. (By de�nition,
one ampere is equal to one coulomb per second.) It is a measure of the
charge stored in a battery or fuel cell. Speci�c capacity is a measure of
the charge stored per unit mass. It is speci�ed in mA·h

g , C
kg , or related

units. Charge density is a measure of the charge stored per unit volume,
and it is speci�ed in mA·h

L , C
m3 , or related units. While capacity depends

on the amount of material present, speci�c capacity and charge density do
not. All of these measures may be speci�ed as theoretical values calcu-
lated from knowledge of the chemical reactions involved or practical values
measured experimentally where the theoretical values are always slightly
higher. Also for all of these values, only valence electrons are considered.
Batteries and fuel cells necessarily have more electrons than are included
in these measures because inner shell electrons, which do not participate in
the chemical reaction, are ignored. Energy is stored in the bonds holding
inner shell electrons, but this energy is not converted to electricity in bat-
teries or fuel cells. The concept of charge density, ρch in units C

m3 , was �rst
introduced in section 1.6.1, and it shows up in Gauss's law, one of Maxwell's
equations. However, the word capacity has nothing to do with the word
capacitance introduced earlier. See Appendix C for more information on
this and other overloaded terms.

Theoretical speci�c energy is measured in J
g , W·h

kg , or related units

[128, ch. 1]. It is a measure of the energy stored in a battery or fuel
cell per unit weight. It is the product of the theoretical cell voltage and
the speci�c charge. Relatedly, theoretical energy density, measured in J

m3

or W·h
L , is a measure of the energy stored in a device per unit volume.

Theoretical energy density is the product of theoretical cell voltage and
charge density. These measures can be calculated from knowledge of the
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chemical reactions involved using information found in the periodic table.
Practical speci�c energy and practical energy density are typically 25-35%
below the theoretical values [128, ch. 1.5]. Speci�c energy and energy
density are important measures of a battery. Often, high values are desired
so that small and light batteries can be used to power devices for as long
as possible. However, as speci�c energy and energy density increase, safety
considerations increase.

Chemists sometimes de�ne the charge in a mol of electrons as the Fara-
day constant. It has the value

6.022 · 1023 atoms
1 mol

· 1 e−

atom
· 1.602 · 10−19 C

e−
= 9.649 · 104 C

mol
(9.25)

[68]. This quantity will not be used below because the Avogadro constant
Na and the magnitude of the charge of an electron q are already speci�ed
and because this text already has too many variables.

We can calculate the theoretical speci�c capacity in A·h
g and the the-

oretical speci�c energy in J
g for the reactions given by Eq. 9.19 and 9.20.

The redox potential for the Mg half reaction is Vrp = 2.68 V, and the redox
potential for the Ni half reaction is Vrp = 0.49 V [140] [137]. The overall
cell voltage is

Vcell = 2.68 + 0.49 = 3.17 V. (9.26)

The reaction occurs spontaneously when it is set up because Vcell > 0.
By unit conversions, we can calculate the weight per unit charge for

each half reaction. From the periodic table, the atomic weight of Mg is
24.31 g

mol, the atomic weight of Ni is 58.69 g
mol, and the atomic weight

of O is 16.00 g
mol. First consider the Mg half reaction of Eq. 9.19 which

involves two valence electrons.

24.31
g
mol ·

1 mol
6.022·1023 atoms ·

1 atom
2 valence e−

· 1 e−

1.602·10−19 C ·
1 C
1 A·s ·

3600 s
1 h

= 0.454
g
A·h

(9.27)
Next, consider the Ni half reaction of Eq. 9.20 which also involves two
valence electrons. The weight of NiO2 is 90.69

g
mol .

90.69
g
mol ·

1 mol
6.022·1023 atoms ·

1 atom
2 valence e−

· 1 e−

1.602·10−19 C ·
1 C
1 A·s ·

3600 s
1 h

= 1.69
g
A·h

(9.28)
For the overall reaction,

0.454 + 1.692 = 2.146
g

A · h . (9.29)
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The overall theoretical speci�c capacity is the inverse of this quantity.

1

2.146
= 0.466

A·h
g

(9.30)

Adding charge densities for each half reaction does not make sense, but we
can sum the terms for weight per unit charge in unit g

A·h.
We can calculate the theoretical speci�c energy by multiplying the the-

oretical cell voltage and the theoretical speci�c capacity.

3.17 V · 0.466
A·h
g

= 1.48
W·h
g

(9.31)

The theoretical speci�c energy can be converted to the units Jg.

1.48
W·h
g
· 1 J

1 W·s ·
3600 s

1 h
= 5.32 · 103 J

g
(9.32)

In the calculation above, only the electrode weights were considered. How-
ever, the package, separator, and other battery components all have some
mass which contribute to the weight of the battery.

9.4.2 Practical Voltage and E�ciency

We can model both a battery and a fuel cell as an ideal voltage source. This
is a useful model, but at times, it is not good enough for multiple reasons.
A better model includes some internal resistance [128, p. 9.27]. However,
even this model is inadequate because the voltage of any practical battery
depends on temperature, the load, the current through the battery, the
fraction of capacity used, the number of times it has been recharged, and
other factors [128, p. 3.2]. An even better model includes these variations
too, as shown in Fig. 9.6.

+
-

Simple battery

model

A more accurate 

battery model

+
-

V

v(t, T, i)

Figure 9.6: Models of a battery.

There are many measures used to describe the voltage across a battery
or fuel cell. The nominal voltage is the typical voltage during use, and it
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is often the voltage printed on the label. The end or cuto� voltage is the
voltage at the end of the battery's useful life. The open circuit voltage is
the voltage under no load, and it is approximately the initial voltage of the
battery. The closed circuit voltage is the voltage under load. It is less than
the open circuit voltage due to the internal resistance of the battery [128,
p. 3.2].

All batteries and fuel cells have some internal resistance. The cathode
and anode are made of metals which are good, but imperfect, conductors.
For example, carbon is a common electrode material, and it has an electrical
conductivity between 1.6 · 104 and 2.0 · 107 1

Ω·m [106]. Anytime current
�ows through a physical material with �nite electrical conductivity, energy
is converted to heat. Actual voltage is a function of current drawn from
the battery because at high currents, this e�ect is larger. Also, the actual
voltage is a function of temperature because ions move faster at higher
temperatures, so there is less internal resistance at higher temperatures
[128, p. 3.9]. However, at higher temperatures, chemical reactions may
occur more quickly, so the life of the batteries may be less because reactions
occur faster.

The actual voltage across a battery or fuel cell is also in�uenced by the
accumulation of chemical reaction products. In the example given by Eqs.
9.19 and 9.20, the reactants were Mg and NiO2 and the reaction products
were Mg(OH)2 and Ni(OH)2. The actual voltage across the device decays
with use because reactants build up in the electrolyte as the reaction occurs.
These reactants inhibit further reactions from taking place [128, p. 3.2].

The e�ect of the accumulation of products on the voltage of a battery
can be modeled by

Vcell theor − Vcell prac =
kBT

Nvq
ln

(
[products]
[reactants]

)
(9.33)

which is known as the Nernst equation [12, p. 750,789]. Many authors re-
place the Boltzmann constant in this expression using R = NakB where Na

is the Avogadro constant and R is the molar gas constant. In this expres-
sion, Vcell theor is the theoretical cell voltage, and Vcell prac is the practical
cell voltage that incorporates the e�ect of reaction products. The quantity
Nv represents the number of valence electrons involved in the chemical re-
action. For the example of Eqs. 9.19 and 9.20, two electrons are involved.
So, the quantity kBT

Nv
represents the internal energy per valence electron

involved in the reaction. The quantity
[products]
[reactants]

is known as the activity
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quotient, and its natural log is between zero and one.

0 ≤ ln

(
[products]
[reactants]

)
≤ 1 (9.34)

When a battery is �rst set up, there are many reactants but few products
present, and

ln

(
[products]
[reactants]

)
≈ 0. (9.35)

In this case, the activity quotient is very small, so the practical cell voltage
between the terminals is very close to the theoretical cell voltage. After a
battery has been discharging for a long time, the activity quotient is large
because many products are present.

ln

(
[products]
[reactants]

)
≈ 1 (9.36)

As expected, this model shows that as a battery discharges, the di�erence
between the theoretical and practical cell voltage grows. We cannot ever
use the entire capacity stored in a battery. As the battery discharges, the
voltage between the terminals drops. At some point, the voltage level is
too low to be useful, and the end voltage is reached. At this point, the
battery should be replaced even though it still has some stored charge.

The Nernst equation is useful to chemists because it can be used to
solve for the amount concentration of reaction products and reactants.
The theoretical cell voltage can be calculated or found in a table, and the
practical cell voltage can be measured with a voltmeter. Reference [137]
tabulates components of the activity quotient as a function of temperature
for various reactions.

Electrical engineers may be more interested in the Nernst equation be-
cause it gives information on the e�ciency of batteries and fuel cells. E�-
ciency is de�ned as the output power over the input power or the output
energy over the input energy.

ηeff =
Eout
Ein

(9.37)

Energy stored in an electrical component is given by Eq. 2.8 where Q is
charge and V is voltage. The amount of charge involved in each reaction is
given by number of electrons involved times their charge for each, Q = qNv.

Ein =
1

2
qNvVcell theor (9.38)



222 9.4 Measures of Batteries and Fuel Cells

Internal energy of a reaction at temperature T is also given by

Ein =
1

2
kBT. (9.39)

We can model the theoretical voltage of a battery cell by combining Eqs.
9.38 and 9.39.

kBT = qNvVcell theor (9.40)

Vcell theor =
kBT

qNv

(9.41)

The output energy produced by the battery is proportional to the prac-
tical cell voltage measured between the terminals.

Eout =
1

2
qNvVcell prac (9.42)

The e�ciency can then be rewritten.

ηeff =
Vcell prac
Vcell theor

(9.43)

With some algebra, we can use the Nernst equation to write this quantity
as a function of the activity quotient.

ηeff =
Vcell prac + Vcell theor − Vcell theor

Vcell theor
(9.44)

ηeff = 1−
(
Vcell theor − Vcell prac

Vcell te

)
(9.45)

The numerator can be replaced using the Nernst equation.

ηeff = 1− 1

Vcell theor

(
kBT

Nvq
ln

(
[products]
[reactants]

))
(9.46)

ηeff = 1− ln

(
[products]
[reactants]

)
(9.47)

Equation 9.47 shows that the e�ciency is a function of the activity quotient.
As described above, the activity quotient is di�erent for di�erent reactions,
and it varies with temperature. The activity quotient is a measure of the
e�ect of the accumulation of products in the electrolyte of a battery or fuel
cell.

Equation 9.47 describes the e�ciency of batteries and fuel cells. It is
another way of expressing the Nernst equation. It is analogous to equa-
tions we have encountered describing e�ciency of other energy conversion
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devices. More speci�cally, it has a similar form to the equation for the
Carnot e�ciency, Eq. 8.42. Carnot e�ciency describes the temperature
dependence of the e�ciency of all devices which convert a temperature
di�erence to another form of energy. It was introduced in the context of
thermoelectric devices, but it applies to pyroelectric devices, steam tur-
bines, and other devices too. These equations also have a similar form
to Eq. 7.23 which modeled the e�ect of mirror re�ectivity and optical
absorption on the e�ciency of a laser.

9.5 Battery Types

9.5.1 Battery Variety

An ideal battery has many desirable qualities. It should:

• have high speci�c energy and energy density

• contain no toxic chemicals so that it is environmentally friendly and
easy to dispose of safely

• be safe to use

• be inexpensive

• be rechargeable

• require no complicated procedure to recharge

• be able to output large current

• be able to withstand a wide range of temperatures

• produce a constant voltage output throughout its life (have a �at
discharge curve)

• remain charged for a long time while in storage

The list above is not complete, and it is in no particular order. Tradeo�s
are needed because many of these qualities inherently contradict. For ex-
ample, a device with a high speci�c energy necessarily requires more safety
precautions and controlled use than a device with low speci�c energy.

Batteries are used in a wide range of applications, so one type is not best
in all situations. As an example, a car ignition battery must be recharge-
able, have high capacity, output large current, and operate over a wide
temperature range. However, car batteries do not require particularly high
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speci�c energies. As another example, tiny batteries are used to power
microelectromechanical systems such as micropumps [142] [143]. These
batteries must have high speci�c energy and be able to be produced in
small packages. Some are even built into integrated circuits [144] [145].

One way to classify batteries is as primary or secondary. A primary

battery is used once, then disposed. A secondary battery is a rechargeable
battery. Primary batteries have the advantage of simplicity [128, ch. 8].
They do not require maintenance, so they are simple to use. Also, their
construction may be simpler than secondary batteries because they do not
need additional circuitry built in to monitor or control the recharging pro-
cess. They often have high speci�c energy too [128, ch. 8]. They come
in a variety of sizes and shapes, and they are made with a variety of elec-
trode and electrolyte materials. Many alkaline and lithium ion batteries
are designed to be primary batteries. Secondary batteries have the obvi-
ous advantage of not producing as much waste that ends up in a land�ll.
Also, the user does not need to continually purchase replacements. While
secondary batteries may cost more initially, they can be cheaper in long
run. They are often designed to be recharged thousands of times [128, ch.
15]. Many secondary batteries have a very �at discharge curve, so they
produce a constant voltage throughout use, even upon multiple charging
cycles [128, ch. 15]. Two of the most common types of secondary batteries
are lead acid batteries and lithium batteries.

There are many battery types, distinguished by choice of electrolyte
and electrodes. Four common battery types are discussed in this section:
lead acid, alkaline, nickel metal hydride, and lithium. Not all batteries
�t into one of these families. Some devices, like zinc air batteries, are
even harder to categorize. Zinc air batteries are actually battery fuel cell
hybrids because the zinc of the anode is consumed as in battery operation
while oxygen from air is consumed as in fuel cell operation. However, by
considering these four classes, we will see some of the variety available. For
a more thorough and encyclopedic discussion of battery types, see reference
[128].

Table 9.2 summarizes example batteries of each of these four types. The
�rst three rows list example materials used to make the anode, cathode,
and electrolyte for batteries. Materials listed in the table are just examples,
so batteries of each type can be made with a variety of other materials too.
The next two rows give approximate values for the speci�c energy in units of
W·h
kg . All values are approximate values for representative devices provided

to give an approximate value for comparison, not necessarily values for a
particular device. The �fth row lists example values for the theoretical
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Lead acid Alkaline Lithium Nickel
Metal
Hydride

Example
anode
material

Pb Zn Li LaNi5

Example
cathode
material

PbO2 MnO2 CF or
MnO2

NiOOH

Example
electrolyte

H2SO4 KOH or
NaOH

Organic
solvents
and LiBF4

KOH

Example
applications

Car
ignitions

Toys Cellphones,
Medical
devices

Power tools

Theoretical
speci�c
energy, W·hkg

252 358 448 240

Practical
speci�c
energy, W·hkg

35 154 200 100

References [128, p.
15.11] [140]

[128, p.
8.10] [140]

[128, p.
15.1, p.
31.5]

[128, p.
15.1] [146]

Table 9.2: Example material components and speci�c energy values for
batteries based on di�erent chemistries.

speci�c energy of the chemical reaction involved while the sixth row lists
example speci�c energy values for practical devices which are necessarily
lower than the theoretical values. The speci�c energy values in the table
can be compared to speci�c energy of various other materials or energy
conversion devices listed in Appendix D.

9.5.2 Lead Acid

Lead acid batteries are secondary batteries which typically have an anode
of Pb and a cathode of PbO2 [128, ch. 15]. The electrolyte is a liquid
solution of the acid H2SO4 which ionizes into 2H+ and SO2−

4 . The reaction
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at the anode is
Pb+SO2−

4 → PbSO4 + 2e− (9.48)

with a redox potential of Vrp = 0.37 V [140]. The reaction at the cathode
is

PbO2 + SO2−
4 + 4H+ + 2e− → PbSO4 + 2H2O (9.49)

with a redox potential of Vrp = 1.685 V [140]. The overall cell voltage is
Vcell = 2.055 V, so in a car battery, six cells are packaged in series.

Lead acid batteries have a long history. The development of the battery
dates to the work of Volta around 1795 [3, p. 2], and practical lead acid
batteries were �rst developed around 1860 by Raymond Gaston Planté
[128, p. 16.1.1]. Today, lead acid batteries are used to start the ignition
system in cars and trucks, used as stationary backup power systems, and
used in other applications requiring large capacity and large output current.
Typically, lead acid batteries can handle relatively high current, and they
operate well over a wide temperature range [128, p. 15.2]. Additionally,
they have a �at discharge curve [128, p. 15.2]. Other types of batteries have
a higher energy density and speci�c energy, so lead acid batteries are used
in situations where speci�c energy is less of a concern than other factors.

9.5.3 Alkaline

Alkaline batteries typically have a zinc anode and a manganese dioxide
MnO2 cathode [128, p. 8.10]. Figure 9.7 shows naturally occurring man-
ganese dioxide (the dark mineral) on feldspar (the white mineral) from
Ruggles mine near Grafton, New Hampshire. The batteries are called al-
kaline due to the use of an alkaline electrolyte, typically a liquid potassium
hydroxide KOH solution [128, p. 8.10]. Most alkaline batteries are primary
batteries, but some secondary alkaline batteries are available. Alkaline bat-
teries have many nice properties. They can handle high current outputs,
they are inexpensive, and they operate well over a wide temperature range
[128, p. 8.10]. One limitation, though, is that they have a sloping discharge
curve [128, p. 8.10]. Alkaline batteries were originally developed for mil-
itary applications during WWII [128, ch. 8]. They became commercially
available in 1959, and they became popular in the 1980s with improvements
in their quality [128, p.11.1]. They are commonly used today in inexpensive
electronics, toys, and gadgets.



9 BATTERIES AND FUEL CELLS 227

Figure 9.7: Naturally occurring manganese dioxide (the dark mineral) on
feldspar (the white mineral).

9.5.4 Nickel Metal Hydride

Nickel metal hydride batteries have an anode made from a nickel metal alloy
saturated with hydrogen. One example alloy used is LaNi5 [146]. Another
rare earth atom may replace the lanthanum [146], and other alloys like
TiNi2 or ZrNi2 saturated with hydrogen are also used as anode materials
[146]. The cathode is typically made from a nickel oxide, and the electrolyte
is potassium hydroxide, KOH [128, p. 15.11]. The reaction at the anode is
[146]

Alloy(H) + OH− → Alloy + H2O + e− (9.50)

and the reaction at the cathode is [146]

NiOOH + H2O + e− → Ni(OH)2 + OH−. (9.51)

This cathode reaction has a redox potential of Vrp = 0.52 V [137].
Nickel metal hydride batteries have many advantages. They have a �at

discharge curve. They are secondary batteries which can be charged reli-
ably many times [128, p. 15.1] [147]. Additionally, they are better for the
environment than the related nickel cadmium batteries, so there are less
constraints on how they can be safely disposed [147]. However, they do
not have as high of energy density as lithium batteries [147]. Nickel metal
hydride batteries were �rst developed in the 1960s for satellite applications,
and research into them accelerated in the 1970s and 1980s. At the time,
they were used in early laptops and cellphones, but lithium batteries are
used in these applications today [128, p. 22.1]. They are found now in
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Figure 9.8: The illustration shows a nickel-hydrogen battery and orbital
replacement unit which powers the International Space Station. This �gure
is used with permission from [148].

some portable tools, in some cameras, and in some electronics requiring
repeated recharging cycles or requiring high current output. The Interna-
tional Space Station is powered by 48 orbital replacement units, and each
orbital replacement unit contains 38 nickel-hydrogen battery cells. Figure
9.8 illustrates an orbital replacement unit [148].

9.5.5 Lithium

Lithium has a high speci�c energy, so it is very reactive and a good choice
for battery research. For this reason, many di�erent battery chemistries
utilizing lithium have been developed. The anode may be made out of
lithium or carbon [128, ch. 8,15]. Possible cathode materials include MnO2,
LiCoO2, and FeS2 [128, ch. 8,15]. Electrolytes may be liquid or solid. A
possible electrolyte is the mixture of an organic solvent such as propylene
carbonate and dimethoxyethane mixed with lithium salts such as LiBF4 or
LiClO4 [128, p. 31.5]. Figure 9.9 shows lepidolite, a lithium containing ore
of composition K(Li,Al)2−3(AlSi3O10)(O,OH,F)2, from Ruggles mine near
Grafton, New Hampshire.

Lithium batteries have been in development since the 1960s, and they
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were used in the 1970s in military applications [128, p. 14.1]. Both primary
and secondary lithium batteries are available today. They are popular due
to their high speci�c energy and energy density. They are used in many
consumer goods including cellphones, laptops, portable electronics, hearing
aids, and other medical devices [149]. Many lithium batteries are designed
to output relatively low current to prevent damage, and secondary lithium
batteries require controlled recharging to prevent damage [128, ch. 15].
Even with these limitations, over 250 million cells are produced each month
[128, ch. 15].

Figure 9.9: Naturally occurring lepidolite, an ore of lithium.

9.6 Fuel Cells

9.6.1 Components of Fuel Cells and Fuel Cell Systems

A fuel cell is a device which converts chemical energy to electrical energy
through the oxidation of a fuel. Like batteries, all fuel cells contain an
anode from which electrons and ions �ow away, a cathode from which elec-
trons and ions �ow towards, and an electrolyte. The electrodes are typically
porous which makes it easier for the fuel and oxidizer to get to the reac-
tion site, provides more surface area for the reaction to occur, allows for a
higher current through the electrode, and allows for less catalyst to be used
[60, ch. 5]. The electrolyte may be a liquid or a solid. Examples of liquid
electrolytes include potassium hydroxide solution and phosphoric acid so-
lution [128]. Examples of solid electrolytes include (ZrO2)0.85(CaO)0.15 and
(ZrO2)0.9(Y2O3)0.1 [60]. Also like a battery, individual cells may be stacked
together in a package. A single fuel cell may have a cell voltage of a few
volts, but multiple cells may be packaged together in series to produce tens
or hundreds of volts from the unit.
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Fuel cell components Fuel cell system components
Anode Fuel processor
Cathode Flow plates
Electrolyte Heat recovery system
Membrane Inverter
Catalyst Other electronics
Fuel
Oxidizer

Table 9.3: Fuel cell components.

In addition to these components, fuel cells often contain a thin polymer
membrane, and fuel cell electrodes are often coated with a catalyst which
speeds up the chemical reaction. An example material used to make the
membrane is a 0.076 cm layer of polystyrene [60, ch. 10]. Another example
membrane is polybenzimidazole containing phosphoric acid [128, ch. 37].
Membranes allow ions, but not the fuel and oxidizer to pass through [60,
ch. 10]. In addition to selectively allowing ions to pass through, membranes
should be chemically stable to not break down in the presence of the often
acidic or alkaline electrolyte, should be electrical insulators, and should be
mechanically stable [60, ch. 10]. A useful catalyst speeds up the reaction at
the electrodes. In addition, a good catalyst must not dissolve or oxidize in
the presence of the electrolyte, fuel, and oxidizer [60, ch. 8]. Additionally,
it should only catalyze the desired reaction, not other reactions [60, ch.
8]. Examples of catalysts used include platinum, nickel, acetylacetone, and
sodium tungsten bronze NaxWO3 with 0.2 < x < 0.93, [60, ch. 6].

During operation, the fuel and oxidizer are continuously supplied to
the device. Fuel may be in the form of a gas such as hydrogen or carbon
monoxide gas, it may be in the form of a liquid such as methanol or am-
monia, or it may be in the form of a solid such as coal [60, ch. 10]. Oxygen
gas or air which contains oxygen is typically used as the oxidizer [60, ch.
10].

Additional chemical, mechanical, thermal, and electrical components
are often included in an entire fuel cell system. Some fuel cell systems
include a fuel processor which breaks down the fuel to convert it to a usable
form and which �lters out impurities [141]. For example, a fuel processor
may take in coal and produce smaller hydrocarbons which are used as fuel.
Also, fuel cells system may contain �ow plates which channel the fuel and
oxidizer to the electrodes and channel away the waste products and heat
[141]. Some fuel cells include heat recovery systems, built in thermoelectric
devices which convert some of the heat generated back to electricity. For
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systems intended to be connected to the electrical grid, inverters which
convert the DC power from the fuel cell to AC are included. A fuel cell
system also typically include a control system that regulates the �ow of the
fuel and oxidizer, monitors the temperature of the device, and manages its
overall operation [128, ch. 37].

9.6.2 Types and Examples

Fuel cells may be classi�ed in di�erent ways. One way is by operating
temperature: low 25-100 ◦C, medium 100-500 ◦C, high 500-1000 ◦C, and
very high over 1000 ◦C [60, ch. 1]. Chemical reactions typically occur more
quickly at higher temperatures. However, one challenge of designing high
temperature fuel cells is that materials must be selected that can withstand
the high temperatures without melting or corroding [60, ch. 2].

As with batteries, another way to classify fuel cells is as primary or
secondary [60, ch. 1]. In a primary fuel cell, also called nonregenerative,
the reactants are used once then discarded. In secondary fuel cells, also
called regenerative, the reactants are used repeatedly. An external source
of energy is needed to refresh the fuel for reuse, and this source may supply
energy electrically, thermally, photochemically, or radiochemically [60, p.
515]. Both primary and secondary fuel cells have been made with a variety
of organic and inorganic fuels [60, p. 515].

Another way to classify fuel cells is as direct or indirect [60, ch. 1,7]
[128, ch. 37]. In a direct fuel cell, the fuel is used as is. In an indirect fuel

cell, the fuel is processed �rst inside the system. For example, an indirect
fuel cell may take in coal and use an enzyme to break it down into smaller
hydrocarbons before the reaction of the cell [60, ch. 7].

Families of fuel cells are often distinguished by the type of electrolyte
used. Examples include alkaline which use a potassium hydroxide solution
as the electrolyte, phosphoric acid, molten carbonate, and solid oxide which
use solid ceramic electrolytes. Other times, fuel cells are categorized by the
type of membrane or the type of fuel used. Two of the most common types
of fuel cells are proton exchange membrane fuel cells and direct methanol
fuel cells [128, ch. 37]. Proton exchange membrane fuel cells use hydrogen
gas as the fuel, oxygen from air as the oxidizer, a solid electrolyte, and
a platinum catalyst [128] [141]. They operate at low temperature and
are used in buses, aerospace applications, and for backup power. Direct
methanol fuel cells use methanol as a fuel. They also often operate at low
or medium temperatures [128] and are used for similar applications.
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9.6.3 Practical Considerations of Fuel Cells

The history of fuel cells goes back almost as long as the history of batteries.
The concept of the fuel cell dates to around 1802 [3, p. 2,222] [60, p. v].
Working fuel cells were demonstrated in the 1830s [3, p. 222] [60, p. v],
and the �rst practical device was built in 1959 as pure materials became
commercially available [5, p. 46] [60, p. v, 26]. While both batteries and
fuel cells are commercially available, batteries have found a home inside
almost every every car, computer, and electronic devices while fuel cells
are more specialized products. There are a number of limitations of fuel
cell technology that have prevented more widespread use. One limitation
is their cost. Some fuel cells use platinum as the catalyst, and platinum is
not cheap. Some cells that do not use platinum catalysts have the problem
that their e�ciency is reduced in the presence of carbon monoxide or carbon
dioxide, which are commonly found in air. Hydrogen gas or methane are
used as the fuel in some cells, and the delivery and storage of these fuels
pose challenges. Additionally, some of the more e�cient systems are large
and require �xed space, air or water cooling, and additional infrastructure,
so these devices do not lend themselves to portable applications.

Fuel cells have advantages which lead to useful applications. Many fuel
cells produce no harmful outputs. If hydrogen gas is used as the fuel and
oxygen from the air is used as the oxidizer, the only byproduct is pure water.
It is hard to �nd an energy conversion device which generates electricity
and is easier on the environment than this type of fuel cell. The left part
of Fig. 9.10 shows a photograph of a proton exchange membrane fuel cell.
The right part of Fig.9.10 shows an image of the water formed during its op-
eration. The image was obtained by the neutron radiography method, and
it was taken at the National Institute of Standards and Technology Center
for Neutron Research in Gaithersburg, Maryland. These �gures are used
with permission from [150]. In some applications, the water production is a
main advantage. NASA space vehicles have used fuel cells to produce both
electricity and pure water since the Gemini and Apollo projects dating to
the 1960s [3, p. 250]. They have been used to produce both electricity
and water on military submarines since the 1960s too [3, p. 250]. Another
advantage of fuel cells is that they can be more e�cient than other devices
which generate electricity. High temperature and higher power units can
have e�ciencies up to 65% [128]. Since some of the highest e�ciencies are
achieved in higher temperature and higher power devices, fuel cells have
found a niche in large and stationary applications generating kilowatts or
megawatts of electricity.
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Figure 9.10: The picture on the left shows a proton exchange membrane
fuel cell. The �gure on the right is an image of the water formed in it
during operation. The image was obtained by the neutron radiography
method at the NIST Center for Neutron Research. These �gures are used
with permission [150].
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9.7 Problems

9.1. A 50 liter solution contains 8 ·1019 H+ ions. Calculate the pH. Is this
solution acidic or basic?

9.2. A bottle contains 3 liters of a chemical solution with a pH of 8.

(a) Does the bottle contain an acid or a base?

(b) Approximately how many H+ ions are in the bottle?

(c) Would a 3 liter bottle with a pH of 9 contain more or less ions
of H+ than the bottle with a pH of 8?

(d) How many times as many/few H+ ions are in the bottle with
solution of pH 8 than in the bottle with solution of pH 9?

9.3. Consider a battery with a lithium electrode and a silver chloride
(AgCl) electrode. Assume the following chemical reactions occur in
the battery, and the redox potential for each reaction is shown.

AgCl + e− → Ag + Cl− Vrp = 0.22 V
Li→ Li+ + e− Vrp = 3.04 V

(a) Which reaction is likely to occur at the cathode, and which
reaction is likely to occur at the anode? Justify your answer.

(b) What is the overall theoretical cell voltage?

(c) If the battery is connected to a 1 kΩ load, approximately what
is the power delivered to that load?

9.4. Suppose the chemical reactions and corresponding redox potentials
in a battery are given by [137]:
Li→ Li+ + e− Vrp = 3.04 V
S+2e− → S2− Vrp = −0.57 V

(a) Find the overall theoretical speci�c capacity of the battery in
C
g .

(b) Find the overall theoretical speci�c energy of the battery in J
g.

(c) Which material, lithium or sulfur, gets oxidized, and which ma-
terial gets reduced?
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9.5. A battery has speci�c capacity 252 C
g and mass of 50 g. Its overall

density is 2.245
g
m3 .

(a) Find the speci�c capacity in mA·h
g .

(b) Find the capacity in mA·h.

(c) Find the charge density in mA·h
m3 .

9.6. A battery has a speci�c capacity of 55 mA·h
g and a nominal voltage

of 2.4 V. The battery has a mass of 165 g. Find the energy stored in
the battery in J.

9.7. A battery has a sulfur cathode where the reaction S + 2e− → S2−

occurs. The anode is made from a mystery material, X, and at the
anode, the reaction X → X2+ + 2e− occurs. The theoretical speci�c
capacity of the sulfur reaction is 1.76 A·h

g and the theoretical speci�c

capacity of materialX is 0.819 A·h
g . The theoretical speci�c capacity

of the materials combined is 0.559 A·h
g . What is material X, and what

is Vrp, the redox potential of the battery?
(Hint: Use a periodic table and a list of redox potentials.)

9.8. What is the di�erence between each of the items in the pairs below?

• A battery and a fuel cell

• A primary battery and a secondary battery

• Redox potential and chemical potential

9.9. Consider the polymer electrolyte membrane fuel cell shown below.
The reactions at the electrodes are:
H2 → 2H+ + 2e−

4e− + 4H+ + O2 → 2H2O
Match the label in the picture to the component name.
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- +

I

C

H2

O2

H2O

A

E B

D

Component name Label
1. Anode
2. Cathode
3. Electrolyte
4. Load
5. Polymer electrolyte membrane

9.10. Match the name of the fuel cell components to a material used to
make that component.

Fuel cell component
name

Material

1. Anode A. Platinum
2. Byproduct

(waste produced)
B. Carbon

(solid, but porous)
3. Catalyst C. Water
4. Electrolyte D. Sulfuric Acid
5. Fuel E. liquid Hydrogen
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10 Miscellaneous Energy Conversion Devices

10.1 Introduction

This text is limited to discussing energy conversion devices that involve
relatively low powers and that involve electrical energy. Furthermore, this
text excludes energy conversion devices involving magnets and coils. Even
within these limitations, a wide variety of energy conversion devices have
been discussed. This chapter brie�y mentions a few additional devices that
meet these criteria. Many more devices exist, and with continued creativity
and ingenuity by scientists and engineers, more will be developed in the
future.

10.2 Thermionic Devices

Thermionic devices convert thermal energy to electricity using the thermionic
e�ect [3, p. 182]. A thermionic device consists of a vacuum tube with elec-
trodes in it. The metal cathode is heated until electrons start evaporating
o� the metal. The electrons collect at the anode which is at a colder tem-
perature. In a typical device, the cathode may be at a temperature of 1500
0C, and the distance between the anode and the cathode may be 10 µm [60].
A device based on this e�ect was �rst patented by Thomas Edison in 1883.
The Carnot e�ciency limits this e�ect because a temperature di�erential
is converted to electricity [5]. E�ciencies up to 12% have been measured.
However, for a given temperature di�erential, other methods of convert-
ing temperature di�erence to electricity are often more e�cient. Cathodes
have been made from tungsten, molybdenum, tantalum, and barium ox-
ide [3]. The cathode gets used up in the process and eventually needs to
be replaced. Anodes have been made from copper, cesium, nickel, barium
oxide, strontium oxide, and silver [3] [60]. Some gas chromatographs use
nitrogen phosphorous thermionic detectors [151].

10.3 Radiation Detectors

Radiation detectors convert energy from radioactive sources to electricity.
Excessive radiation can be harmful to people, and humans cannot sense
radioactivity. We can only measure it indirectly. For these reasons, ra-
diation detectors are used as safety devices. Radiation can be classi�ed
as alpha particles, beta particles, gamma rays, or neutrons [37, p. 404].
Alpha particles are positively charged radiation composed of ionized nu-
clei of helium. Beta particles are high energy electrons. Gamma rays are
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high energy, short wavelength electromagnetic radiation. When these three
types of radiation interact with air or another gas, they can excite or ionize
the atoms of the gas. Flowing ions are a current, so this process converts
the radiation to electricity. Types of radiation detectors include ionization
chambers, Geiger counters, scintillation counters, and photographic �lm
based detectors [37].

Ionization chambers and Geiger counters work on the same principle.
In both cases, a gas is enclosed in a chamber or tube, and a voltage is
applied across the gas [37]. Incoming alpha particles, beta particles, or
gamma rays, ionize the gas. Due to the applied voltage, positive ions
�ow to one of the electrodes, and negative ions �ow to the other electrode
thereby forming a current. Geiger counters operate at higher voltages than
ionization chambers. The voltage between the electrodes in an ionization
chamber may be from a few volts to hundreds of volts while the voltage is
a Geiger counter is typically from 500 V to 2000 V [37]. Many smoke de-
tectors are ionization chambers [152]. When no smoke is present, radiation
from a weak radiation source ionizes air between the electrodes, and a cur-
rent is detected on the electrodes. When smoke is present, it scatters the
radiation, so no current is detected [152]. In an ionization chamber, each
incoming radioactive particle causes a single atom to ionize. In a Geiger
counter, an incoming radioactive particle causes an atom to ionize. Then,
the ions formed ionize additional atoms of the gas, and these ions ionize
additional atoms forming a cascading reaction powered and maintained by
the voltage gradient which accelerates and separates the ion pairs. Geiger
counters are often more sensitive due to this ampli�cation of the current
produced.

Scintillation counters and photographic �lm based detectors involve an
additional step in converting radiation to electricity. A scintillation counter

is often made from a crystalline material such as sodium iodide [37]. Some-
times a phosphor is also used [5, p. 166]. Incoming radioactive particles
excite, but do not ionize, the atoms of the material. These atoms then
decay and emit a photon. Semiconductor or other types of photodetectors
convert the photons to electricity [37]. In photographic �lm based detectors,
incoming radioactive particles expose the �lm thereby changing its color
[37]. Materials used in the �lm include Al2O3 and lithium �uoride [153].
Again, photodetectors are used to convert the information recorded on the
�lm to a measurable signal. Scintillation counters can be higher sensitivity
than other types of radiation detectors, and they can be used to determine
the energy of incoming radiation by spectroscopy [154]. The �lm based
detectors can be worn as a ring or badge. These type of detectors are used,
for example, by radiology technicians and by nuclear power plant employ-
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ees. These detectors must be sent in to a lab to be analyzed, and both the
amount and the type of radiation can be determined [153].

10.4 Biological Energy Conversion

The human body can be considered an energy conversion device. Humans
take in chemical energy in the form of food and convert it to kinetic energy,
heat, and other forms of energy. Some components of the human body are
also energy conversion devices. Muscles convert chemical energy to kinetic
energy. Photoreceptors in the retina of the eye convert optical energy of
photons to electrical energy of neurons. The ear converts sound waves to
energy stored in the pressure of the �uid of the inner ear, kinetic energy of
moving hairs that line the cochlea of the inner ear, and electrical energy of
neurons. The human body also stores energy. Muscles can store energy as
they stretch and contract. Human fat cells store energy in chemical form.
When you walk, your center of mass moves up and down storing energy in
pendulum-like motion [155]. Additionally, bone, skin, and collagen exhibit
piezoelectricity [156].

Neurons are nerve cells that convert chemical energy to electrical en-
ergy. The human brain has around 1011 neurons [157, p. 135]. They are
composed of a cell body, an axon, dendrites, and synapses [158]. The axon
is the �brous part that transmits information to other neurons. The den-
drites are the �brous part that receives information from other neurons. A
synapse is a gap between neurons. Ions, such as Na+, K+, or Cl−, build
up on the membrane or in the gap between two neurons, and the charge
separation of the ions causes an electrical potential [157]. Ions sometimes
cross the gap between neurons. Neurons may be classi�ed as sensory af-
ferents, interneurons, or motoneurons [157]. Sensory a�erents transmit a
signal from sensory receptors to the nervous system. Interneurons transmit
the signal throughout the nervous system, and motoneurons transmit the
signal from the nervous system to muscles [157]. Electrical signals trans-
mitted along the nervous system involve pulses with a duration of a few
milliseconds [157]. The information is encoded in the frequency rate of the
pulses [157].

10.5 Resistive Sensors

Sensors may be made from capacitive, inductive, or resistive materials.
These sensors may involve direct energy conversion or may involve mul-
tiple energy conversion processes. In Chapters 2 and 3 capacitive energy
conversion devices were discussed. The capacitance C of a parallel plate
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capacitor is given by

C =
εA

dthick
. (10.1)

If the permittivity ε, cross sectional area A, or separation of the plates
dthick change with respect to any e�ect, we can make a capacitive sensor.
Capacitive sensors are calibrated devices which involve energy conversion
between electricity and material polarization. While most inductive energy
conversion devices are outside the scope of this book, a few such devices
were discussed in Chapters 4 and 5. The inductance L of a single turn
inductor is given by

L =
µdthick
w

. (10.2)

If the permeability µ, thickness dthick, or width w change with respect to
any e�ect, we can make an inductive sensor which utilizes energy conversion
between electricity and magnetic energy. Similarly, the resistance R of a
uniform resistive device is given by

R =
ρl

A
. (10.3)

If the resistivity ρ, length l, or cross sectional area A change with respect
to any e�ect, we can make a resistive sensor. When a current is applied
through a resistive sensor, energy is converted from electricity to heat, and
a resistive sensor is calibrated so that a given voltage drop corresponds to
a known change in some parameter.

Many resistive senors are available. A potentiometer is a variable re-
sistor. As current �ows through it, energy is converted from electricity
to heat. When the knob of a potentiometer is turned, the length of the
material through which the current �ows is changed, so the rate of energy
conversion through the device changes. A resistance temperature detector

converts a temperature di�erence to electricity [37, p. 88]. Resistance tem-
perature detectors work based on the idea of the Thomson e�ect discussed
in Section 8.6.1. In these devices, the resistivity varies with temperature.
When a strain is applied to a resistive strain gauge, both the length and
cross sectional area of the device change. Pirani hot wire gauges are used
to measure pressure in low pressure environments [37, p. 97]. In a Pi-
rani gauge, current is applied through a metallic �lament, and the �lament
heats up. As air molecules hit the �lament, heat is transferred away from
it. The resistance of the �lament depends on temperature, and the �la-
ment cools more quickly in an environment with more air molecules than
in an environment at a lower pressure. By monitoring the resistance of the
�lament, the pressure can be determined.
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1 2

Figure 10.1: A constricted pipe used to illustrate Bernoulli's equation.

10.6 Electro�uidics

Electrohydrodynamic devices (EHDs) convert between electrical energy and
�uid �ow. These devices are also known as electrokinetic devices. Micro�u-

idic devices are EHD devices that are patterned on a single silicon wafer or
other substrate, and length scales are often less than a millimeter [159]. En-
gineers have built EHD pumps, valves, mixers, separators, and other EHD
devices [159] [160]. Electrohydrodynamic or micro�uidic devices have been
used in products including ink jet printers, chemical detectors, machines
for DNA sequencing or protein analysis, and insulin pumps [61] [160] [161].

Some EHD devices operate based on the idea of Bernoulli's equation,
and this relationship is a direct consequence of energy conservation. To
illustrate the fundamental physics of this idea, begin by considering a sim-
pler device, a constricted pipe. This pipe converts energy from a pressure
di�erential to kinetic energy [103, ch. 3] [162, p. 346]. Consider a �uid with
zero viscosity and zero thermal conductivity �owing through a horizontal
pipe (so gravity can be ignored). Figure 10.1 illustrates this geometry.
The velocity −→v and pressure P are di�erent at locations with di�erent pipe
diameter, for example locations 1 and 2 in the �gure. Consider a small
amount of water with mass m = ρdens∆V where ρdens is density and ∆V
is the small volume. Assume there are two, and only two, components
of energy: kinetic energy and energy due to the compressed �uid. In go-
ing from location 1 to location 2, the pressure of this little mass of �uid
changes. Change in energy due to compressing this drop of water is equal
to (P1 − P2) ∆V. The kinetic energy also changes, and change in kinetic
energy is given by

1

2
m|−→v1 |2 −

1

2
m|−→v2 |2 =

1

2
(ρdens∆V)

(
|−→v1 |2 − |−→v2 |2

)
. (10.4)
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However, energy is conserved, so

(P1 − P2) ∆V +
1

2
(ρdens∆V)

(
|−→v1 |2 − |−→v2 |2

)
= 0. (10.5)

This expression can be simpli�ed algebraically.

P1 − P2 +
1

2
ρdens|−→v1 |2 −

1

2
ρdens|−→v2 |2 = 0 (10.6)

Both pressure P and velocity −→v are functions of location. The only way
this expression can be true for all locations is if it is true for each location
and a constant.

P1 +
1

2
ρdens|−→v1 |2 = P2 +

1

2
ρdens|−→v2 |2 = constant (10.7)

Bernoulli's equation with the rather severe assumptions above becomes

P +
1

2
ρdens|−→v |2 = constant. (10.8)

Bernoulli's equation is also used to describe the lift of an air foil or the path
of a curve ball in baseball [162, p. 350]. In some EHDs electricity induces
changes in the pressure or volume of a micro�uidic channel. The �uid in
these devices may be conductive or insulating. As seen by Eq. 10.8, this
change in pressure induces a change in �uid velocity.

In other EHDs, applied voltages exert forces on conductive �uids. A
charged object in an external electric �eld

−→
E feels a force in the direction

of the electric �eld. A current in an external magnetic �eld
−→
B feels a force.

The direction of this force is perpendicular to both the direction of the
current and the direction of the external magnetic �eld. These e�ects are
summarized by the Lorentz force equation

−→
F = Q

(−→
E +−→v ×−→B

)
(10.9)

which was discussed in Chapter 5. In that chapter, Hall e�ect devices
and magnetohydrodynamic devices were discussed, both of which can be
understood by the Lorentz force equation with an external magnetic �eld
but no electrical �eld. This type of EHD can be understood by the Lorentz
force equation with an external electric �eld but no magnetic �eld. The
liquid in these devices must be conductive. When a voltage is applied
across this type of EHD, an electric �eld is induced which causes the liquid
to �ow, and this e�ect is said to be due to a streaming potential [159]. A
related e�ect called electrophoresis occurs in liquids which contain charged
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particles [161]. If an electric �eld is applied, these particles will move. This
e�ect has been demonstrated with charged DNA molecules and charged
protein molecules in solutions [161].

Other EHD devices operate by changing material polarization of an
insulating liquid, and this e�ect is called dielectrophoresis. The concept
of material polarization was discussed in Section 2.2.1. If we apply an
electric �eld across a conductor, whether that conductor is a solid or a
liquid, charges will �ow. If we apply an electric �eld across a dielectric,
the material may polarize. In other words, there will be some net charge
displacement even if all electrons remain bound to atoms. The external
electric �eld causes both the atoms of the liquid to polarize and these
polarized atoms to �ow.

There are a number of other interrelated EHD e�ects. Electroosmosis

can occur in �uids with a surface charge. In some liquids, ions build up on
the surface due to unpaired chemical bonds, due to ions adsorbed onto the
surface, or for other reasons. If an electric �eld is applied across this layer
of charges, the �uid will �ow, and this e�ect is called electroosmosis [161]
[159]. Also, an external electric �eld applied across a �uid may heat up
part of the �uid and cause a temperature gradient. Fluid may �ow due to
the temperature gradient, and this e�ect is called electrothermal �ow [161].
Another e�ect, known as electrowetting, occurs in conductive liquids. At
the interface of a solid conductor and a conductive liquid, charges build up
[61]. Again, if an electric �eld is applied, the liquid will �ow.
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Part II

Theoretical Ideas

11 Calculus of Variations

11.1 Introduction

The previous chapters surveyed various energy conversion devices. The pur-
pose of Chapters 11 and 12 is to establish a general framework to describe
any energy conversion process. By placing energy conversion processes in
a larger framework, we may be able to see relationships between processes
or identify additional energy conversion processes to study. Establishing
this framework requires some abstraction and hence some mathematics. In
the next section, we de�ne the Principle of Least Action and the idea of
calculus of variations. In the following sections, we apply these ideas to two
example energy conversion systems: a mass spring system and a capacitor
inductor system.

An advantage of using calculus of variations over other techniques is that
the analysis is based on energy, which is a scalar, instead of the potential,
which may be a scalar or vector. Working with a scalar quantity like energy
instead of a vector can make the mathematics quite a bit more manageable.

11.2 Lagrangian and Hamiltonian

Consider a process which converts energy from one form to another. We
are interested in how some quantity evolves during the energy conversion
process, and we call this quantity the generalized path, y(t). For simplicity,
we consider only the case where this path has one independent variable t
and one dependent variable y. In this chapter, t represents time, but it
can also represent position or another independent variable. These ideas
generalize directly to situations with multiple independent and dependent
variables [163] [164], but the multiple variable problem requires more in-
volved mathematics. The units of generalized path depend on the energy
conversion process under consideration. In the mass spring example of Sec.
11.5, it represents position of a mass. In the capacitor inductor example of
Sec. 11.6, it represents the charge built up on the plates of the capacitor.
Aside from the energy conversion process under consideration, assume that
no other energy conversion processes occur, even though this situation is
unlikely. The system goes from having all energy in the �rst form to having
all energy in the second form following the path y(t).
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De�ne the Lagrangian L as the di�erence between the �rst and second
forms of energy under consideration. The Lagrangian is a function of t, y,
and dy

dt
, and it has the units of joules.

L
(
t, y,

dy

dt

)
= (First form of energy)− (Second form of energy) (11.1)

At any time, the total energy of the system is the sum. De�ne the Hamil-
tonian H, also in joules, as the total energy.

H

(
t, y,

dy

dt

)
= (First form of energy) + (Second form of energy) (11.2)

Some forms of energy cannot be described by a Lagrangian of the form
L
(
t, y, dy

dt

)
and instead require a Lagrangian of the form

L
(
t, y,

dy

dt
,
d2y

dt2
,
d3y

dt3
, ...

)
(11.3)

[163, p. 56]. Such forms of energy will not be considered here. Energy is
conserved in any energy conversion process. Conservation of energy can be
expressed as

dH

dt
=
∂H

∂t
= 0. (11.4)

Derivatives of the Lagrangian will be useful in the discussion below.
De�ne the generalized potential as the partial derivative of the Lagrangian
with respect to the path, ∂L

∂y
. The units of the generalized potential de-

pend on the units of the path. More speci�cally, the units of the generalized
potential are joules divided by the units of the path. Note that general-
ized potential and potential energy are di�erent ideas. Potential energy
has units of joules while the units of generalized potential vary. Some au-
thors use the term potential as a synonym for voltage, but this de�nition
of generalized potential is more broad. For more information on the dis-
tinction between potential, generalized potential, and potential energy see
Appendix C.

De�ne the generalized momentum M as the partial derivative of the
Lagrangian with respect to the time derivative of the path.

M =
∂L

∂
(
dy
dt

) . (11.5)
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Many authors use the variable p for generalized momentum. However, M
will be used here because the variable p is already too overloaded. De-
�ne the generalized capacity as the ratio of the generalized path to the
generalized potential.

Generalized capacity=
Generalized path

Generalized potential
(11.6)

Capacity is also discussed in Appendix C.

11.3 Principle of Least Action

De�ne the action S as the magnitude of the integral of the Lagrangian
along the path.

S =

∣∣∣∣ˆ t1

t0

L
(
t, y,

dy

dt

)
dt

∣∣∣∣ (11.7)

Assuming the independent variable t represents time in seconds, the action
will have the units joule seconds. For energy conversion processes, the path
found in nature experimentally is the path that minimizes the action. This
idea is known as the Principle of Least Action or sometimes as Hamilton's
principle [163, p. 11]. The idea of conservation of energy is contained in
this principle.

To �nd a minimum or maximum of a function, �nd where the derivative
of the function is zero. Here, L and H are not quite functions. Instead,
they are functionals. A function takes a scalar quantity as an input and
returns a scalar quantity. A functional takes a function as an input and
returns a scalar quantity. Both L and H take the function y(t) as input
and return a scalar quantity in joules. The idea of taking a derivative and
setting it to zero to �nd a minimum is still useful, but we have to take
the derivative with respect to the function y(t). The process of �nding the
maximum or minimum of a functional described by an integral relationship
is known as calculus of variations.

It is often easier to work with di�erential relationships than integral
relationships. We can express the Principle of Least Action as di�erential
equation, and it is called the Euler-Lagrange equation.

∂L
∂y
− d

dt

∂L
∂
(
dy
dt

) = 0 (11.8)

If the Lagrangian L is known, we can simplify the Euler-Lagrange equation
to an equation involving only the unknown path. The resulting equation
in terms of path y(t) is called the equation of motion.
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The Lagrangian provides a ton of information about an energy conver-
sion process. If we can describe the di�erence between two forms of energy
by a Lagrangian L

(
t, y, dy

dt

)
, we can set up the Euler-Lagrange equation.

From the Euler-Lagrange equation, we may be able to �nd the equation of
motion and solve it. The resulting path minimizes the action and describes
how the energy conversion process evolves with time. We can �nd the
generalized potential of the system as a function of time too. The Euler-
Lagrange equation is a conservation law for the generalized potential. The
symmetries of the equation of motion may lead to further conservation laws
and invariants. These last two ideas, and the math behind them, are often
known as Noether's theorem. Noether's theorem says that there is a very
close relationship between symmetries of either the path or the equation of
motion and conservation laws [165] [166]. These ideas are discussed further
in Sec. 14.5.

Notice the mix of partial and total derivative symbols in Eq. 11.8.
Since y(t) depends on only one independent variable, there is no need
to use partial derivatives in expressing dy

dt
. The derivative dy

dt
is written in

shorthand notation as ẏ, and ÿ may be used in place of d
2y
dt2
. The Lagrangian

L depends on three independent-like variables: t, y, and dy
dt
. Thus, the

partial derivative symbols are used to indicate which partial derivative of
L is being considered.

The �rst term of the Euler-Lagrange equation, ∂L
∂y
, is the generalized po-

tential de�ned above. The units of the generalized potential are joules over
units of path, J

units of path . Each term of the Euler-Lagrange equation

has these units. For example, if y(t) is in the units of meters, the generalized

potential is in J
m or newtons. Each term of the Euler-Lagrange equation

represents a force, and the Euler-Lagrange equation is a conservation re-
lationship about forces. As another example, if the path y(t) represents

charge in coulombs, then the generalized potential has the units J
C which

is volts. The Euler-Lagrange equation in this case is a conservation rela-
tionship about voltages.
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11.4 Derivation of the Euler-Lagrange Equation

In this section, we use the Principle of Least Action to derive a di�erential
relationship for the path, and the result is the Euler-Lagrange equation.
This derivation closely follows [163, p. 23-33], so see that reference for
a more rigorous derivation. Assume that we know the Lagrangian which
describes the di�erence between two forms of energy, and we know the
action. We want to �nd a di�erential relationship for the path y(t) which
minimizes the action. This path has the smallest integral over t of the
di�erence between the two forms of energy.

Suppose that the path y(t) minimizes the action and is the path found
in nature. Consider a path ỹ(t) which is very close to the path y(t). Path
ỹ(t) is equal to path y(t) plus a small di�erence.

ỹ = y + εη (11.9)

In Eq. 11.9, ε is a small parameter, and η = η(t) is a function of t. We can
evaluate the Lagrangian at this nearby path.

L
(
t, ỹ,

dỹ

dt

)
= L

(
t, y + εη, ẏ + ε

dη

dt

)
(11.10)

The Lagrangian of the nearby path ỹ(t) can be related to the Lagrangian
of the path y(t).

L
(
t, ỹ,

dỹ

dt

)
= L (t, y, ẏ) + ε

(
η
∂L
∂y

+
dη

dt

∂L
∂ẏ

)
+O(ε2) (11.11)

Equation 11.11 is written as an expansion in the small parameter ε. The
lowest order terms are shown, and O(ε2) indicates that all additional terms
are multiplied by ε2 or higher powers of this small parameter.

We can also express the di�erence in the action for paths ỹ and y as an
expansion in the small parameter ε.

S(ŷ)− S(y) = ε

[ˆ t1

t0

η
∂L
∂y

+
dη

dt

∂L
∂ẏ
dt

]
+O(ε2) (11.12)

The term in brackets is called the �rst variation of the action, and it is
denoted by the symbol δ.

δS(η, y) =

ˆ t1

t0

η
∂L
∂y

+
dη

dt

∂L
∂ẏ
dt (11.13)
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Path y has the least action, and all nearby paths ỹ have larger action.
Therefore, the small di�erence S(ỹ)−S(y) is positive for all possible choices
of η(t). The only way this can occur is if the �rst variation is zero.

δS(η, y) = 0 (11.14)
ˆ t1

t0

η
∂L
∂y

+
dη

dt

∂L
∂ẏ
dt = 0 (11.15)

If the action is a minimum for path y, then Eq. 11.15 is true. However, if
path y satis�es Eq. 11.15, the action may or may not be at a minimum.

Use integration by parts on the second term to put Eq. 11.15 in a more
familiar form.

u =
∂L
∂ẏ

du =
d

dt

∂L
∂ẏ
dt

v = η

dv =
dη

dt
dt

ˆ t1

t0

dη

dt

∂L
∂ẏ
dt =

[
η
∂L
∂ẏ

]t1
t0

−
ˆ t1

t0

η
d

dt

(
∂L
∂ẏ

)
dt (11.16)

Assume the endpoints of path y and ỹ align

η(t0) = η(t1) = 0. (11.17)

ˆ t1

t0

dη

dt

∂L
∂ẏ
dt = −

ˆ t1

t0

η
d

dt

(
∂L
∂ẏ

)
dt (11.18)

Combine Eq. 11.18 with Eq. 11.15.

0 =

ˆ t1

t0

η
∂L
∂y
− η d

dt

(
∂L
∂ẏ

)
dt (11.19)

0 =

ˆ t1

t0

η

[
∂L
∂y
− d

dt

(
∂L
∂ẏ

)]
dt (11.20)

For Eq. 11.20 to be true for all functions η, the term in brackets must be
zero, and the result is the Euler-Lagrange equation.

∂L
∂y
− d

dt

(
∂L
∂ẏ

)
= 0 (11.21)
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We have completed the derivation. Using the Principle of Least Action,
we have derived the Euler-Lagrange equation. If we know the Lagrangian
for an energy conversion process, we can use the Euler-Lagrange equation
to �nd the path describing how the system evolves as it goes from having
energy in the �rst form to the energy in the second form.

The Euler-Lagrange equation is a second order di�erential equation.
The relationship can be written instead as a pair of �rst order di�erential
equations,

dM
dt

=
∂L
∂y

(11.22)

and

M =
∂L
∂ẏ
. (11.23)

The Hamiltonian can be expressed as a function of the generalized momen-
tum, [167, ch. 3].

H(t, y,M) = |Mẏ − L| (11.24)

Using the Hamiltonian, the Euler-Lagrange equation can be written as [167]

dM
dt

= −∂H
∂y

(11.25)

and
dy

dt
=
∂H

∂M
. (11.26)

This pair of �rst order di�erential equations is called Hamilton's equa-

tions, and they contain the same information as the second order Euler-
Lagrange equation. They can be used to solve the same types of problems
as the Euler-Lagrange equation, for example �nding the path from the
Lagrangian.

11.5 Mass Spring Example

Examples in this section and the next section will illustrate how we can use
the Euler-Lagrange equation to �nd the equation of motion describing an
energy conversion process. Consider a system comprised of a mass and a
spring where energy is transfered between spring potential energy stored in
the compressed spring and kinetic energy of the mass. The mass is speci�ed
by m in kg. It is attached to a spring with spring constant K in J

m2 . The
position of the mass is speci�ed by x(t) where x is the dependent variable
in meters and t is the independent variable time in seconds. Assume this
mass and spring are either �xed on a level plane or in some other way
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not in�uenced by gravity. This mass spring system is illustrated on the
left side of Fig. 11.1. When the spring is compressed, the system gains
spring potential energy. When the spring is released, energy is converted
from spring potential energy to kinetic energy. Assume no other energy
conversion processes, such as heating due to friction, occur.

x

0

Uncompressed Spring

x

Compressed Spring

−→
F spring = −Kx

t=0

-1 1 0-1 1

Figure 11.1: A mass spring system.

The right side of Fig. 11.1 shows the compressed spring held in place
by a restraint. For t < 0, the system has no kinetic energy because the
mass is not moving, and the system has potential energy in the compressed
spring. At this time, the mass is at position x where x < 0. The spring
exerts a force on the mass,

−→
F spring = −Kxâx (11.27)

which is in the âx direction.
At t = 0, the restraint is removed, and the spring potential energy is

converted to kinetic energy. The �rst form is spring potential energy.

Epotential energy =
1

2
Kx2 (11.28)

The second form is kinetic energy of the mass.

Ekinetic =
1

2
m

(
dx

dt

)2

(11.29)

At any instant of time, when the mass is at location x(t), the total energy
is represented by the Hamiltonian.

H = Etotal = Epotential energy + Ekinetic (11.30)

H =
1

2
Kx2 +

1

2
m

(
dx

dt

)2

(11.31)
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The Lagrangian represents the di�erence between the forms of energy.

L = Epotential energy − Ekinetic (11.32)

L
(
t, x,

dx

dt

)
=

1

2
Kx2 − 1

2
m

(
dx

dt

)2

(11.33)

Both the Hamiltonian and Lagrangian have units of joules. The generalized
potential is

∂L
∂x

= Kx (11.34)

in units of newtons. Note that Kx = −−→F spring. The generalized momen-
tum is

M =
∂L

∂
(
dx
dt

) = −mdx

dt
(11.35)

in units of kg·ms which is the units of momentum.
At t = 0, the restraint is removed. The mass follows the path x(t). If

we know the Lagrangian, we can �nd the path by trial and error. To �nd
the path in this way, guess a path x(t) that the mass follows and calculate
the action.

S =

∣∣∣∣∣
ˆ t2

t1

1

2
m

(
dx

dt

)2

− 1

2
Kx2

∣∣∣∣∣ dt (11.36)

Repeatedly guess another path, and calculate the action. The path with
the least action of all possible paths is the path that the mass follows.
This path has the smallest di�erence between the potential energy and the
kinetic energy integrated over time.

We can think of many possible, but not physical, paths x(t) that the
mass can follow. Figure 11.2 illustrates two nonphysical paths as well as the
physical path derived below. Paths are considered over the time interval
0 < t < 1. All three paths assume that initially, at t = 0, the spring is
compressed so that the mass is at location x(0) = −1. Also, they assume
that at the end of the interval, at t = 1, the spring has expanded so that
the mass is at location x(1) = 1. The possible paths illustrated in the �gure
are

x1(t) = 2t− 1 (not physical)

x2(t) = 2t2 − 1 (not physical)

and
x3(t) = − cos(πt) (physical).
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x1(t) = 2t− 1Path 1:                 , Action=0.355, Not physical

x2(t) = 2t2 − 1

x3(t) = − cos(πt)

Path 2:                 , Action=0.364, Not physical

Path 3:                   , Action=0, Physical

Figure 11.2: Possible paths taken by the mass and their corresponding
action.
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The path x1(t) describes a case where the mass travels at a constant speed.
The path x2(t) describes a case where the mass accelerates when the re-
straint is removed, and the path x3(t) describes a case where the mass �rst
accelerates then slows. The action of each path can be calculated using Eq.
11.36. For example purposes, the values of m = 1 kg and K = π2 J

m2 are
used. The path x1(t) has S = 0.355, the path x2(t) has S = 0.364, and the
physical path x3(t) has zero action S = 0.

We can derive the path that minimizes the action and that is found in
nature using the Euler-Lagrange equation.

∂L
∂x
− d

dt

∂L
∂
(
dx
dt

) = 0 (11.37)

The �rst term is the generalized potential. The second term is the time
derivative of the generalized momentum. The equation of motion is found
by putting these pieces together.

Kx+m
d2x

dt2
= 0 (11.38)

The �rst term of the equation of motion is −
∣∣∣−→F spring

∣∣∣. The second term

represents the acceleration of the mass. We have just found the equation of
motion, and it is a statement of Newton's second law, force is mass times
acceleration. It is also a statement of conservation of force on the mass.

Equation 11.38 is a second order linear di�erential equation with con-
stant coe�cients. It is the famous wave equation, and its solution is well
known

x(t) = c0 cos

(√
K

m
t

)
+ c1 sin

(√
K

m
t

)
(11.39)

where c0 and c1 are constants determined by the initial conditions. If we
securely attach the mass to the spring, as opposed to letting the mass get
kicked away, it will oscillate as described by the path x(t).

Energy is conserved in this system. To verify conservation of energy,
we can show that the total energy does not vary with time. The total
energy is given by the Hamiltonian of Eq. 11.31. In this example, both
the Hamiltonian and the Lagrangian do not explicitly depend on time,
∂H
∂t

= 0 and ∂L
∂t

= 0. Instead, they only depend on changes in time. For
this reason, we say both the total energy and the Lagrangian have time

translation symmetry, or we say they are time invariant. The spring and
mass behave the same today, a week from today, and a year from today.
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We can also verify conservation of energy algebraically by showing that
dH
dt

= 0.
dH

dt
=
∂H

∂t
+
∂H

∂x

dx

dt
+

∂H

∂
(
dx
dt

) d2x

dt2
(11.40)

dH

dt
= 0 +Kx

dx

dt
+m

dx

dt

d2x

dt2
(11.41)

dH

dt
=
dx

dt

(
Kx+m

d2x

dt2

)
= 0 (11.42)

Notice that the quantity in parentheses in the line above must be zero from
the equation of motion.

The Euler-Lagrange equation can be split into a pair of �rst order dif-
ferential equations called Hamilton's equations.

dM
dt

= −∂H
∂x

and
dx

dt
=
∂H

∂M
(11.43)

This example is summarized in Table 11.1. In analogy to language used
to describe circuits and electromagnetics, the relationship between the gen-
eralized path and the generalized potential is referred to as the constitutive
relationship. Following Eq. 11.6, the ratio of the generalized path to gen-
eralized potential is the generalized capacity, and in this example, it is the
inverse of the spring constant. While displacement x is assumed to be
scalar, the vector −→x is used in the table for generality.



11 CALCULUS OF VARIATIONS 257

Energy
storage
device

Linear
Spring

Generalized
Path

Displacement
−→x in m

Generalized
Potential

−→
F Force in
J
m = N

Generalized
Capacity

1
K
in m2

J

Constitutive
relation-
ship

−→x = 1
K

−→
F

Energy 1
2
K|−→x |2 =

1
2

1
K
|−→F |2

Law for
potential

Newton's
Second Law

−→
F = m−→a

Table 11.1: Summary of the mass spring system in the language of calculus
of variations.
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11.6 Capacitor Inductor Example

The ideas of calculus of variations apply to energy conversion processes in
electrical systems too. Consider a circuit with a capacitor and an inductor
as shown in Figure 11.3. The current iL, the current ic, and the voltage
v are de�ned in the �gure. Assume that wires and components have no
resistance. While this is not completely physical, it will allow us to simplify
the problem. Assume that the capacitor is charged for t < 0, and the switch
is open. At t = 0, the switch is closed, and the capacitor begins discharging.
In this example, the generalized path will be the charge built up on the
plates of the capacitor. We can derive the equation of motion that describes
this path.

t = 0 iL

ic

v

Figure 11.3: A capacitor inductor system.

Energy is converted between two forms. The �rst form of energy in this
system is electrical energy stored in the capacitor. The voltage v in volts
across a capacitor is proportional to the charge Q in coulombs across the
plates of the capacitor. Capacitance C, measured in farads, is the constant
of proportionality between the two measures.

Q = Cv (11.44)

The current-voltage relationship across the capacitor can be found by tak-
ing the derivative with respect to time.

dQ

dt
= C

dv

dt
(11.45)

The change in charge build up with respect to time is the current. More
speci�cally,

dQ

dt
= ic = −iL. (11.46)

Equations 11.45 and 11.46 can be combined.

− iL = C
dv

dt
. (11.47)
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The energy stored in a capacitor is

Ecap =
1

2
Cv2. (11.48)

The second form of energy in this system is the energy stored in the
magnetic �eld of the inductor. The current iL through the inductor, mea-
sured in amperes, is proportional to the magnetic �ux Ψ, measured in
webers, around the inductor. Inductance L, measured in henries, is the
constant of proportionality between the current and magnetic �ux.

Ψ = LiL (11.49)

The current voltage relationship across this inductor can be found by taking
the derivative with respect to time.

dΨ

dt
= v = L

diL
dt

(11.50)

The energy stored in the inductor is given by

Eind =
1

2
Li2L. (11.51)

We describe the energy conversion process by keeping track of a the
generalized path Q(t), the charge stored on the capacitor. The variable t
represents the independent variable time in seconds, andQ is the dependent
variable charge in coulombs. The Hamiltonian and Lagrangian, H and L,
will be considered functions of three independent-like variables: t, Q, and
dQ
dt
.
The Hamiltonian is the sum of the energy in the capacitor and the

energy in the inductor. The Lagrangian is the di�erence between these
energies.

H = Etotal = Ecap + Eind (11.52)

L = Ecap − Eind (11.53)

Electrical engineers typically describe physical circuits using the most easily
measured quantities: current and voltage. However, here to illustrate the
use of the calculus of variations formalism, we write expressions for both
the total energy and the Lagrangian in terms of the speci�ed variables: t,
Q, and dQ

dt
.

H

(
t, Q,

dQ

dt

)
=

1

2C
Q2 +

1

2
L

(
dQ

dt

)2

(11.54)
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L
(
t, Q,

dQ

dt

)
=

1

2C
Q2 − 1

2
L

(
dQ

dt

)2

(11.55)

We can �nd the path, charge on the capacitor as a function of time, by
solving for the least action

δ

∣∣∣∣ˆ t2

t1

L
(
t, x,

dx

dt

)
dt

∣∣∣∣ = 0 (11.56)

or by solving the Euler-Lagrange equation,

∂L
∂Q
− d

dt

∂L
∂
(
dQ
dt

) = 0. (11.57)

In Eq. 11.56, δ indicates the �rst variation as de�ned by Eq. 11.13. Solu-
tions depend on initial conditions such as the charge stored in the capacitor
and the current in the inductor at the initial time. We can use the Euler-
Lagrange equation to �nd the equation of motion. The �rst term of Eq.
11.57 is the generalized potential,

∂L
∂Q

=
Q

C
(11.58)

which is the voltage v in volts. The next term is the derivative of the
generalized momentum.

M =
∂L

∂
(
dQ
dt

) = −LdQ
dt

(11.59)

We can put the pieces together to �nd an expression of conservation of the
generalized potential.

Q

C
+ L

d2Q

dt2
= 0 (11.60)

This is a statement of Kirchho�'s voltage law. It looks more familiar if it
is written in terms of voltage v = Q

C
and current iL = −dQ

dt
.

v − LdiL
dt

= 0 (11.61)

We can solve the equation of motion, Eq. 11.60, using appropriate initial
conditions, to �nd the path. As in the mass spring example, Eq. 11.60 is
the wave equation, and its solutions are sinusoids. As expected, a circuit
made of only a capacitor and inductor is an oscillator.



11 CALCULUS OF VARIATIONS 261

Energy
storage
device

Capacitor Linear
Spring

Generalized
Path

Charge Q
in C

Displacement
−→x in m

Generalized
Potential

Voltage v in
J
C = V

−→
F Force in
J
m = N

Generalized
Capacity

Capacitance
C in
F = C2

J

1
K
in m2

J

Constitutive
relation-
ship

Q = Cv −→x = 1
K

−→
F

Energy 1
2
Cv2 1

2
K|−→x |2 =

1
2

1
K
|−→F |2

Law for
potential

KVL Newton's
Second Law−→
F = m−→a

Table 11.2: Summary of the capacitor inductor system in the language of
calculus of variations.

Furthermore, we can show that energy is conserved in this energy con-
version process because the partial derivative of both the total energy and
the Lagrangian with respect to time are zero.

∂L
∂t

=
∂H

∂t
= 0 (11.62)

dL
dt

=
dH

dt
= 0 (11.63)

Table 11.2 summarizes this example. It also illustrates the relationship
between parameters of this example and parameters of the mass spring
example.
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11.7 Schrödinger's Equation

Quantum mechanics is the study of microscopic systems such as electrons
or atoms. Calculus of variations and the idea of a Hamiltonian are fun-
damental ideas of quantum mechanics [136]. In Chapter 13, we apply the
ideas of calculus of variations to an individual atom in a semiclassical way.

We can never say with certainty where an electron or other microscopic
particle is located or its energy. However, we can discuss the probability of
�nding it with a speci�c energy. The probability of �nding an electron, for
example, in a particular energy state is speci�ed by |ψ|2 where ψ is called
the wave function [136]. As with any probability 0 ≤ |ψ|2 ≤ 1.

For example, suppose that as an electron moves, kinetic energy is con-
verted to potential energy. The quantum mechanical Hamiltonian HQM is
then the sum of the kinetic energy Ekinetic and potential energy Epotential energy.

HQM = Ekinetic + Epotential energy (11.64)

Kinetic energy is expressed as

Ekinetic =
1

2m
(MQM)2 (11.65)

where m is the mass of an electron. In the expression above, MQM is the
quantum mechanical momentum operator, and

(MQM)2 = MQM ·MQM . (11.66)

The quantum mechanical momentum operator is de�ned by

MQM = j~
−→∇ (11.67)

where the quantity ~ is the Planck constant divided by 2π. The del operator,−→∇ , was introduced in Sec. 1.6.1, and it represents the spatial derivative of
a function. The quantities HQM , MQM , and

−→∇ are all operators, not just
values. An operator, such as the derivative operator d

dt
, acts on a function.

It itself is not a function or value.
Using the of momentum de�nition of Eq. 11.67 and the vector identity

of Eq. 1.10, we can rewrite the Hamiltonian.

HQM =
−~2

2m
∇2 + Epotential energy (11.68)

In quantum mechanics, the Hamiltonian is related to the total energy.

HQMψ = Etotalψ (11.69)
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The above two equations can be combined algebraically.(−~2

2m
∇2 + Epotential energy

)
ψ = Etotalψ (11.70)

With some more algebra, Eq. 11.70 can be rewritten.

∇2ψ +
2m

~2
(Etotal − Epotential energy)ψ = 0 (11.71)

Equation 11.71 is the time independent Schrödinger equation, and it is one
of the most fundamental equations in quantum mechanics. Energy level
diagrams were introduced in Section 6.3. Allowed energies illustrated by
energy level diagrams satisfy the Schrödinger equation. At least for simple
atoms and ground state energies, energy level diagrams can be derived by
solving Schrödinger equation.

11.8 Problems

11.1. In the examples below, identify whether f is a function or a func-
tional.

• A parabola is described by f(x) = x2.

• Given two forms of energy and a path y(t), f is the Lagrangian
of the system L

(
t, y, dy

dt

)
.

• Given the magnitude of the velocity |−→v (t)| of an object, f rep-
resents the distance that the object travels from time 0 to time
3600 seconds.

• Given the position (x, y, z) in space, f(x, y, z) represents the
distance from that point to the origin.

11.2. A system has the Lagrangian L
(
t, y, dy

dt

)
=
(
dy
dt

)3
+ e3y. Find an

equation for the path y(t) that minimizes the action
´ t2
t1
L
(
t, y, dy

dt

)
dt.

(The result is nonlinear, so don't try to solve it.)

11.3. A system has Lagrangian L
(
t, y, dy

dt

)
= 1

2

(
dy
dt

)2
+ 1

2
· y−2. Find the

corresponding equation of motion. (The result is nonlinear, so don't
try to solve it.)
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11.4. Figure 11.2 illustrates three possible paths for the mass spring system
and their corresponding actions. The paths considered are:

x1(t) = 2t− 1

x2(t) = 2t2 − 1

x3(t) = − cos(πt)

For each path, calculate the action using Eq. 11.36 to verify the
values shown in the �gure. Assume a mass of m =1 kg and a spring
constant of K = π2 J

m2 .

11.5. The �gure shows a torsion spring. It can store potential energy 1
2
Kθ2,

and it can convert potential energy to kinetic energy 1
2
I
(
dθ
dt

)2
. In

these expressions, θ(t) is the magnitude of the angle the spring turns
in radians, and ω = dθ

dt
is the magnitude of the angular velocity in

radians per second. K is the torsion spring constant, and I is the
(constant) moment of inertia.

(a) Find the Lagrangian.

(b) Use the Euler-Lagrange equation to �nd a di�erential equation
describing θ(t).

(c) Show that energy is conserved in this system by showing that
dH
dt

= 0.

(d) Set up Hamilton's equations.

11.6. The purpose of this problem is to derive the shortest path y(x) be-
tween the points (x0, y0) and (x1, y1). Consider an arbitrary path
between these points as shown in the �gure. We can break the path
into di�erential elements d

−→
l = dxâx + dyây. The magnitude of each

di�erential element is

|d−→l | =
√

(dx)2 + (dy)2 = dx

√
1 +

(
dy

dx

)2

.
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The distance between the points can be described by the action

S =

ˆ x1

x0

√
1 +

(
dy

dx

)2

dx.

To �nd the path y(x) that minimizes the action, we can solve the

Euler-Lagrange equation, with L =

√
1 +

(
dy
dx

)2
as the Lagrangian,

for this shortest path y(x). This approach can be used because we
want to minimize the integral of some functional L even though this
functional does not represent an energy di�erence [163, p. 33].

Set up the Euler-Lagrange equation, and solve it for the shortest
path, y(x).

Hint 1: The answer to this problem is that the shortest path be-
tween two points is a straight line. Here, you will derive this result.
Hint 2: In the examples of this chapter, the Lagrangian had the form
L
(
t, y, dy

dt

)
with independent variable t and path y(t). Here, the La-

grangian has the form L
(
x, y, dy

dx

)
where the independent variable is

position x, and the path is y(x).
Hint 3: If d

dx
(something) = 0, then you know that (something) is

constant.

(x0, y0)

(x1, y1)

d
−→
l

11.7. Light travels along the quickest path between two points. This idea
is known as Fermat's principle. In a material with relative permit-
tivity εr and permeability µ0, light travels at the constant speed c√

εr

where c is the speed of light in free space. In Prob. 11.6, we showed
that the shortest path between two points is a straight line, so in a
uniform material, light will travel along a straight line between two
points. However, what if light travels across a junction between two
materials? In this problem, we will answer this question and derive
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a famous result known as Snell's law.

Consider the �gure below. Assume that a ray of light travels from
(x0, y0) to (x1, y1) along the path which takes the shortest time. Mate-
rial 1 has relative permittivity εr1, so the light travels in that material
at a constant speed c√

εr1
. Material 2 has relative permittivity εr2, so

the light travels in that material at a constant speed c√
εr2
. As we

derived in the Prob. 11.6, the light travels along a straight line in
material 1, and it travels along a straight line in material 2. However,
the lines have di�erent slopes as shown in the �gure. Assume that
the junction of the two materials occurs at x = 0.

(a) Find an equation for the total time it takes the light to travel as
a function of h, the vertical distance at which the path crosses
the y axis. Note that you are �nding a function here, F (h),
not a functional. You can use the fact that you know the light
follows a straight line inside each material to �nd this function.

(b) The path followed by the light takes the minimum time, so the
derivative dF

dh
= 0. Use this idea to �nd an equation for the

unknown vertical height h. Your answer can be written as a
function of the known constants εr1, εr2, x0, y0, x1, y1,and c.
You do not need to solve for h here, but instead just evaluate
the derivative and set it to zero.

(c) Use your result in part b above to derive Snell's law :

√
εr1 sin θ1 =

√
εr2 sin θ2

.

(x0, y0)

(x1, y1)

Material 1 Material2

x=0

θ1

θ2

(0, h)

ǫr1 ǫr2
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11.8. A pendulum converts kinetic energy to and from gravitational poten-
tial energy. As shown in the �gure, a ball of mass m is hung by a
string 1 m long. The pendulum is mounted on a base that is 3 m
high. As shown in the �gure, θ(t) is the angle of the pendulum. The
kinetic energy of the ball is given by Ekinetic = 1

2
m
(
dθ
dt

)2
, and the

gravitational potential energy is given by Ep.e. = mg (3− cos θ). The
quantity g is the gravitational constant, g = 9.8 m

s2 .

θ

3

1

3− cos(θ)

(a) Find L, the Lagrangian of the system.

(b) Find H, the Hamiltonian of the system.

(c) Set up the Euler-Lagrange equation, and use it to �nd the equa-
tion of motion for θ(t), the angle of the pendulum as a function
of time.

(d) Show that energy is conserved in this system by showing that
dH
dt

= 0.

The equation of motion found in part c is nonlinear, so don't try to
solve it. Interestingly, it does have a closed form solution [164, Ch.
6]. (This problem is a modi�ed version of an example in reference
[163].)

11.9. As shown in the �gure, an object of charge Q1 and mass m moves
near a stationary object with charge Q2. Assume the mass and the
charges are constants, and assume the objects are surrounded by free
space. The kinetic energy of the moving object is converted to or
from energy stored in the electric �eld between the objects. The
kinetic energy of the moving object is given by 1

2
m
(
dx
dt

)2
. The energy

of the electric �eld is given by Q1Q2

4πε0x
where εo is the permittivity of

free space. The distance between the objects is given by x(t).

(a) Find the Lagrangian of the system.

(b) Find the generalized momentum.
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(c) Find the generalized potential.

(d) Find the equation of motion for the path x(t) of the system.
(Don't try to solve this nonlinear equation.)

(e) Find the total energy of the system.

(f) Show that energy is conserved in this system.

Q2

x(t)

stationarymoving

Q1
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12 Relating Energy Conversion Processes

12.1 Introduction

In the previous chapter, the concept of calculus of variations was intro-
duced. The purpose of this chapter is to draw relationships between a
wide range of energy conversion processes. Processes in electrical engineer-
ing, mechanics, thermodynamics, and chemistry are described using the
language of calculus of variations. Similarities between the processes are
highlighted and summarized into tables.

This chapter illustrates how to apply calculus of variations ideas to dis-
parate branches of science and engineering. Electrical engineers typically
use current and voltage to describe circuits. Chemists use temperature,
pressure, entropy, and volume when describing chemical reactions. Engi-
neers and scientists in each discipline have their own favorite quantities.
However, energy conversion is a common topic of study. Calculus of varia-
tions provides a unifying language. Scientists and engineers typically spe-
cialize, becoming experts in a particular area. However, open questions are
more often found at the boundary between disciplines, where there is less
expertise. Comparing ideas between di�erent disciplines is useful because
ideas from one discipline may answer questions in another, and challenges
in one discipline may pose interesting research questions in another.

By studying the mass spring system of Sec. 11.5, the resulting equation
of motion was Newton's second law. By studying the capacitor inductor
system of Sec. 11.6, the resulting equation of motion was Kircho�'s volt-
age law. In this chapter we identify the equation of motion for multiple
other systems. Through this procedure, we encounter some of the most
fundamental laws of physics including including Gauss's laws, conservation
of momentum, conservation of angular momentum, and the second law of
thermodynamics.

The discussion in this chapter is necessarily limited. Entire texts have
been written about each energy conversion processes discussed. Addition-
ally, the idea of applying calculus of variations to these energy conversion
processes is not novel. Other authors have compared electrical, mechanical,
and other types of energy conversion processes too [168] [169].

Some rather drastic assumptions are made in this chapter. We assume
energy is converted between one form and another with no other energy
conversion process occurring. For example in a mass spring system, energy
is converted between kinetic energy and spring potential energy while ignor-
ing heating due to friction, energy conversion due to gravitational potential
energy, and so on that might occur in a real system.
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12.2 Electrical Energy Conversion

Electrical can be described either in circuits language or electromagnetics
language. Using circuits language, electrical systems are described by four
fundamental parameters: charge in coulombs Q, voltage in volts v, mag-
netic �ux in webers Ψ, and current in amperes i . For circuits described in
this language, resistors, capacitors, and other electrical energy storage and
conversion devices are treated as point-like with no length or extent, and
forces and �elds outside the path of the circuit are ignored. An alternative
approach is to use electromagnetics language the electrical properties of
materials are studied as a function of position and forces and �elds outside
of the path of a circuit are studied.

We can use circuits language to describe a number of energy conversion
devices. Resistors convert electrical energy to thermal energy, and ther-
moelectric devices convert thermal energy to or from electrical energy. A
charging capacitor converts electrical energy to energy stored in a material
polarization, and a discharging capacitor converts the energy of the mate-
rial polarization back to electrical energy. In an inductor, electrical energy
is converted to and from energy of a magnetic �eld.

In Sec. 11.6, energy storage in a capacitor was studied in detail and
described in the language of calculus of variations. Table 11.2 summarized
the use of calculus of variations language to describe the energy conversion
process, and it is repeated in the second column of the Table 12.1. In that
example, charge built up on the capacitor plates, Q, was the generalized
path. The generalized potential was v, the voltage across the capacitor.
From these choices, other parameters were selected.

Instead of choosing charge Q as the generalized path, we could have
chosen the generalized path to be one of the other fundamental variables of
circuit analysis, voltage v, magnetic �ux Ψ, or current i. Table 12.1 summa-
rizes parameters that result when we describe energy conversion processes
occurring in a capacitor or inductor in the language of calculus of varia-
tions with these choices of generalized path. More speci�cally, the third
column shows parameters when voltage is chosen as the generalized path.
The fourth column shows parameters when magnetic �ux is chosen as the
generalized path, and the �fth column shows parameters when current is
chosen as the generalized path. By reading down a column of the table, we
see how to describe a process with this choice of generalized path. By read-
ing across the rows of the table, we can draw analogies between parameters
of energy conversion processes.

To describe the energy conversion processes occurring in a capacitor, we
can choose either the charge or voltage to be the generalized path then use
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the language of calculus of variations. Notice that if charge is chosen as the
generalized path as seen in column two of Table 12.1, voltage becomes the
generalized potential. However, when voltage is chosen as the generalized
path as seen in column three, charge becomes the generalized potential.
The path found in nature minimizes the action, and we saw in Sec. 11.6
that we could use the Euler-Lagrange equation to set up an equation of
motion for the system. Each term of the equation of motion has the same
units as the generalized potential. The equation of motion found when
using Q as generalized path is Kircho�'s Voltage Law (KVL), which says
the sum of all voltage drops around a closed loop in a circuit is zero. The
equation of motion found when using v as the generalized path is the law
of conservation of charge. Both of these concepts are fundamental ideas in
circuit theory, and they are shown in the second to last row of the table.

Similarly, to describe the energy conversion processes occurring in an
inductor, we may choose either magnetic �ux or current as the generalized
path. If we choose magnetic �ux as the generalized path, the generalized
potential is current. If we choose current as the generalized path, the
generalized potential is magnetic �ux. From the �rst choice, the equation
of motion found is Kircho�'s Current Law (KCL). From the second choice,
the equation of motion found is conservation of magnetic �ux.

The relationship between the generalized path and the generalized po-
tential is known as the constitutive relationship [168, p. 30]. For a capaci-
tor, it is given as

Q = Cv. (12.1)

The constant C that shows up in this equation is the capacitance in farads.
Analogously for an inductor, the constitutive relationship is

Ψ = Li (12.2)

where L is the inductance in henries. We will see that we can identify
constitutive relationships for other energy conversion processes, and we
similarly can come up with a parameter describing the ability to store
energy in the device. In analogy to the capacitor, we will call this parameter
the generalized capacity. Capacitance C represents the ability to store
energy in the device, so generalized capacity represents the ability to store
energy in other devices. Overloading of the term capacity is discussed in
Appendix C.
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Energy
storage
device

Capacitor Capacitor Inductor Inductor

Generalized
Path

Charge Q
in C

Voltage v in
V

Mag. Flux
Ψ in Wb

Current i in
A

Generalized
Potential

Voltage v in
J
C = V

Charge Q
in C

Current i in
A = J

Wb

Mag. Flux
Ψ in Wb

Generalized
Capacity

Capacitance
C in
F = C2

J

1
C

Inductance
L in
H = Wb2

J

1
L

Constitutive
relation-
ship

Q = Cv v = Q
C

Ψ = Li i = Ψ
L

Energy 1
2
Cv2 1

2
Q2

C
1
2
Li2 1

2
Ψ2

L

Law for
potential

KVL Conservation
of Charge

KCL Conservation
of Mag.
Flux

This
column
assumes

AC current
and voltage

AC current
and voltage

AC current
and voltage

AC current
and voltage

Table 12.1: Describing electrical circuits in the language of calculus of
variations.
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Circuit Quantity Electromagnetic Field

Q Charge in C
−→
D Displacement �ux density in C

m2

v Voltage in V
−→
E Electric �eld intensity in V

m
Ψ Magnetic �ux in Wb

−→
B magnetic �ux density in Wb

m2

i Current in A
−→
H Magnetic �eld intensity in A

m

Table 12.2: Quantities used to describe circuits and electromagnetic �elds.

Using electromagnetics language, four vector �elds describe systems:−→
D displacement �ux density in C

m2 ,
−→
E electric �eld intensity in V

m ,
−→
B

magnetic �ux density in Wb
m2 , and

−→
H magnetic �eld intensity in A

m. These
electromagnetic �elds are generalizations of the circuit parameters charge
Q, voltage v, magnetic �ux Ψ, and current i respectively as shown in Table
12.2. However, the electromagnetic �elds are functions of position x, y, and
z in addition to time, and they are vector instead of scalar quantities. More
speci�cally, displacement �ux density is the charge built up on a surface per
unit area, and magnetic �ux density is the magnetic �ux through a surface.
Similarly, electric �eld intensity is the negative gradient of the voltage, and
magnetic �eld intensity is the gradient of the current. We encountered
these electromagnetic �elds when discussing antennas in Chapter 4.

A capacitor can store energy in the charge built up between the capac-
itor plates. Analogously, an insulating material with permittivity greater
than the permittivity of free space, ε > ε0, can store energy in the dis-
tributed charge separation throughout the material. We can describe the
energy conversion processes occurring in a capacitor using the language
of calculus of variations by choosing either charge Q or voltage v as the
generalized path. Parameters resulting from these choices are shown in the
second and third column of Table 12.1. Analogously, we can describe the
energy conversion processes occurring in an insulating material with ε > ε0
using the language of calculus of variations by choosing either

−→
D or

−→
E as

the generalized path. Parameters resulting from these choices are shown in
the second and third column of Table 12.3. The equation of motion that
results in either case is Gauss's law for the electric �eld,

−→∇ · −→D = ρch (12.3)

where ρch is charge density. The derivation is beyond the scope of this text,
however, because it involves applying calculus of variations to quantities
with multiple independent and dependent variables. Gauss's law is one of
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Maxwell's equations, and it was introduced in Section 1.6.1. In Chapter 2,
piezoelectric energy conversion devices were discussed, and in Chapter 3,
pyroelectric and electro-optic energy conversion devices were discussed. All
of these devices involved converting electrical energy to and from energy
stored in a material polarization of an insulating material with ε > ε0.
Calculus of variations can be used to describe energy conversion in all of
these devices with either displacement �ux density or electric �eld intensity
as the generalized path. For a device made from a material of permittivity
ε with an external electric �eld intensity across it given by

−→
E , the energy

density stored is 1
2
ε|−→E |2 in J

m3 . The energy stored in a volume V is found
by integrating this energy density with respect to volume, and this energy
stored in a volume is listed in the second to last row of Table 12.3. Notice
the similarity of the equation for the energy stored in a capacitor (second
column, second to last box of Table 12.1) and this equation for the energy
density stored in a material with ε > ε0 (second column second to last box
of the Table 12.3).

Energy can also be stored in materials with permeability greater than
the permeability of free space, µ > µ0. Hall e�ect devices and magneto-
hydrodynamic devices were discussed in Chapter 5. These devices are all
inductor-like, and the parameters used to describe inductive energy con-
version processes in the language of calculus of variations are summarized
in the last two columns of the Table 12.3. Calculus of variations can be
used to describe energy conversion processes in these devices with either
magnetic �ux density or magnetic �eld intensity as the generalized path
and the other choice as the generalized potential. The equation of motion
resulting from using calculus of variations to describe inductive systems
corresponds to Gauss's law for the magnetic �eld,

−→∇ · −→B = 0. (12.4)

The physics of antennas is described by electric and magnetic �elds, and
any of the columns of Table 12.3 can be used to describe energy conver-
sion between electricity and electromagnetic waves in antennas using the
language of calculus of variations.
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Energy
storage
device

Dielectric
Material,
ε > ε0

Dielectric
Material,
ε > ε0

Magnetic
Material,
µ > µ0

Magnetic
Material,
µ > µ0

Generalized
Path

Displacement
Flux
Density

−→
D

in C
m2

Electric
Field
Intensity

−→
E

in
V
m = J

C·m

Magnetic
Flux
Density

−→
B

in Wb
m2

Magnetic
Field
Intensity

−→
H

in
A
m = J

Wb·m
Generalized
Potential

Electric
�eld
Intensity

−→
E

in
V
m = J

C·m

Displacement
Flux
Density

−→
D

in C
m2

Magnetic
Field
Intensity

−→
H

in
A
m = J

Wb·m

Magnetic
Flux
Density

−→
B

in Wb
m2

Generalized
Capacity

Permittivity
ε in
F
m = C2

J·m

1
ε

Permeability
µ in
H
m = Wb2

J·m

1
µ

Constitutive
relation-
ship

−→
D = ε

−→
E

−→
E = 1

ε

−→
D

−→
B = µ

−→
H

−→
H = 1

µ

−→
B

Energy
´
V

1
2
ε|−→E |2dV

´
V

1
2

1
ε
|−→D |2dV

´
V

1
2
µ|−→H |2dV

´
V

1
2

1
µ
|−→B |2dV

Law for
potential

Gauss's
Law for
Elec.−→∇ ·−→D = ρch

Gauss's
Law for
Elec.−→∇ · −→E =
ερch

Gauss's
Law for
Mag.−→∇ · −→B = 0

Gauss's
Law for
Mag.−→∇ · −→H = 0

Table 12.3: Describing electromagnetic systems in the language of calculus
of variations.
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12.3 Mechanical Energy Conversion

The previous section summarized how the language of calculus of variations
can be applied to electrical and electromagnetic energy conversion devices.
Similarly, this language can be used to describe energy conversion processes
occurring in linear springs, torsion springs, moving masses, and �ywheels.

We can convert energy to and from spring potential energy by com-
pressing and releasing a spring. Similarly, we can store or release energy
from a moving mass by changing its velocity. A �ywheel is a device that
stores energy in a spinning mass. Flywheels are used, in addition to batter-
ies, in some electric and hybrid vehicles because storing rotational kinetic
energy in a �ywheel requires fewer energy conversion processes than storing
energy in a battery. All of these energy conversion devices can be described
in the language of calculus of variations with some parameter chosen as the
generalized path.

Tables 12.4 and 12.5 summarize the parameters resulting from describ-
ing mechanical energy conversion processes in the language of calculus of
variations. While electromagnetic systems are described by four vector
�elds, mechanical systems are described by eight possible vector �elds, and
they are listed along with their units in Table 12.6. Each column of Tables
12.4 and 12.5 describes the case of choosing a di�erent vector �eld from
Table 12.6 as the generalized path. By comparing across the rows of these
tables as well as the electrical tables, comparisons can be made between
the di�erent energy conversion processes.

In Sec. 11.5, energy conversion in a linear spring was discussed in the
language of calculus of variations. That example considered the displace-
ment of a point mass m in kg where the generalized path was chosen to
be displacement x in m. The resulting Euler-Lagrange equation was New-
ton's second law. Section 11.5 concluded with Table 11.1 summarizing the
resulting parameters. The third column of the Table 12.4 repeats that
information.

Circuit devices are often assumed to be point-like while electromagnetic
properties of materials, like permittivity and permeability, are speci�ed as
functions of position. Similarly, mechanical devices can be treated as point-
like or as functions of position. For example, mass is used to describe a
point-like device while density is used to describe a device that varies with
position. Researchers studying aerodynamics and �uid dynamics typically
prefer the latter description. However, in Tables 12.4 and 12.5, point-like
devices of mass m are assumed. Ideas in these tables can be generalized
to situations where energy conversion devices are not treated as point-like
and instead mass and other material properties vary with position.
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Energy
storage
device

Linear
Spring

Linear
Spring

Flywheel Flywheel

Generalized
Path

−→
F Force in
J
m = N

Displacement
−→x in m

−−→ωang
Angular
Velocity in
rad
s

−−→
Lam
Angular
Momentum
in J·s

Generalized
Potential

Displacement
−→x in m

−→
F Force in
J
m = N

−−→
Lam
Angular
Momentum
in J·s

−−→ωang
Angular
Velocity in
rad
s

Generalized
Capacity

K in J
m2

1
K
in m2

J
1
I in

1

kg·m2
I in kg ·m2

Constitutive
relation-
ship

−→
F = K−→x −→x = 1

K

−→
F −−→ωang =

1
I
−−→
Lam

−−→
Lam =
I−−→ωang

Energy 1
2
K|−→x |2 =

1
2

1
K
|−→F |2

1
2
I |−−→ωang|2 =

1
2

1
I

∣∣∣−−→Lam∣∣∣2
Law for
potential

Newton's
Second Law−→
F = m−→a

Newton's
Second Law−→
F = m−→a

Conservation
of Angular
Momentum

Conservation
of Angular
Momentum

Table 12.4: Describing mechanical systems in the language of calculus of
variations.
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Energy
storage
device

Moving
Mass

Moving
Mass

Torsion
Spring

Torsion
Spring

Generalized
Path

−→
M
Momentum
in
kg·m
s = J·s

m

−→v Velocity
in m

s

−→τ torque in
N·m
rad = J

rad

Angular
Displace-
ment

−→
θ in

radians

Generalized
Potential

−→v Velocity
in m

s

−→
M
Momentum
in
kg·m
s = J·s

m

Angular
Displace-
ment

−→
θ in

radians

−→τ torque in
N·m
rad = J

rad

Generalized
Capacity

m in kg 1
m
in 1

kg K in J
rad2

1
K in rad2

J

Constitutive
relation-
ship

−→
M = m−→v −→v = 1

m

−→
M −→τ = K

−→
θ

−→
θ = 1

K
−→τ

Energy 1
2
m|−→v |2 =

1
2
|−→M |2
m

1
2
m|−→v |2 =

1
2
|−→M |2
m

1
2
K|−→θ |2 =

1
2
K|−→τ |2

1
2
K|−→θ |2 =

1
2
K|−→τ |2

Law for
potential

Conservation
of
Momentum

Conservation
of
Momentum

Conservation
of Torque

Conservation
of Torque

Table 12.5: Describing more mechanical systems in the language of calcu-
lus of variations.
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Symbol Quantity Units
−→
F Force N
−→
M Momentum kg·m

s

~v Velocity m
s

−→x Positional displacement m
−−→
Lam Angular momentum J·s
−→
θ Angular displacement vector rad
−→τ Torque N·m
−−→ωang Angular velocity rad

s

Table 12.6: Vector �elds for describing mechanical displacement and �uid
�ow.

The vector �elds listed in Table 12.6 are related by constitutive rela-
tionships:

−→
M = m−→v (12.5)

−→
F = K−→x (12.6)

−→τ = K
−→
θ (12.7)

−−→
Lam = I−−→ωang (12.8)

Equation 12.6 is more familiarly known as Hooke's law. By analogy to
the capacitance of Eq. 12.1, the coe�cients in these equations are referred
to in Tables 12.4 and 12.5 as generalized capacity, and they represent the
ability to store energy in the device. The constant m in Eq. 12.5 is mass
in kg. The constant K in Eq. 12.6 is spring constant in J

m2 . The constant

K in Eq. 12.7 is torsion spring constant in J
radians2

. The constant I in Eq.

12.8 is moment of inertia in units kg·m2. A point mass rotating around the
origin has a moment of inertia I = m|−→r |2 where |−→r | is the distance from
the mass to the origin. A solid shape has moment of inertia

I =

ˆ
dI =

ˆ m

0

|−→r |2dm. (12.9)
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Interestingly, there is a close relationship between the quantities in Ta-
bles 12.3 and 12.5. Maxwell's equations, �rst introduced in Section 1.6.1,
relate the four electromagnetic �eld parameters. Assuming no sources,−→
J = 0 and ρch = 0, Maxwell's equations can be written:

−→∇ ×−→E = −∂
−→
B

∂t
(12.10)

−→∇ ×−→H =
∂
−→
D

∂t
(12.11)

−→∇ · −→D = 0 (12.12)

−→∇ · −→B = 0 (12.13)

The last two relationships, Gauss's laws, result directly from using calculus
of variations to set up the Euler-Lagrange equation and solving for the
corresponding equation of motion. We can replace electromagnetic vector
�elds in the source-free version of Maxwell's equations by mechanical �elds
according to the transformation:

−→
D → −→M (12.14)

−→
E → −→v (12.15)

−→
B → −→τ (12.16)

−→
H → −→θ (12.17)

The transformation of Eqs. 12.14 - 12.17 leads to set of equations accurately
describing relationships between these mechanical �elds.

−→∇ ×−→v = −∂
−→
θ

∂t
(12.18)

−→∇ ×−→τ =
∂
−→
M

∂t
(12.19)

−→∇ · −→M = 0 (12.20)

−→∇ · −→θ = 0 (12.21)
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The last rows of Tables 12.4 and 12.5 list the relationship that results
when an energy conversion device is described in the language of calcu-
lus of variations, the Euler-Lagrange equation is set up, and the Euler-
Lagrange equation is solved for the equation of motion. The laws that
result, Newton's second law, conservation of momentum, conservation of
angular momentum, and conservation of torque, are fundamental ideas of
mechanics.
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12.4 Thermodynamic Energy Conversion

Four fundamental thermodynamic properties were introduced in Section
8.2: volume V, pressure P, temperature T , and entropy S. Many devices
convert between some form of energy and either energy stored in a con�ned
volume, energy stored in a material under pressure, energy in a tempera-
ture di�erence, or energy of a disordered system. We can describe energy
conversion processes in these devices using the language of calculus of vari-
ations with one of these parameters, V, P, T , or S, as the generalized
path and another as the generalized potential. Table 12.7 summarizes the
results.

Many sensors convert energy between electrical energy and energy stored
in a volume, pressure, or temperature di�erence. A capacitive gauge can
measure the volume of liquid fuel versus vapor in the tank of an aircraft.
Strain gauges and Piranhi hot wire gauges (Sec. 10.5), for example, are
sensors that can measure pressure on solids or in gases. Pyroelectric de-
tectors (Sec. 3.2), thermoelectric detectors (Sec. 8.8), thermionic devices
(Sec. 10.2), and resistance temperature devices (Sec. 10.5) can be used to
sense temperature changes.

Many other energy conversion devices convert between energy stored in
a con�ned volume, energy stored in a material under pressure, or energy
in a temperature di�erence and another form of energy without involving
electricity. For example, if you tie a balloon to a toy car then release the
air in the balloon, the toy car will move forward. Energy stored in the
con�ned volume of the balloon, as well as in the stretched rubber of the
balloon, is converted to kinetic energy of the toy car. An aerator or squirt
bottle converts energy of a pressure di�erence to kinetic energy of a liquid.
An eye dropper converts energy of a pressure di�erence to gravitational
potential energy. An airfoil converts a pressure di�erence to kinetic energy
in the form of lift. A piston converts energy of a gas under pressure to
kinetic energy. As discussed in Sec. 10.6, a constricted pipe, or a weir,
converts energy of a pressure di�erence in a �owing liquid to kinetic energy
of the liquid. A baseball thrown as a curve ball converts the rotational
energy of the rotating ball into a pressure di�erential to de�ect the ball's
path [162, p. 350]. A Sterling engine converts a temperature di�erence to
kinetic energy.

Calculus of variations can be used to gain insights into thermodynamic
energy conversion processes in these devices. The �rst step in applying
the ideas of calculus of variations is to identify an initial and �nal form
of energy. The Lagrangian is the di�erence between these forms of energy
as a function of time. Some authors choose the Lagrangian as an entropy
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Energy
storage
device

A balloon
�lled with
air con�ned
to a �nite
volume

A
compressed
piston

A cup of
hot liquid
(hot
compared
to the temp
of the
room)

A container
with two
pure gases
separated
by a barrier

Generalized
Path

Volume V
in m3

Pressure P
in Pa

Temperature
T in K

Entropy S
in J

K
Generalized
Potential

Pressure P
in Pa = J

m3

Volume V
in m3 = J

Pa

Entropy S
in J

K

Temperature
T in K

Generalized
Capacity

V
B = −∂V

∂P in
m6

J

B
V = − ∂P

∂V in
J
m6

T
Cv

= ∂S
∂T

in
g·K2

J

Cv
T

= ∂S
∂T

in
J

g·K2

Constitutive
relation-
ship

∆V =
−V

B∆P
∆P =
−B

V∆V
∆T = T

cv
∆S ∆S =

Cv
T

∆T

Energy (int
expression)

´
VdP

´
PdV

´
TdS

´
SdT

Energy
(const.
potential)

V∆P P∆V T∆S S∆T

Law for
potential

Bernoulli's
Equation

Second Law
of Thermo-
dynamics

This
column
assumes

constant
S, T

constant
S, T

constant
P,V

constant
P,V

Table 12.7: Describing thermodynamic systems in the language of calculus
of variations.
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instead of an energy [170] [171], but throughout this text Lagrangian is
assumed to represent an energy as described in Ch. 11.

Assume that only one energy conversion process occurs in a device. Also
assume that if we know three (not two) of the four thermodynamic param-
eters, we can calculate the fourth. Additionally, assume small amounts
of energy are involved, and the energy conversion process occurs in the
presence of a large external thermodynamic reservoir of energy.

As with the discussion of the previous tables, each column of Table
12.7 details the parameters of calculus of variations for a di�erent choice
of generalized path. In order, the columns can be used to describe energy
storage in a gas con�ned to a �nite volume, a material under pressure, a
temperature di�erential, or an ordered system. The rows are labeled in
the same way as in the previous tables of this chapter so that analogies
between the systems can be drawn.

Energy can be stored and released from a gas con�ned to a �nite volume
and a gas under pressure. These related energy conversion processes are
detailed in the second and third columns of Table 12.7 respectively. The
second column speci�es parameters of calculus of variations with volume
chosen as the generalized path and pressure as the generalized potential.
The third column speci�es parameters with pressure chosen as the gen-
eralized path and volume as the generalized potential. In reality, energy
conversion processes involving changes in the pressure and volume of a gas
are unlikely to occur without a change in temperature or entropy of the
system simultaneously occurring. Resistive heating, friction, gravity, and
all other energy conversion processes that could simultaneously occur are
ignored. Temperature and entropy are explicitly assumed to remain �xed,
and these assumptions are listed in the last row of the table for empha-
sis. These columns can apply to energy conversion in liquids and solids in
addition to gases. Using the choice of variables in the second column, the
capacity to store energy is given by V

B where B is the bulk modulus in units
pascals, and it is a measure of the ability of a compressed material to store
energy [103]. Bulk modulus was introduced in Section 8.2. Using volume as
the generalized path, the Euler-Lagrange equation can be set up and solved
for the equation of motion. All terms of the resulting equation of motion
have the units of pressure, and the equation of motion is a statement of
Bernoulli's equation, an idea discussed in Section 10.6.

The fourth and �fth columns of Table 12.7 specify parameters of calcu-
lus of variations with temperature and entropy chosen as the generalized
path respectively. A cup of hot liquid stores energy. Similarly, a container
with two pure gases separated by a barrier stores energy. The system is
in a more ordered state before the barrier is removed than after, and it
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would take energy to restore the system to the ordered state. Both of these
systems can be described by the language of calculus of variations. As de-
tailed in the fourth column, temperature can be chosen as the generalized
path and entropy can be chosen as the generalized potential. Alternatively
as detailed in the �fth column, entropy can be chosen as the generalized
path and temperature can be chosen as the generalized potential. Both
of these columns assume that the pressure and volume remain constant.
The quantity Cv, which shows up in these columns, is the speci�c heat at
constant volume in units J

g·K, and it was introduced in Sec. 8.3.

The equation of motion that results when temperature is chosen as the
path and entropy is chosen as the generalized potential is a statement of
conservation of entropy, and each term of this equation has the units of
entropy. This relationship is more commonly known as the second law of
thermodynamics, and it shows up in the second to last row of Table 12.7.
More commonly, the law is written for a closed system as [109, p. 236],

∆S =

ˆ
δQ
T

+ Sproduced. (12.22)

In words, it says the change in entropy within a control mass is equal to
the sum of the entropy out of the control mass due to heat transfer plus
the entropy produced by the system.

(change in entropy) = (entropy out due to heat) + (entropy produced)

A system can become more organized or more disordered, so ∆S may
be positive or negative. If energy is supplied in or out, entropy can be
transfered in or out of a system, so the quantity

´
δQ
T

may be positive or
negative.

Energy is listed in the third to last row of Table 12.7 in two di�erent
forms. The �rst expression is an integral expression. For example, you
can integrate the volume with respect to pressure to �nd the energy of a
system.

E =

ˆ
VdP (12.23)

Alternatively, the second expression

∆E = V∆P (12.24)

can be used to �nd change in energy in the case when volume is not a
strong function of pressure over a small element.
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12.5 Chemical Energy Conversion

Batteries and fuel cells store energy in the chemical bonds of atoms. These
devices were studied in Chapter 9. Table 12.8 details how to describe
the physics of these chemical energy storage devices using the language of
calculus of variations.

Sometimes chemists discuss macroscopic systems and describe charge
distribution in a material by charge density ρch in units C

m3 . In other cases,
chemists study microscopic systems, where they are more interested in the
number of electrons N and the distribution of these electrons around an
atom. The second and third columns of Table 12.8 specify how to describe
the macroscopic systems in the language of calculus of variations while the
last two columns specify how to describe the microscopic systems.

In the second column of Table 12.8, the generalized path is ρch and the
generalized potential is the redox potential Vrp in volts. There is a close
relationship between the choice of variables speci�ed in the second column
of Table 12.8 and the choices speci�ed in the second columns of Table 12.1
and 12.3. More speci�cally, the generalized path described in the second
column of Table 12.1 is charge Q in coulombs, where charge is the integral
of the charge density with respect to volume.

Q =

ˆ
ρchdV (12.25)

The generalized path described in the second column of Table 12.3 is dis-
placement �ux density

−→
D in units C

m2 . In the third column of Table 12.8,
the opposite choice is made with Vrp for the generalized path and ρch for
the generalized potential. In Chapter 13, we consider a calculus of varia-
tions problem with this choice of variables in more detail to solve for the
electron density around an atom.

Another way to apply the language of calculus of variations to chemi-
cal energy storage systems is to choose the number of electrons N as the
generalized path and the chemical potential µchem as the generalized po-
tential [172]. This situation is described in the fourth column of the Table
12.8. We could instead choose µchem as the generalized path and N as the
generalized potential, and this situation is detailed in the last column of
Table 12.8. Reference [172] details using calculus of variations with this
choice of variables. Chemical potential is also known as the Fermi energy
at T = 0 K, and it was discussed in Sections 6.3 and 9.2.3. It represents
the average between the highest occupied and lowest unoccupied energy
levels. The quantity Eg, which shows up in the fourth row of the table, is
the energy gap in joules.



12 RELATING ENERGY CONVERSION PROCESSES 287

Energy
storage
device

Battery,
fuel cell

Battery,
fuel cell

Battery,
fuel cell,
chemical
bonds of an
atom

Battery,
fuel cell,
chemical
bonds of an
atom

Generalized
Path

Charge
density ρch
in C

m3

Redox
potential
(voltage)
Vrp in volts

Number of
electrons N

Chemical
potential
µchem in
J

atom
Generalized
Potential

Redox
potential
(voltage)
Vrp in volts

Charge
Density ρch
in C

m3

Chemical
potential
µchem in
J

atom

Number of
electrons N

Generalized
Capacity

Capacitance
C in farads

1
C

Inverse of
energy gap

1

Eg
=

∂N

∂µchem

Energy gap

Eg =
∂µchem
∂N

in J

Constitutive
relation-
ship

´
ρchdV =

CVrp

Vrp =
1
C

´
ρchdV

∆N =
1
Eg

∆µchem

∆µchem =
Eg∆N

Energy
´
V ρchVrpdV

´
V ρchVrpdV Nµchem Nµchem

Law for
potential

Nernst eq.
(KVL)

Conservation
of Charge

Nernst eq.
(KVL)

Conservation
of Charge

This
column
assumes

no variation
in θ or φ

no variation
in θ or φ

no variation
in θ or φ

no variation
in θ or φ

Table 12.8: Describing chemical systems in the language of calculus of
variations.
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12.6 Problems

12.1. Match each device, or device component, with the material or mate-
rials it is often made from.

Device or device
component

Material

1. Photovoltaic device A. Lead zirconium titanate
2. Piezoelectric device B. Bismuth telluride
3. Battery anode C. Cadmium telluride
4. Thermoelectric device D. Mica, Quartz
5. Dielectric between

capacitor plates
E. Zinc, Lithium

12.2. For each device or device component listed in the problem above,
indicate whether it is typically made from a conductor, dielectric, or
semiconductor.

12.3. For each of the devices below, list a material that the device is com-
monly made from.

• Photovoltaic Device

• Hall E�ect Device

• Piezoelectric Device

• Capacitor

12.4. Appendix B lists multiple units along with whether or not they are
SI base units. The joule, volt, and pascal are all SI derived units.
Express each of these units in terms of SI base units.
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12.5. Match the e�ect with the de�nition.

1. When an optical �eld is applied to a
dielectric material, a material polarization
develops in the material.

A.

Hall e�ect

2. When an optical �eld is applied to a
semiconductor junction, a voltage develops
across the junction.

B.

Electro- optic
e�ect

3. When a current passes through a uniform
material which has a temperature gradient,
heating or cooling will occur

C.

Photovoltaic
e�ect

4. When a mechanical stress is applied to a
dielectric material, a material polarization
develops in the material.

D.

Seebeck e�ect

5. When the di�erent sides of a junction are
held at di�erent temperatures, a voltage
develops across the junction.

E.

Piezoelectric
e�ect

6. When an external magnetic �eld is
applied across a conductor or semiconductor
with current �owing through it, a charge
builds up perpendicular to the current and
external magnetic �eld.

F.

Thomson
e�ect
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12.6. Match the device with its de�nition.

1. A device which converts electromagnetic
(often optical) energy directly to electricity

A.

Fuel Cell

2. A device made from diodes of two
dissimilar materials which converts a
temperature di�erential to electricity

B.

Photovoltaic
Device

3. A device which converts chemical energy
to electrical energy through the oxidation of
a fuel

C.

Piezoelectric
Device

4. A device which converts mechanical stress
directly to electricity

D.

Pyroelectric
Device

5. A device made from a crystal without a
center of symmetry which converts a
temperature di�erential to electricity

E. Thermo-
electric
Device
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13 Thomas Fermi Analysis

13.1 Introduction

Where are the electrons found around an atom? This question is di�cult for
a few reasons. First, at temperatures above absolute zero, electrons are in
continual motion. Second, the Heisenberg uncertainty principle tells us that
we can never know the position and momentum of electrons simultaneously
with complete accuracy. However, this question isn't hopeless. We can
�nd the charge density ρch which tells us, statistically on average, where
the electrons are most likely to be found. Understanding the distribution
of electrons in a material is vital to understanding the chemical properties,
such as the strength of chemical bonds, as well as the electrical properties,
such as how much energy is required to remove electrons.

To answer this question, we will use calculus of variations. The gener-
alized path will be voltage V , and the generalized potential will be charge
density ρch. A Lagrangian describes an energy di�erence, and the La-
grangian will have the form

L = L
(
r, V,

dV

dr

)
. (13.1)

The path found in nature is the one that minimizes the action.

δ

ˆ r2

r1

Ldr = 0 (13.2)

In this problem, the independent variable is position, not time. We will
set up the Euler-Lagrange equation then solve it to �nd the equation of
motion.

Most of this chapter consists of a derivation of the resulting equation
of motion called the Thomas Fermi equation. With a bit of algebra, we
can �nd both the voltage and the charge density around the atom from the
solution to the Thomas Fermi equation. The procedure is as follows.

• Describe the �rst form of energy, ECoulomb e nucl + Ee e interact , in
terms of path V . The resulting energy density is

ECoulomb e nucl
V

+
Ee e interact

V
=

1

2
ε
∣∣∣−→∇V ∣∣∣2 (13.3)

where ε represents permittivity and V represents volume.
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• Describe the second form of energy Ekinetic e in terms of path V . The
resulting energy density is

Ekinetic e
V

= c0V
5/2 (13.4)

where c0 is a constant. This step will require the idea of reciprocal
space.

• Write down the HamiltonianH
(
r, V, dV

dr

)
and Lagrangian L

(
r, V, dV

dr

)
.

• Set up the Euler-Lagrange equation.

∂L
∂V
−−→∇ ·

(
∂L

∂
(
dV
dr

)) âr = 0 (13.5)

• Solve the Euler-Lagrange equation for the equation of motion. The
result is

5

2
c0V

3/2 − ε∇2V = 0. (13.6)

• Change variables to clean up the equation of motion. The resulting
equation is called the Thomas Fermi equation.

d2y

dt2
= t−1/2y3/2 (13.7)

• Voltage and charge density are algebraically related to the quantity
y in the equation above.

To attempt to �nd charge density and voltage as a function of position
r from the center of the atom, we will have to make some rather drastic
assumptions. This analysis follows works of Thomas [173] and Fermi [174]
which were originally completed around 1927. This derivation is discussed
by numerous other authors as well [6] [46] [136] [175]. Because of the severe
assumptions made below, the results will not be very accurate. However,
more accurate numerical calculations are based on improved versions of the
techniques established by Thomas and Fermi. We are discussing the most
simpli�ed version of the derivation, but this is the basis of more accurate
approaches.
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13.2 Preliminary Ideas

13.2.1 Derivatives and Integrals of Vectors in Spherical Coordi-

nates

The derivation of the Thomas Fermi equation involves derivatives of vectors
in spherical coordinates. For more details on derivatives and vectors see
[11, ch. 1]. Consider a scalar function described in spherical coordinates,

V = V (−→r ) = V (r, θ, φ). (13.8)

The gradient of V (r, θ, φ) is de�ned

−→∇V =
∂V

∂r
âr +

1

r

∂V

∂θ
âθ +

1

r sin θ

∂V

∂φ
âφ. (13.9)

Gradient was introduced in Section 1.6.1. It returns a vector which points
in the direction of largest change in the function. The Laplacian is de�ned
in spherical coordinates as

∇2V =
1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
. (13.10)

Qualitatively, the Laplacian of a scalar is the second derivative with re-
spect to spatial position. In the derivations of this chapter, we encounter
only functions which are uniform with respect to θ and φ. For functions
of the form V = V (r), the formulas for gradient and Laplacian simplify
signi�cantly.

−→∇V =
∂V

∂r
âr (13.11)

∇2V =
1

r2

∂

∂r

(
r2∂V

∂r

)
(13.12)

We will also need the vector identity of Eq. 1.10,

∇2V =
−→∇ · −→∇V. (13.13)

A di�erential volume element in spherical coordinates is given by

dV = r2 sin θ dr dθ dφ. (13.14)

A volume integral of the function V (r, θ, φ) over a sphere of radius 1 cen-
tered at the origin is denoted

ˆ 1

r=0

ˆ π

θ=0

ˆ 2π

φ=0

V (r, θ, φ)r2 sin θ dr dθ dφ. (13.15)
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Assuming V doesn't depend on θ or φ, the integral is separable.

(ˆ π

θ=0

ˆ 2π

φ=0

sin θ dθ dφ

)ˆ 1

r=0

V (r)r2dr = 4π

ˆ 1

r=0

V (r)r2dr (13.16)

A sphere of radius r has volume 4
3
πr3.

13.2.2 Notation

Writing this text without overloading variables has been a challenge. For
example, V is the logical choice for denoting voltage, volume, and velocity.
Up until now, the context o�ered clues to the meaning of symbols. However
in this chapter, we will encounter equations involving both energy and
electric �eld, equations involving both voltage and volume, and equations
involving both mass and momentum. To help avoid confusion from the
notation, Table 13.1 shows an excerpt of the variable list from Appendix
A. This table does not list all quantities we will encounter. However, it
highlights some of the more confusing ones.

In this chapter, we will encounter many quantities which vary with po-
sition. We will not encounter any quantities which vary with time. There-
fore, voltage is denoted by a capital letter, not a lowercase letter. Voltage
is a function of r, which denotes position in spherical coordinates. As-
sume that the origin of the coordinate system is at the center of the atom
under consideration. Voltage is always speci�ed with respect to some ref-
erence level called ground, so assume this zero volt reference level occurs
at r = ∞. Also assume there is no θ or φ dependence of the voltage.
Therefore, V (−→r ) = V (r) represents voltage.
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Symbol Quantity SI Units S/V/C Comments

E Energy J = Nm S
−→
E Electric �eld

intensity

V
m V

Ef Fermi energy level J S Also called
Fermi level

~k Wave vector m−1 V

kf Fermi wave vector m−1 S

m Mass kg S

M Generalized
momentum

* S Many authors
use p

−→
M Momentum kg·m

s
V Many authors

use −→p
N (Total) number of

electrons per atom

electrons
atom S

v Voltage (AC or
time varying)

V S

~v Velocity m
s V

V Voltage (DC) V S

V Volume m3 S

µchem Chemical potential J
atom S

ρch Charge density C
m3 S

Table 13.1: Variable list.
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13.2.3 Reciprocal Space Concepts

The idea of reciprocal space was introduced in Section 6.4 in the context
of crystalline materials. We can describe the location of atoms in a crystal,
for example, as a function of position where position −→r is measured in
meters. In this chapter, we are interested in individual atoms instead of
crystals composed of many atoms. We can plot quantities like energy E(−→r )
or voltage V (−→r ) as a function of position. Figure 6.11, for example, plots
energy versus position inside a diode. In Section 6.4, the idea of wave
vector

−→
k in units of m−1 was introduced. Wave vector represents the

spatial frequency. We saw that we could plot energy or other quantities
as a function of wave vector, and Fig. 6.8 is an example of such a plot.
We will need the idea of wave vector in this chapter because we describe a
situation where we do not know how the energy varies with position, but
we do know something about how the energy varies with wave vector.

13.3 Derivation of the Lagrangian

The purpose of this chapter is to �nd the voltage V (r) and the charge
density ρch(r) around an atom, and we will use calculus of variations to
accomplish this task. We need to make some rather severe assumptions to
make this problem manageable. Consider an isolated neutral atom with
many electrons around it. Assume T ≈ 0 K, so all electrons occupy the
lowest possible energy levels. Assume the atom is spherically symmetric.
All of the quantities we encounter, such as voltage, charge density, and
Lagrangian, vary with r but do not vary with θ or φ. We will use spherical
coordinates with the origin at the nucleus of the atom. While quantities
vary with position, assume no quantities vary with time. The charge density
ρch(r) tells us where the electrons are most likely on average to be found.
It is related to the quantum mechanical wave function, ψ, by

ρch = −q · |ψ|2 (13.17)

where q is the magnitude of the charge of an electron. Assume that all of
the electrons surrounding the atom are distributed uniformly and can be
treated as if they were a uniform electron cloud of some charge density.

Pick one of the electrons of the atom, and consider what happens when
the electron is moved radially in and out. Figure 13.1 illustrates this sit-
uation. As the electron moves, energy conversion occurs. The goal of this
section is to write down the Hamiltonian and Lagrangian for this energy
conversion process. We write these quantities in the units of energy per
unit volume per valence electron under consideration.
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Electron

cloud

Nucleus

-

Electron under

consideration

Figure 13.1: Illustration of an atom.

To understand what happens when the electron is moved, consider the
energy of the atom in more detail. Coulomb's law, introduced in Eq.
1.4, tells us that charged objects exert forces on other charged objects.
More speci�cally, the electric �eld intensity

−→
E due to a point charge of Q

coulombs a distance r away surrounded by a material with permittivity ε
is given by

−→
E =

Qâr
4πεr2

. (13.18)

The atom is composed of N positively charged protons. The electron under
consideration feels an attractive Coulomb force due to these protons. Ad-
ditionally, the atom has N electrons, and N − 1 of these exert a repulsive
Coulomb force on the electron under consideration. Since a charge sepa-
ration and electric �eld exist, energy is stored. Call the component of the
energy of the atom due to the Coulomb interaction between the protons
of the nucleus and the electron under consideration ECoulomb e nucl. Call
the Coulomb interaction between the electron under consideration and all
other electrons Ee e interact. The atom also has kinetic energy. Call the
kinetic energy of the nucleus Ekinetic nucl and the kinetic energy of all of the
electrons Ekinetic e. The energy of the atom is the sum of all of these terms.

Eatom = ECoulomb e nucl. + Ekinetic nucl + Ee e interact + Ekinetic e (13.19)

Energy due to spin of the electrons and protons is ignored as is energy due
to interaction with any other nearby charged objects. At T ≈ 0 K, the
kinetic energy of the nucleus will be close to zero, so we can ignore the
term, Ekinetic nucl ≈ 0. The quantity Ekinetic e cannot be exactly zero. In
Chapter 6 we plotted energy level diagrams for electrons around an atom.
Even at T = 0 K, electrons have some internal energy, and this energy is
denoted by the energy level occupied.
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If we have a large atom with many electrons around it, the Coulomb
interaction between any one electron and the nucleus is shielded by the
Coulomb interaction from all other electrons. More speci�cally, suppose
we have an isolated atom with N protons in the nucleus and N electrons
around it. If we pick one of the electrons, ECoulomb e nucl for that electron
describes the energy stored in the electric �eld due to the charge separation
between the nucleus of positive charge Nq and that electron. However,
there are also N − 1 other electrons which have a negative charge. The
term Ee e interact describes the energy stored in the electric �eld due to
the charge separation between the N − 1 other electrons and the electron
under consideration. These terms somewhat cancel each other out because
the electron under consideration interacts with N protons each of positive
charge q and N − 1 electrons each of negative charge −q. However, the
terms do not go away completely. Calculating

ECoulomb e nucl + Ee e interact (13.20)

is complicated because the electrons are in motion, and we do not really
know where they are or even where they are most likely to be found. In
fact, we are trying to solve for where they are likely to be found.

As we move the electron under consideration in and out radially, energy
is transferred between (ECoulomb e nucl + Ee e interact) and Ekinetic e. The
Hamiltonian is the sum of these two forms of energy per unit volume,
and the Lagrangian is the di�erence of these two forms of energy per unit
volume. Both quantities have the units J

m3 . Choose voltage V (r) as the
generalized path and charge density ρch(r) as the generalized potential.
The independent variable of these quantities is radial position r, not time.
We can now write the Hamiltonian and Lagrangian.

H

(
r, V,

dV

dr

)
=

(
ECoulomb e nucl

V
+
Ee e interact

V

)
+
Ekinetic e

V
(13.21)

L
(
r, V,

dV

dr

)
=

(
ECoulomb e nucl

V
+
Ee e interact

V

)
− Ekinetic e

V
(13.22)

The next step is to write

ECoulomb e nucl
V

+
Ee e interact

V
(13.23)

in terms of the path V . As detailed in Table 12.3, the energy density due
to an electric �eld

−→
E is given by

E

V
=

1

2
ε|−→E |2. (13.24)
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Remember that E represents energy while
−→
E represents electric �eld. Elec-

tric �eld is the negative gradient of the voltage V (r).

−→
E = −−→∇V. (13.25)

We can combine these expressions and Eq. 13.13 to write the �rst term of
the Hamiltonian and the Lagrangian in terms of the generalized path.

ECoulomb e nucl
V

+
Ee e interact

V
=

1

2
ε
∣∣∣−→∇V ∣∣∣2 (13.26)

H

(
r, V,

dV

dr

)
=

(
1

2
ε
∣∣∣−→∇V ∣∣∣2)+

Ekinetic e
V

(13.27)

L
(
r, V,

dV

dr

)
=

(
1

2
ε
∣∣∣−→∇V ∣∣∣2)− Ekinetic e

V
(13.28)

The next task is to describe the remaining term Ekinetic e
V as a function

of the generalized path too. This task is a bit more challenging. We
continue to take the approach of making severe approximations until it is
manageable. We need to express ρch(r) as a function of V (r). Then with
some algebra, Ekinetic eV can be written purely as a function of V (r).

We want to generalize about the kinetic energy of the electrons. How-
ever, each electron has its own velocity −→v and momentum

−→
M . These

quantities depend on position

−→r = râr + θâθ + φâφ (13.29)

in some unknown way. Furthermore, the calculation of Ekinetiic e
V depends

on charge density ρch(r), which is the unknown quantity we are trying to
�nd. We have more luck by describing these quantities in reciprocal space,
introduced in Sec. 6.4. Position is denoted in reciprocal space by a wave
vector −→

k = r̃âr + θ̃âθ + φ̃âφ. (13.30)

We can describe the properties of a material by describing how they
vary with position in real space. For example, ρch(r) represents the charge
density of electrons as a function of distance r from the center of the atom.
We may be interested in how other quantities, such as the energy required
to rip o� an electron or the kinetic energy internal to an electron, vary with
position in real space too. Instead of describing how quantities vary with
position in real space, we can describe how quantities vary with spatial
frequency of electrons. This is the idea behind representing quantities
in reciprocal space. We may be interested in how the charge density of
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electrons varies as a function of the spatial frequency of charges in a crystal
or other material, and this is the idea represented by functions of wave

vector such as ρch
(−→
k
)
. We are trying to solve for charge density ρch(r).

We expect that electrons are more likely to be found at certain distances
r from the center of the atom than at other distances. However, there is

no pattern to the charge density as a function of wave vector, ρch
(−→
k
)
.

Assume that ρch is roughly constant with respect to |−→k | up to some level.
With some more work, this assumption will allow us to solve for charge
density ρch(r).

The kinetic energy of a single electron is given by

Ekinetic e
e−

=
1

2
m|−→v |2 (13.31)

where m is the mass of the electron. We can write this energy in terms
of momentum,

−→
M = m−→v . (Note that momentum −→M and generalized mo-

mentum M are di�erent and have di�erent units.)

Ekinetic e
e−

=
|−→M |2
2m

(13.32)

We do not know how the energy varies as a function of position r. Instead,
we can write the energy as a function of the crystal momentum

−→
M crystal

or the wave vector
−→
k , and we know something about the variation of these

quantities. Crystal momentum is equal to the wave vector scaled by the
Planck constant. −→

M crystal = ~
−→
k (13.33)

It has the units of momentum kg·m
s , and it was introduced in Sec. 6.4.2.

The kinetic energy of one electron as a function of the crystal momentum
is given by

Ekinetic e
e−

=

(−→
M crystal

)2

2m
=

(
~|−→k |

)2

2m
. (13.34)

A vector in reciprocal space is represented Eq. 13.30, and Eq. 13.34 can
be simpli�ed because we are assuming spherical symmetry θ̃ = φ̃ = 0.
The magnitude of the wave vector becomes |−→k | = r̃, and we can write the
energy as

Ekinetic e
e−

=
~2r̃2

2m
. (13.35)

Just as each electron has its own momentumm|−→v |, each electron has its
own crystal momentum ~|−→k |. However, we know some information about
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the wave vector |−→k | of the electrons in the atom. At T = 0 K, electrons
occupy the lowest allowed energy states. Energy states are occupied up to
some highest occupied state called the Fermi energy Ef . While electrical
engineers use the term Fermi energy, chemists sometimes use the term
chemical potential µchem. The lowest energy states, are occupied while the
higher ones are empty. Similarly, wave vectors are occupied up to some
highest occupied wave vector called the Fermi wave vector kf .

|−→k | =
{
�lled state r̃ < kf

empty state r̃ > kf
(13.36)

The Fermi energy and the Fermi wave vector are related by

Ef =
~2k2

f

2m
. (13.37)

We use the idea of reciprocal space to write an expression for the kinetic
energy of the electrons per unit volume [136, p. 49]. The kinetic energy
due to any one electron as a function of position in reciprocal space is
given by Eq. 13.35. Note that at each value of |−→k | = r̃, the electron has
a di�erent kinetic energy. To �nd the kinetic energy per unit volume due
to all electrons, we integrate over all |−→k | = r̃ in spherical coordinates that
are occupied by electrons, and then we divide by the volume occupied in−→
k space.

Ekinetic e
V

= 1

vol. occupied in k space
·
´
�lled k levels

(
Ekinetic e

e−

) (
e−

volume

)
d (vol. all k space)

(13.38)
The number of electrons per unit volume is given by(

e−

volume

)
=
−ρch
q

. (13.39)

The volume occupied in reciprocal space is 4
3
πk3

f , the volume of a sphere
of radius kf .

Ekinetic e
V

=
1

4
3
πk3

f

·
ˆ
�lled k levels

(
~2r̃2

2m

)(−ρch
q

)
d (vol. all k space)

(13.40)
A di�erential element of the volume is expressed as

d3
∣∣∣−→k ∣∣∣ = r̃2 sin θ̃ dr̃ dθ̃ dφ̃. (13.41)
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Ekinetic e
V

=
1

4
3
πk3

f

·
ˆ
�lled k levels

(
~2|−→k |2

2m

)(−ρch
q

)(
r̃2 sin θ̃ dr̃ dθ̃ dφ̃

)
(13.42)

As described above, electrons occupy states in reciprocal space only with
0 ≤ r̃ ≤ kf .

Ekinetic e
V

=
1

4
3
πk3

f

·
ˆ kf

r̃=0

ˆ π

θ̃=0

ˆ 2π

φ̃=0

(
~2r̃2

2m

)(−ρch
q

)(
r̃2 sin θ̃ dr̃ dθ̃ dφ̃

)
(13.43)

The integral above can be evaluated directly. The �rst step to evaluate
it is to pull constants outside. As described above, ρch varies with r but
not r̃, so it can be pulled outside the integral too.

Ekinetic e
V

=
−1

4
3
πk3

f

· ~
2ρch

2mq

ˆ kf

r̃=0

ˆ π

θ̃=0

ˆ 2π

φ̃=0

r̃4 sin θ̃ dr̃ dθ̃ dφ̃ (13.44)

The integral separates and can be evaluated.

Ekinetic e
V

=
−1

4
3
πk3

f

· ~
2ρch

2mq

(ˆ π

θ̃=0

ˆ 2π

φ̃=0

sin θ̃ dθ̃ dφ̃

)(ˆ kf

r̃=0

r̃4dr̃

)
(13.45)

Ekinetic e
V

=
−1

4
3
πk3

f

· ~
2ρch

2mq
4π

(
kf
5

5)
(13.46)

Ekinetic e
V

=
−3ρchk

2
f~2

10mq
(13.47)

Charge density is a function of position in real space r, and we are in
the process of solving for this function, ρch(r). However, it also depends on
the Fermi energy Ef , and hence Fermi wave vector kf , for the atom. Next,
we �nd the relationship between ρch and kf . Two electrons are allowed per
energy level (spin up and spin down), hence per �lled k state. The number
of �lled states per atom in reciprocal space is related to the charge density.

ρch = −2q

(
no. �lled k states
unit vol. in k space

)
(13.48)

In Sec. 6.4.1, we saw that a primitive cell in reciprocal space was (2π)3

times the primitive cell in real space, so

(unit vol. k space) = (2π)3 · (unit vol. real space) = (2π)3 . (13.49)
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We know something about the wave vectors of �lled states in reciprocal
space. At T = 0 K, the lowest states are �lled, and all others are empty,
and they are �lled up to a radius of kf . The volume of a sphere of radius
kf is given by 4

3
πk3

f , and this represents the number of �lled k states per
volume of reciprocal space. We can therefore simplify the expression above.

ρch = −2q · 4

3
πk3

f ·
1

(2π)3
(13.50)

ρch =
−q
3π2

k3
f (13.51)

kf =

(−3π2

q
ρch

)1/3

(13.52)

We want to write Ekinetic e
V as a function of generalized path V . We can

now achieve this task by combining Eqs. 13.47 and 13.52.

Ekinetic e
V

=
−3~2

10mq
ρch

(−3π2

q
ρch

)2/3

(13.53)

Ekinetic e
V

=
−3~2

10mq

(−3π2

q

)2/3

ρ
5/3
ch (13.54)

Electrical energy is the product of charge and voltage. More speci�cally,
from Eq. 2.8, it is given by

E =
1

2
QV. (13.55)

Electrical energy density is then given by

E

V
=

1

2
ρchV. (13.56)

Use Eq. 13.56 to relate ρch and V .

Ekinetic e
V

=
1

2
ρchV =

−3~2

10mq

(−3π2

q

)2/3

ρ
5/3
ch (13.57)

We have now related the generalized path and the generalized potential.

V =
−3~2

5mq

(−3π2

q

)2/3

ρ
2/3
ch (13.58)

ρch =

(
−5mq

3~2
·
(−3π2

q

)−2/3
)3/2

V 3/2 (13.59)
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ρch =

[(−5mq

3~2

)3/2(−q
3π2

)]
· V 3/2 (13.60)

Finally, we can write Ekinetic e
V as a function of V .

Ekinetic e
V

=

[(−5mq

3~2

)3/2(−q
3π2

)]
V 5/2 (13.61)

Notice that the quantity in brackets above is constant. The coe�cient c0

is de�ned from the term in brackets.

c0 =

(−5mq

3~2

)3/2(−q
3π2

)
(13.62)

Ekinetic e
V

= c0V
5/2 (13.63)

We now can describe all of the terms of the Lagrangian in terms of our
generalized path.

ECoulomb e nucl
V

+
Ee e interact

V
=

1

2
ε
∣∣∣−→∇V ∣∣∣2 (13.64)

Ekinetic e
V

= c0V
5/2 (13.65)

The Hamiltonian represents the total energy density, and the Lagrangian
represents the energy density di�erence of these forms of energy. The
Hamiltonian and Lagrangian have the form H = H

(
r, V, dV

dr

)
and L =

L
(
r, V, dV

dr

)
where r is position in spherical coordinates. There is no θ or φ

dependence of H or L. Everything is spherically symmetric.

H =
1

2
ε|−→∇V |2 + c0V

5/2 (13.66)

L =
1

2
ε|−→∇V |2 − c0V

5/2 (13.67)

As an aside, let us consider the Fermi energy Ef = µchem once again.
With some algebra, we can write it as a function of voltage. Use Eqs.
13.37, 13.52, and 13.62.

Ef =
~2k2

f

2m
=

~2

2m

(−3π2ρch
q

)2/3

(13.68)

Ef =
~2

2m

(−3π2

q

)2/3
(−5mq

3~2
·
(−3π2

q

)−2/3
)3/2

V 3/2

2/3

(13.69)
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Ef =
−5q

6
V (13.70)

Notice that the Fermi energy is just a scaled version of the voltage V with
respect to a ground level at r =∞. Electrical engineers often use the word
voltage synonymously with potential. When chemists use the term chemical
potential, they are referring to the same quantity just scaled by a constant.
Just as voltage is a fundamental quantity of electrical engineering that
represents how di�cult it is to move electrons around, chemical potential
is fundamental quantity of chemistry that represents how di�cult it is to
move electrons around.

13.4 Deriving the Thomas Fermi Equation

As the electron around an atom moves, energy is converted between energy
of the Coulomb interaction and kinetic energy of the electron. The action
is

S =

∣∣∣∣ˆ r2

r1

Ldr
∣∣∣∣ . (13.71)

The path found in nature minimizes the action.

δ

∣∣∣∣ˆ r2

r1

Ldr
∣∣∣∣ = 0 (13.72)

The integral is over position, not time. In chapter 11, we called this idea
the Principle of Least Action. Reference [136, p. 52] calls this idea in this
context the Second Hohenberg-Kohn Theorem. To �nd the path, we set up
and solve the Euler-Lagrange equation. The Euler-Lagrange equation in
the case where the independent variable is a vector of the form −→r = râr
instead of a scalar (with no θ or φ dependence anywhere) is given by

∂L
∂(path)

−−→∇ ·

 ∂L
∂
(
d(path)

dr

)
 âr = 0 (13.73)

[176, p. 13].
As described above, generalized path is voltage V = V (r), and gener-

alized potential is charge density ρch = ρch(r). As discussed in Chapter
12, we could have made the opposite choice. In fact, the opposite choice
may seem more logical because the words voltage and potential are often
used synonymously. The same result is obtained regardless of the choice.
However, the algebra is less messy with this choice, and this choice is more
consistent with the literature.
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Next, evaluate the Euler-Lagrange equation, Eq. 13.73, using the La-
grangian of Eq. 13.67. The resulting equation is the equation of motion.
Consider some of the pieces needed. The derivative of the Lagrangian with
respect to the path is

∂L
∂V

=
5

2
c0V

3/2. (13.74)

In Chapter 11, this quantity was de�ned as the generalized potential.
Above, we de�ned ρch as the generalized potential. Both ∂L

∂V
and ρch have

units C
m3 . According to Eq. 13.60, ∂L

∂V
is ρch multiplied by a constant, and

that constant is close to one. Since ∂L
∂V

isn't equal to ρch, our equations
are not completely consistent. However, the di�erence is small given the
extreme assumptions made elsewhere. We also need the generalized mo-
mentum.

M =
∂L

∂
(
dV
dr

) = ε
dV

dr
. (13.75)

∂L
∂
(
dV
dr

) âr = ε
−→∇V (13.76)

Next, put these pieces into the Euler-Lagrange equation.

5

2
c0V

3/2 −−→∇ ·
(
ε
−→∇V

)
= 0 (13.77)

Use Eq. 13.13.
5

2
c0V

3/2 − ε∇2V = 0 (13.78)

∇2V =
5

2ε
c0V

3/2 (13.79)

Next, following Fermi's original work [177], change variables

V =
−y
r

(13.80)

where y has the units V·m. The Laplacian term on the left can be simpli�ed
using Eq. 13.12.

∇2V = ∇2

(−y
r

)
(13.81)

∇2V =
1

r2

∂

∂r

[
r2 ∂

∂r

(−y
r

)]
(13.82)

∇2V =
1

r2

∂

∂r

[
r2

(
y

r2
− 1

r

∂y

∂r

)]
(13.83)
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∇2V =
1

r2

∂

∂r

(
y − r∂y

∂r

)
(13.84)

∇2V =
1

r2

(
∂y

∂r
− ∂y

∂r
− r2∂

2y

∂r2

)
(13.85)

∇2V = −1

r

∂2y

∂r2
(13.86)

Eq. 13.79 now simpli�es.

− 1

r

∂2y

∂r2
=
−5

2ε
c0

(−y
r

)3/2

(13.87)

−1

r

d2y

dr2
=

5

2ε
c0(−1)1/2

(y
r

)3/2

(13.88)

d2y

dr2
= c1r

−1/2y3/2 (13.89)

In the equation above, the constant is

c1 = − 5

2ε
c0(−1)1/2.

c1 =
−5

2ε

[(−5mq

3~2

)3/2(−q
3π2

)]
(−1)1/2 (13.90)

c1 =
5

2ε

[(
5mq

3~2

)3/2
q

3π2

]
(13.91)

To clean Eq. 13.89 up further, choose

t = c
−2/3
1 r. (13.92)

The variable t here is the name of the independent variable, and it does
not represent time. It is a scaled version of the position r.

d2y

dt2
= t−1/2y3/2 (13.93)

Equation 13.93 is called the Thomas Fermi equation. We have �n-
ished the derivation. The Thomas Fermi equation along with appropriate
boundary conditions can be solved for y(t). Since the equation is nonlinear,
numerical techniques are likely used to solve it. Once y(t) is found, Eqs.
13.56 and 13.80 can be used to �nd V (r) and ρch(r). From this equation of
motion, we can �nd ρch (r), where, on average, the electrons are likely to be
found as a function of distance from the nucleus in spherical coordinates.
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13.5 From Thomas Fermi Theory to Density Func-

tional Theory

The analysis considered in this chapter is based on works from 1926 to
1928 [173] [174]. They were early attempts at calculating the location of
electrons around an atom, and they were developed when the idea of an
atom itself was still quite new. Half of Fermi's work is in Italian, and half
is in German. However, it is clearer than most technical papers written in
English.

A calculation is called ab initio if it is from �rst principles while a
calculation is called semi-empirical if some experimental data is used to
�nd parameters of the solution [136, p. 13]. The Thomas Fermi method is
the simplest ab initio solution of the calculation of the charge density and
energy of electrons in an atom [136]. Since no experimental data is used,
the results of the calculation can be compared to experimental data from
spectroscopic experiments to verify the results.

We already know that the results are not very accurate because we made
a lot of rather extreme assumptions to make this problem manageable.
Assumptions include:

• There is no angular dependence to energy, charge density, voltage, or
other quantities.

• Temperature is near absolute zero, T ≈ 0 K, so that all electrons
occupy the lowest allowed energy states.

• There is only one isolated atom with no other charged particles around
it.

• The atom is not ionized and is not part of a molecule.

• The atom has many electrons, and one electron feels e�ects of a uni-
form cloud due to other electrons.

• The electrons of the atom do not have any spin or internal angular
momentum.

Re�ned versions of this calculation are known as density functional theory.
A function is a quantity that takes in a scalar value and returns a scalar
value. A functional takes in a function and returns a scalar value. The
name density functional theory comes from the fact that the Lagrangian
and Hamiltonian are written as functionals of the charge density. Density



13 THOMAS FERMI ANALYSIS 309

functional theory calculations do not make as many or as severe of assump-
tions as were made above, especially for the Ee e interact term. These calcu-
lations have been used to calculate the angular dependence of the charge
density, the allowed energy states of electrons that are part of molecules,
the voltage felt by electrons at temperatures above absolute zero [136], and
many other microscopic properties of atoms. Density functional theory is
an active area of research. Often charge density is chosen as the generalized
path instead of voltage [136].

Both Thomas [173] and Fermi [174] included numerical simulations.
Amazingly, these calculations were performed way before computers were
available! More recently, researchers have developed software packages for
applying density functional theory to calculate the allowed energy levels,
charge density, and so on of electrons around atoms and molecules [178]
[179]. Because of the complexity of the calculations, parallel processing is
used. Computers with multiple processors, supercomputers, and graphics
cards with dozens of processors have all been used.

13.6 Problems

13.1. Generalized momentum is de�ned as

M =
∂L

∂
(
dV
dr

) .
(a) Find the generalized momentum for the system described by the

Lagrangian of Eq. 13.67.

(b) The generalized momentum does not have the units of momen-
tum. Identify the units of this generalized momentum.

(c) Write the Hamiltonian of Eq. 13.66 as a function of r, V, and
M but not as a function of dV

dr
.

(d) Write the Lagrangian of Eq. 13.67 as a function of r, V, and M
but not as a function of dV

dr
.

(e) Show that the Hamiltonian and Lagrangian found above satisfy
the equation H = MdV

dr
− L.

13.2. In the analysis of this chapter, the generalized path was chosen as V
and the generalized potential was chosen as ρch. The opposite choice
is also possible where the generalized path is ρch and the generalized
potential is V .
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(a) Write the Hamiltonian of Eq. 13.66 as functions of ρch instead
of V , so it has the form H

(
r, ρch,

dρch
dr

)
.

(b) Repeat the above for the Lagrangian of Eq. 13.67.

(c) Find the Euler-Lagrange equation using ρch as the generalized
path.

13.3. Verify that

y =
144

t3

is a solution of the Thomas Fermi equation [46].

(While this solution satis�es the Thomas Fermi equation, it is not
useful in describing the energy of an atom. In the t → 0 limit, this
solution approaches in�nity, y(0)→∞. However, in the t→ 0 limit,
the solution should approach a constant, y(0) → 1, to correctly de-
scribe the physical behavior of an atom [180].)

13.4. The previous problem discussed that

y =
144

t3

is a solution of the Thomas Fermi equation. Show that

y =
72

t3

is not a solution.

13.5. Prove that the Thomas Fermi equation is nonlinear.
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14 Lie Analysis

14.1 Introduction

In Chapter 11, the ideas of calculus of variations were applied to energy
conversion processes. We began with two forms of energy and studied how
those forms of energy varied with variation in some generalized path and
some generalized potential. The result was an equation of motion that de-
scribed the variation of the generalized path. The equation of motion had
the form of conservation of generalized potential. In Chapter 12, conserva-
tion laws were listed in the last row of the tables. Knowing how forms of
energy vary with path and with potential provide signi�cant information
about energy conversion processes. The purpose of this chapter is to show
that we can �nd symmetries, invariants, and other information about the
energy conversion process by applying Lie analysis techniques to this equa-
tion of motion. If continuous symmetries of an equation can be identi�ed,
it is often possible to extract quite a bit of information by starting only
with the equation.

The equations of motion that result from calculus of variations are not
always linear. It may or may not be possible to solve a nonlinear equation of
motion for the path. Even in the cases where it is possible, it is often quite
di�cult because techniques for solving nonlinear di�erential equations are
much less developed than techniques for linear equations. Furthermore,
many nonlinear di�erential equations do not have closed form solutions. In
this chapter, we will see a systematic technique for getting information out
of nonlinear di�erential equations that comes from calculus of variation.
The technique is known as Lie analysis based on the work of Sophus Lie
in the late part of the nineteenth century. Additionally, this chapter intro-
duces Noether's theorem. Using this theorem and an equation of motion,
we may be able to derive conserved quantities. The techniques discussed
in this chapter apply even for nonlinear equations.

Lie analysis is a systematic procedure for identifying continuous sym-

metries of an equation. If the equation possesses continuous symmetries,
we may be able to �nd related conservation laws. Some equations possess
multiple symmetries and conservation laws while other equations do not
contain any symmetries or conservation laws. Using this procedure with
a known generalized path, we may be able to derive conserved quantities
even if we do not know how to choose the generalized potential at �rst.
Some systems might even contain multiple conserved quantities, and this
procedure will give us a complete set of conserved quantities.

Lie analysis has been used to �nd continuous symmetries of many fun-
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damental equations of physics, and it has been applied to both classical and
quantum mechanical equations. References [164, p. 117] and [181] apply
the procedure to the heat equation

dy

dt
=
d2y

dx2
(14.1)

describing the function y(t, x). It has been applied to both the two dimen-
sional wave equation [164, p. 123] and the three dimensional wave equation
[181]. Other equations analyzed by this procedure include Schrödinger's
equation [182] [183], Maxwell's equations [184] [185], and equations of non-
linear optics [186].

A tremendous amount of information can be gained by looking at the
symmetries of equations. Knowledge of continuous symmetries may allow
us to solve equations or at least reduce the order of di�erential equations
[164]. If we can identify symmetries, we may be able to simplify or speed
up numerical calculations by using known repetition in the form of the
solution. If multiple equations contain the same symmetry elements, we
can draw comparisons between the equations [164]. We may be able to
�nd invariant quantities of the system from known continuous symmetries
of equations. Hopefully this chapter will provide an appreciation for the
amount of information that can be gained from applying symmetry analysis
to equations of motion describing energy conversion processes.

14.1.1 Assumptions and Notation

The techniques of this chapter are applied to equations of motion that
results from describing an energy conversion processes by calculus of vari-
ations. All starting equations of motion are assumed to have only one
independent and one dependent variable. These equations may or may
not be linear. Furthermore, all independent and dependent variables are
assumed to be purely real. We made the same assumptions in Chapter
11. Most of the examples in this chapter involve second order di�eren-
tial equations because many of the energy conversion processes studied in
Chapter 11 led to equations of motion which were second order di�erential
equations. However, these techniques apply to algebraic equations and to
di�erential equations of other orders.

In this chapter, total derivatives will be denoted as either dy
dt
or ẏ. Par-

tial derivatives will be denoted as either ∂y
∂t

or ∂ty for shorthand. If the
quantity y is just a function of a single independent variable, there is no
reason to distinguish between total and partial derivatives, dy

dt
= ∂y

∂t
. Equa-

tions of motion in this chapter will involve one independent and one de-
pendent variable, y(t). However, we will encounter functionals of multiple
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independent variables such as the Lagrangian L = L(t, y, dy
dt

). For such
quantities, we will have to distinguish between total and partial derivatives
carefully.

The analysis here is in no way mathematically rigorous. Furthermore,
the examples in this chapter are not original. References to the literature
are included below.

These techniques generalize to more complicated equations. They apply
to equations with multiple independent and multiple dependent variables,
and they apply when these variables are complex [164]. Also, these tech-
niques apply to partial di�erential equations as well as ordinary di�erential
equations, and they even apply to systems of equations [164]. See refer-
ences [164] for how to generalize the methods introduced in this chapter
to the other situations.

14.2 Types of Symmetries

14.2.1 Discrete versus Continuous

This chapter is concerned with identifying symmetries of equations. We
say that an equation contains a symmetry if the solution to the equation
is the same both before and after a symmetry transformation is applied.
The wave equation is given by

d2y

dt2
+ ω2

0y = 0 (14.2)

where ω0 is a constant. When t represents time, ω0 has units of frequency.
The wave equation is invariant upon the discrete symmetry

y → ỹ = −y. (14.3)

This transformation is a symmetry because when all y's in the equation
are transformed, the resulting equation contains the same solutions as the
original equation.

d2ỹ

dt2
+ ω2

0 ỹ = 0 (14.4)

d2(−y)

dt2
+ ω2

0(−y) = 0 (14.5)

d2y

dt2
+ ω2

0y = 0 (14.6)

Symmetries can be classi�ed as either continuous or discrete. Contin-
uous symmetries can be expressed as a sum of in�nitesimally small sym-
metries related by a continuous parameter. A discrete symmetry cannot
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be written as a sum of in�nitesimal transformations in this way. Three
commonly discussed discrete symmetry transformations [187] are:

• Time reversal t→ t̃ = (−1)n t , for integer n

• Parity y → ỹ = (−1)n y, for integer n

• Charge conjugation y → ỹ = y∗, where ∗ denotes complex conjugate.

For example, the wave equation is invariant upon each of these three dis-
crete symmetries because solutions of the equation remain the same before
and after these symmetry transformations are performed. The transfor-
mation t → t̃ = t + ε, where ε is the continuous parameter which can be
in�nitesimally small, is an example of a continuous transformation because
it can be separated into a sum of in�nitesimal symmetries. Both discrete
and continuous symmetries may involve transformations of the independent
variable, the dependent variable, or both variables. In this chapter, we will
study a systematic procedure for identifying continuous symmetries of an
equation, and we will not consider discrete symmetries further.

14.2.2 Regular versus Dynamical

Continuous symmetries can be classi�ed as regular or dynamical. Regular
continuous symmetries involve transformations of the independent variables
and dependent variables. Dynamical symmetries involve transformations
of the independent variables, dependent variables, and the derivatives of
the dependent variables [188]. (Some authors use the term generalized
symmetries instead of dynamical symmetries [164, p. 289].) Only regular
symmetries will be considered. The techniques discussed here generalize to
dynamical symmetries [164], but they are beyond the scope of this text.

14.2.3 Geometrical versus Nongeometrical

Symmetries may also be classi�ed as geometrical or nongeometrical [184]
[185]. Nongeometrical symmetry transformations involve taking a Fourier
transform, performing some transformation of the variables, then taking an
inverse Fourier transform. The resulting transformations are symmetries
if the solution of the equation under consideration are the same before
and after the transformations occur. Nongeometrical symmetries can be
written as functions of an in�nitesimal parameter but are not continuous.
Nongeometrical symmetries will not be discussed here and are also beyond
the scope of this text.
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14.3 Continuous Symmetries and In�nitesimal Gener-

ators

14.3.1 De�nition of In�nitesimal Generator

Symmetry transformations can be described as transformations of the inde-
pendent and dependent variables. Continuous symmetry transformations
can be described as transformations of these variables which depend on a,
possibly in�nitesimal, parameter ε.

t→ t̃ = F (ε)t (14.7)

y → ỹ = F (ε)y (14.8)

The operator F (ε) describes the transformation. It is a function of the
in�nitesimal parameter ε, and it may also depend on t and y. Furthermore,
it is an operator meaning that it may involve derivative operations.

We are considering only continuous symmetries, so we can study the
behavior in the limit as ε → 0. The operator F (ε) can be written as a
Taylor series in the small parameter ε.

F (ε) = 1 + εU +
1

2!
ε2U2 + ... (14.9)

The term U in the expansion above is called the in�nitesimal generator. It
may be separated into two components.

U = ξ∂t + η∂y (14.10)

The function ξ describes in�nitesimal variation in the independent variable.
The function η describes in�nitesimal variation in the dependent variable,
and it was introduced in Sec. 11.4. Both ξ and η may depend on both the
independent variable and the dependent variable.

ξ = ξ(t, y) (14.11)

η = η(t, y) (14.12)

In the limit of ε→ 0, we can ignore terms of order ε2 or higher.

F (ε) ≈ 1 + εU (14.13)

An in�nitesimal generator describes a continuous symmetry transforma-
tion. If we know an in�nitesimal generator for some continuous symmetry,
we can �nd the corresponding transformation

t→ eεU t and y → eεUy. (14.14)
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To understand where this relationship between in�nitesimal generators and
�nite transformations come from, consider the Taylor expansion of eεU [14,
p. 33].

eεU = 1 + εU +
1

2!
(εU)2 +

1

3!
(εU)3 + ... (14.15)

In the limit as ε→ 0,
eεU ≈ 1 + εU. (14.16)

Therefore, the corresponding in�nitesimal transformation for ε→ 0 is given
by

t→ t (1 + εξ) (14.17)

y → y (1 + εη) . (14.18)

14.3.2 In�nitesimal Generators of the Wave Equation

As an example, consider in�nitesimal generators of the wave equation

d2y

dt2
+ ω2

0y = 0. (14.19)

As mentioned above, the wave equation contains a continuous symmetry
of the form t → t + ε. This continuous symmetry transformation has the
form

t→ t (1 + εξ) and y → y (1 + εη) (14.20)

with ξ = 1 and η = 0. It can be described by the in�nitesimal generator

U = ξ∂t + η∂y = ∂t. (14.21)

More generally, in�nitesimal generators and �nite transformations are re-
lated by Eq. 14.14, so �nite transformations can be derived from in�nites-
imal generators.

t→
(
eε∂t
)
t =

(
1 + ε∂t +

1

2!
(ε∂t)

2 + ...

)
t = t+ ε (14.22)

y →
(
eε∂t
)
y =

(
1 + ε∂t +

1

2!
(ε∂t)

2 + ...

)
y = y. (14.23)

While the symmetry transformation was given in this example, below we
will see a procedure to derive in�nitesimal generators for an equation.

In general, if we know a solution to an equation and we know that a
symmetry is present, we can derive a whole family of related solutions to
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Figure 14.1: The solid line shows a solution to the wave equation. The
dotted and dashed lines show solutions found using the symmetry trans-
formation t→ t+ ε and y → y which has in�nitesimal generator U = ∂t.

the equation without having to go through the work of solving the equation
again. The wave equation, Eq. 14.19, has solutions of the form

y(t) = c0 cos (ω0t) + c1 sin (ω0t) (14.24)

where boundary conditions determine the constants c0 and c1. The sym-
metry described by the in�nitesimal generator U = ∂t tells us that

y(t) = c0 cos (ω0 (t+ ε)) + c1 sin (ω0 (t+ ε)) (14.25)

must also be a solution. Using Eq. 14.24, we have found a family of
related solutions because Eq. 14.25 is a solution for all �nite or in�nitesimal
constants ε. Figure 14.1 illustrates this idea. The known solution is shown
as a solid line. The dotted and dashed lines illustrate related solutions,
for di�erent constant ε values. We encountered the wave equation in the
mass spring example of Section 11.5 and the capacitor inductor example
of Section 11.6, so symmetry analysis provides information about both of
these energy conversion processes. It tells us that if we run the energy
conversion process and �nd one physical path y(t), then for appropriate
boundary conditions, y(t + ε) is also a physical path. This symmetry is
present in all time invariant systems. Qualitatively for the mass spring
example, it tells us that if we know the path taken by the mass when we
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Figure 14.2: The solid line shows a solution to the wave equation. The
dotted and dashed lines show solutions found using the symmetry transfor-
mation t→ t and y → y(1 + ε) which has in�nitesimal generator U = y∂y.

remove the restraint today, then we know the path taken by the mass when
we repeat the experiment tomorrow , and we know this idea from symmetry
analysis without having to re-analyze the system.

All linear equations, including the wave equation, contain a continuous
symmetry transformation described by the in�nitesimal generator

U = y∂y (14.26)

which corresponds to ξ = 0 and η = y. Again, we can �nd the correspond-
ing �nite transformation using Eq. 14.14.

t→
(
eεy∂y

)
t =

(
1 + εy∂y +

1

2!
(εy∂y)

2 + ...

)
t = t (14.27)

and

y →
(
eεy∂y

)
y =

(
1 + εy∂y +

1

2!
(εy∂y)

2 + ...

)
y = y(1 + ε). (14.28)

To summarize this transformation,

t→ t (14.29)
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and
y → y(1 + ε) (14.30)

The above transformation says that if we scale any solution of a linear
equation, y(t), by a constant (1 + ε), the result will also be a solution of
the equation. By de�nition, a linear equation obeys exactly this property.
By knowing a solution of the wave equation and this symmetry, we can �nd
a whole family of related solutions, and this family of solutions is illustrated
in Figure 14.2.

The wave equation also contains the symmetry transformation described
by the in�nitesimal generator

U = sin(ω0t)∂y. (14.31)

The operators ξ and η can be identi�ed directly from the in�nitesimal
generator.

ξ = 0 (14.32)

η = sin(ω0t) (14.33)

Again we can �nd the corresponding �nite transformations using Eq. 14.14.

t→ eεU t = t (14.34)

y → eεUy =

(
1 + ε sin (ω0t) ∂y +

1

2!
(ε sin (ω0t) ∂y)

2 + ...

)
y (14.35)

y → y + ε sin (ω0t) (14.36)

If we know a solution y(t) to the wave equation, this transformation tells us
that y(t) + ε sin (ω0t) is also a solution. Since ε can be any in�nitesimal or
�nite constant, we have found another family of solutions using symmetry
concepts, and these solutions are illustrated in Figure 14.3.

In this section, we have discussed three of the symmetries of the wave
equation. The wave equation actually contains eight continuous symme-
try transformations. Deriving these transformations is left as a homework
problem.
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Figure 14.3: The solid line shows a solution to the wave equation. The
dotted and dashed lines show solutions found using the symmetry trans-
formation t → t and y → y + ε sin (ω0t) which has in�nitesimal generator
U = sin (ω0t) ∂y.

14.3.3 Concepts of Group Theory

The study of symmetries of equations falls under a branch of mathematics
called group theory. When mathematicians use the word group, they have
something speci�c in mind. A group is a set of elements along with an
operation that combines two elements. The operation is called group mul-

tiplication, but it may or may not be the familiar multiplication operation
from arithmetic. To be a group, the elements and operation must obey four
additional properties: identity, inverse, associativity, and closure [14, p. 7]
[164, p. 14]. A group is called a Lie group if all elements are continuously
di�erentiable [164, p. 14].

The �rst property of group elements is the identity property which says
that every group must have an identity element, Xid. When the identity
element is multiplied by any other group element, the result is that other
element. The inverse property says that each element in the group must
have a corresponding inverse element which is also in the group. When
the original element is multiplied by its inverse, the result must be the
identity element. The associative property says that the product of group
elements (X1 ·X2) ·X3 where the �rst two elements are multiplied �rst and
the product of group elements X1 · (X2 ·X3) where the last two elements
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Group property name Summary of property

Identity X1 ·Xid = X1

Inverse X1 ·X−1
1 = Xid

Associativity (X1 ·X2) ·X3 = X1 · (X2 ·X3)
Closure X1 ·X2 is an element of the group

Table 14.1: Group properties.

are multiplied �rst must be equal.

(X1 ·X2) ·X3 = X1 · (X2 ·X3) (14.37)

The closure property says that when two elements of the group are mul-
tiplied together, the result is another element of the group. Table 14.1
summarizes these properties where X1, X2, and X3 are elements of the
group, and Xid is the identity element which is also a member of the group.
However, groups may have more or less than three elements.

In general, the order in which group elements are multiplied matters.

X1 ·X2 6= X2 ·X1. (14.38)

The quantity X1 · X2 · X−1
1 · X−1

2 is sometimes called the commutator,
and it is denoted [X1, X2] . Due to the closure property, the result of the
commutator is guaranteed to be another element of the group [14, p. 21,32]
[164, p. 39,50].

[X1, X2] = X1 ·X2 ·X−1
1 ·X−1

2 (14.39)

Continuous symmetries of equations are described by in�nitesimal gen-
erators that form a Lie group. The elements of the group are the in�nitesi-
mal generators scaled by a constant [164, p. 52]. The group multiplication
operation is regular multiplication also possibly scaled by a constant. Ac-
cording to this de�nition, U = ∂t, U = 2∂t and U = −10.2∂t are all the
same element of the group because the constant does not a�ect the element.
If we �nd a few in�nitesimal generators of a group, we may be able to use
Eq. 14.39 to �nd more generators. A complete set of in�nitesimal gener-
ators describe all possible continuous (regular geometrical) symmetries of
the equation. All continuous (regular geometrical) symmetry operations of
the equation can be described as linear combinations of the in�nitesimal
generators.
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14.4 Derivation of the In�nitesimal Generators

14.4.1 Procedure to Find In�nitesimal Generators

We are studying di�erential equations, which can be written as

F (t, y, ẏ, ...) = 0 (14.40)

for some function F . We are looking for continuous symmetries that can
be applied to this equation such that the original equation and the trans-
formed equation have the same solutions. The symmetries are denoted by
in�nitesimal generators

U = ξ∂t + η∂y (14.41)

that describe how the independent variable t and dependent variable y
transform. Upon a symmetry transformation, the independent variable
and dependent variable transform, but so do the derivatives of the depen-
dent variable, ẏ, ÿ, ... The prolongation of an in�nitesimal generator is a
generalization of the in�nitesimal generator that describes the transforma-
tion of the independent variable, the dependent variable, and derivatives
of the dependent variable [164, p. 94].

The nth prolongation of a generator U is de�ned as

pr(n)U = ξ∂t + η∂y + ηt∂ẏ + ηtt∂ÿ + ηttt∂...y + ..., (14.42)

and it has terms involving ηt
n
. The functions ηt and ηtt are de�ned [164],

ηt = ηt (t, y, ẏ) =
d

dt
(η − ξẏ) + ξÿ (14.43)

ηtt = ηtt (t, y, ẏ) =
d2

dt2
(η − ξẏ) + ξ

...
y (14.44)

The quantities ηttt, ηtttt, and so on can be de�ned similarly, but they will
not be needed for the examples below. The prolongation of the in�nitesimal
generator is an operator that describes the transformation of t, y, ẏ, ÿ, and
so on up to the nth derivative. Some authors [189] use the term tangential

mapping instead of prolongation.
The procedure to �nd all possible continuous symmetries of an equation

is based on the idea that the solutions of an equation remain unchanged
upon a symmetry operation. For a given transformation to be a symmetry
operation, not only must all the solutions remain unchanged, but so must
all derivatives of the solutions. Thus, for a di�erential equation of the form
F (t, y, ẏ, ...) = 0, all symmetries U obey the symmetry condition
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pr(n)UF = 0. (14.45)

We solve this symmetry condition to �nd all allowed in�nitesimal genera-
tors that describe continuous symmetries of the original equation.

We can use Eqs. 14.43 and 14.44 to write the symmetry condition in
terms of the components of the in�nitesimal generators, ξ and η. Then, we
solve the symmetry condition for ξ and η. This step involves some algebra,
but it can be accomplished with some patience and an adequate supply of
ink and paper.

We can solve the symmetry condition for the allowed in�nitesimal gen-
erators. By careful solution, we �nd all in�nitesimal generators of the
form U = ξ∂t + η∂y. This procedure gives us a systematic way to �nd all

continuous symmetries of the equation.
This technique applies to any di�erential equation. We are most inter-

ested in applying it to equations of motion that describe energy conversion
processes. From this technique, we get information about solutions of the
equation even when the equation of motion is nonlinear. Furthermore, in
the Sec. 14.5 we see that we may be able to use the symmetries to �nd
invariants of the equation, and invariants often have physical meaning. All
symmetries of calculus of variations problems of the form δ

´
Ldt = 0 are

necessarily symmetries of the Euler-Lagrange equation. However, the con-
verse is not necessarily true, so not all symmetries of the Euler-Lagrange
equation are symmetries of the integral equation [164, p. 255].

14.4.2 Thomas Fermi Equation Example

As an example, we apply this procedure to the Thomas Fermi equation

ÿ = y3/2t−1/2. (14.46)

This equation was derived in Chapter 13. From the solution of this equation
y(t), the charge density ρch(r) of electrons around an isolated atom and
the voltage V (r) felt by the electrons can be calculated within the, rather
severe, assumptions speci�ed in that chapter. The independent variable of
the equation is a scaled version of radial position, not time. However, t will
be used as the independent variable here because the procedure applies to
equations regardless of the name of the variable. Reference [190] applies this
procedure to a family of equations known as the Emden-Fowler equations.
The Thomas Fermi equation is a special case of an Emden-Fowler equation,
so the result of this example can be found in reference [190].
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We would like to identify continuous symmetries of Eq. 14.46. These
symmetries will be speci�ed by in�nitesimal generators of the form

U = ξ∂t + η∂y (14.47)

where ξ and η have the form ξ(t, y) and η(t, y). Solutions of the equation
satisfy (

ÿ − y3/2t−1/2
)

= 0. (14.48)

For in�nitesimal generators that describe symmetries of this equation, the
prolongation is also zero.

pr(n)U
(
ÿ − y3/2t−1/2

)
= 0. (14.49)

Eq. 14.49 can be solved for all generators U corresponding to continuous
symmetries of the Thomas Fermi equation. Eqs. 14.42 and 14.49 can be
combined.

ηtt +
1

2
ξy3/2t−3/2 − 3

2
ηy1/2t−1/2 = 0 (14.50)

Next, Eq. 14.44 is used.

∂ttη + 2ẏ∂ytη + ÿ∂yη + ẏ2∂yyη − 2ÿ∂tξ − ẏ∂ttξ − 2ẏ2∂ytξ
−ẏ3∂yyξ − 3ẏÿ∂yξ + 1

2
ξy3/2t−3/2 − 3

2
ηy1/2t−1/2 = 0

(14.51)

Substitute the original equation for ÿ.

∂ttη + 2ẏ∂ytη + y3/2t−1/2∂yη + ẏ2∂yyη − 2y3/2t−1/2∂tξ − ẏ∂ttξ − 2ẏ2∂ytξ
−ẏ3∂yyξ − 3ẏy3/2t−1/2∂yξ + 1

2
ξy3/2t−3/2 − 3

2
ηy1/2t−1/2 = 0

(14.52)
Regroup terms.(

∂ttη + y3/2t−1/2∂yη − 2y3/2t−1/2∂tξ + 1
2
ξy3/2t−3/2 − 3

2
ηy1/2t−1/2

)
+ẏ
(
2∂ytη − ∂ttξ − 3y3/2t−1/2∂yξ

)
+ ẏ2 (∂yyη − 2∂ytξ)− ẏ3 (∂yyξ) = 0

(14.53)
Each of the terms in parentheses in Eq. 14.53 must be zero.

∂ttη+ y3/2t−1/2∂yη−2y3/2t−1/2∂tξ+
1

2
ξy3/2t−3/2− 3

2
ηy1/2t−1/2 = 0 (14.54)

2∂ytη − ∂ttξ − 3y3/2t−1/2∂yξ = 0 (14.55)

∂yyη − 2∂ytξ = 0 (14.56)

∂yyξ = 0 (14.57)
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Eqs. 14.54, 14.55, 14.56, and 14.57 can be solved for ξ and η. From Eq.
14.57, ∂yyξ = 0, so ξ must have form

ξ = (c1 + c2y) b(t). (14.58)

The quantities denoted cn are constants. From Eq. 14.56, η must have the
form

η =
(
c3 + c4y + c5y

2
)
g(t). (14.59)

Functions b(t) and g(t) only depend on t, not y. The condition of Eq. 14.55
can be rewritten.

(2c4∂tg − c1∂ttb) + y(4c5∂tg − 2c2∂ttb)− 3y3/2t−1/2c2b = 0 (14.60)

To satisfy Eq. 14.60, c2 must be zero, and either c5 = 0 or g(t) = 0.
From Eqs. 14.55 and 14.56, ∂yη and ∂tξ must be constant. Therefore, the
form of ξ must be

ξ = c6 + c7t. (14.61)

This form can be substituted into Eq. 14.54.

y3/2t−1/2(c4 + 2c5y)− 2y3/2t−1/2c7 + 1
2
(c6 + c7t)y

3/2t−3/2

−3
2
(c3 + c4y + c5y

2)y1/2t−1/2 = 0
(14.62)

y3/2t−1/2
(
c4 − 2c7 + 1

2
c7 − 3

2
c4

)
+ 1

2
c6y

3/2t−1/2

−3
2
c3y

1/2t−1/2 + y5/2t−1/2
(
2c5 − 3

2
c5

)
= 0

(14.63)

The coe�cients c3, c5, and c6 must be zero. Also, c4 = −3c7. No other
solutions here are possible. Thus, the symmetry condition of Eq. 14.49 can
be satis�ed by ξ = t and η = −3y .

This procedure �nds one regular continuous in�nitesimal symmetry of
the Thomas Fermi equation, with in�nitesimal symmetry generator

U = t∂t − 3y∂y. (14.64)

No other solutions can satisfy the constraints given by Eq. 14.49. There-
fore, this equation has only one continuous symmetry.

Finite transformations are related to in�nitesimal transformations by
Eq. 14.14. In this case, the independent variable transforms as

t→ t̃ = eε(t∂t−3y∂y)t. (14.65)

t→ t̃ =

[
1 + ε (t∂t − 3y∂y) +

1

2!
ε2 (t∂t − 3y∂y)

2 + ...

]
t (14.66)
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t→ t̃ =

[
t+ εt (∂tt) +

1

2!
ε2t (∂tt) (∂tt) + ...

]
(14.67)

t→ t̃ = teε (14.68)

The dependent variable transforms as

y → ỹ = eε(t∂t−3y∂y)y. (14.69)

y → ỹ =

[
1 + ε (t∂t − 3y∂y) +

1

2!
ε2 (t∂t − 3y∂y)

2 + ...

]
y (14.70)

y → ỹ = ye−3ε (14.71)

De�ning the constant c6 = eε, the transformation can be written as

t→ c6t and y → (c6)−3 y. (14.72)

The analysis above shows that the original Thomas Fermi equation of Eq.
14.46 and the transformed equation

d2
(
yc−3

6

)
d (tc6)2 =

(
yc−3

6

)3/2
(tc6)−1/2 (14.73)

have the same solutions. From it, we can conclude that if y(t) is a solution
to the Thomas Fermi equation, we know that c−3

6 y(τ) for τ = c6t is also a
solution.

14.4.3 Line Equation Example

Consider another example of this procedure applied to the equation ÿ = 0.
The solution of this equation can be found by inspection

y(t) = c0t+ c1 (14.74)

because this is the equation of a straight line. The coe�cients cn are con-
stants, and they are di�erent from the previous example. In this example,
we will identify the in�nitesimal generators for continuous symmetries of
this equation, and we will �nd eight in�nitesimal generators. The result of
this problem appears in [191], and it is a modi�ed version of problem 2.26
of reference [164, p. 180].

Solutions of the original equation must be the same as solutions of an
equation transformed by a continuous symmetry, and this idea is contained
in the symmetry condition of Eq. 14.45. In this case, the original equation
is ÿ = 0, so the prolongation of an in�nitesimal generator acting on this
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equation must also be zero for an in�nitesimal generator U that describes
a continuous symmetry.

pr(n)U (ÿ) = 0. (14.75)

Using Eqs. 14.42, 14.43, and 14.44, we can write this symmetry condition
in terms of ξ and η.

ηtt = 0 (14.76)

ηtt = 0 = ∂ttη + 2ẏ∂ytη + ÿ∂yη + ẏ2∂yyη − 2ÿ∂tξ
−ẏ∂ttξ − 2ẏ2∂ytξ − ẏ3∂yyξ − 3ẏÿ∂yξ

(14.77)

Use ÿ = 0, and regroup the terms.

(∂ttη) + ẏ (2∂ytη − ∂ttξ) + ẏ2 (∂yyη − 2∂ytξ)− ẏ3 (∂yyξ) = 0 (14.78)

The above equation is true for all y only if all of the quantities in
parentheses are zero.

∂ttη = 0 (14.79)

2∂ytη − ∂ttξ = 0 (14.80)

∂yyη − 2∂ytξ = 0 (14.81)

∂yyξ = 0 (14.82)

The next step is to solve the above set of equations for all possible solutions
of ξ and η which will determine the in�nitesimal generators of all possible
continuous symmetry transformations.

We will consider three cases: case 1 with η = 0, case 2 with ξ = 0, and
case 3 with both ξ and η nonzero.

Case 1 with η = 0 : Assume η = 0. What solutions can be found for ξ?
Equation 14.79 to Eq. 14.82 can be reduced.

∂ttξ = 0 (14.83)

∂yyξ = 0 (14.84)

∂ytξ = 0 (14.85)
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There are three possible independent solutions for ξ. They are ξ = 1, ξ = t,
and ξ = y. So, we found three in�nitesimal generators.

U1 = ∂t (14.86)

U2 = t∂t (14.87)

U3 = y∂t (14.88)

Case 2 with ξ = 0: Suppose ξ = 0. What solutions can be found for η?
Equation 14.79 to Eq. 14.82 simplify.

∂ttη = 0 (14.89)

∂ytη = 0 (14.90)

∂yyη = 0 (14.91)

There are three possible independent solutions for η. They are η = 1, η = y,
and η = t. So, we found three more in�nitesimal generators.

U4 = ∂y (14.92)

U5 = y∂y (14.93)

U6 = t∂y (14.94)

Case 3 where both ξ and η are nonzero: From Eq. 14.79, we can write

η = (c1 + c2t) b(y). (14.95)

Here, b is a function of only y, not t. Therefore,

∂ytη = c2∂yb(y) (14.96)

which is not a function of t.
From Eq. 14.82, we can write

ξ = (c3 + c4y) g(t). (14.97)

Here, g is a function of only t, not y. Therefore,

∂ytξ = c4∂tg(t) (14.98)

which is not a function of y. Now use Eq. 14.80.

2c2∂yb(y)− (c3 + c4y) ∂ttg = 0 (14.99)
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The �rst term is not a function of t. Therefore, ξ is at most quadratic in
t. So, ξ has the form

ξ = (c3 + c4y)
(
c5 + c6t+ c7t

2
)
. (14.100)

Distribute out the multiplication.

ξ = c3c5 + c3c6t+ c3c7t
2 + c4c5y + c4c6yt+ c4c7yt

2 (14.101)

∂ytξ = c4c6 + 2c4c7t (14.102)

Next, use Eq. 14.81.

∂yyη − 2c4∂tg = 0 (14.103)

The second term is not a function of y. Therefore, η is at most quadratic
in y. So, η has the form

η = (c1 + c2t)
(
c8 + c9y + c10y

2
)
. (14.104)

Distribute out the multiplication.

η = c1c8 + c1c9y + c1c10y
2 + c2c8t+ c2c9yt+ c2c10ty

2 (14.105)

∂ytη = c2c9 + 2c2c10y (14.106)

Now use Eqs. 14.80 and 14.106.

2 (c2c9 + 2c2c10y)− 2 (2c3c7 + 2yc4c7) = 0 (14.107)

(2c2c9 − 4c3c7) + y (4c2c10 − 4c4c7) = 0 (14.108)

We end up with the pair of equations

c2c9 = 2c3c7 (14.109)

c2c10 = c4c7 (14.110)

Next use Eqs. 14.81 and 14.102.

(2c1c10 + 2tc2c10)− 2 (c4c6 + 2c4c7t) = 0 (14.111)

(2c1c10 − 2c4c6) + t (2c2c10 − 4c4c7) = 0 (14.112)
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and we end up with a pair of equations.

c1c10 = c4c6 (14.113)

c2c10 = 2c4c7 (14.114)

These are the only possible solution of Eqs. 14.110 and 14.114.
Finally, there are two possible solutions which are independent from the

previously found solutions. We can set the coe�cients of Eq. 14.113 to 1.
The �rst solution is η = y2 and ξ = yt corresponding to

U7 = yt∂t + y2∂y. (14.115)

For the second solution, we can set the coe�cients of Eq. 14.109 to 1. The
second solution is η = yt and ξ = t2 corresponding to

U8 = t2∂t + yt∂y. (14.116)

At this point, we have found eight in�nitesimal generators. These are all
possible generators of continuous regular nongeometrical symmetries.

14.5 Invariants

14.5.1 Importance of Invariants

Noether's theorem describes the relationship between continuous symme-
tries of an equation describing an energy conversion process and invariants
of the system. The theorem was originally discovered by Noether around
1918 [165] [166]. The importance of this theorem is described in the intro-
duction to the English translation of the original paper [165]. �The well
known theorem of Emmy Noether plays a role of fundamental importance
in many branches of theoretical physics. Because it provides a straightfor-
ward connection between the conservation laws of a physical theory and
the invariances of the variational integral whose Euler-Lagrange equations
are the equations of that theory, it may be said that Noether's theorem has
placed the Lagrangian formulation in a position of primacy.�

14.5.2 Noether's Theorem

Consider an energy conversion process with a known Lagrangian that sat-
is�es an Euler-Lagrange equation. Assume that we have identi�ed contin-
uous symmetries described by in�nitesimal generators. Noether's theorem
says that there is a relationship between these continuous symmetries and
conservation laws which say that some quantity is invariant. We would like
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to �nd the corresponding conservation laws and invariants. If we can �nd
a quantity G that satis�es,

dG

dt
= pr(n)UL+ Ldξ

dt
, (14.117)

then the quantity

Υ = η
dL
dẏ

+ ξL − ξẏ ∂L
∂ẏ
−G (14.118)

is an invariant. For Lagrangians with units of joules, the quantityG also has
units joules. In Eq. 14.117, pr(n)UL is the prolongation of the in�nitesimal
generator acting on the Lagrangian where prolongation was de�ned in Eq.
14.42.

14.5.3 Derivation of Noether's Theorem

We can derive this form of Noether's theorem, and this derivation closely
follows the clear and simpli�ed derivation in reference [192]. This theorem
is detailed and derived more rigorously in multiple other references [163, p.
208] [164]. For the purpose of this derivation, assume that we begin with
an equation of motion that is at most a second order di�erential equation.
However, the ideas generalize to higher order equations too. Also, assume
we know the corresponding Lagrangian of the form L = L (t, y, ẏ) . The
general approach is to assume that we can �nd a value of G de�ned by Eq.
14.117. We will perform some algebra on Eq. 14.117 to show that choice
of G necessarily implies that Υ is invariant.

Use the de�nition of the prolongation to write Eq. 14.117 in terms of ξ
and η.

pr(n)U = ξ∂t + η∂y + ηt∂ẏ (14.119)

For a second order di�erential equation, no more terms are needed because
the Lagrangian depends on, at most, the �rst derivative ẏ. Substitute the
prolongation acting on the Lagrangian into Eq. 14.117.

dG

dt
=
[
ξ∂tL+ η∂yL+ ηt∂ẏL

]
+
dξ

dt
L (14.120)

Consider the continuous transformation described by

t→ t̃ =
(
1 + εξ + ε2...

)
t (14.121)

and
y → ỹ =

(
1 + εη + ε2...

)
y (14.122)
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in the limit ε→ 0. The Lagrangian L (t, y, ẏ) of an energy conversion pro-
cess represents the di�erence between two forms of energy. The Lagrangian
L
(
t̃, ỹ, ˙̃y

)
represents the di�erence between two forms of energy upon the

continuous symmetry transformation described by in�nitesimal generator
U . Qualitatively, the quantity dG

dt
represents the change in Ldt̃

dt
with respect

to ε in this limit [192].

dG

dt
=

∂

∂ε

[
L
(
t̃, ỹ, ˙̃y

) dt̃
dt

]
(14.123)

Use Eq. 14.43 to substitute for ηt in Eq. 14.120.

ηt =
d

dt
(η − ξẏ) + ξÿ (14.124)

ηt = η̇ − ξ̇ẏ − ξÿ + ÿ = η̇ − ẏξ̇ (14.125)

dG

dt
=
[
ξ∂tL+ η∂yL+

(
η̇ − ẏξ̇

)
∂ẏL

]
+ ξ̇L (14.126)

We want to express the right side as the total derivative of some quan-
tity, which we call G. With some algebra, we can write this as a total
derivative. We will use the de�nition of the total derivative.

dL
dt

= ∂tL+ ẏ∂yL+ ÿ∂ẏL (14.127)

∂tL = L̇ − ẏ∂yL − ÿ∂ẏL (14.128)

d

dt
(η∂ẏL) = η̇∂ẏL+ η

d

dt
(∂ẏL) (14.129)

η̇∂ẏL =
d

dt
(η∂ẏL)− η d

dt
(∂ẏL) (14.130)

d

dt
(ξẏ∂ẏL) = ξ̇ẏ∂ẏL+ ξÿ∂ẏL+ ξẏ

d

dt
∂ẏL (14.131)

ξ̇ẏ∂ẏL =
d

dt
(ξẏ∂ẏL)− ξÿ∂ẏL − ξẏ

d

dt
∂ẏL (14.132)

Use these pieces to replace the terms of dG
dt

in brackets.

dG

dt
= [ξ∂tL] + η∂yL+ [η̇∂ẏL]−

[
ẏξ̇∂ẏL

]
+ ξ̇L (14.133)

dG

dt
= ξ

[
L̇ − ẏ∂yL − ÿ∂ẏL

]
+ η∂yL+

[
d
dt

(η∂ẏL)− η d
dt

(∂ẏL)
]

−
[
ẏξ̇∂ẏL

]
+ ξ̇L

(14.134)
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dG

dt
= ξ

[
L̇ − ẏ∂yL − ÿ∂ẏL

]
+ η∂yL+

[
d
dt

(η∂ẏL)− η d
dt

(∂ẏL)
]

−
[
d
dt

(ξẏ∂ẏL)− ξÿ∂ẏL − ξẏ d
dt
∂ẏL

]
+ ξ̇L

(14.135)

Two terms cancel.

dG

dt
= ξL̇ − ξẏ∂yL+ η∂yL+ d

dt
(η∂ẏL)− η d

dt
(∂ẏL)

− d
dt

(ξẏ∂ẏL) + ξẏ d
dt
∂ẏL+ ξ̇L

(14.136)

Regroup terms.

dG

dt
=
(
∂yL − d

dt
∂ẏL

)
(η − ẏξ)

+
[(
ξL̇+ Lξ̇

)
+ d

dt
(η∂ẏL)− d

dt
(ξẏ∂ẏL)

] (14.137)

The �rst term in parentheses is zero because the Lagrangian L satis�es the
Euler-Lagrange equation.

dG

dt
=

d

dt
(ξL+ (η∂ẏL)− (ξẏ∂ẏL)) (14.138)

d

dt
[ξL+ (η∂ẏL)− (ξẏ∂ẏL)−G] = 0 (14.139)

Therefore, if we can �nd G, then the quantity in brackets Υ must be in-
variant.

Υ = ξL+ (η∂ẏL)− (ξẏ∂ẏL)−G = invariant (14.140)

14.5.4 Line Equation Invariants Example

Let us apply Noether's theorem to some examples. First, consider the line
equation ÿ = 0 which results from application of calculus of variations with
Lagrangian

L =
1

2
ẏ2. (14.141)

A continuous symmetry of this equation is described by the in�nitesimal
generator U = ∂y with ξ = 0 and η = 1. The prolongation of the generator
acting on the Lagrangian is zero.

pr(n)UL = ηtẏ = ẏ

(
dη

dt

)
= 0 (14.142)

Using Eq.14.117, we see that G = 0.

dG

dt
= 0 + L · 0 = 0 (14.143)
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Next use Eq. 14.118 to �nd the invariant.

Υ = η
∂L
∂ẏ

= ẏ (14.144)

Qualitatively, ẏ represents the slope of the line, so this invariant tells us
that the slope of the solutions to the line equation must be constant.

Another continuous symmetry of this equation is described by the in-
�nitesimal generator U = t∂y with ξ = 0 and η = t. We can solve for the
prolongation of the generator acting on the Lagrangian.

pr(n)UL = ηtẏ = ẏ

(
d

dt
(t− 0) + 0

)
= ẏ

We can �ndG using Eq.14.117, and we can �nd the invariant using Eq.14.118.

dG

dt
= ẏ +

1

2
ẏ2 · 0 = ẏ (14.145)

G = y (14.146)

Υ = y − tẏ (14.147)

Qualitatively, this invariant represents the y-intercept of the line, so this
invariant tells us that the y-intercept of the solution to the line equation
must be constant.

14.5.5 Pendulum Equation Invariants Example

Consider the equation describing a pendulum, studied in Problem 11.8.
The energy conversion process is described by the Lagrangian

L =
1

2
mẏ2 −mg cos y (14.148)

which corresponds to the equation of motion

ÿ = g sin y. (14.149)

In these equationsm represents the mass, and g represents the gravitational
constants. Both m and g are assumed constant here. This equation of
motion has only one continuous symmetry described by the in�nitesimal
generator U = ∂t with ξ = 1 and η = 0. We can use Noether's theorem to
�nd the corresponding invariant.
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Use Eq. 14.117 to �nd G.

dG

dt
= pr(n)UL+ Ldξ

dt
(14.150)

dG

dt
= ηtmẏ + ηmg sin y + Ldξ

dt
(14.151)

dG

dt
= ηtmẏ = ẏm

(
d

dt
(η − ξẏ) + ξÿ

)
(14.152)

dG

dt
= ẏm

(
−dξ
dt
ẏ − ξÿ + ξÿ

)
= 0 (14.153)

G = 0 (14.154)

Use Eq. 14.118 to �nd the invariant.

Υ = ηẏ + ξL − ξmẏẏ − 0 (14.155)

Υ =
1

2
mẏ2 −mg cos y −mẏ2 (14.156)

Υ =
−1

2
mẏ2 − gm cos y (14.157)

The quantity Υ is conserved, and it is the Hamiltonian which represents
total energy.

Whenever the Lagrangian does not explicitly depend on t, the system
contains the continuous symmetry described by the in�nitesimal generator
U = ∂t. This in�nitesimal generator has ξ = 1 and η = 0. From Eq.
14.117, G must be zero. From Eq. 14.118, the corresponding invariant has
the form

Υ = L −mẏẏ (14.158)

which has the magnitude of the total energy (assuming t is time). This
equation is equal to the Hamiltonian of Eq. 11.24. Therefore, if an equation
of motion contains the symmetry ∂t, energy is conserved.
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14.6 Summary

In this chapter, a procedure to �nd continuous symmetries of equations
was presented. Also, the relationship between continuous symmetries and
invariants, known as Noether's theorem, was discussed. If we can describe
an energy conversion process by a Lagrangian, we can use the techniques
of calculus of variations detailed in Chapter 11 to �nd the equation of
motion for the path. We can use the procedure discussed in this chapter to
identify continuous symmetries of the equation of motion. These symmetry
transformations are denoted by in�nitesimal generators which describe how
the independent and dependent variables transform. We also may be able
to use Noether's theorem to �nd invariants of the system. We can apply
this analysis even in cases where the equation of motion is nonlinear or
has no closed form solution. The invariants often correspond to physical
quantities, such as energy, momentum, or angular momentum, which are
conserved in the system. Knowledge of invariants can help us gain insights
into what quantities change and what quantities do not change during the
energy conversion process under study.
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14.7 Problems

14.1. Three commonly discussed discrete symmetry transformations are:
Time reversal t→ t̃ = (−1)n t for integer n
Parity y → ỹ = (−1)n y for integer n
Charge conjugation y → ỹ = y∗

Verify that the wave equation, ÿ+ω2
0y = 0, is invariant upon each of

these discrete transformations.

14.2. Repeat the problem above for the equation ÿ + y−3 = 0.

14.3. The Thomas Fermi equation is given by ÿ = y3/2t−1/2.

(a) Verify that it is not invariant upon the discrete symmetry trans-
formation of time reversal,
t→ t̃ = (−1)n t for integer n.

(b) Verify that it is not invariant upon the discrete symmetry trans-
formation of parity,
y → ỹ = (−1)n y for integer n.

(c) Verify that it is invariant upon the discrete symmetry transfor-
mation
t→ t̃ = (−1)n t and y → ỹ = (−1)n y.

14.4. Find the prolongation of the in�nitesimal generator

U = ξ∂t + η∂y

acting on the Lagrangian

L =
1

2
ẏ2 +

1

3
ty2.

Write your answer in terms of ξ and η but not ηt or ηtt.

14.5. Find the in�nitesimal generators for the equation, ÿ+y−3 = 0. (This
problem is discussed in [190].)

Answer:

U1 = ∂t

U2 = 2t∂t + y∂y

U3 = t2∂t + ty∂y
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14.6. The equation ÿ+y−3 = 0 has the three in�nitesimal generators listed
in the problem above. These in�nitesimal generators form a group.
The commutator was de�ned in Section 14.3.3, and the commutator
of any pair of these in�nitesimal generators can be calculated by

[Ua, Ub] = UaUb − UbUa.

Using the equation above, show that the commutator for each of the
three pairs of in�nitesimal generators results in another element of
the group.

14.7. Derive the in�nitesimal generators for the wave equation, ÿ+ω2
0y = 0.

(This problem is discussed in [191].)

Answer:

U1 = ∂t

U2 = y∂y

U3 = sin (ω0t) ∂y

U4 = cos (ω0t) ∂y

U5 = sin(2ω0t)∂t + ω0y cos(2ω0t)∂y

U6 = cos(2ω0t)∂t − ω0y sin(2ω0t)∂y

U7 = y cos (ω0t) ∂t − ω0y
2 sin (ω0t) ∂y

U8 = y sin (ω0t) ∂t + ω0y
2 cos (ω0t) ∂y

14.8. The wave equation ÿ+ω2
0y = 0 has the eight in�nitesimal generators

listed in the problem above. The corresponding Lagrangian is

L =
1

2
ẏ2 − 1

2
ω2

0y
2.

Find the invariants corresponding to the following in�nitesimal gen-
erators.

(a) U1 = ∂t

(b) U3 = sin (ω0t) ∂y

(c) U5 = sin(2ω0t)∂t + ω0y cos(2ω0t)∂y
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14.9. In Problem 11.8, we encountered the equation given by ÿ = g sin y
for constant g.

(a) Show that U = ∂t is an in�nitesimal generator of this equation.

(b) Show that U = y∂y is not an in�nitesimal generator of this
equation.

14.10. The Lagrangian

L =
1

2
ẏ2 +

1

2
y−2

corresponds to the equation of motion ÿ + y−3 = 0 . This equation
of motion has three in�nitesimal generators:

U1 = ∂t

U2 = 2t∂t + y∂y

U3 = t2∂t + ty∂y

Use Noether's theorem to �nd the invariants that correspond to each
of these in�nitesimal generators. (We encountered this Lagrangian in
problem 11.3.)
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Appendices

Appendix A: Variable List

Vectors are denoted−→v , and unit vectors are denoted v̂. In the third column,
an asterisk * indicates that the units vary depending on the context. In
the fourth column, S = scalar, V = vector, C =constant, F = functional,
and O = operator. Constants are speci�ed to four signi�cant �gures.

Symbol Quantity SI Units Scalar? Comments

âx, ây,
âz

Cartesian
coordinate unit
vectors

unitless V

âr, âθ,
âφ

Spherical
coordinate unit
vectors

unitless V

−→a Acceleration m
s2 V

A Cross sectional
area

m2 S

A12 Einstein A
coe�cient

s−1 S

Aaff Electron a�nity J
atom S

−→
b Pyroelectric

coe�cient

C
m2·K V

B12, B21 Einstein B
coe�cient

m3

J·s2 S

−→
B Magnetic �ux

density

Wb
m2 V

B Bulk modulus N
m2 S

c Speed of light in
free space

m
s C = 2.998 · 108
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Symbol Quantity Units Scalar? Comments

cn Coe�cient unitless S For integer n

C Capacitance F S

Cv Speci�c heat J
kg·K S

d Piezoelectric strain
constant

m
V S May be a

scalar or
matrix

dthick Thickness m S

D Directivity unitless S For antennas
−→
D Displacement �ux

density

C
m2 V

e e unitless C ≈2.718

e− Electron Used in chem.
reactions

E Energy J S
−→
E Electric �eld

intensity

V
m V

Ef Fermi energy level J S Also called
chemical
potential

Eg Energy gap J S Also called
bandgap

f Frequency Hz S
−→
F Force N V

gn Degeneracy of
energy level n

unitless S

G Component of an
invariant

J S
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Symbol Quantity Units Scalar? Comments

h Planck constant J·s C = 6.626 · 10−34

H Hamiltonian J F

HQM Quantum
Mechanical
Hamiltonian

J O

−→
H Magnetic �eld

intensity

A
m V

[H+] Amount
concentration
hydrogen ions

mol
L S

i Current (AC or
time varying)

A S

I Current (DC) A S

I Moment of inertia kg ·m2 S

Iioniz Ionization energy J
atom S

j Imaginary number unitless C
√
−1

~J Volume current
density

A
m2 V

~k Wave vector m−1 V

kB Boltzmann
constant

J
K C = 1.381 · 10−23

kf Fermi wave vector m−1 S

K Spring constant J
m2 S

K Torsion spring
constant

J
rad2 S

l Length m S

L Inductance H S
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Symbol Quantity Units Scalar? Comments

−−→
Lam Angular

momentum
J·s V

L Lagrangian J F

m Mass kg S

M Generalized
momentum

* S Many authors
use p

−→
M Momentum kg·m

s
V Many authors

use −→p

MQM Quantum
mechanical
momentum

kg·m
s

V,O

n Concentration of
electrons

m−3 S

n Index of refraction unitless S

n Integer unitless S

N Total number of e−

per atom

electrons
atom S

Na Avogadro constant molecule
mol C = 6.022 · 1023

Nv Number of valence
e−

electrons S

N Number of moles mol S

p Concentration of
holes

m−3 S

P Power W S
−→
P Material

polarization

C
m2 V

P Pressure Pa S



Appendices 345

Symbol Quantity Units Scalar? Comments

q Magnitude of
electron charge

C C = 1.602 · 10−19

Q Charge C S

Q Heat J S

r Distance in
spherical
coordinates

m S

−→r Position in
spherical
coordinates

m V

r̃ Distance in
reciprocal space

m−1 S

R Resistance Ω S

RH Hall resistance Ω S

R Molar gas constant J
mol·K C = 8.314

R Mirror re�ectivity unitless S

s Kerr coe�cient m2

V2 S

$ Seebeck coe�cient V
K S

S Entropy J
K S

S Action J F

t Time s S

T Temperature K S

u Energy density per
unit bandwidth

J·s
m3 S

U In�nitesimal
generator

unitless O

U Internal energy J S
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Symbol Quantity Units Scalar? Comments

~v Velocity m
s V

v Voltage (AC or
time varying)

V S

V Voltage (DC) V S

V Volume m3 S

V0 Contact potential
of pn junction

V S

Vrp Redox potential V S

Vcell Cell potential V s Many authors
use Ξ0 or E0

W Mechanical work J S

−→x Positional
displacement

m V

y Dependent variable
of equation

* S

ẏ Shorthand for total
derivative dy

dt

* S

Z Figure of merit K−1 S

Z0 Characteristic
impedance

Ω S

α Absorption
coe�cient

m−1 S

γ Pockels coe�cient m
V S

∆ Delta (change in) unitless O

ε Permittivity F
m S

ε0 Permittivity of free
space

F
m C = 8.854 · 10−12
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Symbol Quantity Units Scalar? Comments

εr Relative
permittivity

unitless S

ε In�nitesimal
parameter

unitless S

η Transformation of
dependent variable

* S

ηeff E�ciency unitless S

θ Angle (Elevation) rad S
−→
θ Angular

displacement
vector

rad V

κ Thermal
conductivity

W
m·K S

λ Wavelength m S

µ Permeability H
m S

µ0 Permeability of
free space

H
m C = 4π · 10−7

= 1.257 · 10−6

µr Relative
permeability

unitless C

µchem Chemical potential J
atom S Also known as

Fermi energy
level

µn Mobility of
electrons

m2

V·s S

µp Mobility of holes m2

V·s S

ξ Transformation of
independent
variable

* S

Π Peltier coe�cient V S
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Symbol Quantity Units Scalar? Comments

ρ Resistivity Ωm S

ρch Charge density C
m3 S

ρdens Mass density kg
m3 S

σ Electrical
conductivity

1
Ω·m S

−→ς Stress Pa V

τ Thomson
coe�cient

V
K S

−→τ Torque N·m V

φ Angle (Azimuth) rad S

Υ Invariant * S

χe Electric
susceptibility

unitless S

χ Electronegativity J
atom S

ψ Wave function unitless S

Ψ Magnetic �ux Wb S

ω Frequency rad
s S

−−→ωang Angular velocity rad
s V

~ Planck constant
divided by 2π, also
called hbar

J·s C = 1.055 · 10−34

−→∇ Gradient operator O Also called del

∂t Shorthand for
partial derivative
∂
∂t

O
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Appendix B: Abbreviations of Units of Measure

Common abbreviations for units of measure are listed in Table 14.2. This
table does not cover all units used in this text. Further measures of energy
and power are discussed in Section 1.4. For further information, see [68].
The fourth column indicates whether the unit is an SI base unit, an SI
derived unit, or not an SI unit. Table 14.3 lists pre�xes used with SI units
[193].

Abbreviation unit Measure SI unit?

A ampere Current Base
cd candela Luminous intensity Base
C coulomb Charge Derived
◦C degree Celsius Temperature Derived
d day Time No
eV electronvolt Energy No
F farad Capacitance Derived
◦F degree Fahrenheit Temperature No
H henry Inductance Derived
Hz hertz Frequency Derived
h hour Time No
J joule Energy Derived
K kelvin Temperature Base
kg kilogram Mass Base
L liter Volume No
m meter Length Base
mol mole Amount of substance Base
N newton Force Derived
Pa pascal Pressure Derived
rad radian Angle Derived
s second Time Base
V volt Voltage Derived
W watt Power Derived
Wb weber Magnetic �ux Derived
Ω ohm Resistance Derived

Table 14.2: Units and their abbreviations.
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Pre�x name Symbol Value

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24

Table 14.3: Pre�xes used with SI units.
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Appendix C: Overloaded Terminology

Physicists, chemists, electrical engineers, and other scientists develop their
own notation to describe physical phenomenon. However, a single word
may be adopted with di�erent meanings by scientists studying di�erent
disciplines. In this section, some of these overloaded terms are discussed.

In general, the term polarization means splitting into distinct opposite
parts. In this text, two types of polarization are discussed: material po-

larization and electromagnetic polarization. If an external electric �eld, a
voltage, is placed across a piece of material it will a�ect the material. If
the material is at a temperature other than absolute zero, the electrons are
in constant motion. However, the overall electron location will shift when
the external electric �eld is applied. The term material polarization refers
to the fact that when an external voltage is applied across an insulator, the
electrons slightly displace from the nucleus, so the atom is more negatively
charged on one end and positively charged on the other. Material polar-
ization is discussed beginning in Section 2.2.1. The other use of the term
polarization describes how electromagnetic waves vary with time as they
propagate through space. Electromagnetic polarization speci�es the direc-
tion of the electric �eld with respect to the direction of propagation of an
electromagnetic plane wave. It is discussed in Section 4.4.4. A propagat-
ing electromagnetic �eld may be classi�ed as linearly polarized, circularly
polarized, or elliptically polarized. To determine the electromagnetic po-
larization of a plane traveling wave, project the electric �eld

−→
E (t) onto a

plane perpendicular to the direction that the wave is traveling. If the re-
sulting projection is a straight line, the wave is said to be linearly polarized.
If the projection is a circle, the wave is said to be circularly polarized, and
if the projection is an ellipse, the wave is said to be elliptically polarized.

Another overused term is inversion. Inversion symmetry is discussed
in Section 2.3.2, and population inversion is discussed in Section 7.2.4. If a
crystal structure looks the same upon rotation or re�ection, the structure is
said to have a symmetry. If the crystal structure looks the same after 180◦

rotation and inversion through the origin, the structure is said to have in-
version symmetry. This idea is illustrated in Fig. 2.8. The term population

inversion is de�ned in the context of lasers. In a laser, LED, lamp, or other
device that converts electricity to optical energy, a pump excites electrons
from a lower to a higher energy level. A population inversion occurs when
more electrons of the active material are in the upper, rather than lower,
energy level. Lasing requires a population inversion.

The word potential is also quite overloaded. Electrical engineers some-
times use potential, as well as the term electromotive force, as a synonym
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for voltage. (As an aside, reference [6] carefully distinguishes between these
three terms.) In this context, potential, like voltage, has the units volts.
The term chemical potential µchem has units of joules per atom, and it
represents energy where the probability of �nding an electron is one half.
For a pure semiconductor, the chemical potential is in the middle of the
energy gap. Semiconductor scientists typically use the term Fermi energy

level Ef instead. These terms are discussed in Sec. 6.3.3 and 9.2.3. Volt-
age times charge is energy, so chemical potential can be thought of as a
voltage times the charge of an electron. The term redox potential Vrp is
equivalent to the term voltage used by electrical engineers, and it has the
units volts. It was introduced in Sec. 9.2.5. It is used, typically by exper-
imentalists, in discussing the voltage that develops across electrodes due
to oxidation reduction chemical reactions. In the discussion of calculus of
variations in Chapter 11, the idea of generalized potential was introduced.
It is a parameter used to describe the evolution of an energy conversion
process. Voltage and chemical potential can both be examples of gener-
alized potentials. Generalized potential has units of joules over the units
of the generalized path. The choice of the word generalized potential in
calculus of variations follows reference [194, p.II-19]. Another related term
is potential energy. Potential energy is a form of energy, and it is measured
in joules. If we raise an object against gravity, we say that the object gains
potential energy, and if we compress a spring, we say the spring gains spring
potential energy.

The related words capacitor, capacitance, theoretical capacity, and gen-

eralized capacity are used in this text. A capacitor is one of the most
common circuit components, and capacitors are discussed in Sec. 1.6.3. A
capacitor is a device constructed from conductors separated by a dielectric
layer. It is speci�ed by a capacitance C, in farads, which is a measure of
the ability of the device to store a built up charge, hence store energy. The
permittivity ε describes the distributed capacitance, in F

m, of an insulating
material. As discussed in Sec. 9.4.1, chemists use the related term the-

oretical capacity in a di�erent way, as a measure of the charge stored in
an battery or fuel cell. It is measured in coulombs or ampere hours. The
adjective theoretical refers to the total amount of charge stored, not the
charge that can be practically extracted. The idea of generalized capacity

was introduced in Sec. 12.2 as the general ability to store energy. As with
other concepts of calculus of variations, the units of generalized capacity
depend on the choice of generalized path and generalized potential.

Conductivity describes ability of some particles to �ow. Electrical con-
ductivity σ describes the ability of charges to �ow. It was introduced in Sec.
1.6.3 and discussed further in Sec. 8.6.2 and 9.2.1. Thermal conductivity
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κ describes the ability of heat to �ow, and it was introduced in Sec. 8.6.3.
Both of these ideas were discussed in the context of thermoelectric devices
because understanding these devices requires the understanding of the �ow
of both electrons and heat. Example values for electrical conductivity and
thermal conductivity are given in Table 8.4.

While not identical, the terms wave vector and wave function are worth
distinguishing. The term wave vector was introduced in Sec. 6.4 with the
idea of reciprocal space. Functions such as energy or charge density can be
described as varying with respect to position speci�ed by the vector −→r in
units of meters. These functions can also be described as varying with re-
spect to spatial frequency speci�ed by the wave vector

−→
k in units 1

m. Wave
function ψ was introduced in Section 11.7, and it is a fundamental idea of
quantum mechanics. The wave function is a measure of the probability of
�nding an electron or other quantity in a particular state.

Appendix D: Speci�c Energies

Table 14.4 lists the speci�c energy of various materials and devices. These
are representative values, not values for speci�c devices. Batteries by di�er-
ent manufacturers, for example, will have a range of speci�c energy values,
and these values are often detailed in a datasheet. See the listed references
for additional information on the assumptions made. Two types of values
are listed for batteries. Both theoretical speci�c energy values for the chem-
ical reactions and speci�c energy values for practical devices. The notation
(th) indicates theoretical values while (pr) indicates practical values. NMH
is an abbreviation for Nickel Metal Hydride batteries.
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Material or Device Speci�c
Energy in J

g

Speci�c
Energy in
W·h
kg

Ref.

Uranium 6.77 · 1010 1.88 · 1010 [3]

Hydrogen 1.18 · 105 3.28 · 104 [195]

Gasoline 4.64 · 104 1.29 · 104 [195]

Petroleum (crude) 4.4 · 104 1.2 · 104 [1]

Coal (high quality) 3.4 · 104 9.4 · 103 [1]

Methanol 2.19 · 104 6.08 · 103 [195]

Ammonia 2.00 · 104 5.56 · 103 [195]

Coal (low quality) 1.6 · 104 4.5 · 103 [1]

Sugar 1.57 · 104 4.36 · 103 [196]

Hydrogen oxygen fuel
cell (th)

1.32 · 104 3.66 · 103 [128]

Lithium ion battery (th) 1.61 · 103 448 [128]

Alkaline battery (th) 1.29 · 103 358 [128]

Lead acid battery (th) 9.1 · 102 252 [128]

NMH battery (th) 8.6 · 102 240 [128]

Lithium ion battery (pr) 7.2 · 102 200 [128]

Alkaline battery (pr) 5.54 · 102 154 [128]

NMH battery (pr) 3.6 · 102 100 [128]

Lead acid battery (pr) 1.3 · 102 35 [128]

Rubber band 7.9 2.2 [195]

Table 14.4: Speci�c energy of various materials and devices. For batteries,
(th) indicates theoretical values, and (pr) indicates practical values.
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351
Electron a�nity, 204
Electron con�guration, 13
Electron-hole pair, 104, 110
Electronegativity, 205
Electroosmosis, 243
Electrophoresis, 242
Electrostriction, 61
Electrowetting, 243
Elevation plot, 79
Emden-Fowler equation, 323
Energy band, 113
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Energy conservation, 9
Energy density, 217
Energy gap, 113, 203
Entropy, 175, 285
Epitaxial layer, 152
Equation of motion, 247
Erbium doped �ber ampli�er, 165
Euler-Lagrange equation, 247
Exciton, 63, 104
Extensive property, 174

Faraday constant, 218
Fermat's principle, 265
Fermi Dirac distribution, 118
Fermi energy, 117, 203, 301, 352
Ferroelectricity, 42, 55, 63
Ferromagnetism, 42
Figure of merit, 186
First law of thermodynamics, 179
Fluorescent lamp, 150
Flywheel, 276
Fuel cell, 201, 229, 286
Functional, 247, 308

Gas discharge, 148
Gauss's law, 273
Geiger counter, 238
Generalized capacity, 247, 271, 352
Generalized momentum, 246
Generalized potential, 246, 352
Glow discharge, 150
Gradient, 17, 293
Group theory, 320

Hall e�ect, 91, 274
Hall resistance, 95
Hamiltonian, 246, 298
Heat engine, 188
Heisenberg uncertainty principle, 15,
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Hole, 92, 104
Hooke's law, 279

Hysteresis, 42

Ideal gas law, 178
Impedance, 77
Incandescent lamp, 147
Index of refraction, 26
In�nitesimal generator, 315
Insulator, 13, 114
Intensive property, 174
Invariants, 330
Inversion symmetry, 38, 351
Ionization chamber, 238
Ionization energy, 204
Isotropic antenna, 78

Joule-Thomson coe�cient, 177

KCL, 271
Kerr coe�cient, 58
Kerr e�ect, 57
Kinetic energy, 297
Kramers Kronig relationship, 20
KVL, 271

Lagrangian, 246, 298
Laser, 139, 152
Lattice, 33
Lie analysis, 311
Light emitting diode, 150
Line equation, 326, 333
Liquid crystals, 61
Lorentz force equation, 91, 242

Magnetic �eld intensity, 273
Magnetic �ux density, 15, 273
Magnetohydrodynamics, 96, 274
Mars rover, 192
Material polarization, 24, 351
Maxwell's equations, 16
Micro�uidic device, 241
Mobility, 184
Moment of inertia, 279
Mulliken electronegativity, 204
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Nernst equation, 220
Neuron, 239
Noether's theorem, 248, 330

Operator, 262
Orbital, 14
Oxidation, 201

Peltier coe�cient, 182
Peltier e�ect, 182
Permeability, 18
Permittivity, 19
pH, 208
Phase change, 63
Phonon, 102
Photoconductivity, 133
Photodetector, 132
Photoelectric emission, 133
Photoluminescence, 140
Photomultiplier tube, 133
Photon, 101
Photovoltaic device, 101
Photovoltaic e�ect, 101
Piezoelectric strain constant, 32
Piezoelectricity, 31, 274
Pirani hot wire gauge, 240
Plasma, 96, 148
Pn junction, 122, 150
Pockels coe�cient, 58
Pockels e�ect, 57
Poling, 42
Population inversion, 147, 351
Potential, 351
Potential energy, 252, 352
Potentiometer, 240
Primary battery, 224
Primitive lattice vectors, 33
Principle of least action, 247
Prolongation, 322
Pyroelectricity, 53, 274

Quantum Hall e�ect, 97

Quantum mechanics, 262
Quantum number, 13, 68, 109
Quartz, 43

Radiation pattern plot, 70, 79
Reciprocal lattice, 120
Reciprocal space, 296, 301
Reciprocity, 69
Redox potential, 207, 352
Reduction, 201
Resistance temperature detector, 240
Resistivity, 18

Schrödinger's equation, 262
Scintillation counter, 238
Second harmonic generation, 61
Second law of thermodynamics, 285
Secondary battery, 224
Seebeck coe�cient, 181
Seebeck e�ect, 181
Semiconductor, 13, 114
Semimetal, 115, 187
Shell, 13
Simple compressible systems, 178
Snell's law, 266
Solar cell, 101
Sonoluminescence, 141
Speci�c capacity, 217
Speci�c energy, 217
Speci�c heat, 177, 186
Spontaneous emission, 139
Stimulated emission, 139
Strain gauge, 240
Streaming potential, 242
Superposition, 69

Theoretical capacity, 352
Theoretical cell voltage, 216
Thermal conductivity, 184, 352
Thermionic device, 237
Thermocouple, 192
Thermodynamic cycle, 188
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Thomas Fermi equation, 307, 323
Thomson coe�cient, 183
Torsion spring, 264
Townsend discharge, 150
Transmission line, 74

Valence, 14
Valence band, 113
Volume expansivity, 177

Wave equation, 255, 260, 316
Wave function, 68, 262, 296, 353
Wave number, 102
Wave vector, 121, 299, 353
Work function, 205
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