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1

Forward

All truths are easy to understand once they are discovered; the
point is to discover them. (Source: Galileo Galilei, “Dialogue on
the Two Chief World Systems”)

To the student:

Many students start out liking math. Some like it well enough that they even
want to teach it. However, when they reach advanced math classes (such
as abstract algebra), they become bewildered and frustrated. Their text-
books talk about strange mathematical thingamabobs they’ve never heard
of, which have nonsensical properties that come from who knows where.
In lectures, the professor/oracle makes pronouncements (a.k.a “theorems”)
and utters long incantations (a.k.a “proofs”) , but it’s hard to see the point
of either.

If the above paragraph describes you, then this book is meant for you!

There’s a good reason why higher math classes are bewildering for most
students. I believe that we math instructors tend to take too much for
granted.1 It’s easy to forget that we’re only able to understand abstrac-
tions because we have concrete examples that we keep referring back to,
consciously or subconsciously. These examples enable us to fit new abstract
ideas in with specific behaviors and patterns that we’re very familiar with.

1My father always says that trying to understand math is frustrating, but once you’ve
got it it’s even more frustrating to try to explain it to others.

1
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But students who don’t have a firm hold on the examples have nothing to
hold on to, and are left grasping (and gasping) for air.

To be sure, most students have previously been exposed to various impor-
tant examples that historically gave rise to abstract algebra. These examples
include the complex numbers, integers mod n, symmetries, and so on. They
can give definitions and do some basic computations according to the rules.
But they haven’t been given a chance to internalize these examples. They
can kind of follow along, but they aren’t “fluent”.

Our hope is that after reading this book students will be able to say, “I’ve
seen complex numbers, integers mod n and permutations before, but now
I understand what makes them tick. I can see they have deep underlying
similarities, which they share with other mathematical structures.”

This is actually a very good time to be learning abstract algebra. Ab-
stract algebra hs moved from the outer boondocks inhabited by specialists
and puzzle enthusiasts out into the center stage of modern science and tech-
nology. Two areas where abstract algebra has made strong contributions
stand out particularly: information processing and physics. Coding of in-
formation is at the heart of information technology, and abstract algebra
provides all of the methods of choice for information coding that is both
reliable (impervious to errors) and private. On the other hand, many if
not most of the great advances in physics in the past 100 years are due to
deeper understanding of physical symmetries and the groups that produce
them (the Lorentz group in special relativity is just one example). We try
as much as possible to make connections with these two areas, and hope to
do so increasingly in future editions.

We hope you enjoy the book. Send us your comments!

To the instructor

This book is not intended for budding mathematicians. It was created for
a math program in which most of the students in upper-level math classes
are planning to become secondary school teachers. For such students, con-
ventional abstract algebra texts are practically incomprehensible, both in
style and in content. Faced with this situation, we decided to create a book
that our students could actually read for themselves. In this way we have
been able to dedicate class time to problem-solving and personal interaction
rather than rehashing the same material in lecture format.
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Admittedly it falls short of the typical syllabus for an upper-level ab-
stract algebra class. But what’s the point of covering the syllabus, if the
students don’t retain anything? The unhappy fact is that many students
at this level haven’t yet mastered the important basic examples (complex
numbers, etc.) that provide motivation, so it’s unrealistic to expect them
to grasp abstractions if they don’t even understand what’s being abstracti-
fied.So instead we have dived deeply into basic examples–and these are the
just the basic examples that will be most useful to those who go on to a
career in high school teaching.

The book is highly modular, and chapters may be readily omitted if stu-
dents are already familiar with the material. Some chapters (“Preliminaries”
and “Sigma Notation”) are remedial. Other chapters cover topics that are
often covered in courses in discrete mathematics, such as sets, functions,
and equivalence classes. (Much of this material is taken from the Morris’
book, with some amplifications.) We have found from experience that stu-
dents need this re-exposure in order to gain the necessary facility with these
concepts, on which so much of the rest of the book is based.

Whenever possible we have introduced applications, which may be omit-
ted at the instructor’s discretion. However, we feel that it is critically impor-
tant for preparing secondary teachers to be familiar with these applications.
They will remember these long after they have forgotten proofs they have
learned, and they may even be able to convey some of these ideas to their
own students.

Additional resources

This is the Information Age, and a mere textbook is somewhat limited in
its ability to convey information. Accordingly, as we continue to use the
book in our classes, we are continuing to build an ecosystem to support the
book’s use:

� The book’s web site is http://abstractalgebra.altervista.org/.

� An electronic version of the book is available at https://sl2x.aimath.
org/book/aafmt/.

� For a print copy, we recommend an on-demand print service such as
https://www.printme1.com/.

http://abstractalgebra.altervista.org/
https://sl2x.aimath.org/book/aafmt/
https://sl2x.aimath.org/book/aafmt/
https://www.printme1.com/
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� A comprehensive set of short video presentations of the book’s con-
tent may be found on the EAAEA YouTube channel: https://www.

youtube.com/playlist?list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo.
A second YouTube channel with worked exercises may be found at:
https://www.youtube.com/playlist?list=PL2uooHqQ6T7NMO1Lk5lX3tDyQF8URCwwK.

� An “Instructor’s Supplement” is available upon request: email the
editor thron@tamuct.edu from a verifiable faculty email address.

� Any instructor wishing to customize the material or extract certain
portions may email the editor thron@tamuct.edu to request the LATEX source
code.

Acknowledgements
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Unless the LORD builds the house, the builders labor in vain.
Unless the LORD keeps the city, the watchman is wakeful in
vain. It is vanity to rise up early, stay up late, and eat the bread
of sorrows, for He gives sleep to those He loves.” (Psalm 127:1-2)

Organization plan of the book

A chapter organization diagram is given in Figure 1.0.1. Brief descriptions
of the chapters and their dependencies are as follows:

https://www.youtube.com/playlist?list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
https://www.youtube.com/playlist?list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
https://www.youtube.com/playlist?list=PL2uooHqQ6T7NMO1Lk5lX3tDyQF8URCwwK
mailto:thron@tamuct.edu
mailto:thron@tamuct.edu
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Figure 1.0.1. Interdependence of chapters

1. Preliminaries: A review of properties of integers, rationals, and reals,
at the high school level. We only review the properties – we do not
formally construct these number systems. Some remedial exercises are
included. Used in: All other chapters.

2. Complex numbers: Basic properties of complex arithmetic, polar form,
exponentiation and roots. Some exercises require proofs of complex
number properties. The last section presents applications to signal
processing and fractals. Used in: Symmetries (10); all theory chapters
(

3. Modular arithmetic: The gold-standard example of finite groups and
rings. Arithmetic properties, Euclidean algorithm, Diophantine equa-
tions; We bring out homomorphism properties (without the terminol-
ogy). Used in: all subsequent chapters
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4. Modular arithmetic, decimals, and divisibility: application of modu-
lar arithmetic to decimal representation of real numbers (in arbitrary
bases) and divisibility rules.

5. Sets. Basic set properties. Can be skipped if students have an ade-
quate background in discrete math. Used in: functions

6. Functions. Basic ideas of domain, range, into, onto, bijection. This
chapter can be skipped if students have an adequate background. Used
in: all subsequent chapters

7. Introduction to cryptography: Explains the concepts of public and
private key cryptography, and describes some classic cyphers as well
as RSA. Used in: Further topics in Cryptography (13)

8. Sigma notation: This chapter prepares for the “polynomials” chapter.
Sigma notation is useful in linear algebra as well. Can be skipped if
students are already familiar with this notation. Used in: Polynomials
(9)

9. Polynomials: fundamental example of rings. Euclidean algorithm for
polynomials over fields. FTOA, prove easy part and discuss the hard
part. Will cover this again more rigorously in later chapter. Used in:
Introduction to Groups (12), Introduction to Rings (20)

10. Symmetries: Symmetries are a special case of permutations. They
are treated first because they are easily visualizable, and because they
connect algebraic aspects to geometry as well as complex numbers.
Used in: Permutations (11)

11. Permutations: In light of Cayley’s theorem, this example is key to the
understanding of finite groups. Students are introduced to the me-
chanics of working with permutations, including cycle multiplication.
Cycle structure is explored, as are even and odd permutations. Used
in: Introduction to Groups (12)

12. Introduction to Groups: This chapter introduced basic properties of
groups, subgroups, and cyclic groups, drawing heavily on the examples
presented in previous chapters. Used in: all subsequent chapters

13. Further topics in cryptography. Diffie-Hellman key exchange, elliptic
curve cryptography over R and over Zp
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14. Equivalence relations and equivalence classes. This is necessary for
understanding cosets. This chapter may be skipped if studentshave
seen them before. Used in: Cosets and Factor Groups (15)

15. Cosets and Factor Groups: Introductory properties, Lagrange’s theo-
rem, Fermat’s Theorem, simple groups. Used in: all subsequent chap-
ters.

16. Error Detecting and Correcting Codes. A discussion of block codes.
Some knowledge of linear algebra is required.

17. Isomorphisms of Groups: Examples and basic properties; direct prod-
ucts (internal and external); classification of abelian groups up to iso-
morphism. Used in: all subsequent chapters

18. Homomorphisms of Groups: Kernel of homomorphism; properties;
first isomorphism theorem. Used in: all subsequent chapters

19. Group Actions: Besides basic definitions, this chapter contains a long
discussion of group actions applied to regular polyhedral, as well as
the universal covering space of the torus.

20. Introduction to Rings: Includes definitions and examples; subrings
and product rings; extending polynomial rings to fields; isomorphisms
and homomorphisms; ideals; principal ideal domains; prime ideals and
unique factorization domains; division rings; fields; algebraic exten-
sions.

21. Appendix: Induction Proofs – patterns and examples. Some proofs in
the book require induction. This section gives the background needed
for students to write formal induction proofs.



2

Glossary of symbols

N,Z,Q,R,C: natural numbers (positive integers), integers, rationals,
real numbers, complex numbers

Q∗,R∗,C∗: rationals, real numbers, complex numbers without 0

Zn: Integers mod n

Q8: Quaternion group ({±1,±i,±j,±j ± k})

⊕,⊙: Modular addition and multiplication

Mn(Z,R,C . . .): n× n matrices with entries in Z, R, C . . ..

∃;∀: There exists; for all

cis θ: cos θ + i sin θ

|x|, |z|, |S|, |G|, |g|: Absolute value of the real number x; modulus of
the complex number z; number of elements in the set S or the group
G; order of the group element g.

a÷ b: a divides b.

GLn(R): General linear group of invertible n × n matrices with
coefficients in R.

mod(m,n): Remainder of m when divided by n

a ≡ b (mod n): a is equvalent to b mod n

a ∈ S: a is an element of the set S

8
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:=: Defined as

U(n): Group of units (elements with multiplicative inverses) mod
n.

,∪,∩, \: Empty set, union, intersection, set difference

×: Cartesian product or vector cross product (depending on con-
text)

iff: If and only if

f ◦ g: Composition of f and g (apply g first, then f

ϵijk: Levi-Civita (totally antisymmetric tensor) symbol

Id: Identity function

id, e: Identity element of a group

gcd, lcm: Greatest common divisior, least common multiple(
1 2 . . . n
a1 a2 . . . an

)
: Permutation in tableau format

(a1 · · · an1)(b1 · · · bn2) . . .: Permutation in cycle notation



3

Preliminaries

3.1 In the Beginning

Let’s start at the very beginning
A very good place to start
When you read you begin with A B C
When you sing you begin with Do Re Me

(Oscar Hammerstein, The Sound of Music)

God made the integers; all else is the work of man. (Leopold
Kronecker, German mathematician, 1886)

If Maria had been more mathematically inclined, she might have contin-
ued: “When you count, you begin with 1 2 3”. Ordinarily we think of the
“counting numbers” (which mathematicians call the natural numbers or
positive integers) as the “very beginning” of math.

It’s true that when we learn math in school, we begin with the counting
numbers. But do we really start at the “very beginning”? How do we know
that 1 + 1 = 2? How do we know that the methods we learned to add,
multiply, divide, and subtract will always work? We’ve been taught how to
factor integers into prime factors. But how do we know this always works?

Mathematicians are the ultimate skeptics: they won’t take “Everyone
knows” or “It’s obvious” as valid reasons. They keep asking “why”, break-
ing things down into the most basic assumptions possible. The very basic

10

https://www.youtube.com/watch?v=tepwsFnVAqQ&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=2
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assumptions they end up with are called axioms. They then take these
axioms and play with them like building blocks. The arguments that they
build with these axioms are called proofs, and the conclusions of these
proofs are called propositions or theorems.

The mathematician’s path is not an easy one. It is exceedingly difficult
to push things back to their foundations. For example, arithmetic was used
for thousands of years before a set of simple axioms was finally developed
(you may look up “Peano axioms” on the web).1 Since this is an elementary
book, we are not going to try to meet rigorous mathematical standards.
Instead, we’ll lean heavily on examples, including the integers, rationals,
and real numbers. Once you are really proficient with different examples,
then it will be easier to follow more advanced ideas.2

This text is loaded with proofs, which are as unavoidable in abstract
mathematics as they are intimidating to many students. We try to “tone
things down” as much as possible. For example, we will take as “fact” many
of the things that you learned in high school and college algebra–even though
you’ve never seen proofs of these “facts”. In the next section we remind you
of some of these “facts”. When writing proofs or doing exercise feel free to
use any of these facts. If you have to give a reason, you can just say “basic
algebra”.

We close this prologue with the assurance that abstract algebra is a
beautiful subject that brings amazing insights into the nature of numbers,
and the nature of Nature itself. Furthermore, engineers and technologists
are finding more and more practical applications, as we shall see in some of
the later chapters.

The original version of this chapter was written by David Weathers.

3.2 Integers, rational numbers, real numbers

We assume that you have already been introduced to the following number
systems: integers, rational numbers, and real numbers. These number sys-
tems possess the well-known arithmetic operations of addition, subtraction,
multiplication, and division. The following statements hold for all of these
number systems.

1The same is true for calculus. Newton and Leibniz first developed calculus around
1670, but it wasn’t made rigorous until 150 years later.

2Historically, mathematics has usually progressed this way: examples first, and axioms
later after the examples are well-understood.
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Warning 3.2.1. There are number systems for which the following prop-
erties do NOT hold (as we shall see later). So they may be safely assumed
ONLY for integers, rational numbers, and real numbers. ♢

3.2.1 Properties of arithmetic operations

We assume the following properties of arithmetic operations on the integers,
rational numbers, and real numbers. In the following list of properties, a, b, c
are arbitrary numbers (integers, rational, or real), unless otherwise specified.
We use the notation a · b to denote the product of a and b (i.e. a multipliled
by b).

(A) Additive identity : 0 + a = a, a+ 0 = a.

(B) Multiplicative identity : 1 · a = a, a · 1 = a.

(C) Additive inverse . For every number a there is a unique number
denoted −a such that a+ −a = 0 and −a+ a = 0. Note that a+ −b
is usually written as a− b.

(D) Multiplicative inverse (**real and rational numbers only**) For ev-
ery nonzero real or rational number a there is a unique number 1/a
such that a · 1/a = 1 and 1/a · a = 1.

(E) Addition is associative : (a + b) + c = a + (b + c). (Note that the
parentheses indicate which operation is performed first: for example,
in (a+ b) + c the a+ b is done first, and then c is added to the result.

(F) Multiplication is associative (a · b) · c = a · (b · c) (Same comment
applies as in previous property.)

(G) Addition is commutative : a+ b = b+ a (Be careful about this one!
It’s easy to take for granted. We will see that in some number systems,
it’s not true.)

(H) Multiplication is commutative : a ·b = b ·a (Same comment applies
as in previous property.)

(I) Multiplication distributes over addition : a ·(b+c) = (a ·b)+(a ·c)
and (a + b) · c = (a · c) + (b · c). (Technically, these are called the left
distributive and right distributive properties respectively.
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(J) Zero divisor property a · 0 = 0 and 0 · a = 0.

Exercise 3.2.2.

(a) For each of the properties (D,E,F,G,H) above, give a specific equation
(with actual numbers) that illustrates the property. For example, for
property (E) a specific example would be (3 + 5) + 4 = 8 + 4 = 12 is
equal to 3+(5+4) = 3 + 9 = 12.

(b) Give a specific example that shows that subtraction is not commutative
.

(c) Give a specific example that shows that division is not associative.

♢

Exercise 3.2.3. Which of the above properties must be used to prove each
of the following statements? (Note each statement may require more than
one property)

(a) (x+ y) + (z + w) = (z + w) + (x+ y)

(b) (x · y) · z = (z · x) · y

(c) (a · x+ a · y) + a · z = a · ((x+ y) + z)

(d) ((a · b) · c+ b · c) + c · a = c · ((a+ b) + a · b)

♢

Note that the associative property allows us to write expressions without
putting in so many parentheses. So instead of writing (a + b) + c, we may
simply write a + b + c. By the same reasoning, we can remove parentheses
from any expression that involves only addition, or any expression that
involves only multiplication: so for instance, (a · (b · c) · d) · e = a · b · c · d · e.
Using the associative and distributive property, it is possible to write any
arithmetic expression without parentheses. So for example, (a · b) · (c + d)
can be written as a · b · c+ a · b · d. (Remember that according to operator
precedence rules, multiplication is always performed before addition: thus
3 · 4 + 2 is evaluated by first taking 3 · 4 and then adding 2.)
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There properties can be used to prove arithmetic statements that ordi-
narily we take for granted. For example, we automatically replace −1 · a
with −a, but this really needs to be justified. In fact, this requires one of
the other properties in the above list:

Exercise 3.2.4. Show that a+(−1 ·a) = 0and(−1 ·a) = 0 (this is the same
thing as showing that −1 · a is the additive inverse of a, or −1 · a = −a).
Which of the above properties did you use? ♢

Exercise 3.2.5. Rewrite the following expressions without any parenthe-
ses and simplify as much as possible, but without using the commuitative
property.

(a) (((x+ y) + (y + z)) · w)− 2y · w

(b) 0.5 · ((x+ y) + (y + z) + (z + x))

(c) ((((((a+ b) + c) · d) + e) · f) + g) + h

♢

Exercise 3.2.6. For parts (a–c) of the preceding exercise, now apply the
commutative property to the results to simplify the expressions as much as
possible. ♢

Exercise 3.2.7. Given the expression: (((a− b) + b) + b)(a− b) + b2

(a) Simplify the expression without using distributive or commutative prop-
erty.

(b) Simplify the expressionwithout using the commutative property.

(c) Simplify the expression using all laws.

♢

Exercise 3.2.8. Given the expression: (r + p)(s+ q)− (p+ s)(q + r)
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(a) Simplify the expression without using distributive or commutative prop-
erty.

(b) Simplify the expression without using the commutative property.

(c) Simplify the expression using all laws.

♢

3.2.2 Order relations

We also have order relations on the real, rational, and integer number
systems, which are expressed by the terms ‘greater than’ and ’less than’
with corresponding symbols > and <. If a and b are numbers, then the
mathematical statement ‘a > b’ is logically identical to the statement ‘b < a’
(another way of saying this is: a > b if and only if b < a). Positive
numbers are defined to be those numbers greater than the additive identity
0, and negative numbers are defined to be those that are less than 0. We
assume the following properties of the order relation on the integers, rational
numbers, and real numbers:

(A) The multiplicative identity 1 is positive.

(B) Given two numbers, exactly one of these three are true: either the first
number is greater than the second, or the second number is greater
than the first, or the two numbers are equal.

(C) The sum of two positive numbers is positive. The sum of two negative
numbers is negative.

(D) The product of two positive or two negative numbers is positive. The
product of a positive and negative number is negative.

Exercise 3.2.9. Using the above properties, show that 1+1, 1+1+1, and
1+1+1+1 are all positive. (It can be shown by induction that the sum of
any number of copies of 1 must be positive. The set {1, 1+ 1, 1+ 1+ 1, . . .}
is called the set of positive integers.) ♢

Exercise 3.2.10. Suppose a > b, b ≥ 0 and ab = 0 (note that ‘b ≥ 0’ means
that either b > 0 or b = 0). What can you conclude about the values of a
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and b? Use one (or more) of the properties we have mentioned to justify
your answer. ♢

Exercise 3.2.11. Suppose ab > cb, b < 0, and c < 0. For each of the
following statements, either prove that it is always true, or give an example
to show that it is not always true:

(a) a > b

(b) a < 0.

(c) b < c

(d) a < c

♢

Besides these order properties, there is a special order property that
applies only to integers. This property is called the principle of well-
ordering , and may be stated as a proposition as follows:

Proposition 3.2.12.(Well-ordering principle) Any set of positive integers
has a smallest element.

This may seem obvious, but in mathematics we have to do our best not to
take anything for granted. Sometimes the most “obvious” statements are
the most difficult to prove. In this case, the well-ordering principle can be
proved from the principle of mathematical induction (see Chapter 26). The
proof is beyond the scope of this course.3

3.2.3 Manipulating equations and inequalities

Following are some common rules for manipulating equations and inequal-
ities. Notice there are two types of inequalities: strict inequalities (that
use the > or < symbols) and nonstrict inequalities (that use the ≥ or ≤
symbols).

3It is also possible to prove the principle of mathematical induction from well-ordering
principle–it’s a matter of personal preference which is taken as an axiom, and which is
taken as a consequence.



3.2 INTEGERS, RATIONAL NUMBERS, REAL NUMBERS 17

(A) Substitution : If two quantities are equal then one can be substituted
for the other in any true equation or inequality and the result will still
be true.

(B) Balanced operations: Given an equation, one can perform the same
operation to both sides of the equation and maintain equality. The
same is true for inequalities for the operation of addition, and for mul-
tiplication or division by a positive number.

(C) Inequality reversal: Multiplying or dividing an inequality by a neg-
ative value will reverse the inequality symbol.

(D) Fractions in lowest terms: The ratio of two integers can always be
reduced to lowest terms, so that the numerator and denominator have
no common factors.

Exercise 3.2.13. Give specific examples for statements (A–D) given above.
You may use either numbers or variables (or both) in your examples.. For
(A) and (B), give one example for each of the following cases: (i) equality,
(ii) strict inequality, (iii) nonstrict inequality. ♢

Exercise 3.2.14. Parts (a-f) of this exercise give a sequence of successive
steps in a proof of an important arithmetic fact. For each of the steps, give
either an arithmetic operation property (from Section 3.2.1) or an equation
manipulation rule (from Section 3.2.3) which justifies the step.

(a) 1− 1 = 0

(b) (1− 1) · a = 0 · a

(c) (1− 1) · a = 0

(d) 1 · a+ (−1) · a = 0

(e) a+ (−1) · a = 0

(f) (−1) · a is the additive inverse of a.

♢

As a result of the previous exercise, we have a proof of the following
proposition:
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Proposition 3.2.15. For any integer, rational, or real number a the fol-
lowing equation holds: −a = (−1) · a.

This proposition may seem way too obvious to you, but it’s actually
saying something very significant. “−a” denotes the additive inverse of a,
while “(−1) ·a” denotes the additive inverse of 1 times the number a. There
is no a priori reason why theses two things should be the same. Try to
think back to when you first learned this arithmetic stuff–at that time, it
probably wasn’t as obvious as it seems now. The exercise shows that it
actually follows from even more basic facts about arithmetic.

The following exercise walks you through a proof of another important
fact.

Exercise 3.2.16. For each step in the following argument, give either an
arithmetic operation property (from Section 3.2.1) or an equation manipu-
lation rule (from Section 3.2.3) which justifies the step.

We first suppose that a > b and c > d.

(a) a− b > 0 and c− d > 0

(b) (a− b) + (c− d) > 0

(c) a+ (−b+ c)− d > 0

(d) a+ (c− b)− d > 0

(e) (a+ c) + (−b+−d) > 0

(f) ((a+ c) + (−b+−d)) + (b+ d) > b+ d

(g) (a+ c) + ((−b+−d) + (b+ d)) > b+ d

(h) (a+ c) + ((−b+−d) + (d+ b)) > b+ d

(i) (a+ c) + (−b+ ((−d+ d) + b)) > b+ d

(j) (a+ c) + (−b+ (0 + b)) > b+ d

(k) (a+ c) + (−b+ b) > b+ d

(l) (a+ c) + 0 > b+ d

(m) a+ c > b+ d
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♢

The preceding exercise gives us a proof of the following proposition,
which we will need later in the book.

Proposition 3.2.17. Let a, b, c, d be integer, rational, or real numbers such
that a > b and c > d. It follows that a+ c > b+ d.

Finally, we’re going to prove is that −1 is negative. At this point you
may be thinking, “ Duh, it’s got a minus sign, so of course it’s negative!” But
if you look back in Section 3.2.1 property (B), you’ll see that the minus sign
on −1 just means that it’s the additive inverse of the multiplicative identity
1. On the other hand, negative numbers were defined in Section 3.2.2 as
numbers that are less than the additive identity 0. Just because we’ve
decided to write the additive inverse of 1 as −1, doesn’t mean that we can
automatically assume that −1 < 0. Remember, be skeptical!

Proposition 3.2.18. −1 < 0

Proof. This will be our first exposure to a proof technique called proof
by contradiction . We’ll make use of this technique throughout the book.
In this case, the idea goes as follows. There’s no way that −1 could be
positive, because if it were then 1 + (−1) would also have to be positive,
which it isn’t because we know it’s 0. There’s also no way that −1 could
be 0, because if it were we’d have −1 = 0, and adding 1 to both sides gives
0 = 1, which is false because 1 is positive and 0 isn’t. Since -1 isn’t positive
and it isn’t equal to 0, the only option left is that it’s negative. This is the
gist of the argument, but we have to write it out more carefully to satisfy
those nit-picking mathematicians. Every step in our argument must have a
solid reason.

So here goes the formal proof. We’ll give a logical sequence of mathe-
matical statements, followed by a reason that justifies each statement–this
is called statement-reason format .

First we show that −1 > 0 is false:
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Statement Reason

Suppose −1 > 0 . Proof by contradiction: supposing the opposite
1 > 0 Prop. (A) in Section 3.2.2
1 + (−1) > 0. Prop. (C) in Section 3.2.2
1 + (−1) = 0 Prop. (B) in Section 3.2.1
Contradiction is acheived The last 2 statements contradict
−1 > 0 is false The supposition must be false

Next, we show that −1 = 0 is false:

Statement Reason

Suppose −1 = 0 Proof by contradiction: supposing the opposite
1 + (−1) = 1 + 0 Follows from previous statement by substitution
0 = 1 Props. (A) and (B) in Section 3.2.1
0 > 0 Prop. (A) in Section 3.2.2
Contradiction is achieved 0 > 0 contradicts Prop. (B) in Section 3.2.2
−1 = 0 is false The supposition must be false

According to Property (B) in Section 3.2.2, there are three possibilities:
either −1 > 0,−1 = 0, or −1 < 0. We have eliminated the first two
possibilities. So the third possibility must be true: −1 < 0. This completes
the proof.

□ 4

Exercise 3.2.19. Using Proposition 3.2.15 Proposition 3.2.18, and one of
the order relation properties, show that the additive inverse of any positive
number is negative. ♢

3.2.4 Exponentiation (VERY important)

Exponentiation is one of the key tools of abstract algebra. It is essential
that you know your exponent rules inside and out!

(I) Any nonzero number raised to the power of 0 is equal to 1. 5

(II) A number raised to the sum of two exponents is the product of the
same number raised to each individual exponent.

4The ’□’ symbol will be used to indicate the end of a proof. In other words: Ta-daa!
5Technically 00 is undefined, although often it is taken to be 1. Try it on your calculator!
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(III) A number raised to the power which is then raised to another power
is equal to the same number raised to the product of the two powers.

(IV) The reciprocal of a number raised to a positive power is the same
number raised to the negative of that power.

(V) Taking the product of two numbers and raising to a given power is
the same as taking the powers of the two numbers separately, then
multiplying the results.

Exercise 3.2.20. For each of the above items (I–V), give a general equation
(using variables) that expresses the rule. For example one possible answer
to (II) is: xy+z = xy · xz . ♢

Exercise 3.2.21. Write an equation that shows another way to express a
number raised to a power that is the difference of two numbers. ♢

3.3 Test yourself

Test yourself with the following exercises. If you feel totally lost, I strongly
recommend that you improve your basic algebra skills before continuing with
this course. Trying to do higher math without a confident mastery of basic
algebra is like trying to play baseball without knowing how to throw and
catch.

Exercise 3.3.1. Simplify the following expressions. Factor whenever pos-
sible

(a) 2442

(b)
39

93

(c)

(
5

9

)7(9

5

)6

(d)
a5

a7
· a

3

a

(e) x(y − 1)− y(x− 1)

♢
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Exercise 3.3.2. Same instructions as the previous exercise. These examples
are harder. (Hint : It’s usually best to make the base of an exponent as
simple as possible. Notice for instance that 47 = (22)7 = 214.)

(a) 61/2·21/6 · 33/2 · 21/3

(b) (93)(47)
(
1
2

)8 ( 1
12

)6
(c) 45 · 23 ·

(
1
2

)5 · (14)3
(d) 23 · 34 · 45 · 2−5 · 3−4 · 4−3

(e)
x(x− 3) + 3(3− x)

(x− 3)2

♢

Exercise 3.3.3. Same instructions as the previous exercise. These examples
are even harder. (Hint : Each answer is a single term, there are no sums or
differences of terms.)

(a)
a5 + a3 − 2a4

(a− 1)2

(b) axb3x(ab)−2x(a2b)x/2

(c) (x+ y−1)−2(xy + 1)2

(d)
(3x + 9x)(1− 3x)

1− 9x
)

(e)
3x2 − x

x− 1
+

2x

1− x

(f)

(
(x+ y)x+y(x− y)x−y

(x2 − y2)x

)

(g)

(
66

2233
+

2836

63

)1/2

(h)
(a+ b)(b+ c) + (a− b)(b− c)

a+ c

♢

Exercise 3.3.4. Find ALL real solutions to the following equations.

(a) x2 = 5x

(b) (x−
√
7)(x+

√
7) = 2

(c) 24+x = 4(22x)

(d) 3−x = 3(32x)

(e) 165 = x4

(f)
1

1 + 1/x
− 1 = −1/10

♢

Exercise 3.3.5. (Challenge problems) These problems come from Chinese
high school math web sites (thanks to J. L. Thron)



3.3 TEST YOURSELF 23

(a) Simplify: 2n+4−2(2n)
2(2n+3)

(b) Given m = 79 and n = 97, express 6363 in terms of m and n.

(c) Given 2x3y = 10 and 2y3x = 15, find x and y.

(d) Show that the following expression always has real roots: (x−3)(x−2) =
a(a+ 1), where a is any real number.

(e) If 3x− 5y + 3 = 0, find
8x+2

32y
.

(f) Solve for x: (6x+7)2(3x+4)(x+1) = 6 (multiply to obtain two quadratic
terms, then substitute)

(g) Solve for x: 9x + 12x = 16x. (divide the equation by one of the terms)

(h) Solve for x: x+1
x+2 + x+8

x+9 = x+2
x+3 + x+7

x+8 . (Simplify the numerators in each
fraction)

(i) Given that m = 20192 + 20202, evaluate
√
2m− 1. (use the fact that

2020 = 2019+1)

(j) Solve for x:
√
x2 + 9 +

√
x2 − 9 = 5 +

√
7. (To avoid squaring twice,

use difference of squares to obtain a second equation, then use the two
equations together to eliminate one of the square roots.)

(k) Given a = 41/3+21/3+1, evaluate 3
a+

3
a2
+ 1
a3
. (Write out the expressions

for 1−x3
1−x and (1 + y)3, and see if you can relate them to the given

expressions)

(l) Solve for x: x =
√
x− 1

x+
√

1− 1
x . (To avoid squaring twice, use differ-

ence of squares to obtain a second equation, then use the two equations
together to eliminate one of the square roots.)

(m) Suppose that a+b+c = 0 and a3+b3+c3 = 0. Show that an+bn+cn = 0
for all odd values of n. (Look at two cases: (a) at least one of a, b, c is
equal to 0; (b) exactly two of the numbers have the same sign (without
loss of generality, you may assume that a, b > 0 and c < 0)).

(n) Given a2 − 9a + 1 = 0, find a2 − 7a +
18

a2 + 1
. (solve the first equation

for a2 and for a2 + 1, and use substitutions.)
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(o) Given that x1 and x2 are both solutions to the equation x2 + 1 = 1/x,
find 2021x1−x2 (graph the functions y = x2 + 1 and y = 1/x).

(p) Given that x + y = 3 and xy = 1, evaluate x5 + y5 (use the first two
expressions to find quadratic equations for x and y, then substitute
repeatedly for x2 and y2 in x5 + y5).

(q) Given that
a+ b

c
=
a+ c

b
=
b+ c

a
, find the value of

abc

(a+ b)(b+ c)(c+ a)
(Be careful! There may be more than one answer. Take two of the equa-
tions and clear the denominators. Both sides will have a common factor,
which may or may not be zero.)

(r) Given x = 2 +
√
2, find x4 − 4x3 + 7x2 − 20x + 16.(Find a quadratic

equation satisfied by 2 +
√
2.

(s) Given 4x−4 − 2x−2 = 3 and x4 + y2 = 3, find 4x−4 + y4.

(t) Given 30x = 2010 and 67y = 2010, find x−1 + y−1.

(u) Given a+ b = 6 and ab+ (c− a)2 + 9 = 0, find a+ b+ c (Try to find a
particular solution for a, b, c. Look at the signs of the terms.)

(v) Simplify
12342

24692 + 24672 − 2
(no calculator required!)

(w) Given 2a = 10, 2b = 5, 2c = 200, compute a − 4041b + 2020c − 6060.
(Exponent rules!)

(x) Given
xy

x+ y
= 1,

yz

y + z
= 2,

xz

x+ z
= 3, find x. (Take reciprocals and

break the fractions apart. Then add together the equations.)

(y) Given that a1, a2, . . . a1000 are the first 1000 terms of a geometric series
with a1 = 1/5 and a1000 = 20. The product a1 · a2 · . . . · a1000 can be
expressed as 2x. Find x. (Recall that the nth term of a geometric series
has the form arn. Group terms in the geometric series in pairs.)

(z) Without using a calculator, determine which is larger: 912 or 159.

♢
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Complex Numbers

horatio: O day and night, but this is wondrous strange!

hamlet: And therefore as a stranger give it welcome. There are more
things in heaven and earth, Horatio, Than are dreamt of in your
philosophy.

(Source: Shakespeare, Hamlet, Act 1 Scene 5.)

Although complex numbers are defined to include “imaginary” numbers,
the practical applications of complex numbers are far from “imaginary”. We
shall touch on some of the applications in this chapter: but there are many
many more in engineering, in physics, and in other sciences as well.

Thanks to Tom Judson for material used in this chapter.

4.1 The origin of complex numbers

4.1.1 A number that can’t be real (and we can prove it!)

Way back in your first algebra class, you saw equations like:

� x2 = 4

� x2 = 36

� x2 = 7

25

https://www.youtube.com/watch?v=yhSLFJJZ9us&index=3&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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You also learned how to solve them either by hand, or using the SQRT button
on a simple calculator. The solutions to these equations are

� x = ±2

� x = ±6

� x = ±2.64575131106459 . . .

But what about equations like:

x2 = −1

Your simple calculator can’t help you with that one!1 If you try to take
the square root of -1, the calculator will choke out ERR OR or some similar
message of distress. But why does it do this? Doesn’t −1 have a square
root?

In fact, we can prove mathematically that −1 does not have a real square
root. As proofs will play a very important part in this course, we’ll spend
some extra time and care explaining this first proof.

Proposition 4.1.1. −1 has no real square root.

Proof. We give two proofs of this proposition. The first one explains all
the details, while the second proof is more streamlined. It is the streamlined
proof that you should try to imitate when you write up proofs for homework
exercises.

Long drawn-out proof of Proposition 4.1.1 with all the gory details:

We will use a common proof technique called proof by contradiction .
Here’s how it goes:

First we suppose that there exists a real number a such that a2 =
−1. Now we know that any real number is either positive, or zero, or
negative−there are no other possibilities. So we consider each of these three
cases: a > 0, or a = 0, or a < 0.

� In the case that a > 0 then a2 = a · a = (positive)·(positive) = a
positive number (that is, a2 > 0). But this couldn’t possibly be true,
because we have already supposed that a2 = −1: there’s no way that
a2 > 0 and a2 = −1 can both be true at the same time!

1It’s true that the fancier graphing calculators can handle it, but that’s beside the
point.
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� In the case that a = 0, then a2 = a · a = (0) · (0) = 0. But a2 = 0 also
contradicts our supposition that a2 = −1.

� In the case that a < 0, then a2= a · a = (negative)·(negative) = a
positive number, so a2 > 0. As in the first case, this contradicts our
supposition that a2 = −1.

So no matter which of the three possible cases is true, we’re still screwed:
in every case, we always have a contradiction. We seem to have reached a
dead end – a logically impossible conclusion. So what’s wrong?

What’s wrong is the supposition. It must be the case that the supposition
is not true. Consequently, the statement “there exists a real number a such
that a2 = −1” must be false. In other words, −1 has no real square root.
This completes the proof. □ 2

The above proof is pretty wordy. Often the first draft of a proof can be
pretty messy. So it’s usually good to go back and rewrite the proof in such
a way as to bring out the essential details. Here’s our second crack at the
above proof:

Streamlined proof of Proposition 4.1.1 (suitable for writing up
homework exercises)

The proof is by contradiction. Suppose ∃a ∈ R such that a2 = −1
(note the symbol “∃” means “there exists,” the symbol R denotes the real
numbers, and the expression “a ∈ R” means that a is contained in R, that
is, a is a real number).

There are two cases: either (i) a ≥ 0 or (ii) a < 0.

In Case (i), then a2= a · a = (nonnegative)·(nonnegative) ≧ 0, which
contradicts the supposition.

In Case (ii), then a2= a·a = (negative)·(negative) > 0, which contradicts
the supposition.

By contradiction, it follows that −1 has no real square root. □
You may note that in the streamlined case, we reduced the number of cases
from three to two. That’s because we noticed that we really could combine
the “positive” and the “zero” case into a single case.

So far we’ve only considered square roots, but naturally we may ask the
same questions about cube roots, fourth roots, and so on:

2The ’□’ symbol will be used to indicate the end of a proof. In other words: Ta-da!

https://www.youtube.com/watch?v=YHSLFJJZ9US&INDEX=3&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Exercise 4.1.2. Imitate the proof of Proposition 4.1.1 to prove that −2
has no real fourth root. ♢

Exercise 4.1.3. Try to use the method of Proposition 4.1.1 to prove that
-4 has no real cube root. At what step does the method fail? ♢

Notice that the nth root of a is a solution of the equation xn − a = 0
(and conversely–any solution of xn − a = 0 is an nth root of a). Based on
this observation, we may generalize the notion of “root”:

Definition 4.1.4. Given a function f(x) which is defined on the real num-
bers and takes real values, then a root of f(x) is any solution of the equation
f(x) = 0. △

Exercise 4.1.5.

(a) Sketch the function f(x) = x2 + 9. Does the function have any real
roots? Explain how you can use the graph to answer this question.

(b) Prove that the function f(x) = x2+9 has no real roots. (You may prove
by contradiction, as before).

(c) Graph the function f(x) = x6+7x2+5 (you may use a graphing calcu-
lator). Determine whether f(x) has any real roots. Prove your answer
(note: a picture is not a proof!).

♢

Exercise 4.1.5 underscores an important point. A graph can be a good visual
aid, but it’s not a mathematical proof. We will often use pictures and graphs
to clarify things, but in the end we’re only certain of what we can prove.
After all, pictures can be misleading.

Exercise 4.1.6. *3 Suppose that a · x2n + b · x2m + a = 0 has a real root,
where a, b,m, n are nonzero integers. What can you conclude about the
signs of a and b? Prove your answer. ♢

3Asterisks (*) indicate problems that are more difficult. Take the challenge!
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4.1.2 Unreal, but unavoidable

Mathematicians have known Proposition 4.1.1 for thousands of years, and for
a long time that settled the question. Unfortunately, that nasty

√
−1 kept

popping up in all sorts of inconvenient places. For example, about 400 years
ago, it was very fashionable to study the roots of cubic polynomials such as
x3−15x−4 = 0. A mathematician named Bombelli came up with a formula
for a solution that eventually simplified to: x = (2+

√
−1)+ (2−

√
−1). By

canceling out the
√
−1 terms, he got the correct solution x = 4. But how

can you cancel something that doesn’t exist?

Since mathematicians couldn’t completely avoid those embarrassing
√
−1’s,

they decided to put up with them as best they could. They called
√
−1 an

imaginary number, just to emphasize that it wasn’t up to par with the real
numbers. They also used the symbol i to represent

√
−1, to make it less

conspicuous (and easier to write). Finally, they created a larger set of num-
bers that included both real and imaginary numbers, called the complex
numbers. 4

Definition 4.1.7. The complex numbers are defined as

C = {a+ bi : a, b ∈ R},

where i2 = −1. If z = a + bi, then a is the real part of z and b is the
imaginary part of z. (Note that the imaginary part of a complex number
is a real number. It is the coefficient of i in the expression z = a+ bi.) △

Examples of complex numbers include

� 1 + i

� 5.387− 6.432i

� 1
2 −

√
3
2 i

� 3i (equal to 0 + 3i)

� 7.42 (equal to 7.42 + 0i).

� 0 (equal to 0 + 0i).

4The web site http://math.fullerton.edu/mathews/n2003/ComplexNumberOrigin.html
gives more information about the origin of complex numbers.

https://www.youtube.com/watch?v=YHSLFJJZ9US&INDEX=3&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Exercise 4.1.8.

(a) Write down the complex number with real part 0 and imaginary part 7.

(b) Write down a complex number whose real part is the negative of its
imaginary part.

(c) Write down a complex number that is also a real number.

♢

4.1.3 A mathematical revolution

The creation of complex numbers was a revolutionary event in the history of
mathematics. Mathematicians were forced to recognize that their beloved
“real” numbers just weren’t good enough to deal with the mathematical
problems they were encountering. So they had to create a new number
system (the complex numbers) with new symbols (i) and new arithmetic
rules (like i · i = −1).

In fact, this was not the first time that a controversial new number
system was founded. The ancient Greeks thought that all numbers could
be expressed as a ratio of integers m

n — in other words, the Greeks thought
all numbers were rational. It came as a huge shock when someone proved
that some real numbers are not rational. We will presently give the original
proof, but first we will need some properties of odd and even integers:

Exercise 4.1.9.

(a) Fill in the blanks: The product of two odd integers is < 1 > , and
the product of two even integers is < 2 > .

(b) Use proof by contradiction to prove the following statement: If m is an
integer and m2 is even, then m is also even. (*Hint*)5

(c) It is possible to make a more general statement than part (b).Use proof
by contradiction to prove the following statement: If m is an integer d
is a positive integer, and md is even, then m is also even. (*Hint*)
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Figure 4.1.1. Isosceles right triangle

♢

Proposition 4.1.10. Given a right isosceles triangle where both legs have
length 1 (see Figure 4.1.1) . Let x be the length of the hypotenuse. Then x
is irrational–that is, it cannot be expressed as a ratio of integers.

Proof. The proof is by contradiction. Suppose that x is rational: that
is, x = m

n for some integers m and n.We can always reduce a fraction to
lowest terms ( as noted in Section 3.2.3), so we can assume m and n have
no common factors.

Since x is the hypotenuse of a right triangle, the Pythagorean Theorem
gives us x2 = 12 + 12 = 2. We can plug x = m

n into x2 = 2 to get
(
m
n

)2
= 2,

which can be rearranged to give

m2 = 2n2.

From this we see that m2 is divisible by 2, which means that m2 is even.
Exercise 4.1.9 part (b) then tells us that m is even, so there must be an
integer j such thatm = 2j. Pluggingm = 2j intom2 = 2n2 gives 4j2 = 2n2,
which simplifies to 2j2 = n2. Hence n2 is even, and as before we conclude
that n is even. So n = 2k for some integer k.

At this point, we have m = 2j and n = 2k, which means that m and n
have a common factor of 2. But at the beginning of the proof, we said that
m and n were reduced to lowest terms, so they have no common factor. This
is a contradiction. Therefore our supposition must be false, so x cannot be
rational. □

5All *Hints* can be found at the end of the book (or by clicking on the *Hints* link.)

https://www.youtube.com/watch?v=YHSLFJJZ9US&INDEX=3&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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We have seen in our proofs that whenever we make a statement, we
also need to give a reason that justifies the statement. In many cases, it’s
possible to state a proof very succinctly in “statement−reason” format. For
instance, here is a “statement−reason” proof of Proposition 4.1.10:

Statement Reason

x is the hypotenuse of the right Given
triangle in Figure 4.1.1

x is rational supposition (will be contradicted)
x2 = 2 Pythagorean Theorem
x = m/n where m,n are integers Definition of rational
m,n have no common factors Fraction can always be reduced
(m/n)2 = 2 Substitution
m2 = 2n2 Rearrangement
m = 2k where k is an integer Exercise 4.1.9 part (b)
(2k/n)2 = 2 Substitution
n2 = 2k2 Rearrangement
n = 2j where j is an integer Exercise 4.1.9 part (b)
m and n have a common factor 2 is a factor of both
supposition is false Contradictory statements
x cannot be rational Negation of supposition

Note that the preceding proof amounts to a proof that
√
2 is irrational,

since we know that
√
2 is the length of the hypothesis in question. Given the

results of Exercise 4.1.9, we can use a similar proof to find more irrational
numbers.

Exercise 4.1.11.

(a) Prove that the cube root of 2 is irrational. (*Hint*)

(b) Prove that the nth root of 2 is irrational, if n is a positive integer greater
than 1.

(c) Prove that 21/n is irrational, if n is a negative integer less than -1.

♢

In the proof of Proposition 4.1.10, we “plugged in” or substituted one
expression for another. For example, when we discovered that m was di-
visible by 2 we substituted 2j for m, which was useful for the algebra that
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followed. Substitution is a key technique used throughout all of abstract
algebra.

Exercise 4.1.12. Use substitution to prove the following statement: if 3|n
and 4|m, then 12|mn (the notation “3|n” means that 3 divides n). (*Hint*)
♢

Exercise 4.1.13. Use substitution to prove the following statement: if 12|n
and n|4m, where n and m are integers, then 3|m. (*Hint*) ♢

We should also come clean and admit that our proof of Proposition 4.1.10
falls short of true mathematical rigor. The reason is that we made use of
Exercise 4.1.9, and we never actually proved part (a) of the exercise. Even
though it’s something that “everybody knows”, mathematicians still want a
proof! Now, part (a) is a consequence of a more general proposition known
as Euclid’s Lemma :. Before giving this lemma, let’s be precise about what
we mean by “prime number”:

Definition 4.1.14. A prime number is a natural number (i.e. positive
integer) bigger than 1 that only has one factor bigger than 1, namely itself.
△

Now we are ready to state Euclid’s lemma:

Proposition 4.1.15. Let a and b be integers, and let p be a prime number.
If p divides ab, then either p divides a, or p divides b.

Remark 4.1.16. In mathematics, when we say “either X is true or Y is
true”, we also include the possibility that both X and Y are true. So in this
case, when we say “p divides a, or p divides b”, it’s possible that p divides
both a and b. △

Proof. We’re not ready to give a proof yet, but we’ll give one later (see
Exercise 5.5.23 in Section 5.5.4). □

Exercise 4.1.17. Modify the proof of Proposition 4.1.10 to prove that
√
3

is irrational. (You will find Proposition 4.1.15 to be useful in the proof.) ♢

Exercise 4.1.18. Prove that
√
6 is irrational. ♢

https://www.youtube.com/watch?v=YHSLFJJZ9US&INDEX=3&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Exercise 4.1.19. Prove that p1/n is irrational, if p is a prime and n is any
integer with |n| > 1. ♢

Exercise 4.1.20.

(a) Suppose that a, b, c are integers and (a/b)2 = c. Suppose further that
a and b have no common factors except 1: that is, any integer x > 1
which divides b doesn’t divide a. Prove by contradiction that b = 1.

(b) Generalize part (a): Suppose that a, b, c are integers and (a/b)n = c,
where n is a positive integer. If a and b have no common factors, prove
by contradiction that b = 1.

(c) Use part (b) to prove the following: Let a and n be integers, both greater
than 1. Let x be a real nth root of a. If x is not an integer, then x is
irrational.

♢

The inconvenient truth expressed in Proposition 4.1.10 forced mathe-
maticians to extend the ’real’ numbers to include irrational as well as ra-
tional numbers. But complex numbers opened the floodgates by setting a
precedent. New generations of mathematicians became so used to work-
ing with “unreal” numbers that they became accustomed to making up
other number systems whenever it suited their purpose. Within a few cen-
turies after the complex numbers, several new number systems were created.
This eventually prompted mathematicians to study the properties of general
numbers systems. The outcome of this is what is known today as abstract
algebra!

To close this section, here’s another exercise to practice using substitu-
tion:

Exercise 4.1.21.

(a) Suppose that:

� a is a negative number;

� n is a positive integer;

� the equation xn = a has a real solution for the unknown x.
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What can you conclude about n? Make a clear statement and prove
your statement. (*Hint*)

(b) Replace the condition “n is a positive integer” in part (a) with “n is a
negative integer.” Now what can you conclude about n? Make a clear
statement and prove your statement.

♢

Exercise 4.1.22. Do imaginary numbers “really” exist? Write two or three
sentences to express your opinion.6 ♢

4.2 Arithmetic with complex numbers

4.2.1 Complex arithmetic

To add two complex numbers z = a + bi and w = c + di, we just add the
corresponding real and imaginary parts:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

Using this definition, we may prove directly that complex addition (like
regular addition) is commutative:7

Proposition 4.2.1. Addition on complex numbers is commutative.

Proof. We just need to show that for any two complex numbers z and w,
it’s always true that z + w = w + z. Writing z = a + bi and w = c + di as
above, the proof using statement-reason format runs as follows:

Statement Reason

z + w = (a+ bi) + (c+ di) substitution
= (a+ c) + (b+ d)i definition of complex addition
= (c+ a) + (d+ b)i real addition is commutative
= (c+ di) + (a+ bi) def. of complex addition
= w + z. substitution

6There is no “right” answer to this question.
7It is important to realize that this must be proved and can’t just be assumed. Later

on we will define operations that are not commutative.

https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
https://www.youtube.com/watch?v=xok7xHQuTzU&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=4
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□

Notice how we started in this proof with one side of the equality, and
through a series of steps ended up with the other side. This is a good method
to follow, when you’re trying to prove two things are equal.

Exercise 4.2.2. Prove that addition on complex numbers is associative. ♢

Now that we have addition worked out, let’s do multiplication. We
observe that the complex number a+ bi looks just like the polynomial a+
bx, except the imaginary i replaces the unknown x. So we’ll take a cue
from polynomial multiplication, and multiply complex numbers just like
polynomial factors, using the FOIL (first, outside, inside, last) method.
Better yet, with complex numbers it’s more convenient to use FLOI (first,
last, outside, inside) instead. The product of z and w is

(a+ bi)(c+ di) = ac+ bdi2 + adi+ bci = (ac− bd) + (ad+ bc)i.

Question: How did we get rid of the i2 in the final equality? Answer:
Remember, we defined i2 = −1, and we just made the substitution.

A bevy of nice properties follow from this definition:

Example 4.2.3. Complex multiplication is commutative. This may be
proved as follows. (Note that here we are combining statement-reason and
paragraph proof formats. It’s OK to mix and match formats, as long as you
get the job done!)

(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i (FLOI)

On the other hand:

(c+ di)(a+ bi) = (ca− db) + (cb+ da)i (FLOI)

= (ac− bd) + (bc+ ad)i (commutativity of real multiplication)

Since we obtain the same expression for (a+ bi)(c+ di) and (c+ di)(a+ bi),
it follows that (a+ bi)(c+ di) = (c+ di)(a+ bi). ♦

Similar proofs can be given for other multiplicative properties:

Exercise 4.2.4. Prove the associative law for multiplication of ‘complex
numbers. (Follow the style of Example 4.2.3). ♢
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Exercise 4.2.5. Prove the distributive law for complex arithmetic: that is,
if u,w, and z are complex numbers, then (u)(w + z) = uw + uz. ♢

Two arithmetic operations down, two to go! Let’s consider subtraction
of complex numbers. We may define z − w using complex addition and
multiplication as: z − w = z + (−1) · w.

Exercise 4.2.6. Given that z = a+bi and w = c+di use the above definition
of subtraction to derive an expression for z−w in terms of a, b, c, d. Express
your answer as (Real part) + (Imaginary part)i. ♢

Division is a little more complicated. First we consider division of a
complex number by a real number. In this case we can define division as
multiplication by the reciprocal, just as with real numbers:

a+ bi

c
= (a+ bi) · 1

c
= a · 1

c
+ (bi) · 1

c
=
a

c
+ ·b

c
i,

where we have used the distributive, associative, and commutative proper-
ties of complex multiplication.

Now let’s try to make sense of the ratio of two complex numbers:

w

z
=
c+ di

a+ bi
.

This notation suggests that it should be true that

w

z
= (c+ di) · 1

a+ bi
.

But what is 1/(a + bi)? To understand this, let’s go back to arithmetic
with real numbers. If we have an ordinary real number r, then 1/r is the
multiplicative inverse of r: that is, r · 1/r = 1/r · r = 1. We also write 1/r
as r−1. By analogy, to make sense of 1/z = 1/(a + bi), we need to find a
complex number z−1 such that z−1 · z = z · z−1 = 1.

Exercise 4.2.7. Given that z = a + bi is a complex number and z ̸= 0
(recall that 0 is the same as 0 + 0i). Show that the complex number

w =
a

a2 + b2
− b

a2 + b2
i.

satisfies zw = wz = 1, where z = a+ bi. (*Hint*) ♢

https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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Based on the previous exercise, we are able to define z−1 for the complex
number z = a+ bi:

z−1 =
a

a2 + b2
− b

a2 + b2
i =

a− bi

a2 + b2
,

where the second equality follows from the distributive law. We finally arrive
at the formula for dividing two complex numbers:

c+ di

a+ bi
= (c+ di) · a− bi

a2 + b2
,

or alternatively
c+ di

a+ bi
=

a− bi

a2 + b2
· (c+ di).

(These formulas holds as long as a+ bi ̸= 0).

It seems obvious that we should be able to write this formula more
compactly as

c+ di

a+ bi
=

(c+ di)(a− bi)

a2 + b2
,

and in fact we can. This is because the distributive and associative laws
once again comes to our rescue. Starting with the first expression above for
(c+ di)/(a+ bi) we have:

c+ di

a+ bi
= (c+ di) · a− bi

a2 + b2
(from above)

= (c+ di) ·
(
(a− bi) · 1

a2 + b2

)
(distributive law)

= ((c+ di) · (a− bi)) · 1

a2 + b2
(associative law)

=
(c+ di) · (a− bi)

a2 + b2
(definition of division).

We summarize the formulas for complex addition, multiplication, and
division below:

� Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

� Multiplication: (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

� Division:
c+ di

a+ bi
=

(c+ di)(a− bi)

a2 + b2

Exercise 4.2.8. Evaluate each of the following.
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(a) (3− 2i) + (5i− 6)

(b) (5− 4i)(7 + 2i)

(c) (
√
7 +

√
6i)(

√
7−

√
6i)

(d) (a− bi)(a+ bi)

(e) (a+ bi)(b+ ai)

(f) (2 +
√
3i)2

(g) (1 + i)(−1 + i)(−1− i)(1− i)

(h) (
√
3+ i)(−1+

√
3i)(−

√
3− i)(1−√

3i)

(i)
(√

5 +
√
5 + i

√
5−

√
5
)4

(*Hint*)

(j)
1 + 2i

2− 3i

(k)
a+ bi

b− ai

(l)
1 + i

1− i
+

1− i

1 + i

(m)

√
3−

√
5i√

5 +
√
3i

(n) i45 (*Hint*)

(o) (1 + i)4 (*Hint*)

(p) (1 + i)41

(q) (1 +
√
3i)11

(r) i1001 + i1003

(s)
(

i
3+4i

)
+
(

2
4+3i

)
♢

Exercise 4.2.9. If the nonzero complex number z has equal real and imag-
inary parts, then what can you conclude about z2? What can you conclude
about z4? (*Hint*) ♢

Exercise 4.2.10. z = 3 + i is a solution to z2 − 6z + k = 0. What is the
value of k? ♢

You are probably familiar with the fact that the product of two nonzero
real numbers is also nonzero. Is the same true for complex numbers? The
answer is yes.

Proposition 4.2.11. Given that z = a + bi, w = c + di, and z · w = 0.
Then it must be true that either z = 0 or w = 0.

The proof of Proposition 4.2.11 is outlined in the following exercise.

Exercise 4.2.12. Complete the proof of Proposition 4.2.11 by filling in the
blanks. Note that some blanks may require an expression, and not just a
single number or variable.

https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4


40 CHAPTER 4 COMPLEX NUMBERS

(a) The proof is by contradiction. So we begin by supposing that z ̸=
< 1 > and w ̸= < 2 > (which is the negation of what we’re trying

to prove).

(b) Since z ̸= < 3 > , it follows that z has an inverse z−1 such that z−1·z =
< 4 > .

(c) Since z ·w = 0, we can multiply both sides of this equation by < 5 >
and obtain the equation w = < 6 > . This equation contradicts the
supposition that < 7 > .

(d) Since our supposition has led to a false conclusion, it follows that our
supposition must be < 8 > . Therefore it cannot be true that < 9 > ,
so it must be true that < 10 > .

♢

4.2.2 Comparison of integer, rational, real and complex ad-
dition properties

It is obvious that addition with integers, rational numbers, and real num-
bers have very similar properties. In this section, we explore some of these
properties.

For instance, integers have an additive identity , that is, one special
unique integer that can be added to any integer without changing that
integer. The additive identity of the integers is 0, because for instance
5+0 = 5 and 0+5 = 5. In general, if we let n be an arbitrary integer, then
n+0 = 0+n = n. It’s pretty easy to see that 0 is also the additive identity
of the rationals, and the additive identity of the reals.

Every integer also has an additive inverse ,that is a corresponding num-
ber that can be added to the integer such that the sum is the additive identity
(that is, 0). For example, the additive inverse of the number 5 is −5, be-
cause 5+ (−5) = 0 and (−5)+ 5 = 0. In general, if we let n be an arbitrary
integer, then n+ (−n) = (−n) + n = 0.

Notice an important difference between additive identity and additive
inverse: the number 0 is the identity for all integers, but each integer has a
different inverse.
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Integers
(n,m, k)

Rationals
( nm ,

p
q ,

j
k )

Reals
(x, y, z)

Complex (a +
bi, c+ di, e+ fi)

Additive
identity

n + 0 = 0 +
n = n

n
m + 0 = 0 +
n
m = n

m

x+0 = 0+
x = x

(a + bi) + · · · =
· · ·

Additive
inverse

n + (−n) =
(−n)+n = 0

n
m + · · · = · · · · · · · · ·

Associa-
tive law

n+(m+k) =
(n+m) + k

n
m+(pq +

j
k ) =

· · ·
· · · · · ·

Commu-
tative law

n+m = m+
n

· · · · · · · · ·

Table 4.1: Additive properties of different number systems

Exercise 4.2.13. Complete all entries of Table 4.1, which shows the addi-
tive properties of integers, rationals, reals, and complex numbers.

♢

4.2.3 Comparison of integer, rational, real and complex mul-
tiplication properties

Just as we’ve talked about the additive identity and inverse for different
number systems, in the same way we can talk about the multiplicative iden-
tity and inverse for different number systems.

The integers have multiplicative identity 1 because n · 1 = 1 · n = n.
However, most integers do not have a multiplicative inverse. Take the num-
ber 5, for example. There is no integer that can be multiplied by 5 to give
1 (of course, 5 · 1

5 = 1
5 · 5 = 1, but 1

5 is not an integer, so it doesn’t count).

On the other hand, the real numbers do have multiplicative inverses,
with just one exception.

Exercise 4.2.14. Which real number does not have a multiplicative in-
verse? Explain your answer. ♢

Exercise 4.2.15. Complete all entries of Table 4.2, which shows the mul-
tiplicative properties of nonzero rationals, reals, and complex numbers.

https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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Rationals
( nm ,

p
q ,

j
k )

Reals (x,y,z ) Complex (a+ bi,
c+ di,e+ fi)

Multiplicative
identity

· · · x · 1 = 1 · x = x (a+bi) · . . . = . . .

Multiplicative
inverse

· · · x · 1
x = 1

x · x =
1 if x ̸= 0

· · ·

Associative law · · · x(yz) = (xy)z · · ·
Commutative

law
· · · xy = yx · · ·

Table 4.2: Multiplicative properties of different number systems

♢

Exercise 4.2.16. Prove FOIL for complex numbers: that is, if u, v, w, and
z are complex numbers, then (u+ v)(w + z) = uw + uz + vw + vz. ♢

Tables 4.1-4.2 show that complex numbers also follow the same funda-
mental algebraic rules that real numbers do. This makes life a lot simpler!
From now on, in our proofs we may freely apply these properties to complex
numbers, just like with real numbers. But it’s important to realize that we
had to go through the process first of establishing the properties specifically
for complex numbers, because there are number systems in which these basic
properties do not hold–be forewarned!

4.2.4 Modulus and complex conjugate

We are familiar with the absolute value of a real number: for instance,
| −

√
7| =

√
7. In general, for a real number x the absolute value can be

defined as |x| ≡
√
x2. (Here and elsewhere, the square root symbol is used

to denote the positive square root.)

Definition 4.2.17. For a complex number z, the absolute value or mod-
ulus of z = a+ bi is |z| =

√
a2 + b2. △

Complex numbers have an additional operation that real numbers do
not have.
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Definition 4.2.18. The complex conjugate of a complex number z =
a+ bi is defined to be z = a− bi. △

Example 4.2.19. Let z = 2 + 3i and w = 1− 2i. Then

z = 2 + 3i = 2− 3i and w = 1− 2i = 1 + 2i.

Notice also that

z + w = (2 + 3i) + (1− 2i) = 3 + i and zw = (2 + 3i)(1− 2i) = 8− i,

so that
z + w = 3− i and zw = 8 + i.

On the other hand, you may check that

z + w = (2− 3i) + (1 + 2i) = 3− i and zw = (2− 3i)(1 + 2i) = 8 + i.

What a “coincidence”!

Another remarkable “coincidence” occurs when we multiply complex
numbers by their complex conjugates:

z · z = (2 + 3i)(2− 3i) = 13 and w · w = (1− 2i)(1 + 2i) = 5,

while on the other hand, we may compute the moduli of z and w as

|z| =
√

22 + 32 =
√
13 and |w| =

√
12 + 22 =

√
5.

♦

Exercise 4.2.20. Evaluate each of the following.

(a) i

(b) (4− 5i)− (4i− 4)

(c) (9− i)(9− i)

(d) (3 + 4i) + (3 + 4i)

(e) (
√
7 + 8i)− (

√
7 + 8i)

(f)
(√

3− i
)−1

(g)
(√

3− i
)−1

(h)
((

4− 9i
)−1
)−1

(i) (a+ bi)(a+ bi)

https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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(j) (a+ bi) + (a+ bi)

(k) 3+8i
7+6i .

(l) (4− 7i) · (3 + 3i)−1

♢

In order to use the complex conjugate and modulus operations effec-
tively, we need to know how they interact with the arithmetic operations
of addition, multiplication, subtraction, and division. In the following, we
prove several propositions that estabish important properties of these two
operations.

Proposition 4.2.21. Given z and w are complex numbers, then z + w =
z + w.

Proof. We may write z as a+ bi and w as c+ di. Then

z + w = a+ bi+ c+ di

= (a− bi) + (c− di) by definition of conjugate

= (a+ c)− (b+ d)i commutative, associative

= (a+ c) + (b+ d)i by definition of conjugate

= z + w by definition of complex addition

□

Exercise 4.2.22. Prove each of the following propositions (follow the style
of Proposition 4.2.21).

(a) (z̄) = z

(b) z · w = zw

(c) If a is real, then az = az

(d) |z| = |z|

(e) zz = |z|2

(f) |zw| = |z||w|

(g) |z|3 = |z3| (*Hint*)

(h) z−1 =
z

|z|2
(*Hint*)

(i) |z−1| = 1

|z|
(*Hint*)

(j) (z)−1 = z−1

(k) (zw)−1 = w−1z−1

♢



4.2 ARITHMETIC WITH COMPLEX NUMBERS 45

Exercise 4.2.23. Simplify the following expression: (z + iz̄)(z − iz̄) +
(z + z̄)(z − z̄). ♢

Exercise 4.2.24. Suppose that z is a complex number such that z−1 = z̄.

(a) Find the modulus of z.

(b) How many solutions does this equation have?

♢

Exercise 4.2.25.

(a) Show that the complex number z = a+ bi is a pure real number if and
only if z = z. (Note that you actually need to prove two things here:
(i) If z is real, then z = z; (ii) If z = z, then z is real).

(b) Prove that i(z + z̄)(z − z̄) is real for any complex number z.

(c) In view of part (a), complete the following statement: “The complex
number z = a+bi is a pure imaginary number if and only if z = . . . . . . .”
Prove your statement.

♢

Now that we have proved properties of complex numbers in the previous
two exercises, we may make use of these properties to prove facts about
complex numbers without having to write everything out as a+ bi.

Exercise 4.2.26.

(a) Prove that If |z| = 1 and z is not a real number, then z−1
z+1 is a pure

imaginary number. (*Hint*)

(b) Prove that If |z| = 1 and z is not a pure imaginary number (i.e. z is not
of the form 0 = bi, then z−i

z+i is a pure imaginary number.

♢

Exercise 4.2.27.

https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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(a) *Use appropriate properties from Exercise 4.2.22 to prove the following:
for any nonzero complex number z, the absolute value of z + z̄−1 is
greater than

√
3. (*Hint*)

(b) Give an example of z such that |z + z̄−1| = 2.

(c) Give four additional examples of z such that |z + z̄−1| = 2.

(d) **Show that for any nonzero complex number z, |z+ z̄−1| ≥ 2. (*Hint*)

(e) Show by example that part (d) is not true if z + z̄−1 is replaced with
z + z−1. Find the smallest possible value for |z + z−1|.

♢

4.3 Alternative representations of complex num-
bers

4.3.1 Cartesian representation of complex numbers

There are several ways to represent complex numbers, that have different
conceptual advantages. For instance, a complex number z = a + bi can be
considered simply as a pair of real numbers (a, b), where the first number
is the real part and the second number is the imaginary part. We are used
to plotting ordered pairs (a, b) on an xy plane, where a is the x coordinate
and b is the y coordinate. Representing a complex number in this way as an
ordered pair (a, b) is called the rectangular or Cartesian representation.
The rectangular representations of z1 = 2+3i, z2 = 1−2i, and z3 = −3+2i
are depicted in Figure 4.3.1.

Often the notation a+ bi is also referred to as “rectangular representa-
tion”, since it’s so similar to (a, b). In the following, we will refer to a + bi
as the “rectangular form” of the complex number z.

Mathematicians naturally think of complex numbers as points on a plane
– in fact, the complex numbers are often referred to as the “complex plane”.

https://www.youtube.com/watch?v=J7M1jjjkyEM&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=5


4.3 ALTERNATIVE REPRESENTATIONS OF COMPLEX NUMBERS 47

y

x0

z1 = 2 + 3i

z3 = −3 + 2i

z2 = 1− 2i

Figure 4.3.1. Rectangular coordinates of a complex number

4.3.2 Vector representation of complex numbers

You should already know that a point in a plane can also be considered as
a vector : in other words, the ordered pair (a, b) can be identified with the
vector ai + bj, where i and j are the unit vectors in the x+ and y+ directions,
respectively. So complex numbers can also be considered as two-dimensional
vectors.

Exercise 4.3.1.

(a) Write the numbers 3 + 7i and −5 + 9i as vectors.

(b) Find the sum of the two vectors that you found in (a).

(c) Find the sum (3 + 7i) + (−5 + 9i)

(d) What is the relation between your answers to (b) and (c)? Explain.

♢

Although the preceding exercise may seem sort of pointless, in fact it
is extremely significant. This is our first example of an isomorphism: a
correspondence between mathematical systems that are essentially identical.
At this point we will not give a formal definition of isomorphism, but to get
the gist of the idea consider two mathematicians (Stan and Ollie) with very
different tastes. Stan thinks geometrically, so he always thinks of complex

https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5
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numbers as vectors in a plane; while Ollie thinks algebraically, so he writes
complex numbers as a + bi. If Stan and Ollie work on the same problem
involving complex addition, even though Stan’s answer will be a vector and
Ollie’s will look like a + bi, their answers will always agree (that is, if they
both do the problem right).

Of course this correspondence between complex numbers and vectors
breaks down when we consider multiplication, because we have never seen
multiplication of 2-D vectors before. But it works perfectly well if we stick
with addition.

4.3.3 Polar representation of complex numbers

Nonzero complex numbers can also be represented using polar coordi-
nates. To specify any nonzero point on the plane, it suffices to give an
angle θ from the positive x axis in the counterclockwise direction and a
distance r from the origin, as in Figure 4.3.2. The distance r is the ab-
solute value or modulus defined previously, while the angle θ is called the
argument of the complex number z.

y

x0

a+ bi

r

θ

Figure 4.3.2. Polar coordinates of a complex number

4.3.4 Converting between rectangular and polar form

We can see from the Figure 4.3.2 that

z = a+ bi = r cos θ + (r sin θ)i,



4.3 ALTERNATIVE REPRESENTATIONS OF COMPLEX NUMBERS 49

where

r = |z| =
√
a2 + b2

a = r cos θ

b = r sin θ.

We will frequently use the abbreviation ‘cis’, which stands for “cosine plus
i sine”:

cis θ := cos θ + i sin θ.

(In this expression, the notation “:=” means “is defined as”. Note that we’re
writing ‘i sin θ’ instead of (sin θ)i, because then we don’t need a parenthesis.)
Multiplying both sides by r gives

r cis θ = r(cos θ + i sin θ)

We know from trigonometry that adding 2π to θ does not change cos θ
or sin θ. This means for example that the following complex numbers are
equal: 2.6 cis

(
π
9

)
, 2.6 cis

(
2π + π

9

)
, 2.6 cis

(
−2π + π

9

)
, . . .. However, we can

always find a θ between 0 and 2π such that z = r cis θ; so the standard
representation of z = r cis θ has 0 ≤ θ < 2π.

Example 4.3.2. Let z = 2 cis π3 . Then

a = 2 cos
π

3
= 1

and
b = 2 sin

π

3
=

√
3.

Hence, the rectangular representation is z = 1 +
√
3 i. ♦

Conversely, if we are given a rectangular representation of a complex
number, it is often useful to know the number’s polar representation.

Example 4.3.3. Let z = 3
√
2−3

√
2 i (see Figure 4.3.3). Then the modulus

of z is
r =

√
a2 + b2 =

√
36 = 6.

We can find the argument θ by noticing that the tangent is equal to −3
√
2

3
√
2

or −1. This means that θ = arctan(−1). Since the angle is in the fourth
quadrant, this means that θ = 7π

4 .

https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5
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In general, for the complex number a+ b i we have

θ = arctan

(
b

a

)
,

where we must be careful to choose the value of θ corresponding to the
quadrant where a+ b i is located. The best way to make sure you’ve chosen
the right θ is to draw a picture (like Figure 4.3.3). ♦

Figure 4.3.3. Modulus and argument of z = 3
√
2− 3

√
2 i

Exercise 4.3.4. Convert the following complex numbers to rectangular
form (that is, write as a + bi). Give exact answers and not decimals (use
square roots if necessary).

(a) 2 cis(π/6)

(b) 5 cis(9π/4)

(c) 3 cis(π)

(d)
cis(7π/4)

2

(e)
√
2 cis(5π/3)

(f) 1√
7
cis(−7π/6)

(g) 14 cis(30π/12)

♢

Exercise 4.3.5. Convert the following complex numbers to polar represen-
tation (Give exact answers, no decimal approximations).
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(a) 1− i

(b) −1 + i

(c) −5

(d) 2 + 2i

(e) −2− 2i

(f)
√
3 + i

(g) −3i

(h) 2i+ 2
√
3

(i)
√
6−

√
6i

(j) −3
√
2−

√
6i

(k) −
√
50−

√
50i

♢

Pictures are essential for gaining an intuitive grasp of how complex num-
bers work. They’re also a lot more fun to draw than mathematical symbols.

Exercise 4.3.6.

(a) Figure 4.3.2 shows polar and Cartesian representations of a complex
number z in the complex plane. Redraw the figure, and put z in the
picture as well. Show the Cartesian coordinates of z, as well as the
modulus and the complex argument (angle).

(b) Use your picture to obtain the polar representation of z̄ in terms of the
modulus and complex argument of z.

♢

The close interrelationship between plane geometry and complex num-
bers is a rich source of mathematical insight. The following exercise explores
some aspects of this relationship.

Exercise 4.3.7.

(a) Consider the following set of complex numbers:

{z such that |z| < 2.}

In the complex plane, what does this set look like? Draw a picture, and
describe verbally.

(b) Use complex numbers to specify the set of all points on a circle of ra-
dius 5 with center at the origin (your answer should look like the set
specification given in part (a)).

https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5
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(c) Consider the following set of complex numbers:

{z such that |z − i| = 2.}

In the complex plane, what does this set look like? Draw a picture, and
describe verbally.

(d) Describe the following as a set of complex numbers: the set of all points
on a circle of radius 3 that passes through the origin and has center on
the positive x-axis.

♢

4.3.5 Multiplication and powers in complex polar form

The polar representation of a complex number makes it easy to find prod-
ucts, quotients, and powers of complex numbers.

Proposition 4.3.8. Let z = r cis θ and w = s cisϕ be two nonzero complex
numbers. Then

z · w = rs cis(θ + ϕ).

Alternatively, we may write

r cis θ · s cisϕ = rs cis(θ + ϕ).

Proof. The proof uses the following trigonometric formulas (surely you
remember them!):

cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ

sin(θ + ϕ) = cos θ · sinϕ+ sin θ · cosϕ

Exercise 4.3.9. Fill in the blanks to complete the proof:
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z · w = r cis θ · < 1 >

= r (cos θ + i sin( < 2 > )) · s ( < 3 > )

= rs · (cos θ + i sin( < 4 > )) · ( < 5 > )

= rs ((cos θ cosϕ− sin θ sinϕ) + i( < 6 > ))

= rs (cos(θ + ϕ) + i sin( < 7 > ))

= rs cis( < 8 > )

♢

□

Exercise 4.3.10. Use Proposition 4.3.8 and the polar expression for z̄ that
was given in Section 4.3.4 to give a simple proof of the following identity:

zz̄ = |z|2.

♢

We will also want to divide complex numbers in polar form. But first,
we need to characterize multiplicative inverses. Note for example that
[2 cis(3π/4)]−1 = (1/2) cis(−3π/4) since

2 cis(3π/4) · (1/2) cis(−3π/4) = 2 · (1/2) · cis(3π/4− 3π/4) = cis(0) = 1,

and similarly

(1/2) cis(−3π/4) · 2 cis(3π/4) = cis(0) = 1.

Exercise 4.3.11.

(a) Let z = 13 cis
(
5π
7

)
. Find a complex number w (in complex polar form)

such that zw = wz = 1. Write w so that its argument is between 0 and
2π. What is the sum of the arguments of z and w?

(b) Let z = 3
8 cis (0.39π) . Find a complex number w (in complex polar form)

such that zw = wz = 1. Write w so that its argument is between 0 and
2π. What is the sum of the arguments of z and w?

https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5
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(c) Given that z = r cis θ and w = s cisϕ. Determine what s and ϕ must
be so that w = z−1. That is, find values for s and ϕ (in terms of r and
θ so that

z · s cisϕ = s cisϕ · z = 1.

Specify ϕ in such a way that it lies in the interval [0, 2π].

♢

From Exercise 4.3.11 we may deduce that the inverse of a complex number
w = s cisϕ is

w−1 =
1

s
cis(2π − ϕ),

which we could also write as

w−1 =
1

s
cis(−ϕ)

since changing the argument by 2π does not change the value of the number.

Now recall that to divide two complex numbers z and w, we rewrite z
w

as z · w−1. So with z = r cis θ and w = s cisϕ we may divide as follows:

z

w
= (r cis θ) · (1

s
cis(−ϕ)) = r

s
cis(θ − ϕ).

The previous discussion proves the following proposition.

Proposition 4.3.12. Let z = r cis θ and w = s cisϕ be two nonzero complex
numbers. Then

z

w
=
r

s
cis(θ − ϕ).

Alternatively, we may write

r cis θ

s cisϕ
=
r

s
cis(θ − ϕ).

In summary, multiplication and division of complex numbers in polar form
proceeds as follows:

Multiplication:

� Multiply the two moduli together to get the modulus of the product.
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� Add the two arguments together to get the argument of the product.

Division:

� Divide the modulus of the numerator by the modulus of the denomi-
nator to get the modulus of the quotient.

� Subtract the argument of the denominator from the argument of the
numerator to get the argument of the quotient.

Example 4.3.13. If z = 3 cis(π/3) and w = 2 cis(π/6), then

zw = (2 · 3) cis(π/3 + π/6) = 6 cis(π/2) = 6i.

♦

Exercise 4.3.14. Calculate each of the following products using complex
polar arithmetic. Give the answer in rectangular form if you can do so
without using roots or decimals. Otherwise, leave the answer in polar form.

(a) 2 cis
(
π
4

)
· 1
2 cis

(
3π
4

)
(b) 14 cis

(
6π
5

)
· 1
7 cis

(
4π
5

)
(c) cis

(
9π
7

)
· 2 cis

(
8π
7

)
· 3 cis

(
4π
7

)
(d)

√
3 cis

(
π
12

)
·
√
56 cis

(
π
15

)
·
√
21 cis

(
π
15

)
(e)

√
5 cis

(
π
19

)
· 31/3 cis

(
π
3

)
· 451/3 cis

(−10π
57

)
♢

Exercise 4.3.15. Calculate each of the following quotients using complex
polar arithmetic. Give the answers in polar form.

(a)
5 cis

(
5π
6

)
2 cis

(
π
2

) (b)
27 cis

(
7π
12

)
6 cis

(
5π
3

)

https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5
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(c)
2
√
2 + 2

√
2i

√
3
4 + 1

4 i

(d)
3− 3i

2−
√
12i

(e)

√
27i√

3− 3i

(f)

√
17−

√
51i

−17− 17i

♢

Proposition 4.3.8 is the key fact used in finding the following formula for
powers of complex numbers in polar form:

Proposition 4.3.16.(de Moivre’s Theorem)

Let z = r cis θ be a nonzero complex number. Then for n = 1, 2, . . . we
have

(r cis θ)n = rn cis(nθ). (P (n))

(We identify this statement as “P (n)” for later convenience.)

Before giving the proof, we first give some general explanation of the
ideas behind the proof.

Ideas Behind the Proof: We will use a very common proof technique
called induction . 8 Induction is commonly used to prove statements of
the form “P (n) is true for n = 1, 2, 3, . . .”, where n is some equation or
statement involving the quantity n.

Notice that we actually want to prove an infinite number of statements:
that is, we want to prove:

� (r cis θ)1 = r1 cis θ

� (r cis θ)2 = r2 cis(2θ)

� (r cis θ)3 = r3 cis(3θ) . . .

The first statement is obviously true. The second statement (for n = 2) can
be proved using Proposition 4.3.8:

Exercise 4.3.17. Prove (r cis θ)2 = r2 cis(2θ) using Proposition 4.3.8. ♢

8In the Appendix we give a more thorough treatment of the topic of induction. Here
we give only a brief presentation.
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The third statement (for n = 3) can be proved using the statement for
n = 2:

Exercise 4.3.18. Fill in the blanks to complete the proof:

(r cis θ)3 = r cis θ · ( < 1 > )2 (associative)

= r cis θ · (r2 · < 2 > ) (by the previous exercise)

= r3 · cis(θ + < 3 > )) (by Proposition 4.3.8)

= < 4 > ) (by basic algebra)

♢

So we have actually used the statement for n = 2 to prove the statement for
n = 3. We could continue in this fashion to prove n = 4 from n = 3:

Exercise 4.3.19. Prove (r cis θ)4 = r4 cis(4θ), using Proposition 4.3.8 and
the result of the previous exercise (*Hint*) ♢

Obviously it would take a long time to prove n = 5 from n = 4, n = 6 from
n = 5, and so on. So instead, we will prove the following statement that
covers all these cases:

If (r cis θ)k = rk cis(kθ) is true, then (r cis θ)k+1 = rk+1 cis((k+1)θ) is also true.

This allows us to “ladder up”: if the statement is true for some integer,
then it’s also true for the next integer.

In summary, the induction proof has two basic elements:

� Prove the statement P (n) for n = 1 (this is called the “base case”);

� Assuming that P (n) is true for n = k, it follows that P (n) is also true
for for n = k + 1 (this is called the “induction step”).

Now that we’ve given the ideas, here is the actual proof of Proposition 4.3.16:

Proof. We will use induction on n. First, for n = 1 the proposition is
trivial. This establishes the “base case”.

https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5
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Next, assume that P (n) is true for n = k: that is, zk = rk cis(kθ). Then
using this fact and exponent rules, we may rewrite zk+1 as

zk+1 = zkz

= rk cis(kθ) r(cis θ)

= rk+1[cis(kθ + θ)]

= rk+1 cis[(k + 1)θ].

This establishes the “induction step”, which completes the proof. □

Example 4.3.20. We will compute z10 where z = 1 + i. Rather than
computing (1+ i)10 directly, it is much easier to switch to polar coordinates
and calculate z10 using de Moivre’s Theorem:

z10 = (1 + i)10

=
(√

2 cis
(π
4

))10
= (

√
2 )10 cis

(
5π

2

)
= 32 cis

(π
2

)
= 32i.

♦

Notice that de Moivre’s Theorem says nothing about a complex number
raised to negative powers. For any real number x, we know x−n means
(xn)−1. Complex numbers happen to work the same way.

Definition 4.3.21. Given a complex number z = r cis θ,

z−n = (zn)−1.

△

Example 4.3.22. Let z = 2 cis(π/4). What is z−3?

z−3 = (z3)−1

= ([2 cis(π/4)]3)−1

= (8 cis(3π/4))−1 (by de Moivre’s Theorem)

=
1

8
cis(5π/4) (by Exercise 4.3.11)
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♦

Exercise 4.3.23. Calculate each of the following expressions. Write the
answer as a+bi if you can do so without using roots or decimals. Otherwise,
you may leave the answer in polar form.

(a) (1 + i)−3

(b) (1− i)6

(c) (
√
3 + i)5

(d) (−i)10

(e) ((1− i)/2)4

(f) (−
√
2−

√
2 i)12

(g) (−2 + 2i)−5

(h) (
√
2 +

√
2− i

√
2−

√
2)16

(i) (
√
15−3

√
5i)5

602

(j) (1−i)10
(−

√
3+i)6

♢

4.3.6 A Remark on representations of complex numbers

We have seen that a complex number z can be expressed in a number of
different ways:

� As a+ bi, where a and b are real numbers;

� As a point in the Cartesian (two-dimensional) plane;

� As a pair of real numbers (a, b) that give the rectangular coordinates
of the point in the plane;

� As a pair of numbers (r, θ) where r ≥ 0 and 0 ≤ θ < 2π, that give the
polar coordinates of the point in the plane;

� As r · (cos θ + i · sin θ), or the equivalent form r · cis(θ).

In abstract mathematics, it is very common to represent the “same” entity
in a number of different ways. One of the main goals of abstract algebra is
to identify mathematical structures that are the “same” algebraically even
though they appear to be different. Mathematical structures that are the
“same” algebraically are said to be isomorphic. We will be seeing isomor-
phic structures throughout this course.

https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5
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The importance of isomorphism in mathematics cannot be overstated.9

Realizing that the same thing can be represented in two different ways is
often the key to mathematical progress, and can lead to enormous simplifi-
cations. For instance, we have seen that it’s easier to add complex numbers
in Cartesian form, while it’s much simpler to multiply complex numbers in
polar form. Since Cartesian and polar forms are simply two different ways
of representing the same thing, we can freely switch back and forth between
the two forms, using whichever is most convenient at the moment.

Exercise 4.3.24.

(a) Using de Moivre’s formula for z3 where z = cis θ, find formulas for cos 3θ
and sin 3θ in terms of cos θ and sin θ. (*Hint*)

(b) Using part (a), find a formula for cos 3θ in terms of cos θ. (*Hint*)

(c) Show that for any n, it is always possible to find a formula for cosnθ in
terms of cos θ.

(d) * Show that for any even n, it is always possible to find a formula for
cosnθ in terms of even powers of cos θ.

♢

4.4 Complex numbers and roots of algebraic equa-
tions

4.4.1 Roots of unity and regular polygons

As we mentioned before, complex numbers got their start when mathemati-
cians started considering the solutions to algebraic equations. One particu-
larly important equation is

zn = 1, where n ∈ N.

For example, when n = 4 the complex numbers which solve z4 = 1 are z = 1,
−1, i, and −i. In general, the complex numbers that satisfy the equation

9There are other types of “morphisms” as well, such as homeomorphism (in topology),
diffeomorphism (in differential topology), and just plain morphism (in category theory).

https://www.youtube.com/watch?v=c5WbBwp5av4&index=6&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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zn = 1 are called the nth roots of unity . (In other words, “nth root of
unity” means the same thing as ”nth root of 1”.)

Exercise 4.4.1.

(a) Give two distinct square roots of unity (that is, zn = 1 for n = 2).

(b) For what integers n is −1 an nth root of unity?

♢

It turns out that in general we can find n different nth roots of unity, as
per the following proposition:

Proposition 4.4.2.The complex number z is an nth root of unity if and
only if z satisfies the following condition:

z = cis

(
2kπ

n

)
, where k is an integer between 0 and n− 1.

To illustrate this proposition, consider the case n = 4. Then the equation
gives: z = cis(2kπ/4) where k = 0, 1, 2, 3, which works out to cis(0), cis(π/2),
cis(π), and cis(3π/2). Converting to Cartesian form we get 1, i,−1,−i as our
four roots, in perfect agreement with what we found in the first paragraph
of this section.

So, let’s give a proof!

Proof. The proposition is an “if and only if” assertion, meaning that we’ll
have to prove it both ways. We’ll start with the “only if ” part. To this
end, we suppose z is a complex nth root of unity. Our goal is to show that
z must satisfy the given formula. Any complex number may be written in
polar form, so we may write z = r cis(θ) where r is the modulus and θ is the
complex argument of z. So we may deduce:

zn = 1 (z is a nth root of unity)

⇒(r cis(θ))n = 1 (polar form of z)

⇒rn cis(nθ) = 1 (de Moivre’s theorem)

⇒|rn cis(nθ)| = |1| (take modulus of both sides)

⇒|r|n = 1 (properties of modulus)

⇒r = 1. (Since r is a nonnegative number)
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Now substituting r = 1 back into the third line in this series of implications,
we get:

cis(nθ) = 1 (substitution)

⇒ cos(nθ) + i sin(nθ) = 1 (definition of cis)

⇒ cos(nθ) = 1 and sin(nθ) = 0 (equality of complex numbers)

⇒nθ = m · 2π (periodicity of sin and cosine, from trig)

⇒θ = m · 2π/n. (basic algebra)

To recap, we have:

z = r cis(θ) where r = 1 and θ = 2πm/n, where m is an integer.

Now, any fraction of the form m/n can be written as an integer plus a
fractional part between 0 and 1. Furthermore, the fractional part always
has the form k/n where k is an integer between 0 and n−1. In other words:

m/n = ℓ+ k/n where ℓ and k are integers and 0 ≤ k < n.

It follows by substitution that

z =cis(2πm/n) (from last equality in previous series)

⇒ z = cis(2π(ℓ+ k/n)) (substitution)

⇒ z = cis(2πℓ) cis(2πk/n) (algebraic properties of cis)

⇒ z = cis(2πk/n). (def. of cis and trig)

Our goal has been achieved: z must definitely have the form cis(2πk/n)
where 0 ≤ k < n.

Now for the “if” part; we must show that complex numbers which satisfy
the formula as also nth roots of unity. By de Moivre’s Theorem,

zn = cis

(
n
2kπ

n

)
= cis(2kπ) = 1.

Finished!

□



4.4 COMPLEX NUMBERS AND ROOTS OF ALGEBRAIC EQUATIONS63

Remark 4.4.3. Note that the condition

z = cis

(
2kπ

n

)
, where k is an integer between 0 and n− 1.

does indeed specify n distinct values for z. This is because k/n produces n
different fractions between 0 and 1, so 2kπ

n gives n different angles between 0
and 2π. Our vector representation of complex numbers tells us that different
angles must produce different complex numbers. △

Exercise 4.4.4.

(a) Using Proposition 4.4.2, write three cube roots of unity in polar form.
Convert to the form a+ bi.

(b) Using Proposition 4.4.2, write six 6th roots of unity in polar form. Con-
vert to the form a+ bi.

♢

Exercise 4.4.5. In this exercise you will give a different proof that there
are exactly 4 4th roots of unity, by showing that any complex apart from 1,
-1, i, or −i cannot possibly be a 4th root of unity. First we suppose that w
is a complex number such that w /∈ {1,−1, i,−i}.

(a) Show that (w − 1)(w + 1)(w − i)(w + i) ̸= 0. (*Hint*)

(b) Show that this implies that w is not a 4th root of unity. (*Hint*)

♢

Exercise 4.4.6.

(a) Multiply out the product (z−1)(z− cis
(
2π
3

)
)(z− cis

(
4π
3

)
) and simplify.

(*Hint*)

(b) Use your result in (a) to show that there are exactly 3 cube root of unity.
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♢

When represented in the complex plane, the roots of unity have some
very interesting geometric properties:

Example 4.4.7. The 8th roots of unity can be represented as eight equally
spaced points on the unit circle (Figure 4.4.1). For example, some 8th roots
of unity are

ω =

√
2

2
+

√
2

2
i

ω3 = −
√
2

2
+

√
2

2
i

ω5 = −
√
2

2
−

√
2

2
i

ω7 =

√
2

2
−

√
2

2
i.

In fact, the 8th roots of unity form a regular octagon. ♦

y

x0 1

ω

i

ω3

−1

ω5

−i

ω7

Figure 4.4.1. 8th roots of unity

Exercise 4.4.8. Sketch the cube roots of unity in the complex plane. Use
the distance formula (from geometry) to show that the three points are all
the same distance from one another. Connect the three points to form a
triangle. What kind of triangle is it? ♢
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Exercise 4.4.9. Prove (using geometry) that the 4th roots of unity form
a square. (Hint : Besides showing that all sides are equal, you also have to
show that they are perpendicular.) ♢

Exercise 4.4.10. *Prove (using geometry) that the 6th roots of unity form
a regular hexagon. (Hint : Draw lines from each point to the origin, forming
6 triangles. What can you say about these triangles?) ♢

Once again, we see an interesting relationship between complex numbers
and plane geometry. Let us explore this relationship a little further.

Exercise 4.4.11.

(a) Draw a picture of the 6th roots of unity in the complex plane. Label
them A,B,C,D,E, F with A = 1, B = cis

(
2π
6

)
, and C,D,E, F going

counterclockwise around the circle.

(b) Fill in each of the following blanks with the letter corresponding to the
product of the two complex numbers. For example, B · B = cis

(
2π
6

)
·

cis
(
2π
6

)
= cis

(
2π
3

)
= C.

B ·A = < 1 >

B ·B = < 2 >

B · C = < 3 >

B ·D = < 4 >

B · E = < 5 >

B · F = < 6 >

(c) Using your answers from part (b), on your picture draw an arrow from
A to B · A; similarly draw arrows from B to B · B, C to B · C, and so
on. What do you observe about the arrows?

(d) It appears that multiplying all of the corners of the hexagon ABCDEF
by B produces a rotation of the hexagon. What is the angle of rotation?

(e) Fill in the blanks:

E ·A = < 1 >

E ·B = < 2 >

E · C = < 3 >

E ·D = < 4 >

E · E = < 5 >

E · F = < 6 > .

(f) Just as in part (c), use your answers from part (d) to draw arrows from
A to E ·A, B to E ·B, etc. What do you observe about the arrows?
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(g) Fill in the blanks: If you choose one particular 6th root of unity and
multiply it with all the other 6th roots, the new values correspond to
different < 1 > of the original hexagon. The angle of < 2 > is
equal to the complex argument of the < 3 > .

♢

Exercise 4.4.12.

(a) Just as in part (b) of Exercise 4.4.11 fill in the blanks with the correct
letter A,B,C,D,E or F (recall that A denotes the complex conjugate
of A).

A = < 1 >

B = < 2 >

C = < 3 >

D = < 4 >

E = < 5 >

F = < 6 > ).

(b) Just as in part (c) of Exercise 4.4.11, draw arrows from A to A, B to
B, etc. What do you observe about the arrows?

(c) We refer to the geometrical motion produced by complex conjugation
as “flipping”. What is the axis of the “flip” that is produced by taking
the complex conjugates of the sixth roots of unity?

♢

The previous exercises (when suitably generalized) lead to the following
stupendous conclusion:

� Every rigid motion of a regular n-gon is equivalent to some combina-
tion of complex conjugation and multiplication by one of the nth roots
of unity. (By “rigid motion” we mean any motion that a rigid object
could undergo, without stretching or bending or distorting it in any
way. We’ll have more to say about rigid motions in Chapter 13.)

Exercise 4.4.13.

(a) What geometrical motion corresponds to the following algebraic opera-
tion: Multiply all 6th roots by D, then take the complex conjugates.
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(b) What geometrical motion corresponds to the following algebraic oper-
ation: “Take the complex conjugates of all 6th roots, then multiply by
D.”

(c) What geometrical motion corresponds to the following algebraic opera-
tion: “Multiply all 6th roots by C, then take the complex conjugates.”

(d) What geometrical motion corresponds to the following algebraic oper-
ation: “Take the complex conjugates of all 6th roots, then multiply by
C.”

♢

Exercise 4.4.13 also gives us our first exposure to a phenomenon that is
quite common in abstract algebra, namely the existence of non-commutative
operations (also known as non-abelian operations). We saw that both
multiplication by a nth root of unity and complex conjugation corresponded
to motions of a regular n-gon. However, the order of the motions matters:
rotating first and then conjugating (i.e. “flipping”) gives a different result
than conjugating first, then performing the rotation afterwards.

Exercise 4.4.14. If you’ve studied matrix multiplication, then you may
have seen non-commutative operations before:

(a) Give an example of two 2 × 2 matrices that do not commute: that is
AB ̸= BA.

(b) Give an example of two 2× 2 matrices that do commute.

♢

The previous exercises give a small hint as to the extensive and beau-
tiful relationship between the complex numbers and plane geometry. The
following exercises further explore this relationship.

Exercise 4.4.15. Consider a plane with Cartesian coordinates. Let O be
the point (0, 0), let A be the point (a, b), and let C be the point (c, d). Also,
let w = a+ bi and z = c+ di. We may consider the three complex numbers
0, w, z as representing the vertices of triangle OAC.

(A word to the wise: drawing a picture can be extremely helpful.)
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(a) Express the lengths of the three sides of the triangle in terms of w and
z. For example, the length of side OA is |w|.

(b) Show that multiplying 0, w, and z by w̄
|w| rotates the triangle so that

side OA lies along the real axis (you may use polar coordinates).

(c) Let 0, w′, and z′ be the three vertices of the rotated triangle. Show that
Re[z′] = zw̄+z̄w

2|w| and Im[z′] = zw̄−z̄w
2|w| .

(d) Show that the area of the rotated triangle is
∣∣ zw̄−z̄w

4

∣∣. (Since rotation
doesn’t change the area, your formula also gives the area of triangle
OAC.

(e) Let OA′C ′ denote the rotated triangle. Express the cosine of angle
∠A′OC ′ in terms of w and z.

(f) Let |OA′|, |OC ′|, and A′C ′| denote the lengths of the three sides of the
rotated triangle. Use complex arithmetic with w and z to prove the law
of cosines:

|A′C ′|2 = |OA′|2 + |OC ′|2 − 2|OA′||OC ′| cos(∠A′OC ′).

(Since rotation does not change lengths or angles, you have also proved
the law of cosines for the original triangle OAC.)

♢

Exercise 4.4.16. As in the previous problem, consider points O,A,C in
the Cartesian plan represented by complex numbers 0,w, and z respectively.

(a) The segments OA and OC are two sides of a parallelogram P , where
O,A,C are three of the four vertices of P . Let D be the fourth vertex
of P . Let v be the complex number that represents D. Express v in
terms of w and z.

(b) We have seen that points in the plane are associated with vectors, which
in turn may be represented by complex numbers. For example, the vec-
tor A⃗C is represented by the complex number z−w. Find the complex
number that represents the vector O⃗D.

(c) Let F and G be any two points in the plane, represented by the complex
numbers q and r respectively. Show that OF is perpendicular to OG if
and only if q/r is imaginary (you may use polar coordinates).
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(d) Show that the two diagonals of the parallelogram P are perpendicu-
lar if and only if the parallelogram is a rhombus, i.e. all sides of the
parallelogram are equal.

♢

Exercise 4.4.17. As in the previous problems, consider points O,A,C in
the Cartesian plan represented by complex numbers 0,w, z respectively.

(a) The perpendicular bisector of side OA corresponds to the set of complex
numbers {w/2+itw, t ∈ R}. Similarly, the perpendicular bisector of OC
corresponds to the set of complex numbers {z/2 + isz, s ∈ R}. Express
the perpendicular bisector AC as sets of complex numbers.

(b) The perpendicular bisectors of OA and OC intersect at a point B in
the Cartesian plane, which corresponds to a complex number v. Since
v is on both perpendicular bisectors, we may write v = w/2 + it′w and
v = z/2 + is′z. By setting these expressions, we may solve for s′ in
terms of t, w, z. Since s′ is real we have s′ = s̄′, so that we may obtain
another equation for s′ in terms of t′, w̄, z̄. Solve for t′ by setting these
two equations equal. Then solve for s′ using your solution for t′.

(c) Since we have v = w/2+ it′w and v = z/2+ is′z, we may also write v as
the average of these two expressions: v = 1/2(w/2 + it′w) + 1/2(z/2 +
is′z). By plugging in the values of t′ and s′ and rearranging, show that
we may write v = (w + v)/2 + ir′(w − v), where r′ is real.

(d) Conclude that the perpendicular bisectors of triangle OAC all meet at
a single point.

segments OA and OC are two sides of a parallelogram P , where O,A,C
are three of the four vertices of P . Let D be the fourth vertex of P . Let
v be the complex number that represents D. Express v in terms of w
and z.

(e) We have seen that points in the plane are associated with vectors, which
in turn may be represented by complex numbers. For example, the vec-
tor A⃗C is represented by the complex number z−w. Find the complex
number that represents the vector O⃗D.

(f) Let F and G be any two points in the plane, represented by the complex
numbers q and r respectively. Show that OF is perpendicular to OG if
and only if q/r is imaginary (you may use polar coordinates).



70 CHAPTER 4 COMPLEX NUMBERS

(g) Show that the two diagonals of the parallelogram P are perpendicu-
lar if and only if the parallelogram is a rhombus, i.e. all sides of the
parallelogram are equal.

♢

In fact, many intricate theorems in plane geometry that require long
proofs using conventional methods can be proven much more easily using
complex numbers. We will not be exploring this further; but we hope these
examples will stimulate your imagination!

4.4.2 Complex nth roots in general

In the previous section, we characterized all complex solutions of the equa-
tion zn = 1; we called these solutions the nth roots of unity. A natural
question to ask then is, What about the nth roots of any complex number?
That is, given a complex number a + bi, can we find all solutions to the
equation zn = a+ bi? Let’s explore some simple cases first.

Exercise 4.4.18.

(a) Find all square roots of 1.

(b) Find all square roots of 4.

(c) Find all square roots of -1.

(d) Find all square roots of -2.

(e) In each of the above cases, given one of the square roots, you can find a
second square root by multiplying by (fill in the blank).

♢

We may use the observation from part (e) of the previous exercise to
find find alternative square roots of other complex numbers.

Exercise 4.4.19.

(a) The complex number 1+i is one square root of 2i. Can you find another
one?

https://www.youtube.com/watch?v=o5wpaYsDU4o&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=7
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(b) Find two square roots of 8i. (*Hint*)

(c) Find two square roots of −8i.

♢

Next, let us consider the case of cube roots. Consider for example the
cube roots of 1 + i, which are the solutions to

z3 = 1 + i.

We may rewrite this in polar form as

(r cis θ)3 =
√
2 cis

(π
4

)
,

where r cis θ is z in polar form. De Moivre’s theorem then gives us:

r3 cis 3θ =
√
2 cis

(π
4

)
.

One solution for r and θ which satisfies this equation is:

r3 =
√
2 ⇒ r = 21/6 and 3θ = π/4 ⇒ θ = π/12,

so that

z = 21/6 cis(π/12).

We may use deMoivre’s theorem to verify that this z is indeed a cube root
of 1 + i. But is it the only one? In fact, if we multiply this z by cis(2π/3)
and cube the result, we find:(

21/6 cis(π/12) · cis(2π/3)
)3

=
(
21/6 cis(π/12)

)3
· (cis(2π/3))3

= (1 + i) · 1
= 1 + i,

so that z · cis(2π/3) is also a cube root of 1+ i. Why does this work? Notice
that cis(2π/3) is a cube root of unity, so it turns into 1 when cubed. The
same thing happens with cis(4π/3), which is the other cube root of unity–
you may check that z · cis(4π/3) is an additional cube root of 1 + i. This
example suggests a general procedure for finding 3 distinct cube roots of
complex numbers:
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� Find a single cube root using de Moivre’s Theorem;

� Multiply your result by cis(2π/3) and cis(4π/3) to obtain 3 distinct
cube roots.

This takes care of cube roots. But let’s not stop there! We can use a
similar procedure to find n distinct nth roots of any complex number:

� Find a single root using de Moivre’s Theorem;

� Multiply your result by all n roots of unity to obtain n distinct roots.

Exercise 4.4.20. Show that the 2-step procedure above gives all nth roots
of a given complex number. That is, show that any complex nth root of z
can be obtained as an nth root of unity times any other complex nth root
of z. You may proceed as follows. Suppose z is a complex number, and w1

and w2 are nth roots of z. Show that there exists an nth root of unity u
such that w1 is the product of u and w2, i.e. w1 = u · w2. ♢

Exercise 4.4.21. (In this exercise, you may leave your answers in polar
form)

(a) Find all fifth roots of −i.

(b) Find all fourth roots of −1 +
√
3i.

(c) Find all fourth roots of
√

1/2 +
√
2/4 + i

√
1/2−

√
2/4. (*Hint*)

(d) Find all sixth roots of −16i.

(e) Find all seventh roots of 5− 5i.

♢

Exercise 4.4.22. In previous exercises, we have considered nth roots where
n is a positive integer. But what about negative roots?

(a) For parts (a-e) in Exercise 4.4.21, find the corresponding negative roots
(i.e., in part (a) find the negative 5th roots, etc).
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(b) Explain the relationship between the moduluses of the roots you found
in Exercise 4.4.21, and the roots you found in part (a).

(c) Explain the relationship between the complex arguments of the roots
you found in Exercise 4.4.21, and the complex arguments you found in
part (a).

♢

4.4.3 Complex roots of polynomial equations

Next we consider more general algebraic equations than the basic nth root
equations we’ve been looking at so far. As a first example, consider the
equation z2 + pz = q, where p and q are real numbers. Using the quadratic
formula, it is not too hard to show that if a+bi is a solution of z2+pz = q then
the complex conjugate a− bi is also a solution. This is because z2 + pz = q
can also be written as z2 + pz − q = 0, and the quadratic formula tells us
that there are two solutions, given by:

z =
−p±

√
p2 − (4)(1)(−q)

2
=

−p
2

±
√
p2 + 4q

2
.

The −p/2 term is always real, but the square root term is either real or
imaginary depending on the sign of p2 + 4q (since q could be negative). If
the square root term is real, then both roots are real, and each root is its
own complex conjugate. If the square root term is imaginary, then the ±
means that the imaginary parts of the two roots are negatives of each other,
so that the two roots are complex conjugates.

Exercise 4.4.23. Consider the cubic equation z3+pz2+ qz = r, where p, q
and r are all real numbers.

(a) Using an appropriate identity from Exercise 4.2.22, show that z3 = z3.

(b) Similarly, show pz2 = pz2 and qz = qz, and r = r.

(c) Use (a) and (b) to show that z3 + pz2 + qz − r = z3 + pz2 + qz − r.

(d) Using (c), show that z3+pz2+qz−r = 0 implies that z3+pz2+qz−r = 0.

(e) Using (d), show that if z is a solution to z3+ pz2+ qz = r then z is also
a solution.

https://www.youtube.com/watch?v=HKtljwos03o&index=8&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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♢

Exercise 4.4.24. Suppose the cubic equation z3+ pz2+ qz = r has an odd
number of solutions. Show that at least one of the solutions must be real.
♢

The proof in Exercise 4.4.23 can be straightforwardly generalized to quar-
tic, quintic, and higher-degree polynomials as well. The result is:

Proposition 4.4.25. Given that the complex number z is a solution of
zn + an−1z

n−1 + an−2z
n−2 + . . . + a1z = a0, where a0, a1, . . . an−1 are real

numbers. Then z is also a solution to the same equation.

Exercise 4.4.26. Given that 3−7i and −2+ i are solutions to an equation
of the form z4 + a3z

3 + a2z
2 + a1z + a0 = 0 where a0, a1, a2, a3 are real.

(a) Find two other solutions to the same equation.

(b) *Find a0, a1, a2, a3. (*Hint*)

♢

Exercise 4.4.27. Given that p(z) = z3 + a2z
2 + a1z + a0 = 0, where

a0, a1, a2 are real numbers. Suppose p(1) = 16, and suppose that 1 + 2i is a
root of p(z).

(a) Find two other solutions to the same equation.

(b) Find a0, a1, a2.

♢

Exercise 4.4.28. Given the equation zn+an−1z
n−1+an−2z

n−2+. . .+a1z =
a0, where a0, a1, . . . an−1 are real numbers. Let N be the number of solutions
of the equation that are not real. Prove that either N = 0 or N is divisible
by 2. (*Hint*) ♢

Exercise 4.4.29. Suppose that p(z) is a fourth degree polynomial with real
coefficients. Suppose that p(z) = p(−z). Suppose also that 3 + 4i is a root
of p(z) and that p(0) = 1.
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(a) Find three other roots of p(z).

(b) Find p(z).

♢

The most famous result concerning complex roots of polynomials is
known as the Fundamental Theorem of Algebra :

Proposition 4.4.30. Given any equation of the form zn + an−1z
n−1 +

an−2z
n−2+ . . .+a1z = a0, where n > 0 and a0, a1, . . . an−1 are real numbers.

Then there exists at least one and at most n distinct complex numbers which
solve the given equation.

The Fundamental Theorem of Algebra actually has two parts. The easy
part is the “at most n distinct complex roots” part, and the hard part is
the “at least one complex root” part. We will eventually prove the easy
part in Chapter 12, but sadly the hard part is beyond our scope. For more
information on this see the Remark at the end of the chapter.

Exercise 4.4.31.

(a) Give an example of an equation of the form z2+ a1z = a0 that has only
one solution.

(b) Give an example of an equation of the form z3 + a2z
2 + a1z = a0 that

has only one solution.

(c) Can you give an example of an equation of the form z3+a2z
2+a1z = a0

that has exactly two solutions?

♢

Exercise 4.4.32. Using the Fundamental Theorem of Algebra and Exer-
cise 4.4.28, prove the following proposition: Given an equation of the form
zn+an−1z

n−1+an−2z
n−2+ . . .+a1z = a0, where n > 0 and a0, a1, . . . .an−1

are real numbers. Suppose the equation has no real solutions. Then the
equation has at least two distinct solutions. ♢

Exercise 4.4.33. Using the Fundamental Theorem of Algebra and Exer-
cise 4.4.28, prove the following proposition: Given an equation of the form



76 CHAPTER 4 COMPLEX NUMBERS

zn+an−1z
n−1+an−2z

n−2+ . . .+a1z = a0, where n is a positive odd number
and a0, a1, . . . .an−1 are real numbers. Then the equation has at least one
real solution. ♢

Exercise 4.4.34. Give an example of a polynomial of the form z6+ a5z
5+

a4z
4 + . . . + a1z = a0, that has no real solutions, and exactly two distinct

complex solutions. ♢

Remark 4.4.35. (historical background) The Fundamental Theorem of Al-
gebra is a famous “hard problem” in the history of mathematics. Some of the
greatest mathematicians in history (including Euler, Lagrange, Laplace, and
Gauss) thought they had proofs, only to have later mathematicians point
out flaws or gaps in the arguments. See http://www-history.mcs.st-and.
ac.uk/HistTopics/Fund_theorem_of_algebra.html for more details. In
the modern mathematics curriculum, the proof is usually given in courses
on complex analysis as an easy consequence of “Liouville’s theorem”, which
was first proved in 1847. Modern college students who learn basic concepts
from the theory of complex variables can readily grasp the theorem which
stymied the greatest mathematical minds of history. △

4.5 Applications of complex numbers

4.5.1 General remarks on the usefulness of complex numbers

We have already discussed that it took some time for complex numbers to be
generally accepted by mathematicians, who tended to have a preference for
“pure” numbers such as the integers. But complex numbers have had their
revenge. Today the “purest” form of mathematics, namely number theory, is
heavily dependent on complex numbers. The famous Fermat’s Last Theorem
was proved using techniques that involved complex numbers.10

But quite apart from pure mathematics, complex numbers have proved
to be extremely practical. Complex numbers are indispensable tools for
scientists and engineers. Virtually all of modern physics is based on complex
numbers. Engineers build bridges using complex numbers. Without complex
numbers, there would probably be no computers, cell phones or most other

10See http://www-history.mcs.st-and.ac.uk/HistTopics/Fermat’s_last_theorem.
html for some of the long and sordid history of Fermat’s Last Theorem.

http://www-history.mcs.st-and.ac.uk/HistTopics/Fund_theorem_of_algebra.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Fund_theorem_of_algebra.html
https://www.youtube.com/watch?v=beo_65G9I7Q&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=6
http://www-history.mcs.st-and.ac.uk/HistTopics/Fermat's_last_theorem.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Fermat's_last_theorem.html
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electronics. A strong argument could be made that complex numbers are
even more useful than “real” numbers.

Much of the practical usefulness of complex numbers comes from their
close relationship with the trigonometric functions cosine and sine. We have
seen a little bit of this already in the representation z = r cis θ. Complex
numbers give a powerful way to express complicated functions of sine and
cosine in a very simple way. We will give an introduction of this in the next
section–you may see it again, or have already seen it, in your differential
equations course.

4.5.2 Complex numbers in electrical engineering: phasors

We have already seen there is a close relationship between complex numbers
and the trigonometric functions sine and cosine. This relationship is the
basis for much of the usefulness of complex numbers – as we shall explain
in this section.

Figure 4.5.1 shows the graphs of the cosine and sine functions. They
look like waves: for instance, the graph of y = cos(t) is a wave that includes
the point (0, 1). The amplitude of this wave is 1. The period of this wave
is 2π radians.

Figure 4.5.1. Graphs of cosine and sine

Note that some references use the word “wavelength” instead of “pe-
riod”. This is because they are considering equations like y = cos(x) where
the independent variable x represents distance. We are considering the in-

https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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dependent variable to be time: so it is appropriate to use the word “period”
instead.

Of course, there are cosine and sine waves with different periods. How-
ever, in this section we will only be looking at cosine and sine waves with
period 2π. We re-emphasize: all the cosine and sine waves in this chapter
(and any that you use in the homework problems) have period 2π.

Now we can create other waves by using the cosine as a “parent function”.
For instance, the graph of y = A cos(t + θ) where A > 0 is similar to the
graph of y = cos(t), with the following differences:

� The amplitude is A

� The phase shift (relative to the cosine curve) is θ.

Remark 4.5.1.

� You may have studied “parent functions” in high school, and if so you
may remember that the graph of y = f(t + c) is shifted to the left
compared to the graph of y = f(t). It follows that a positive phase
shift will shift the graph to the left, while a negative phase shift will
shift it to the right (see Figure 4.5.2).11

� If the variable t is considered as time, then y = A cos(t+θ) is advanced
by θ (corresponding to a left shift of the graph), while y = A cos(t−θ)
is delayed by θ (corresponding to a right shift of the graph).

△

Exercise 4.5.2. Sketch the function y = 1.5 cos(t+ π/3). Label the ampli-
tude and phase shift on your graph. ♢

Exercise 4.5.3. Give the equation of a cosine wave with amplitude 7 and
phase shift −π/2. Graph the function. How is this function related to a sine
wave? ♢

11You should be careful when you encounter the term “phase shift” in other books,
because some books define a positive phase shift as moving the graph to the right. This
is not wrong: it’s just different terminology.
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Figure 4.5.2. Cosine wave with amplitude and phase shift

Exercise 4.5.4. Give the equation of a cosine wave with amplitude 1/2
and phase shift 2π. Graph the function. How is this wave related to the
original cosine wave with phase shift 0? ♢

Exercise 4.5.5.

(a) Sketch the function y = sin(t).

(b) Find three different choices of A, θ such that sin(t) = A cos(t+θ). What
are the possible values of A? (*Hint*)

♢

In summary, amplitude and phase are two important properties of cosine
and sine waves; and in fact the amplitude and phase uniquely determine the
actual wave, as you saw in Exercises 4.5.3 and 4.5.4. Now earlier in this
chapter, we saw a different mathematical object that was characterized by
amplitude and phase. Naturally, we’re referring to the complex numbers.
We will now make a deep connection between these two types of mathemat-
ical objects that, on the surface, are very different.

Recall that the real part of the complex number z = a+ bi is a, and the
imaginary part is b. We also use the notation Re[z] to denote the real part

https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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of the complex number z, and the notation Im[z] to denote the imaginary
part.

Exercise 4.5.6. Show that Re[A cis θ · cis(t)] = A cos(t+ θ). (*Hint*) ♢

Exercise 4.5.7. Show that Im[A cis θ · cis(t)] = A sin(t+ θ). ♢

The previous two exercises show that:

� A cosine wave with amplitude A and phase shift θ can be represented as
the real part of the complex number A cis θ times the complex function
cis(t).

� A sine wave with amplitude A and phase shift θ can be represented as
the imaginary part of the complex number A cis θ times the complex
function cis(t).

We may also understand this situation in terms of two-dimensional vectors
with the help of Figure 4.5.3. We’ve already shown how complex numbers
can be seen as two-dimensional vectors: in particular, the complex number
cis θ is identified with cos θi + sin θj. As t varies, the point cis(t+ θ) moves
around the unit circle,and the real part of cis(t+ θ) is the projection of the
moving point onto the x-axis. In other words, the cosine wave on the right
side of Figure 4.5.3 tells us the vector’s horizontal distance to the y-axis as
a function of time t.

Now when two waves cross each other they produce a wave of a different
shape–we may see this in water waves at the beach or pool (or physics class).
This is called wave superposition . We will now see how complex numbers
make it easy to compute the shape of this new wave.

Exercise 4.5.8.

(a) Using cis θ = cos θ + i sin θ, complete the following argument by filling
in the blanks:

2 cos(t+ π/2) + 2 cos(t− 5π/6) = Re[2 cis(t+ π/2)] + Re[ < 1 > )]

= Re[2 cis(t) · cis(π/2)] + Re[ < 2 > )]

= Re [( 2 cis(π/2) + 2 cis(−5π/6) ) · < 3 > )]
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Figure 4.5.3. Graphs of the vector representation and the wave represen-
tation of cosine

(b) Convert 2 cis(π/2) and 2 cis(−5π/6) to cartesian form, and find the sum.
Then convert back to polar form.

(c) Use your result in (b) to simplify the right-hand side of (a).

(d) Your result in (c) shows that the sum of the two cosine waves 2 cos(t+
π/2) and 2 cos(t− 5π/6) is also equal to a cosine wave. Find the ampli-
tude and phase shift of the sum. Is the amplitude equal to the sum of
the amplitudes? Explain.

♢

Let us summarize our findings:

� Associated with each sine or cosine wave is a complex number A cis(θ)
such that A is the amplitude and θ is the phase shift of the wave. This
complex number is called the phasor associated with the wave.

https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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� The sum of two sine or cosine waves is also equal to a cosine wave

� The amplitude and phase shift of the sum of two cosine waves may be
obtained by adding the phasors of the two constituent cosine waves.

Exercise 4.5.9. A radio antenna receives three cosine-wave signals. The
first signal has an amplitude of 4 and a phase shift of 0. The second has an
amplitude of 3 and a phase shift of π/2. The third signal has an amplitude
of 2 and a phase shift of −π/3.

(a) On graph paper, plot the three phasors corresponding to the three sig-
nals. (The three phasors are 4 cis(0), 3 cis(π/2), and 2 cis(−π/3))

(b) Use your picture in (a) to graphically add the three phasors. (Remember
how to add vectors: add the x-components, and add the y-components.)

(c) Convert the three phasors to rectangular form, and add them together
algebraically.

(d) Use your result from (c) to find the amplitude and phase shift of the
sum of the three signals.

♢

Exercise 4.5.10. As in the previous problem, a radio antenna receives
three cosine-wave signals. The three signals have equal amplitude. The first
signal have a phase shift of 0. The second has a phase shift of 2π/3. The
third signal has a phase shift of 4π/3.

(a) What is the amplitude of the sum of the three signals?

(b) What is the phase shift of the sum of the three signals?

♢

We hope that from the examples in this section, you may get some idea
of how important complex numbers are in the study of signals. In fact, for
many electrical engineers complex numbers are their “bread and butter”.
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4.5.3 Complex numbers and fractals: the Mandelbrot set

The intricate Mandelbrot set (see Figure 4.5.4) is a beautiful application of
complex numbers. The Mandelbrot set is defined by means of iteration of
the function f(z) = z2 + c. The definition is a little complicated: we show
how it works using a couple of examples.

First consider c = 1, so f(z) = z2 + 1. We start with z = 0, which
gives f(0) = 1; and we iterate by evaluating the function on the result of
the previous evaluation. So we compute f(1) = 2, f(2) = 5, f(5) = 26, . . . ..
It is clear that |f(z)| is getting larger and larger after repeated iterations.

On the other hand, if we use c = i and start with z = 0, we get f(0) = i
at first, and repeated iteration gives f(i) = −1+ i, f(−1+ i) = −i, f(−i) =
−1+ i, . . . so that this time |f(z)| doesn’t continue to grow indefinitely after
repeated iterations.

The Mandelbrot set is defined to be the set of values c for which the
iterations of f(z) = z2+c starting from z = 0 do not grow indefinitely upon
iteration. Thus i is in the Mandelbrot set, while 1 is not.

Exercise 4.5.11. Which of the following numbers is in the Mandelbrot set?
Demonstrate your answers.

(a) c = 0

(b) c = −1

(c) c = −i

(d) c = 1 + i

♢

Exercise 4.5.12. In the definition of the Mandelbrot set, we mentioned
that you have to check whether the iterations “grow indefinitely”. The
question, is, How far do you have to check? We can actually give an answer:

(a) Given any two complex numbers z, w, show that:

|z + w| ≤ |z|+ |w|.

This is called the triangle inequality for complex numbers (it is closely
related to the ‘triangle inequality’ for vectors). (*Hint*)

(b) Prove the following variation of the triangle inequality: Given two com-
plex numbers z, w then |z| ≥ |z − w| − |w|.

https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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(c) Suppose that |c| < 2, and suppose that z ≥ 2. Use (b) to show that
|z2 + c| > |z|.

(d) In order to guarantee that a number c is in the Mandelbrot set, all we
have to do is show that one of the iterates of the function f(z) = z2 + c
is larger than a given positive number r. What is the value of r?

♢

Figure 4.5.4. (Left) The Mandelbrot set: the set itself is colored in maroon.
The set has delicate filaments that extend from the different bulb-shaped
areas, which are outlined in lighter color.(Right) Detail of the Mandelbrot
set, along the top edge of the heart-shaped region shown in the figure at
left.

Exercise 4.5.13.(Programming exercise)

(a) Write an Excel spreadsheet that can multiply two complex numbers.
Put the real and imaginary parts of the first number in cells A1 and B1;
Put the real and imaginary parts of the second number in cells C1 and
D1; Put the real and imaginary parts of the result in cells E1 and F1.
Use your sheet to compute (3 + 4i)(7− 8i).

(b) Copy your Excel sheet, and modify it to compute the square of a complex
number. Put the real and imaginary parts of the first number in cells
A1 and B1; Put the real and imaginary parts of the result in cells C1
and D1. Use your sheet to compute (12− 5i)2.
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(c) Copy and modify your Excel sheet to compute z2, (z2)2, ((z2)2)2, . . . (20
number altogether) for a given complex number z. Put the real and
imaginary parts of z in cells A1 and B1; Put the real and imaginary parts
of the results in columns C and D. Use your sheet with z = 0.8 + 0.6i.
Plot the results as 20 points in the plane (use Scatter Plot). What do
you notice about your numbers?

(d) Modify your Excel sheet to compute the first 100 iterates of the function
f(z) = z2 + c for given complex numbers z, c (see Exercise 4.5.11).
Put the real and imaginary parts of z in cells A1 and B1; Put the
real and imaginary parts of c in cells A2 and B2; put the results in
columns C and D. Using your sheet, determine which of the following
numbers is in the Mandelbrot set: (i) z = −1.04039 + 0.2509294i; (ii)
c = −0.1155989 + 0.7639405i.

♢

Exercise 4.5.14.sing c = −3/4 + 0.01 compute the sequence for 100 itera-
tions, and note the iteration at which the value exceeds 2. Do the same thing
for c = −3/4 + 0.001, but for 1000 iterations. Do you see any relationship
between your results and the value of π? ♢

https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6


86 CHAPTER 4 COMPLEX NUMBERS

4.6 Hints for “Complex Numbers” exercises

Exercise 4.1.9(b) Start your proof this way: “Given that m is an integer
and m2 is even. Suppose that m is odd. Then . . .” (complete the proof by
obtaining a contradiction. You should make use of part (a) in your proof.

Exercise 4.1.9(c) The proof is similar to that in (b). What modifications do
you need to make?

Exercise 4.1.11(a) Start out your proof this way: “Let x be the cube root
of 2. Then x satisfies the equation x3 = 2.” For the rest of the proof,
follow closely the proof of Proposition 4.1.10. (Or use the statement−reason
format, if you prefer.

Exercise 4.1.12 Since 3|n, it follows that n = 3j for some integer j. Obtain
a similar equation from 4|m, and multiply your equations together.

Exercise 4.1.13 Since n|4m, it follows that 4m = n · j for some integer j.
Since 12|n, then what can you substitute for n?

Exercise 4.1.21 Try using contradiction. Suppose n is even, so that n = 2k
for some integer k.

Exercise 4.2.7 To show zz−1 = 1, rewrite z−1 as (a − bi) · 1
a2+b2

. This is

justified by the distributive law. Remember also that showing z−1z = 1
requires its own proof.

Exercise 4.2.8(i) In the answer x+ yi, x and y both turn out to be integers!

Exercise 4.2.8(n) Yes, you can do it! Find the first few powers of i, and see
the pattern.

Exercise 4.2.8(o) It’s easiest to compute (1 + i)2 · (1 + i)2.

Exercise 4.2.9 If you have trouble with this one, do some examples.

Exercise 4.2.22(f) Use part (e).

Exercise 4.2.22(g) and (h) See Exercise 4.2.7.

Exercise 4.2.26 Use part (b) of the previous exercise, plus some of the results
from Exercise 4.2.22.

Exercise 4.2.27(a) Use the formula |w|2 = w · w. (d) This one requires
calculus.

Exercise 4.3.19 Just make minor changes to the previous exercise.

Exercise 4.3.24(a) Replace cis . . . with cos . . .+i sin . . . on both sides of the de
Moivre equation. Then do the algebra on the right-hand side, and separate
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the real and imaginary parts. Recall that two complex numbers are equal
iff their real parts and imaginary parts are equal separately. (b) Use a basic
identity involving cosine and sine.

Exercise 4.5.5(b) What left shifts will change a cosine curve into a sine curve?

Exercise 4.5.6 Use Proposition 4.3.8 to evaluate cis θ · cis(t), and recall that
cis(α) means the same as as cos(α) + i sin(α).

Exercise 4.4.5(a) We have already shown in Proposition 4.2.11 that the prod-
uct of two nonzero complex numbers is never equal to 0. Use this to show
that the product of four nonzero complex numbers is never equal to 0.

Exercise 4.4.5(b) Multiply out the inequality that you proved in (a).

Exercise 4.4.6(a) It’s easier to multiply the numbers in polar form, you don’t
have to convert to Cartesian. Note that cis

(
4π
3

)
is the complex conjugate

of cis
(
2π
3

)
.

Exercise 4.4.9 Besides showing that all sides are equal, you also have to show
that they are perpendicular.

Exercise 4.4.10 Draw lines from each point to the origin, forming 6 triangles.
What can you say about these triangles?

Exercise 4.4.15(c) Note that OA = |z|, OC = |w|. and AC = |z − w|.
Exercise 4.4.18(c) Use your answer to part (b).

Exercise 4.4.21(c) To find the polar form of this number, try squaring it.

Exercise 4.4.26(b) If r is a solution to the above equation, then z− r divides
z4 + a3z

3 + a2z
2 + a1z + a0.

Exercise 4.4.28 Let M be the number of distinct solutions with positive
imaginary part. Then how many distinct solutions are there with negative
imaginary part? And how many non-real solutions are there altogether?

Exercise 4.5.12 You may show that (|z+w|)2 ≤ (|z|+ |w|)2. When you take
the square, use the identity that expresses |z|2 in terms of z and its complex
conjugate. After simplification, use polar form.
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4.7 Study guide for “Complex Numbers” chapter

Note: all study guides were written by Katrina Smith.

Section 4.1, The origin of complex numbers

Concepts

1. nth roots of a real number

2. Roots of a real function

3. Proof by contradiction

4. Irrational number: cannot be written as a quotient of integers

5. Definition of i (square root of −1)

6. Definition of complex numbers: C = {a+ bi, a, b ∈ R}

Notation

1. Symbols for number systems: R=real numbers, Z=integers, N=natural
numbers (positive integers), Q=rational numbers, C=complex num-
bers

2. ∃means “there exists”, and ∈means “element of”. So ∃x ∈ C, x3 = −1
means “there exists a complex number x such that x3 = −1.

Competencies

1. Given a real number, prove whether it has any real nth roots. (4.1.2,
4.1.3)

2. Use proof by contradiction to prove a value or function has no real
roots. (4.1.2, 4.1.3)

3. Given an nth root which is not an integer, prove that it is irrational.
(4.1.11, 4.1.17)
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Section 4.2, Arithmetic with complex numbers

Concepts:

1. Complex arithmetic

2. Identity & inverse (additive & multiplicative)

3. Associative law

4. Commutative law

5. Absolute value or modulus of complex number

6. Complex conjugate

Key Formulas

1. Complex addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

2. Complex multiplication (FLOI): (a+ bi)(c+di) = (ac− bd)+(ad+ bc)

3. Complex division:
(c+ di)

(a+ bi)
=

(c+ di)(a− bi)

(a2 + b2)
,when (a+ bi) ̸= 0

4. Modulus of complex number: | z |=
√
a2 + b2

5. Complex conjugate of a complex number: z̄ = a− bi

Competencies

1. Simplify expressions involving complex numbers in a+bi form, includ-
ing inverse and complex conjugation. (4.2.8, 4.2.20)

2. Simplify algebraic expressions with variables in a+ bi form, including
inverse and complex conjugation. (4.2.8d, e, k, 4.2.20i, j)

3. Be able to state the associative, inverse, identity, commutative, and
distributive properties for different number systems. (4.2.15)

4. Prove identities for a complex number z involving algebraic expres-
sions, modulus, complex conjugate without converting back to Carte-
sian form. (4.2.22a-i)
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Section 4.3, Alternative representations of complex numbers

Concepts:

1. Forms of complex number: rectangular and polar form

2. Converting from rectangular form to polar form and vice versa

3. Complex multiplication and division using polar form

4. De Moivre’s Theorem (raising complex numbers to integer powers)

Key Formulas

1. Converting from polar form to rectangular: a = r cos θ; b = r sin θ

2. Converting from rectangular form to polar: r =| z |=
√
a2 + b2;

θ = tan−1

(
b

a

)
(** be careful about tan−1 – make sure it’s in the

right quadrant **)

3. Multiplication of complex numbers: r cis θ · s cisϕ = rscis(θ + ϕ)

4. Division of complex numbers:
r cis θ

s cisϕ
=
(r
s

)
cis(θ − ϕ)

5. De Moivre’s Theorem: (r cis θ)n = rn cis(nθ)

Notes

(a) r cis θ := r(cos θ + i sin θ); “:=” means “is defines as”

Competencies

1. Be able to convert back and forth between rectangular form and polar
form. (4.3.4, 4.3.5)

2. Perform complex multiplications and divisions using polar form (if the
problem is stated in terms of rectangular form, convert to polar form
first). (4.3.14, 4.3.15)

3. Raise complex numbers to positive and negative integer powers using
de Moivre’s theorem. (4.3.23)

4. Prove trigonometric formulas for cos(nθ) and sin(nθ) using de Moivre’s
theorem. (4.3.24)
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Section 4.4, Complex numbers and roots of algebraic equa-
tions

Concepts:

1. nth roots of unity

2. nth roots of arbitrary complex numbers

3. The Fundamental Theorem of Algebra

4. Complex roots of polynomials with real coefficients come in conjugate
pairs.

Key Formulas

1. Roots of unity: z = cis

(
2kπ

n

)
,where k = 0, 1, ..., n− 1

Competencies

1. Know how to find nth roots of unity for any n ∈ N. (4.4.4)

2. Relate complex conjugation and multiplication by nth roots of unity
to rigid motions of a regular n-gon. (4.4.11 - 4.4.13)

3. Find all nth roots of a given complex number by (1) Finding a single
root using de Moivre’s theorem: (2) Multiplying that single root by all
nth roots of unity. (Note: there are always n nth roots for any complex
number.) (4.4.19, 4.4.21).

4. Be able to prove complex conjugation properties of roots of polynomial
equations with real coefficients. (4.4.23)

5. Use complex conjugate properties of roots to reconstruct polynomials.
(4.4.26)
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Modular Arithmetic

What goes up, must come down
Spinnin’ wheel, got ta go round
Talkin’ ’bout your troubles it’s a cryin’ sin
Ride a painted pony, Let the spinnin’ wheel spin
(Source: “Spinnin’ Wheel”, Blood, Sweat, and Tears)

Cycles are everywhere. So are integers. Modular arithmetic combines
the two by wrapping the integers around a circle.

Thanks to Tom Judson for material used in this chapter. David Weathers
also contributed a section.

5.1 Introductory examples

Modular arithmetic was originally motivated by common, real-life situa-
tions. So we begin our introduction by describing several problems based
on practical situations for you to think about. We don’t ask you to find the
solutions just yet – instead, focus on the similarities between the different
problems.

Example 5.1.1. Don has whipped up some stew that he wants to slow-
cook in his crockpot. The stew is supposed to cook for exactly 40 hours.
The crockpot is not automatic, so Don has to turn it on and off by hand.
When would be a good time for Don to turn on the crockpot? (Additional
information: Don is away at work from 8 a.m. to 5 p.m. every day. Also,

92

https://www.youtube.com/watch?v=GJFw597Y4NE&index=8&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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Don would like to avoid waking up in the middle of the night to turn the
crockpot on or off.) ♦

Example 5.1.2. Jennifer owns a vintage 1957 Thunderbird which has had
two previous owners. She claims that the car’s first owner drove it 129,000
miles, the second owner drove it 77,000 miles, and she’s driven 92,500 miles.
If her claim is true, then what should the odometer read? Note that on old
cars the odometer only goes up to 99,999. ♦

Example 5.1.3. April 15, 2012 was on a Friday. What day of the week
was December 24 of 2011? (Note 2012 is a leap year!) ♦

Example 5.1.4. A lunar year is 354 days. If Chinese New Year is deter-
mined according to the lunar year, and Chinese New Year is February 14 in
2010, then when is Chinese New Year in 2011? In 2012? In 2009? 1 ♦

Example 5.1.5. The hour hand on Tad’s old watch is broken and does
not move. Currently the watch shows a time of 3:46. Tad has just begun
a 3-part test, where each part takes 75 minutes (plus a 10-minute break
between parts). What time will the watch read when the first part is over?
The second part? The entire test? ♦

Example 5.1.6. A racing car starts at the 3 mile mark of a 5-mile circuit.
It goes another 122 miles. Then, it turns around and drives 444 miles in the
reverse direction. Where does the car end up? ♦

Example 5.1.7. Suppose our race car is driving around the 5-mile track
again. If it starts at the 3 mile mark and makes 17 consecutive runs of 24
miles each, what mile marker does it end up at? ♦

Exercise 5.1.8. Try to describe what all of the preceding problems have
in common. Describe some differences. ♢

1Note that the Chinese calendar actually adds extra months in some years, so not every
Chinese year is 354 days. So this example is not 100% accurate

https://www.youtube.com/watch?v=GJFW597Y4NE&INDEX=8&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Notice that in each example the set of possible answers is restricted to a
finite set of integers. For instance, in the odometer example (Example 5.1.2)
we know even before working the problem that the answer must be an integer
between 0 and 99,999 (inclusive). In other words, there are 100,000 possible
answers to the question, regardless of the particular mileages involved.

Exercise 5.1.9. Give the number of possible answers for Examples 5.1.1
and 5.1.3. ♢

Each example above requires arithmetic to solve, but it’s arithmetic with
a twist. For example, in Example 5.1.6 if the car is at the 3-mile mark and
travels another 3 miles, then it arrives at the 1-mile marker. This is a strange
equation: 3 + 3 = 1. The reason of course is that the location “cycles”
back to 0 instead of increasing to 5, 6, 7, . . . This “arithmetic with cycles” is
actually called modular arithmetic. The size of one cycle (which is equal
to the number of possible answers described in Exercise 5.1.9 is called the
modulus.

Exercise 5.1.10. Give the modulus for the seven examples at the beginning
of this chapter. ♢

In summary, modular arithmetic refers to arithmetic done according to
a modulus, so that the numbers reset (or cycle around) every time you reach
the modulus.

5.2 Modular equivalence and modular arithmetic

In order to understand the situation more thoroughly, let us focus on the
5-mile racetrack example used in Examples 5.1.6 and 5.1.7. The racetrack
(with mile markers) is shown in Figure 5.2.1.

Let’s say the car starts at mile marker 0. The car may then travel forward
(counterclockwise) or backwards (clockwise) any number of miles; we may
define the car’s net displacement as the the total number of forward miles
traveled minus the the total number of backward miles. Net displacement is
a very useful concept if you are a race car driver. For example, the winner
of the Indianapolis 500 is the the first driver to achieve a net displacement
of 500 miles (in this case, only forward motion is allowed!)

We may characterize the displacement of the car using a conventional
number line, as shown in Figure 5.2. Moving forward around the racetrack
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Figure 5.2.1. 5-mile racetrack

corresponds to moving right (positive direction) on the number line; while
moving backward around the racetrack corresponds to moving left (negative
direction).

Figure 5.2.2. Displacements on a 5-mile racetrack

Exercise 5.2.1. Compute the net displacement for the following multi-stage
trips:

(a) 346 miles in the forward direction, then 432 miles in the backward di-
rection, then 99 miles in the forward direction.

(b) A forward displacements of 44 miles, followed by 13 additional forward
displacements of 53 miles (one after the other).

(c) Repeat the following sequence 25 times: a forward displacement of 17
miles, followed by a backward displacement of 9 miles, followed by a
forward displacement of 22 miles.

♢

From the preceding exercise, it appears that we may use ordinary addi-
tion, subtraction and/or multiplication to compute the car’s net displace-
ment after a trip involving several stages.
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On the other hand, if we want to represent the position of the car on the
track as it relates to net displacement, we would have to relabel the number
line as shown in Figure 5.2.3, using only the integers 0, 1, 2, 3, 4.

Figure 5.2.3. Positions on the 5-mile racetrack

Exercise 5.2.2.

(a) Compute the positions on the racetrack corresponding to each of the
net displacements that you computed in Exercise 5.2.1.

(b) How are your answers in (a) related to the corresponding answers in
Exercise 5.2.1?

♢

You may have noticed that different displacements may correspond to
the same position. For example, displacements of 8, 23, and -17 all corre-
spond to the same position (namely 3). We say that two displacements that
correspond to the same position are equivalent. The fact that displacements
8 and 23 are equivalent on a 5-mile racetrack may be expressed mathemat-
ically as: 8 ≡ 23 (mod 5) (in words, we say ‘8 is equivalent to 23 mod
5’).

How can you tell when two displacements correspond to the same po-
sition? In our racetrack example we may notice that 8, 23, and -17 all
have remainder 3 when divided by 5. So in this example at least, we can
see that the position on the racetrack corresponds to the remainder when
the displacement is divided by the length of the racetrack (which serves as
the modulus). You may verify that this is true for any displacement: the
position is what’s left after all whole multiples of 5 are taken out.

This seems to indicate that we can define a notion of equivalence in
terms of remainders. But let’s be careful here. You’ve probably been finding
remainders since elementary school–but have you really thought about what
you’re doing? How do you know there will always be a remainder? And
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how do you know there’s only one? Why couldn’t some numbers have two
different remainders, and some have none at all? It appears that before we
can define modular equivalence in terms of remainders, first we’re going to
have to establish some solid facts about remainders:

Proposition 5.2.3.(The division algorithm) Given any integer a and
any positive integer m, then there exists a unique number r between 0 and
m − 1 such that a = q ·m + r for some integer q. In this expression, q is
called the quotient , and r is called the remainder .

Proof. It turns out that proving this “simple” fact is not so simple! Al-
though this fact has been used for millennia (it’s sometimes called Eu-
clidean division , because Euclid used it ca. 300 B.C.), the first rigorous
proof was found relatively recently. There are actually two things to prove:
first, that the remainder r exists, and second, that it’s unique. We’re going
to punt on the ‘existence’ part: you can find the proof in a book on num-
ber theory.2 The ‘unique’ part is proved by the following fill-in-the-blanks
exercise:

Exercise 5.2.4. Fill in the blanks in the following proof that the remainder
is always unique.

We’ll give a proof by contradiction. Suppose that a has two different re-
mainders when divided by m. Let’s call these two different remainders r
and s, where 0 ≤ r, s ≤ < 1 > and r ̸= s.

It follows that a = q ·m + r and a = p ·m + < 2 > , where q and p
are < 3 > . Setting these two expressions equal and rearranging enables
us to obtain an expression for r − s, namely: r − s = ( < 4 > ) ·m. Thus
r − s is an integer multiple of < 5 > .

On the other hand, we know that r ≥ 0 and s ≤ < 6 > , so by
arithmetic we obtain r − s ≥ < 7 > . Furthermore, r ≤ < 8 > and
s ≥ < 9 > , so r − s ≤ < 10 > . Combining these two results, we find
that r − s is an integer between < 11 > and < 12 > .

Now, the only integer multiple of m between < 13 > and < 14 >
is < 15 > . It follows that r − s = < 16 > , or r = < 17 > . But this
contradicts our supposition that < 18 > . So our supposition cannot be
true: and a cannot have < 19 > . Thus the remainder when a is divided
by m is unique, and the proof is complete. ♢

2Or check the internet, e.g.: http://www.oxfordmathcenter.com/drupal7/node/479.

http://www.oxfordmathcenter.com/drupal7/node/479
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□

We’ll use the notation “mod(a,m)” to indicate the remainder of a when
divided by m. This notation is used in most mathematical software (such
as Excel, Matlab, and so on), and it reflects the fact that the remainder is
a function of a and m.

Remark 5.2.5. Unlike many references, we do not use the expressions
“a mod m” or “a (mod m)” to denote the remainder when a is divided by
m. In this book we never write “a mod m” or “a (mod m)” as stand-alone
expressions. Here’s the reason why. Suppose for the moment that we do
use 17 (mod 5) to denote the remainder of 17 mod 5. Then we could write
2 = 17 (mod 5), but it would be false to write 17 = 2 (mod 5), since 17
is not the remainder of 2 mod 5. In tthis book the (mod n) refers to the
relation ‘≡’ and not to the b. Thus for us, 2 ≡ 17 (mod 5), and 17 ≡ 2
(mod 5) are both correct. △

Now that we know that unique remainders really do always exist, we’re
in a position to use them in our definition of modular equivalence:

Definition 5.2.6. Two integers a and b are equivalent mod m if both a
and b have the same remainder when divided by m. To denote that a and
b are equivalent mod m, we write: a ≡ b (mod m). △

Remark 5.2.7. Notice that Definition 5.2.6 uses the 3-lined “≡” here
instead of the usual = sign. This notation is used to emphasize the fact that
modular equivalence resembles equality, but is not quite the same thing.
For example, we have already seen that 8 and 23 are equivalent mod 5,
even though they are not equal. In a later chapter we’ll discuss equivalence
relations, and we’ll see that equivalence is in some sense a generalization of
equality. For now, be alerted to the fact that “≡” and “=” do not necessarily
have the same properties. It’s tempting for instance to make statements such
as, “a ≡ b (mod m) implies a − b ≡ 0 (mod m)”. But just because this is
true for = doesn’t mean it’s also true for ≡! In this case the statement turns
out to be true, but it requires proof – and in this class you are not allowed
to make assertions that have not been proven.3 △

The following result enables us to verify when we’ve indeed found a
remainder.

3This may be one reason why not many mathematicians are politicians, and vice-versa.
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Proposition 5.2.8. If a ≡ r (mod m) and 0 ≤ r ≤ m − 1, then r =
mod(a,m).

Proof. Given that a ≡ r (mod m), by the definition of modular equiva-
lence it follows that a and r have the same remainder mod m. But since
0 ≤ r ≤ m− 1, the remainder of r is r itself. It follows that the remainder
of a is also r: so r = mod(a,m). □

There is an alternative (and very useful) way to determine modular
equivalence. Suppose that a ≡ b (mod m), so that a and b have the same
remainder when divided by m. Let’s call this remainder r. Then we can
write a = p ·m + r and b = q ·m + r for some integers p, q It follows from
basic algebra that a− p ·m = b− q ·m. We then proceed step-by-step using
basic algebra as follows:

a− p ·m = b− q ·m
⇒ a− b = p ·m− q ·m
⇒ a− b = (p− q) ·m.
⇒ a− b is divisible by m.

In summary, we have shown that

If a ≡ b (mod m) then a− b is divisible by m.

which we can also write as

a ≡ b (mod m) ⇒ a− b is divisible by m.

It turns out that the converse statement is also true.4 The converse state-
ment is:

If a− b is divisible by m then a ≡ b (mod m).

One way to prove this is to prove the contrapositive, which is logically equiv-
alent.5 In this case, the contrapositive statement is, “If a ̸≡ b (mod m), then
a− b is not divisible by m”).

4In general, if you have a statement of the form “If A then B”, then the converse is “If
B then A”. Similarly, the converse of “A ⇒ B” is, “B ⇒ A”.

5In general, the contrapositive of “If A as true then B is also true”, is “If B is not
true then A is not true”. Alternatively: if you have a statement “A ⇒ B”, then the
contrapositive is “not B ⇒ not A”. Unlike the converse, the contrapositive is always true
if the original statement is true
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Exercise 5.2.9. Finish the proof of the contrapositive by filling in the
blanks:

Suppose a ̸≡ b (mod m). Let r be the remainder of a when divided by
< 1 > , and let s be the remainder of < 2 > when divided by < 3 > .

Since the remainders are unequal, it follows that one must be bigger than
the other: let us choose a to be the number with the larger remainder,
so that r > < 4 > . By the definition of remainder, we may write a =
p ·m+ < 5 > , and we may also write b = q · < 6 > + < 7 > . Then
by basic algebra, a− b = (p− q) · < 8 > + (r − < 9 > ).

We want to show that r − s is the remainder of a − b when divided by
m. To do this, we need to show that r − s is between 0 and < 10 > .
Since r > s it follows that r − s > < 11 > . Furthermore, Since r < m
and s ≥ 0, it follows that r − s < < 12 > . So we have shown that r − s
is between < 13 > and < 14 > , so by Proposition < 15 > it follows
that r− s is the remainder of a− b when divided by m. However, r− s > 0,
which means that a− b is not divisible by < 16 > . This is exactly what
we needed to prove, so the proof is complete. ♢

We summarize Exercise 5.2.9 and the preceding discussion together in
the following proposition.

Proposition 5.2.10. Given any two integers a and b, and a modulus m (m
is a positive integer). Then

a ≡ b (mod m) if and only if a− b = k ·m,

where k is an integer.

We may rewrite Proposition 5.2.10 more elegantly using mathematical short-
hand as follows: Given a, b,m ∈ Z, then

a ≡ b (mod m) iff m|(a− b).

Note the two shorthand expressions we have used here: the symbol ‘∈’
means ‘contained in’ or ‘elements of’, while the single vertical line ‘|’ means
“divides’.

The following proposition establishes important facts about modular
equivalence that we’ll need later.

Proposition 5.2.11. Given any integers a, b, c and a positive integer n
such that a ≡ b (mod n) and c ≡ b (mod n). Then it is also true that
a ≡ c, c ≡ a, b ≡ a, and b ≡ c (all these equivalences are (mod n)) .
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Remark 5.2.12. This proposition actually establishes that modular equiv-
alence is both transitive and symmetric. If you haven’t seen this terminology
before don’t worry–we’ll talk about transitive and symmetric relations in the
Equivalence Relations chapter. △

Exercise 5.2.13. Prove Proposition 5.2.11. (*Hint*)6 ♢

Exercise 5.2.14. Suppose January 25 is a Thursday.

(a) Use Definition 5.2.6 to determine whether January 3 is a Thursday.
Show your reasoning.

(b) Use Proposition 5.2.10 to determine whether January 31 is a Thursday.
Show your reasoning.

(c) Find the nearest Thursday to January 15. Show your reasoning.

(d) Find the nearest Thursday to April 18. Show your reasoning. (Note:
the year is not a leap year.)

♢

Exercise 5.2.15. Determine whether or not the following equivalences are
true. Explain your reasoning. If the equivalence is not true, change one of
the numbers to make it true.

(a) 71 ≡ 13 (mod 4)

(b) −23 ≡ 13 (mod 6)

(c) 101 ≡ 29 (mod 6)

(d) 50 ≡ 13 (mod 7)

(e) 654321 ≡ 123456 (mod 5)

(f) 1476532 ≡ −71832778 (mod 10)

♢

Let us now return to the problem of finding the position corresponding
to the net displacement following a multi-stage trip. When you computed
racetrack positions in Exercise 5.2.2, most likely you simply took the net
displacements you computed in Exercise 5.2.1, divided by 5 and took re-
mainder. However, our new concept of modular equivalence gives us another

6All *Hints* can be found at the end of the book (or by clicking on the *Hints* link.)
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way of solving this problem – one that can be much, much easier if we’re
dealing with large displacements.

Example 5.2.16. Suppose Dusty drives around the 5-mile track 112 miles
in a positive direction, then 49 miles in a negative direction, then 322 miles
in a positive direction. To find Dusty’s net displacement we may take 112−
49 + 322 = 385 and then take the remainder mod 5 (which turns out to be
0). But notice that:

mod(112, 5) = 2,

mod(−49, 5) = 1,

mod(322, 5) = 2,

and we compute
2 + 1 + 2 = 5 ≡ 0 (mod 5).

We have obtained the same answer with much less work. How did we do it?
By replacing each number with its remainder. ♦

Can we do the same thing with multiplication?

Example 5.2.17. Suppose I travel on my racetrack at a 113 miles per hour
in the positive direction for 17 hours. We may compute:

Net displacement : 113 · 17 = 1921 miles

Final position : 1921 = 384 · 5 + 1 ⇒ final position = 1.

On the other hand, we may reach the same conclusion by a somewhat easier
route:

mod(113, 5) = 3,

mod(17, 5) = 2,

and we compute
3 · 2 = 6 ≡ 1 (mod 5).

Again, we have obtained the correct answer by replacing each number with
its remainder. ♦

Does this work in general? In fact it does! However, this requires a
mathematical proof. We will discuss the proof in a later section – but at
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least our discussion shows that arithmetic with remainders is meaningful
and useful.

If we’re doing arithmetic (mod n), then the remainders will necessarily
be between 0 and n − 1 (inclusive). This set of remainders has a special
name, which later on we’ll use extensively:

Definition 5.2.18. The set of integers {0, 1, . . . , n− 1} is called the set of
integers mod n, and is denoted by the symbol Zn. △

Remark 5.2.19. In this chapter, we are considering Zn as a subset of Z.
Later on in Chapter 17 we will view Zn from an entirely different perspective.
(You don’t really need to know this now–just file it away for future reference.)
△

Exercise 5.2.20. Now you’re ready! Give answers for the seven examples
at the beginning of this chapter. ♢

5.3 Modular equations

5.3.1 More uses of modular arithmetic

Supermarkets and retail stores have a nasty little secret. Every time you
scan your purchases, they’re using modular arithmetic on you! In fact,
modular arithmetic is the basis for bar codes you see in stores. We will use
these practical examples to introduce modular equations.

Exercise 5.3.1. Universal Product Code (UPC) symbols are now
found on most products in grocery and retail stores. The UPC symbol (see
Figure 5.3.1) is a 12-digit code which identifies the manufacturer of a product
and the product itself. The first 11 digits contain the information, while the
twelfth digit is used to check for errors that may occur while scanning. If
d1d2 · · · d12 is a valid UPC code, then

3 · d1 + 1 · d2 + 3 · d3 + · · ·+ 3 · d11 + 1 · d12 ≡ 0 (mod 10).

So the scanning device that cashiers use reads the code and adds up the
numbers mod 10. If they don’t add to zero, then the device knows it hasn’t
scanned properly. (Smart little bugger, that scanner is!)

https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=q7oRlAvv_4g&index=9&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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Figure 5.3.1. A UPC code

(a) Show that the UPC number 0-50000-30042-6, which appears in Fig-
ure 5.3.1, is a valid UPC number.

(b) Show that the number 0-50000-30043-6 is not a valid UPC number.

(c) (for geeks) Write a program or Excel spreadsheet that will determine
whether or not a UPC number is valid.

(d) One common scanning error occurs when two consecutive digits are ac-
cidentally interchanged. This is called a transposition error . The
UPC error detection scheme can catch most transposition errors. Us-
ing the UPC in (a) as the correct UPC, show that the transposition
error 0-50003-00042-6 is detected. Find a transposition error that is not
detected.

(e) Using the UPC in (a) as the correct UPC, show that the single-digit
error 0-50003-30042-6 is detected.

(f) **Prove that the UPC error detection scheme detects all single digit
errors. (*Hint*)

♢

It is often useful to use an inner product notation for these types of
error detection schemes.7 In the following text, the notation

(d1, d2, . . . , dk) · (w1, w2, . . . , wk) ≡ 0 (mod n)

7You may have seen inner products (a.k.a. “dot products”) in one of your math classes
talking about vectors.
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will be used to mean

d1w1 + d2w2 + · · ·+ dkwk ≡ 0 (mod n).

Exercise 5.3.2. Every book has an International Standard Book Number
(ISBN-10) code. This is a 10-digit code indicating the book’s language,
publisher and title. The first digit indicates the language of the book; the
next three identify the publisher; the next five denote the title; and the tenth
digit is a check digit satisfying

(d1, d2, . . . , d10) · (1, 2, . . . , 10) ≡ 0 (mod 11).

ISBN-10 codes are nice in that all single-digit errors and most transposition
errors can be detected. One complication is that d10 might have to be a 10
to make the inner product zero; in this case, the character ‘X’ is used in the
last place to represent 10.

(a) Show that 3-540-96035-X is a valid ISBN-10 code.

(b) Is 0-534-91500-0 a valid ISBN-10 code? What about 0-534-91700-0 and
0-534-19500-0?

(c) How many different possible valid ISBN-10 codes are there?

(d) Write a formula of the form d10 ≡ . . . (mod . . .) to calculate the check
digit in an ISBN-10 code. (*Hint*)

(e) *Prove that any valid ISBN-10 code also satisfies:

(d1, d2, . . . , d10) · (10, 9, . . . , 1) ≡ 0 (mod 11).

(f) * Prove that if (d1, d2, . . . , d9, d10) is a valid ISBN-10 code, then (d10, d9, . . . , d2, d1)
is also a valid ISBN-10 code (as long as d10 is not equal to X).

(g) (for geeks) Write a computer program or Excel spreadsheet that calcu-
lates the check digit for the first nine digits of an ISBN code.

(h) A publisher has houses in Germany and the United States. Its German
prefix is 3-540. Its United States prefix will be 0-abc. Find four possi-
bilities for abc such that the rest of the ISBN code will be the same for
a book printed in Germany and in the United States.

https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(i) **Prove that the ISBN-10 code detects all single digit errors. (*Hint*)

(j) **Prove that the ISBN-10 code detects all transposition errors. (*Hint*)

♢

5.3.2 Solving modular equations

In Exercise 5.3.2 part (h) you solved a modular equation with three vari-
ables by trial and error: you couldn’t solve for one variable at a time, so
you had to test out sets of values for a, b, c together and see if the the
ISBN equation held. The UPC and ISBN error detection schemes them-
selves, given again below, are examples of modular equations with 12 and
10 variables, respectively:

(3 · d1) + (1 · d2) + (3 · d3) + · · ·+ (3 · d11) + (1 · d12) ≡ 0 (mod 10).

(d1, d2, . . . , d10) · (10, 9, . . . , 1) ≡ 0 (mod 11).

Can the above equations be solved? You may remember from college
algebra that a single equation with several variables usually has several
solutions. If we want to narrow it down to a single solution we have to
supply additional information, as in the following exercise.

Exercise 5.3.3. Suppose you’re given the following UPC: 1-54637-28190-?.
Write a modular equation to solve for the missing check digit, then solve it.
♢

In the preceding exercise you should have come up with an equation that
looks like:

(3 · 1) + . . .+ (3 · 0) + (1 · x) ≡ 0 (mod 10).

How did you solve this? One possible method is to add up all the terms
the left side of the equation short of the variable, and then figure out how
much you need to add to that sum to get a number divisible by 10. Keep
this method and your own method (if different) in mind, as they are good
intuition on how to solve these problems in general.

Is there a unique answer for x? Practically, for a UPC code x must be
between 0 and 9 (that is, x ∈ Z10: with this restriction, there is indeed only
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one solution. But if we remove that restriction, then there are many solu-
tions. For instance x = 12 and x = 22 both work (check this for yourself).
Can you think of any other integers that work?

In fact any integer equivalent to 2 (mod 10) also works. But from our
intuitive methods, would we have come up with these other possible solu-
tions? In most cases not. Therefore we need to come up with a general
method that will give us all possible integer solutions of a modular equa-
tion. Just as in basic algebra, we’ll start with simpler equations and move
to more complicated ones.

Example 5.3.4. Let’s start with a basic modular equation involving addi-
tion:

8 + x ≡ 6 (mod 11)

From algebra we understand how to solve an equation with an = sign,
but what do we do with this ≡ sign? In fact, we can turn it in to an = sign
by using Proposition 5.2.10, which says that 8 + x ≡ 6 (mod 11) means the
same as:

8 + x = k · 11 + 6

And then we can solve for x like any other equation. The result is

x = k · 11− 2

So we solved for x, but what numbers does x actually equal? What does
k · 11 − 2 mean? k is an integer, therefore x can equal -2 (if k = 0), or -13
(if k = −1), or 9 (if k = 1), and so on. In other words x equals −2 plus
any integer multiple of 11, which, by the definition of modular equivalence,
means

x ≡ −2 (mod 11)

This is a correct solution: but it’s not the only way to write it. It would be
just as valid to write

� x ≡ −13 (mod 11)

� x ≡ 20 (mod 11)

� x ≡ 130 (mod 11)

� . . .

https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Notice however that there is only one way to write the solution in terms of
a number in Z11, namely:

mod(x, 11) = 9

In order to avoid ambiguity, mathematicians and textbooks always write
solutions mod n in terms of numbers in Zn. In our current example, it’s
easy enough to obtain the standard solution (x ≡ 9 (mod 11)) directly from
the equation x = k · 11− 2? by taking one of the 11’s and adding it to the
−2 to get

x = (k − 1) · 11 + 11− 2 = (k − 1) · 11 + 9.

Since k is an arbitrary integer, k − 1 is also an arbitrary integer. So we get
x ≡ 9 (mod 11).

♦

To summarize our general method for solving modular equations so far:

1. Turn the ≡ sign into an = sign using the definition of modular equiv-
alence. This introduces an additional variable k.

2. Find (by trial and error if necessary) the value of k that puts x in the
appropriate range.

3. Change the equation back into an equivalence.

Exercise 5.3.5. Find all x ∈ Z satisfying each of the following equations.

(a) 5 + x ≡ 1 (mod 3)

(b) 25 + x ≡ 6 (mod 12)

♢

Now let’s spice things up with some multiplication:

Example 5.3.6. Given the equation

5x+ 3 ≡ 9 (mod 11).



5.3 MODULAR EQUATIONS 109

Using the definition of modular equivalence, this becomes

5x+ 3 = 11k + 9.

Solving this equality using basic algebra gives us

x =
11k + 6

5
.

Now remember that x must be an integer. In order for the right side to
be an integer, we need to find a k that makes 11k+6

5 an integer. At this point
we may use trial and error to find a k in Z5 such that 11 · k+6 is a multiple
of 5. We get k = 4; and in fact adding 5 · n to 4 also works for any n ∈ Z,
since 5n is always divisible by 5. Now we can solve for x by substituting
k = 4 + 5n back in to the previous equation:

x =
11(4 + 5 · n) + 6

5

=
11 · 4 + 6

5
+

11 · (5n)
5

= 10 + 11n

Therefore x ≡ 10 (mod 11) is the general solution. You may check (which
is always a good idea!) by plugging 10 + 11n for a couple values of n back
into the original equation, and you’ll see these numbers work. ♦

Just to make sure you’ve mastered the process, we’ll give another exam-
ple:

Example 5.3.7. To solve the equation 4x + 5 ≡ 7 (mod 11) we proceed
step by step (note that the symbol ⇒ is mathematicians’ shorthand for
“implies”):

4x+ 5 ≡ 7 (mod 11)

⇒4x+ 5 = 11k + 7 (by modular equivalence)

⇒x =
11k + 2

4
(basic algebra)

Now, 11k+ 2 is a multiple of 4 when k = 2, as well as when k equals 2 plus
any multiple of 4. Therefore k = 2 + 4n, hence we may continue from the
previous equation:

https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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x =
2 + 11k

4

⇒x =
2 + 11 · (2 + 4n)

4
(substitution)

⇒x = 6 + 11n. (simplification)

Therefore x ≡ 6 (mod 11) is the general solution. ♦

Remark 5.3.8. Example 5.3.7 demonstrates some good practices that you
can make use of when you write up your own proofs:

� Instead of using a sentence to explain your reasoning for each step,
place the reason to the right in parentheses. This shrinks down the
size of the proof.

� Another way to shrink the proof is to use mathematical equations, ex-
pressions, and symbols (such as ⇒,∀) whenever you can to accurately
communicate your steps in the proof.

△

In summary, a general method for solving modular equations is:

1. Turn the ≡ sign into an = sign using the definition of modular equivalence
(just as with modular addition). This introduces another constant k.

2. Solve the resulting equation for your variable x. If the expression is not
a fraction, then go to step 5. Otherwise, go to step 3.

3. By trial and error, find a value k0 for k which makes the fraction into an
integer.

4. Substitute k0 + n·(denominator) in for k, and simplify.

5. Change the equation back into an equivalence.

Exercise 5.3.9. Find all x ∈ Z satisfying each of the following equations.
(If there’s no solution, then you can say “no solution”– but show why!)
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(a) 9x ≡ 3 (mod 5)

(b) 5x ≡ 1 (mod 6)

(c) 7x ≡ 9 (mod 13)

(d) 8x ≡ 4 (mod 12)

(e) 11x ≡ 2 (mod 6)

(f) 27x ≡ 2 (mod 9)

(g) 3 + x ≡ 2 (mod 7)

(h) 5x+ 1 ≡ 13 (mod 23)

(i) 5x+ 1 ≡ 13 (mod 26)

(j) 3x+ 2 ≡ 1 (mod 6)

♢

One major disadvantage of our solution method is the use of trial and
error in step 3. If large numbers are involved, then this step can take a long
time. However, there are techniques to speed things up:

Example 5.3.10. Consider the equation 79x ≡ 9 (mod 15). In Section 5.2
we mentioned that when we’re doing arithmetic mod n, we can replace any
number with its remainder mod n without changing the answer. In this
example then, we can replace the 79 with its remainder mod 15, which is 4.
Thus we have

4x ≡ 9 (mod 15),

which leads to

x =
15k + 9

4
.

By rewriting the numerator, we can simplify the right-hand side:

x =
(12k + 3k) + (8 + 1)

4
= 3k + 2 +

3k + 1

4
.

and we readily discover that k = 1+4n makes the right-hand side an integer,
so that

x =
15 · (1 + 4n) + 9

4
= 6 + 15n, or x ≡ 6 (mod 15).

♦

Here’s another example, which is just a little more complicated.

https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Example 5.3.11. To solve the equation 447x + 53 ≡ 712 (mod 111) we
proceed as follows:

447x+ 53 ≡712 (mod 111)

⇒ 447x ≡659 (mod 111) (subtract 53 from both sides)

⇒ 3x ≡104 (mod 111) (modular equivalence)

⇒ 3x =104 + 111k (basic algebra)

⇒ x =
104 + 111k

3
(basic algebra)

⇒ x =34 +
2

3
+ 37k (basic algebra)

It should be clear that no value of k makes the right side an integer. Hence
x has no solution. You may have run into a similar situation in a previous
exercise. ♦

Exercise 5.3.12. Find all x ∈ Z satisfying each of the following equations.

(a) 112x ≡ 2 (mod 6)

(b) 74x ≡ 9 (mod 13)

(c) 856x ≡ 4 (mod 123) (*Hint*)

(d) 272x ≡ 24 (mod 9)

(e) 242x+ 39 ≡ 489 (mod 236)

(f) 469x+ 122 ≡ 1321 (mod 231)

(g) 246x+ 200 ≡ 401 (mod 81)

(h) 339 + 411x ≡ 2 (mod 297)

(i) 530x− 183 ≡ 215 (mod 128)

♢

From parts (h) and (i) of Exercise 5.3.12 we see that even our trick with
modular equivalences doesn’t make all modular equations easy to solve.
When the coefficient of x and the modulus are both large, you may end
up needing lots of trial and error. Such “brute force” methods are rather
distasteful to snobby mathematicians, who prefer “elegant” solutions. Later
we’ll talk about an “elegant” method (the Euclidean algorithm) that solves
modular equations without any trial and error whatsoever.
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5.4 The integers mod n (a.k.a. Zn)

5.4.1 Remainder arithmetic

Several times now in this chapter we’ve simplified our modular calculations
by replacing numbers with their remainders mod n (remember, we have de-
fined these remainders as the set Zn). We will now fulfill the promise we
made at the end of the first section by proving that if you replace numbers
with their remainders, we don’t change the result of our modular calcu-
lations. That is, we’ll show that modular arithmetic can be thought of
as arithmetic on the remainders, or“remainder arithmetic” (as opposed to
“integer arithmetic” or “complex arithmetic” which we’re already familiar
with).

Before we do this, we need to address an important issue. Consider the
case of Z5 = {0, 1, 2, 3, 4}, so 3 and 4 are in Z5. However the sum 3 + 4 is
7, which is not in Z5. If we’re going to do arithmetic with the remainders,
we should define a “sum” on Zn such that the result is also in Zn. This
motivates the following two definitions:

Definition 5.4.1. Modular Addition

The sum mod n of two remainders mod n is the remainder left after dividing
their regular sum by n; that is, if a, b ∈ Zn then

a⊕ b = r iff a+ b = r + sn and r ∈ Zn.

△

Note that in Definition 5.4.1 we write a ⊕ b = r rather than a ⊕ b ≡ r
(mod n), since a⊕b is defined to be equal to the remainder. The same holds
for the following definition:

Definition 5.4.2. Modular Multiplication

The product mod n of two remainders mod n is the remainder left after
dividing their regular product by n; that is, if a, b ∈ Zn then

a⊙ b = r iff a · b = r + sn and r ∈ Zn.

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=EwMbFYQCpfs&index=10&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo


114 CHAPTER 5 MODULAR ARITHMETIC

△

Before we continue, we should take special note of the following impor-
tant points.

Remark 5.4.3.

� It is important to note that the operations ⊕ and ⊙ depend on the
modulus involved. We must always make sure that the modulus is
clearly specified before talking about ⊕ and ⊙.

� Although technically we could define ℓ ⊕ m and ℓ ⊙ m for any two
integers ℓ,m ∈ Z, in the following we will restrict the operations to
elements of Zn. So for example if we are working in Z7, we may write
3⊕ 4 = 0 and 5⊙ 6 = 2, but we won’t write expressions like 7⊕ 6 or
13⊙ 22.

△

Our first step towards showing that ordinary arithmetic can be replaced
with arithmetic with remainders is the following proposition:

Proposition 5.4.4. Given ℓ,m ∈ Z.

(a) mod(ℓ+m,n) = mod(ℓ, n)⊕ mod(m,n),

(b) mod(ℓ ·m,n) = mod(ℓ, n)⊙ mod(m,n).

Before we prove Proposition 5.4.4, let’s give an example of how it can
be applied. Suppose we want to compute the following remainders:

mod(8640 + 1059895, 7) and mod(8640 · 1059895, 7).

OK, let’s apply the proposition. If we let ℓ = 8640,m = 1059895 and n = 7,
then we have the following correspondence

mod(ℓ+m,n) → mod(8640 + 1059895, 7)

By division we may compute mod(8640, 7) = 2 and mod(1059895, 7) = 4.
This gives us the correspondence:

mod(ℓ, n) → 2; mod(m,n) → 4.



5.4 THE INTEGERS MOD N (A.K.A. ZN ) 115

Using these correspondences, Proposition 5.4.4 gives us immediately that

mod(8640 + 1059895, 7) = 2⊕ 4, and mod (8640 · 1059895, 7) = 2⊙ 4,

which gives us 6 and 1 for the sum and product, respectively. Isn’t this an
awful lot simpler than adding and multiplying those two large numbers?

So let’s get back to the proof. We’ll do (a) here: part (b) is left as an
exercise.

Proof. For simplicity we let a := mod(ℓ, n) and b := mod(m,n). Then
according to the definition of remainder mod n we have

ℓ = a+ sn and m = b+ tn.

Adding these two equations (which is basically substitution) and basic alge-
bra we find

ℓ+m = a+ b+ (s+ t)n

Now by the definition of ⊕, there is some p ∈ Z such that a+b = (a⊕b)+pn;
therefore

ℓ+m = (a⊕b)+pn+(s+t)n = (a⊕b)+(p+s+t)n. (subs. and basic algebra)

Hence by the definition of modular equivalence,

ℓ+m ≡ a⊕ b (mod n).

Now since a⊕ b is between 0 and n− 1 by definition, it follows from Propo-
sition 5.2.8 that

mod(ℓ+m,n) = a⊕ b.

Recalling the definitions of a and b above we get finally:

mod(ℓ+m,n) = mod(ℓ, n)⊕ mod(m,n),

and we’re finished! □

Exercise 5.4.5.

(a) Prove part (b) of Proposition 5.4.4.

(b) Come up with a definition for modular subtraction (use the symbol ⊖).

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(c) Using your definition, prove the following:

Given ℓ,m ∈ Z. If a = mod(ℓ, n) and b = mod(m,n), then mod(ℓ −
m,n) = a⊖ b.

♢

The diagram in Figure 5.4.1 gives a way to visualize Proposition 5.4.4. In
the diagram we only show the relation between + and ⊕: the situation with
· and ⊙ is similar. On the left side of the diagram, we show two numbers ℓ
and m being added to give ℓ+m. The arrows from left to right show that
the numbers ℓ,m, and ℓ+m can all be “translated” by taking remainders.
If we “translate” ℓ and m first and then take the modular sum; or we can
take ℓ +m first and then “translate” the result. In either case, we end up
with the same answer.

Figure 5.4.1. Visualization of Proposition 5.4.4.

Exercise 5.4.6. Make a diagram similar to Figure 5.4.1 for modular mul-
tiplication instead of modular addition. ♢

Now that we’ve proven Proposition 5.4.4, we can combine operations
into more complicated expressions and show equivalence.

Exercise 5.4.7.

(a) Using part (b) of Proposition 5.4.4 above, show that if ℓ ∈ Z and a =
mod(ℓ, n) then mod(ℓ2, n) = a⊙ a. (*Hint*)]
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(b) Using part (a) prove a similar relation involving ℓ3.

(c) Using part (b) prove a similar relation involving ℓ4.

(d) From parts (a),(b) and (c), what do you infer about ℓk where k is any
natural number? (Note that to actually prove this fact requires the use
of induction.)

♢

Exercise 5.4.8. Given ℓ,m, p ∈ Z and a = mod(ℓ, n), b = mod(m,n), and
c = mod(p, n). Show the following equivalences using Proposition 5.4.4.

(a) mod((ℓ+m) + p, n) = (a⊕ b)⊕ c. (*Hint*)

(b) mod((ℓ+ (m+ p), n) = a⊕ (b⊕ c).

(c) mod((ℓ ·m) · p, n) = (a⊙ b)⊙ c.

(d) mod((ℓ ·m) + p, n) = (a⊙ b)⊕ c.

(e) mod((ℓ+m) · p, n) = (a⊕ b)⊙ c.

♢

We can use similar methods as in Exercise 5.4.8, to show that any arith-
metical expression involving integers with no matter how many additions,
multiplications, and subtractions, can be shown to be equivalent mod n to
the corresponding arithmetical expression in Zn using the modular opera-
tions ⊕,⊙,⊖.

This completes our discussion showing that arithmetic mod n can be
reduced to arithmetic in Zn. What we’ve shown can simplify other modular
arithmetic arguments as well:

Exercise 5.4.9. Use Proposition 5.4.4 twice and the first definition of mod-
ular equivalence (Definition 5.2.6) to prove the following propostions. (It is
also possible to prove these propositions directly from the definitions, but
the point of this exercise is to look at the proof from a different perspective.)

Proposition: Given ℓ,m, x, y ∈ Z where ℓ ≡ x (mod n) and m ≡ y
(mod n), then

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) ℓ+m ≡ x+ y (mod n),

(b) ℓ ·m ≡ x · y (mod n).

♢

This proposition shows that we can freely replace numbers in arithmetic
expressions involving + and · with other numbers that are equivalent mod
n, as long as we’re only interested in the result mod n. For example, suppose
we want to find the following remainder:

mod(80056 · 69944, 56).

We may notice that 80056 ≡ 80000 (mod 56) and 69944 ≡ 70000 (mod 56).
So we can replace 80056 with 80000 and 69944 with 70000 in the computa-
tion:

mod(80000 · 70000, 56) = mod(5600000000, 56) = 0.

By noticing some patterns we were able to save ourselves quite a bit of work.

Note that we were careful to specify that replacement with modular
equivalents works in modular equations that involve addition and/or mul-
tiplication. It does not work for integer exponents. for example, it is not
true that 21 ≡ 24(mod3), even though 1 ≡ 4(mod3). It turns out that expo-
nents can be replaced with simpler exponents in modular equivalences, but
we won’t find out how this works until Section 18.3.2 (if you want to look
ahead!)

Exercise 5.4.10. Prove or disprove, using the proposition in Exercise 5.4.9:

(a) 7787 · 21005 · 495 ≡ 56002 · 492 · 213 (mod 7)

(b) (12345 · 6789) + 1357 ≡ (98765 · 13579) + 9876 (mod 10)

(c) (4545 · 5239) + 1314 ≡ (7878 · 3614) + 4647 (mod 101)

(d) 765432121234567·234567878765432 ≡ 456456456456456456·789789789789789789789
(mod 10)

(e) 5432543254325432543254323 ≡ 12121212121212121212127 (mod 10)

(f) 7867867867867867867863 ≡ 4564564564564564564564 (mod 10)

(g) 65432187654321 ≡ 12345612345678 (mod 5)

♢
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5.4.2 Cayley tables for Zn

The fact that we can replace integers with their remainders mod n leads
us to a simpler way of thinking about modular arithmetic. First, recall
the integer number line, pictured (again) in Figure 5.4.2: We may relabel

Figure 5.4.2. The usual number line

the integers with their remainders mod 5, pictured in Figure 5.4.3: All the

Figure 5.4.3. The number line mod 5

numbers equivalent to 0 mod 5 are labeled 0; all the numbers equivalent to
1 mod 5 are labeled 1; and so on. The whole infinite set of integers then is
reduced to repetitive cycles of the integers 0 through 4. In other words, all
the integers are equivalent to either 0, 1, 2, 3, or 4, mod 5.

Furthermore, as we just discussed, the sum and product mod 5 of any
two numbers is exactly equivalent to the sum and product mod 5 of their
corresponding remainders. Therefore, the sum or product of any two num-
bers mod 5 can be determined by the sum or product of the integers 0− 4.
So we only have to focus on the sums and products of these five numbers to
get the result of any modular calculation mod 5.

So let’s calculate these sums and products. We are only using the re-
mainders for mod 5 (recall we have already defined this set as Z5). The
following table then gives the results of addition mod 5 for Z5:

As an example of how to read this table, the entry in the “2” row and the
“3” column is 0, which tells us that 2⊕3 = 0 (remember, this result depends
on fact that we’re working in mod 5).

The following table gives the results of multiplication mod 5 for Z5:

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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⊕ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 5.1: Addition table for Z5

⊙ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 5.2: Multiplication table for Z5

Again, looking at the entry in the ”2” row and the ”3” column we see 1,
which tells us that 2⊙ 3 = 1.

Similarly, for each set of numbers Zn we can construct a table to de-
termine the result of any possible calculation mod n. Tables like these are
known as Cayley tables.8 We will see them often throughout the course.

Exercise 5.4.11. Use the above Cayley tables for⊕ and⊙ in Z5 to calculate
each of the following. (Remember, compute the remainders before doing the
arithmetic.)

(a) mod(456 · (252 + 54), 5)

(b) mod(523 + (4568 · (43 + 20525)) , 5)

(c) mod((456 · 252) + (456 · 54), 5)

(d) mod(523 + ((4568 · 43) + (4568 · 20525)) , 5)

♢

Later on (in the chapter on Equivalence Relations) we’ll show another way
of looking at the integers mod n.

8Technically, this kind of operation table is only called a “Cayley table” if the operation
satisfies the “group properties” (see Section 5.4.7).
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5.4.3 Closure properties of Zn

Let’s look a little further into the arithmetic properties of the numbers Zn
that we’ve just defined.

Example 5.4.12. To start exploring, first consider Z8. Tables 5.3 and 5.4
are the addition and multiplication tables for Z8, respectively.

⊕ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

Table 5.3: Addition table for Z8

⊙ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

Table 5.4: Multiplication table for Z8

♦

There is an important feature exhibited in both Table 5.3 and Table
5.4 that is easy to overlook. Notice that every entry in the table is also an
element of Z8. You can think of the set {0, ..., 7} as a closed box, and when
you add or multiply any two numbers in that box mod 8, you always get
another number in that box, never outside of it (indeed because addition
and multiplication mod 8 return a remainder that is some number 0-7). We
express this mathematically by saying that Z8 is closed under addition and

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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multiplication mod 8. (Alternatively we may say: addition and multiplca-
tion mod 8 have the property of closure .) It seems reasonable that the
same should be true for any Zn, and we state this formally as a proposition
(as mathematicians are wont to do):

Proposition 5.4.13. Zn is closed under modular addition and multiplica-
tion, for all positive integers n.

Exercise 5.4.14. Prove Proposition 5.4.13. That is, show that the modular
sum and modular product of two elements of Zn are also in Zn. (*Hint*) ♢

In general closure is not hard to prove (when it’s true), but it should not
be taken for granted. There are many examples of number systems that are
not closed under various operations. For instance, the positive integers are
not closed under the operation of subtraction, because (for example) 5−7 is
not a positive integer. Similarly, the positive integers are not closed under
the operation of square root, because the square root of 2 is not an integer.

Exercise 5.4.15. For each of the following number systems, state whether
or not they are closed under (i) addition (ii) subtraction (iii) multiplication
(iv) division (v) square root. In cases where closure holds you can simply
state the fact (no proof is necessary). In cases where closure doesn’t hold,
give a counterexample. For example, we know that the negative real num-
bers are not closed under square root because

√
−1 is not a negative real

number. (*Hint*)

(a) The integers

(b) The rational numbers

(c) The real numbers

(d) The positive rational numbers

(e) The positive real numbers

(f) The nonzero real numbers

♢

Exercise 5.4.16. Prove that the complex numbers are closed under com-
plex addition and multiplication. ♢
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5.4.4 Identities and inverses in Zn

Next, we want to look at some additional properties that were introduced in
Chapter 4, namely identities and inverses (both additive and multiplicative).
This time we’ll go through these properties more quickly.

Consider first the additive identity. Remember that an additive identity
is an element which, when added to any other element a, gives a result of a.
For the specific case of Z8, we can see from the first row of Table 5.3 that
0⊕ a = a for any a ∈ Z8. Similarly, the first column of Table 5.3 show that
a⊕ 0 = a for any a ∈ Z8.

Is 0 an additive identity for any Zn? Not surprisingly, the answer is Yes:

Proposition 5.4.17. 0 ∈ Zn is the additive identity of Zn.

Proof. Given any a ∈ Zn, then a⊕ 0 is computed by taking the remainder
of a+0 mod n. Since a+0 = a, and 0 ≤ a < n, it follows that the remainder
of a is still a. Hence a ⊕ 0 = a. Similarly we can show 0 ⊕ a = a. Thus 0
satisfies the definition of identity for Zn. □

Exercise 5.4.18. Give a similar proof that 1 is the multiplicative identity
for Zn when n > 1. What is the multiplicative identity for Zn when n = 1?
♢

5.4.5 Inverses in Zn

Now let’s find out whether the integers mod n have additive and multi-
plicative inverses. Additive inverse first: for each element of Zn is there a
corresponding element of Z8 such that their modular sum is the additive
identity (that is, 0)? You may see in Table 5.3 that each row of the addition
table contains a 0 (e.g. 1⊕ 7 = 0). It follows that each element of Z8 has an
additive inverse. But will the same be true for Z27, or Z341, or Z5280? We
can’t just take this for granted–we need to give a proof:

Proposition 5.4.19. Let Zn be the integers mod n and a ∈ Zn. Then for
every a there is an additive inverse a′ ∈ Zn.

In other words: for any a ∈ Zn in we can find an a′ such that:

a⊕ a′ = a′ ⊕ a = 0.

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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We structure the proof of Proposition 5.4.19 as an exercise. We prove
the two cases a = 0 and a ̸= 0 separately.

Exercise 5.4.20.

(a) Show that 0 ∈ Zn has an additive inverse in Zn.

(b) Suppose a is a nonzero element of Zn (in mathematical shorthand, we
write this as: a ∈ Zn \ {0}), and let a′ = n− a.

(i) Show that a′ is in Zn . (*Hint*)

(ii) Show that a⊕ a′ = a′ ⊕ a = 0 (mod n): that is, a′ is the additive
inverse of a.

♢

That takes care of additive inverse. What about multiplication? That
is, no matter what n is, given a ∈ Zn is there always another element of Zn
which multiplies to give the multiplicative identity?

Before attempting to prove this, first let’s see if it’s true in Z8. Consider
the multiplication table for Z8 in Table 5.4. We find that rows 0, 2, 4, and
6 do not contain a 1. This means that for a = 0, 2, 4, or 6, there’s no
b ∈ Z8 such that a⊙ b ≡ 1 (mod 8). So 0, 2, 4, and 6 have no multiplicative
inverses in Z8.

Actually, it’s not too hard to see that 0 never has a multiplicative inverse
for any Zn (why?). This means that it’s impossible to prove a multiplicative
version of Proposition 5.4.19, since we have a counterexample that shows
that not every element of Zn has an inverse, no matter what n is.

Remark 5.4.21. This example shows that it’s often easier to disprove
something than to prove it! To disprove a general statement, you only need
to find just one counterexample, whereas an unlimited number of examples
can never prove a general statement. △

But all is not lost as far as multiplicative inverses are concerned. We’ll
see later that they play a very important role when we consider arithmetic
with the nonzero elements of Zn:

Exercise 5.4.22.
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(a) Find an integer n > 2 such that all nonzero elements of Zn have multi-
plicative inverses.

(b) Find two additional values of n > 5 such that all nonzero elements of
Zn have multiplicative inverses.

(c) What do the three numbers you found in (a) and (b) have in common?

♢

5.4.6 Other arithmetic properties of ⊕ and ⊙

In many respects, ⊕ and ⊙ are very similar to the ordinary arithmetic
operations + and ·. It makes sense that they too should be associative,
distributive, and commutative (recall these properties were defined in Sec-
tion 3.2.1). But as mathematicians, it’s not enough for something to “make
sense”–we need solid proof. So let’s buckle down and crank out some proofs.

Proposition 5.4.23. In the following n is an arbitrary positive integer and
a, b, c denote arbitrary elements of Zn.

(a) Modular addition and multiplication are commutative:

a⊕ b = b⊕ a

a⊙ b = b⊙ a.

(b) Modular addition and multiplication are associative:

(a⊕ b)⊕ c = a⊕ (b⊕ c)

(a⊙ b)⊙ c = a⊙ (b⊙ c).

(c) Modular multiplication distributes over modular addition:

a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c).

Proof. We’ll prove associativity, and you’ll prove the other parts as ex-
ercises (the proofs are pretty similar). The proof strategy is familiar: we’ll
prove modular arithmetic properties by making use of the corresponding
properties of ordinary arithmetic.

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Modular addition is associative: Given a, b, c are elements of Zn,
we may apply part (a) of Exercise 5.4.8 and get

mod((a+ b) + c), n) = (a⊕ b)⊕ c.

Similarly, we may apply part (b) of Exercise 5.4.8 to get

mod(a+ (b+ c), n) = a⊕ (b⊕ c).

Now here’s where we use regular arithmetic. The associative property of
integer addition tells us that (a+ b) + c = a+ (b+ c), so the left-hand sides
are equal. So (a⊕ b)⊕ c = a⊕ (b⊕ c), and the proof is complete. □

Exercise 5.4.24. Explain the step in the above proof where we used part
(a) of Exercise 5.4.8 to conclude that mod ((a+b)+c, n) = (a⊕b)⊕c. What
values are we using for ℓ,m, p, and why is it OK to use these values? ♢

Exercise 5.4.25.

(a) Prove that addition mod n is commutative.

(b) Prove that multiplication mod n is commutative.

(c) Prove that multiplication mod n is associative.

(d) Prove part (c) of Proposition 5.4.23.

♢

5.4.7 Group: a central concept in abstract algebra

It’s time for us to make a confession. We have an ulterior motive. We’ve
been spending lots of time and effort discussing modular arithmetic because
it provides good examples of one of the central concepts in abstract algebra,
namely the notion of a group.

Notice that the set Zn with the operation of ⊕ has an identity, and
inverses, and the property of closure. Furthermore, Zn is associative under
⊕, as we just showed. Any combination of a set and an operation that has
those three properties, as well as the associative property, is called a group.
Here’s the formal definition:

Definition 5.4.26. A group is a set combined with an operation that has
the following properties:
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� Closure: the set is closed under the operation;

� Identity : the set has an identity element for the operation;

� Inverse: every element of the set has an inverse under the operation;

� Associative: the operation is associative.

△

Notice that we do not include the commutative property in this list. Later
on we’ll see examples of groups that are not commutative. Groups that do
have the commutative property are called abelian groups.

Now that we’ve defined groups, in retrospect we may look back and see
that we’ve encountered groups before. In fact, we’ve been working with
groups since the very beginning of the book!

Exercise 5.4.27. For each of the following sets of numbers, determine
which of the four group properties holds, using the operation of addition. If
a property does not hold, give a specific counterexample which shows that
the property is false. State also whether or not each set is a group.

(a) Integers; (b)Positive integers; (c) Rational numbers; (d) Real numbers;
(e) Complex numbers. ♢

We’ve shown several examples of group under the operation of addition
(+ or ⊕). But what about multiplication? With multiplication, things turn
out quite differently.

Exercise 5.4.28. For each of the following sets of numbers, determine which
of the four group properties holds, using the operation of multiplication. If
a property does not hold, give a specific counterexample which shows that
the property is false. State also whether or not each set is a group.

(a) Integers; (b)Positive integers; (c) Rational numbers; (d) Real numbers;
(e) Complex numbers. ♢

Based on our experience with the previous exercise, we may generalize:

Exercise 5.4.29.

https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) Explain why it is impossible for any set of (real or complex) numbers
which contains both 0 and 1 to be a group under the operation of mul-
tiplication.

(b) Explain why Zn is not a group under ⊙ for any n > 1.

♢

We’ve seen in Exercise 5.4.29 that 0 causes a problem for multiplication,
as far as making groups is concerned. But what if we remove 0 from the
set? We may have better luck:

Exercise 5.4.30.

(a) Show that the nonzero elements of Z3 is a group under ⊙.

(b) Can you find an n > 3 such that the nonzero elements of Zn do not
form a group under ⊙? If so, tell which n, and explain why Zn fails to
be a group in this case.

♢

Now that you know what a group is, we’ll be referring back to this
definition fairly frequently throughout the rest of the book. In particular,
we’ll be saying a lot more about multiplicative groups, which turn out to be
somewhat more intricate (and more interesting) than additive groups.

5.5 Modular division

Before getting to modular division, we’ll look at something else first. This
all may seem irrelevant, but please be patient: we’ll get to the point soon
enough.

5.5.1 A sticky problem

The following problem may not seem to have anything to do with modular
arithmetic, but it’s an interesting problem and fun to think about. (And it
turns out to be relevant after all!)9

Example 5.5.1. Someone gives us a pencil and two unmarked sticks of
lengths 52 cm and 20 cm respectively (see Figure 5.5.1). We are told to

9This section is by David Weathers, edited by C.T.

https://www.youtube.com/watch?v=kdD2fQHXlfA&index=11&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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Figure 5.5.1. Two sticks

Figure 5.5.2. First mark

make measuring sticks by using the pencil to make markings on the sticks.
Question: what is the smallest length that we can accurately measure?
Clearly we can measure 20 cm lengths with the shorter rod, but is it possible
to make smaller measurements?

Here’s one way to look at the situation. Imagine for a moment that we
lay the 20 cm measuring stick next to the 52 cm stick such that the ends
line up. At that point we could make a 20 cm mark on the 52 cm stick (see
Figure 5.5.2).

At this point we move the 20 cm stick further down the the 52 cm stick such
that one end is on the pencil mark, and and make another mark. Now there
are two 20 cm sections marked on the 52 cm stick, as shown in Figure 5.5.3.

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Figure 5.5.3. Second mark

Figure 5.5.4. Remaining distance

Since we know the sum of the marked sections is 40 cm, and the length
of the large stick is 52 cm, the remainder of the distance must be 12 cm, as
shown in Figure 5.5.4. So we’ve actually made progress. At the beginning
we were only able to measure lengths larger than 20 cm: but now we can
measure 12 cm with the latest mark we’ve made.

But let’s not stop there. We can use the 12 cm section to divide up the
20cm stick. This will subdivide the 20 cm stick into a 12 cm section and a
8 cm section, as shown in Figure 5.5.5.

Now we’re rolling! Let’s subdivide the 12 cm section using the 8 cm sec-
tion. This will produce an 8 cm section and a 4 cm section (see Figure 5.5.6).
Now if we try to use the 4 cm section to subdivide any of the other sections,



5.5 MODULAR DIVISION 131

Figure 5.5.5. More subdivision

Figure 5.5.6. More subdivision

we will no longer have a remainder. This is because 4 cm evenly divides all
the other lengths we have created, as shown in Figure 5.5.7.

♦

Exercise 5.5.2. Using the method above, find the smallest measure given
sticks of length:

(a) 30 cm and 77 cm.

(b) 7 feet and 41 feet (Pretty long sticks!).

(c) 33 in and 72 in.

♢

While working on the exercises, you may have noticed that the units
of measure used do not matter. The only thing that matters is the actual
count of those units of measure.

Exercise 5.5.3. Using the method above:

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Figure 5.5.7. More subdivision

(a) Convert the measurements in Exercise 5.5.2 part (a) into millimeters,
and solve the problem again. How is your result using millimeters related
to your answer to part (a) in the previous exercise?

(b) Convert the measurements in Exercise 5.5.2 part (b) into inches, and
solve the problem again. How is your result using inches related to your
answer to part (a) in the previous exercise?

(c) Use what you’ve discovered in part (b) to quickly find a solution to the
two-sticks problem when one stick is 720 inches and the other is 600
inches.

♢
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5.5.2 Greatest common divisors

You may be familiar with the notion of greatest common divisor (gcd) of
two numbers. The gcd is defined as the greatest number that divides the
two given numbers. gcd’s play a key role in modular arithmetic, as we shall
see.

The general question we now consider is: What’s a good way to find
the gcd of two integer numbers? It may be easy to find the gcd of small
numbers like 12 and 20, but what if you have to find the gcd of 583768 and
260568447?

At this point, let’s think back to our two-sticks problem. We saw that
when we began with sticks of length 52 and 20 we ended up with a minimum
measurable distance of 4, which just so happens to be the gcd of 52 and 20.
Was this a coincidence? Not at all! The minimum measureable distance has
to evenly divide the two sticks’ lengths, otherwise we could find a smaller
measurable distance using the marking-off procedure described in the previ-
ous section. This implies that the minimum measureable distance must be
a common divisor. To show that it’s the greatest common divisor takes a
little more work–we’ll give the proof below. For now, we’ll assume that the
minimum measureable distance is in fact the gcd.

So to get the gcd of 583768 and 260568447, in theory we could try
creating one stick of length 583768 and another of length 260568447 and
follow the same procedure. Of course this isn’t practical. So instead, we’ll
try to duplicate the same procedure mathematically, without resorting to
actual sticks. Notice that when we subdivided a larger stick of length a into
sections of the length of b, the result was essentially the same as dividing a
by b while leaving a remainder r. See if you can complete the connection in
the following example.

Example 5.5.4. Let’s use algebraic language to express the two-sticks
algorithm applied to 52 and 20. Let’s start by setting this up as a division
problem with a remainder (recall Proposition 5.2.3), since this is effectively
what is being done in the stick example above.

52 = 20 · q1 + r1,

where q1 and r1 are integers (we put the subscript ‘1’ on the variables q1 and
r1 because we’re going to repeat the process). By division with remainder
we find q1 = 2 and r1 = 12. Now we repeat the process, but this time
dividing the remainder 12 into the smaller stick length 20:

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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20 = 12 · q2 + r2,

which yields q2 = 1, r2 = 8. Here we go again, this time dividing the second
remainder 8 into the first remainder 12:

12 = 8 · q3 + r3

This yields q3 = 1, r3 = 4. One more time, this time dividing the new
remainder 4 into the previous remainder 8:

8 = 4 · q4 + r4

This yields q4 = 2, r4 = 0.

Now notice that 8 is divisible by 4. In the equation before that, we have
12 = 4 · 2 + 4. Since the right hand side is a sum of multiples of 4, the left
hand side must also be a multiple of 4. In the next equation up 20 = 12·x+8
again, the right hand side is a sum of multiples of 4, so the left hand side
must also be a multiple of 4. Continuing this logic upward shows that all
intervals created along the way are divisible by 4. Hence the algorithm has
generated a divisor of the original lengths 52 and 20. In summary, the last
nonzero remainder gave us the gcd.

The procedure we have just described is called the Euclidean algo-
rithm . (An algorithm is a mathematical procedure designed to compute a
specific result). The Euclidean algorithm is very powerful, and in fact can
be used to calculate gcd’s of large numbers as we’ll see below.

♦

As noted above, the divisor produced by the Euclidean algorithm turned
out to be the greatest common divisor. Let’s prove this in general.

Proposition 5.5.5. The Euclidean algorithm applied to two integers will
give the gcd of those two integers.

Proof. This proof is broken up into two parts, (A) and (B). Part (A) shows
that the algorithm always produces a divisor of the two given integers. Part
(B) shows that the produced divisor is indeed the gcd.
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(A) Given integers a and b and a > b if we were to plug them into the
Euclidean Algorithm we get:

a = b · q1 + r1

b = r1 · q2 + r2

r1 = r2 · q3 + r3

...

until there is an equation with no remainder left.

rk−2 = rk−1 · qk−1 + rk

rk−1 = rk · qk + 0

It is clear that rk divides rk−1. Consider the next equation up.

rk−2 = rk−1 · qk−1 + rk = rk · qk−1 · qk + rk

This shows that rk divides the right hand side, so rk must divide rk−2.
In the next equation up, the right can be set up as multiples of rk which
means the next r term is divisible by rk Continue all the way to the
top and it must be that rk divides both a and b

(B) Now suppose there is another number c that divides a and b such that
a1 · c = a and b1 · c = b. We can rewrite the initial equation of the
algorithm as follows.

a1 · c = (b1 · c) · q1 + r1 ⇒ a1 · c− (b1 · c) · q1 = r1

This shows that c must divide r1. Consider the next equation.

b1 · c = (r1) · q2 + r2 ⇒ b1 · c− (r1) · q2 = r2

Since c divides both r1 and b1 then c must divide r2 also. Repeat all
the way to the bottom and c will have to divide rk.

Since c divides rk, c is no larger than rk. So all divisors of a and b must
be no larger than rk. From part (A) we know that rk divides both a
and b. Therefore rk must be the gcd of a and b.

□

The Euclidean algorithm may be summarized as follows.

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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1: Start with two integers a and b where a > b

2: Divide b into a and find the remainder r

3: If r = 0, b is the greatest common divisor.

4: If the remainder is not 0, then replace a with b and b with r and return
to step 1.

Exercise 5.5.6. What is the greatest common divisor of:

(a) 1168 and 2338?

(b) 2343 and 4697?

(c) 1006 and 13581?

♢

Let’s analyze this algorithm just a little further. In the first step when
we divide a by b, the remainder satisfies the equation, r1 = a− q1 · b, where
q is an integer. In other words, r1 can be written in the general form:
r1 = n · a+m · b, where n and m are integers.

Exercise 5.5.7.

(a) Show that r2 can also be written in the form: r2 = n · a+m · b, where
n and m are integers.

(b) Show that for k > 2, if rk−2 and rk−1 can both be written in the form
n · a+m · b where n and m are integers, then rk can also be written in
the same form.

(c) Show that the gcd of two numbers a and b can always be written in the
form n · a+m · b where n and m are integers.

♢

The above exercise amounts to an inductive proof of the following propo-
sition.

Proposition 5.5.8. The gcd of two numbers a and b can be written in the
form n · a+m · b where n and m are integers.

This proposition will be useful in the next section.
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5.5.3 Computer stuff

For the computationally inclined reader here are two examples, in C++
syntax, of functions that calculate the greatest common divisor.

int gcdLoop (int a, int b){

int divisee=a;

int divisor=b;

int remainder;

//if they are the same, then either is the greatest divisor

if (a == b)

return a;

//If a < b, then switch, otherwise the algorithm will not work.

if (a < b){

divisee=b;

divisor=a;

}

// At this point, a is the larger of the two numbers

do{

// ’%’ returns the remainder of the integer division.

remainder = divisee % divisor;

//Set up the next iteration if the remainder is not 0 --

// if the remainder is 0, then we’re done

if (remainder !=0){

divisee = divisor;

divisor = remainder;}

else

{break;}

while (1);

return divisor;

}

This second example is also in C++, but uses recursion.

int gcdRecurse (int a, int b){

int remainder;

if (a == b)

return a;

if (a <$ b)

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO


138 CHAPTER 5 MODULAR ARITHMETIC

{

//’%’ returns the remainder of the integer division

remainder = b % a;

if (remainder == 0)

return a;

else

return gcdRecurse(a, remainder);

}

else

{

remainder = a % b;

if (remainder == 0)

return b;

else

return gcdRecurse(b, remainder);

}

//By calling itself, it will repeat the process until the remainder is 0

}

Exercise 5.5.9. Create a spreadsheet (with Excel, LibreOffice, or OpenOf-
fice) that calculates the gcd of two integers that uses the procedure above.
Excel has a built-in gcd function, but you’re not allowed to use it for this ex-
ercise.But you may use the MOD function: “=MOD(A2,B2)” will compute
the remainder when A2 is divided by B2. You may refer to the spreadsheet
in Figure 5.5.8 for ideas. ♢

5.5.4 Diophantine equations

Let’s look now at another type of problem, which has played a key role in
the history of mathematics.

Definition 5.5.10. A Diophantine equation in the variables m,n is an
equation of the form

a ·m+ b · n = c

where a, b, c are integers, and m and n are assumed to have integer values.
△
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Figure 5.5.8. Spreadsheet for computing gcd

Example 5.5.11. Find all integers m and n such that 16m+ 42n = 8.

To solve this, let us list each of the steps in finding the gcd of 42 and 16,
as we explained in the previous section:

42 = (16) · 2 + 10

16 = (10) · 1 + 6

10 = (6) · 1 + 4

6 = (4) · 1 + 2

4 = (2) · 2 + 0

Now let’s start over again, but this time we’ll keep track of what we’re
doing. If we start at the top of the list, but move the 16 · 2 to the other side
of the equation, this yields:

42 · 1 + 16 · (−2) = 10.

Let’s define a shorthand “pair notation” for the left-hand side. Let’s repre-
sent any expression of the form 42 · x + 16 · y as (x, y). Using this rule, we
denote 42 · 1+16 · (−2) by the pair (1,−2). Then our previous equation can
represented in “pair notation” as:

(1,−2) = 10.

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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This “vector notation” can save a lot of writing over the course of a long
computation.

Now consider the next equation down the list, which is 16 = (10) · 1+ 6.
Using pair notation, we can write 16 with (0,1) (since 16 = 42 · 0 + 16 · 1).
We’ve already seen that 10 = (1,−2), so we get:

(0, 1) = (1,−2) + 6.

Now we can move the (1,−2) to the left-hand side and subtract it from (0, 1)
to get:

(−1, 3) = 6.

Now the next equation down the list is 10 = (6) · 1 + 4. Making similar
replacements, we find:

(1,−2) = (−1, 3) + 4 ⇒ (2,−5) = 4.

Repeat again for the next equation down the list: 6 = (4) · 1 + 2, which
gives:

(−1, 3) = (2,−5) + 2 ⇒ (−3, 8) = 2.

At this point, we’ve gone as far as we can go. (Verify this: what happens if
you try to continue?) Now if we replace the pair notation (−3, 8) with what
it originally represents, we get:

42 · (−3) + 16 · 8 = 2.

If we multiply this equation by 4, we have

42 · (−12) + 16 · 32 = 8.

It follows that m = 32, n = −12 is an integer solution to our original equa-
tion, 16m+ 42n = 8.

Unfortunately we’re not quite done yet, because we’re supposed to find
all integer solutions. But we do have a particular solution, and we can
leverage this information as follows.10 Suppose that m,n is an arbitrary

10What we’re doing here is a common ploy in mathematics. We’re using a particular
solution to reduce the problem to a homogeneous equation (if you’re not familiar with this
terminology, then don’t worry about it). Exactly the same method is used in differential
equations, and in linear algebra.
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solution, so that 42n + 16m = 8. We may subtract from this equality the
equation for the particular solution m = −12, n = 32:

42n + 16m = 8

− (42(−12) + 16(32) = 8)

42(n+ 12) + 16(m− 32) = 0

Rearranging and dividing by common factors, we obtain:

21(n+ 12) = −8(m− 32).

Now since the right-hand side is divisible by 8, then the left-hand side must
also be divisible by 8. This implies that n+ 12 must be divisible by 8, or

n+ 12 = 8k (for some integer k).

If we plug this in to the equation just above, we get:

21(8k) = −8(m− 32), or m− 32 = −21k.

We may rearrange to obtain finally:

m = 32− 21k and n = −12 + 8k (where k is an arbitrary integer)

as the most general solution to 16m+ 42n = 8. ♦

Example 5.5.12. We’ll give another example, giving just the computations
and no other words. We find integer solutions to 1053x + 863y = 245 as
follows:

1053 = 863 + 190 ⇒ 190 = (1,−1)

863 = 4 · 190 + 103 ⇒ 103 = (0, 1)− 4 · (1,−1) = (−4, 5)

190 = 103 + 87 ⇒ 87 = (1,−1)− (−4, 5) = (5,−6)

103 = 87 + 16 ⇒ 16 = (−4, 5)− (5,−6) = (−9, 11)

87 = 5 · 16 + 7 ⇒ 7 = (5,−6)− 5 · (−9, 11) = (50,−61)

16 = 2 · 7 + 2 ⇒ 2 = (−9, 11)− 2 · (50,−61) = (−109, 133)

7 = 3 · 2 + 1 ⇒ 1 = (50,−61)− 3 · (−109, 133) = (377− 460).

This means that: 377 · 1053 − 460 · 863 = 1 (You may check this on a
calculator.)

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Now we may multiply both sides by 245, which gives:

(245 · 377) · 1053− (245 · 460) · 863 = 245.

Thus x = (245 · 377) = 92365 and y = −(245 · 460) = −112700, so that

1053 · 92365− 863 · 112700 = 245

is an integer solution.

To find all integer solutions, we suppose that (x, y) is an arbitrary so-
lution to 1053x + 863y = 245. We can subtract our computed solution to
give:

1053(x− 92365) + 863(y + 112700) = 0,

or
1053(x− 92365) = −863(y + 112700).

The left-hand side is divisible by 1053, and our computation shows that
gcd(1053,863)=1, so by Euclid’s Lemma (Proposition 4.1.15 in Chapter 4)
it must be the case that by y + 112700 is also divisible by 1053. If we write
y + 112700 = 1053k, it follows by algebra that x − 92365 = −863k. This
means that

x = 92365− 863k, y = −112700 + 1053k

is the most general solution.

This solution is correct, but we can simplify it by shifting the value of
k. Note that 92365 = 107 · 863 + 24 and 112700 = 107 · 1053 + 29. So we
may replace k with (ℓ+ 107) to obtain:

x = 92365− 863(ℓ+ 107), y = −112700 + 1053(ℓ+ 107),

which after working out the algebra gives us:

x = 24− 863ℓ, y = 29 + 1053ℓ.

♦

Exercise 5.5.13. Using the process above, find all integer solutions to the
following equations.

(a) 45m+ 16n = 27
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(b) 360m+ 14n = 32

(c) 389m+ 50n = 270

(d) 4801m+ 500n = 1337

(e) 3524m+ 7421n = 333

(f) 20m+ 17n = 12

♢

Exercise 5.5.14. Modify the spreadsheet from Exercise 5.5.9 to find the
coefficients n and m such that na +mb = gcd(a, b) for given integers a, b.
Refer to Figure 5.5.9 for ideas. ♢

Figure 5.5.9. Spreadsheet for computing gcd

Do all Diophantine equation have solutions? Let’s investigate.

Exercise 5.5.15. Explain why the following Diophantine equations have
no integer solutions.

(a) 2m+ 4n = 1 (*Hint*)

(b) 3m+ 27n = 2

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO


144 CHAPTER 5 MODULAR ARITHMETIC

♢

The previous exercise shows that not all Diophantine equations can be
solved. The following proposition shows which can and cannot be solved.

Proposition 5.5.16. Given the Diophantine equation an+ bm = c, where
a, b, c are integers. Then the equation has integer solutions for n and m if
and only if c is a multiple of the gcd of a and b.

Proof. Since this is an “if and only if” proof, we need to prove it both
ways. We’ll do “only if” here, and leave the other way as an exercise.

Since we’re doing the “only if” part, we assume that an + bm = c is
solvable. We’ll represent the gcd of a and b by the letter d. Since gcd(a, b)
divides both a and b, we may write a = da′ and b = db′ for some integers
a′, b′. By basic algebra, we have an + bm = d(a′n + b′m). If we substitute
this back in the original Diophantine equation, we get:

d(a′n+ b′m) = c

It follows that c is a multiple of, d, which is the gcd of a and b. □

Exercise 5.5.17. Prove the “if” part of Proposition 5.5.16. (*Hint*) ♢

At the beginning of this section, we “introduced” Diophantine equations.
But we have seen them before:

Exercise 5.5.18.

(a) Find the general integer solution to: 242m+ 119n = 53.

(b) Use your solution to solve the modular equation: 242x ≡ 53 (mod 119).

(c) Use your solution to solve the modular equation: 119y ≡ 53 (mod 242).

♢

This example shows that Diophantine equations are just modular equa-
tions in a disguised form! Furthermore, each Diophantine equation is asso-
ciated with two modular equations:

Exercise 5.5.19. Given that (m,n) is a solution to a ·m + b · n = c, give
(a) a modular equation with base b involving the constants a and c which
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has m as a solution; and (b) a modular equation with base a involving the
constants b and c which has n as a solution. ♢

In Example 5.3.11, we saw that not all equations of the form ax ≡
c (mod b) have an answer. We now have the means to determine which
modular arithmetic equations have an answer:

Proposition 5.5.20. Given a modular equation ax ≡ c (mod b), where
a, b, c are integers. Then the equation has an integer solution for x if and
only if c is an integer multiple of the greatest common divisor of a and b.

Exercise 5.5.21. Prove both the “if” and the “only if” parts of Proposi-
tion 5.5.20. (*Hint*) ♢

Exercise 5.5.22. Which of the following equations have integer solutions?
If solutions exist, find them all. If no solutions exist, prove it!

(a) 15x ≡ 3 (mod 12)

(b) 4x ≡ 17 (mod 23)

(c) 503x ≡ 919 (mod 1002)

(d) 504x ≡ 919 (mod 1002)

(e) 423x+ 60 ≡ 720 (mod 101)

♢

To close off this section, we take care of some unfinished business. Way
back when we were showing the existence of irrational numbers, we made
use of Euclid’s lemma (Proposition 4.1.15 in Chapter 4). We weren’t able
to give a real proof then–but now we can, thanks to Proposition 5.5.16.
In the proof, we use the terms “prime” and “relatively prime”: recall that
a prime number is a natural number > 1 whose only factor > 1 is itself
(Definition 4.1.14); and two numbers are relatively prime if they have no
common factors > 1.

Exercise 5.5.23.

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) Let p be a prime, and let a be an integer. Show that a is relatively prime
to p if and only if there exist integers m and n such that pm+ an = 1.
(*Hint*)

(b) Suppose p is prime, and suppose a is relatively prime to p. Suppose also
that p divides ab. By multiplying the equation in part (a) by b, show
that p must divide b. (*Hint*)

(c) Prove Euclid’s Lemma : Let p be a prime number, and let a and b be
integers. If p divides ab, then either p divides a or p divides b. (*Hint*)

♢

Euclid’s lemma can be used to prove another “obvious” fact about nat-
ural numbers that “everybody knows” (but few people can prove): namely,
that all natural numbers greater than 1 can be factored as a product of
primes in exactly one way. This fact is known as the Fundamental Theo-
rem of Arithmetic. There are two parts to the proof: first, showing that
such a factorization alwasy exists; and second, that there is only one way
to do it (up to rearrangement of the factors). Both parts may be proved by
induction, and a proof of the first part is given in Section 26.4.

5.5.5 Multiplicative inverse for modular arithmetic

This section is supposed to be about modular division, but so far we’ve been
talking about all kinds of other stuff. You may be wondering, So where’s
the modular division? You’re about to find out!

Recall that the set Zn under the operation ⊕ forms a group: it has
closure, it’s associative, it has an additive identity, and all elements have
inverses. On the other hand Zn does not form a group under ⊙ for any
n ≥ 2.

Why is this? Because the inverse property fails for the element 0. The
multiplicative identity must be 1, yet 0 ·m ̸= 1 for all m ∈ Zn.

But let’s not give up so easily in our quest to form multiplicative groups.
Since it appears that 0 is a problem, suppose we take all the elements of
Zn except 0? We write the set of nonzero elements of Zn as Zn \ {0}. Let’s
see whether this a group under ⊙. We remind you that a⊙ b is defined by:
a⊙ b = r where a, b, r ∈ Zn and a · b = kn+ r where k an integer.)

Example 5.5.24. The Cayley table for Z3 \ {0} is:
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⊙ 1 2

1 1 2
2 2 1

Notice that each column has 1, meaning that each element has an inverse.
It is also closed, associative and has an identity. Thus Z3 \ {0} is a group
under ⊙. ♦

Example 5.5.25. The Cayley table for Z4 \ {0} is

⊙ 1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

Notice that the 2 column does not have a 1 in it, meaning that 2 does
not have an inverse in Z4. Thus, Z4 \ {0} is not a group under ⊙. ♦

The fact that 2 has no inverse is due to 2 being a divisor of 4. This makes
all integer multiples of 2 to cycle between the values 0 and 2 (mod 4).

Example 5.5.26.

Finding the multiplicative inverse in Zn \ {0} for small values of n is not
difficult. But what about finding the multiplicative inverse of 3 in Z31 \{0}?

Really all we’re looking for is a number k such that 3k ≡ 1 (mod 31).
Since 31 is prime, it must be relatively prime to 3, meaning the gcd of 31
and 3 must be 1. 1 is a multiple of 1, so there is a solution and in fact this is
just a special case of an earlier proposition. We convert it to a Diophantine
equation:

3k + 31j = 1

Using the gcd algorithm, we find:

31 + 3 · (−10) = 1,

and applying (mod 31) gives

3 · (−10) ≡ 1 (mod 31).

Finally, we use the definition of modular arithmetic to convert −10 into a
member in Z31:

3 · (21) ≡ 1 (mod 31).

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♦

Exercise 5.5.27. Prove or disprove that the following sets form a group
by either finding a multiplicative inverse for all members, or by finding a
member that does not have a multiplicative inverse.

(a) Z5 \ {0}

(b) Z7 \ {0}

(c) Z9 \ {0}

(d) Make a conjecture for which sets Zn \ {0} form a group under multipli-
cation.

♢

Proposition 5.5.28. If p is a prime number, then all elements in Zp \ {0}
have an inverse under multiplication mod p.

Proof. Let a, p be known integers where a < p and p is prime. There exists
an inverse to a under multiplication (mod p) when there is a solution k to
the equation ak = 1 (mod p) where k is an integer. By Proposition 5.5.20,
this equation can be solved if and only if the gcd of a and p is equal to 1.
Since p is prime and a < p then the gcd of a and p must be 1. □

The previous proposition is actually a special case of the following:

Proposition 5.5.29. Let n > 1 be an integer, and let a be an element of
Zn\{0}. Then a has a multiplicative inverse in Zn if and only if gcd(a, n)=1
(that is, a is relatively prime to n).

The proof of this proposition is up to you:

Exercise 5.5.30. Let n > 1 be an integer, and let a be an element of
Zn \ {0}.

(a) Prove the “only if” part of Proposition 5.5.29. That is, prove that if a
has an inverse in Zn \ {0} then gcd(a, n)=1. (*Hint*)
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(b) Prove the “if” part of Proposition 5.5.29. That is, prove that if gcd(a, n)=1
then a has an inverse in Zn \ {0} . (*Hint*)

♢

Exercise 5.5.31. Show that if n is not prime, then Zn \ {0} is not a group
under multiplication. (*Hint*) ♢

5.5.6 Chinese remainder theorem

We now are experts at finding solutions to congruences of the form ax ≡ c
(mod b). But what about multiple congruences? Take for example:

x ≡ 4 (mod 7); x ≡ 5 (mod 9).

Can we find an x that solves both at the same time?

The first-century Chinese mathematician Sun Zi considered problems
like this, and was able to come up with a general method of solution. His
result is now known as the Chinese Remainder Theorem .

We may apply Sun Zi’s solution (expressed in modern algebraic lan-
guage) to our particular case as follows. For the first congruence we have
the general solution x = 4+7k, where k is any integer in Z. If we substitute
4 + 7k for x in the second congruence, we get:

4 + 7k ≡ 5 (mod 9) ⇒ 7k ≡ 1 (mod 9).

At this point we could use the Euclidean algorithm to find k. But it’s often
easier to use the trial-and-error methods that we developed earlier. In this
case, the method amounts to adding multiples of 9 to the right-hand side
until you get something that is divisible by 7. In this case, we find:

7k ≡ 1 + 3 · 9 (mod 9) ⇒ 7k ≡ 28 (mod 9) ⇒ k ≡ 4 (mod 9).

This means k = 9j + 4 for some integer j. We substitute 9j + 4 for k back
into x = 4 + 7k to get:

x = 4 + 7(9j + 4) = 4 + 63j + 28 = 32 + 63j.

So the answer must be x ≡ 32 (mod 63) When we check, 32 = 9 · 3 + 5 =
7 · 4 + 4 and 95 = 9 · 10 + 5 = 7 · 13 + 4 and indeed that is the case. Notice

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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the ending modulus was the least common multiple of the first and second
modulus (7 and 9, respectively) in the original set of modular equations.

Now, not all multiple congruences have an answer. Take the following
pair of congruences:

x ≡ 3 (mod 4); x ≡ 4 (mod 6).

We follow the same pattern. There is a solution for the first congruence
x = 4k + 3 where k is any integer. Plug this into the second congruence to
yield:

4k + 3 ≡ 4 (mod 6) ⇒ 4k ≡ 1 (mod 6).

From the Euclidean algorithm, we know there is a solution to this congruence
if and only if gcd(4, 6) = 1, but we know gcd(4, 6) = 2. Therefore there is
no solution.

Exercise 5.5.32. Solve the following pairs of congruences or show that
they have no common solution:

(a) x ≡ 2 (mod 3); x ≡ 3 (mod 4).

(b) x ≡ 12 (mod 23); x ≡ 7 (mod 11).

(c) x ≡ 3 (mod 13); x ≡ 20 (mod 31).

(d) x ≡ 2 (mod 6); x ≡ 56 (mod 72).

♢

Exercise 5.5.33.

(a) Find a pair of congruences of the form: x ≡ a (mod 9); x ≡ b (mod 15)
that have no common solution.

(b) Given congruences of the form

ax ≡ b (mod 3); cx ≡ d (mod 7)

which both have solutions. Show that common solutions also exist.
(*Hint*)
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(c) *Prove the following: Given a pair of congruences

ax ≡ b (mod m); cx ≡ d (mod n)

which both have solutions, such that gcd(m,n)=1. Then the congru-
ences also have a common solution. (*Hint*)

(d) *Prove the following: Given a pair of congruences

x ≡ b (mod m); x ≡ d (mod n).

such that gcd(m,n)=1. Then there exist common solutions to both
congruences; and all common solutions are congruent modmn. (*Hint*)

♢

We can use the same method to solve any number of simultaneous con-
gruences. Take for example:

x ≡ 4 (mod 7); x ≡ 5 (mod 9); x ≡ 1 (mod 2).

From the above example we know the general solution for the first two
congruences is x ≡ 32 (mod 63). So we need to solve:

x ≡ 32 (mod 63); x ≡ 1 (mod 2)

We solve this by the same process as before:

x = 1 + 2k ⇒ 1 + 2k ≡ 32 (mod 63) ⇒ 2k ≡ 31 (mod 63)

⇒ 2k ≡ 31 + 63 (mod 63) ⇒ 2k ≡ 94 (mod 63)

⇒ k ≡ 47 (mod 63).

Substitute to obtain x = 1 + 2(47 + 63j) = 95 + 126j ≡ 95 (mod 126)..

Exercise 5.5.34. Solve the following sets of congruences or show that they
do not have a solution:

(a) x ≡ 2 (mod 3); x ≡ 3 (mod 4); x ≡ 4 (mod 5).

(b) x ≡ 12 (mod 23); x ≡ 7 (mod 11); x ≡ 3 (mod 4).

♢

https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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5.6 Hints for “Modular Arithmetic” exercises

Exercise 5.2.13: Use the alternative definition of modular equivalence in
Proposition 5.2.10.

Exercise 5.3.1(f): Prove by contradiction: suppose the codes d1, d2, . . . d10
and e1, e2, . . . e10 are both valid, and suppose that all digits are equal except
for the n’th digit (so dn ̸= en). There are two cases: (a) n is even; (b) n is
odd. In case (a), show that this implies en− dn ≡ 0 (mod 10), and derive a
contradiction. Prove case (b) similarly.

Exercise 5.3.2(d): Use the fact that 10 ≡ −1 (mod 11).

Exercise 5.3.2(i): Prove by contradiction: Suppose the codes d1, d2, . . . d10
and e1, e2, . . . e10 are both valid, and suppose that all digits are equal except
for the n’th digit (so dn ̸= en). Show that dn − en satisfies (dn − en)n ≡ 0
(mod 11), and show that the only solution is dn − en = 0.

Exercise 5.3.2(j): Suppose the code d1, d2, . . . d10 is valid, and suppose the
code is still valid when the digits dn and dn+1 are exchanged. Write down
two modular equations, and take the difference between the two modular
equations. Use this to find an equation involving dn and dn+1.

Exercise 5.3.12(c): Find a negative number that is equivalent to 856 (mod 123).

Exercise 5.4.7(a): Let m = ℓ and b = a. Check the conditions of the
proposition still hold, and apply the proposition.

Exercise 5.4.8(a): You will need to use Proposition 5.4.4 twice.

Exercise 5.4.14: Use the definitions of ⊕ and ⊙.

Exercise 5.4.15: Be careful about 0!

Exercise 5.4.20(b)(i): Use the fact that 0 < a < n.

Exercise 5.5.15(a): The left-hand side is always even, no matter what m and
n are.

Exercise 5.5.17: Use Proposition 5.5.8.

Exercise 5.5.21: Use Proposition 5.5.16.

Exercise 5.5.23(a): Use Proposition 5.5.16. (b): p must divide the left-hand
side of the multiplied equation (explain why). (c): Consider two cases (I) a
is relatively prime to p; (II) a is not relatively prime to p.

Exercise 5.5.30: Use Proposition 5.5.20.

Exercise 5.5.31: Use the previous exercise.
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Exercise 5.5.33(b): If y is a particular solution to ax ≡ b (mod 3), then
x = y+3k is also a solution. Similarly, if z is a particular solution to cx ≡ d
(mod 7), then x = z + 7ℓ is also a solution. Set the two expressions equal,
and show there is always a solution for k, ℓ regardless of the values of y, z.

Exercise 5.5.33 (c): Follow the method used in the Chinese Remainder The-
orem, and for each modular equivalence obtained show that a solution exists.

Exercise 5.5.33 (d): Suppose that x and y are both solutions to the given
pair of congruences. Show that x− y ≡ 0 (mod m) and x− y ≡ 0 (mod n).
This implies that both m and n divide x− y (explain why).
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5.7 Study guide for “Modular Arithmetic” chap-
ter

Section 5.1, Introductory examples

Concepts:

1. Modular arithmetic

2. Modulus

Competencies

1. Be able to give the modulus involved in a practical problem involving
“cycles”. (5.1.10)

Section 5.2, Modular equivalence and modular arithmetic

Concepts:

1. Net displacement

2. Modular equivalence: two numbers are equivalent mod m if they have
the same remainder under division by m.

3. Modular equivalence (alternative formulation): Given a, b,m ∈ Z, then
a ≡ b(modm) iff m | (a− b)

4. Integers modulom (these are the possible remainders of integers under
division by m)

Notation

1. ∈ means ‘contained in’ or ‘elements of’

2. ≡ means modular equivalence, similar to equality, but not quite the
same

3. | means ‘divides’



5.7 STUDY GUIDE FOR “MODULAR ARITHMETIC” CHAPTER 155

Competencies

1. Determine whether or not two integers are equivalent modulo a given
base. (5.2.15)

Section 5.3, Modular equations

Concepts:

1. Application of modular arithmetic to UPC and ISBN codes

2. Transposition errors in scanning codes

3. Solving modular equations

Key Formulas

1. Inner product of two tuples: (d1, d2, . . . , dk)·(w1, w2, . . . , wk) = d1w1+
d2w2 + · · ·+ dkwk

2. UPC check formula: (d1, d2, d3, d4, . . . , d12)·(3, 1, 3, 1, . . . , 1) ≡ 0(mod 10)

3. ISBN formula: (d1, d2, . . . , d10) · (1, 2, . . . , 10) ≡ 0(mod 11)

(note d10 might have to be a 10 to make the inner product 0, ‘X’ is
used to represent 10).

Competencies

1. Be able to validate UPC codes and find errors. (5.3.1)

2. Be able to validate ISBN codes and find errors. (5.3.2)

3. Be able to solve modular equations with small coefficients using trial
and error. (5.3.5, 5.3.9)

4. In modular equations, replace coefficients with their remainders before
solving. (Example 5.3.10, 5.3.12)
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Section 5.4, The integers mod n (also known as Zn)

Concepts:

1. Modular addition and multiplication

2. Cayley tables for addition and multiplication in Zn

3. Closure properties of Zn

4. Additive & multiplicative identities and inverses in Zn

5. Commutative, associative, & distributive properties in Zn

6. Definition of a group (a set with an operation that is closed, associa-
tive, has an identity, and all set elements have inverses)

Key Formulas

1. Modular addition: a, b ∈ Zn then a⊕b = r iff a+b = r+sn and r ∈ Zn

2. Modular multiplication: a⊙ b = r iff a · b = r + sn and r ∈ Zn
(note that = is used rather than ≡ in modular addition and multipli-
cation equations, since a ⊕ b is defined as equal to the remainder for
modular addition and modular multiplication.)

Competencies

1. Be able to draw “commutative diagrams” that relate arithmetic in Z
to arithmetic in Zn. (5.4.6)

2. Prove modular equivalence between arithmetic expressions involving
integers and modular arithmetic expressions involving the integers’
remainders. (5.4.7, 5.4.8)

3. Simplify expressions mod n by replacing terms in the expression with
their remainders. (5.4.10)

4. Know how to tell whether a set is closed under a certain arithmetic
operation. (5.4.15)

5. Create tables for addition and multiplication mod n.
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6. Be able to find multiplicative inverses of elements in Zn, or prove they
have none. (5.4.22)

7. Know the group properties by memory. (Definition 5.4.26)

8. Be able to show if elements of a given Zn are a group or not. (5.4.30)

Section 5.5, Modular division

Concepts:

1. Greatest common divisors (gcd)

2. Euclidean algorithm for finding gcd

3. Computing gcd using spreadsheets

4. Diophantine equations: a ·m+ b ·n = c, where a, b, c are integers, and
m and n are assumed to have integer values.

5. Multiplicative inverse for modular arithmetic: If a ∈ Zn, then x ∈ Zn
is the multiplicative inverse of a in Zn if a⊙ x = 1.

6. Chinese remainder theorem

Key Formulas

1. Euclidean algorithm formulas: a = b · q1 + r1, b = r1 · q2 + r2,
r1 = r2 · q3 + r3, . . .

Competencies

1. Be able to find the greatest common divisor using the Euclidean algo-
rithm. (5.5.6)

2. Be able to find all integer solutions to a Diophantine equation. (5.5.13)

3. Know the four group properties by heart (closure, identity, inverse,
associative) and be able to tell from a Cayley table whether or not a
certain set with a given operation is a group. (5.5.27)

4. Solve pairs of congruences or show they have no common solution.(5.5.32)
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Modular Arithmetic,
Decimals, and Divisibility

”I’m all about that, all about that bass I’m all about that, all about that
bass I’m all about that bass, no treble We gon’ take it to a whole another
level” (Source: ”All About That Bass”, Meghan Trainor)

We grew up working with numbers in base 10. so let’s explore the how we
represent numbers, find the k′th decimal of integer and non-integer numbers,
and deriving divisibility rules of integers all in base 10. The problem is that
bases come in all different sizes, so we will also delve into converting integers
and non-integers from base 10 to other bases and vice versa!

This chapter is by Adam McDonald and Chris Thron.

6.1 Decimal representations

6.1.1 Decimal representation formula

We are so used to writing decimal numbers, that we take for granted what
we’re doing. Let’s think a little more carefully about what’s really going
on when we write a decimal number. Let’s start with integers. Essentially,
representing an integer as a decimal means writing writing the integer in
terms of powers of 10. For example, the number 72483 means:

72483 = 7 · 104 + 2 · 103 + 4 · 102 + 8 · 101 + 3 · 100. (6.1.1)

158
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In general, a m+1-digit decimal number n which has digits dm, dm−1 . . . d0
(from largest to smallest) has the value:

n = dm10
m + dm−110

m−1 + · · ·+ d0. (6.1.2)

Note that each digit dj must be in Z10.

6.1.2 Formulas for decimal digits of of integers

It is easy for a human being to identify the digits of a decimal number,
because we’re used to decimal arithmetic. But we want a way of mathemat-
ically defining the digits. This is useful when we need to have a computer
recognize the decimal digits of a number (computers use binary rather than
decimal numbers, so it takes some doing to get them to produce decimal
digits).

Let’s do this first with a simple example. We’ll take our favorite number
n = 72483, and see if we can develop a mathematical process to read off
the digits. The lowest digit (i.e. the number in the one’s place) is found
by taking the mod base 10: 3 = mod(n, 10). Then if we subtract this digit
from n, we get 72480, which is divisible by 10. When we divide by 10, we
obtain 7248. Notice that the one’s digit of this new number is equal to the
10’s digit of n. So we can repeat the same process and take the modulus
base 10 to obtain 8 = mod(7248, 10). We then take 7248−8 = 7240, divide
by 10, and repeat the process until we get all the digits (from lowest to
highest).

Let’s generalize this to an arbitrary integer, n expressed in base 10. The
lowest digit (i.e. the number in the one’s place) is found by calculating
mod(n, 10). Let’s call this d0. We compute (n − d0)/10 which we will call
a1. The second digit d1 is equal to mod(a1, 10). To obtain the third digit
d2, we first compute a2 = (a1 − d1)/10 and then d2 = mod(a2, 10). From
here, we will repeat the same steps to get the rest of the digits. We may
summarize the entire process in the following series of equations:
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a0 = n; d0 = mod(n, 10)

a1 =
a0 − d0

10
; d1 = mod(a1, 10)

a2 =
a1 − d1

10
; d2 = mod(a2, 10)

...

am =
am−1 − dm−1

10
; dm = mod(am, 10),

This sequence of m+ 1 equations can be summarized as follows:

a0 = n; d0 = mod(n, 10)

ak =
ak−1 − dk−1

10
; dk = mod(ak, 10), k = 1, . . .m

These equation specify a recursive process or recursive method, so called be-
cause we’re repeating the same calculation again and again with the results
of previous calculations. The neat thing is that we can use a similar process
to find digits of numbers in other bases as well. We’ll explain how this works
in the next section.

Exercise 6.1.3. Apply the above recursive method to obtain the sequences
{ak} and {dk} for the following cases:

(a) The 100’s digit of n = 238.

(b) The 1000’s digit of n = 52812.

(c) The 10000’s digit of n = 27819.

♢

The above procedure can be long, particularly if we’re trying to find dm
for a large value of m. Fortunately, there’s a way to shortcut the process:

Example 6.1.4. Let’s find the digit d6 for the number n = 1928307465 (we
may note in this case d6 = 8). First, we can remove the digits above d6 digit
taking n modulo 107:

mod(n, 107) = 8307465.
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On the other hand, we can obtain all digits below d6 by taking n modulo
107:

mod(n, 107) = 307465

Now subtracting the two we get:

mod(n, 107)− mod(n, 106) = 8000000

From this point, we easily obtain d6 by dividing by 106. So in summary, we
have:

d6 =
mod(n, 107)− mod(n, 106)

106

♦

This formula can be generalized to find the digit dk for any positive
integer n:

dk =
mod(n, 10k+1)− mod(n, 10k)

10k
(6.1.5)

Exercise 6.1.6. Show how the formula in (6.1.5) can be used to find the
following digits.

(a) The 2nd digit of n=238 base 10

(b) The 4th digit of n=21657 base 10

(c) The 3rd digit of n=4356 base 10

♢

6.1.3 Formulas for decimal digits of nonintegers

So far we’ve been talking about finding decimal digits of integers. What
about other real numbers? Happily, it turns out there are similar formulas
that work for any real number, as we will now show. To make things simple,
in this section we will consider numbers between 0 and 1. Then for a general
real number, we can separate it into its integer part and fractional part, and
use our previous formulas for the integer part and the formulas in this section
for the rest.
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Numbers between 0 and 1 have a decimal expansion like integers do:

x = d−110
−1 + d−210

−2 + · · ·+ d−k10
−k + · · · , where d−j ∈ Z10 (6.1.7)

Fractional numbers differ from integer in that the decimal expansion may
be infinite, that is to say it may go on forever.1

Let’s see if we can compute the d−k digit of a decimal number less than
1. But first, let’s recall some useful notation:

Definition 6.1.8. The floor is the highest integer less than or equal to the
given decimal number, x, and is represented as ⌊x⌋. △

Earlier, we used two methods, recursive method and a generalized for-
mula, to find dk of a decimal interger.We can do the same to find d−k of the
fractional part of a decimal number. We willl take the fraction representa-
tion of x = 0.17428 and find its third decimal digit, d−3. This will be done
using two different methods (just like we did with integers). First, we will
use a recursive method, then we will find a direct formula. Let’s begin with
the recursive method, which gives us the digits one by one. We may notice
that the first decimal digit of x is actually the integer part of 10x: in other
words, d−1 = ⌊10x⌋. We may subtract this from 10x to obtain b−1 = 0.7428.
Notice that b−1 contains all the digits of x except d−1. So let’s do it again.
Multiplying b−1 by 10 and taking the floor, we obtain d−2. Subtracting this
from 10b−1 gives us b−2 = 0.428. Once more should do it! Multiply b−2 by
10 and taking the floor gives d−3 = 4. Done!

In general, the recursive process for finding d−k is as follows:

d−1 = ⌊10x⌋; b−1 = 10x− d−1

d−2 = ⌊10b−1⌋; b−2 = 10b−1 − d−2

...

d−k = ⌊10b−k+1⌋; b−k = 10b−k+1 − d−k
...

(6.1.9)

This process can take a very long time if we’re trying to find d−k for
large values of k. Recall that formula (6.1.5) gives an easy way of finding

1In fact it is true that “almost all” numbers between 0 and 1 have infinite decimal
expansions–and yes,“almost all” has a mathematically precise definition!
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individual decimal digits of integers. Can we do the same thing for fractions?
Yes we can!

Example 6.1.10. Find d−3 of the decimal number x = 0.17428
Since we’re looking for d−3, Let’s multiply x by 103.

0.17428 · 103 = 174.28

Then take the floor:
⌊174.28⌋ = 174

Finally, take the modulus base 10 (which is the 1’s place of the number, as
we’ve seen before):

mod(174, 10) = 4

This gives us the correct value of d−3. ♦

Let’s recap the steps in Example 6.1.10s:

(i) multiply the given x by 10k,

(ii) take the floor of the number found in step (i),

(iii) find the modulus of number in step (ii) base 10.

This procedure can be generalized to the following formula:

d−k = mod(⌊x · 10k⌋, 10) (6.1.11)

Exercise 6.1.12. Complete the following exercises using the recursive
method from Equation (6.1.9) and re-do them by using Equation (6.1.11):

(a) Find the 2nd decimal digit of 0.238 base 10

(b) Find the 4th decimal digit of 0.54289 base 10

(c) Find the 3rd decimal digit of 0.7129 base 10

♢
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6.1.4 Repeating decimals

You have probably encountered fractions with infinite decimal expansions,
such as 1/9 = 0.11111 . . ., 1/11 = 0.09090909 . . ., and 1/7 = 0.142857142857 . . ..
It is a strange and wonderful fact that these infinite decimal expansions al-
ways repeat : for example, the decimal expansion for 1/7 has the sequence
142857 that keeps on repeating. This observation suggests two questions:

1. Why do decimal fractions repeat?

2. What is the period of repetition?

In this section we’ll answer these two questions. But first we need to
prove a preliminary proposition.

Proposition 6.1.13. Let n > 2 be an integer such that gcd(n, 10) = 1.
Then there exist a positive integer m such that mod(10m, n) = 1.

Proof. Consider the infinite sequence: mod (10, n), mod (102, n), mod (103, n), . . . .
All of these numbers are between 1 and n− 1. Since the sequence is infinite
and only can take at most n− 1 values, it follows there must be at least two
values that are equal, so mod(10k, n) = mod(10j , n), where k > j. But,

mod(10k, n) = mod(10j · 10k−j , n) [exponent rules]

= mod(10j , n)⊙ mod(10k−j , n) [Proposition 5.4.4].

Since mod(10k, n) = mod(10j , n), it follows by substitution that

mod(10j , n) = mod(10j , n)⊙ mod(10k−j , n),

which “implies” mod(10k−j , n) = 1 (but see Exercise 6.1.14! ) So if we set
m = k − j, we have mod(10m, n) = 1, and the proof is finished. □

Exercise 6.1.14.

1. What is wrong with the following argument?

16 = 4 · 4
mod(16, 6) = mod(4 · 4, 6)

4 = mod(4, 6)⊙ mod(4, 6)

4⊙ 1 = 4⊙ 4 (in mod 6)

1 = 4 (in mod 6).
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2. Explain why the condition gcd(n, 10) = 1 is required in Proposi-
tion 6.1.13.

♢

Proposition 6.1.13 leads to the following definition:

Definition 6.1.15. Given a positive integer n with gcd(10, n) = 1. The
smallest positive integer m such that mod(10m, n) = 1 is called the multi-
plicative order of n (mod 10)).

(Note that the order of n is guaranteed to exist because of Proposi-
tion 6.1.13). △

We can now prove that a large class of fractions repeat, as follows:

Proposition 6.1.16. Let n > 1 be a positive integer with gcd(10, n) = 1,
and let m be the multiplicative order of n (mod 10) . Then the decimal
expansion of 1

n repeats every m digits.

Proof. Given that m is the multiplicative order of n mod 10, from Def-
inition 6.1.15, we get mod((10m − 1), n) = 0. In other words, 10m − 1 is
divisible by n, so that 10m−1

n is an integer. Letting k = 10m−1
n , it follows

that:

1

n
=

k

10m − 1
substitution

=
k

10m

(
1

1− 10−m

)
factor

=
k

10m
(
1 + 10−m + · · ·

)
geometric series

= k · 10−m + k · 10−2m + · · · distributive law and algebra

Next from the definition of k, we may conclude that k < 10m (verify this).
So k ·10−m < 1, and the nonzero decimal digits of k ·10−m are all contained
in the first m decimal places to the right of the decimal point. Similarly, the
nonzero decimal digits of k ·10−2m all lie within the second m decimal places
(between the 10−m−1 place and the 10−2m place), the nonzero decimal digits
of k · 10−3m are all in the following m decimal places, and so on. In other
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words, the terms k ·10−m, k ·10−2m, · · · are all within successive blocks of m
digits. Thus k is the repeating sequence in the repeating decimal (possibly
padded by some zeros, in case k has less than m nonzero digits), and that
the fraction repeats every m digits. □

Exercise 6.1.17. Given that the fraction j/n < 1 and gcd(10, n) = 1, show
that j/n is still a repeating fraction with the same period as 1/n. ♢

Exercise 6.1.18. In Proposition 6.1.16 we proved that the decimal ex-
pansion of 1

n repeats every m digits for a positive integer n > 1 with
gcd(10, n) = 1. Does the proposition still hold if gcd(10, n) ̸= 1? If yes
then prove it, and if no then give a counterexample. ♢

6.1.5 Divisibility rules

How do we know if a decimal integer, m, is divisible by an decimal integer,
n? In this section we will be discovering the divisibility rules for different
integers, n. We will start with finding the divisibility rule for n = 3.

Example 6.1.19. Is 234 divisible by 3? Answering this question is equiv-
alent to showing whether or not mod(234, 3) = 0. Let’s first write the
decimal representation of 234:

234 = 200 + 30 + 4 = 2 · 102 + 3 · 10 + 4

Since mod(10, 3) = 1, we get

mod(234, 3) = mod(2 · 102 + 3 · 10 + 4, 3) [substitution]

= mod(2 · (1)2 + 3 · (1) + 4, 3) [Props. 5.2.8 and 5.4.4]

= mod(9, 3) = 0 [arithmetic]

♦

Let’s generalize Example 6.1.19. Suppose we have a decimal number, n,
with digits d0 . . . dm so that the number can be written as dmdm−1 . . . d0.
Then we can write

n = dm · 10m + dm−1 · 10m−1 + · · ·+ d0 · 100
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It follows that

mod(n, 3) = mod(dm · 10m + dm−1 · 10m−1 + · · ·+ d0 · 100, 3)
= mod(dm + dm−1 + · · ·+ d0, 3) = 0.

This observation leads to the following proposition.

Proposition 6.1.20. An integer is divisible by 3 if and only if the sum of
its digits is divisible by 3.

Example 6.1.21. Is 6472 divisible by 11? In the following argument we
use the fact that 10 ≡ −1 (mod 11), which means that we can replace 10
with −1 whenever we are taking mod’s base 10.

mod(6472, 11) = mod(6 · 103 + 4 · 102 + 7 · 10 + 2 · 1, 11)
= mod(6 · (−1)3 + 4 · (−1)2 + 7 · (−1) + 2, 11)

= mod(−6 + 4− 7 + 2, 11) = mod(−7, 11) = 4

Since mod(6472, 11) ̸= 0, 6472 is not divisible by 11. ♦

Proposition 6.1.22. A number is divisible by 11 if and only if the alternat-
ing sums of the digits is divisible by 11. (Note: alternating sums is where
the signs of the number alternate when summing.)

Proof. Given an integer with digits d0 . . . dn where the number is writeen
as dndn−1 . . . d1d0 we can write

n = dm · 10m + dm−1 · 10m−1 + · · ·+ d0 · 100

it follows that:

mod (n, 11)

= mod(dm · 10m + dm−1 · 10m−1 + · · ·+ d0 · 100, 11) [substitution]

= mod(dm · (−1)m + dm−1 · (−1)m−1 + · · ·+ d0 · (−1)0, 11) [mod(10, 11) = −1]

= mod ((−1)m(dm − dm−1 + · · ·+ d0 · 1), 11) [factor out (−1)m]

Therefore, mod(n, 11)=0 if and only if the alternating sums of the digits of
the number dn . . . d0 is divisible by 11. □

Exercise 6.1.23.



168CHAPTER 6 MODULAR ARITHMETIC, DECIMALS, ANDDIVISIBILITY

Figure 6.1.1. Spreadsheet to compute the powers of 10 mod 37

(a) In Proposition 6.1.20 we showed that a number is divisible by 3 if and
only if the sum of its digits is divisible by 3. Write a similar argument
and state a proposition for a number that is divisible by 9.

(b) Figure 6.1.1 shows a table giving the different powers of 10 mod base
37.

Based on the results shown in Figure 6.1.1, propose a divisibility rule
to check whether numbers are divisible by 37. Apply your rule to the
following numbers: 17094, 411108, 365412

(c) Create a spreadsheet similar to the the spreadsheet in Figure 6.1.1. Use
your spreadsheet to find mod(10n, 111) for 0 ≤ n ≤ 8. Come up with a
proposition for numbers in base 111 and prove it similarly the divisibility
rule for numbers in base 11 was proved in Proposition 6.1.22.

♢

Here’s a number-magic trick involving divisibility that you can try on
your friends. This example is thanks to Mr. Ogungbesan Adedoyinsola, a
student at the University of Lagos.
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Example 6.1.24. Let n=321. The digits in reverse order give m = 123.
Now subtract n −m = 321 − 123 = 198. We can add the digits of 198 to
get 1 + 9 + 8 = 18. Since the sum of the digits of 198 is divisible by 9, 198
is divisible by 9. ♦

Exercise 6.1.25. Repeat Example 6.1.24 with the numbers: 4567, 314142,
583651. ♢

Amazing! But we have the mathematical tools to see why it works:

Exercise 6.1.26.

(a) Take any decimal integer, write the digits in reverse order, and subtract
the reversed number from the original number. Show that the result is
always divisible by 9.

(b) If the decimal integer has an odd number of digits, show that the result
obtained in (a) will always be divisible by 99.

(c) Show that if you take any decimal integer n, rearrange the digits, multi-
ply by any power of 10, and subtract n from the resulting number, then
your final result will always be divisible by 9.

♢

There are many variations on this theme–maybe you can come up with
one yourself.

Exercise 6.1.27. Take any number with an even number of digits, reverse
the number, and add the two together. Show that the result is always
divisible by 11. ♢

Exercise 6.1.28. Take any number with any number of digits. Write the
digits in reverse order and append them to the end of the original number
(for example, if the original number is 2834, the end result is the number
28344382). Show that the result is always divisible by 11.(Hint: Think about
Exercise 6.1.27). ♢

Exercise 6.1.29.**
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� Factor the number 1001, and use your result to design a procedure
that does the following. Given a number n with m digits, using a
single subtraction (and no multiplication) construct a number n′ with
m − 3 digits such that mod (n, 7) = mod (n′, 7), mod (n, 11) =
mod (n′, 11), and mod (n, 13) = mod (n′, 13).

� Explain how it is possible to use your procedure to take an arbitrarily
large number n and obtain a number with three or fewer digits which
has the same divisibility with respect to 7, 11, and 13 as n does.

� Use your procedure to test (by hand) the numbers 14142131356237 and
314159653589 for divisibility by 7,11, and 13, using only subtraction
and 3 final divisiions of a 3-digit number.

♢

Exercise 6.1.30.**

� Prove that the following rule works for divisibility by 7. Given a m-
digit number, remove the last digit d0 to obtain a m−1-digit number,
then subtract 2d0 from the m−1-digit number. Then the new number
has the same divisibility by 7 as the original number.

� Use the result in (a) to test the number 27182818284590 for divisibiilty
by 7.

� Obtain similar rules for divisibility by 13 and 19.

� Use your rules from (c) to test 27182818284590 for divisibility by 13
and 19.

♢

6.2 Decimal representations in other bases

We’ve mentioned above that we can express numbers in other bases besides
base 10. First we should explain what it means to represent a number in
base b, where b > 2 is a positive integer. Recall that the base 10 number
dndn−1 . . . d1d0 represents the integer:

dndn−1 . . . d1d0 = dn · 10n + dn−1 · 10n−1 + . . .+ d1 · 10 + d0.
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For a number expressed in base b, we simply replace the 10’s with b’s:

(dndn−1 . . . d1d0)b = dn · bn + dn−1 · bn−1 + . . .+ d1 · b+ d0.

For example, (6342)8 represents the number:

(6342)8 = 6 · 83 + 3 · 82 + 4 · 81 + 2 · 80.

Note that if (dndn−1 . . . d1d0)b is a base b representation, then all of the
digits d0, . . . dn must be between 0 and b− 1.

In order to be able to use other base representations effectively, we’ll
need to know how to convert numbers back and forth between other bases
and base 10. Let’s see how this is done.

Example 6.2.1. Find 137 in base 6. I will solve this following the recursive
method described in Section 6.2, but using base 6 instead of base 10.

a0 = 137; d0 = mod(137, 6) = 5

a1 =
137− 5

6
= 22; d1 = mod(22, 6) = 4

a2 =
22− 4

6
= 3; d2 = mod(3, 6) = 3

a3 =
3− 3

6
= 0

Since a3 = 0 we can stop. To write the solution take the moduli in
reverse order. Therefore, 137 in base 6 is 345. ♦

Example 6.2.2. Find 121 in base 3. Once again using the recursive method
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a0 = 121; d0 = mod(121, 3) = 1

a1 =
121− 1

3
= 40; d1 = mod(40, 3) = 1

a2 =
40− 1

3
= 13; d2 = mod(13, 3) = 1

a3 =
13− 1

3
= 4; d3 = mod(4, 3) = 1

a4 =
4− 1

3
= 1; d4 mod (1, 3) = 1

a5 =
1− 1

3
= 0

Since a5 = 0 we do not have to continue. To write the solution take the
moduli in reverse order. Therefore, 121 in base 3 is 11111. ♦

Example 6.2.3. Find the 5th digit of 65432 in base 3. (This is the co-
efficient of 34 in the base 3 representation). We may use Eq. 6.1.5, just
replacing base 10 with base 3:

d4 =
mod(65432, 35)− mod(65432, 34)

34

♦

You might be thinking that this is very similar to how we found the k′th
digit of a decimal integer in Section 6.1.2 and you would be correct! The
main difference is that the base in the modulus is not a base of 10 but the
base of the number we are finding (in the above example base 3). Also,
instead of finding only one of the digits of a number in base 10, we are
finding all the digits of a number in another base (in the above example it
is base 3). We know we are done finding the entire number when an = 0
and we write the final number in the reverse order of how we found the
modulus’.

Exercise 6.2.4.

(a) Find 1567 in base 5.

(b) Find 344 in base 3.
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(c) Find 7281 in base 7.

(d) Find 3491 base 4.

(e) Find 65432 in base 3.

♢

Being able to represent numbers in base 2 is important in computer
science because this is how computers do arithmetic. In base 2 the digits
are called bits. All information that is stored in the computer is stored
in the form of bits. A block of 8 bits is called a byte : computer memory
is measured in terms of kilobytes, megabytes, or gigabytes. Integers are
commonly stored as either 2 or 4 bytes.

Example 6.2.5. Find 31 in base 2.

a0 = 31; d0 = mod(31, 2) = 1; a1 =
31− 1

2
= 15; b1 = mod(15, 2) = 1

a2 =
15− 1

2
= 15; b2 = mod(14, 2) = 0; a3 =

14− 0

2
= 15; b3 = mod(7, 2) = 1

a4 =
7− 1

2
= 15; b4 = mod(6, 2) = 0; a5 =

6− 0

2
= 15; b5 = mod(3, 2) = 1

a6 =
3− 1

2
= 15; b6 = mod(1, 2) = 1; a7 =

1− 1

2
= 0; b7 = mod(0, 2) = 0

Therefore N = 31 written in base 2 is 0110101. If stored as a 2-byte integer,
N would be represented as 0b0000000000110101 (the ‘0b’ prefix indicates
that the number is a binary number). ♦

Exercise 6.2.6. Express the following as 2-byte binary integers

(a) 73

(b) 235

(c) 1940

(d) 67037
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♢

Base 16 is also often used: numbers in base 16 are called hexadecimal
numbers. In hexadecimal (or ‘hex’) representation, the lettersA,B,C,D,E, F
are used to represent 10, 11, 12, 13, 14, 15 respectively. In many computer
languages (like Java, C++, and Python), a hexadecimal number is indi-
cated by the prefix ‘0x’. So for example, the hex number 0xABCD signifies
10 · 163 + 11 · 162 + 12 · 161 + 13.

Exercise 6.2.7. Find the hex representations of the following decimal num-
bers

(a) 4095

(b) 10000.

(c) 123456

♢

Converting numbers from base 10 to another base is fun! But how about
converting numbers from another base to base 10? Piece of cake:

Example 6.2.8. Convert 121 in base 3 to a number in base 10.

(121)3 = 1 · 32 + 2 · 31 + 1 · 30 = 1 · 9 + 2 · 3 + 1 · 1 = (16)10 ♦

Example 6.2.9. Convert 4752 in base 8 to a number in base 10

(4752)8 = 4 ·83+7 ·82+5 ·81+2 ·80 = 4 ·512+7 ·64+5 ·8+2 ·1 = (2538)10
♦

Do you recognize this from before? All that we’re doing is using the
defining equation for base b representation:

(n)b = dm · (b)m + dm−1 · (b)m−1 + . . .+ d0 (6.2.10)

Exercise 6.2.11. Convert the given numbers with their bases to a number
in base 10:
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1. 456 base 7

2. 32102 base 4

3. 8714 base 9

♢

Earlier we mentioned the importance of converting numbers in base 10
to base 2. It is just as important to convert numbers in base 2 to base 10.

Example 6.2.12. Convert 1011 in base 2 to a number in base 10.

(1011)2 = 1 · 23 +0 · 22 +1 · 21 +1 · 20 = 1 · 8+ 0 · 4+ 1 · 2+ 1 · 1 = (11)10
♦

Exercise 6.2.13. Convert the given numbers in base 2 to a number in base
10:

(a) 10101

(b) 11011001

(c) 100111011

♢

Exercise 6.2.14. In computer graphics, colors are often represented using
RGB notation . Colors have red, green, and blue components; and each
component has an intensity level from 0 to 255, which can be stored as
a single byte. Each byte is represented as two hex digits, so colors are
represented as a six-digit hex number. For example, 0xFFFFFF represents
intensities of 255 for red, green and blue, corresponding to the color white,
while 0x000000 represents black. 0xFF0000, 0x00FF00, 0x0000FF represent
pure red, pure green, and pure blue respectively.

Find the red, green, and blue intensities for the following colors in hex
representation:

(a) 0xAA45E2
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(b) 0x29A4F3

(c) 0x774422

♢
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Set Theory

“A set is a Many that allows itself to be thought of as a One.”
(Georg Cantor)

“(Set theory is) the finest product of mathematical genius and
one of the supreme achievements of purely intellectual human
activity.” (David Hilbert)

“Set” is one of the most fundamental concepts in mathematics, and sets
have been a part of mathematics since ancient times. However, a truly
rigorous theory of sets was only developed about a hundred years ago. We
won’t get into the difficulties involved in coming up with a rigorous theory
(we’ll just mention “Russell’s paradox” in passing). Instead, we’ll focus on
the algebraic properties of sets: in particular the operations of intersection,
union, and complement, and proving identities involving these operations.

7.1 Set Basics

You’ve probably seen sets, set relations, and set operations in previous
classes. In fact, in the previous two chapters of this book you’ve already
been working with sets. So we’ll review them quickly before moving on to
further properties and proofs concerning sets and their accessories.

This chapter is an adapted and expanded version of a chapter by D. and
J. Morris.

177

https://www.youtube.com/watch?v=ciswhn56NJc&index=12&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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7.1.1 Definition and examples

First of all, let’s give a precise mathematical definition for “set”:

Definition 7.1.1. A set is a well-defined collection of objects: that is, it
is defined in such a manner that we can determine for any given object x
whether or not x belongs to the set. The objects that belong to a set are
called its elements or members. We will denote sets by capital letters,
such as A or X; if a is an element of the set A, we write a ∈ A. △

Two common ways of specifying sets are:

� by listing all of its elements inside a pair of braces; or

� by stating the property that determines whether or not an object x
belongs to the set.

For example, we could define a particular set E by listing its elements:

E = {2, 4, 6, . . .},

or by specifying properties which characterize its elements:

E = {x : x > 0 and x is divisible by 2}.

(here the “:” signifies “such that”). We can also describe E in a less mathy
way by simply calling it “the set of positive even numbers”.

We write 2 ∈ E when we want to say that 2 is in the set E, and −3 /∈ E
to say that −3 is not in the set E.

Sets don’t have to involve numbers. For example, we could define a
certain set X by listing:

X = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday},

or by property:

X = {x : x is the name of a weekday (in English)}.

For the purposes of this book, it would be good enough to say, “X is the set
of weekday names (in English)” (we’re not so snobby about set brackets).

Exercise 7.1.2.
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(a) What elements are in the following set:

S = {x : x is the name of a U.S. state and x begins with ‘W’}

Write the set as a list of objects.

(b) Rewrite the following as a list ={x : x is a type of regular polygon with less than 6 sides}.

(c) Rewrite the following set of dates by using a property:

T = {Jan. 4th 2011, Jan. 11th 2011, Jan. 18 2011, Jan. 25 2011, . . . ,Dec. 27 2011}

(Note: January 1 2011 was on a Saturday).

(d) Write the set of odd integers O: (i) as a list, and (ii) by using a property.

♢

It is possible for the elements of a set to be sets in their own right. For
instance, we could define

T = {x : x is a National League baseball team}.

A more mathematical (but less interesting) example would be

S = {x : x is a set of integers}.

Then elements of S would include the sets {1, 2, 3, 4}, {the set of odd integers},
{0}, and so on.

We can even go farther, and define sets of sets of sets. For instance, the
set L of major baseball leagues in the U.S. has two elements:

L = {American League, National League}.

However, the American League A consists of a set of teams:

A = {Yankees, Red Sox, . . .},

whle the National League N also consists of a set of teams:

N = {Cubs, Phillies, . . .}.

Each of these teams consists of a set of players: so altogether the set L is a
set of sets of sets!

Exercise 7.1.3.

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) Describe the 21st century as a set of sets of sets of sets of sets of sets of
sets. (*Hint*)

(b) (For you biologists out there) Describe the animal kingdom as a set of
sets of sets of sets of sets of sets of sets of sets (*Hint*)

♢

This notion of “sets of sets” can bring us into dangerous territory. For
example, consider the set

S = {x : x is a set which is not an element of itself}.

We may then pose the question: is S an element of itself?1

Let us consider the possibilities:

� Suppose first that S is an element of itself. Then S must satisfy the
defining property of elements of S – that is, S must be an example of
a set x for which “x is not an element of itself.” It follows that S is not
an element of itself. This contradicts our supposition – so apparently
our supposition is wrong, and S must not be an element of itself.

� On the other hand, suppose that S is not an element of itself. Then
S satisfies the defining property of elements of S – that is, S is an
example of a set x for which “x is not an element of itself.” It follows
that S is an element of S. Once again this contradicts our supposition
– so apparently S must be an element of itself!

How do we get out of this mess? No matter what we assume, we end up with
a contradiction! The problem, as is often the case, lies in hidden assumptions
that we have made. Our definition of S makes reference to the unknown x,
where x is an “arbitrary” set. Herein lies the rub: the notion of “arbitrary”
set is not well-defined. Put another way: the set of “all possible sets” is
NOT a set!

In the following discussion we will avoid this problem by always start-
ing out with a well-defined set that contains all the sets and elements of
interest in a particular example or problem. Such an all-encompassing set is
referred to as a universal set . Note each particular problem will have its

1This question is called Russell’s paradox , and plays an important role in the history
of set theory.
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own universal set. For instance, if we are talking about public opinion polls
in the United States, an appropriate universal set might be the set of Amer-
ican citizens. If we’re talking about sets of prime and composite numbers,
our universal set could be either the set of integers, or the set of natural
numbers. If we are talking about roots of algebraic equations, depending
on our particular interest we might choose the universal set to be the set
of real numbers, or the set of complex numbers. When we talk about sets
in a general way, we often denote sets by captial letters A,B,C, ..., and it’s
assumed that all these sets are subsets of some universal set U .

7.1.2 Important sets of numbers

We will refer often to the following sets of numbers. Although we are pre-
suming that these sets are “given”, the reader should be aware that it’s not
at all easy to formally define them in a mathematically precise way. (Al-
though we won’t give any definitions here, you may encounter them in other
mathematics courses, such as logic or analysis.)

� N = {n : n is a natural number} = {1, 2, 3, . . .}; (Note that according
to our definition the natural numbers do not include 0. Some books
include 0 as a natural number.)

� Z = {n : n is an integer} = {. . . ,−1, 0, 1, 2, . . .};

� Q = {r : r is a rational number};

� R = {x : x is a real number};

You may recall that in Chapter 4, we defined the set of complex numbers
C as

C := {x+ iy, such that x, y ∈ R}.

This is just one example of a favorite gambit of mathematicians, namely
creating new sets from existing sets in various imaginative ways. You’ll be
seeing many more examples of this as we go along.

Subsets and proper subsets

Definition 7.1.4. A set A is a subset of B, written A ⊂ B or B ⊃ A, if
every element of A is also an element of B. △

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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For example, using this notation we may write:

{sons of John and Jane Doe} ⊂ {children of John and Jane Doe}

and
{4, 5, 8} ⊂ {2, 3, 4, 5, 6, 7, 8, 9}

and
N ⊂ Z ⊂ Q ⊂ R ⊂ C.

According to Definition 7.1.4, every set is a subset of itself. That is, for
any set A, A ⊂ A, since every element in A is (of course) in A. Sometimes
though we may want to take about subsets of A that really are strictly
contained in A, without being all of A. Such subsets are called proper
subsets. Formally, a set B is a proper subset of a set A if B ⊂ A
and B ̸= A. For instance, if John and Jane Doe had only sons, then
{sons of John and Jane Doe} is not a proper subset of { children of John
and Jane Doe}.

Remark 7.1.5. In this book, we use ‘⊂’ for subset, and we have no special
symbol to distinguish “proper subset” from “subset”. Some authors use ‘⊆’
to denote subset, and ‘⊂’ to denote proper subset. This has the advantage
that then ‘⊆’ and ‘⊇’ are similar to ‘≤’ and ‘≥’, while ‘⊂’ and ‘⊃’ are like
‘<’ and ‘>’. But we rarely have to distinguish the case of proper subsets,
so it’s not worth defining a special symbol for them. △

If A is not a subset of B, we write A ̸⊂ B; for example, {4, 7, 9} ̸⊂
{2, 4, 5, 8, 9}. Two sets are equal , written A = B, if we can show that
A ⊂ B and B ⊂ A.

It is convenient to have a set with no elements in it. This set is called
the empty set and is denoted by ∅. For instance, if John and Jane Doe
had only daughters, then

{sons of John and Jane Doe} = ∅

Note that the empty set is a subset of every set.

Exercise 7.1.6. Let S be a set with a single element.

(a) How many subsets does it have?

(b) How many proper subsets does it have?
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(c) How many nonempty subsets does it have?

(d) How many nonempty proper subsets does it have?

♢

Exercise 7.1.7.

(a) Can you give an example of a set with exactly three subsets? How about
exactly three proper subsets?

(b) What is the smallest number of elements a set must have in order to
have at least eight proper subsets?

♢

7.1.3 Operations on sets

In our days of carefree innocence, we were introduced to operations on
integers, rational numbers, etc.. An operation on the integers takes two
integers and always comes up with another integer. For instance, the ’+’
operation gives 2 + 3 = 5 (of course, we know now that this means that +
has the property of closure).

Exercise 7.1.8. What’s wrong with the following statement: “Subtraction
is an operation on the natural numbers.” ♢

In a similar way, we can construct new sets out of old sets using set
operations. The mathematical definitions of the basic set operations are as
follows:

Definition 7.1.9. The union A ∪B of two sets A and B is defined as

A ∪B = {x : x ∈ A or x ∈ B};

△

Definition 7.1.10. the intersection of A and B is defined by

A ∩B = {x : x ∈ A and x ∈ B}.

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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△

For example: if A = {1, 3, 5} and B = {1, 2, 3, 9}, then

A ∪B = {1, 2, 3, 5, 9} and A ∩B = {1, 3}.

We may also consider the union and the intersection of more than two sets.
For instance, the union of three sets A1, A2, and A3 can be written A1 ∪
A2 ∪A3 or

⋃3
i=1Ai.

Similarly, the intersection of the same three sets can be written as A1 ∩
A2 ∩A3 or

⋂3
i=1Ai.

Remark 7.1.11. There’s actually a technical difficulty with our notations
for A1 ∪ A2 ∪ A3 and A1 ∩ A2 ∩ A3. The problem is that the notation is
ambiguous: does A1 ∪ A2 ∪ A3 mean (A1 ∪ A2) ∪ A3 or A1 ∪ (A2 ∪ A3)?
As it turns out, it doesn’t make any difference (we’ll show this in the next
section). Since it doesn’t matter which order we do the ∪, we just leave off
the parentheses (and the same for ∩). This is really nothing new: you’re
used to writing 3 + 4+ 7+ 9 instead of ((3 + 4) + 7) + 9, because it doesn’t
matter what order you add the numbers. △

Exercise 7.1.12.

(a) Find three setsA1, A2, A3 such thatA1∪A2∪A3 = Z andA1∩A2∩A3 = ∅

(b) Find three sets A1, A2, A3 such that (i) A1, A2, A3 ⊂ C; (ii) A1 ∩ A2 ̸=
∅, A2 ∩A3 ̸= ∅, A1 ∩A3 ̸= ∅; and (iii) A1 ∩A2 ∩A3 = ∅

(c) Find three sets that satisfy all conditions of part (b) and in addition
satisfy A1 ∪A2 ∪A3 = C.

♢

We may generalize to intersections and unions of collections of n sets by
writing:

n⋃
i=1

Ai = A1 ∪ . . . ∪An

and
n⋂
i=1

Ai = A1 ∩ . . . ∩An
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for the union and intersection, respectively, of the collection of setsA1, . . . An.

Example 7.1.13. Specify the following sets, either by:

� listing the elements;

� describing with a property; or

� giving another set that we’ve already defined that has the same ele-
ments.

(a)
⋃n
i=1{i}

(b)
⋃n
i=1{1, . . . , i}

(c)
⋃∞
i=1{1, . . . , i}

Solutions:

(a)
⋃n
i=1{i} = {1}

⋃
{2}

⋃
{3}

⋃
. . .
⋃
{n}

= {1, . . . , n} [list of elements]

= all integers from 1 to n. [property]

(b)
⋃n
i=1{1, . . . , i} = {1}

⋃
{1, 2}

⋃
{1, 2, 3}

⋃
. . .
⋃
{1, . . . , n}

= {1, . . . , n} [list of elements]

= all integers from 1 to n. [property]

(c)
⋃∞
i=1{1, . . . , i} = [by part (b)] {1, . . . ,∞} = N

♦

Exercise 7.1.14. Specify the following sets, either by:

� listing the elements;

� describing with a property; or

� giving another set that we’ve already defined that has the same ele-
ments.

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a)
⋂n
i=1{i}

(b)
⋂n
i=1{1, . . . , i}

(c)
⋂∞
i=1{1, . . . , i}

(d)
⋃n−1
r=0{Integers that have remainder r when divided by n}

(e)
⋂n−1
r=0{Integers that have remainder r when divided by n}

♢

Exercise 7.1.15.

(a) Find an infinite collection of sets {Ai}, i = 1, 2, 3, . . . such that (i) Ai ⊂
R, i = 1, 2, 3, . . . ; (ii) each Ai is a closed interval of length 1 (that is,
Ai = [ai, ai + 1] for some ai; and (iii)

⋃∞
i=1Ai = [0,∞). (That is, the

union of all the Ai’s is the set of all nonnegative real numbers.)

(b) Find an infinite collection of sets {Ai}, i = 1, 2, 3, . . . such that (i) Ai ⊂
R, i = 1, 2, 3, . . . ; (ii) each Ai is an open interval of length 1 (that is,
Ai = (ai, ai + 1) for some ai; and (iii)

⋃∞
i=1Ai = (0,∞). (That is, the

union of all the Ai’s is the set of all positive real numbers.)

(c) Find an infinite collection of sets {An}, n = 1, 2, 3, . . . such that (i)
An ⊂ [−1/2, 1/2], n = 1, 2, 3, . . . ; (ii) each An is an open interval of
length 1/n; and (iii)

⋂∞
n=1An = {0}.

(d) **Find an infinite collection of sets {An}, n = 1, 2, 3, . . . such that (i)
An ⊂ [0, 1], n = 1, 2, 3, . . . ; (ii) each An is an open interval of length
1/n; (iii) An+1 ⊂ An, n = 1, 2, 3, . . . ; and (iv)

⋂∞
n=1An = ∅.

♢

When two sets have no elements in common, they are said to be disjoint ;
for example, if E is the set of even integers and O is the set of odd integers,
then E and O are disjoint. Two sets A and B are disjoint exactly when
A ∩B = ∅.

Exercise 7.1.16.

(a) Find disjoint nonempty sets A1, A2, A3, A4 such that
⋃4
i=1Ai = Z.
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(b) Find disjoint nonempty sets A1, A2, A3, A4 such that
⋃4
i=1Ai = R.

(c) Find disjoint nonempty sets A1, A2, A3, A4 such that
⋃4
i=1Ai = C.

♢

If we are working within the universal set U and A ⊂ U , we define the
complement2 of A (denoted by A′), to be the set

A′ = {x : x ∈ U and x /∈ A}.

Definition 7.1.17. The difference of two sets A and B is defined as

A \B = A ∩B′ = {x : x ∈ A and x /∈ B}.

△

Note that it’s not necessary for B to be inside A to define A\B. In fact,
A \ (A ∩B) is exactly the same thing as A \B (you may draw a picture to
see why this is true).

Exercise 7.1.18. Suppose that A ⊂ B. What is the largest subset of B
that is disjoint from A? ♢

The set difference concludes our set operations for now. The following exam-
ple and exercises will give you an opportunity to sharpen your set operation
skillls.

Example 7.1.19. Let N be the universal set, and suppose that

A = {x ∈ N : x is divisible by 2}
B = {x ∈ N : x is divisible by 3}
C = {x ∈ N : x is divisible by 6}
D = {the odd natural numbers}

Then specify the following sets:

(a) A ∩B
2Please note the spelling: ’complement’, not ’compliment’, thank you!

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(b) C ∪A

(c) D \B

(d) B′

Solutions:

(a)

A ∩B = {x ∈ N : x is divisible by 2 and x is divisible by 3}
= {x ∈ N : x is divisible by 6}
= C

(b)

C ∪A = {x ∈ N : x is divisible by 6 or x is divisible by 2}
= {2, 4, 6, 8, 10, 12, . . .}
= A

(c)

D \B = {x ∈ N : x ∈ D and x /∈ B}
= {x ∈ N : x is an odd natural number and x is not divisible by3}
= {x ∈ N : x is an odd natural number that is not divisible by 3}

(d)

B′ = {x ∈ N : x is divisible by 3}′

= {x ∈ N : x is not divisible by 3}

♦

Exercise 7.1.20. Let N be the universal set and suppose that

A = {x ∈ N : x is divisible by 2}
B = {x ∈ N : x is divisible by 3}
C = {x ∈ N : x is divisible by 6}
D = {the odd natural numbers}

Specify each of the following sets. You may specify a set either by describ-
ing a property, by enumerating the elements, or as one of the four sets
A,B,C,D:
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(a) (A ∩B) \ C

(b) A ∩B ∩ C ∩D

(c) A ∪B ∪ C ∪D

♢

Exercise 7.1.21. Let N be the universal set and suppose that

A = {x : x ∈ N and x is even},
B = {x : x ∈ N and x is prime},
C = {x : x ∈ N and x is a multiple of 5}.

Describe each of the following sets. Make your description as concise as
possible.

(a) A ∩B

(b) (A ∩B)′

(c) A′ ∩B′

(d) A ∪B

(e) (A ∪B)′

(f) A′ ∪B′

(g) B ∩ C

(h) A ∩ (B ∪ C)′

♢

7.2 Properties of set operations

Now that we have the basics out of the way, let’s look at the some of the
properties of set operations. The individual steps of the following proofs
depend on logic; and a rigorous treatment of these proofs would require
that we introduce formal logic and its rules. However, many of these logical
rules are intuitive, and it should be possible for you to follow the proofs even
if you haven’t studied mathematical logic.

First, we give two rather obvious (but very useful) properties of ∪ and
∩:

Proposition 7.2.1. Given any sets A,B, It is always true that

A ∩B ⊂ A and A ⊂ A ∪B.

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=ciswhn56NJc&index=12&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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Proof. The style of proof we’ll use here is often described as element by
element, because the proofs make use of the definitions of A∩B and A∪B
in terms of their elements.

First, suppose that x is an element of A ∩B. we then have:

x ∈ A ∩B [supposition]

⇒x ∈ A and x ∈ B [def. of ∩]
⇒x ∈ A. [logic]

Since every element of A∩B is an element of A, it follows by the definition
of ⊂ that A ∩B ⊂ A.

Exercise 7.2.2. Give a similar proof of the second part of Proposition 7.2.1.
♢

□

Many useful properties of set operations are summarized in the following
multi-part proposition:

Proposition 7.2.3. Let A, B, and C be subsets of a universal set U . Then

1. A ∪A′ = U and A ∩A′ = ∅

2. A ∪A = A, A ∩A = A, and A \A = ∅;

3. A ∪ ∅ = A and A ∩ ∅ = ∅;

4. A ∪ U = U and A ∩ U = A;

5. A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C;

6. A ∪B = B ∪A and A ∩B = B ∩A;

7. A∪ (B ∩C) = (A∪B)∩ (A∪C) and (B ∩C)∪A = (B ∪A)∩ (C ∪A);

8. A∩ (B ∪C) = (A∩B)∪ (A∩C) and (B ∪C)∩A = (B ∩A)∪ (C ∩A).

Proof. We’ll prove parts (1), (2), (5), and (7), and leave the rest to you!
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(1) From our definitions we have:

A ∪A′ = {x : x ∈ A or x ∈ A′} [def. of ∪]
= {x : x ∈ A or x /∈ A} [def. of complement]

But every x ∈ U must satisfy either x ∈ A or x /∈ A. It follows that A ∪ A′

includes all elements of U ; so A ∪A′ = U .

We also have

A ∩A′ = {x : x ∈ A and x ∈ A′} [def. of ∩]
= {x : x ∈ A and x /∈ A} [def. of complement]

But there is no element x that is both in A and not in A, it follows that
there are no elements in A ∩A′; so A ∩A′ = ∅.
(2) Observe that

A ∪A = {x : x ∈ A or x ∈ A} [def. of ∪]
= {x : x ∈ A}
= A

and

A ∩A = {x : x ∈ A and x ∈ A} [def. of ∩]
= {x : x ∈ A}
= A.

Also,

A \A = A ∩A′ [def. of \]
= ∅. [by part 1]

(5) For sets A, B, and C,

A ∪ (B ∪ C) = A ∪ {x : x ∈ B or x ∈ C} [def. of ∪]
= {x : x ∈ A or x ∈ B or x ∈ C} [def. of ∪]
= {x : x ∈ A or x ∈ B} ∪ C [def. of ∪]
= (A ∪B) ∪ C. [def. of ∪]

A similar argument proves that A ∩ (B ∩ C) = (A ∩B) ∩ C.
(7) We show that these two sets are equal by showing that:

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(I) Every element x in A∪(B∩C) is also an element of (A∪B)∩(A∪C);

(II) Every element x in (A∪B)∩(A∪C) is also an element of A∪(B∩C).

(It’s actually a rather common strategy to prove that two sets are equal by
showing that every element of one set is an element of the other set, and
vice versa.)

Let’s begin by proving (I). Take any element x ∈ A ∪ (B ∩ C). Then
x ∈ A or (x ∈ B ∩ C), by the definition of ∪. We may therefore consider
two cases: (i) x ∈ A, or (ii) x ∈ B ∩ C. (Actually some x’s are included in
both cases, but that’s not a problem.)

Case i : If x ∈ A, the by Proposition 7.2.1 we know x ∈ A∪B and x ∈ A∪C.
By the definition of ∩, we then have x ∈ (A ∪B) ∩ (A ∪ C).
Case ii : If x ∈ B ∩C, then by Proposition 7.2.1 we know x ∈ B and x ∈ C.
By Proposition 7.2.1, then x ∈ A ∪ B and x ∈ A ∪ C. By the definition of
∩, this means that x ∈ (A ∪B) ∩ (A ∪ C).

This completes the proof of (I). Now we’ll prove (II). Take any element
x ∈ (A ∪ B) ∩ (A ∪ C). Then we may consider two cases: (i) x ∈ A, or (ii)
x ̸∈ A.

Case i : If x ∈ A, then by by Proposition 7.2.1 it’s also true that x ∈
A ∪ (B ∩ C).
Case ii : Suppose x ̸∈ A. Now, since x ∈ (A∪B)∩(A∪C), by the definitions
of ∩ and ∪ we know that (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C). But since
x ̸∈ A, it must be true that x ∈ B, and also x ∈ C. By the definition of ∩,
this means that x ∈ B∩C. by Proposition 7.2.1, we have that x ∈ A∪(B∩C).
This completes the proof of (II), which completes the proof of (7). □

Exercise 7.2.4. Fill in the blanks in the following proof of Proposition 7.2.3
part (3):

Observe that

A ∪ ∅ = {x : x ∈ A or x ∈ ∅} [Def. of ∪]
= {x : x ∈ } [∅ has no elements]

= A Def. of set A

and

A ∩ ∅ = {x : x ∈ and x ∈ }
= ∅ .
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♢

Exercise 7.2.5. Prove parts 4,6,8 of Proposition 7.2.3 using element-by-
element proofs. ♢

The following rules that govern the operations ∩,∪ and ′ follow from the
definitions of these operations:

Proposition 7.2.6.(De Morgan’s Laws) Let A and B be sets. Then

(1) (A ∪B)′ = A′ ∩B′;

(2) (A ∩B)′ = A′ ∪B′.

We will use the same strategy we used to prove Proposition 7.2.3 part
(7)-that is, we show that sets are equal by showing they are subsets of each
other.

Proof.

We’ll prove (1), and leave (2) as an exercise. The proof will show that the
sets on the left and right sides of the equality in (1) are both subsets of each
other.

First we show that (A∪B)′ ⊂ A′∩B′. Let x ∈ (A∪B)′. Then x /∈ A∪B.
So x is neither in A nor in B, by the definition of ∪. By the definition of ′,
x ∈ A′ and x ∈ B′. Therefore, x ∈ A′ ∩B′ and we have (A ∪B)′ ⊂ A′ ∩B′.

To show the reverse inclusion, suppose that x ∈ A′ ∩ B′. Then x ∈ A′

and x ∈ B′, and so x /∈ A and x /∈ B. Thus x /∈ A ∪B and so x ∈ (A ∪B)′.
□

Exercise 7.2.7. Prove Proposition 7.2.6 part (2). ♢

Proposition 7.2.3 and Proposition 7.2.6 provide us with an arsenal of rules
for set operations. You should consider these as your “rules of arithmetic”
for sets: just as you used arithmetic rules in high school to solve algebraic
equations, so now you can use these rules for set operations to solve set
equations. Here is an example of how to do this:

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Example 7.2.8. Prove that

(A \B) ∩ (B \A) = ∅.

Proof. To see that this is true, observe that

(A \B) ∩ (B \A) = (A ∩B′) ∩ (B ∩A′) [definition of \]
= A ∩A′ ∩B ∩B′ [by Proposition 7.2.3 parts 5 and 6]

= ∅ ∩ ∅ [by Proposition 7.2.3 part 1]

= ∅.

□ ♦

Exercise 7.2.9. Prove the following statements by mimicking the style of
proof in Example 7.2.8; that is use the definitions of ∩,∪, \, and ′ as well
as their properties listed in Proposition 7.2.3 and Proposition 7.2.6. This
type of proof is called an “algebraic” proof. Every time you use a property,
remember to give a reference!

(You may find it easiest to begin with the more complicated side of the
equality, and simplify until it agrees with the other side. if you make that
work, then start with the other side and simplify until the simplified versions
of both sides finally agree.)

(a) (A ∩B) \B = ∅.

(b) (A ∪B) \B = A \B.

(c) A \ (B ∪ C) = (A \B) \ C.

(d) (A ∩B) \ (B ∩ C ′) = A ∩B ∩ C.

(e) A ∪ (B \ C)′ = (A ∪ C) ∪ (B ∪ C)′.

(f) (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

(g) (A ∪B ∪ C) ∩D) = (A ∩D) ∪ (B ∩D) ∪ (C ∩D).

(h) (A ∩B ∩ C) ∪D = (A ∪D) ∩ (B ∪D) ∩ (C ∪D).

♢
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7.3 Do the subsets of a set form a group?

Some of the properties in Proposition 7.2.3 may ring a bell. Recall that in
the Section 5.4.7 of the Modular Arithmetic chapter we defined a group to
be a set combined with an operation that has the following properties:

1. The set is closed under the operation (in other words, the operation
has the property of closure);

2. The set has a unique identity ;

3. Every element of the set has its own inverse;

4. The set elements satisfy the associative property under the group op-
eration;

5. Some groups satisfy the commutative property under the group oper-
ation.

If you forgot what these properties mean, look back at Section 5.4.3 and the
following subsections, where we discuss these properties as applied to the
integers mod n.

What we’re going to do now is a first taste of a magic recipe that you’re
going to see again and again in Abstract Algebra. We’re going to turn sets
into elements. Abracadabra!

What do we mean by this? Let’s take an example. Take the 3-element
set S = {a, b, c}.

Exercise 7.3.1.

(a) List the subsets of S = {a, b, c}. Include the empty set and non-proper
subsets of S. How many subsets are in your list?

(b) If you listed the subsets of {a, b}, how many subsets would be in your
list?

(c) If you listed the subsets of {a, b, c, d}, how many subsets would be in
your list?

(d) **If you listed the subsets of {a, b, c, . . . , x, y, z}, how many subsets
would be in your list? (*Hint*)

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=ciswhn56NJc&index=12&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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♢

Let’s take the list of subsets of {a, b, c} that you came up with in part
(a) of the previous exercise. We can consider this list as a set of 8 elements,
where each element is a subset of the original set S = {a, b, c}. Let’s call this
8-element set G. Remember, the elements of G are subsets of the original
set S.

So now let’s face the question: Is G a group?

Recall that a group has a single operation: that is, a way of combining
two elements to obtain a third element. We actually have two candidates
for an operation for G: either intersection or union. So we actually have
two questions:

� Is G with the operation ∪ a group?

� Is G with the operation ∩ a group?

We’ll take these questions one at a time. First we investigate group
properties for the set G with the operation ∪:

Exercise 7.3.2. Let G be the set of subsets of the set {a, b, c}.

(a) Does the set G with the operation ∪ have the closure property? Justify
your answer.

(b) Does the set G with the operation ∪ have an identity? If so, what is it?
Which part of Proposition 7.2.3 enabled you to draw this conclusion?

(c) Is the operation ∪ defined on the set G associative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(d) Is the operation ∪ defined on the set G commutative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(e) Does each element of G have a unique inverse under the operation ∪? If
so, which part of Proposition 7.2.3 enabled you to draw this conclusion?
If not, provide a counterexample.

(f) Is the set G a group under the ∪ operation? Justify your answer.
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♢

Although Exercise 7.3.2 deals with a particular set of subsets, the results
of the exercise are completely general and apply to the set of any subsets of
any set (and not just {a, b, c}.

Now we’ll consider ∩:

Exercise 7.3.3. Given a set A, let G be the set of all subsets of A.

(a) Does the set G with the operation ∩ have the closure property? Justify
your answer.

(b) Does the set G with the operation ∩ have an identity? If so, what is it?
Which part of Proposition 7.2.3 enabled you to draw this conclusion?

(c) Is the operation ∩ defined on the set G associative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(d) Is the operation ∩ defined on the set G commutative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(e) Does each element of G have a unique inverse under the operation ∩? If
so, which part of Proposition 7.2.3 enabled you to draw this conclusion?
If not, provide a counterexample.

(f) Is the set G a group under the ∩ operation? Justify your answer.

♢

No doubt you’re bitterly disappointed that neither ∩ nor ∪ can be used to
define a group. However, take heart! Mathematicians use these operations to
define a different sort of algebraic structure called (appropriately enough) a
Boolean algebra. We won’t deal further with Boolean algebras in this course:
suffice it to say that mathematicians have defined a large variety of abstract
algebraic structures for different purposes.

Although ∩ and ∪ didn’t work, there is a consolation prize:

Exercise 7.3.4. Besides ∪ and ∩, there is another set operation called
symmetric difference, which is sometimes denoted by the symbol ∆ and is
defined as:

A∆B = (A \B) ∪ (B \A).
Given a set U , let G be the set of all subsets of U . Repeat parts (a)–(f) of
Exercise 7.3.3, but this time for the set operation ∆ instead of ∩. ♢

https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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7.4 Hints for “Set Theory” exercises

Exercise 7.1.3(a): A century is a collection of years, . . . .

Exercise 7.3.1(d): Guess the pattern from the previous parts of this exercise.
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7.5 Study guide for “Set Theory” chapter

Section 7.1, Set Theory

Concepts:

1. Definition of a set

2. Sets of sets

3. Universal set

4. Subsets and proper subsets

5. Empty set

6. Union and intersection of sets

7. Disjoint sets

8. Complement set

9. Difference of sets

Competencies

1. Given a description of the elements of a set, list the elements (and vice
versa). (7.1.2)

2. Be able to describe sets of sets. (7.1.3)

3. Be able to specify sets given operations on the sets. (7.1.14, 7.1.20)

Section 7.2, Properties of set operations

Concepts:

1. Properties of set operations

2. De Morgan’s Laws
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Key Formulas

1. Given any sets A,B, it is always true that A ∩B ⊂ A and
A ⊂ A ∪B.

2. Properties of set operations: Let A, B, and C be subsets of a universal
set U . Then

(a) A ∪A′ = U and A ∩A′ = ∅
(b) A ∪A = A, A ∩A = A, and A \A = ∅;
(c) A ∪ ∅ = A and A ∩ ∅ = ∅;
(d) A ∪ U = U and A ∩ U = A;

(e) A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C;
(f) A ∪B = B ∪A and A ∩B = B ∩A;
(g) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);
(h) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

3. De Morgan’s Laws: Let A and B be sets. Then

(a) (A ∪B)′ = A′ ∩B′;

(b) (A ∩B)′ = A′ ∪B′.

Competencies

1. Prove set identities algebraically, making use of the above properties
of set operations. (7.2.9)

Section 7.3, Do the subsets of a set form a group?

Concepts:

1. Group properties (Definition 5.4.26)

Competencies

1. Be able to prove or disprove group properties of set operations. (7.3.2)
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Functions: Basic Concepts

The idea of a function should be familiar to you from previous math classes.
Your calculus class no doubt was all about functions defined on real numbers.
In this book, we will be more interested in functions on finite sets. Rather
than “doing things” to these functions (such as integrating and differenti-
ating), instead we will dig more deeply into the basic nature of functions
themselves. This will eventually lead us to discover profound connections
between groups and functions (see the Permutations chapter).

This chapter is an adapted and expanded version of a chapter by D. and
J. Morris.

8.1 The Cartesian product: a different type of set
operation

In the previous chapter, we introduced set operations such as ∪ and ∩. In
this chapter we are going to need yet another set operation. This operation
is called the ”Cartesian product”, and is denoted by the symbol ×. In order
to define the Cartesian product, we will first need a preliminary definition:

Definition 8.1.1. For any objects x and y, mathematicians use (x, y)
to denote the ordered pair whose first coordinate is x and whose second
coordinate is y. Two ordered pairs are equal if and only if both coordinates
are equal:

(x1, y1) = (x2, y2) iff x1 = x2 and y1 = y2.

△

201

https://www.youtube.com/watch?v=m0F1__joNzw&index=13&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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Example 8.1.2. The “coordinate plane” (or “xy-plane”) that is used for
graphing functions is one example of a set of ordered pairs. The xy-plane
corresponds to R × R (sometimes written as R2), and is the set of ordered
pairs of real numbers:

R× R = {(x, y)|x ∈ R, y ∈ R}

Notice that the elements of R2 are not real numbers, but rather ordered
pairs of real numbers. In other words,

x ∈ R and y ∈ R, but (x, y) /∈ R.

♦

We arrive at our general definition of Cartesian product by replacing R
and R in our previous example with arbitrary sets A and B:

Definition 8.1.3. For any sets A and B, we define the Cartesian product
of A and B (denoted A×B as:

A×B = {(a, b)|a ∈ A, b ∈ B}

In other words, x is an element of A×B if and only if x is an ordered pair
of the form (a, b), where a is an element of A and b is an element of B.

△

Example 8.1.4.

1. {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A}×{♣,♡,♠,♢} = {a standard deck of cards }

2. {1, 2, 3} × {a, b} = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

3. {a, b} × {1, 2, 3} = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.

♦

Exercise 8.1.5. In view of the previous example, is × commutative? Ex-
plain your answer. ♢

Exercise 8.1.6. Specify each set by listing its elements.
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(a) {a, i} × {n, t}

(b) {Q,K} × {♣,♡,♠,♢}

(c) {1, 2, 3} × {3, 4, 5}

(d) {y, g, Y,G} × {y, g, Y,G}

♢

Now A×B can be considered an operation on the sets A and B, just like
A∪B and A∩B. But there is a very significant difference. Recall that if A
and B are both subsets of the same universal set U , then so are A ∪B and
A ∩B. This is not the case for A×B! The operation A×B takes the sets
A and B and creates another set with a completely new type of element!

Exercise 8.1.7. Let A = {a, b} and let B = {b, c}.

(a) Write the elements of A×B (there are four).

(b) What is A ∩ (A × B)? (Another way of thinking about this is: what
elements of A are also elements of A×B?)

(c) What is B ∩ (A × B)? (Another way of thinking about this is: what
elements of B are also elements of A×B?)

(d) We have shown in the previous chapter that the subsets of {a, b, c} are
closed under ∪ and ∩. Are the subsets of {a, b, c} also closed under ×?
Explain your answer.

♢

We have been trying to emphasize that A×B is a very different set from
the sets A and B. One question we could ask is: how does the number of
elements in A×B compare with the numbers of elements in the sets A and
B? By considering the above examples, you may be able to figure out a
formula for yourself. Go ahead and try, before reading the answer below.

Proposition 8.1.8. Given any sets A and B, then:

|A×B| = |A| · |B|.

Here the notation ”|S|” means the number of elements in S.

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Proof. We can prove this formula by some creative arranging. Suppose
the sets A and B have m and n elements, respectively. We may list these
elements as follows:

A = {a1, a2, a3, ..., am} and B = {b1, b2, b3, ..., bn}.

It follows that the elements of A×B are:

(a1, b1), (a1, b2), (a1, b3), · · · (a1, bn),
(a2, b1), (a2, b2), (a2, b3), · · · (a2, bn),
(a3, b1), (a3, b2), (a3, b3), · · · (a3, bn),
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

(am, b1), (am, b2), (am, b3), · · · (am, bn).

In the above table that represents the elements of A×B:

� each row has exactly n elements, and

� there are m rows,

It follows that the number of entries in the table is m · n. □

Exercise 8.1.9.

(a) If B = {vanilla, chocolate, strawberry}, then what is B × ∅?

(b) Using the definition of Cartesian product, show that for any set A,
A× ∅ = ∅.

♢

8.2 Introduction to functions

8.2.1 Informal look at functions

You have seen many examples of functions in your previous math classes.
Most of these were probably given by formulas, for example f(x) = x3. But

https://www.youtube.com/watch?v=m0F1__joNzw&index=13&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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functions can also be given in other ways. The key property of a function is
that it accepts inputs, and provides a corresponding output value for each
possible input.

Example 8.2.1. For the function f(x) = x3, the input x can be any real
number. Plugging a value for x into the formula yields an output value,
which is also a real number. For example, using x = 2 as the input yields
the output value f(2) = 23 = 8. ♦

The following properties are true of any function f :

1. Any function has a set of allowable inputs, which we call the domain
of the function.

2. Any function also has a a set that contains all of the possible outputs,
which we call the codomain of the function.

In Example 8.2.1, any real number can be used as the input x, so the
domain is R, the set of all real numbers. Similarly, any output is a real
number, so the codomain can also be taken as R.

Example 8.2.2. For the function f(x) = x2, the input x can be any
real number. The output is always a real number, so we can use R as the
codomain. So we can take the domain and the codomain as the same set –
but we don’t have to. You may have already noticed that the output of f
is never a negative number, so we could have used the interval [0,∞) =
{x ∈ R | x ≥ 0 } as the codomain. This shows that the codomain of
a function is not unique – you can choose a different codomain and not
change the function. However, the domain of a function is unique. If the set
of allowable inputs is changed, then the function is changed in an essential
fashion. ♦

Example 8.2.3. g(x) = 1/x is not a function from R to R. This is because
0 is an element of R, but the formula does not define a value for g(0). Thus,
0 cannot be in the domain of g. To correct this problem, one could say that
g is a function from the set {x ∈ R | x ̸= 0 } of nonzero real numbers, to R.
♦

Intuitively, a function from A to B can be thought of being any process
that accepts inputs from the set A, and assigns an element of the set B to

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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each of these inputs. The process need not be given by a formula. Indeed,
most of the functions that arise in science or in everyday life are not given
by exact formulas, as illustrated in the following exercise.

Example 8.2.4.

1. Each point on the surface of the earth has a particular temperature
right now, and the temperature (in degrees centigrade) is a real num-
ber. Thus, temperature defines a function temp from the surface of
the earth to R: temp(x) is the temperature at the point x.

2. The items in a grocery store each have a particular price, which is a
certain number of cents, so price can be thought of as a function from
the set of items for sale to the set N of all natural numbers: price(x)
is the price of item x (in cents).

3. If we let People be the set of all people (alive or dead), then mother (i.e.
biological mother) is a function from People to People. For example,

mother(Prince Charles) = Queen Elizabeth.

(To avoid ambiguity, we need to say that, by “mother,” we mean
“biological mother.”)

4. In contrast, grandmother is not a function from People to People. This
is because people have not just one grandmother, but two (a maternal
grandmother and a paternal grandmother). For example, if we say
that Prince Charles wrote a poem for his grandmother, we do not
know whether he wrote the poem for the Queen Mother, or for his
other grandmother. A function is not ever allowed to have such an
ambiguity. (In technical terms, grandmother is a “relation,” not a
function. This will be explained in a later section)

♦

Functions are often represented as a table of values.

Example 8.2.5. The following table represents the prices of items in a
grocery store:
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item price (in cents)

apple 65
banana 83
cherry 7
donut 99
eggs 155

This table represents a function price with the following properties:

� The domain of price is {apple, banana, cherry, donut, eggs}.

� price(banana) = 83.

� price(guava) does not exist, because guava is not in the domain of the
function.

� The codomain of price can be taken as N, since all our prices are natural
numbers. Now of course we don’t really need all of N: we can kick
some numbers out of N that aren’t actual prices, and the resulting set
would still be a codomain. In fact, we could keep kicking numbers out
until we get the set . . .

� {65, 83, 7, 99, 155}. This “smallest possible codomain” is what we call
the range of price. The range is the set of actual outputs of a function.
No matter what codomain we choose, it is always true that the range
is a subset of the codomain.

♦

It is also possible to represent each row of the table by an ordered pair.
For example, the first row of the table is apple | 65. This has apple on the left
and 65 on the right, so we represent it by the ordered pair (apple, 65), which
has apple on the left and 65 on the right. The second row is represented by
(banana, 83). Continuing in this way yields a total of 5 ordered pairs (one
for each row). To keep them gathered together, we can put the 5 ordered
pairs into a single set:{

(apple, 65), (banana, 83), (cherry, 7), (donut, 99), (eggs, 155)
}
.

This set of ordered pairs contains exactly the same information as a table
of values, but the set is a more convenient form for mathematical manipu-
lations.

Exercise 8.2.6. Here is a function f given by a table of values.

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO


208 CHAPTER 8 FUNCTIONS: BASIC CONCEPTS

x f(x)

1 7
2 3
3 2
4 4
5 9

(a) What is the domain of f?

(b) What is the range of f?

(c) What is f(3)?

(d) Represent f as a set of ordered pairs.

(e) Find a formula to represent f . (*Hint*)

♢

Example 8.2.7. Not every table of values represents a function. For exam-
ple, suppose we have the following price list, which is a slight change from
Example 8.2.5:

item price (in cents)

apple 65
banana 83
cherry 7
donut 99
banana 155

There’s a problem here. Lines 2 and 5 of the table list two different prices
for a banana. So you might pick up a banana, expecting to pay 83 cents,
and end up having the cashier charge you $1.55. This is not allowed in a
function: each input must have exactly one output. So if a table represents
a function, and an item appears in the left side of more than one row, then
all of those rows must have the same output listed on the right side. (In
such a case, the duplicate rows are unnecessary because they add no new
information.) ♦

The following remark summarizes the characteristics that a 2-column
table must possess if it does indeed correspond to a function.
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Remark 8.2.8. A 2-column table represents a function from A to B if and
only if:

1. every value that appears in the left column of the table is an element
of A,

2. every value that appears in the right column of the table is an element
of B,

3. every element of A appears in the left side of the table, and

4. no two rows of the table have the same left side, but different right
sides.

△

Just as with tables, not all sets of ordered pairs represent functions. For
instance, if we convert the table in Example 8.2.7 into a set of ordered pairs,
we get:{

(apple, 65), (banana, 83), (cherry, 7), (donut, 99), (banana, 155)
}
.

Do you see why this set of ordered pairs doesn’t represent a function? It’s
because the input ”banana” has two different outputs: 83 and 155 cents.

Suppose on the other hand we start with the set of ordered pairs from
Example 8.2.5 and delete the ordered pair containing “donut”. Our set of
ordered pairs then becomes

C :=
{
(apple, 65), (banana, 83), (cherry, 7), (eggs, 155)

}
.

In Example 8.2.5 the domain wasA := {apple, banana, cherry, donut, eggs}.
However, the set C no longer tells us the price of a donut, which is one of the
items in A. Therefore C doesn’t specify a function on the domain A because
it doesn’t define an output for all possible inputs in A. This is similar to
the case of g(x) = 1/x, which we previously saw was not a function from R
to R because the input 0 had no output in R. (However, you should note
that g(x) is a function if we change the domain to R \ {0}.)

Exercise 8.2.9. Let A = {a, b, c, d} and B = {1, 3, 5, 7, 9}. Which of the
following sets of ordered pairs represent functions from A to B?

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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a. {(a, 1), (b, 3), (c, 5), (d, 7)}

b. {(a, 1), (b, 2), (c, 3), (d, 4)}

c. {(a, 1), (b, 3), (c, 5), (d, 3)}

d. {(a, 1), (b, 3), (c, 5), (d, 7), (a, 9)}

e. {(a, 1), (b, 3), (c, 5)}

f. {(a, 1), (b, 1), (c, 1), (d, 1)}

g. {(a, a), (b, a), (c, a), (d, a)}

h. {(a, 1), (b, 3), (c, 5), (d, 5), (e, 3)}

i. {(1, a), (3, a), (5, a), (7, a), (9, a)}

j. {(c, 1), (b, 3), (a, 7), (d, 9)}

k. A×B

♢

Exercise 8.2.10. In Exercise 8.2.9, those sets that correspond to functions
from A to B are subsets of A × B. Explain why the set of ordered pairs
describing a function from A to B must necessarily be a subset of A×B. ♢

In summary, a set of ordered pairs C is a function from A to B if and
only if :

� C ⊂ A×B

� each input a ∈ A is part of an ordered pair in C

� and each input a ∈ A is paired with only one output b ∈ B.

It is sometimes helpful to represent a function f : A→ B by drawing an
arrow diagram :

� a dot is drawn for each element of A and each element of B, and

� an arrow is drawn from a to f(a), for each a ∈ A.

For example, suppose

� A = {a, b, c, d, e},

� B = {1, 2, 3, 4}, and

� f = {(a, 1), (b, 3), (c, 4), (d, 4), (e, 3)}.

An arrow diagram of f is shown in Figure 8.2.1 Notice that:
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Figure 8.2.1. Arrow diagram for function f .

1. There is exactly one arrow coming out of each element of A. This is
true for the arrow diagram of any function.

2. There can be any number of arrows coming into each element of B
(perhaps none, perhaps one, or perhaps many). The elements of B
that do have arrows into them are precisely the elements of the range
of f . In this example, the range of f is {1, 3, 4}.

8.2.2 Official definition of functions

The preceding section provided some intuition about how and why functions
are represented as sets of ordered pairs, and since ordered pairs are elements
created by a Cartesian product, we learned how to view a function from A
to B as a particular subset of A×B. This view leads to our official definition
of a function:

Definition 8.2.11. Suppose A and B are sets.

A set f is a function from A to B if

(a) f ⊂ A×B

(b) ∀a ∈ A,∃ a unique b ∈ B s.t. (a, b) ∈ f

(Condition (b) can also be stated as follows: every a ∈ A is in one and only
one ordered pair in f).

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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We write “f : A → B” to denote that f is a function from A to B. We
also call A the domain of f , and B the codomain of f .

If the pair (a, b) ∈ f , then we say that b is the image of a under the
function f .

△

Notation 8.2.12. Suppose f : A→ B.

1. For a ∈ A, it is convenient to have a name for the element b of B, such
that (a, b) ∈ f . The name we use is f(a):

f(a) = b if and only if (a, b) ∈ f .

2. Each element a of A provides us with an element f(a) of B. The
range of f is the set that includes all of these elements f(a). That is,

Range of f = {b ∈ B : ∃a ∈ A with f(a) = b}.

The range is always a subset of the codomain. The range can be
denoted { f(a) | a ∈ A }.

△

Example 8.2.13. Suppose that the function f is defined by f(x) = x2, on
the domain {0, 1, 2, 4}. Then

1. to represent f as a set of ordered pairs, each element of the domain
must appear exactly once as a first coordinate, with the corresponding
output given in the second coordinate. Since there are four elements in
the domain, there will be four ordered pairs: {(0, 0), (1, 1), (2, 4), (4, 16)};

2. to give a table for f , we include one row for every element of the
domain. The table will be:

n f(n)

0 0
1 1
2 4
4 16
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3. if we are asked what is f(3), the answer is that f(3) is undefined,
because 3 is not in the domain of f . Even though we know that
32 = 9, the formula we gave for f only applies to elements that are in
the domain of f ! It is not true that f(3) = 9;

4. the range of f is the set of possible outputs: in this case, {0, 1, 4, 16};

5. if we are asked what is f(2), the answer is f(2) = 4;

6. is f a function from {n ∈ N | n ≤ 4} to {0, 1, 4, 16}? The answer is no,
because the first set is {0, 1, 2, 3, 4}, which includes the value 3, but 3
is not in the domain of f .

7. is f a function from {0, 1, 2, 4} to {n ∈ N | n ≤ 16}? The answer is
yes; even though the second set has many values that are not in the
range, it is a possible codomain for f . A codomain can be any set that
contains all of the elements of the range.

♦

Exercise 8.2.14. The following table describes a certain function g.

n g(n)

2 7
4 9
6 11
8 13
10 15

(a) What is the domain of g?

(b) What is the range of g?

(c) What is g(6)?

(d) What is g(7)?

(e) Represent g as a set of ordered pairs.

(f) Draw an arrow diagram to represent g.

(g) Write down a formula that describes g.
(Express g(n) in terms of n.)

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♢

Exercise 8.2.15. Suppose

� f is a function whose domain is {0, 2, 4, 6}, and

� f(x) = 4x− 5, for every x in the domain.

Describe the function in each of the following ways:

(a) Make a table.

(b) Use ordered pairs.

(c) Draw an arrow diagram involving two sets.

♢

Exercise 8.2.16. Which of the following sets of ordered pairs are functions
from {x, y, z} to {a, b, c, d, e}?

� If it is such a function, then what is its range?

� If it is not such a function, then explain why not.

(a) {(y, a), (x, b), (y, c)}

(b) {(y, a), (x, b), (z, c)}

(c) {(y, a), (x, c), (z, a)}

♢

Exercise 8.2.17. Which of the following are functions from {1, 2, 3} to
{w, h, o}? (If it is not such a function, then explain why not.)

(a) {(1,w), (1, h), (1, o)}

(b) {(1, h), (2, h), (3, h)}

(c) {(1, h), (2, o), (3,w)}

(d) {(w, 1), (h, 2), (o, 3)}
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♢

Exercise 8.2.18. For the given sets A and B, write each function from A
to B as a set of ordered pairs. (It turns out that if |A| = m and |B| = n,
then the number of functions from A to B is nm. Do you see why?)

1. A = {a, b, c}, B = {d}

2. A = {a, b}, B = {c, d}

3. A = {a}, B = {b, c, d}

4. A = {a, b}, B = {c, d, e}

5. A = {a, b, c}, B = {d, e}

♢

8.3 One-to-one functions

8.3.1 Concept and definition

We begin this section with an example.

Example 8.3.1.

� Suppose Inspector Gadget knows two facts:

1. Alice is the thief’s wife, and

2. Alice is Bob’s wife.

Then the inspector can arrest Bob for theft, because a person cannot
(legally) be the wife of more than one husband.1

� On the other hand, suppose the inspector knows:

1. Alice is the forger’s mother, and

2. Alice is Charlie’s mother.

Then the inspector does not know enough to be sure who the forger
is, because it could be some other child of Alice.

1According to U.S. law as of 2017.

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=m0F1__joNzw&index=13&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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This example illustrates a fundamental difference between the wife function
and the mother function: two different people can have the same mother, but
only one person can have any particular person as their legal wife. In math-
ematical terms, this important property of the wife function is expressed by
saying that the wife function is one-to-one. ♦

Example 8.3.2. Now let’s revisit the function we saw in Example 8.2.4
part (1). Temp is the function from the set of points on the earth to the set
of measured temperatures at those points. Is Temp a one-to-one function?
Not at all: it’s very likely that at any given time, at least two points on the
equator have exactly the same temperature (to arbitrary precision). 2

Another way to say this is that at any given time,

there exists a temperature b for which we can find two points on earth x
and y such that Temp(x) = Temp(y) = b.

♦

Exercise 8.3.3. Is the function AtomicNumber from the set of chemical
elements to the set of natural numbers a one-to-one function? Explain why
or why not. ♢

Remark 8.3.4. If you have an arrow diagram of a function, then it is easy
to tell whether or not the function is one-to-one. For example:

1. The function f in Figure 8.3.1(a) is not one-to-one. This is because the
arrow from b and the arrow from c go to the same place, so f(b) = f(c).
In general, if arrows from two different elements of the domain go to
the same element of the range, then the function is not one-to-one.

2. The function g of Figure 8.3.1(b) is one-to-one. This is because the
arrows from two different elements of the domain never go to the same
element of the range. In short, there is only one element of the domain
that goes to any one element of the range.

△
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Figure 8.3.1. Arrow diagrams of three functions f , g, and h.

Exercise 8.3.5. Is function h of Figure 8.3.1 one-to-one? Explain why or
why not. ♢

This concept of one-to-one is very useful. If we know A is a function, we
know that every input of A has exactly one output. But if we know that A
is a one-to-one function, then we also know that every output in the range
of A is caused by exactly one input. Alternatively, we can say that every
potential output in the codomain has at most one input.

We have given an informal idea of the meaning of one-to-one–now it’s
time for a formal definition.

Definition 8.3.6. Suppose f is a function with domain A and codomain
B. We say f is one-to-one iff for all a1, a2 ∈ A such that f(a1) = f(a2),
we have a1 = a2. △

Some higher math books use the fancy term injective instead of one-
to-one. It means the same thing.

Exercise 8.3.7.

2It’s not only likely: it’s a sure thing. This can be proven mathematically, given that
Temp is a continuous function. Can you prove it?

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Each of the following sets of ordered pairs is a function from {1, 2, 3, 4}
to {a, b, c, d, e}. Either prove that the function is one-to-one, or prove that
it is not.

(a) f = {(1, a), (2, b), (3, d), (4, e)}

(b) g = {(1, c), (2, d), (3, d), (4, e)}

(c) h = {(1, e), (2, d), (3, c), (4, b)}

(d) i = {(1, e), (2, e), (3, e), (4, e)}

(e) j = {(1, a), (2, c), (3, e), (4, c)}

(f) k = {(1, a), (2, c), (3, e), (4, d)}

♢

Exercise 8.3.8. Notice that in part (a) of the previous problem, it’s not
true that every element in the codomain is the image of an element of the
domain. Explain why this doesn’t prevent the function f from being one-
to-one. ♢

8.3.2 Proving that a function is one-to-one

The concept of one-to-one will be very important in this course, and one of
the tools we will need is the ability to prove that a function is one-to-one.
Though many of the functions we will encounter throughout this book are
not algebraic, we will learn this style of proof using algebraic functions, as
they are a bit easier to deal with. Here are some examples of this type of
proof.

Example 8.3.9. Determine which of the following functions are one-to-one.
If so, give a proof. If not, give a counterexample.

(a) f : R → R, defined by f(x) = x+ 1.

Let’s go back to the definition of one-to-one. Suppose we know that
f(x) = f(y), where x, y are real numbers. Can we conclude that x = y?
If so, then that means that f is one-to-one.

So let’s follow through on this. f(x) = f(y) means that x+ 1 = y + 1.
Subtracting 1 from both sides of the equation, we find that indeed,
x = y. Hence, f is one-to-one, according to the definition.
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(b) f : C → R by f(z) = Re[z].

Let’s start the same way as the previous example. Suppose we know
that f(z) = f(w), where w, z are complex numbers. Can we conclude
that w = z? In this case, f(z) = f(w) simply means that the real
parts of z and w are equal. But there are many complex numbers in
C which have the same real part: for example, 2 + i and 2 + 2i. Since
f(2+i) = f(2+2i), it’s not always true that f(z) = f(w) implies z = w.
This single counterexample is enough to prove that f is not one-to-one.

(c) f : A → R, where f(z) = Re[z] and A = {z ∈ C : Im[z] = 4 }.
Notice that the function is the same as in the previous example, but
the domain is different. This makes a big difference, and we don’t get
the same answer with this new domain. How can that be? Well, let’s
try to do the same as before, and see what goes haywire. Once again,
suppose we know that f(z) = f(w), where w, z ∈ A. As before, this
means that Re[z] = Re[w]. But since z, w ∈ A, we also know that
Im[z] = Im[w] = 4. Since z and w have the same real and imaginary
parts, they are equal. So f is one-to-one.

(d) g : R → R, defined by g(x) = |x|.
We demonstrate this by finding two distinct real numbers whose image
is the same:

g(1) = |1| = 1 = | − 1| = g(−1),

but 1 ̸= −1. This shows that g is not one-to-one.

(e) h : N → N, defined by h(x) = |x|.
Since all natural numbers are nonnegative, we have |x| = x for every
natural number x. So given that h(x) = h(y), we can argue as follows:

h(x) = h(y) ⇒ |x| = |y| ⇒ x = y.

Hence h is one-to-one. (Note that the function h agrees with g in the
previous example, but the result is different because the domains are
different.)

(f) h : R → R, defined by h(x) = −x2 + 7x− 4.

If we try to apply the definition directly as above, we run into complica-
tions. So we try an indirect approach. We know how to solve h(x) = y
using the quadratic formula:

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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h(x) = y ⇒ −x2 + 7x− 4 = y ⇒ x =
7±

√
33− 4y

2
.

The ± is a tipoff that in some cases there may be two values of x that
give the same y. We’re free to choose y, so let’s choose a value that
gives a simple result. Take y = 8 for instance, which gives us:

x =
7± 1

2
or x = 3, 4.

We can verify that in fact h(3) = 8 and h(4) = 8. Since in this case two
different x’s give the same y, it follows that h is not one-to-one.

This example gives us a chance to point out a common mistake. Suppose
we chose y = 33/4 instead of y = 8. Then we would get x = 7/2 as the
unique value x such that f(x) = 33/4. But this is not enough to prove
that h is one-to-one. In order to be one-to-one, each y be the image of
at most one x for all possible values of y in the codomain.

♦

Remark 8.3.10. In previous classes you may have seen the horizontal
line test to show whether or not a function f : R → R was one-to-one. We
may show how this works using the function f(x) = x+1 (which we already
know is one-to-one from Example 8.3.9 above). Figure 8.3.2 is the graph of
f , together with the graph of a horizontal line (dotted line).

Now, the the horizontal line has an equation of the form y = c (Why
is this?). Any solution of the equation f(x) = c corresponds to a point of
intersection between the graphs of y = c and y = f(x). Now here’s the key
point. If for every horizontal line there’s at most one intersection for every
horizontal line, then for every real number c, the equation f(x) = c has at
most one solution –which is the same thing as saying that f(x) is one-to-one.
We may state this result in general as follows:

(Horizontal line test for one-to-oneness) The function f : R → R is one-to-
one if and only if the graph of f(x) intersects every horizontal line at most
once.

So the horizontal line test proves that f is a one-to-one function, right?
Alas, pictures are not proofs–although they can be pretty convincing. Typ-
ically, a mathematician will use pictures to convince herself of what’s true
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Figure 8.3.2. Graph of function f(x) = x + 1 (with horizontal line used
for horizontal line test).

before attempting a real proof. (It’s a lot easier to prove something when
you’re confident that it must be true.)

On the other hand, to disprove a function is one-to-one, you only need
a single counterexample. Consider the function g(x) = |x| from Part 2 of
Example 8.3.9, which is graphed in Figure 8.3.3. Using the graph we can
easily identify two values in the domain that produce the same value in
the codomain. However, while the horizontal line test here suggests our
counterexample, we still need to verify that the counterexample works. So
again we need the disproof in Part 2 of Example 8.3.9, not just a picture.

Figure 8.3.3. Graph of function f(x) = |x| (with horizontal lines used for
horizontal line test).

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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In summary, the horizontal line test can only suggest whether or not
a function is one-to-one. In the end, you still need to prove or disprove.
Furthermore, the horizontal line test is usually only a good tool for functions
whose domain and codomain are R (or subsets of R). △

Exercise 8.3.11. Suppose that the function f has domain [a, b] and codomain
[c, d] (where for example [a, b] signifies the interval {a ≤ x ≤ b, x ∈ R}).
State the horizontal line test for one-to-one functions in this case. What
changes, if any, need to be made in the horizontal line test for f : R → R ?
♢

Exercise 8.3.12. Graph each function and use the horizontal line test to
determine whether or not the following functions are one-to-one.

(a) f : [0, π] → R, f(x) = cos(x).

(b) f : [0, π] → [−1, 1], f(x) = sin(x).

(c) f : [−π, π] → [−1, 1], f(x) = cos(x/2).

(d) f : [−π, π] → [−10, 10], f(x) = sin(x/2).

(e) f : [1, 3] → [0, 5], f(x) = 6− 2x.

♢

Exercise 8.3.13.

(a) Sketch the function f : R → R, where f(x) = x(x− 2)(x+ 2).

(b) Using the horizontal line test, determine whether f is a one-to-one func-
tion.

(c) Now consider the same function f , but restricted to the domain [−1, 1]
(that is, the interval −1 ≤ x ≤ 1). Is the function still one-to-one?
Explain your answer.

♢

When you don’t know whether or not a particular function is one-to-one,
a good strategy is to try to prove that it’s one-to-one. If the proof works,
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then great you’re done. If the proof fails, the manner in which it fails may
indicate an example to show that the function is not one-to-one. Here’s an
example of this technique.

Example 8.3.14. Let f : N → N be defined by f(n) = (n − 2)2 + 1. Is f
one-to-one?

(Aside: Please take note of the domain in this problem. As we’ve noted
previously, a function may be one-to-one on one domain, and not on a
different domain.)

First let’s try to prove that f is one-to-one. Start with arbitrary elements
m,n ∈ N, and suppose that f(m) = f(n). By the definition of f , this means
that (m− 2)2+1 = (n− 2)2+1, or (m− 2)2 = (n− 2)2. Two numbers have
the same square, if and only if they are equal in absolute value, so it follows
that m− 2 = ±(n− 2). There are now two cases:

� If m− 2 = +(n− 2) then adding 2 to each side, we get m = n.

� If m − 2 = −(n − 2) = −n + 2, then adding 2 to each side, we get
m = −n+ 4.

Since m,n ∈ N, it’s not hard to see that if n ≥ 4, then −n + 4 is not a
natural number. But if n is 1,2,3 then −n + 4 ∈ N. For example n = 1
gives m = 3, which suggests that f(1) = f(3). We may indeed check that
f(1) = f(3).

Now the great thing about cases where f is not one-to-one is that the
writeup of the solution is very simple. All you have to do is give one example
of two different values that return the same function value. In the current
example we have:

Solution: f is not one-to-one because f(1) = 2 and f(3) = 2.

So the writeup is easy: two values is all it takes. The hard thing is finding
the two values! ♦

There is an equivalent way to show functions are one-to-one that is also
useful. To see it, recall the wife function from the beginning of the section.
The wife function is one-to-one because one woman can’t be (legally) married
to two different husbands. We can express the same thing in a different way
by saying that two different husbands must be married to two different wives.
These two statements are contrapositives of each other, and are in fact

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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equivalent. (“contrapositive” is a logical term–you may have run across it
before in other math classes.)

If we generalize this reasoning to arbitrary one-to-one functions, we have
the following two equivalent statements:

� A function is one-to-one iff any element of the range is mapped from
only one element of the domain;

� A function is one-to-one iff two different elements of the domain always
map to two different elements of the range.

We formalize this equivalence in the following alternative definition of
one-to-one:

Definition 8.3.15.(Alternate) Suppose f : A → B. We say f is a one-to-
one function iff for all a1, a2 ∈ A such that a1 ̸= a2, we have f(a1) ̸= f(a2).
△

Here is an example of how to use this definition in a proof:

Example 8.3.16.
Let g : Z23 → Z23 be defined by g(n) = 5⊙ n. Is g(n) one-to-one?

Solution:
Suppose n1, n2 ∈ Z23, and g(n1) = g(n2).
Then,

5⊙ n1 = 5⊙ n2 [given]

5 has a multiplicative inverse, m, in Z23 [Prop. 5.5.28]

m⊙ (5⊙ n1) = m⊙ (5⊙ n2) [substitution]

n1 = n2 [associativeity and inverse property]

♦

Example 8.3.17. We know from calculus that the function ex : R → R
is a strictly increasing function since its derivative is always positive. In
mathematical terms, we can say

x > y implies ex > ey.
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We can use this fact and Definition 8.3.15 to prove that ex is a one-to-one
function as follows:

Take any two real numbers x1 and x2 where x1 ̸= x2. If x1 > x2, then by
the above equation it follows that ex1 > ex2 . On the other hand, if x1 < x2,
then by the above equation it follows that ex1 < ex2 . In either case, we have
ex1 ̸= ex2 . By Definition 8.3.15, it follows that ex must be one-to-one. ♦

Exercise 8.3.18.

(a) Show that any strictly increasing function from R to R is one-to-one.

(b) Show that any strictly decreasing function from R to R is one-to-one.

(c) Does the answer to (a) or (b) change if we change the domain and
codomain to [0, 1]? Explain your answer.

♢

Exercise 8.3.19. Suppose f : Q → R is a function such that f(q1)− f(q2)
is irrational whenever q1 ̸= q2. Show that this implies that f is one-to-one.
(Recall that Q is the set of rational numbers.) ♢

We close this section with a bevy of exercises. Use whatever method you
like, but make sure they’re solid proofs.

Exercise 8.3.20.

For each of the following functions, either prove the function is one-to-
one, or prove that it is not.

(a) f : [0, 1] → [0, 1], f(x) = 1.

(b) g : R+ → R, g(x) = x.

(c) h : R → R, h(x) = x2.

(d) h : R+ → R, h(x) = x2.

(e) p : [a, b] → [3a, 3b+ 10], p(x) = 3x+ 2.

(f) q : R → R, q(x) = 1
|x+1|+1 .

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(g) r : [−1, 1] → [0, 1], r(x) = 1
|x+1|+1 .

(h) s : R → R, s(x) = (x+ 1)(x+ 2)(x+ 3).

(i) t : R+ → R+, t(x) = (x+ 1)(x+ 2)(x+ 3).

♢

Exercise 8.3.21. For each function, either prove that it is one-to-one, or
prove that it is not.

(a) f : Q → Q defined by f(r) = 3
5r − 2.

(b) f : R → R defined by f(x) = (x+ 2)2.

(c) f : N → N defined by f(n) = (n+ 2)2.

(d) f : Z → Z defined by f(n) = (n− 1)n(n+ 1) + 1.

(e) f : N → N defined by f(n) = (n− 1)n(n+ 1) + 1.

(f) f : A→ A defined by f(x) = (x− 1)x(x+ 1) ,where
A = {x ∈ R and x > 1} (requires calculus).

(g) g : R → R defined by g(x) =
∣∣x+1

2

∣∣.
♢

Exercise 8.3.22. For each function, either prove that it is one-to-one, or
prove that it is not.

(a) g : Z6 → Z6 defined by g(n) = n⊕ 2 .

(b) g : Z6 → Z6 defined by g(x) = x⊕ x .

(c) g : Z8 → Z8 defined by g(n) = n⊙ 2 .

(d) g : Z11 → Z11 defined by g(n) = n⊙ 2 .

(e) ga : Z7 → Z7 defined by ga(n) = n⊙a , where a can be any fixed element
of Z7.

(f) fb : Z32 → Z32 defined by fb(n) = n⊙ b , b ∈ Z32, and b is odd.
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(g) fb : Z188 → Z188 defined by fb(n) = n⊙ b , b ∈ Z188, and b is even.

(h) g : Z8 → Z8 defined by g(n) = n⊙ n⊙ n .

(i) g : Z7 → Z7 defined by g(n) = n⊙ n⊙ n .

♢

Exercise 8.3.23. For each function, either prove that it is one-to-one, or
prove that it is not.

(a) g : C \ {0} → C \ {0} defined by g(z) = z−1 .

(b) r : A→ R defined by r(z) = Re[z] + Im[z], where
A = {z ∈ C : Im[z] > 0}.

(c) g : C → C defined by g(z) = az + b where a and b are fixed complex
numbers and a ̸= 0.

(d) g : C → C defined by g(z) = z3.

(e) Let n ∈ Z and let hn : C \ {0} → C \ {0} be defined by hn(z) = zn.
For which values of n is the function h(z) a one-to-one function? Prove
your answer.

♢

8.4 Onto functions

8.4.1 Concept and definition

In an arrow diagram of a function f : A → B, the definition of a function
requires that there is exactly one arrow out of each element of A, but it
says nothing about the number of arrows into each element of B. There
may be elements of B with lots of arrows into them (unless the function is
one-to-one), and there may be other elements of B that have no arrows into
them. The function is called onto” if all of the elements of B are hit by
arrows; none are missed.

Example 8.4.1. Figure 8.4.1 shows arrow diagrams of various functions,
some onto and some not. In Figure 8.4.1,

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=m0F1__joNzw&index=13&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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� f is onto, but not one-to-one.

� g is both one-to-one and onto.

� h is neither one-to-one nor onto.

� i is one-to-one, but not onto.

♦

Figure 8.4.1. Arrow diagrams for various functions

Example 8.4.2. Not every woman is a mother. This means that if you
draw an arrow from each person to his or her mother, there will be some
women who have no arrows into them. So the function

mother : People → Women

is not onto. ♦

Exercise 8.4.3. Is the function AtomicNumber : { Chemical Elements } →
N onto? Explain why or why not. ♢

The following is the ”official” definition of onto.
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Definition 8.4.4. Suppose f : A → B. We say f is onto if for all b ∈ B,
there is some a ∈ A such that f(a) = b. △

Some higher math books use the fancy term surjective , which means
exactly the same as onto.

You may think of onto functions as follows. If a function is onto, then
no matter what element I pick in the codomain, there is always some value
in the domain that produces it. Alternatively, I could say that every pos-
sible output in the codomain has at least one input. (Contrast this to the
definition of one-to-one, which says that every possible output has at most
one input.

Exercise 8.4.5. If the function f is onto, then what is the relation between
the range of f and the codomain of f? (*Hint*) ♢

Exercise 8.4.6. Each of the following sets of ordered pairs is a function
from {1, 2, 3, 4, 5} to {♣,♢,♡,♠}. Either prove that the function is onto,
or prove that it is not.

(a) a = {(1,♣), (2,♢), (3,♡), (4,♠), (5,♣)}

(b) b = {(1,♣), (2,♡), (3,♣), (4,♡), (5,♣)}

(c) c = {(1,♡), (2,♡), (3,♡), (4,♡), (5,♡)}

(d) d = {(1,♢), (2,♠), (3,♡), (4,♠), (5,♣)}

(e) e = {(1,♣), (2,♠), (3,♡), (4,♠), (5,♣)}

♢

8.4.2 Proving that a function is onto

First we give some simple examples of onto proofs. Later we will show a
more systematic approach.

Example 8.4.7.

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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� Consider the function: f : R → R defined by f(x) = x+ 1.

Let y be an arbitrary value in the codomain R. To show that f is onto,
we just need to show that for any such y, there is an x in the domain
such that f(x) = y. Now if we set x = y−1, then f(x) = (y−1)+1 = y.
It’s also true that x is in the domain of f , since x is a real number.
This completes the proof that f is onto.

� Consider the function h : N → N, defined by h(x) = |x|.
Let y be an arbitrary value in the codomain N. Since all natural
numbers are nonnegative, we have |y| = y. So we may take x = y,
and obtain h(x) = y (note x is also in the domain of h). Therefore h
is onto.

♦

Just as with one-to-one, it is typically easier to prove that a function is
not onto. All you have to do is provide a counterexample, as the following
examples show.

Example 8.4.8.

� Consider the function f : {1, 2, 3} → {a, b, c} defined by f = {(1, b),
(2, a), (3, a)}. Notice that c never appears as an output in this function.
This shows that f is not onto.

� Consider the function g : R → R defined by g(x) = |x|. To show that
g is not onto, we only need to find a single number y in the codomain
that is not mapped onto. y = −1 is one example, since we can never
have |x| = −1 for any real number x. This shows that g is not onto.

� Consider the function h : [0, 5] → [0, 12] defined by h(x) = 2x + 2.
Notice that h(0) = 2 and h(x) ≥ 2 as long as x > 0. It follows that
there is no x in the domain which is mapped to 0, which is in the
codomain. This shows that g is not onto.

� Consider the function q : Z5 → Z5 defined by q(x) = x⊙x. We may list
the values of q(x) for x = 0, 1, 2, 3, 4: they are 0, 1, 4, 4, 1 respectively.
There is no x such that q(x) = 3, so q is not onto.

♦
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Remark 8.4.9. We may use a variant of the horizontal line test to indicate
whether a function f : R → R is onto. For instance, recall the function
f(x) = x + 1 shown in Figure 8.3.2. In the case of an onto function, the
equation f(x) = c has at least one solution for any real value c ∈ R. (Recall
that for one-to-one it was at most one, so there’s a slight difference here.)
By tweaking the argument we used for the original horizontal line test, we
arrive at the following general rule:

(Horizontal line test for onto-ness) The function f : R → R is onto if and
only if the graph of f(x) intersects every horizontal line at least once.

From Figure 8.3.2, it appears that f(x) = x+ 1 is onto. Just as before,
this observation doesn’t qualify as a mathematical proof. Nonetheless, it
strongly hints that we should try to prove onto-ness rather than looking for
a counterexample.

On the other hand, the line y = −1 in Figure 8.3.3 does not intersect
the graph of f(x) = |x| defined on the set of all real numbers. This indi-
cates that −1 is not in the range of the function. Once we’ve verified this
mathematically, we have sufficient proof that f(x) is not onto. △

Exercise 8.4.10. Suppose that the function f has domain [a, b] and codomain
[c, d], where [a, b] and [c, d] are intervals of real numbers. Restate the hor-
izontal line test for onto functions in this case. What changes need to be
made in the statement? ♢

Exercise 8.4.11. Use the horizontal line test to determine whether the
following functions are onto. For those functions that are not onto, give a y
in the codomain which is not in the range of the function.

(a) g : R → R, g(x) = 5x− 2

(b) f : [0, π] → [−1, 1], f(x) =
cos(x).

(c) f : [0, π] → [−1, 1], f(x) =
sin(x).

(d) f : [0, π/6] → [0, 1/2], f(x) =
sin(x).

(e) f : [0, π/4] → [0,
√
2/2], f(x) =

1− cos(x).

(f) f : [1, 3] → [0, 5], f(x) = 6− 2x.

♢

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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We now give some examples of rigorous “onto” proofs. These proofs
typically require working backwards, so some preliminary scratchwork may
be helpful before writing out the actual proof.

Example 8.4.12. Define g : R → R by g(x) = 5x− 2. Determine whether
g is onto.

Scratchwork 8.4.13. Just as in the previous examples, given any y ∈ R
we need to find a value of x that makes g(x) = y. So we start with the
equation g(x) = y and solve for x:

g(x) = y ⇒ 5x− 2 = y [by substitution]

⇒ x =
y + 2

5
[solve for x using basic algebra]

△

Now that we have a formula for x, let’s do our proof. (Although you need
the scratchwork to come up with the formula for x, you don’t actually need
to include the scratchwork in your proof.)

Proof. Given y ∈ R, let x = (y + 2)/5. Since the reals are closed under
addition and non-zero division, it follows that x ∈ R. Then

g(x) = 5x− 2 = 5

(
y + 2

5

)
− 2 = (y + 2)− 2 = y.

Therefore g is onto. □

♦

Example 8.4.14. Define h : [0, 2] → [−7,−1] by h(x) = −3x−1. Determine
whether h is onto.

Scratchwork 8.4.15. Starting with the equation h(x) = y and solving for
x, we find x = (y + 1)/(−3). We need to verify that x is in the domain of h
whenever y is in the codomain. Notice that

y ≥ −7 ⇒ y + 1 ≥ −6 [basic algebra]

⇒ y + 1

−3
≤ 2 [ basic algebra]
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We also have

y ≤ −1 ⇒ y + 1 ≤ 0 [basic algebra]

⇒ y + 1

−3
≥ 0 [ basic algebra]

We conclude that 0 ≤ x ≤ 2, so x is in the domain of h. Thus h is onto. △

Now that we have a formula for x, let’s do our proof. (Although you need
the scratchwork to come up with the formula for x, you don’t actually need
to include the scratchwork in your proof.)

Proof. Given y ∈ R, let x = y+1
−3 . By basic algebra, −7 ≤ y ≤ −1 ⇒ 0 ≤

y+1
−3 ≤ 2, so x is in the domain of h. Also,

h(x) = −3

(
y + 1

−3

)
− 1 = y.

Therefore h is onto. □

♦

Example 8.4.16. Define f : C → C by f(z) = z2. Determine whether f is
onto.

Scratchwork 8.4.17. As in the previous examples, given any z ∈ C we
need to find a value of w that makes f(w) = z. So as before we solve for
w. This time it’s helpful to use polar form, so we write z = r cis θ and
w = s cisϕ:

f(w) = z ⇒ (s cisϕ)2 = r cis θ [by substitution]

⇒ s2 cis 2ϕ = r cis θ [De Moivre’s Theorem]

⇒ s =
√
r and ϕ = θ/2 is a solution [substitution]

△

Now that we have z, we can proceed as before.

Proof. Given z = r cis θ ∈ C, let w =
√
r cis(θ/2). By the definition of

polar form, w ∈ C and we have

f(w) = (
√
r cis(θ/2))2 = (

√
r)2 cis(2θ/2) = r cis θ = z,

where we have used De Moivre’s Theorem. It follows that f is onto. □ ♦

Exercise 8.4.18. For each function, either prove that it is onto, or prove
that it is not.

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) f : R → R, f(x) = 1.

(b) g : R → R, g(x) = x.

(c) g : [−1, 1] → [−2, 2], g(x) = x.

(d) h : R → R, h(x) = x2.

(e) h : [−2, 2] → [0, 4], h(x) = x2.

(f) p : R → R, p(x) = 3x+ 2.

(g) q : R → (0, 1], q(x) = 1
|x|+1 .

(h) q : R+ → [0, 1], q(x) = 1
|x|+1 .

(i) [2, 4] → [2, 10], r(x) = 4x− 6.

(j) [3, 4] → [3, 10], r(x) = 4x− 6.

(k) s : R → R, s(x) = 3
√
x+ 5− 5.

♢

Exercise 8.4.19. For each of the following functions, either prove that it
is onto, or prove that it is not.

(a) g : C → C defined by g(z) = z2 + 1.

(b) g : C \ {0} → C defined by g(z) = z−1 .

(c) g : C \ {1} → C \ {0} defined by g(z) = (z − 1)−1 .

(d) g : R× [0, 1] → C defined by g( (x, y) ) = |x| cis(2πy).

(e) g : C → R defined by g(z) = |z|.

♢

Exercise 8.4.20. For each of the following functions, either prove that it
is onto, or prove that it is not.

(a) g : Z6 → Z6 defined by g(x) = x⊕ x .

(b) g : Z5 → Z5 defined by g(x) = (x⊙ 2)⊕ 3 .

(c) g : Z7 → Z7 defined by g(x) = (x⊙ x)⊕ 1 .

(d) g : Z9 → Z9 defined by g(x) = x⊙ x⊙ x .

(e) g : Z7 → Z7 defined by g(x) = x⊙ x⊙ x .

(f) g : Z7 → Z7 defined by g(n) = n⊙ x , where x can be any fixed element
of Z7.
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(g) f : Z32 → Z32 defined by f(n) = n⊙ b , b ∈ Z32, and b is odd.

(h) f : Z188 → Z188 defined by f(n) = n⊙ b , b ∈ Z188, and b is even.

♢

8.5 Bijections

8.5.1 Concept and definition

Some “especially nice” functions are both one-to-one and onto.

Definition 8.5.1. A function is a bijection if and only if it is both one-
to-one and onto. △

In words, a bijection has the following properties:

� All inputs have only one output (function)

� All outputs are paired with only one input (one-to-one)

� And all possible outputs of the codomain are paired (onto)

Example 8.5.2. Consider a hypothetical country Z, in which

� every person is married to at least one other person (no singles),

� everyone is married to at most one other person (no polygamists or
polyandrists), and

� every marriage is between a man and a woman (no same-sex mar-
riages).

LetMen = {male inhabitants of Z}, andWomen = {female inhabitants of Z}.
Then the function wife : Men → Women is a bijection, since:

� Two different men cannot have the same wife, so we know that wife is
one-to-one.

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=m0F1__joNzw&index=13&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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� Every woman is the wife of some man (because everyone is married),
so wife is also onto.

Similarly, the function husband : Women → Men is also a bijection. ♦

Remark 8.5.3. In the country Z described above, it is clear that the
number of men is exactly equal to the number of women. (If there were
more men than women, then not every man could have a wife; if there were
more women than men, then not every women could have a husband.) This
is an example of the following important principle:

If A and B are finite sets, and there exists a bijection from A to B, then A
and B have the same number of elements.

Finding a bijection is one way to show two sets have the same number
of elements. △

Exercise 8.5.4. Draw an arrow diagram of a bijection. ♢

Exercise 8.5.5. Is the function AtomicNumber : { Chemical elements } →
N a bijection? Justify your answer. ♢

8.5.2 Proving that a function is a bijection

Since a bijection is both one-to-one and onto, a proof that a function is a
bijection (usually) has two parts:

1. Show that the function is one-to-one.

2. Show that the function is onto.

The two parts can come in either order: it is perfectly acceptable to first
prove that the function is onto, and then prove that it is one-to-one.

How would you show that function is not a bijection? You guessed it,
by counterexample. You only need a counterexample that shows either the
function is not onto, or is not one-to-one, because a bijection requires both.

Example 8.5.6. Define f : [1, 3] → [−2, 8] by f(x) = 5x − 7. Then f is a
bijection.

Proof. It suffices to show that f is both one-to-one and onto:
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� (one-to-one) Given x1, x2 ∈ R, such that f(x1) = f(x2), we have

5x1 − 7 = 5x2 − 7.

Adding 7 to both sides and dividing by 5, we have

(5x1 − 7) + 7

5
=

(5x2 − 7) + 7

5
,

Which implies x1 = x2. So f is one-to-one.

� (onto) Given y ∈ R, let x = (y + 7)/5. Then

f(x) = 5x− 7 = 5

(
y + 7

5

)
− 7 = (y + 7)− 7 = y.

We need to verify that x is in the domain of f for every y is in the
codomain:

−2 ≤ y ≤ 8 ⇒ 5 ≤ y + 7 ≤ 15 [basic algebra]

⇒ 1 ≤ y + 7

5
≤ 3 [basic algebra]

⇒ x ∈ [1, 3] [substitution]

So f is onto.

Since f is both one-to-one and onto, we conclude that f is a bijection.

□ ♦

Exercise 8.5.7. For each function below, either prove that it’s a bijection,
or prove that it is not.

(a) a : [−3, 3] → [−20, 20], a(x) = 5x+ 2

(b) b : [3, 5] → [1, 5], b(x) = 2x− 5

(c) c : [0, 1] → [−30,−15], c(x) = −12x− 15

(d) d : [−1, 1] → [−27, 3], d(x) = −15x− 12

(e) e : [−1, 1] → [−1, 1], e(x) = x3

(f) f : R → R, f(x) = 3
√
x− 4

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(g) e : R+ → (0, 1), e(x) = 1
|x|+1 .

(h) e : R+ → [0, 1], e(x) = 1
|x|+1 .

(i) f : R → R, f(x) = 4x− 6.

(j) g : [0, 27] → [−5,−2], g(x) = 3
√
x− 5.

(k) h : [−1, 2] → [0, 10], h(x) =
√

(x+ 1)2 + 1

♢

Exercise 8.5.8. Let a, b ∈ R, and define f : R → R by f(x) = ax+ b.

(a) Show that if a ̸= 0, then f is a bijection.

(b) Show that if a = 0, then f is not a bijection.

♢

Exercise 8.5.9. Let a, b ∈ R, and define f : [1, 2] → [4, 7] by f(x) = ax+ b.
Find all values of a and b such that f is a bijection. ♢

When a function is defined piecewise, the one-to-one and onto proofs are
a little harder:

Example 8.5.10.

For instance, consider the function f from R to R defined by:

f(x) =

{
ex if x > 0

1− x2 if x ≤ 0

By graphing this function you can see that the horizontal line tests suggest
that f(x) is indeed one-to-one and onto. To complete the actual proof, we
may prove onto and one-to-one separately. We may prove the function is
onto by proving:

(a) If y > 1, there exists an x > 0 such that f(x) = y.

(b) If y ≤ 1, there exists an x ≤ 0 such that f(x) = y.
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From these two facts, it follows that f(x) is onto, because no matter whether
y > 1 or y ≤ 1) there exists an x such that f(x) = y.

To show that f(x) is one-to-one, we will need to show:

(c) If x1 > 0 and x2 > 0, then f(x1) = f(x2) implies x1 = x2.

(d) If x1 > 0 and x2 ≤ 0, then f(x1) ̸= f(x2).

(e) If x1 ≤ 0 and x2 ≤ 0, then f(x1) = f(x2) implies x1 = x2.

From these facts it follows that f(x) is one-to-one, because no matter whether
x > 0 or x ≤ 0) it is always true that f(x1) = f(x2) ⇒ x1 = x2. ♦

Exercise 8.5.11. Prove statements (a)−(e) in Example 8.5.10. For ex-
ample, you can prove (a) as follows. Given y > 1, setting x = ln(y) gives
f(x) = y since f(x) = ex in this case. ♢

Exercise 8.5.12. Define a function f from R to R by:

f(x) =

{
1/x if x > 0

x+ 1 if x ≤ 0.

Prove or disprove:

(a) f is onto; (b) f is one-to-one;

♢

Exercise 8.5.13. Define function g from R to R by:

g(x) =

{
1/x if x > 0

x− 1 if x ≤ 0.

Prove or disprove:

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) g is onto; (b) g is one-to-one.

♢

Exercise 8.5.14. Define function h from R to R by:

h(x) =

{
x3 if |x| > 1

x1/3 if |x| ≤ 1.

Prove or disprove:

(a) h is onto; (b) h is one-to-one. ♢

So far we have only looked at functions from R to R. Of course, bijections
can have different domains and ranges. We close this section with several
exercises which examine bijections on various domains and codomains.

Exercise 8.5.15. For each function, either prove that it is a bijection, or
prove that it is not.

(a) h : C \ {−3} → C \ {0} defined by h(z) =
1

z + 3
.

(b) g : A → B defined by g(z) =
1

z
, where A = {z ∈ C : 0 < |z| < 1} and

B = {z ∈ C : |z| > 1}.

(c) f : A→ B defined by f(z) = z2, where A = {r cis θ ∈ C : r ≥ 0 and 0 ≤
θ ≤ π/2} and B = {r cis θ ∈ C : r ≥ 0 and 0 ≤ θ ≤ π}.

(d) f : A→ C defined by f(z) = z4, where A = {r cis θ ∈ C : r ≥ 0 and 0 ≤
θ < π/2}.

(e) f : A→ C defined by f(z) = zk, where A = {r cis θ ∈ C : r ≥ 0 and 0 ≤
θ < 2π/k}, where k > 1 is an integer. (Is it a bijection for all possible
values of k? If so then prove it, and if not find a counterexample.)

(f) f : [0, 1) → T defined by f(θ) = cis 2πθ, where T = {z ∈ C : |z| = 1}.

♢

Exercise 8.5.16. For each function, either prove that it is a bijection, or
prove that it is not.
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(a) g : Z9 → Z9 defined by g(x) = (x⊙ 3)⊕ 3 .

(b) g : Z7 → Z7 defined by g(x) = (x⊙ 4)⊕ 4 .

(c) g : Z11 → Z11 defined by g(x) = x⊙ 2 .

(d) g : Z7 → Z7 defined by g(x) = x⊙ x .

(e) g : Z8 → Z8 defined by g(x) = x⊙ x⊙ x .

(f) h : Z5 → Z5 defined by h(x) = (3⊙ x⊙ x⊙ x)⊕ 2 .

(g) h : Z4 → Z4 defined by h(x) = x⊙ x⊙ x⊙ x .

♢

Exercise 8.5.17. Define f : N× N → N by f(m,n) = m2 + n− 1.

(a) Prove or disprove: f is onto. (*Hint*)

(b) Prove or disprove: f is one-to-one. (*Hint*)

(c) Prove or disprove: f is a bijection.

♢

Exercise 8.5.18. Define g : Z× Z → Z× Z by g(m,n) = (m+ n,m+ 2n).

(a) Prove or disprove: g is onto. (*Hint*)

(b) Prove or disprove: g is one-to-one. (*Hint*)

(c) Prove or disprove: g is a bijection.

♢

Exercise 8.5.19. Define g : Z× Z → Z× Z by g(m,n) = (m+ n,m− n).

(a) *Prove or disprove: g is onto.

(b) Prove or disprove: g is one-to-one.

(c) Prove or disprove: g is a bijection.

https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♢

Exercise 8.5.20. Suppose A, B, and C are sets. Define

f : (A×B)× C → A× (B × C) by f
(
(a, b), c

)
=
(
a, (b, c)

)
.

Show that f is a bijection. ♢

8.6 Composition of functions

8.6.1 Concept and definition

The term “composition” is a name that mathematicians use for applying
one function to the result of another. Actually, this comes up fairly often in
everyday life.

Example 8.6.1.

1. The father of the mother of a person is a grandfather of the person.
(To be precise, it is the maternal grandfather of the person — and his
or her other grandfather is paternal.) To express the relationship in a
mathematical formula, we can write:

∀x,
(
grandfather(x) = father

(
mother(x)

))
.

A mathematician abbreviates this formula by writing

grandfather = father ◦mother

and says that the (maternal) grandfather function is the composition
of father and mother.

2. The brother of the mother of a person is an uncle of the person, so
uncle is the composition of brother and mother:

∀x,
(
uncle(x) = brother

(
mother(x)

))
,

or, more briefly,
uncle = brother ◦mother.

(For the sake of this example, let us ignore the issue that uncle and
brother are not functions in general.)

https://www.youtube.com/watch?v=lbCtiPOKbxk&index=14&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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3. The daughter of a child is a granddaughter, so granddaughter is a com-
position of daughter and child:

granddaughter = daughter ◦ child.

♦

Exercise 8.6.2. State the usual name for each composition. (Ignore the
fact that sister, daughter, and many of the other relations are not functions
in general.)

(a) husband ◦ sister

(b) husband ◦mother

(c) husband ◦ wife

(d) husband ◦ daughter

(e) mother ◦ sister

(f) daughter ◦ sister

(g) parent ◦ parent

(h) child ◦ child

(i) parent ◦ parent ◦ parent

(j) child ◦ brother ◦ parent

♢

Definition 8.6.3. Suppose f : A → B and g : B → C. The composition
of g and f (denoted g ◦ f) is the function from A to C defined by

g ◦ f(a) = g
(
f(a)

)
for all a ∈ A.

△

The notation g ◦ f is read as “g compose f” or “g composed with f .”
Since g ◦ f(a) = g

(
f(a)

)
, the notation g ◦ f(a) is sometimes read as ”g of f

of a.”

https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Example 8.6.4. Define f : R → R and g : R → R by f(x) = 3x and
g(x) = x2. Then g ◦ f and f ◦ g are functions from R to R. For all x ∈ R,
we have

g ◦ f(x) = g
(
f(x)

)
= g(3x) = (3x)2 = 9x2

and
f ◦ g(x) = f

(
g(x)

)
= f(x2) = 3(x2) = 3x2.

Notice that (in this example) f◦g ̸= g◦f , so composition is not commutative.
♦

Warning 8.6.5. To calculate the value of the function g ◦ f at the point a,
do not begin by calculating g(a). Instead, you need to calculate f(a). Then
plug that value into the function g This may seem strange, but it follows
from the fact that g ◦ f(a) means the same thing as g(f(a)), and you’re
always supposed to evaluate what’s inside the parentheses first and work
your way outward. ♢

Exercise 8.6.6. Fill in the blanks of the following proof to show that
function composition is associative.

Proof. Suppose f : X → Y , g : Y →W , and h :W → Z. Then

h ◦ (g ◦ f)(x) = h((g ◦ f)(x)) = < 1 > ,

and
(h ◦ g) ◦ f(x) = (h ◦ g)( < 2 > ) = < 3 > .

Since the two right-hand sides are equal, it follows that h ◦ (g ◦ f)(x) =
(h ◦ g) ◦ f(x); in other words function composition is associative. □ ♢

Example 8.6.7. Figure 8.6.1 provides an arrow diagram to illustrate the
composition g ◦ f .

� Starting from any point of A, follow the arrow (for the function f that
starts there to arrive at some point of B.

� Then follow the arrow (for the function g) that starts there to arrive
at a point of C.



8.6 COMPOSITION OF FUNCTIONS 245

Figure 8.6.1. Arrows for the composition g ◦ f are dotted.

For example, the f -arrow from a leads to m and the g-arrow from m leads
to u. So g◦f(a) = u. Notice how we write the result as g◦f with g on the left
and f on the right even though f appears on the left in Figure 8.6.1. This
is an unfortunate consequence of the fact that when we calculate g

(
f(x)

)
we work right to left, computing f(x) first and applying g to the result. ♦

Note that in the definition of g ◦ f (Definition 8.6.3), the domain of g :
B → C is required to be equal to the codomain of f : A→ B. Actually g ◦f
can be defined as long as the domain of g contains the specified codomain
of f . This is true because the codomain of a function is not unique: if
f : A → D and D ⊂ B, then B is also a valid codomain of f . The reason
for the requirement on the domain of g is further explored in the following
exercise.

Exercise 8.6.8. Let f : N → Z5 defined by f(n) ≡ n (mod 5). Let g : R →
R defined by:

g(x) = x2.

(a) Is it possible to define f ◦ g? Explain your answer.

(b) Is it possible to define g ◦ f? Explain your answer.

https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♢

Exercise 8.6.9. The following formulas define functions f and g from R
to R. Find formulas for f ◦ g(x) and g ◦ f(x).

(a) f(x) = 3x+ 1 and g(x) = x2 + 2

(b) f(x) = 3x+ 1 and g(x) = (x− 1)/3

(c) f(x) = ax+ b and g(x) = cx+ d (where a, b, c, d ∈ R)

(d) f(x) = |x| and g(x) = x2

(e) f(x) = |x| and g(x) = −x

♢

Exercise 8.6.10. LetA = {1, 2, 3, 4}, B = {a, b, c, d}, and C = {♣,♢,♡,♠}.
The sets of ordered pairs in each part are functions f : A→ B and g : B → C.
Represent g ◦ f as a set of ordered pairs.

(a) f = {(1, a), (2, b), (3, c), (4, d)},
g = {(a,♣), (b,♢), (c,♡), (d,♠)}

(b) f = {(1, a), (2, b), (3, c), (4, d)},
g = {(a,♣), (b,♣), (c,♣), (d,♣)}

(c) f = {(1, b), (2, c), (3, d), (4, a)},
g = {(a,♣), (b,♠), (c,♡), (d,♢)}

(d) f = {(1, a), (2, b), (3, c), (4, d)},
g = {(a,♣), (b,♣), (c,♡), (d,♠)}

(e) f = {(1, a), (2, b), (3, a), (4, b)},
g = {(a,♣), (b,♣), (c,♡), (d,♠)}

♢

Exercise 8.6.11. The folllowing formulas define functions f and g from C
to C. Find formulas for f ◦ g(x) and g ◦ f(x).
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(a) f(r cis θ) = (r + 3) cis(θ − π/6) and g(r cis θ) = (r cis θ)2

(b) f(a+ bi) = 3a+ 4bi and g(a+ bi) = (a+ bi)2

(c) f(r cis θ) = log r + iθ and g(a + bi) = ea cis b (Note the domain of f is
C \ {0}).

(d) f(r cis θ) = r3 cis(θ + 2) and g(r cis θ) = 2r cis(θ + 4)

(e) f(z) = |z| and g(z) = −z

♢

Exercise 8.6.12. The folllowing formulas define functions f and g from Zk
to Zk for different values of k. Find formulas for f ◦ g(x) and g ◦ f(x).

(a) f, g : Z15 → Z15, where f(n) = (7⊙ n)⊕ 6 and g(m) = (6⊙m)⊕ 2

(b) f, g : Z25 → Z25, where f(n) = n⊙ n and g(m) = m⊕ 3

(c) f, g : Z7 → Z7, where f(n) = (3⊙ n)⊕ 5 and g(m) = (4⊙m)⊕ 6

(d) f, g : Z20 → Z20, where f(n) = (4⊙ n)⊕ 19 and g(m) = (5⊙m)⊕ 9

(e) f, g : Zq → Zq, where f(n) = (a⊙ n)⊕ b and g(m) = (c⊙m)⊕ d

♢

8.6.2 Proofs involving function composition

The properties of f ◦ g depend on the properties of f and g, and vice versa.
Usually these properties are proven by using the definition of composition,
along with the definitions of other functional properties. Here is one exam-
ple.

Example 8.6.13. Suppose f : A→ B and g : B → C, where A ⊂ C. Show
that if

g ◦ f(a) = a, for every a ∈ A,

then f is one-to-one.

https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Scratchwork 8.6.14. In proving such statements, it is often helpful to draw
a picture (see Figure 8.6.2) showing the sets involved, and arrows joining
the the different values. To show that f is one-to-one; we may show that
f(a1) = f(a2) implies a1 = a2. In the picture, we have drawn f(a1) = f(a2).
Now we are also given that g ◦ f(a) = a, for every a ∈ A. So as the picture
shows, g(f(a1)) = a1. But what about g(f(a2))? On the one hand, we
know g ◦ f(a2) = a2 from the problem’s givens. But on the other hand,
since f(a2) = f(a1) we have g(f(a2)) = g(f(a1)), or g(f(a2)) = a1. By
substitution, it follows that a1 = a2. △

Figure 8.6.2. Scratchwork picture for Example 8.6.13.

Proof. Given that g ◦ f(a) = a, for every a ∈ A, by the definition of
composition, this means that, for any a1, a2 ∈ A we have

g
(
f(a1)

)
= a1 and g

(
f(a2)

)
= a2.

Now suppose f(a1) = f(a2). Then by the definition of a function,

g
(
f(a1)

)
= g
(
f(a2)

)
By our original hypothesis we then get a1 = a2, and thus f is one-to-one.
□ ♦

Example 8.6.15. Suppose f : A→ B and g : B → C. Show that if f and g
are onto, then g ◦ f is onto.
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Scratchwork 8.6.16. To show that g ◦ f is onto, we need to show that
for any c ∈ C, there exists a a ∈ A such that g ◦ f(a) = c. As Figure 8.6.3
shows, we can work our way backwards. Given any c, since g is onto we can
find a b such that g(b) = c. Furthermore, since f is onto we can find a a
such that f(a) = b. By substitution, this gives g(f(a)) = c, or g ◦ f(a) = c.
△

Figure 8.6.3. Scratchwork picture for Example 8.6.15.

Proof. Let c be an arbitrary element of C. Since g is onto, there exists
a b in B such that g(b) = c. Since f is onto, there exists a a in A such
that f(a) = b. It follows that g ◦ f(a) = g(f(a)) = g(b) = c. Since c is an
arbitrary element of C, this implies that g ◦ f is onto. □ ♦

Example 8.6.17. Suppose f : A→ B and g : B → C. Show that if g ◦ f is
one-to-one, and the range of f is B, then g is one-to-one.

Proof. Suppose b1 and b2 are distinct elements of B. Since the range of f
is B, it follows that there exist a1 ̸= a2 such that f(a1) = b1 and f(a2) = b2.
Since g ◦ f is one-to-one, it follows that g ◦ f(a1) ̸= g ◦ f(a2). But by
definition of ◦, g ◦ f(a1) = g(f(a1)) = g(b1); and similarly g ◦ f(a2) = g(b2).
By substitution, it follows that g(b1) ̸= g(b2). Thus distinct elements of B
always map to distinct elements of C under the function g: which is the
same as saying that g is one-to-one.

An alternative proof runs as follows. Let c ∈ C be such that c = g(b1)
and c = g(b2). Then since the range of f is B, there exist a1 and a2 such
that f(a1) = b1 and f(a2) = b2. It follows by substitution that g(f(a1)) =
g(f(a2)). But this is the same as saying that g ◦ f(a1) = g ◦ f(a2). Since
g ◦ f is one-to-one, it follows that a1 = a2. Applying f to both sides of
this equation gives f(a1) = f(a2), or b1 = b2. We have shown that for any

https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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c ∈ C, there is at most one b ∈ B such that g(b) = c. This means that g is
one-to-one. □ ♦

Exercise 8.6.18.

(a) Suppose f : A→ B and g : B → C. Show that if f and g are one-to-one,
then g ◦ f is one-to-one.

(b) Suppose f : A → B and g : B → C. Show that if g ◦ f is one-to-one,
then f is one-to-one.

(c) Suppose f : A→ B and g : B → C. Show that if g ◦ f is onto, then g is
onto.

(d) Give an example of functions f : A→ B and g : B → C, such that g ◦ f
is onto, but f is not onto.

(e) Suppose f : A → B and g : B → C. Show that if g ◦ f is onto, and g is
one-to-one, then f is onto.

(f) Suppose f : A → B and g : B → C. Show that if f is onto and g ◦ f is
1-1, then g is 1-1.

(g) Define f : [0,∞) → R by f(x) = x. Find a function g : R → R such that
g ◦ f is one-to-one, but g is not one-to-one.

(h) Suppose f and g are functions from A to A. If f(a) = a for every a ∈ A,
then what are f ◦ g and g ◦ f?

♢

Exercise 8.6.19. Suppose f : A → B and g : B → C. Use properties
from the different examples and exercises earlier in this chapter to prove the
following. In your solutions, refer to the the specific examples or exercises
you are using to draw your conclusions.

(a) Show that if f and g are bijections, then g ◦ f is a bijection.

(b) Show that if f and g ◦ f are bijections, then g is a bijection.

(c) Show that if g and g ◦ f are bijections, then f is a bijection.
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♢

We have shown that various properties of f ◦g follow based on properties
of f and g. We can also show corresponding “negative” properties as the
contrapositives of these properties.

Example 8.6.20. Suppose f : A → B and g : B → C and g is not onto.
Then g ◦ f is not onto.

Proof. This is just the contrapositive of Exercise 8.6.18(c) , which says
that g ◦ f is onto implies that g is onto. □ ♦

Exercise 8.6.21. Suppose f : A→ B and g : B → C.

(a) Show that if f is not one-to-one, then g ◦ f is not one-to-one.

(b) Prove or disprove: g ◦ f is a bijection if and only if both g and f are
bijections.

♢

Exercise 8.6.22. Using properties from Exercises 8.6.18 and 8.6.19 (or
their contrapositives), determine which of the following are bijections.

(a) f ◦ g in Exercise 8.6.9 parts (a)-(e).

(b) f ◦ g in Exercise 8.6.11 parts (a)-(e).

(c) f ◦ g in Exercise 8.6.12 parts (a)-(e).

♢

Exercise 8.6.23. Suppose f : A→ B, g : B → A and f ◦ g is a bijection.

(a) Give an example to show that g ◦ f is not necessarily a bijection.

(b) Add the condition that g is onto. Show that in this case, g ◦ f must be
a bijection.

https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♢

The following exercise leads into the next section:

Exercise 8.6.24. Suppose

� f : A→ B,

� g : B → A,

� g ◦ f(a) = a, for every a ∈ A, and

� f ◦ g(b) = b, for every b ∈ B.

Show that f is a bijection. ♢

8.7 Inverse functions

8.7.1 Concept and definition

The word ”inverse” commonly means something that is “backwards” or
“opposite” to something else. So an inverse of a function should be a function
that is somehow backwards or opposite to the original function. You have
actually seen inverse functions many times before, perhaps without realizing
it.

Example 8.7.1. In Example 8.5.6, we showed that f(x) = 5x − 7 is a
bijection. A quick look at the proof reveals that the formula

x =
y + 7

5

plays a key role. This formula is obtained by replacing f(x) in f(x) = 5x−7
with y, and solving for x.

In order to see x = y+7
5 as an “inverse function,” we translate into the

language of functions, by defining g : R → R by g(y) = (y + 7)/5. Then the
above assertion can be restated as:

y = f(x) ⇔ x = g(y).

https://www.youtube.com/watch?v=kUOf7DDgfHw&index=15&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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This tells us that g does exactly the opposite of what f does: if f takes x
to y, then g takes y to x. We will say that g is an “inverse” of f . ♦

Example 8.7.2. Let f : R+ → R+ be defined by: f(x) = x2. We may
define g : R+ → R+ by: g(y) =

√
y. Note that in this case the domains and

ranges are restricted to positive real numbers. Given this restriction, by the
definition of square root we have

y = x2 ⇔ x =
√
y.

In view of the definitions of f and g, we may see that this is the same formula
as in the previous example: y = f(x) ⇔ x = g(y). ♦

Example 8.7.3. In the previous examples, the domain and codomain were
the same–but this doesn’t always have to be the case. Let f : R → R+

be defined by f(x) = ex. We may define g : R+ → R by g(y) = ln(y),
where ’ln’ denotes the natural logarithm function. Here we also obtain
y = f(x) ⇔ x = g(y) as before, as long as x is in the domain of f and y is
in the domain of y. ♦

The ⇔ statement which has popped up in the last three examples can
be re-expressed as a pair of equations involving f and g, as the following
proposition shows:

Proposition 8.7.4. Suppose that f : X → Y and g : Y → X are functions
such that

∀x ∈ X,∀y ∈ Y,
(
y = f(x) ⇔ x = g(y)

)
.

Then the following statements are also true:

(a) g
(
f(x)

)
= x for all x ∈ X. and

(b) f
(
g(y)

)
= y for all y ∈ Y ,

We will furnish the proof of (a), while the proof of (b) is left as an
exercise.

Proof. The proof of (a) runs as follows. Suppose that y = f(x) ⇔ x = g(y)
for all x, y in the respective domains of f and g. Then for any x ∈ X, we may
define z as z = f(x). By the ⇔ statement it follows that x = g(z). But then

https://www.youtube.com/watch?v=KUOF7DDGFHW&INDEX=15&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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we may substitute the first equation into the second and obtain g(f(x)) = x.
Since x was an arbitrary element of X, it follows that g(f(x)) = x for all
x ∈ X. □

Exercise 8.7.5. Prove part (b) of Proposition 8.7.4. ♢

Exercise 8.7.6. Prove the converse of Proposition 8.7.4. That is, given
that

g
(
f(x)

)
= x for all x ∈ X and f

(
g(y)

)
= y for all y ∈ Y,

it follows that

∀x ∈ X,∀y ∈ Y,
(
y = f(x) ⇔ x = g(y)

)
.

♢

Finally, we can give the definition of an inverse function:

Definition 8.7.7. Suppose f : X → Y and g : Y → X are functions. We
say that g is an inverse function for the function f if and only if:

(a) f
(
g(y)

)
= y (in other words, f ◦ g(y) = y) for all y ∈ Y , and

(b) g
(
f(x)

)
= x (in other words, g ◦ f(x) = x) for all x ∈ X.

△

Example 8.7.8. The husband of the wife of any married man is the man
himself – in other words,

husband
(
wife(y)

)
= y.

Also, the wife of the husband of any married woman is the woman herself,
so that

wife
(
husband(x)

)
= x.

It follows that the wife function is an inverse of the husband function. In
fact, it’s pretty clear that husband is the only inverse of wife. ♦

Exercise 8.7.9. In each case, use Definition 8.7.7 to determine whether g
is an inverse of f .
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(a) f : R → R is defined by f(x) = 9x− 6 and
g : R → R is defined by g(y) = (y + 6)/9.

(b) f : R+ → R+ is defined by f(x) = 2x2 and
g : R+ → R+ is defined by g(y) =

√
y/2.

(c) f : R+ → R+ is defined by f(x) = 2/x and
g : R+ → R+ is defined by g(y) = 2/y.

(d) f : R+ → R+ is defined by f(x) =
√
x+ 1− 1 and

g : R+ → R+ is defined by g(y) = y2 + 2y.

♢

8.7.2 Which functions have inverses?

It turns out that most functions do not have inverses.

Exercise 8.7.10. Which of the functions depicted in Figure 8.4.1 have
inverses? ♢

From the previous exercise, you may have guessed the following rule:

Proposition 8.7.11. Suppose f : X → Y . Then f has an inverse g : Y → X
if and only if f is a bijection.

This is another “if and only if” proof, so it must be proved in both
directions. We will prove the forward direction of this proposition. You will
prove the reverse direction. The forward direction says that if f : X → Y
has an inverse g : Y → X, then f is a bijection. In other words we must
assume the first statement, and from that prove that f is one-to-one and
onto.

Proof. (forward direction) Assume there is a function g : Y → X that is
an inverse of f . Then by the definition of an inverse function,

(a) f
(
g(y)

)
= y for all y ∈ Y , and

(b) g
(
f(x)

)
= x for all x ∈ X.

https://www.youtube.com/watch?v=KUOF7DDGFHW&INDEX=15&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Suppose then that f(x1) = f(x2) for some x1, x2 ∈ X. Then since g is a
function we have

g
(
f(x1)

)
= g
(
f(x2)

)
Therefore by (b), x1 = x2. Hence f is one-to-one.

Now suppose y ∈ Y . Then since g is a function, there exists a unique x ∈ X
such that g(y) = x. Substituting into (a) we get

f(x) = y.

Therefore ∀y ∈ Y,∃x ∈ X s.t. f(x) = y. Hence f is onto. So f is both
one-to-one and onto: thus f is a bijection. □

Exercise 8.7.12. Prove the reverse direction of Proposition 8.7.11. (*Hint*)
♢

A function that has an inverse is said to be invertible . The following
exercise deals with a very important class of invertible functions/bijections.

Exercise 8.7.13. Given a number a ∈ Zn, consider the function fa : Zn →
Zn given by fa(m) = a⊙m.

(a) Show that the function f6 defined on Z7 is a bijection by finding an
inverse of f6.

(b) For the six numbers a = 0, 1, 2, 3, 4, 5 in Z6, which of these give bijections
for fa? Explain your answer. Suppose that a ∈ Zn is relatively prime
to n. Show that in this case, fa : Zn → Zn is a bijection (you may want
to refer to Section 5.5.4). (*Hint*)

(c) Suppose that a ∈ Zn such that ax ≡ 1 (mod n) does not have an integer
solution x. Show that in this case, fa : Zn → Zn is not a bijection.
(*Hint*)

♢

We close out this section with several exercises that prove various prop-
erties of inverses.

Exercise 8.7.14.

(a) Prove that any inverse of a bijection is a bijection.
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(b) Show that the inverse of a function is unique: if g1 and g2 are inverses
of f , then g1 = g2. (*Hint*)

♢

Remark 8.7.15.

(a) Exercise 8.7.14 is key because it enables us to talk about the inverse of
a function, since there is never more than one inverse. We will use the
special notation f−1 to denote the inverse of the function f .

(b) According to Definition 8.2.11, any function can be specified by a set of
ordered pairs. That is, if f : X → Y , we can also write f ⊂ X × Y ,
where for all x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f . If f is
a function that has an inverse, f−1 can also be expressed as a subset of
Y ×X:

f−1 = { (y, x) | (x, y) ∈ f }.

This is simply a restatement of the fact that

y = f(x) iff x = f−1(y).

△

In Definition 8.7.7 we defined the inverse of a function f by specifying
how it acted on single points: that is, for a function f : A → B we require
f−1 to satisfy f−1 ◦ f(a) = a and f ◦ f−1(b) = b for all a ∈ A and B ∈ B.
But we can look at this situation in a different way. In fact f ◦ f−1 and
f−1 ◦ f are functions in their own right. What kind of functions are they?
Let’s see:

Definition 8.7.16. For any set A, define the identity map IdA : A → A
by IdA(a) = a for every a ∈ A. △

Exercise 8.7.17.

(a) Show that IdA is invertible.(*Hint*)

(b) Find the inverse of IdA.(*Hint*)

https://www.youtube.com/watch?v=KUOF7DDGFHW&INDEX=15&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(c) Suppose f : X → Y and g : Y → X. Show that g is the inverse of f if
and only if

f ◦ g = IdY and g ◦ f = IdX .

(*Hint*)

♢

We close this section with an exercise that shows two very important
properties of inverses.

Exercise 8.7.18.

(a) Suppose f : A→ B and g : B → C are bijections. Show that (g ◦f)−1 =
f−1 ◦ g−1. (*Hint*)

(b) Suppose f : X → Y is a bijection. Show that the inverse of f−1 is f .
That is, (f−1)−1 = f .

♢

8.8 Do functions from A to B form a group?

At the end of the Sets chapter in Section 7.3 we considered the question,
Do the subsets of a set form a group? Let’s consider a similar question, but
this time with functions.

Recall (once again) from Section 5.4.7 that a group is a set together with
an operation defined on that set such that:

1. The set is closed under the operation (in other words, the operation
has the property of closure);

2. The set has a unique identity ;

3. Every element of the set has its own inverse;

4. The set elements satisfy the associative property under the group op-
eration;
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If we’re going to make a group out the set of functions from A to B, the
first thing we need to do is define an operation. So far, the only operation
we have on functions is composition. But this gives us a problem, because
the composition of two functions that have the same domain and the same
codomain isn’t always well-defined:

Exercise 8.8.1. Give an example of sets A and B and two functions f :
A → B and g : A → B such that the composition f ◦ g is not well-defined.
♢

For f ◦ g to be well-defined, the domain of f must contain the range of
g. We can guarantee this by taking B = A, so we consider only functions
from a set A to itself:

Exercise 8.8.2. Given that f : A→ A and g : A→ A, show that f ◦ g and
g ◦ f are both well-defined functions from A to A. ♢

Exercise 8.8.2 confirms that the set of functions from A to A is closed
under the operation of composition. So far, so good–but we still have more
fish to fry. We still need to find an identity for our set. This one’s not hard:
Definition 8.7.16 gives us the identity map IdA.

That takes care of two group properties–we have two more to go. Let’s
look at inverses. We’ve seen that not all functions have inverses under com-
position. So to make this part work, we’ll have to further restrict ourselves
to the set of invertible functions from A to A.

The last thing we need to verify is the associtive property. Fortunately,
you already showed that function composition is associative in Exercise 8.6.6.

The foregoing discussion amounts to a proof of the following proposition.

Proposition 8.8.3. Let A be a set, and let G be the set of all invertible
functions from A to A. Then G is a group under composition.

In the following exercise we look at some particular sets of functions, and
investigate whether or not these sets form groups under composition. Recall
that to show whether or not a set with binary operation is a group, you just
need to show the properties: closure, identity, inverse, and associative. We’re
lucky in this case that we don’t have to prove associative in every single case,
because the operation of function composition is always associative, as we’ve
proven before. So it’s enough just to prove closure, identity, and inverse.



260 CHAPTER 8 FUNCTIONS: BASIC CONCEPTS

Exercise 8.8.4.

(a) Let G1 be the set of all nonzero functions from R to R of the form
f(x) = ax, where a is a nonzero real number. (For example, the func-
tions g(x) = −7x and h(x) =

√
2x are both elements of G1.) Prove

or disprove: G1 is a group under composition. (Note: G1 is the set of
nonzero linear functions from R to R.)

(b) Let G2 be the set of all nonzero functions from R to R of the form
f(x) = ax + b where a and b are real numbers which are not both
zero. (For example, the functions p(x) = 29.4x + 42.3, q(x) = 15 and
r(x) = −πx are all elements of G2.) Prove or disprove: G2 is a group
under composition. (Note: G2 is called the set of all nonzero affine
functions from R to R.)

(c) Let G3 be the set of all nonconstant functions from R to R of the form
f(x) = ax + b where a is a nonzero real number and b can be any real
number. Prove or disprove: G3 is a group under composition.

(d) Let G4 be the set of all functions from R to R of the form f(x) =
ax3,where a is a nonzero real number. Prove or disprove: G4 is a group
under composition.

(e) *Let G5 be the set of all functions from R to R of the form

f(x) =

{
ax, for x rational

bx, for x irrational

where a and b are nonzero rational numbers. Prove or disprove: G5 is
a group under composition.

♢

Finally, recall that some groups are commutative (commutative groups
are also called abelian groups). Are groups under composition always
abelian? Let’s find out:

Exercise 8.8.5. For each of the examples in Exercise 8.8.4 which are groups,
prove or disprove that the group is abelian. To check this, you just need to
check whether or not the formula f ◦ g = g ◦ f for all f, g in the set. What
this means is that if the group is not abelian, all you need to do is provide
a single counterexample. ♢
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8.9 Hints for “Functions: basic concepts” exer-
cises

Exercise 8.2.6(e): There is a formula of the form f(x) = ax2 + bx+ c

Exercise 8.4.5: Can there be any elements in the codomain that are not in
the range?.

Exercise 8.5.17(a): Consider the values f(1, i) for i = 1, 2, 3, . . .. (b): Con-
sider the values f(2, j) and f(1, i).

Exercise 8.5.18(a): Given any element (i, j) of Z × Z, set i = m + n and
j = m+ 2n and solve for m and n in terms of i and j.

Exercise 8.5.18(b): Suppose that g(m,n) = g(p, q). It follows that (m +
n,m+ 2n) = (p+ q, p+ 2q).

Exercise 8.7.13: (c) Use Proposition 5.5.20, and recall that ax ≡ 1 (mod n)
means the same thing as a⊙ x = 1 for a, x ∈ Zn. You may use this fact to
find an inverse for fa. (d) Use the fact that a ⊙ x = 1 has no solution to
show that fa is not onto, which implies that fa has no inverse.

Exercise 8.7.17: (a) Notice that f(x) = x is the identify function when the
set A is equal to R. Think about how you would show that f(x) is invertible
in this case. Then apply the same proof, replacing x with a and f with IdA.
(b) Again, think of the case f(x) = x. What is the inverse of this function?

Exercise 8.7.12: Given that f is a bijection from X to Y . We may define a
function g from Y to X as follows. Given any y ∈ Y , since f is onto there is
at least one x such that f(x) = y. Furthermore, since f is one-to-one there
is at most one x such that f(x) = y. Putting these two facts together gives
us that there is exactly one x such that f(x) = y. We may define g(y) as
this unique x. It remains to show that for any y ∈ Y , f(g(y)) = y; and for
any x ∈ X, g(f(x)) = x.

Exercise 8.7.18: (a) Apply Definition 8.7.7 directly, replacing f with g ◦ f
and g with g−1 ◦ f−1. (b) Apply Definition 8.7.7 again, this time replacing
f with f−1. What should g be replaced with?
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8.10 Study guide for “Functions: Basic Concepts”
chapter

Section 8.1, The Cartesian product: a different type of set
operation

Concepts:

1. Ordered pairs (x, y)

2. Cartesian product of sets: the set of all ordered pairs

3. Order of a set S (i.e. number elements), denoted by | S |.

Key Formulas

1. Equality of ordered pairs: (x1, y1) = (x2, y2) iff x1 = x2 and y1 = y2.

2. Cartesian product: A×B = {(a, b) | a ∈ A, b ∈ B} (Definition 8.1.3)

3. Order of a Cartesian product: Given any sets A and B, then:
| A×B |=| A | · | B | . (Proposition 8.1.8)

Competencies

1. Given a pair of finite sets, list the elements of the Cartesian product.
(Example 8.1.4, 8.1.6, 8.1.7)

2. Determine the number of elements in a Cartesian product. (8.1.9)

Section 8.2, Introduction to functions

Concepts:

1. A function accepts inputs, and provides a single output for each input.

2. Domain & codomain of functions (“inputs” and “possible outputs” of
the function).

3. Range of a function (range are the “actual outputs”; range is contained
in any possible codomain)
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4. Image of an element of the codomain: f(a) is the image of a under the
function f .

5. Arrow diagrams representing functions

6. “Official” definition of a function as a subset of the Cartesian product
of domain and codomain (Definition 8.2.11)

Competencies

1. Be able to give the domain, range, f(x), the set of ordered pairs, and
write a formula to represent a function. (8.2.6, 8.2.14)

2. Be able to represent a function using: a formula; a set of ordered pairs;
a 2-column table; an arrow diagram.

3. Know if a set of ordered pairs represents a function. (8.2.9, 8.2.16)

Section 8.3, One-to-one functions

Concepts:

1. One-to-one functions (injective): each element of the range is the image
of a unique element of the domain.

2. Contrapositive of a statement: the contrapositive of a statement of
the form “If A then B” is, “If not B then not A”. The contrapositive
is logically equivalent to the original statement.

Competencies

1. Be able to identify one-to-one functions. (8.3.3, 8.3.5)

2. Be able to use the horizontal line test on real-valued functions to de-
termine one-to-oneness. (8.3.12, 8.3.13)

3. Prove whether functions are one-to-one or not. (8.3.20, 8.3.21)
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Section 8.4, Onto functions

Concepts:

1. Onto functions (surjective): each element of the codomain is the image
of at least one element of the domain.

2. Onto proofs

3. Horizontal line test to show onto-ness (applies only to real-valued func-
tions)

Competencies

1. Be able to identify onto functions. (8.4.3)

2. Be able to use the horizontal line test for real-valued onto functions.
(8.4.11)

3. Prove whether a function is onto or not. (8.4.18, 8.4.19, 8.4.20)

Section 8.6, Composition of functions

Concepts:

1. Composition of two functions: apply the second function to the output
of the first function. Note: functions are applied right to left.

2. Proofs involving function composition

Competencies

1. Be able to draw arrow diagrams of function compositions (Figure 8.6.1)

2. Be able to compute the composition of two functions. (8.6.2, 8.6.9)

3. 1-1 and onto proofs of compositions of functions, based on the 1-1 and
onto properties of the functions being composed. (8.6.18-8.6.24)
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Section 8.7, Inverse functions

Concepts:

1. Inverse functions: the functions f : X → Y and g : Y → X are inverses
of each other iff g(f(x)) = x for all x ∈ X, and f(g(y)) = y for all
y ∈ Y . (Definition 8.7.7)

2. A function has an inverse iff it is a bijection (both 1-1 and onto).
(Theorem 8.7.11)

3. Identity map: IdA : A→ A by IdA(a) = a for every a ∈ A. (Definition
8.7.16)

4. f : X → Y and g : Y → X are inverses of each other iff f ◦ g =
IdY and g ◦ f = IdX . (8.7.18)

5. Inverse of compositions: if f : X → Y and g : Y → Z both have
inverses, then so does g ◦ f and (g ◦ f)−1 = f−1 ◦ g−1. (8.7.18)

Competencies

1. Determine whether or not g is an inverse of f . (8.7.9)

2. Prove that the invertible functions must be bijections. (Theorem
8.7.11, Exercises 8.7.12, 8.7.14)

3. Show that IdA is invertible and find the inverse. (8.7.17)

4. Prove facts about inverse of compositions and inverse of inverse func-
tions (8.7.18a, b, c)

Section 8.8, Do functions from A to B form a group?

Concepts:

1. Abelian group (same as commutative group)
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Competencies

1. Be able to determine whether particular sets of functions form groups
under composition. (8.8.4)

2. Be able to prove whether or not a particular group of functions is
abelian or not. (8.8.5)



9

Introduction to
Cryptography

Cryptography is the study of sending and receiving secret messages. The aim
of cryptography is to send messages across a channel so only the intended
recipient of the message can read it. In addition, when a message is received,
the recipient usually requires some assurance that the message is authentic;
that is, that it has not been sent by someone who is trying to deceive the
recipient. Modern cryptography is heavily dependent on abstract algebra
and number theory.

Prerequisites: The cryptographic systems we’ll be looking at are all based
on modular arithmetic. To understand this chapter, the reader should be
familiar with the material in Chapters 5 and 8. Section 25.2 also uses some
simple matrix multiplication.

Thanks to Tom Judson for material used in this chapter.

9.1 Overview and basic terminology

The message to be sent is called the plaintext message. The disguised
message is called the ciphertext . The plaintext and the ciphertext are both
written in an alphabet , consisting of letters or characters. Characters
can include not only the familiar alphabetic characters A, . . ., Z and a,
. . ., z but also digits, punctuation marks, and blanks. A cryptosystem ,
or cipher , has two parts: encryption , the process of transforming a
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plaintext message to a ciphertext message, and decryption , the reverse
transformation of changing a ciphertext message into a plaintext message.

There are many different families of cryptosystems, each distinguished
by a particular encryption algorithm. Cryptosystems in a specified crypto-
graphic family are distinguished from one another by a variable parameter
called a key . A classical cryptosystem has a single key, which must be kept
secret, known only to the sender and the receiver of the message. If person
A wishes to send secret messages to two different people B and C, and does
not wish to have B understand C’s messages or vice versa, A must use two
separate keys, so one cryptosystem is used for exchanging messages with B,
and another is used for exchanging messages with C.

Some systems use two separate keys, one for encoding and another for
decoding. These are called public key cryptosystems, because typically
the encoding key is made public while the decoding key is kept secret. A
public key cryptosystem allows A and B to send messages to C using the
same encoding key. Anyone is capable of encoding a message to be sent to
C, but only C knows how to decode such a message.

On the other hand, in single or private key cryptosystems the same
key is used for both encrypting and decrypting messages. To encrypt a
plaintext message, we apply to the message procedure which transforms a
plaintext message into an encrypted message. We will call this procedure an
encryption function , and denote it by the letter f . Given the encrypted
form of the message, we can recover the original message by applying the
decryption function f−1, which basically undoes the transformation per-
formed by the encryption function.1 Both the encryption function f and the
decryption function f−1 must be relatively easy to compute; however, they
must be virtually impossible to guess if only examples of coded messages
are available.

In Section 9.2 we will look at private key cryptography, beginning with
a classic example from antiquity. In Section 9.3 we will look at a famous
example of a public key cryptosystem, which was only discovered in the last
century and has had an enormous impact on information security in the
digital age.

1In fact, f−1 is the inverse of f–we will study inverse functions in general in Chapter 8.

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO


9.2 PRIVATE KEY CRYPTOGRAPHY 269

9.2 Private key cryptography

9.2.1 Shift codes

Example 9.2.1. One of the first and most famous private key cryptosys-
tems was the shift code used by Julius Caesar. We first represent the alpha-
bet numerically by letting A = 0,B = 1, . . . ,Y = 24,Z = 25. This means
for example that the word BAY would be represented numerically as:

1, 0, 24.

An example of a shift encoding function is

f(n) = mod(n+ 3, 26).

which can also be written as

f(n) = n⊕ 3,

with the understanding that n refers to the numerical value assigned to each
letter, and ⊕ refers to addition in Z26. This encoding function takes

0 → 3, 1 → 4, . . . , 24 → 1, 25 → 2,

so that our numerical representation of BAY is changed to: 4, 3, 1, which is
the numerical representation of EDB.

The decoding function is the inverse of the function f , which we can find
in the usual way by solving the equation m = n ⊕ 3 for n. The result is
n = m⊖ 3, so that

f−1(m) = m⊖ 3 or f−1(m) = m⊕ 23.

Suppose we receive the encoded message DOJHEUD. To decode this
message, we first represent it numerically:

3, 14, 9, 7, 4, 20, 3.

Next we apply the decryption function to get

0, 11, 6, 4, 1, 17, 0,

which is the numerical representation of ALGEBRA. Notice here that there
is nothing special about either of the numbers 3 or 26. We could have used
a larger alphabet or a different shift. ♦

Exercise 9.2.2.
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(a) Encode IXLOVEXMATH using the cryptosystem in Example 9.2.1.

(b) Encode the same message using the encoding function f(n) = n⊕ 10.

♢

Exercise 9.2.3.

(a) Decode ZLOOA WKLVA EHARQ WKHA ILQDO, which was encoded
using the cryptosystem in Example 9.2.1.

(b) Decode: OFOBIDRSXQIYENYPVYGCPBYWDROROKBD, which was
encoded using a shift code with a shift of 10.

♢

Exercise 9.2.4.

(a) The following is a ciphertext that was encoded using a shift code with
a shift of 9.

FWHKYVOGVFGCVQWFIHOKYVQGVFGCVHSPOKYVQGVFGCV

Find the plaintext.

(b) A plaintext is encoded using a shift code with a shift of 14. The resulting
ciphertext is shift-encoded again, using a shift of 14. The result is:

VJGOQTGAQWMPQYVJGNGUUUWTGAQWCTGXQNVCKTG

Find the plaintext.

♢

Cryptanalysis is concerned with deciphering a received or intercepted
message. Methods from probability and statistics are great aids in deci-
phering an intercepted message; for example, the frequency analysis of the
characters appearing in the intercepted message often makes its decryption
possible.

Example 9.2.5. Suppose we receive a message that we know was encrypted
by using a shift transformation on single letters of the 26-letter alphabet. To

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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find out exactly what the shift transformation was, we must compute b in the
equation f(n) = n+ b mod 26. We can do this using frequency analysis.
The letter E = 04 is the most commonly occurring letter in the English
language. Suppose that S = 18 is the most commonly occurring letter in
the ciphertext. Then we have good reason to suspect that 18 = 4 ⊕ b, or
b = 14. Therefore, the most likely encoding function is

f(n) = n⊕ 14.

The corresponding decoding function is

f−1(m) = m⊕ 12.

It is now easy to determine whether or not our guess is correct. ♦

Exercise 9.2.6. The following ciphertext was encoded using a shift code.
Both the letters E and I are encoded as vowels.

IWPDAIWPEYOEOPDAMQAAJKBPDAOYEAJYAOYWNHBCWQOO

Find the plaintext. ♢

Exercise 9.2.7. In the following shift-coded ciphertext, one of the double-
letter patterns represents ‘ss’.

SGDDRRDMBDNELZSGDLZSHBRHRHMHSREQDDCNLFDNQFBZMSNQ

Find the plaintext. ♢

Exercise 9.2.8.

(a) For the English alphabet, how many different shift codes are there?

(b) Thai script has 44 letters. How many different shift codes are there for
the Thai language?

♢
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9.2.2 Affine codes

Let us investigate a slightly more sophisticated cryptosystem. Suppose that
the encoding function is given by

f(n) = mod(an+ b, 26),

which can also be written as

f(n) = (a⊙ n)⊕ b.

We first need to find out when a decoding function f−1 exists. Such a
decoding function exists when we can solve the equation

m ≡ an+ b (mod 26) or a⊙ n = m⊖ b

for n in Z26. By Proposition 5.5.20 in Chapter 5, this is possible exactly
when a has an inverse in Z26, which means that gcd(a, 26) = 1. Such a
cryptosystem is called an affine cryptosystem .

Exercise 9.2.9.

(a) Which of the numbers 0, 1, 2, . . . , 10 have inverses mod 26?

(b) For the numbers in (a) which have inverses mod 26, compute the in-
verses.

♢

Exercise 9.2.10. Find the decoding function for the following affine en-
coding functions (used on the English alphabet).

(a) f(n) = (3⊙ n)⊕ 14

(b) f(n) = (5⊙ n)⊕ 15

(c) f(n) = (7⊙ n)⊕ 23

♢

Exercise 9.2.11. Show that the general formula for the decoding function
for f(n) = (a⊙ n)⊕ b is

f−1(m) = (a−1 ⊙m)⊖ (a−1 ⊙ b).
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(That is, show that f ◦ f−1(m) = m, and f−1 ◦ f(n) = n. Note that n and
m are variables, while a and b are constants which characterize the encoding
function.) ♢

Example 9.2.12. Let’s consider the affine cryptosystem encoding function
f(n) = (a ⊙ n) ⊕ b, where ⊙ and ⊕ are multiplication and addition mod
26 respectively. For this cryptosystem to work we must choose an a ∈ Z26

that is invertible. This is only possible if gcd(a, 26) = 1. Recognizing this
fact, we will let a = 5 since gcd(5, 26) = 1. The reader may check that
a−1 = 21. Therefore, we can take our encryption function to be f(n) =
(5⊙n)⊕3. Thus, ALGEBRA is encoded as 3, 6, 7, 23, 8, 10, 3, or DGHXIKD.
The decryption function will be

f−1(n) = (21⊙ n)⊖ (21⊙ 3) = (21⊙ n)⊕ 15.

♦

Exercise 9.2.13. For each of the following functions, (i) determine whether
the function is a valid encoding function; (ii) if the function is valid, find the
decoding function. (Assume the function is working on an alphabet with 26
letters.)

(a) f(n) = (4⊙ n)⊕ 7

(b) f(n) = (5⊙ n)⊕ 13

(c) f(n) = (11⊙ n)⊕ 14

(d) f(n) = (13⊙ n)⊕ 22

♢

Exercise 9.2.14.

(a) The general form for an affine cryptosystem encoding function is f(n) =
(a ⊙ n) ⊕ b. How many different possible values of a are there, for an
affine cryptosystem that works on the English alphabet of 26 letters?

(b) For the same situation as (a), how many different possible values are
there for b?
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(c) What is the total number of affine cryptosystems that work on an al-
phabet of 26 letters?

♢

Exercise 9.2.15. The Spanish alphabet has 29 letters. Give answers to
parts (a), (b), and (c) of Exercise 9.2.14, but with the Spanish alphabet
instead of the English alphabet. ♢

Exercise 9.2.16. The Hebrew alphabet has 22 letters. Give answers to
parts (a), (b), and (c) of Exercise 9.2.14, but with the Hebrew alphabet
instead of the English alphabet. ♢

Exercise 9.2.17. Suppose that the encoding function for an affine cryp-
tosystem is f(n) = (a ⊙ n) ⊕ b, and the decoding function is f−1(m) =
(a′⊙m)⊕ b′. Suppose that a different cryptosystem uses the encoding func-
tion g(n) = (a′ ⊙ n) ⊕ b′. What is the decoding function for this second
cryptosystem? ♢

Exercise 9.2.18.

(a) The following message was encoded using an affine cryptosystem that
encodes A as M and B as B.

CKMYCZMLCOZCWKOHUCKDOHLMZLLNMZGZOEVUFYU

Find the plaintext.

(b) The following message was encoded using an affine cryptosystem that
encodes A as G and C as C.

MQTNOELNWNETEHCEWHISCFKYHHFYKGCCEIPXQWFISCF

Find the plaintext.

(c) The following message was encoded using an affine cryptosystem that
encodes R as S and S as D.

OMFMFNSOMNDSFNDLADOMNOSFNDLAJNAALOZAUFSDONAU

Find the plaintext.
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(d) The following message was encoded using an affine cryptosystem that
encodes M as N and O as D.

NVEMBNVEHLJHJEMBNZJHLDWOBVJDI

Find the plaintext.

♢

9.2.3 Monoalphabetic codes

In both shift codes and affine codes, one character in the encoded message
represents exactly one character in the original message. Cryptosystems that
employ such a one-to-one substitution are called monoalphabetic cryp-
tosystems. The “cryptoquips” that appear regularly in many newspapers
make use of this type of cryptosystem (see Figure 9.2.1).

Figure 9.2.1. Example of cryptoquip (source: “Cecil Whig”, http://www.
cecildaily.com/diversions/cryptoquip/).

Exercise 9.2.19. What is the total number of monoalphabetic cryptosys-
tems? ♢

http://www.cecildaily.com/diversions/cryptoquip/ 
http://www.cecildaily.com/diversions/cryptoquip/ 
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Although there are many different possible monoalphabetic cryptosys-
tems, they are relatively easy to break using frequency analysis. (You may
even find web sites that can automatically decode cryptoquips.)

9.2.4 Polyalphabetic codes

A cryptosystem would be more secure if a ciphertext letter could represent
more than one plaintext letter. To give an example of this type of cryptosys-
tem, called a polyalphabetic cryptosystem , we will generalize affine codes
by using matrices. The idea works roughly the same as before; however, in-
stead of encrypting one letter at a time we will encrypt pairs of letters (as
before, letters are represented by elements of Z26). We can store a pair of
letters n1 and n2 in a vector

n =

(
n1
n2

)
.

Let A be a 2 × 2 invertible matrix with entries in Z26. We can define an
encoding function by

f(n) = (A⊙ n)⊕ b,

where b is a fixed column vector and matrix operations are performed in
Z26. The formula for the decoding function (which is the inverse of the
encoding function) is very similar to the decoding function formula that we
found for affine encoding:

f−1(m) = (A−1 ⊙m)⊖ (A−1 ⊙ b),

where A−1 is the matrix inverse of A: that is, A−1A = AA−1 = I, where
I is the 2 × 2 identity matrix. *Note* that in these formulas, we are using
modular matrix multiplication instead of regular matrix multiplication: that
is, the regular · and + operations are replaced by ⊙ and ⊕:

Exercise 9.2.20. Perform the following operations using modular matrix
multiplication (mod 26):

(a)

(
5 6
7 8

)(
4
4

)

(b)

(
1 13
16 2

)(
3
1

)
(c)

(
12 4
13 5

)(
2 1
20 20

)

(d)

(
13 2
2 13

)(
2 13
13 2

)
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♢

Example 9.2.21. Suppose that we wish to encode the word HELP. The
corresponding digit string is 7, 4, 11, 15. If

A =

(
3 5
1 2

)
,

then

A−1 =

(
2 21
25 3

)
.

(You may check that mod(AA−1, 26) = mod(A−1A, 26) = I.) If b =(
2
2

)
, then our message is encrypted as RRGR, where HE encrypts as

RR and LP encrypts as GR. ♦

In order to make use of polyalphabetic cryptosystems, we need to be
able to find the inverse of a 2× 2 matrix with entries in Z26. As we *noted*
above, this inverse is under matrix multiplication mod 26, rather than regu-
lar matrix multiplication. Still, we can try to make use of the matrix inverse
formula from regular matrix multiplication:(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
=

(
kd −kb
−kc ka

)
,

where

k =
1

ad− bc
.

This suggests that the following formula may be valid mod 26:(
a b
c d

)−1

=

(
k ⊙ d −k ⊙ b
−k ⊙ c k ⊙ a

)
,

where
k = ((a⊙ d)⊖ (b⊙ c))−1,

and (· · · )−1 means inverse under multiplication in Z26. We will see in the
following exercise that this works as long as (a ⊙ d) ⊖ (b ⊙ c) has a multi-
plicative inverse in Z26.
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Exercise 9.2.22. Suppose that (a⊙d) ⊖ (b⊙c) has an inverse in Z26: that
is to say, suppose there is a k ∈ Z26 such that k ⊙ ((a ⊙ d) ⊖ (b ⊙ c)) = 1.
Show that the matrices:

A =

(
a b
c d

)
and B =

(
k ⊙ d −k ⊙ b
−k ⊙ c k ⊙ a

)
are inverses of each other in Z26. That is, show that AB = BA = I under
matrix multiplication mod 26.

♢

The previous exercise leaves open the question of whether

(
a b
c d

)
has an inverse when (a ⊙ d) ⊖ (b ⊙ c) has no inverse in Z26. Once again,
we can reach back to our previous matrix knowledge to resolve this issue.
Recall that the quantity ad − bc is called the determinant of the matrix(
a b
c d

)
. There is also a famous formula for the determinant of the product

of matrices:
det(A)det(B) = det(AB).

This same formula carries over to matrix multiplication mod 26, because
(as we’ve seen) in any equation using only the operations of multiplication,
addition, and subtraction, we can replace these operations with their mod-
ular versions and still have a true equation. We can use this to show that

(a⊙ d)⊖ (b⊙ c) must have an inverse in Z26 in order for

(
a b
c d

)
to have

an inverse:

Exercise 9.2.23. Suppose that A =

(
a b
c d

)
is a matrix with entries in

Z26, such that (a⊙ d)⊖ (b⊙ c) has no inverse in Z26. Show that A has no
inverse in Z26. (*Hint*) ♢

Exercise 9.2.24. Find matrix inverses in Z26 for the following matrices. If
no inverse exists, then prove there is no inverse.

(a)

(
9 2
20 5

)
(b)

(
2 3
23 2

)
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(c)

(
4 11
3 2

)
(d)

(
2 2
3 4

)

♢

Exercise 9.2.25. For the same matrices as in Exercise 9.2.24, find the
matrix inverses in Z29. ♢

Exercise 9.2.26. Given that

A =

(
3 4
2 3

)
, and b =

(
2
5

)
.

(a) Use the encryption function f(p) = Ap + b to encode the message
CRYPTOLOGY.

(b) What is the decoding function?

♢

Frequency analysis can still be performed on a polyalphabetic cryptosys-
tem, because we have a good understanding of how pairs of letters appear
in the English language. The pair th appears quite often; the pair qz never
appears. To avoid decryption by a third party, we must use a larger matrix
than the one we used in Example 9.2.21.

9.2.5 Spreadsheet exercises

Spreadsheets can be used to automate many of the calculations that we have
looked at in the previous sections.

Shift encoding and decoding spreadsheet

Exercise 9.2.27. In this exercise, you will use a spreadsheet to create
an automated shift encoder for English. Please refer to Figure 9.2.2 for
guidance:

(i) Put the Shift value in cell C2.

https://www.youtube.com/watch?v=6tgBvDI1Tiw&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=35
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Figure 9.2.2. Automatic shift encoder for English.

(ii) Put the alphabet (starting with A), numerical values for the letters
(starting with 0), and the alphabet again in columns A, B, C starting
on line 5.

(iii) Type your plaintext in row 5, starting in column F.

(iv) Row 6 beginning in column F contains the numerical values for the
plaintext. The formula in cell F6 is: “=VLOOKUP(F5, $A$5:$B$30,2)”.
The significance of this formula is as follows:

� The function VLOOKUP means that the program will look up a
given value in a given table;

� The F5 is the first argument of VLOOKUP, which means that
the value being looked up is in cell F5;

� The $A$5:$B$30 is the second argument of VLOOKUP, which
means that it represents the cells containing the table that the
value will be looked up in. The dollar signs are used to guaran-
tee that the table will remain fixed when the formula is copied
and pasted into another cell; The 2 which is the third lookup of
VLOOKUP indicates that the value in the second column in the
same row as the looked-up value is placed in the cell where the
formula is located.

(v) Row 7 beginning in column F gives the encoded numerical values. The
formula in cell F7 is “=MOD(F6+$C$2,26)”. The dollar signs on C2
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guarantee that when the formula is copied, the shift still refers to the
value in C2.

(vi) Row 8 beginning in column F gives the ciphertext. The formula in cell
F8 is: “=VLOOKUP(F7,$B$5:$C$30,2)”.

(vii) Rows 9,10, and 11 are similar to rows 6,7,8 respectively. Try to do this
yourself.

Once you have completed the formulas, select cells F6 through J11, and use
the spreadsheet’s “Fill Right” capability to carry the formulas to the other
columns. (If your plaintext is longer, you can select more columns and fill
right. ♢

Exercise 9.2.28. The Spanish alphabet has 3 more letters than English:
‘Ch’ (comes after C in the alphabet), ‘Ll’ (comes after L in the alphabet),
and ‘Nn’ (comes after N). Modify the sheet you created in Exercise 9.2.27
to make a Spanish language shift encoder. Use your sheet to decode the
following message:

MS KIUPVX UIB NIKPS VX MB BPMUYAM MS UMQXA

(Note that ‘Ch’ counts as a single letter.) ♢

Affine encoding and decoding spreadsheet

Exercise 9.2.29. Create a spreadsheet that can perform any affine encoding
on English plaintext. You may model your spreadsheet on the sheet in
Figure 9.2.3. Use your spreadsheet to decode the following message:

EMBNDOBFDZXIDPEMBSBJJJZOBFDZVOBUDSEVHOB

which was encoded using an affine encoding function with b = 21. ♢

Exercise 9.2.30. In order to decode an affine cryptosystem on English
letters with encoding function f(p) = (a⊙ p)⊕ b, it is necessary to find the
inverse of a under multiplication mod 26. We have ways of finding inverses
of individual numbers. But we can also use spreadsheet software to find all
inverses in one fell swoop as described below.

https://www.youtube.com/watch?v=SJstRseE0V4&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=34
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Figure 9.2.3. Automatic affine encoder for English.

Open a sheet in your favorite spreadsheet software (Excel, LibreOffice,
or OpenOffice). Put the numbers 0 through 25 in column A, starting at
row 3, and also in row 2 starting in column B. To fill up the table, put
the formula “=MOD($A3*B$2,26)” in cell B3, as shown in Figure 9.2.4.
This formula causes the software to take the product of the contents of cells
A3 and B2, and put the result mod 26 into cell B3. The dollar signs are
important: these indicate “fixed reference”. For example, the ‘$A3’ means
that when this formula is copied to other cells, the reference to column A
remains unchanged while the column may change. On the other hand, the
‘B$2’ means that when the formula is copied to other cells, the reference to
column 2 remains unchanged.

At this point, select the range of cells from B3 to AA28 (this will be a
square region of 26× 26 cells. Use your spreadsheet’s “Fill down” and “Fill
right” feature to fill all the cells in this region. The location of all of the
‘1”s in this table shows all of the inverses. For example, there is a ’1’ in the
row labeled 9 and column labeled 3. This means that 9 and 3 are inverses
of each other mod 26.

Use this spreadsheet table to create a 2-column table: in the first column,
put the numbers 0 through 26, and in the second column, put the inverses
(if the number has no inverse, just put a ‘−’). ♢

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Figure 9.2.4. Mod 26 multiplication table.

Exercise 9.2.31. Following the previous exercise, find all inverses of the
numbers mod 29 (this can be used in affine encoding of Spanish, which has
29 letters). ♢

Exercise 9.2.32. Make a spreadsheet that can do polyalphabetic coding.
you may base your sheet’s design on Figure 9.2.5. The figure shows the en-

coding of the word CRYPTOLOGY using A =

(
3 5
1 2

)
, and b =

(
2
2

)
.

Use your spreadsheet to decode the following words that were encoded
using f(p) = Ap+ b with the given A and b.

(a) VVDGOFOKLY, A =

(
13 5
9 2

)
, and b =

(
7
13

)
.

(b) VWFGTWQKTA, A =

(
17 13
6 3

)
, and b =

(
14
18

)
.

(c) EXUFQPRRGA, A =

(
3 4
5 7

)
, and b =

(
4
8

)
.

♢

9.3 Public key cryptography

If traditional cryptosystems are used, anyone who knows enough to encode
a message will also know enough to decode an intercepted message. In 1976,
W. Diffie and M. Hellman proposed public key cryptography, which is based
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Figure 9.2.5. (Semi-)automatic polyalphabetic encoder/decoder for En-
glish. Note that cell N3 is entered by hand, based on the value in N2.

on the observation that the encryption and decryption procedures need not
have the same key. This removes the requirement that the encoding key be
kept secret. The encoding function f must be relatively easy to compute,
but f−1 must be extremely difficult to compute without some additional
information, so that someone who knows only the encrypting key cannot
find the decrypting key without prohibitive computation. It is interesting
to note that to date, no system has been proposed that has been proven to
be “one-way;” that is, for any existing public key cryptosystem, it has never
been shown to be computationally prohibitive to decode messages with only
knowledge of the encoding key.

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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9.3.1 The RSA cryptosystem

The RSA cryptosystem introduced by R. Rivest, A. Shamir, and L. Adleman
in 1978, is based on the difficulty of factoring large numbers. Though it is not
a difficult task to find two large random primes and multiply them together,
factoring a 150-digit number that is the product of two large primes would
take 100 million computers operating at 10 billion instructions per second
about 50,000 years under the fastest algorithms currently known.

Let us look at how RSA works in a practical context. Suppose that
Jennifer is running an online boutique, and wants to receive credit card in-
formation from customers over the internet. Unfortunately it’s all too easy
to snoop the internet, and it certainly wouldn’t be good for Jennifer’s cus-
tomers if their credit card numbers were stolen. So she needs a suitable code
for the credit card information in order to protect her customer’s privacy.
The code may be constructed as follows:

(a) Choose two random 150-digit prime numbers p and q. (This is easier
said than done! We will consider some possible ways of doing this in
Section 9.3.4.)

(b) Compute the product n = pq as well as m = (p− 1)(q − 1). (It can be
shown that m is actually the number of positive integers in Zn that are
relatively prime to n.)

(c) Find a large random integer E that is relatively prime tom. This is done
by making a guess for E, then using the Euclidean algorithm to check
whether gcd(E,m) = 1. If not, then keep guessing until you find an
E that works. In general relatively prime numbers are not uncommon,
and the Euclidean algorithm is pretty quick (especially for a computer),
so E is not too difficult to find.

(d) Using the Euclidean algorithm, find D such that DE ≡ 1 (mod m).

Now, let’s say that Jennifer has a customer whose credit card number is
x. Before requesting the credit card information, Jennifer’s computer sends
the numbers E and n to the customer’s computer, which then calculates
y = xE mod n and sends y to Jennifer’s computer, Jennifer recovers x by
computing yD mod n, which (as we shall show in a minute) turns out to be
x, as long as x is less than n.

Notice some amazing things here. First, E and n are sent out openly
over the internet. Jennifer doesn’t care if snoopers find out this information.

https://www.youtube.com/watch?v=NPA_Q0M4n54&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=37
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In fact, she sends the same E and n to each customer! But this does not
compromise her customers’ security, because only Jennifer knows m, and it
takes both E and m to find D. As long as no one can figure out m, the
credit card numbers are safe!

To summarize: once the public key (E,n) and the private key D have
been constructed, the process of encoding and decoding is simple:

� To encode a numerical plaintext x: compute mod (xE , n) .

� To decode a numerical ciphertext y: compute mod (yD, n).

Example 9.3.1. Before exploring the theory behind the RSA cryptosystem
or attempting to use large integers, we will use some small integers just to
see that the system does indeed work. Suppose that we wish to send some
message, which when digitized is 395. Let p = 23 and q = 29. Then

n = pq = 667 and m = (p− 1)(q − 1) = 616.

We can let E = 487, since gcd(616, 487) = 1. The encoded message is
computed to be

mod(395487, 667) = 570.

(This may seem like a very long computation, but there are fast ways of doing
this: see Exercise 9.3.3 below.) Using the Euclidean algorithm, we determine
that 191E = 1+ 151m; therefore, the decrypting key is (n,D) = (667, 191).
We can recover the original message by calculating

mod(570191, 667) = 395.

♦

This really seems like magic. How in the world does it work? First of
all, we know that DE ≡ 1 mod m; so there exists a k such that

DE = km+ 1.

This means that

yD = (xE)D = xDE = xkm+1 = (xm)kx.

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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At this point we need Euler’s theorem from Chapter 18, which states the
following. Suppose m is the number of positive integers less than n that are
relatively prime to n. Then it is true that:

xm ≡ 1 (mod n).

for any x that is relatively prime to n.

We can use this to simplify our previous expression for yD:

yD = (xm)kx ≡ (1)kx ≡ x mod n,

and presto! We have our result.

We can now ask how one would go about breaking the RSA cryptosys-
tem. To find D given n and E, we simply need to factor n and solve for D
by using the Euclidean algorithm. If we had known that 667 = 23 · 29 in
Example 5, we could have recovered D.

Exercise 9.3.2. Show that if p and q are primes, then the number of
positive integers less than pq which are relatively prime to pq is (p−1)(q−1).
(*Hint*) ♢

9.3.2 Message verification

There is a problem of message verification in public key cryptosystems.
Since the encoding key is public knowledge, anyone has the ability to send
an encoded message. If Alice receives a message from Bob, she would like
to be able to verify that it was Bob who actually sent the message. Sup-
pose that Bob’s encrypting key is (n′, E′) and his decrypting key is (n′, D′).
Also, suppose that Alice’s encrypting key is (n,E) and her decrypting key
is (n,D). Since encryption keys are public information, they can exchange
coded messages at their convenience. Bob wishes to assure Alice that the
message he is sending is authentic. Before Bob sends the message x to Alice,
he decrypts x with his own key:

x′ = mod(xD
′
, n′).

Anyone can change x′ back to x just by encryption, but only Bob has the
ability to form x′. Now Bob encrypts x′ with Alice’s encryption key to form

y′ = mod(x′
E
, n),

a message that only Alice can decode. Alice decodes the message and then
encodes the result with Bob’s key to read the original message, a message
that could have only been sent by Bob.
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9.3.3 RSA exercises

Exercise 9.3.3. This problem demonstrates a fast method for computing
very large powers of numbers in modular arithmetic using a spreadsheet.
You will need this method in order to do the subsequent problems. We will
demonstrate the method by computing mod(23485, 617).

(a) Use a spreadsheet to compute the following sequence of numbers:

23,mod(232, 617),mod(234, 617), . . . ,mod(23256, 617)

Note that each power of 23 in this series is the square of the previous
power. So to compute any number in this series, square the previous
number and reduce mod 617. You may use the MOD spreadsheet func-
tion. It is easiest to put all the numbers in a single column. (This way,
you can use the spreadsheet’s “Fill down” feature.)

(b) Write 485 as a sum of powers of 2. (This is the same thing as finding
the binary expansion of 485.)

(c) Using the results of (b), identify a set of entries from the table you found
in part (a), such that the product of these entries is equivalent to 23485

(mod 617). (*Hint*)

(d) Use your result from (c) to compute mod(23485, 617).

♢

Exercise 9.3.4. Building off the previous exercise, create a spreadsheet that
can compute mod(xq, n) for general x, q, n. You may follow the pattern of
the spreadsheet in Figure 9.3.1. Some of the formulas in the spreadsheet
are:

� Cell A8: =B3

� Cell B8: =MOD(A8,2)

� Cell A9: =(A8 - B8)/2

� Cell D9: = D8*2

� Cell E9: = MOD(E8*E8, $B$4)

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=1f2C9LXTIRg&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=38
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� Cell F8: = B8

� Cell G8: = E8̂F8
� Cell H8: = G8

� Cell H9: = MOD(G9*H8,$B$4)

You may obtain the rest of the formulas using the spreadsheet’s “fill down”
capability.

Figure 9.3.1. Spreadsheet for taking large powers modulo a given base.

♢

Exercise 9.3.5. Using your spreadsheet from the previous exercise, encrypt
each of the following plaintexts using RSA. Before encoding, divide the
plaintext into blocks of integers of length 2; that is, if the plaintext is 142528,
encode 14, 25, and 28 separately.

(a) n = 3551, E = 629, plaintext = 31

(b) n = 2257, E = 47, plaintext = 23
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(c) n = 120979, E = 13251, plaintext = 142371

(d) n = 45629, E = 781, plaintext = 231561

♢

Exercise 9.3.6. Decrypt each of the following RSA messages y. (In this
case, do not break y into blocks–decode the entire number.)

(a) n = 3551, D = 1997, y = 2791

(b) n = 5893, D = 81, y = 34

(c) n = 120979, D = 27331, y = 112135

(d) n = 79403, D = 671, y = 129381

♢

Exercise 9.3.7. Encrypted messages are often divided into blocks of n
letters. A message such as THE WORLD WONDERS WHY might be
encrypted as JIW OCFRJ LPOEVYQ IOC but sent as JIW OCF RJL
POE VYQ IOC. What are the advantages of using blocks of n letters? ♢

Exercise 9.3.8. Construct an RSA cryptosystem as follows:

(a) On the web, find two four-digit primes

(b) Use these primes to compute n and m.

(c) Choose a value of E which is less than m, and use you Diophantine
Equation spreadsheet (Exercise 5.5.14 in the Modular Arithmetic chap-
ter) to find the inverse D under multiplication mod m. If it turns out
that E is not relatively prime to m, try again.

(d) Test your cryptosystem by encoding ‘123’, and then decoding it. To
encode, use the spreadsheet that you created in Exercise 9.3.4 earlier in
this chapter. To decode, make another copy of the same sheet.

♢

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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9.3.4 Additional exercises: identifying prime numbers

We saw in Section 9.3.1 that the RSA algorithm depends on finding very
large primes. In practice, large primes are found using trial and error. That
is, we choose a large random number and test to see whether it’s prime. If
the test fails, then try, try again.

So it all comes down to figuring out how to test whether a number is
prime. In this section, we consider some possible ways of doing this.

“Brute force” method, and sieve of Eratosthenes

On way to do this is sheer brute force: try dividing by 2,3,4, . . ., and if
nothing divides then the number is prime. There are various ways to make
this process more efficient, as we will see in the following exercises.

Exercise 9.3.9. To test whether the number n is a prime, you divide n
all the integers 1, 2, 3, . . . up to a, and see if any of them divides evenly.
How large does a have to be in order to guarantee that n really is a prime?
(*Hint*) ♢

When testing whether n is prime, by the “brute force” method, as long
as n is odd we don’t need to divide by even numbers (Why?). This means
that you only need to test about half of the numbers up to a–more precisely,
we only need to test ⌈a/2⌉ numbers, where ⌈x⌉ means “the next integer
larger than x”. (⌈x⌉ is called the ceiling of x.)

We can pull the same trick with factors that are divisible by 3. Once
we’ve tested 3 as a factor, we don’t need to check 9, 15, 21, . . . or any other
number that is divisible by 3. (Why?) So it seems that this reduces the
number of factors that we need to check by about a third, since every third
integers are divisible by 3. However, we need to be careful here. We’ve
already ruled out the numbers that are divisible by 2, so the numbers that
are divisible by both 2 and 3 have already been ruled out. In other words
(using m to denote a positive integer, and using the the notation |{· · · }| to
denote the size of sets):

|{m ≤ a and (2 | m or 3 | m)}| =
|{m ≤ a and 2 | m}|+ |{m ≤ a and 3 | m}| − |{m ≤ a and 6 | m}|.

https://www.youtube.com/watch?v=h971dgcV5-0&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=36
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If we are not so careful with the “ceiling function” (which changes the result
by at most 1 anyway), this tells us:

|{m ≤ a and 2 | m or 3 | m}| ≈ a

2
+
a

3
− a

6
.

We can turn this around and find the number of integers which are not
divisible by 2 or 3:

|{m ≤ a and 2 ∤ m and 3 ∤ m}| ≈ a− a

2
− a

3
+
a

6

≈ a

(
1− 1

2

)(
1− 1

3

)
≈ a

3
.

This gives the number of trial divisions required to test whether n is prime.
(Of course we also need to test divisibility by 2 and 3, which are 2 additional
divisions.)

The same reasoning can be extended to take into account divisibility by
5, 7, 11, and so on:

Exercise 9.3.10. Using the same reasoning as above, show that after divid-
ing by 2, 3, 5 the number of additional divisions required to test for primality
is approximately:

a

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
.

♢

The technique of eliminating numbers to check based on previous divis-
ibility is called the sieve of Eratosthenes.

Fermat’s test for primality

Even using various tricks to reduce the number of computations, the brute
force method requires far too many calculations to be useful for RSA encod-
ing. A different algorithm for testing primality is Fermat’s factorization
algorithm , which depends on the following fact:

Exercise 9.3.11. Let n = ab be an odd composite number where a, b ∈ N.
Prove that n can be written as the difference of two perfect squares :

n = x2 − y2 = (x− y)(x+ y),

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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where both x and y are greater than 1. Consequently, a positive odd integer
can be factored exactly when we can find integers x and y such that n =
x2 − y2. (*Hint*) ♢

We can use this fact to factor n by trying different pairs of squares in
order to get n as the difference of the two. Of course, we want to do this
systematically. So we want to see what values of x and y we actually need
to check:

Exercise 9.3.12. In the formula n = x2 − y2 = (x− y)(x+ y), what is the
smallest possible value for x that needs to be tested? (*Hint*) ♢

There are other special conditions that x and y must satisfy:

Exercise 9.3.13. For the purposes of this exercise, assume that n is an odd
number and that n = x2 − y2.

(a) Show that if x is odd then y is even, and if x is even then y is odd.
(*Hint*)

(b) Show that for any odd number m, then mod (m2, 4) = 1. (*Hint*)

(c) Let m = x + y. Show that m is odd, and that we can rewrite n =
(x− y)(x+ y) as: n = m(m− 2y).

(d) Show that if mod (n, 4) = 1, then y must be even. (*Hint*)

(e) Show that if mod (n, 4) = 3, then y must be odd. (*Hint*)

♢

The Fermat primality testing scheme is better for finding factors that
are nearly equal. The brute force method of Exercise 9.3.14 is much better
when one factor is much bigger than the other one.

Exercise 9.3.14.

(a) Create a spreadsheet that factors large numbers using the brute force
scheme. You may use the spreadsheet in Figure 9.3.2 for inspiration.
Some of the formulas in the spreadsheet are:

� Cell A7: =A6+2
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� Cell B6: =$B$2/A6

� Cell C6: =IF(B6=FLOOR(B6,1),A6,0)

� Cell E2: =MAX(C6:C99999)

You may obtain the rest of the formulas using the spreadsheet’s “fill
down” capability.

(b) Use this spreadsheet to factor n = 3551. Then, use your result to find
the decoding key D for Exercise 9.3.5 part (a).

(c) Use this spreadsheet to find the decoding key D for Exercise 9.3.5 part
(b).

(d) Use this spreadsheet to find the decoding key D for Exercise 9.3.5 part
(c).

(e) Use this spreadsheet to find the decoding key D for Exercise 9.3.5 part
(d).

(f) Given the encryption key (n,E) = (451, 231), find D.

(g) Given the encryption key (n,E) = (3053, 1921), find D.

♢

Figure 9.3.2. Spreadsheet for brute force factoring method

Exercise 9.3.15.

(a) Make a spreadsheet for Fermat’s factoring method. You may use the
spreadsheet in Figure 9.3.3 for inspiration. Some of the formulas in the
spreadsheet are:

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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� Cell A7: =A6+1

� Cell B6: =SQRT(A6*A6 - $B$2)

� Cell C6: =IF(B6=FLOOR(B6,1),A6-B6,0)

� Cell D6: =IF(B6=FLOOR(B6,1),A6+B6,0)

� Cell E2: =MAX(C6:C99999)

� Cell E3: =MAX(D6:D99999)

You may obtain the rest of the formulas using the spreadsheet’s “fill
down” capability.

(b) Use this spreadsheet to factor n = 7433551. Then, use your result to
find the decoding key D for (n,E) = (7433551, 12345).

(c) Use this spreadsheet to factor n = 16394854313. Then, use your result
to find the decoding key D for (n,E) = (16394854313, 34578451).

♢

Figure 9.3.3. Spreadsheet for Fermat difference-of-squares factoring
method

Exercise 9.3.16. * Using the results from Exercise 9.3.13 parts (d) and
(e), modify the spreadsheet that you created in Exercise 9.3.15 to make it
twice as efficient. In other words, modify the formula in cell A6 so that you
can replace the formula in A7 with the formula: ‘=A6+2’. ♢
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Probabilistic methods using the “little Fermat theorem”

In practice, neither the brute force nor the Fermat method is used to verify
large prime numbers. Instead, probabilistic methods are used: these methods
can show that it’s very, very likely that n is a prime, but they don’t prove
for certain. The principal test of this type is the Miller-Rabin test for
primality. This test uses some of the principles described below.

In Exercise 18.3.15 in Section 18.3.2, we will prove the following fact
(which is widely known as Fermat’s little theorem):

If p is any prime number and a is any nonzero integer, then ap−1 ≡ 1
(mod p).

We can use Fermat’s little theorem as a screening test for primes. For
example, 15 cannot be prime since

215−1 ≡ 214 ≡ 4 (mod 15).

However, 17 is a potential prime since

217−1 ≡ 216 ≡ 1 (mod 17).

We say that an odd composite number n is a pseudoprime if

2n−1 ≡ 1 (mod n).

Exercise 9.3.17. Which of the following numbers are primes and which
are pseudoprimes?

(a) 341

(c) 601

(e) 771

(b) 811

(d) 561

(f) 631

♢

Let n be an odd composite number and b be a positive integer such that
gcd(b, n) = 1. If bn−1 ≡ 1 (mod n), then n is a pseudoprime base b. We
can get a more accurate test for the primality of n if we test n versus a
number of prime bases. If n is a pseudoprime for several prime bases, then
we can say with high confidence that n is most probably a prime.

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Exercise 9.3.18. Show that 341 is a pseudoprime base 2 but not a pseu-
doprime base 3. ♢

There exist composite numbers that are pseudoprimes for all bases to
which they are relatively prime. These numbers are called Carmichael
numbers. The first Carmichael number is 561 = 3 · 11 · 17. In 1992,
Alford, Granville, and Pomerance proved that there are an infinite number
of Carmichael numbers [4]. However, Carmichael numbers are very rare.
There are only 2163 Carmichael numbers less than 25 × 109. For more
sophisticated primality tests, see [1], [6], or [7].

Remark 9.3.19. (historical background) Encrypting secret messages goes
as far back as ancient Greece and Rome. As we know, Julius Caesar used
a simple shift code to send and receive messages. However, the formal
study of encoding and decoding messages probably began with the Arabs in
the 1400s. In the fifteenth and sixteenth centuries mathematicians such as
Alberti and Viete discovered that monoalphabetic cryptosystems offered no
real security. In the 1800s, F. W. Kasiski established methods for breaking
ciphers in which a ciphertext letter can represent more than one plaintext
letter, if the same key was used several times. This discovery led to the use
of cryptosystems with keys that were used only a single time. Cryptography
was placed on firm mathematical foundations by such people as W. Friedman
and L. Hill in the early part of the twentieth century.

During World War II mathematicians were very active in cryptography.
Efforts to penetrate the cryptosystems of the Axis nations were organized in
England and in the United States by such notable mathematicians as Alan
Turing and A. A. Albert. The period after World War I saw the development
of special-purpose machines for encrypting and decrypting messages. The
Allies gained a tremendous advantage in World War II by breaking the
ciphers produced by the German Enigma machine and the Japanese Purple
ciphers.

By the 1970s, interest in commercial cryptography had begun to take
hold. There was a growing need to protect banking transactions, computer
data, and electronic mail. In the early 1970s, IBM developed and imple-
mented LUZIFER, the forerunner of the National Bureau of Standards’
Data Encryption Standard (DES).

The concept of a public key cryptosystem, due to Diffie and Hellman,
is very recent (1976). It was further developed by Rivest, Shamir, and
Adleman with the RSA cryptosystem (1978). It is not known how secure
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any of these systems are. The trapdoor knapsack cryptosystem, developed
by Merkle and Hellman, has been broken. It is still an open question whether
or not the RSA system can be broken. As of 2014, 360-digit numbers have
been factored–in practice, RSA keys of more than 1000 digits may be used.

There’s been a great deal of controversy about research in cryptography
in recent times: the National Security Agency would like to keep information
about cryptography secret, whereas the academic community has fought for
the right to publish basic research. What’s not controversial is that cryp-
tography has come a long way since 1929, when Henry Stimson, Secretary
of State under Herbert Hoover, dismissed the Black Chamber (the State
Department’s cryptography division) in 1929 on the ethical grounds that
“gentlemen do not read each other’s mail.” △
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https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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9.5 Hints for “Applications (I): Introduction to
Cryptography” exercises

Exercise 9.2.23: Prove by contradiction. If A has an inverse, then there
exists a matrix B such that AB = I. Take the determinant of this equation,
and show that it produces a contradiction to the fact that (a⊙ d)⊖ (b⊙ c)
has no inverse.

Exercise 9.3.2: It is possible to list all of the numbers between 1 and pq
which are not relatively prime to pq.

Exercise 9.3.3(c): Remember your exponent rules!

Exercise 9.3.9: Consider the case where n is the product of two equal factors:
n = a · a. Then how large must a be? Compare this with the general case
where n is the product of two unequal factors: n = xy. Show that the
smaller of these two factors must be smaller than a.

Exercise 9.3.11: Suppose n = ab. Choose a to be the smaller factor. Write
a = x − y and b = x + y, and solve for x and y. To finish the proof, you
need to prove that x and y must both be integers.

Exercise 9.3.12: Solve for x. What value of y makes x as small as possible?

Exercise 9.3.13(a): Prove by contradiction. (b): Write m = 2k+1. (d): Use
part (c), part (b), and the distributive law. (e): This is similar to part(b).
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9.6 Study guide for “Applications (I): Introduc-
tion to Cryptography” chapter

Section 9.2, Private key cryptography

Concepts:

1. Shift codes (monoalphabetic cryptosystem – one-to-one substitution)

2. Affine codes (monoalphabetic cryptosystem – one-to-one substitution)

3. Affine codes (polyalphabetic cryptosystem – ciphertext represents more
than one letter)

4. Modular matrix multiplication

5. Matrix inverses in Zn

Competencies

1. Know how to encode and decode using the shift code method. (9.2.2,
9.2.3, 9.2.6, 9.2.7)

2. Be able to find the decoding function when given a valid encoding
affine function. (9.2.10, 9.2.13)

3. Be able to solve modular matrix multiplication. (9.2.20)

4. Be able to find matrix inverses in Zn, when they exist. (9.2.24)

Section 9.3, Public key cryptography

Concepts:

1. RSA cryptosystem (more advanced encryption system: uses modular
exponentiation to encrypt and decrypt messages)

2. Binary expansion (like decimal expansion, except it uses base 2 instead
of base 10)

3. Identifying prime numbers by brute force (Euler totient function and
sieve of Eratosthenes)

https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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4. Identifying prime numbers by Fermat’s test for primality (Fermat’s
factorization algorithm)

5. Pseudoprime numbers

Key formulas

1. Fermat’s factorization algorithm: If n is an odd composite number,
then n = x2 − y2 = (x− y)(x+ y) for some x and y

2. Pseudoprime formula: the odd number n is a pseudoprime base b if
mod(bn−1, n) = 1

Competencies

1. Compute binary expansion of exponent, either by hand (9.3.3) or by
spreadsheet (9.3.4).

2. Using binary expansion of exponent to rapidly compute modular ex-
ponentials by spreadsheet. (9.3.3, 9.3.4)

3. Given a base, encoding (decoding) key, and message, encrypt (decrypt)
RSA messages. (9.3.5, 9.3.6)

4. Given a base and encoding (or decoding) key, use brute force method
by spreadsheet to find the corresponding decoding (or encoding) key.
(9.3.9)

5. Use Fermat’s factoring method by spreadsheet to factor large numbers.
(9.3.15)

6. Determine if a number is pseudoprime relative to a given base. (9.3.17)
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Sigma Notation

We’re about to start looking at polynomials, which means we’ll be working
with sums of terms–sometimes many terms. Such sums are often written
using a special notation known as “sigma notation”. It’s possible that you
are already a master of sigma notation. If not, you can brush up with the
material in this section. (At very least, you should try some of the exercises
to make sure that you haven’t gotten rusty.)

David Weathers wrote the original version of Sections 10.1-10.4. Johnny
Watts started Sections 11.1-10.5, while Rachel McCoy made significant im-
provements to Section 10.5.

10.1 Lots of examples

In mathematics one often encounters sums everywhere. Sometimes these
sums have very few terms, but occasionally the sums can reach hundreds,
thousands or even an infinite number of terms. In these cases, rather than
listing each and every term or listing the first several terms and assuming the
pattern is obvious, one can represent a sum using summation notation ,
often referred to as sigma notation .

Sigma notation has four main parts: the index variable, the starting
value, the final value and the formula. These parts are illustrated in the
following example.

Example 10.1.1. Consider:

10∑
i=1

(i+ 2)

302
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In this case, the Σ symbol lets us know that this is a sum. The i = 1
serves two functions. It tells us that the index variable is i, and that i has
a starting value of 1. The 10 is the final value, and the (i+ 2) to the right
of the Σ is the formula. The i in the formula, takes each integer value from
the starting value (1) to the final value (10). Therefore we have:

10∑
i=1

(i+ 2) = 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 75.

♦

This notation has a lot of flexibility. For example, the sum’s formula can
be a constant value:

10∑
i=1

5 = 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 50.

Or we could have the index as an exponent:

10∑
i=1

(2i) = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

Now all the examples so far have a numerical value that can be calculated.
However, summation notation can also be used to express functions of vari-
ables such as:

10∑
i=1

(xi) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

Note that any variables in the formula that do not match the index are left
as variables (such as x in the previous example). While we do not know
what the sum value is other than in terms of x, we can much more concisely
state the sum in sigma notation.

Another typical use for the index in the formula is to denote an index in
a coefficient. Consider the polynomial:

ax2 + bx+ c.

Instead of using a different letter, we can use a subscript to denote a different
value but use the same letter:

a2x
2 + a1x+ a0.

https://www.youtube.com/watch?v=W9VTSHE5SJE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=43
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And when we use subscripts, we can use the index in the formula to denote
that subscript.

2∑
i=0

aix
i

Changing the starting and/or final values does not affect the pattern of
the formula, but it does change the number of terms and any index values
used in that formula. Take one of the previous examples:

10∑
i=1

i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

If we were to change the i = 1 to i = 4 then the sum would lose terms 1,2,3:

10∑
i=4

i = 4 + 5 + 6 + 7 + 8 + 9 + 10

Likewise, if we were to also change the 10 to 6, it would lose the terms 10,9,8
and 7;

6∑
i=4

i = 4 + 5 + 6.

Exercise 10.1.2. Evaluate the following:

(a)

400∑
i=0

2

(b)

20∑
j=17

2j2 − j

(c)

4∑
k=0

(x2k − k) (Your answer should be in terms of x).

(d)

100∑
k=0

(
1

k + 2
− 1

k + 1

)

♢
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10.2 Algebraic rules for Sigmas

As with any algebraic notation, there are rules that allow us to do algebraic
manipulations with expressions that involve sigmas. In this section, we
explore some of these rules.

10.2.1 Constant multiples, sums, and products of sums

Many of the rules for manipulating sigmas follow from the commutative
law of addition and the associative and distributive laws for addition and
multiplication. To motivate these rules, we will look at simple examples and
then generalize.

Let’s first consider the example:

5∑
i=0

2i

We know this is the sigma notation for 2 · 1+2 · 2+2 · 3+2 · 4+2 · 5. Using
the distributive property of addition and multiplication of integers, we know
this sum is the same as 2 · (1 + 2 + 3 + 4 + 5). Now we convert the sum in
the parenthesis to sigma notation to yield

2 ·
5∑
i=0

i.

The same argument could be used for any sum multiplied by any constant.
We can write this rule as:

b∑
i=a

c · di = c ·
b∑
i=a

di, (10.2.1)

where c denotes an arbitrary constant and di represents the term of the sum
corresponding to index i. Suppose next we take the sum of two sums and
combine them into a single sum using the commutative law:

4∑
i=0

i+

4∑
j=0

2j = (0 + 1 + 2 + 3 + 4) + (20 + 21 + 22 + 23 + 24)

= (0 + 20) + (1 + 21) + (2 + 22) + (3 + 23) + (4 + 24)

=

4∑
i=0

(i+ 2i).
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Applying the same process to an arbitrary sum of two sums gives:

n∑
i=0

xi +
n∑
j=0

yj =
n∑
i=0

(xi + yi) (10.2.2)

Now let’s look at an example of a product of two sums. Using the
commutative law of addition and the distributive law repeatedly, we have:(

4∑
i=1

i

) 3∑
j=1

1

j

 = (1 + 2 + 3 + 4)(1 + 1/2 + 1/3)

= 1(1 + 1/2 + 1/3) + 2(1 + 1/2 + 1/3) + 3(1 + 1/2 + 1/3) + 4(1 + 1/2 + 1/3)

= 1 · 1 + 1 · (1/2) + 1 · (1/3) + 2 · 1 + 2 · (1/2) + 2 · (1/3) + 3 · 1 + 3 · (1/2) + 3 · (1/3)
+ 4 · 1 + 4 · (1/2) + 4 · (1/3).

We see that the product of a sum of 4 terms with a sum of 3 terms gives a
sum of 4 · 3 = 12 terms. Furthermore, the 12 terms consist of all possible
products of (a term from the first sum) times (a term from the second sum).
We introduce the following notation to describe this:(

4∑
i=1

i

) 3∑
j=1

1

j

 =
4∑
i=1

3∑
j=1

i

j
.

We may generalize the above example to the product of two arbitrary sums
as follows: (

n∑
i=1

xi

) m∑
j=1

yj

 =
n∑
i=1

xi
 m∑
j=1

yj


=

n∑
i=1

m∑
j=1

xiyj

(10.2.3)

Exercise 10.2.4. In view of Equation (10.2.2), one might suppose that the
following is true: (

n∑
i=0

xi

)
·

(
n∑
i=0

yi

)
?
=

n∑
i=0

xiyi

(a) Is this statement always true? If not, give an example of sequences {xi}
and {yi} such that the equality does not hold.
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(b) Is this statement ever true? If possible, give an example of sequences
{xi} and {yi} such that the equality does hold.

♢

We may now use Equations (10.2.2) and (10.2.3) to break down compli-
cated multiple sums into simpler parts which may be evaluated more easily:

Exercise 10.2.5. Given that
∑20

i=1 i = 210 and
∑20

i=1 i
2 = 2870, Evaluate

the following double sums:

(a)
20∑
i=1

20∑
j=1

(i+ j)2

(b)
20∑
i=1

20∑
j=1

(i− j)2

(c)
20∑
i=1

20∑
j=1

(3i− 4j)2

♢

10.3 Change of variable and rearrangement of sums

Change of variable (a.k.a. substitution) is an extremely powerful technique
in mathematics. We’ve used change of variable in previous chapters, and
most likely you’ve seen change of variable when doing integrals in calculus.
Change of variable can also be used to simplify sums (in fact, there is a very
close relationship between integrals and sums, so it’s no surprise that the
same techniques are useful in both regimes).

Consider for example the following sum:

7∑
i=2

(i− 1)

https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
https://www.youtube.com/watch?v=cVfYaB4Gn4M&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=44
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If we write this out term by term, we get 1 + 2 + 3 + 4 + 5 + 6 which has a
very easy representation as a sigma, namely

∑6
j=1 j. It follows that

7∑
i=2

(i− 1) =
6∑
j=1

j.

Writing it this way, we can see how we got from one some to the other by
making the replacement j = i − 1. We also had to change the limits of
the sum accordingly (just like you have to change integral limits when you
change variable).

A similar example is:

1

8

9∑
j=5

2j−2 =

9∑
j=5

2j−2 · 2−3

=
9∑
j=5

2j−5.

We may substitute i = j−5. Noticing that j = 5 ⇒ i = 0 and j = 9 ⇒ i = 4,
we obtain

1

8

9∑
j=5

2j−2 =
4∑
i=0

2i.

Exercise 10.3.1. Take the following sigma notation examples and change
the formula and final value so that the starting value becomes 0 and the
sum maintains the same value. Calculate the value of both the listed sum
and the resulting sum to show that the value is the same.

(a)

7∑
i=3

2i

(b)

21∑
j=7

cos(jπ)

(c)

24∑
j=20

(j − 20)
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♢

Breaking up sums and re-indexing can sometimes make things a lot sim-
pler. Consider the following example:

S =
21∑
k=1

cis

(
2πk

20

)
.

Let’s break this up into two sums, from k = 1 to 10 and from k = 11 to 21:

S =

10∑
k=1

cis

(
2πk

20

)
+

21∑
k=11

cis

(
2πk

20

)
.

It would be nice to combine these two sums into one. But to do this, we need
to make the summation limits the same. So we’ll change variable: j = k−10
in the second sum. Then the sum from k = 11 to 21 becomes a sum from
j = 1 to 11:

S =
10∑
k=1

cis

(
2πk

20

)
+

11∑
j=1

cis

(
2π(j + 10)

20

)
.

Now let’s massage the sum over j a little bit. Using the properties of cis,
the summand can be rewritten:

cis

(
2π(j + 10)

20

)
= cis

(
2πj

20
+ π

)
= cis

(
2πj

20
+ π

)
= cis

(
2πj

20

)
cis(π)

= −cis

(
2πj

20

)
.

Furthermore, we don’t change anything if we replace the j with k, since it’s
just a sum index anyway. Making these substitutions, we have:

S =
10∑
k=1

cis

(
2πk

20

)
+

11∑
k=1

−cis

(
2πk

20

)
.

https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
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Now we can split the 11’th term off from the second sum, and combine the
two sums from 1 to 10:

S =
10∑
k=1

cis

(
2πk

20

)
+

10∑
k=1

−cis

(
2πk

20

)
− cis

(
2π · 11
20

)

=

10∑
k=1

(
cis

(
2πk

20

)
− cis

(
2πk

20

))
− cis

(
2π · 11
20

)

=
10∑
k=1

(0)− cis

(
2π · 11
20

)
= −cis

(
2π · 11
20

)
.

= cis
( π
10

)
.

Exercise 10.3.2. By splitting up the sums and rearranging, evaluate the
following sums:

(a)
∑15

k=1 cis
(
πk
7

)
(b)

∑35
k=1 cis

(
πk
9

)
♢

We’ve already seen cases where one sigma is inside another, when taking
the product of two sums. Nested sums like this can often be rearranged to
obtain useful formulas.

Example 10.3.3. Consider the product of the sums
∑2

i=0 3
i and

∑2
j=0 3

−j .
By the distributive law and additive commutivity we have:
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(
2∑
i=0

3i

) 2∑
j=0

3−j

 =
2∑
i=0

3i

 2∑
j=0

3−j


=

2∑
i=0

 2∑
j=0

3i−j


=

2∑
i=0

2∑
j=0

3i−j .

This sum has 9 terms, where each term corresponds to a pair (i, j) as shown
in Figure 10.3.1. These terms can be arranged along diagonal lines (as shown
in the figure) so that all terms on each diagonal have the same value. So we
can add the terms diagonal-by-diagonal as follows:

2∑
i=0

2∑
j=0

3i−j = 3−2 + 2 · 3−1 + 3 · 30 + 2 · 31 + 32

= 1/9 + 2/3 + 3 + 6 + 9

= 18
7

9
.

We may rewrite the five terms on the right in summation notation to obtain
the following equalities:

2∑
i=0

2∑
j=0

3i−j =
3∑

n=1

n33−n +
2∑

n=1

n3n−3

= 3 +

2∑
n=1

n(3n−3 + 33−n)

= 3 +

2∑
m=1

(3−m)(3m + 3m)

♦

https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
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Figure 10.3.1. Grid points corresponding to the terms in the sum:∑2
i=0

∑2
j=0 3

i−j .

Exercise 10.3.4.how that the sum on the right-hand side of the preceding
equation can be written alternatively as:

3∑
n=1

n33−n +
2∑

n=1

n3n−3 = 3 +
2∑

n=1

n(3n−3 + 33−n)

= 3 +

2∑
m=1

(3−m)(3m + 3m).

♢

Exercise 10.3.5. By generalizing the above example, rewrite each of the
following expressions as a product of sums:

(a)
4∑

n=1

n44−n +

3∑
n=1

n4n−4

(b)

11 +

10∑
n=1

(11− n)(5n + 5−n

♢
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The situation becomes interesting when the sum inside depends on the
the index variable of the outside sigma:

3∑
i=0

i∑
j=0

1

Unlike previous double sums, the inside sum will change depending on
what i is. When i = 0 then

∑i
j=0 1 =

∑0
j=0 1 = 1 so 1 would be the first

term in the outside sum. When i = 1 then
∑i

j=0 1 =
∑1

j=0 1 = 1 + 1 = 2
so 2 would be the next term. With each successive term, the inside sum
increases by 1, so the result is 1 + 2 + 3 + 4 = 10.

Note that the index of the outer sum may appear in any or all parts of
the inner sum. Here are some examples:

3∑
i=0

10∑
j=i

1;
3∑
i=0

10i∑
j=1

i;
3∑
i=0

2i∑
j=i

(3i+ xj).

In some cases, nested sums may be simplified by exchanging the order
of summation. Take for example:

2∑
i=0

i∑
j=0

1

The first term has i = 0 and j = 0: we write this as (i, j) = (0, 0). When i =
1, then we have two terms: j = 0 and j = 1. Finally, when i = 2, we have j =
0, 1, or 2. Altogether we have the index pairs: (0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2).
These index pairs may be displayed on a grid, as shown in Figure 10.3.2.

Alternatively, we can arrange these index pairs by j coordinate. When
j is 0, i takes the values (0,1,2); when j is 1, i takes the values of (1,2); and
when j is 2, i takes the value 2. This can be expressed as the sum:

2∑
j=0

2∑
i=j

1

So far our examples have only two sigmas, but it’s quite possible to
have an unlimited number of nested sigmas. For example, with three nested
sigmas we would have grid points in three dimensions. It doesn’t matter
what order you sum the terms in–as long as you include them all!

https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44


314 CHAPTER 10 SIGMA NOTATION

Figure 10.3.2. Grid points corresponding to the terms in the sum:∑2
i=0

∑i
j=0 1.

Exercise 10.3.6. Draw a grid point diagram (similar to Figure 10.3.2) for
each of the following sums. Then use the grid point diagram as a guide to
exchanging the order of summation.

(a)

4∑
i=0

8∑
j=0

i

(b)

3∑
j=0

j+3∑
i=j

(i+ j) (Write as the sum of two summations.)

(c)
7∑

k=0

k∑
i=0

(2i+ 1)

(d)
6∑
i=1

i+1∑
j=i

(i− j) (Write as a nested sum plus two additional terms.)

(e)
5∑
i=1

10∑
j=i

ij

(f)

n∑
i=m

2n∑
j=i

jxi (Write as the sum of two summations.)
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(g)
n∑

i=m

i∑
j=0

(i− j)2 (You may assume m > 0. Write as the sum of two

summations.)

♢

Exercise 10.3.7.

(a) Using a grid point diagram, interchange the order of summation in the
following nested sum:

5∑
k=1

k∑
ℓ=1

(ℓ+ k)

(b) Using a grid point diagram, interchange the order of summation in the
following nested sum:

7∑
i=1

i∑
j=1

ij

(c) Using what you’ve from (a) and (b) above, give a general formula for
intechanging sums of the form:

M∑
m=1

m∑
n=1

f(m,n),

where f(m,n) is an arbitrary expression involving the variables m and
n.

♢

Exercise 10.3.8.

(a) In Exercise 10.3.7, all sums had 1 as lower limit. Repeat the exercise
(parts a,b,c) but use 0 as the lower limit on all sums.

(b) Repeat Exercise 10.3.7 again, but use 2 as the lower limit on all sums.

https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
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(c) Based on what you have learned from (a) and (b), give a general formula
for interchanging the order of summation in the following expression:

b∑
m=a

m∑
n=a

f(m,n),

♢

Exercise 10.3.9. Using exchange of summation and other sum manipula-
tion techniques, find the exact values of the following sums:

(a)
9∑
i=1

7∑
j=1

i(8− j)

(b)
10∑
i=1

10∑
j=1

(j − i)

(c)

10∑
i=1

i∑
j=1

1

11− j

(d)
10∑
i=1

10∑
j=i

i

j(j + 1)

(e)

20∑
i=1

i∑
j=1

i

(400− j2) + j + 20

(*Hint*)

(f)

10∑
i=1

i∑
j=1

(j + i)

♢

10.4 Common Sums

There are several sums, even a few infinite sums, for which the total value
is known. One very basic example is:

k∑
i=1

1.

Exercise 10.4.1. Evaluate the preceding sum. Be careful-the answer is
NOT 1. ♢

Another very useful example is:

https://www.youtube.com/watch?v=i5RI-Ssnwps&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=54
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k∑
i=1

i = 1 + 2 + 3 · · ·+ (k − 1) + k

If one were to take the first term 1 and add it to the last term k, we get
k+1. If we take the second term 2 and add to the second-to-last term k−1
again we get k + 1. This is true for all terms in between. In the case of an
even number of terms (such as 1 + 2+ 3+ 4), the terms split evenly. In the
case of an odd number of terms (such as 1+2+3+4+5+6+7) we have 3
pairs that add to 8 but an additional term in the middle. In either case, we
take the first term add to the last term and multiply that quantity by 1/2
the number of terms. The formula is thus:

k∑
i=1

i =
k(k + 1)

2
.

We can use the same reasoning to arrive at the following formula.

k∑
i=a

i = a+ (a+ 1) + (a+ 2) · · ·+ (k − 1) + k = (k + a)(k − a+ 1)/2,

where a and k are integers and a < k.

Exercise 10.4.2.

(a) Write the sum of odd integers from 2a+ 1 to 2k + 1 in sigma notation.
(Note that every odd number can be expressed as 2n+1, where n is an
integer.)

(b) Give a formula for the sum that you wrote in (a). (Use the same rea-
soning that we used to find sums of consecutive integers.)

(c) Write the sum of even integers from 2a to 2k in sigma notation.

(d) Give a formula for the sum that you wrote in (c).

(e) Write the sum of every 5th integer from a to a+ 5k in sigma notation.

(f) Give a formula for the sum that you wrote in (e).

https://www.youtube.com/watch?v=I5RI-SSNWPS&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=54
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♢

All of the sums in Exercise 10.4.2 have a constant difference between
consecutive terms (this constant difference is also called the step size). The
step sizes for parts (a), (c), and (e) are 2,2, and 5 respectively. Any sum with
a constant step size is called an arithmetic sum : and all arithmetic sums
can be evaluated using the same technique that was used in parts (b),(d),
and (f) of the exercise.

Geometric sums are defined as the sum of non-negative integer powers
of a common base. For example, here is a geometric sum with base 1/2:

n∑
i=0

(
1

2

)i
=

(
1

2

)0

+

(
1

2

)1

+

(
1

2

)2

· · ·+
(
1

2

)n
= 1+

1

2
+

1

4
+

1

8
· · ·+

(
1

2

)n
We can evaluate this sum using an algebraic trick. Let S be the value of
this sum. We can solve for S by multiplying S term-by-term by 1/2 and
subtracting:

S = 1 +
1

2
+ · · ·+ 1

2n
and

1

2
S =

1

2
+ · · ·+ 1

2n+1
,

so that (
S − 1

2
S

)
= 1− 1

2n+1
.

Solving this last equation for S gives:

S =
1− 1

2n+1

1− 1
2

.

This same technique can be used to prove the formula for a great variety
of geometric sums, as we show in the following exercise.

Exercise 10.4.3.

(a) Let

S =
n∑
i=0

ari,

where both a and r are complex numbers, and n is a positive integer.
Use the “sum subtraction” technique (used above for the geometric sum
with base 1/2) to derive the the following general formula:

n∑
i=0

ari = a
1− rn+1

1− r
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(Note the formula can also be written:
∑n

i=0 ar
i = a

rn+1 − 1

r − 1
.)

(b) Unfortunately, there is one value of r where the above formula doesn’t
work. What is this uncooperative value of r, and what is the correct
formula in this case?

♢

Exercise 10.4.4.

(a) Evaluate
∑10

n=0

(
4
5

)n
.

(b) Evaluate
∑100

n=0

(
4
5

)n
.

(c) Evaluate
∑1000

n=0

(
4
5

)n
.

(d) What do you think happen when the upper limit of the sum gets arbi-
trarily large?

♢

Exercise 10.4.5. Use “sum subtraction” to obtain a general formula for
the following sum:

S =
n∑

k=m

w · zk,

Where m,n are arbitrary integers (m < n) and w, z are arbitrary complex
numbers. ♢

Exercise 10.4.6.

(a) Let z = cis(2π/3). Evaluate
∑3

n=1 z
n.

(b) Let z = cis(2π/10). Evaluate
∑5

n=−4 z
n.

(c) Let z = cis(2π/13). Evaluate
∑14

n=2 z
n.

(d) Write down an equation that generalizes the results of parts (a),(b),(c).
Prove your equation.

https://www.youtube.com/watch?v=I5RI-SSNWPS&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=54
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♢

Some sums can be evaluated by grouping terms together to partially
cancel out. Two examples are:

1−2+3−4+. . .−1000 = (1−2)+(3−4)+. . .+(999−1000) = (−1)+(−1)+. . .+(−1) = −500.

1− 4 + 9− 16 + 25− 36 + . . .+ 492 = 1 + (−4 + 9) + (−16 + 25) + . . .+ (−482 + 492)

= 1 + 5 + 9 + . . .+ 97

= (1 + 4 · 0) + (1 + 4 · 1) + . . .+ (1 + 4 · 24)
= (1 + . . .+ 1) + 4 · (0 + 1 + . . .+ 24)

= 24 + 4 · (24 + 1)
24

2
= 24 + 1200 = 1224.

In calculus you saw (or will see) sums that have an infinite number of
terms, otherwise known as infinite series. Some examples include:

ex =

∞∑
i=0

xi

i!
= 1 +

x1

1!
+
x2

2!
+
x3

3!
· · ·

sin(x) =

∞∑
i=0

(−1)ix2i+1

(2i+ 1)!
=
x1

1!
− x3

3!
+
x5

5!
· · ·

Although we won’t be talking about infinite series, the same summation
notation that we’ve been using also applies to sums with an infinite number
of terms.

10.5 Summation by parts

Those who have studied integrals in calculus may be familiar with the pro-
cess of integration by parts. This is used when you need to find the integral
of the product of two terms. While this process is used for continuous
situations, there is a version of this process for discrete situations called
summation by parts.

To show how summation by parts works, we’ll look at a particular case.
Consider the following product of sums:(

5∑
n=1

an

)(
5∑

n=1

bn

)
.
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If we broke this up into individual terms, we’d obtain n · n = n2 terms
of the form ajbk. Figure 10.5.1 shows the terms arranged on a grid. We’ve
separated these terms into two parts using a diagonal line, and we’ve further
grouped terms either by row (above the line) or by column (below the line).
You’ll see in a minute why we’ve arranged things like this.

Figure 10.5.1. Arrangements of terms in the product of sums(∑5
n=1 an

)(∑5
n=1 bn

)
.

Now let’s go back and express the sum of all these terms a different way.
We’ll introduce the notation:

Ak =
k∑
j=1

aj and Bk =

k∑
j=1

bj .

Ak and Bk are the kth partial sums for the series
∑
aj and

∑
bj , respec-

tively. The product of sums that we started with can be written succinctly
as A5B5.

We may use this new notation to re-express the grouped terms in the
figure. Consider first the terms below the diagonal line. These terms are
grouped by column, and each group is encircled by an oval:

� The sum of the first oval(column on far left) is: a1b1 = a1B1;
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� The sum of the second oval(column second from the left) is: a2 (b1 + b2) =
a2B2;

� The sum the third oval(column third from the left) is: a3 (b1 + b2 + b3) =
a3B3;

� The sum of the fourth oval(column fourth from left) is: a4 (b1 + b2 + b3 + b4) =
a4B4;

� The sum of the fifth oval(column on the far right) is: a5 (b1 + b2 + b3 + b4 + b5) =
a5B5.

Adding these five sums together accounts for all the terms below the diagonal
line:

a1B1 + a2B2 + . . .+ a5B5 =
5∑

k=1

akBk,

where we’ve used summation notation to make the expression more compact.

Now let’s repeat this process for the horizontal ovals above the diagonal
line:

� The sum for the first oval(bottom row above line) is: a1b2 = A1b2;

� The sum for the second oval( second row from bottom) is: (a1 + a2) b3 =
A2b3;

� The sum for the third oval(second row from the top) is: (a1 + a2 + a3) b4 =
A3b4;

� The sum for the fourth oval(top row) is: (a1 + a2 + a3 + a4) b5 = A4b5.

Adding these five sums together accounts for all the terms below the diagonal
line:

A1b2 + . . .+A4b5 =

5−1∑
k=1

Akbk+1.

Since we’ve now accounted for terms both above and below the line, we
obtain the sum of all terms by adding together:

A5B5 =
5∑

k=1

akBk +
5−1∑
k=1

Akbk+1.
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By rearranging this equation, we find:

5∑
k=1

akBk = A5B5 −
5−1∑
k=1

Akbk+1.

There’s really nothing special about the number ‘5’ in our above expression–
we just chose it because this was a relatively simple case that we could
illustrate. To get the general formula, we simply replace ’5’ with ’n’:

n∑
k=1

akBk = AnBn −
n−1∑
k=1

Akbk+1.

Notice the striking similarity between this formula and the formula for in-
tegration by parts: ∫ b

a
udv = uv|ba −

∫ b

a
vdu.

The resemblance makes a lot of sense, since integration is essentially a kind
of summation (more precisely, a summation taken to a limit.)

Now let’s look at some examples to see how we can make use of this
formula.

Example 10.5.1. Evaluate
∑n

k=1 2
k−1k.

In order to use the summation by parts formula, we need to define ak
and Bk so that the summand 2k−1k is the product of ak and Bk. Just as
in integration by parts, we want to make our choice based on what makes
the calculations easiest. Note that Bk is a partial sum of k terms, and
that k = 1 + . . . + 1. So it’s natural to choose Bk = k, which means that
ak = 2k−1.

Based on our choice of Bk and ak, we can now figure out bk and Ak. As
we noted above, Bk is the sum of k 1’s, so that bk = 1. This leaves us with
ak = 2k−1, so that

Ak =

k∑
j=1

aj .

As we’ve seen before, we may rewrite this by shifting the starting value of
the index, so that

Ak =
k−1∑
j′=0

2j
′
=

2k − 1

2− 1
= 2k − 1,
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where we’ve used our standard formula for the sum of geometric series.

Summarizing our progress so far, we have:

ak = 2k−1; Bk = k; bk = 1; Ak = 2k − 1.

Plugging the above values into the summation by parts formula, we find:

n∑
k=1

2k−1k = (2n − 1)n−
n−1∑
k=1

(
2k − 1

)
.

The summation on the far right can be evaluated by breaking it into two
separate parts:

n−1∑
k=1

(
2k − 1

)
=

n−1∑
k=1

2k −
n−1∑
k=1

1 = (2n − 1)− (n− 1).

♦

We can put this into our equality and do some further algebraic puttering
to obtain the final result:

n∑
k=1

2k−1k = (2n − 1)n− (2n − 1) + (n− 1)

= 2nn− n− (2n − 1) + (n− 1)

= 2nn− 2n

= 2n(n− 1).

Exercise 10.5.2. Evaluate
∑n

k=1 k
2 by taking Bk = k and ak = k. You will

need the expression for the sum 1 + 2+ . . .+m that we derived previously.
♢

From the preceding examples we may see that Bk = k is a frequent
choice. This is closely related to the fact that u = x is a frequent choice
when applying the integration by parts formula.

Exercise 10.5.3. Prove the following equation using summation by parts:

n∑
k=1

k3 =
n4

4
+
n3

2
+
n2

4



10.5 SUMMATION BY PARTS 325

♢

Exercise 10.5.4.

(a) Evaluate
∑n

k=1 3
kk.

(b) Evaluate
∑n

k=1 3
kk2.

(c) Evaluate
∑7n

k=1 cis(2πk/7) · k.

♢
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Application: Sigma Notation
in Linear Algebra

11.1 Introduction to sigma notation in linear al-
gebra

Linear algebra is the algebra of real space: not just 3-dimensional space,
but n-dimensional generalizations. The important mathematical objects in
linear algebra are vectors and matrices: You may remember that matrices
represent functions (transformations) that act on vectors. Although linear
algebra is a relatively recent field of mathematics (which got its start in
the mid-1800’s), since the advent of computers it has risen to the ‘top of
the heap’ so to speak, so that most modern applications of mathematics to
real-world problems are built on linear algebra.

Sigma notation is a powerful notational tool for expressing relations and
proving identities in linear algebra. In this chapter, we will look at some
of the ways that sigma notation can be used to prove properties of vectors
and matrices in three-dimensional space. These properties are basic to in
the physics of moving objects and fields.

This chapter ties together material from several chapters in the book.
Besides sigma notation, we need concepts from sets, functions, and just a
little bit from permutations (we’ll give the background you need in this
chapter). To understand the chapter, the reader should already have seen
vectors and matrices (up to size 3× 3) and know a little bit about how they
work.

326

https://www.youtube.com/watch?v=M0jHrubtHBA&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=45
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In the following discussions, we will assume that all matrices have real
entries. However, all of the results that we will prove also apply (in some
cases, with slight modifications) for matrices with complex entries, or ma-
trices with entries in Zp.

11.2 Matrix multiplication

It should come as no surprise that summation notation commonly shows
up when working with matrices. In the following discussion, we will follow
the common practice of denoting a matrix with a capital letter in italics,
and the entries of the matrix with the same letter in lowercase. Thus for
example, a2,4 denotes the entry of matrix A in row 2, column 4.

Consider the example of multiplying the 3 × 3 matrix A and the 3 × 2
matrix B.

AB =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 b1,1 b1,2
b2,1 b2,2
b3,1 b3,2



=

 a1,1b1,1 + a1,2b2,1 + a1,3b3,1 a1,1b1,2 + a1,2b2,2 + a1,3b3,2
a2,1b1,1 + a2,2b2,1 + a2,3b3,1 a2,1b1,2 + a2,2b2,2 + a2,3b3,2
a3,1b1,1 + a3,2b2,1 + a3,3b3,1 a3,1b1,2 + a3,2b2,2 + a3,3b3,2


Wouldn’t it be nice if we could shorten that mess? Fortunately we can!

Let the matrix C be the product AB, where A is an m × n matrix and B is
an n × p matrix , which implies that the dimensions of C will be m × p.1

If the row number is given by the first index (in this case i), and the column
number is given by the second index (in this case j), we can write the entries
of C as:

ci,j =

n∑
k=1

ai,kbk,j

Exercise 11.2.1. In the above formula, both i and j are restricted to a
particular range of values. What are the possible values of i and j? ♢

1Remember the requirement for multiplying any two matrices is that the number of
columns of the first must match the number of rows of the second.
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Let’s show how this formula works in a specific case. Suppose A is a
3 × 3 matrix and B is a 3 × 2 matrix as in our previous example, then the
result of the product AB is a 3× 2 matrix that we can call C. Now suppose
we want to find the entry on the third row in the second column of C, then
we would compute:

c3,2 =

3∑
k=1

a3,kbk,2

=a3,1b1,2 + a3,2b2,2 + a3,3b3,2.

Sure enough, when we look at the long version we wrote earlier for the
product AB our result matches the entry on the second row, third column.

The above formula makes it possible to calculate individual matrix ele-
ments, without having to compute the entire matrix.

Exercise 11.2.2.

(a) Let the entries of A be given by ai,j =
√
i+ j for 1 ≤ i, j ≤ 100. Let

C = A ·A (we can also write C = A2). Compute c10,10.

(b) Let the entries of A and B be given by ai,j = (i+ j)2 and bi,j =
1
i+j for

1 ≤ i, j ≤ 27. Let C = A ·B Compute c8,8.

(c) For the matrices A and B in part (b), give a general formula for ck,k, 1 ≤
k ≤ 27 where C = AB.

♢

Exercise 11.2.3.

(a) Let the entries of A and B be given by ai,j = 2i+j and bi,j = 2−(i+j) for
1 ≤ i, j ≤ 50. Let C = AB. Compute c7,11.

(b) Let the entries of A and B be given by ai,j = 3i+j and bi,j = 4−(i+j) for
1 ≤ i, j ≤ 22. Let C = AB. Compute c5,4.

(c) Let the entries of A and B be given by ai,j = ri+j and bi,j = s−(i+j) for
1 ≤ i, j ≤ N , where r and s are arbitrary real numbers. Let C = AB.
Give a general formula for ci,j , 1 ≤ i, j ≤ N . (Note the same formula
works if r and s are taken as complex numbers.)
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♢

Exercise 11.2.4.

(a) Let the entries of A and B be given by ai,j = 2ij and bi,j = 2−ij for
1 ≤ i, j ≤ 20. Let C = AB. Compute c11,11.

(b) For A,B,C as in part (a), compute c9,6.

(c) Let the entries of A and B be given by ai,j = 2ij and bi,j = 2−ij for
1 ≤ i, j ≤ N . Let C = AB. Give a general formula for ci,j that is valid
for any (i, j) with 1 ≤ i, j ≤ N .

(d) Let the entries of A and B be given by ai,j = wij and bi,j = w−ij for
1 ≤ i, j ≤ N , where w is a fixed complex number. Let C = AB Give a
general formula for ci,j that is valid for any (i, j) with 1 ≤ i, j ≤ N .

♢

Exercise 11.2.5.

(a) Let z = cis(π/4), and let the entries of A and B be given by ai,j = zij

and bi,j = z−ij for 1 ≤ i, j ≤ 8. Let C = AB Compute c4,4 and c3,5 .

(b) Let z = cis(2π/N), and let the entries of A and B be given by ai,j = zij

and bi,j = z−ij for 1 ≤ i, j ≤ N . Let C = AB Give a general formula
for ck,k which is valid for all k with 1 ≤ k ≤ N .

(c) Let z = cis(2π/N), and let the entries of A and B be given by ai,j = zij

and bi,j = z−ij for 1 ≤ i, j ≤ N . Let C = AB Give a general formula
for ck+1,k which is valid for all k with 1 ≤ k ≤ N − 1.

♢

Exercise 11.2.6. Given three matrices A,B,C with sizes m×n, n×p, p×q
respectively.

(a) Let D = BC. Write a formula for the entries di,j of D in terms of the
entries of B and C (bi,k and ck,j , respectively).
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(b) Let G = AD. Write a formula for the entries gℓ,j of G in terms of the
entries of A, B and C.

(c) Let H = (AB), and let M = HC. Write a formula for the entries mℓ,j

of M in terms of the entries of A, B and C.

(d) Using parts (b) and (c), show that matrix multiplication is associative.
(*Hint*)

♢

11.3 The identity matrix and the Kronecker delta

The identity matrix I often comes up when working with matrices. You may
remember that an identity matrix has 1’s on its diagonal and 0’s everywhere
else:

I =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 .

Notice that the (i, j) entry lies on the diagonal if and only if its row
index (i) is equal to its column index (j). This pattern is expressed in
summation notation by the so-called Kronecker delta .2 The Kronecker
delta is written as δi,j and takes the following values:

δij =

{
1 if i = j,

0 if i ̸= j.

By comparison with our description of the identity matrix, we may see
that the i, j entry of the identity matrix is equal to δij . We may denote the

2After Leopold Kronecker (1823-1891), a prominent German mathematician who made
many contributions to abstract algebra and number theory. Outside of those areas, he is
most famous for his strong opposition to the theory of transfinite numbers first proposed
by Georg Cantor (1845-1918). Most (but not all) mathematicians today would say that
Cantor was right and Kronecker was wrong. This is a fascinating research topic if you’re
interested in the history of mathematics.
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(i, j) entry of I as [I]i,j), so that:

[I]i,j = δij .

Exercise 11.3.1.

(a) We know that if a matrix B is the inverse of the n×n matrix A then we
have the equations: BA = I and AB = I. Rewrite these matrix equa-
tions in summation notation, making use of the Kronecker delta δij (As
above, denote the (i, j) entries of A and B as ai,j and bi,j respectively.
You will need to choose your indices in order to make the product work
out correctly.)

(b) What matrix equation corresponds to the following system of equations

in summation notation:

n∑
k=1

δikδkj = δij .

♢

It is possible to use the Kronecker delta to define matrices besides the
identity matrix. For example, consider the 4× 4 matrix A with entries ai,j
defined by:

ai,j := δi+1,j , 1 ≤ i, j ≤ 4.

In this case, the entry is 1 if the column index is one greater than the row
index, and 0 otherwise:

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

Exercise 11.3.2. Write out the following matrices:

(a) The matrix C defined by ci,j :=
1

2
(−δi,j+1 + δi,j−1) 1 ≤ i, j ≤ 6.

(b) The matrix D defined by di,j := −2δi,j+ δi+1,j+ δi−1,j , 1 ≤ i, j ≤ 5.

(c) The matrix U defined by ui,j := δi,j−1+2δi,j−2+3δi,j−3, 1 ≤ i, j ≤ 4.



332CHAPTER 11 APPLICATION: SIGMANOTATION IN LINEAR ALGEBRA

(d) The matrix X defined by xi,j := −2δi,j + 2δi,4−j 1 ≤ i, j ≤ 5.

♢

For matrices that are expressable in terms of Kronecker deltas, it is
possible to find matrix products using summation notation.

Example 11.3.3. Let v be the 10× 1 matrix given by

vj,1 = j, j = 1 . . . 10.

(Note that v is essentially a column vector.) Let us compute Cv, where the
matrix C defined by

ci,j :=
1

2
(−δi−1,j + δi+1,j), 1 ≤ i, j ≤ 10.

The summation notation expression for the product is:

[Cv]ij =
10∑
k=1

ci,kvk,j .

The first thing to notice is that the second index j must be 1 since v is a
10× 1 matrix. We may also substitute the expressions for di,k and vk,j and
simplify:

[Cv]i1 =
10∑
k=1

1

2
(−δi−1,j + δi+1,j)k [Definitions of ci,k and vk,1]

= −1

2

10∑
k=1

δi−1,kk +
1

2

10∑
k=1

δi+1,kk [Summation rules]

At this point, we need to think about how the δ’s function within these two
sums. Consider the first sum, namely:

10∑
k=1

δi−1,kk.

For each value of i = 1, ..., 10, this sum will give a different result:

� When i = 1, all terms in the sum are 0, so the result is zero.
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� When i = 2, the only term that contributes is the k = 1 term, since
δ1,k = 0 unless k = 1. So for i = 2, the sum gives 1.

� Similarly when i = 3, ..., 10, the only term that contributes is the
k = i− 1 term, since δ3,k = 0 unless k = i− 1. So the sum gives i− 1
for 2 ≤ i ≤ 10.

We may summarize these findings as follows:

10∑
k=1

δi−1,kk =

{
0 if i = 1

i− 1 if 2 ≤ i ≤ 10.

The second sum may be evaluated similarly: this time, i = 10 is the excep-
tional case:

10∑
k=1

δi+1,kk =

{
i+ 1 if 1 ≤ i ≤ 9

0 if i = 10.

Substituting these expressions into our matrix product formula gives:

[Cv]i1 =


−0

2 + 2
2 = 1 if i = 1

− i−1
2 + i+1

2 = 1 if 2 ≤ i ≤ 9

−9
2 + 0

2 = −4.5 if i = 10.

The result is a 10× 1 column vector with entries all 1, except for a −4.5 in
the 10th entry. ♦

Let’s try another example, this time with two square matrices.

Example 11.3.4. This time we’ll compute the entries of the matrix product
FV , where the entries fij of F and vij of V are given by:

fij := δi+1,j − δi,j ; vi,j := 2i+j , 1 ≤ i, j ≤ 20.
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We may begin once again with the matrix product formula:

[FV ]ij =
20∑
k=1

fikvkj [Matrix mulitplication formula ]

=

20∑
k=1

(δi+1,k − δi,k)2
k+j [Substitution]

=
20∑
k=1

δi+1,k2
k+j − δi,k2

k+j [Substitution]

= 2i+1+j − 2i+j [Select nonzero term in each summation]

= 2i+j(2− 1) [Exponent rules & common factor]

= 2i+j .

The shakiest step in this computation is the one labeled “Select nonzero
term in each summation”, and we should double-check to make sure we did
it right. When i = 1, 2, ..., 19, then it is always true that δi+1,k will be
nonzero for a single value of k between 1 and 20, so the sum over k of δi+1,k

will reduce to a single term. But the case i = 20 is different. In this case,
δ20+1,k is equal to 0 for all values of k between 1 and 20. So we’ll have to
redo the calculation in this case:

20∑
k=1

δ20+1,k2
k+j − δ20,k2

k+j = 0− 22−+j

= −220+j .

This brings us to the final result:

[FV ]ij =

{
2i+j if 1 ≤ i ≤ 19 and 1 ≤ j ≤ 20

−220+j if i = 20 and 1 ≤ j ≤ 20.

♦

Exercise 11.3.5. Let v be the 10 × 1 matrix (a.k.a column vector) given
by: vj,1 = j2, j = 1 . . . 10. Compute Dv, where the entries of D are given
by di,j := −2δi,j + δi+1,j + δi−1,j , 1 ≤ i, j ≤ 10 (The matrix D is an
example of a discrete second derivative matrix .) ♢
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Exercise 11.3.6. Let F and B be the 50× 50 matrices defined by fi, j =
δi+1,j − δi,j , and bi,j = δi,j − δi−1,j , respectively. ( F and B are exam-
ples of forward difference matrix and backward difference matrix ,
respectively.)

(a) Compute FB. Compute BF .

♢

It turns out that matrices defined using Kronecker deltas play a promi-
nent role in numerical analysis, and in particular the numerical solution of
ordinary and partial differential equations.

11.4 Abbreviated matrix notations

In the following discussion, we will be seeing lots of sums involving matrices.
This being the case, it’s worth our while to try to simplify our notation. In
our expression for C = AB, we had:

ci,j =

n∑
k=1

ai,kbk,j

Now, notice that the index k runs over all columns of A and all rows of B
(recall that matrix multiplication is only defined if the number of columns
of A is equal to the number of rows of B). This being the case, we don’t
really need to mention that k runs from 1 to n–we should simply understand
that the index k runs over all possible values. We can therefore convey the
same information by simply writing:

ci,j =
∑
k

ai,kbk,j .

This makes more complicated matrix multiplications much simpler. For
example, if D = (AB)C where A is n× p, B is p× q, and C is q× r instead
of

di,m =

q∑
j=1

(
p∑

k=1

ai,kbk,j

)
cj,m,

we may write

di,m =
∑
j

(∑
k

ai,kbk,j

)
cj,m,
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which further simplifies to

di,m =
∑
j,k

ai,kbk,jcj,m.

We could write either
∑

j,k or
∑

k,j : all possible values of k and j are summed
over, so it doesn’t matter which order we mention the indices.

There is an even more abbreviated notation that is commonly used in
physics, called Einstein notation (yes, it’s that Einstein!) Notice that
in our expression for ci,j , the subscript k is repeated : that is, it appears
as a subscript on ai,k and on bk,j . Similarly, in our expression for di,m the
summed subscripts (j and k) are also repeated: both appear as subscripts
in two terms. The Einstein rule may be summarized as:

Repeated indices are assumed to be summed.

So for example, the expression

di,m =
∑
j

(∑
k

ai,kbk,j

)
cj,m

in Einstein notation simplifies to:

di,m = ai,kbk,jcj,m.

Exercise 11.4.1. Write the following expressions in both abbreviated no-
tations. Note that all indices are summed over the full range of possible
values.

(a)
∑m

i=1

(∑n
j=1

(∑p
k=1 ai,jbj,i

)
ck,k

)
(b)

∑L
ℓ=1

(∑M
m=1

(∑N
n=1 aℓ,mbn,ℓ

)
cm,n

)
♢

Exercise 11.4.2. Suppose A,B,C,D are n × n matrices. Write the com-
plete (unabbreviated) expression corresponding to the following sums in
Einstein notation:
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(a) ai,jak,ℓbp,kbi,ℓ

(b) di,jak,ℓbj,kbi,ℓ

♢

In the following sections we will use the first type of abbreviated notation
(not Einstein notation).

11.5 Matrix transpose and matrix inverse

11.5.1 Matrix transpose

Transpose is another operation on matrices that lends itself to summa-
tion notation. Recall that the transpose of a matrix changes the rows to
columns,so that the first row becomes the first column, the second row be-
comes the second column, and so on. The transpose of matrix A is denoted
as AT. Using indices and recalling that first index is the row and the second
is the column, we can express this as:

[
AT
]
i,j

= [A]j,i ,

that is, the (i, j) entry of AT is equal to the (j, i) entry of A. Since we
typically write the (j, i) entry of A as aj,i, we may also write:[

AT
]
i,j

= aj,i.

Don’t get caught up with the particular indices i and j–the important thing
is that the indices are switched when you take the transpose. For example,
we can also write

[
AT
]
j,i

= ai,j or
[
AT
]
k,m

= am,k.

Now let’s demonstrate the power of our new notation to prove an im-
portant property of transpose:

Proposition 11.5.1. If A and B are matrices such that the matrix product
is defined, then

(AB)T = BTAT.

Proof. We’ll prove this by expressing the (i, j) entry of the left-hand side
in summation notation, doing some algebraic hocus-pocus, and showing that
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it agrees with the (i, j) entry of the right side. First we make things clear by
specifying that A has n columns and B has n rows (these dimensions have
to agree, or the product is not defined). This gives us

[AB]i,j =
∑
k

ai,kbk,j .

(remember that we decided to use abbreviated notation, so we leave off the
summation limits) so the (i, j) entry of the left-hand side is:[

(AB)T
]
i,j

= [AB]j,i =
∑
k

aj,kbk,i.

At this point we can introduce A and B transpose because the j, k entry
of any matrix is the k, j entry of its transpose:

∑
k

aj,kbk,i =
∑
k

[
AT
]
k,j

[
BT
]
i,k.

Since the terms of A and B are being expressed as a summation, they
commute (i.e. order doesn’t matter), which allows us to say (using our
definition of matrix product):

∑
k

[
AT
]
k,j

[
BT
]
i,k

=
∑
k

[
BT
]
i,k

[
AT
]
k,j

=
[
BTAT

]
i,j
,

Voilà, we have the (i, j) entry of the right-hand side, and the proof is
complete. □

Exercise 11.5.2. Give a formula for (ABC)T , and prove your formula
using summation notation. ♢

Exercise 11.5.3. We know that the transpose of a n× n matrix is a n× n
matrix. So we can consider transpose as a function from Mn(R) to Mn(R),
where Mn(R) is the set of n × n matrices with real-number entries. Prove
or disprove the following:

(a) Transpose defines an invertible function from Mn(R) to Mn(R).

(b) Transpose preserves addition, i.e. AT +BT = (A+B)T for any matrices
A,B ∈Mn(R).
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(c) Transpose preserves multiplication, i.e. AT · BT = (A · B)T for any
matrices A,B ∈Mn(R).

♢

11.5.2 Matrix inverse

We can also express matrix inverse equations in summation notation. Recall
that the inverse of a matrix A is a matrix A−1 such that AA−1 = I and
A−1A = I.

Exercise 11.5.4.

(a) Express the equations AA−1 = I and A−1A = I using summation nota-
tion. You may use the notation [A]i,j and [A−1]i,j to express the entries
of the two matrices.

(b) Suppose that A and B are invertible square matrices of the same size
(so that A−1 and B−1 exist and are also of the same size). Prove that
(AB)−1 = B−1A−1.

♢

11.6 Rotation matrices in 3 dimensions

In three-dimensional space, the dot product (or scalar product) of two
vectors v := [v1, v2, v3]

T and w := [w1, w2, w3]
T is defined as

v · w := v1w1 + v2w2 + v3w3 =
∑
j

vjwj ,

where we have made use of summation notation to shorten the expression.
If we also define the length of the vector v (denoted by ||v||) as

∥v∥ := (v · v)1/2,

then we may then write the cosine formula as

cos(θ) =
v · w

∥v∥∥w∥
,
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where θ is the angle between the two vectors v and w. (You may have
encountered this formula in physics class or precalculus.)

Any 3 × 3 matrix A produces a function from three-dimensional space
to itself as follows: given any vector v := [v1, v2, v3]

T, then the image vector
is Av. Using summation notation, we may write:

[Av]i =
∑
j

Aijvj .

Now whenever we move an object in space, to get the new locations
of various points on the object we have to define a function whose domain
and codomain are subsets of R3. If that object is a rigid sphere (like the
earth), and the motion is such that the center of the sphere does not change,
the motion is called a rotation . The function that describes a rotation in
R3 can actually be expressed as a matrix as described above. But not
all 3 × 3 matrices are rotation matrices. They must have some particular
mathematical properties, as described in the next two paragraphs.

First, a rotation matrix R must preserve lengths and angles. In other
words, if v and w are any two 3-d vectors , then ∥Rv∥ = ∥v∥, ∥Rw∥ = ∥v∥,
and furthermore the angle between Rv and Rw must be the same as the
angle between v and w. In view of the cosine formula, this means that the
dot product must be preserved: Rv ·Rw = v ·w. In fact, since vector length
is the square root of a dot product, all of these conditions will be satisfied
as long as

Rv ·Rw = v · w

for any two 3-d vectors v and w.

Another important property of rotation matrices is that they preserve
handedness. Handedness in three dimensions is defined as follows. Suppose
you have three mutually perpendicular unit vectors (u, v, w) in R3 (note
the order of the three vectors is important). Point your index finger in the
direction of u, and simultaneously point your thumb in the direction of w
(make sure you’re using your right hand!). Now without moving your thumb
or index finger try to line up your middle finger with the direction of v. If
you are able to do so, then (u, v, w) determines a right-handed coordinate
system. If on the other hand your middle finger can only point in the −v
direction, then u, v, w determines a left-handed coordinate system. Note
that the handedness of a set of vectors depends on how you represent them
in space.
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Exercise 11.6.1.

(a) Draw a set of x, y, and z axes so that the vectors ([1, 0, 0]T, [0, 1, 0]T,
[0, 0, 1]T) form a right-handed system.

(b) Draw a set of x, y, and z axes so that the vectors ([1, 0, 0]T, [0, 1, 0]T,
[0, 0, 1]T) form a left-handed system.

♢

When we say that any rotation matrix R preserves handedness, we mean
that the handedness of three vectors (u, v, w) is the same as the handedness
of the three vectors (Ru,Rv,Rw). So for example, if you draw your co-
ordinate system so that the unit x, y, and z ([1, 0, 0]T, [0, 1, 0]T, [0, 0, 1]T)
form a right-handed coordinate system, then the image vectors {R[1, 0, 0]T,
R[0, 1, 0]T, R[0, 0, 1]T} must also form a right-handed coordinate system.

It turns out that this second condition is mathematically equivalent to
the condition that the determinant of R is positive, i.e. det(R) ≥ 0. We
won’t prove this, but we can give a few examples to show that it is reason-
able. Consider the 3 × 3 matrix −I, which has determinant equal to −1.
This matrix will map the x, y, and z axes to the −x, −y, and −z axes
respectively. By using the right-hand rule, you may verify that if the x, y,
and z axes form a right-handed coordinate system, then the −x, −y, and
−z axes form a left-handed coordinate system.

The following exercise gives some other examples of matrices R with
det(R) < 0 which do not preserve handedness.

Exercise 11.6.2.

(a) Find a matrix R which maps the unit vectors along the x, y, and z axes
to the unit vectors along the −x, y, and z axes respectively. What’s its
determinant?

(b) Show that the function defined in (a) maps a right-handed coordinate
system to a left-handed coordinate system.

(c) Repeat parts (a) and (b) for the case where the x, y, and z axes to the
y, x, and z axes respectively.
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♢

So let’s go back to the first condition for rotation matrices, namely that
they preserve inner products: Rv·Rw = v·w. Let’s rewrite this in coordinate
notation. First, note that [Rv]k and [Rw]k can be written as

∑
i rkivi and∑

j rkjwj respectively, where rkj is the (k, j) entry of R. Therefore we have:

Rv ·Rw =
∑
k

[Rv]k[Rw]k

=
∑
k

(∑
i

rkivi

)∑
j

rkjwj

]

=
∑
i,j,k

(rkivi)(rkjwj)

=
∑
i,j,k

rkirkjviwj .

Recall our rotation condition: Rv ·Rw = v · w, which must be true for any
two vectors v and w. In summation notation, this becomes:∑

i,j,k

rkirkjviwj =
∑
m

vmwm

Now let’s consider different possibilities for v and w. For example we may
let v = w = [1, 0, 0]T. this means that vi = δi1 and wj = δj1, where δ is our
old friend the Kronecker delta. Plugging this into our summation notation
expression gives: ∑

i,j,k

rkirkjδi1δj1 =
∑
m

δm1δm1.

Because of the δ’s, when we sum over i, j, and m the only terms that con-
tribute will be i = j = m = 1. In summary, we obtain:∑

k

rk1rk1 = 1.

Using this strategy, we can obtain a whole bunch of identities:

Exercise 11.6.3.

(a) Repeat the foregoing argument with v = [1, 0, 0] and w = [0, 1, 0] (i.e.
plug these two vectors into the rotation condition). Show how this gives
you the value of

∑
i,j,k rk1rk2.
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(b) We may generalize the argument in (a) by choosing v and w to be
all different possible combinations of the different coordinate vectors
{[1, 0, 0], [0, 1, 0], [0, 0, 1]}. To do this, you may express v as vk = δki
and w as wk = δkj , where i and j are both from the set {1, 2, 3}. By
using these replacements into the rotation condition, show that if R is
a rotation matrix then ∑

k

rkirkj = δij .

(c) Show the converse of (a), namely: given that∑
k

rkirkj = δij ,

show that ∑
i,j,k

rkirkjviwj =
∑
m

vmwm

for all v, w.

(d) Show that the expression
∑

k rkirkj = δij can be rewritten in matrix
form as:

RTR = I.

♢

We summarize these results in a proposition:

Proposition 11.6.4. A 3 × 3 matrix R is a rotation matrix if and only if
det(R) > 0 and RTR = I.

We will pick up on rotation matrices in Section 11.8.2 when we talk about
determinants, and again in Section 11.8.5 when we prove Euler’s rotation
theorem.

11.7 Matrix traces

Another cool application of summation notation with matrices is to prove
things about the trace of a matrix. The trace only applies to square matrices
(equal number of rows and columns) and is the sum of all the entries on
the diagonal–that is, the sum of all entries with the same column and row
number. In summation notation, the trace of an n× n matrix as:
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Tr (A) = a1,1 + a2,2 + . . .+ an,n =
∑
i

ai,i

This time we are using the index i for both the row position and the column
position, so its the position of the index that denotes row and column. The
formula for the product used two different letters for the indices because
they were not always equal, but for trace the row and column number will
always be equal, so we only need one letter.

The next exercise covers some basic properties of traces:

Exercise 11.7.1.

(a) Prove that if A and B are square matrices of the same size, then
Tr (A+B) = Tr (A) + Tr (B).

(b) Prove that if A is a square matrix with real entries and k is a real
number, then Tr (kA) = kTr (A).

♢

In the above exercise, we have considered the trace of the sum of two
matrices. Now we consider the trace of the product of two matrices. To this
end, let A and B be a n× n matrices. So first we have:

Tr (AB) =
∑
i

[AB]i,i =
∑
i

(∑
k

ai,kbk,i

)
=
∑
i,k

ai,kbk,i.

All we’ve done here is take the matrix product formula, and set the
second index of the second matrix entry equal to first index of the first
matrix entry. Now to make things interesting, let’s find the trace for the
reverse order:

Tr (BA) =
∑
i

[BA]i,i =
∑
i

(∑
k

bi,kak,i

)
=
∑
i,k

ak,ibi,k.

Let’s play with this last equation a bit. As we mentioned before, we
can change the sum over i, k to a sum over i, k without changing anything.
Furthermore, since bi,k and ak,i are numbers, they commute under multipli-
cation:
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Tr (BA) =
∑
i,k

bi,kak,i =
∑
k,i

ak,ibi,k.

Finally, we rename the indices by changing k to i and i to k. (Remember,
it’s the positions of the indices that are important, not the letters we call
them by!) After renaming, we get:

Tr (BA) =
∑
i,k

ai,kbk,i,

which agrees with our original expression for Tr(AB).

Exercise 11.7.2. In the above proof that Tr(AB) = Tr(BA), we assumed
that both A and B were square matrices. Show that the formula is still
true when A is a m× n matrix and B is a n×m matrix. (Notice that AB
and BA are both square matrices, so that Tr (AB) and Tr (BA) are both
well-defined.) ♢

Exercise 11.7.3. Show that Tr(ABC) = Tr(CAB), as long as the di-
mensions of A,B,C are such that the products are well-defined. (*Hint*)
♢

Exercise 11.7.4. Show that

Tr(ABCD) = Tr(DABC) = Tr(CDAB) = Tr(BCDA),

as long as the matrices have dimensions so that all of these products are
defined. Notice that all of these arrangements of the matrices A,B,C,D
are cyclic rearrangements of each other (i.e. it’s as if the A,B,C,D are
written on a clock face, and are always read around clockwise) (we will have
a lot more to say about cyclic rearrangements (a.k.a cyclic permutations) in
Chapter 14.) ♢

Exercise 11.7.5. In linear algebra, given two n× n matrices A and B we
say that A is similar to B if there exists an invertible matrix S such that
B = S−1AS.

(a) Prove that if A is similar to B, then B is similar to A. (*Hint*)
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(b) Prove that if A is similar to B, then Tr(A) = Tr(B). (*Hint*)

♢

Exercise 11.7.6. Let A be a n×n diagonal matrix with positive entries, so
that the entries of A are given by: [A]i,j = aiδij where ai > 0, i = 1, . . . , n.
Define the matrix logA as follows: [logA]i,j = log(ai)δij , where log refers to
natural logarithm. Show that:

Tr(logA) = log(detA).

(Remember that the determinant of a diagonal matrix is the product of the
entries on the diagonal.) This formula is actually quite general, and applies
to many non-diagonal matrices as well, as long as logA is properly defined.
3 ♢

11.8 Levi-Civita symbols and applications

11.8.1 Levi-Civita symbols: definitions and examples

When dealing with vectors and matrices in physics, one often finds lurking
the Levi-Civita symbol,4 which is written as an epsilon (the Greek letter ϵ)
with various numbers of subscripts. The possible values it can take are 1, -1,
or 0, depending on the values of the subscripts (we refer to these subscripts
as “indices”). This might not seem too useful since it can only take three
different values, but you will see that it does a great job of simplifying
expressions that ordinarily would be much more complicated.

For an epsilon with two indices (written as ϵij), each index can be either
1 or 2. The different values that ϵij can take are:

ϵij =


1 if i = 1, j = 2,

−1 if i = 2, j = 1,

0 if i = j.

3In some cases, the formula can be used to estimate the determinants of very large
matrices: see http://arxiv.org/pdf/hep-lat/9707001.

4Levi-Civita actually refers to one person, not two: the Italian mathematician Tullio
Levi-Civita, (1873-1941), who worked on mathematical physics (including relativity).

http://arxiv.org/pdf/hep-lat/9707001
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For an epsilon with three indices, each index can be either 1,2,or 3. The
values of ϵijk are:

ϵijk =


1 where (i, j, k) = (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 where (i, j, k) = (2, 1, 3), (1, 3, 2), or (3, 2, 1),

0 where i = j, i = k, or j = k, i.e., if any index is repeated.

What’s the rule behind this definition? The six possible rearrangements
of (1, 2, 3) in the definition of ϵijk are called permutations. We will be
studying permutations in detail in Chapter 14–but for now, we may simply
think of them as rearrangements of the integers 1, 2, . . . n (in this particular
case, we have n = 3. The three arrangements (2, 1, 3), (1, 3, 2), and (3, 2, 1)
can all be obtained from (1, 2, 3) by a single exchange of two numbers. For
example, (2, 1, 3) is obtained from (1, 2, 3) by exchanging 1 ↔ 2; and the
other two rearrangements exchange 2 ↔ 3 and 1 ↔ 3 respectively. On the
other hand, to get (2, 3, 1) or (3, 1, 2) from (1, 2, 3) requires two exchanges.
Since the number of exchanges for (2, 1, 3), (1, 3, 2), and (3, 2, 1) is odd, these
are called odd permutations, while the others (including (1, 2, 3) are called
even permutations. So the definition of ϵijk may be summarized as follows:
it’s equal to 1 if (i, j, k) is an even permutation, −1 if (i, j, k) is an odd
permutation, and 0 if (i, j, k) is not a permutation (i.e. there are repeated
indices.

You may wonder, Why this strange definition? We’ll see more reasons
later, but for now we can relate the definition of ϵijk to rotations of the
x, y, z axes in 3-dimensional space. Let’s call these axes 1,2,3 instead of
x, y, z Now, if it is possible to rotate the axes so that 1 moves to 2, 2 moves
to 3, and 3 moves to 1: in other words (1, 2, 3) has moved to (2, 3, 1). It’s also
possible to move (1, 2, 3) to (3, 1, 2). Notice that these two are exactly the
even permutations! On the other hand, it is not possible to move (1, 2, 3) to
(1, 3, 2): To do so would require turning one of the axes around (this is called
a reflection). So the sign of ϵijk distinguishes rotations from reflections.
Besides this geometrical interpretation, we’ll have a lot more to say about
even and odd permutations in Section 14.6.)

We may simplify the notation somewhat if we define the sign of a per-
mutation as follows:

sign(σ) =

{
1 if σ is an even permutation,

−1 if σ is an even permutation.
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We may then concisely express the general definition of the Levi-Civita
symbol with n indices as:

ϵi1i2i3...in =

{
sign (i1, i2, . . . in) if no indices are repeated,

0 if any index is repeated.

The symbol with n indices is sometimes called an n-dimensional Levi-
Civita symbol: for instance, ϵijk is a 3-dimensional Levi-Civita symbol. The
reason for this is that most often they are used with vector spaces that have
the same dimension as the number of indices in the symbol. So the Levi-
Civita symbol with three indices, ϵijk is most useful in three dimensions, as
we’ll see shortly.

Exercise 11.8.1. Using the general definition of the Levi-Civita symbol,
show that:

(a)
∑
i,j

ϵijδij = 0

(b) ϵi1i2...inδijik = 0 for any j, k such that 1 ≤ j < k ≤ n,

(c) ϵijk = ϵjki = ϵkij .

♢

In the Set Theory chapter you saw the formula:

|A ∪B| = |A|+ |B| − |A ∩B|.

This means that you may count all the elements contained in set A or
set B by counting the elements in A and B separately, then subtracting
their intersection. You have to subtract the intersection because the overlap
between A and B gets counted twice in the separate counts of A and B.
(Think of a set diagram, where A and B are represented by intersecting
circles.) When we split up summations depending on whether indices are
equal or unequal, we have to add and subtract in a similar way. We can
prove this using Levi-Civita symbols.

Exercise 11.8.2.
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(a) Show that for any values i, j, k ∈ {1, 2, 3}, it is always true that

1 = |ϵijk|+ δij + δjk + δik − 2δijδik

(*Hint*).

(b) Show that∑
i,j,k

ai,j,k =
∑

i,j,k all unequal

ai,j,k+
∑
i,k

ai,i,k+
∑
i,j

ai,j,j+
∑
j,k

ak,j,k−2
∑
i

ai,i,i.

(*Hint*)

♢

11.8.2 Levi-Civita symbols and determinants

Now that we’ve defined Levi-Civita symbols, we can actually use them for
something! The first application we’ll look at is determinants. Suppose you
have a 2× 2 matrix A:

A =

(
a11 a12
a21 a22

)
(Note that previously we separated multiple subscripts with a comma, e.g.
ai,j : but from now on we’ll leave out the comma (e.g. aij), which is the way
most math books do it.)

Then the determinant is:

det(A) =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

We can write this using the Levi-Civita symbol as:

detA =
∑
i,j

ϵija1ia2j
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Let’s check this by evaluating the double sum. Remember that in this
case, both i and j run from 1 to 2

detA =
∑
i,j

ϵija1ia2j

=
∑
i

∑
j

ϵija1ia2j


=
∑
i

(ϵi1a1ia21 + ϵi2a1ia22)

=ϵ11a11a21 + ϵ12a11a22 + ϵ21a12a21 + ϵ22a12a22

Looking at the definition, we know that ϵ11 and ϵ22 equals zero, so the
leftmost and rightmost terms go to zero. For the remaining terms we have
ϵ12 which equals 1, and ϵ21 which equals -1. So we’re left with:

detA = a11a22 − a12a21,

which is exactly the definition you learned in linear algebra.

The natural generalization to a 3× 3 matrix as:

detA =
∑
i,j,k

ϵijka1ia2ja3k.

Exercise 11.8.3. Show that the above formula using ϵijk does agree with
the determinant that you obtain from row (or column) expansion. ♢

Exercise 11.8.4. There is a formula for the determinant of a n× n matrix
in terms of an n-index Levi-Civita symbol. Guess what the formula should
be (you don’t need to prove it). ♢

Based on our definition of the Levi-Civita symbol ϵijk in terms of the
sign of the permutation (i, j, k), we can also write the formula for a 3 × 3
determinant as:

detA =
∑

permutations ϕ

sign(ϕ) · a1ϕ(1)a2ϕ(2)a3ϕ(3).
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Exercise 11.8.5. Use this formula to prove that the determinant of any
3× 3 square matrix A is equal to the determinant of its transpose. That is,

detA = detAT

(*Hint*) ♢

An important concept to keep in mind when dealing with these Levi-
Civita symbols is what they mean based on when indices are equal or un-
equal, and how that relates to permutations. To see how this works, let’s
look at a proof to show that if any two rows in a 3× 3 matrix are equal, the
determinant is 0. Based on our definition we start out with:

detA =
∑
i,j,k

ϵijka1ia2ja3k

We want to show what happens when any two rows are equal, so let’s do
one case where row 1 equals row 2. In that case a2j = a1j . That means we
can rewrite our determinant as:

detA =
∑
i,j,k

ϵijka1ia1ja3k

Now the letters i, j, k are just “dummy indices” or placeholders, so we can
replace them with any letters we want. So we can replace i with j and
vice-versa without changing the value:

detA =
∑
j,i,k

ϵjika1ja1ia3k

Now remember what we discussed earlier, if you interchange two indices
(that is, an odd permutation) of ϵijk, you get its negative, so ϵjik = −ϵijk.
Furthermore, We can replace

∑
j,i,k with

∑
i,j,k because the order of sum-

mation doesn’t matter. This gives us

detA =
∑
i,j,k

−ϵijka1ja1ia3k,

Hey, whaddya know: this is exactly equal to the negative of our original
expression for detA! There’s only one way that a number can be its own
negative–the number must be zero. We conclude that if the first row is the
same as the second row in a 3× 3 matrix, the determinant is always zero.

Exercise 11.8.6.
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(a) We showed that if the first and second row of a 3×3 matrix is the same,
the determinant is zero. Now finish the proof that the determinant of a
3× 3 matrix is always zero if any two rows are the same; that is, prove
it for the remaining cases.

(b) Show that any 3 × 3 matrix which has two columns equal also has de-
terminant equal to 0.

♢

We can take the notion of equal and unequal indices as step farther
by proving that the determinant of a product of two matrices is equal to
the product of their determinants. Let’s start with a simple 2 × 2 matrix.
If matrices A and B are both 2 × 2, we want to prove that det(AB) =
detAdetB. We can write det(AB) as:

det(AB) =
∑
x,y

ϵxy[AB]1x[AB]2y

Based on what we learned on how to represent products in terms of sum-
mation symbols, we can expand this as:

det(AB) =
∑
x,y

ϵxy

∑
i

a1ibix
∑
j

a2jbjy


=
∑
x,y

ϵxy

∑
i,j

a1ia2jbixbjy


=
∑
i,j

a1ia2j

[∑
x,y

ϵxybixbjy

]
,

where in the last equality we have exchanged the order of summation.

At this point we can now consider the product of two possibilities for
our indices, one where i = j and another where i ̸= j:

det(AB) =
∑
i=j

(. . .) +
∑
i ̸=j

(. . .).

Of the two sums on the right-hand side, the first makes zero contribution:

Exercise 11.8.7. Given that i = j, show that
∑

x,y ϵxybixbjy is equal to 0.
Use this to show that the first summation in the square brackets makes zero
contribution. (*Hint*) ♢
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Since we can ignore the case where i = j, let us look at the case where
i ̸= j. There are actually two cases: i = 1, j = 2 and i = 2, j = 1. Notice
that: ∑

x,y

ϵxybixbjy =
∑
x,y

ϵxyb1xb2y when i = 1, j = 2;∑
x,y

ϵxybixbjy = −
∑
x,y

ϵxyb1xb2y when i = 2, j = 1.

These two cases can be summarized as:∑
x,y

ϵxybixbjy =
∑
x,y

ϵxyϵijb1xb2y.

This gives us:

∑
i,j

a1ia2j

[∑
x,y

ϵxybixbjy

]
=
∑
i,j

a1ia2j

[∑
x,y

ϵxyϵijb1xb2y

]

=

∑
i,j

ϵija1ia2j

(∑
x,y

ϵxyb1xb2y

)
,

where in the second line we have noticed that the terms with x, y in the
RHS of the first line can be separated from the terms with i, j. At this
point we are just about done, since we may recognize the two terms in this
final expression as detA and detB, respectively. Since the original expression
we started with was det(AB), we have:

det(AB) = detAdetB.

This proof as it stands only works for 2 × 2 matrices, but it turns out
that a similar proof works for n × n matrices. A key step in the proof was
the identity: ∑

x,y

ϵxybixbjy =
∑
x,y

ϵxyϵijb1xb2y,

which held whenever i, j ∈ {1, 2} and i ̸= j. A similar equality holds in the
3× 3 case (and indeed in the n× n case).

Exercise 11.8.8.
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(a) Show that ∑
x,y,z

ϵxyzbixbjybkz =
∑
x,y,z

ϵxyzϵijkb1xb2yb3z,

whenever i, j, k ∈ {1, 2, 3}. (*Hint*)

(b) Give a complete proof of det(AB) = detAdetB for the case where A
and B are 3× 3 matrices.

♢

We may use some of the facts which we’ve established in this section to
prove some important properties of rotation matrices.

Exercise 11.8.9. Recall from Section 11.6 that a rotation matrix R must
satisfy RTR = I and detR ≥ 0.

(a) Using Exercise 11.8.5 and the determinant product formula detAdetB =
det(AB), show that detR = 1 and detRT = 1.

(b) Since detR = 1 it follows that R ∈ SL3(R) and hence R is invertible.
Use this fact to show that RT = R−1.

♢

The results of the previous exercise are important, so we’ll restate them
as a proposition.

Proposition 11.8.10. For any rotation matrix R, detR = 1 and RT =
R−1.

11.8.3 Levi-Civita symbols and cross products

You may have seen the formula for the cross product of two vectors in
vector calculus, or college physics. Given two three-dimensional vectors
a = (a1, a2, a3) and b = (b1, b2, b3), the cross product of a and b can be
expressed as (note that the absolute value brackets in the formula indicate
that it’s a determinant and not a matrix.)
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a× b =

∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ ,
where e1, e2, e3 are the vectors along the x, y, and z directions in R3 (some-
times they’re written as i, j,k instead).

It may seem strange that the matrix we’re taking the determinant of
has some entries that are vectors, and some entries that are numbers. But
since we can still do addition and scalar multiplication with vectors, we can
plug the vectors into the determinant formula and still get a result–which
happens to be a vector. (Hey, if it works, don’t knock it!)

For example, suppose we have the vectors:

a = [2 2 4] and b = [−1 2 − 3].

Then the cross product a× b is given by the determinant:

a× b =

∣∣∣∣∣∣
e1 e2 e3
2 2 4
−1 2 −3

∣∣∣∣∣∣ .
Therefore:

a× b =e1

∣∣∣∣ 2 4
2 −3

∣∣∣∣− e2

∣∣∣∣ 2 4
−1 −3

∣∣∣∣+ e3

∣∣∣∣ 2 2
1 2

∣∣∣∣
=− 14e1 + 2e2 + 6e3.

Or we can write the last line in a more familiar fashion:

[−14, 2, 6].

So all we have to do to define a cross product using the Levi-Civita symbol
is to simply plug these terms into the formula for the 3×3 determinant from
earlier:

a× b = detA =

3∑
i=1

3∑
j=1

3∑
k=1

ϵijkeiajbk.

If you compare this formula with our original definition of 3×3 determinant
(just before Exercise 11.8.3), you’ll see that we have dropped the first index
on each term. The reason is that the e terms will always be on the first row,
a on the second, and b on the third.
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We can actually shorten this up a little bit more, by rewriting the formula
to find the ith component of a × b. In other words, we don’t want the
summation of all three ei terms, just one particular ei term. That means
we remove the summation over i, which leaves us with:

(a× b)i =
3∑
j=1

3∑
k=1

ϵijkajbk.

So for example, the first component (intuitively the x component, or as we
would say, the e1 component) is:

(a× b)1 = a2b3 − a3b2.

Exercise 11.8.11. Find the formulas for (a×b)2 and (a×b)3. (There’s an
easy solution if you apply cyclic permutations to the indices in the formula
for (a× b)1. ♢

Exercise 11.8.12. Use the Levi-Civita symbol to find the cross product of
the vectors a = [2, − 3, 2] and b = [1, 4, − 3]. ♢

Exercise 11.8.13. Use the Levi-Civita symbol–based equation for the cross
product to show a× b = −b× a. ♢

In the following discussion, we will be writing many multiple sums in-
volving the indices i, j and k, where each of these indices runs from 1 to 3. It
is convenient to simplify the notation by representing the multiple sum as a
single sum over multiple indices. For instance, with this simplified notation
we may rewrite our expression for a× b as

a× b =
∑
i,j,k

ϵijkeiajbk,

and we may rewrite the expression for (a× b)i as

(a× b)i =
∑
j,k

ϵijkajbk.

Note that we do not bother to indicate that the indices i, j, k run from 1 to
3: this is understood by the nature of ϵijk.
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11.8.4 Proof of the vector BAC-CAB Rule

As another example, suppose we want to prove what is known as the BAC−
CAB rule, which states:

a× (b× c) = b (a · c)− c (a · b) .

We’ll arrive at this formula this by two different routes: the brute-force
method or the symmetry method. Let’s start with the brute force method.

Proof.(1) (brute force method) We can rewrite this using Levi-Civita sym-
bols by using our definition of cross product. First we find the cross product
of b and c:

(b× c)i =
∑
j,k

ϵijkbjck.

The tricky part is taking the cross product of that result with a. Let’s use
d to represent b× c, . Then the first component of d is:

d1 = (b× c)1 = b2c3 − b3c2.

We can find the other components by noting that the indices are cyclic
permutations. Recall that ϵ123 is equivalent to ϵ231 because the cycles (123)
and (231) are equivalent. So to go from d1 to d2, we need an equivalent cycle
that replaces the 1 in the i position (the first position) with a 2. Now the
j position, the second position, would have to be 3, because in this cycle 2
goes to 3, and similarly for the last position it will become a 1. So 1 becomes
2, 2 becomes 3, and 3 becomes 1. Using this replacement we get d2:

d2 = (b× c)2 = b3c1 − b1c3.

The same strategy gives us d3:

d3 = (b× c)3 = b1c2 − b2c1.

By substitution (and some algebraic rearranging) we can find a× d, which
is the same as a× (b× c):

(a× (b× c))1 = (a× d)1 = a2d3 − a3d2 =a2 (b1c2 − b2c1)− a3 (b3c1 − b1c3)

=b1 (a2c2 + a3c3)− c1 (a2b2 + a3b3) .

Again, we can use the strategy of cyclically permuting the indices to easily
find b2 and b3:

(a× (b× c))2 = (a× d)2 = a3d1 − a1d3 =a3 (b2c3 − b3c2)− a1 (b1c2 − b2c1)

=b2 (a3c3 + a1c1)− c2 (a1b1 + a3b3) ,



358CHAPTER 11 APPLICATION: SIGMANOTATION IN LINEAR ALGEBRA

(a× (b× c))3 = (a× d)3 = a1d2 − a2d1 =a1 (b3c1 − b1c3)− a2 (b2c3 − b3c2)

=b3 (a1c1 + a2c2)− c3 (a1b1 + a2b2) .

Recall the definition of dot product in three dimensions:

a · b = a1b1 + a2b2 + a3b3.

Look closely at the first component of our resulting vector:

(a× (b× c))1 = b1 (a2c2 + a3c3)− c1 (a2b2 + a3b3) .

The right hand side is the difference of two terms: b1 (a2c2 + a3c3) and
c1 (a2b2 + a3b3). The first term can be seen as b1 times something that
is “almost” a dot product: it’s just missing the term a1c1. Similarly, the
second term is c1 times an “almost” dot product that’s just missing a a1b1.
What are we going to do about the missing terms? Why, just add them in!
In fact, we can simply add and subtract a1b1c1 and rearrange to get:

b1 (a2c2 + a3c3)− c1 (a2b2 + a3b3) = b1 (a2c2 + a3c3)− c1 (a2b2 + a3b3) + a1b1c1 − a1b1c1

= (b1 (a2c2 + a3c3) + a1b1c1)− (c1 (a2b2 + a3b3) + a1b1c1)

= b1 (a2c2 + a3c3 + a1c1)− c1 (a2b2 + a3b3 + a1b1)

= b1(a · c)− c1(a · b).

It’s magic! So we have shown

(a× (b× c))1 = b1 (a · c)− c1 (a · b)

The same steps can be used to justify adding missing terms in the other two
components as well:

(a× (b× c))2 = b2 (a · c)− c2 (a · b) .

(a× (b× c))3 = b3 (a · c)− c3 (a · b) .

Since we have all three components of the vectors represented and multiplied
by the same thing we can shorten this to:

a× (b× c) = b (a · c)− c (a · b) .

Done! □

The other way of proving the BAC-CAB rule requires a bit more finesse
than our previous brute force approach. This time around we are going
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make more use of the symmetries of ϵ, so that we do not have to write out
every single term.

Proof.(2) (Symmetry method) First let us write the BAC-CAB rule in a
way that allows us to more easily ask what happens for every possible value
our indices can take, so that we may organize them and get rid of any zero
terms.

We begin by writing the ith component of a× (b× c) using Levi-Civita
symbols as

(a× (b× c))i =
∑
j,k

[
ϵijkaj

(∑
m,n

ϵkmnbmcn

)]
=

∑
j,k,m,n

[ϵijkaj (ϵkmnbmcn)] .

By separating out the sum over k, we can rewrite this as:

(a× (b× c))i =
∑
j,m,n

[∑
k

ϵijkϵkmn

]
ajbmcn.

Let’s define the quantity inside the [. . . ] as Sijmn:

Sijmn :=
∑
k

ϵijkϵkmn.

Then we will be able to simplify our expression for (a× (b× c))i if we
can find a simpler expression for Sijmn. This quantity will have a different
value for each choice of i, j,m, n.

Let’s focus on the indices i and j. First, if i = j then ϵijk = ϵiik = 0,
so Siimn = 0. On the other hand, if i ̸= j, there is only one value of k that
makes ϵijk nonzero (because we must have k ̸= i, j). We must also have
m,n ̸= k in order for ϵkmn ̸= 0. It follows that there are two possibilities for
which Sijmn ̸= 0:

(A) i ̸= j, m = i and n = j;

(B) i ̸= j, m = j and n = i.
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In case (A) we have:

Sijij =

[∑
k

ϵijkϵkij

]
=

[∑
k

ϵ2ijk

]
= 1.

In case (B) we have:

Sijji =

[∑
k

ϵijkϵkji

]
=

[∑
k

−
[
ϵ2ijk
]]

= −1.

In summary we have:

Sijmn = 1 if m = i, n = j, and i ̸= j;

Sijmn = −1 if n = i, m = j, and i ̸= j;

Sijmn = 0 otherwise.

Let’s plug this back into our expression for (a× (b× c))i. We can then
separate the terms where m = i, n = j from the terms where n = i, m = j.
Notice that there is no longer a sum over 3 indices but only one index, since
m and n are determined by i and j:

∑
j,j ̸=i

ajbicj︸ ︷︷ ︸
(terms for m = i, n = j)

−
∑
j,j ̸=i

ajbjci︸ ︷︷ ︸
(terms for m = j, n = i)

Now if we add aibici to the first set of terms, and add −aibici to the
second set of terms, then the overall sum doesn’t change but the two ex-
pressions simplify:

∑
j

ajbicj −
∑
j

ajbjci

This is the same as:

bi(a · c)− ci(a · b),

which is the BAC − CAB rule. □

In this case the brute force method wasn’t much harder than the sym-
metry method, but for more complicated expressions it is far easier to use
the symmetries of ϵ to prove a statement rather than do it term by term.
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The symmetry method gives an added windfall, namely a general identity
that will prove useful later:

Exercise 11.8.14. Using some facts from the discussion above, show that
Sijmn :=

∑
k ϵijkϵkmn can also be written in terms of Kronecker deltas as

follows:
Sijmn = δimδjn − δinδjm.

♢

11.8.5 Proof of Euler’s Rotation Theorem

In Section 23.2.6 we prove Euler’s formula for regular polyhedra. Our proof
depends on the following proposition:

Proposition 11.8.15.(Euler’s Rotation Theorem): Any rotation (be-
sides the identity) in three dimensions has exactly one axis which is fixed
by the rotation.

In this section, we’ll prove this beautiful theorem! (Note the proof re-
quires familiarity with properties of eigenvalues and determinants, which is
a topic that is covered in most undergraduate Linear Algebra classes.)

First, we need to establish a general identity involving three-dimensional
Levi-Civita symbols.

Proposition 11.8.16. Given any 3× 3 matrix A, then∑
j,k,ℓ

ϵjkℓaijakℓ =
∑
j,k,ℓ

ϵjkℓajiakℓ.

(Observe the minute difference between the two sides: there’s an aij on
the left-hand side which becomes an aji on the right. Minute differences
matter!)

Proof. Let us consider the case i = 1:∑
j,k,ℓ

ϵjkℓa1jakℓ =
∑
j,k,ℓ

ϵjkℓaj1akℓ.

and we’ll leave the cases i = 2, 3 as exercises.

On both right and left sides there are terms with j = 1, j = 2, and j = 3.
We’ll consider these cases one by one.
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� j = 1: these terms are equal on both sides, since in this case a1j =
aj1 = a11.

� j = 2: in view of the ϵjkℓ on both sides, since j = 2 the only nonzero
terms are k = 3, ℓ = 1 or k = 1, ℓ = 3. On the left-hand side this gives
a12a31 − a12a13, while on the right-hand side we get a21a31 − a21a13

� j = 3: once again, in view of the ϵjkℓ on both sides, since j = 3 the
only nonzero terms are k = 1, ℓ = 2 or k = 2, ℓ = 1. On the left-hand
side this gives a13a12 − a13a21, while on the right-hand side we get
a31a12 − a31a21.

Adding all left-hand side terms gives

a12a31 − a12a13 + a13a12 − a13a21 = a12a31 − a13a21,

while adding all right-hand side terms gives

a21a31 − a21a13 + a31a12 − a31a21 = −a21a13 + a31a12.

Miraculously, these turn out to be equal.

Exercise 11.8.17. Complete the proof of Proposition 11.8.16 by showing
equality for the cases i = 2, 3. ♢

□

No doubt this formula seems entirely unmotivated and somewhat useless
(although you have to admit it’s kind of cute.) However, it becomes incred-
ibly useful when we apply it to rotation matrices. To this end, suppose R
is a rotation matrix whose (j, k) entry is denoted by rjk. Then the equality
in Proposition 11.8.16 applied to matrix R becomes:∑

j,k,ℓ

ϵjkℓrijrkℓ =
∑
j,k,ℓ

ϵjkℓrjirkℓ,

which implies (by rearranging terms)

∑
j

rij

∑
k,ℓ

ϵjkℓrkℓ

 =
∑
j

rji

∑
k,ℓ

ϵjkℓrkℓ

 .

The expressions in parentheses on the left and right are identical. So let’s
define:

zj :=
∑
k,ℓ

ϵjkℓrkℓ,
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and we can replace the parenthetical expressions in our equality by zj :∑
j

rijzj =
∑
j

rjizj .

Rewriting this in matrix notation gives Rz = RTz. Using the fact that
RT = R−1 (see Proposition 11.8.10) and a series of algebraic manipulations,
we find:

Rz = R−1z ⇒ Rz −R−1z = 0

⇒ R2z − Iz = 0

⇒ (R+ I)(R− I)z = 0.

Now, there are two cases to consider:

� In the case where (R−I)z ̸= 0, then it must be true that y := (R−I)z
is a nonzero vector which satisfies (R + I)y = 0. This implies that y
is an eigenvector of R with eigenvalue −1. Now since R is 3 × 3, it
must have 3 eigenvalues in total. Let λ1 and λ2 be the 2 remaining
eigenvalues. We know from linear algebra that the product of the
eigenvalues is equal to the determinant of R, which is equal to 1 by
Proposition 11.8.10. This imples that −1 · λ1 · λ2 = 1 or λ1 · λ2 = −1.

Now, the λ’s could be complex, or they could be real. If complex,
then they must be complex conjugates of each other (since R is a real
matrix), but then their product would be positive (why is this?). Since
their product is negative, this is not possible.

We may conclude that the λ’s are real. Now let w be an eigenvector
for the eigenvalue λ1. Then Rw = λ1w, so that ∥Rw∥ = |λ1|∥w∥.
But we know from the properties of rotations (see Section 11.6 that
∥Rw∥ = ∥w∥. This implies |λ1| = 1. The same argument shows
|λ2| = 1.

So what’ve we got? We know that λ1 and λ2 are real. We also know
that |λ1| = |λ2| = 1, so each λ is either +1 or −1. Finally, we know
that λ1 · λ2 = −1. This means that one of the λ’s must be −1, and
one must be 1. Since the remaining eigenvalue is −1, It follows that
there is a unique eigenvector with eigenvalue 1, which is the unique
fixed axis of the rotation.

� In the case where (R − I)z = 0, then the vector z is fixed by the
rotation R. But is it the only fixed vector? We’ll show that if there
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is another fixed vector, then R must be the identity. Suppose that
there’s another vector y which is not parallel to z and is also fixed by
the rotation, so that Ry = y. Since RT = R−1, we may multiply both
sides by RT and obtain y = RTy, or

yj =
∑
m

rmjym.

By the same token, we have z = RTz, or

zk =
∑
n

rnkzn.

Consider now the vector w defined by:

wi :=
∑
j,k

ϵijkyjzk.

Since y and z are both fixed under the rotation R we may replace ym
and zk with

∑
m rmjym and

∑
n rnkzn respectively, so that:

wi :=
∑

j,k,m,n

ϵijk(rmjym)(rnkzn) =
∑

j,k,m,n

ϵijkrmjrnkymzn.

Now we may compute Rw using summation notation as:

[Rw]ℓ =
∑
i

rℓiwi

=
∑

i,j,k,m,n

ϵijkrℓirmjrnkymzn

=
∑
m,n

∑
i,j,k

ϵijkrℓirmjrnk

 ymzn.

It looks like we’re venturing deeper and deeper into mathematical
muck. But lo! The expression in parentheses is something that we’ve
seen before, in Exercise 11.8.8:∑

i,j,k

ϵijkrℓirmjrnk =
∑
i,j,k

ϵℓmnϵijkr1ir2jr3k,
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and we may further simplify using other facts we’ve picked up here
and there: ∑

i,j,k

ϵℓmnϵijkr1ir2jr3k = ϵℓmn
∑
i,j,k

ϵijkr1ir2jr3k

= ϵℓmn detR

= ϵℓmn.

So, breathing a huge sigh of relief, we may replace what’s in the paren-
theses with ϵℓmn and obtain

[Rw]ℓ =
∑
m,n

ϵℓmnymzn = wℓ.

So we have three vectors fixed by R: z, y, and w. If we can show that
these are linearly independent, then all vectors must be fixed by R,
and R must be the identity.

To show that the vectors are linearly independent, it’s enough to show
that det[w y z] ̸= 0, where [w y z] is the 3× 3 matrix with columns
w, y, z. We know that the transpose has the same determinant, so we
may find the determinant using the Levi-Civita formula as:

det[w y z] = det[w y z]T

=
∑
i,j,k

ϵijkwiyjzk

=
∑
i,j,k

ϵijk

(∑
m,n

ϵimnymzn

)
yjzk

=
∑

i,j,k,m,n

ϵijkϵimnyjzkymzn

=
∑

j,k,m,n

(∑
i

ϵijkϵimn

)
yjymzkzn

(note that in the third line when we substituted in the expression for
wi, we had to change the summation indices from j, k to m,n to avoid
conflict with the j, k indices that we were already using for a different
summation.) In the final line, we’ve separated out the summation over
i for a reason. Exercise 11.8.14 tells us that:∑

k

ϵijkϵkmn = δimδjn − δinδjm.
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Assuming this is true (you really should try to prove it, if you haven’t
already), this enables us to evaluate our expression quite nicely.

Exercise 11.8.18. Using the previous identity, show that

∑
j,k,m,n

(∑
i

ϵijkϵimn

)
yjymzkzn = (y · y)(z · z)− (y · z)2

= ||y||2||z||2 sin(θ),

where θ is the angle between the vectors y and z. (Recall the inner
product of two vectors a · b is given by

∑
i aibi, while ||a||2 = a · a.) ♢

On the basis of the previous exercise, we may conclude that w, y, z are
linearly independent vectors (and thus a basis of R3), so long as y and
z are nonzero, nonparallel vectors.

Now let’s recap. We showed that in the case where (R− I)z = 0, then
z gives the direction of a fixed axis. We also showed, that if there is a
different fixed axis, then the rotation must be the identity. So as long
as R is not the identity, then R must have a unique fixed axis. We’re
done ... almost.

Exercise 11.8.19. Actually we’re not quite done. We never showed that
the vector z defined by zi :=

∑
j,k ϵijkrjk is a nonzero vector. We’ll take

care of this case in this exercise.

(a) Show that if z = 0, then it must be true that rij = rji for all i, j ∈
{1, 2, 3}: in other words, R is symmetric.

(b) Show that if R is a symmetric rotation matrix, then (R2 − I)v = 0 for
any vector v.

Once we’ve shown (b), we have that (R+ I)(R− I)v = 0 and we’re back to
the two cases that we’ve proved already. ♢

Now we’re really done!
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11.9 Hints for “Sigma Notation” and “Applica-
tions of Sigma Notation” exercises

Exercise 10.3.9(e): This is a more difficult one. Exchange order of summa-
tion. You will need to use a summation formula from the next section. The
denominator factors as the difference of squares. Part of the final answer
will look like 1 + 1/2 + 1/3 + . . . + 1/19, which you can evaluate using a
spreadsheet or some other method.

Exercise 11.8.8: Both sides are 0 if any of the two indices i, j, k are equal
(show this). Then you only need to consider the three possible cases where
i, j, k are all unequal.

Exercise 11.8.18(a): You will need to change around the indices in the for-
mula from Exercise 11.8.14. Make the following replacements: k → i, i →
j, j → k. Then use the fact that ϵijk = ϵjki (see Exercise 11.8.1. to obtain∑

i

ϵijkϵimn = δjmδkn − δjnδkm.

You may plug this form into the expression on the left-hand side. You then
obtain 2 terms, which you can evaluate separately. Summing over a delta
eliminates one of its two indices: for example:∑

j,k,m,n

δjmδknyjymzkzn =
∑
j,k

yjyjzkzk,

since the only m term that contributes is m = j, and the only n term that
contributes is n = k. From there, it’s a short hop to the expression with
inner products.

In order to get the expression with sin θ, you will need the cosine formula
for inner products (see Section 11.6).

Exercise 11.2.6: Write matrices G and H from parts (b) and (c) in terms of
A,B, and C.

Exercise 11.7.3: Notice that the product AB is in both terms. So for sim-
plicity you can define M := AB, and use a previous result.

Exercise 11.7.5(a) You don’t need summation notation here, just use basic
properties of inverses. (b): Use one of the previous exercises.

Exercise 11.8.1: There are two possibilities to consider, i = j and i ̸= j.

Exercise 11.8.2(a): Hint: Make a table for all possible values of i, j, k.
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Exercise 11.8.2(b): Multiply the equation you found in (a) by aijk and sum
over all i, j, k.

Exercise 11.8.5: Notice that a1,ϕ(1)a2,ϕ(2)a3,ϕ(3) is equal to aϕ−1(1),1aϕ−1(2),2aϕ−1(3),3,
and that sign(ϕ) is equal to sign(ϕ−1).

Exercise 11.8.7: Replace ϵxy with −ϵyx, and show that the expression is
equal to the negative of itself. (Alternatively, you can just verify the two
cases: i = j = 1 and i = j = 2.)
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11.10 Study guide for “Sigma Notation” chapter

Section 10.1, Lots of examples

Concepts:

1. Summation notion (sigma notation) – Σ is the symbol used to denote
summation it is called sigma

(a) Index variable – variable used in the equation that will change
and is located beneath the Σ symbol

(b) Starting value – located below the Σ and is the value that begins
the summation

(c) Final value – located above the Σ and is the last value in the
summation

(d) Formula – located to the right of Σ, which includes the variable,
used to calculate the result

Competencies

1. Evaluate expressions given in summation notation. (10.1.2)

Section 10.2, Sigma notation properties

Concepts:

1. Addition and scalar multiplication of sums

2. Changing the summation index without changing the sum (10.3.1)

Key formulas

1. Formulas for addition and scalar multiplication of sums:

(a)
b∑
i=a

c · di = c ·
b∑
i=a

di

(b)
n∑
i=0

(xi + yi) =
n∑
i=0

xi +
n∑
i=0

yi
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(c)
n∑
i=0

(c · xi + d · yi) = c ·
n∑
i=0

xi + d ·
n∑
i=0

yi

Competencies

1. Be able to change the starting value and formula of sigma notations
and maintain the same results. (10.3.1)

Section 10.3, Nested sigmas

Concepts:

1. Nested sigmas – The entire sum of the inside sigma must be calculated
for each value of the index of the outside sigma. Note that the index
of the outer sum may appear in any or all parts of the inner sum.

2. Rearranging the order of summation – exchange the order of the sum-
mations and adjust the limits.

Competencies

1. Be able to exchange the order of sums and use other sum manipulation
techniques to calculate values of summations. (10.3.6, 10.3.9)

Section 10.4, Common Sums

Concepts:

1. Common summation formulas

2. Geometric series – sum of non-negative integer powers of a common
base

Key formulas

1.
k∑
i=1

i =
k(k + 1)

2
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2.
k∑
i=a

i = a+ (a+ 1) + (a+ 2) + · · ·+ (k − 1) + k = (k + a) ∗ k − a+ 1

2

where a and k are integers and a < k.

3.
n−1∑
i=0

ari = a
1− rn

1− r

Competencies

1. Be able to write the sum of given integers in sigma notation and give
the formula for that sum. (10.4.2)

Section 11.1, Sigma notation in linear algebra

Concepts:

1. Matrix multiplication with sigma notation

2. Kronecker delta

3. Abbreviated matrix notations

4. Matrix transpose

5. Matrix inverse

6. Rotation matrices

7. Matrix traces – the sum of all the entries on the diagonal

Competencies

1. Be able to write the formula for a given entry of a matrix in terms of
other matrices. (11.2.6)

2. Understand the relationship between the Kronecker delta and the iden-
tity matrix. Also, how to use it to write matrix equations in summa-
tion notation. (11.3.1)

3. Be able to write sigma notations in both forms of abbreviated nota-
tions. (11.4.1)
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4. Be able to expand abbreviated notations into unabbreviated expres-
sions. (11.4.2)

5. Be able to express the equations for an identity matrix using summa-
tion notation. (11.5.4)

6. Understand the basic properties of traces. (11.7.1)
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Polynomials

In this chapter we’ll be looking at polynomials from an algebraic point of
view. First we’ll review basic polynomial arithmetic that you’ve seen in high
school; then we’ll jump off from there and see how far we can generalize.
We’ll look at polynomial long division, and show that there are many strik-
ing resemblances with integer division. Finally, we’ll say something about
factoring of polynomials.

This chapter is by Jennifer Lazarus, based on preliminary work by David
Weathers, Johnny Watts, and Semi Harrison (edited by C.T.). Thanks to
Tom Judson for the original chapter source.

12.1 Why study polynomials?

Undoubtedly you’ve seen polynomials quite a bit in high school math. You’ve
added and multiplied them; you’ve graphed them; you’ve factored them;
you’ve found roots. Let’s take a moment to remind ourselves why polyno-
mials and their operations are important.

Polynomials are used to express relationships between variables. For
example, we may consider the situation of a vehicle that is moving on a
straight road. We’ll use x to denote the position, and t to denote time. If
(for example) the vehicle has an initial displacement of 100 meters, initial
velocity equal to 40 m/sec, and constant acceleration −5 m/sec2, then we
may write the following relationship between position (x) and time (t):

x = −5

2
t2 + 40t+ 100

373
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(the factor of −5
2 in the t2 term comes from calculus). In this equation, we

have expressed x as a function of t: in other words, t is the independent
variable , and x is the dependent variable .

Now suppose a second vehicle is moving along the same road in the
opposite direction. We’ll represent this vehicle’s position as y, and suppose
that y depends on t as follows:

y = t2 − 30t+ 600.

If we’re interested in the position of the second vehicle relative to the
first, then we should take y − x, which we can also write as y + (−1)x:

y + (−1)x = (t2 − 30t+ 600) + (−1)(−5

2
t2 + 40t+ 100).

This equation illustrates two operations with polynomials, namely scalar
multiplication and polynomial addition . Naturally we may perform the
operations and obtain:

y − x =
7

2
t2 − 70t+ 500.

If we are interested in the time(s) at which the two vehicles meet (hopefully
without colliding!), then we need to find the solution(s) (also known as the
roots of y − x = 0, or

7

2
t2 − 70t+ 500 = 0.

It is interesting to note that even though the coefficients of this polynomial
are rational numbers, in general the solution(s) will not be rational numbers.
(In fact, we know from the quadratic formula that in some cases the solutions
are not even real numbers!)

Now suppose instead that the two vehicles are moving on two perpen-
dicular roads which cross at (0, 0). In this case, the square of the distance
between the two vehicles is given by (using the Pythagorean theorem)

(Distance between vehicles)2 = x2 + y2

= (−5

2
t2 + 40t+ 100)2 + (t2 − 30t+ 600)2.

Here we see both polynomial addition and polynomial multiplication .
Using polynomial arithmetic (which we explain in detail in the next section),
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we find:

(Distance between vehicles)2 =
29

4
t4 − 260t3 + 3200t2 − 28, 000t+ 370000.

If we would like to find the time(s) at which the relative distance is equal to
500, we should solve

5002 =
29

4
t4 − 260t3 + 3200t2 − 28, 000t+ 370000,

which can be rearranged to give

29

4
t4 − 260t3 + 3200t2 − 28, 000t+ 120000 = 0.

This equation has two real solutions and two complex solutions. (In Sec-
tion 12.6.3 we will see that a polynomial of degree four always has at least
1 and at most 4 distinct complex roots.) The real solutions correspond to
the two times that the cars are 500 meters apart.

Exercise 12.1.1. Suppose vehicle 1 has an initial position of x0 = 150 m,
an initial velocity of v0 = 60 m/sec, and a constant acceleration of a = −8
m/sec2. Additionally, suppose vehicle 2 has an initial position of y0 = 80
m, an initial velocity of v0 = −50 m/s, and a constant acceleration of a = 2
m/sec2.

(a) Express the position of the second vehicle relative to the first, assuming
they are moving on the same road in opposite directions. Determine the
time(s) at which the vehicles meet.

(b) Determine the time, t > 0, at which the distance between the vehicles
is equal to 400 m, if the vehicles are moving on two perpendicular roads
which cross at (0, 0). Give an answer that is correct to three decimal
places.

♢

The above discussion gives just one example of an application of polyno-
mials to a practical situation. There are myriads of other examples where
polynomials describe the behavior of real-world systems, and polynomial op-
erations and equations are used to make useful predictions and estimations.
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12.2 Review of polynomial arithmetic

Let’s briefly review what you’ve previously learned about polynomial arith-
metic in earlier algebra classes. In this section we’ll cover polynomial ad-
dition, subtraction, and multiplication. Polynomial division is a bit more
complicated, so we’ll talk about that later.

In your earlier classes, most likely you considered polynomials with in-
teger, rational, or real coefficients. But everything we do in this chapter
also applies to polynomials with complex coefficients. And in fact, there
are even more exotic types of polynomials to which the same formulas and
results apply. We’ll consider these later in the chapter.

We’ll begin with an example. Let

p(x) = x3 − 3x+ 2 and q(x) = 5x3 + 3x2 − 6x+ 5.

Then we can add p(x) and q(x) as follows:

p(x) + q(x) = (x3 − 3x+ 2) + (5x3 + 3x2 − 6x+ 5)

= (1 + 5)x3 + 3x2 + (−3− 6)x+ (2 + 5)

= 6x3 + 3x2 − 9x+ 7

Notice, we first grouped together terms with the same power of x, and then
we added the coefficients.

Multiplication of polynomials is a bit more involved, so we’ll start with
polynomials of single terms (monomials) and work our way up from there.
Suppose we have:

p(x) = 5x3 and q(x) = 3x2.

Then their product is

p(x)q(x) = 5x33x2

= (5 · 3)x(3+2),

= 15x5,

where we combined the coefficients and the exponents (remember your ex-
ponent rules!).

Let’s extend ourselves a bit and multiply a polynomial of two terms by
a monomial:

p(x) = 5x3 + 2x and q(x) = 3x2.

https://www.youtube.com/watch?v=2FuGOJ3kHTU&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=47
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According to the distributive law, we multiply each term in the first poly-
nomial with the second polynomial:

p(x)q(x) = (5x3 + 2x)3x2

= 5x33x2 + 2x3x2

= (5 · 3)x(3+2) + (2 · 3)x(1+2)

= 15x5 + 6x3.

In order to multiply a two term polynomial by another two term polynomial,
e.g.

p(x) = 5x3 + 2x and q(x) = 3x2 − 6x,

we extend the distributive law even further. Like before, each term in the
first polynomial is being multiplied by the second polynomial. Then the
product is

p(x)q(x) = (5x3 + 2x)(3x2 − 6x)

= 5x3(3x2 − 6x) + 2x(3x2 − 6x)

At this point we just have the sum of two terms, each involving a monomials
times a two-term polynomial, which we now know can be calculated using
the distributive property,

= 5x3(3x2 − 6x) + 2x(3x2 − 6x)

= (15x5 − 30x4) + (6x3 − 12x2)

= 15x5 − 30x4 + 6x3 − 12x2

This is just the same result as the FOIL method you learned in high school,
but thinking in terms of the distributive property has the advantage of
being applicable to polynomials that have more than just two terms each.
For instance, with

p(x) = 5x3 + 4x2 − 2x and q(x) = 3x2 − 6x,

we obtain

p(x)q(x) = 5x3(3x2 − 6x) + 4x2(3x2 − 6x)− 2x(3x2 − 6x)

= (15x5 − 30x4) + (12x4 − 24x3) + (−6x3 + 12x2)

= 15x5 − 30x4 + 12x4 − 24x3 − 6x3 + 12x2

= 15x5 + (−30 + 12)x4 + (−24− 6)x3 + 12x2

= 15x5 − 18x4 − 30x3 + 12x2.

https://www.youtube.com/watch?v=2FUGOJ3KHTU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=47
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Again notice that we are grouping like terms by exponent. Later, when
we give a more general way of multiplying polynomials, this method of
distribution is what you need to have in mind.

Exercise 12.2.1.

(a) Let p(x) = 4x2 + 7x and q(x) = −2x2 − 3x + 2. Using polynomial
arithmetic, compute both the sum and the product of p(x) and q(x).

(b) Let p(x) = 3x2 + 8x − 2 and q(x) = 2x2 − 5x + 9. Using polynomial
arithmetic, compute both the sum and the product of p(x) and q(x).

♢

12.3 Polynomial operations in summation nota-
tion

In the preceding section, we discussed familiar polynomial operations. In
this section we give general formulas for these operations in terms of summa-
tion notation. These formulas are important both theoretically and practi-
cally: theoretically, because they give us a way to express general polynomial
operations in proofs; and practically, because they provide instructions for
programming polynomial operations on computers.

So far we have been using polynomials with real (and occasionally com-
plex) coefficients–but keep in mind that the formulas that we obtain will also
apply to other types of polynomials as well, as we shall see in Section 12.4.

First we give the summation representation for an arbitrary polynomial:

Definition 12.3.1. A polynomial may be written as

f(x) = a0 + a1x+ a2x
2 + · · ·+ aNx

N =

N∑
n=0

anx
n,

Where an is the coefficient of xn, n = 1, 2, . . . N . It is possible for an =
0, in which case we usually omit the corresponding xn term (for instance, we
write −7+ x2 rather than −7+ 0x+ x2). When we write a polynomial as a
sum in this way we will assume that aN ̸= 0 (here aN is called the leading
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coefficient . Thus the largest power of x that appears in the polynomial is
xN : this largest power is called the degree of the polynomial. △

Remark 12.3.2. According to Definition 12.3.1, we write polynomials in
ascending order. This differs from Section 12.2, where we wrote polynomials
in descending order as is customary in secondary school. Since the operation
‘+’ is commutative, the two ways are equivalent: but we will increasingly
use this new way, which turns out to be useful for a number of reasons. △

Example 12.3.3. Express the following polynomials in summation nota-
tion:

(a) p1(x) = 1 + x+ x2 + x3

(b) p2(x) = 0 + x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7

(c) p3(x) = 5x+ 4x2 + 3x3 + 2x4

(d) p4(x) = x+ 4x2 + 9x3 + 16x4 + 25x5

(e) p5(x) = −3ix3 + 4x4 + 5i5x5 (note that here i denotes
√
−1)

(f) p6(x) =
√
2 cis(π/3)x3+

√
3 cis(2π/3)x6−x9+2 cis(4π/3)x12+

√
5 cis(5π/3)x15+√

6x18

(g) p7(x) = 0 + 1
2x+ 2

3x
2 + 3

4x
3 + 4

5x
4

(h) p8(x) = i+(1+2i)x+(2+3i)x2+(3+4i)x3+(4+5i)x4+(5+6i)x5+
(6 + 7i)x6

Answers:

(a) p1(x) =
∑3

j=0 x
j

(b) p2(x) =
∑7

m=0mx
m

(c) p3(x) =
∑4

k=1(6− k)xk

(d) p4(x) =
∑5

ℓ=0 ℓ
2xℓ

(e) p5(x) =
∑5

n=3 ni
nxn

(f) p6(x) =
∑6

q=1

√
q + 1 cis(qπ/3)x3q
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(g) p7(x) =
∑5

i=0
ixi

i+1

(h) p8(x) =
∑6

a=0(a+ (a+ 1)i)xa

Note that we don’t always begin the sum at 0, depending on the poly-
nomial. Also, the power of x may be a function of the index, as in p6.

♦

Exercise 12.3.4. Write down the polynomial that each summation repre-
sents.

(a) p(x) =
∑6

j=0(j
2 + 2)x3j

(b) p(x) =
∑5

r=2(r + 1)irxr

(c) p(x) =
∑8

s=0(−1)sx2s

♢

Exercise 12.3.5. Re-express the following polynomials in summation no-
tation, and give the degree of each polynomial.

(a) 2 + 0x+ 6x2 + 0x3 + 10x4 + 0x5 + 14x6 + 0x7 + 18x8

(b) cis(π2 )x
2 + 0x3 + cis(π)x4 + 0x5 + cis(3π2 )x6

(c) 1 + 2x+ 4x2 + 8x3 + 16x4 + 32x5

(d) 1 + 4x+ 11x2 + 30x3 + 85x4 (*Hint*)

(e) 1− 1
3x+ 1

5x
2 − 1

7x
3 + 1

9x
4 − 1

11x
5

♢

Remark 12.3.6. In cases where there is no apparent pattern in the co-
efficients, then summation notation may not be beneficial. For example,
suppose:

p(x) = 7 + 22x2 + x3 − 6x6 + 4x8 − x9.
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Since there’s no clear pattern in the coefficients, there’s no advantage in
writing p(x) in summation notation. △

Although the following definition may seem rather obvious, nonetheless
we should state it to be precise.

Definition 12.3.7. Two polynomials are said to be equal if and only if
their corresponding coefficients are equal. That is, if we let

p(x) =
M∑
m=0

amx
m; q(x) =

N∑
n=0

bnx
n,

then p(x) = q(x) if and only if M = N and am = bm for all 0 ≤ m ≤M . △

Now we’re ready to express our arithmetical rules in summation notation.

Definition 12.3.8. We define the sum of two polynomials as follows.
Let

p(x) =

M∑
m=0

amx
m; q(x) =

N∑
n=0

bnx
n,

Then the sum of p(x) and q(x) is

p(x) + q(x) =

max(M,N)∑
k=0

(ak + bk)x
k.

In this formula, if M > N then it’s understood that bk = 0 when k > N ;
and if N > M then it’s understood that ak = 0 when k > M . △

Notice that we have taken the upper limit of the sum to max(M,N) in
order to make sure to include all nonzero terms from both polynomials.

Now that we have a formula for adding polynomials, the next step is to
obtain a formula for multiplying polynomials, using summation notation.
To do this, let’s repeat the polynomial multiplication procedure we used
in Section 12.2, only this time we’ll use two general polynomials instead of
specific examples. As with addition, we use

p(x) =

M∑
m=0

amx
m; q(x) =

N∑
n=0

bnx
n.
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In the multiplication example in Section 12.2, we split up the first polyno-
mial, and multiplied each term of the first polynomial by the second poly-
nomial. When applied to p(x) and q(x), this becomes:

p(x)q(x) = a0x
0 · q(x) + a1x

1 · q(x) + . . .+ aNx
N · q(x)

=

M∑
m=0

amx
m · q(x)

=

M∑
m=0

amx
m ·

(
N∑
n=0

bnx
n

)
,

where in the last equation we have replaced q(x) with its expression in
summation notation. Now since amx

m is constant with respect to n, we
may pull amx

m inside the sum over n, which gives:

p(x)q(x) =

M∑
m=0

N∑
n=0

(amx
m)bnx

n =

M∑
m=0

N∑
n=0

ambnx
m+n,

where we have used our multiplication rule for monomials: (amx
m)bnx

n =
ambnx

m+n.

Although this expression is correct, it’s kind of a hodgepodge. The
reason is that not all the terms with the same power of x are grouped
together. So let’s try to collect terms according to like power of x.

We’ll start with x0. Since terms have the form ambnx
m+n, this means

we need to find all values of m and n such that m + n = 0. Since both m
and n are nonnegative, the only possibility is m = 0, n = 0, which gives the
term a0b0x

0.

Next let’s look at x1. In this case we want terms ambnx
m+n which have

m+ n = 1. There are two: a1b0x
1 and a0b1x

1.

If we treat x2 similarly, we have three terms: a2b0x
2, a1b1x

2, and a0b2x
2.

Then x3 has four terms: a3b0x
3, a2b1x

3, a1b2x
3, and a0b3x

3. Do you see the
pattern? For xk we will get k + 1 terms: akb0x

k, ak−1b1x
k, . . ., a1bk−1x

k,
and a0bkx

k. Since + is commutative, we may sum these terms together to
obtain the coefficient of xk, which we will denote as ck:

ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0 =
k∑
j=0

ajbk−j ,
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This is the coefficient of xk in the summation notation expression for the
product. At last we have our general formula:

Definition 12.3.9. The product of two polynomials p(x) =
∑M

m=0 amx
m

and q(x) =
∑N

n=0 bnx
n is given by:

p(x)q(x) =

M+N∑
k=0

ckx
k,

where

ck =
k∑
j=0

ajbk−j

for each k. △

Let’s verify the formula by computing f(x), where:

f(x) = (1 + x2 − 2x3)(x+ 4x3).

f(x) is the product of p(x) and q(x), where:

p(x) = 1x0 + 0x1 + 1x2 + (−2)x3 and q(x) = 0x0 + 1x1 + 0x2 + 4x3

Both polynomials have degree 3, so the degree of the product is 3+3=6:

p(x)q(x) =
m+n∑
k=0

ckx
k =

6∑
k=0

ckx
k.

Now all we have to do is find the values of the seven coefficients c0, . . . , c6,
some of which may be zero. Let us start with c0:

c0 =
0∑
i=0

aib0−i = a0b0 = 0 · 1 = 0.

Already we’ve found a term that is zero. We still need to find six more
coefficients–how about we look at the fifth coefficient:

c4 =

4∑
i=0

aib4−i = a0b4 + a1b3 + a2b2 + a3b1 + a4b0.

Notice that a4 = b4 = 0 since p(x) and q(x) both have degree 3, so the first
and last terms are both 0. Altogether we have

c4 = 0 + 0 · 4 + 1 · 0 + (−2) · 1 + 0 = −2.
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Doing the same for the other coefficients gives us:

f(x) = 0x0 + 1x1 + 0x2 + 5x3 + (−2)x4 + 4x5 + (−8)x6

Getting rid of the zero terms and dealing with the negatives gives us the
simplified version:

f(x) = x+ 5x3 − 2x4 + 4x5 − 8x6.

Exercise 12.3.10.

Perform the following polynomial multiplications in two ways: first, by
following the procedure described in Section 12.2; and second, by using the
coefficient formula in Definition 12.3.9 directly. Verify that the two methods
agree.

(a) (−5 + x)(3x+ x2)

(b) (−
√
3 + x)(2

√
3 + 5x3)

(c) (7/2− 3x+ 4x2)(2 + x3)

(d) (−7x2 + 4x3 + 8x5)(3− 5x+ 10x2)

♢

The coefficient formula enables us to compute a single coefficient for a
product of polynomials without having to compute the rest of the product.
Here are some exercises for practice:

Exercise 12.3.11.

(a) Give the coefficient of x100 in the polynomial p(x)2, where p(x) =∑100
n=0 x

n.

(b) Give the coefficient of x25 in the polynomial p(x) · q(x), where p(x) =∑25
n=0 nx

n and q(x) =
∑25

m=0 x
m.

(c) give the coefficient of x33 in the polynomial p(x) · q(x), where p(x) =∑33
n=1

xn

n and q(x) =
∑32

n=0(33− n)xn.

♢
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12.4 More exotic polynomials

So far we’ve performed algebraic operations on polynomials with integer,
rational, real, or complex coefficients. We may identify different sets of
polynomials according to the type of coefficient used. For instance we may
define:

� Z[x] is the set of polynomials in the variable x with integer coefficients;

� Q[x] is the set of polynomials in the variable x with rational coeffi-
cients;

� R[x] is the set of polynomials in the variable x with real coefficients;

� C[x] is the set of polynomials in the variable x with complex coeffi-
cients.

We refer to Z[x] as “the set of polynomials over Z”, Q[x] as “the set of
polynomials over Q”, and so on.

However, we can generalize polynomials far beyond these cases. In this
section, we introduce several new types of polynomials and define arithmetic
operations (addition and multiplication) on these new types. In order to do
this, we’ll make use of the summation notation formulas in the last section
(reproduced here for convenience):

p(x) =
M∑
m=0

amx
m; q(x) =

N∑
n=0

bnx
n,

p(x) + q(x) =

max(M,N)∑
k=0

(ak + bk)x
k,

p(x)q(x) =
M+N∑
k=0

ckx
k, where ck =

k∑
j=0

ajbk−j .

We’ll just need to replace conventional addition and multiplication (using
real or complex numbers) with other addition and multiplication operations
that are appropriate to the coefficients that we are working with.
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Polynomials over Zn

Consider first Zn[x], where Zn denotes the integers mod n. For example,
two polynomials p(x) and q(x) in Z4[x] are

p(x) = 1 + 3x+ x3

q(x) = 2 + 2x+ 3x2 + 3x3.

In this case, we should consider the variable x as representing an unknown
element in Z4, so the ’+’ operation in these expressions should be interpreted
as addition in Z4. All operations on coefficients will also make use of addition
mod Z4. So for polynomial addition we may use the above formulas for
polynomial addition only use + in Z4 instead of ordinary +. For example,
using p(x) and q(x) defined above we have:

p(x) + q(x) = (1 + 2) + (3 + 2)x+ (0 + 3)x2 + (1 + 3)x3

= 3 + x+ 3x2.

To multiply, we can use the same strategy, namely, use the previous formula
for polynomial multiplication, but replace both + and · with their counter-
parts in Z4. Alternatively, we may use the distributive law as in Section 12.2,
with the understanding that we are distributing modular multiplication over
modular addition. As before, we group together all terms with like powers
of x and use modular arithmetic to combine these terms into a single term.
The result is:

p(x)q(x) =1 · 2 + (3 · 2 + 1 · 2)x+ (3 · 2 + 1 · 3)x2+
(1 · 2 + 3 · 3 + 1 · 3)x3 + (1 · 2 + 3 · 3)x4+
(1 · 3)x5 + (1 · 3)x6

=2 + 1x2 + 2x3 + 3x4 + 3x5 + 3x6.

Exercise 12.4.1. Compute the sum and product of p(x) and q(x).

(a) p(x) = 1+x+2x2, q(x) = 3x2+x3,where both polynomials are in Z5[x].

(b) p(x) = 1+4x2+3x3+2x4, q(x) = 5+2x2+x3, where both polynomials
are in Z6[x].
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♢

It turns out that Z2[x] in particular is of great practical use (in polyno-
mial codes), so we include some exercises to get you warmed up for what’s
coming.

Exercise 12.4.2. Compute the sum and product of p(x) and q(x), where
both polynomials are in Z2[x].

(a) p(x) = 1 + x+ x2, q(x) = 1 + x+ x2 + x3

(b) p(x) = 1 + x2 + x4, q(x) = x2 + x3 + x4.

(c) p(x) = 1 + x+ x2 + x3 + x4, q(x) = p(x).

♢

Polynomials over nZ

Recall that nZ consists of all integer multiples of n: for example, 5Z =
{. . . ,−15,−10,−5, 0, 5, 10, 15, . . .}. We may consider the set nZ[x], the set
of all polynomials whose coefficents are all multiples of n. Certainly it is
possible to add and multiply these polynomials, because any such polynomial
is also in Z[x]. But it is important to note that any sum or product of
polynomials in nZ[x] is also in nZ[x]: in other words, nZ[x] is closed under
addition and multiplication.

Exercise 12.4.3.

(a) Suppose that p(x) = a2x
2+a1x+a0 and q(x) = b1x+ b0, and both p(x)

and q(x) are elements of 5Z[x]. Prove that p(x)+ q(x) and p(x)q(x) are
also elements of 5Z[x]. (*Hint*)

(b) Repeat the proof of (a), except replace 5Z[x] with nZ[x], where n is an
arbitrary positive integer.

(c) Repeat the proof of (b), except use general polynomials p(x) =
∑n

j=1 ajx
j

and q(x) =
∑m

k=1 bkx
k.

♢
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Polynomials over R[x]

Our next example is R[x][y], which represents polynomials in the variable
y whose coefficients are polynomials in a different variable x. For example,
the following two polynomials are elements of R[x][y]:

p(x, y) = (1 + 3x) + (1 + x2)y + (5x)y2

q(x, y) = (3x) + (2 + 2x)y + (4x2)y2.

We may add them as follows:

p(x, y) + q(x, y) = ((1 + 3x) + 3x) + ((1 + x2) + (2 + 2x))y + (5x+ 4x2)y2

= (1 + 6x) + (3 + 2x+ x2)y + (5x+ 4x2)y2.

We will multiply p(x, y) and q(x, y) using the summation formula for coef-
ficients found in Definition 12.3.9.

c0 =
0∑
i=0

aib0−i = a0b0 = (1 + 3x) · (3x) = 3x+ 9x2.

c1 =

1∑
i=0

aib0−i = a0b1 + a1b0 = ((1 + 3x) · (2 + 2x)) + ((1 + x2) · (3x))

= (1 + 8x+ 6x2) + (2 + 2x+ 2x2 + 2x3)

= 3 + 10x+ 8x2 + 2x3.

c2 =
2∑
i=0

aib0−i = a0b2 + a1b1 + a2b0 = ((1 + 3x) · (4x2)) + (1 + x2) · (2 + 2x) + ((5x) · (3x)

= (4x2 + 12x3) + (2 + 2x+ 2x2 + 2x3) + 15x2

= 2 + 2x+ 21x2 + 14x3.

c3 =
3∑
i=0

aib0−i = a1b2 + a2b1 = ((1 + x2) · (4x2)) + ((5x) · (2 + 2x)

= (4x2 + 4x4) + (10x+ 10x2)

= 10x+ 14x2 + 4x4.
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c4 =

4∑
i=0

aib0−i = a2b2 = 5x · 4x2 = 20x3.

Therefore, we have the following:

p(x, y)q(x, y) =c0 + c1y + c2y
2 + c3y

3 + c4y
4

=(3x+ 9x2) + (3 + 10x+ 8x2 + 2x3)y + (2 + 2x+ 21x2 + 14x3)y2

+ (10x+ 14x2 + 4x4)y3 + (20x3)y4.

Exercise 12.4.4. Compute the sum and product of p(x, y) and q(x, y)
where:

p(x, y) = (1 + 8x) + (3− 2x)y2 and

q(x, y) = (5x+ 6x2)y − (2 + 6x)y2

♢

Polynomials over Mn

Next we consider Mn[x], the set of polynomials in the variable x with coeffi-
cients that are n×nmatrices with real entries. Consider the two polynomials
p(x), q(x) ∈ M2[x] given by:

p(x) =

[
−1 5
−2 4

]
+

[
4 3
2 −4

]
x+

[
−1 0
2 1

]
x2

q(x) =

[
4 2
−3 6

]
+

[
2 −1
0 9

]
x+

[
9 −1
8 1

]
x2
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We add p(x) and q(x) as follows:

p(x) + q(x) =

([
−1 5
−2 4

]
+

[
4 3
2 −4

]
x+

[
−1 0
2 1

]
x2
)

+

([
4 2
−3 6

]
+

[
2 −1
0 9

]
x+

[
9 −1
8 1

]
x2
)

=

([
−1 5
−2 4

]
+

[
4 2
−3 6

])
+

([
4 3
2 −4

]
+

[
2 −1
0 9

])
x

+

([
−1 0
2 1

]
+

[
9 −1
8 1

])
x2

=

[
3 7
−5 10

]
+

[
6 2
2 5

]
x+

[
8 −1
10 2

]
x2.

Again, we will use the summation formula for the coefficients to compute
the product of p(x) and q(x).

c0 =

0∑
i=0

aib0−i = a0b0 =

[
−1 5
−2 4

]
·
[
4 2
−3 6

]
=

[
−19 28
−20 20

]
.

c1 =

1∑
i=0

aib1−i = a0b1 + a1b0 =

[
−1 5
−2 4

]
·
[
2 −1
0 9

]
+

[
4 3
2 −4

]
·
[
4 2
−3 6

]
=

[
−2 46
−4 38

]
+

[
7 26
20 −20

]
=

[
5 72
16 18

]
.

c2 =

2∑
i=0

aib2−i = a0b2 + a1b1 + a2b0 =

[
−1 5
−2 4

]
·
[
9 −1
8 1

]
+

[
4 3
2 −4

]
·
[
2 −1
0 9

]
+

[
−1 0
2 1

]
·
[
4 2
−3 6

]
=

[
31 6
14 6

]
+

[
8 23
4 −38

]
+

[
−4 −2
5 10

]
=

[
35 27
23 −22

]
.

c3 =

3∑
i=0

aib3−i = a1b2 + a2b1 =

[
4 3
2 −4

]
·
[
9 −1
8 1

]
+

[
−1 0
2 1

]
·
[
2 −1
0 9

]
=

[
60 −1
−14 −6

]
+

[
−2 1
4 7

]
=

[
58 0
−10 1

]
.
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c4 =

4∑
i=0

aib4−i = a2b2 =

[
−1 0
2 1

]
·
[
9 −1
8 1

]
=

[
−9 1
26 −1

]
.

Therefore, we have the following:

p(x)q(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4

=

[
−19 28
−20 20

]
+

[
5 72
16 18

]
x+

[
35 27
23 −22

]
x2 +

[
58 0
−10 1

]
x3 +

[
−9 1
26 −1

]
x4

Exercise 12.4.5. Compute the sum and product of p(x) and q(x), where:

p(x) =

[
1 2
3 4

]
+

[
1 0
2 4

]
x+

[
1 0
0 1

]
x2

q(x) =

[
1 0
0 1

]
+

[
1 2
3 4

]
x2

♢

12.5 Polynomial properties and summation nota-
tion

In the past several sections, we have looked at polynomials with different
types of coefficients. These different types of polynomials have a lot in
common. In this section, we will look more deeply into just what it is that
is common to all.

Since we want our discussion to be general, we don’t want to restrict our-
selves to any particular set of coefficients. Instead, we will denote our poly-
nomials by R[x], where the set of coefficients R can represent R,C,Q,Z,Zn,
or Mn (i.e. n× n matrices). This means that the results of this section will
be valid for many different types of polynomials. The only properties that
we require of the set R are the following:

(I) R has two binary operations, denoted as + and · (i.e. addition and
multiplication);
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(II) R is closed under both addition and multiplication;

(III) Addition in R is commutative;

(IV) Addition and multiplication are both associative;

(V) Multiplication distributes over addition: e.g. a · (b+ c) = a · b+ a · c
and (a+ b) · c = a · c+ b · c.

(We will see somewhat later that all of these properties a characteristic of a
type of mathematical structure called a “ring”. But for the time being, we
may simply recognize them as properties that are common to the number
systems that we have been using so far.)

Given that R has addition and multiplication operations, we may define
addition and multiplication in R[x] using Definitions12.3.8 and 12.3.9. Let’s
first make sure that the definitions give well-behaved, closed operations in
R[x].

Proposition 12.5.1. Given that R satisfies conditions (I)-(V) listed above.
Then Definitions 12.3.8 and 12.3.9 produce closed addition and multiplica-
tion operations in R[x].

You will prove Proposition 12.5.1 in the following exercise.

Exercise 12.5.2.

(a) Prove that Definition 12.3.8 gives a closed operation in R[x] by showing
that whenever p(x) and q(x) are polynomials in R[x], then p(x) + q(x)
is also a polynomial in R[x].

(b) Prove that Definition 12.3.9 gives a closed multiplication operation in
R[x] by showing that whenever p(x) and q(x) are polynomials in R[x],
then p(x)q(x) is also in R[x].

♢

Now that we’ve shown that the operations of addition and multiplica-
tion in R[x] are properly defined, we may verify that these operations have
workable properties.
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Proposition 12.5.3. Given that R satisfies conditions (I)-(V) listed above,
then addition in R[x] is both commutative:

p(x) + q(x) = q(x) + p(x),

and associative:

(p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x)).

Proof. First, we show commutativity: Given two polynomials p(x) and
q(x) where

p(x) =

m∑
i=0

aix
i; q(x) =

n∑
i=0

bix
i,

then

p(x) + q(x) =

max(m,n)∑
i=0

(ai + bi)x
i,

and

p(x) + q(x) =

max(m,n)∑
i=0

(bi + ai)x
i.

Since the addition is commutative, we have ai + bi = bi + ai for all i. It
follows that all coefficients of p(x) + q(x) are equal to the corresponding
coefficients of q(x) + p(x). By the definition of polynomial equality, this
means that p(x) + q(x) = q(x) + p(x). □

Proof. Next we’ll prove additive associativity. To do this, we must intro-
duce a third polynomial, r(x), with degree ℓ and coefficients ci, i = 0 . . . ℓ.

r(x) =

ℓ∑
i=0

cix
i.
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We have,

(p(x) + q(x)) + r(x) =

( m∑
i=0

aix
i +

n∑
i=0

bix
i

)
+

ℓ∑
i=0

cix
i

=

(max(m,n)∑
i=0

(ai + bi)x
i

)
+

ℓ∑
i=0

cix
i

=

max((m,n),ℓ)∑
i=0

(ai + bi + ci)x
i

=

max(m,(n,ℓ))∑
i=0

(ai + bi + ci)x
i

=

m∑
i=0

aix
i +

max(n,ℓ)∑
i=0

(bi + ci)x
i

=
m∑
i=0

aix
i +

( n∑
i=0

bix
i +

ℓ∑
i=0

cix
i

)
=p(x) + (q(x) + r(x)).

Therefore, by the definition of polynomial equality and polynomial ad-
dition, (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x)). Note that we have used
additive associativity of the coefficients (i. e. (ai + bi) + ci = ai + (bi + ci)
for all i).

□

It’s also true that the set R[x] has an additive identity and additive
inverses. We’ll look first at identity.

Proposition 12.5.4. Given that R satisfies properties (I)-(V), then the
additive identity of R[x] is 0x0, where 0 denotes the additive identity of R.

Proof. The proof has two parts: (i) p(x)+0x0 = p(x) and (ii) 0x0+p(x) =
p(x), ∀p(x) ∈ R[x]. We’ll prove (i) and leave (ii) as an exercise.

(i) Given an arbitrary polynomial p(x) =
∑m

i=0 aix
i ∈ R[x]. Then,
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p(x) + 0x0 =

(
m∑
i=0

aix
i

)
+ 0x0

=
m∑
i=0

(ai + 0)xi

=
m∑
i=0

aix
i

=p(x)

So part (i) of the proof is finished.

Exercise 12.5.5. Complete part (ii) of the proof of Proposition 1.6.6. ♢

□

In the following we’ll write the additive identity of R[x] as 0 instead of 0x0,
but don’t forget that the additive identity of R[x] is also a polynomial in
R[x].

Before we prove additive inverse, we should first clarify some notation.
If a is an element of a ring R, then we’ll write the additive inverse of a as
−a. (This is obvious if R is R, Z, or some other familiar set of numbers–but
we also need to think about the general case where R is some other set such
as Zn, and the + operation is not regular addition.) Using this notation, we
may now characterize the additive inverse of a polynomial.

Exercise 12.5.6. Determine the additive inverse of each element in Z5 and
explain your answer. ♢

Proposition 12.5.7. Let p(x) =
∑n

i=0 aix
i be a polynomial in R[x], where

R satisfies properties (I)-(V). Then the additive inverse of p(x) is q(x) =∑n
i=0(−ai)xi, where −ai is the additive inverse of ai in R.

Exercise 12.5.8. Prove Proposition 12.5.7 by showing that p(x)+q(x) and
q(x) + p(x) both sum to the additive identity of R[x]. ♢
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If we compare our results with the definition of group (Definition 5.4.26,
we make an important discovery:

Proposition 12.5.9. Let R[x] be the set of polynomials over a set R that
satisfies properties (I)-(V). Then R[x] is an abelian group under addition
(recall that “abelian” means that the group’s operation is commutative).

Exercise 12.5.10. Prove Proposition 12.5.9. You may use the propositions
that we already proved in this section. ♢

Next, we consider the proof for multiplicative associativity in general,
but before giving a proof, let’s do an example to see how this works.

Exercise 12.5.11. Show that the multiplication of two linear polynomials
and one quadratic polynomial is associative. (use a0 + a1x, b0 + b1x, and
c0 + c1x+ c2x

2 as your polynomials.) ♢

We’ve been talking about polynomial addition—now it’s multiplication’s
turn. First we prove multiplicative associativity in R[x]:

Proposition 12.5.12. Multiplication in R[x] is associative:

(p(x)q(x))r(x) = p(x)(q(x)r(x)).

Proof. We’ve seen that the product of two polynomials p(x) and q(x) may
be written in summation notation as:

p(x)q(x) =
m∑
i=0

n∑
j=0

aibjx
i+j
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Now we multiply a third polynomial, r(x), to calculate its product with
(p(x)q(x)):

(p(x)q(x))r(x) =
( m∑
i=0

n∑
j=0

aibjx
i+j
)( ℓ∑

k=0

ckx
k
)

=

m∑
i=0

n∑
j=0

(
aibjx

i+j
( ℓ∑
k=0

ckx
k
))

=

m∑
i=0

n∑
j=0

ℓ∑
k=0

aibjx
i+j · ckxk

=

m∑
i=0

n∑
j=0

ℓ∑
k=0

aibjckx
i+j+k.

In the above calculation we have twice brought multiplicative terms inside
of summations, using the distributive law. The last step uses a familiar
exponent rule.

To complete the proof of associativity, we need to show that the summa-
tion expression for p(x)(q(x)r(x)) may be simplified into the same expres-
sion. The calculation is very similar, and we leave it as an exercise:

Exercise 12.5.13. Show p(x)(q(x)r(x)) also simplifies to
m∑
i=0

n∑
j=0

ℓ∑
k=0

aibjckx
i+j+k.

Give a justification for each step of your calculation. ♢

The exercise shows that (p(x)q(x))r(x) and p(x)(q(x)r(x)) both simplify
to the same expression, so they are equal. This completes the proof. □

Next we consider the distributive property for polynomials.

Proposition 12.5.14. Polynomials in R[x] have both right distributivity
across addition:

(q(x) + r(x))p(x) = q(x)p(x) + r(x)p(x),

and left distributivity across addition:

p(x)(q(x) + r(x)) = p(x)q(x) + p(x)r(x).
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Proof. To show right distributivity, we have:

(q(x) + r(x))p(x) =

( n∑
j=0

bjx
j +

ℓ∑
j=0

cjx
j

) m∑
i=0

aix
i

=

(max(n,ℓ)∑
j=0

(bj + cj)x
j

) m∑
i=0

aix
i

=

(max(n,ℓ)∑
j=0

(bjx
j + cjx

j)

) m∑
i=0

aix
i

=

max(n,ℓ)∑
j=0

(
(bjx

j + cjx
j)

m∑
i=0

aix
i

)

=

max(n,ℓ)∑
j=0

m∑
i=0

(bjx
j + cjx

j)aix
i

=

max(n,ℓ)∑
j=0

m∑
i=0

(bjx
jaix

i + cjx
jaix

i)

=

max(n,ℓ)∑
j=0

m∑
i=0

bjx
jaix

i +

max(n,ℓ)∑
j=0

m∑
i=0

cjx
jaix

i

=

n∑
j=0

m∑
i=0

bjx
jaix

i +

ℓ∑
j=0

m∑
i=0

cjx
jaix

i

=

n∑
j=0

bjx
j
m∑
i=0

aix
i +

ℓ∑
j=0

cjx
j
m∑
i=0

aix
i

=q(x)p(x) + r(x)p(x),

which gives us right distributivity. We’ll leave left distributivity up to you:

Exercise 12.5.15. Provide justification for each of the steps in the calcu-
lation in Proposition 12.5.14 ♢

Exercise 12.5.16. Prove that polynomials in R[x] have left distributivity
across addition. ♢

□



12.6 POLYNOMIALS AND DIVISION 399

12.6 Polynomials and division

So far, we have looked at addition and multiplication of polynomials. We’ve
also dealt with subtraction, because subtraction is simply addition of ad-
ditive inverses. So it’s only natural to consider the question of polynomial
division.

We’ve just mentioned that subtraction is the same as addition of additive
inverses. Similarly, division is multiplication by multiplicative inverses.

Do polynomials have multiplicative inverses? Be careful here. In high-
school algebra or in calculus, the polynomial p(x) has a perfectly good mul-
tiplicative inverse, namely 1/p(x). But 1/p(x) is not a polynomial, so for us
it doesn’t count!

Exercise 12.6.1.

(a) Which elements of R[x] have multiplicative inverses that are also ele-
ments of R[x]?

(b) Which elements of R[x] have multiplicative inverses that are also ele-
ments of R[x]?

♢

12.6.1 The Division Algorithm for polynomials over fields

In Chapter 5, we used the following fact about integers: for any two integers
a and b with b > 0, then there exist unique integers q and r such that
a = bq+r, where 0 ≤ r < b. This fact was known to the ancient Greeks, who
proved it using what’s known as the division algorithm.1 It turns out that
a similar division algorithm exists for many types of polynomials. In this
section we’ll give the proof. But first, as usual, we look at some examples.

Example 12.6.2. Dividing polynomials in R[x] is very similar to long
division of real numbers. For example, suppose that we divide x3−x2+2x−3
by x− 2.

1As we said before, you may find a proof in any book on number theory. Or, take a
look at: http://2000clicks.com/mathhelp/NumberTh09EuclidsAlgorithm.aspx.

https://www.youtube.com/watch?v=qc8GBcukwr4&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=49
http://2000clicks.com/mathhelp/NumberTh09EuclidsAlgorithm.aspx
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x2 + x + 4
x− 2 x3 − x2 + 2x − 3

x3 − 2x2

x2 + 2x − 3
x2 − 2x

4x − 3
4x − 8

5

In the example, we need to take the leading power term of x in the divisor
and multiply by something that will make it equal to the the leading power
term in the dividend. In this case it’s x2. This gives x2 · (x− 2) = x3 − 2x2

Subtract from the dividend to yield a remainder of x2 + 2x− 3 and repeat
until the remainder is of a degree less than the divisor.

Hence, x3 − x2 + 2x− 3 = (x− 2)(x2 + x+ 4)+ 5, which you may check
by multiplying out the right-hand side. ♦

In Zp[x] the process of division is very similar. You may want to use a
Cayley table for multiplication, to determine what terms go in the quotient.
Additionally, when subtracting the product of the quotient and divisor from
the dividend, each negative term must be replaced with its equivalent in Zp,
which is the remainder mod p.

Example 12.6.3. Divide (2x3 + 3x2 + x+ 4) by (x+ 2) where both poly-
nomials are in Z5[x].

2x2 + 4x + 3
x+ 2 2x3 + 3x2 + x + 4

2x3 + 4x2

4x2 + x + 4
4x2 + 3x

3x + 4
3x + 1

3

♦

Exercise 12.6.4. Find q(x) and r(x) in the following equations. All poly-
nomials are in R[x].
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(a) x2 + 3x+ 27 = (x− 2)q(x) + r(x)

(b) 15x3 + 13x− 27 = (x− 5)q(x) + r(x)

(c) 10x3 − x2 + 3x+ 27 = (2x2 − 4)q(x) + r(x)

♢

Exercise 12.6.5.

(a) Divide 3x6+x5+4x4+2 by x+3 where both polynomials are in Z5[x].

(b) Divide x7 + x5 + x3 + x by x+ 1 where both polynomials are in Z2[x].

(c) Divide 4x5 + 2x4 + 3x3 + 5x2 + x+ 6 by x+ 6 where both polynomials
are in Z7[x].

(d) Divide x5+9x4+6x3+2x2+7x+3 by x2+7x+9 where both polynomials
are in Z11[x].

(e) Divide 7x3 + 2x2 + 4x + 8 by 5x + 6, where both polynomials are in
Z13[x].

♢

We are now ready to prove the division algorithm for polynomials. In
order to make our results as general as possible, we won’t be too specific
about the coefficients.In Section 12.5 we gave five properties that our set
of coefficients R should satisfy (including associativity, distributivity, and
commutativity of addition). In this section we will refer to our set of coeffi-
cients as F , and we require that F have the same properties as R plus two
more:

(VI) F has a multiplicative identity (which we will denote as 1)

(VII) The nonzero elements of F have multiplicative inverses: that is, if
a ∈ F and a ̸= 0, then there exists an element a−1 ∈ F such that
a · a−1 = a−1 · a = 1.
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These properties are characteristic of a type of mathematical structure
called a field . We’ll study fields more extensively in Chapter 24: but for
now, we simply recognize Properties (I)-(VII) as common properties of many
(but not all) of the number systems we’ve seen so far.

Exercise 12.6.6. Of the number systems R,C,Q,Z,Zn, Mn, which all
satisfy (I)-(V), which do not satisfy (VI) and (VII)? ♢

Proposition 12.6.7. (Division algorithm for polynomials) Suppose that
the set F has addition and multiplication operations that satisfy (I)-(VII).
Let f(x) and g(x) be nonzero polynomials in F [x], where the degree of g(x)
is greater than 0. Then there exist unique polynomials q(x) and r(x) in F [x]
such that

f(x) = g(x)q(x) + r(x),

where the degree of r(x) is less than the degree of g(x).

Proof. We will first prove the existence of q(x) and r(x). We define a set
S as follows:

S = {f(x)− g(x)h(x), for all h(x) ∈ F [x]}.

This set is nonempty since f(x) ∈ S. Let r(x) be a polynomial of smallest
degree in S.2 This means that there must exist a q(x) such that

r(x) = f(x)− g(x)q(x).

We need to show that the degree of r(x) is less than the degree of g(x).
Let’s prove this by contradiction. So we assume the contrary, namely that
deg g(x) ≤ deg r(x). Let n,m be the degree of g(x), r(x) respectively, where
n ≤ m. Then we may write

g(x) = a0 + a1x+ · · ·+ anx
n

and
r(x) = b0 + b1x+ · · ·+ bmx

m,

where an ̸= 0 and bm ̸= 0. Taking a cue from the process of long division,
we define a new polynomial r′(x) by

r′(x) := r(x)− bma
−1
n xm−ng(x)

2At this point we can’t assume that there’s only one such polynomial, so we have to
say “a polynomial” rather than “the polynomial”.
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It’s tedious to write out all the terms of r′(x). Fortunately, it’s not really
necessary. We only need to remark that the degree of r′(x) is less than the
degree of r(x), since the leading-order terms of r(x) and bm(a

−1
n )xm−ng(x)

are both bmx
m, so they cancel. We may plug in r(x) = f(x) − g(x)q(x) to

obtain

r′(x) := f(x)− g(x)q(x)− bma
−1
n xm−ng(x)

= f(x)− g(x)
(
q(x)− bma

−1
n xm−n) .

This shows that r′(x) is also in S (look back at the definition and see!).
But deg r′(x) < deg r(x), which contradicts our condition that r(x) is an
element of S with smallest degree. The rules of proof by contradiction allow
us to conclude that our assumption is false: namely, it must be true that
deg g(x) > deg r(x). This finishes the proof of existence.

To show that q(x) and r(x) are unique, suppose that polynomials q′(x)
and r′(x) satisfy f(x) = g(x)q′(x) + r′(x), so that

f(x) = g(x)q(x) + r(x) = g(x)q′(x) + r′(x).

This implies
g(x)[q(x)− q′(x)] = r′(x)− r(x).

If q(x)− q′(x) is not the zero polynomial, then since the field F has no zero
divisors it follows that deg(g(x)) ≤ deg(g(x)[q(x) − q′(x)]). This in turn
implies

deg g(x) ≤ deg(g(x)[q(x)− q′(x)]) = deg(r′(x)− r(x)).

However, the degrees of both r(x) and r′(x) are strictly less than the degree
of g(x), so their difference can’t have such a large degree. It follows that
q(x)− q′(x) = 0, which implies that q(x) = q′(x) and r(x) = r′(x). □

12.6.2 Greatest common divisors of polynomials

In the Modular Arithmetic chapter, we used the Euclidean algorithm to
find the gcd’s of sets of integers. Now that we have a division algorithm for
polynomials, we can find gcd’s of polynomials in the same way.

To illustrate this, we begin with an example in R[x].

Example 12.6.8.
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Suppose that we would like to find the gcd of a(x) = x4−5x3+5x2+5x−6
and b(x) = x4+5x3+5x2−5x−6. We first divide a(x) by b(x) to determine
the remainder, r1.

1
x4 + 5x3 + 5x2 − 5x− 6 x4 − 5x3 + 5x2 + 5x − 6

−x4 − 5x3 − 5x2 + 5x + 6
−10x3 + 10x

So r1 = −10x3+10x. We then divide b(x) by r1 to determine the second
remainder, r2.

− 1
10x − 1

2
−10x3 + 10x x4 + 5x3 + 5x2 − 5x − 6

−x4 + x2

5x3 + 6x2 − 5x − 6
−5x3 + 5x

6x2 − 6

So r2 = 6x2− 6. We then divide r1 by r2 to determine the third remain-
der, r3.

−5
3x

6x2 − 6 −10x3 + 10x
10x3 − 10x

0

Notice that r3 = 0. This means that 6x2− 6 divides both a(x) and b(x).
Furthermore, any real, nonzero multiple of 6x2−6 will divide both a(x) and
b(x). For convenience, we choose the multiple with a leading coefficient of
1. This means that x2 − 1 is the gcd of a(x) and b(x). You should check
that x2 − 1 divides both a(x) and b(x). ♦

Exercise 12.6.9.

(a) Use the Euclidean algorithm to compute the gcd of a(x) = 5x3 − 2x2 −
22x+ 21 and b(x) = 5x4 − 7x3 + 15x2 − 21x in R[x].
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(b) Use the Euclidean algorithm to compute the gcd of a(x) = 4x4 − 4x3 −
4x2 + 12x− 8 and b(x) = 8x4 − 8x3 + 8x2 − 12x+ 4 in R[x].

♢

Now that we’ve seen some examples with coefficients in R[x], lets see how
the Euclidean algorithm can be applied to determine the gcd of polynomials
in Zp[x], where p is prime.

Example 12.6.10. Suppose that we would like to find the gcd of a(x) =
x4 + 2x3 + 5x2 + 5x + 1 and b(x) = x4 + 5x3 + 5x2 + 2x + 1 in Z7[x]. We
first divide a(x) by b(x) to determine the remainder, r1.

1
x4 + 5x3 + 5x2 + 2x+ 1 x4 + 2x3 + 5x2 + 5x + 1

6x4 + 2x3 + 2x2 + 5x + 6
4x3 + 3x

So r1 = 4x3 + 3x. We then divide b(x) by r1 to determine the second
remainder, r2.

2x + 3
4x3 + 3x x4 + 5x3 + 5x2 + 2x + 1

6x4 + x2

5x3 + 6x2 + 2x + 1
2x3 + 5x

6x2 + 1

So r2 = 6x2+1. We then divide r1 by r2 to determine the third remain-
der, r3.

3x
6x2 + 1 4x3 + 3x

3x3 + 4x
0

Notice that r3 = 0. Therefore, 6x2 + 1 divides both a(x) and b(x). We
multiply 6x2+1 by the inverse of 6 to obtain the gcd for a(x) and b(x). The
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result is x2 + 6. We leave it to the reader to check that x2 + 6 divides both
a(x) and b(x). ♦

Exercise 12.6.11.

(a) Use the Euclidean algorithm to compute the gcd of a(x) = x3+x2+3x
and b(x) = 3x3 + 2x2 + x+ 4 in Z5[x].

(b) Use the Euclidean algorithm to compute the gcd of a(x) = x3 +2x2 +2
and b(x) = 2x2 − x+ 1 in Z3[x].

♢

12.6.3 Polynomial roots and the FTOA (easy part)

When you first learned about factoring polynomials with integer or real coef-
ficients, you may have been told (or noticed on your own) that a polynomial
of degree n has at most n roots. This result is important enough that it has
a name: it’s part of the Fundamental Theorem of Algebra , or FTOA
for short (sadly, it’s only the easy part of FTOA–we’ll discuss the hard part
later).

Most likely though you’ve never seen a proof of the FTOA. No worries–
the proof is at hand! In keeping with our previous discussion, we will state
our results in terms of F [x], where the set of coefficients F satisfies properties
(I)-(VII).

The following preliminary proposition gives us a way to relate polynomial
values to polynomial remainders.

Proposition 12.6.12. Let F satisfy properties (I)-(VII), f(x) ∈ F [x], and
a ∈ F . When f(x) is divided by x− a, the remainder is f(a).

Proof. According to Proposition 12.6.7, if we divide f(x) by x − a, it
will produce two unique polynomials q(x) and r(x) such that f(x) = (x −
a)q(x) + r(x). Since the degree of x− a is 1, then according to the division
algorithm, the degree of r(x) must be less than 1. Therefore r(x) must be
a constant r, and we may write:

f(x) = (x− a)q(x) + r.

https://www.youtube.com/watch?v=Uh-czcHjyq4&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=50
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If we set x = a then we get:

f(a) = (a− a)q(x) + r

= 0 · q(x) + r

= r.

□

This proposition can save lots of time when finding remainders under
division by monomials.

Exercise 12.6.13.

(a) Find the remainders when
∑100

k=1 kx
k−1 is divided by x − 1 and x + 1,

respectively.

(b) Find the remainders when
∑100

k=0

(
1
2

)k
xk is divided by x− 1/2 and x+

1/2, respectively.

(c) Find the remainders when
∑100

k=0 3
kxk is divided by x+1/9 and x−1/9,

respectively.

♢

The following proposition is an important special case of Proposition 12.6.12.

Proposition 12.6.14. Let F satisfy properties (I)-(VII), f(x) ∈ F [x], and
a ∈ F . Then x− a divides f(x) if and only if f(a) = 0.

Proof. From Proposition 12.6.12 f(x) = (x − a) · q(x) + f(a). Therefore
f(a) = 0 if and only if f(x) = (x−a) · q(x), which is true if and only if x−a
divides f(x). □

We may also restate Proposition 12.6.14 as: a is a root of the polynomial
f(x) if and only if x− a divides f(x).

We will need to take care of some preliminaries in order to prove (the
easy part of) the Fundamental Theorem of Algebra. From basic algebra
with real numbers, we know that if ab = 0 then either a = 0 or b = 0 (see
also Proposition 4.2.11 of Chapter 4). Actually, this zero-divisor property
hold for any set R that satisfies (I)-(VII):
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Proposition 12.6.15. Suppose that F satisfies properties (I)-(VII). Given
a, b ∈ F and ab = 0, then either a = 0 or b = 0.

Exercise 12.6.16. Prove Proposition 12.6.15. (Hint : you may follow the
steps given in Exercise 4.2.12 ♢

It turns out that if F satisfies the zero-divisor property, then F [x] satisfies
the same property:

Proposition 12.6.17. Suppose F satisfies Properties (I)-(VII), and sup-
pose p(x), q(x) ∈ F [x]. Then p(x)q(x) = 0 iff either p(x) = 0 or q(x) = 0.

Proof. Since this is a “iff” proof, we must actually prove both the “if”’
statement and the “only if” statement.

First we prove the “if” part. It follows from the formula for multiplica-
tion of polynomials that if either p(x) = 0 or q(x) = 0, then the product
p(x)q(x) must also be 0. That was easy!

The “only if” part is harder. We will prove the contrapositive, namely
that p(x) ̸= 0 and q(x) ̸= 0 implies that p(x)q(x) ̸= 0. Let

p(x) =

m∑
i=0

aix
i and q(x) =

n∑
j=0

bjx
j ,

where am ̸= 0 and bn ̸= 0. We can then write

p(x)q(x) =
m+n∑
k=0

ck, where ck =
k∑
i=0

aibk−i.

Consider the coefficient cm+n, which may be expanded out as

cm+n = a0bm+n + a1bm+n−1 + . . .+ ambn + · · ·+ an+m−1b1 + an+mb0.

Take a look at these terms for a moment. Which of them are nonzero? Notice
how we’ve separated out the term ambn in the middle of the expansion. Since
am ̸= 0 and bn ̸= 0, this term is nonzero. Now, are there any other nonzero
terms? All terms have the form aibj , and for every other term in the series
(besides ambn) we have either i > m or j > n. If i > m then ai = 0, since
the degree of p(x) is m and all coefficients of terms of higher degree are 0.
For the same reason, if j > n then bj = 0. It follows that except for the
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term ambn, all other terms aibj are 0, which implies that cm+n = ambn ̸= 0.
But this means that p(x)q(x) has a nonzero term, namely cm+nx

m+n, so
p(x)q(x) ̸= 0. The proof is completed. □

And here’s the result we’ve been waiting for. Now that we’ve prepared
the ground, it’s not so difficult to prove.

Proposition 12.6.18.(Fundamental Theorem of Algebra: easy part) Sup-
pose F satisfies properties (I)-(VII), and let f(x) be a polynomial in F [x]
of degree n. Then the equation f(x) = 0 has at most n solutions: that is,
there are at most n distinct elements {x1, . . . xn} of F such that f(xm) = 0
for 1 ≤ m ≤ n.

Proof. Suppose a1 is a solution to f(x) = 0. Then by Proposition 12.6.14
it follows that x− a1 divides f(x). Therefore f(x) = (x− a1)gn−1(x) where
the degree of gn−1(x) = n− 1.

Now if a2 ̸= a1 is another solution then using our above result we have

f(a2) = (a2 − a1)gn−1(a2) = 0.

Since a2 − a1 ̸= 0, it follows that gn−1(a2) = 0. So we can write gn−1(x) =
(x− a2)gn−2(x) where the degree of g2(x) = n− 2.

Continuing in the same way, if there are distinct roots a1, a2, ..., an then

f(x) = (x− a1)(x− a2)...(x− an)g0,

where the degree of g0 is 0 (in other words, g0 is a constant.). So there can’t
be any more solutions, an+1, because (x− an+1) doesn’t divide g0. □

The previous theorem immediately gives us an extremely important gen-
eral property of roots of polynomials:

Proposition 12.6.19. Suppose F satisfies properties (I)-(VII), and let c
be any element F . Then c has at most n nth roots.

Proof. Given C ∈ F , then the polynomial xn− c is an element of F [x]. By
Proposition 12.6.18, the equation xn − c = 0 has at most n solutions. This
is exactly the same thing as saying that c has at most n nth roots. □

Exercise 12.6.20.

(a) Find all fourth roots of 5625 in R[x]. Give exact solutions.
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(b) Find all fifth roots of 3125i in C[x]. Give exact solutions.

(c) Find all fifth roots of 5 in Z7.

(d) Find all sixth roots of 1 in Z7.

♢

Take note of the “at most” qualification in Proposition 12.6.18. There
are cases of polynomials in F [x] which do not have any roots in F . For
example, there are polynomials in R[x] that have no roots at all in R[x], as
the next examples illustrate.

Example 12.6.21. Find the roots of p(x) = 2x2 + 2x+ 5.

Since this is a quadratic polynomial we can use the famous quadratic
formula:

x =
−b±

√
b2 − 4ac

2a

In p(x), a = 2, b = 2, and c = 5. We substitute those values into the
formula and obtain the following:

x =
−2±

√
22 − 4 · 2 · 5
2 · 2

=
−2±

√
−36

4
=

−2± 6i

4

=
−1± 3i

2
.

So the roots of p(x) are x =−1
2 +

3
2 i,−

1
2 −

3
2 i. Neither of these roots are

elements of R. As noted above this does not contradict FTOA, which only
guarantees there won’t be more than 2 roots. ♦

The next example is a cubic polynomial in Z[x]. To find the rational
roots, we will make use of the following proposition.

Proposition 12.6.22. Let f(x) = anx
n + an−1x

n−1 + ... + a0 be a poly-
nomial in Z[x]. Any rational roots of f(x) expressed in lowest terms have
numerators, p, which are factors of a0 and denominators, q, which are factors
of an.
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Proof. Let f(x) = anx
n+ an−1x

n−1 + ...+ a0 be a polynomial in Z[x] and
suppose that p/q is a root of f(x), where the fraction p/q is in lowest terms
(so p and q are relatively prime).

First we will show that p is a factor of a0. Since p/q is a root of f(x) we

have f
(
p
q

)
= 0, which implies

an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ ...+ a0 = 0.

Multiplying both sides by qn, we have,(
an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ ...+ a0

)
qn = 0,

which simplifies to

anp
n + an−1(p

n−1q) + ...+ a0q
n = 0.

This expression can be rearranged to obtain:

p
(
−anpn−1 − an−1(p

n−2q)− ...− a1q
n−1
)
= a0q

n.

Since f(x) ∈ Z[x], all the coefficients ai are also integers. p and q are
also integers. Since integers are closed under addition and multiplication, it
follows that both sides of the above equation are integers. Since p divides the
left-hand side, it must also divide the right-hand side. Therefore p divides
a0q

n. Now p and q are relatively prime: so in order for p to divide a0q
n, it

must divide a0. In other words, p is a factor of a0—which is just what we
wanted to prove.

It turns out the proof that q is a factor of an is basically the same, if we
use a little trick. The first equation that we wrote down above was:

an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ ...+ a0 = 0.

Let’s multiply both sides by (q/p)n. After simplifying, and rearranging we
get:

a0

(
q

p

)n
+ a1

(
q

p

)n−1

+ ...+ an = 0.
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Now, this new equation corresponds exactly to the first equation with the
following replacements:

an → a0; an−1 → a1; . . . ; a0 → an; p↔ q.

We can then go through the entire previous argument, making these
replacements. We concluded previously that p is a factor of a0—so if we
apply the identical argument to the equation with replacements, we obtain
that q is a factor of an. You may fill in the details in the following exercise.

Exercise 12.6.23. Starting with the equation a0 (q/p)
n+a1 (q/p)

n−1+ ...+
an = 0, give the complete argument which shows that q is a factor of an. ♢

□

Now let’s get some practice using Proposition 12.6.22.

Example 12.6.24. Find the roots of f(x) = 3x3 + 10x2 + 11x+ 6.

Since this is a cubic polynomial, we can’t use the quadratic formula, at
least not to begin with. The coefficients are integers, so we may use Propo-
sition 12.6.22, which says that any rational roots of p(x) have numerators
that are factors of a0 and denominators that are factors of an. This does
not guarantee that there are rational roots: sometimes polynomials are irre-
ducible, but we still try every method possible to find those roots unless we
know that we can’t reduce the polynomial. So we will proceed with trying
to find the roots of f(x) using Proposition 12.6.22.

In f(x), possible numerators of any rational roots are: p = ±1,±2,±3,±6.
The possible denominators are: q = ±1,±3. So we have as possible rational
roots the following: p/q = ±1,±1

3 ,±2,±2
3 ,±3,±6. By Proposition 12.6.14,

if f(p/q) = 0 then (x−p/q) is a factor of f(x); which would make p/q a root
of f(x). After testing all possibilities we find the following rational root:
f(−2) = 3(−2)3 + 10(−2)2 + 11(−2) + 6 = 0. Therefore, x = −2 is a root
of f(x) and (x+ 2) is a factor of f(x). We then use long division to factor
f(x).
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3x2 + 4x + 3
x+ 2 3x3 + 10x2 + 11x + 6

3x3 + 6x2

4x2 + 11x + 6
4x2 + 8x

3x + 6
3x + 6

0

So now we have f(x) = (x+2)(3x2+4x+3). We use the quadratic formula

to find the following roots for 3x2 + 4x + 3. x = −2±
√
5i

3 . So there are two

complex roots and one real root. They are x = −2−
√
5i

3 ,−2, −2+
√
5i

3 . ♦

Exercise 12.6.25.

(a) Find the roots of f(x) = 2x2 + x+ 1. Give exact solutions.

(b) Find the roots of f(x) = 5x3 + 17x2 + 7x+ 3. Give exact solutions.

♢

In the exercises above, the leading coefficient is not 1. The situation is
especially simple if the leading coefficient is 1. In such a case, the rational
roots are integers:

Exercise 12.6.26.

(a) Given that p(x) ∈ Z[x], and p(x) has leading coefficient 1, show that all
rational roots of p(x) are integers.

(b) Find the roots of f(x) = x3 − 13x+ 12.

♢
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12.6.4 Algebraic closure and the FTOA (hard part)

We’ve been referring to the “easy” part of the Fundamental Theorem of
Algebra. It’s time now to consider the “hard” part.

Proposition 12.6.18 says that any polynomial in F [x] of degree n has
at most n roots that are elements of F , as long as F satisfies properties
(I)-(VII). But the proposition can’t guarantee the existence of even one
root–and we’ve shown in Example 12.6.21 that there may be no roots at all!

Exercise 12.6.27. Give an example of a polynomial in Q[x] which has
roots in R but no roots in Q. ♢

For some special cases of F however, a nonconstant polynomial in F [x]
(i.e. a polynomial with degree 1 or more) always has roots in F . As a
lead-in, we may notice that for every nonconstant polynomial in R[x] that
we looked at we were always able to find complex roots, even when weren’t
able to find real roots. This might lead us to conjecture that every noncon-
stant polynomial in R[x] has at least one root in C. The hard part of the
Fundamental Theorem of Algebra affirms that this is true. What’s more,
not just nonconstant polynomials in R[x], but also those in C[x] all have at
least one in C. Here’s the statement of the theorem:

Proposition 12.6.28.(Fundamental Theorem of Algebra: hard part) Any
nonconstant polynomial in C[x] has at least one complex root.

There are several proofs of this theorem. The most elegant involves
the field of mathematics known as “complex analysis”, and specifically the
theory of integrals of functions whose domain and codomain are C. This
proof is one of the highlights in most undergraduate complex analysis classes.
3

Here are some examples that illustrate Proposition 12.6.28.

Example 12.6.29. We begin with an example of a linear binomial in C[x].
Let p(x) = (3 + 2i)x+ (2− i). Find the root of p(x) (since p(x) is linear, it
will only have one root).

3For a visualizable, constructive proof that uses basic calculus, see https://arxiv.

org/abs/2002.04418.

https://arxiv.org/abs/2002.04418
https://arxiv.org/abs/2002.04418
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First we set p(x) equal to zero and then proceed to find the root as
follows. Begining with (3 + 2i)x+ (2− i) = 0, we may rearrange to obtain

x =
−2 + i

3 + 2i
,

and multiplying numerator and denominator by 3−2i and simplifying gives

x =
4 + 7i

13
∈ C[x].

♦

Example 12.6.30. Let’s do another example, but this time with a quadratic
trinomial in C[x]. Let p(x) = (1 + i)x2 + (2− i)x+ (3 + 3i). Find the roots
of p(x).

Since this is a quadratic polynomial we can use the quadratic formula
and obtain the following:

x =
−(2− i)±

√
(2− i)2 − 4(1 + i)(3 + 3i)

2(1 + i)
=

(−2 + i)±
√
3− 4i− 24i

(2 + 2i)

=
(−2 + i)±

√
3− 28i

(2 + 2i)
=

(−2 + i)±
√
3− 28i

(2 + 2i)
· 2− 2i

2− 2i

=
6 + 6i± (2− 2i)

√
3− 28i

8
=

3 + 3i± (1− i)
√
3− 28i

4
.

So the two roots are x =
{

3+3i−(1−i)
√
3−28i

4 , 3+3i+(1−i)
√
3−28i

4

}
. ♦

Exercise 12.6.31.

(a) Find the root of p(x) = (4− 3i)x+ (2 + 6i). Give an exact solution.

(b) Find the roots of p(x) = (2 + i)x2 + (2 − 3i)x + (7 + 3i). Give exact
solutions.

♢
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Proposition 12.6.32. Any polynomial p(x) of degree n in C[x] can be
completely factored as a constant times a product of n linear terms, as
follows:

p(x) = b(x− a1)(x− a2) . . . (x− an). (12.6.33)

where b, a1, . . . , an ∈ C.

Proof. Let p(x) be an arbitrary polynomial of degree n in C[x]. By
Proposition 12.6.28, p(x) has at least one complex root a. So (x − a) is
a factor of p(x) and we can write p(x) = (x − a1)p1(x); where the degree
of p1(x) is n − 1. If p1(x) is linear, then we are done, but if p1(x) is not
linear, then by Proposition 12.6.28 it also has a complex root a2. So (x−a2)
is a factor of p2(x) and we can write p(x) = (x − a1)(x − a2)p2(x); where
the degree of p2(x) is n − 2. The same argument continues until we reach
pn−2(x), which has degree 1. But this means that pn−2(x) can be written
as bx − c, which we may rewrite as b(x − an), where an = c/b. It follows
finally that p(x) = b(x− a1)(x− a2) . . . (x− an). □

Exercise 12.6.34. Suppose p(x) is a polynomial of degree n such that the
coefficient of xn is 1 (such a polynomial is called a monic polynomial).
Show that for a monic polynomial, the coefficient b in Proposition 12.6.32
is equal to 1. ♢

Now let’s apply Proposition 12.6.32 to an example.

Example 12.6.35. Let f(x) = x4− 4x3+10x2− 24x+24 be a polynomial
in C[x]. Notice that the coefficients of f(x) are integers, so f(x) is also in
Z[x]. Therefore we can use Proposition 12.6.22 to factor out our first linear
term. Since a0 = 24 and an = 1, possible rational roots are

p

q
= ±1,±2,±3,±4,±6,±8,±12.

By Proposition 12.6.14, if f(p/q) = 0 then (x − p/q) is a factor of f(x)
i.e. p/q a root of f(x). After testing all possibilities we find the following
rational root: f(2) = 24 − 4(2)3 +10(2)2 − 24(2)+ 24 = 0. Therefore, x = 2
is a root of f(x) and (x − 2) is a factor of f(x). After dividing f(x) by
(x− 2) we have the following:

f(x) =(x− 2)(x3 − 2x2 + 6x− 12) = (x− 2)(x2(x− 2) + 6(x− 2))

=(x− 2)(x− 2)(x2 + 6) = (x− 2)2(x2 + 6).
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Solving x2 + 6 = 0 for x gives us additional roots: x = −
√
6i, 2,

√
6i. In

summary, we have

f(x) = (x− 2)(x− 2)(x+
√
6i)(x−

√
6i).

So as Proposition 12.6.32 states, f(x) factors completely into a product
of linear terms. ♦

Remark 12.6.36. Although f(x) is a fourth degree polynomial, and factors
into the product of 4 linear terms, yet it only has 3 distinct roots because
of the repeated factor (x− 2). This agrees with Proposition 12.6.18, which
implies that a polynomial of degree 4 has at most n distinct solutions. △

Take a moment to savor the full generality of Proposition 12.6.28. We
don’t have to restrict ourselves to polynomials with real coefficients: even if
the polynomial’s coefficients are imaginary or complex, the proposition still
guarantees that the polynomial has a root. Further, Proposition 12.6.32
then guarantees that it can be factored into a product of linear factors.

Exercise 12.6.37. Factor each of the following polynomials into a product
of linear terms.

(a) p(x) = x3 + (−6 + i)x2 + (13− 6i)x+ 13i = 0 (hint: evaluate p(−i)).

(b) f(x) = x3 − 6ix2 − 11x+ 6i = 0 (hint: evaluate f(i)).

♢

Exercise 12.6.38.

(a) Suppose that p(x) ∈ C[x] and p(x) = p(−x). Show that p(x) is actually a
polynomial in x2, so that p(x) can be written as q(x2) where q(x) ∈ C[x].
(Hint: If p(a) = 0, then what about p(−a)? Use this fact to get two
linear factors of p(x), and multiply them together. The case where
p(0) = 0 should be treated separately.)

(b) Suppose that p(x) ∈ C[x] and p(x) = −p(−x). Show that p(x) can be
written as xq(x2) where q(x) ∈ C[x].

♢
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12.7 Hints for “Polynomial Rings” exercises

Exercise 12.3.5(d): Note 4 = 3 + 1 and 11 = 32 + 2.

Exercise 12.3.11(d): Are there any common factors you can take outside the
summations before multiplying?

Exercise 12.4.3: Note that if a2 is in 5Z, then a2 = 5a′2 where a′2 is also an
integer. The same thing holds for al the other coefficients in p(x) and q(x).

Exercise 12.6.20(b): Use the method in Section 4.4.2.



13

Symmetries of Plane Figures

“In all the arts it is symmetry that gives pleasure, preserving
unity, and making the whole beautiful.” (Augustine, Of True
Religion, xxx.55 (Tr. J. H. S. Burleigh)

“It is only slightly overstating the case to say that physics is the
study of symmetry.” (Philip W. Anderson, 1977 Nobel laureate
in physics)

“So our problem is to explain where symmetry comes from. Why
is nature so nearly symmetrical? No one has any idea why.”
(Richard Feynman, 1965 Nobel laureate in physics)

The above quotes give some flavor of the importance and the mystery of
symmetry, in both art and science. In keeping with our practice throughout
this book, we will introduce this general topic by means of a basic example,
namely symmetries of plane figures. Many of the concepts that you will
learn in this chapter are applicable to symmetries in general. In particular:
wherever you find a symmetry, you will always find a group lurking behind
it (see Section 5.4.7 for the mathematical definition of a group).

Thanks to Tom Judson for material used in this chapter.

419

https://www.youtube.com/watch?v=8wveTstkSfU&index=18&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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13.1 Definition and examples

In plane geometry we talk about various shapes: triangles, rectangles, pen-
tagons, and so on. Shapes are important because real objects have shapes
(duh), and objects are important. What would life be without triangles?

Now suppose you and your friend cut an equilateral triangle out of a
piece of plain white paper and put it on the table. Then you tell your friend
to go out of the room. While she’s gone, you take the triangle and move
it, but in such a way that it looks exactly the same. You can do this by
rotating the triangle, or flipping it over, or by some combination of these two
actions. When your friend comes back into the room, although the triangle
has been moved there’s no way for her to tell. This type of motion is called a
symmetry operation. Clearly we may perform symmetry operations on other
objects besides equilateral triangles, but only if the shape of the object has
some kind of regularity. In the following discussion, we will explore the
relationship between shapes and symmetry operations.

We’ve given an intuitive picture of what symmetry means–now let’s try
to translate that into mathematics. We start with a definition:

Definition 13.1.1. A symmetry of a geometrical figure is a rearrangement
of the figure that (i) preserves distances and angles between points of the
figure, and (ii) leaves the appearance and location of the figure unchanged.
△

Remark 13.1.2. The meaning of “preserves distances” can be expressed
more precisely as follows. Take any two points A and B of the original
figure. The figure is then rearranged so that A and B are sent to points A′

and B′ respectively. Then in order for the rearrangement to be a symmetry,
the distance between A and B must always be equal to the distance between
A′ and B′.

Similarly, the meaning of “preserves angles” can be expressed more pre-
cisely as follows. Take any three points A,B,C of the original figure. The
figure is then rearranged so that A,B,C are sent to A′, B′, C ′ respectively.
In order for the rearrangement to be a symmetry, ∠ABC must always be
equal to ∠A′B′C ′ regardless of the choice of A,B,C. 1 △

1It can be shown mathematically that a rearrangement that preserves distances must
necessarily preserve angles as well. So strictly speaking, the additional angle preservation
requirement is not necessary.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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A motion that preserves distances and angles between parts of a figure
is also called a rigid motion . Intuitively, you may think of the figure as a
rigid object, and the “rearrangement” is effected by moving the rigid object
in some fashion. For example, any rotation that does not change the shape
of the object is a rigid motion.

Figure 13.1.1. Mercedes Logo

Example 13.1.3. Consider the Mercedes logo shown in Figure 13.1.1.

� Imagine pinning the center of the logo to the page and spinning the
logo 120◦ counterclockwise about its center. The resulting image looks
exactly like the original, because each of the three points on the cir-
cumference moves to the location of the next point over. So a 120◦

counterclockwise rotation is a symmetry of the logo.

� If you rotate the image 180◦ counterclockwise about the center, the
resulting image is no longer identical to the original (try it!). So a
180◦ counterclockwise rotation is not a symmetry of the logo.

� We could also “flip over” the logo (like flipping a pancake) in such a way
that the left half moves to the right, and vice versa. Then the vertical
point stays in the same place while the left and right point exchange
positions, leaving the appearance of the logo unchanged. The motion
has the same effect as if the logo were reflected across the vertical
axis. After the motion, the logo looks the same.

� Shifting the original image (shifts are also called translations in any
direction is a rigid motion, and the resulting image looks the same as
the original, but the location is different. Hence this shift is not a
symmetry of the Mercedes logo.

♦
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Exercise 13.1.4. List six different symmetries of the Mercedes logo. (*Hint*)
♢

This is not the first time we’ve played with symmetries of a figure. At the
end of Chapter 1, we saw that the complex sixth roots of unity determined a
regular hexagon in the complex plane, and that complex multiplication and
complex conjugation could be used to rotate or reflect the hexagon. Let us
investigate the hexagon a bit further.

Figure 13.1.2. Hexagon and 60◦ rotation

Example 13.1.5. Figure 13.1.2 shows a 60◦ counterclockwise rotation of a
regular hexagon where the vertices of the hexagon are labeledA,B,C,D,E, F .
(Notice how the letters run counterclockwise around the hexagon. We will
consistently follow this pattern. The reason is that in mathematical conven-
tion, a counterclockwise rotation is considered as positive, while a clockwise
rotation is considered as negatve.)

The rotation moves A to B, B to C, and so on. Now of course there are
other points on our figure, namely all the points on the line segments between
the vertices. But notice that if we account for where the vertices are moved
to, then the movement of the line segments is automatically accounted for.
If we know where A and B are moved to, we know exactly where AB is.
Therefore, our 60 degree rotation can be defined by the movement of the
vertices {A,B,C,D,E, F}.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Now if we input a point from {A,B,C,D,E, F}, our rotation outputs a
point from {A,B,C,D,E, F}. We have used this “input-output” language
before, namely in the Functions chapter.

In fact, we can think of the 60 degree rotation as a function r60 from
{A,B,C,D,E, F} → {A,B,C,D,E, F}, where (using ordered pair nota-
tion)

r60 = {(A,B), (B,C), (C,D), (D,E), (E,F ), (F,A)}.

Before leaving this example, we make note of a peculiarity that has tripped
up many a student. If you compare the ’before’ hexagon (shown at left in
Figure 13.1.2) with the ‘after’ hexagon (shown at right), it appears that the
original vertex B has been relabeled as’ A, C has been relabeled as B, and
so on. However, according to our function we say that A goes to B, not B
goes to A. This is because we’re thinking of symmetry as a motion rather
than a relabeling. The fact that original vertex B is relabeled as A means
that A moved to B, and not vice versa. So you should take care in future
examples–whenever you see a vertex X being relabeled as Y this means that
Y → X, and not vice versa.2

♦

Exercise 13.1.6.

(a) Is r60 one-to-one? Explain why or why not.

(b) Is r60 onto? Explain why or why not.

(c) Is r60 a bijection? Explain why or why not.

♢

Exercise 13.1.6 exemplifies a general property of symmetries:

Proposition 13.1.7. If S is the set of points that represent a figure, all
symmetries of the figure are bijections from S → S.

Proof. Since the result of any symmetry acting on S must be all of S, then
every point of S must be in the range of S. Thus any symmetry is onto.

2Actually, we could have defined symmetries as relabelings rather than motions, and
all of the conclusions of this chapter would still hold. We’d just have to rewrite all of our
tableaus to reflect this different convention.
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Furthermore, the symmetry must map two different points to two different
points, since the distance between points must be left unchanged by the
symmetry. Hence any symmetry is one-to-one. So since any symmetry is
both onto and one-to-one, it follows that any symmetry is a bijection. □

Proposition 13.1.7 says that all symmetries are bijections, but the con-
verse is not true: not all bijections are symmetries.

Exercise 13.1.8. Create a bijection from {A,B,C,D,E, F} → {A,B,C,D,E, F}
that does not correspond to a symmetry of the regular hexagon in Fig-
ure 13.1.2. Explain why it is not a symmetry. ♢

Example 13.1.9.
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Figure 13.1.3. Symmetries of a rectangle

♦

Figure 13.1.3 shows all symmetries of a rectangle.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Exercise 13.1.10.

(a) Explain why a 90◦ rotation, a 270◦ rotation, or reflection across a diag-
onal are not symmetries of the rectangle ABCD.

(b) What subcategory of rectangle would have a 90◦ rotation, 270◦ rotation,
and a reflection across a diagonal as symmetries?

(c) What rotation angle does the identity symmetry correspond to? (Give
the easiest answer.)

(d) Write each of the symmetries of a rectangle as a function (use either a
table, ordered pairs, arrow diagram, etc.)

♢

13.2 Composition of symmetries

Since the symmetries of a figure are functions, we can do anything with
symmetries that we can do with functions–including composition. That is,
we can perform two symmetries on a figure back-to-back, and since they are
both functions, by definition of function composition the result is a func-
tion. In fact, we saw in the Functions chapter that the composition of two
bijections is a bijection. So the composition (or net motion) resulting from
two symmetries is a bijection. But a bijection of a figure is not necessarily a
symmetry. as we showed in Exercise 13.1.8 above. This raises the question:
is the composition of two symmetries a symmetry? That is: if one symmetry
is followed by another on a figure, is the net motion a symmetry? You will
investigate this question in the following exercise.

Exercise 13.2.1. With reference to the symmetries of a rectangle in Exam-
ple 13.1.9, let r180 be the 180◦ counterclockwise rotation and let sv be the
reflection across the vertical axis. (Note that reflection across the vertical
axis is sometimes called “horizontal reflection,” since the figure “flips” from
left to right. Admittedly this is confusing, but that’s what people call it so
what can you do?)

(a) Write the function r180 in ordered pair notation.

(b) Write the function sv in ordered pair notation.
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(c) Write the function r180 ◦ sv in ordered pair notation. Is it a symmetry
of the rectangle? If so, then which one?

(d) Write the function sv ◦ r180 in ordered pair notation. Is it a symmetry
of the rectangle? If so, then which one?

♢

At this point let us introduce an alternative notation for symmetries
that’s easier to write. This notation is called tableau form , and for r180 it
looks like the following:

r180 =

(
A B C D
C D A B

)
To form these, we simply put the inputs of our function on the top row

and their corresponding outputs on the bottom row.

Example 13.2.2. For example, since

sv = {(A,D), (B,C), (C,B), (D,A)},

then the top row of the tableau for sv would read, “ABCD”, and the bottom
row of the tableau would read, “DCBA”. Hence

sv =

(
A B C D
D C B A

)
.

♦

Example 13.2.3. Suppose we wanted to find r180 ◦ sv using the tableau
forms for r180 and sv above. That is

r180 ◦ sv =
(
A B C D
C D A B

)
◦
(
A B C D
D C B A

)
=?

To see how this works, let’s “follow” each possible input (A,B,C,D) as we
put it into the composition. Remember that the composition of functions
works right to left; we are first reflecting the rectangle and then rotating it.
So starting from the right,

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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� sv takes A → D, and r180 takes D → B. Therefore r180 ◦ fh takes
A→ B; i.e. (r180 ◦ sv)(A) = B.

� sv takes B → C, and r180 takes C → A; therefore r180◦sv takes B → A

� sv takes C → B, and r180 takes B → D; therefore r180 ◦ sv takes
C → D

� sv takes D → A, and r180 takes A → C; therefore r180 ◦ sv takes
D → C

Figure 13.2.1. Composition of symmetries using tableaus.

Figure 13.2.1 shows this process using tableaus. If you think about it,
it’s really just a variation on an arrow diagram.

In summary we have

r180 ◦ sv =
(
A B C D
C D A B

)
◦
(
A B C D
D C B A

)
=

(
A B C D
B A D C

)
♦

Exercise 13.2.4.

(a) Write sh in tableau form, where sh is reflection across the horizontal
axis. (Note sh is sometimes referred to as “vertical reflection,”, since
the two reflected halves are stacked on top of each other.)

(b) Does r180 ◦ sv = sh?
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(c) Compute sh ◦ sv. Is this a symmetry? If so, which one?

(d) Compute sv ◦ r180. Is this a symmetry? If so, which one?

♢

Exercises 13.2.4 and 13.2.1 seem to indicate that the composition of two
symmetries of a figure is a symmetry of the figure. We can actually prove
that this is always true.

Proposition 13.2.5. Suppose f and g are both symmetries of a figure.
Then f ◦ g is itself a symmetry of the same figure.

Proof. Recall that composition works from right to left. Since g is a
symmetry, g takes the points of the figure and rearranges them so that the
angles and distances of points in the figure are preserved. The symmetryf
then takes the points of this preserved figure and moves them in such a way
that the angles, and distances of points in the figure are preserved. Hence
the net result of f ◦ g preserves angles and distances between points in the
figure. Therefore by definition, f ◦ g is a symmetry of the figure. □

Exercise 13.2.6. With reference to the hexagon in Figure 13.1.2, for the
symmetries f and g in parts (a)-(d) below:

(i) Write the symmetries f and g in tableau form.

(ii) Compute f ◦ g and g ◦ f , expressing your answers in tableau form.

(iii) Describe the symmetries that correspond to f ◦g and g◦f , respectively.

Note id denotes the identity symmetry, that is the symmetry that leaves all
points unchanged. Also, all rotations are counterclockwise.

(a) f = rotation by 240◦, g = rotation by 120◦

(b) f = id, g = rotation by 120◦

(c) f =rotation by 240◦, g =reflection across the line BE

(d) f =rotation by 180◦, g =reflection across the line CF

♢

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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◦ id ρ1 ρ2 µ1 µ2 µ3

id id ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 id µ3 µ1 µ2

ρ2 ρ2 id ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 id ρ1 ρ2
µ2 µ2 µ3 µ1 ρ2 id ρ1
µ3 µ3 µ1 µ2 ρ1 ρ2 id

Table 13.1: Composition of the symmetries of an equilateral triangle

13.3 Do the symmetries of an object form a group?

With reference to the set of symmetries of a particular figure, Proposi-
tion 13.2.5 tells us that this set is closed under the operation of composition.
Given this fact, the next natural inquiry is to see if this set of symmetries
forms a group under composition. Let’s look first at a particular example
to see if it works.

Example 13.3.1. Figure 13.3.1 shows all the symmetries of an equilateral
triangle: id is the identity ; ρ1 is the 120◦ counterclockwise rotation; ρ2 is
the 240◦ counterclockwise rotation; µ1 is the reflection across the median
through A; µ2 is the reflection across the median through B; and µ3 is the
reflection across the median through C. We remind the reader once again of
the comment we made in Example 13.1.5: for example, in the symmetry ρ1
the triangle’s vertices A,B,C before the motion appear to be relabeled as
C,A,B respectively, which means that C → A, A→ B, and B → C rather
than vice-versa.

♦

Table 13.1 displays all possible compositions of the symmetries shown in
Figure 13.3.1. The table is arranged like a multiplication table: for exam-
ple, the table entry in the row marked “ρ1” and the column marked “µ1”
corresponds to the composition ρ1 ◦ µ1. From now on we will refer to all
such tables as Cayley tables, regardless of the operation being represented
(addition, multiplication, composition, . . . )

Remark 13.3.2. NOTE it is very easy to get mixed up with Cayley tables
for the composition operation. When looking up the value of f ◦ g, you use

https://www.youtube.com/watch?v=EC5DO5EUQ9C&INDEX=19&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO?
https://www.youtube.com/watch?v=EC5do5EUQ9c&index=19&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo?
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Figure 13.3.1. Symmetries of an Equilateral Triangle

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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the row headings for f and the column headings for g, but when computing
f ◦ g, it is g that is applied first and then f . △

Exercise 13.3.3. Verify the following entries in Table 13.1 by (i) writing
the symmetries in tableau form and (ii) computing the composition directly.

(a) Row 2, column 4

(b) Row 4, column 2

(c) Row 3, column 6

(d) Row 6, column 3

♢

Exercise 13.3.4. Use Table 13.1 to answer the following questions.

(a) Explain why Table 13.1 shows that id satisfies the definition of an iden-
tity element.

(b) Does every element in S have an inverse? List the inverses for each
symmetry that has an inverse.

(c) Explain why Table 13.1 shows that composition is not commutative.

♢

So far so good. The composition operation on S has closure, an identity,
and inverses for each element. There is one more group property left to
check – the associative property. It is difficult to check this property on the
Cayley table of S; we would have to prove it for all 3-symmetry combinations
in S, which would be a bit exhausting.3 However, luckily we can prove the
symmetries of any figure are associative in general.

Proposition 13.3.5. The set of symmetries S of any figure under compo-
sition is associative.

3In mathematics, there is a type of proof called “proof by exhaustion,” but this is typ-
ically a last resort. One famous mathematician (George Polya) once said, ”Mathematics
is being lazy. Mathematics is letting the principles do the work for you so that you do not
have to do the work for yourself.”

https://www.youtube.com/watch?v=EC5DO5EUQ9C&INDEX=19&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO?
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Proof. By definition, we know any symmetry of a figure is a function. From
the Functions chapter, we know that composition of functions is associative.
Therefore for any three symmetries s1, s2, s3 ∈ S, by the associative property
of functions, (

s1 ◦ s2
)
◦ s3 = s1 ◦

(
s2 ◦ s3

)
.

Therefore S is associative under composition. □

Tada! The set of symmetries of an equilateral triangle are indeed a group
under function composition.

We’ve managed to prove this for one example; what about for the set
of symmetries of any figure? Could we prove the set of symmetries of any
figure are a group under composition? We’ve already proved the closure and
associative properties hold for any figure (Propositons 13.3.5 and 13.2.5).
Now what about the identity and existence of inverses? We could create
Cayley tables for the infinite number of figures, but we have better things
to do. So let’s prove these properties generally.

Proposition 13.3.6. The set of symmetries S of any figure has an identity.

Proof. By the definition of a symmetry, the ”non-movement” of a figure
is a symmetry: it corresponds to the identity function id. Then for any
symmetry s ∈ S, using results from the Functions chapter we have

id ◦ s = s ◦ id = s

So by the definition of identity, id is the identity of S. □

Proposition 13.3.7. All elements of the set S of symmetries of any figure
have inverses.

Proof. Given a symmetry s ∈ S, by definition s is a bijection. In the
Functions chapter, we showed that every bijection has an inverse s−1. It
remains to show that s−1 is itself a symmetry. This means that we have to
show:

(i) s−1 leaves distances unchanged between points in the figure;

(ii) s−1 leaves angles unchanged between points in the figure;

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(iii) s−1 leaves the appearance of the figure unchanged.

These three items are proved as follows:

(i) This proof is similar to (ii), and we leave it as an exercise.

(ii) We show that s−1 leaves angles between points unchanged as follows:

� Choose any three points A,B,C in the figure, and let A′ =
s−1(A), B′ = s−1(B), C ′ = s−1(C).

� By the definition of inverse, it follows that s(A′) = A, s(B′) =
B, s(C ′) = C.

� Since s is a symmetry, it follows that ∠A′B′C ′ = ∠ABC.

� Since A,B,C were arbitrary points in the figure, we have shown
that s−1 leaves angles between points unchanged.

(iii) In the Functions chapter, we showed that s−1 is also a bijection. Hence
it leaves the appearance of the figure unchanged.

□

Exercise 13.3.8. Write out the proof of Proposition 13.3.7 part (i). (*Hint*)
♢

And finally, as the grand finale for this series of propositions, we have:

Proposition 13.3.9. The set S of symmetries of any figure forms a group.

Exercise 13.3.10. Prove Proposition 13.3.9 (make use of the propositions
that we’ve proved previously.) ♢

Exercise 13.3.11.

(a) Write the Cayley table for the symmetries of a rectangle.

(b) List the inverses of each symmetry of the symmetries of a rectangle.

https://www.youtube.com/watch?v=EC5DO5EUQ9C&INDEX=19&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO?


434 CHAPTER 13 SYMMETRIES OF PLANE FIGURES

♢

Exercise 13.3.12.

(a) Describe all symmetries of a square (For example, “reflection about the
vertical axis ” describes one symmetry: give similar descriptions of all
symmetries of the square. For rotations, use counterclockwise rotations
rather than clockwise: it’s the mathy way of doing rotations.)

(b) Label the square’s vertices as A,B,C,D, and write down each symme-
try in tableau form. As in Figure 13.3.1, denote each symmetry by a
variable (you may use ρ1, ρ2, . . . for the rotations and µ1, µ2, . . . for the
reflections).

(c) Write the Cayley table for the symmetries of a square.

(d) For each symmetry of a square, list its inverse.

♢

Exercise 13.3.13. With reference to the logos in Figure 13.3.2:

(a) For which logos do the set of symmetries include all symmetries of the
equilateral triangle? (Note: there are at least two!)

(b) For which logos do the set of symmetries include all symmetries of the
rectangle?

(c) For which logos do the set of symmetries include all symmetries of the
hexagon?

(d) Which logos have set of symmetries which are proper subsets of the set
of all symmetries as the rectangle?

(e) Give two logos such that all symmetries of the first logo are also sym-
metries of the second logo.

(f) Which logos have no symmetries except for the identity?

♢

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Figure 13.3.2. Logos for Exercise 13.3.13

13.4 The dihedral groups

We have investigated the symmetries of equilateral triangle, square, and reg-
ular hexagon. But what about other regular polygons: heptagon, octagon,
nonagon, decagon, and so on? (Recall from geometry that a regular poly-
gon has all sides equal and all angles equal.) In this section, we will take a
general look at the symmetries of n-sided regular polygons.

We already know from Exercise 13.3.10 that the symmetries of any n-
sided regular polygon form a group. We define the nth dihedral group to
be the group of symmetries of a regular n-gon. We will denote this group
by Dn.

Let us try to count the number of elements of Dn . We can number the
vertices of a regular n-gon by 1, 2, . . . , n (Figure 13.4.1). Any symmetry will
move the n-gon so that each vertex is replaced by another vertex. Notice
that any vertex can replace the first vertex: so there are exactly n choices
to replace the first vertex. Suppose we replace vertex 1 by vertex k: then
vertex 2 must be replaced either by vertex k+1 or by vertex k− 1, because
these are the only vertices next to vertex k. So for each of the n choices
for replacing vertex 1, there are two choices for replacing vertex 2: which
makes 2n possible choices altogether. If you think about it, you’ll see that
once the replacements for vertices 1 and 2 are determined, the entire sym-
metry is fixed (again, because vertices must remain next to each other). We
summarize our conclusion in the following proposition.

Proposition 13.4.1. The dihedral group, Dn, is a group of order 2n.

Let us try to characterize these 2n elements of the dihedral group Dn.
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Figure 13.4.1. Rotations and reflections of a regular n-gon

First, we know that the elements of the dihedral group includes n rota-
tions:

id,
360◦

n
, 2 · 360

◦

n
, . . . , (n− 1) · 360

◦

n
.

We will denote the rotation 360◦/n by r. Notice that:

� r ◦ r = rotation by 2 · 360◦

n

� r ◦ r ◦ r = rotation by 3 · 360◦

n

We can generalize this pattern by writing:

rk = rotation by k · 360◦

n (k = 1, 2, 3, . . .),

where the notation rk means that we compose r with itself k times: r◦r . . .◦r.
We can also continue this pattern with k = 0 and write:

r0 = rotation by 0 · 360◦

n = id.

We also have

rn = rotation by n · 360◦

n = rotation by 360◦ = id,

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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since rotation by 360 degrees is tantamount to not moving the figure at all.

Exercise 13.4.2.

(a) Using the above definition of rk, show that rk ◦ rm = rm+k for any
natural numbers k,m.

(b) Show that rk ◦ rn−k = rn−k ◦ rk = id for 1 < k < n.

(c) What does (b) tell us about the inverse of rk?

♢

From the above discussion, it should be clear that the n rotations in Dn

can be expressed as:
id, r, r2, . . . , rn−1,

where we have included id since it is “rotation by 0 degrees” (as mentioned
above, we could also write id as r0). This gives us a nice way of characterizing
the rotations in Dn. But until now we don’t have a nice way of writing the
reflections. We’ll take care of that now!

We have labeled the vertices of the n-gon as 1, 2, . . . , n. In the following
discussion, we will use the letter s to denote the reflection that leaves the
vertex labeled 1 fixed, that is, s(1) = 1.4 Another way of saying the same
thing is: the vertex labeled 1 is “fixed by” s.

Exercise 13.4.3.

(a) Write the reflection s for the pentagon in tableau form.

(b) How many vertices are fixed by s? What are they?

(c) What is s2? (Recall that s2 means the same as s ◦ s.)

♢

Exercise 13.4.4.

(a) Write the reflection s for the octagon in tableau form.

4In math books you may also find the termi “invariant” instead of “fixed”.
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(b) How many vertices are fixed by s? What are they?

(c) What is s2?

♢

By generalizing the arguments used in the preceding exercises, it is pos-
sible to prove for any n that:

s2 = id.

Now we have already shown there are n distinct rotations. Suppose we
follow each of these rotations by the reflection s: that is, consider the set

S ≡ {s ◦ id, s ◦ r, s ◦ r2, . . . , s ◦ rn−1}

It appears that S has n elements: but are these elements distinct? The
following exercise provides an answer:

Exercise 13.4.5. Prove the following proposition by filling in the blanks:

Proposition. If 0 < p, q < n and p ̸= q, then s ◦ rp and s ◦ rq are distinct
elements of Dn: that is, s ◦ rp ̸= s ◦ rq.

Proof.

� The proof is by contradiction. Given 0 < p, q < n and p ̸= q, and
suppose that s ◦ rp < 1 > s ◦ rq

� Compose both sides of the equation with s, and obtain the equation:
s ◦ (s ◦ rp) = < 2 > .

� By the associative property of composition, this can be rewritten: (s◦
s) ◦ < 3 > = < 4 >

� Since s◦s = < 5 > , this can be rewritten: id◦ < 6 > = < 7 > .

� Since id is a group identity, we have: rp = < 8 > .

� But we have already shown that rp and rq are distinct symmetries if
0 < p, q < n and p ̸= q. This is a contradiction.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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� Therefore we conclude that our supposition was incorrect, and s ◦
rp < 9 > s ◦ rq. This completes the proof.

□ ♢

Exercise 13.4.6. Prove the following proposition:

Proposition If 0 < q < n then s and s ◦ rq are distinct elements of Dn:
that is, s ̸= s ◦ rq. (*Hint*) ♢

Exercise 13.4.7. Fill in the blanks to prove that given any integers p, q
with 0 < p, q < n, s ◦ rp ̸= rq :

� The proof is by contradiction: so given integers p, q with 0 < p, q < n,
we suppose < 1 > .

� By multiplying both sides on the right by rn−p, we obtain s ◦ rp ◦
< 2 > = rq ◦ < 3 >

� By associativity, we have s ◦ < 4 > = < 5 >

� Using the fact that < 6 > = id, we obtain s = < 7 >

� The left side of this equation is a reflection, and the right side is a
< 8 > , which is a contradiction.

� This contradiction implies that our supposition is incorrect, so given
integers p, q with 0 < p, q < n, we conclude < 9 > .

♢

The preceding exercises have shown that the rotations and {s, s ◦ r, s ◦
r2, . . . , s ◦ rn−1} are all distinct elements of Dn. Since there are 2n of these
symmetries altogether, and since Dn has 2n elements, we have proved the
following:

Proposition 13.4.8. The 2n elements of Dn may be listed as:

{id, r, r2, . . . , rn−1, s, s ◦ r, s ◦ r2, . . . , s ◦ rn−1},
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or alternatively as

{sj ◦ rk, (j = 0, 1; k = 0, 1, . . . n− 1},

where we are using the notation: s0 = r0 = id.

There is actually another way to characterize the elements of Dn, as we
shall see in the following exercises:

41
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Figure 13.4.2. Lines of reflection for a square (D4)
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Figure 13.4.3. Types of reflections of a regular n-gon

Exercise 13.4.9.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) List four reflections of the square in tableau form. (*Hint*)

(b) Let µ be any of the reflections in part (a). What is µ ◦ µ?

(c) How many reflections have no fixed vertices?

(d) How many reflections fix exactly one vertex?

(e) How many reflections fix exactly two vertices?

♢

Exercise 13.4.10.

(a) List five reflections of the pentagon in tableau form. (*Hint*)

(b) Let µ be any of the reflections in part (a). What is µ ◦ µ?

(c) How many reflections have no fixed vertices?

(d) How many reflections fix exactly one vertex?

(e) How many reflections fix exactly two vertices?

♢

Exercise 13.4.11.

(a) List six reflections of the hexagon in tableau form. (*Hint*)

(b) Let µ be any of the reflections in part (a). What is µ ◦ µ?

(c) How many reflections have no fixed vertices?

(d) How many reflections fix exactly one vertex?

(e) How many reflections fix exactly two vertices?

♢

Exercise 13.4.12.
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(a) Complete the second row of the following tableau that represents the
reflection of the nonagon that fixes vertex 4:

µ1 =

(
1 2 3 4 5 6 7 8 9

4

)
(b) Complete the second row of the following tableau that represents the

reflection of the 10-gon that fixes vertex 4:

µ2 =

(
1 2 3 4 5 6 7 8 9 10

4

)
(c) Complete the second row of the following tableau that represents the

reflection of the 10-gon that exchanges vertices 6 and 7:

µ3 =

(
1 2 3 4 5 6 7 8 9 10

7 6

)
(d) What is µ1 ◦ µ1? What is µ2 ◦ µ2? What is µ3 ◦ µ3?

♢

The preceding exercises are generalized to arbitrary n in the following
proposition. Although we do not give a complete proof, it is reasonable that
we can generalize Exercise 13.4.10 to all odd n-gons, and we can generalize
Exercise 13.4.11 to all even n-gons:

Proposition 13.4.13.

� The dihedral group Dn contains n distinct reflections (in addition to
n distinct rotations);

� For any reflection µ ∈ Dn, we have µ ◦ µ = id.

Exercise 13.4.14.

(a) Based on results we’ve shown, prove that s ◦ rp must be a reflection, for
0 < p < n.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(b) Using part (a) and other results we’ve shown, show that (s◦rp)◦(s◦rp) =
id. (*Hint*)

(c) Using part (b) and composing on the left by rn−p◦s, show that rn−p◦s =
s ◦ rp for 0 < p < n.

♢

All of our results on dihedral groups can now be summarized in the
following proposition:

Proposition 13.4.15. Every element of the group Dn, n ≥ 3, consists of
all compositions of the two elements r and s, satisfying the relations:

(a) rn = id

(b) s2 = id

(c) rp ◦ s = s ◦ rn−p for 0 < p < n.

Proposition 13.4.15 enables us to compute any composition of elements
of Dn directly, without the need of tableau form:

Example 13.4.16. In D5, to compute (s ◦ r3) ◦ (s ◦ r4) we have (using
Proposition 13.4.15 and associativity):

(s ◦ r3) ◦ (s ◦ r4) = s ◦ (r3 ◦ s) ◦ r4 by associativity

= s ◦ (s ◦ r2) ◦ r4 by Prop. 13.4.15(c)

= (s ◦ s) ◦ r ◦ r5 by associativity

= id ◦ r ◦ id by Prop. 13.4.15(a) and (b)

= r

♦

In fact, following the method of Example 13.4.16 it is possible to derive a
general formula for the composition of two reflections. Such a formula may
be very useful in certain situations: for instance, in the following exercises.



444 CHAPTER 13 SYMMETRIES OF PLANE FIGURES

Exercise 13.4.17. Using only associativity and Proposition 13.4.15, com-
plete the entire Cayley table for D4. Remember, there is a row and a column
for each element of D4. List the elements as indicated in Proposition 13.4.8.
You don’t need to show all your computations. (But don’t use tableau form–
no cheating!) ♢

Exercise 13.4.18. Using only associativity and Proposition 13.4.15, com-
plete the entire Cayley table for D5. You don’t need to show all your com-
putations. (But don’t use tableau form – no cheating!) ♢

Exercise 13.4.19. Consider an 8-gon with vertices labeled counterclock-
wise as 1, 2, . . . 8. Let s be the reflection that leaves vertex 1 fixed, and let r
be counterclockwise rotation by 2π/8. Using only associativity and Proposi-
tion 13.4.15, compute the following. Express your answers in the form smrn,
where m,n are positive integers.

(a) r3sr3

(b) sr3s

(c) rmsrm, where 0 ≤ m < 8.

(d) srms, where 0 ≤ m < 8.

(e) rsr2sr3sr4

(f) sr4sr4

♢

Exercise 13.4.20. For each of the computations in Exercise 13.4.19, deter-
mine whether the result is a rotation or reflection. If the result is a rotation,
give the angle of rotation; and if it’s a reflection, give the line of reflection.
For example, the symmetry sr is a reflection about the line which passes
through the midpoints of segments 12 and 56. ♢

Exercise 13.4.21.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) In the group Dn, let r be counterclockwise rotation by 2π/n and let
s be the reflection that leaves vertex 1 fixed. We have shown that
rks = srn−k. Let µ be an arbitrary reflection in Dn. Show that a
similar equation holds for r and µ: namely, rkµ = µrn−k. (Hint : we’ve
shown that µ can be written as srm for some integer m.)

(b) Let ρ be an arbitrary rotation in Dn, and let µ be an arbitrary reflection
in Dn. Show that ρµ = µρ−1. (Hint : Look at the hint for (a), and
consider that ρ can be written in terms of r.

♢

Exercise 13.4.22.

(a) In the group Dn, let r be counterclockwise rotation by 2π/n and let s
be the reflection that leaves vertex 1 fixed. Is r4s3r2s a reflection or
rotation? Prove your answer.

(b) Let ρ be an arbitrary rotation in Dn, and let µ be an arbitrary reflection
in Dn. Is ρ

4µ3ρ2µ a reflection or rotation? Prove your answer.

(c) Let k, ℓ,m, n be integers. Given the symmetry ρksℓρmsn, under what
conditions is this symmetry a reflection? Under what conditions is this
symmetry a rotation? Prove your answers.

♢

13.5 For further investigation

In this chapter, we have looked at the groups involved with symmetries
of plane figures. But really, there is no need to restrict ourselves to two
dimensions. Three-dimensional regular figures (such as the tetrahedron,
cube, icosahedron, and dodecahedron) also have symmetry groups associated
with them.We will say more about the symmetries of regular polyhedra in
Chapter 23.

Neither do we need to restrict ourselves to symmetries of objects. The
symmetries of patterns also play an important role in art and architecture.
For instance, every possible regular repeating pattern that can be put on
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wallpaper (or used as floor tiling) is associated with a symmetry group. It
turns out that there are exactly 17 of these symmetry groups: they are
called the wallpaper groups. For an excellent elementary reference on this
subject, I highly recommend “17 Plane Symmetry Groups” by Anna Nel-
son, Holli Newman, and Molly Shipley, available on the web (as of Jan-
uary 2014) at http://caicedoteaching.files.wordpress.com/2012/05/
nelson-newman-shipley.pdf.

In physics, symmetry groups are used to describe the regular three-
dimensional patterns associated with crystals. Many references for the
crystallographic groups can also be found on the web: one I recommend
is ”Crystallographic Point Groups (short review)” by Mois I. Aroyo, avail-
able on the web at: http://www.crystallography.fr/mathcryst/pdf/

uberlandia/Aroyo_Point.pdf.

13.6 An unexplained miracle

It’s good for us to step back for a moment and take stock of what we’ve
accomplished so far. We’ll begin with some exercises.

Exercise 13.6.1.

(a) Give the Cayley table for the integers mod 4 under addition.

(b) Give the Cayley table for the four rotations of the square (4-sided poly-
gon). You may use r to denote rotation by 90 degrees, so that the
rotations will be {id, r, r2, r3}.

(c) Give the Cayley table for the four complex 4′th roots of unity. You may
use z to denote cis(π/2) so that the roots will be {1, z, z2, z3}.

(d) Do you see any connection between your answers to (a), (b), and (c)
above?

♢

Exercise 13.6.1 show a deep connection between three extremely diverse
concepts that arose from three totally different fields of study:

� Arithmetic mod n, which first arose from the study of the natural
numbers and their divisibility properties;

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
http://caicedoteaching.files.wordpress.com/2012/05/nelson-newman-shipley.pdf
http://caicedoteaching.files.wordpress.com/2012/05/nelson-newman-shipley.pdf
http://www.crystallography.fr/mathcryst/pdf/uberlandia/Aroyo_Point.pdf
http://www.crystallography.fr/mathcryst/pdf/uberlandia/Aroyo_Point.pdf
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� The n’th complex roots of unity, a concept that arose from the study
of roots of polynomials.

� The rotations of a regular n-gon, which is a purely geometrical phe-
nomenon.

We express the amazing similarity between these three diverse concepts
by saying that they are all described by the “same” group. (The techni-
cal term for this is “isomorphism”: we will study this concept in detail in
Chapter 20.)

Take a moment to appreciate how incredible this is. How is it that
three concepts with totally different backgrounds and completely different
applications end up being described in exactly the same way?

But the wonders do not stop there. It turns out that an infinite version
of this same group is an important part of the so-called Standard Model of
quantum physics, that is used to explain the existence of particles such as
electrons, protons, and neutrons. How is it that a mathematical structure
introduced by an 18th century mathematician 5 to study integer division
could end up influencing the theory of elementary particles that were not
even dreamed of in the 18th century?

This mystical unity of description across widely different phenomena says
something very profound about the universe. Galileo 6 expressed it this way:
”Mathematics is the language with which God has written the universe.”
When Galileo said this, his mathematics consisted of little more than what
today we would call “high school algebra” – he had not an inkling of abstract
algebra. But what Galileo expressed based on his limited mathematics has
turned been fulfilled with a vengeance by abstract algebra.

Physicist Eugene Paul Wigner7 won the 1963 Nobel Prize in Physics, in
part because of his application of the theory of groups to quantum physics.
In 1960 Wigner wrote a famous paper called ”the Unreasonable Effectiveness
of Mathematics in the Natural Sciences,” 8 in which he states: ”The miracle
of the appropriateness of the language of mathematics for the formulation
of the laws of physics is a wonderful gift which we neither understand nor

5This mathematician was Leonhard Euler (1707-1783). The integers mod n were fur-
ther developed by Carl Friedrich Gauss (1777-1855).

6Galileo Galilei, Italian physicist (1564-1642), whose work on the motion of objects
was foundational to the later work of Isaac Newton.

71902-1995
8The paper can be found at: http://www.dartmouth.edu/∼matc/MathDrama/reading/Wigner.html
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deserve.” To this day, apparently no physicist or mathematician has yet
offered a satisfactory explanation for Wigner’s “miracle”.

https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO


13.7 HINTS FOR “SYMMETRIES OF PLANE FIGURES” EXERCISES449

13.7 Hints for “Symmetries of Plane Figures” ex-
ercises

Exercise 13.1.4: The rearrangement that doesn’t move anything is still con-
sidered to be a symmetry: for obvious reasons, it is called the identity).

Exercise 13.3.8: The proof is very similar to part (ii) of the same proposition.

Exercise 13.4.6: The proof is very similar to the previous proof.

Exercise 13.4.9: Look at Figure 13.4.2 for some ideas.

Exercise 13.4.10(a): Look at Figure 13.4.3 for some ideas.

Exercise 13.4.11(a): Look at Figure 13.4.3 for some ideas.

Exercise 13.4.14(b): If µ is a reflection, then what is µ ◦ µ?
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Permutations

”For the real environment is altogether too big, too complex,
and too fleeting for direct acquaintance. We are not equipped
to deal with so much subtlety, so much variety, so many per-
mutations and combinations. And although we have to act in
that environment, we have to reconstruct it on a simpler model
before we can manage it.”

(Source: Walter Lippmann, Pulitzer prize-winning journalist)

We mentioned at the beginning of the “Functions” chapter that we would
be interested in functions on finite sets. In this chapter we will investigate
the gory details of bijections (functions that are one-to-one and onto) whose
domain and range are the same finite set. Until now we have looked at
functions as a process, a machine; mappings that take set elements to other
set elements. In this chapter, we will begin to consider functions as things,
objects; as set elements in their own right.This new point of view will cul-
minate in the realization that all finite groups are in some sense just groups
of functions. You may not understand this yet, but don’t worry–you will by
the end of the chapter!

Thanks to Tom Judson for material used in this chapter.

14.1 Introduction to permutations

In Chapter 13 we saw that all symmetries are bijections whose domain and
codomain were the same. Thus symmetries are special cases of permutations,
which are defined mathematically as follows.

450

https://www.youtube.com/watch?v=OiPn8WdrQzE&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=20
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Definition 14.1.1. A bijection whose domain and codomain are equal is
called a permutation . The set of all bijections from a finite set X to itself
is called the set of permutations on X and is denoted as SX . △

Example 14.1.2. Let us recall for a moment the equilateral triangle△ABC
from the Symmetries chapter. Let T be the set of vertices of △ABC; i.e.
T = {A,B,C}. We may list the permutations of T as follows. For input A,
we have 3 possible outputs; then for B we would have two possible outputs
(to keep the one-to-one property of each combination); and finally for C
only one possible output. Therefore there are 3 · 2 · 1 = 6 permutations of
T . Below are the six permutations in ST :

(
A B C
A B C

) (
A B C
C A B

) (
A B C
B C A

)
(
A B C
A C B

) (
A B C
C B A

) (
A B C
B A C

)
♦

Which of these permutations are symmetries of the equilateral triangle? In
the Symmetries chapter we saw that they all are: so in this case the set of
symmetries on T is equal to ST .

Now suppose instead we label the vertices of an isosceles triangle as
A,B,C, and let T represent these vertices. In this case, ST is the same as
before: it doesn’t matter what arrangement or position the vertices are in,
or even if A, B, and C are vertices at all. The permutations depend only
on the set T , and are oblivious to whether or not they correspond to the
vertices of some figure.

But what about the symmetries of an isosceles triangle? It turns out
that an isosceles triangle has only two symmetries (see exercise below). So
the set of symmetries on T is a subset of ST , but not the whole set.

Exercise 14.1.3. Suppose that the two congruent sides of triangle ABC
are AB and BC). Give the two symmetries, in tableau form. ♢

Exercise 14.1.4. Suppose T is used to represent any three-sided figure.
Which permutation(s) do(es) the set of symmetries of T always contain? ♢
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Exercise 14.1.5. Suppose X = {A,B,C,D}.

(a) How many permutations are there on X?

(b) List SX .

(c) List the elements in SX that are not symmetries of the square.

(d) What additional elements in SX are not symmetries of the rectangle?

♢

Actually, any symmetry is a permutation, since a symmetry is by defi-
nition a bijection from a finite set of points to itself. But as we’ve seen in
Exercises 14.1.3, 14.1.4, 14.1.5 (as well as Exercise 13.1.8 from the Symme-
tries chapter), not all permutations (bijections) are symmetries. Given a set
X that represents a figure, the set of symmetries from X → X is therefore
a subset of SX .

14.2 Permutation groups and other generalizations

We saw in the Symmetries chapter that the set of symmetries of any fig-
ure form a group under the operation of function composition. Since we’ve
already seen that permutations are closely related to symmetries, this nat-
urally leads to the question: is SX a group under function composition?
Fortunately, this time the answer is easier to prove.

Proposition 14.2.1. Given any set X, SX is a group under function com-
position.

Proof.

� First then, if f, g ∈ SX , then f ◦ g would be, by definition of composi-
tion, a function from X → X. Further, since it is a composition of two
bijections, f ◦ g would be a bijection (proved in Functions chapter).
Therefore by definition f ◦ g is permutation from X → X. In other
words f ◦ g ∈ SX . So SX is closed under function composition.

� Second, the identity of SX is just the permutation that sends every
element of X to itself (We will call this permutation id, just like we
did with symmetries.).

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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� Third, if f ∈ SX , then by definition f is a bijection; hence from the
Inverse section of the Functions chapter we know f has an inverse f−1

from X → X that is also a bijection. Hence f−1 ∈ SX . Therefore
every permutation in SX has an inverse.

� Finally, composition of functions is associative, which makes the group
operation associative.

Hence SX is a group under function composition. □

14.2.1 The symmetric group on n numbers

We can label the vertices of a triangle asA,B,C or 1, 2, 3 or apple, pear, cherry
or whatever, without changing the triangle. No matter how we label the
triangle, the symmetries of the triangle will be the ”same” in some sense
(although we write them down differently).

Since symmetries are special cases of permutations, this motivates us to
investigate the effect of relabeling on permutations in general.

For starters, we’ll look at a simple example. Let X = {A,B,C,D} and
Y = {1, 2, 3, 4}. Suppose

µ =

(
A B C D
D C B A

)
; σ =

(
A B C D
C D A B

)
and

τ =

(
1 2 3 4
4 3 2 1

)
; ρ =

(
1 2 3 4
3 4 1 2

)
Is µ = τ? Technically no, because their domain/codomains are different,
yet we can clearly see that they are somehow equivalent. But how do we
express this equivalence?

Suppose we start with the tableau for µ. We cross out every ‘A’ in
the tableau and replace with ‘1’. Similarly, we replace B,C,D with 2, 3, 4
respectively. Then what we end up with is exactly τ . In other words,
performing a “face-lift” on µ gives τ . Therefore µ and τ are equivalent, as
are σ and ρ.

Exercise 14.2.2.
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(a) Write µ ◦ σ in tableau form.

(b) Write τ ◦ ρ in tableau form.

(c) Is µ ◦ σ equivalent to τ ◦ ρ? Explain your answer.

(d) Is σ ◦ µ equivalent to ρ ◦ τ? Explain your answer.

♢

Let’s summarize our findings so far:

� The sets SX and SY are equivalent in the following sense: for each
element of SX we can find an equivalent element of SY by replacing
A,B,C,D with 1, 2, 3, 4.

� Further, in the exercises we saw that the composition of two particular
elements in SX is equivalent to the composition of the two equivalent
elements in SY . Although we’ve only shown this for two particular
examples, it makes sense that the same thing would work no matter
which two elements in SX that we choose (after all, all we’re doing is
replacing letters with numbers–and we’re always replacing the same
letter with the same number). So we can say that composition acts
the “same” on both sets.

So far we have only looked at sets with four elements. Now it’s time to
generalize these results to sets of any size. First, some notation:

Notation 14.2.3. The order of a set Y is the number of elements of Y ,
and is written as |Y |. 1 △

Now let X = {1, 2, . . . , n}, and consider any set Y with |Y | = n. We
could do a similar “face-lifting” as above to show that SX is equivalent to
SY . So the group SX is equivalent to the permutations of any set of n
elements.

Notation 14.2.4. Let X = {1, 2, . . . , n}. Instead of writing SX , we write
Sn. Sn is called the symmetric group on n numbers. △

1You’re probably used to seeing | . . . | as representing absolute value. Of course a set
is not a number, so it has no absolute value. We use |Y | to denote order because it’s a
measure of the size of set Y , just as the absolute value of a number is the “size” of the
number.

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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14.2.2 Isomorphic groups

In Section 13.6 we compared the groups Zn, the n rotations of a regular n-
gon, and the nth roots of unity. We saw that, as long as you made a suitable
pairing (bijection) between the elements of any two of these sets, then their
Cayley tables were exactly the same.

We’ve just seen the very same thing for Sn. If |X| = |Y | = n and we
replace each of the elements in X with a corresponding element in Y , we
concluded that the composition of any two elements in SX is equivalent to
the composition of the two equivalent elements in SY . That’s exactly the
same thing as saying that the Cayley table entries are equivalent between
the two groups.

This ”equivalence of groups” is one of the premier concepts in abstract
algebra, almost as important as the concept of a group itself. When two
groups are equivalent like this, we say that they are isomorphic groups;
we also say that the bijection that causes the groups to be equivalent is an
isomorphism . We will see in a later chapter how to show in general that
two groups are isomorphic; but for now, forming the groups’ Cayley Tables
and seeing if you can match elements to make the tables the same is a very
good strategy.

Exercise 14.2.5. Let W = {G,H} and Z = {J,K}.

(a) Write the Cayley Tables for SW and SZ . It would be helpful to write
the entries of SW and SZ in tableau form.

(b) Give a bijection from W to Z, and the corresponding bijection from
SW to SZ , that would show SW is isomorphic to SZ . (Remember that
a bijection can be thought of as a “relabeling” of elements of W as
elements of Z.)

(c) *How many possible bijections from W to Z give rise to isomorphisms
from SW to SZ?

♢

Exercise 14.2.6. Let X = {A,B,C} and Y = {M,N,P}.

(a) Write the Cayley Tables for SX and SY
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(b) Give a bijection from X to Y , and the corresponding bijection from SX
to SY , that would show SX is isomorphic to SY .

(c) *How many possible bijections from X to Y produce isomorphisms from
SX to SY ?

(d) *Now letX = {A,B, . . .M} and Y = {N,O, . . . Z}. How many different
bijections from X to Y produce isomorphisms from SX to SY ?

♢

14.2.3 Subgroups and permutation groups

Let’s summarize this section so far. The permutations on a set X of n
elements is a group under function composition (denoted by Sn). Further,
for any figure with n sides, the symmetries of that figure is a subset of
Sn containing at least the identity permutation, and that subset is itself a
group under function composition. This example motivates the following
definition.

Definition 14.2.7. A subset of a group G that is itself a group under the
same operation as G is called a subgroup of G. △

The notion of subgroup is a key concept in abstract algebra, which will
be used throughout the rest of the book.

Example 14.2.8. From the above definition of subgroup it follows that:

� The symmetries of a rectangle are a subgroup of S4.

� The symmetries of an isosceles triangle are a subgroup of S3.

� D5 is a subgroup of S5.

� The permutations of {1, 2, 3} are a subgroup of the permutations of
{1, 2, 3, 4}. Hence S3 is a subgroup of S4. By the same token, Sm can
be considered as a subgroup of Sn whenever m < n.

♦

Definition 14.2.9. A subgroup of Sn is called a permutation group. △

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20


14.2 PERMUTATION GROUPS AND OTHER GENERALIZATIONS457

Exercise 14.2.10. Consider the subset G of S5 consisting of the identity
permutation id and the permutations

σ =

(
1 2 3 4 5
1 2 3 5 4

)
τ =

(
1 2 3 4 5
3 2 1 4 5

)
µ =

(
1 2 3 4 5
3 2 1 5 4

)
.

(a) Write the Cayley table forG. Label your rows and columns as: id, σ, τ, µ.

(b) Use the Cayley table to explain whether G is a subgroup of S5 or not.

Remember: you don’t need to show the associative property, since func-
tion composition is associative.

♢

Exercise 14.2.11. Consider the subset G of S4 consisting of the identity
permutation id and the permutations

σ =

(
1 2 3 4
2 3 1 4

)
τ =

(
1 2 3 4
3 2 1 4

)
µ =

(
1 2 3 4
3 1 2 4

)
.

(a) Write the Cayley table forG (Label your rows and columns as: id, σ, τ, µ).

(b) Use the Cayley table to explain whether or not G is a subgroup of S4.

♢

As the example shows, a permutation group need not comprise all sym-
metries of a figure or all rearrangements of a set. Many permutation groups
have no evident practical interpretation whatsoever. Nonetheless they are
still useful, because as we shall see they can be used to characterize the
groups that contain them.



458 CHAPTER 14 PERMUTATIONS

14.3 Cycle notation

14.3.1 Tableaus and cycles

In the Symmetries chapter, we introduced tableau notation to deal with
bijections because of its brevity and ease of use for function composition.
But as you may have noticed in the last section, even tableaus can become
cumbersome to work with. To work effectively with permutation groups, we
need a more streamlined method of writing down and manipulating permu-
tations. This method is known as cycle notation.

Example 14.3.1. Suppose ρ ∈ S6 and ρ =

(
1 2 3 4 5 6
2 3 4 5 6 1

)
. Then

ρ(1) = 2, ρ(2) = 3, ρ(3) = 4, ρ(4) = 5, ρ(5) = 6, and ρ(6) = 1.

A shorter way to represent this is

1 → 2, 2 → 3, 3 → 4, 4 → 5, 5 → 6 and 6 → 1.

We can visualize this as a “wheel”, as shown in Figure 14.3.1

Figure 14.3.1. Cycle representation of the permutation (123456).

We shall write this trail of inputs and outputs as (123456); and rather
than “wheel”, we call this a cycle . Reading the cycle from left to right
indicates that 1 goes to 2, 2 goes to 3, . . ., and the 6 at the end goes back
to 1.

Exercise 14.3.2. Show that (123456) = (345612) by drawing a figure
similar to Figure 14.3.1 for each cycle. ♢

Exercise 14.3.3. Show that (123456) and (234561) both have the same
tableau (so they are in fact the same permutation). ♢

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
https://www.youtube.com/watch?v=DdlusCIP-4k&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=21
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From the previous two exercises, it is clear that there are many ways to
write the same cycle: we can begin with any element we want, and work
our way around until we get back to the same element. To avoid possible
confusion, from now on we will follow the convention of starting the cycle
with the “smallest” or “first” element of the domain.

For this particular permutation, since our cycle contains all the inputs
in the domain of ρ, it represents the whole function (because it gives us the
outputs for every input). Therefore in cycle notation,

ρ = (123456)

♦

Exercise 14.3.4. Write the following permutation of S6 in cycle notation:

µ =

(
1 2 3 4 5 6
3 4 5 1 6 2

)
.

♢

Exercise 14.3.5. Given the permutation µ = (152634) in S6 :

(a) Write µ in tableau form.

(b) Write µ as a figure similar to Figure 14.3.1

♢

Exercise 14.3.6. Given the permutation µ = (165432) in S6 :

(a) Write µ in tableau form.

(b) Write µ as a figure similar to Figure 14.3.1

(c) Compare your answer to (b) with Figure 14.3.1 of ρ = (123456). Explain
the difference between µ and ρ.

♢

Definition 14.3.7. The length of a cycle is how many elements the cycle
contains; i.e. how many elements are in the parentheses. Formally,

https://www.youtube.com/watch?v=DDLUSCIP-4K&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=21
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if (a1, a2, . . . , an) is a cycle, then the length of (a1, a2, . . . , an) is n.

△

For example, the permutation ρ in Example 14.3.1 above is represented
by a cycle of length six.

Remark 14.3.8. Notice how we have used the notation aj to indicate
arbitrary elements in a cycle. This is a common practice in abstract algebra.
△

Now not all permutations in S6 correspond to a cycle of length six. For
instance:

Example 14.3.9. Suppose τ ∈ S6 and τ =

(
1 2 3 4 5 6
1 4 2 3 5 6

)
. Then

� 1 → 1, which means that 1 “stays put.” So we don’t use 1.

� 2 → 4, 4 → 3, and 3 → 2; so we have (243).

� Finally, 5 → 5 and 6 → 6; so they also stay put.

Hence
τ = (243)

♦

Based on the procedure in the previous example then, how would we
represent the identity permutation on a set of n elements? All the elements
stay put, so technically id would equal the “empty cycle”. Some references
in fact use “()” to denote the identity: but in this book we will always denote
the identity permutation by id as a reminder that this is in fact the group’s
identity element.

Warning 14.3.10. Cycle notation does not indicate the domain of the
permutation. For instance, the permutation (243) in Example 14.3.9 had
domain {1, 2, 3, 4, 5, 6}, but (243) could also refer to a permutation on the
domain {1, 2, 3, 4}. When working with permutations in cycle notation,
make sure you know what the domain is. (In most cases, it’s clearly specified
by the context.) ♢

Exercise 14.3.11. Write each of the following permutations in S7 in tableau
form.

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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(a) ω = (243)

(b) ω = (2365)

(c) ω = (14257)

♢

Exercise 14.3.12. Draw a figure similar to Figure 14.3.1 depicting each of
the following permutations in S5.

(a) σ = (25)

(b) σ = (135)

(c) σ = (1342)

♢

A final question that may come to mind is: do all permutations correspond
to some cycle? Certainly, as we’ve seen, all cycles correspond to some per-
mutation in Sn. However, can all permutations in Sn be represented as a
cycle? We will take the next several parts of this section to explore this
question.

14.3.2 Composition (a.k.a. product) of cycles

Since cycles represent permutations, they can be composed together. If we
change the cycles to tableaus, we know how to compose them. Now let’s
figure out how to compose them using the cycles themselves.

Notation 14.3.13. Given permutations σ and τ , instead of writing σ ◦ τ
we write the shorthand notation: στ . Furthermore, instead of calling this
the composition of σ and τ , we refer to it as the product of σ and τ . 2 △

Example 14.3.14. Suppose we want to form the product (that is, compo-
sition) στ , where σ, τ ∈ S6 and σ = (1532), τ = (126).

2Once again we see mathematicians’ annoying habit of reusing familiar terms to mean
something new in a different contexts. In this case, the “product” of permutations means
something quite different from ordinary multiplication.

https://www.youtube.com/watch?v=DDLUSCIP-4K&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=21
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Figure 14.3.2. Product of cycles σ and τ , showing the derivation of
στ(1) = 1.

Figure 14.3.2 provides a visual representation of how the product στ acts
on 1. Remember that we operate from right to left, so the figure shows ‘1’
coming in from the right. The action of τ takes 1 to 2. ( For convenience
we have “flattened” the permutations τ and σ, so they no longer appear as
circles.) Then we pass over to σ, which takes 2 to 1. The final result is 1:
therefore σ(τ(1)) = 1.

Evidently 1 remains unchanged by the permutation, so let’s look at what
happens to 2. We see this in Figure 14.3.3. First, τ moves 2 to 6. Moving on
to σ, we find that σ leaves the 6 unchanged. The result is that σ(τ(2)) = 6.

Figure 14.3.3. Product of cycles σ and τ (continued), showing στ(2) = 6.

We have seen that στ takes 2 to 6: so now let’s see where στ takes 6.
(Perhaps you can see that we’re trying to build a cycle here.) The top part
of Figure 14.3.4 uses the same process to show the result: σ(τ(6)) = 5. The
middle part of Figure 14.3.4 shows that σ(τ(5)) = 3; and the bottom part
of Figure 14.3.4 shows that σ(τ(3)) = 2. We already know that σ(τ(2)) = 6,
so we have closed out our cycle. We have shown 2 → 6 → 5 → 3 → 2, which
amounts to the cycle: (2653).

So far 4 is unaccounted for: but a quick inspection of Figure 14.3.4 shows
that 4 is not affected by either τ or σ. So the entire action of τ followed

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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Figure 14.3.4. Product of cycles σ and τ (continued), showing 6 → 5 →
3 → 2.

by σ is summarized by the cycle (2653), meaning that we can write: στ =
(2653). ♦

Exercise 14.3.15. Using the same permutations σ and τ as above:

(a) Write the product τσ in cycle notation.

(b) By comparing your results for στ and τσ, fill in the blank in the following
statement: In general, permutations do not .

♢

Example 14.3.16. At the beginning it may be helpful to draw a picture, as
in the previous example. However, once you gain experience, you should be
able to find the product of cycles directly. Consider the product στ where
σ = (AEDBF ) and τ = (ABDFE). Then we have:

� τ takes A→ B and σ takes B →F; hence στ takes A→ F .

https://www.youtube.com/watch?v=DDLUSCIP-4K&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=21
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� τ takes F → E, and σ takes E → D; hence στ takes F → D.

� τ takes D → F , and σ takes F → A; hence στ takes D → A.

We have finished a cycle: (AFD). Let us check where the other letters
B,C,E go:

� τ takes B → D, and σ takes D → B; hence στ takes B → B.

� Neither τ nor σ affects C; hence στ takes C → C.

� τ takes E → A, and σ takes A→ E; hence στ takes E → E.

Since B,C,E are unaffected by στ , we conclude that στ = (AFD). ♦

Exercise 14.3.17. Given that δ = (135), σ = (347), and ρ = (567) are
permutations in S7, compute the following:

(a) δσ

(b) σδ

(c) δρ

(d) ρδ

(e) σρ

(f) ρσ

♢

14.3.3 Product of disjoint cycles

Definition 14.3.18. Two cycles are disjoint if their parentheses contain no
elements in common. Formally, two cycles (a1, a2, . . . , ak) and (b1, b2, . . . , bl),
are disjoint if ai ̸= bj , ∀i, j such that 1 ≤ i ≤ k and 1 ≤ j ≤ l. △

For example, the cycles (135) and (27) are disjoint, whereas the cycles (135)
and (347) are not.

Example 14.3.19. Given σ = (135), τ = (27), σ, τ ∈ S7; let us compute
στ .

Notice right away that every number affected by τ is unaffected by σ;
and vice versa. Since the two cycles always remain separate, it is appropriate
to represent στ as (135)(27), because the cycles don’t reduce any farther. ♦

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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Now since S7 is closed under function composition, it follows that στ =
(135)(27) must be a permutation in S7.

Exercise 14.3.20. Write the permutation στ from Example 14.3.19 in
tableau form. ♢

This permutation can’t be represented by one cycle, but rather by two
disjoint cycles. So we have an answer to our previous question: all cycles
are permutations, but not all permutations are cycles. Some are represented
by two disjoint cycles: and in fact some are represented by more than two
disjoint cycles.

Example 14.3.21. Suppose µ ∈ S7 and µ =

(
1 2 3 4 5 6 7
6 1 4 3 7 2 5

)
.

Then

� 1 → 6, 6 → 2, and 2 → 1; therefore we have the cycle (162).

� 3 → 4 and 4 → 3; therefore we have (34).

� Finally, 5 → 7 and 7 → 5; therefore we have (57).

Hence µ = (162)(34)(57), as we may verify by computing the product (162)◦
(34) ◦ (57) directly.

We may represent this process graphically as follows. The permutation
µ can be represented as a digraph as shown in Figure 14.3.5(a). We can
make the digraph appear much simpler by rearranging the vertices as in
Figure 14.3.5(b). We shall see that all permutations can be simplified in
this manner. ♦

Figure 14.3.5. (a) Digraph representation of permutation (b) Rearrange-
ment of digraph into cycles

Exercise 14.3.22. Write the following permutations in cycle notation.

https://www.youtube.com/watch?v=DDLUSCIP-4K&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=21
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(a) ρ =

(
1 2 3 4 5 6
2 1 5 6 3 4

)

(b) σ =

(
1 2 3 4 5 6
2 5 6 4 1 3

)
(c) ω =

(
1 2 3 4 5 6
4 5 1 6 2 3

)

(d) τ =

(
1 2 3 4 5 6
5 3 4 1 2 6

)
♢

Exercise 14.3.23. Write each of the following permutations in S9 in tableau
form.

(a) µ = (259)(347).

(b) σ = (25678)(14)(39).

(c) τ = (286)(193)(457).

(d) ω = (257)(18).

♢

Exercise 14.3.24. Write the permutations of D6 in cycle notation (recall
that D6 is the group of symmetries of a hexagon). ♢

Exercise 14.3.25. Write the symmetries of a square in cycle notation. ♢

There is one more issue we need to explore with the product of disjoint
cycles, which we will do in the following exercise.

Exercise 14.3.26. In parts (a)–(d) below, write both permutations on the
set {1, 2, 3, 4, 5, 6} in tableau form.

(a) (123)(45) and (45)(123).

(b) (14)(263) and (263)(14)

(c) (1352)(46) and (46)(1352)

(d) (135)(246) and (246)(135)

(e) From your results in (a)-(d), what do you conjecture about the product
of disjoint cycles?

♢

The examples in Exercise 14.3.26 seem to indicate that the product of
disjoint cycles is commutative. This is in fact true, as we shall now prove.

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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Proposition 14.3.27. Disjoint cycles commute: that is, given two disjoint
cycles σ = (a1, a2, . . . , aj) and τ = (b1, b2, . . . , bk) we have

στ = τσ = (a1, a2, . . . , aj)(b1, b2, . . . , bk)

Proof. We present this proof as a fill-in-the-blanks exercise:

Exercise 14.3.28. Fill in the blanks to complete the proof:

Recall that permutations are defined as bijections on a set X. In order
to show that the two permutations στ and τσ are equal, it’s enough to show
that they are the same function. In other words, we just need to show that
στ(x) = < 1 > for all x ∈ X.

We’ll define A = {a1, a2, . . . , aj} and B = {b1, b2, . . . , bk}. By hypothesis
A and B are disjoint, so A < 2 > B = < 3 > . Given an arbitrary x ∈ X,
there are three possibilities: (i) x ∈ A and x /∈ B; (ii) x ∈ < 4 > and
x /∈ < 6 > ; (iii) x /∈ < 7 > and x /∈ < 8 > .

(i) In this case, since x /∈ B it follows that τ(x) = x. We then have
στ(x) = σ(τ(x)) = σ(x). Furthermore, since x ∈ A it follows that
σ(x) ∈ A, so σ(x) /∈ B. We then have τσ(x) = τ(σ(x)) = σ(x). It
follows that στ(x) = τσ(x).

(ii) In this case, since x /∈ < 9 > it follows that < 10 > (x) = x. We
then have τσ(x) = < 11 > = < 12 > (x). Furthermore, since x ∈
< 13 > it follows that < 14 > (x) ∈ < 15 > , so < 16 > (x) /∈
< 17 > . We then have στ(x) = < 18 > = < 19 > (x). It

follows that στ(x) = τσ(x).

(iii) In this case, since x /∈ A it follows that < 20 > (x) = x. Similarly
since x /∈ < 21 > it follows that < 22 > (x) = x.We then have
τσ(x) = < 23 > and στ(x) = < 24 > . It follows that στ(x) =
τσ(x).

In all three cases we have στ(x) = < 25 > , so therefore στ = τσ. ♢

□

What we’ve discovered about products of two disjoint cycles is also true for
products of any number of disjoint cycles. Since disjoint cycles act indepen-
dently, they all commute.

Exercise 14.3.29. Write each of the following permutations on X =
{1, 2, . . . , 9} in tableau form.

https://www.youtube.com/watch?v=DDLUSCIP-4K&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=21


468 CHAPTER 14 PERMUTATIONS

(a) (1346)(298)(57) (b) (57)(1346)(298) (c) (298)(57)(1346)

(d) Which of the above permutations are the same? Which are different?
Explain your answer.

♢

Exercise 14.3.30. Write each of the following permutations 2 different
ways using cycle notation.

(a) (147)(258)(369) (b) (12)(35)(46)(78) (c) (14359)(28)(67)

♢

14.3.4 Products of permutations using cycle notation

Finally, now that we know how to deal with permutation compositions that
simplify to disjoint cycles, we can now compose any set of permutations we
want. We will start with a couple examples.

Example 14.3.31. Given the permutations µ = (257)(134) and ρ =
(265)(137) in S7, write µρ in cycle notation.

� 1 → 3, 3 → 3, 3 → 4, and 4 → 4; therefore 1 → 4.

� 4 → 4, 4 → 4, 4 → 1, and 1 → 1; therefore 4 → 1.

This gives us the cycle (14). Continuing,

� 2 → 2, 2 → 6, 6 → 6, and 6 → 6; therefore 2 → 6.

� 6 → 6, 6 → 5, 5 → 5, and 5 → 7; therefore 6 → 7.

� 7 → 1, 1 → 1, 1 → 3, and 3 → 3; therefore 7 → 3.

� 3 → 7, 7 → 7, 7 → 7, and 7 → 2; therefore 3 → 2.

So we have the cycle (2673). Now the only input not included in our cycles
is 5, so logically it should stay put. But let’s test it just in case we made a
mistake in our work above.
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� 5 → 5, 5 → 2, 2 → 2, and 2 → 5; therefore 5 does indeed stay put.

So, we finally have: µρ = (14)(2673) ♦

Example 14.3.32. Find the product (156)(2365)(123) in S6 .

� 1 → 2, 2 → 3, and 3 → 3; therefore 1 → 3.

� 3 → 1, 1 → 1, and 1 → 5; therefore 3 → 5.

� 5 → 5, 5 → 2, and 2 → 2; therefore 5 → 2.

� 2 → 3, 3 → 6, and 6 → 1; therefore 2 → 1.

So we have (1352).

� 4 does not appear in any of the cycles, so we know it won’t be acted
on by any of the cycles. Hence 4 stays put.

� 6 → 6, 6 → 5, and 5 → 6; hence 6 stays put.

Therefore (156)(2365)(123) = (1352). ♦

Exercise 14.3.33. Given the following permutations in S8,

σ = (1257)(34), τ = (265)(137), and ρ = (135)(246)(78)

find the products:

(a) στ

(b) τσ

(c) τρ

(d) σρ

♢

Exercise 14.3.34. Compute each of the following. Note that e.g. (123)2

means the same as (123)(123).
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(a) (1345)(234)

(b) (12)(1253)

(c) (143)(23)(24)

(d) (1423)(34)(56)(132)

(e) (1254)(13)(25)2

(f) (1254)2(123)(45)

♢

14.3.5 Cycle structure of permutations

Over the last several subsections, we’ve seen permutations represented as no
cycles (id), a single cycle, or the product of any number of disjoint cycles.
This worked because both a single cycle and a product of disjoint cycles
can’t be reduced to a simpler form in cycle notation. Are there any other
possibilities? Are there permutations that can’t be represented as either a
single cycle or a product of disjoint cycles? The answer to this compelling
question is given in the following proposition. This type of proposition is
called an “existence and uniqueness” statement, and for convenience we’ll
divide the statement into two parts:

Proposition 14.3.35.

(a) Every permutation σ in Sn can be written either as the identity, a single
cycle, or as the product of disjoint cycles.

(b) These disjoint cycles are uniquely determined by the permutation σ.

The following proof is a formalized version of the procedure we’ve been using
to change permutations from tableau form to cycle notation. Admittedly, it
looks intimidating. However, we include it for your “cultural enrichment”,
because higher-level mathematics is typically like this. It’s often the case
that particular examples of a certain principle are relatively easy to explain,
but constructing a general proof that covers all cases is much more difficult.

Before starting the proof, we remind you that the notation σ = (a1 a2 . . . an)
means:

σ(a1) = a2 σ(a2) = a3 . . . . . .σ(ak) = a1,

and σ(x) = x for all other elements x ∈ X.

Proof. Let’s begin with (a) We can assume that X = {1, 2, . . . , n}. Let
σ ∈ Sn, and define X1 = {1, σ(1), σ2(1), . . .}. The set X1 is finite since
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X is finite. Therefore the sequence 1, σ(1), σ2(1), . . . must repeat. Let j1
be the first index where the sequence repeats, so that σj1(1) = σk(1) for
some k < j1. Then if we apply σ−1 to both sides of the equation we get
σj1−1(1) = σk−1(1). Repeating this k − 1 more times gives σj1−k(1) = 1.
This implies that the sequence repeats at index j1 − k: but we’ve already
specified that j1 is the first index where the sequence repeats. The only way
this can happen is if k = 0. It follows thatX1 = {1, σ(1), σ2(1), . . . σj1−1(1)},
where σj1(1) = 1.

Now there are two possible cases:

(i) X1 accounts for all the integers in X; i.e. X1 = X

(ii) there are some integers in X not accounted for in X1 (that is, X\X1 ̸=
∅).

If case (ii) holds, then let i be the smallest integer in X\X1 and define
X2 by {i, σ(i), σ2(i), . . .}. Just as with X1, we may conclude that X2 is a
finite set, and that X2 = {i, σ(i), . . . , σj2−1(i)} where σj2(i) = i.

We claim furthermore that X1 and X2 are disjoint. We can see this by
contradiction: suppose on the other hand that X1 and X2 are not disjoint.
Then it must be the case that σp(1) = σq(i) for some natural numbers p, q
with 0 ≤ p < j1 and 0 ≤ q < j2. Applying σ to both sides of this equation,
gives σp+1(1) = σq+1(i). If we continue applying σ to both sides a total
of j2 − q times then we obtain σp+j2−q(1) = σj2(i). But since σj2(i) =
i, it follows that σp+j2−q(1) = i, which implies that i ∈ X1. This is a
contradiction, because we know i ∈ X\X1. The contradiction shows that
the supposition must be false, so X1 and X2 are disjoint.

Continuing in the same manner, we can define finite disjoint setsX3, X4, . . ..
Since X is a finite set, we are guaranteed that this process will end and there
will be only a finite number of these sets. Some of these sets Xj will have
only a single element: in this case, σj = id, and it is not necessary to include
these sets in the list. We may remove these sets, and relabel the remaining
sets as X1, . . . Xs. If σi is the cycle defined by

σi(x) =

{
σ(x) x ∈ Xi

x x /∈ Xi,

then σ = σ1σ2 · · ·σs. Since the sets X1, X2, . . . , Xr are disjoint, the cycles
σ1, σ2, . . . , σs must also be disjoint.
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Now recall case (i) above. In this case, σ = σ1. Hence, σ is either a
single cycle or the product of r disjoint cycles.Note that if σ = id, then the
process described above will yield all single-element sets, so that r = 0 and
{X1, . . . Xr} = (this is why we treat the id as a special case). But if σ ̸= id,
the process will create at least one cycle of length ≥ 2. This completes the
proof of (a).

Now on to (b). To show uniqueness of the disjoint cycles, we suppose
that σ = σ1 . . . σs and also σ = ρ1 . . . ρr, where the σj ’s are disjoint cycles
and the ρj ’s are also disjoint cycles. The proof may be accomplished by
showing that S = R, where S := {σ1, . . . σs} and R := {ρ1, . . . , ρr}. To do
this, we may show every cycle in S is also in R, and vice versa. So take
σj ∈ S, and write σj = (a1 a2 . . . aJ). Since σj(a1) = a2, it follows that
σ(a1) = a2. But this means that there must be a cycle ρℓ ∈ R such that
ρℓ(a1) = a2. In the same way we may show that ρ(a2) = a3, . . . ρ(aJ) = a1.
Since ρℓ is a cycle, it follows that ρℓ(x) = x for x /∈ {a1 a2 . . . aJ}. It follows
that ρℓ(x) = σj(x) for all x ∈ X, and hence ρℓ = σj . Thus every element
of S is also an element of R. The proof is then completed by the following
exercise:

Exercise 14.3.36. Complete the proof of Proposition 14.3.35 by showing
that every ρj in R is also in the set S. ♢

□

Proposition 14.3.35 is a classification theorem. You have seen classifi-
cation theorems before: for instance, you know that any natural number
> 1 can be written uniquely as the product of primes. Proposition 14.3.35
similarly gives us a standard way to represent permutations. It allows us to
characterize the types of permutations in Sn according to their cycle sizes,
as shown in the following example.

Example 14.3.37. We know that every permutation in S5 is the product
of disjoint cycles. Let us list all possible cycle lengths and number of cycles
for the permutations of S5.

� First of all, S5 contains the identity, which has no cycles.

� Second, some permutations in S5 consist of a single cycle. The single
cycle could have length 2, 3, 4, or 5 (remember, we don’t count cycles
of length 1).

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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� Third, some permutations in S5 consist of the product of two disjoint
cycles. To enumerate these, suppose first that one of the cycles is a
cycle of length 2. Then the other cycle could be a cycle of length 2
(for instance in the case (12)(34)) or a cycle of length 3 (as in the case
(14)(235)). There are no other possibilities, because we only have 5
elements to permute, and a larger disjoint cycle would require more
elements.

� It’s not possible to have three or more disjoint cycles, because that
would require at least six elements.

To summarize then, the possible cycle structures for permutations in S5 are:

� The identity

� single cycles of lengths 5, 4, 3, or 2

� two disjoint cycles of lengths 2 and 3; and two disjoint cycles of lengths
2 and 2

♦

Exercise 14.3.38. Following Example 14.3.37, list all possible cycle struc-
tures of permutations in the following:

(a) S6 (b) S7 (c) S8

♢

14.4 Algebraic properties of cycles

14.4.1 Powers of cycles: definition of order

Let’s revisit the product of cycles. We will look at what happens when you
compose a cycle with itself multiple times.

Example 14.4.1. Consider the product (1264)(1264), which we may also
write as (1264)2. As in the previous section, we can use a diagram (see
Figure 14.4.1) to compute this product. But let’s try to understand better
what’s really going on.

https://www.youtube.com/watch?v=WWD8YZA91XG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22
https://www.youtube.com/watch?v=WWd8yzA91xg&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=22
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Figure 14.4.1. Diagram of (1264)2, showing in particular how the permu-
tation takes 1 to 6.

(1) Notice for all elements x ̸= 1, 2, 6, 4, x stays put in (1264); hence x stays
put in (1264)2. So the product (1264)2 does not involve any elements
except 1, 2, 6 and 4.

(2) Now let’s look at what happens when x = 1, 2, 6, or 4. By squaring the
cycle, we are applying it twice to each input; hence each input is moved
two spots around the wheel (see Figure 14.4.2) . In other words,

1 → 6; 6 → 1; 2 → 4; 4 → 2,

Altogether: (1264)2 = (16)(24).

Figure 14.4.2. (1264)2: streamlined notation

♦

With this methodology in mind, let’s explore powers of cycles a bit further.

Exercise 14.4.2. Compute each of the following.

(a) (1264)3 (b) (1264)4 (c) (1264)5

♢

Exercise 14.4.3. Compute each of the following:

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20


14.4 ALGEBRAIC PROPERTIES OF CYCLES 475

(a) (125843)2

(b) (125843)3

(c) (125843)4

(d) (125843)5

(e) (125843)6

(f) (125843)7

♢

Do you notice a pattern from these two exercises? Let us investigate in
a bit more detail: this will help us build up towards a proof of a general
statement.

Exercise 14.4.4. LetX = {1, 2, . . . , 10}, let A = {2, 5, 7, 8}, and let σ ∈ SX
be the cycle σ = (2578).

(a) What is σ(2)? What is σ2(2)? What is σ3(2)? What is σ4(2) What is
σ3,482,991(2)?

(b) What is σ(5)? What is σ2(5)? What is σ3(5)? What is σ4(5) What is
σ3,482,991(5)?

(c) Fill in the blank: If x ∈ A then σk(x) = σ mod (k, ).

(d) What is σ(1)? What is σ(3)?

(e) What general statement can you make about σk(x) for x ∈ X\A?

(f) ** Let K = {k : σk(x) = x ∀x ∈ X}. Is 2 ∈ K? Is 3 ∈ K? Is 4 ∈ K?
Given any positive integer k, what’s a simple way of telling whether or
not k ∈ K?

♢

Hopefully you’re beginning to see the picture! To generalize these results,
we need some additional terminology:

Definition 14.4.5. The order of a cycle σ is the smallest natural number
k such that σk = id. The order of σ is denoted by the notation |σ|. 3 △

After that long build-up, we now have (Ta-da!):

Proposition 14.4.6. The order of a cycle is always equal to the cycle’s
length.

Proof. To prove this, we essentially have to prove two things:

3This is in keeping with our practice of using | . . . | to denote the “size” of things.

https://www.youtube.com/watch?v=WWD8YZA91XG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22
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(A) If σ is a cycle of length k, then σk = id;

(B) If σ is a cycle of length k, then σj ̸= id ∀j : 1 ≤ j < k.

The proof for (A) follows the same lines as our investigations in Exer-
cise 14.4.4. In that exercise, we considered separately the elements of X
that are moved by the cycle, and those elements that are not moved by the
cycle.

Exercise 14.4.7. Prove part (A) by filling in the blanks.

Let σ ∈ SX be an arbitrary cycle of length k. Then σ can be written as
(a0 a1 . . . ak−1), for some set of elements a0, a1, . . . ak−1 in X. In order to
show that σk = id, it is sufficient to show that σk(x) = < 1 > ∀x ∈ X.
Let A be the set {a0, a1, . . . ak−1}. Now for any x ∈ X, there are two
possibilities:

(i) x ∈ X\A;

(ii) x ∈ A.

We’ll deal with these two cases separately (as we did in Exercise 14.4.4).

(i) In this case, σ(x) = < 2 > It follows that σ2(x) = σ(σ(x)) =
σ( < 3 > ) = < 4 > . We can use the same argument to show
that σ3(x) = < 5 > , and that σk(x) = < 6 > for any natural
number < 7 > .

(ii) In this case, then x = aj for some integer j, 1 ≤ j ≤ < 8 > . It
follows from the definition of cycle that σ(x) = σ(aj) = a mod (j+1,k).
Furthermore, σ2(x) = σ(a mod (j+1,k)) = < 9 > . Similarly it follows

that σk(x) = a mod (j+ <10> ,k) = a <11> = x.

Cases (i) and (ii) establish that ∀x ∈ X, < 12 > = x. It follows that
σk = < 13 > .

♢

The proof of (B) is also structured as an exercise.

Exercise 14.4.8.. In this exercise we use the same notation as part (A),
that is: σ ∈ SX has length k and is represented as: σ = (a1 a2 . . . ak).

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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(a) What is σ(a1)? What is σ2(a1)? What is σ3(a1)? What is σk−1(a1)?

(b) Conclude from part (a) that σj ̸= id for j = 1, 2, 3, . . . , k − 1.

♢

□

Example 14.4.9. Here’s a nice application of Proposition 14.4.6, which
simply uses rules of function composition. This should also give you a good
start on the next exercise.

(1264)6 = (1264)4(1264)2 = id (16)(24) = (16)(24)

♦

Exercise 14.4.10. Compute the following:

(a) (1264)11

(b) (125843)53

(c) (352)(136)(1254)102

(d) (348)(456)5(1325)10

♢

Exercise 14.4.11. If σ is a cycle of odd length, prove that σ2 is also a
cycle. (*Hint*) ♢

14.4.2 Powers and orders of permutations in general

Now that we know the order of cycles, let’s see if we can tackle other per-
mutations as well:

Definition 14.4.12. The order of a permutation τ is the smallest positive
integer k such that τk = id. As before, the order of τ is denoted by the
notation |τ |. △

Proposition: Let τ be a permutation, and let k = |τ |. Then τ ℓ = id if and
only if mod(ℓ, k) = 0.

https://www.youtube.com/watch?v=WWD8YZA91XG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22
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Exercise 14.4.13. Fill in the blanks with the appropriate variables in the
following proof of the proposition. (*Hint*)

Proof: For any integer ℓ we may write ℓ = ak + b, where b ∈ Z <1> . It
follows that

τ ℓ = τ<2>·k+<3> = (τ<4>·k)τ<5> = (τk)<6>τ<7> = (id)<8>τ<9> = τ<10>.

Therefore τ ℓ = id if and only if τ<11> = id. However, we know that
< 12 > < k, and we also know that < 13 > is the smallest positive

integer such that τ<14> = id. Hence it must be the case that b = < 15 > ,
which is the same thing as saying that mod(ℓ, < 17 > ) = 0. ♢

Can we characterize the order of a permutation that is a product of
disjoint cycles? Let’s explore.

Example 14.4.14. Let τ = (24)(16). Notice that (24) and (16) are dis-
joint, so they commute (recall Proposition 14.3.27). We also know that
permutations are associative under composition. So we may compute τ2 as
follows:

τ2 =
(
(24)(16)

)(
(24)(16)

)
= (24)

(
(16)(24)

)
(16) (associative)

= (24)
(
(24)(16)

)
(16) (commutative)

=
(
(24)(24)

)(
(16)(16)

)
(associative)

= id id (2-cycles have order 2)

= id

♦

Exercise 14.4.15.

(a) Let σ = (237) and τ = (458). By following the format of Exam-
ple 14.4.14, show that (στ)3 = id (write out each step, and cite the
property used).

(b) ** If σ and τ are disjoint cycles with |σ| = |τ | = k, what may you
conclude about |στ |? (You don’t need to give a proof).

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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♢

Associativity and commutativity are powerful tools for rearranging products
of disjoint cycles, and bear in mind that any disjoint cycles commute.

Exercise 14.4.16.

(a) Let σ and τ be any disjoint cycles. using associative and commutative
properties (see Proposition 14.3.27, show that (στ)2 = σ2τ2 (write out
each step, and cite the property used).

(b) If σ and τ are disjoint cycles and k is a natural number, what may you
conclude about (στ)k in terms of powers of σ and τ? (You don’t need
to give a proof).

♢

Exercise 14.4.17. Suppose then τ = (123)(45). Compute each of the
following

(a) τ2

(b) τ3

(c) τ4

(d) τ5

(e) τ6

(f) τ7

♢

Notice what happened to the disjoint cycles in the previous exercise. For
instance |(123)| = 3, and in parts (a)-(f) of the exercise you had the repeating
pattern {(132), id, (123), (132), id, . . .}. Similarly, the 2-cycle (45) yielded the
repeating pattern {id, (45), id, (45) . . .}.

In τ3, τ6, τ9, . . . the (123)k part of τk becomes id,while in τ2, τ4, τ6, . . . the
(45)k part becomes id. In order for τk = id, we must have both (123)k = id
and (45)k = id, which first happens when k = 6. Which is the least common
multiple of 2 and 3. Which makes sense. To visualize this idea, think about
the question posed in the following figure:

Disjoint cycles are like gears, so they should first align back at “1”, or
id, when they’ve been “turned” a number of times that is precisely the
least common multiple of the number of teeth on the gears. The order of a
permutation of disjoint cycles should just be the least common multiple of
the orders of it’s respective cycles.

https://www.youtube.com/watch?v=WWD8YZA91XG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22
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Figure 14.4.3. How many times does the small gear (at left) need to turn
to return all gears to their original position? (Each turn rotates all gears
clockwise by 1 position.)

In fact, we can prove it. We will start with two disjoint cycles:

Proposition 14.4.18. If σ and τ are disjoint cycles, then

|στ | = lcm (|σ|, |τ |),

where ‘lcm’ denotes least common multiple.

Proof. Let j ≡ |σ|, k ≡ |τ |, and m ≡ lcm (k, j). Then it’s enough to
prove:

(i) (στ)m = id;

(ii) (στ)n ̸= id if n ∈ N and n < m.

To prove (i), first note that k divides m, so that m = j · p for some natural
number p. Similarly, m = k · q for some q ∈ N. It follows:
(στ)m = σmτm (by Exercise 14.4.16)

= σj·pτk·q (by definition of lcm)

= (σj)p(τk)q (by exponentiation rules) 4

= idpidq (by definition of order)

= id (by definition of id).

To prove (ii), let n < m. It follows either k or j does not divide n. Let’s
suppose it’s k (the case where it’s j is virtually identical). In this case we
must have n = p · k + r where p,r∈ N and r < k. It follows:

4These are the same exponentiation rules you saw in high school algebra: xab = (xa)b

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20


14.4 ALGEBRAIC PROPERTIES OF CYCLES 481

(στ)n = σnτn (by Exercise 14.4.16)

= σj·p+rτn (substitution)

= (σj)pσrτn (by exponentiation rules)

= idpσrτn (by definition of order)

= σrτn (by definition of identity)

Now since r < k, and |σ| = k, it follows that σr ̸= id. Thus there is some
x such that σr(x) ̸= x. But since σ and τ are disjoint, it must be the case
that τ(x) = x. It follows that:

σrτn(x) = σr(x) ̸= x.

From this we may conclude that (στ)n is not the identity. This completes
the proof of (ii). □

What Proposition 14.4.18 establishes for two disjoint cycles is also true
for multiple disjoint cycles. We state the proposition without proof, because
it is similar to that of Proposition 14.4.18 except with more details.

Proposition 14.4.19. Suppose σ1, σ2, . . . , σn are n disjoint cycles, where
k1, k2, . . . , kn are the lengths, respectively, of the n disjoint cycles. Then

|σ1σ2 · · ·σn| = lcm (k1, k2, . . . , kn).

Now we can find the order of any permutation by first representing it as a
product of disjoint cycles.

Exercise 14.4.20. What are all the possible orders for the permutations
in each of the following sets (look back at your work for Exercise 14.3.38).

(a) S6 (b) S7 (c) S8

♢

Exercise 14.4.21. Compute the following:

https://www.youtube.com/watch?v=WWD8YZA91XG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22
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(a) |(1254)2|

(b) |(13658)2(473)2(125)|

(c) |(13658)13(1254)11(473)|

(d) |(123456789)300|

♢

Exercise 14.4.22. Let σ be a permutation in Sn.

(a) Show that there exists an integer k > 1 such that σk = σ.

(b) Show that there exists an integer ℓ > 1 such that σℓ = σ−1.

(c) Let K be the set of all integers k > 1 such that σk = σ. Show that K
is an infinite set (that is, K has an infinite number of elements).

(d) Let L be the set of all integers ℓ > 1 such that σℓ = σ−1. Show that L
is an infinite set.

(e) What is the relationship between the sets K and L?

♢

14.4.3 Transpositions and inverses

The simplest nontrivial cycles are those of length 2. We will show that these
2-cycles are convenient “building blocks” which can be used to construct all
other cycles.

Definition 14.4.23. Cycles of length 2 are called transpositions. We will
often denote transpositions by the symbol τ (the greek letter “tau”). △

Exercise 14.4.24. Compute the following products:

(a) (14)(13)(12)

(b) (14)(18)(19)

(c) (16)(15)(14)(13)(12)

(d) (49)(48)(47)(46)(45)

(e) (12)(13)(14)(15)(16)(17)(18)

♢

Exercise 14.4.25. In light of what you discovered in the previous exercise,
write each cycle as a product of transpositions:

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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(a) (1492)

(b) (12345)

(c) (472563)

(d) (a1a2a3)

(e) (a1a2a3a5a6)

(f) (a1a2a3a5a6a7a8)

♢

The preceding exercises demonstrate the following proposition:

Proposition 14.4.26. Every cycle can be written as the product of trans-
positions:

(a1, a2, . . . , an) = (a1an)(a1an−1) · · · (a1a3)(a1a2)

Proof. The proof involves checking that left and right sides of the equation
agree when they act on any aj . We know that the cycle acting on aj gives
aj+1 (or a1, if j = n); while the product of transpositions sends aj first to
a1, then to aj+1. □

Recall that we also know that any permutation can be written as a product
of disjoint cycles, which leads to:

Proposition 14.4.27. Any permutation of a finite set containing at least
two elements can be written as the product of transpositions.

Proof. First write the permutation as a product of cycles: then write each
cycle as a product of transpositions. □

Exercise 14.4.28. Express the following permutations as products of trans-
positions.

(a) (14356)

(b) (156)(234)

(c) (1426)(142)

(d) (17254)(1423)(154632)

(e) (142637)(2359)

(f) (13579)(2468)(19753)(2864)

♢

Even the identity permutation id can be expressed as the product of trans-
positions:

Exercise 14.4.29. Compute the following products:

https://www.youtube.com/watch?v=WWD8YZA91XG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22
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(a) (12)(12) (b) (57)(57) (c) (a1a2)(a1a2)

(d) What can you conclude about the inverse of a transposition?

♢

The preceding exercise amounts to a proof of the following:

Proposition 14.4.30. If τ is a transposition, τ−1 = τ .

We can use the inverses of transpositions to build up the inverses of
larger cycles:

Proposition 14.4.31. Suppose µ is a cycle: µ = (a1a2 . . . an). Then
µ−1 = (a1anan−1 . . . a2).

Proof. By Proposition 14.4.26 we can write

µ = (a1an)(a1an−1) · · · (a1a3)(a1a2).

Now consider first just the last two transpositions in this expression. In the
Functions chapter, we proved the formula (f ◦g)−1 = g−1◦f−1 for invertible
functions f and g. Since transpositions are invertible functions, we have(

(a1a3)(a1a2)
)−1

= (a1a2)
−1(a1a3)

−1 = (a1a2)(a1a3)

(the second equality follows because every transposition is its own inverse.)

If we apply similar reasoning to the last three transpositions in the ex-
pression, we find(

(a1a4)(a1a3)(a1a2)
)−1

= [(a1a3)(a1a2)]
−1(a1a4)

−1 = (a1a2)(a1a3)(a1a4)

Applying this result inductively, we obtain finally:

µ−1 = (a1a2)(a1a3) · · · (a1an−1)(a1an),

from this expression we may see that a1 → an, an → an−1, an−1 → an−2, . . . , a2 →
a1, which corresponds to the cycle we want. □

Because the product of permutations is an associative operation, we may
find the inverse of any product of cycles by taking the inverses of the cycles in

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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reverse order. (Actually, this is just a special case of the inverse of function
composition: (f1 ◦ f2 ◦ . . . ◦ fn−1 ◦ fn)−1 = f−1

n ◦ f−1
n−1 ◦ . . . ◦ f2 ◦ f1.)

Example 14.4.32. [(1498)(2468)]−1 = (2468)−1(1498)−1 = (2864)(1894) =
(164)(289). ♦

Example 14.4.33. (1357)−2 =
[
(1357)−1

]2
= (1753)2 = (1753)(1753) =

(15)(37). ♦

Exercise 14.4.34. Calculate each of the following.

(a) (12537)−1

(b) [(12)(34)(12)(47)]−1

(c) [(1235)(467)]−2

(d) (1254)−1(123)(45)(1254)

(e) (123)(45)(1254)−2

(f) (742)−7(286)−13

♢

Exercise 14.4.35. In Section 14.3.5 we introduced the notion of the “cycle
structure” of a permutation. Using some of the ideas that we have intro-
duced in this section, prove that if σ is any permutation, then σ−1 has the
same cycle structure as σ. ♢

14.5 “Switchyard” and generators of the permu-
tation group

Switchyards are used by railroads to rearrange the order of train cars in a
train (see Figure 14.5.1). In this section we will study a “switchyard” of
sorts. The design of our mathematical “switchyard” is not realistic, but the
example will help us understand some important fundamental properties of
permutations.

Figure 14.5.2 shows how the switchyard works. The figure shows the
particular case of a switchyard with 12 positions. A railroad train with 12
cars pulls in from the right, and circles around until it fills the circular track.

https://www.youtube.com/watch?v=CRIXIVLNEFA&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=23
https://www.youtube.com/watch?v=CriXivlnEfA&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=23
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Figure 14.5.1. Grandview Yard (Pennsylvania Railorad) in Grandview
Heights, OH around 1900 (source: http://www.ghmchs.org/thisweek/

photo-listing10.htm.

The positions (we’ll call them slots for short) are numbered 1 through
12 as are the railroad cars. At the starting position, each railroad car is at
the corresponding numbered slot: car 1 is in slot 1, . . . car 12 is in slot 12.

From the starting position, the train can move in one of two ways:

� The train can move circularly around the track, so that car 1 can end
up at any one of the 12 slots.

� Alternatively, the cars in slots 1 and 2 can switch places.

These two types of motions can be represented as permutations. In tableau
notation, the first row of the tableau corresponds to the train car, while
the second row corresponds to the slot it moves to. For example, if the
train cars 1, 2, 3, . . . , 11, 12 move counterclockwise one slot to occupy slots
2, 3, 4, . . . , 12, 1 respectively, then the permutation (in tableau notation) is:(

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1

)

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
http://www.ghmchs.org/thisweek/photo-listing10.htm
http://www.ghmchs.org/thisweek/photo-listing10.htm
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Figure 14.5.2. “Switchyard” diagram

In cycle notation, the same permutation would be (1 2 3 4 . . . 12). We
will denote this permutation by r. On the other hand, if cars 1 and 2 are
switched, then this corresponds to the permutation (12). We will denote
this permutation by t. In summary:

r = (1 2 . . . 12); t = (1 2).

Let’s look at some other motions of the train. Suppose for example we shift
the train counterclockwise by two positions. This corresponds to performing
the permutation r twice in succession, which is r ◦r or r2. If we think about
the process of composition, what’s going on is the first r moves car 1 (which
occupies slot 1) to slot 2; while the second r moves whatever’s in slot 2
(which happens to be car 1) to slot 3. The resulting composition can be
interpreted as showing where each of the cars end up after both moves. The
same thing will be true if we compose any number of permutations.

It follows that all rearrangements of the cars that can be accomplished by
the switchyard may be obtained as compositions of the permutations r and t.
So what rearrangements are possible? I’m glad you asked that question! The
following exercises are designed to help you figure this out. But first, let’s
consider one type of rearrangement that’s particularly important. Suppose
we want to switch two consecutive cars that are not 1 and 2: say for example

https://www.youtube.com/watch?v=CRIXIVLNEFA&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=23
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we want to switch cars 5 and 6, and leave the rest of the cars unchanged.
Can we do this?

At this point, in order to follow along the reader may find it helpful to
make his/her own model of a switchyard.5 Figure 14.5.3 shows a simple
model made out of a jar lid with numbers stuck on with putty. We’ll illus-

Figure 14.5.3. “Switchyard” model in home position

trate the motions necessary to switch cars 5 and 6 using the model. First,
we rotate cars 5 and 6 to slots 1 and 2 by rotating 4 slots clockwise. This
permutation is shown in Figure 14.5.4, and is written mathematically as
r−4.

Next, we exchange the two cars (which we can do since they’re in the
first two positions). Figure 14.5.5 shows the switch, which is denoted by t.

Finally, all we need to do is rotate counterclockwise 4 slots (r4), as shown
in Figure 14.5.6.

Altogether, these three steps give the composition r4 ◦ t◦ r−4 (remember
that permutations are applied right to left, just like functions). Note also
that in the case of a 12-slot switchyard, r−4 could also be written r8, since a
clockwise rotation of 4 slots is the same as a counterclockwise rotation of 8
slots. (If the switchyard has n positions, the general rule is that r−m = rn−m,
as we saw in the Symmetries chapter.)

5The models in this section (and photos) were made by Holly Webb.

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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Figure 14.5.4. First stage in switching cars 5 and 6: clockwise rotation
r−4.

Figure 14.5.5. Second stage in switching cars 5 and 6: switch t.

Exercise 14.5.1. First we’ll look at a switchyard with 4 positions. As
above, r = counterclockwise rotation by 1 position = (1 2 3 4); while t ex-
changes two cars: t = (1 2).

(a) Write (2 3), (3 4), and (4 1) as products of powers of r and t. (Together
with (1 2), these are all the consecutive 2-cycles.)

(b) Write (1 2 3), (2 3 4), (3 4 1), (4 1 2) as products of powers of r and t.
(These are all the counterclockwise consecutive 3-cycles.)

https://www.youtube.com/watch?v=CRIXIVLNEFA&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=23
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Figure 14.5.6. Third stage in switching cars 5 and 6: counterclockwise
rotation r4.

(c) Write (1 3 2), (2 4 3), (3 1 4), (4 2 1) as products of powers of r and t.
(These are all the clockwise consecutive 3-cycles.) (*Hint*)

(d) Write (1 3) as products of powers of r and t.

(e) Show that any transposition can be written as products of powers of r
and t.

(f) Show that any permutation on 4 elements (that is, any permutation in
S4) can be obtained as a product of powers of r and t).

♢

Exercise 14.5.2. Now we’ll look at a general switchyard with n positions.
In this case, rotation by 1 position is given by r = (1 2 . . . n). We use the
same switch transposition, t = (1 2).

(a) Write the transposition (k k ⊕ 1) as a product of powers of r and t.
Here ⊕ denotes addition mod n. (Note that we use (k k⊕ 1) instead of
(k k+1) because we want to count (n 1) as a consecutive transposition.)

(b) Show that any consecutive cycle of the form (m m⊕ 1 . . . m⊕ p) can
be written as a product of powers of r and t by filling in the blanks:

� First, (m m ⊕ 1 . . . m ⊕ p) can be written as a product of con-
secutive transpositions as . (*Hint*)

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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� Then, by replacing each transposition in this expression with its
expression in terms of products of , then we obtain
an expression for as a product of .

(c) Write the transposition (1 k) as a product of a consecutive cycle of length
k and the inverse of a consecutive cycle of length k − 1. (*Hint*)

(d) Prove that any transposition (1 k) can be written as a product of con-
secutive transpositions.

(e) Prove that any transposition (1 k) can be written as a product of powers
of r and t.

(f) Prove that any transposition (p q) can be written as a product of powers
of r and t.

(g) Prove that any permutation in Sn can be obtained as a product of powers
of r and t.

♢

What we have shown in the previous exercise is that the two permuta-
tions r and t generate the group Sn. In other words, all of the information
contained in the huge and complicated group Sn is characterized in just two
permutations! The study of group generators is an important part of group
theory, but unfortunately it is beyond the level of this course.

Exercise 14.5.3. Using “switchyard”, we proved that Sn is generated by
the permutations (12) and (12 . . . n). Prove that the group Sn is generated
by the following sets of permutations.

1. (12), (13), . . . , (1n)

2. (12), (23), . . . , (n− 1, n)

♢

https://www.youtube.com/watch?v=CRIXIVLNEFA&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=23
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14.6 Other groups of permutations

14.6.1 Even and odd permutations

We saw in the previous section that any permutation can be represented
as a product of transpositions. However, this representation is not unique.
Consider for instance:

� id = (12)(12)

� id = (13)(24)(13)(24)

� id = (15)(26)(79)(14)(34)(34)(14)(79)(26)(15)

Although these representations of id are vastly different, by some “strange
coincidence” they all involve the product of an even number of transposi-
tions.

Exercise 14.6.1. ***** Write id as a product of an odd number of trans-
positions (If you succeed, you automatically get an A in this course!) ♢

As you might guess from the previous exercise, there’s something fishy
going on here. To get to the bottom of this, we need to get a better handle
on what happens when you multiply a permutation by a transposition. In
particular, we know that any permutation can be written as a product of
disjoint cycles: so what happens to these cycles when we multiply by a
transposition? To get warmed up, let’s first look at some special cases.

Exercise 14.6.2. Write τσ as the products of disjoint cycles, where σ =
(12345678) and: (a) τ = (25); (b) τ = (16); (c) τ = (48); (d) τ = (35). ♢

As always it is helpful to have a good representation of the situation,
preferably in pictures. For the following argument, we will represent a cycle
as a “pearl necklace”, as shown in Figure 14.6.1. This is not so different from
our previous representation of cycles (for instance, in Figure 14.3.1), but we
are not including labels for the particular elements in the cycle because we
want to emphasize the general structure and not get bogged down in details.

Figure 14.6.2 shows how we may represent the multiplication (ab)C of
transposition (ab) with cycle C, where a and b are elements included within
C. The transposition effectively redirects the arrow pointing into a, so that

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
https://www.youtube.com/watch?v=KJyItH3ZgpU&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=24
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Figure 14.6.1. “Pearl necklace” representation of a cycle.

now it points into b. The transposition also redirects the arrow pointing into
b so that it now points into a. As a result, there are now two cycles instead
of one. The sum of the lengths of the two cycles is equal to the length of
the original cycle.

Figure 14.6.2. (a) Cycle C, including elements a and b; (b) Product of
transposition (ab) with cycle C, showing redirection of arrows into a and
b; (c) The result of (ab)C is two separate cycles.

Using this representation, we can now investigate what happens when
we multiply a transposition (ab) times an arbitrary permutation σ. We
already know that σ can be thought of as a collection of disjoint cycles (plus
stationary elements, that are unaffected by σ). There are several possibilities
for how a and b can fit within the cycles of σ, as shown in Figure 14.6.3.
Each possibility may or may not change the number of cycles, as well as the
sum of the lengths of all cycles.

Exercise 14.6.3. In each of the following situations, we are considering
the multiplication of a transposition (ab) with a permutation σ. Match

https://www.youtube.com/watch?v=KJYITH3ZGPU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=24
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Figure 14.6.3. Multiplication of (ab) times a permutation σ, showing the
different ways that a and b can be situated within the cycles and stationary
elements of σ. Note that case (a) corresponds to the situation described in
Figure 14.6.2.

each situations to the correct case (a)–(f) in Figure 14.6.3. For example,
(ab) = 12 and σ = (1234)(567) corresponds to case (d), because a and b are
consecuitve elements in one of the cycles of σ.

(a) (ab) = (36), σ = (123)(456)(78)

(b) (ab) = (45), σ = (123)(678)

(c) (ab) = (34), σ = (123)(567)

(d) (ab) = (45), σ = (23)(45)(67)

(e) (ab) = (34), σ = (278)(13546)

♢

Exercise 14.6.4. Draw a set of pictures (similar to Figure 14.6.2(c)) for
each of the possibilities (a)–(f) in Figure 14.6.3 showing the effect of the
transposition (ab) on the cycles. Keep in mind that the transposition merely
redirects the arrows into a and b so that they point into b and a, respectively.
♢

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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Exercise 14.6.5. Using your results from the previous exercise, complete
Table 14.1. ♢

Dia-
gram in
Fig. 14.6.3

Change in num-
ber of cycles

Change in sum
of cycle lengths

Is column 3 minus
column 2 even or
odd?

(a) +1 0 odd

(b)

(c)

(d)

(e) −1 −2

(f)

Table 14.1: Multiplication of permutation by transpositions

If you did the previous exercise correctly, you will find that no matter
where the transposition falls, the entry in the last column is always ‘odd’.
Consider what this means. Suppose I have a permutation σ whose sum of
cycle lengths minus number of cycles is equal to N . I then multiply σ by a
transposition to obtain another permutation τ , whose sum of cycle lengths
minus number of cycles is equal to M . The last column of Table 14.1shows
that it must be true that M − N is always odd. In other words, if M is
even then N is odd: and vice versa. We may express this concisely using
the following definition:

Definition 14.6.6. for any permutation σ written in disjoint cycle notation,
the number

mod(sum of cycle lengths minus number of cycles,2)

is called the parity of σ. A permutation with parity 0 is called an even
permutation , while a permutation with parity 1 is called an odd permu-
tation . . Often books will use the terms “even parity” and “odd parity”
instead of parity 0 and 1, respectively. △

We may summarize our argument so far as follows:

https://www.youtube.com/watch?v=KJYITH3ZGPU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=24


496 CHAPTER 14 PERMUTATIONS

Proposition 14.6.7. Given a permutation σ and a transposition (ab), then
the parity of (ab)σ is different from the parity of σ.

So far we have considered multiplying permutations on the left by a
transposition. What about multiplying them on the right? It turns out we
can use the “direction-reversing” property of permutation inverses to answer
this very elegantly.

Exercise 14.6.8.

(a) Considerthe “necklace” diagrams (a)-(f) of permutations shown in Fig-
ure 14.6.3. If we take the inverse of each permutation, how does its
diagram change? What happens to the arrows? How do the shapes of
the cycles change (if at all)?

(b) In Exercise 14.6.4 you multiplied each of the permutations (a)-(f) in
Figure 14.6.3 on the left by (ab). How do the results change if you
multiply the inverses of each permutation on the left by (ab)?

(c) Prove that
(
(ab)σ−1

)−1
= σ(ab).

(d) Using (a-c) above, prove the following statement: For any permutation
σ and any transposition (ab), (ab)σ and σ(ab) have the same cycle
structure.

♢

Now here’s the punch line. We know that every permutation can be writ-
ten as a product of transpositions. From what we have just shown, an odd
permutation must be the product of an odd number of transpositions; while
an even permutation must be the product of an even number of transposi-
tions. It is impossible to write an even permutation as the product of an odd
number of transpositions; and vice versa. We summarize our conclusions in
the following proposition.

Proposition 14.6.9. A permutation σ can be written as the product of an
even number of transpositions if and only if σ is an even permutation. Also,
σ can be written as the product of an odd number of transpositions if and
only if σ is an odd permutation.

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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Exercise 14.6.10. Prove that it is impossible to write the identity permu-
tation as the product of an odd number of transpositions. ♢

Exercise 14.6.11. Suppose σ is an n-cycle. How can you tell whether σ is
an even or odd permutation? ♢

In the following exercises you will explore a bit further the parity prop-
erties of permutations.

Exercise 14.6.12.

(a) Prove that the product of two even permutations is even.

(b) Prove that the product of two odd permutations is even.

(c) What is the parity of the product of an even permutation and an odd
permutation? What about the product of an odd permutation and an
even permutation? Prove your answers.

♢

Exercise 14.6.13. For each of the following sets, describe which permuta-
tions are even and which are odd, according to their cycle structure. (*Hint*)

(a) S6 (b) S7 (c) S8

♢

Exercise 14.6.14. This exercise requires some knowledge of linear algebra.
It also relates back to the discussion of Levi-Civita symbols in Section 11.8.1

Suppose σ is a permutation in S4. We can define a 4×4 matrix Pσ using
index notation as follows:

[Pσ]ij =

{
1 if j = σ(i),

0 if j ̸= σ(i).

(Here i and j can take any values from 1 to 4.) The matrix Pσ is in fact
known as the permutation matrix associated with the permutation σ.

https://www.youtube.com/watch?v=KJYITH3ZGPU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=24
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(a) Write down the matrix Pσ when: (i) σ = (13); (ii) σ = (132); (iii)
σ = (12)(34); (iv) σ = (1234).

(b) Using the formula that you guessed in the previous problem, evaluate
detPσ when: (i) σ = (24); (ii) σ = (143); (iii) σ = (14)(23); (iv)
σ = (1423). Check your answer using the row (or column) expansion
method for computing determinants.

(c) How is the value of detPσ related to the “evenness” or “oddness” of the
permutation σ?

(d) For the 4 permutations in part (a), show that when you multiply the 4×1
column vector [1, 2, 3, 4]T times the matrix Pσ, you obtain the second
row of the tableau for σ. In other words, the matrix Pσ “performs” the
permutation σ on column vector entries.

(e) Show that the result in (b) is true in general: namely, that Pσ[1, 2, 3, 4]
T =

[σ(1), σ(2), σ(3), σ(4)]T .

♢

14.6.2 The alternating group

We have shown that all permutations are either even or odd. In other words,
for any n ∈ Z we have that Sn is the union of two disjoint sets: Sn = An∪Bn,
where An and Bn are the even and odd permutations respectively. We are
particularly interested in the set An, because it has nice properties with
respect to product of permutations:

Exercise 14.6.15.

(a) Show that id ∈ An.

(b) Show that if σ ∈ An, then σ
−1 ∈ An. (*Hint*)

(c) Show that if σ, µ ∈ An, then σµ ∈ An. (*Hint*)

♢

In light of the previous exercise, it’s beginning to look like An could be
a group under permutation product. Let’s check off the group properties:

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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� IsAn closed under permutation product? Yes, according to Ex. 14.6.15(c).

� Does An have an identity element? Yes, according to Ex. 14.6.15(a).

� DoesAn have inverses for every element? Yes, according to Ex. 14.6.15(b).

� Is An associative? Yes, because the operation is composition, and
composition is associative.

We have thus essentially proven the following proposition:

Proposition 14.6.16. The set An is a group.

Definition 14.6.17. The group An of even permutations is called the
alternating group on n numbers. △

Exercise 14.6.18. Prove or disprove: the set of odd permutations Bn is
also a group. ♢

We know that An is a group – but how big is it? Of course, it depends
on the number of odd permutations Bn, since An and Bn together make up
Sn. So which is bigger: An or Bn? The answer is . . . neither!

Proposition 14.6.19. The number of even permutations in Sn, n ≥ 2, is
equal to the number of odd permutations; hence, |An| = n!/2.

Proof. The key to the proof is showing that there is a bijection between
An and Bn. Since a bijection is one-to-one and onto, this means that An
and Bn must have exactly the same number of elements.

To construct a bijection, notice that (12) ∈ Sn and define a function
f : An → Sn by: f(σ) = (12) ◦ σ. (Notice that we are taking An as our
domain, and not Sn). To show that f is a bijection, we need to show three
things:

(a) Bn is a valid codomain for f : that is, f(σ) ∈ Bn ∀σ ∈ An;

(b) f : An → Bn is onto: that is, ∀µ ∈ Bn ∃σ ∈ An such that f(σ) = µ;

(c) f is one-to-one: that is, f(σ1) = f(σ2) implies σ1 = σ2.

https://www.youtube.com/watch?v=KJYITH3ZGPU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=24
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Parts (a) – (c) will be proven by (none other than) you, in the following
exercise:

Exercise 14.6.20.

(a) Show part (a). (*Hint*)

(b) Show part (b). (*Hint*)

(c) Show part (c). (*Hint*)

♢

□

Exercise 14.6.21.

(a) What is |A4|?

(b) List all the permutations of A4 (Write them in cycle notation. Make
sure you have them all – you should have as many as part (a) indicates).

♢

Exercise 14.6.22. Give all possible cycle structures for elements in each
of the following sets. (You don’t need to list all the permutations, just the
cycle configurations e.g. “pair of 2-cycles”.)

(a) A6 (b) A7 (c) A8

♢

14.7 Additional exercises

1. Show that A10 contains an element of order 15. (*Hint*)

2. Does A8 contain an element of order 26?

3. Find an element of largest order in Sn for n = 3, . . . , 10.

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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4. In Chapter 4 we used the term ‘non-abelian’ to describe groups in
which not all elements commute. To show that a group is non-abelian,
it’s enough to find a single pair of elements a, b ∈ Sn which do not
commute (that is, ab ̸= ba).

(a) Prove that Sn is non-abelian for every n ≥ 3.

(b) Show that An is non-abelian for every n ≥ 4.

(c) Prove that Dn is non-abelian for every n ≥ 3.

5. Let σ ∈ Sn. Prove that σ can be written as the product of at most
n− 1 transpositions. (*Hint*)

6. Let σ ∈ Sn. If σ is not a cycle, prove that σ can be written as the
product of at most n− 2 transpositions. (*Hint*)

7. Prove that in An with n ≥ 3, any permutation is a product of cycles
of length 3.

8. Let G be a group and define a function fg : G → G by fg(a) = ga.
Prove that fg is a permutation of G.

9. For α and β in Sn, we say that α and β are conjugate permutations
if there exists an σ ∈ Sn such that σασ−1 = β. Show that if α and β
are conjugate permutations, and α ∈ An, then also β ∈ An.

10. Let τ = (a1, a2, . . . , ak) be a cycle of length k.

(a) Prove that if σ is any permutation, then στσ−1 can be expressed
as:

στσ−1 = (σ(a1), σ(a2), . . . , σ(ak)).

it follows that στσ−1 is also a cycle of length k.

(b) Let µ be any cycle of length k. Prove that there is a permutation
σ such that στσ−1 = µ.

(c) Using the notation of the previous exercise, show that any two
cycles of length k are conjugate.

11. Show that α−1β−1αβ is an even permutation for all α, β ∈ Sn.



502 CHAPTER 14 PERMUTATIONS

14.8 Hints for “Permutations” exercises

Exercise 14.4.13: The first blank should be replaced by k

Exercise 14.5.1(c): Take advantage of the previous part.

Exercise 14.5.2(b): Note for instance that (1 2 3) = (1 2)(2 3).

Exercise 14.5.2(c): Note for instance that (1 4) = (1 2 3 4) ◦ (1 2 3)−1.

Exercise 14.6.13: Use the cycle structures you found in Exercise 14.3.38

Exercise 14.6.15(b): If you write σ as the product of transpositions τ1 · · · τn,
then what is σ−1?

Exercise 14.6.15(c): If σ = τ1 · · · τn and µ = λ1 · · ·λm, then what about σµ?

Exercise 14.6.20(a): If σ is even, then what about (1 2) ◦ σ?
Exercise 14.6.20(b): If µ is odd, then what about (1 2) ◦ µ? Also, what is
f((1 2) ◦ µ)?
Exercise 14.6.20(c): If (1 2)σ1 = (1 2)σ2, then what can you conclude about
σ1 and σ2? Why are you able to conclude this?

Exercise 14.4.11: Let ℓ be the length of σ: then what is the order of σ? On
the other hand, let k be the order of σ2: then what do you know about σ2k?

14.8.1 Hints for additional exercises (Section 14.7)

Exercise 1: Consider the cycle structure.

Exercise 5: We know that σ can be written as the product of disjoint cycles.
So let σ1, σ2, . . . σm be disjoint cycles such that σ = σ1σ2 . . . σm, and let
ℓj be the length of the cycle σj . How many transpositions does it take to
construct each of these disjoint cycles? And what is the largest possible
value of the sum of ℓj?

Exercise 6: Use the notation of the previous problem, and write a formula
(in terms of ℓ1 . . . ℓm and m) for the number of transpositions it takes to
construct σ.

https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20


15

Introduction to Groups

“There are more groups in heaven and earth, Horatio, than are
dreamt of in your philosophy.” Shakespeare, Hamlet, Act 1 Scene
V (paraphrase by J. Hill)

“Groups tend to be more extreme than individuals.” (Daniel
Kahneman, 2002 Nobel Prize winner in Economics)

“I am rarely bored alone; I am often bored in groups.” (Dr.
Laurie Helgoe, psychologist)

You may have noticed that we have been voyaging deeper and deeper
into unfamiliar mathematical territory. We’re using more symbols and fewer
numbers. We introduce unfamiliar terminology and strange notation. We
deal with outlandish mathematical objects that are harder and harder to
visualize.

Please rest assured that these elaborations have a practical purpose1.
We live in a complicated world, and complicated mathematical structures
are needed to describe it well. However, underlying this confusing tangle
of complicated structures are some deep commonalities. The purpose of
abstraction is to identify and characterize these commonalities. In this way
we can make connections between very different fields of mathematics, and
gain a much more holistic view of how things work together.

One of the commonalities that we have been (more or less) subtly em-
phasizing in the previous chapters is the ubiquity of groups, together with

1(that is, besides tormenting math students)
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related notions such as isomorphisms and subgroups. Now that you’ve stud-
ies several specific groups (such as C,Zn, Dn, Sn, An and so on) our hope is
that from these examples you’ve begun to get a feel for how groups work,
and how one should think about groups in general. In this chapter, we will
study groups in the abstract : that is, we will describe properties that are
common to all groups, whether finite or infinite, commutative (abelian) or
non-abelian, and so on.

Thanks to Tom Judson for material used in this chapter.

15.1 Formal definition of a group

Historically, the theory of groups first arose from attempts to find the roots
of polynomials in terms of their coefficients. But groups have moved far
beyond their original application, and now play a central role in such areas
as coding theory, counting, and the study of symmetries. Many areas of
biology, chemistry, and physics have benefited from group theory. In the
preceding chapters we’ve already worked with a number of different groups,
including the integers mod n and the symmetries of a rectangle or regular
polygon. Recall that a group basically consists of a set and a “compatible”
operation:

Exercise 15.1.1.

(a) What operation is the set Zn a group under?

(b) What operation is the set S3 a group under?

♢

The following definition formalizes the notion of “operation”.

Definition 15.1.2. A binary operation or law of composition on a set
G is a function G×G→ G that assigns to each pair (a, b) ∈ G×G a unique
element a ◦ b, or ab in G, called the composition of a and b. △

Remark 15.1.3.

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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� Notice that the word ”composition” is now used to denote any opera-
tion on the elements of a set, and not just composition of functions.

� When the law of composition on a set is a basic algebraic operation
such as multiplication or addition, we’ll call it with its usual name.
When it isn’t, we will often refer to a ◦ b as the “product” of a and b
(as we did in the Permutations chapter).

△

In the Modular Arithmetic chapter we introduced what properties a set
and operation must have to be called a group:

Exercise 15.1.4. What are the four properties a set G and a binary op-
eration must exhibit in order for the set to be a group under that binary
operation? ♢

Building on our previous discussion, we now proudly present the follow-
ing formal definition.

Definition 15.1.5. A group (G, ◦) is a set G together with a law of
composition (a, b) 7→ a ◦ b that satisfies the following axioms.

1. The set G is closed under the law of composition. That is,

∀a, b ∈ G, a ◦ b = c for some c ∈ G.

2. There exists an element e ∈ G, called the identity element , such
that for any element a ∈ G

e ◦ a = a ◦ e = a.

3. For each element a ∈ G, there exists an inverse element in G,
denoted by a−1, such that

a ◦ a−1 = a−1 ◦ a = e.

4. The law of composition is associative . That is,

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for a, b, c ∈ G.
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△

Remark 15.1.6. When the group operation is obvious or has been pre-
viously specified, we may denote the group by G rather than (G, ◦). For
instance, the group of integers under addition is typically denoted by Z and
not (Z,+), since the operation + is understood. △

One very important class of groups is the commutative groups, which
are given their own special designation:

Definition 15.1.7. A group (G, ◦) with the property that a ◦ b = b ◦ a for
all a, b ∈ G is called abelian2 or commutative . Groups not satisfying this
property are said to be non-abelian or noncommutative . △

Finally, based on our discussion before about the order of sets, we have:

Definition 15.1.8. A group is finite , or has finite order , if it contains
a finite number of elements The order of a finite group is the number of
elements that it contains. If G is a group containing n elements, we write
|G| = n. A group that is not finite is called infinite , and such a group is
said to be of infinite order . △

The group Z5 is a finite group of order 5, so |Z|5 = 5; while the integers
Z form an infinite group under addition, and we sometimes write |Z| = ∞.

Definition 15.1.9. The trivial group, consists of the single element e (or
id, in our previous notation). △

Exercise 15.1.10. Prove that the trivial group is in fact a group according
to Definition 15.1.5. ♢

2In honor of Neils Henrik Abel (1802-1829), an astounding mathematician who sadly
died very young of tuberculosis. There is some discussion among mathematicians over
whether ‘abelian’ should be capitalized. The word has become so common in mathemat-
ics that it’s usually treated as a regular word and not a proper name. This should be
considered as a special honor to Abel, since his name has become part of the fundamental
language of mathematics.

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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15.2 Examples

There are multitudes upon multitudes of groups besides those we’ve seen so
far. Some are modifications of groups we are very familiar with.

Example 15.2.1. The set R \ {0} of non-zero real numbers is written as
R∗. Let’s prove that (R∗, ·) is a group.

(1) Closure:

Suppose a, b ∈ R∗. Then to prove closure we must show ab ∈ R∗; that
is, we must show (i) ab ∈ R and (ii) ab ̸= 0:

(i): Since a, b ∈ R, and we know R is closed under multiplication, then
ab ∈ R.

(ii): Suppose ab = 0. Then as we noted in Section 3.2.1, we know either
a = 0 or b = 0. But a, b ∈ R∗; i.e. a, b ̸= 0. So we have a contradiction.
Hence ab ̸= 0.

Therefore ab ∈ R∗; and so R∗ is closed under multiplication.

To finish the proof that R∗ is a group, we must establish axioms (2) through
(4) in Definition 15.1.5. We leave this up to you in the following exercise:

Exercise 15.2.2.

(a) Finish proving that (R∗, ·) is a group.

(b) Either prove or disprove that (R∗,+) is a group.

(c) What is the order of (R∗, ·)?

♢

♦

Exercise 15.2.3. Let C∗ be the set of non-zero complex numbers.

(a) Why is C∗ not a group under the operation of complex addition?

(b) Prove C∗ is a group under the operation of (complex) multiplication.
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(c) What is |(C∗, ·)|?

(d) Is (C∗, ·) an abelian group? Justify your answer.

♢

Remark 15.2.4. Groups based on sets of numbers that include 0 (such
as R,C,Q) are assumed to have the group operation + (unless otherwise
stated). For groups based on sets of numbers that exclude 0 such as R∗,C∗,Q∗,
the group operation is assumed to be multiplication (unless otherwise stated).
△

Exercise 15.2.5.

(a) Why is it impossible for a set of complex numbers S which has more
than one element and includes 0 to be a group under multiplication?
Why is the condition |S| > 1 necessary?

(b) Why is it impossible for a set of complex numbers S that excludes 0 to
be a group under addition?

♢

Some groups use exotic operations that you may never have seen before:

Example 15.2.6. Let S = R \ {−1} and define a binary operation on S by
a ∗ b = (a+ b) + (ab). It turns out that (S, ∗) is an abelian group. We will
prove closure and the commutative property; the rest of the proof will be
left to you.

(a) Closure: Suppose a, b ∈ S. We need to show that a ∗ b ∈ S; i.e. firstly
that a ∗ b ∈ R and secondly a ∗ b ̸= −1. First, since both additiona
and multiplication are closed in R, it follows that (a + b) + (ab) ∈ R
and hence a ∗ b ∈ R. For the second point, we will use a contradiction
argument and suppose that a ∗ b = −1, i.e. (a+ b) + (ab) = −1. Using
basic algebra to rearrange this expression, we get a(b − 1) = −(b − 1),
which implies that either a = −1 or b = −1. But a and b are assumed
to be in S, so this is a contradiction. Hence a ∗ b = −1 is impossible,
and the proof is complete.

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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(b) Commutativity: Suppose a, b ∈ S. We need to show that a ∗ b = b ∗ a:
By the definition of the operation ∗ we have a ∗ b = (a + b) + (ab),
which is equal to (b + a) + (ba) since addition and multiplication in R
are commutative. Since b ∗ a = (b + a) + (ba) by definition, it follows
that a ∗ b is commutative.

Exercise 15.2.7. Finish the proof that (S, ∗) is an abelian group. ♢

♦

The following example shows a famous (among mathematicians!) group
that has important applications in physics:

Example 15.2.8. The quaternion group (denoted by Q8) consists of 8
elements, which are commonly denoted as follows: 1, i, j, k, −1, −i, −j,
−k. The binary operation for Q8 is determined by the following relations:

� 1 is the identity;

� -1 commutes with all other elements, and (−1)2 = 1;

� −1 · i = −i,−1 · j = −j,−1 · k = −k;

� i2 = j2 = k2 = −1.

� i · j = k, j · k = i, k · i = j;

� j · i = −k, k · j = −i, i · k = −j .

♦

Exercise 15.2.9.

(a) Use the information given above to complete the Cayley table for Q8.

(b) From the Cayley table, deduce that Q8 is closed under the binary oper-
ation we have defined above.

(c) Find the inverses of all of the elements of Q8.
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♢

Example 15.2.10. Recall that any point in the plane can be represented
in Cartesian plane as a pair of real numbers (x, y). We may consider these
points as 2-dimensional vectors, which can be added via the usual vector
addition rule. For example, (0.5, 0.9) + (1.2, 3.4) = (0.5 + 1.2, 0.9 + 3.4) =
(1.7, 4.3). The general formula for addition of two vectors (x1, y1) and
(x2, y2) is

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Let us show that 2-d vectors in the Cartesian plane form a group. First,
we prove closure. Closure means that the sum of two 2-d vectors is also a
2-d vector. This follows from the formula (x1, y1)+ (x2, y2) = (x1 + x2, y1 +
y2), and since x1 + x2 and y1 + y2 are both real numbers it follows that
(x1 + x2, y1 + y2) is also a 2-d vector.

Next, we prove that 2-d vectors have an identity. For any 2-d vector
(x, y) we have (x, y) + (0, 0) = (x, y) and (0, 0) + (x, y) = (x, y). It follows
that (0, 0) is the identity for 2-d vectors.

Next, we show that 2-d vectors have inverses. For any 2-d vector (x, y)
we have (x, y) + (−x,−y) = (0, 0) and (−x,−y) + (x, y) = (0, 0). It follows
that any 2-d vector (x, y) has an inverse (−x,−y).

Finally, we show that 2-d vectors are associative. For any three 2-d
vectors (x1, y1), (x2, y2), (x3, y3) we have

(x1, y1)+((x2, y2)+(x3, y3)) = (x1, y1)+(x2+x3, y2+y3) = (x1+(x2+x3), y1+(y2+y3)).

We also have

((x1, y1)+(x2, y2))+(x3, y3) = (x1+x2, y1+y2)+(x3, y3) = ((x1+x2)+x3), (y1+y2)+y3).

By associativity of ordinary addition of real numbers, we have x1 + (x2 +
x3) = (x1 + x2) + x3 and y1 + (y2 + y3) = (y1 + y2) + y3. it follows therefore
by substitution that

(x1, y1) + ((x2, y2) + (x3, y3)) = ((x1, y1) + (x2, y2)) + (x3, y3)

, and we have shown that 2-d vectors are associative. ♦

In the previous example, it seems that we have built up the group of 2-d
vectors from two copies of the real numbers. In fact we may generalize this
procedure, and use pairs of groups to build up other groups.

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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Exercise 15.2.11. Let H = Z× Z (all integer coordinate-pairs).

(a) Define a binary operation ◦ on H by (a, b) ◦ (c, d) = (a + c, b + d), for
(a, b), (c, d) ∈ H. This operation is in fact just coordinate-pair addition.
Is (H, ◦) a group? If so, is (H, ◦) abelian? Justify your answers.

(b) Define a binary operation ◦ onH by (a, b)◦(c, d) = (ac, bd), for (a, b), (c, d) ∈
H. This is just coordinate-pair multiplication. Is (H, ◦) a group? If so,
is (H, ◦) abelian? Justify your answers.

♢

Exercise 15.2.12. Let G = R∗ × Z (all pairs such that the first element is
a nonzero real number, and the second is an integer)

(a) Define a binary operation ◦ on G by (a,m) ◦ (b, n) = (a+ b,m+ n). Is
(G, ◦) a group? If so, is (G, ◦) abelian? Justify your answers.

(b) Define a binary operation ◦ on G by (a,m) ◦ (b, n) = (ab,mn). Is (G, ◦)
a group? If so, is (G, ◦) abelian? Justify your answers.

(c) Define a binary operation ◦ on G by (a,m) ◦ (b, n) = (ab,m + n). Is
(G, ◦) a group? If so, is (G, ◦) abelian? Justify your answers.

♢

The previous two exercises follow a pattern that we may generalize:

Definition 15.2.13. Given two groups G and H, we define the product of
groupsG andH (denoted byG×H) as the set of pairs {(g, h), g ∈ G, h ∈ H}.
If (g1, h1) and (g2, h2) are two elements of G×H, then we define the group
operation (g1, h1) ◦ (g2, h2) as follows:

(g1, h1) ◦ (g2, h2) := (g1g2, h1h2),

where g1g2 uses the group operation in G and h1h2 uses the group operation
in H. △

Exercise 15.2.14.

(a) Consider (3, 6) and (2, 4) as elements of Z7×Z7. Compute (3, 6)◦ (2, 4).
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(b) Consider (3, 6) and (2, 4) as elements of R∗×Z10. Compute (3, 6)◦(2, 4).

(c) Consider (3, 6) and (2, 4) as elements of Q∗×Q∗. Compute (3, 6)◦(2, 4).

♢

Exercise 15.2.15. Show that the product of two groups is a group. ♢

Exercise 15.2.16. Let Zn2 = {(a1, a2, . . . , an) : ai ∈ Z2}. Define a binary
operation on Zn2 (which we will denote as ‘+’) by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn),

where ⊕ denotes addition in Z2. Prove that Zn2 is a group under this oper-
ation. This group is important in algebraic coding theory. ♢

In previous chapters we’ve used Cayley tables to describe group oper-
ations. With Cayley tables we can prove a set and operation are a group
even when we don’t know what the elements in the set really are or what
the binary operation is.

The next three exercises are very useful in helping determine whether or
not a given Cayley table represents a group.

Exercise 15.2.17. Given h is an element of (G, ◦).

1. Show that h is an identity element of G if and only if there exists a
g ∈ G such that h ◦ g = g. (*Hint*)

2. Show that h is an identity element of G if and only if there exists a
g ∈ G such that g ◦ h = g.

♢

In Exercise 15.2.17 we were careful to say an identity element. Could a
group have multiple identity elements? Let’s settle the question once and
for all:

Exercise 15.2.18. Use Exercise 15.2.17 to prove the following proposition:

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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Proposition 15.2.19. The identity element in a group G is unique; that
is, there exists only one element e ∈ G such that eg = ge = g for all g ∈ G.

(*Hint*) ♢

Exercise 15.2.20. Show that if G is a group, then for every row of the
Cayley table for G no two entries are the same. Show also that for every
column of the Cayley table no two entries are the same. (*Hint*) ♢

Exercise 15.2.21. For each of the following multiplication tables defined
on the set G = {a, b, c, d} tell whether (G, ◦) represents a group, and if so,
whether it is abelian. Support your answer in each case. Assume that the
associative property holds in each case. Note the identity is not always the
first element listed!

(a)

◦ a b c d

a a b c d
b b a d c
c c d a b
d d a b c

(b)

◦ a b c d

a b a d c
b a b c d
c d c b a
d c d a b

(c)

◦ a b c d

a d c b a
b c d a b
c b c d a
d a b c d

(d)

◦ a b c d

a b c d a
b c d a b
c d a b c
d a b c d

♢

Exercise 15.2.22. For each of the following multiplication tables, fill in
the blanks to make a Cayley table for a group.

(a)

◦ a b c d

a a b c
b a
c c a
d d

(b)

◦ a b c d

a c
b b c d
c
d
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(c)

◦ a b c d

a d
b d
c d
d d

(d)

◦ a b c d

a a b d
b a
c c
d d

(There are two different ways to
complete this one: find both)

♢

Exercise 15.2.23. * Show that it is impossible to complete the following
Cayley tables to make a group.

(a)

◦ a b c d

a
b b
c d
d c

(b)

◦ a b c d

a a
b b
c
d

(c)

◦ a b c d

a a
b c
c b
d

(d)

◦ a b c d

a b
b c
c d
d

♢

15.2.1 The group of units of Zn

Back in the Modular Arithmetic chapter, we used the addition table for Z8

to show that Z8 with modular addition was a group. We extended this and
showed that Zn under modular addition is a group for any n. But we ran
into problems with modular multiplication on Z8, as we can see from the
Cayley table (reproduced below),

From Table 15.1 we can see several problems. Notice that 0, 2, 4, 6 have
no inverses. In fact, from Table 15.1 we see that only numbers that are
relatively prime to 8 have inverses in Z8. The same is true for any Zn. It
follows that in order to get a group under modular multiplication using the

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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⊙ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

Table 15.1: Cayley table for (Z8, ·)

elements of Zn, we’ll have to kick out the non-relatively prime numbers in
order to guarantee that every element has an inverse. For instance,Table 15.2
is the result when Table 15.1 is restricted to the rows and columns labeled
(1, 3, 5, and 7).

⊙ 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Table 15.2: Multiplication table for U(8)

Exercise 15.2.24. Prove that the Cayley table in Table 15.2 represents a
group. (Note that associativity holds because we already know that modular
multiplication is associative.) ♢

Exercise 15.2.25. Is the group in Table 15.2 abelian? Justify your answer.
♢

For convenience, let’s define some notation:

Definition 15.2.26. The set of nonzero numbers in Zn that are relatively
prime to n is called the set of units of Zn, denoted by U(n). △

We have just seen that U(8) is a group under modular multiplication.
One might suspect that U(n) is a group for any n. For starters, it is clear
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that 1 serves as an identity element, because 1 · k ≡ k · 1 ≡ k mod n for
any n. In fact, U(n) is an abelian group, as you will show in the following
exercises.

Exercise 15.2.27. In this exercise, we prove that U(n) is a group under
multiplication mod n for any n. We know that modular multiplication is
associative, so it remains to show the closure and inverse properties.

(a) Fill in the blanks to show that U(n) is closed under modular multipli-
cation:

Let k,m be arbitrary elements of U(n). It follows that both k and
< 1 > are relatively prime to < 2 > . So neither k nor < 3 >

has any prime factors in common with < 4 > . It follows that the
product < 5 > also has no prime factors in common with < 6 > .
Furthermore, the remainder of < 7 > under division by < 8 > also
has no prime factors in common with < 9 > . Therefore the product
of < 10 > and < 11 > under modular multiplication is also an ele-
ment of < 12 > , so < 13 > is closed under modular multiplication.

(b) It remains to show that U(n) is closed under inverse. Suppose that
m ∈ U(n) and x is the inverse of m. What modular equation must x
satisfy? (*Hint*)

(c) Show that the equation in x that you wrote in part (b) has a solution
as long as m is relatively prime to n.

♢

Exercise 15.2.28. Show that U(n) is abelian. ♢

Remark 15.2.29. Whenever we talk about the group U(n), we always
assume the operation is multiplication. Similarly, whenever we talk about
Zn, we always assume the operation is addition. △

15.2.2 Groups of matrices

Matrices provide many examples of interesting groups.

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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Exercise 15.2.30. We use M2(C) to denote the set of all 2 × 2 matrices
with complex entries. That is

M2(C) =
{(

a b
c d

)
| a, b, c, d ∈ C

}
(a) Show that M2(C) a group under matrix addition. Is it abelian? If so,

prove it: if not, find a counterexample.

(b) What is the order of this group?

(c) Is M2(C) a group under matrix multiplication? Is it abelian? Justify
your answers.

♢

Exercise 15.2.31. Let Mn(C) be the set of all n×n matrices with complex
entries. Show that Mn(C) is a group under matrix addition. What is the
order of this group? ♢

There are multiplicative groups of 2 × 2 matrices as well, but not all
matrices can be included. To specify those which are included, we need the
following definition

Definition 15.2.32. For the 2×2 matrix A =

(
a b
c d

)
, the quantity ad−bc

is called the determinant of A and is denoted by det(A). △

The following exercise is algebraically a little complicated, but turns
out to be essential in order to prove properties of multiplicative groups of
matrices.

Exercise 15.2.33. Using matrix multiplication and the definition of deter-

minant, prove that if A =

(
a b
c d

)
and B =

(
e f
g h

)
, then

det(AB) = det(A) det(B)

. This is known as the determinant product formula . ♢

We’re now ready to define a set of 2 × 2 matrices which is suitable to
form a multiplicative group.
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Definition 15.2.34. Let GL2(C) be the subset of M2(C) consisting of
matrices A such that

A =

(
a b
c d

)
and det(A) ̸= 0

△

The proof that GL2(C) is a group is contained in the following exercise.

Exercise 15.2.35.

(a) Show that for any matrix A =

(
a b
c d

)
∈ GL2(C), the matrix

B =
1

det(A)

(
d −b
−c a

)
satisfies

AB = BA = I.

(b) Using Exercise 15.2.33, show that GL2(C) is closed under matrix mul-
tiplication.

(c) Show that matrix multiplication in GL2(C) is associative.

(d) Complete the proof that GL2(C) is a group under matrix multiplication.

GL2(C) is called the 2-dimensional general linear group over the com-
plex numbers. ♢

Exercise 15.2.36.Prove or disprove: GL2(C) is abelian. ♢

It turns out that we can define a multiplicative group of n× n matrices
for any positive integer n, in similar fashion as we defined GL2(C). Rather
than using determinant, we present an alternative way of characterizing the
n× n matrices that are suitable members of a multiplicative group.

Definition 15.2.37. An n×n matrix A is called invertible if there exists
a n× n matrix B such that AB = BA = In, where In is the n× n identity
matrix. △

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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It is fairly straightforward to prove the group properties under matrix
multiplication for this limited set of matrices:

Exercise 15.2.38. Show that the set of n × n invertible matrices with
complex entries form a group under matrix multiplication. You may assume
that matrix multiplication is associative (this is proved in another chapter).
♢

Definition 15.2.39. The set of n × n invertible matrices is called the n
dimensional general linear group, and is denoted by GLn(C). △

15.3 Basic properties of groups

Now that we have a general definition of groups, we can use this definition
to prove properties that are true of all groups. We’ll begin by proving some
essential properties that we’ve shown for specific groups, but need to know
in general:

Proposition 15.2.19 shows that group identities are unique – it turns out
that inverses in a group are also unique:

Proposition 15.3.1. If g is any element in a group G, then the inverse of
g is unique.

Exercise 15.3.2. Fill in the blanks to complete the following proof of
Proposition 15.3.1.

(a) By the definition of inverse, if g′ is an inverse of an element g in a group
G, then g · < 1 > = g′ · < 2 > = e.

(b) Similarly, if g′′ is an inverse of g then g · < 3 > = < 4 > · g = e.

(c) We may show that g′ = g′′ as follows:

g′ = g′ · < 5 > (definition of identity)

= g′ · ( < 6 > · g′′) (part b above, def. of inverse)

= (g′ · g) · < 7 > (associative property of group G)

= < 8 > · g′′ (part a above, def. of inverse)

= g′′ (def. of identity)
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♢

Exercise 15.3.3.

(a) Consider the group C∗, and let a = 5 + 3i ∈ C∗. What is a−1?

(b) Consider the group defined by the set S = R \ {−1} and the binary
operation a ∗ b = a+ b+ ab. What is 5−1?

(c) Consider the group defined by the set G = R∗ × Z and the operation
(a,m) ◦ (b, n) = (ab,m+ n). What is (3, 2)−1?

(d) Consider the group U(12). What is 5−1?

(e) Consider the group GL2(R). What is

(
4 3
3 2

)−1

?

♢

An important property of inverses is:

Proposition 15.3.4. Let G be a group. If a, b ∈ G, then (ab)−1 = b−1a−1.

Remark 15.3.5. We’ve actually seen this property before, in the permu-
tations chapter: recall that for two permutations σ and τ , we showed that
(στ)−1 = τ−1σ−1. △

Proof. By the inverse property, ∃a−1, b−1 ∈ G. By the closure property,
ab ∈ G and b−1a−1 ∈ G. So we only need to verify that b−1a−1 satisfies
the definition of inverse (from Proposition 15.3.1, we know the inverse is
unique). First, we have:

(ab)(b−1a−1) = a(bb−1)a−1 (associative property of group G)

= aea−1 (def. of inverse)

= aa−1 (def. of identity)

= e. (def. of inverse)

The remainder of the proof is left as an exercise:

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
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Exercise 15.3.6. Fill in the blanks to complete the proof of Proposi-
tion 15.3.4

(b−1a−1)(ab) = b−1(a−1a)b ( )

= b−1eb ( )

= b−1b ( )

= e. ( )

♢

□

By repeated application of Proposition 15.3.4, we may find the inverse of
the product of multiple group elements, for example: (abcd)−1 = d−1c−1b−1a−1.

Proposition 15.3.4 shows that in general, when finding inverses of prod-
ucts it is necessary to take the products of inverses in reverse order. One
might ask, Is it ever the case that it’s not necessary to reverse the order?
Glad you asked! We address this question in the following exercise:

Exercise 15.3.7. Given a group G and a, b ∈ G, prove that G is abelian if
and only if (ab)−1 = a−1b−1 for all a, b in G. (*Hint*) ♢

Proposition 15.3.4 characterizes the inverse of a product: now we shall
characterize the inverse of an inverse. From ordinary algebra we know that
−(−a) = a and 1/(1/a) = a. This generalizes to arbitrary groups as follows:

Proposition 15.3.8. Let G be a group. For any a ∈ G, (a−1)−1 = a.

Proof. If a ∈ G, then since G is a group, then a−1 ∈ G exists. And again,
since G is a group, there also exists (a−1)−1 ∈ G.

Now, by the definition of inverse, a−1(a−1)−1 = e. Consequently, multi-
plying both sides of this equation by a, we have (the argument continues in
the following exercise):

Exercise 15.3.9.

a(a−1(a−1)−1) = ae (multiplication by a)

(aa−1)(a−1)−1 = ae ( )

e(a−1)−1 = ae ( )

(a−1)−1 = a. ( )
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♢

□

Exercise 15.3.10.

(a) Suppose a, b ∈ C∗, where a = 4 + 3i and b = 5 − 12i. What is (ab)−1?
What is (ba)−1?

(b) Suppose a, b ∈ G, where G is the group defined by the set S = R \ {−1}
and the binary operation a ∗ b = a + b + ab. If a = 10, b = 1, what is
(a ∗ b)−1? What is (b ∗ a)−1?

(c) Suppose σ, τ ∈ S6, where σ = (3456), τ = (1625). What is (στ)−1?
What is (τσ)−1?

(d) Consider the group U(5). What is (4⊙ 3)−1? What is (3⊙ 4)−1?

(e) Suppose a, b ∈ GL2(R), where

a =

(
6 7
2 3

)
and b =

(
5 −2
2 −1

)
What is (ab)−1? What is (ba)−1?

♢

In high school algebra we wrote equations like 6 + x = −
√
2 or 5x = 6,

and we could always find a real number x that was a solution. Now we can
see that this follows from the fact that R is a group under addition and
R∗ is a group under multiplication. Similarly, we have seen that equations
like ax = b (mod n) and a + x = b (mod n) had solutions for x ∈ U(n)
and x ∈ Zn, respectively because U(n) and Zn are groups under modular
multiplication and modular addition, respectively.

Noticing a pattern here, the question then is this: does the equation
ax = b have a solution for any group G? In other words, if a and b are two
elements in a group G, does there exist an element x ∈ G such that ax = b?
If such an x does exist, is it unique? The following proposition answers both
of these questions affirmatively.

Proposition 15.3.11. Let G be a group and a and b be any two elements
in G. Then the equations ax = b and xa = b have unique solutions in G.
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Note we need separate proofs to show that x exists and is unique for both
ax = b and xa = b, since we don’t know whether the group is abelian. The
proof for ax = b is a fill-in-the-blank exercise, while the proof for xa = b
you’ll do on your own:

Exercise 15.3.12.

(a) Complete the proof that ax = b has a unique solution by filling in the
blanks:

Suppose that ax = b. First we must show that such an x exists. Since
a ∈ G and G is a group, it follows that a−1 exists. Multiplying both
sides of ax = b on the left by a−1, we have

a−1(ax) = a−1b (left multiplication by a−1)

(a−1a)x = a−1b ( )

ex = a−1b ( )

x = a−1b. ( )

We have thus shown that ax = b implies x = a−1b, so ax = b can have
at most one solution. We may also verify that x = a−1b is indeed a
solution:

a(a−1b) = (aa−1)b ( )

= eb ( )

= b. ( )

This completes the proof that the solution both exists, and is unique.

(b) Prove now the existence and uniqueness of the solution of xa = b (similar
to part (a)).

♢

The key method used in these proofs, the composition of both sides of the
equation by a−1, is something you’ve seen many times before. For instance
in high school algebra, to solve the equation 5x = 6 above, we teach our
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kids to divide each side by 5. Remember that dividing by 5 is the same as
multiplying by its reciprocal 1/5. And 1/5 is the multiplicative inverse of 5.
So in fact we are composing (multiplying) each side of the equation by 5−1

in order to solve for x.

As in our example then, composing both sides of the equation by a−1

is not only useful for the proofs, but in actually solving for x. Therefore,
no matter what crazy elements and strange binary operation make up our
group, we can still solve for x using the same algebra we learned in high
school. In other words, given a group G and a, b ∈ G, if ax = b, then
x = a−1b; if xa = b, then x = ba−1; and so on. Use this methodology in the
following exercises.

Exercise 15.3.13. Given a, b ∈ C∗, where a = 3− 3i and b = 2+12i; solve
for x in each of the following equations.

(a) ax = b (b) xa = b (c) bx = a (d) xb = a.

♢

Exercise 15.3.14. Suppose G is the group defined by the set S = R\{−1}
and the binary operation a ∗ b = a + b + ab. Solve for x in each of the
following equations.

(a) 11∗x = −3 (b) x∗11 = −3 (c) −3∗x = 11 (d) x∗(−3) = 11.

♢

Exercise 15.3.15. Given ρ, µ ∈ S8, where ρ = (532)(164) and µ =
(18753)(26); solve for x in each of the following equations.

(a) ρx = µ (b) xρ = µ (c) µx = ρ (d) xµ = ρ.

♢

Exercise 15.3.16. Given the group U(9), solve for x in each of the following
equations.

(a) 5⊙x = 8 (b) x⊙5 = 8 (c) 8⊙x = 5 (d) x⊙8 = 5.

♢
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Exercise 15.3.17. Given A,B ∈ GL2(R), where

A =

(
6 5
4 4

)
and B =

(
−2 −1
7 4

)
Solve for X in each of the following equations.

(a) AX = B (b) XA = B (c) BX = A (d) XB = A.

♢

Exercise 15.3.18.

(a) Given a group G and a, b ∈ G, prove that if G is abelian, then any
solution of ax = b is also a solution of xa = b (and vice versa).

(b) Given a group G that is not abelian, show that it is always possible to
find an equation of the form ax = b which has a solution that is not a
solution to xa = b.

♢

In our work so far, we’ve frequently used the substitution property .
For instance if x = y, then we know also that a · x = a · y, regardless of the
operation ·. But suppose I gave you the equation a·x = a·y. Is it necessarily
true that x = y? If a, x, y ∈ R and the operation is multiplication, then it’s
true as long as a ̸= 0. To show this, we may use the method we talked
about in the previous proposition: multiply each side of the equation by
a−1 (that is, divide by a), and the result is x = y. In basic algebra courses
this property is often called the law of cancellation . Now this works for
real numbers: but suppose a, x, y were elements of some other group. Would
the law of cancellation still hold? In fact, using the method shown above,
you can prove this property holds for any group G.

Proposition 15.3.19. If G is a group and a, b, c ∈ G, then ba = ca implies
b = c and ab = ac implies b = c.

This proposition tells us that the right and left cancellation laws
are true in groups. We leave the proof as an exercise.

Exercise 15.3.20.
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(a) To prove Proposition 15.3.19, we need to prove both that ba = ca implies
b = c, and that ab = ac implies b = c. Why do these two statements
require two different proofs?

(b) Prove Proposition 15.3.19.

♢

We can use exponential notation for groups just as we do in ordinary
algebra:

Definition 15.3.21. If G is a group and g ∈ G, then we define g0 = e. For
n ∈ N, we define

gn := g · g · · · g︸ ︷︷ ︸
n times

and
g−n := (g−1)n = g−1 · g−1 · · · g−1︸ ︷︷ ︸

n times

.

△

Exercise 15.3.22. Using Definition 15.3.21, prove that

(gn)−1 = g−n,

i.e. the inverse of gn is equal to g−n for any group element g and for any
natural number n. ♢

Proposition 15.3.23. In a group, the usual laws of exponents hold; that
is, for all g, h ∈ G,

1. gmgn = gm+n for all m,n ∈ Z;

2. (gm)n = gmn for all m,n ∈ Z;

3. (gh)n = (h−1g−1)−n for all n ∈ Z. Furthermore, if G is abelian, then
(gh)n = gnhn.
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Proof. We will prove part (1), and you will do the rest. We can break
part (1) into four cases: (a) m,n ≥ 0; (b) m,n < 0; (c) m ≥ 0, n < 0; (d)
m < 0, n ≥ 0.

Consider first case (a). Using Definition 15.3.21, we have

gmgn = g · g · · · g︸ ︷︷ ︸
m times

g · g · · · g︸ ︷︷ ︸
n times

,

and
gm+n = g · g · · · g︸ ︷︷ ︸

m+n times

.

Since the right-hand sides of these expressions are equal, then so are the
left-hand sides: so gmgn = gm+n.

The proof of case (b) is exactly the same, except on the right-hand sides
we should replace all g’s with g−1 and we should also replace ‘m times’, ‘n
times’, and ‘m+n times’ with ‘−m times’, ‘−n times’, and ‘−(m+n) times’
respectively (recall thatm and n are negative, so−(m+n) is positive). These
replacements gives us gmgn = (g−1)−(m+n), and according to Definition
15.3.21 we may rewrite this as gmgn = gm+n. This completes the proof of
case (b).

In case (c), we have

gmgn = g · g · · · g︸ ︷︷ ︸
m times

g−1 · g−1 · · · g−1︸ ︷︷ ︸
−n times

.

We now have two subcases to consider. First, if m ≥ −n, then all of the g−1

factors cancel and we end up with

gmgn = g · g · · · g︸ ︷︷ ︸
m+n times

.

Second, if m < −n, then all of the g factors are canceled and we end up
with

gmgn = g−1 · g−1 · · · g−1︸ ︷︷ ︸
−(m+n) times

.

In either of these subcases, the right-hand side agrees with the definition of
gm+n, so the equality is proved.

Case (d) is just like (c), except we exchange the signs on the g’s, m’s
and n’s on the right-hand sides. This completes the proof of part (1).
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Exercise 15.3.24. Prove parts (2) and (3) of Proposition 15.3.23. ♢

□

Notice that (gh)n ̸= gnhn in general, since the group may not be abelian.

If the group is Z or Zn, we write the group operation additively and the
exponential operation multiplicatively; that is, we write ng instead of gn.
The laws of exponents now become

1. mg + ng = (m+ n)g for all m,n ∈ Z;

2. m(ng) = (mn)g for all m,n ∈ Z;

3. m(g + h) = mg +mh for all m ∈ Z.

It is important to realize that the last statement can be made only because
Z and Zn are abelian groups.

Remark 15.3.25. (historical background) Although the first clear ax-
iomatic definition of a group was not given until the late 1800s, group-
theoretic methods had been employed before this time in the development
of many areas of mathematics, including geometry and the theory of alge-
braic equations.

Joseph-Louis Lagrange used group-theoretic methods in a 1770–1771
memoir to study methods of solving polynomial equations. Later, Évariste
Galois (1811–1832) succeeded in developing the mathematics necessary to
determine exactly which polynomial equations could be solved in terms of
the polynomials’ coefficients. Galois’ primary tool was group theory.

The study of geometry was revolutionized in 1872 when Felix Klein pro-
posed that geometric spaces should be studied by examining those prop-
erties that are invariant under a transformation of the space. Sophus Lie,
a contemporary of Klein, used group theory to study solutions of partial
differential equations. One of the first modern treatments of group theory
appeared in William Burnside’s The Theory of Groups of Finite Order [1],
first published in 1897. △

15.4 Subgroups

We first came across subgroups in the Permutations chapter. We saw that
Sn, the set of permutations on a set of n elements, is a group under function

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25
https://www.youtube.com/watch?v=WjJBoBKY3ZI&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=26
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composition. Yet we also saw that the set of symmetries of an n-sided figure,
which is a subset of Sn, is itself a group under function composition. So a
subgroup is a subset of a larger group that is itself a group under the same
operation as the larger group. Formally then:

Definition 15.4.1. A subgroup H of a group (G, ◦) is a subset H of G
such that when the group operation of G is restricted to H, H is a group in
its own right. △

By definition, all subgroups are subsets: but is the reverse true? If not,
what makes a subset a subgroup? What special properties must subsets
possess in order to qualify as subgroups?

The key to answering this question is the observation that any subset
H ⊂ G that is a subgroup of G must also be a group in its own right: and
we’re already experts at deciding whether a set with a binary operation is
a group:

Example 15.4.2. Consider the set of even integers 2Z = {. . . ,−2, 0, 2, 4, . . .}.
A more mathematically concise definition is:

2Z = {x ∈ Z|x = 2n for some n ∈ Z}

2Z is actually a subgroup of Z, under the operation of addition. To show
this, according to the definition of subgroup we need to show:

(a) (Z,+) is a group;

(b) 2Z ⊂ Z;

(c) (2Z,+) is a group.

Items (a) and (b) can be dispatched in short order. From our work in
Chapters 1 and 2, we know Z is a group under addition: this takes care
of (a). For item (b), we have that any element m ∈ 2Z can be written as
m = 2n, where n ∈ Z: hence m ∈ Z also.

To show (c), we must verify all the group properties for 2Z under the
operation +:
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� (Closure): Given x, y ∈ 2Z, it follows x = 2n and y = 2m for some
n,m ∈ Z. Therefore

x+ y = 2n+ 2m = 2(n+m)

Since Z is closed under +, it follows (n +m) ∈ Z, so 2(n +m) ∈ 2Z.
Since x and y were arbitrary, it follows that 2Z is closed under addition.

� (Associative): Suppose w, x, y ∈ 2Z. Then w, x, y are integers, and
w + (x+ y) = (w + x) + y by the associativity of (Z,+). Hence 2Z is
associative under addition.

� (Identity): 0 ∈ 2Z, since 2 · 0 = 0: and for any x ∈ 2Z,

0 + x = x+ 0 = x.

Hence 2Z has an identity under addition, namely 0.

� (Inverse): Given x ∈ 2Z, where x = 2n,

−x = −(2n) = 2(−n), [associative and commutative properties of Z
under multiplication]

and since −n ∈ Z (closure of Z under multiplication) it follows that
−x ∈ 2Z. Now since

−x+ x = x+ (−x) = 0,

it follows ∀x ∈ 2Z, ∃x−1 ∈ 2Z, namely x−1 = −x.

This completes the proof that 2Z is a subgroup of Z under addition. ♦

Exercise 15.4.3. Given any fixed integer m, prove that

mZ = {. . . ,−2m,−m, 0,m, 2m, . . .}

is a subgroup of Z under the operation of addition. ♢

Notice that by definition, the operation used in the subgroup must be
the same operation that’s used in the group it’s contained in. For example,
R∗ is not a subgroup of R, because (R∗,+) is not a group.

Exercise 15.4.4. Prove or disprove:
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(a) GL2(R) is a subgroup of M2(R).

(b) U(n) is a subgroup of Zn.

♢

We can make the task of proving subgroups a bit easier. First notice that
in Example 15.4.2, 2Z was associative simply by virtue of the fact that it’s
contained in the group Z and has the same operation. This will be true in
general: the associate property will always hold for any subset of a group G
under that group’s operation. We may also make the following observation
about identity elements:

Exercise 15.4.5. Prove the following: Suppose G is a group with identity
element e, and let H be a subgroup of G with identity element f . Then
e = f . ♢

Exercise 15.4.5 and our observation about associativity lead to the fol-
lowing simplified subgroup criteria (which we state as a proposition):

Proposition 15.4.6. A subset H of a group G is a subgroup if and only if:

(a) The identity e of G is in H.

(b) If h1, h2 ∈ H, then h1h2 ∈ H (that is, H is closed under the group
operation),

(c) If h ∈ H, then h−1 ∈ H.

Exercise 15.4.7. The set T is defined as the subset of C whose elements
all have a modulus of 1; that is

T = {c ∈ C : |c| = 1}

(a) Using Proposition 15.4.6 above, prove that T is a subgroup of C∗.

(b) What is |T|?

(c) Prove or disprove that T is abelian.

https://www.youtube.com/watch?v=WJJBOBKY3ZI&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=26


532 CHAPTER 15 INTRODUCTION TO GROUPS

♢

Exercise 15.4.8. Let H4 = {1,−1, i,−i}, (these are the fourth roots of
unity, which we studied in Section 4.4.1).

(a) Using Proposition 15.4.6, prove that H4 is a subgroup of T. (Note you
should first verify that H4 is a subset of T.)

(b) What is |H4|?

(c) Prove or disprove that H4 is abelian.

♢

Exercise 15.4.9. Let’s generalize the last exercise. Suppose now that Hn

is the set of nth roots of unity. That is

Hn = {z ∈ C : zn = 1}

(a) Prove that Hn is a subset of T.

(b) Using Proposition 15.4.6, prove that H is a subgroup of T.

(c) What is |Hn|?

(d) Prove or disprove that Hn is abelian.

♢

Exercise 15.4.10. Let Q∗ be defined in the following way:

Q∗ = {p/q : p, q are nonzero integers }

In other words Q∗ is the set of non-zero rational numbers (Q∗ = Q \ 0).

(a) Using Proposition 15.4.6, prove that Q∗ is a subgroup of R∗.

(b) Prove or disprove that Q∗ is abelian.
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♢

Exercise 15.4.11. Prove that

G = {a+ b
√
2 : a, b ∈ Q and a and b are not both zero}

is a subgroup of R∗ under the group operation of multiplication. ♢

Exercise 15.4.12. Let G be the group of 2 × 2 matrices under addition
and

H =

{(
a b
c d

)
: a+ d = 0

}
.

(a) Prove that H is a subgroup of G.

(b) Prove or disprove that H is abelian

♢

Exercise 15.4.13. We define SL2(R) to be the set of 2 × 2 matrices of
determinant one; that is, a matrix

A =

(
a b
c d

)
is in SL2(R) exactly when ad − bc = 1. We call this the Special Linear
Group .

(a) Using Proposition 15.4.6, prove that SL2(R) is a subgroup of GL2(R).

(b) Prove or disprove that SL2(R) is abelian.

♢

Exercise 15.4.14. Let G consist of the 2× 2 matrices of the form(
cos θ − sin θ
sin θ cos θ

)
where θ ∈ R.
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(a) Prove that G is a subgroup of SL2(R). (Recall your angle addition
formulas from trigonometry!)

(b) Prove or disprove that G is abelian.

(G is called the set of 2× 2 rotation matrices.) ♢

There is an alternative way to prove a subset H of G is a subgroup
of G that can save some time. It turns out that the three conditions in
Proposition 15.4.6 can be combined into a single statement:

Proposition 15.4.15. Let H be a subset of a group G. Then H is a
subgroup of G if and only if H ̸= ∅, and whenever g, h ∈ H then gh−1 is in
H.

Proof. We first prove the “if” direction, so we assume H be a nonempty
subset of G and whenever g, h ∈ H then gh−1 is in H. Proposition 15.4.6
says that if H contains the identity and is closed under inverse and the group
operation, then H is a subgroup. Let’s prove these one by one. First, since
H is nonempty, it contains some element g: and letting h = g we obtain
gg−1 = e is in H. Second, since e ∈ H and g ∈ H, then eg−1 = g−1 is also in
H: so H is closed under inverse. Finally, let g, h ∈ H. We must show that
their product is also in H. But we have already shown that h ∈ H implies
that h−1 ∈ H, so that, g(h−1)−1 = gh ∈ H. We have established the three
required conditions, so we may conclude that H is a subgroup of G.

To prove the “only if”’ direction, we may assume that H is a subgroup
of G. Given any elements g, h ∈ H, we need to show that gh−1 ∈ H. Since
h is in H, its inverse h−1 must also be in H. Because of the closure of the
group operation, gh−1 ∈ H. This completes the proof. □

Example 15.4.16. Using the proposition above, let’s re-prove that T is a
subgroup of C∗.

Proof. Based on the proposition, there are four things we need to show:

(a) C∗ is a group;

(b) T ̸= ∅;

(c) T ⊂ C∗;

(d) Given x, y ∈ T, xy−1 ∈ T.
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Items (a), (b), and (c) we have shown before. As to item (d),

x, y ∈ T
⇒ |x| = 1 and |y| = 1

⇒ |xy−1| = |x| · |y−1| = |x|/|y| = 1/1 = 1

⇒ |xy−1| ∈ T
□ ♦

Exercise 15.4.17. Use Proposition 15.4.15 to re-prove the following:

(a) Q∗ is a subgroup of R∗.

(b) SL2(R) is a subgroup of GL2(R).

♢

15.5 Cyclic groups

In this section we will explore an important property of some groups and
subgroups.

15.5.1 Definitions

Example 15.5.1. Consider the group Z. Let us try to find the smallest
subgroup of Z that contains the number 1.

(1) We start with the smallest subset possible, P = {1}.

(2) The subset has to be a group under addition. But so far P does not
contain an additive identity. So we need to add 0 to the set, giving us
P = {0, 1}.

(3) Zero is its own inverse under addition, but notice that our set does not
include an inverse for 1. So we add −1 to P , giving us P = {−1, 0, 1}.

(4) Is P closed under addition? Certainly when we add 0 to 1 and −1, we
get 1 and −1, respectively. And −1 + 1 = 0. But what about when we
add 1 and 1, or −1 and −1? So we need to add 2 and −2 to the set,
giving us P = {−2,−1, 0, 1, 2}.

https://www.youtube.com/watch?v=TCNL9IS0KJC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=27
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(5) Now, what about 1 + 2, or (−1) + (−2)? So we need 3 and −3, giving
us P = {−3,−2,−1, 0, 1, 2, 3}.

(6) And we can see that this process would keep going until we get all the
integers. In other words,

P = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} = Z.

Therefore the smallest subgroup of Z that contains 1 is Z itself. ♦

From the last example, we saw that P was generated through repeated
additions of 1 and repeated additions of −1 (with 0 thrown in for good
measure). Zero in fact can be calculated by adding 1 and −1, and can be
thought of as a zero multiple of 1. In addition, the repeated additions of 1
and −1 can be thought of as positive and negative multiples of 1. Therefore
we can think of all the elements of P as integer multiples of 1. We denote
the set of all integer multiples of 1 as ⟨1⟩; therefore,

⟨1⟩ = {n · 1 : n ∈ Z} = P.

In Example 15.5.1 we also saw that P was in fact Z; therefore Z = ⟨1⟩. We
say that Z is generated by 1, as per the following definition:

Let us extend this concept to groups in general:

Definition 15.5.2. Given a group G and an element a ∈ G, then the set
generated by the element a is denoted by ⟨a⟩, and is defined as the set
obtained by repeated multiplication of the identity e by the group elements a
and a−1. Using the notation we introduced right before Proposition 15.3.23,
we can write this as

⟨a⟩ = {. . . , a−3, a−2, a−1, e, a, a2, a3, . . .}

or
⟨a⟩ = {ak : k ∈ Z}

⟨a⟩ is sometimes called the orbit of a. △

Remark 15.5.3. If we are using the “+” operation, as in the case of the
integers above, we write ⟨a⟩ = {na : n ∈ Z}. △

Exercise 15.5.4. List the set ⟨3⟩ for 3 ∈ R∗. ♢
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We have special terminology for the case where all the elements of a group
are generated by a single element:

Definition 15.5.5. If a group G contains some element a such that G = ⟨a⟩,
then G is a cyclic group. In this case a is a generator of G. △

We have seen above that 1 is a generator of Z, and thus Z is a cyclic
group. A cyclic group may have more than one generator:

Exercise 15.5.6. Show that −1 is a generator of Z; that is that Z = ⟨−1⟩.
♢

Example 15.5.7. Consider the group Z6. ⟨1⟩ is computed as follows:

� 1 ≡ 1

� 1 + 1 ≡ 2

� 1 + 1 + 1 ≡ 3

� 1 + 1 + 1 + 1 ≡ 4

� 1 + 1 + 1 + 1 + 1 ≡ 5

� 1 + 1 + 1 + 1 + 1 + 1 ≡ 0

� Notice that we’ve already generated all the elements in Z6. So we
don’t have to worry about finding the additive integer multiples of
1−1 (Note that (1−1 = 5)), because these calculations can’t produce
any new elements.

� So ⟨1⟩ = {1, 2, 3, 4, 5, 0} = Z6.

Therefore Z6 is a cyclic group generated by 1. ♦

We’ve just seen that 1 is a generator of Z6, but that doesn’t mean it’s
the only generator. A cyclic group can have more than one generator:

Exercise 15.5.8.

(a) In the group Z6, show that ⟨5⟩ = Z6.
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(b) Find all generators of Z6: that is, find all numbers a ∈ Z6 such that
⟨a⟩ = Z6.

♢

Exercise 15.5.9. Given a group G, suppose that G = ⟨a⟩. Prove that
G = ⟨a−1⟩. ♢

Exercise 15.5.10.

(a) Show that Zn is cyclic for any integer n > 1 by identifying a number a
such that ⟨a⟩ = Zn.

(b) For n > 2, show that Zn has at least 2 generators by finding a number
bn such that ⟨bn⟩ = Zn.

♢

Example 15.5.11. The group of units, U(9) is a cyclic group. As a set,
U(9) is {1, 2, 4, 5, 7, 8}. Computing ⟨2⟩, we get

⟨2⟩ = {21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 7, 25 ≡ 5, 26 ≡ 1}
= {2, 4, 8, 7, 5, 1}
= U(9)

So ⟨2⟩ = {2n (mod 9) : n ∈ Z} = U(9) ♦

Exercise 15.5.12. Find any other generators of U(9) if they exist (say so
if no others exist). ♢
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15.5.2 Orbits (cyclic subgroups)

In this section we further explore properties of the set ⟨a⟩ for arbitrary group
elements a ∈ G. We have seen that in some cases, ⟨a⟩ is actually a group.
We’ll see in a minute that in fact ⟨a⟩ is always a group. Let’s look at some
examples first.

Example 15.5.13. Suppose that we consider 4 ∈ Z.

⟨4⟩ = {. . . ,−8,−4, 0, 4, 8, . . .}.

which happens to be the set 4Z.

Exercise 15.5.14. Prove that 4Z is a subgroup of Z. ♢

It follows from this exercise that 4Z is the cyclic subgroup of Z generated
by 4. ♦

Exercise 15.5.15. Let H = {2n : n ∈ Z} = ⟨2⟩ under multiplication.

(a) List the elements in H

(b) Show that H ⊂ Q∗.

(c) Show that H is closed under multiplication.

(d) Show that H is closed under inverse.

(e) Is H a subgroup of Q∗? Explain your answer.

♢

It follows from this exercise that H is the cyclic subgroup of Q∗ generated
by 2.

By now we’ve seen enough examples so that we’re ready to prove the
general result.

Proposition 15.5.16. Let G be a group and a be any element in G. Then
the set

⟨a⟩ = {ak : k ∈ Z}

https://www.youtube.com/watch?v=TCNL9IS0KJC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=27


540 CHAPTER 15 INTRODUCTION TO GROUPS

is a subgroup of G.

Proof. The identity is in ⟨a⟩ since a0 = e. If g and h are any two elements
in ⟨a⟩, then by the definition of ⟨a⟩ we can write g = am and h = an for
some integers m and n. So gh = aman = am+n is again in ⟨a⟩. Finally, if
g = an in ⟨a⟩, then the inverse g−1 = a−n is also in ⟨a⟩. □

Definition 15.5.17. Given a group G, for each a ∈ G, we call ⟨a⟩ the
cyclic subgroup generated by a. △

Let us now consider in particular the case of finite groups. Let G be
a finite group, and let a be an element of G. Consider the set A :={
a, a2, a3, . . .

}
. Since A ⊂ G and G is finite, the set A must also be fi-

nite. In particular, the list
{
a, a2, a3, . . .

}
must contain duplicate elements,

since otherwise A would be infinite. We must therefore have ak = al for two
different natural numbers k, l. This is the key fact in proving the following
exercise:

Exercise 15.5.18. Let G be a finite group, and let a ∈ G where a ̸= e.
Show there exists a natural number m > 0 such that am = e. (*Hint*) ♢

In view of the preceding exercise, we may make the following definition:

Definition 15.5.19. If a is an element of a group G, we define the order
of a to be the smallest positive integer n such that an = e, and we write
|a| = n. If there is no such integer n, we say that the order of a is infinite
and write |a| = ∞ to denote the order of a. 3 △

Example 15.5.20. Let us consider the orders of different elements in the
infinite group Z.

� First, what is |0|? According to Definition 15.5.19, we need to find
the smallest positive integer such that n · 0 = 0 (remember, Z is an
additive group. We get n = 1, so |0| = 1, and the cyclic subgroup
generated by 0 is ⟨0⟩ = {0}

3Yet another use of the term “order” and the absolute value sign. But you should be
used to it by now.
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� What is |1|? 1 + 1 = 2; 1 + 1 + 1 = 3; . . . In fact you’ll never get to
0 adding a positive number of ones. So |1| = ∞, and as we’ve seen,
⟨1⟩ = Z.

� Similarly, | − 1| = ∞.

♦

Exercise 15.5.21.

(a) In the group Z6, What is |1|? What is |5|?

(b) Given any group G, If e is the identity element of G then what is |e|?

♢

Example 15.5.22. The order of 2 ∈ Z6 is 3, because under repeated
modular addition we have

2⊕ 2 = 4; 2⊕ 2⊕ 2 = 0.

Therefore the cyclic subgroup generated by 2 is ⟨2⟩ = {0, 2, 4}. ♦

Exercise 15.5.23. Find the order of each element of U(9). Find also the
cyclic subgroup generated by each element. ♢

Exercise 15.5.24.

(a) Find the order of each element of Z12. Find also the cyclic subgroup
generated by each element.

(b) Based on your experience with this problem, would you say there is any
relationship between the order of a group element (denoted by |a|) and
the order of the cyclic subgroup generated by the element (denoted by
|⟨a⟩|? If so, what would you say the relationship is?
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♢

Let us now consider specifically the cyclic subgroups of finite groups. In
the following exercises, you may wish to make use of the laws of exponents
listed in Proposition 15.3.23.

Exercise 15.5.25. Let G be a finite group, and let a ∈ G where |a| = n.
Show that (a−1)n = e. ♢

Exercise 15.5.26. In the following exercises, G is a finite group, and a ∈ G
where |a| = n.

(a) Show that for any integer m ∈ Z, am = a mod (m,n). (*Hint*)

(b) Let A = {e, a, a2, . . . , an−1}. Show that ⟨a⟩ ⊂ A and A ⊂ ⟨a⟩.

(c) Prove that |⟨a⟩| = |A|. (Note that |A| is the number of elements in A.)

(d) If m, k ∈ Zn and m ̸= k, show that am ̸= ak.

(e) Prove that |a| = |A|. (This together with part (c) implies that |a| =
|⟨a⟩|.)

♢

Due to its importance, we will state the final result of the preceding
exercise as a proposition.

Proposition 15.5.27. Let G be a finite group, and let a ∈ G. Then
|a| = |⟨a⟩|.

Exercise 15.5.28. Let G be a finite group, and let a ∈ G such that |a| = n
for n > 0. Show that there exists a natural number m such that a−1 = am,
and express m in terms of n. ♢

Example 15.5.29. Not every group is a cyclic group. Consider the sym-
metry group of an equilateral triangle D3 (which is the same as S3). D3 has
6 elements: we saw the Cayley table for D3 in Chapter 13 (see Table 13.1.
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{id, ρ1, ρ2} {id, µ1} {id, µ2} {id, µ3}

D3 (a.k.a. S3)

{id}

Figure 15.5.1. Subgroups of D3(a.k.a.S3)

You may verify by using the table that no single element generates the en-
tire group, so D3 is not cyclic.. The cyclic subgroups of S3 are shown in
Figure 15.5.1. ♦

Although not every group (and not every subgroup) is cyclic, we may
use cyclic subgroups to help us enumerate all possible subgroups of a given
group, with the benefit of the following result:

Proposition 15.5.30. Given a group G and a subgroup H ⊂ G, and
suppose that a ∈ H. Then ⟨a⟩ ⊂ H.

Exercise 15.5.31. Prove Proposition 15.5.30 ♢

Proposition 15.5.30 makes it much easier to find subgroups of a given
group, because it greatly cuts down on the possibilities.

Example 15.5.32. We showed in Example 15.5.29 that D3 has 4 cyclic
subgroups, and that every element ofD3 is in at least one of these subgroups.
Proposition 15.5.30 shows that, for example, any subgroup containing ρ1
must also contain id and ρ2, since ⟨ρ1⟩ = {id, ρ1, ρ2}. Let’s try to find a
larger subgroup H ⊂ D3 that contains ρ1. If we add any other element
(which must be µk for some k = 1, 2 or 3), then we must also add ρ1µk and
ρ2µk, which means that H contains all 6 elements of D3. It follows that
H = D3. Similarly, if we try to find a subgroup K that contains µk by
adding another reflection µj(j ̸= k), we find that µjµk and µjµk must also
be in K, which means that ρ1 must also be in K. But we’ve just finished
shown that if ρ1 ∈ K and µk ∈ K, then K = G. It follows that the only
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proper nontrivial subgroups of D3 are the four cyclic subgroups shown in
Figure 15.5.1. ♦

Exercise 15.5.33.

(a) Find all cyclic subgroups of the symmetry group of the square (i.e. D4)
by finding ⟨a⟩ for every element a ∈ D4.

(b) Find all nontrivial proper subgroups of D4 (You may follow the proce-
dure used in Example 15.5.32 if you wish.)

(c) Show that at least one of the subgroups in (b) is abelian and not cyclic.

♢

It is not true that every abelian group is cyclic (see Exercise 15.5.33.
However, we can prove the converse, namely:

Proposition 15.5.34. Every cyclic group is abelian.

Proof. Let G be a cyclic group and a ∈ G be a generator for G. If g and
h are in G, then they can be written as powers of a, say g = ar and h = as.
It follows that

gh = aras = ar+s = as+r = asar = hg.

Since g and h were arbitrary elements of G, it follows that G is abelian. □

How about the converse of Proposition 15.5.34? Is it true that every
abelian group is cyclic? As it turns out, No. The following proposition gives
an example:

Proposition 15.5.35. The group (R,+) is not cyclic.

Proof. We’ll use our old workhorse, proof by contradiction. Suppose that
a is a generator of R, i.e. ⟨a⟩ = R. Then since a/2 ∈ R, it follows that
a/2 ∈ ⟨a⟩. This means a/2 = ka for some integer k. Rearranging this
equation, we find that a(1/2− k) = 0. By the zero-divisor property of real
numbers, this implies that either a = 0 or 1/2 − k = 0 (or both). But a
cannot be 0, because ⟨0⟩ = 0. Also, 1/2− k ̸= 0, since k is an integer. This
contradiction shows that our assumption that R = ⟨a⟩ is false. Therefore
R ̸= ⟨a⟩ for any real number a, and R is not cyclic. □

Exercise 15.5.36.
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(a) Show that Q is not cyclic.

(b) Show that C is not cyclic.

♢

15.5.3 Subgroups of cyclic groups

We can ask some interesting questions about cyclic subgroups of a group
and subgroups of a cyclic group. If G is a group, which subgroups of G are
cyclic? If G is a cyclic group, what type of subgroups does G possess?

Proposition 15.5.37. Every subgroup of a cyclic group is cyclic.

Proof. The main tools used in this proof are the division algorithm, which
we mentioned in Proposition 5.2.3, and the Principle of Well-Ordering, which
we mentioned in Section 3.2.2.

Let G be a cyclic group generated by a and suppose that H is a subgroup
of G. If H = {e}, then trivially H is cyclic. Suppose that H contains some
other element g distinct from the identity. Then g can be written as an

for some integer n. We can assume that n > 0. Define the set S by:
S = {j ∈ N such that aj = g}. We have just shown that S is nonempty.
The Principle of Well-Ordering tells us that any nonempty subset of the
natural numbers has a smallest element. Let m be the smallest element of
S.

We claim that h = am is a generator for H. We must show that every
h′ ∈ H can be written as a power of h. Since h′ ∈ H and H is a subgroup
of G, h′ = ak for some positive integer k. Using the division algorithm, we
can find numbers q and r such that k = mq + r where 0 ≤ r < m; hence,

ak = amq+r = (am)qar = hqar.

So we can solve for ar: ar = h−qak. Since ak and h−q are in H, ar must
also be in H. However, m was the smallest positive number such that am

was in H; consequently, r = 0 and so k = mq. Therefore,

h′ = ak = amq = hq

and H is generated by h. □
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Proposition 15.5.38. The subgroups of Z are exactly nZ for n = 0, 1, 2, . . ..

Exercise 15.5.39. Prove Proposition 15.5.38 ♢

Exercise 15.5.40. Let H = {2k : k ∈ Z}. We know that H is a subgroup
of Q. Find all subgroups of H. ♢

Proposition 15.5.41. Let G be a cyclic group of order n and suppose that
a is a generator for G. Then ak = e if and only if n divides k.

Proof. Since G = ⟨a⟩ it follows from Proposition 15.5.27 that |a| = n. In
Exercise 15.5.26 (a) we proved that ak = a mod (m,n). Let r = mod(m,n).
If r = 0 (which is the same thing as saying that n divides k) this implies
ak = a0 = e. Otherwise, if it must be the case that 0 < r < n = |a|, and by
the definition of |a| it follows that ar ̸= e. This concludes the proof. □

Proposition 15.5.42. Let G be a cyclic group of order n and suppose that
a ∈ G is a generator of the group. If b = ak, then the order of b is n/d,
where d = gcd(k, n).

Proof. We wish to find the smallest integer m such that e = bm = akm. By
Proposition 15.5.41, this is the smallest integer m such that n divides km or,
equivalently, n/d divides m(k/d). (Note that n/d and k/d are both integers,
since d divides both n and k.) Since d is the greatest common divisor of n
and k, n/d and k/d are relatively prime. Hence, for n/d to divide m(k/d)
it must divide m. The smallest such m is n/d. □

Corollary 15.5.43. The generators of Zn are the integers r such that
1 ≤ r < n and gcd(r, n) = 1.

Example 15.5.44. Let us examine the group Z16. The numbers 1, 3, 5,
7, 9, 11, 13, and 15 are the elements of Z16 that are relatively prime to 16.
Each of these elements generates Z16. For example, 9 is a generator because:

1 · 9 = 9 2 · 9 = 2 3 · 9 = 11

4 · 9 = 4 5 · 9 = 13 6 · 9 = 6

7 · 9 = 15 8 · 9 = 8 9 · 9 = 1

10 · 9 = 10 11 · 9 = 3 12 · 9 = 12

13 · 9 = 5 14 · 9 = 14 15 · 9 = 7.
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♦

15.6 Additional group and subgroup exercises

Exercise 15.6.1. Write out Cayley tables for groups formed by the symme-
tries of a rectangle and for (Z4,+). How many elements are in each group?
Are the groups the same? Why or why not? ♢

Exercise 15.6.2. Describe the symmetries of a rhombus and prove that the
set of symmetries forms a group. Give Cayley tables for both the symmetries
of a rectangle and the symmetries of a rhombus. Are the symmetries of a
rectangle and those of a rhombus the same? ♢

Exercise 15.6.3. Give a multiplication table for the group U(12). ♢

Exercise 15.6.4. Prove that the set of matrices of the form1 x y
0 1 z
0 0 1


where x, y, z ∈ C is a group under matrix multiplication. This group, known
as the Heisenberg group, is important in quantum physics. ♢

Exercise 15.6.5. List all subgroups of the quaternion group Q8. (*Hint*)
♢

Exercise 15.6.6. Prove or disprove: SL2(Z), the set of 2×2 matrices with
integer entries and determinant one, is a subgroup of SL2(R). ♢

Exercise 15.6.7. Prove that the intersection of two subgroups of a group
G is also a subgroup of G. ♢

Exercise 15.6.8. Prove or disprove: If H and K are subgroups of a group
G, then H ∪K is a subgroup of G. ♢
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Exercise 15.6.9. Prove or disprove: If H and K are subgroups of a group
G, then HK = {hk : h ∈ H and k ∈ K} is a subgroup of G. What if G is
abelian? ♢

Exercise 15.6.10. Let G be a group. Show that

Z(G) = {x ∈ G : gx = xg for all g ∈ G}

is a subgroup of G. This subgroup is called the center of G. ♢

Exercise 15.6.11. Give an example of an infinite group in which every
nontrivial subgroup is infinite. ♢

Exercise 15.6.12. Prove or disprove: Every nontrivial subgroup of an
non-abelian group is non-abelian. ♢

Exercise 15.6.13.

(a) Recall the discussion of Section 13.6, which explains how two apparently
different groups can in fact be essentially the “same” group. Find two
groups of order eight that we have studied are not the “same” in this
sense, and explain why they can’t be considered as examples of the
“same” group.

(b) Using the previous exercise (which introduces Zn2 ), give an example of a
third group that is not the “same” as the two groups you found in (a),
and explain why it is not the “same”.

♢

Exercise 15.6.14. Give a specific example of some group G and elements
g, h ∈ G where (gh)n ̸= gnhn, for some natural number n. ♢

Exercise 15.6.15. Let a and b be elements in a group G. Prove that
abna−1 = (aba−1)n. ♢
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Exercise 15.6.16. Given a group G which includes elements g1, . . . gn.
Prove that the inverse of g1g2 · · · gn is g−1

n g−1
n−1 · · · g

−1
1 . ♢

Exercise 15.6.17. Let U(n) be the group of units in Zn. If n > 2, prove
that there is an element k ∈ U(n) such that k2 = 1 and k ̸= 1. ♢

Exercise 15.6.18. Show that if G is a finite group of even order, then there
is an a ∈ G such that a is not the identity and a2 = e. (*Hint*) ♢

Exercise 15.6.19. Let G be a group and suppose that (ab)2 = a2b2 for all
a and b in G. Prove that G is an abelian group. (*Hint*) ♢

Exercise 15.6.20. Show that if a2 = e for all a ∈ G, then G must be an
abelian group. (*Hint*) ♢

Exercise 15.6.21. If (xy)2 = xy for all x and y in G\e, prove that G must
be abelian. (*Hint*) ♢

Exercise 15.6.22. If xy = x−1y−1 for all x and y in G \ e, prove that G
must be abelian. ♢

Exercise 15.6.23. Let H be a subgroup of G and

N(H) = {g ∈ G : gh = hg for all h ∈ H}.

Prove N(H) is a subgroup of G. This subgroup is called the normalizer
of H in G. ♢
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15.7 Hints for “Abstract Groups: Definitions and
Basic Properties” exercises

Exercise 15.2.17: For the “if” part, assume that g ◦ h = h, and use this to
show that g = e. Multiply both sides of the assumed equation by h−1. You
will need to use associativity and properties of inverses and the identity to
obtain the result. For the “only if” part, assume that g = e and use this
fact to show that g ◦ h = h.

Exercise 15.2.18: Suppose that e and f are both identities of G, and use
Exercise 15.2.17 to show that this implies e = f .

Exercise 15.2.20: Prove by contradiction. Suppose that for row “g”, the
entries in columns “h” and “h′” are the same, where h ̸= h′. Then what
equation must be true? Show this equation leads to a contradiction.

Exercise 15.2.27(b): Refer to Section 5.5.5.

Exercise 15.3.7 In general, the way to prove statements like this is to multiply
both sides of the equation by the same thing. In this case, you may multiply
by ab. Some additional multiplications will give you the result ba = ab.

Exercise 15.5.18: Use the fact that ak = al for k ̸= l. You may assume that
k < l in your proof.

Exercise 15.5.26: Write mod(m,n) as m+ kn, where k is an integer.

Additional exercises:

Exercise 15.6.5: You may obtain 4 cyclic subgroups of order 2 (why?) To
look for more subgroups, suppose for instance there is a subgroup that con-
tains both i and j. What other elements must it contain? Do the same for
i and k, j and k, etc.

Exercise 15.6.18: This is a counting argument. Prove by contradiction.
Assume the contrary, and pair each group element with its inverse. The
entire group is the union of these pairs, plus the identity. What does this
tell you about the order of the group?

Exercise 15.6.19: Multiply the equation by some well-chosen inverses.

Exercise 15.6.20: You may use Exercise 15.6.19.

Exercise 15.6.21: In fact, such a group must have at most two elements. Do
you see why?

https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25


16

Further Topics in
Cryptography

In this chapter we examine two specific topics in cryptography which are
highly practical and are relatively recent developments: Diffie-Hellman key
exchange (originated by W. Diffie and M. Hellman in 1976) and elliptic curve
cryptography (proposed by N. Koblitz and V. Miller in 1985).

Prerequisites: To understand this chapter, the reader should be familiar with
the material in Chapters 5,8, and 15. We also make use of one important
result from Chapter 20, but we only apply the result and don’t make use of
the proof itself.

This chapter is written by Moses Marmolejo, with revisions by C.T.

16.1 Diffie-Hellman key exchange

In order to share a private message over a public domain a sender must
”lock” or encrypt their message using a key . Recall from Section 9.1, that
in cryptography a key is a special piece of information (usually a number)
that is required to encrypt and decrypt data which is shared between the
sender and receiver. There are generally three types of keys used: public,
private and symmetric keys. A public key can be widely distributed, and
is typically used for encrypting messages. For a public key to be effective,
there must be a matching private key which is known only to the receiver.
The private key can be used to decrypt the messages created using the public
key. Finally, a symmetric key is known by the sender and receiver, and is

551
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used to both encypt and decrypt messages. Not all cryptosystems require
all three kinds of keys, but every cryptosystem must have either a private
key or a symmetric key.

If a symmetric key is used, then both parties must share their key before
they can begin communicating securely. The requirement of establishing a
key exchange is so essential that it is embedded into almost every technol-
ogy we use today. Some examples of key exchange can be seen in media
applications, cell phones, banking, online purchasing, and emails.

But what if the only way the two parties have to communicate is via a
public network (such as the Internet), where eavesdroppers can listen in?
Under these conditions how can they possibly establish a shared key in such
a way that no one else can find out? The Diffie Hellman key exchange
(DHKE) is one possible solution to the problem of creating a secret key over
an insecure communication channel. Note that the DHKE is not used for
encryption/decryption of messages, but only to establish a key that can be
used to encrypt/decrypt subsequent messages. Follow the steps below to see
the DHKE process.

Step 1. First, Moses and Rachael agree upon a pair of numbers p and g. p
is called the modulus,while g is called the base . These numbers
are not secret, but Moses and Rachael do not care if eavesdroppers
find out what p and g are. In practice, p and g are required to
have certain properties (as explained below) to maximize secrecy.
However, the DHKE procedure still works for any values of p and
g.

Step 2. Moses chooses a secret integer n, known only to himself. He then
computes q where q = mod(gn, p), and sends Rachael the value of
q. Rachael does not need to know the value of n.

Step 3. Rachael similiarly chooses her own secret integer m, computes r
where r = mod(gm, p) and sends Moses the value of r.

Step 4. Moses computes mod(rn, p) = kM ;

Step 5. Rachael computes mod(qm, p) = kR;

It turns out that when kR and kM are computed by the above procedure,
then kR is always equal to kM . You will show this in the next exercise.
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Figure 16.1.1. Key exchange between Moses and Rachael using DHKE

Exercise 16.1.1.
Fill in the blanks in the following proof that kR is always equal to kM .
Proof.

kR = mod(qm, ) (definition of kR)

≡ mod((g )m, p) (substitution)

≡ mod((g )n, p) (rules of exponents)

≡ mod((r ), p) (substitution)

= kM

If two numbers in Zp are modular equivalent, then they are the same num-
ber. Thus, kR = kM is a symmetric key, which we may refer to as k.

□ ♢

Now that you understand the process for DHKE, follow the example
below. (Note that this example is just to give you the idea–it’s much too
simple to use in practical applications.)

Example 16.1.2. Key exchange between a sender and receiver (Moses and
Rachael) using the DHKE is shown in the following steps.

Step 1. Prior to sending data, Moses and Rachael agree p = 13 and g= 7;

Step 2. Moses chooses n = 2, and sends Rachael mod(72, 13) = 10;

Step 3. Rachael chooses m = 8, and sends Moses mod(78, 13) = 3;

Step 4. Moses computes mod((3)2, 13) = 9;
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Step 5. Rachael computes mod((10)8, 13) = 9;

As a result of the exchange, both Moses and Rachel have obtained the same
shared key, which is 9. ♢

Following the example above you can see that the DHKE requires that
you raise a given number g to a natural number (either m or n) and take the
result mod p. This operation is called discrete exponentiation . Calculat-
ing discrete exponentials with small values of m or n is manageable, but in
practice the exponent m or n can be enormous, with hundreds of digits. It
would seem that in this case discrete exponentiation would take a long, long
time to compute. But we can use the repeated squaring formula described
in Section 9.3.3 to speed up the process. Create a spreadsheet using the
repeated squaring formula to compute the following exercises.

Exercise 16.1.3. Suppose you want to conduct a DHKE with one person,
and you are given p = 32452867; g = 54321; and n = 876.

(a) What number do you send?

(b) You are then sent 31975948, what is the shared key?

(c) If m = 123 what number does the other party calculate for the shared
key?

♢

Exercise 16.1.4. Suppose you want to conduct a DHKE with one person,
and you are given p = 86028157; g = 98765; and n = 123.

(a) What number do you send?

(b) You are then sent 53161396, what is the shared key?

(c) If m = 87 what number does the other party calculate for the shared
key?

♢

Now that we understand the DHKE process, let us try to understand
why it effectively guarantees the secrecy of the shared key. First, we need
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to understand a little more about the operation of discrete exponentiation,
which (as we have seen) is the foundation of the DHKE process. So we are
going on a short digression, but don’t worry–we will get back to the main
point shortly.

In previous math courses you learned that the inverse operation of expo-
nentiation is taking the logarithm: for example, 23 = 8 while log2 8 = 3. It
is possible to do the same with discrete exponentiation: an inverse operation
to discrete exponentiation is referred to as ‘finding a discrete logarithm
or (DL)’. Note that since discrete exponentiation involves raising to a power
which is a natural number, a DL will always be a natural number. For ex-
ample, since mod(25, 7) = 4, we could say that under multiplication mod 7,
5 is a DL of 4 with base 2.

Now why have we been saying, “a DL” rather than “the DL”? Because
there happens to be more than one:

Exercise 16.1.5.

(a) Find all natural numbers n such that mod(2n, 7) = 4. Use your result
to complete the following sentence: “Under multiplication mod 7, the
discrete logarithm(s) of 4 with base 2 are . . . .”

(b) Find all natural numbers n such that mod(2n, 7) = 3. Use your result
to complete the following sentence: “Under multiplication mod 7, the
discrete logarithm(s) of 3 with base 2 are . . . .”

(c) Find all nonzero elements of Z7 \ {0} which have no discrete logarithms
with base 2.

(d) Find all nonzero elements of Z7 \ {0} which have no discrete logarithms
with base 3.

♢

The preceding exercise points out some key issues with discrete loga-
rithms. Sometimes there are lots of them, and sometimes there aren’t any!
These phenomena are related to the one-to-oneness and ontoness proper-
ties of the discrete exponential function (recall Definitions 8.3.6 and 8.4.4,
respectively):

Exercise 16.1.6.
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(a) We may define a function f : Z7 \ {0} → Z7 \ {0} by the equation:
f(n) = mod(2n, 7). Use parts (a) and (b) of Exercise 16.1.5 to prove
that f is neither one-to-one nor onto.

(b) We may also define a function g : Z7 \ {0} → Z7 \ {0} by the equation:
g(n) = mod(3n, 7). Prove or disprove: g is one-to-one.

(c) With the same g as in part (b), prove or disprove: g is onto.

♢

This exercise suggests the following question: Under what conditions can
we guarantee that the discrete exponentiation function is onto and/or one-
to-one? (This turns out to be more than just an idle question, as we shall see
shortly.) To gain some leverage against this problem, we will take advantage
of Proposition 20.6.3 from Chapter 20, which tells us that the multiplicative
group Zp \ {0} is cyclic, whenever p is a prime. (In Chapter 20 we also used
the notation U(p) instead of Zp \ {0}, and we will use this same notation in
the following.) This means that for any prime p, there is a g ∈ U(p) such that
g is a generator of U(p): that is, U(p) = ⟨g⟩ (recall from Chapter 15 that
for a finite group, ⟨g⟩ = {g, g2, g3, . . .}). A generator of U(p) is also referred
to as a primitive root of Zp. Any element of U(p) may be expressed as
a power of g (under mod p multiplication). In other words, the discrete
exponentiation function f : N → U(p) given by f(n) = mod(gn, p) is an
onto function!

It turns out that onto-ness also gives use one-to-oneness, when we restrict
f to the appropriate domain:

Exercise 16.1.7. Suppose that p is a prime, and g is a generator of U(p).
Consider the function h : U(p) → U(p) given by h(n) = mod(gn, p). (Note
that h is the same as f defined above, only the domain has been restricted.)
Show that h is a bijection. ♢

It’s about time we got back to the main point of why we’re talking about
DL’s in the first place. Suppose an eavesdropper who is listening in on
Moses and Rachael’s conversation wants to figure out the secret key k. The
eavesdropper knows p, g, q = mod(gn, p), and r = mod(gm, p). If he could
figure out m he could easily get the secret key by computing mod(qm, p)
which is equal to k. But finding m is just a DL problem, since m is a DL of
r with base g under multiplication mod p.
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There is an issue that we should address here. We have pointed out that
any DL problem has many different solutions. What if the eavesdropper
finds a different solution to the DL problem, which is not equal to the m
originally used by Rachael? It turns out that the eavesdropper can crack
the code with any DL solution, as the following exercise shows:

Exercise 16.1.8. Suppose that m and m′ are two different DL’s of r
with base g under multiplication mod p. Show that mod(gmn, p) = mod
(gm

′n, p). In other words, an eavesdropper can use any DL of r with base g
under multiplication mod p to find the shared key. ♢

Exercise 16.1.9. Suppose another eavesdropper was able to compute a DL
of q with base g under multiplication mod p. Explain how she could use this
information to find Moses and Rachael’s secret shared key. ♢

The security of the DHKE leverages the easy computation of the discrete
exponentials versus the difficulty of computing DL’s. (A function which is
easy to compute but hard to invert is referred to as a one-way function .
Discrete exponentials (for suitable p’s and g’s) form a very important class
of one-way functions.) The following simple example introduces how this
works in practice.

Example 16.1.10. It is easy to calculate mod(2m, 11) for different values
of m: for example, when m = 8 then we get mod(28, 11) = mod(256, 11) =
3. However, when you try to invert the process, you have: given mod
(2m, 11) = 3, calculate m. There is no easy way to do this. As you can see
below the results jump around, and each solution is equally likely to be an
integer between 0 and 11.

mod(21, 11) = 2

mod(22, 11) = 4

mod(23, 11) = 8

mod(24, 11) = 5

mod(25, 11) = 10

mod(26, 11) = 9

mod(27, 11) = 7
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mod(28, 11) = 3

mod(29, 11) = 6

mod(210, 11) = 1

♦

If you try to calculate m using a brute force method (that is, computing
all possible solutions one at a time), you would have to calculate 8 different
solutions before you find the right answer.

The larger the modulus, the harder the DL is to find. The exercise below
is designed to show how many computations a brute force attack would take
in comparison to a growing modulus.

Exercise 16.1.11. Use the Repeated Square spreadsheet from Exercise
9.3.3 to solve the following DL Problems. In each case, you will use the
brute force method used in Example 16.1.10, and write down how many
discrete exponentials you need to compute in order to find the answer.

(a) Given mod(7m, 41) = 28, solve for m.

(b) Given mod(5m, 73) = 13, solve for m.

(c) Given mod(17m, 211) = 161, solve for m.

(d) What trend do you see in the number of computations required in parts
(a), (b), (c), and how does it relate to the moduli in the different cases?

♢

From the foregoing discussion, we may see why it is important to choose a
prime p as a modulus and a primitive root g as a base in an effective DHKE
scheme. This choice will minimize duplicate DLs and create the largest
search space possible for an eavesdropper. If you do not use a primitive
root as a generator, then you will end up with a smaller subgroup of U(p)
which will have an increased number of DLs, and an eavesdropper trying to
calculate m using a brute force method is more likely to succeed.
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16.1.1 Man in the middle attack

Our previous discussion indicates the DHKE is very hard to crack if it uses
a large enough modulus p and a suitable base g. But, is there any way to
successfully eavesdrop on Moses and Rachael’s conversation without actually
cracking the code? It seems that Moses and Rachael’s security is assured,
since an attacker would only be privy to mod(gn, p) and mod(gm, p), each
of which cannot be used to decrypt the message since an attacker would
have to compute the DL problem to find m and n.

Figure 16.1.2. MiM Attack during Moses and Rachael’s key exchange

But not so fast. What would happen if an attacker, Fred (an eavesdrop-
per) places himself between Moses and Rachael’s messages? If Fred could
do this then Rachael’s message would pass through Fred first before reach-
ing Moses, and vice-versa. Fred would then be able to intercept the public
key and establish his own private keys with Moses and Rachael separately.
Fred is now able to read or alter messages. This type of attack is commonly
referred to as the Man in the Middle (MiM) attack. See Figure 16.1.2 to see
how Fred is able to modify the key exchange.

Following Figure 16.1.2, Fred establishes one secret key kM with Moses
and a different secret key kR with Rachael. Now Moses thinks rf is Rachael’s
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public key, and Rachael thinks that she has Moses’ public key. Moses and
Rachael both combine their private keys with Fred’s public keys and create
two different symmetric keys, kM and kR respectively. At this point if either
Moses or Rachael sends a message, then Fred is free to decrypt and encrypt
the message using the appropriate key.

Exercise 16.1.12. Redo Figure 16.1.2 using different values of p, g, n,m, fn,
and fm, remember to choose a prime for p and a primitive root for g (there
are many primitive root calculators you can find online). ♢

Exercise 16.1.13. Replace all the numbers in the formulas found in Fig-
ure 16.1.2 with letters, as seen in Figure 16.1.1. ♢

Exercise 16.1.14. Given p = 73, and g = 11 find q, r, rf , qf , kM , and kR if
Moses chooses n = 5, Rachael chooses m = 4 and Fred chooses fM = 3 and
fR = 2. ♢

DHKE is vulnerable to this type of MiM attack since Moses cannot verify
that Rachael was the originator of the message, and vice-versa. Fortunately,
MiM attacks can be prevented if messages are sent with a so-called digital
signature which uniquely identifies the source of the message In Section
16.1, we described how to send uniquely-identifiable messages by using a
private key to encrypt messages that can be decrypted by a public key.
So Moses may share his key with Rachael by encrypting his public key,
together with some known text. Even if the MiM can receives and decode
this information, there is no way for him (or her) to send a bogus key to
Rachel, because (s)he does not know Moses’ signature key.

Diffie-Hellman is just one of many key exchange algorithms. In the next
section, we will talk about a different key exchange method that is even
more secure.

16.2 Elliptic curve cryptography

In the previous section we saw that the longer the key, the greater the
security. Unfortunately longer keys require sending more information, thus
slowing down communication. Elliptic curve cryptography (ECC) is one
approach to the public key sharing dilemma that offers greater security with
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smaller keys. The table in Figure 16.2.1 shows the relationship between key
length and security for three different cryptosystems: RSA, Diffie-Hellman,
and ECC. In the table, ‘key length’ refers to the number of binary bits in the
key: for comparison, a 160 bit key has 49 decimal digits, while a 1024 bit key
has 309 decimal digits. The ’security level’ is also measured in bits (80, 128,
192, 256) where these bits refer to the size of the number of computational
steps necessary to break the code. For example, a security level of 80 means
that 280 computations are required to break the code (from reference(5)).
To give you an idea of what this means practically, in 2002 it took 10, 000
computers (mainly PCs) running 24 hours a day for 549 days to break an
ECC system with a 109 bit key length. A 160-bit ECC would be 225 times
more secure: which means that (with 2002 technology) it would take one
billion computers over 500 years to crack it.

Figure 16.2.1. Key bit lengths of cryptosystems for different security levels
recommended by the National Institute of Standards and Technology, (from
reference (8))

Referencing the table in Figure 16.2.1, we can see that an ECC cryp-
tosystem with a 160 bit key has a similar security level to RSA and Diffie-
Hellman with 1024-bit keys. This means the same security with 6 times less
information–a significant difference!

Exercise 16.2.1. How long would it take to crack a cryptosystem with a
128 bit security, using a billion modern computers with 2 GHz processors?
(Note: A 2 GHz processor is able to perform 2·109 computations per second.)
♢

Now that we’ve described the benefits of ECC, let’s see what elliptic
curves are all about. Our discussion will be quite wide-ranging, and touch on
several areas of mathematics. Although we will not go into the background,
elliptic curves originally arose from the study of polynomial equations in
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multiple variables. Elliptic curves also have deep connections to the theory
of complex functions.

16.2.1 Definition of elliptic curves

An Elliptic Curve (EC) is the set of solutions (x, y) of an equation of the form
y2 = x3+ax+b, where a and b are real coefficients. See Figure 16.2.2 below
for graphs of some ECs. Additionally, ECs are not allowed to have double

Figure 16.2.2. Geometric shapes of ECs, (from reference (15))

or triple roots in the variable x. A triple root produces a cusp in the graph,
and a double root produces a self-intersection (see graphs in Figure 16.2.3).
See graphs in Figure 16.2.3 for examples of ECs with double and triple roots.
It turns out that we can guarantee that the curve y2 = x3 + ax + b has no

Figure 16.2.3. (Left) EC: y2 = x3 and (Right) EC: y2 = x3−3x+2, (From
reference (7)

double or triple roots if the coefficients a and b satisfy the following equation:
4a3 + 27b2 ̸= 0.

Exercise 16.2.2.
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(a) Prove that if the equation y2 = x3 + ax+ b has a double or triple root,
then 4a3 + 27b2 = 0. (*Hint*)

(b) Prove the converse to part (a), that is show that if 4a3 +27b2 = 0, then
the equation has a double or triple root. (*Hint*)

♢

All of the cryptosystems that we have studied so far have been based on
group operations associated with a particular group. For example, Diffie-
Hellman used discrete exponentiation (which is repeated multiplication in
U(p)) to construct a one-way function. In order to use ECs to construct
cryptosystems, we’ll need to show that we can associate a group with each
EC. In the following sections we’ll define an arithmetic operation on the
points of any EC, an show that this operation is in fact a group operation.

16.2.2 Elliptic curve arithmetic

In this section, we show how to do arithmetic on ECs. Specifically, we define
an operation (denoted by ‘+’) which acts on two points of an EC, to give
another point on the same EC.

Suppose that P1 and P2 are two points on an EC. We will consider
first the case where P1 ̸= P2: later we will consider the case where P1 = P2.
Geometrically, if the two points are different then P1+P2 is given by drawing
a line from point P1 to point P2 and continuing the line until it intersects
the EC, then reflect that point about the x-axis. See Figure 16.2.4 for a
geometric representation of the operation P1 + P2.

It turns out that P1 + P2 is always defined on the EC (except in one
special case which we will explain a little bit later), even though sometimes
the result of P1 + P2 is quite far away from both P1 and P2. For instance,
take the EC y2 = x3 − x, and points P1 = (2,

√
6) and P2 = (3,−

√
24).

Then P1 + P2 = (49, 342.93) (we’ll show this later in Example 16.2.6), as
illustrated in Figure 16.2.5.

Example 16.2.3. Given the EC: y2 = x3 + ax + b, P1 = (x1, y1), P2 =
(x2, y2), and P3 = (x3, y3). Find P3, where P3 = P1 + P2.

The steps of this calculation are as follows:
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Figure 16.2.4. Adding two distinct points, P1 + P2 on the EC (from
reference (9)).

Figure 16.2.5. P1 + P2 is always defined on the EC (from reference (9)).
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(a) Compute the slope of the line m through P1 and P2 as follows:

m = (y2 − y1) · (x2 − x1)
−1, for P1 ̸= P2

(b) Use the point-slope formula y−y1 = m(x−x1) in order to find equation
of the line that passes through the two points. Rewrite as:

y = m(x− x1) + y1

(c) It turns out that the sum of the roots is m2 (see Exercise 16.2.4). So
we have

x1 + x2 + x3 = m2, which implies x3 = m2 − x1 − x2.

(d) The third point of intersection is (x3,−y3). So we may plug x3 into
(−y3) = m(x3 − x1) + y1 to obtain y3.

(e) Finished! P3 = (x3, y3).

♦

Exercise 16.2.4. In part (c) of Example 16.2.3 we mentioned that x1 +
x2 + x3 = m2, where x1, x2, x3 are the x-coordinates of three intersections
of the line with the EC and m is the slope of the line. In this exercise, we
will prove this.

(a) Substitute the equation for y in (b) of Example 16.2.3 into equation E.
The resulting equation can be rearranged to form a cubic equation in
x of the form: 0 = x3 + c2x

2 + c1x + c0, where c0, c1, c2 depend on the
parameters a, b,m, x1, y1. Express the coefficient c2 in terms of these
parameters.

(b) The cubic equation 0 = x3+c2x
2+c1x+c0 has three roots, so the cubic

equation can be factored: x3+c2x
2+c1x+c0 = (x−x1)(x−x2)(x−x3).

Use this equality to express c2 in terms of x1, x2, x3.

(c) Based on your results in (a) and (b), show that m2 = x1 + x2 + x3.

♢

Example 16.2.5. Given the elliptic curve y2 = x3 − 2x, P1 = (0, 0),
P2 = (−1, 1), Find P3 = P1 + P2.
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(a) Slope : m = (1− 0) · (−1− 0)−1 = −1.

(b) Equation of line: y − 0 = −1(x− 0) or y = −x.

(c) Use x3 = m2 − x1 − x2 to obtain: x3 = (−1)2 − 0− (−1) = 2.

(d) Use equation of line with y = −y3 and x = x3: −y3 = −2 or y3 = 2.

(e) P3 = (2, 2).

♦

Example 16.2.6. Given E: y2 = x3 − x, P1 = (2,
√
6), P2 = (3,−

√
24)

from Figure 16.2.5 above. Find P3, where P3 = P1 + P2.

(a) Slope: m = (−
√
24−

√
6) · (3− 2)−1 = −3

√
6

(b) Line: y +
√
24 = −3

√
6(x− 3), which simplifies to y = −3

√
6x+ 7

√
6.

(c) Use x3 = m2 − x1 − x2 to obtain: x3 = (−3
√
6)2 − 2− 3 = 49.

(d) Plug (1,−y3) in for (x, y) in the equation for the line: −y3 = −3
√
6 ·

49 + 7
√
6, which implies y3 = 140

√
6.

(e) P3 = (49, 140
√
6) ≈ (49, 342.93).

♦

Exercise 16.2.7. Given E: y2 = x3− 2x, P1 = (2, 2), P2 = (−1, 1), find P3,
where P3 = P1 + P2. ♢

Exercise 16.2.8. Given E: y2 = x3 − x + 1, P1 = (3, 5), P2 = (1, 1), find
P3, where P3 = P1 + P2. ♢

If the two points are the same, P1 = P2 = (x1, y1), then a tangent line to
the point is drawn and the point of intersection to the EC is then reflected
about the x-axis. This is often referred to as point doubling . For the
general EC with equation y2 = x3 + ax+ b, the slope for this line is,

m = (3x21 + a) · (2y1)−1,
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which may be found using implicit differentiation. See Figure 16.2.6 below
for a geometrical representation of point doubling.

Exercise 16.2.9. Derive the equation for m by taking derivatives of both
sides of the general equation and solving for dy

dx . Show your steps. ♢

In the case of point doubling, once m is found the expression for the x
coordinate of the other intersection of the tangent line with the curve is:

x3 = m2 − x1 − x1

(this is because x1 is a double root of the cubic expression which gives the
x-coordinates of the intersections between the EC and the tangent line).
Once we have x3, then we may find y3 as before:

−y3 = m(x3 − x1) + y1

and 2P1 is given by (x3, y3).

Figure 16.2.6. Point doubling on the EC (from reference (7)).

There is one scenario where addition of two points doesn’t give a point
on the curve. Given a point P , we define −P as the reflection of P about
the x axis: so if P = (x, y), then −P = (x,−y). The line through P and
−P is vertical, and does not intersect the curve at any other point. In order
to make addition well-defined in this case we may create a notional point
at infinity . See Figure 16.2.7 below for a geometrical representation of
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Figure 16.2.7. The point at infinity located at (0,∞) (from reference (9)).

the point at infinity. The point at infinity can be thought of as located at
the point (0,∞), so that the line through any point (x, y) and the point at
infinity is a vertical line with infinite slope. Additionally, the point at infinity
is its own reflection, so we consider (0,∞) and (0,−∞) as a single point,
which we denote by the symbol ∞. You may think of the y axis “wrapping
around” so that when you keep moving in the +y direction eventually you
wrap around to the -y axis.

16.2.3 Elliptic curve groups

Remarkably, it turns out that the ‘+’ operation turns the EC (plus the
point at infinity) into a group. In this section we’ll verify all of the group
properties.

1. Identity: The point at infinity serves as the identity element. The line
connecting ∞ with P intersects −P , so its reflection about the x-axis is
P . Therefore, P +∞ = P and ∞+ P = P .

2. Inverse: A line through P and−P goes through ∞, and ∞ is its own
reflection (see Figure 16.2.8). Another way of saying this is, P +(−P ) =
∞. In the same way, we can show that (−P ) + P = ∞. Therefore the
inverse of P is −P .
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Figure 16.2.8. Identity property for EC: ∞ + P = P + ∞ = P (from
reference (9)).

3. Closure: if P1 and P2 are points on the elliptic curve then P1 + P2 is
also a point on the curve; as stated (without proof) in Section 16.2.2.

4. Associativity:(P1+P2)+P3 = P1+(P2+P3). This is always true (for an
example, see Figure 16.2.9 below), but it is not at all easy to prove. See
for example math.rice.edu/~friedl/papers/AAELLIPTIC.PDF, which
gives a 5-page “elementary” proof.

Figure 16.2.9. Associative property for EC (from reference (9)).

math.rice.edu/~friedl/papers/AAELLIPTIC.PDF
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These properties are sufficient to establish the fact that the ‘+’ operation
on an elliptic curve defines a group.

Exercise 16.2.10. Does the ’+’ operation define an Abelian group? Prove
your answer. ♢

16.2.4 Elliptic curves over Zp

Thus far we have looked at ECs whose coefficients are real numbers. Un-
fortunately, computer calculations with real numbers are prone to rounding
errors, so real number arithmetic is not suitable for modern cryptography.
To avoid this problem, instead of using real numbers we use finite fields,
which are finite additive groups that also have a multiplication operation
with inverse. The simplest finite fields are Zp (integers mod p), where p is
prime. In this section we will demonstrate how to do arithmetic with ECs
over Zp.

At the end of the previous section, we showed that our new ‘+’ operation
allows us to define a group on the set of points of an elliptic curve, when the
curve is a subset of R2 and is defined using real coefficients. It turns out
that exactly the same argument can be used to show the very same group
property for curves with coefficients in Zp, which are subsets of Zp × Zp.

We saw in Section 15.5.2 that every element of a group defines a cyclic
subgroup. Specifically, if the group G is finite, then for any element g ∈ G
the set

id, g, g2, g3, . . . , gn−1

is a subgroup of G, where n is the order of g and satisfies gn = id. In EC
cryptography, extensive use is made of cyclic subgroups. Any EC cyptosys-
tem is based on a single group element, which is referred to as a generator .
In practice, the generator is added to itself repeatedly. Follow the examples
below to see how this works.

Note that in the following examples we will use ‘+’ and ‘·’ to denote
addition and multiplication in the particular Zp that we are working with:
in other words, ‘+’ and ‘·’ in the following are the same as ‘⊕’ and ‘⊙’ which
we used in Chapter 5 (it’s simpler to write this way, and this is how it’s done
in most references.) You’ll have to pay attention to what ‘+’ is operating on
in order to discern its meaning: for example, in the expression P + P we’re
referring to the EC operation defined in the previous section, while in the
polynomial x3 + 2x+ 2 the ‘+’ refers to modular addition.
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Example 16.2.11. In this example we’ll use arithmetic mod 17, so all
coefficients and variables take values on Z17.

Given the EC y2 = x3 + 2x + 2, and P = (5, 1), we want to find 2P ,
where 2P = P + P .

First we use the slope of the tangent line, using the same formula we did for
the real case in Example 16.2.3:

m = (3x21 + a) · (2y1)−1

We may then calculate (remember we’re doing arithmetic in Z17!)

m ≡ ((3 · 52) + 2) · (2 · 1)−1

≡ (77) · (2)−1

≡ (9) · (9)
≡ 81

≡ 13 (mod 17)

Next we use the following formulas (which we used before for reall ECs) to
find x3 and y3:

x3 = m2 − 2x1, and y3 = −(m(x3 − x1) + y1)

where once again, arithmetic is in Z17:

x3 ≡ (132 − 5− 5)

≡ 159

≡ 6 (mod 17)

y3 ≡ −(13(6− 5) + 1)

≡ −14

≡ 3 (mod 17)

Therefore, 2P = (6, 3). ♦

Exercise 16.2.12. Using the equations from Example 16.2.3 parts (c) and
(d), find the following: 3P, 4P, 5P, ..., 20P for the point P = (5, 1) that was
used in Example 16.2.11. Note that 3P = 2P + P, 4P = 3P + P, and so on.
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Note also that arithmetic operations are to be performed in mod 17. What
do you notice about 18P, 19P, and 20P? ♢

In view of what we have just discussed, let’s reconsider the Diffie-Hellman
key exchange which we described in Section 16.1. A little thought should
convince you that in that section we made use of cyclic subgroups as well. So
using Example 16.2.11 and Exercise 16.2.12, let’s revise the Diffie-Hellman
key exchange, but this time we’ll use the cyclic group associated with the
EC. Use Figure 16.2.10 as a guide to help you answer the following exercise.

Figure 16.2.10. Elliptic Curve key exchange between Moses and Rachael

Exercise 16.2.13. Using Example 16.2.11 and Exercise 16.2.12, what is
their shared key if Moses chooses n = 9 and Rachael chooses m = 3? ♢

16.2.5 An encryption system using elliptic curves

In Chapter 9 we explained how to use RSA with a shared key to exchange
secret messages. We can construct a similar cryptosystem on the basis of
ECs. In this section, we’ll describe one way that this may be done. The
following discussion is a simplified version of reference (11).

Suppose Moses and Rachael would like to communicate a message using
ECC, then they should first agree upon an EC and a code table. Each
character of the encrypted message will correspond to a point on the EC.

Next, Rachael and Moses construct public and private keys as follows.
First, Rachael and Moses agree upon an EC, modulus, and a random point C
on the EC: in general, this will be public knowledge. Additionally, Rachael
selects at random a large positive integer α which is Rachael’s private key.
She computes A = αC which is her public key (recall that αC denotes
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adding the point C α times, using EC addition). Moses similarly takes a
large positive integer β as his private key, and computes B = βC as his
public key.

Now if Moses wants to encrypt a message, he may do so one character at a
time as follows. Suppose the character that he wants to encrypt corresponds
to the point M on the EC. He chooses a random number γ (which will be
different for each character in the message). He then computes:

E1 = γC and E2 =M + γA.

Moses then communicates E1 and E2 to Rachael. After receiving this infor-
mation, Rachael may decrypt the message by computing E2 − αE1.

Exercise 16.2.14.

a Show that by computing E2 − αE1, Rachael will correctly recover the
character M .

b Suppose a third party knows E1, E2, A, and C. What else would a third
party have to find out in order to obtain M? Explain why it is difficult
for the third party to gain this knowledge.

♢

Exercise 16.2.15.

a Suppose Rachael wants to send a character R to Moses. What information
should she send to him? Give explicit formulas for this information.

b What equation should Moses use to decode the information from Rachael?

♢

To see how this works in practice, let’s consider a simple example (reader
beware: the modulus is way too small to make this a practical cryptosystem).
We will consider the EC in Z37 × Z37 given by the equation y2 = x3+2x+9
which is shown in Figure 16.2.11 below. Notice how the graph of the function
using modular arithmetic is a collection of discrete points on the curve rather
than based on a continuous graph like the ECs over the real numbers.
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Figure 16.2.11. Elliptic Curve, (y2 = x3 + 2x + 9) in Z37 x Z37, (from
reference (11))

In order to encode letters and numbers, we first need to assign different
characters to different points on the curve. The table in Figure 16.2.12 gives
the character assignment that we’ll use. Notice the order of points in the
table: we start with (5, 25), then the second number (1, 30) = (5, 25)+(5, 25),
the third number (21, 32) = (5, 25) + (5, 25) + (5, 25) = 3(5, 25), and so on.
The information required to create this table is public knowledge, so anyone
can duplicate it (for a practical code, the table would be much, much larger
and impossible to compute even with the fastest computers) . Note that in
the case of a very large modulus, there is no difficulty in assigning a single
character to multiple points on the curve, as long as each point has no more
than one character assigned to it.

Example 16.2.16. Moses will send the message, “attack” using the code
table above. The point C is chosen as (9, 4).

First, Rachael must establish her private and public key (Moses doesn’t
have to, because he’s only sending and not receiving). Rachael chooses
α = 5, so that A = 5C = 5(9, 4). In this simple case, we may use the table
in Figure 16.2.12 to facilitate the calculation of A (this would be impossible
in a practical system–the number of entries in the table would be much
larger than the number of atoms in the universe). Notice that the point
C = (9, 4) is the 11th point in the table (counting ∞ as the zeroth point,
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Figure 16.2.12. Code table using the EC agreed upon by Moses and
Rachael, (from reference (11))

(5,25) as the first point, (1, 30) as the second point, etc). This means that
C = 11(5, 25), and thus 5C = 5 · 11(5, 25) = 55(5, 25). However the point
(5, 25) generates a cyclic group of order 43 (note there are 43 elements in the
table in Figure 16.2.12), and mod (55, 43) = 12, so 55(5, 25) = 12(5, 25).
The 12th entry in the table is (2, 24), which is Rachael’s public key A.

Now Moses must encrypt his message one character at a time. The first
character of “attack” is “a”, which according to the table corresponds to
M = (5, 25). Let’s suppose that Moses chooses γ = 7 for this character. We
thus obtain:

E1 = γC = 7(9, 4) = (15, 11) and E2 =M+γA = (5, 25)+7(2, 24) = (5, 12).

Thus Moses should send the pair of points (15, 11) and (5, 12) to Rachael.

Exercise 16.2.17.

a Verify the values of E1 and E2 computed above. Show your calculation.

b Verify that using these values of E1 and E2 and α = 5, Rachael can
correctly decode the character.

♢

Exercise 16.2.18. To encode t, t, a, c, k Moses chooses γ = 12, 19, 2, 3, 23
respectively.



576 CHAPTER 16 FURTHER TOPICS IN CRYPTOGRAPHY

a Give the 5 pairs of numbers that Moses sends as cyphertext

b Verify that Rachael decodes each pair of numbers correctly.

♢

♦

Exercise 16.2.19. There is a serious drawback with the above encryption
scheme. Another person could easily impersonate Moses, and send a message
to Rachael. Come up with a strategy whereby Moses and Rachael can ensure
that the messages actually come from each other, and not from someone else
♢

16.2.6 Next steps

The examples we’ve given show the basic idea of ECC, but genuinely prac-
tical ECC systems are somewhat more complicated. Notice the progression
from Section 16.2.2 to 16.2.4. We first introduced ECs as solution sets in
R2 for a certain type of polynomial equation. But we then remarked that
unfortunately these curves are not suitable for practical cryptography, be-
cause computers have trouble with real numbers. So in the next section we
looked at ECs that are subsets of Zp × Zp where p is a prime, as in Fig-
ure 16.2.11. But there are disadvantages to Zp as well: finding enormous
primes is not all that easy. It turns out there is yet another alternative for
sets for ECs to live in: these sets are called Galois Fields. Galois fields
are derived from polynomials, where the polynomials have coefficients in Zp
(in practice, usually p = 2). Since we haven’t really looked into polynomials
yet, we’re not quite ready to dive into this aspect of ECC just yet. So, you
have something to look forward to!
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16.4 Hints for “Further Topics in Cryptography”
exercises

Exercise 16.2.2 (a): If there is a double root , then it must be that 0 =
x3+ax+b has a double root. This means that the equation can be factored:
x3 + ax+ b = (x− r1)

2(x− r2). Express a and b in terms of r1 and r2. (A
similar approach can be used in the case of a triple root.)

Exercise 16.2.2 (b): There are 2 cases: (i) b = 0, (ii) b ̸= 0. In the case
b ̸= 0, first, show that a > 0. Then use part (a) to express r1 and r2 in
terms of a and b, and show the equation factors properly.



17

Equivalence Relations and
Equivalence Classes

In the previous chapter we introduced the abstract concept of group,
which was defined in terms of properties that we’d seen in many previous
examples. We may say that “group” is a generalization which includes many
Generalizations like this play a key role in mathematics: if we can prove that
a particular mathematical structure is a group, then all of the general group
properties must also be true for that particular structure. In this way, we
learn a great deal about the structure with very little effort.

In this chapter we introduce another generalization: the idea of a math-
ematical relation, which generalizes the concept of function as formally de-
fined in Definition 8.2.11. We explore various types of relations and their
properties, and use these new ideas to envision modular arithmetic from a
different perspective. The new concepts that we introduce in this chapter
are foundational to the notions of coset and conjugacy class, two key group-
theoretic structures which play central roles in group theory (as we shall see
in subsequent chapters).

This chapter is based on material by D. and J. Morris, which was exten-
sively revised and expanded by Mark Leech.

17.1 Binary relations

Recall that according to Definition 8.2.11, any function f : A → B can be
represented as a set of ordered pairs. More precisely, each element of f is
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an ordered pair (a, b), such that a ∈ A and b ∈ B. Therefore, every element
of f is an element of A × B, so f is a subset of A × B. There are however
subsets of A×B that are not functions.

Example 17.1.1. Let P be the set of all professional basketball players in
the NBA1 and let T be the set of NBA teams. fT : P → T as follows:

fT (p) = the team that p plays for.

Alternatively, fT can be represented as the set of ordered pairs:

fT = { (p, t) ∈ P × T | p is a member of t}.

On the other hand, we may be interested not just in players’ current teams,
but in all teams that players have played for. This relationship could also
be characterized by a set of ordered pairs:

{ (p, t) ∈ P × T | p has at one time or another played for t}.

This is not a function, because many NBA players have played on more than
one team. ♦

In light of the previous example, it makes mathematical sense to define a
relation between sets A and B to be a set of ordered pairs; that is, a relation
between A and B is any subset of A×B. Unlike the case of functions, there
are no restrictions–every subset is a relation.

Definition 17.1.2. Suppose A and B are sets.

(a) Any subset of A×B is called a relation from A to B.

(b) For the special case where A = B, any subset of A×A is called a binary
relation on A.

△

Example 17.1.3. Let P be the set of all professional basketball players in
the NBA. Consider the following subset of P × P :

{ (p, p ′) ∈ P × P | p ′ is the tallest teammate of p}.
1National Basketball Association, “men’s professional basketball league in North Amer-

ica . . . widely considered to be the premier men’s professional basketball league in the
world.” (Wikipedia)

https://www.youtube.com/watch?v=NAFXMRKIBNE&INDEX=17&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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This is a binary relation, according to Definition! 17.1.2, and it also can be
identified with the function fh : P → P defined by: fh(p) = the tallest teammate of p.

On the other hand, consider a different subset of P × P :

{ (p, p ′) ∈ P × P | p ′ is a teammate of p}.

This is a binary relation, but not a function because any player will have
many teammates. ♦

Exercise 17.1.4. Express the following relations on NBA players as subsets
of P × P (as in Example 17.1.3).

(a) Players that both play the same positions

(b) Players that have birthdays in the same month

(c) The second player is taller than the first

(d) The first player has a higher jersey number than the second

♢

So far we’ve been discussing relations in a non-numerical context, but
our definitions apply to relations on sets of numbers as well. Relations on
R (or subsets of R) are discussed in many middle or high school algebra
courses. Any graph in the R2 plane gives a relation; and conversely, any
relation involving subsets of R can be represented as a graph in the plane.
Relations in R2 are often taught along with functions: for example, students
are given a graph of some discrete or continuous relation in the R2 plane
and asked to determine if the given relation is a function.

Example 17.1.5. Consider the graphs in Figure 17.1.1, where the set A×B
is indicated at the top of each graph. Which are relations in A×B? Which
are binary relations? Which are functions?

� All three graphs are relations because all graphs are subsets of A×B
(as specified at the top of each graph).

� The first and third relations are binary relations, but the second rela-
tion isn’t because A ̸= B.
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Figure 17.1.1. Graphs of relations. Constructed using GeoGebra

� The first is not a function, because e.g. both (1, 1) and (1,−1) are in
the graph. The second is a function because it is uniquely defined on
all of A (in this case A = R). The third is not a function because e.g.
there is no pair of the form (−1, y), so the function is not defined on
all of A.

♦

Example 17.1.6. If A = {1, 2, 3} and B = {4, 5, 6}, some examples of
relations from A to B are:

{(1, 4), (2, 5), (3, 6)},

{(1, 6), (3, 4)},

{(2, 5), (3, 5)},

∅,

{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}.

Notice that all of these sets are subsets of A× B. The final example is the
set A × B itself. Notice that ∅ is a valid relation because it’s a subset of
A×B (a subset with no elements). On the other hand, the set {∅} is not a
relation, because it is a set with one element (namely ∅), and this element
is not an element of A×B. For similar reasons, {(1, ∅)} is not a relation. ♦

https://www.youtube.com/watch?v=NAFXMRKIBNE&INDEX=17&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Example 17.1.7. LetA = {all cities in the U.S.} andB = {all states in the U.S.}.
some examples of relations from A to B are:

{(Springfield,Illinois),(Springfield,Missouri),(Springfield,Texas),(Springfield,Wisconsin)},

{(Corinth,Texas),(Liverpool,Texas),(Paris,Texas),(Sudan,Texas),(Troy,Texas)},

{(Austin,Texas),(Boston,Massachusetts),(Phoenix,Arizona)},

{(x, y) such that x is the capital of y}.

The third of these relations is a subset of the last. ♦

Exercise 17.1.8.

(a) Let A = {a} and B = {1}. List all relations from A to B. (*Hint*)

(b) Let A = {a} and B = {1, 2}. List all relations from A to B. (*Hint*)

(c) Let A = {a, b} and B = {1}. List all relations from A to B. (*Hint*)

(d) ** Let A = {a, b}. List all the binary relations on A. (*Hint*)

(e) ** Let A = {a, b, c}. How many binary relations are there on the set A?
(*Hint*)

♢

We’ll mostly be concerned with binary relations, not relations from some
set A to some other set B.

Exercise 17.1.9. Let S be the set of all living people. Which of the
follow relationships define binary relations on S? brother, pet, favorite color,
dentist, college major, and professor? ♢

Definition 17.1.10. We can draw a picture to represent any given binary
relation on any given set A:

� Draw a dot for each element of A.

� For a, b ∈ A, draw an arrow from a to b if and only if (a, b) is an
element of the relation.
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The resulting picture is called a digraph . (The word is pronounced “DIE-
graff” — it is short for “directed graph.” △

Example 17.1.11. Let A = {1, 2, 3, 4, 5}. We can define a binary rela-
tion R1 on A by letting

R1 = { (x, y) | x ̸= y and x2 + y ≤ 10 }.

This binary relation is represented by the digraph in Figure 17.1.2:

Figure 17.1.2. Digraph of the binary relation of R1

Note that there’s a bidirectional arrow between 1 and 3 because (1, 3) ∈
R1 and (3, 1) ∈ R1. On the other hand there’s only a one directional arrow
from 2 to 3 because (2, 3) ∈ R1, but (3, 2) /∈ R1.

We can also define a binary relation R2 on A by letting

R2 = {(x, y) such that x | y},

where x | y means x divides y. This binary relation is represented by the
digraph in Figure 17.1.3.

In this digraph there are loops at each number because a | a for each a.

♦

Exercise 17.1.12. Choose your favorite NBA team, and find a team roster
(a good place to look is ESPN.com). Choose 6 players that have complete

https://www.youtube.com/watch?v=NAFXMRKIBNE&INDEX=17&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO


586CHAPTER 17 EQUIVALENCE RELATIONS AND EQUIVALENCE CLASSES

Figure 17.1.3. Digraph of the binary relation of R2

data, and let that be your set A. draw a digraph for each of the following
binary relations on A:

(a) {(x, y) ∈ F × F |x’s height is within 2 inches of y’s height}

(b) {(x, y) ∈ A×A |x’s age is within the same decade as y’s}

(c) The relation “is taller than”.

(d) The relation “is less than 10 pounds heavier than”.

♢

Exercise 17.1.13. Let A = {−2,−1, 0, 1, 2} Draw a digraph for each of the
following binary relations on A:

(a) Ra = { (x, y) | x2 = y2 }.

(b) Rb = { (x, y) | x2 − y2 < 2 }.

(c) Rc = { (x, y) | (x− y)2 < 2 }.

(d) Rd = { (x, y) | x ≡ y (mod 3) }.
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♢

Exercise 17.1.14. It is also possible to draw digraphs for relations that
are not binary relations. In this case, your digraph should have a dot for
each element of A ∪B.

(a) Draw digraph representations of the relations given in Example 17.1.6.

(b) The graphs you drew in (a) are all examples of bipartite graphs. Com-
plete the following definition: A bipartite graph is a graph in which the
vertices (dots) can be divided into two sets, such that . . ..

♢

We commonly use symbols such as =, <,⊂, . . . that are used to compare
elements of a set. You may have called these “relations” in your high school
algebra class – and in fact, they can all be considered as binary relations
in the sense of Definition 17.1.2. For example, using the symbol < we can
define the following binary relation on R :

R< := { (x, y) ∈ R× R | x < y}

(here the symbol “:=” means “defined as”). Note that R< here is a subset
of R× R, so it is indeed a binary relation according to Definition 17.1.2.

Exercise 17.1.15.

(a) Define the set R> associated with the symbol “>” applied to the natural
numbers.

(b) Define the set R= associated with the symbol “=” applied to the com-
plex numbers. In your definition assume that equality of real numbers
has been defined, and write complex numbers in rectangular form (for
example, a+ bi or c+ di).

(c) List all the elements of the set R⊂ associated with the symbol “⊂”
applied to the subsets of A := {1, 2}. (The set of subsets of A is denoted
as P(A), the power set of A.) (*Hint*)

(d) Consider the set R⊂ associated with the symbol “⊂” applied to the
subsets of A := {1, 2, 3}. How many elements does R⊂ have?

https://www.youtube.com/watch?v=NAFXMRKIBNE&INDEX=17&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♢

Exercise 17.1.15 shows that any comparison symbol applied to a set gives
rise to a binary relation. So rather than writing R<, R>, R= and so on, we
simply use the comparison symbol itself to represent the binary relation.
Notice that technically, ’<’ defined on R is a different relation from ’<’
defined on N: we will always make it very clear on which set the relation is
being defined.

We will use the symbol ∼ (which may be read as “is related to”, “tilde”,
or “twiddle”) to denote a generic comparison symbol. If we are working
with the set A, then the symbol ∼ also represents the binary relation A∼ :=
{ (x, y) ∈ A×A | x ∼ y}.

We have shown that comparison symbols give rise to relations: the re-
verse is also true. Given a relation R defined on the set A, we can define a
comparison symbol ∼ applied to a, b ∈ A as follows: a ∼ b iff (a, b) ∈ R.

17.2 Partitions and properties of binary relations

We’ve defined binary relations in general. In this section we present one
very important situation where binary relations are very useful. It turns
out that the binary relations which arise in this situation have some very
special properties, which will become very important later.

Given any set A with 2 or more elements, it’s possible to split up the
elements of A into disjoint subsets. We call such a division a partition .
The mathematical definition is:

Definition 17.2.1. A partition P of a set A is a collection of nonempty
subsets of A, such that each element of A is in exactly one of the subsets in
P. In other words:

(a) the union of the subsets in P is all of A, and

(b) the subsets in P are pairwise disjoint: that is the intersection of any two
subsets is empty.

Conditions (a) and (b) imply that every element of A is in exactly one subset
in P. △

https://www.youtube.com/watch?v=SFk--oSOzfg&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=18
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Remark 17.2.2. Note that P is defined as a set of subsets of A. This means
that the elements of P are subsets which may contain multiple elements of
A. The examples below with make this clearer. △

Example 17.2.3.

(a) Consider the set of real numbers R. We know that every element of R
belongs to one of two sets: the set of rational numbers, Q, or the set of
irrational numbers, I. The union of these two subsets, Q ∪ I = R, and
Q and I are disjoint sets, so based on the definition {Q, I} is a partition
of R. Alternatively the word “partition” can be used as a verb, so we
could also say that Q and I partition R.

(b) Let E and O be the even and odd integers, respectively. Then {E,O} is
a partition of Z. Alternatively we could also say that E and O partition
Z.

(c) Let S be the set of all single-element subsets of Z, so that for example
{−552}, {7}, {1492} are all elements of S. Then S is also a partition
of Z. Here S has an infinite number of elements (all the single-element
subsets of Z), but each element of S is a finite set.

(d) Consider the set of complex numbers C. Every element of C has a real
part which we denote as Re[z] (as in Chapter 2). Let Ra be the set of
all complex numbers with real part a, i.e. Ra := {z ∈ C | Re[z] = a}.
Let P be the set consisting of all of the Ra’s, i.e. P := {Ra∀a ∈ R}.
Then P is a partition of C. Here P has an infinite number of elements,
where each element of P is an infinite set.

♦

From the previous example you can see how partitions of sets of numbers
are collections of subsets that divide up bigger sets. You could imagine it’s
like a little kid with a bucket of LEGORO bricks who’s sorting them out
into different piles. The LEGOs could be sorted by color, shape, number of
studs, or the original set in which they were bought. Similarly there are lots
of different ways to sort out sets of numbers, mathematical objects, or any
arbitrary sets with elements of any kind. Each different way of sorting gives
rise to a different partition.

Example 17.2.4.

https://www.youtube.com/watch?v=SFK--OSOZFG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=18


590CHAPTER 17 EQUIVALENCE RELATIONS AND EQUIVALENCE CLASSES

(a) When making an inventory of the animals in a zoo, we may wish to
count the number of antelopes, the number of baboons, the number of
cheetahs, and so forth. In this case, all of the animals of the same species
might be grouped together in a single set. Each species give rise to a
different set and these sets form a partition of the animals in that zoo.

(b) If we are concerned only with people’s given names (what Americans
would call “first name”), we can partition any set of people according
to given name. Each set in the partition consists of all people who share
a particular given name.

(c) In geometry, sometimes we are interested only in the shape of a triangle
and not its location or orientation. In this case, we talk about congruent
triangles, where congruent means that corresponding sides of the two
triangles are equal, and corresponding angles are also equal. For any
triangle we may define the set of all triangles congruent to that triangle.
There are an infinite number of such sets which form a partition of the
set of all triangles.

♦

What do partitions have to do with relations? We will illustrate with
the following example.

Let A = {1, 2, 3, 4, 5, 6} and partition these six numbers into evens and
odds. Then we would have two subsets each with three elements. Suppose
we use a six-sided die to determine a random outcome: where if we get an
even number we win a dollar, but an odd number we lose a dollar. We don’t
care whether we get a 2, 4, or 6 – only that we get an even number because
we win the same amount regardless. In this way, rolling a 2, 4, or 6 are
related. Formally we can define a relation on A as follows: Given a, b ∈ A,
then a ∼ b iff a and b are either both even or both odd.

We generalize the previous example in the following definition.

Definition 17.2.5. Given a partition P on A, we may define a binary
relation ∼P ⊂ A × A as follows: for a, b ∈ A, a ∼P b iff a and b are both
contained in the same subset in the partition. △

We already know that binary relations can be represented graphically.
In the following exercise, we investigate graphical representations of some
binary relations that come from partitions.
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Exercise 17.2.6. In the following parts we will be considering partitions
of R and the associated binary relations defined by Definition 17.2.5.

(a) Let P = {R1, R2} where R1 = {x | x ∈ R, x ≥ 0} and R2 = {x | x ∈
R, x < 0}.

(i) Draw the real number line from −5 to 5, and indicate the sets
R1, R2 ∈ P (you may indicate the two sets by circling them sepa-
rately).

(ii) Graph the associated binary relation ∼P . You only need to graph
from −5 to 5. (Recall that the graph of a binary relation is a set
in the Cartesian plane, as in Figure 17.1.1.)

(b) Let P = {. . . , R−2, R−1, R0, R1, R2, . . .} where Rn = {x | x ∈ R, ⌊x⌋ =
n} for any integer n. 2

(i) Draw the real number line from −5 to 5, and indicate the visible
sets in P.

(ii) Graph the associated binary relation ∼P . You only need to graph
from −5 to 5.

(c) Let P = {E,O} where E = {x | x ∈ R, ⌊x⌋ is even} and O = {x | x ∈
R, ⌊x⌋ is odd}.

(i) Draw the real number line from −5 to 5, and indicate the sets
E,O ∈ P (a good way to do this is to color the intervals belonging
to E and O with different colors).

(ii) Graph the associated binary relation ∼P . You only need to graph
from −5 to 5.

♢

To further explore Definition 17.2.5, we let A = {a, b, c, . . . , i} which has
been partitioned into subsets A1, . . . , A5. Figure 17.2.1 has a drawing of A.

From Figure 17.2.1, we can tell some properties of ∼P :

2The ‘L’ brackets ⌊· · · ⌋, represent the floor function , also known as the greatest
integer function. The floor function takes a real number, x ∈ R as input and outputs
the greatest integer that is less than or equal to x. For example: ⌊4⌋ = 4, ⌊π⌋ = 3, and
⌊−2.3⌋ = −3.

https://www.youtube.com/watch?v=SFK--OSOZFG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=18
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Figure 17.2.1. A partition of A into subsets A1, . . . , A5. (Each element
of A is in one and only one of the subsets.)

� Each element of A is related to itself, that is:

a ∼P a

(this is called the reflexive property). We know this is true because
a is certainly in the same set of the partition as itself.

� If an element is related to another element the relation also goes in
the other direction. That is:

a ∼P b⇒ b ∼P a

(this is called the symmetric property We know this is true because
if a is related to b, then that means that a and b are in the same set of
the partition. Since they are in the same set of the partition as each
other b is also related to a. This argument can easily be repeated in
the other direction.

� If an element is related to another element and that element is related
to a third element, then the first element is related to the third. That
is:

a ∼P b and b ∼P c⇒ a ∼P c

(this is called the transitive property) We know this is true because
if a is related to b then they are in the same set of the partition, and
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if b is related to c then they too are in the same set of the partition.
This means that a, b, and c are all in the same set of the partition,
therefore a is related to c.

We have seen that the partition depicted in Figure 17.2.1 produces a
binary relation with three distinctive properties. What about other parti-
tions? Let’s consider some of the partitions that we’ve defined previously.

Example 17.2.7. In this example we will define a binary relation from the
given partition, and show that the relation has the above three properties.

(a) Given the partition in Example 17.2.3(a), we can define a binary relation
∼R on R by

x ∼R y iff (x, y ∈ Q or x, y ∈ I).

� First property (reflexive): x ∼R x (x is always in the same set, Q
or I, as itself);

� Second property (symmetric): x ∼R y ⇒ y ∼R x (x is in the same
set as y implies y is in the same set as x);

� Third property (transitive): x ∼R y and y ∼R z ⇒ x ∼R z (if x is
in the same set as y and y is in the same set as z, then x is in the
same set as z);

(b) Given the partition in Example 17.2.4(a), we can define a binary relation
∼S on the set of animals in the zoo by

x ∼S y iff x and y are animals in the same species.

� Reflexive: x ∼S x (x is always the same species as itself);

� Symmetric: x ∼S y ⇒ y ∼S x (x is the same species as y implies y
is the same species as x);

� Transitive: x ∼S y and y ∼S z ⇒ x ∼S z (if x is the same species
as y and y is the same species as z, then x is the same species as
z);

♦

Exercise 17.2.8. Define a binary relation from the given partition, and
show that the relation has the above three properties.

https://www.youtube.com/watch?v=SFK--OSOZFG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=18
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(a) The partition in Example 17.2.3(b)

(b) The partition in Example 17.2.3(c)

(c) The partition in Example 17.2.3(d)

(d) The partition in Example 17.2.4(b)

(e) The partition in Example 17.2.4(c)

♢

The three properties seem to pop up whenever we define a binary relation
from a patirtion. It’s time to prove it.

Proposition 17.2.9. Given a partition P on set A, define a binary rela-
tion of A as a ∼ b iff there exists a subset C ∈ P such that a and b are
both elements of C, then the binary relation, ∼, satisfies the following 3
properties:

(a) reflexivity :
∼ is reflexive ⇐⇒ ∀a ∈ A, a ∼ a.

(b) symmetry :

∼ is symmetric ⇐⇒
(
∀a, b ∈ A, (a ∼ b) ⇒ (b ∼ a)

)
.

(c) transitivity :

∼ is transitive ⇐⇒ ∀a, b, c ∈ A,
(
(a ∼ b) and (b ∼ c)

)
⇒ (a ∼ c).

Proof. Earlier in the chapter we showed that the binary relation ∼P from
the partition in Figure 17.2.1 was reflexive, symmetric, and transitive. The
arguments that we used are generally applicable, and can be used for any
partition. □

Remark 17.2.10.
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� In Proposition 17.2.9 parts (a),(b), and (c) we used mathematical sym-
bolism to express the concepts that were explained verbally in the dis-
cussion prior to Example 17.2.7. Increasingly, you’ll be expected to
understand symbolism without verbal explanation. Here’s a chance for
you to practice: what does the following symbolism mean, and where
have you seen it before?

a ∼ b ⇐⇒ ∃C ∈ P, (a ∈ C and b ∈ C).

(Answer: this is the definition of the relation ∼ defined in Proposi-
tion 17.2.9, expressed symbolically. We’ll be using this symbolism in
later propositions, e.g. Proposition 17.2.12.)

� Even though the definition of symmetry begins with “∀a, b ∈ A . . .”
(“for every a and b in A . . .”) symmetry doesn’t require every pair
of elements to be related to each other: symmetry only requires that
whenever the if clause (a ∼ b) is true, the then clause (b ∼ a) must
also be true. A similar caveat applies to transitivity.

△

These properties are so important that we have a special term for binary
relations that satisfy all three properties:

Definition 17.2.11. An equivalence relation on a set A is a binary
relation on A that is reflexive, symmetric, and transitive. △

The following is a restatement of Proposition 17.2.9, using our new ter-
minology.

Proposition 17.2.12. Given a partition P on set A, define a binary relation
∼ on A as follows:

a ∼ b ⇐⇒ ∃C ∈ P, (a ∈ C and b ∈ C).

Then the binary relation, ∼, is an equivalence relation.

At one stroke, this proposition immediately proves that all the relations
defined from partitions in Examples 17.2.3 and 17.2.4 are equivalence rela-
tions.

https://www.youtube.com/watch?v=SFK--OSOZFG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=18


596CHAPTER 17 EQUIVALENCE RELATIONS AND EQUIVALENCE CLASSES

In the following sections we’ll consider more examples of equivalence
relations , but first let’s make sure we understand reflexivity, symmetry and
transitivity:

Example 17.2.13. Consider the following binary relations on R:

(a) = is reflexive, symmetric, and transitive.

� Reflexive: any real number x equals itself, so x = x ∀x ∈ R.
� Symmetric: for any real numbers x and y, if x = y, then y = x.

� Transitive: for any real numbers x, y, and z, if x = y and y = z,
then x = z.

� Therefore = on R is an equivalence relation because = is reflexive,
symmetric, and transitive.

(b) < is transitive, but neither reflexive nor symmetric.

� Not Reflexive: For example, it is not true that 1 < 1.

� Not Symmetric: For example, 1 < 2 but it is not true that 2 < 1.

� Transitive: given three real numbers x, y, and z, if x < y and
y < z, then x < z.

� Therefore < on R is not an equivalence relation.

(c) The binary relation a ∼ b iff a = b + 1 [for instance (3.5, 2.5) ∈ R∼] is
neither reflexive, symmetric, or transitive.

� Not Reflexive: 3 ̸= 3 + 1.

� Not Symmetric: 4 ∼ 3, since 4 = 3 + 1, but 3 ̸∼ 4, since 3 ̸= 4+ 1.

� Not Transitive: 4 ∼ 3 and 3 ∼ 2, but 4 ̸∼ 2 (4 ̸= 2 + 1).

� Therefore ∼ when a ∼ b iff a = b + 1 on R is not an equivalence
relation.

♦

Notice that in the above examples, we used specific counterexamples to
demonstrate when properties were not true. We recommend that you do the
same–and remember, it only takes one counterexample to show a property
is not true!

Exercise 17.2.14. For each of the following, explain your answers.
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(a) Is the binary relation ≤ defined on the set R reflexive? Is it symmetric?
Is it transitive? Is it an equivalence relation? (*Hint*)

(b) Is the binary relation ⊂ defined on the set P(N) reflexive? Is it symmet-
ric? Is it transitive? Is it an equivalence relation? (Recall that P(N) is
the set of subsets of N).

(c) Define the binary relation ∼ on C as follows: z1 ∼ z2 iff z1 = |z2|. Is ∼
reflexive? Is it symmetric? Is it transitive? Is it an equivalence relation?
(*Hint*)

(d) Define the binary relation ∼ on Z as follows: a ∼ b iff |a− b| < 4. Is ∼
reflexive? Is it symmetric? Is it transitive? Is it an equivalence relation?

♢

Example 17.2.15. Given the set B = {1, 2, 3}, consider the relation ∼ on
B defined by

B∼ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}

The relation is shown in Figure 17.2.2.

Figure 17.2.2. Diagram of the relation in Example 17.2.15

� ∼ is reflexive, because 1 ∼ 1, 2 ∼ 2, and 3 ∼ 3 (Note we had to check
all elements of the set B),

https://www.youtube.com/watch?v=SFK--OSOZFG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=18
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� ∼ is symmetric, because, for each (a, b) ∈ ∼, the reversal (b, a) is also
in ∼.

� ∼ is not transitive, because 1 ∼ 2 and 2 ∼ 3, but 1 ̸∼ 3.

♦

Transitivity can sometimes be a little tricky, as the following examples
show.

Example 17.2.16. Let’s think about binary relations on {1, 2, 3} as seen
in Figure 17.2.3. Which of the binary relations, A, B, or C, are transitive?
Why or why not?

Figure 17.2.3. Digraphs to correspond with Example 17.2.16

Is the relation in A transitive? Let’s consider Remember how transitivity
is defined: if a ∼ b and b ∼ c then a ∼ c. In more prosaic terms, if there’s
an arrow from a to b and another arrow from b to c, then there’s an arrow
directly from a to c. We may conceptualize this as follows. Suppose a, b, and
c represent airports, and arrows represent flights between airports. In terms
of this example, transitivity means that whenever there’s an indirect route
between airports (with multiple stops), then there’s also a direct route. So
in the case of relation A, we may notice there’s an indirect route from 3 to
2 by going through 1, but there’s also a direct route from 3 to 2 (or more
formally, 3 ∼ 1, 1 ∼ 2, and 3 ∼ 2). Furthermore this is the only example
in A of an indirect route. Therefore this relation is transitive. If 3 ∼ 2 is
removed from this binary relation, then the relation isn’t transitive because
it’s still be possible to get from 3 to 2 via 1, but there’s no longer a direct
route.
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How about the relation in digraph B? This may be the most confusing
of the bunch. One might think that B is not transitive, since there’s only a
single arrow–but think again. The definition of transitive says : if a ∼ b
and b ∼ c then a ∼ c. You may also read the “if” as “whenever”: Whenever
a ∼ b and b ∼ c then it’s also true that a ∼ c. But in relation B, the
“whenever” never holds, because there are no cases of a → b and b → c
(i.e. there are no indirect routes). This being the case, the “if” statement
is considered true by default, so B is transitive. This is an important point
worth remembering: in mathematical logic, a statement is considered true
if no counterexample exists. In other words, if you can prove that there’s no
counterexample to a mathematical statement, then the statement is true! 3

Lastly, the relation in digraph C is not transitive. At first glance it
seems like it should be transitive because so many transitivity conditions
are satisfied (e.g. 1 ∼ 2 and 2 ∼ 3 ⇒ 1 ∼ 3, etc), however we can also find
transitivity conditions that fail (see part (a) of the following exercise)–and
it only takes one counterexample to disprove a statement. ♦

Exercise 17.2.17.

(a) Give a counterexample that proves that the binary relation C in Fig-
ure 17.2.3 is not transitive. (*Hint*)

(b) Explain why the binary relation

R∼ = {(1, 4), (1, 1), (4, 1)}

is not transitive. (*Hint*)

(c) Explain why the binary relation

R∼ = {(1, 2), (1, 3), (1, 4)}

is transitive. (*Hint*)

♢

3Here are some “true statements”, according to this rule : (i) If you see a rainbow in
the sky and follow it to where it touches the ground, you will find a leprechaun with a pot
of gold; (ii) If you pick up an ordinary guinea pig by its tail, then its eyes will fall out.
(iii) If you give a correct proof that 1=0, then Bill Gates will give you his entire fortune.

https://www.youtube.com/watch?v=SFK--OSOZFG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=18


600CHAPTER 17 EQUIVALENCE RELATIONS AND EQUIVALENCE CLASSES

Exercise 17.2.18. Find binary relations on {1, 2, 3} that meet each of the
following conditions. Express each relation as a set of ordered pairs, and
draw the corresponding digraph. (Note: each part can have more than one
answer, but you only need to find one.)

(a) symmetric, but neither reflexive nor transitive.

(b) reflexive, but neither symmetric nor transitive.

(c) transitive and symmetric, but not reflexive.

(d) neither reflexive, nor symmetric, nor transitive.

♢

Digraphs are useful because they represent the relation in such a way
that it is easy to deduce the relation’s properties:

Exercise 17.2.19.

(a) How can you tell from looking at a digraph whether or not the corre-
sponding relation is reflexive?

(b) How can you tell from looking at a digraph whether or not the corre-
sponding relation is symmetric?

(c) **How can you tell from looking at a digraph whether or not the corre-
sponding relation is transitive?

♢

17.3 Examples of equivalence relations

Let’s take a look at some examples of equivalence relations (recall Defini-
tion 17.2.11). We will see shortly that they all have something in common.

Example 17.3.1. Define a binary relation ∼ on R by x ∼ y iff x2 = y2.
Then ∼ is an equivalence relation.

Proof. We wish to show that ∼ is reflexive, symmetric, and transitive.

https://www.youtube.com/watch?v=ZtqFETtGm6o&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=19
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(reflexive) Given x ∈ R, we have x2 = x2, so x ∼ x.

(symmetric) Given x, y ∈ R, such that x ∼ y, we have x2 = y2. Since
equality is symmetric, this implies y2 = x2, so y ∼ x.

(transitive) Given x, y, z ∈ R, such that x ∼ y and y ∼ z, we have x2 = y2

and y2 = z2. Therefore x2 = z2, since equality is transitive. Hence x ∼ z.
□ ♦

Example 17.3.2. Define a binary relation ∼ on N×N by (a1, b1) ∼ (a2, b2)
iff a1 + b2 = a2 + b1. Then ∼ is an equivalence relation.

Proof. We wish to show that ∼ is reflexive, symmetric, and transitive.

(reflexive) Given (a, b) ∈ N× N, we have a+ b = a+ b, so (a, b) ∼ (a, b).

(symmetric) Given (a1, b1), (a2, b2) ∈ N×N, such that (a1, b1) ∼ (a2, b2), we
have a1 + b2 = a2 + b1. Since equality is symmetric, this implies a2 + b1 =
a1 + b2, so (a2, b2) ∼ (a1, b1).

(transitive) Given (a1, b1), (a2, b2), (a3, b3) ∈ N × N, such that (a1, b1) ∼
(a2, b2) and (a2, b2) ∼ (a3, b3), we have

(a1 + b3) + (a2 + b2) = (a1 + b2) + (a2 + b3) (rearrange terms)

= (a2 + b1) + (a2 + b3) ( (a1, b1) ∼ (a2, b2) and substitution)

= (a2 + b1) + (a3 + b2) ( (a2, b2) ∼ (a3, b3) and substitution)

= (a3 + b1) + (a2 + b2) (rearrange terms).

Subtracting a2 + b2 from both sides of the equation, we conclude that a1 +
b3 = a3 + b1, so (a1, b1) ∼ (a3, b3). □ ♦

Exercise 17.3.3. Show that each of these binary relations is an equivalence
relation.

(a) The binary relation ∼ on R defined by x ∼ y iff x2 − 3x = y2 − 3y.

(b) The binary relation ∼ on R defined by x ∼ y iff x− y ∈ Z. (*Hint*)

(c) The binary relation ∼ on N× N defined by (a1, b1) ∼ (a2, b2) iff a1b2 =
a2b1. (*Hint*)

(d) The binary relation ∼ on C defined by z1 ∼ z2 iff |z1| = |z2|.

https://www.youtube.com/watch?v=ZTQFETTGM6O&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=19
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(e) The binary relation ∼ on C defined by z1 ∼ z2 iff Re[z1] = Re[z2].
(Recall that Re[z] is the real part of z)

(f) The binary relation ∼ on the collection of all finite sets defined by

A ∼ B iff |A| = |B| (that is, A and B have the same number of elements)

♢

Equivalence relations are often defined in terms of functions. For in-
stance, Example 17.3.1 involves the function f : R → R defined by f(x) =
x2, and x ∼ y if and only if f(x) = f(y). Similarly, Exercise 17.3.3 involves
the function g : R → R defined by f(x) = x2 − 3x, and x ∼ y if and only if
g(x) = g(y). Both of these cases follow the following pattern:

Given a function f : A→ B, define a binary relation on A by: a1 ∼ a2 iff f(a1) = f(a2).

Other examples that we’ve seen also follow this same pattern:

Exercise 17.3.4. Following the pattern that we’ve shown for Example 17.3.1
and Exercise 17.3.3, define the following equivalence relations in terms of
functions.

(a) Exercise 17.3.3 part (d)

(b) Exercise 17.3.3 part (e)

(c) The binary relation in Example 17.3.2.

♢

The previous examples have all involved sets of numbers, but we may
see that the same thing happens even when we consider functions on other
types of sets.

Example 17.3.5.

(a) Every animal has only one species, so Species is a function that is defined
on the set of all animals. The equivalence relation ∼S of Example 17.2.7
can be characterized by

x ∼S y ⇐⇒ Species(x) = Species(y).
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(b) If we assume that every person has a given name, then GivenName is a
function on the set of all people. Let ∼N be the equivalence relation of
Exercise 17.2.8 can be characterized by

x ∼N y ⇐⇒ GivenName(x) = GivenName(y).

♦

We’ve given enough examples to (hopefully) convince you that functions
always produce equivalence relations. But examples are never enough! The
bottom line is that we need a proof–and here it is.

Proposition 17.3.6. Suppose f : A→ B. If we define a binary relation ∼
on A by

a1 ∼ a2 ⇐⇒ f(a1) = f(a2),

then ∼ is an equivalence relation on A.

Exercise 17.3.7. Prove Proposition 17.3.6: that is, prove that the relation
defined in the proposition is (a) reflexive, (b) symmetric, and (c) transi-
tive. (If you like, you may model your proof on the discussion prior to
Exercise Example 17.2.7, where we proved the three properties for binary
relations arising from partitions.)

♢

Let’s take a step back and take stock of where we are. We’ve shown
(Proposition 17.2.9) that any partition has an associated equivalence re-
lation. We’ve also shown (Proposition 17.3.6) that any function has an
associated equivalence relation. Is there any relationship between these two
facts? Indeed, we’ll see in subsequent discussions that partitions, functions,
and equivalence relations are closely interrelated. In the following exercise,
we’ll show that any equivalence relation that comes from a partition also
comes from a function.

Exercise 17.3.8. Given a set A and a partition P = {A1, A2, A3, . . .} of A.
Let ∼P be the equivalence relation associated with the partition P. Now
define a function f : A→ N as follows:

https://www.youtube.com/watch?v=ZTQFETTGM6O&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=19
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f(a) =


1 if a ∈ A1

2 if a ∈ A2

...
...

n if a ∈ An

In general: f(a) = j iff a ∈ Aj .

(a) Show that a ∼P b ⇐⇒ f(a) = f(b).

(b) Let∼f be the equivalence relation defined from f as in Proposition 17.3.6.
Show that ∼P=∼f by showing that a ∼P b ⇐⇒ a ∼f b.

♢

Exercise 17.3.8 amounts to a proof of the following proposition.

Proposition 17.3.9. Given a set A with partition P = {A1, A2, A3, . . .}.
Let ∼P be the associated equivalence relation. Then there exists a function
f : A→ N with associated equivalence relation ∼f such that ∼P =∼f .

In other words, whenever we have a partition, we can also define a func-
tion that gives us the same equivalence relation as the partition. 4

Exercise 17.3.10. From the relation∼R in Examples 17.2.3(a) and 17.2.7(a)
(the Q and I example) define a function such that a1 ∼ a2 ⇐⇒ f(a1) =
f(a2) where a1, a2 ∈ R. (Note that we’ve already proved that ∼R is an
equivalence relation by a different proposition, so this example is a particu-
lar case of Proposition 17.3.9.) ♢

Exercise 17.3.8 starts with a partition, and constructs a function that
gives the same equivalence relation as the partition. We may go backwards
as well: starting with a function, we may produce a partition with the same
equivalence relation. The following exercise gives an example of this.

Exercise 17.3.11. Let f : {−3,−2,−1, 0, 1, 2, 3} → Z be defined by f(x) =
x2.

4This statement is true, but the proof in Exercise 17.3.8 isn’t quite complete. The
reason is that we’ve assumed that the partition P is countable, i.e. we can assign a
unique natural number index to each set in P. There are many sets in mathematics that
are not countable (such as the real numbers). To make a truly general proof, we should
specify an index set that may depend on the partition.
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(a) What is the range of f?

(b) For every number n in the range of f , find the set of all numbers in the
domain of f that map to n. Denote this set as An (for example, if we
let n = 0, then only 0 maps to 0, so A0 = 0). List the elements of An
for each n in the range of f .

(c) Show that the sets {An} that you listed in part (b) form a partition of
the domain of f .

(d) According to Proposition 17.4.11, this partition produces an equivalence
relation on the domain of f . Draw a digraph that represents the equiv-
alence relation.

(e) We also know that the function f produces an equivalence relation on the
domain of f , as in Proposition 17.3.6. Draw a digraph that represents
this equivalence relation.

(f) What may you conclude from your results in (d) and (e)?

♢

The following proposition generalizes the results of the previous exercise.

Proposition 17.3.12. Suppose f : A → B. For each b ∈ Range(f) define
a subset Ab ⊂ A as follows:

Ab := {a ∈ A | f(a) = b}.

Then the collection of sets P := {Ab | b ∈ B} form a partition of A. Fur-
thermore, the equivalence relation ∼f derived from f is identical to the
equivalence relation ∼P derived from P: that is, a1 ∼f a2 ⇐⇒ a1 ∼P a2.

Proof. The proof is broken up into steps in the following exercise.

Exercise 17.3.13.

(a) Given any b ∈ Range(f), show that Ab is nonempty

(b) Given b1, b2 ∈ Range(f) with b1 ̸= b2, show that Ab1 and Ab2 are disjoint,
i.e. Ab1 ∩Ab2 = ∅.

(c) Given any a ∈ A, show there exists a b ∈ Range(f) such that a ∈ Ab.

https://www.youtube.com/watch?v=ZTQFETTGM6O&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=19
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(d) Show that {Ab | b ∈ B} includes all of A; that is, A = ∪b∈BAb.

(e) Verify that the (a)-(d) imply that {Ab|b ∈ B} is a partition of A.

♢

□

17.4 Obtaining partitions from equivalence rela-
tions

Proposition 17.2.12 tells us that given any partition P of a set S, we can
define an equivalence relation which says that two elements of S are equiva-
lent iff they belong to the same set in the partition. We’ll see in this section
that we can go the other way as well: namely, given any equivalence relation
on S we can construct a partition on S which divided all the elements of S
among disjoint subsets.

To make this work, we first must define a key notion: equivalence classes.
Here we go!

17.4.1 From equivalence relations to equivalence classes

Let’s ramp up to our key definition by means of an example.

Example 17.4.1. Suppose we’re studying a set of people, and we’re only
interested in their given names. Of course there may be several Johns,
several Marys, a couple of Sylvesters, and so on– but as far as given names
are concerned, any two Johns can be considered as equivalent: indeed, we
formalized this sense of equivalence in Example 17.3.5(b). We can group all
Johns into a single set or class, which we’ll refer to as an equivalence class.
We can do the same thing with Marys, Sylvesters, Xyleenas, Zenobias, and
so on. It follows that every person in the set belongs to her or his own
equivalence class (even if the equivalence class consists of a single person!)
♦

Let’s generalize this example. Essentially, the only fact about given
names that we used to define equivalence classes was that given name defines
an equivalence relation on the set of interest. So it stands to reason that we
can do something similar with any equivalence relation:

https://www.youtube.com/watch?v=LGU0Dhcozr8&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=20
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Definition 17.4.2. Suppose ∼ is an equivalence relation on a set A. For
each a ∈ A, the equivalence class of a is the following subset of A:

[a] = { s ∈ A | s ∼ a }.

That is, the equivalence class of the element a ∈ A is the set of all elements
of A that are equivalent to a. △

Example 17.4.3. For the equivalence relation N described in Exam-
ple 17.3.5(b), we have

[Woodrow Wilson] = { x ∈ People | GivenName(x) = GivenName(Woodrow Wilson) }.

In other words, [Woodrow Wilson] is the set of all people whose given name
is Woodrow. ♦

Warning 17.4.4. The notation [a] does not tell us which equivalence rela-
tion is being used. You should be able to figure out which relation it is from
the context. ♢

Let’s give a a more “mathy” example.

Example 17.4.5. Suppose A = {1, 2, 3, 4, 5} and

R =

{(1, 1), (1, 3), (1, 4), (2, 2), (2, 5), (3, 1), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4), (5, 2), (5, 5)}

One can verify that R is an equivalence relation on A. The equivalence
classes are:

[1] = [3] = [4] = {1, 3, 4}, [2] = [5] = {2, 5}.

♦

Exercise 17.4.6.

(a) Let B = {1, 2, 3, 4, 5} and

S = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4), (5, 5)} .

Assume (without proof) that S is an equivalence relation on B. Find
the equivalence class of each element of B.

https://www.youtube.com/watch?v=LGU0DHCOZR8&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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(b) Let C = {1, 2, 3, 4, 5} and define ∼C by

x ∼C y ⇐⇒ x+ y is even.

Assume (without proof) that ∼C is an equivalence relation on C. Find
the equivalence class of each element of C.

(c) Draw the arrow diagrams for the relations in R in Example 17.4.5, and
for the relations in parts (a) and (b) of this exercise.

♢

The following proposition presents some very important properties of
equivalence classes:

Proposition 17.4.7. Suppose ∼ is an equivalence relation on a set S.
Then:

(a) For all a ∈ S, we have a ∈ [a].

(b) For all a ∈ S, we have [a] ̸= ∅.

(c) The union of the equivalence classes is all of S. This can be written
mathematically as follows: ⋃

a∈S
[a] = S

(d) For any a1, a2 ∈ S, such that a1 ∼ a2, we have [a1] = [a2].

(e) For any a1, a2 ∈ S, such that a1 ̸∼ a2, we have [a1] ∩ [a2] = ∅.

Exercise 17.4.8. Prove the assertions in Proposition 17.4.7. You may use
the following hints:

(a) Use the reflexive property of ∼, together with Definition 17.4.2

(b) Use part (a).

(c) This can be done by showing:

(i)
⋃
a∈S [a] ⊂ S
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(ii) S ⊂
⋃
a∈S [a]

In (i), use the fact that [a] ⊂ S. In (ii), use (a) above to show that
every element of S is in at least one equivalence class. (Recall also that
‘⊂’ means “contained in”, and includes the case where the two sets are
equal.)

(d) Remember that two sets are equal if they have all their elements in
common. So you want to show that given a1 ∼ a2, then every element
of [a1] is also an element of [a2], and vice versa. Do this as follows:

� Choose any a3 ∈ [a1]. Use Definition 17.4.2 together with the
transitive property to show that a3 ∈ [a2]. Conclude that every
element of [a1] is also an element of [a2].

� Use a similar proof to show that every element of [a2] is also an
element of [a1].

(e) You can prove this one by contradiction. Suppose the intersection is
non-empty. Choose an element in the intersection. Use Definition 17.4.2
and the transitive property to derive a contradiction.

♢

Proposition 17.4.7 parts (d) and (e) can be restated as follows:

Proposition 17.4.9. Suppose ∼ is an equivalence relation on a set S. Then
any two equivalence classes are either equal or disjoint; that is, either they
have exactly the same elements, or they have no elements in common.

17.4.2 From equivalence classes to partitions

It’s time to come full circle, and show that partitions arise from equivalence
classes. As in the previous section, we’ll ramp up with an example.

Example 17.4.10. In Example 17.4.5, the equivalence classes are {1, 3, 4}
and {2, 5}. Since 1, 2, 3, 4, 5 each belong to exactly one of these sets, we see
that the set {

{1, 3, 4}, {2, 5}
}

of equivalence classes is a partition of {1, 2, 3, 4, 5}. ♦

https://www.youtube.com/watch?v=LGU0DHCOZR8&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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Intuitively, equivalence classes resulting from an equivalence relation on
S will always break S up into disjoint sets which, taken together, include all
the elements of S. We’ve seen this description before–this is exactly what a
partition does. This observation places us at the doorstep of the following
proposition:

Proposition 17.4.11. Suppose ∼ is an equivalence relation on a set A.
Then

{ [a] | a ∈ A }

is a partition of A.

Proof. From parts (b), (c), and (e) of Proposition 17.4.7, we know that
the equivalence classes are nonempty, that their union is A, and that they
are pairwise disjoint. □

The following exercises illustrate Proposition 17.4.11.

Exercise 17.4.12. Consider the set C∗ defined by C∗ := C \ 0, i.e. the
set of nonzero complex numbers. Define a binary relation ∼r on this set
as follows. Let r1 cis(θ1) and r2(cis θ2) be two elements of C∗ expressed in
polar form, where 0 ≤ θ < 2π. Then

r1 cis(θ1) ∼r r2(cis θ2) ⇐⇒ r1 = r2.

(a) Prove that ∼r thus defined is an equivalence relation.

(b) Sketch [1], [1 + i], and [π cis(π/3)] in the complex plane (show all three
on a single sketch). Give geometrical descriptions (using words) of each
of these sets (i.e. what can you say about the shape, size, and location
of these three sets?)

(c) Give a geometrical description of the equivalence classes of ∼r in the
following form: “The equivalence classes of ∼r are all centered
at ”.

(d) Based on your description in part (c), show that the equivalence classes
of ∼r form a partition of C∗.

(e) We’ve seen that functions produce equivalence relations. Give a function
with domain C∗ that produces the equivalence relation ∼r.



17.4 OBTAINING PARTITIONS FROMEQUIVALENCE RELATIONS 611

♢

Exercise 17.4.13. Consider the set C∗ as defined in Exercise 17.4.12.
Define a binary relation ∼θ on this set as follows. Let r1 cis(θ1) and r2(cis θ2)
be two elements of C∗ expressed in polar form, where 0 ≤ θ < 2π. Then

r1 cis(θ1) ∼θ r2(cis θ2) ⇐⇒ θ1 = θ2.

(a) Prove that ∼θ thus defined is an equivalence relation.

(b) Sketch [1], [1 + i], and [π cis(π/3)] in the complex plane (show all three
on a single sketch). Give geometrical descriptions (using words) of each
of these sets (i.e. what can you say about the shape, size, and location
of these three sets?)

(c) Give a geometrical description of the equivalence classes of ∼θ in the
following form: “The equivalence classes of ∼θ are all which
begin at ”.

(d) Based on your description in part (c), show that the equivalence classes
of ∼ form a partition of C∗.

(e) Give a function with domain C∗ that produces the equivalence relation
∼θ.

♢

We close this section with an exercise that reinforces the idea that parti-
tions and equivalence classes are really two different ways of looking at the
same thing.

Exercise 17.4.14. We know from Proposition 17.2.12 that any partition
produces an equivalence relation. We also know from Proposition 17.4.11
that any equivalence relation produces a partition.

(a) Suppose we begin with a partition P on the set A, and define an equiva-
lence relation∼P as in Proposition 17.2.12. Next, suppose that following
Proposition 17.4.11 we define a partition P ′ consisting of the equivalence
classes of ∼P . Show that P = P ′. (One way to do this is to show that
every set in P is also a set in P, and vice versa.)

https://www.youtube.com/watch?v=LGU0DHCOZR8&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
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(b) Suppose we begin with an equivalence relation ∼ on the set A, and de-
fine a partition of A as in Proposition 17.4.11. Let’s call this partition
Q. Next, suppose that following Proposition 17.2.12 we define an equiv-
alence relation Q. Show that the relations∼ and ∼Q are identical: that
is, a ∼ b ⇐⇒ a ∼Q b..

♢

.

17.5 Modular arithmetic redux

Abstract algebra often involves looking at familiar concepts and structures in
a more general more abstract and “elegant” way. As an example of this, we
will now revisit modular arithmetic and describe it from an entirely different
point of view, with the benefit of the concepts we have been developing in
previous sections.

In the Modular Arithmetic chapter we defined the concept of “modular
equivalence”. You may recall that we actually gave two definitions, which
we repeat here:

Definition 17.5.1. (Modular Equivalence, first definition)

a ≡ b (mod n) if and only if a and b have the same remainder when
divided by n. △

Definition 17.5.2. (Modular Equivalence, second definition)

a ≡ b (mod n) iff a− b = k · n, where k is an integer (that is, k ∈ Z). △

Exercise 17.5.3. Using Definition 17.5.2, show that equivalence mod n
is an equivalence relation. (That is, show that equivalence mod n is (a)
reflexive, (b) symmetric, and (c) transitive) ♢

Exercise 17.5.3 enables us to apply the concepts we’ve been developing
to modular arithmetic. In particular, it enables us to describe modular
arithmetic in terms of equivalence classes. We will do this first with a simple
example: the integers mod 3.

https://www.youtube.com/watch?v=DsGQvzpUb1Q&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=22&t=0s
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17.5.1 The integers modulo 3

We have proven in Exercise 17.5.3 that equivalence mod 3 is a bona fide
equivalence relation. So what are the equivalence classes? And how many
are there?

We can use Definition 17.5.1 to answer this question. The possible re-
mainders when an integer is divided by 3 are either 0, 1, or 2. This tells
us that every integer is equivalent (modulo 3) to either 0, 1, or 2. Using
Proposition 17.4.7(d), it follows that:

for every k ∈ Z, the equivalence class [k]3 must be either [0]3, [1]3,
or [2]3.

(To emphasize the fact that n = 3, we have included a subscript 3 in the
notation for the equivalence classes).

Specifically:

[0]3 = {. . . ,−6,−3, 0, 3, 6, . . .},

[1]3 = {. . . ,−5,−2, 1, 4, 7, . . .},

[2]3 = {. . . ,−4,−1, 2, 5, 8, . . .}

are three equivalence classes that partition the set of all integers. In the
Modular Arithmetic chapter we defined the integers mod 3 as the set of
remainders under division mod 3. Here we will give another definition that
looks very different, but turns out to amount to basically the same thing.

Remark 17.5.4. What do we really mean by, “basically the same thing”?
Hold that thought–we’ll come back to this point later(in Section 17.5.3). △

Definition 17.5.5. (Integers mod 3, equivalence class definition) The set of
equivalence classes {[0]3, [1]3, [2]3} is identified as the set of integers mod
3 , and is represented by the symbol Z3.

We may also use the simpler notation k to represent the equivalence class
[k]3. So we may write either Z3 = {[0]3, [1]3, [2]3} or Z3 = {0, 1, 2}. △

Take a moment to appreciate the difference between this definition of
Z3 and the one we gave in Section 5.4. Previously we took Z3 as the set

https://www.youtube.com/watch?v=DSGQVZPUB1Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22&T=0S
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of integers {0, 1, 2} and defined new addition and multiplication operations
that had the property of closure. But now we’re taking a different tack.
We are saying that the elements of Z3 are equivalence classes rather than
numbers. In other words, the elements of Z3 are sets.

To complete the connection with our previous definition of Z3, we need
to define arithmetic operations on Z3, using our new characterization in
terms of equivalence classes. Note the additional level of abstraction here:
these arithmetic operations are defined on equivalence classes, which are
sets rather than numbers. But we’ve seen this before: recall that in the Sets
chapter we defined operations on sets. So you’re old hands at this!

Definition 17.5.6. (Rules of modular arithmetic) The arithmetic oper-
ations modulo 3 are defined as follows:

� [a]3 + [b]3 = [a+ b]3 (or a+ b = a+ b),

� [a]3 − [b]3 = [a− b]3 (or a− b = a− b),

� [a]3 · [b]3 = [ab]3 (or a · b = ab).

△

In Definition 17.5.6 we’re actually giving new meanings to the symbols
+,−, and · . We could make this explicit by using different symbols. But this
is not really necessary: whenever we’re doing arithmetic with equivalence
classes mod 3 (or mod n, for that matter), you should always presume that
we’re using the modular definitions of +,−, and · .

Example 17.5.7. We have [1]3 + [2]3 = [1 + 2]3 = [3]3. However, since 3
and 0 are in the same equivalence class, we have [3]3 = [0]3, so the above
equation can also be written as [1]3 + [2]3 = [0]3. Equivalently, 1 + 2 = 0. ♢

Example 17.5.7 illustrates the following general rule:

If r is the remainder when a+ b is divided by 3, then a+ b = r.

You may recognize that this is essentially the same rule that we used in our
previous discussion of modular arithmetic.

Exercise 17.5.8. Write down similar rules for (a) subtraction mod 3; (b)
multiplication mod 3. ♢
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Example 17.5.9. Here is a table that shows the results of addition mod-
ulo 3. (Recall that in the Modular Arithmetic chapter we referred to such
tables as Cayley tables.)

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

♢

Exercise 17.5.10. Make tables that show the results of:

(a) multiplication modulo 3.

(b) subtraction modulo 3 (For a− b, put the result in row a and column; b.)

For both (a) and (b), all table entries should be either 0, 1, or 2. ♢

17.5.2 The integers modulo n

The preceding discussion can be generalized to apply with any integer n in
place of 3. This results in modular arithmetic.

Definition 17.5.11. Fix some natural number n.

(a) For any integer k, we use [k]n to denote the equivalence class of k under
congruence modulo n. When n is clear from the context, we may write k,
instead of [k]n.

(b) The set of these equivalence classes is called the integers modulo n.
It is denoted Zn.

(c) Addition, subtraction, and multiplication modulo n are defined by:

� a+ b = a+ b,

� a− b = a− b, and

� a · b = ab.

https://www.youtube.com/watch?v=DSGQVZPUB1Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22&T=0S
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Just as in the case of mod 3, whenever we’re doing arithmetic mod n
you should understand that we are using these definitions of +, −, and ·.

△

Note that |Zn| = n. (Recall that for a set S, |S| means the number of
elements in S.) We may enumerate the elements precisely as follows:

Proposition 17.5.12. For any n ∈ N+, we have

Zn = {0, 1, 2, . . . , n− 1}

and 0, 1, 2, . . . , n− 1 are all distinct.

Exercise 17.5.13. Prove Proposition 17.5.12. It is sufficient to show (a)
0, 1, 2, . . . , n− 1 are distinct; and (b) for any integer, the equivalence class
k is one of 0, 1, 2, . . . , n− 1. ♢

Exercise 17.5.14. Using the definitions of addition, subtraction, and mul-
tiplication given in part (c) of Definition 17.5.11, make tables that show the
results of:

(a) addition modulo 4.

(b) subtraction modulo 5.

(c) multiplication modulo 6.

♢

Exercise 17.5.15. Find x, y ∈ Z12 such that x ̸= 0 and y ̸= 0, but x ·y = 0.
♢
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17.5.3 What do we mean by “the same thing”?

Now it’s time to go back to our statement in Section 17.5.1 that the definition
of Zn and its operations in terms of equivalence classes is the “same thing” as
the definition in terms of remainder arithmetic that we gave in the Modular
Arithmetic chapter.

One way to see this is to consider the Cayley tables. There is a striking
similarity between the Cayley tables for ⊕ and ⊙ that we computed in
Section 5.4.2 and the tables that we just finished computing in the previous
section:

Exercise 17.5.16.

(a) Compute Cayley tables for ⊕ and ⊙ for Z7 using remainder arithmetic
(as we did in Section 5.4.2).

(b) Compute Cayley tables for + and · for Z7 using the method we used in
the previous section.

(c) Make profound comments about what you observe.

♢

Whether we think of Zn as a subset of Z with operations ⊕ and ⊙, or
whether we think of Zn as a set of equivalence classes, as far as practical
computation is concerned it really makes no difference. The operations give
the same result. Any equation that holds for the one version, also hold for
the other. Mathematically we describe this situation as saying that the two
versions of Zn are isomorphic. We’ve encountered isomorphism before (in
Section 4.3.6), and later on we’ll denote an entire chapter to this concept
(Chapter 20).

We should hasten to add that although the two versions work the same
computationally, the conceptual differences between the two are important.
Looking at the “same thing” in different ways can inspire new ideas that
may bring deep insights and breakthroughs in understanding. In fact, this
is one of the most powerful tools in the mathematican’s toolbox.

17.5.4 Something we have swept under the rug

The discussion of modular arithmetic ignored a very important point. When
we evaluate a+ b, we use the following process:

https://www.youtube.com/watch?v=DSGQVZPUB1Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22&T=0S
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� Choose an element from a and an element from b;

� Add them together (using regular integer arithmetic);

� Find the equivalence class of the result.

But suppose we had chosen different elements to represent a and b: how
do we know that we would come up with the same answer? In other words:
how do we know that a + b is independent of the choice of representatives
from a and b?

So there’s a little more work we have to do here to make sure that we
don’t get into trouble. We need to show that the operations of addition,
subtraction, and multiplication are well-defined : that is, if a1, a2, b1, and
b2 are integers such that a1 = a2 and b1 = b2, then we need to show that

(a) a1 + b1 = a2 + b2,

(b) a1 − b1 = a2 − b2,

(c) a1 · b1 = a2 · b2.

Fortunately, these statements are all true, as you will show in the following
exercise.

Exercise 17.5.17.

(a) Fill in the blanks in the following proof of statement (a) above that +
is well-defined (that is, that a1 = a2 and b1 = b2 implies that a1 + b1 =
a2 + b2):

Suppose a1 = a2 and b1 = b2.

(i) From the definition of equivalence class, it follows that a1 ≡ < 1 >
(mod n) and b1 ≡ < 2 > (mod n).

(ii) By Definition 17.5.2, it follows that a1 = a2 + k1 · < 3 > and
b1 = b2 + k2 · < 4 > , where k1 and k2 are < 5 > .

(iii) By substitution and integer arithmetic, it follows that (a1 + b1)−
(a2 + b2) = < 6 >

(iv) Since k1 + k2 is an integer it follows from Definition 17.5.2 that
(a1 + b1) ≡ < 7 > (mod < 8 > ).

(v) It follows from Proposition 17.4.7(d) that < 9 > .
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(vi) From Definition 17.5.11 (c) we have a1 + b1 = < 10 > and a2 +
b2 = < 11 > .

(vii) By substitution we obtain that a1 + b1 = a2 + b2, which implies
that + is well-defined on equivalence classes.

(b) By following the proof in part (a), prove that subtraction mod n is
well-defined.

(c) By following the proof in part (a), prove that multiplication mod n is
well-defined.

♢

Actually, finding operations that are well-defined on equivalence classes
is somewhat of a big deal. In many cases, candidate operations turn out to
be not well-defined:

Exercise 17.5.18. Suppose we try to define an exponentiation operation
on Z3 by:

[a]3
∧ [b]3 = [ab]3 for [a]3, [b]3 ∈ Z3.

Show that ∧ is not well-defined: that is, find a1, b1, a2, b2 ∈ Z, such that

[a1]3 = [a2]3 and [b1]3 = [b2]3, but
[
ab11

]
3
̸=
[
ab22

]
3
. ♢

Exercise 17.5.19.

(a) Show that absolute value does not produce a well-defined function from Z7

to Z7. That is, show there exist a, b ∈ Z, such that

[a]7 = [b]7, but
[
|a|
]
7
̸=
[
|b|
]
7
.

(b) Show that part (a) is true for every n > 2. That is, show that absolute
value does not provide a well-defined function from Zn to Zn.

♢

Exercise 17.5.20.

(a) Show that there is a well-defined function f : Z12 → Z4, given by
f
(
[a]12

)
= [a]4. That is, show that if [a]12 = [b]12, then [a]4 = [b]4.

https://www.youtube.com/watch?v=DSGQVZPUB1Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=22&T=0S
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(b) Generalize part (a) by showing that if m divides n, then there is a well-
defined function f : Zn → Zm, given by f

(
[a]n

)
= [a]m. That is, show

that if [a]n = [b]n, then [a]m = [b]m.

♢

Exercise 17.5.21.

(a) Show that if we try to define a function g : Z3 → Z2 by g
(
[a]3
)
= [a]2,

then the result is not well-defined. That is, show that there exist a, b ∈ Z
such that [a]3 = [b]3 but [a]2 ̸= [b]2.

(b) Generalize part (a) by showing that m,n are integers and m does not
divide n, then the function f : Zn → Zm given by f

(
[a]n

)
= [a]m is

not well-defined. That is, show that there exists integers a, b such that
[a]n = [b]n and [a]m ̸= [b]m.

♢

Recall that Zn replaces integers a and b that are congruent modulo n
with objects a and b that are exactly equal to each other. This was achieved
by letting Zn be the set of all equivalence classes. The set Zn applies only to
congruence modulo n, but the same thing can be done for any equivalence
relation:

Definition 17.5.22. Suppose ∼ is an equivalence relation on a set A. The
set of all equivalence classes is called A modulo ∼. It is denoted A/∼. △

Example 17.5.23. Suppose we define an equivalence relation ∼ on Z by
a ∼ b iff a ≡ b (mod n). Then Z/∼ is simply another name for Zn. ♦
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17.6 Hints for “Equivalence Relations and Equiv-
alence Classes” exercises

Exercise 17.1.8(a): There are two. (b): There are four. (c): There are
four. (d): There are sixteen. (e): The answer is bigger than 500!

Exercise 17.2.6(a.ii): The graph consists of shaded areas, not points or lines.

Exercise 17.1.15(c): There are 9.

Exercise 17.2.14(a): ≤ is not symmetric – you may show this by giving a
counterexample.

Exercise 17.2.14(c): The “Is it transitive?” question amounts to answering
the following: Given z1 ∼ z2 and z2 ∼ z3. Is it always true that z1 ∼ z3? If
yes, prove it; and if no, give a counterexample.

Exercise 17.2.17(a): There are actually three counterexamples, you only
need to find one.

Exercise 17.2.17(b): Give a specific example where a ∼ b and b ∼ c but
a ̸∼ c. In other words, (a, b) and (b, c) are elements of R∼, but (a, c) is not
in R∼. It is not necessary for a, b, and c to be distinct.

Exercise 17.2.17(c): Explain why it is impossible to find a counterexample.

Exercise 17.3.3(b): You may assume (without proof) that the negative of
any integer is an integer, and that the sum of any two integers is an integer.
For transitivity, notice that x− z = (x− y) + (y − z).

Exercise 17.3.3(c): This is similar to the proof in Example 17.3.2, but with
multiplication in place of addition.
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Cosets and Quotient Groups
(a.k.a. Factor Groups)

shrek: For your information, there’s a lot more to ogres than people
think.

donkey: Example?

shrek: Example... uh... ogres are like onions!

donkey: They stink?

shrek: Yes... No!

donkey: Oh, they make you cry?

shrek: No!

donkey: Oh, you leave ’em out in the sun, they get all brown, start
sproutin’ little white hairs...

shrek: NO! Layers. Onions have layers. Ogres have layers... You get
it? We both have layers.

Source: Shrek (movie), 2001.

Groups, like onions and ogres, also have layers. As we’ve seen, many
groups have subgroups inside them. These subgroups can be used to define

622
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“layers” which are called cosets. And in some cases, the “layers” (cosets)
themselves form groups, which are called quotient groups (or factor groups).

Our examination of cosets will give us deep insight into the nature and
structure of groups. We will be leaning heavily on the material from Chap-
ter 5 (which will furnish us with motivating examples), Chapter 17 (which
will aid us in our characterization of cosets), and of course Chapter 15. In
the course of reading this chapter, you may want to review these chapters.
So, here we go!

Thanks to Tom Judson for material used in this chapter.

18.1 Definition of cosets

The concept of “coset” brings together two ideas that we’ve seen before,
namely subgroups and equivalence classes. We’ll see how cosets arise from
this mix by using a familiar example.

Example 18.1.1.(Modular addition déjà vu all over again)

Back in Chapter 5 we defined modular equivalence (Definition 5.2.6),
and in Proposition 5.2.10 we gave an alternative characterization:

a ≡ b (mod m) iff a− b = k ·m, where k is an integer (that is, k ∈ Z).

Exercise 18.1.2.

(a) Give 4 integers a that satisfy the equation: a ≡ 0 (mod 3).

(b) Give 4 integers a that satisfy the equation: a ≡ 2 (mod 3).

♢

In Section 17.5 in the Equivalence Relations chapter, we saw that modular
equivalence was indeed an equivalence relation, and gave rise to equivalence
classes:

[0]3 = {All integers equivalent to 0 mod 3} = {. . .−9,−6,−3, 0, 3, 6, 9 . . .}.
[1]3 = {All integers equivalent to 1 mod 3} = {. . .−8,−5,−2, 1, 4, 7, 10 . . .}.



624CHAPTER 18 COSETS ANDQUOTIENTGROUPS (A.K.A. FACTORGROUPS)

[2]3 = {All integers equivalent to 2 mod 3} = {. . .−7,−4,−1, 2, 5, 8, 11 . . .}.

Then in the Groups chapter we introduced an alternative notation for [0]3,
namely 3Z. Since every element of [1]3 is 1 + an element of 3Z (and similarly
for [2]3) it makes sense to introduce the notation:

[1]3 = 1 + 3Z.
[2]3 = 2 + 3Z.

Notice the pattern here. Recall that 3Z is a subgroup of Z. In order to
“create” the equivalence class 1 + 3Z, we added a specific group element
(namely, 1) to every element of the subgroup 3Z. The same holds true for
2 + 3Z. In both cases, the notation follows the pattern:

(selected group element) (group operation) (subgroup).

And, since every element of [1]3 can also be viewed as an element of 3Z + 1
(and similarly for [2]3), an alternative notation that makes sense is:

[1]3 = 3Z+ 1

[2]3 = 3Z+ 2,

which follows the pattern:

(subgroup) (group operation) (selected group element). ♦

Exercise 18.1.3.

(a) Write the 5 equivalence classes (subsets of Z) which make up Z5 using
our new notation.

(b) Write all elements of Z7 using our new notation.

♢

The same pattern that we saw in the preceding example can actually be
generalized to any group possessing a subgroup:

Definition 18.1.4. Let G be a group and H a subgroup of G. The left
coset of H with representative g ∈ G is defined as the following set:

gH = {gh : h ∈ H}.

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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Right cosets are defined similarly by

Hg = {hg : h ∈ H}.

(Note that in the preceding equations, “gh” denotes g◦h where ◦ is the group
operation. This is similar to our writing xy to denote x · y in conventional
algebra). △

Definition 18.1.4 looks a little different from Example 18.1.1, e.g. we
have gH instead of 3 + Z. But in fact the pattern is the same: (group
element) (group operation) (subgroup). If the group operation is +, we will
typically write left cosets as g +H and right cosets as H + g. For all other
group operations, we’ll use the more compact notation gH and Hg.

We should note also that Definition 18.1.4 enables us to express the same
coset in multiple ways. For example, the coset 1+3Z described above could
also be written as 4 + 3Z or 7 + 3Z or −8 + 3Z. These all refer to the same
subset of Z.

Now Definition 18.1.4 distinguishes between left and right cosets. In our
earlier discussion,the left coset 1+3Z and the right coset 3Z+1 were in fact
the same set, as were 2 + 3Z and the right coset 3Z+ 2. But left and right
cosets are not always equal, as the following example shows.

Example 18.1.5. Let H be the subgroup of S3 defined by the permu-
tations {(1), (123), (132)}. (Here we are using (1) to denote the identity
permutation id.) to find cosets, we should take each element of S3 and
multiply it by the three permutations in H. Recall the elements of S3 are
(1), (123), (132), (12), (13), and (23). The left cosets of H are thus:

(1)H = (123)H = (132)H = {(1), (123), (132)},
(12)H = (13)H = (23)H = {(12), (13), (23)}.

There are 2 left cosets, and each coset can be expressed in 3 different ways.

On the other hand, the right cosets of H may be computed similarly as:

H(1) = H(123) = H(132) = {(1), (123), (132)},
H(12) = H(13) = H(23) = {(12), (13), (23)}.

So in this case once again the left cosets and right cosets are the same.
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On the other hand, let K be the subgroup of S3 defined by the permu-
tations {(1), (12)}. Then the left cosets of K are

(1)K = (12)K = {(1), (12)}
(13)K = (123)K = {(13), (123)}
(23)K = (132)K = {(23), (132)};

and the right cosets of K are

K(1) = K(12) = {(1), (12)}
K(13) = K(132) = {(13), (132)}
K(23) = K(123) = {(23), (123)}.

The left and right cosets are not the same.

Take note of something very striking about the previous two examples.
First look at the case of H ⊂ S3. In this case we ended up with 2 different
left cosets, each of which could be expressed as gH in 3 different ways. For
example, we saw that (12)H = (13)H = (23)H. In fact, these three different
g’s are exactly the elements of the coset! The very same thing applies to all
other cases. For example, we found K(23) = K(123), and that both were
equal to {(23), (123)}. This turns out to be a general property of cosets,
which we will prove in the next section. ♦

Unequal left and right cosets are actually very common. So let’s get
some practice determining both left and right cosets.

Exercise 18.1.6. Let H be the subgroup of Z6 = {0, 1, 2, 3, 4, 5} consisting
of the elements 0 and 3. (We are using our simplified notation here: ‘0’
represents 0, etc.) The left cosets are

0 +H = 3 +H = {0, 3}
1 +H = 4 +H = {1, 4}
2 +H = 5 +H = {2, 5}.

What are the right cosets? Are the left and right cosets equal? ♢

Exercise 18.1.7. List the left and right cosets of the subgroups in each of
the following. Tell whether the left and right cosets are equal.

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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(Recall the following notations: ⟨a⟩ is the cyclic group generated by the
element a in a given group G; An (the alternating group) is the set of even
permutations, on n objects; D4 is the group of symmetries of a square; and
T is the group of complex numbers with modulus 1, under the operation of
multiplication.)

(a) ⟨8⟩ in Z24

(b) ⟨3⟩ in U(8)

(c) 4Z in Z

(d) H = {(1), (123), (132)} in S4

(e) H = {1, i,−1,−i} inQ8 (See Ex-
ample 15.2.8)

(f) A4 in S4 (*Hint*)

(g) An in Sn (*Hint*)

(h) D4 in S4 (*Hint*)

(i) T in C∗

♢

Remark 18.1.8. From now on, if the left and right cosets coincide, or if
it is clear from the context to which type of coset that we are referring, we
will simply use the word “coset” without specifying left or right. △

From what we’ve seen so far, you might have noticed that it seems that
left and right cosets are always equal for abelian groups. This makes sense,
because abelian means you get the same result whether you compose on the
left or on the right. In fact, it is true in general:

Exercise 18.1.9. Show that if G is an abelian group and H is a subgroup
of G, then any left coset gH is equal to the right coset Hg. (*Hint*) ♢

But abelian groups are not the only groups in which left cosets are equal
to right cosets–see for example the first case in Example 18.1.5. So we
still haven’t answered the question of what is the most general situation in
which left cosets and right cosets are equal. We’ll take this issue up again
in Section 18.4.1.

18.2 Cosets and partitions of groups

In Example 18.1.1, the cosets that we described were equivalence classes. We
saw in Chapter 17 that equivalence classes form a partition which divides
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up the containing set into disjoint subsets. This is actually a general fact
that is true for all cosets, and we will prove this below. In the proof, we will
need the following proposition, which shows that there are several different
ways to characterize the situation when two cosets are equal.

Proposition 18.2.1. Let H be a subgroup of a group G and suppose that
g1, g2 ∈ G. The following conditions are equivalent.

1. g1H = g2H;

2. g−1
1 g2 ∈ H.

3. g2 ∈ g1H;

4. g2H ⊂ g1H; (Note: “⊂” means that equality is also possible)

5. Hg−1
1 = Hg−1

2 ;

The proof of this Proposition is laid out in the Exercise 18.2.2 below,
and you are asked to fill in the details. Parts (a)-(f) of the exercise establish
the following steps:

(1) ⇒
(a)

(2) ⇒
(b)

(3) ⇒
(c)

(4) ⇒
(d)

(1) and (2) ⇔
(e,f)

(5).

Exercise 18.2.2.

(a) Show that condition (1) implies condition (2). (*Hint*)

(b) Show that condition (2) implies condition (3). (*Hint*)

(c) Show that condition (3) implies condition (4). (*Hint*)

(d) Show that condition (4) implies condition (1). (*Hint*)

(e) Show that condition (2) implies condition (5). (*Hint*)

(f) Show that condition (5) implies condition (2).

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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♢

Exercise 18.2.3. Proposition 18.2.1 deals with left cosets. A parallel
proposition holds for right cosets. List the five equivalent conditions for right
cosets that correspond to the five conditions given in Proposition 18.2.1. ♢

Now we’re ready to prove that the cosets of a subgroup always form a
partition of the group that contains it:

Proposition 18.2.4. Let H be a subgroup of a group G. Then the left
cosets of H in G partition G. That is, the group G is the disjoint union of
the left cosets of H in G.

Proof. The proof has two parts, namely (1) Cosets are disjoint; and (2)
The union of cosets is all of G.

(1) Let g1H and g2H be two cosets of H in G. We must show that either
g1H ∩ g2H = ∅ or g1H = g2H. Suppose that g1H ∩ g2H ̸= ∅ and
a ∈ g1H ∩ g2H. Then by the definition of a left coset, a = g1h1 = g2h2
for some elements h1 and h2 in H. Hence, g1 = g2h2h

−1
1 or g1 ∈ g2H.

By Proposition 18.2.1, g1H = g2H.

(2) Exercise 18.2.5. Complete part (2) of the proof: that is, prove that⋃
g∈G gH = G. ♢

□

Remark 18.2.6. Right cosets also partition G. The partition may not be
the same as the partition using the left cosets, since the left and right cosets
aren’t necessarily equal, The proof of this fact is exactly the same as the
proof for left cosets except that all group multiplications are done on the
right side of H. △

Let’s consider now the question of how many cosets there are for a par-
ticular subgroup within a given group. First, we define some convenient
notation:

Definition 18.2.7. Let G be a group and H be a subgroup of G. The
index of H in G is the number of left cosets of H in G. We will denote the
index of H in G by [G : H]. △
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Example 18.2.8. Let G = Z6 and H = {0, 3}. Then looking back at
Exercise 18.1.6, we see that [G : H] = 3. ♦

Exercise 18.2.9. Based on your work in Exercise 18.1.6, how many right
cosets of H = {0, 3} were there in Z6? ♢

Example 18.2.10. Suppose that G = S3, H = {(1), (123), (132)}, and
K = {(1), (12)}. Then looking back at Example 18.1.5, we can see that
[G : H] = 2 and [G : K] = 3. ♦

Exercise 18.2.11. How many right cosets of H = {(1), (123), (132)} in S3
were there? How about right cosets of K = {(1), (12)} in S3? ♢

Exercise 18.2.12. Using your work from Exercise 18.1.7, find:

(a) [Z24 : ⟨8⟩] and the number of right cosets of ⟨8⟩ in Z24.

(b) [U(8) : ⟨3⟩] and the number of right cosets of ⟨3⟩ in U(8).

(c) [Z : 4Z] and the number of right cosets of 4Z in Z.

(d) [S4 : {(1), (123), (132)}] and the number of the right cosets of {(1), (123), (132)}
in S4.

(e) [S4 : A4] and the number of right cosets of A4 in S4.

(f) [Sn : An] and the number of right cosets of An in Sn.

(g) [S4 : D4] and the number of right cosets of D4 in S4.

(h) [C∗ : T] and the number or right cosets of T in C∗.

♢

The last several examples seem to suggest that although the the left and
right cosets of a subgroup aren’t always equal, it seems the number of them
is always the same. Indeed we can prove this:

Proposition 18.2.13. Let H be a subgroup of a group G. The number of
left cosets of H in G is the same as the number of right cosets of H in G.
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Proof. Let L and R denote the set of left and right cosets of H in G,
respectively. If we can define a bijection ϕ : L → R, then the proposition
will be proved. If gH ∈ L, let ϕ(gH) = Hg−1. By Proposition 18.2.1, the
map ϕ is well-defined; that is, if g1H = g2H, then Hg−1

1 = Hg−1
2 . To show

that ϕ is one-to-one, suppose that

Hg−1
1 = ϕ(g1H) = ϕ(g2H) = Hg−1

2 .

Again by Proposition 18.2.1, g1H = g2H. The map ϕ is onto since ϕ(g−1H) =
Hg. □

Exercise 18.2.14. Consider the left cosets of SL2(R) in GL2(R). Show
that two matrices in GL2(R) are in the same left coset of SL2(R) if and
only if they have the same determinant. Is the same true for right cosets?
(Prove your answer.) (*Hint*) ♢

18.3 Lagrange’s theorem, and some consequences

18.3.1 Lagrange’s theorem

At the beginning of the chapter, we compared cosets to layers of an onion.
Indeed, as we saw in the last section, this is a good analogy because the
cosets of a subgroup partition the group. However, an even better analogy
is to slices of a loaf of sandwich bread–because as we’ll see in this section,
every coset of a particular subgroup within a given group has exactly the
same size.

What may we conclude from this? Let’s push our analogy with sandwich
bread a little farther. Suppose the bread has raisins in it, and each slice has
exactly the same number of raisins. Then the number of raisins in the loaf
must be equal to the sum of all raisins in all the slices, that is:

|raisins in loaf| = |raisins in each slice| · |slices|,
where as usual the | · · · | notation signifies “size” or “number of”. Applying
this same reasoning to groups and their subgroups leads to a very general
result called Lagrange’s theorem. This far-reaching theorem will enable us
to prove some surprising properties of subgroups, their elements, and even
some results in number theory. So let’s get started.
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Remark 18.3.1. In the following discussion, for specificity’s sake we will
use left coset notation. However, just lke we saw in the last section (Re-
mark 18.2.6), everything we say about left cosets is also true for right cosets.
Indeed, to prove the cases for the right cosets, you simply need to take the
left coset proofs given below and switch around each coset expression and
group operation. △

As mentioned above, to prove Lagrange’s theorem we first need to prove
that every left coset of a subgroup has the exactly the same size:

Proposition 18.3.2. Let H be a subgroup of G with g ∈ G and define
a map ϕ : H → gH by ϕ(h) = gh. The map ϕ is a bijection; hence, the
number of elements in H is the same as the number of elements in gH.

Proof. We first show that the map ϕ is one-to-one. Suppose that ϕ(h1) =
ϕ(h2) for elements h1, h2 ∈ H. We must show that h1 = h2, but ϕ(h1) = gh1
and ϕ(h2) = gh2. So gh1 = gh2, and by left cancellation h1 = h2. To show
that ϕ is onto is easy. By definition every element of gH is of the form gh
for some h ∈ H and ϕ(h) = gh. □

Given this proposition Lagrange’s theorem falls right out:

Proposition 18.3.3.(Lagrange’s theorem) Let G be a finite group and
let H be a subgroup of G. Then |G|/|H| = [G : H] is the number of distinct
left cosets of H in G. In particular, the number of elements in H must
divide the number of elements in G.

Proof. The group G is partitioned into [G : H] distinct left cosets. Each
left coset has |H| elements; therefore, |G| = [G : H]|H|. □

Consider for a moment what we’ve just proven. The number of elements
in a subgroup must divide evenly into the number of elements in the group;
you can’t have just any number of elements in a subgroup. This is a very
powerful tool to give insight into the structure of groups.

Example 18.3.4. Let G be a group with |G| = 25. Then since 2 doesn’t
divide 25 evenly, Lagrange’s theorem implies that G can’t possibly have a
subgroup with 2 elements. ♦

Exercise 18.3.5. Suppose that G is a finite group with an element g of
order 5 and an element h of order 7.
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(a) Show that G has subgroups of order 5 and 7. (*Hint*)

(b) Why must |G| ≥ 35?

♢

Exercise 18.3.6. Suppose that G is a finite group with 60 elements. What
are the possible orders for subgroups of G? ♢

We can take the result in Lagrange’s theorem a step farther by con-
sidering subgroups of subgroups. We can prove a multiplication rule for
indices:

Proposition 18.3.7. Let H and K be subgroups of a finite group G such
that G ⊃ H ⊃ K. Then

[G : K] = [G : H][H : K].

Proof. Observe that

[G : K] =
|G|
|K|

=
|G|
|H|

· |H|
|K|

= [G : H][H : K].

□

Remark 18.3.8. (historical background) Joseph-Louis Lagrange (1736–
1813), born in Turin, Italy, was of French and Italian descent. His talent for
mathematics became apparent at an early age. Leonhard Euler recognized
Lagrange’s abilities when Lagrange, who was only 19, communicated to Eu-
ler some work that he had done in the calculus of variations. That year he
was also named a professor at the Royal Artillery School in Turin. At the
age of 23 he joined the Berlin Academy. Frederick the Great had written to
Lagrange proclaiming that the “greatest king in Europe” should have the
“greatest mathematician in Europe” at his court. For 20 years Lagrange
held the position vacated by his mentor, Euler. His works include contribu-
tions to number theory, group theory, physics and mechanics, the calculus
of variations, the theory of equations, and differential equations. Along with
Laplace and Lavoisier, Lagrange was one of the people responsible for de-
signing the metric system. During his life Lagrange profoundly influenced
the development of mathematics, leaving much to the next generation of
mathematicians in the form of examples and new problems to be solved. △
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18.3.2 Orders of elements, Euler’s theorem, Fermat’s little
theorem, and prime order

Now let’s really put Lagrange’s theorem to work. Note that Lagrange’s
theorem is an extremely general result–it applies to any subgroup of any
finite group. So let’s consider one particular type of subgroup, namely cyclic
subgroups of the form ⟨g⟩ where g is an element of a given group G. (See
Proposition 15.5.16 in Section 15.5.2 for the definition of ⟨g⟩ and the proof
that it is indeed a group).

Proposition 18.3.9. Suppose that G is a finite group and g ∈ G. Then
the order of g must divide the number of elements in G.

Proof. The order of a group element g, which is denoted as |g|, is defined
in Definition 15.5.19 in Section 15.5.2. We indicated in Exercise 15.5.26 in
that same section that |g| is equal to |⟨g⟩|, which is the order of the cylic
subgroup generated by g. It follows immediately from Lagrange’s theorem
that |g| must divide |G|. □

To show the power of this result, we’ll apply it to the group of units
U(n) which was introduced in Section 15.2.1.

But before we do this, let’s do some exploration. Recall that the elements
of U(n) are the positive integers that are less than n and relatively prime
to n (we showed in Exercise 15.2.27 of Section 15.2.1 that these elements
actually form a group. There is a special notation for the number of elements
in U(n):

Definition 18.3.10. For n > 1, define ϕ(n) as the number of natural
numbers that are less than n and relatively prime to n. Alternatively, we
can say that ϕ(n) is the number of natural numbers m where m < n and
gcd(m,n) = 1. In order to make ϕ a function on the natural numbers, we
also define ϕ(1) = 1. The function ϕ is called the Euler ϕ-function . △

Exercise 18.3.11. Evaluate the following:

(a) ϕ(12)

(b) ϕ(16)

(c) ϕ(20)

(d) ϕ(23)

(e) ϕ(51)

(f) ϕ(p), where p is prime.
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(g) ϕ(p2), where p is prime (justify
your answer).

(h) ϕ(pn), where p is prime and n ∈
N (justify your answer).

(i) ϕ(pq), where p and q are primes
and p ̸= q (justify your answer).

(*Hint*) ♢

If we now apply Lagrange’s theorem to U(n), we obtain an important
result in number theory which was first proved by Leonhard Euler in 1763.

Proposition 18.3.12. (Euler’s theorem) Let a and n be integers such that
n > 0 and gcd(a, n) = 1. Then aϕ(n) ≡ 1 (mod n).

Proof. First, let r be the remainder when a is divided by n. We may
consider r as an element of U(n).

As noted above, the order of U(n) is ϕ(n). Lagrange’s theorem then
tells us that |r| divides ϕ(n), so we can write: ϕ(n) = k|r|, where k ∈ N.
Consequently, considering r as an element of U(n), we have rϕ(n) = rk|r| =
(r|r|)k = (1)k = 1 (take note that the multiplication that is being used here
is modular multiplication, not regular multiplication).

Finally, we may use the fact that a ≡ r (mod n) and apply Exercise 5.4.7
in Section 5.4.1 to conclude that aϕ(n) ≡ 1 (mod n).

□

Exercise 18.3.13.

(a) Verify Euler’s theorem for n = 15 and a = 4.

(b) Verify Euler’s theorem for n = 22 and a = 3.

♢

Exercise 18.3.14. Evaluate the following, using the results of Exercise 18.3.11

(a) mod (5200, 12)

(b) mod (1348, 16)

(c) mod (15221, 23)

(d) mod (9111, 121)
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(e) mod (10195, 221)

(f) mod
((

p+1
2

)p
, p
)
, where p is

prime.

(g) mod ((p + 1)p
2
, p2), where p is

prime.

♢

In the following exercise you will prove Fermat’s little theorem, which
may be thought of as a special case of Euler’s theorem:

Exercise 18.3.15. Suppose that p is a prime number, and a is a natural
number which is relatively prime to p. Show that ap−1 ≡ 1 mod p. ♢

We can also apply Proposition 18.3.9 to groups of prime order, as in the
following exercise.

Exercise 18.3.16. Let G be a group such that |G| = p, where p is a prime
number.

(a) Let a be an element of G \ {e}. What does Proposition 18.3.9 tell us
about |a|? (Recall that ‘\’ is the set difference operation, defined in
Definition 7.1.17). (*Hint*)

(b) Prove that G is cyclic.

(c) Describe the set of generators of G (recall that g ∈ G is a generator of
G if ⟨g⟩ = G.)

♢

The results of the preceding exercise can be summarized as follows:

Proposition 18.3.17. Let |G| = p with p a prime number. Then G is
cyclic and any g ∈ G such that g ̸= e is a generator.

Later we will use this proposition to show that all groups of prime order
p are the “same” in some sense (see Section 20.4.1).

Finally, we can use Lagrange’s theorem to show that groups of prime
order have a very simple structure:
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Exercise 18.3.18. LetG be a group of prime order. Use Proposition 18.3.17
to show that the only proper subgroup of G is the trivial subgroup {e}. ♢

Exercise 18.3.18 shows that groups of prime order (such as Zp) are “sim-
ple” in the sense that they don’t contain any nontrivial subgroups. In Sec-
tion 18.5.1 we will talk more about “simple” groups.

18.4 Normal subgroups and factor groups

We saw in Section 18.1 that if H is a subgroup of a group G, then right
cosets of H in G are not always the same as left cosets. It’s true he number
of right cosets and left cosets are always equal, and the number of elements
in the left and right cosets match; but the right and left cosets themselves
may not equal each other: in other words, it’s not always the case that
gH = Hg for all g ∈ G. Those subgroups for which this property does hold
play a critical role in group theory: they allow for the construction of a new
class of groups, called quotient groups (or factor groups.

18.4.1 Normal subgroups

First, let’s give a name to these nice subgroups:

Definition 18.4.1. A subgroupH of a group G is normal in G if gH = Hg
for all g ∈ G. That is, a normal subgroup of a group G is one in which the
right and left cosets for every group element are precisely the same. △

Example 18.4.2. Think back to Example 18.1.5 earlier in the chapter. H
was the subgroup of S3 consisting of elements (1) and (12). Since

(123)H = {(123), (13)} and H(123) = {(123), (23)},

H cannot be a normal subgroup of S3. However, the subgroup N , consisting
of the permutations (1), (123), and (132), is normal since the cosets of N
are

N = {(1), (123), (132)}
(12)N = N(12) = {(12), (13), (23)}.

♦
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Exercise 18.4.3. Looking back at Exercise 18.1.7, which of the subgroups
were normal? ♢

Exercise 18.4.4. Is SL2(R) a normal subgroup of GL2(R)? Prove or dis-
prove. (*Hint*) ♢

Exercise 18.4.5. Prove or disprove: {1,−1, i,−i} is a normal subgroup of
Q8.(*Hint*) ♢

Now let’s see if you can prove some general facts about normal subgroups.
We’ll start with a warm-up:

Exercise 18.4.6. Prove that for any group G, the set {e} is a normal
subgroup of G (in other words the identity of group is always a normal
subgoup). ♢

This next one often comes in handy.

Proposition 18.4.7. Let G be a group, and let H be a subgroup of G with
index 2. Then H is a normal subgroup of G.

Exercise 18.4.8. Prove Proposition 18.4.7 by proving each of the following
steps.

(a) Prove that G \H is a left coset of H in G.

(b) Prove that G \H is a right coset of H in G.

(c) Prove that H is normal in G.

♢

Exercise 18.4.9. Prove that any subgroup of an abelian group is normal.
(*Hint*) ♢

Here’s an alternative way to characterize normal subgroups:

Proposition 18.4.10. Let H be a subgroup of G. Then H is normal iff
every left coset of H is also a right coset of H.
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Exercise 18.4.11. Prove Proposition 18.4.10. ♢

The following proposition can be useful when trying to prove that a
certain subgroup is normal. It gives several different characterizations of
normal subgroups.

Proposition 18.4.12. Let G be a group and N be a subgroup of G. Then
the following statements are equivalent.

1. The subgroup N is normal in G.

2. For all g ∈ G, gNg−1 ⊂ N .

3. For all g ∈ G, gNg−1 = N .

Proof. (1) ⇒ (2). Since N is normal in G, gN = Ng for all g ∈ G. Hence,
for a given g ∈ G and n ∈ N , there exists an n′ in N such that gn = n′g.
Therefore, gng−1 = n′ ∈ N or gNg−1 ⊂ N .

(2) ⇒ (3). Let g ∈ G. Since gNg−1 ⊂ N , we need only show N ⊂
gNg−1. For n ∈ N , g−1ng = g−1n(g−1)−1 ∈ N . Hence, g−1ng = n′ for
some n′ ∈ N . Therefore, n = gn′g−1 is in gNg−1.

(3) ⇒ (1). Suppose that gNg−1 = N for all g ∈ G. Then for any n ∈ N
there exists an n′ ∈ N such that gng−1 = n′. Consequently, gn = n′g or
gN ⊂ Ng. Similarly, Ng ⊂ gN . □

Proposition 18.4.12 enables us to formulate an alternative definition for
normal subgroups:

Definition 18.4.13. Given a group G, a subgroup H ⊂ G is called a
normal subgroup if for every g ∈ G and for every h ∈ H, we have that
ghg−1 ∈ H. △

Exercise 18.4.14.efine the set gHg−1 as follows: gHg−1 = {ghg−1, h ∈ H}.
Show that Definition 18.4.13 is equivalent to the condition that gHg−1 = H.
♢

Exercise 18.4.15. Prove that Definition 18.4.13 is equivalent to Defini-
tion 18.4.1. (*Hint*) ♢
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Exercise 18.4.16. We showed in Exercise 15.6.7 that the intersection of
two subgroups of the same group is also a subgroup. Show that if the two
subgroups are normal, then the intersection is also a normal. ♢

Exercise 18.4.17. In the following exercises, G is a group and H is a
subgroup of G.

(a) Show that for any g ∈ G then gHg−1 is also a subgroup of G.

(b) Define a function f : H → gHg−1 as follows: f(h) = ghg−1. Show that
f is a bijection, and thus |H| = |gHg−1|.

(c) If a group G has exactly one subgroup H of order k, prove that H is
normal in G. (*Hint*)

♢

Finally, here’s one that will be very useful in the very near future.

Exercise 18.4.18.

(a) Let H ⊂ G be a normal subgroup, and let g ∈ G, h ∈ H. Show that
g−1hg ∈ H.

(b) Let H ⊂ G be a normal subgroup, and let g ∈ G, h ∈ H. Use part (a)
to show how that there exists an h′ ∈ H such that hg = gh′.

(c) Let H ⊂ G be a normal subgroup, and suppose x1 ∈ g1H and x2 ∈ g2H.
Prove that x1x2 ∈ g1g2H. (*Hint*)

♢

18.4.2 Factor groups

So what’s the hubbub about these normal subgroups? We’ve been promising
a grand revelation. It turns out that the cosets of normal subgroups have
some very special properties.
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Example 18.4.19. Consider the normal subgroup 3Z of Z that we started
exploring at the beginning of the chapter. The cosets of 3Z in Z were

0 + 3Z = {. . . ,−3, 0, 3, 6, . . .}
1 + 3Z = {. . . ,−2, 1, 4, 7, . . .}
2 + 3Z = {. . . ,−1, 2, 5, 8, . . .}.

Now just for curiosity’s sake, let’s say we took every element in 0 + 3Z
and added them to every element in 1 + 3Z. What would be the resulting
set? Try some examples: take an arbitrary element of 0 + 3Z, and add to
it an arbitrary element of 1 + 3Z. You will find that the result is always in
1 + 3Z. Let’s give a proof of this. First let’s give some notation:

Definition 18.4.20.(Set addition) Let A and B be two sets of real numbers.
Then the sum A+B is defined as the set:

A+B := {a+ b, where a ∈ A and b ∈ B}.

△

Notice that we are giving a new meaning to the symbol ‘+’, because we are
applying it to sets rather than numbers.

In terms of this new notation, what we’re trying to prove is:

(0 + 3Z) + (1 + 3Z) = 1 + 3Z.

As we’ve done many times before, we may prove that these two sets
are equal by showing that all elements of the left-hand set are contained
in the right-hand set, and vice versa. So let’s take an arbitrary element of
(0+3Z)+(1+3Z). We may write this element as (0+3m)+(1+3n), where
m,n ∈ Z. Basic algebra gives us:

(0 + 3m) + (1 + 3n) = 1 + 3(m+ n),

which is in 1 + 3Z. This shows that:

(0 + 3Z) + (1 + 3Z) ⊂ 1 + 3Z.

On the other hand, we may write an arbitrary element of 1 + 3Z as 1 + 3k,
which is equal to 0 + (1 + 3k). Since 0 ∈ 0 + 3Z, we have

(0 + 3Z) + (1 + 3Z) ⊃ 1 + 3Z,
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and the proof is complete.

Let’s step back and see what we’ve done. We’ve taken one coset of 3Z
(i.e. 0 + 3Z), and “added” a second coset (i.e. 1 + 3Z) to it, to get a third
coset of 3Z. This sounds like closure. So let’s check that we have it. Doing
the same thing with all pairs of cosets, we obtain the following “addition”
table:

+ 0 + 3Z 1 + 3Z 2 + 3Z
0 + 3Z 0 + 3Z 1 + 3Z 2 + 3Z
1 + 3Z 1 + 3Z 2 + 3Z 0 + 3Z
2 + 3Z 2 + 3Z 0 + 3Z 1 + 3Z

So indeed we have closure. It’s beginning to look like we have a group
here. Actually, we can see an identity ( 0+3Z) and an inverse for every coset
(for example [1 + 3Z]−1 = 2 + 3Z). It turns that the associative property
also holds: this follows from the associativity of ordinary addition. So we
got it: the cosets of 3Z themselves form a group! (Note the Cayley table for
this group looks suspiciously the same as the Cayley table for Z3; we’ll pick
up on this in Chapter 20.) ♦

So this is the grand revelation about normal subgroups: the cosets of a
normal subgroup form a group. But we shouldn’t jump the gun: we’ve only
shown it’s true for a special case. Now we have to get down to the hard
work of proving it in general. First we have to generalize Definition 18.4.20
to other group operations.

Definition 18.4.21.(Set composition) Let A and B be two subsets of a
group G. Then the composition A ◦B (or AB) is defined as the set:

A ◦B := {ab, where a ∈ A and b ∈ B}.

△

The reason that normal subgroups are special is that set composition
defines an operation on cosets:

Proposition 18.4.22. Let N be a normal subgroup of a group G. If
a, b ∈ G , then aN ◦ bN = abN .

Proof. The proof parallels the argument in Example 18.4.19. Let x ∈ aN
and y ∈ bN . Using Exercise 18.4.18 part (c), we may conclude that xy ∈
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abN . This shows that aN ◦ bN ⊂ abN . On the other hand, let z ∈ abN .
Then z = ae ◦ bn for some n ∈ N , which implies that z ∈ aN ◦ bN . This
shows that aN ◦ bN ⊃ abN , and the proof is finished. □

Proposition 18.4.23. Let N be a normal subgroup of a group G. The
cosets of N in G form a group under the operation of set composition.

Proof. We have shown that the set composition operation is well-defined
and closed on the set of cosets ofN , provided thatN is normal. Associativity
follows by the associativity of the group operation defined on G. Using
Proposition 18.4.22 we have that eN ◦ aN = aN ◦ eN = aN , so eN = N is
an identity. Proposition 18.4.22 also gives us that g−1N ◦gN = gN ◦g−1N =
eN , so the inverse of gN is g−1N . □

Let’s define a special notation for our new discovery.

Definition 18.4.24. If N is a normal subgroup of a group G, then the
group of cosets of N under the operation of set composition is denoted as
G/N This group is called the quotient group or factor group of G and
N . △

Note that the order of G/N is [G : N ], the number of cosets of N in G.

Remark 18.4.25. In Example 18.4.19 above, the quotient group would
have been labeled Z/3Z. In general, the subgroup nZ of Z is normal. The
cosets of the quotient group Z/nZ then are

nZ; 1 + nZ; 2 + nZ; · · · (n− 1) + nZ.

and the sum of the cosets k + Z and l + Z is k + l + Z. Notice that we
have written our cosets additively, because the group operation is integer
addition. △

It is very important to remember that the elements in a quotient group
are not the elements of the original group, but sets of elements in the orig-
inal group. As well then, the operation for the quotient group is not the
original operation of the group (which was used to compose elements), but
a convenient derivative of it that we use to compose sets together. Both of
these facts take a second to get use to, so let’s practice:

Example 18.4.26. Consider the normal subgroup of S3, H = {(1), (123), (132)}
which we started exploring in Example 18.1.5. The cosets of H in S3 were
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H and (12)N . Using the group operation from Defintion 18.4.24 to com-
pose these cosets together, the quotient group S3/N then has the following
Cayley table.

N (12)N

N N (12)N
(12)N (12)N N

Notice that S3/N is a smaller group than S3 (2 elements compared to
6 eleemnts). So the quotient group then displays a pared down amount of
information about S3. Actually, N = A3, the group of even permutations,
and (12)N = {(12), (13), (23)} is the set of odd permutations. The infor-
mation captured in G/N is parity; that is, multiplying two even or two odd
permutations results in an even permutation, whereas multiplying an odd
permutation by an even permutation yields an odd permutation. This in-
formation, as well as the Cayley table above, might suggest to you that the
quotient group is equivalent to another group we know. Again, we’ll pick
up on this in the Isomorphisms chapter. ♦

Now it’s your turn:

Exercise 18.4.27. Give the Cayley tables for the following quotient groups:

(a) Z/4Z

(b) Z/6Z

(c) Z24/⟨8⟩

(d) Z20/⟨4⟩

(e) Z6/{0, 3}

(f) Z8/{0, 4}

(g) U(8)/⟨3⟩

(h) U(20)/⟨3⟩

♢

Example 18.4.28. Consider the dihedral group Dn that we studied in
the Symmetries chapter, which was the group of symmetries (rotations and
reflections) of a regular n sided polygon. We determined in the latter part
of that chapter that Dn was actually generated by the two elements r and
s, satisfying the relations

rn = id

s2 = id

srs = r−1.

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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Any element of Dn can be written as srk for some integer 0 ≤ k < n.

The element r generates the cyclic subgroup of rotations, Rn, of Dn.
Since (srk)r(srk)−1 = srkrr−ks = r−1 ∈ Rn, then by Definition 18.4.13 the
group of rotations is a normal subgroup of Dn; therefore, Dn/Rn is a group.
Now there are 2n symmetries in Dn and n rotations in Rn; so Lagrange’s
theorem tells us the number of cosets, [Dn : Rn] =

|Dn|
|Rn| =

2n
n = 2.

Since Rn, the rotations, are one of the cosets, the reflections must be the
other coset. So the group Dn/Rn boils down to to two elements, rotations
and reflections, described by a 2× 2 Cayley table. ♦

Exercise 18.4.29. Construct the Cayley table for Dn/Rn. ♢

18.5 Factoring of groups and simple groups

18.5.1 Concepts, definitions, and examples

In the previous section we talked about how a normal subgroup enables us
to “factor” a group to obtain two groups with fewer elements (i.e. the group
of cosets, and the normal subgroup). This seems quite similar to the idea of
factoring positive integers as a product of smaller numbers. In fact, just as
with positive integers, the process can be continued. To be precise: suppose
that G is a group, and N1 is a normal subgroup. Suppose further that N2 is
a normal subgroup of N1. Then we can “factor” G into three groups, namely
G/N1, N1/N2, and N2. Evidently the process can be continued: if N2 has
a normal subgroup N3, then we can “factor” G into four groups: G/N1,
N1/N2, N2/N3, and N3. When does this process end? Eventually, we will
reach a group in which the only normal subgroup is the trivial subgroup {e}.
But factoring by {e} doesn’t give a group with fewer elements, because the
number of cosets of the identity in any group G is (by Lagrange’s theorem)

|G|
|{e}|

=
|G|
1

= |G|.

Thus factoring a group by {e} is kind of like dividing an integer by 1: it
doesn’t change anything. So a group with no nontrivial normal subgroups
is like a prime number: it can’t be factored any further. A group with no
nontrivial normal subgroups is called a simple group. Just like any positive
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integer uniquely factors into a product of prime numbers, it turns out that
any group can be factored into a series of simple groups, and the factors are
(in some sense) unique. There’s a beautiful theorem, called the Jordan-
Hölder Theorem , which characterizes these factors. Unfortunately, the
precise statement of the theorem is somewhat involved, so we leave to the
interested reader to research this topic further.1

Exercise 18.5.1.

(a) For the dihedral group D5, find a normal subgroup N such that D5/N
and N are both simple.

(b) For the dihedral group D4, find subgroups N,P such that P ⊂ N1 and
D4/N , N/M , and M are all simple groups.

(c) For the group Z6, find a normal subgroup N such that Z6/N and N
are both simple. Find also a different subgroup M such that Z6/M
and M are both simple. Show that Z6/N is isomorphic to M and
Z6/M is isomorphic to N . (Recall our discussion of “isomorphic” in
Section 14.2.2.) This exercise shows that although the factors of a group
are unique (up to isomorphism), the group may be “broken down” in
different ways to obtain the factors.

(d) For the group S3, find a subgroup N such that S3/N and N are both
simple. Show that these groups are isomorphic to the two groups in
each factorization in part (c). This shows that although the factors of
any group are unique, it’s possible to have two different groups with the
same factors.

♢

We’ve been comparing simple groups to prime numbers, but actually
they are somewhat more complicated than prime numbers. There are several
infinite classes of simple groups (as well as a few simple groups which defy
classification–see the Remark at the end of this section.) We’ve already
seen one such class: the groups of prime order. As we noted at the end of
Section 18.3, these groups are simple since they have no nontrivial proper
subgroups.

1See for example http://turnbull.mcs.st-andrews.ac.uk/~colva/topics/ch4.pdf.

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
http://turnbull.mcs.st-andrews.ac.uk/~colva/topics/ch4.pdf
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18.5.2 Simplicity of the alternating groups An for n ≥ 5

Let’s consider the simplicity question for some other groups. We’ll start
with the symmetric groups Sn (permutations on n numbers).

Exercise 18.5.2. Show that Sn is not simple for n ≥ 3.(*Hint*) ♢

So the Sn’s aren’t simple in general. How about the An’s?

Exercise 18.5.3.

(a) Show that A2 and A3 are simple.

(b) Let H be the subset of A4 consisting of elements which are products of
two disjoint transpositions (that is, the cycle structure is two 2-cycles).
Show that H is a subgroup of A4, and in fact is a normal subgroup of
A4.

♢

Although A4 is not simple, it turns out that the alternating groups An
are simple for n ≥ 5. We will prove this result by looking at properties of
3-cycles. The strategy is to establish the following two facts:

(1) The only normal subgroup of An(n ≥ 3) that contains a 3-cycle is An
itself.

(2) Any nontrivial normal subgroup of An(n ≥ 5) contains a 3-cycle.

Facts (1) and (2) then imply that the only nontrivial normal subgroup of
An(n ≥ 5) is An itself.

Before we can prove facts (1) and (2), we need first a preliminary result:

Proposition 18.5.4. The alternating group An is generated by 3-cycles for
n ≥ 3.

Proof. We know that any element σ of An is an even permutation, so σ
can be expressed as the product of an even number of transpositions. In
this expression for σ we may pair up the transpositions two by two, and
thus obtain an expression for σ as a product of pairs of transpositions.
Now consider any pair of transpositions. Either the pair has both elements
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in common; or the pair has one element in common; or the pair has no
elements in common. In other words, the three possibilities for any pair of
transpositions are:

(ab)(ab) or (ab)(bc) or (ab)(cd) (where a, b, c, d are all different elements of An).

We may write all of these pairs of transpositions as follows:

(ab)(ab) = e

(ab)(bc) = (abc)

(ab)(cd) = (abc)(bcd).

By substituting pairs of transpositions in the product expression for σ with
equivalent 3-cycle expressions, we may express the arbitrary element σ ∈ An
as a product of 3-cycles. □

Before continuing onward with our proof, let’s do a few examples to see
how this works.

Exercise 18.5.5. Express the following permutations as products of 3-
cycles.

(a) (12)(34)(56)(78)

(b) (13)(35)(57)(79)(24)(68)

(c) (1357)(2468)

(d) (428)(1628)

♢

Armed with Proposition 18.5.4 we’re now able to prove fact (1).

Proposition 18.5.6. Let N be a normal subgroup of An, where n ≥ 3. If
N contains a 3-cycle, then N = An.

Proof. We will first show that An is generated by 3-cycles of the specific
form (ijk), where i and j are fixed in {1, 2, . . . , n} and we let k vary. Every
3-cycle is the product of 3-cycles of this form, since

(iaj) = (ija)2

(iab) = (ijb)(ija)2

(jab) = (ijb)2(ija)

(abc) = (ija)2(ijc)(ijb)2(ija).

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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Now suppose that N is a nontrivial normal subgroup of An for n ≥ 3 such
that N contains a 3-cycle of the form (ija). Using the normality of N , we
see that

[(ij)(ak)](ija)2[(ij)(ak)]−1 = (ijk)

is in N . Hence, N must contain all of the 3-cycles (ijk) for 1 ≤ k ≤ n. By
Proposition 18.5.4, these 3-cycles generate An; hence, N = An. □

Let’s move on to fact (2):

Proposition 18.5.7. For n ≥ 5, every nontrivial normal subgroup N of An
contains a 3-cycle.

Proof. Let σ be an arbitrary element in a normal subgroup N . The
possible cycle structures for σ are as follows:

(i) σ is a 3-cycle.

(ii) The cycle structure of σ includes an r-cycle where r > 3.

(iii) The cycle structure of σ includes at least two 3-cycles.

(iv) The cycle structure of σ includes just one 3-cycle and an even number
of 2-cycles.

(v) the cycle structure of σ includes an even number of 2-cycles.

We may treat these cases one by one.

(i) If σ is a 3-cycle, then we are done.

(ii) In this case we can write σ = τ(a1a2 · · · ar), where r > 3 and τ includes
cycles that are disjoint from (a1a2 · · · ar). Then

(a1a2a3)σ(a1a2a3)
−1

is in N since N is normal. It follows that

σ−1(a1a2a3)σ(a1a2a3)
−1
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is also in N since N is closed. Now since

σ−1(a1a2a3)σ(a1a2a3)
−1

= σ−1(a1a2a3)σ(a1a3a2)

= (a1a2 · · · ar)−1τ−1(a1a2a3)τ(a1a2 · · · ar)(a1a3a2)
= (a1arar−1 · · · a2)(a1a2a3)(a1a2 · · · ar)(a1a3a2)
= (a1a3ar),

N must contain a 3-cycle; hence, N = An.

(iii) In this case we may write

σ = τ(a1a2a3)(a4a5a6),

where the permutation τ consists of cycles that are disjoint from {a1, a2, a3, a4, a5, a6}.
We may argue as in case (ii) that

σ−1(a1a2a4)σ(a1a2a4)
−1 ∈ N,

and may compute

σ−1(a1a2a4)σ(a1a2a4)
−1

= [τ(a1a2a3)(a4a5a6)]
−1(a1a2a4)τ(a1a2a3)(a4a5a6)(a1a2a4)

−1

= (a4a6a5)(a1a3a2)τ
−1(a1a2a4)τ(a1a2a3)(a4a5a6)(a1a4a2)

= (a4a6a5)(a1a3a2)(a1a2a4)(a1a2a3)(a4a5a6)(a1a4a2)

= (a1a4a2a6a3).

So N contains a disjoint cycle of length greater than 3, and we can
apply case (ii) to conclude that N must also contain a 3-cycle.

(iv) In this case we may write σ = τ(a1a2a3), where τ is the product of
disjoint 2-cycles.Then σ2 ∈ N since N is closed, and

σ2 = τ(a1a2a3)τ(a1a2a3)

= (a1a3a2).

So N contains a 3-cycle.

(v) In this case we may write

σ = τ(a1a2)(a3a4),

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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where τ is the product of an even number of disjoint 2-cycles. We may
argue as in case (ii) above that

σ−1(a1a2a3)σ(a1a2a3)
−1 ∈ N

and we compute

σ−1(a1a2a3)σ(a1a2a3)
−1

= τ−1(a1a2)(a3a4)(a1a2a3)τ(a1a2)(a3a4)(a1a2a3)
−1

= (a1a3)(a2a4).

Since n ≥ 5, we can find b ∈ {1, 2, . . . , n} such that b ̸= a1, a2, a3, a4.
Let µ = (a1a3b). Then

µ−1(a1a3)(a2a4)µ(a1a3)(a2a4) ∈ N

and

µ−1(a1a3)(a2a4)µ(a1a3)(a2a4)

= (a1ba3)(a1a3)(a2a4)(a1a3b)(a1a3)(a2a4)

= (a1a3b).

Therefore, N contains a 3-cycle.

We have thus shown that in all possible cases N contains a 3-cycle, and the
proof of the proposition is complete. □

So finally we may summarize the proof that An is simple (n ≥ 5).

Proposition 18.5.8. The alternating group, An, is simple for n ≥ 5.

Proof. Let N be a normal subgroup of An. By Proposition 18.5.7, N
contains a 3-cycle. By Proposition 18.5.6, N = An; therefore, An contains
no proper nontrivial normal subgroups for n ≥ 5. □

And there we have it, An is a simple group for n ≥ 5. Simple, right? :)

18.5.3 The simplicity of An and the impossibility of polyno-
mial root formulas

We’ve just spent several pages proving that An is simple for n ≥ 5. What’s
the big deal? It turns out that this fact played a key role in a VERY big
deal in the history of mathematics.
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Consider any second-degree real polynomial a2x
2 + a1x + a0. We may

find the roots of the polynomial using the quadratic formula. But what
if the polynomial is of degree three (a3x

3 + a2x
2 + a1x + a0) or higher?

It turns out there’s a formula for finding the roots of an arbitrary real
cubic (degree 3) polynomial. There’s even a formula for finding the roots
of quartic equations. All of these formulas involve arithmetic operations
(+.,−, ·, /) and radicals (square roots, cube roots, etc.) But how about
quintic (fifth order) and higher order polynomials? It turns out that for
fifth or higher order polynomials there’s no such formula for finding the
roots using arithmetic operations and radicals. It’s not just that we haven’t
found one–we can prove that such a formula is impossible. Proving this
was one of the all-time great discoveries of mathematics, in which Abel,
Ruffini, and Galois all played important roles. The theoretical foundations
required for this proof are found in an area of abstract algebra known as
Galois Theory . You may find chapters on Galois Theory in most advanced
undergraduate textbooks on abstract algebra.

An outline of the proof strategy is as follows. Each of the following steps
requires extensive proof (which we won’t supply), but at least you can see
how the argument goes:

(i) An nth order real polynomial has up to n distinct roots, which may be
real or complex and are irrational in general. (This follows from the
Fundamental Theorem of Algebra.)

(ii) Associated with the roots of a given real polynomial is a certain type
of symmetry group called the Galois group. For an nth order poly-
nomial, the Galois group is a subgroup of Sn.

(iii) In order for a formula to exist for a given real polynomial’s roots that
involves only arithmetic operations and radicals, the Galois group of
the polynomial must be factorable in such a way that the factors are
all abelian groups. (This is the hardest step.)

(iv) There are nth order real polynomials that have Sn as their Galois
group.

(v) It isn’t possible to factor Sn into abelian factors, since Sn factors into
Z2 and An, and An is simple and non-abelian.

(vi) It follows that there can be no such formula for the roots of such
polynomials, so there can’t be a root formula that works in general.

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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Exercise 18.5.9. In this exercise, we give the Galois group for quadratic
polynomials, and explore some of its properties. Let id : C → C be the
identity function: id(z) = z. Let f : C → C be the conjugation function:
f(z) = z̄.

(a) Show that H = {id, f} is a subgroup of the group of all bijections from
C → C

(b) Let S be the set of roots of the real polynomial a2x
2 + a1x+ a0. Show

that H is a group of symmetries for S: that is, h(S) = S for any h ∈ H.

(c) Show that H factors in such a way that all the factors are abelian simple
groups. (It therefore satisfies the criterion for a root solution formula to
exist.)

♢

Remark 18.5.10. (historical background) It is impossible to overstate the
importance of simple groups in mathematics and physics. Groups are the
fundamental mathematical tools used to describe the symmetries and regu-
larities which we observe in the physical world–and simple groups, as men-
tioned in the text, are the building blocks from which all finite groups may
be built.

The earliest work on the classification problem dates back over 200 years.
The first non-abelian simple groups to be discovered were the alternating
groups, and Galois was the first to prove that A5 was simple. Later math-
ematicians, such as C. Jordan and L. E. Dickson, found several infinite
families of matrix groups that were simple. Other families of simple groups
were discovered in the 1950s. Around 1900 William Burnside conjectured
that all non-abelian simple groups must have even order. But it wasn’t until
1963 that Walter Feit and John Thompson published a 250-page proof of
Burnside’s conjecture. After this breakthrough, mathematicians redoubled
their efforts to complete the classification. Hundreds of mathematicians pro-
duced thousands of pages of proofs. Success was announced in 1983, but
a gap was later discovered, and it was not until 2004 that one of the great
intellectual achievements of all time was finally accomplished. The final re-
sult: all finite simple groups belong to 18 countably infinite families, except
for 26 exceptional “sporadic” groups. The largest of these groups (called the
“monster” has over 80 trillion trillion trillion trillion entries, which is more
than 100 times the number of atoms in the earth! △
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Additional exercises

1. Let T be the multiplicative group of nonsingular upper triangular 2×2
matrices with entries in R; that is, matrices of the form(

a b
0 c

)
,

where a, b, c ∈ R and ac ̸= 0. Let U consist of matrices of the form(
1 x
0 1

)
,

where x ∈ R.

(a) Show that U is a subgroup of T .

(b) Prove that U is abelian.

(c) Prove that U is normal in T .

(d) Show that T/U is abelian.

(e) Is T normal in GL2(R)?

2. If G is abelian, prove that G/H must also be abelian.

3. Prove or disprove: If H is a normal subgroup of G such that H and
G/H are abelian, then G is abelian.

4. If G is cyclic, prove that G/H must also be cyclic.

5. Prove or disprove: If H and G/H are cyclic, then G is cyclic.

6. Define the centralizer of an element g in a group G to be the set

C(g) = {x ∈ G : xg = gx}.

Show that C(g) is a subgroup of G. If g generates a normal subgroup
of G, prove that C(g) is normal in G.

7. Recall that the center of a group G is the set

Z(G) = {x ∈ G : xg = gx for all g ∈ G }.

(a) Calculate the center of S3.

(b) Calculate the center of GL2(R).

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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(c) Show that the center of any group G is a normal subgroup of G.

(d) If G/Z(G) is cyclic, show that G is abelian.

8. Let G be a group and let G′ = {aba−1b−1, a, b ∈ G}; that is, G′ is the
set of all finite products of elements in G of the form aba−1b−1.

(a) Show that G′ is a subgroup of G. G′ is called the commutator
subgroup of G.

(b) Show that G′ is a normal subgroup of G.

(c) Let N be a normal subgroup of G. Prove that G/N is abelian if
and only if N contains the commutator subgroup of G.

9. Use Fermat’s little theorem to show that if p = 4n+ 3 is prime, there
is no solution to the equation x2 ≡ −1 (mod p).

10. Show that the integers have infinite index in the additive group of
rational numbers.

11. Show that the additive group of real numbers has infinite index in the
additive group of the complex numbers.

12. What fails in the proof of Proposition 18.2.13 if ϕ : LH → RH is
defined by ϕ(gH) = Hg?

13. Suppose that gn = e. Show that the order of g divides n.

14. If |G| = 2n, prove that the number of elements of order 2 is odd.
Use this result to show that G must contain a subgroup of order 2.
(*Hint*)

15. Suppose that [G : H] = 2. If a, b ∈ G \H, show that ab ∈ H.

16. If [G : H] = 2, prove that gH = Hg.

17. Let H and K be subgroups of a group G. Prove that gH ∩ gK is a
coset of H ∩K in G.

18. Let H and K be subgroups of a group G. Define a relation ∼ on G
by a ∼ b if there exists an h ∈ H and a k ∈ K such that hak = b.
Show that this relation is an equivalence relation. The corresponding
equivalence classes are called double cosets. In the case where G =
A4, compute the double cosets for:

(a) H = K = {(1), (123), (132)}.
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(b) H = {(1), (123), (132)}, K = {(1), (124), (142)}.

19. If G is a group of order pn where p is prime, show that G must have
a proper subgroup of order p. If n ≥ 3, is it true that G will have a
proper subgroup of order p2?

20. Let G be a cyclic group of order n. Show that there are exactly ϕ(n)
generators for G.

21. Let n = pe11 p
e2
2 · · · pekk be the factorization of n into distinct primes.

Prove that

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)
.

22. Show that
n =

∑
d|n

ϕ(d)

for all positive integers n.

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28
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18.6 Hints for “Cosets” exercises

Exercise 18.1.7:

For part (f), consider that any even permutation times A4 will produce
a set of even permutations with 12 elements (Why?), and there are exactly
12 even permutations in S4. Similar reasoning applies when you take any
odd permutation times A4.

For part (g), generalize your result in part (f).

For part (h), your task will be simplified if you notice that all elements
in a given coset produce the same coset. So once you’ve found a coset, you
don’t need to do any work to find the cosets of elements in the coset that
you’ve found.

Exercise 18.1.9: (Hint : You’re trying to show that the two sets gH and Hg
are equal. One way to do this is to show every element of gH is an element
of Hg, and vice versa.)

Exercise 18.2.2(a): The hypothesis g1H = g2H implies that there exists
h ∈ H such that g1h = g2e, where e is the group identity.

Exercise 18.2.2(b): g−1
1 g2 ∈ H means that g−1

1 g2 = h for some h ∈ H.

Exercise 18.2.2(c): You need to show that g2H ⊂ g1H. From (3), deduce
that g2 = g1h for some h ∈ H. Then, show that any element of the form
g2h

′ for h′ ∈ H can be expressed as g1h
′′ where h′′ ∈ H. You should be able

to express h′′ in terms of h and h′.

Exercise 18.2.2(d): You need to show that (4) implies g1H ⊂ g2H. It’s
enough to show that for any h ∈ H, g1h ∈ g2H. To do this, express g1 in
terms of g2.

Exercise 18.2.2(e): Condition (2) implies that g−1
1 g2 = h for some h ∈ H.

Exercise 18.2.14: You may use the equivalence of conditions (3) and (2) in
Proposition 18.2.1. You will also need the following facts about determi-
nants: (a) det(AB) = det(A) det(B) and (b) det(A−1) = 1/det(A) (note
that (b) follows from (a)).

Exercise 18.3.5: Remember cyclic subgroups.

Exercise 18.3.11: For part (g), use the fact that the numbers less than p2 that
are not relatively prime to p2 are p, 2p, 3p, . . . (p− 1)p: how many numbers
remain? For parts (h) and (i) use a similar logic.

Exercise 18.3.16: You may refer to Proposition 15.5.27.
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Exercise 18.4.4: Look back at your work on Exercise 18.2.14.

Exercise 18.4.5: Compute the left and right cosets.

Exercise 18.4.9: Use Exercise 18.1.9 earlier in this chapter.

Exercise 18.4.15: Let H be a subgroup of the group G that satisfies the
property that for any g ∈ G and any h ∈ H, then ghg−1 is also in H. Show
that every right coset of H in G is also a left coset, and vice versa (and
hence H is a normal subgroup of G.

Exercise 18.4.17: Use part (a) and Definition 18.4.13.

Exercise 18.4.18(c): We may write x1 = g1h1 and x2 = g2h2, so that x1x2 =
g1h1g2h2. Use part (b) with h = h1, g = g2.

Exercise 18.5.2: Sn has a subgroup of index 2. This shows Sn is not simple
(why?).

Additional exercises

Exercise 14: Define an equivalence relation on G as follows: g1 ∼ g2 if and
only if either g1 = g2 or g1 = g−1

2 . Prove that this is indeed an equivalence
relation; and show that the equivalence class of g has an odd number of ele-
ments if and only if g = g−1. Use the partition of G to show that there must
be an even number of equivalence classes with an odd number of elements
(including the equivalence class of the identity).

https://www.youtube.com/watch?v=L19ZO2BOFBQ&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=28


19

Error-Detecting and
Correcting Codes

In Chapter 9 we looked at cryptography, which is concerned with the encod-
ing of information to make it secret. But coding is used for other purposes
as well. When data is transmitted, it is often subject to processes which may
corrupt the data and produce transmission errors. This situation arises in
many areas of communications, including radio, telephone, television, com-
puter communications, and even compact disc player technology. In order
to guarantee accurate communication, the data must be encoded (before
transmission) and decoded (after transmission) so that transmission errors
can be detected and, if possible, corrected. As you may imagine, some of the
world’s leading high-tech companies are heavily involved in this area–and
breakthroughs can mean big bucks for the discoverers!

Prerequisites: In this chapter we will make extensive use of the group
Zn2 , which is the direct product of n copies of Z2 (direct products were
introduced in Section 20.5. The discussion of linear block codes (Section 19.2
and following) uses concepts from linear algebra such as matrix, vector, and
matrix multiplication. Section 19.6 uses some basic ideas about cosets, which
were introduced in Chapter 18.

Thanks to Tom Judson for material used in this chapter.

19.1 Definitions and basic properties

Let’s examine a simple model of a communications system for transmitting
and receiving coded messages (Figure 19.1.1). Uncoded messages consist of

659
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Figure 19.1.1. Encoding and decoding messages

a sequence of symbols, such as letters or characters. Now when computers
do calculations they can’t understand letters: they can only understand
sequences consisting of 0’s and 1’s (0 and 1 are referred to as binary digits
or bits). So before coding, individual symbols are re-expressed as sequences
of binary bits, and then these bits are strung together to form a single
sequence of bits which expresses the message content. This sequence is
divided up into chunks (or tuples) of m bits apiece: these binary m-tuples
are referred to as message words. Message words are then encoded into
codewords of n bits apiece by a device called an encoder . These codewords
are transmitted over a channel and received by a receiver. Random noise
in this transmission process causes some of the bits to be corrupted: and

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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we say that an error occurs every time a bit is changed from 0 to 1 or
vice-versa due to transmission noise.The decoder converts each received n-
tuple into a message word or gives an error message for that n-tuple. If the
recieved codeword was not corrupted by random noise during transmission,
then the decoded message word will agree with the original message word.
For received words that are not codewords, the decoding scheme will give an
error indication, or (in the case of error-correcting codes) will try to correct
the error and reconstruct the original message word. The goal is to transmit
error-free messages as cheaply and quickly as possible.

Exercise 19.1.1. Why is the following encoding scheme not acceptable?

Information: 0 1 2 3 4 5 6 7 8

Codeword: 000 001 010 011 101 110 111 000 001

♢

Example 19.1.2. Even parity is a commonly used coding scheme, which
(as we shall see) can be generalized to form powerful and versatile codes.
Computers use the ASCII (American Standard Code for Information In-
terchange) coding system to encode the letters and special characters that
appear on your keyboard (these may be considered as the ”message words”,
according to the above terminology). There are 128 of these characters, so
it is possible to represent them using 7 bits (since 128 = 27). For example,
the 7-bit representations for A, B, and C are

A = 1000001,

B = 1000010,

C = 1000011.

Although 7 bits are sufficient, the ASCII code uses 8 bits for each charater.
A bit is added to the front of the codeword according to the following rule:
if the number of 1’s in the seven-bit representation is even, then the front
bit is 0; otherwise, the front bit is 1. According to this rule, the 8-bit codes
for A, B, and C now become

A = 01000001,

B = 01000010,

C = 11000011.
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Notice that these 8-bit codes all have an even number of 1’s.

Now suppose an A is sent and a transmission error in the sixth bit
is caused by noise over the communication channel so that (01000101) is
received. We know an error has occurred since the received word has an odd
number of 1’s, and we can now request that the codeword be transmitted
again. When used for error checking, the leftmost bit is called a parity
check bit .

Adding a parity check bit allows the detection of all single errors because
changing a single bit either increases or decreases the number of 1’s by one,
and in either case the parity has been changed from even to odd, so the
new word is not a codeword. (We could equally well construct an error
detection scheme based on odd parity , where the parity check bit is set so
that codewords always have an odd number of 1’s.) ♦

The even parity system is easy to implement, but has two drawbacks.
First, multiple errors are not detectable. Suppose an A is sent and the first
and seventh bits are changed from 0 to 1. The received word is a codeword,
but will be decoded into a C instead of an A. Second, we do not have the
ability to correct errors. If the 8-tuple (10011000) is received, we know that
an error has occurred, but we have no idea which bit has been changed. We
will now investigate a coding scheme that will not only allow us to detect
transmission errors but will actually correct the errors.

Example 19.1.3. Suppose that our original message is either a 0 or a 1, and
that 0 encodes to (000) and 1 encodes to (111). If only a single error occurs
during transmission, we can detect and correct the error. For example, if a
101 is received, then the second bit must have been changed from a 1 to a
0. The originally transmitted codeword must have been (111). This method
will detect and correct all single errors.

In Table 19.1, we present all possible words that might be received for the
transmitted codewords (000) and (111). Table 19.1 also shows the number
of bits by which each received 3-tuple differs from each original codeword.

This triple-repetition method will automatically detect and correct all
single errors, but it’s not very efficient (just imagine having to repeat every-
thing you say three times in order to make yourself understood!) We’ll see
shortly that there are much better alternatives. ♦

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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Received Word
000 001 010 011 100 101 110 111

Transmitted 000 0 1 1 2 1 2 2 3
Codeword 111 3 2 2 1 2 1 1 0

Table 19.1: A repetition code

19.2 Block Codes

In the examples we’ve seen so far, all message words are the same size,
and all codewords are the same size (but message words and code words
could be of different sizes, as in Example 19.1.3). This is certainly not the
only possibility. For instance, we could encode different message words with
codewords of differing sizes. Alternatively, we could use some kind of scheme
which doesn’t break the message into words at all. Such coding schemes have
extremely important practical uses. Nonetheless, we will focus on the simple
case where message words all have equal size, and all codewords also have
equal size. These are called “block codes”, because both the original and
encoded message are divided into “blocks” (e.g. codewords) of fixed size,
and encoding /decoding proceeds block by block. We shall see shortly that
group theory can be used to design block codes with very nice properties.

We begin with a formal definition of block code, which generalizes the
examples discussed in the previous section. In the following, the notation
Zm2 denotes the set of binary m-tuples.

Definition 19.2.1. a (n,m) block code consists of a one-to-one encoding
function

E : Zm2 → Zn2
and an onto decoding function

D : Zn2 → Zm2 .

The functions E and D satisfy D ◦E(z) = z for any z ∈ Zm2 (in other words,
D ◦ E is the identity function on the set Zm2 ).

We refer to the elements of the domain of E as message words, and
elements of the range of E as codewords. △

Remark 19.2.2. In Definition 19.2.1, the encoding function E for a block
code is required to be one-to-one so that two different message words are
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never assigned to the same codeword (which would make decoding impossi-
ble). On the other hand, the decoding function D is required to be onto so
that any encoded message can be decoded (although the decoded message
may have errors). △

Exercise 19.2.3.

(a) Explain why the definition requires that D ◦ E is the identity function
on the domain of E. (In other words, what property of encoding and
decoding does this guarantee?)

(b) Show that the condition D ◦ E = id implies that D is onto (in other
words, to prove that D is a decoding function it’s enough to prove that
D ◦ E = id, and you don’t have to prove onto-ness separately).

(c) Show that in Example 19.1.3, it is not true that E ◦ D is the identity
function on the domain of D.

(d) Suppose that E and D are encoding and decoding functions for an error-
correcting code. Prove that E ◦D is not equal to the identity function
on the domain of D.

(e) Prove that for an error-correcting code, E and D are not inverse of each
other.

♢

Exercise 19.2.4. According to Definition 19.2.1, is it possible to have a
(n,m) block code where n > m? Is m > n possible? Explain your answer.
♢

Example 19.2.5. The even-parity coding system developed to detect single
errors in ASCII characters is an (8, 7)-block code. The encoding function is

E(x7, x6, . . . , x1) = (x8, x7, . . . , x1),

where x8 = x7 + x6 + · · ·+ x1 (the addition here is in Z2).

One possible decoding function takes the 8-bit codeword and removes
the front bit:

D(x8, x7, x6, . . . , x1) = (x7, . . . , x1).

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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This is a natural choice of decoding function, but it’s not the only posssi-
bility, as you will explore in the following exercise. There are several other
possible decoding functions as well. ♦

Exercise 19.2.6.

(a) Show that the function D(x) given above is a decoding function (re-
member that based on Exercise 19.2.3(b) it’s enough to prove that
D ◦ E = id).

(b) Prove that the following function is also a decoding function for the even
parity code:

D(x8, x7, x6, . . . , x1) = (x8+x6+ · · ·+x1, x6, . . . , x1) (addition in Z2).

(c) Give two more possible decoding functions for the even parity code.

♢

Exercise 19.2.7.

(a) Consider an even-parity coding system in which codewords have k bits.

(b) Is the code a block code? If so, what are the parameters n and m?

(c) What is the encoding function?

(d) Give two possible decoding functions.

♢

In order to characterize error detection and correction properties of
codes, we need to quantify the degree of “similarity” between code words,
since two code words that are similar are liable to be mistaken for each
other. This leads naturally to the idea of “distance” between code words,
defined as follows.

Definition 19.2.8. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be binary
n-tuples. The Hamming distance or distance , d(x,y) between x and y
is the number of bit positions where x and y differ. The distance between
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two codewords is the minimum number of transmission errors required to
change one codeword into the other. The minimum distance for a code,
dmin is the minimum of all distances d(x,y), where x and y are distinct
codewords. The weight , w(x) of a binary codeword x is the number of 1’s
in x. It follows that w(x) = d(x,0), where 0 = (00 · · · 0), since x differs
from 0 in exactly its ‘1’ bits. △

Example 19.2.9. Let x = (10101), y = (11010), and z = (00011) be all
of the codewords in some code C. Then we have the following Hamming
distances:

d(x,y) = 4,

d(x, z) = 3,

d(y, z) = 3.

The minimum distance for this code is 3. We also have the following weights:

w(x) = 3,

w(y) = 3,

w(z) = 2.

♦

Exercise 19.2.10. Compute the Hamming distances between the following
pairs of n-tuples.

(a) (011010), (011100)

(c) (00110), (01111)

(b) (11110101), (01010100)

(d) (1001), (0111)

♢

Exercise 19.2.11. Compute the weights of the following n-tuples.

(a) (011010)

(c) (01111)

(b) (11110101)

(d) (1011)

♢

Exercise 19.2.12. What is the minimum distance for each of the following
block codes?

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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1. (011010) (011100) (110111) (110000)

2. (011100) (011011) (111011) (100011)
(000000) (010101) (110100) (110011)

3. (000000) (011100) (110101) (110001)

4. (0110110) (0111100) (1110000) (1111111)
(1001001) (1000011) (0001111) (0000000)

♢

The weights in a particular block code are usually much easier to com-
pute than the Hamming distances between all codewords in the code. As
we shall see later, if a code is set up carefully then we can use this fact to
our advantage.

In order to prove statements about Hamming distance and weight, it is
useful to have a concrete formula for the distance between two codewords.
Such a formula is given in the following proposition.

Proposition 19.2.13. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be binary
n-tuples. Then the Hamming distance d(x,y) may be computed by the
following formula:

d(x,y) = (x1 ⊕ y1) + . . . (xn ⊕ yn)),

where “⊕” denotes addition mod 2 and “+” denotes ordinary addition.
Using summation notation, the formula can also be written

d(x,y) =

n∑
j=1

xj ⊕ yj .

Proof. For each j, we have the 4 possibilities for xj and yj shown in
Table 19.2. The table shows that xj ⊕ yj = 0 when xj = yj , and xj ⊕ yj = 1
when xj ̸= yj . So if we sum these terms for all j, we obtain the number of
bit positions where x and y differ, which by definition is d(x,y). □

We have been referring to d(x,y) as “Hamming distance”. To justify
this terminology, we will prove that the function d(. . .) does indeed possess
the properties that we usually associate with a notion of “distance”:

Proposition 19.2.14. Let x, y, and z be binary n-tuples. Then
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xj yj xj ⊕ yj

0 0 0
0 1 1
1 0 1
1 1 0

Table 19.2: Bit sums (mod 2)

(a) d(x,y) ≥ 0, and d(x,y) = 0 exactly when x = y;

(b) d(x,y) = d(y,x);

(c) d(x,y) ≤ d(x, z) + d(z,y).

In higher mathematics, any function that satisfies the properties listed
in Proposition 19.2.14 is called a metric.

Exercise 19.2.15. Using the formula in Proposition 19.2.13, prove the
statements in Proposition 19.2.14. ♢

In order to see how distance relates to error correction, consider the
case where x = (1101) and y = (1100) are codewords in some code. If we
transmit (1101) and an error occurs in the rightmost bit, then (1100) will
be received. Since (1100) is a codeword, the decoder will decode (1100) as
the transmitted message. This code is clearly not very appropriate for error
detection. The problem is that d(x,y) = 1, so a single-bit error can change
one codeword into a different codeword.

On the other hand, given the two codewords x = (1100) and y = (1010)
then d(x,y) = 2. If x is transmitted and a single error occurs, then no
matter which bit is in error it’s still impossible for y to be received. If for
example the third bit is mistransmitted and received word is (1110), then
we can tell something is wrong – that is, we can detect that an error has
taken place. In general, single-bit errors are detectable in any code where
the distance between any two codewords is bigger than 1.

Example 19.2.16. Consider the (4, 3) code in which the first three bits
carry information and the fourth is an even parity check bit. (Note that
now we’re putting the parity bit on the right instead of on the left as we did
in Example 19.1.2. This will turn out to be more useful in the development

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39


19.2 BLOCK CODES 669

of the general theory.) Table 19.3 gives the distances between all codewords
in this code. We can see that the minimum distance here is 2; hence, the
code is suitable as a single error-detecting code.

0000 0011 0101 0110 1001 1010 1100 1111
0000 0 2 2 2 2 2 2 4
0011 2 0 2 2 2 2 4 2
0101 2 2 0 2 2 4 2 2
0110 2 2 2 0 4 2 2 2
1001 2 2 2 4 0 2 2 2
1010 2 2 4 2 2 0 2 2
1100 2 4 2 2 2 2 0 2
1111 4 2 2 2 2 2 2 0

Table 19.3: Distances between 4-bit codewords

♦

Let’s generalize based on this example. Given codewords x and y:

� If d(x,y) = 1 and an error occurs where x and y differ, then x is
changed to y. The received codeword is y and no error message is
given.

� If d(x,y) = 2, then a single error can’t change x to y. Therefore, if
dmin = 2, we have the ability to detect single errors. However, suppose
that d(x,y) = 2, y is sent, and a noncodeword z is received such that

d(x, z) = d(y, z) = 1.

Then the decoder can’t decide between x and y. Even though we are
aware that an error has occurred, we do not know what the error is.

� If dmin ≥ 3, then using the same reasoning it folows that we can detect
errors of up to two bits.

Furthermore, the maximum-likelihood decoding scheme corrects all
single errors. Starting with a codeword x, an error in the transmission
of a single bit gives y with d(x,y) = 1, but d(z,y) ≥ 2 for any other
codeword z ̸= x. Hence the correct codeword is the closest, and will
be selected by the decoding scheme.

This line of reasoning leads us to the following general proposition.
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Proposition 19.2.17. Let C be a code with dmin = 2n + 1. Then C can
correct any n or fewer errors. Furthermore, any 2n or fewer errors can be
detected in C.

Proof. Suppose that a codeword x is sent and the word y is received with
at most n errors. Then d(x,y) ≤ n. If z is any codeword other than x, then

2n+ 1 ≤ d(x, z) ≤ d(x,y) + d(y, z) ≤ n+ d(y, z).

Hence, d(y, z) ≥ n + 1 and y will be correctly decoded as x. Now suppose
that x is transmitted and y is received and that at least one error has
occurred, but not more than 2n errors. Then 1 ≤ d(x,y) ≤ 2n. Since the
minimum distance between codewords is 2n + 1, y can’t be a codeword.
Consequently, the code can detect between 1 and 2n errors. □

Example 19.2.18. In Table 19.4, the codewords c1 = (00000), c2 =
(00111), c3 = (11100), and c4 = (11011) determine a single error-correcting
code. ♦

00000 00111 11100 11011
00000 0 3 3 4
00111 3 0 4 3
11100 3 4 0 3
11011 4 3 3 0

Table 19.4: Hamming distances for an error-correcting code

Exercise 19.2.19. What are the error detection and correction capabilities
for the codes given in Exercise 19.2.12? ♢

Exercise 19.2.20. Suppose that a block code C has a minimum weight of
7. What are the error-detection and error-correction capabilities of C? ♢

Exercise 19.2.21. Construct a (5, 2)-block code. Discuss the error-detection
and error-correction capabilities of your code. ♢

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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19.3 Group codes

So far in this book, we’ve tried to relate everything we’ve talked about to
groups. Codes are no exception to this rule! In fact, we know that all
codewords of length n are elements of Zn2 , which in fact turns out to be a
group. To show this, we must first define a group operation:

Definition 19.3.1. The group Zn2 consists of the set of all binary n-tuples,
together with an operation “+” defined as follows:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 ⊕ y1, . . . , xn ⊕ yn),

where “⊕” means addition mod 2. △

Remark 19.3.2. Please note that in the following, if x and y are binary
n-tuples then the expression x + y always refers to the operation “+” de-
fined in Definition 19.3.1 rather than ordinary addition. This is just one
more example of the fact that in mathematics, the meaning of symbols is
determined by the context. △

So it’s time to get our hands dirty and verify that Zn2 is indeed a group.

Exercise 19.3.3.

(a) Show that if x and y are in Zn2 , then x+ y is also in Zn2 .

(b) What is the identity of Zn2 under the + operation?

(c) In Z9
2, what is (11000101) + (11000101)?

(d) If x ∈ Zn2 , then what is x+ x?

(e) Explain why the above results show that Zn2 is a group under the oper-
ation +.

(f) Is the group abelian? Prove your answer.

♢

Exercise 19.3.4. We may define a subtraction operation on Zn2 as we
usually do on additive groups: namely, x− y is defined as x+ y′, where y′

https://www.youtube.com/watch?v=T9DFD_1BWIS&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=41
https://www.youtube.com/watch?v=t9DFd_1BWis&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=41
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is the additive inverse of y. Based on the previous exercise, what can you
conclude about the difference between x− y and x+ y? ♢

It turns out that weight and Hamming distance are in some sense “com-
patible” with the operation + defined on Zn2 , as shown in the following
proposition.

Proposition 19.3.5. Let x, y, and z be binary n-tuples. Then

(a) w(x) = d(x,0)

(b) d(x,y) = w(x+ y)

(c) d(x,y) = d(x+ z,y + z)

We have already shown (a) in the definition of weight (Definition 19.2.8).
Parts (b) and (c) are for you to prove:

Exercise 19.3.6.

(a) Prove part (b) of Proposition 19.3.5 by using part (a) of Proposition 19.3.5
and the formula in Proposition 19.2.13.

(b) Prove part (c) (*Hint*)

♢

The codes we discussed in Section 19.1 were all subsets of Zn2 , for some
positive integer n. We shall now see that codes that are also subgroups have
special properties that enable efficient encoding and decoding. Accordingly,
we define:

Definition 19.3.7. A group code is a set of codewords that is also a
subgroup of Zn2 . △

Remark 19.3.8. At this point we are simply thinking of a group code as
a set of codewords with certain properties. Of course, practical codes also
require encoding and decoding functions: we’ll talk about these later. △

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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To check that a set of codewords is a group code, we need only verify
closure under addition. It turns out that identity and inverse are guaranteed
by closure:

Exercise 19.3.9.

(a) Show that a set of codewords in Zn2 which is closed under the operation
+ must also contain 0

(b) Show that any set of codewords always includes the inverses of those
codewords.

(c) Prove that any set of codewords of length n that is closed under + is a
subgroup of Zn2 .

♢

Exercise 19.3.10. Without doing any addition, explain why the following
set of 4-tuples in Z4

2 can’t be a group code.

(0110) (1001) (1010) (1100)

♢

Example 19.3.11. Suppose that we have a code that consists of the fol-
lowing 7-tuples:

(0000000) (0001111) (0010101) (0011010)
(0100110) (0101001) (0110011) (0111100)
(1000011) (1001100) (1010110) (1011001)
(1100101) (1101010) (1110000) (1111111).

It’s possible to verify directly (for instance, by computing the Cayley table)
that this code is a group code (later we will show there are much, much
quicker ways to do this). To find the minimum distance, one may compute
the distances between all pairs of codewords. The result is dmin = 3, so the
code can detect 2 errors and correct 1 error. ♦

From the previous example, it seems like finding the error detection/correction
capabilities of a code is a long and tedious process. However, for group codes
there is a far simpler way:

https://www.youtube.com/watch?v=T9DFD_1BWIS&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=41


674CHAPTER 19 ERROR-DETECTING AND CORRECTING CODES

Proposition 19.3.12. Let dmin be the minimum distance for a group code
C. Then dmin is the minimum weight of all nonzero codewords in C. That
is,

dmin = min{w(x) : x ̸= 0}.

Proof. Observe that

dmin = min{d(x,y) : x ̸= y}
= min{d(x,y) : x+ y ̸= 0}
= min{w(x+ y) : x+ y ̸= 0}
= min{w(z) : z ̸= 0}.

□

Warning 19.3.13. Proposition 19.3.12 only applies to group codes, and
not to codes in general. ♢

19.4 Linear Block Codes

Using Proposition 19.3.12, it is now a simple matter to find the error detec-
tion and correction capabilities of a group code. However, so far we don’t
have a good method for creating group codes. In this section, we will use
some techniques from linear algebra to give one such method. This method
is widely used in digital information processing: for instance, in CDs, DVDs,
and satellite communications.

To understand this section, readers should familiar with basic notions
of linear algebra such as systems of linear equations, vectors, linear com-
bination, matrix multiplication, and transpose. Readers may find a brief
refresher on matrix multiplication in Chapter 10.

Definition 19.4.1. The inner product of two binary n-tuples is

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) ≡ x1y1 + · · ·+ xnyn (mod 2).

For example, (011001) · (110101) = 0 + 1 + 0 + 0 + 0 + 1 ≡ 0 (mod 2).

(The astute reader will recognize this definition from our discussion of UPC
codes in Section 5.3). △

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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Note the difference between inner product and weight. When computing
the weight of a codeword, the entries are added using ordinary addition.
However, when computing the inner product in Zn2 , the terms are added
with mod 2 addition.

We can also look at an inner product as the matrix product of a row vec-
tor with a column vector. Recall that transpose (denoted by “T”) changes
a row vector into a column vector with the same entries in the same order.
Then we have

x · y = xyT

=
(
x1 x2 · · · xn

)


y1
y2
...
yn


= x1y1 + x2y2 + · · ·+ xnyn.

Again, we emphasize the addition here is mod 2 addition.

Example 19.4.2. Suppose that the words to be encoded consist of all
binary 3-tuples, and that our encoding scheme is even-parity. To encode
an arbitrary 3-tuple, we add a fourth bit to obtain an even number of 1’s.
Notice that an arbitrary n-tuple x = (x1, x2, . . . , xn) has an even number of
1’s exactly when x1 + x2 + · · ·+ xn = 0; hence, a 4-tuple x = (x1, x2, x3, x4)
has an even number of 1’s if x1 + x2 + x3 + x4 = 0, or

1 · x = 1xT =
(
1 1 1 1

)
x1
x2
x3
x4

 = 0.

♦

Example 19.4.2 shows that an even-parity codeword can be verified by
an inner product, which is a special case of a matrix multiplication. We will
now show that codewords in other types of group codes can also be verified
by matrix multiplication. But first, as usual, a definition:

Definition 19.4.3. Let Mk×n(Z2) denote the set of all k × n matrices
with entries in Z2. We do matrix operations as usual except that all our
addition and multiplication operations occur in Z2. Define the null space
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of a matrix H ∈ Mk×n(Z2) to be the set of all binary n-tuples x such that
HxT = 0. We denote the null space of a matrix H by Null(H). △

Example 19.4.4. Suppose that

H =

 0 1 0 1 0
1 1 1 1 0
0 0 1 1 1

 .

For a 5-tuple x = (x1, x2, x3, x4, x5) to be in the null space of H it must
satisfy HxT = 0.

This means that,

 0 1 0 1 0
1 1 1 1 0
0 0 1 1 1

 ·


x1
x2
x3
x4
x5

 =


0
0
0
0
0


So the following system of equations must be satisfied (note that “+” is

binary addition):

x2 + x4 = 0

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 = 0.

This set of equations may be solved using conventional methods such as
substitution or elimination (remember to use binary arithmetic!). Since
there are more variables than equations, there is more than one solution.
Here we use Gaussian elimination to obtain our solutions.

First we have,

x2 + x4 = 0

x1 + x2 + x3 + x4 = 0

x3 + x4 + x5 = 0

Then we switch the first and second equations to obtain the following system.

x1 + x2 + x3 + x4 = 0

x2 + x4 = 0

x3 + x4 + x5 = 0

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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Then we replace the first equation with the sum of the first two equations.

x1 + x3 = 0

x2 + x4 = 0

x3 + x4 + x5 = 0

Finally, we replace the first equation with the sum of the first and third
equations to obtain the following system.

x1 + x4 + x5 = 0

x2 + x4 = 0

x3 + x4 + x5 = 0.

Solving for x1, x2, and x3 we have the following dependent solutions,

x1 = −x4 + (−x5)
x2 = −x4
x3 = −x4 + (−x5).

Now since we are working in Z5
2, −1 ≡ 1. Therefore, we have the follow-

ing dependent equations.

x1 = x4 + x5

x2 = x4

x3 = x4 + x5.

Notice that x1 and x3 both depend on x4 and x5. Also x2 depends on
x4. In this case, x1, x2, and x3 are called pivot variables and x4 and x5 are
called free variables.The free variables can take on values of 0 or 1, since we
are working in Z5

2. Because the free variables can take on two values, the
number of solutions is equal to 2k, where k is the number of free variables.
So we should get four solutions.

If x4 = 1 and x5 = 1, then we substitute those values into our system
and use binary addition to find that x1 = 0, x2 = 1, and x3 = 0. So one
solution is (x1, x2, x3, x4, x5) = (0, 1, 0, 1, 1). Likewise, if x4 = 1 and x5 = 0,
then we have as a solution (x1, x2, x3, x4, x5) = (1, 1, 1, 1, 0) and if x4 = 0
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and x5 = 1, we have (x1, x2, x3, x4, x5) = (1, 0, 1, 0, 1). Finally, if x4 = 0 and
x5 = 0, then we have as a solution (x1, x2, x3, x4, x5) = (0, 0, 0, 0, 0).

So the set of all solutions is

{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1)}.

This code is easily determined to be a group code (for example, by con-
structing the Cayley table).

(You may have noticed that the solution set is finite, unlike similar sys-
tems of linear equations that you may have seen in linear algebra. Indeed
the solution set must be finite, because the set of vectors in Z5

2 is finite. The
difference is that we’re now dealing with Zn2 rather than Rn or Cn.) ♦

Let’s do another example in Zn2 , but this time in Z4
2.

Example 19.4.5. Suppose that

H =

(
1 0 1 1
1 1 1 0

)
.

For a 4-tuple x = (x1, x2, x3, x4) to be in the null space of H it must satisfy
HxT = 0.

This means that,

(
1 0 1 1
1 1 1 0

)
·


x1
x2
x3
x4

 =


0
0
0
0


So the following system of equations must be satisfied.

x1 + x3 + x4 = 0

x1 + x2 + x3 = 0.

We proceed again with Gaussian elimination and replace the second
equation with the sum of the two equations to obtain the following system.

x1 + x3 + x4 = 0

x2 + x4 = 0.

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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Solving for x1 and x2, and replacing -1 with its modular equivalent, 1,
we have the following dependent solutions,

x1 = x3 + x4

x2 = x4.

Notice that there are two free variables x3 and x4. Therefore, there are
22 = 4 solutions. If x3 = 1 and x4 = 1, then x1 = 0, x2 = 1. So one solution
is (x1, x2, x3, x4, x5) = (0, 1, 1, 1). Likewise, if x3 = 1 and x4 = 0, then we
have as a solution (x1, x2, x3, x4, x5) = (1, 0, 1, 0) and if x3 = 0 and x4 = 1,
we have (x1, x2, x3, x4, x5) = (1, 1, 0, 1). Finally, if x3 = 0 and x4 = 0, then
we have as a solution (x1, x2, x3, x4, x5) = (0, 0, 0, 0).

So the set of all solutions is

{(0, 0, 0, 0), (1, 1, 0, 1), (1, 0, 1, 0), (0, 1, 1, 1)}.

♦

Exercise 19.4.6. Compute the null space of each of the following matrices.
In cases (a) and (b), show that the result is a group code.

(a)
 0 1 0 0 0

1 0 1 0 1
1 0 0 1 0

 (b)


1 0 1 0 0 0
1 1 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1



(c)
(

1 0 0 1 1
0 1 0 1 1

)
(d)


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 1 1 0 0 1 1


♢

Example 19.4.4 shows a case where the null space of a matrix with entries
in Z2 turns out to be a group code. In fact, the null space of such a matrix
is always a group code:
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Proposition 19.4.7. Let H be in Mk×n(Z2). Then the null space of H is
a group code.

Proof. As mentioned previously, to show that Null(H) is a group code
we just need to show that it’s closed under the group operation +. Let
x,y ∈ Null(H) for some matrix H in Mk×n(Z2). Then HxT = 0 and
HyT = 0. So

H(x+ y)T = H(xT + yT) = HxT +HyT = 0+ 0 = 0.

Hence, x + y is in the null space of H and therefore must be a codeword.
□

We give a special name to group codes that are obtained as null spaces:

Definition 19.4.8. A code is a linear code if it is determined by the null
space of some matrix H ∈ Mk×n(Z2). △

Note that at this point, all we know is that linear codes are group codes –
we haven’t yet proven that all group codes in Zn2 are linear codes (although
this turns out to be true also!)

Example 19.4.9. Let C be the code given by the matrix

H =

 0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 0 0 1

 .

Suppose that the 7-tuple x = (0, 1, 0, 0, 1, 1) is received. It is a simple matter
of matrix multiplication to determine whether or not x is a codeword. Since

HxT =

 0
1
1

 ,

the received word is not a codeword. We must either attempt to correct the
word or request that it be transmitted again. ♦

Exercise 19.4.10. Which of the following are codewords for the code in
Example 19.4.9?

(a) (1, 1, 1, 1, 1, 0)

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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(b) (1, 0, 0, 0, 1, 1)

(c) (1, 0, 1, 0, 1, 0)

♢

19.5 Code words and encoding in block linear codes

We have shown how to define a set of codewords for a block linear code.
But so far we don’t understand too well what code words look like, and
we haven’t considered encoding and decoding. One of the great advantages
of linear codes is that they enable very efficient methods of encoding and
decoding. It’s easiest to see how this works in the case where H has a special
form, which we will now define.

19.5.1 Canonical Parity-check matrices

Definition 19.5.1. Suppose that H is a k × n matrix with entries in Z2

and n > k. If the last k columns of the matrix form the k × k identity
matrix, Ik, then the matrix is called a canonical parity-check matrix .
More specifically, H = (A | Ik), where A is the k × (n− k) matrix

a11 a12 · · · a1,n−k
a21 a22 · · · a2,n−k
...

...
. . .

...
ak1 ak2 · · · ak,n−k


and Ik is the k × k identity matrix

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

△

Exercise 19.5.2. Only one of the matrices in Exercise 19.4.6 is a canonical
parity-check matrix. Which one is it? ♢

https://www.youtube.com/watch?v=1eCIhwdnJLU&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=42
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Readers who have had a class in linear algebra may notice the similar-
ity between canonical parity-check matrices and reduced row-echelon form.
The only difference is that reduced row-echelon matrices have the identity
submatrix on the left, while the canonical parity-check matrix has it on the
right.

In the following example, we will explore the relation between the canon-
ical parity-check matrix H and the structure of the codewords.

Example 19.5.3. Suppose the matrix A is given by

A =

 0 1 1
1 1 0
1 0 1

 ,

then the associated canonical parity-check matrix is

H =

 0 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1

 ,

Observe that the rows in H represent the parity checks on certain bit
positions in a 6-tuple. The 1’s in the identity matrix serve as parity checks
for the 1’s in the same row. If x = (x1, x2, x3, x4, x5, x6), then

0 = HxT =

 x2 + x3 + x4
x1 + x2 + x5
x1 + x3 + x6

 ,

which yields a system of equations:

x2 + x3 + x4 = 0

x1 + x2 + x5 = 0

x1 + x3 + x6 = 0

(remember that all of these equations are using binary arithmetic!) Here
each of the bits in {x4, x5, x6} serves as a parity check bit for two of the bits
in the set {x1, x2, x3}. Hence, x1, x2, and x3 can be arbitrary but x4, x5,
and x6 must be chosen to ensure parity. By following this method, we find
that the vectors in Null(H) are

(000000) (001101) (010110) (011011)
(100011) (101110) (110101) (111000).

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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♦

The following proposition generalizes some of our findings from Exam-
ple 19.5.3.

Proposition 19.5.4. Let H ∈ Mk×n(Z2) be a canonical parity-check ma-
trix. Then Null(H) consists of all x ∈ Zn2 whose first n−k bits are arbitrary
but whose last k bits are determined by HxT = 0. Each of the last k bits
serves as an even parity check bit for some of the first n − k bits. Hence,
H gives rise to an (n, n− k)-block code (according to the notation that we
introduced in Definition 19.2.1).

The proof of Proposition 19.5.4 simply follows the same steps as in Ex-
ample 19.5.3, except that instead of 3 equations in 6 unknowns we have k
equations in n unknowns. Readers who’ve had linear algebra may recognize
that this is exactly the same as the method for solving linear equations us-
ing row-echelon form: the k equations in n unknowns give rise to n− k free
variables, that determine the other variables in the solution.

Proposition 19.5.4 motivates the following definitions.

Definition 19.5.5. LetH be a canonical parity-check matrix, and let x be a
codeword in Null(H). Then the first n−k bits of x are called information
bits and the last k bits are called check bits. △

In Example 19.5.3, the first three bits are the information bits and the
last three are the check bits.

Exercise 19.5.6.

(a) Find the canonical parity-check matrix for a code that performs a single
even parity check for three information bits (i.e. 3 information bits, 1
check bit).

(b) Same as (a), except with seven information bits.

(c) Is it possible to implement the odd parity-check code using a parity-
check matrix? Explain your answer.

♢
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19.5.2 Standard Generator Matrices

We now have a relatively straightforward way to generate the codewords in
Null(H), if H is a canonical parity-check matrix. But there’s an even easier
way – and one that gives us an encoding function in the bargain.

Before jumping into this discussion, we should simplify our notation.
Up to now we’ve been very careful to identify code words as row vectors, as
opposed to column vectors: so for instance we’ve always written the parity
check condition as HxT = 0, in order to ensure that x is interpreted as a
column vector. But when you come right down to it, vectors are vectors,
no matter whether they’re written horizontally or vertically. In the follow-
ing discussion we’ll be more casual, and simply denote the codeword by x
whether it’s arranged as a row or column vector. So for instance, we’ll sim-
ply write Hx = 0 instead of HxT = 0 . The context will determine whether
the row or column vector is meant.

Now that that’s out of the way, let’s begin on our new code generation
method. First, a definition:

Definition 19.5.7. With each k × n canonical parity-check matrix H =
(A | Ik) we can associate an n × (n − k) standard generator matrix G,
given by

G =

(
In−k
A

)
△

In order to explore the connection between parity-check and generator
matrices, we continue our previous example of a particular 3× 3 matrix A.

Example 19.5.8. (Example 19.5.3 continued) For the matrix A used in
Example 19.5.3, you may check that the associated generator matrix is:

G =



1 0 0
0 1 0
0 0 1
0 1 1
1 1 0
1 0 1


By comparing G with the list of vectors in Null(H), we find that all the
columns of G “just happen” to be contained in Null(H) (this is no accident,

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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as we shall see!). In fact, any linear combination of the columns of G will
also be in Null(H ). To see this, denote the columns of G by g1,g2,g3, and
let x1, x2, x3 ∈ Z2. Then we have (by ordinary matrix multiplication, except
all operations are binary)

H(x1g1 + x2g2 + x3g3) = x1Hg1 + x2Hg2 + x3Hg3 = x10+ x20+ x30 = 0.

The linear combination of columns of G can in fact be represented more
simply using matrix-vector multiplication:

x1g1 + x2g2 + x3g3 = Gx

This gives us another way to generate codewords that are in Null(H)–
namely, take any element in Z3

2 and multiply it by G. In fact, this gives
us our long-sought encoding function! For any message word in Z3

2 we mul-
tiply on the left by G and voilà! The result is a codeword. Table 19.5 shows
the results of this procedure. From the table, we find that this method of
generating codewords gives us all of the vectors in Null(H ). Furthermore,
each different message word produces a different codeword, as a proper en-
coding function should.

Message Word Codeword
x Gx
000 000000
001 001101
010 010110
011 011011
100 100011
101 101110
110 110101
111 111000

Table 19.5: A matrix-generated code

♦

Exercise 19.5.9. For each of the following canonical parity-check matrices,
find the corresponding standard generator matrix. Use the standard gener-
ator matrix to compute codewords (make a table similar to Table 19.5), and
verify that the codewords are in the null space of the canonical parity-check
matrix.
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(a) 
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1


(b) 

0 1 1 0 0 0
1 1 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1


(c) (

1 1 1 0
1 0 0 1

)
(d) 

0 1 1 0 0 0
1 1 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1


♢

The following proposition generalizes what we found in the previous
example.

Proposition 19.5.10. Suppose that G is an n × m standard generator
matrix. Then C = {y : Gx = y for x ∈ Zm2 } is an (n,m)-block code. More
specifically, C is a group code.

Proof. Let Gx1 = y1 and Gx2 = y2 be two codewords. Then y1 + y2 is
in C since

G(x1 + x2) = Gx1 +Gx2 = y1 + y2.

We must also show that two message blocks can’t be encoded into the same
codeword. That is, we must show that if Gx = Gy, then x = y. Suppose
that Gx = Gy. Then

Gx−Gy = G(x− y) = 0.

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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However, the first k coordinates in G(x−y) are exactly x1−y1, . . . , xk−yk,
since they are determined by the identity matrix, Ik, part of G. Hence,
G(x− y) = 0 exactly when x = y. □

In order to complete the link between canonical parity-check matrices
and standard generating matrices, we first need the following useful result.

Proposition 19.5.11. Let H = (A | Ik) be an k × n canonical parity-

check matrix and G =

(
In−k
A

)
be the corresponding n× (n− k) standard

generator matrix. Then HG = 0, where 0 denotes the k × (n − k) matrix
of all 0’s.

Proof. It is possible to prove this by writing out the matrix product HG
using summation notation (see Chapter 10). This is however somewhat
long-winded. A much easier way is to multiply H and G as block matrices.1

Since the block sizes are compatible, we have

HG = (A | Ik)
(
In−k
A

)
= (A+A),

but since we are adding in binary, it follows that A + A is the k × (n − k)
matrix of all 0’s. □

We now top things off by establishing equality between Null(H) and the
code generated by G.

Proposition 19.5.12. Let H = (A | Ik) be a k × n canonical parity-check

matrix and let G =

(
In−k
A

)
be the n× (n− k) standard generator matrix

associated with H. Let C be the code generated by G. Then y is in C if and
only if Hy = 0. In particular, C is a linear code with canonical parity-check
matrix H.

Proof. First suppose that y ∈ C. Then Gx = y for some x ∈ Zn−k2 . By
Proposition 19.5.11, Hy = HGx = 0.

Conversely, suppose that y = (y1, . . . , yn) is in the null space of H. We
can split y into two parts as follows:

y = (ya yb) , where ya := (y1, . . . , yn−k) and yb := (yn−k+1, . . . , yn).

1see for example mathworld.wolfram.com/BlockMatrix.html.

mathworld.wolfram.com/BlockMatrix.html
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Since y is in the null space of H we have Hy = 0, which we can also write
as (using partitioned matrix multiplication)

Hy = (A | Im)
(

ya
yb

)
= Aya + yb = 0.

Since we are adding in binary, it follows that Aya = yb, so that we may
write

y =

(
ya
yb

)
=

(
In−k
A

)
ya,

so that y is in C. □

19.5.3 Error detection and correction

In this section, we will show how to obtain the error correction and detection
properties of a code directly from its matrix H. First, we will look at
detection and correction of single errors.

Suppose that a codeword x is transmitted with a single error. Then the
resulting transmitted word can be written as x+ej , where ej has a nonzero
entry only in the j’th position:

e1 = (100 · · · 00)
e2 = (010 · · · 00)

...

en = (000 · · · 01)

In this case, when we apply the parity check matrix to the transmitted
codeword we obtain

H(x+ ej) = Hx+Hej = 0+Hej = Hej .

It appears that Hej plays an important role in determining the error detec-
tion and correction properties of the code.

Exercise 19.5.13. Let H be the parity-check matrix given by

H =

 1 1 1 0 0
1 0 0 1 0
1 1 0 0 1

 .
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19.5 CODE WORDS AND ENCODING IN BLOCK LINEAR CODES689

1. Compute Hej for j = 1, 2, 3, 4, 5.

2. What is the relationship between your answers in (a) and the columns
of H?

♢

We generalize our findings in this exercise as follows:

Proposition 19.5.14. Let ei be the binary n-tuple with a 1 in the ith
coordinate and 0’s elsewhere and suppose that H ∈ Mm×n(Z2). Then Hei
is the ith column of the matrix H.

Proposition 19.5.14 is a well-known fact in linear algebra, so we refer the
reader to a linear algebra textbook for proof.2

This result leads immediately to a simple rule for single error detection.

Proposition 19.5.15. Let H be an m × n binary matrix. Then the null
space of H is a single error-detecting code if and only if no column of H
consists entirely of zeros.

Proof. Suppose that Null(H) is a single error-detecting code. Then the
minimum distance of the code must be at least 2. Since the null space is a
group code, it is sufficient to require that the code contain no codewords of
less than weight 2 other than the zero codeword. That is, ei must not be a
codeword for i = 1, . . . , n. Since Hei is the ith column of H, the only way
in which ei could be in the null space of H would be if the ith column of H
were all zeros, which is impossible; hence, the code must have the capability
to detect at least single errors.

Conversely, suppose that no column of H is the zero column. By Propo-
sition 19.5.14, Hei ̸= 0. □

Exercise 19.5.16. Which of the following parity-check matrices determine
single error-detecting codes? Explain your answer.

H1 =

 1 1 1 0 0
1 0 0 1 0
1 1 0 0 1

 ; H2 =

 1 1 1 0 0
1 0 0 0 0
1 1 0 0 1

 .

2See for example: David C. Lay, “Linear Algebra and its Applications” (Third Edition),
Section 1.4.
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♢

Using similar reasoning, we can also come up with a method for deter-
mining single error-correction from the parity-check matrix.

Example 19.5.17. Consider the parity-check matrix

H =

 1 1 1 0
1 0 0 1
1 1 0 0


The corresponding code is single error-correcting if all nonzero codewords
have weight greater than two. Since there are no zero columns, Proposi-
tion 19.5.15 tells us that no codewords have weight 1. We thus only need
to check that Null(H) does not contain any 4-tuples of weight 2, so that
(1100), (1010), (1001), (0110), (0101), and (0011) must not be in Null(H).
♦

Exercise 19.5.18. Does the code in Example 19.5.17 correct single errors?
Explain your answer. ♢

For larger codewords, the task of checking all tuples of weight 2 can
be tedious. Fortunately, there is a much easier way that avoids exhausting
checking:

Proposition 19.5.19. Let H be a binary matrix. The null space of H
is a single error-correcting code if and only if H does not contain any zero
columns and no two columns of H are identical.

Proof. The n-tuple ei + ej has 1’s in the ith and jth entries and 0’s
elsewhere, and w(ei + ej) = 2 for i ̸= j. Since

0 = H(ei + ej) = Hei +Hej

can only occur if the ith and jth columns are identical, the null space of H
is a single error-correcting code. □

Exercise 19.5.20. Which of the parity-check matrices in Exercise 19.5.9
produce codes that can correct single errors? ♢

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39
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Suppose now that we have a canonical parity-check matrix H with three
rows. Then we might ask how many more columns we can add to the
matrix and still have a null space that is a single error-detecting and single
error-correcting code. Since each column has three entries, there are 23 = 8
possible distinct columns. We can’t add the columns 0

0
0

 ,

 1
0
0

 ,

 0
1
0

 ,

 0
0
1

 .

So we can add as many as four columns and still maintain a minimum
distance of 3.

In general, if H is an k×n canonical parity-check matrix, then there are
n−k information bits in each codeword. Each column has k bits, so there are
2k possible distinct columns. It is necessary that the columns 0, e1, . . . , en
be excluded, leaving 2k − (1 + n) remaining columns for information if we
are still to maintain the ability not only to detect but also to correct single
errors.

Exercise 19.5.21. Suppose we want to design a code that encodes each
of the 128 ASCII characters as a single codeword, such that the code also
can detect and/or correct single-bit errors. We also want codewords to be
as short as possible to speed up transmission.

(a) How many information bits are in each codeword?

(b) In order to detect single-bit errors, what is the smallest possible code-
word size?

(c) In order to correct single-bit errors, what is the smallest possible code-
word size? (*Hint*)

(d) Redo parts (a), (b), (c) if we want instead to encode the extended ASCII
character set of 256 characters.

♢

Exercise 19.5.22.

(a) What is the smallest possible codeword size for a single error-correcting
code with 20 information bits per codeword?
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(b) What is the smallest possible codeword size for a single error-correcting
code with 32 information bits per codeword?

♢

19.6 Efficient Decoding

We are now at the stage where we are able to generate linear codes that
detect and correct errors fairly easily. However, we haven’t yet seen a good
way to decode a received n-tuple that has some errors. The only thing we
can do so far is compare the received n-tuple, to each possible codeword, and
find the closest one. If the code is large, this may be very time-consuming.

In the following subsections, we will explore two different decoding meth-
ods which are much efficient and practical.

19.6.1 Decoding using syndromes

The following example introduces the notion of syndrome.

Example 19.6.1. Given the binary matrix

H =

 1 1 1 0 0
0 1 0 1 0
1 0 0 0 1


and the 5-tuples x = (11011) and y = (01011), we can compute

Hx =

 0
0
0


and

Hy =

 1
0
1

 .

Hence, x is a codeword and y is not, since x is in the null space and y is
not. Notice that Hx is identical to the first column of H. In fact, this is
where the error occurred. If we flip the first bit in y from 0 to 1, then we
obtain x. ♦
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It appears from this example that the vector Hx has special importance,
so we create a special term for it:

Definition 19.6.2. If H is an k × n matrix and x ∈ Zn2 , then Hx is called
the syndrome of x △

The following proposition allows the quick detection and correction of errors.

Proposition 19.6.3. Let the k × n binary matrix H determine a linear
code and let x be the received n-tuple. Write x as x = c+ e, where c is the
transmitted codeword and e is the transmission error. Then the syndrome
Hx of the received codeword x is also the syndrome of the error e.

Proof. Hx = H(c+ e) = Hc+He = 0+He = He. □

This proposition tells us that the syndrome of a received word depends
solely on the error and not on the transmitted codeword. The proof of the
following proposition follows immediately from Proposition 19.6.3 and from
the fact that Hej is the jth column of the matrix H.

Proposition 19.6.4. Let H ∈ Mk×n(Z2) and suppose that the linear code
corresponding to H is single error-correcting. Let r be a received n-tuple
that was transmitted with at most one error. If the syndrome of r is 0,
then no error has occurred; otherwise, if the syndrome of r is equal to some
column of H, say the ith column, then the error has occurred in the ith bit.

Example 19.6.5. Consider the matrix

H =

 1 0 1 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1


and suppose that the 6-tuples x = (111110), y = (111111), and z = (010111)
have been received (technically these are column vectors, but we write them
as row vectors for convenience). Then

Hx =

 1
1
1

 , Hy =

 1
1
0

 , Hz =

 1
0
0

 .

Hence, x has an error in the third bit and z has an error in the fourth bit. The
transmitted codewords for x and z must have been (110110) and (010011),
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respectively. The syndrome of y does not occur in any of the columns of the
matrix H, so multiple errors must have occurred to produce y. ♦

Exercise 19.6.6. Let

H =

 0 1 1 1 1
0 0 0 1 1
1 0 1 0 1

 .

Compute the syndrome caused by each of the following transmission errors.

1. An error in the first bit.

2. An error in the third bit.

3. An error in the last bit.

4. Errors in the third and fourth bits.

♢

Exercise 19.6.7. Let C be the code obtained from the null space of the
matrix

H =

 0 1 1 0 0
1 1 0 1 0
1 0 0 0 1

 .

Decode the message

11101 11011 10101 01101

if possible. ♢

Exercise 19.6.8. List all possible syndromes for the codes associated with
each the parity matrices in Exercise 19.5.9. ♢
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Cosets
C (00000) (01101) (10011) (11110)

(10000) + C (10000) (11101) (00011) (01110)
(01000) + C (01000) (00101) (11011) (10110)
(00100) + C (00100) (01001) (10111) (11010)
(00010) + C (00010) (01111) (10001) (11100)
(00001) + C (00001) (01100) (10010) (11111)
(10100) + C (00111) (01010) (10100) (11001)
(00110) + C (00110) (01011) (10101) (11000)

Table 19.6: Cosets of C

19.6.2 Coset Decoding

We can use group theory to obtain another way of decoding messages that
makes use of cosets. (If you’ve forgotten what cosets are, you may look back
at Chapter 18 to refresh your memory.)

Since the linear code C is a subgroup of Zn2 , it follows that Zn2 may be
partitioned into cosets of C. In particular, if C is an (n,m)-linear code, then
a coset of C in Zn2 is written in the form x+C, where x ∈ Zn2 . By Lagrange’s
Theorem, there are 2n−m distinct cosets of C in Zn2 . The following example
shows how this works in a particular case:

Example 19.6.9. Let C be the (5, 3)-linear code given by the parity-check
matrix

H =

 0 1 1 0 0
1 0 0 1 0
1 1 0 0 1

 .

The code consists of the codewords

(00000) (01101) (10011) (11110),

There are 25−2 = 23 cosets of C in Z5
2, each with order 22 = 4. These cosets

are listed in Table 19.6. ♦

Let’s see how knowing the cosets helps us to decode a message. Suppose
that x was the original codeword sent and that r is the n-tuple received.
If e is the transmission error, then r = e + x or, equivalently, x = e + r.
However, this is exactly the statement that r is an element in the coset
e+C. In maximum-likelihood decoding we expect the error e to be as small
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as possible; that is, e will have the least weight. An n-tuple of least weight
in a coset is called a coset leader . Once we have determined a coset leader
for each coset, the decoding process becomes a task of calculating r + e to
obtain x.

Example 19.6.10. In Table 19.6, notice that we have chosen a represen-
tative of the least possible weight for each coset. These representatives are
coset leaders. Now suppose that r = (01111) is the received word. To de-
code r, we find that it is in the coset (00010) + C; hence, the originally
transmitted codeword must have been (01101) = (01111) + (00010). ♦

A potential problem with this method of decoding is that we might have
to examine every coset for the received codeword. The following proposition
shows us that we can avoid this because the syndrome that we calculate from
the received codeword points to exactly one coset:

Proposition 19.6.11. Let C be an (n, k)-linear code given by the matrix
H and suppose that x and y are in Zn2 . Then x and y are in the same coset
of C if and only if Hx = Hy. That is, two n-tuples are in the same coset if
and only if their syndromes are the same.

Proof. Two n-tuples x and y are in the same coset of C exactly when
x− y ∈ C; however, this is equivalent to H(x− y) = 0 or Hx = Hy. □

This proposition gives us a three-step process for finding decoding:

(a) Compute the syndrome for the received codeword;

(b) Find the coset leader of the coset associated with this syndrome;

(c) Subtract the coset leader from the received codeword to find the most
likely transmitted codeword.

To facilitate step (b) of this process, we may make a lookup table that
displays the coset leader associated with each syndrome. Such a table is
called a decoding table .

Example 19.6.12. Table 19.7 is a decoding table for the code C given
in Example 19.6.9. If x = (01111) is received, then its syndrome can be
computed to be

Hx =

 0
1
1

 .

https://www.youtube.com/watch?v=EOKGMVWUBPC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=39


19.6 EFFICIENT DECODING 697

Examining the decoding table, we determine that the coset leader is (00010).
It is now easy to decode the received codeword. ♦

Given an (n, k)-block code, the question arises of whether or not coset
decoding is a manageable scheme. A decoding table requires a list of cosets
and syndromes, one for each of the 2n−k cosets of C. Suppose that we have
a (32, 24)-block code. We have a huge number of codewords, 224, yet there
are only 232−24 = 28 = 256 cosets.

Syndrome Coset Leader
(000) (00000)
(001) (00001)
(010) (00010)
(011) (10000)
(100) (00100)
(101) (01000)
(110) (00110)
(111) (10100)

Table 19.7: Syndromes for each coset

Exercise 19.6.13. Let C be the group code in Z3
2 defined by the codewords

(000) and (111). Compute the cosets of H in Z3
2. Why was there no need

to specify right or left cosets? Give the single transmission error, if any, to
which each coset corresponds. ♢

Exercise 19.6.14. For each of the following matrices, find the cosets of the
corresponding code C. Give a decoding table for each code if possible.

(a)
 0 1 0 0 0

1 0 1 0 1
1 0 0 1 0

 (b)


0 0 1 0 0
1 1 0 1 0
0 1 0 1 0
1 1 0 0 1



(c)
(

1 0 0 1 1
0 1 0 1 1

)
(d)


1 0 0 1 1 1 1
1 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 0 0 1 0
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♢

19.7 Additional algebraic coding exercises

Exercise 19.7.1. Let C be a linear code. Show that either the ith coordi-
nates in the codewords of C are all zeros or exactly half of them are zeros.
(*Hint*) ♢

Exercise 19.7.2. Show that the codewords of even weight in a linear code
C are also a linear code. (*Hint*) ♢

Exercise 19.7.3. Let C be a linear code. Show that either every codeword
has even weight or exactly half of the codewords have even weight. (*Hint*)
♢

Exercise 19.7.4. Let C be an (n, k)-linear code. Define the dual or
Orthogonal code of C to be

C⊥ = {x ∈ Zn2 : x · y = 0 for all y ∈ C}.

(a) Find the dual code of the linear code C where C is given by the matrix 1 1 1 0 0
0 0 1 0 1
1 0 0 1 0

 .

(b) Show that C⊥ is an (n, n− k)-linear code.

(c) Find the standard generator and parity-check matrices of C and C⊥.
What happens in general? Prove your conjecture.

♢

Exercise 19.7.5. Let H be an m×n matrix over Z2, where the ith column
is the number i written in binary with m bits. The null space of such a
matrix is called a Hamming code .
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(a) Show that the matrix

H =

 0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0


generates a Hamming code. What are the error-correcting properties of
a Hamming code?

(b) The column corresponding to the syndrome also marks the bit that
was in error; that is, the ith column of the matrix is i written as a
binary number, and the syndrome immediately tells us which bit is in
error. If the received word is (101011), compute the syndrome. In which
bit did the error occur in this case, and what codeword was originally
transmitted?

(c) Give a binary matrix H for the Hamming code with six information
positions and four check positions. What are the check positions and
what are the information positions? Encode the messages (101101) and
(001001). Decode the received words (0010000101) and (0000101100).
What are the possible syndromes for this code?

(d) What is the number of check bits and the number of information bits in
an (m,n)-block Hamming code? Give both an upper and a lower bound
on the number of information bits in terms of the number of check bits.
Hamming codes having the maximum possible number of information
bits with k check bits are called perfect . Every possible syndrome
except 0 occurs as a column. If the number of information bits is less
than the maximum, then the code is called shortened . In this case,
give an example showing that some syndromes can represent multiple
errors.

♢

Exercise 19.7.6. Write a program to implement a (16, 12)-linear code.
Your program should be able to encode and decode messages using coset
decoding. Once your program is written, write a program to simulate a
binary symmetric channel with transmission noise. Compare the results of
your simulation with the theoretically predicted error probability. ♢
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Remark 19.7.7. (historical background) Modern coding theory began in
1948 with C. Shannon’s paper, “A Mathematical Theory of Information” [7].
This paper offered an example of an algebraic code, and Shannon’s Theo-
rem proclaimed exactly how good codes could be expected to be. Richard
Hamming began working with linear codes at Bell Labs in the late 1940s
and early 1950s after becoming frustrated because the programs that he
was running could not recover from simple errors generated by noise. Cod-
ing theory has grown tremendously in the past several years. The Theory
of Error-Correcting Codes, by MacWilliams and Sloane [5], published in
1977, already contained over 1500 references. Linear codes (Reed-Muller
(32, 6)-block codes) were used on NASA’s Mariner space probes. More re-
cent space probes such as Voyager have used what are called convolution
codes. Currently, very active research is being done with Goppa codes,
which are heavily dependent on algebraic geometry. △
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19.9 Hints for “Error Detecting and Correcting
Codes” exercises

Exercise 19.3.6(c): Apply part (b) to both sides of the equation, and show
they are equal.

Exercise 19.3.9(a): Add any codeword to itself.

Exercise 19.5.21(c): Use the paragraph just above this exercise.

Exercise 19.7.1: Show that the codewords in C that have i’th coordinate
equal to 0 form a subgroup of C, and consider the cosets of this subgroup
in C.

Exercise 19.7.2: What row should you add to the parity check matrix?

Exercise 19.7.3: Use the previous exercise to show the codewords of even
weight in C form a subgroup. Then consider the cosets of this subgroup in
C.



20

Isomorphisms of Groups

Thanks to Tom Judson for providing the foundational material for this chap-
ter.

20.1 Preliminary examples

Several times in the book so far we have run into the idea of isomorphic
groups. For instance:

Example 20.1.1. In Chapter 4 we pointed out that C under complex
addition and R× R under pairwise addition act exactly the same. In order
to introduce the new concepts of this chapter, let’s go over this again.

If z = a + bi and w = c + di are complex numbers, we can identify
them as real ordered pairs according to the following “translation” function
f : C → R× R:

f(a+ bi) = (a, b),

which we may also represent as

a+ bi
f−→ (a, b).

If we add two complex numbers and “translate” the result to an ordered
pair, we find:

z + w = (a+ bi) + (c+ di)
f−→ (a+ b, c+ d).

On the other hand, if we map z and w separately we get:

z = a+ bi
f−→ (a, b); w = c+ di

f−→ (c, d),

702
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and then if we add the resulting coordinate pairs, we obtain

(a, b) + (c, d) = (a+ c, b+ d).

which is the same as before. So we get the same result whether we add the
complex numbers or their corresponding ordered pairs.

What we’ve shown is illustrated in Figure 20.1.1. If we start with the
complex numbers z, w, we get the same result whether we follow first the
arrow to the right (“translation” to R × R) and then go down (addition in
R×R), or whether we follow first the down arrow (addition in C) and then
go right (“translation” to R× R).

Figure 20.1.1. Addition is the “same” for complex numbers and real
ordered pairs.

♦

Remark 20.1.2. Readers with an eidetic memory may recognize the simi-
larity between Figure 20.1.1 and Figure 5.4.1. In fact, this type of diagram
pops up a lot in higher mathematics, so much so that it has a special name:
commutative diagram . △

Exercise 20.1.3. Let f be the function used in Example 20.1.1 to rename
complex numbers as ordered pairs. Recall that r cis θ is the polar form of a
complex number. How would you write f(r cis θ)? ♢

Previously when we talked informally about two groups being isomor-
phic, we emphasized that the two groups are ”equivalent” in some sense. So



704 CHAPTER 20 ISOMORPHISMS OF GROUPS

for instance, in the case of Example 1 it should be possible to exchange the
roles of C and R×R and get the same result. For this to work, there should
be a function from R×R to C that shows how to replace ordered pairs with
complex numbers without “changing anything”. What would that function
be? A prime suspect is the inverse of f—assuming, that is, that f actually
has an inverse. What type of function does f have to be in order to have an
inverse? You guessed it–a bijection.

Exercise 20.1.4. Prove that the function f defined in Example 20.1.1 is a
bijection. ♢

Exercise 20.1.5. Draw a diagram similar to Figure 20.1.1 for the function
g : C → R× R defined by g(a+ bi) = (3a, 3b). Show that the same “arrow-
following” property holds: that is, you can follow the arrows from the upper
left to lower right in either order, and still end up with the same result. ♢

Exercise 20.1.6. Prove that the function h(a+ bi) = (a+ 2, b+ 2) is not
an isomorphism from C to R× R. (*Hint*) ♢

Example 20.1.7. In the Symmetries chapter we also saw some examples
of isomorphic groups. In particular, we saw that Z4, the 4th roots of unity,
and the rotations of a square act exactly the same under modular addition,
modular multiplication, and function composition respectively. Let’s remind
ourselves why. The following are the Cayley tables for Z4, the 4th roots of
unity (which we’ll denote by ⟨i⟩), and the rotations of a square (R4):

⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 20.1: Cayley table for Z4

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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· 1 i -1 −i
1 1 i -1 −i
i i -1 −i 1
-1 -1 −i 1 i
-i −i 1 i -1

Table 20.2: Cayley table for ⟨i⟩

◦ id r90 r180 r270
id id r90 r180 r270
r90 r90 r180 r270 id
r180 r180 r270 id r90
r270 r270 id r90 r180

Table 20.3: Cayley table for R4

(1) Comparing Z4 and ⟨i⟩, notice that if we take the Cayley table for Z4

and make the folllowing replacements:

0 → 1 1 → i 2 → −1 3 → −i,

then the result exactly matches the Cayley table for ⟨i⟩. This means
that if you add any two elements in Z4 (say 1 and 2), and also multiply
their corresponding elements in ⟨i⟩ (i and -1), your results from each of
these actions are corresponding elements (3 and −i).
Hence the function f : Z4 −→ ⟨i⟩ that takes

0
f−→ 1, 1

f−→ i, 2
f−→ −1, 3

f−→ −i

is an isomorphism from Z4 to the 4th roots of unity, and these groups
are isomorphic to each other.

(2) Now if we compare ⟨i⟩ and R4, using the function g : ⟨i⟩ −→ R4 defined
by

1
g−→ id, i

g−→ r90, − 1
g−→ r180, − i

g−→ r270,

we see that their Cayley tables are in fact exactly the same. Hence the
4th roots of unity and the rotations of a square are isomorphic to each
other, and g is an isomorphism between them.
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(3) Finally, using the function h : Z4 −→ R4 that takes

0
h−→ id, 1

h−→ r90, 2
h−→ r180, 3

h−→ r270,

we see that the Cayley tables for Z4 and R4 are exactly the same. Hence
Z4 and the rotations of a square are isomorphic to each other, and h is
an isomorphism between them.

So Z4, R4, and ⟨i⟩ are all isomorphic to each other. Mathematically we state
this as follows:

Z4
∼= R4

∼= ⟨i⟩

♦

Exercise 20.1.8. Determine whether each of the following functions are
isomorphisms between the groups in Example 20.1.7. Justify your answers.

(a) f : Z4 −→ ⟨i⟩ defined by

f(0) = 1, f(1) = −1, f(2) = i, f(3) = −i.

(b) g : Z4 −→ R4 defined by

g(0) = id, g(1) = r270, g(2) = r90, g(3) = r180.

(c) h : R4 −→ ⟨i⟩ defined by

h(1) = id, h(i) = r270, h(−1) = r180, h(−i) = r90.

(d) h : R4 −→ ⟨i⟩ defined by

h(id) = 1, h(r270) = i, h(r180) = −i, h(r90) = −1.

♢

Exercise 20.1.9. Come up with a different isomorphism for each pairing
of groups in Example 20.1.7. For instance, find a function different from f
that maps Z4 −→ ⟨i⟩ that matches the the two Cayley tables. Do the same
thing with g and h. ♢

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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20.2 Formal definition and basic properties of iso-
morphisms

So let’s buckle down and get mathematical. We start with a rigorous defi-
nition of isomorphism:

Definition 20.2.1. Two groups (G, ·) and (H, ◦) are isomorphic if there
exists a bijection ϕ : G → H such that the group operation is preserved;
that is,

ϕ(a · b) = ϕ(a) ◦ ϕ(b)

for all a and b in G. If G is isomorphic to H, we write G ∼= H. The function
ϕ is called an isomorphism . △

Remark 20.2.2. We’ll often use Greek letters (ϕ (‘phi’), γ (’gamma’),
ψ(’psi’), etc.) to denote isomorphisms–partially because ‘phi’ is reminiscent
of isomor ‘phi’ sm, and partially because we don’t want to confuse isomor-
phisms with group elements (which are denoted by g, h, and so on.) △

Remark 20.2.3. Definition 20.2.1 specifies that any isomorphism must be
a bijection, i.e. a function that is 1-1 and onto. Proposition 8.7.11 tells us
that any function that has an inverse is a bijection, and vice versa. You’ll
find that often the easiest way to show that a function is a bijection is to
show it has an inverse. △

Exercise 20.2.4.

(a) Let consider the function ϕ : R → R defined by: ϕ(x) = 5x. Use
Definition 20.2.1 to show that ϕ defines an isomorphism. What are the
two isomorphic groups involved?

(b) Let a be a nonzero real number, and consider the function ϕa : R → R
defined by: ϕa(x) = ax. Show that ϕa defines an isomorphism. What
are the two isomorphic groups involved?

♢

Some important properties of isomorphisms follow directly from the
above definition. First we have:
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Proposition 20.2.5. Given that ϕ : G → H is an isomorphism, then ϕ
takes the identity to the identity: that is, if e is the identity of G, then ϕ(e)
is the identity of H (see Figure 20.2.1).

Figure 20.2.1. Isomorphic image of inverse elements are inverse elements.

Exercise 20.2.6. Fill in the blanks in the following proof of Proposi-
tion 20.2.5:

Given that e is the identity of < 1 > and h is an arbitrary element of
< 2 > . Since ϕ is a bijection, then there exists g ∈ < 3 > such that
ϕ( < 4 > ) = h. Then we have:

ϕ(e) ◦ h = ϕ(e) ◦ ϕ( < 5 > ) (substitution)

= ϕ(e · < 6 > ) (definition of < 7 > )

= ϕ( < 8 > ) (definition of < 9 > )

= h (substitution)

Following the same steps, we can also show

h ◦ ϕ(e) = < 10 > .

It follows from the definition of identity that < 11 > is the identity of the
group < 12 > . ♢

Another important property of isomorphisms is illustrated in Figure 20.2.2,
and stated in Proposition 20.2.7:

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Figure 20.2.2. Isomorphic image of an identity element is an identity
element.

Proposition 20.2.7. Given that ϕ : G → H is an isomorphism, then ϕ
preserves the operation of inverse: that is, for any g ∈ G we have

ϕ(g−1) = (ϕ(g))−1.

Exercise 20.2.8. Fill in the blanks in the following proof of Proposi-
tion 20.2.7:

Let e and f be the identities of G and H, respectively. Given that g ∈
< 1 > , we have:

ϕ(g) ◦ ϕ(g−1) = ϕ(g · g−1) (definition of < 2 > )

= ϕ(e) (definition of < 3 > )

= f (Proposition < 4 > ).

Using the same steps, we can also show

ϕ(g−1) ◦ ϕ(g) = < 5 > .

By the definition of inverse, it follows that

(ϕ(g))−1 = < 6 > .

♢

It’s possible to use isomorphisms to create other isomorphisms:

Exercise 20.2.9.
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(a) Given that ϕ : G → H is an isomorphism, show that ϕ−1 : H → G is
also an isomorphism. (*Hint*)

(b) Given that ϕ : G → H and ψ : H → K are isomorphisms, show that
ψ ◦ ϕ : G→ K is also an isomorphism. (*Hint*)

♢

We said in the previous section that isomorphic groups are “equivalent”
in some sense. This fact has a formal mathematical statement as well:

Proposition 20.2.10. Isomorphism is an equivalence relation on groups.

Exercise 20.2.11. Prove Proposition 20.2.10. (*Hint*) ♢

20.3 Examples and generalizations

20.3.1 Examples of isomorphisms

Now that we have a formal definition of what it means for two groups to be
isomorphic, let’s look at some more examples, in order to get a good feel for
identifying groups that are isomorphic and those that aren’t.

From high school and college algebra we are well familiar with the fact
that when you multiply exponentials (with the same bases), the result of this
operation is the same as if you had just kept the base and added the expo-
nents. This equivalence of operations is a telltale sign for identifying possible
isomorphic groups. The next two examples illustrate this observation.

For our first example, we denote the set of integer powers of 2 as 2Z,
that is:

2Z ≡ {. . . , 2−2, 2−1, 20, 21, 22, . . .}.

Exercise 20.3.1. Show that 2Z with the operation of multiplication is a

subgroup of Q∗. ♢

Example 20.3.2. When elements of 2Z are multiplied together, their ex-
ponents add: we know this from basic algebra. This suggests there should
be an isomorphism between Z and 2Z. In fact, we may define the function

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO


20.3 EXAMPLES AND GENERALIZATIONS 711

ϕ : Z → 2Z by ϕ(n) = 2n. To show that this is indeed an isomorphism, by
our definition we must show two things: (a) that the function preserves the
operations of the respective groups; and (b) that the function is a bijection:

(a) We may compute

ϕ(m+ n) = 2m+n = 2m2n = ϕ(m)ϕ(n).

(b) By definition the function ϕ is onto the subset {2n : n ∈ Z} of Q∗. To
show that the map is injective, assume that m ̸= n. If we can show that
ϕ(m) ̸= ϕ(n), then we are done. Suppose that m > n and assume that
ϕ(m) = ϕ(n). Then 2m = 2n or 2m−n = 1, which is impossible since
m− n > 0.

This completes the proof that Z ∼= 2Z. ♦

Example 20.3.3. As in the previous example, the real powers of e under
multiplication acts exactly like addition of those real exponents. This sug-
gests that the function ψ(x) = ex is an isomorphism between an additive
group and a multiplicative group. The reader will complete this proof of
this fact as an exercise. ♦

Exercise 20.3.4. Define the function ψ by: ψ(x) = ex for x ∈ R.

(a) Given that the domain of ψ is all real numbers, what is the range of ψ?

(b) Prove that ψ(x) is a bijection between its domain and range.

(c) Find group operations on the domain and range of ψ such that ψ(x)
preserves operations; i.e. ψ(x · y) = ψ(x) ◦ ψ(y), where · and ◦ are the
group operations on the domain and range,respectively. Verify that ψ
does indeed preserve operations for these two operations.

(d) Now that we know ψ(x) is an isomorphism, what can we conclude about
(R+, ·) and (R,+)?

♢

Exercise 20.3.5.
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(a) What is the largest possible domain and range of the natural logarithm
function ln(x)? (Consider only real logarithms,and not complex-valued
logarithms or logarithms of complex numbers.)

(b) Using the previous exercise, the relation between natural logarithm and
exponential function, as well as a result from earlier in this chapter,
show that the natural logarithm function is an isomorphism. What are
the two isomorphic groups?

(c) Using the fact that log10(x) = ln(x)/ ln(10), show that the base 10
logarithm function is also an isomorphism. What are the two isomorphic
groups?

(d) Given any two positive real numbers (a and b) in scientific notation that
are accurate to 3 decimal places, show how you may estimate ab using
addition and a table containing the base 10 logarithms of all integers
from 100 to 999. For example, how would you compute the product
(1.75× 1015)(9.53× 10−27?

♢

Exercise 20.3.6. Prove that Z ∼= nZ, for every nonzero integer n. ♢

Exercise 20.3.7. Prove that C∗ is isomorphic to the subgroup of GL2(R)
consisting of all matrices of the form (a and b are real numbers)(

a b
−b a

)
, where a2 + b2 ̸= 0.

(In your proof, you should verify that this set of matrices is indeed a sub-
group of GL2(R): in other words, check that the determinant is never zero,
when a2 + b2 ̸= 0.) ♢

Example 20.3.8. Consider the groups Z8 and Z12. Can you tell right
away that there can’t be an isomorphism between them? Remember, an
isomorphism is a one-to-one and onto function: but since |Z12| > |Z8| there
is no onto function from Z8 to Z12, and so they can’t be isomorphic to

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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each other. Similarly it can be shown that any two finite groups that have
differing numbers of elements can’t be isomorphic to each other. ♦

Let’s look at some more examples where Cayley tables can help deter-
mine isomorphism.

Example 20.3.9. The following are the Cayley tables for Z4 and U(5).

⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 20.4: Cayley table for Z4

⊙ 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 20.5: Cayley table for U(5)

Notice that the main diagonals (left to right) of the Cayley tables seem
to have a different pattern. The main diagonal for Z4 is the alternating
sequence, 0, 2, 0, 2, while the main diagonal of U(5) is the non-alternating
sequence 1, 4, 4, 1. It appears at first sight that these two groups must be
non-isomorphic. However, we may rearrange the row and column labels in
Table 20.5 to obtain Table 20.6. From the rearranged table we may read off
the isomorphism: 0 → 1, 1 → 2, 2 → 4, 3 → 3.

⊙ 1 2 4 3
1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4

Table 20.6: Rearranged Cayley table for U(5)
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Note the important point that when we rearranged the table, we used
the same ordering (1, 2, 4, 3) for both rows and columns. You don’t want to
use one ordering for rows, and a different ordering for columns. ♦

Example 20.3.10. Consider the group of units of Z8 and the group of units
of Z12; i.e. U(8) and U(12). We’ve seen that these consist of the elements
in Z8 and Z12, that are relatively prime to 8 and 12, respectively, so

U(8) = {1, 3, 5, 7}
U(12) = {1, 5, 7, 11}.

Exercise 20.3.11. Give the Cayley tables for U(8) and U(12). ♢

An isomorphism ϕ : U(8) → U(12) is given by

1
ϕ−→ 1

3
ϕ−→ 5

5
ϕ−→ 7

7
ϕ−→ 11.

ϕ is one-to-one and onto by observation, and we can verify that ϕ pre-
serves the operations of U(8) and U(12) by showing that replacing elements
in the Cayley table of U(8) according to the isomorphism ϕ gives the Cayley
table of U(12) . Hence U(8) ∼= U(12). ♦

The function ϕ is not the only possible isomorphism between U(8) and
U(12).

Exercise 20.3.12.

(a) Using Cayley tables, show that the function ψ defines an isomorphism
between U(8) and U(12), where:

1
ψ−→ 1

3
ψ−→ 7

5
ψ−→ 11

7
ψ−→ 5.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(You will have to rearrange rows and columns to get the identification
between tables.)

(b) Define a different isomorphism between U(8) and U(12), and use Cayley
tables to verify that it’s an isomorphism.

♢

Exercise 20.3.13. Prove that both U(8) and U(12) are isomorphic to
Z2 ×Z2 (recall Z2 ×Z2 is the set of all pairs (a, b) with a, b ∈ Z2, where the
group operation is addition mod 2 on each element in the pair). ♢

Exercise 20.3.14. Prove that U(8) is isomorphic to the group of matrices(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)
.

♢

Exercise 20.3.15. Show that the matrices

{1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 0 1
1 0 0
0 1 0

 ,

0 0 1
0 1 0
1 0 0

 ,

0 1 0
0 0 1
1 0 0

}
form a group. Find an isomorphism of G with a more familiar group of
order 6. ♢

Example 20.3.16. In Example 18.4.26 of the Cosets chapter, we looked
at the normal subgroup N = {(1), (123), (132)} of S3. The cosets of N
in S3 were N and (12)N ; and the quotient group S3/N had the following
multiplication table.

N (12)N

N N (12)N
(12)N (12)N N
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You may verify that N is in fact the group of all even permutations on
three elements, that is A3; and (12)N = {(12), (13), (23)} is the set of odd
permutations. The information captured in S3/N is parity; that is, multi-
plying two even or two odd permutations results in an even permutation,
whereas multiplying an odd permutation by an even permutation yields an
odd permutation. This suggests a possible isomorphism to Z2. ♦

Exercise 20.3.17. Prove that the quotient group S3/A3
∼= Z2. ♢

In Section 18.4.2 of the Cosets chapter we hinted at several examples of
possible isomorphisms, which we’ll have you prove now:

Exercise 20.3.18. Prove the following:

(a) Z/3Z ∼= Z3

(b) Dn/Rn ∼= Z2

♢

Exercise 20.3.19. Based on your work in Exercise 18.4.27 prove the fol-
lowing:

(a) Z/6Z ∼= Z6

(b) Z24/⟨8⟩ ∼= Z8

(c) U(20)/⟨3⟩ ∼= Z2

♢

We’ve seen several examples where Cayley tables were used to show that
two groups are isomorphic. (Of course, this works best if the groups are
not too large, and it certainly doesn’t work if the groups are infinite!) Let’s
now consider how we can use Cayley tables to show when groups are not
isomorphic to each other. Caution: it’s not enough to have Cayley tables
for the two groups that don’t match—we saw in Example 20.3.9 that even
when tables don’t match, it may still be possible to rearrange one of the
tables to create a matchup.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Suppose that if T is a Cayley table of a group G. Then g ∈ G appears
on the diagonal of T if and only if there is an element g′ ∈ G such that
g′ · g′ = g. It turns out that this property is preserved under isomorphism:

Proposition 20.3.20. Given a Cayley table T for a finite group G, and let
g ∈ G appears on the diagonal of T . Let ϕ : G → H be an isomorphism,
and let T ′ be a Cayley table of H. Then ϕ(g) appears on the diagonal of T ′.

Proof. As stated above, g appears on the diagonal of T if and only if there
exists g′ ∈ G such that g′ · g′ = g. Since ϕ is an isomorphism, this implies
ϕ(g′) ·ϕ(g′) = ϕ(g), which in turn implies that ϕ(g) appears on the diagonal
of T ′. □

Proposition 20.3.21. Given a Cayley table T for a finite group G, and
suppose the element g ∈ G appears m times on the diagonal of T . Let
ϕ : G → H be an isomorphism, and let T ′ be a Cayley table of H. Then
ϕ(g) appears m times on the diagonal of T ′.

Exercise 20.3.22. Prove Proposition 20.3.21. ♢

Proposition 20.3.23. Given a Cayley table T for a finite group G, and
suppose n distinct elements ofG appear on the diagonal of T . Let ϕ : G→ H
be an isomorphism, and let T ′ be a Cayley table of H. Then n distinct
elements of H appear on the diagonal of T ′.

Exercise 20.3.24. Prove Proposition 20.3.23. ♢

Exercise 20.3.25. By using the preceding propositions and comparing
diagonal elements of Cayley tables, prove that Z4 ≇ U(12). ♢

Exercise 20.3.26. Prove or disprove: U(8) ∼= Z4. ♢

Exercise 20.3.27. Let σ be the permutation (12), and let τ be the per-
mutation (34). Let G be the set {id, σ, τ, στ} together with the operation of
composition.
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(a) Give the Cayley table for the group G.

(b) Prove or disprove: G ∼= Z4.

(c) Prove or disprove: G ∼= U(12).

♢

Example 20.3.28. Even though D3 and Z6 possess the same number of
elements, we might suspect that they are not isomorphic, because Z6 is
abelian and D3 is non-abelian. Let’s see if the Cayley tables can help us
here:

◦ id ρ1 ρ2 µ1 µ2 µ3

id id ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 id µ3 µ1 µ2

ρ2 ρ2 id ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 id ρ1 ρ2
µ2 µ2 µ3 µ1 ρ2 id ρ1
µ3 µ3 µ1 µ2 ρ1 ρ2 id

Table 20.7: Cayley table for D3

⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Table 20.8: Cayley table for Z6

Note that the Cayley table for Z6 is symmetric across the main diagonal
while the Cayley table for D3 is not. Furthermore, no matter how we rear-
range the row and column headings for the Cayley table for Z6, the table
will always be symmetric. It follows that there is no way to to match up
the two groups’ Cayley tables: so D3 ≇ Z6.

This argument via Cayley table works in the case where the two groups
being compared are both small, but if the groups are large then it’s far

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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too time-consuming (especially if the groups are infinite!). So let us take
a different approach, and fall back on our time-tested strategy of proof by
contradiction. In the case at hand, this means that we first suppose that
D3

∼= Z6, and then find a contradiction based on that supposition.

So, suppose that the two groups are isomorphic, which means there
exists an isomorphism ϕ : Z6 → D3. Let a, b ∈ D3 be two elements such
that a ◦ b ̸= b ◦ a. Since ϕ is an isomorphism, there exist elements m and n
in Z6 such that

ϕ(m) = a and ϕ(n) = b.

However,

a ◦ b = ϕ(m) ◦ ϕ(n) = ϕ(m⊕ n) = ϕ(n⊕m) = ϕ(n) ◦ ϕ(m) = b ◦ a,

which contradicts the fact that a and b do not commute. ♦

Although we have only proven the non-isomorphicity of abelian and non-
abelian groups for one particular case, the same method of proof can be used
to prove the following general result.

Proposition 20.3.29. If G is an abelian group and H is a non-abelian
group, then G ≇ H.

Exercise 20.3.30. Prove Proposition 20.3.29 by imitating the proof in
Example 20.3.28. ♢

Exercise 20.3.31. Prove D4 ≇ Z8. ♢

Exercise 20.3.32. Prove Z/6Z ≇ S3. ♢

Finally, let’s look at Z and R. We know Z is a cyclic group with 1 as
the generator, while R is not cyclic. (Do you remember why?) We might
suspect that Z ≇ R, since one group is cyclic and the other isn’t. This is in
fact true, and we’ll prove it. Since Z and R are infinite groups we can’t use
Cayley tables, so we have to use another method (three guesses as to what
it is):

Proposition 20.3.33. Z is not isomorphic to R.
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Proof. We will use a proof by contradiction. Suppose that there exists an
isomorphism ϕ : Z → R. Choose any x ∈ R, and let m ∈ Z be the pre-image
of x, so that ϕ(m) = x. It follows that:

x = ϕ(m) = ϕ(1 + . . .+ 1︸ ︷︷ ︸
m times

) = ϕ(1) + . . .+ ϕ(1)︸ ︷︷ ︸
m times

.

Thus x ∈ ⟨ϕ(1)⟩. But since this is true for any x ∈ R, this means that ϕ(1)
is a generator of R, which means that R is cyclic. But we’ve already seen
that R is not cyclic. This contradiction shows that our original supposition
must be false: namely, there cannot exist an isomorphism ϕ : Z → R. This
completes the proof. □

Again we can generalize this proof to prove that a cyclic group cannot be
isomorphic to a non-cyclic group. The contrapositive of this statement is:

Proposition 20.3.34. If G is cyclic and G ∼= H, then H is also cyclic.

Exercise 20.3.35. Prove Proposition 20.3.34. (*Hint*) ♢

Exercise 20.3.36.

(a) Prove that Q is not isomorphic to Z.

(b) Prove that Z3 × Z3 is not isomorphic to Z9.

(c) Prove that D4 ≇ Z24/⟨8⟩

♢

In the foregoing examples, the reader might develop the impression that
isomorphisms must be functions between two different groups. But such is
not the case! It is quite possible for a group to be isomorphic to itself.

Exercise 20.3.37.

(a) Given any group G, let Id : G → G be the identity map, that is, Id(g) = g
for all g ∈ G. show that Id is an isomorphism.
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(b) Let Mn(R) be the group of n × n matrices with real entries under the
addition operation. Prove that the transpose function M → MT is an
isomorphism from Mn(R) to Mn(R).

♢

An isomorphism from a group to itself is called an automorphism.

20.3.2 General properties of isomorphisms

In the last two sections we proved several properties of isomorphic groups
and their corresponding isomorphisms. We collect these properties (and add
a few more) in the following proposition:

Proposition 20.3.38. Let ϕ : G → H be an isomorphism of two groups.
Then the following statements are true.

(1) |G| = |H|.

(2) ϕ−1 : H → G is an isomorphism.

(3) G is abelian if and only if H is abelian.

(4) G is cyclic if and only if H is cyclic.

(5) If g ∈ G is an element of order n (that is, |⟨g⟩| = n), then ϕ(g) ∈ H is
also an element of order n.

(6) If G′ is a subgroup of G, then ϕ(G′) is a subgroup of H and G′ ∼= ϕ(G′)
(Recall that ϕ(G′) = {ϕ(g), g ∈ G′}.)

Proof. Assertion (1) follows from the fact that ϕ is a bijection. The proofs
of (2)–(6) are indicated in the following exercises.

Exercise 20.3.39.

(a) Show part (2) of Proposition 20.3.38. (*Hint*)

(b) Show part (3) of Proposition 20.3.38. (*Hint*)

(c) Show part (4) of Proposition 20.3.38. (*Hint*)

https://www.youtube.com/watch?v=AI2JXYaaV8U&index=31&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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♢

Exercise 20.3.40. Suppose, G,H, ϕ are as given in Proposition 20.3.38,
and suppose g ∈ G is an element of order n, where n > 1 . Show that
ϕ(g)k ̸= idH for k = 1, . . . n − 1 , where idH is the identity of H. Use your
result to prove part (5) of Proposition 20.3.38. ♢

We will complete the proof of part (6) in two steps:

Step (I): ϕ(G′) is a subgroup of H;

Step (II): ϕ(G′) is isomorphic to G′.

Exercise 20.3.41. Fill in the blanks of the following proof of Step (I) (that
is, ϕ(G′) is a subgroup of H):

Let us suppose that G′ is a subgroup of G. We claim that ϕ(G′) is
actually a subgroup of < 1 > . To show this, by Proposition 15.4.15 it’s
enough to show that if h1 and h2 are elements of ϕ(G′), then h1h

−1
2 is also

an element of < 2 > .

Now given that h1, h2 ∈ ϕ(G′), by the definition of ϕ(G′) it must be true
that there exist g1, g2 ∈ < 3 > such that ϕ(g1) = h1, ϕ(g2) = h2. But
then we have

h1h
−1
2 = ϕ(g1)ϕ(g2)

−1 (by substitution)

= ϕ(g1)ϕ(g
−1
2 ) (by Proposition < 4 > )

= ϕ(g1g
−1
2 ) (by the definition of < 5 > ).

Since g1g
−1
2 is an element of G′, it follows that h1h

−1
2 ∈ < 6 > . This

completes the proof of Step (I). ♢

Exercise 20.3.42. Complete the following proof of Step (II) (that is, G′

and ϕ(G′) are isomorphic).

Consider the function ϕ restricted to the set G′: that is, ϕ : G′ → ϕ(G′).
To prove this gives an isomorphism from G′ to ϕ(G′), we need to show (i)
ϕ : G′ → ϕ(G′) is a bijection; and (ii) ϕ : G′ → ϕ(G′) has the operation-
preserving property.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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To show (i), we note that by the definition of ϕ(G′), for every h ∈ ϕ(G′)
there exists a g ∈ < 1 > such that ϕ( < 2 > ) = h. It follows that ϕ
maps G′ onto < 3 > . Also, if g1, g2 ∈ G′ and ϕ(g1) = ϕ(g2), then since
ϕ is a one-to-one function on G it follows that g1 = < 4 > . From this it
follows that ϕ is also a one-to-one function on < 5 > . We conclude that
< 6 > is a bijection.

To show (ii), given g1, g2 ∈ < 7 > we have that ϕ(g1g2) = < 8 >
since by assumption ϕ is an isomorphism from < 9 > to < 10 > . This
implies that ϕ also has the operation-preserving property when it’s consid-
ered as a function from < 11 > to < 12 > . This completes the proof
of Step (II). ♢

□

Exercise 20.3.43. Prove S4 is not isomorphic to D12. ♢

Exercise 20.3.44. Prove A4 is not isomorphic to D6. (Recall that A4 is
the alternating group (group of even permutations) on 4 letters.) ♢

Exercise 20.3.45. The quaternion group (denoted by Q8) was introduced
in Example 15.2.8 and Exercise 15.2.9. Show that the quaternion group is
not isomorphic to D4. ♢

20.4 Classification up to isomorphism

We have been emphasizing that two groups that are isomorphic are the
“same” as far as all group properties are concerned. So if we can characterize
a class of groups as isomorphic to a well-understood set of groups, then all
of the properties of the well-understood groups carry over to the entire class
of groups. We will see two examples of this in the following subsections.

20.4.1 Classifying cyclic groups

Our first classification result concerns cyclic groups.

Proposition 20.4.1. If G is a cyclic group of infinite order, then G is
isomorphic to Z.
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Proof. Let G be a cyclic group with infinite order and suppose that a is a
generator of G. Define a map ϕ : Z → G by ϕ : n 7→ an. Then

ϕ(m+ n) = am+n = aman = ϕ(m)ϕ(n).

To show that ϕ is one-to-one, suppose that m and n are two elements in Z,
where m ̸= n. We can assume that m > n. We must show that am ̸= an.
Let us suppose the contrary; that is, am = an. In this case am−n = e, where
m − n > 0, which contradicts the fact that a has infinite order. Our map
is onto since any element in G can be written as an for some integer n and
ϕ(n) = an. □

Exercise 20.4.2.

(a) Using Proposition 20.4.1, prove again that {2n|n ∈ Z} ∼= Z.

(b) Give a similar proof that nZ ∼= Z, for every nonzero integer n.

♢

Proposition 20.4.3. If G is a cyclic group of order n, then G is isomorphic
to Zn.

Proof. Let G be a cyclic group of order n generated by a and define a
map ϕ : Zn → G by ϕ : k 7→ ak, where 0 ≤ k < n. The proof that ϕ is an
isomorphism is left as the next exercise. □

Exercise 20.4.4. Prove that ϕ defined in Proposition 20.4.3 is an isomor-
phism. ♢

Exercise 20.4.5.

(a) In fact, the converse of Proposition 20.4.3 is true: that is, If G is iso-
morphic to Zn then G is a cyclic group of order n. How do we know
this? (*Hint*)

(b) Is the converse of Proposition 20.4.1 also true? Justify your answer.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♢

Exercise 20.4.6. Show that the multiplicative group of the complex nth
roots of unity is isomorphic to Zn. ♢

Proposition 20.4.7. If G is a group of order p, where p is a prime number,
then G is isomorphic to Zp.

Exercise 20.4.8. Prove Proposition 20.4.7 (*Hint*). ♢

20.4.2 Characterizing all groups: Cayley’s theorem

In the previous section, we saw that any cyclic group is “equivalent” (in the
sense of isomorphism) to one of the groups Zn. This enables us to easily
conceptualize any cyclic group in terms of a standardized set of groups that
we’re very familiar with.

Now, can we do something similar with all groups? In other words, can
we find a standardized set of groups so that any group can be characterized
as equivalent (up to isomorphism) to one of these standard groups?.

In a way we already have a standardized characterization of finite groups,
because we have seen that every finite group can be represented with a
Cayley table. But this is not really satisfactory, because there are many
Cayley tables which do not correspond to any group.

Exercise 20.4.9. Give examples of Cayley tables for binary operations that
meet each of the following criteria. (You can make your row and column
labels be the set of integers {1, 2, ..n}, for an appropriate value of n.

(a) The binary operation has no identity.

(b) The binary operation has an identity, but not inverses for every element

(c) *The binary operation has an identity and inverses, but the associative
law fails.
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♢

Although Cayley tables are not adequate for our purpose, it turns out
that they provide the key to the characterization we’re seeking. Consider
first the following simple example.

Example 20.4.10. The Cayley table for Z3 is

⊕ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

The addition table of Z3 suggests that it is the isomorphic to the permutation
group {id, (012), (021)}. One possible isomorphism is

0 7→
(
0 1 2
0 1 2

)
= id

1 7→
(
0 1 2
1 2 0

)
= (012)

2 7→
(
0 1 2
2 0 1

)
= (021).

Notice the interesting “coincidence” that the rows of the Cayley table (
(0 1 2), (1 2 0) and 2 1 0) respectively) “just happen” to agree exactly with
the second rows of the three tableaus!

Of course, this “coincidence” is no accident. For example, the second row
of the Cayley table is obtained as (1⊕ 0 1⊕ 1 1⊕ 2), and the permutation(
0 1 2
1 2 0

)
that is the isomorphic image of 1 is actually the function from

Z3 → Z3 that takes n to 1⊕ n. ♦

In Example 20.4.10 it was fairly easy to obtain permutations directly
from the Cayley table, because the elements of the group were 0, 1, 2. But
what if the group has different elements? No problem–we can just relabel
the elements, and then read off the permutations in the same way, as the
following exercise shows:

Exercise 20.4.11.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) Give the Cayley table for U(8).

(b) Rewrite the table you gave in (a) except make the following replace-
ments: 1 → 1, 3 → 2, 5 → 3, 7 → 4.

(c) From the table you created in (b), obtain 4 permutations from the 4
rows of the Cayley table (just as we did in Example 20.4.10).

(d) Give the Cayley table for the four permutations that you obtained in
(c).

(e) Explain how your result shows that U(8) is isomorphic to a subgroup of
the permutation group S(4).

♢

What we’ve discovered in Example 20.4.10 and Exercise 20.4.11 can be
generalized to any finite group of any size, whether abelian or nonabelian:

Proposition 20.4.12. (Cayley’s theorem) Every finite group is isomorphic
to a group of permutations.

Proof. Let G be a group with |G| elements. We seek a group of permu-
tations P ⊂ S|G| that is isomorphic to G. For any g ∈ G we may define a
function ϕg : G→ G by

ϕg(a) := ga.

We claim that ϕg is a permutation on G: you will show this in Exer-
cise 20.4.13 below. Let us define the set P ⊂ S|G| as

P = {ϕg : g ∈ G}.

Let us now define a function Φ : G→ P just as we did in Example 20.4.10:

Φ(g) := ϕg.

Let’s pause for a minute here, to make sure that you understand what’s going
on. According to the definition, Φ is a function whose domain is the group
G and whose range is a subset of the permutation group on |G| letters. Now
permutations are functions in their own right: so Φ is a function (from G to
P ), and for each g ∈ G, Φ(g) is also a function (from G to G). We could say
that Φ is a function-valued function. (This can be quite unnerving the first
time you see it – but such constructions are common in higher mathematics,
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so it’s best to get used to them!) In this case, you should understand that
Φ(g) is a permutation, and Φ(g)(a) is the permutation Φ(g) applied to the
group element a. According to the definition of Φ(g), Φ(g)(a) is equal to
ϕg(a), which by the definition of ϕg is equal to ga.

OK, now let’s get back to the argument. To show that Φ is an isomor-
phism, we must show that Φ is one-to-one, onto, and preserves the group
operation. You will show that Φ is one-to-one and onto in Exercise 20.4.13
below. To show that Φ preserves the group operation, we need to show
that Φ(gh) = Φ(g) ◦ Φ(h) for any elements g, h ∈ G. We may show this
element-by-element: that is, we show that Φ(gh)(a) = (Φ(g) ◦ Φ(h))(a) for
an arbitrary a ∈ G as follows:

Φ(gh)(a) = (gh)a [definition of Φ(gh)]

= g(ha) [associativity of G]

= g(Φ(h)(a)) [definition of Φ(h)]

= Φ(g) ◦ Φ(h)(a). [definition of Φ(g)]

□

Exercise 20.4.13.

(a) Show that ϕg : G → G defined in the above proof is a permutation on
G. (It is enough to show that ϕg is one-to-one and onto.)

(b) Complete the proof of Proposition 20.4.12 by showing that Φ : G → P
is one-to-one and onto.

♢

The isomorphism Φ : G → S|G| defined in the above proof is known as
the left regular representation of G.

Exercise 20.4.14.

(a) Using the left regular representation, find a subgroup of S(6) that is
isomorphic to U(7).

(b) Using the left regular representation, find a subgroup of S(8) that is
isomorphic to U(16).

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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♢

Thie isomorphism Φ defined in Proposition 20.4.12 is not the only pos-
sible isomorphism between G and SG. Another isomorphism is presented in
the following exercise.

Exercise 20.4.15. The right regular representation Φ̃ : G → S|G| is

defined as follows. For any g ∈ G define the function ϕ̃g : G→ G by

σ̃g(a) := ag−1.

Define the set P̃ as
P̃ = {ϕ̃g : g ∈ G},

and define the function Φ̃ : G→ P as

Φ̃(g) := ϕ̃g.

(a) Show that ϕ̃g : G → G defined in the above proof is a permutation on
G. (It follows that the set P̃ is a subset of S|G|.)

(b) Show that Φ̃ : G→ P̃ is one-to-one and onto.

(c) Complete the proof that G ∼= P̃ by showing that Φ̃ preserves the group
operation, that is: Φ̃(gh) = Φ̃(g) ◦ Φ̃(h) for any elements g, h ∈ G.

♢

Exercise 20.4.16.

(a) Give the isomorphism based on the right regular representation for the
group Z3. Is this isomorphism different from the isomorphism in Exam-
ple 20.4.10?

(b) Give the isomorphism based on the right regular representation for the
group Z3. Is this isomorphism different from the isomorphism in Exer-
cise 20.4.11?

♢

Exercise 20.4.17.
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(a) Using the right regular representation, find a subgroup of S(6) that is
isomorphic to U(7).

(b) Using the right regular representation, find a subgroup of S(8) that is
isomorphic to U(16).

♢

Remark 20.4.18. (historical background) Arthur Cayley was born in Eng-
land in 1821, though he spent much of the first part of his life in Russia,
where his father was a merchant. Cayley was educated at Cambridge, where
he took the first Smith’s Prize in mathematics. A lawyer for much of his
adult life, he wrote several papers in his early twenties before entering the
legal profession at the age of 25. While practicing law he continued his
mathematical research, writing more than 300 papers during this period of
his life. These included some of his best work. In 1863 he left law to be-
come a professor at Cambridge. Cayley wrote more than 900 papers in fields
such as group theory, geometry, and linear algebra. His legal knowledge was
very valuable to Cambridge; he participated in the writing of many of the
university’s statutes. Cayley was also one of the people responsible for the
admission of women to Cambridge. △

20.5 Direct products and classification of abelian
groups

In Section 8.1 we introduced the notion of the Cartesian product of sets .
The formal definition is given in Definition 8.1.3–the basic idea is is to take
the set of all pairs of elements (a, b) where a is an element of the first set and
b is an element of the second. A simple example to keep in mind is R× R,
which is the plane with Cartesian coordinates (x, y). Notice that R × R
is an additive group, where the addition is defined by performing addition
separately on both coordinates.

It turns out that this example can be generalized. Given two groups G
andH, it is possible to construct a new group based on the Cartesian product
G×H. Even more exciting, it is sometimes possible to “factor” a large group
by expressing it as the Cartesian product of smaller groups. In this case, all
of the properties of the large group can be derived from the properties of the

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=k6LaGUiHhMk&index=32&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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smaller groups, which can lead to tremendous simplification. This process
of factoring groups into simpler groups can be compared to the factorization
of integers into primes. (We will in fact see some deep connections between
these two processes.)

We begin by showing that the Cartesian product of groups does inded
yield a group.

20.5.1 Direct Products

If (G, ·) and (H, ◦) are groups, then we can make the Cartesian product of
G and H into a new group. As a set, our group is just the ordered pairs
(g, h) ∈ G ×H where g ∈ G and h ∈ H. We can define a binary operation
on G×H by

(g1, h1)(g2, h2) = (g1 · g2, h1 ◦ h2);

that is, we just multiply elements in the first coordinate as we do in G and
elements in the second coordinate as we do in H. We have specified the
particular operations · and ◦ in each group here for the sake of clarity; we
usually just write (g1, h1)(g2, h2) = (g1g2, h1h2).

Proposition 20.5.1. Let G and H be groups. The set G ×H is a group
under the operation (g1, h1)(g2, h2) = (g1g2, h1h2) where g1, g2 ∈ G and
h1, h2 ∈ H.

The proof is outlined in the following exercise.

Exercise 20.5.2.

(a) Show that the set G × H is closed under the binary operation defined
in Proposition 20.5.1.

(b) Show that (eG, eH) is the identity of G ×H, where eG and eH are the
identities of the groups G and H respectively.

(c) Show that the inverse of (g, h) ∈ G×H is (g−1, h−1).

(d) Show that the operation defined in Proposition 20.5.1 is associative.

(*Hint*) ♢

https://www.youtube.com/watch?v=K6LAGUIHHMK&INDEX=32&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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The group G × H is called the direct product of G and H. Notice
the important difference between ‘Cartesian product’ and ’ direct product’:
the direct product is a group whose underlying set is a Cartesian product;
but in addition, the direct product has a group operation, which generic
off-the-shelf Cartesian products don’t ordinarily have.

Example 20.5.3. Let R be the group of real numbers under addition. The
Cartesian product of R with itself, R×R = R2, is also a group, in which the
group operation is just addition in each coordinate; that is, (a, b) + (c, d) =
(a+ c, b+ d). The identity is (0, 0) and the inverse of (a, b) is (−a,−b). ♦

Example 20.5.4. Let R∗ be the group of real numbers under multiplication.
The Cartesian product of R∗ with itself, R∗ × R∗, is also a group, in which
the group operation is given by (a, b) · (c, d) = (a · c, b · d). ♦

Exercise 20.5.5.

(a) Find the identity of the group R∗ × R∗ that was introduced in Exam-
ple 20.5.4

(b) Find the inverse of the element (a, b) ∈ R∗ × R∗.

♢

Exercise 20.5.6.

(a) Consider the function f : R×R → C defined by f((a, b)) = a+bi. Prove
or disprove whether f is an isomorphism.

(b) Consider the function g : R∗ × R∗ → C∗ defined by f((a, b)) = a + bi.
Prove or disprove whether g is an isomorphism. (Note that the function
g is almost identical to f as far as sets are concerned, but the group
operations behave quite differently.

♢

Example 20.5.7. We have previously seen that the elements of the dihedral
group D4 can be listed as {id, r, r2, r3, sr, sr2, sr3} where r is counterclock-
wise rotation by π/2 and s is a reflection. We also know thatS = {1, s}

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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and R4 = {id, r, r2, r3} are subgroups of D4 and thus groups in their own
right. It is very tempting to conjecture that D4 can be written as S × R4,
where the notation (sj , rk) is just another way of writing sjrk for j = 0, 1
and k = 0, 1, 2, 3. But as it happens, this doesn’t work out: things are not
so simple (and much more interesting!), as you will show in the following
exercise. ♦

Exercise 20.5.8. Consider the function f : S × Rr → D4 defined by
f((sj , rk)) = sjrk for j = 0, 1 and k = 0, 1, 2, 3. Give an example of two
elements for which the operation preserving property fails. ♢

One may notice from Example 20.5.7 that S and R4 were abelian groups,
and D4 is not. Our experience with this example suggests that this may be
a recipe for failure–perhaps it’s not possible to take the direct product of
abelian groups and get a nonabelian group. This time our conjecture is
correct, as you will show in the following exercise.

Exercise 20.5.9.

(a) Suppose that the groups G and H are abelian. Prove that G×H is also
abelian.

(b) * Show the converse of part (a): that is, given that G ×H is abelian,
then G and H must both be abelian. (*Hint*)

♢

So that takes care of abelian groups. Another important type of group
is cyclic groups. We’ll talk a lot more later about direct products of cyclic
groups. For now, let’s consider first of all whether the product of cyclic
groups is always cyclic:

Example 20.5.10. Consider

Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Although Z2 × Z2 and Z4 both contain four elements, they are not isomor-
phic. We can prove this by noting that Z4 is cyclic, while every element
(a, b) in Z2 × Z2 has order 2 (verify this). ♦

https://www.youtube.com/watch?v=K6LAGUIHHMK&INDEX=32&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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So we’ve shown that the direct product of cyclic groups is not necessarily
cyclic. How about the converse: that is, if a direct product is cyclic, are the
factor groups necessarily cyclic? This time, the answer is yes:

Exercise 20.5.11. Prove the following statement: Suppose G and H are
groups, and G×H is cyclic. Then G and H are both cyclic. (*Hint*) ♢

Let’s now consider a different type of question. What’s the difference
between G×H and H ×G? Not much, as the following exercise shows:

Exercise 20.5.12. Show that for any two groups G and H, G×H ∼= H×G.
(*Hint*) ♢

So far we’ve been considering the products of two groups. But there’s
no reason to stop with two! The direct product

n∏
i=1

Gi = G1 ×G2 × · · · ×Gn

of the groups G1, G2, . . . , Gn may be defined in a similar way.

Exercise 20.5.13. How would you write an element in
∏n
i=1Gi? Write two

different elements of
∏n
i=1Gi, and show how you would define the group op-

eration in terms of these two elements. (You may denote the group operation
on each group Gi by the symbol ‘·’. ♢

If we’re taking the direct product of copies of the same group, we may
use power notation: G×G = G2, G×G×G = G3, and so on.

Example 20.5.14. The group Zn2 , considered as a set, is just the set of
all binary n-tuples. The group operation is the “exclusive or” of two binary
n-tuples. For example, the following equation is true in Z8

2:

(01011101) + (01001011) = (00010110).

The groups {Zn2 , n = 1, 2, 3, . . .} are important in coding theory and cryp-
tography, as well as other areas of computer science. ♦

The result of Exercise 20.5.9 is generalized in the following proposition:

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Proposition 20.5.15. Let G1, G2, . . . Gn be groups. Then
∏n
i=1Gi is

abelian if and only if all of the groups G1, G2, . . .Gn are abelian.

Exercise 20.5.16. Use induction and the results of Exercise 20.5.9 to prove
Proposition 20.5.15 ♢

The result of Exercise 20.5.18 may be similarly generalized:

Proposition 20.5.17. SupposeG1, . . . Gn are groups, and
∏n
i=1Gi is cyclic.

Then all of the groups G1, G2 . . . Gn are cyclic.

Exercise 20.5.18. Prove Proposition 20.5.17 ♢

By extending the results of Exercise 20.5.12, we find that we can rear-
range the groups in a direct product arbitrarily and still end up with the
“same” group:

Proposition 20.5.19. Let G1, G2, . . . Gn be arbitrary groups, and let σ ∈
Sn be any permutation on {1, 2, . . . n}. Then

G1 ×G2 × . . .×Gn ∼= Gσ(1) ×Gσ(2) × . . .×Gσ(n).

The following exercise outlines the proof of Proposition 20.5.19.

Exercise 20.5.20.

(a) What function would you define in order to prove Proposition 20.5.19?

(b) Prove that the function that you defined in (a) is a bijection by showing
that it has an inverse.

(c) Prove that the function that you defined in (a) preserves group opera-
tions, and hence is an isomorphism.

♢

Suppose you start out with groups that are isomorphic, and take direct
products of them. Are the direct products also isomorphic? It just so
happens that they are:

https://www.youtube.com/watch?v=K6LAGUIHHMK&INDEX=32&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Proposition 20.5.21. Suppose that G1
∼= H1, G2

∼= H2, . . . , Gn ∼= Hn.
Then G1 × . . .×Gn ∼= H1 × . . .×Hn.

We won’t give the full proof, but you can get the idea of how it goes by
doing the following exercise.

Exercise 20.5.22. Prove Proposition 20.5.21 for the case where n = 2.
(Remember that the default method for proving that groups are isomorphic
is to define a suitable function and prove that it’s an isomorphism.) ♢

20.5.2 Classifying finite abelian groups by factorization

We have used isomorphisms to classify cyclic groups (Proposition 20.4.1),
as well as to characterize groups in general (Cayley’s theorem, Proposi-
tion 20.4.12). In this section, we will make use of direct products to prove
a classification of finite abelian groups up to isomorphism. The bottom line
is that every finite abelian group is isomorphic to a direct product of cyclic
groups of prime power oders. To get to this bottom line, we’ll have to estab-
lish some more properties of direct products, especially in relation to cyclic
groups. The following proposition characterizes the order of the elements in
a direct product.

Proposition 20.5.23. Let (g, h) ∈ G × H. If g and h have finite orders
r and s respectively, then the order of (g, h) in G×H is the least common
multiple of r and s.

Proof. Suppose that m is the least common multiple of r and s and let
n = |(g, h)|. Then

(g, h)m = (gm, hm) = (eG, eH)

(gn, hn) = (g, h)n = (eG, eH).

Hence, n must divide m, and n ≤ m. However, by the second equation,
both r and s must divide n; therefore, n is a common multiple of r and s.
Since m is the least common multiple of r and s, m ≤ n. Consequently, m
must be equal to n. □

By applying Proposition 20.5.23 inductively, it is possible to prove an
analogous result for direct products of more than two groups. We’ll leave it
to you to fill in the details of the proof.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Proposition 20.5.24. Let (g1, . . . , gn) ∈
∏n
i=1Gi. If gi has finite order ri in

Gi, then the order of (g1, . . . , gn) is the least common multiple of r1, . . . , rn.

Exercise 20.5.25. Prove Proposition 20.5.24 using induction. ♢

For the rest of the section, we’ll be dealing with direct products of Zn
(keep in mind that any cyclic group is isomorphic to Zn for some n).

Example 20.5.26. Let (8, 56) ∈ Z12 × Z60. Since gcd(8, 12) = 4, the order
of 8 is 12/4 = 3 in Z12. Similarly, the order of 56 in Z60 is 15. The least
common multiple of 3 and 15 is 15; hence, (8, 56) has order 15 in Z12 ×Z60.
♦

Example 20.5.27. The group Z2 × Z3 consists of the pairs

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2).

In this case, unlike that of Z2×Z2 and Z4, it is true that Z2×Z3
∼= Z6. We

need only show that Z2 × Z3 is cyclic. By trial and error, we may find that
(1, 1) is a generator for Z2 × Z3, so that Z2 × Z3 = ⟨(1, 1)⟩. ♦

Exercise 20.5.28. Find the order of each of the following elements.

(a) (3, 4) in Z4 × Z6

(b) (6, 15, 4) in Z30 × Z45 × Z24

(c) (5, 10, 15) in Z25 × Z25 × Z25

(d) (8, 8, 8) in Z10 × Z24 × Z80

♢

Exercise 20.5.29.

(a) Show that Z4×Z9 is cyclic, and find 6 different generators for the group.

(b) Show that Z3×Z5 is cyclic. How many different generators does it have?

https://www.youtube.com/watch?v=K6LAGUIHHMK&INDEX=32&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(c) Show that Z4 × Z6 is not cyclic by showing that none of its elements is
a generator (i.e. all elements have order less than 24).

♢

The next proposition tells us exactly when the direct product of two
cyclic groups is cyclic.

Proposition 20.5.30. The group Zm×Zn is isomorphic to Zmn if and only
if gcd(m,n) = 1.

Proof. Assume first that if Zm × Zn ∼= Zmn, then gcd(m,n) = 1. To
show this, we will prove the contrapositive; that is, we will show that if
gcd(m,n) = d > 1, then Zm × Zn cannot be cyclic. Notice that mn/d is
divisible by both m and n; hence, for any element (a, b) ∈ Zm × Zn,

(a, b) + (a, b) + · · ·+ (a, b)︸ ︷︷ ︸
mn/d times

= (0, 0).

Therefore, no (a, b) can generate all of Zm × Zn.
The converse follows directly from Proposition 20.5.23 since lcm(m,n) =

mn if and only if gcd(m,n) = 1. □

Recall that Proposition 20.4.3 says that a group of order mn is cyclic if
and only if it is isomorphic to Zmn. So Proposition 20.5.30 tells us that the
product of two cyclic groups is cyclic if and only if their orders are relatively
prime.

This idea extends directly to arbitrary direct products: a product of
cyclic groups is cyclic if and only if the orders of the groups in the product
are all relatively prime.

Proposition 20.5.31. Let n1, . . . , nk be positive integers. Then

k∏
i=1

Zni
∼= Zn1···nk

if and only if lcm(n1, . . . , nk) =
∏k
i=1 ni (in other words, n1, . . . , nk are all

relatively prime).

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Proof. Use the argument in Proposition 20.5.30 first with n1 and n2, then
with n1n2 and n3, then with n1n2n3 and n4, and so on. (The best way to
do this proof is using induction.) □

Exercise 20.5.32. Prove Proposition 20.5.31 using induction. ♢

A special case of this proposition is:

Corollary 20.5.33. If
m = pe11 · · · pekk ,

where the pi’s are distinct primes, then

Zm ∼= Zpe11 × · · · × Zpekk .

Proof. Since gcd(peii , p
ej
j ) = 1 for i ̸= j, the proof follows from the Corol-

lary to 20.5.31. □

Exercise 20.5.34. Find three non-isomorphic abelian groups of order 8,
and show that they are not isomorphic. ♢

Remember that in the Permutations chapter we showed that every per-
mutation can be “factored” as the product of disjoint cycles. (At that time,
we compared this to the factorization of integers into prime factors). It
turns out that finite abelian groups can also be “factored”. This beautiful
and general result is summarized in the following proposition. We will not
give a complete proof of the proposition (which uses induction), but we hope
that it makes sense to you in light of what we’ve seen so far.1

Proposition 20.5.35. (Factorization of finite abelian groups) If
G is a finite abelian group, then there exist prime numbers p1 . . . pk and
exponents e1 . . . ek such that

G ∼= Zpe11 × · · · × Zpekk

Note that the prime numbers p1, . . . , pk may not necessarily be distinct.

1Many proofs can be found on the web: search for “structure of finite abelian groups”.

https://www.youtube.com/watch?v=K6LAGUIHHMK&INDEX=32&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Remark 20.5.36. Proposition 20.5.19 informs us that these factors can
be written in any order, because all rearrangements of a direct product are
isomorphic to each other. △

Exercise 20.5.37.

(a) It turns out that for each k, the numberpekk in Proposition 20.5.35 is
the largest power of pk that divides |G|. How do we know this?

(b) For the group G in Proposition 20.5.35, if q is any prime number that
is not equal to any of the primes p1, . . . pn, then G has no element of
order q. How do we know this?

♢

Exercise 20.5.38. Show that the primes p1 . . . pk and exponents e1 . . . ek
in Proposition 20.5.35 must satisfy |G| = pe11 · · · pekk . ♢

Proposition 20.5.35 shows that abelian groups are essentially a souped-
up versions of modular addition. (Now do you see why we spent a whole
chapter on modular arithmetic?) From this proposition, we may derive a
host of consequences. Following are just a few examples.

First, we can tell quite a lot about when abelian groups must be cyclic,
depending on their orders:

Example 20.5.39. All abelian groups G of order 21 are isomorphic and
cyclic. This is because 21 = 31 × 71, so by Proposition 20.5.35 it must be
the case that G ∼= Z3 × Z7. In particular, Z21

∼= Z3 × Z7. So all groups of
order 21 are isomorphic to the cyclic group ♦

Exercise 20.5.40.

(a) Prove or disprove: There is an abelian group of order 22 that is not
cyclic.

(b) Prove or disprove: There is an abelian group of order 24 that is not
cyclic.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(c) Prove or disprove: There is an abelian group of order 30 that is not
cyclic.

(d) *Prove or disprove: If G is an abelian group and the order of G is a
product of distinct primes, then G must be cyclic.

♢

We know from Euler’s theorem (Proposition 18.3.12) that the order of
a group element g ∈ G must divide the order of the group. However, this
does not necessarily imply that every divisor of |G| has a group element of
that order. For abelian groups though, thanks to Proposition 20.5.35 we
can actually guarantee that for certain divisors of |G|

Example 20.5.41. Any group G of order 54 must have an element of
order 3. This is because 54 = 33 · 2, and according to Proposition 20.5.35
it must be the case that either G ∼= Z27 × Z2, or G ∼= Z9 × Z3 × Z2,
or G ∼= Z3 × Z3 × Z3 × Z2. In the first case, then the isomorphic image of
(9, 0) ∈ Z27×Z2 has order 3 (verify this). In the second case, the isomorphic
image of (3, 0, 0) ∈ Z9 × Z3 × Z2 has order 3 (verify this also). In the third
case, the isomorphic image of (1, 0, 0, 0) ∈ Z3 × Z3 × Z3 × Z2 has order 3
(verify this too!) ♦

Exercise 20.5.42.

(a) Show that Z5n contains an element of order 5, for any positive integer
n.

(b) Show that every abelian group of order divisible by 7 contains an element
of order 7.

♢

What we’ve shown for specific primes in Example 20.5.41 and Exer-
cise 20.5.42 is true in general: groups with orders divisible by p always
contain elements of order p. This is true for nonabelian as well as abelian
groups: this fact is known as Cauchy’s theorem . At this point we’re not
able to prove Cauchy’s theorem for nonabelian groups, but Cauchy’s theo-
rem for abelian groups can be proved using methods similar to those above.
We’ll state the theorem formally, then ask you to prove it.

https://www.youtube.com/watch?v=K6LAGUIHHMK&INDEX=32&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Proposition 20.5.43. (Cauchy’s theorem for abelian groups) Let G
be an abelian group such that |G| is divisible by the prime p. Then G has
an element of order p.

Exercise 20.5.44. Prove Cauchy’s theorem for abelian groups. ♢

Exercise 20.5.45. (All of the exercises below assume that G is an abelian
group.)

(a) Show that if the prime p divides |G|, then G has at least p− 1 elements
of order p.

(b) Show that if p2 divides |G|, then G has at least p2− p elements of order
p.

(c) Show that if pn divides |G|, then G has at least pn− p elements of order
p.

(d) Suppose that pn is the largest power of p that divides G. Show that
there are at most p− 1 element in G with order pn.

♢

We may also recall that Lagrange’s theorem (Proposition 18.3.3) enables
us to conclude that the order of any subgroup H ∈ G must divide |G|.
Proposition 20.5.35 enables us to go one better.

Example 20.5.46. Suppse that |G| = 125. Let us show that G has a
subgroup of order 25. From Proposition 20.5.35, we know that there are 3
possible cases for G: (i) G ∼= Z125; (ii) G ∼= Z25×Z5; (iii) G ∼= Z5×Z5×Z5.
In case (i), then the isomorphic image of ⟨5⟩ is a subgroup of order 25. In
case (ii), then the isomorphic image of ⟨(1, 0)⟩ is a subgroup of order 25. In
case (iii), then the isomorphic image of Z5×Z5×{0} is a subgroup of order
25. ♦

Example 20.5.47. Suppse that 72 divides |G|. Let us show that G has
a subgroup of order 49. From Proposition 20.5.35, we know that either(i)
G has a factor Z7k where k ≥ 2; or (ii) G has at least two factors of Z7.
In case (i), then G can be written as Z7k × H, where k ≥ 2 and H is a

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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direct product of copies of Zn for different values of n. In this case, then
the isomorphic image of ⟨(7k−2, idH)⟩ is a subgroup of order 72 (verify this).
In case (ii), then G can be written as Z7 × Z7 ×H, where once again H is
a direct product of copies of Zn for different values of n. In this case, the
isomorphic image of Z7 × Z7 × idH is a subgroup of order 49 (verify this).
So in either case, G has a subgroup of order 49. ♦

Exercise 20.5.48.

(a) Let p be a prime. Show that if p2 divides the order of the abelian group
G, then G has a subgroup of order p2.

(b) * Let p be a prime, and let k be a positive integer. Show that if pk

divides the order of the abelian group G, then G has a subgroup of
order pk.

(c) Let p1, p2 be primes such that p1 ̸= p2. Show that if p1p2 divides the
order of the abelian group G, then G has a subgroup of order p1p2.

(d) Let p1, p2 be primes such that p1 ̸= p2, and let k1, k2 be positive integers.
Show that if pk11 p

k2
2 divides the order of the abelian group G, then G

has a subgroup of order pk11 p
k2
2 .

♢

The following proposition is the culmination of the train of thought ex-
pressed in Example 20.5.47 and Exercise 20.5.48

Proposition 20.5.49. Let G be an abelian group and suppose G is divisible
by the positive integer n. Then G has a subgroup of order n.

Exercise 20.5.50.prove Proposition 20.5.49. ♢

20.6 Proof that U(p) is cyclic

Mathematics has many mysterious and wonderful connections. In this sec-
tion, we will pull together several ideas from previous chapters to prove a
key property of an important family of abelian groups.



744 CHAPTER 20 ISOMORPHISMS OF GROUPS

Recall that U(n) is the group of units in Zn, where a unit ’ is an element
with a multiplicative inverse. If p is a prime, then U(p) is the set of all
nonzero elements of Zp. In some coding theory applications, it’s important
to find elements of U(p) which have a very larger order (recall that the order
of a group element g ∈ G (denoted by |g|) is the smallest positive integer n
such that gn = id). Now, we know from Lagrange’s theorem that |g| divides
|G| for any g ∈ G. It follows that |g| ≤ |G|. We also have the following
necessary and sufficient conditions for when |g| = |G|:

Exercise 20.6.1. Given a finite group G, prove G is cyclic if and only if
|G| = |g| for some g ∈ G. ♢

Now, we know from Proposition 20.4.7 that any group of prime order
is cyclic. Does this imply that U(p) must be cyclic? Alas, the answer is
negative:

Exercise 20.6.2. Show that if p is a prime greater than 3, then |U(p)| is
not a prime. ♢

But all is not lost! Even though |U(p)| is not prime, we can still prove
that U(p) is cyclic. To do this, we will need results from the Polynomials
and Cosets chapters, as well as from this chapter. Here we go:

Proposition 20.6.3. U(p) is cyclic for every prime p.

Proof. First, notice that Proposition 12.6.18 says that there are at most
m solutions to the equation xm = 1 in Zp. Since 0 is not a solution, it follow
that all of these solutions are also in U(p).

Also, according to the factorization of Abelian groups (Proposition 20.5.35),
there exists an isomorphism ϕ:

ϕ : U(p) → Zp1e1 × Zp2e2 × ...× Zpkek ,

where p1, p2, . . . , pk are all primes. It’s not necessarily true a priori that all
of the pj ’s are distinct: but if they are, then Proposition 20.5.31 tells us that
U(p) must be cyclic.

So it all comes down to proving that all of the pj ’s are distinct. We will
prove this by contradiction.We begin as usual by supposing the opposite of
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what we want to prove: namely, that pi = pj for some i ̸= j. Now consider
the following two elements of the direct product:

gi = (0, . . . , pei−1
i︸ ︷︷ ︸

i′th place

, . . . , 0) and gj = (0, . . . , p
ej−1
j︸ ︷︷ ︸

j′th place

, . . . , 0).

It is then possible to prove that (recall that “|g| ” is the order of the group
element g )

|gi| = pi and |gj | = pj .

Exercise 20.6.4. Given the above definitions of gi and gj , show that |gi| =
pi and |gj | = pj . (*Hint*) ♢

As a result of the above exercise, Proposition 18.3.17 enables us to con-
clude that

|gni | = pi and |gnj | = pj for (n = 1, ..., pj − 1).

Since pi = pj , we have at least 2(pi − 1) elements in Zp1e1 × Zp2e2 × ... ×
Zpkek of order pi. By Proposition 20.3.38, this means there are 2(pi − 1)
elements of U(p) which have order pi, and all of these elements are solutions
of the equation xpi − 1 = 0 (Why?). But at the beginning of this proof, we
demonstrated that there can only be at most pi solutions. This contradiction
shows us our supposition is false, so all of the pi’s in the direct product must
be unequal. □

Exercise 20.6.5.

(a) Show that U(6), U(8), and U(9) are cyclic.

(b) Give an example of a positive integer n for which U(n) is not cyclic.

(c) Is it possible to specify exactly the positive integers n for which U(n)
is cyclic? (You’ll probably have to do some internet research to answer
this one. )

♢
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20.6.1 Internal direct products

The direct product of two groups builds a large group out of two smaller
groups. We would like to be able to reverse this process and conveniently
break down a group into its direct product components; that is, we would
like to be able to say when a group is isomorphic to the direct product of
two of its subgroups.

Definition 20.6.6.et G be a group with subgroups H and K satisfying the
following conditions.

� G = HK = {hk : h ∈ H, k ∈ K};

� H ∩K = {e};

� hk = kh for all k ∈ K and h ∈ H.

Then G is the internal direct product of H and K. △

Example 20.6.7. The group U(8) is the internal direct product of

H = {1, 3} and K = {1, 5}.

♦

Example 20.6.8. The dihedral group D6 is an internal direct product of
its two subgroups

H = {id, r3} and K = {id, r2, r4, s, r2s, r4s}.

It can be shown that K ∼= S3; consequently, D6
∼= Z2 × S3. ♦

Example 20.6.9. Not every group can be written as the internal direct
product of two of its proper subgroups. If the group S3 were an inter-
nal direct product of its proper subgroups H and K, then one of the sub-
groups, say H, would have to have order 3. In this case H is the subgroup
{(1), (123), (132)}. The subgroup K must have order 2, but no matter which
subgroup we choose for K, the condition that hk = kh will never be satisfied
for h ∈ H and k ∈ K. ♦
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Proposition 20.6.10. Let G be the internal direct product of subgroups
H and K. Then G is isomorphic to H ×K.

Proof. Since G is an internal direct product, we can write any element
g ∈ G as g = hk for some h ∈ H and some k ∈ K. Define a map ϕ : G →
H ×K by ϕ(g) = (h, k).

The first problem that we must face is to show that ϕ is a well-defined
map; that is, we must show that h and k are uniquely determined by g.
Suppose that g = hk = h′k′. Then h−1h′ = k(k′)−1 is in both H and K, so
it must be the identity. Therefore, h = h′ and k = k′, which proves that ϕ
is, indeed, well-defined.

To show that ϕ preserves the group operation, let g1 = h1k1 and g2 =
h2k2 and observe that

ϕ(g1g2) = ϕ(h1k1h2k2)

= ϕ(h1h2k1k2)

= (h1h2, k1k2)

= (h1, k1)(h2, k2)

= ϕ(g1)ϕ(g2).

We will leave the proof that ϕ is a bijection as an exercise:

Exercise 20.6.11. Prove that ϕ defined in the proof of Proposition 20.6.10
is a bijection, thus completing the proof of the proposition. ♢

□

Example 20.6.12. The group Z6 is an internal direct product isomorphic
to {0, 2, 4} × {0, 3}. ♦

Exercise 20.6.13. Prove that the subgroup of Q∗ consisting of elements
of the form 2m3n for m,n ∈ Z is an internal direct product isomorphic to
Z× Z. ♢

Exercise 20.6.14. In this problem, we define G ⊂ S2 × Sn by:

G = (id, An) ∪ ((12), (Sn \An)).

(a) Show that S2 × Sn is isomorphic to a subgroup of Sn+2.
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(b) Show that G is a subgroup of S2 × Sn.

(c) Show that G is isomorphic to a subgroup of An+2.

(d) Show that G is isomorphic to Sn .

(e) Show that Sn is isomorphic to a subgroup of An+2.

♢

A (sort of) converse of Proposition 20.6.10 is also true:

Proposition 20.6.15. Let H and K be subgroups of G, and define the
map ϕ : H ×K → G by ϕ( (h, k) ) = hk. Suppose that ϕ is an isomorphism.
Then G is the internal direct product of H and K. .

Exercise 20.6.16. Prove Proposition 20.6.15. ♢

Exercise 20.6.17. Let G be a group of order 20. If G has subgroups H
and K of orders 4 and 5 respectively such that hk = kh for all h ∈ H and
k ∈ K, prove that G is the internal direct product of H and K. ♢

Exercise 20.6.18. Prove the following: Let G, H, and K be groups such
that G×K ∼= H ×K. Then is is also true that G ∼= H. (*Hint*) ♢

We can extend the definition of an internal direct product of G to a
collection of subgroups H1, H2, . . . ,Hn of G, by requiring that

� G = H1H2 · · ·Hn = {h1h2 · · ·hn : hi ∈ Hi};

� Hi ∩ ⟨∪j ̸=iHj⟩ = {e};

� hihj = hjhi for all hi ∈ Hi and hj ∈ Hj .

We will leave the proof of the following proposition as an exercise.

Proposition 20.6.19. Let G be the internal direct product of subgroups
Hi, where i = 1, 2, . . . , n. Then G is isomorphic to

∏
iHi.

Exercise 20.6.20. Prove Proposition 20.6.19. ♢
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Additional exercises

(1) Let ω = cis(2π/n). Show that ωn = 1, and prove that the matrices

A =

(
ω 0
0 ω−1

)
and B =

(
0 1
1 0

)
generate a multiplicative group isomorphic to Dn.

(2) Show that the set of all matrices of the form

B =

(
±1 n
0 1

)
,

where n ∈ Zn, is a group isomorphic to Dn.

(3) Let G = R \ {−1} and define a binary operation on G by

a ∗ b = a+ b+ ab.

Prove that G is a group under this operation. Show that (G, ∗) is isomorphic
to the multiplicative group of nonzero real numbers.

(4) Find all the subgroups of D4. Which subgroups are normal? What are all the
quotient groups of D4 up to isomorphism?

(5) Prove that D4 cannot be the internal direct product of two of its proper sub-
groups.

(6) * Prove that S3 × Z2 is isomorphic to D6. Can you make a conjecture about
D2n? Prove your conjecture. (*Hint*)

(7) Find all the subgroups of the quaternion group, Q8. Which subgroups are
normal? What are all the quotient groups of Q8 up to isomorphism?

(8) Prove U(5) ∼= Z4. Can you generalize this result to show that U(p) ∼= Zp−1?

(9) Write out the permutations associated with each element of S3 in the proof of
Cayley’s Theorem.

(10) Prove that A×B is abelian if and only if A and B are abelian.

(11) Let H1 and H2 be subgroups of G1 and G2, respectively. Prove that H1 ×H2

is a subgroup of G1 ×G2.

(12) Let m,n ∈ Z, so that (m,n) ∈ Z× Z. Prove that ⟨(m,n)⟩ ∼= ⟨d⟩ if and only if
d = gcd(m,n).

(13) Let m,n ∈ Z. Prove that ⟨m⟩ ∩ ⟨n⟩ ∼= ⟨l⟩ if and only if d = lcm(m,n).

The following exercises will require this definition:

Definition 20.6.21.n automorphism of a group G is an isomorphism with
itself. △
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(14) Prove that complex conjugation is an automorphism of the additive group
of complex numbers; that is, show that the map ϕ(a + bi) = a − bi is an
isomorphism from C to C.

(15) Prove that a+ ib 7→ a− ib is an automorphism of C∗.

(16) Prove that A 7→ B−1AB is an automorphism of SL2(R) for all B in GL2(R).

(17) We will denote the set of all automorphisms of G by Aut(G). Prove that
Aut(G) is a subgroup of SG, the group of permutations of G.

(18) Find Aut(Z6).

(19) Find Aut(Z).

(20) Find two nonisomorphic groups G and H such that Aut(G) ∼= Aut(H).

(21) (a) Let G be a group and g ∈ G. Define a map ig : G→ G by ig(x) = gxg−1.
Prove that ig defines an automorphism of G. Such an automorphism is
called an inner automorphism .

(b) The set of all inner automorphisms is denoted by Inn(G). Prove that
Inn(G) is a subgroup of Aut(G).

(c) What are the inner automorphisms of the quaternion groupQ8? Is Inn(G) =
Aut(G) in this case?

(22) Let G be a group and g ∈ G. Define maps σg : G → G and τg : G → G by
σg(x) = gx and τg(x) = xg−1. Show that ig := τg ◦ σg is an automorphism of
G.

https://www.youtube.com/watch?v=JMYIIEUEOAU&INDEX=30&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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20.7 Hints for “Isomorphisms” exercises

Exercise 20.1.6: Show a counterexample where the sum of two complex
numbers is not the same as the sum of their corresponding ordered pairs.

Exercise 20.2.9(a): According to Definition 20.2.1, this involves proving two
things about ϕ−1. What are they?

Exercise 20.2.9(b): You need to prove the same two things as in part (a).
Use results from the Functions chapter.

Exercise 20.2.11: Recall that this involves proving the three properties: re-
flexive, symmetric, and transitive. You may find that Exercise 20.2.9 is
useful.

Exercise 20.3.35: the proof follows Proposition 20.3.33 very closely.

Exercise 20.3.39(a): Use Exercise 20.2.9. (b): Use Proposition 20.3.29. (c):
Use Proposition 20.3.34.

Exercise 20.4.5(a): Use Proposition 20.3.34.

Exercise 20.4.8: This is a direct result of Proposition 18.3.17 in the Cosets
chapter..

Exercise 20.5.2: For each group property to be proved, use the corresponding
group property for G and H independently.

Exercise 20.5.9: To show that G is abelian, for arbitrary group elements
g1, g2 ∈ G consider the elements (g1, idH) and (g2, idH) in G×H, where idH
is the identity of the group H. Show that if (g1, idH) and (g2, idH) commute,
then g1 and g2 must also commute.

Exercise 20.5.18: Since G×H is cyclic, it must have a generator (g, h). Show
that g is a generator for G and h is a generator for H.

Exercise 20.5.12: Define a function ϕ : G ×H → H × G by: ϕ(g, h) =
(you fill in the blank). Show that this function is in fact an isomorphism.

Exercise 20.5.42(c): Consider 2 cases: (i) 9 divides one of the factors peii in
Proposition 20.5.35; (ii) 9 does not divide any of the factors.

Exercise 20.6.18: Show that G × idK is a subgroup of G × K, and that
G× idK ∼= G; and similarly for H.

Additional exercises

Exercise 6: If you take every other vertex in a hexagon, you get an equilateral
triangle. Also note that 180-degree rotation is an element of order 2.
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Exploration: Relating
polynomials and matrices

In the previous chapter, we formally introduced the concept of isomor-
phism as it relates to groups. Intuitively, two groups are isomorphic if any
algebraic statement about one group is also true about the other, just ex-
pressed in different symbology. For example, given that group a finite group
G is isomorphic to group H, it is then possible to obtain the Cayley table
for H simply by making letter-for-letter substitutions in the Cayley table
for G.

The concept of isomorphism applies to other mathematical structures
besides groups. A great deal of mathematics is concerned with showing that
two apparently different mathematical structures are in fact the same, just
expressed in different terminology. When the structures involved are rings,
vector spaces, etc., then we may talk about ring isomorphisms, vector space
isomorphisms, and so on.

In this chapter, we will give an example of a ring isomorphism . This
isomorphism is quite important in digital signal processing ,is a key area
of modern technology that powers our CD players, cell phones, wireless
internet, and many other electronic devices.

To understand this chapter you will need some background in linear
algebra. In particular, you will need to understand algebraic operations on
vectors and matrices. In the first section, we’ll give a brief review of some
basic properties of vectors and vector spaces.

752
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21.1 Definition of vector space

The most basic idea of a “vector” is a quantity that has magnitude and
direction, and which can be represented by an arrow. This simple repre-
sentation was good enough for basic math and physics classes. However,
in upper-level math (and physics) there’s a lot more to vectors than this.
Vectors are defined as objects in a vector space, which can have 1, 2, 3, 4,
or millions of dimensions. Besides this, vectors in a vector space must have
two operations (called addition and scalar multiplication) which must satisfy
certain requirements.

Here is the formal definition of a vector space:

Definition 21.1.1. vector space over the real numbers consists of a
set V along with two operations ’+’ and ’ · ’, subject to the conditions that
for all vectors v⃗, w⃗, u⃗ ∈ V and all scalars r, s ∈ R:

(1) The set V is closed under vector addition: v⃗ + w⃗ ∈ V

(2) Vector addition is commutative: v⃗ + w⃗ = w⃗ + v⃗

(3) Vector addition is associative: (v⃗ + w⃗) + u⃗ = v⃗ + (w⃗ + u⃗)

(4) There exists a zero vector 0⃗ ∈ V such that v⃗ + 0⃗ = v⃗ for all v⃗ ∈ V

(5) Each v⃗ ∈ V has an additive inverse w⃗ ∈ V such that w⃗ + v⃗ = 0⃗

(6) The set V is closed under scalar multiplication: rv⃗ ∈ V

(7) Addition of scalars distributes over scalar multiplication: (r+ s) · v⃗ =
r · v⃗ + s · v⃗

(8) Scalar multiplication distributes over vector addition: r · (v⃗ + w⃗) =
r · v⃗ + r · w⃗

(9) Ordinary multiplication of scalars associates with scalar multiplication:
(rs) · v⃗ = r · (s · v⃗)

(10) Multiplication by the scalar 1 is an identity operation: 1 · v⃗ = v⃗.

△

Let us recall how these definitions apply to a familiar example.
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Example 21.1.2. The set R3 is a vector space if the operations ’+’ and
’·’ have their usual meaning of vector addition and scalar multiplication,
respectively: x1

x2
x3

+

 y1
y2
y3

 =

 x1 + y1
x2 + y2
x3 + y3

 and r ·

 x1
x2
x3

 =

 rx1
rx2
rx3

 .

Let’s check the 10 conditions. We’ll take

v⃗ :=

 v1
v2
v3

 ; w⃗ :=

 w1

w2

w3

 ; u⃗ =

 u1
u2
u3


as arbitrary vectors in R3 (uj , vj and wj are real numbers for j = 1, 2, 3).

For (1) to show that vector addition is closed we have v1
v2
v3

+

 w1

w2

w3

 =

 v1 + w1

v2 + w2

v3 + w3

 ∈ R3,

So addition is closed.

For (2),we show addition of vectors commutes:

 v1
v2
v3

+

 w1

w2

w3

 =

 v1 + w1

v2 + w2

v3 + w3

 =

 w1 + v1
w2 + v2
w3 + v3

 =

 w1

w2

w3

+

 v1
v2
v3

 .

For (3), we show vector addition is associative: v1
v2
v3

+

 w1

w2

w3

+

 u1
u2
u3

 =

 (v1 + w1) + u1
(v2 + w2) + u2
(v3 + w3) + u3


=

 v1 + (w1 + u1)
v2 + (w2 + u2)
v3 + (w3 + u3)


=

 v1
v2
v3

+

 w1

w2

w3

+

 u1
u2
u3

 .
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♦

Conditions 4,5,6,7 are reserved for exercises.

To show that scalar multiplication distributes from the left over vector
addition (property 8), we may proceed as follows:

r ·

 v1
v2
v3

 +

 w1

w2

w3

 =

 r(v1 + w1)
r(v2 + w2)
r(v3 + w3)


=

 rv1 + rw1

rv2 + rw2

rv3 + rw3


= r ·

 v1
v2
v3

+ r ·

 w1

w2

w3



Exercise 21.1.3. Prove conditions 4,5,6,7,9,10 for column vectors in R3. ♢

21.2 Polynomials are also vectors

At this point the “abstract” of abstract algebra comes into play. Once we
have defined vector space, then any set of any objects that satisfies all ten
requirements qualifies as a bona fide vector space, and objects in the set can
be called vectors. Do polynomials qualify? We already know that we can
add polynomials together, and we can also multiply polynomials by scalars.
To see whether or not the set of polynomials with real coefficients (that is,
R[x]) is a vector space, we will need to check all 10 conditions:

Exercise 21.2.1. Let p(x), q(x), and r(x) be polynomials in R[x], and let
α, β ∈ R be scalars. Write the 10 conditions in terms of p(x), q(x), r(x), α,
β. For example, we have:

1. (Closure under +) p(x) + q(x) is in the set R[x].
5. (Additive inverse) p(x) + (−1) · p(x) = 0

8. α(p(x) + q(x)) = αp(x) + αq(x)
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To complete the exercise, write conditions 2,3,4,6,7,9,10. ♢

Exercise 21.2.2. Use summation notation to prove properties 5,7,8 for
polynomials. ♢

The preceding exercises show that the set R[x] over R is a vector space,
using the standard operations on polynomials. In fact, the polynomial ring
R[x] is an infinite-dimensional vector space. It’s true that each individ-
ual polynomial has finite degree, but the set has no single bound on the
degree of all of its members. For instance, We can think of 1 + 4x+ 7x2 as
corresponding to the vector (1, 4, 7, 0, 0, ...).

Another vector space that we will want to examine is the set of n × n
matrices with real entries.

Exercise 21.2.3. Let M be the set of n×n matrices with real entries. Let
A, B, and C be elements of M , and let α, β ∈ R be scalars. Write the 10
vector space conditions in terms of A,B,C, α, β. ♢

21.3 Identifying polynomials with matrices

We have seen that both vectors and matrices define vectors spaces. But
matrices (in particular, square matrices) have something that vectors don’t
have: namely, two square matrices of the same size can be multiplied to-
gether to get a square matrix of the same size. In contrast, we don’t know
of any way in general to multiply two n× 1 vectors to obtain another n× 1
vector.

Now recall that two polynomials can be multiplied together to obtain
another polynomial. This suggests that polynomials are more like matri-
ces than column vectors. In fact, we will show in this section that the
polynomials R[x] are “isomorphic” to a particular set of matrices. We put
“isomorphic” in quotes because the isomorphism doesn’t merely preserve a
single operation, like the group isomorphisms that we’ve seen up till now.
Rather, this will be an isomorphism of rings (or ring isomorphism)
that preserves both addition and multiplication.
Let’s begin with an example that shows how polynomials can be related to
matrices:
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Example 21.3.1. Let p(x) = 3x2 − 7x + 2. We may represent p(x) as a
column vector:

p(x) →



2
−7
3
0
0
0

 ,

where the coefficients of 1, x, x2 . . . are listed from top to bottom. (We have
added some extra zeros to the bottom of the vector for a reason that will
become clear later.) Now notice that

x · p(x) →



0
2
−7
3
0
0

 =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0





2
−7
3
0
0
0

 .

Thus it seems that when we represent polynomials as column vectors,
multiplying a polynomial by x corresponds to matrix multiplication by a
matrix with 1’s on the subdiagonal (that is, the entries lying just below
the diagonal). We may similarly verify that

x2 · p(x) →



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0





2
−7
3
0
0
0

 ,

where this time the 1’s are on the sub-subdiagonal. You may check that this
matrix is in fact the square of the matrix that represents multiplication by
x. ♦

Exercise 21.3.2. Compute the vector representation of x3 · p(x) for the
polynomial in the previous example, and show that this vector can be ob-
tained as a matrix-vector multiplication, where the matrix is the cube of
the subdiagonal matrix that represents multiplication by x and the vector
represents p(x). ♢
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Exercise 21.3.3.

(a) What matrix can we multiply the vector representation of p(x) by to
give the vector representation of 5 · p(x)?

(b) What matrix can we multiply the vector representation of p(x) by to
give the vector representation of −8x · p(x)?

♢

Exercise 21.3.4. Describe what happens when you try to represent x4 ·p(x)
as a 6×1 vector, as in the previous exercises. How may the vector be changed
to correct this? ♢

Let’s generalize the previous example. Given any polynomial p(x) =
a0 + a1x+ a2x

2 + ...+ anx
n, we can represent p(x) as a column vector with

m entries (m > n) as follows:

p(x) →



a0
a1
a2
...
an
0
...
0


Then in order to multiply p(x) by x, we can represent x as a m × m

square matrix with 1’s on the subdiagonal:

x→



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0


.

Now what do we really mean by “→”? Really we’re talking about a map-
ping from polynomials to matrices–in other words, a function. Accordingly
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we’ll define a function φm : R[x] → Mm,m such that φm(x) is the m × m
subdiagonal matrix that represents polynomial x:

φm(x) =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0


.

(Note that the Greek letter φ is pronounced “fee” or “fie”.1 The subscript
“m” emphasizes that technically there is a different map for each matrix
size.)

So far we’ve only defined φm for the polynomial x, but we’d certainly
like to define it for any polynomial. There is a natural way to do this. First
let’s consider the simplest nonzero polynomial we can think of, namely the
constant 1. Since 1 is the multiplicative identity for polynomials, it stands
to reason that φm(1) should be the multiplicative identity for matrices.
Accordingly we define

φm(1) := Im×m,

where Im×m is the m×m identity matrix.

Constant polynomials are the next simplest case. It makes sense to map
the constant polynomial a to the matrix aIm×m, so that

φm(a) := aIm×m,

In view of the exercises that we did a little while ago, the next reasonable
step is to define φm(ax) as:

φm(ax) = φm(a) · φm(x) = aφm(x).

We also saw in Example 21.3.1 and Exercise 21.3.2 that φm(x
2) = φm(x)

2

and; φm(x
3) = φm(x)

3. This suggests the following general rule:

φm(ax
n) := φm(a) · φm(x)n = aφm(x)

n.

Finally, in light of our previous experience with isomorphisms of groups,
it’s reasonable to impose the following requirement on φm:

φm(p(x) + q(x)) = φm(p(x)) + φm(q(x))

1But not “fo” or “fum”.



760CHAPTER 21 EXPLORATION: RELATING POLYNOMIALS ANDMATRICES

We now have enough rules so that we can build up φm(p(x)) for any
polynomial p(x).

Example 21.3.5. We may find the 6 × 6 matrix which represents the
polynomial x2 + 3x− 7 as follows:

φ6(x
2 + 3x− 7) = φ6(x

2) + φ6(3x) + φ6(−7)

= φ6(x
2) + 3φ6(x) +−7φ6(1))

=



−7 0 0 0 0 0
3 −7 0 0 0 0
1 3 −7 0 0 0
0 1 3 −7 0 0
0 0 1 3 −7 0
0 0 0 1 3 −7


♦

Exercise 21.3.6. Find the matrix φ6(p(x)) related to each polynomial p(x).

(a) p(x) = 7x2 − 2x+ 3

(b) p(x) = 3x4 + 5x2 − 2

(c) p(x) = 3x5

(d) p(x) = −4x3 + 4

♢

Exercise 21.3.7. In each case, find the polynomial p(x) such that φ(p(x))
equals the given matrix:

(a) 

3 0 0 0 0 0
1 3 0 0 0 0
6 1 3 0 0 0
4 6 1 3 0 0
8 4 6 1 3 0
0 8 4 6 1 3





21.3 IDENTIFYING POLYNOMIALS WITH MATRICES 761

(b) 

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
4 0 1 0 0 0
9 4 0 1 0 0
0 9 4 0 1 0


♢

Notice the special structure of all these matrices. They all have no
entries above the main diagonal. Furthermore they are constant along the
subdiagonal, sub-subdiagonal, sub-sub-subdiagonal, and so on. By working
with examples, you may see that these same properties will hold in general
for any matrix that can be written as φm(p(x)) for some polynomial p(x).

Exercise 21.3.8. For each of the following matrices, determine whether or
not it corresponds to a polynomial. If it does, give the polynomial; and if
not, explain why not.

(a) 
5 0 0 1
1 3 0 0
5 1 3 0
0 5 1 3


(b) 

9 0 0 0
1 9 0 0
7 1 9 0
0 7 1 9


(c) 

−1 0 0 0 0
2 −1 0 0 0
4 2 −1 0 0
0 4 2 −1 0
0 0 0 2 −1



(d) 

3 0 0 0 0 0
1 3 0 0 0 0
5 1 3 0 0 0
0 3 1 3 0 0
0 0 3 1 3 0
0 0 0 5 1 3



(e)



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
2 1 0 0 0 0
0 2 1 0 0 0
−1 0 2 1 0 0


♢
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Now let’s play around with polynomial arithmetic. Remember our basic
rule for polynomial addition:

φm(p(x) + q(x)) = φm(p(x)) + φm(q(x)).

We may use this rule to easily find the matrix for the sum of polynomials
by adding the matrices for the individual polynomials.

Example 21.3.9. Let p(x) = 2x2 + x + 1 and q(x) = 5x + 6: then
p(x) + q(x) = 2x2 + 6x + 7. We get the same result when we add the
matrices that represent p(x) and q(x):

1 0 0 0
1 1 0 0
2 1 1 0
0 2 1 1

+


6 0 0 0
5 6 0 0
0 5 6 0
0 0 5 6

 =


7 0 0 0
6 7 0 0
2 6 7 0
0 2 6 7


♦

Exercise 21.3.10. Find the matrices that represent the polynomials p(x)
and q(x) in each case, and verify that the sum is equal to φm(p(x) + q(x))
for the given m.

(a) p(x) = x5 + 1 and q(x) = x3 + 52 (m = 7)

(b) p(x) = 7x4 + 1 and q(x) = x3 + 52 + 10x− 3 (m = 5)

(c) p(x) = 2x2 − 2x+ 5 and q(x) = x2 + 2x− 5 (m = 3)

♢

It would be nice to do the same with multiplication. Our previous ex-
amples suggest the following rule:

φm(p(x))φm(q(x)) = φm(p(x)q(x))

Let’s see if this works.

Example 21.3.11. You can see that φ3(x)φ3(x) = φ3(x
2): 0 0 0

1 0 0
0 1 0

 0 0 0
1 0 0
0 1 0

 =

 0 0 0
0 0 0
1 0 0
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♦

Example 21.3.12. You can see that φ4(x
2)φ4(x) = φ4(x

3).
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


♦

The previous 2 examples show that φm(x
k)φm(x) = φ(xk+1).

Example 21.3.13. Let p(x) = −4x2 + 3x − 2 and q(x) = 7x2 − 2x − 5.
Then multiplying φ6(p(x))φ6(q(x)) gives.



−2 0 0 0 0 0
3 −2 0 0 0 0
−4 3 −2 0 0 0
0 −4 3 −2 0 0
0 0 −4 3 −2 0
0 0 0 −4 3 −2





−5 0 0 0 0 0
−2 −5 0 0 0 0
7 −2 −5 0 0 0
0 7 −2 −5 0 0
0 0 7 −2 −5 0
0 0 0 7 −2 −5



=



10 0 0 0 0 0
−11 10 0 0 0 0
0 −11 10 0 0 0
29 0 −11 10 0 0
−28 29 0 −11 10 0
0 −28 29 0 −11 10

 ,

which is the matrix that corresponds to −28x4 +29x3 − 11x+10. You may
verify that this polynomial is equal to the product of the two polynomials
that we started out with. ♦

Exercise 21.3.14. Find the m×m matrices that represent the polynomials
p(x) and q(x) and verify that the product of these two matrices is the matrix
which represents p(x)q(x).

(a) p(x) = x5 + 1 and q(x) = x3 + 52 (with m = 10)
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(b) p(x) = 7x4 + 1 and q(x) = x3 + 52 + 10x− 3 (with m = 8)

(c) p(x) = 2x2 − 2x+ 5 and q(x) = x2 + 2x− 5 (with m = 7)

(d) Can you choose different value of m in part (a), (b), and (c)? What is
the minimum value you can choose for m in each part?

♢

One problem with our investigations so far is that φm can’t accommodate
polynomials of degree greater than or equal to m. The only way to deal
with this is to make the matrices infinitely large. So let’s define φ : P [x] 7→
M∞×∞ as follows: given

p(x) =

N∑
m=0

amx
m

then we define φ(p(x)) as a matrix with entries:

[φ(p)]i,j =

{
am if i− j = m,m = 0, ...N
0 otherwise

We may give an algebraic proof that the map φ is 1-1 as follows. Suppose
p(x) and q(x) are polynomials and p(x) ̸= q(x). Then we can write

p(x) =
N∑
m=0

amx
m and q(x) =

N ′∑
m′=0

bm′xm
′
.

Since p(x) ̸= q(x), there must be some k such that ak ̸= bk. But then
according to the definition it follows that:

[φ(p)]k+1,1 = ak and [φ(q)]k+1,1 = bk.

Therefore, φ(p) ̸= φ(q) since ak ̸= bk.

Is φ onto? That’s for you to find out:

Exercise 21.3.15.

(a) Find an infinite matrix M such that M ̸= φ(p(x)) for any polynomial
p(x). What does this tell you about whether or not φ is onto?
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(b) Using the definition of φ, show that ifM = φ(p(x)) for some polynomial
p(x) thenM is lower triangular that is, all entries above the diagonal
are 0.

(c) Using the definition of φ, show that if M = φ(p(x)) then M is banded ,
that is, Mi+k,j+k =Mi,j for any positive integers i, j, k.

♢

Let’s define B ⊂ M∞×∞ as the set of all banded subdiagonal matrices.
The previous exercise (parts (c),(d)) have shown that φ maps P [x] into B.
In fact, φ maps P [x] onto B:

Exercise 21.3.16. Let M be an arbitrary matrix in B. Suppose the first
column of M is the column vector:

v1
v2
v3
...

 .

Find a polynomial p(x) such that φ(p(x)) =M . (*Hint*) ♢

So we have that φ : P [x] → B is a 1-1 and onto map. In fact, φ is an
isomorphism between the additive group of polynomials and the subdiagonal
banded matrices B. To finish proving this, we need to show the operation-
preserving property of φ:

Proposition 21.3.17. Let

p(x) =
N∑
m=0

amx
m and q(x) =

N ′∑
m′=0

bm′xm
′

Then φ(p+ q) = φ(p) + φ(q).

Proof : We can suppose that N ≥ N ′ ( if N ′ > N , we just exchange p
and q in the proof). For all bj when j > N ′, we have bj = 0. Then we will
have:

p(x) + q(x) =

N∑
m=0

amx
m +

N∑
m=0

bmx
m
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=

N∑
m=0

(am + bm)x
m.

Now, using our formula for φ we have

[φ(p+ q)]i,j =

{
am + bm if i− j = m,m = 0, ...N

0 otherwise

Comparing this with the 2 formulas

[φ(p)]i,j =

{
am if i− j = m,m = 0, ...N
0 otherwise

and

[φ(q)]i,j =

{
bm if i− j = m,m = 0, ...N
0 otherwise

It’s clear that [φ(p + q)]i,j = [φ(p)]i,j + [φ(q)]i,j for every i and j. In other
words, all of the matrix entries of φ(p + q) are equal to the sum of corre-
sponding entries of φ(p) and φ(q).

Therefore φ(p+ q) = φ(p) + φ(q).

Exercise 21.3.18. Show that B (that is, the lower-triangular banded ma-
trices) is a group under addition. ♢

Exercise 21.3.19. Show that φ : P [x] 7→ B is an isomorphism between the
addition groups (P [x],+) and (B,+). ♢

So it’s true that φ is an additive isomorphism. It would be nice if it were
a multiplicative isomorphism as well. Unfortunately this is impossible, since
polynomials don’t form a multiplicative group. Still, let’s see if φ has any
special properties under multiplication.

Example 21.3.20. This example can shows that φ(x)φ(x) = φ(x2) is still
true (just as it was for φm) if we represent x by an infinite matrix:

0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
...

...
...

. . .




0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
...

...
...

. . .

 =


0 0 0 . . .
0 0 0 . . .
1 0 0 . . .
...

...
...

. . .
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♦

In general, we have φ(xm)φ(xn) = φ(xm+n). This suggests that φ pre-
serves the operation of multiplication that is, φ(pq) = φ(p)φ(q).

Be careful here! On the left-hand side we’re taking the product of poly-
nomials and taking φ of the result. On the right-hand side, we’re converting
two polynomials into matrices, and multiplying the matrices. So there are
two different multiplication operations on the two sides of the equation.

Now, with the following proposition, we can show that φ does preserve
multiplication operation.

Proposition 21.3.21. Let

p(x) =

N∑
m=0

amx
m and q(x) =

N ′∑
m′=0

bm′xm
′

Then φ(pq) = φ(p)φ(q).

Proof : we’ll start from the left-hand side of the equation φ(pq) =
φ(p)φ(q) and show it’s equal to the right-hand side as in the next exer-
cise.

Exercise 21.3.22. Fill in the blanks the following proof. (*Hint*)
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φ(pq) = φ

(( N∑
m=0

amx
m
)( N ′∑

m′=0

bm′xm
′
))

= φ

(
N∑
m=0

N ′∑
m′=0

ambm′x < 1 >

)

=

N∑
m=0

N ′∑
m′=0

φ
(
ambm′x < 2 >

)
=

N∑
m=0

N ′∑
m′=0

φ
(
< 3 >

)
φ
(
< 4 >

)
=
( N∑
m=0

φ( < 5 > )
)( N ′∑

m′=0

φ( < 6 > )
)

= φ
( N∑
m=0

( < 7 > )
)
φ
( N ′∑
m′=0

( < 8 > )
)

= φ( < 9 > )φ( < 10 > )

♢

So we finally proved that φ preserves the operation of multiplication.
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21.4 Hints for “Polynomials and Matrices” exer-
cises

Exercise 21.3.16: Look at the examples of M = φm(p(x) that we’ve com-
puted so far, and see how the first column of M relates to the coefficients of
p(x).

Exercise 21.3.22: Use the distributive property, exponent rules, and the
operation-preserving properties of φ.



22

Homomorphisms of Groups

In this chapter we will introduce homomorphisms, which are a powerful tool
in the study of the structure of abstract groups. Our brief treatment only
gives the reader a taste of this important topic, and the reader wanting to
go deeper is encouraged to look at other algebra texts.

Thanks to Tom Judson for material used in this chapter.

22.1 Preliminary examples

In the previous chapter we talked about isomorphisms, which are bijections
between two groups that also preserve the group operation. We’ve seen that
isomorphic groups are essentially the “same” group (thinking groupwise).

For instance, we saw that the integers mod 4 and the 4th roots of unity
were isomorphic (Z4

∼= ⟨i⟩) by the following bijection (isomorphism):

0 → 1, 1 → i, 2 → −1, 3 → −i.

The group operation is preserved by this bijection: for instance, 1⊕2 = 3
maps to i · −1 = −i. In general, for a, b ∈ Z4 we have

f(a⊕ b) = f(a) · f(b).

Now let us think about the groups Z8 and ⟨i⟩. Do they have the same
relationship? Are they isomorphic?

770
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Well, there is one immediate problem that comes up: |Z8| ̸= |⟨i⟩|. And
as we saw in the Isomorphism chapter, there’s no way then to create a
bijection from Z8 to ⟨i⟩: specifically, there is just no way to create a one-to-
one function from a domain of 8 elements to a codomain of 4 elements; the
number of elements have to match. But let’s look at their Cayley tables:

⊕ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

Table 22.1: Addition table for Z8

· 1 i -1 −i
1 1 i -1 −i
i i -1 −i 1
-1 -1 −i 1 i
−i −i 1 i -1

Table 22.2: Cayley table for ⟨i⟩

While we can’t say that Z8 and ⟨i⟩ are isomorphic, there are some simi-
larities in the patterns of their Cayley tables. Notice for instance the pattern
of 2’s in the upper left portion of the Z8 table. This matches exactly with
the pattern of -1’s in the ⟨i⟩ table. In fact, we can see that in both tables the
entries in each “anti-diagonal” are all the same. This similarity in structure
suggests a similarity in the behavior of the group operations. So although
we can’t create a bijection, could we possibly create another function that
preserves the group operations?

Example 22.1.1. Let’s try to create a function from Z8 to ⟨i⟩ which pre-
serves group operations. Since there are twice as many elements in Z8 as in
⟨i⟩, it seems natural that 2 elements from Z8 should each go to one element
in ⟨i⟩. The question then is, Which two? Because of the nature of modular
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addition, it makes some sense to pick elements of Z8 that are spaced evenly
throughout Z8 if we want them to correspond to the same action in ⟨i⟩. So
let’s look at the function g : Z8 → ⟨i⟩ that takes

0, 4
g−→ 1, 1, 5

g−→ i, 2, 6
g−→ −1, 3, 7

g−→ −i,

as shown in Figure 22.1.1.

Figure 22.1.1. Function g between Z8 and ⟨i⟩.

Let’s take the Z8 table then and start transforming it according to g.
First we replace all the elements of Z8 with their counterparts in ⟨i⟩:

⊕ 1 i -1 −i 1 i -1 −i
1 1 i -1 −i 1 i −1 −i
i i -1 −i 1 i -1 −i 1
-1 -1 −i 1 i -1 −i 1 i
−i −i 1 i -1 −i 1 i -1
1 1 i -1 −i 1 i -1 −i
i i -1 −i 1 i -1 −i 1
-1 -1 −i 1 i -1 −i 1 i
−i −i 1 i -1 −i 1 i -1

Table 22.3: First Transformation of Z8 into ⟨i⟩.

Then we remove redundant rows/columns and change the group opera-
tion, and voilà:
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· 1 i -1 −i
1 1 i -1 −i
i i -1 −i 1
-1 -1 −i 1 i
−i −i 1 i -1

Table 22.4: Second Transformation of Z8 into ⟨i⟩.

This is exactly the Cayley table for ⟨i⟩ (see Table 22.2). So g does it! It
preserves the group operations: if we take any two elements of Z8 and add
them (say 3 ⊕ 5 = 0), the result is the same as taking their corresponding
elements in ⟨i⟩ and multiplying them (−i · i = 1). In other words, for all
a, b ∈ Z8,

g(a⊕ b) = g(a) · g(b).

A bijection that preserved group operations was called an isomorphism.
So what do we call g? We say that g is a homomorphism from Z8 to ⟨i⟩,
and that Z8 is homomorphic to ⟨i⟩. ♦

We see some interesting things in Example 22.1.1. The elements in Z8

that map to 1 are 0 and 4. The set {0, 4} is a subgroup of Z8. Naturally
it’s a normal subgroup, since Z8 is abelian. On the other hand, the sets
{1, 5}, {2, 6}, and {3, 7} which map to i,−1, and −i respectively are not
subgroups of Z8. Instead, we may recognize them as the cosets of {0, 4} in
Z8. We saw in Section 18.4.1 that the cosets of a normal subgroup themselves
form a group called the quotient group. You may want to go back and refresh
your memory on the contents of that section before attempting the following
exercise.

Exercise 22.1.2. Compute the Cayley table for Z8/{0, 4}. Label the rows
and columns in the following order: {0, 4},{1, 5}, {2, 6}, {3, 7}. ♢

This table possesses an eery similarity to another table that we’ve seen
before:

Exercise 22.1.3.

(a) Compute the Cayley table for ⟨i⟩. Label the rows and columns in the
following order: 1,i, −1, −i.
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(b) By comparing Cayley tables, show that the function h : Z8/{0, 4} −→
⟨i⟩ is an isomorphism, where

{0, 4} h−→ 1, {1, 5} h−→ i, {2, 6} h−→ −1, {3, 7} h−→ −i.

♢

So Z8/{0, 4} ∼= ⟨i⟩! (See Figure 22.1.2.)

Figure 22.1.2. Isomorphism h between Z8/{0, 4} and ⟨i⟩.

Example 22.1.1 exhibited lots of interesting properties. Let’s see if these
properties hold for other examples as well. We may then formalize our
observations and provide proofs.

Example 22.1.4. The function g which we constructed in Example 22.1.1
was not one-to-one, but it was onto. Is “onto” necessary? Or could we pos-
sibly find a function from Z8 to ⟨i⟩ that still preserves the group operation,
whose range is not all of ⟨i⟩?

Let’s consider the function q : Z8 −→ ⟨i⟩ defined by:

0, 2, 4, 6
q−→ 1, 1, 3, 5, 7

q−→ −1.

Exercise 22.1.5. Prove that {1,−1} is a subgroup of ⟨i⟩. ♢

If we relabel the Cayley table for Z8 according to 1, we get the following:
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· 1 -1 1 -1 1 -1 1 -1
1 1 -1 1 -1 1 -1 1 -1
-1 -1 1 -1 1 -1 1 -1 1
1 1 -1 1 -1 1 -1 1 -1
-1 -1 1 -1 1 -1 1 -1 1
1 1 -1 1 -1 1 -1 1 -1
-1 -1 1 -1 1 -1 1 -1 1
1 1 -1 1 -1 1 -1 1 -1
-1 -1 1 -1 1 -1 1 -1 1

Table 22.5: First Transformation of Z8 into {1,−1}.

And then if we remove the redundant rows and columns, we get:

· 1 -1
1 1 -1
-1 -1 1

Table 22.6: Second Transformation of Z8 into {1,−1}.

Now this isn’t the whole Cayley table for ⟨i⟩ (Table 22.4), but it is the
part of the Cayley table that corresponds to the elements 1 and -1 (remove
rows 2 and 4 as well as columns 2 and 4). So q preserves the operations
between Z8 and ⟨i⟩, since for all a, b ∈ Z8 we have

q(a⊕ b) = q(a) · q(b).

In other words, q is a homomorphism. ♦

In Example 22.1.4 we find several similarities to 22.1.1:

� The set {0, 2, 4, 6} ⊂ Z8 which maps to the identity of ⟨i⟩ is a normal
subgroup of Z8. (We will use H to denote this subgroup.)

� The set {1, 3, 5, 7} which maps to −1 is a coset of H in Z8. (We may
write {1, 3, 5, 7} as 1 +H).

� We may use the homomorphism q to construct an isomorphism, as you
will show in the following exercise.

Exercise 22.1.6.
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(a) Create the Cayley Table for the quotient group Z8/H.

(b) Show that the function from Z8/H to ⟨i⟩ which maps

H −→ 1, 1 +H −→ −1

is an isomorphism from Z8/H to the subgroup {1,−1} of ⟨i⟩.

♢

22.2 Definition and several more examples

In the previous section we saw that homomorphisms give us a way of find-
ing structural similarity between groups, even when those groups are not
isomorphic. A homomorphism only needs to map elements from one group
to another in such a way that it preserves the operations between the two
groups. That’s it. Unlike isomorphisms, it doesn’t have to be one-to-one or
onto.

Let’s now formally state the definition:

Definition 22.2.1. A homomorphism between groups (G, ·) and (H, ◦)
is a function f : G→ H such that

f(g1 · g2) = f(g1) ◦ f(g2)

for all g1, g2 ∈ G. The range of f in H is called the homomorphic
image of f . 1 △

Exercise 22.2.2.

(a) For the homomorphism g from Z8 to ⟨i⟩ in Example 22.1.1, what is the
homomorphic image of g?

(b) For the homomorphism q from Z8 to ⟨i⟩ in Example 22.1.4, what is the
homomorphic image of q?

1You may have noticed that in the Isomorphisms chapter we used Greek letters (ϕ etc.)
for isomorphisms, whereas here we typically use the letter f to denote a homomorphism.
There is no special reason for this–both notations are used in math books, and you should
be comfortable either way.
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♢

All of our examples so far have been with finite groups; let’s look at
infinite groups instead. As we saw in the Isomorphisms chapter, with finite
groups we can use Cayley tables to verify the equality of the group opera-
tions, but with infinite groups we don’t have Cayley tables, so we need to
use the definition of a homomorphism.

Example 22.2.3. Recall that the circle group T consists of all complex
numbers z such that |z| = 1. So geometrically, the circle group consists of
the complex numbers that trace out a circle of radius 1 about the origin in
the complex plane (hence the name), as shown in the figure below:

Im

Re0 1

i

−1

−i

Figure 22.2.1. Circle group T in complex plane

Now imagine wrapping the real number line around this circle like it was
a tape measure, with 0 on the real number line corresponding to 1 on the
unit circle. Then we would have a correspondence between each real number
and a complex number in T. Every 2π units the real numbers start around
the circle again, so that an infinite set of real numbers corresponds to each
complex number z in T. For instance not only 0, but 2π, 4π, 6π, etc. would
correspond to 1. Evidently for a given complex number z, any real number
α that corresponds to z is an argument for z (see Figure 4.3.2), so that
z = cisα. From this point of view, we may conceive of cis as a function from
R to T. Does cis preserve the operations between R and T? We’ve shown
this before in Proposition 4.3.8 in the Complex Numbers chapter, but it
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won’t hurt to see it again:

cis(α+ β) = cos(α+ β) + i sin(α+ β)

= (cosα cosβ − sinα sinβ) + i(sinα cosβ + cosα sinβ)

= (cosα+ i sinα)(cosβ + i sinβ)

= cis(α) cis(β).

So we have it; cis is a homomorphism from the additive group of real numbers
to the circle group. This means that in some sense, complex multiplication
on the unit circle is like addition of real numbers. ♦

In the following exercise, we relate the previous example to the properties
observed in Examples 22.1.1 and 22.1.4 in the previous section.

Exercise 22.2.4. As we mentioned above, cis maps 0,±2π,±4π, etc to 1,
the identity, in T. Another way to say the same thing is:

cis−1(1) = {. . . ,−4π,−2π, 0, 2π, 4π, . . .}.

(a) Prove that {. . . ,−4π,−2π, 0, 2π, 4π, . . .} is a normal subgroup of R

(b) What are the cosets of {. . . ,−4π,−2π, 0, 2π, 4π, . . .} in R?

(c) Define a function F : R/2πZ → T by: F (x+ 2πZ) = cis(x). Show that
the function is well-defined: that is, show that if x1 and x2 are both
elements of the same coset of 2πZ, then F (x1 + 2πZ) = F (x2 + 2πZ).

(d) Show that F defined above is a bijection: that is, F maps different cosets
to different elements of T.

(e) Show that F defined above is an isomorphism.

(f) What is the homomorphic image of the function cis : R → T?

♢

Example 22.2.5. The circle group T also gives us a completely different
way of constructing a homomorphism between complex and real numbers.
Every complex number in T has modulus 1; i.e. they lie all on a circle
of radius 1 in the complex plane. If we increase radius of the circle to
2, all of those complex numbers have the same modulus 2. In fact if you
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keep increasing or decreasing the radius of the circle, you can catch all the
complex numbers in the plane with the concentric circles you’ve created. So
every complex number (except 0) corresponds to a positive real number by
its modulus. Since we can represent any complex number as r cis θ, we can
define a function f : C∗ 7→ R∗ by

f(r cis θ) = r.

Let’s see whether f is a homomorphism. If r1 cis θ1 and r2 cis θ2 are arbitrary
nonzero complex numbers, we have:

f((r1 cis θ1) · (r2 cis θ2)) = f(r1 cis θ1r2 cis θ2)

= f((r1r2) cis(θ1 + θ2))

= r1r2

= f((r1 cis θ1) · f(r2 cis θ2)).

So f is indeed a homomorphism from C∗ to R∗. ♦

Once again, we may compare this example to the remarks of the previous
section.

Exercise 22.2.6. With reference to the function f defined in Exam-
ple 22.2.5:

(a) What is the homomorphic image of f?

(b) Prove that the homomorphic image of f is a subgroup of R∗.

(c) Find all the elements in C∗ that map to the identity in R∗; that is, find
all r cis θ ∈ C∗ such that f(r cis θ) = 1.

(d) Is the set from part (b) a normal subgroup of C∗? Prove or disprove.

(e) What are the cosets in C∗ of the set in part (b)?

(f) Define the quotient group created by the normal subgroup in (e), and
prove that it’s isomorphic to the homomorphic image of f .

♢

Now it’s your turn. In the following exercises, you’ll have a chance to
verify some homomorphisms for yourself.
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Exercise 22.2.7. Consider the group GL2(R) (that is, the group of invert-
ible 2× 2 matrices under matrix multiplication). If

A =

(
a b
c d

)
is in GL2(R), then the determinant is nonzero; that is, det(A) = ad−bc ̸= 0.

(a) Prove that det(AB) = det(A) det(B) for A,B ∈ GL2(R). This shows
that the function det is a homomorphism from GL2(R) to R∗.

(b) What is the homomorphic image of det?

(c) In the Groups chapter we defined SL2(R) as the set of 2×2 real matrices
whose determinant is 1. It follows that SL2(R) is the subset of GL2(R)
which maps under det to the identity of R∗. Prove that SL2(R) is a
subgroup of GL2(R).

(d) Describe the cosets of SL2(R) in GL2(R).

(e) Prove that SL2(R) is a normal subgroup of GL2(R). (*Hint*)

(f) Prove that the quotient group GL2(R)/SL2(R) is isomorphic to R∗.

♢

Remark 22.2.8. This last exercise wasn’t as easy to visualize as the pre-
vious ones. So we had to rely on properties rather than intuition. This
is typically what happens in mathematics: you start with visualizable ex-
amples, and use these as a springboard to leap into higher abstractions.
△

Exercise 22.2.9.

(a) Define a function f : C → R as follows: f(a+bi) = a. Prove or disprove:
f is a homomorphism.

(b) Define a function g : C → R as follows: g(a+ bi) = b. Prove or disprove:
g is a homomorphism.
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(c) Define a function h : C∗ → R∗ as follows: h(a + bi) = a. Prove or
disprove: h is a homomorphism. (Note this is a different situation from
part (a)!)

♢

Exercise 22.2.10. Remember that M2(R) is the group of real-valued 2× 2
matrices under addition. Define and prove a homomorphism from M2(R) to
R. ♢

Now lets deal with homomorphisms in a more general context, to prepare
us for the task of proving properties of homomorphisms in general (which
we’ll get to in the next section).

Exercise 22.2.11. Let G be a group and g ∈ G. In the Groups chapter we
saw that the set of all integer powers (positive, negative, and zero) of g form
a group, which is called the cyclic subgroup generated by g and is denoted
by ⟨g⟩. Since each integer corresponds to a power of g, we may define a map
f : Z → G by f(n) = gn.

(a) Show that f is a group homomorphism.

(b) What is the homomorphic image of f?

(c) Find all the elements in Z that map to the identity in G.

(d) Is the set from part (c) a subgroup of Z? Prove or disprove.

(e) What are the cosets in Z of the set in part (c)?

(f) Show the set in part (c) is a normal subgroup in Z.

(g) Define the quotient group created by the normal subgroup in (g), and
prove that it’s isomorphic to the homomorphic image of f .

♢

Exercise 22.2.12. If G is an abelian group and n ∈ N, show that ϕ : G→ G
defined by ϕ(g) = gn is a group homomorphism. ♢
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Finally, let’s look at one more pattern for the homomorphisms we’ve
developed so far before we go proving these patterns/properties hold for
homomorphisms of groups in general:

Exercise 22.2.13.

(a) In the group Z8, the inverse of 3 is 5 (we may write this as 3−1 = 5).
Using the homomorphism g from Example 22.1.1, what is g(5)? What
is the inverse of g(3) in the group ⟨i⟩? What does this example show
about the relation between g(3−1) and (g(3))−1?

(b) In Z8, 2−1 = 6. Using the homomorphism q from Example 22.1.4,
what is q(2−1)? What is (q(2))−1? What do you notice about your two
answers?

(c) In C∗, (r cis θ)−1 = 1
r cis(2π−θ). Using f from Example 22.2.5, compute

f
(
(r cis θ)−1

)
and (f(r cis θ))−1. What do you notice about your two

answers?

(d) In GL2(R), what is the inverse of
(
a b
c d

)
? Using f from Exercise 22.2.7,

does f

(
(

(
a b
c d

)
)−1

)
= [f(

(
a b
c d

)
)]−1? Verify or give a counterexam-

ple.

(e) What general property of homomorphisms can you infer from these ex-
amples? (You don’t need to give a proof if you don’t want to.)

♢

22.3 Proofs of homomorphism properties

So it seems there are several properties of homomorphisms that have con-
sistently held true in our examples so far. For any homomorphism f with
domain G and the codomain H, it seems that:

� The elements in G that map under f to the identity of H are in fact
a normal subgroup of G.

� The quotient group created by that normal subgroup is then isomor-
phic to the image of the homomorphism.
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� If f maps g to h, then f also maps g−1 to h−1.

These properties are indeed true for all homomorphisms, and we’ll take
the next two sections to prove these as well as other properties of homomor-
phisms. We begin with

Proposition 22.3.1. Let f : G→ H be a homomorphism of groups. Then

1. If e is the identity of G, then f(e) is the identity of H;

2. For any element g ∈ G, f(g−1) = [f(g)]−1;

3. If S is a subgroup of G, then f(S) is a subgroup of H;

4. If T is a subgroup of H, then f−1(T ) = {g ∈ G : f(g) ∈ T} is a
subgroup of G. Furthermore, if T is normal in H, then f−1(T ) is
normal in G.

Proof.

(1) Suppose that e and e′ are the identities of G and H, respectively.
Then

e′f(e) = f(e) = f(ee) = f(e)f(e).

By cancellation, f(e) = e′.

(2) This statement follows from the fact that

f(g−1)f(g) = f(g−1g) = f(e) = e.

(3) The set f(S) is nonempty since the identity of T is in f(S). Suppose
that S is a subgroup of G and let x and y be in f(S). There exist elements
a, b ∈ S such that f(a) = x and f(b) = y. Since

xy = f(a)f(b) = f(ab) ∈ f(S),

and
x−1 = f(a)−1 = f(a−1) ∈ f(S),

it follows that f(S) is a subgroup of H (since it is closed under the group
operation and inverse).

(4) Let T be a subgroup of H and define S to be f−1(T ); that is, S is the
set of all g ∈ G such that f(g) ∈ T . The identity is in S since f(e) = e. If
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a and b are in S, then f(ab−1) = f(a)[f(b)]−1 is in T since T is a subgroup
of H. Therefore, ab−1 ∈ S and S is a subgroup of G. If T is normal in H,
we must show that g−1hg ∈ S for h ∈ S and g ∈ G1. But

f(g−1hg) = [f(g)]−1f(h)f(g) ∈ T,

since T is a normal subgroup of H. Therefore, g−1hg ∈ S. □

Now that we have these properties down, we can use them to prove
some other properties of homomorphisms. We know that homomorphisms
preserve group operations, which suggests that homomorphisms may pre-
serve other group properties as well. We’ll look at two group properties in
the next exercise.

Exercise 22.3.2. Prove the following:

(a) If f : G → H is a group homomorphism and G is abelian, prove that
f(G) is also abelian.

(b) If f : G → H is a group homomorphism and G is cyclic, prove that
f(G) is also cyclic.

♢

One of the patterns we saw in our examples that we haven’t verified yet
was that the elements in G that map to the identity of H formed a normal
subgroup in G. We can now prove this in general, but first a definition:

Definition 22.3.3. Let f : G → H be a homomorphism and suppose that
eH is the identity of H. The set f−1({eH}) is called the kernel of f , and
will be denoted by ker f . △

Proposition 22.3.4. Let f : G→ H be a group homomorphism. Then the
kernel of f is a normal subgroup of G.

Exercise 22.3.5. Prove Proposition 22.3.4. (*Hint*) ♢

Exercise 22.3.6. What were the kernels of the homomorphisms in:
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(a) Example 22.1.1

(b) Example 22.1.4

(c) Example 22.2.3

(d) Example 22.2.5

(e) Exercise 22.2.7

♢

Exercise 22.3.7. Which of the following functions are homomorphisms? If
the map is a homomorphism, what is the kernel?

1. f : R → GL2(R) defined by

f(a) =

(
1 0
a 1

)
2. f : GL2(R) → R defined by

f

((
a b
c d

))
= a+ d

3. f : M2(R) → R defined by

f

((
a b
c d

))
= b,

where M2(R) is the additive group of 2× 2 matrices with entries in R.

♢

Exercise 22.3.8. Let f : Z → Z be given by f(n) = 7n. Prove that f is a
group homomorphism. Find the kernel and the image of f . ♢

Example 22.3.9. Suppose that we wish to determine all possible homo-
morphisms f from Z7 to Z12. Since the kernel of f must be a subgroup of
Z7, there are only two possible kernels, {0} and all of Z7. The image of
a subgroup of Z7 must be a subgroup of Z12. Hence, there is no injective
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homomorphism; otherwise, Z12 would have a subgroup of order 7, which is
impossible. Consequently, the only possible homomorphism from Z7 to Z12

is the one mapping all elements to zero. ♦

Exercise 22.3.10. Describe all of the homomorphisms from Z24 to Z18. ♢

Exercise 22.3.11. Describe all of the homomorphisms from Z to Z12. ♢

Exercise 22.3.12. Find all of the homomorphisms f : Z → Z. Which of
these are isomorphisms? (*Hint*) ♢

22.4 The First Isomorphism Theorem

There’s one property that we observed in earlier sections of this chapter that
we haven’t proven so far, namely, the quotient group created by the kernel
of a homomorphism is isomorphic to the image of the homomorphism. In
order to do this, we’ll need a clearer idea of how homomorphisms actually
work. Figure 22.4.1 gives a schematic diagram of a general homomorphism
f with kernel K.

The figure shows the cosets of K, which form a partition of G as we
showed in the Cosets chapter. These cosets can be thought of as elements
of the quotient group G/K.

The arrangement of arrows in the figure indicate that any two points in
the same coset gK map to the same element of H. This is true because

f(gk) = f(g)f(k) = f(g)e′ = f(g) (given that g ∈ G, k ∈ K).

This implies that we can actually define a function F from G/K to H as
follows:

F (gK) = f(g).

The function is well-defined because if g′K = gK then F (g′K) = f(g′) =
f(g) = F (gK).

So what’s the point? It turns out that this function F is exactly the
isomorphism that we’re looking for. We’ve already shown that it’s well-
defined: all that’s left is to show that it’s one-to-one and onto, and that it
preserves the operation. We state these results as a proposition.
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Figure 22.4.1. Homomorphism f : G→ H with kernel K.

Proposition 22.4.1.(First Isomorphism Theorem)

Suppose f : G → H is a homomorphism with K = ker f . Let the
function F : G/K → f(G) be defined according to F (gK) = f(g). Then F
is an isomorphism.

Proof. As mentioned above, we only need to show that F is 1-1, onto, and
preserves the operation.

� 1-1: Suppose that F (g1K) = F (g2K). Then according to the defini-
tion of F , this means that f(g1) = f(g2). From this we obtain (using
the homomorphism property of f):

f(g−1
1 g2)) = f(g−1

1 )f(g2) = f(g1)
−1f(g2) = f(g1)

−1f(g1) = e′ ⇒ g−1
1 g2 ∈ K.

By Proposition 18.2.1 in the Cosets chapter (parts (1) and (2)), this
implies that g1K = g2K.

� Onto: Let h be an arbitrary element of f(G). Then there exists g ∈ G
such that f(g) = h. By the definition of F , we have also that F (gK) =
h.

� Preserves operations: Using properties of normal subgroups, we have:

F (g1Kg2K) = F (g1g2K) = f(g1g2) = f(g1)f(g2) = F (g1K)F (g2K).
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□

Example 22.4.2. Let G be a cyclic group with generator g. Define a map
f : Z → G by n 7→ gn. This map is a surjective homomorphism since

f(m+ n) = gm+n = gmgn = f(m)f(n).

Clearly f is onto. If |g| = m, then gm = e. Hence, ker f = mZ and
Z/ ker f = Z/mZ ∼= G. On the other hand, if the order of g is infinite, then
ker f = 0 and ϕ is an isomorphism of G and Z. Hence, two cyclic groups are
isomorphic exactly when they have the same order. We may conclude that
up to isomorphism, the only cyclic groups are Z and Zn. ♦

Additional Exercises

1. Let f : G → H be a homomorphism. Show that f is one-to-one if and only
if f−1(e′) = {e}, where e and e′ are the identities of G and H, respectively.

2. For k ∈ Zn, define a map fk : Zn → Zn by a 7→ ka. Prove that fk is a
homomorphism.

3. Show that a homomorphism defined on a cyclic group is completely deter-
mined by its action on the generator of the group. (*Hint*)

4. Prove or disprove: Q/Z ∼= Q. (*Hint*)

5. Let G and H be groups, and let M and N be normal subgroups of G and H
respectively. Let f : G→ H be a homomorphism which satisfies f(M) ⊂ N .
Show that f can be used to define a homomorphism F : G/M → H/N .

6. Let f : G → H be a homomorphism that is onto. Let M be a normal
subgroup of G and suppose that f(M) = N . Prove that G/M ∼= H/N .
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22.5 Hints for “Homomorphism” exercises

Exercise 22.2.7(d): Use Definition 18.4.13 from the Cosets chapter, and the
multiplicative property of determinants.

Exercise 22.3.5: Use Part (d) of Proposition 22.3.1, using T = {e}.
Exercise 22.3.12: The function f is completely determined by the value of
f(1). For instance, if f(1) = 2, then the operation-preserving property
implies that f(n) = 2n for any integer n (Why?).

Additional exercises:

Exercise 3: Use the operation-preserving property.

Exercise 4: What is the order of 0.5 + Z?
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Group Actions

We’ve defined a “group” as as set with an operation defined on it. From
this point of view, group elements are “objects” in a set. We have many
examples of this: like the integers with addition, the integers mod n, the
group of units U(n), groups of matrices, and so on.

Later on we introduced the idea that permutations form a group. Per-
mutations are actually bijections (1-1, onto functions) that map a set of
objects to itself. Another way of saying this is that permutations “act on”
a set by moving the elements around. Similarly, we saw in Figure 13.3.1 in
Section 13.3 that the symmetries of an equilateral triangle (which are ele-
ments of the group S3) move the vertices of the triangle from one position to
another. As a third example, in the group Q∗ of non-zero rational numbers
we can think of left multiplying by 2 as “moving” −5 over to −10. Left
multiplying again by 2 “moves” −10 to −20: and so on.

The examples in the previous paragraph illustrate a general concept
called group actions. We will see in this chapter how group actions can give
us deeper insight into the symmetries that we see in the world around us.
In particular, we will focus on what group actions can tell us about regular
polyhedra such as the tetrahedron and cube.

This chapter is by Holly Webb, with numerous additions by Mark Leech.
Thanks to Tom Judson for material used in this chapter.

23.1 Basic definitions

We’ll get to definitions momentarily, but first it’s helpful to look at an
example.

790

https://www.youtube.com/watch?v=1KOUEx-IEkg&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=37
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Example 23.1.1. Consider the group S3 = {id, (AB), (AC), (BC), (ABC), (ABC)}
and the set X = {A,B,C}. Each element of S3 “does something” to each
element of X. See the Figure 23.1.1 below.

Figure 23.1.1. S3 acting on X = {A,B,C}.

Let’s discuss the last element of S3, (ACB). Notice (ACB) “does some-
thing” to each element of X. It maps A → C, B → A, and C → B, so
the map images are also elements of X. The same is true for all other el-
ements of S3. In fact, each element of S3 produces a bijection on the set
X = {A,B,C}. We refer to this as the group S3 acting on the set X. ♦

Example 23.1.2. Let R be the group of all rotations around the origin in
R2. Let rd ∈ R denote a counterclockwise rotation of d degrees. Also, let
X be the set of all lines through the origin, where xd denote the line which
makes an angle of d degrees with the x-axis. See Figure 23.1.2 below.

Note that both R and X are infinite sets (unlike the previous example).
As in Example 23.1.1, each element of R “does something” to each element
of X. In this case, each element of R rotates an element of X, producing
another element of X. For example, rotating the line x15 by r30 produces the
line x45. Furthermore r30 can rotate every element of X and only produces
elements of X. This is true for all other rotations in R: each element of R
produces a bijection on the set X. We again say that the group R acts on
the set X. ♦

In the previous two examples we have been talking about a group “ac-
tion” which is different from the group operation. For example, the group

https://www.youtube.com/watch?v=1KOUEX-IEKG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=37
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Figure 23.1.2. rd = r30 acting on the line xd = x15

operation in Example 23.1.1 is composition of permutations, but the action
is a mapping of points in {A,B,C}. In Example 23.1.2 the group operation
is composition of rotations, but the action is a mapping of lines. In order
to distinguish the two operations, we will use the period (.) to represent
group action. For example the rotation illustrated in Figure 23.1.2 can be
expressed mathematically as r30.x15 = x45.

Since we have two different operations (the group operation and the
group action), we should determine how they interact with each other. We
know that two group elements, g1 and g2, can produce a third group element
via the group operator because of closure, and that group element can act
on a set element, x. We would represent this symbolically as (g1g2).x. But
could that process be done differently? Yes, in fact one group element, g2,
could act on the set element, x, then that resulting set element could be
acted on by a different group element, g1. Symbolically we would write
this as g1.(g2.x). It turns out (and we will verify) that these two processes
are equal to each other: (g1g2).x = g1.(g2.x). We refer to this equality as
compatibility .

Example 23.1.3. To investigate this idea of compatibility let’s compare
[(AB)(ACB)].C and (AB).[(ACB).C] where (AB), (ACB) ∈ S3 and B ∈
X = {A,B,C}. Note: square brackets were used to group because per-
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mutations use parentheses. Figure 23.1.3 below has the work and a visual
representation of the work.

Figure 23.1.3. Formulas and diagrams demonstrating [(AB)(ACB)].C =
(AB).[(ACB).C]

So, [(AB)(ACB)].C = A = (AB).[(ACB).C], therefore, we can see com-
patibility in this specific case. Compatibility can be easily shown to hold for
the other elements of X because S3 produces a bijection on X.

Note the visual difference in the two operations. The group operation
of composition of permutations has all the mapping arrows for all elements
(the top left two illustrations). This is because the result of a composition of

https://www.youtube.com/watch?v=1KOUEX-IEKG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=37
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permutations is another permutation. The other illustrations have only one
mapping arrow because S3 is acting on X producing only a single element
of X. ♦

Example 23.1.4. Recall R and X from Example 23.1.2, show that (r40 ◦
r30).x15 = r40.(r30.x15).

(r40 ◦ r30).x15
?
= r40.(r30.x15)

r70.x15
?
= r40.x45

x85
✓
= x85

♦

Exercise 23.1.5. Let G be a group acting on the set X, and σ, τ ∈ G and
x ∈ X. Using these elements, write a general rule for compatibility between
G and X. ♢

These ideas motivate the following definitions of action and G-Set:

Definition 23.1.6. Let G be a group and X be a set. A (left) action of
G on X is a map G×X → X given by (g, x) → g.x, such that

(1) Identity: e.x = x for all x ∈ X, and e is the identity element of the
group G;

(2) Compatibility: (g1g2).x = g1.(g2.x) for all x ∈ X and all g1, g2 ∈ G.

We will use the period to represent group action. The set X on which G
acts is called a G-set . △

Remark 23.1.7.

(1) X is not required to be a group, it only needs to be a set. G is the
group. In some cases, as we will see, X can be a group.

(2) g.x is not group multiplication. It is the result when g acts on x, and is
always an element of X.
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(3) We call the set X a G-set because G is acting on it. If R2 is acting on X
we will call X an R2-set; GL2(R) acting on X would be a GL2(R)-set.

(4) Notice that the second condition in Definition 23.1.6 is NOT associativ-
ity. It is not associativity because the group operation between g1 and
g2 is not the action between g and x. Recall we refer to this property
as compatibility.

△

It is also possible to define right group actions.

Exercise 23.1.8. Fill in the blanks with the missing information for the
definition of right action. Let G be a group and X be a set. A (right)
action of G on X is a map < 1 > × < 2 > → < 3 > given by
( < 4 > , < 5 > ) → < 6 > , such that

(1) Identity: < 7 > = < 8 > for all x ∈ X, and e is the identity
element of the group G;

(2) Compatibility: < 9 > = < 10 > for all x ∈ X and all g1, g2 ∈ G.

♢

Moving forward in this chapter we’ll focus just on left group actions.
Following are some more examples of group actions.

Example 23.1.9. Consider GL2(R) (the group of invertible 2×2 matrices)
and R2. Show that GL2(R) acts on R2 by left multiplication on vectors
which means that R2 is a GL2(R)-set. To check we must show identity and
compatibility:

(1) Check identity: If v ∈ R2 and I is the identity matrix, then I.v = v.

(2) Check compatibility: If A and B are 2 × 2 invertible matrices, then
(AB).v = A.(B.v) (see Exercise 23.1.10 below

Therefore, by definition, R2 is a GL2(R)-set. ♦

Exercise 23.1.10. Let

A =

[
a b
c d

]
; B =

[
e f
g h

]
; v =

[
x
y

]
.

https://www.youtube.com/watch?v=1KOUEX-IEKG&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=37
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Verify the compatibility condition (AB).v = A.(B.v) by using the properties
of matrix multiplication. ♢

Example 23.1.11. Let G be a group and En be the set of all subsets of
G with n elements where n is a positive integer and n ≤ |G|. Let S ∈ En,
meaning S is a subset of G with n elements. Then G acts on En by g.S :=
{gs | s ∈ S}. Note that g.S is a subset of G with n elements. Let’s verify
that this is an action:

(1) Check the identity condition: e.S = {es | s ∈ S} = S

(2) Check the compatibility condition: Let g, h ∈ G, then (gh).S = {(gh)s | s ∈
S} = {g(hs) | s ∈ S} = g.(h.S)

Parts (1) and (2) verify that En is a G-set. ♦

To show that (G,X) is not an action (in other words X is not a G-set),
one may show any one of the following:

� g.x /∈ X for some g ∈ G and x ∈ X;

� the identity condition fails e.x ̸= x for some x ∈ X; or

� the compatibility condition fails: (g1g2).x ̸= g1.(g2.x) for some x ∈ X
and some g1, g2 ∈ G.

Usually the easiest way to show one of the above items is by a counterex-
ample.

Exercise 23.1.12.

(a) Let G = 2Z and let X = Z. Show that X is a G-set.

(b) Let X = 2Z. Show that X is not a Z-set. (*Hint*)

(c) Let G = H6 (the complex 6-th roots of unity (see Section 4.4.1 in Chap-
ter 4) and let X = C. Show that X is a G-set.

(d) Let X = H8. Is X a C-set? Explain. (*Hint*)

♢
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23.2 Symmetries of regular polyhedra

We want to apply our new ideas to gain insight about the groups of rotational
symmetries of regular polyhedra In general, a polyhedron can be thought
of as a collection of faces, edges and vertices: for example, a cube has 6 faces,
12 edges and 8 vertices. A regular polyhedron is a polyhedron in which all
faces are congruent regular polygons, and the same number of edges meet
at every vertex. The group of rotational symmetries of a polyhedron act
on the faces, edges and vertices. Any rotational symmetry will always take
faces to faces, edges to edges and vertices to vertices.

In the following discussion we’ll be introducing a bunch of new ideas. As
usual, we’ll illustrate these ideas first on a particular example. So let’s begin
with the cube, which is perhaps the regular polyhedron which is easiest to
understand.

23.2.1 G-equivalence and orbits

Some of the rotational symmetries of the cube are indicated in Figure 23.2.1.
1 The figure shows three possible rotation axes. We will denote the 90◦ coun-
terclockwise rotations around the x, y and z axes as rx, ry, rz respectively.
We will also denote the faces of the cube as x−, x+, y−, y+, z−, z+. For ex-
ample the rotation rx ◦ rx = r2x will take the bottom face (z−) to the top
face (z+).

Remark 23.2.1. When we rotate the cube, the axes remain fixed while the
cube rotates around them. So in Figure 23.2.1 you may imagine the axes
to be like “laser beams” going through the cube, where the laser beams are
labeled x, y and z according to their axes. These laser beams and labels do
not move when the figure is rotated. For example, consider the rotation rz
followed by rx (which is written as rx ◦rz). Under rz, the face x+ will rotate
where the y+ face was. Then following rotation rx will occur around the
original laser beam x axis, and not the axis to where the x+ face has moved
(which would be the rotation ry). The cube ends up with the face x+ on
the top with the z axis, y+ on the negative side of the x axis, and z+ on the
negative side of the y axis. △

1Note that these are NOT the only rotational symmetries of the cube–we’ll discuss the
others later (see this excellent video: http://www.youtube.com/watch?v=gBg4-lJ19Gg).

http://www.youtube.com/watch?v=gBg4-lJ19Gg
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Figure 23.2.1. Cube with 3 axes of rotation that give symmetries.

Figure 23.2.2. A paper cube to print, cut and fold (from http://www.

korthalsaltes.com).

Remark 23.2.2. Make or find a physical manipulative of a cube. This can
be a 6-sided die or constructed from paper as seen in Figure 23.2.2. When
working with a manipulative of your polyhedron it is a good idea label each
face uniquely, whether by color, letter, number, or symbol. If you label
your faces x+, x−, y+, etc., make sure to remember that these refer to faces
and not axes (as we said above, the axes are like fixed laser beams that
don’t move with the cube). It also helps to take a picture or two of your
manipulative when in its starting position. You might also draw a pair of x
and y axes on a spare sheet of paper, set this on the table, and rotate your
cube above this paper. △

http://www.korthalsaltes.com
http://www.korthalsaltes.com
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Exercise 23.2.3.

(a) Give rotations that take the bottom face (z−) to each of the faces
x−, x+, y−, y+.

(b) Give rotations that take the face y− to each of the faces x−, x+, y+, z−, z+.

(c) Let’s define a notation for the cube’s vertices as follows. For example,
+++ represents the vertex in the first octant (x > 0, y > 0, z > 0). The
vertex +− − will be in the octant where x > 0, y < 0, z < 0 (Which is
the vertex at lower left in Figure 23.2.1). Give rotations that take the
vertex +− − to each of the of the vertices

+ + +, − ++, + −+, ++−, − −+, − +−, − − − .

(d) Let’s denote the edges of the cube as follows. For example, x+, z−
represents the edge where the faces x+ and z− meet. The edge x+, y−
is where the faces x+ and y− meet. (This is the left, front-facing edge
of cube in Figure 23.2.1.)

(i) Using the above notation, list all edges of the cube.

(ii) Give rotations that take the edge x+, y+ to each of the other edges.

♢

From the previous exercise it’s pretty clear that for any two faces of a
cube there is at least one symmetry that takes the first face to the second. In
other words, if A and B represent faces then there always exists a symmetry
g such that gA = B. This example motivates the following definition.

Definition 23.2.4. If a group G acts on a set X and x, y ∈ X, then x is
said to be G-equivalent to y if there exists a g ∈ G such that g.x = y. We
write x ∼G y or x ∼ y if two elements are G-equivalent. △

By this definition we can say that all faces of a cube are G-equivalent
to each other under the group of rotational symmetries of a cube, because
given any two faces we can always find a rotation that takes the first face to
the second face (and the inverse rotation takes the second face back to the
first face). The notation we’re using strongly suggests that ∼G must be an
equivalence relation. If fact this is true:
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Proposition 23.2.5. Let X be a G-set. Then G-equivalence is an equiva-
lence relation on X.

Proof. The relation ∼ is reflexive since ex = x. Suppose that x ∼ y for
x, y ∈ X. Then there exists a g such that g.x = y. In this case g−1.y = x;
hence, y ∼ x. To show that the relation is transitive, suppose that x ∼ y
and y ∼ z. Then, there must exist group elements g and h such that g.x = y
and h.y = z. So z = h.y = (hg).x, and x is equivalent to z. □

Recall from Chapter 17 that every equivalence relation on a set X is
associated with a partition of X, where a partition is a collection of disjoint
subsets whose union isX. Each set in this partition is called an equivalence
class.

Exercise 23.2.6. Consider the edge y+, z+ of a cube. What is the equiva-
lence class of this edge under G-equivalence, where G is the group of rota-
tional symmetries of a cube? Explain your answer. ♢

In the case of a cube where X = {faces}∪{edges}∪{vertices} The three
sets {faces}, {edges}, {vertices} are disjoint equivalence classes whose union
is X. We call each of these sets an orbit of X under G. In general, we have
the following definition.

Definition 23.2.7. If X is a G-set, then each set in the partition of X
associated with G-equivalence is called an orbit of X under G. We will
denote the orbit that contains an element x of X by Ox. △

The next example shows how these concepts apply to permutation groups
as well.

Example 23.2.8. Let G be the permutation group defined by

G = {(1), (123), (132), (45), (123)(45), (132)(45)}

and X = {1, 2, 3, 4, 5}. Then X is a G-set. There are permutations in G
that take 1 → 2, 1 → 3, 2 → 3, and vice versa. There are also permutations
that take 4 → 5 and vice versa. So the orbits are {1, 2, 3} and {4, 5}. ♦

Exercise 23.2.9.
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(a) Let G = {id, µ1} which is a subgroup of S3 (the symmetry group of
an equilateral triangle) (See Figure 13.3.1 in Section 13.3.) Let X =
{A,B,C} be the set of vertices of an equilateral triangle. List the orbits
of X under G

(b) Let G be the permutation group defined by

G ={(1), (1358), (15)(38), (1853), (247), (274), (1358)(247), (15)(38)(247),
(1853)(247), (1358)(274), (15)(38)(274), (1853)(274)}

and X = {1, 2, 3, 4, 5, 6, 7, 8}. Then X is a G-set. List the orbits of X
under G.

♢

23.2.2 Stabilizers, stabilizer subgroups, and fixed point sets

Let’s return to the cube to illustrate another new concept. Every rotation
of a cube has an axis of rotation as well as an angle. For rotations which
are symmetries we’ve considered 3 possible axes, passing through opposite
pairs of faces. Take for instance the axis which passes through x+ and x−,
and consider the set of all the rotational symmetries having this axis. In
fact, this set of symmetries forms a subgroup of the symmetries of the cube
(in this case, the subgroup is isomorphic to the rotations of the square or
(Z4,+)). Now all of the elements of this subgroup leave the face x+ fixed
(although x+ rotates, it remains in the same place). Similarly, the rotations
about the axis through y+ and y− form a subgroup whose elements leave y+
fixed; and the rotations about the axis through z+ and z− behave the same
way for z+.

These are all examples of stabilizer subgroups. The general definition is
as follows.

Definition 23.2.10. Given that X is a G-set and x ∈ X, let Gx be the set
of group elements g that fix x: in other words, g.x = x. Then Gx is called
the stabilizer subgroup or isotropy subgroup for the element x. △

The above definition presumes that Gx is in fact a subgroup of G, which
up until now we haven’t proved. The following exercise remedies this defi-
ciency:
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Exercise 23.2.11. Given any x in X, prove that the stabilizer subgroup
Gx is indeed a subgroup of G. (Recall this involves proving closure under
composition and inverse.) ♢

Definition 23.2.10 talks about elements of the group G which leave a
particular element of set X fixed. We can turn this around and consider
elements of X which are fixed by a particular element of G. In fact, each
element of G has an associated subset of X that it leaves unchanged.

Consider for instance the group of rotations of a cube. We may describe
the cube as consisting of faces, edges, and vertices. So let’s take X =
{faces} ∪ {edges} ∪ {vertices}. Rotations about the x axis (which can all
be expressed as rx

n for some n) leave the faces x+ and x− fixed. Similarly,
{y+ ,y−} and {z+, z−} are fixed by rotations about the y axis and z axis,
respectively. Thus, {x+, x−}, {y+, y−}, {z+, z−}, are all examples of fixed
point sets in X. This leads to another definition:

Definition 23.2.12. Let G be a group acting on a set X, and let g be an
element of G. The fixed point set of g in X, denoted by Xg, is the set of
all x ∈ X such that g.x = x. △

It is important to remember that Xg ⊂ X and Gx ⊂ G.

Let’s use this notation to describe some stabilizer subgroups and fixed
point sets for familiar examples of group actions.

Example 23.2.13. Let G be the rotational symmetries of a cube and
X = {faces} ∪ {edges} ∪ {vertices}. The fixed point set of id is:

Xid = {faces} ∪ {edges} ∪ {vertices},

since the identity rotation leaves the entire cube unchanged. ♦

Example 23.2.14. Let’s consider the stabilizer subgroups for the faces of
a cube. These contain the elements of the group G of rotations of the cube
that leave each face unchanged. The stabilizer subgroups for the faces are:

Gx+ = Gx− = {id, rx, r2x , r3x}
Gy+ = Gy− = {id, ry, r2y , r3y}

........Gz+ = Gz− = {id, rx, r2x , r3x}

♦
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Example 23.2.15. Let X = {1, 2, 3, 4, 5, 6} and suppose that G is the
permutation group given by the permutations

{(1), (12)(3456), (35)(46), (12)(3654)}.

Then the fixed point sets of X under the action of G for the different group
elements are

X(1) = X,

X(35)(46) = {1, 2},
X(12)(3456) = X(12)(3654) = ∅,

and the stabilizer subgroups for the different elements of X are

G1 = G2 = {(1), (35)(46)},
G3 = G4 = G5 = G6 = {(1)}.

♦

Exercise 23.2.16.
Let G = S4 (the permutations of 4 elements), and let X = {1, 2, 3, 4}. X is
a G-set.

(a) Give G2, G4, and G2 ∩G4. Is G2 ∩G4 a group? Explain your answer.

(b) Give X(123), X(234),and X(123) ∩X(234).

(c) Repeat part (a) with G = A4 (the group of even permutations on 4
elements).

(d) Repeat part (b) with G = A4 (the group of even permutations on 4
elements).

♢

As usual, we will denote the number of elements in the fixed point set of
an element g ∈ G by |Xg|, the number of elements of the stabilizer subgroup
of x ∈ X as |Gx| and the number of elements in the orbit of x ∈ X by |Ox|.

Exercise 23.2.17. Let G = Sn (the permutations of n elements), and let
X = {1, 2, . . . n}. X is a G-set.

(a) What is |G1|? What is |G2|? What is |Gk| where k ∈ X? (Recall that
|Sn| = n!)
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(b) If g is a 3-cycle, then what is |Xg|? What if g is a 5-cycle? (You may
assume that n ≥ 5).

(c) Give a general formula for |Xg|, where g is a k-cycle (2 ≤ k ≤ n).

(d) Repeat part (a) with G = An (the even permutations of n elements).

(e) Repeat part (b) with G = An.

(f) Repeat part (c) with G = An.

♢

23.2.3 Counting formula for the order of polyhedral rota-
tional symmetry groups

It is possible to characterize the size of the rotational symmetry group G
for a regular polyhedron in terms of |Ox|and |Gx|. We’ll show this with an
example.

Example 23.2.18. Consider our old friend the group of rotational symme-
tries of a cube acting on X = {faces}∪{edges}∪{vertices}. We’ve seen that
Gx+ = {id, rx, r2x , r3x} is the stabilizer subgroup for x+. Thus there are four
rotations that take x+ to itself. We’ve also seen that there’s at least one
rotation that takes x+ to each of the six faces of the cube: this is the same
thing as saying that the orbit of a face is the set of all faces. Each of these
rotations can be composed with any of the elements of Gx+ for a total of
6 · 4 = 24 rotational symmetries of a cube. To summarize, we’ve discovered
that

|G| = |Gx+ | · |Ox+ |.

Note that x+ was an arbitrary choice: we could use this argument with any
of the faces and obtain the same result. ♦

In the previous example we used faces to count the rotational symmetries
of a cube but we could use edges or vertices as well. In the next exercise we’ll
consider edges and in the following one we’ll consider vertices. Remember
that amodel of a cube might help with these exercises (see Figure 23.2.2).

Exercise 23.2.19.
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(a) Find the stabilizer subgroup for the edge x+, z+. (*Hint*)

(b) Find the stabilizer subgroup for the edge x−, y+.

(c) In Example 23.2.18 we constructed a formula for |G| in terms of |Gx+ |
and |Ox+ |. Construct a similar formula using Gx+,z+ and |Ox+,z+ |, and
show that you get the same answer. Do the same thing with Gx−,y+ and
|Ox−,y+ |.

(d) Find the stabilizer subgroup for the vertex +,+,+ (*Hint*)

(e) Find the stabilizer subgroup for the vertex + ,− ,+.

(f) Using parts (d) and (e), construct alternative formulas for |G|.

♢

From the previous example and exercises, it seems we have a general
formula: if G acts on X and x ∈ X, then

|G| = |Gx| · |Ox|.

This may remind you of Lagrange’s Theorem, which we proved in Sec-
tion 18.3 of the Cosets chapter:

|G| = |H| · [G : H],

where H is any subgroup of G. If we replace H with Gx, this becomes

|G| = |Gx| · [G : Gx].

Comparing with our previous formula, we get

|Ox| = [G : Gx].

Let’s give a bona fide mathematical proof of this.

Proposition 23.2.20.(Counting formula): Let G be a group and X a
G-set. If x ∈ X, then |Ox| = [G : Gx].

Proof. In general, a good way to show that two sets are the same size is
to show that there is a bijection (1-1 and onto map) between the two sets.
We will define a map ϕ between the orbit Ox and the set of left cosets of Gx
in G as follows. Let y ∈ Ox. Then there exists a g in G such that gx = y.
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Define ϕ by ϕ(y) = gGx. Note that this coset contain an element ge = g: so
it contains an element that takes x→ y.

Before we can show that ϕ is a bijection, we must first show that ϕ(y) is
well-defined for any y, and does not depend on our selection of g. Suppose
that g′ is another element in G such that g′x = y. Then gx = g′x or
x = g−1g′x. By the definition of the stabilizer subgroup Gx, g

−1g′ ∈ Gx.
By Proposition 18.2.1 in Section 18.2, it follows that gGx = g′Gx. Thus, y
gets mapped to the same coset regardless of the choice of group element.

To show that ϕ is one-to-one, we’ll assume that ϕ(x1) = ϕ(x2), and show
that this means that x1 = x2. Here we go:

Recall that ϕ(x1) is defined as a coset of Gx that contains an element
g1 that satisfies g1x = x1. Similarly, ϕ(x2) , contains an element g2 that
satisfies g2x = x2. But we’re assuming that ϕ(x1) = ϕ(x2). This means that
g1 and g2 are in the same coset of Gx.

Now consider the expression g1(g
−1
1 g2)x. On the one hand, by the asso-

ciative law we get:
(g1g

−1
1 )g2x = g2x = x2.

On the other hand, by Proposition 18.2.1 in the Cosets chapter, it follows
that g−1

1 g2 is in Gx, so that g−1
1 g2x = x. This means that we also have:

g1(g
−1
1 g2)x = g1x = x1.

Therefore x1 = x2. This completes the proof that ϕ is 1-1.

Finally, we must show that the map ϕ is onto: that is, every coset of Gx
is in the range of ϕ. This is much quicker than the proof of 1-1. Let gGx be
any left coset. If gx = y, then ϕ(y) = gGx. Thus gGx is in the range of ϕ,
and the proof is finished. □

At this point, it is straightforward to put Proposition 23.2.20 together
with Lagrange’s Theorem to obtain:

Proposition 23.2.21.(Orbit-Stabilizer Theorem): Let G be a group and
X a G-set. Given x ∈ X, let Ox be the orbit of x under G, and let Gx be
the stabilizer subgroup for the element x. then |G| = |Ox|||Gx|.

Exercise 23.2.22. Prove Proposition 23.2.21. ♢

The Orbit-Stabilizer Theorem enables us to quickly find some nifty re-
lationships among numbers of faces, vertices, and edges:
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Exercise 23.2.23.

(a) Show using Proposition 23.2.21 that for the cube, the ratio (number of
edges / (number of faces) = 4/2.

(b) Use the same method to find the ratio (number of edges) / (number of
vertices) for the cube.

(c) For the dodecahedron (regular polyhedron with 12-sided faces), find the
ratio of (number of faces) / (number of vertices). (*Hint*)

♢

23.2.4 Representing a symmetry group in terms of stabilizer
subgroups

We can approach the structure of the group of rotational symmetries of a
cube from another direction. We’ve talked about stabilizer subgroups, and
we can see how these subgroups “fit together” within G. For example, we’ve
seen that for every face there are three rotations (besides the identity) that
leaves that face fixed. These rotations correspond to 90, 180, and 270 degree
rotations of a square: so they have order 4,2, and 4 respectively.2 So for
each face, there are two rotations of order 4 and one rotation of order 2 in
the stabilizer of that face. Since there are 6 faces of a cube, this seems to
imply that there must be twelve rotations of order 4 and six rotations of
order 2 associated with the stabilizers of the different faces.

Unfortunately, this is not quite true. The reason is that any rotation that
leaves the front face fixed also leaves the back face fixed. So the stabilizer of
the front face is the same as the stabilizer of the back face. In fact, the faces
of the cube are stabilized in pairs: front-back, left-right, and top-bottom.
Since there are 3 pairs, this means that we only have 6 rotations of order 4
and 3 rotations of order 2. If we add in the identity, this gives a total of 10
rotations. But we’ve already shown that the group of rotational symmetries
of a cube has 24 elements. So where are the other 14?

Well, we haven’t exhausted the possible stabilizers. Consider for instance
the stabilizer of a vertex. We know that 3 faces meet at each vertex. So
if I twirl the cube around the vertex, the three faces can rotate into each

2Recall that the “order” of a group element g is the smallest positive integer n such
that gn = id.



808 CHAPTER 23 GROUP ACTIONS

other. So besides the identity, there are two rotations of order 3. As with
the faces, each vertex has a corresponding opposite vertex–so the vertices
are stabilized in pairs. Since there are 8 vertices, this means there are 4
pairs, which means there are 8 rotations of order 3. This brings us up to a
total of 18 rotations. So where are the other six?

Exercise 23.2.24. Consider the edges of a cube.

(a) For each edge, how many rotations (besides the identity) leave that edge
fixed?

(b) What are the orders of the rotations (besides the identity) that leave an
edge fixed?

(c) Do edges come in pairs or not? If so give the pairs, if not, explain why
not.

(d) Altogether how many group elements (besides the identity) stabilize at
least one edge?

♢

Exercise 23.2.25. Based on the information given in the preceding discus-
sion, complete the following table to characterize the group elements of the
rotational symmetries of a cube according to their orders and fixed point
sets (you may also find this video to be helpful: http://www.youtube.com/
watch?v=gBg4-lJ19Gg). (*Hint*)

Number of group elements order Fixed point set

1 1 entire cube (identity)

6 4 opposite faces

– – opposite faces

– – opposite vertices

– – opposite edges

♢

Exercise 23.2.26. The table in Exercise 23.2.25 is suspiciously like some-
thing that we’ve seen before.

(a) Consider the group S4, which has 24 elements. Make a table with three
columns labeled, “number of elements”, “order of the element”, “cycle

http://www.youtube.com/watch?v=gBg4-lJ19Gg
http://www.youtube.com/watch?v=gBg4-lJ19Gg
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structure”. In the right-hand column, list the possible cycle structures:
identity, one 4-cycle, two 2-cycles, one 3-cycle, and one 2-cycle. Then
fill in the other two columns according to the cycle structure listed in
each row.

(b) Based on the table you created in part (a) and the table in Exer-
cise 23.2.25, what do you conjecture?

♢

23.2.5 Examples of other regular polyhedral rotation groups

Let’s get to know some other regular polyhedra using orbits and stabilizer
subgroups to describe their rotational symmetry groups.

The tetrahedron

Consider a regular tetrahedron, as shown in Figure 23.2.3. This polyhedron
has 4 faces, 6 edges and 4 vertices. Each face is a triangle and each face is
opposite a vertex. We will consider the rotations of a tetrahedron around 4
axes. Each axis passes through a vertex and the face opposite that vertex.
See Figure 23.2.3. For example, a rotation of the axis through vertex A will

also stabilize face a. We can call this axis
↔
Aa. Similarly, we will call the

other axes
↔
Bb,

↔
Cc and

↔
Dd.

Each of these axes rotates a triangular face. We’ll write one counter-

clockwise rotation of face a around
↔
Aa as rAa (and similarly for the other

axes). An animation of the rotations of a tetrahedron is available at:

https://www.youtube.com/watch?v=qAR8BFMS3Bc

You can also make your own tetrahedron like the one in Figure 23.2.4.

Exercise 23.2.27.

(a) How many degrees does rAa rotate face a?

(b) What is the order of rAa?

https://www.youtube.com/watch?v=qAR8BFMS3Bc
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Figure 23.2.3. Tetrahedron with 4 axes of rotation that give symmetries.
Figure modified from https://inspirehep.net/record/1228365/plots.

Figure 23.2.4. Tetrahedron to print, cut and fold (from http://www.

korthalsaltes.com).

♢

Consider the tetrahedron in Figure 23.2.3. The rotation rCc takes vertex
D to vertex A and face d to face a.

Exercise 23.2.28. We’ll find it useful later to represent these rotations as
permutations.

https://inspirehep.net/record/1228365/plots
http://www.korthalsaltes.com
http://www.korthalsaltes.com
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(a) Represent each of the rotations rAa, rBb, rCc, rDd as permutations on
the set of vertices.

(b) Represent each of the rotations rAa, rBb, rCc, rDd as permutations on
the set of faces.

♢

Exercise 23.2.29.

(a) Give rotations that takes face c to each to each of the other faces a, b, d.

(b) Give rotations that takes vertex D to each of the other vertices.

(c) Consider the edges of the tetrahedron. Denote the edge between the
vertices C and D as CD: and other edges similarly. Use this notation
to name each of the edges of the tetrahedron.

(d) Give a rotation that takes edge CD to each of the other edges.

♢

Exercise 23.2.30. Consider the vertex A of a tetrahedron. What is the
equivalence class of this vertex under G-equivalence, where G is the groups
of rotational symmetries of a tetrahedron? (Note: This G-equivalence class
is the same as orbit of A. which we denote as OA.) ♢

Just as with the cube, the rotation group G of any polyhedron acts on
the set X = {faces} ∪ {edges} ∪ {vertices}. Recall that each group element
g ∈ G has a fixed point set Xg ∈ X that it leaves unchanged: that is,
g.x = x for any x ∈ Xg. Let’s find some fixed point sets for rotations of the
tetrahedron.

Exercise 23.2.31. Let G be the rotational symmetries of a tetrahedron

(a) What is the fixed point set of rBb?

(b) What is the fixed point set of rBb ◦ rDd? (*Hint*)

(c) What is the fixed point set of r−1
Bb ◦ rDd?
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(d) Give all rotations that fix the set {D, d}.

♢

Let’s consider the stabilizer subgroups for the faces and vertices of a
tetrahedron.

Exercise 23.2.32. Find the following stabilizer subgroups: GA, GB, GC ,
GD, Ga, Gb, Gc, Gd. Which subgroups are equal? (*Hint*) ♢

Let’s use the stabilizer subgroups above to determine the total number of
rotational symmetries of a tetrahedron. So far we’ve found 4 rotational axes
and two rotations around each axis. Together with the identity, this gives
nine rotations. But there are more rotational symmetries of a tetrahedron
than we’ve discovered so far. Let’s try to find them.

Exercise 23.2.33.

(a) Find the stabilizer subgroup for the edge CD.

(b) Find the stabilizer subgroup for the edge AB.

(c) How many different group elements (besides the identity) stabilize at
least one edge?

(d) Are there any group elements that are not stabilizers of either an edge
or a face? Explain your answer.

♢

Exercise 23.2.34. The Orbit-Stabilizer Theorem gives us a formula for |G|
in terms of|GA| and |OA|. Alternatively, it also gives a formula for|G| in
terms of |GAB| and |OAB|. Show that both formulas give the same answer
for |G|. ♢

Exercise 23.2.35. Complete the following table (similar to the table in
Exercise 23.2.25)to characterize the group elements of the rotational sym-
metries of a tetrahedron according to the type(s) of sets they stabilize. We
show two rows: fill in the blanks, and add as many rows as necessary to
complete the table.
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Number of group elements Order Fixed point set

1 – entire tetrahedron (identity)

– 3 vertex + face

♢

Exercise 23.2.36. Recalling Exercise 23.2.26, we may suppose that there
is a permutation group which resembles the symmetry group of the tetrahe-
dron, in the same way that S4 resembles the symmetry group of the cube.
Identify a well-known symmetry group with 12 elements and make a table
for this group which is arranged like the table in Exercise 23.2.26. What do
you conjecture based on your results? ♢

The octahedron

Another regular polyhedron is the octahedron. We will see that in some
ways an octahedron is like a cube. When opposite points are lined up on a
vertical z axis, the octahedron has no vertical or horizontal faces, as shown
in Figure 23.2.5. We denote a 90◦ counterclockwise rotation around the z
axis by rz (and similarly for rotations around the x, and y axes). Since each
vertex of the octahedron lies on an axis, we can use the x, y, and z axis to
label the vertices. For example y+ is the vertex on the positive y axis. We
can also name the edges using this notation for their endpoints. Let’s use
the axes to label the faces of the octahedron too. Consider Figure 23.2.5,
we’ll refer to the the face in the first octant as △+++ (the other faces will
be labeled similarly).

Exercise 23.2.37.

(a) List all the faces of the octahedron using the notation above.

(b) Based on Figure 23.2.5 how many faces does an octahedron have? How
many vertices? How many edges?

♢

A model of an octahedron might help with the following exercises. You
can make one like the one in Figure 23.2.6. There’s also a virtual octahe-
dron on GeoGebra that you can manipulate at: https://www.geogebra.

org/m/KtTGGrSp. A Youtube video that shows the rotational symmetries

https://www.geogebra.org/m/KtTGGrSp
https://www.geogebra.org/m/KtTGGrSp
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Figure 23.2.5. Octahedron with 3 axes of rotation that give sym-
metries (figure modified from https://en.wikipedia.org/wiki/File:

Octahedron.svg)

Figure 23.2.6. A paper octahedron to print, cut and fold (from http:

//www.korthalsaltes.com).

of an octahedron may be found at: https://www.youtube.com/watch?v=

CCaX5eTteEg.

Exercise 23.2.38. What is the order of rz? ♢

https://en.wikipedia.org/wiki/File:Octahedron.svg
https://en.wikipedia.org/wiki/File:Octahedron.svg
http://www.korthalsaltes.com
http://www.korthalsaltes.com
https://www.youtube.com/watch?v=CCaX5eTteEg
https://www.youtube.com/watch?v=CCaX5eTteEg
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Exercise 23.2.39.

(a) Give rotations that take △+++ to each to each of the other faces.

(b) Give rotations that take x− to each of the other vertices.

(c) Give a rotation that takes edge z+y+ to each of the other edges.

♢

Exercise 23.2.40. Consider the edge x−y+ of a octahedron. What is
Ox−y+? ♢

Exercise 23.2.41. Let G be the rotational symmetries of an octahedron

(a) What is the fixed point set of ry ◦ rz?

(b) What is the fixed point set of r2y ◦ rx?

(c) What is the fixed point set of r2x ◦ ry?

♢

Let’s consider the stabilizer subgroups for the faces and vertices of an
octahedron.

Exercise 23.2.42. Find the stabilizer subgroups for each of the vertices of
the octahedron. (*Hint*) ♢

Let’s find the total number of rotational symmetries for the octahedron.

Exercise 23.2.43. Let G be the rotational symmetries of an octahe-
dron. Construct a formula for |G| in terms of |Gy+ | and |Oy+ | (see Ex-
ample 23.2.18). ♢

So far we have discovered 10 rotational symmetries of an octahedron.
Three axis of 3 rotations each plus the identity. By the previous exercise,
there are still more to discover. Here we go!

Exercise 23.2.44.
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(a) Find the stabilizer subgroup for the edge y+ z+.

(b) Find the stabilizer subgroup for the edge y− z−.

(c) How many different group elements (besides the identity) stabilize at
least one edge?

♢

Exercise 23.2.45.

(a) Find the stabilizer subgroup for the face △+++.

(b) Find the stabilizer subgroup for the face △− − −.

(c) How many different group elements stabilize at least one face?

♢

Exercise 23.2.46. In Exercise 23.2.43 we constructed a formula for |G| in
terms of |Gy+ | and |Oy+ |. Do the same thing using |G△+++ | and |O△+++ |,
and show that you get the same value for |G|. ♢

Exercise 23.2.47. Complete the following table to characterize the group
elements of the rotational symmetries of an octahedron. We show two rows,
how many more to complete the table?

Number of group elements Order Fixed point set

— — entire octahedron (identity)

— — opposite vertices
♢

Exercise 23.2.48. There are some striking similarities between the tables
in Exercises 23.2.47 and 23.2.25. Describe the similarities, and see if you
can explain them. Figure 23.2.7 may give you some ideas. ♢
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Figure 23.2.7. Figure for Exercise 23.2.48 (source: https://en.

wikipedia.org)

The dodecahedron

Let’s practice finding the elements of the rotation group of another regular
polyhedron. Consider the regular dodecahedron in Figure 23.2.8. A dodec-
ahedron has 12 faces and each face is a regular pentagon. How many edges
does this polyhedron have and how many vertices? Well, since each of the
twelve faces is a pentagon that seems to give 12 · 5 = 60 edges. But two
faces meet at each edge, so we actually have (12 · 5)/2 = 30 edges.

You can also make your own dodecahedron to help you explore its rota-
tional symmetries. See Figure 23.2.9.

Exercise 23.2.49. Determine the number of vertices of a regular dodeca-
hedron. ♢

Let f1 be one face of the dodecahedron. An axis through the center of f1
also passes the opposite face which is parallel to f1. We’ll call this opposite
face f∗1 and denote a counterclockwise rotation of f1 about this axis as rf1 .

Exercise 23.2.50.

(a) What is the order of rf1?

https://en.wikipedia.org
https://en.wikipedia.org
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Figure 23.2.8. Dodecahedron (source:https://en.wikipedia.org)

(b) Let G be the rotational symmetry group of a dodecahedron. List all
rotations in the stabilizer subgroup Gf1 . What else do they stabilize?

(c) What is |Gf1 |?

(d) How many group elements in G stabilize at least 1 face?

(e) What is |Of1 |?

♢

Now we can find the total number of rotational symmetries in G.

Exercise 23.2.51. Find |G| in terms of |Gf1 | and |Of1 |. ♢

So far we’ve found the number of the stabilizers of faces of the dodeca-
hedron. But, as with the cube and tetrahedron, we need axes of symmetry
through edges and vertices as well. Let v1 be one vertex of the dodecahe-
dron. An axis of symmetry through v1 will also pass through the opposite
vertex, which we will call v∗1. A counterclockwise rotation about this axis is
called rv1 .

Exercise 23.2.52.

https://en.wikipedia.org
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Figure 23.2.9. A dodecahedron to print, cut and fold (from http://www.

korthalsaltes.com).

1. Find the order of rv1 .

2. List all rotations in the stabilizer subgroup Gv1 . What else do they
stabilize?

3. How many group elements in G (besides the identity) stabilize at least
1 vertex?

4. What is |Ov1 |?

5. Find |G| in terms of |Gv1 | and |Ov1 |.

♢

Let’s consider the edges of the dodecahedron. We’ve seen already that
there are 30 edges. Based on this information and previous exercises, com-
plete the following.

Exercise 23.2.53.

(a) Let e1 be one edge of the dodecahedron. What is |Ge1 |?

http://www.korthalsaltes.com
http://www.korthalsaltes.com
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(b) Are the edges of a dodecahedron stabilized in pairs? Explain your an-
swer. (*Hint*)

♢

Exercise 23.2.54.

(a) How many group elements of G besides the identity stabilize at least 1
edge?

(b) Complete the following table to characterize the group elements of the
rotational symmetries of a dodecahedron. We show two rows, how many
more to complete the table?

Number of group elements order Fixed point set

– – entire dodecahedron (identity)

– – –

♢

Exercise 23.2.55.

Identify a group of permutations with the same number of elements as
the symmetry group of the dodecahedron. Make a table for this group which
is arranged like the table in Exercise 23.2.26. What do you conjecture based
on your results? ♢

Football (a.k.a. “soccer ball”)

All the polyhedra we’ve studied so far have congruent regular faces. These
are also known as Platonic solids. Let’s explore the rotation group of a
polyhedron whose faces are not all congruent. A familiar example is the
football (following American usage, we’ll call it a“soccer ball’), as shown in
Figure 23.2.10. The soccer ball has 32 faces, 12 regular pentagons and 20
hexagons.

Let’s try to count the rotations of a soccer ball that preserve symme-
try. Axes can be placed through the center of pentagonal faces, which are
stabilized in pairs.

Exercise 23.2.56.
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Figure 23.2.10. The soccer ball has both pentagonal and hexagonal faces.
Source: http://mathworld.wolfram.com/TruncatedIcosahedron.html.

(a) Given one particular pentagonal face of the soccer ball, what is the order
of its stabilizer?

(b) Given that there are 12 pentagonal faces, find |G| where G is group of
rotational symmetries of the soccer ball. (*Hint*)

♢

Axes can also be placed through the center of hexagonal faces. How-
ever, not all rotations about an axis through a hexagonal face will result in
symmetry.

Exercise 23.2.57.

(a) Given one particular hexagonal face of the soccer ball, what is the order
of its stabilizer?

(b) Using your answers to (a) and part (b) of Exercise 23.2.56, determine
the number of hexagonal faces. (*Hint*)

♢

Axes of rotation also pass through some of the edges. Notice that there
are two types of edges: those which join two hexagonal faces, and those
which join a hexagonal face and a pentagonal face.

http://mathworld.wolfram.com/TruncatedIcosahedron.html
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Exercise 23.2.58.

(a) Consider an edge which joins a hexagonal face and a pentagonal face.
How many rotations (besides the identity) stabilize this edge? Explain
your answer.

(b) Consider an edge which joins two hexagonal faces. How many rotations
stabilize this edge? Explain your answer.

(c) Using the counting formula and your answers to previous exercises, de-
termine the number of edges which join two hexagons.

(d) Note each pentagon touches 5 hexagons. Use this information and infor-
mation from Exercise 23.2.56 to determine the number of edges which
join a pentagon and hexagon.

♢

What about vertices?

Exercise 23.2.59.

(a) Consider a particular vertex. How many rotations (besides the identity)
stabilize this edge? Explain your answer.

(b) Note each vertex touches one pentagon, and each pentagon has five
vertices. Use this information and information from Exercise 23.2.56 to
determine the number of vertices.

♢

Exercise 23.2.60.

(a) Create a table similar to the table in Exercise 23.2.25 which characterizes
the rotational symmetries of the soccer ball.

(b) Does this table resemble one of the tables that we constructed previously
for regular polyhedra? If so, which? Can you explain this?

♢
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23.2.6 Euler’s formula for regular polyhedra

In this section we’ll play with counting the order of the rotation group G
of a regular polyhedron in different ways. It turns out that this will lead us
to an interesting and useful formula relating the number of edges, vertices,
and faces in a polyhedron. Let’s start by reviewing our previous examples
and noticing a pattern.

Exercise 23.2.61.

(a) Complete the table and compare |G| to the number of edges of each
polyhedron. The number of edges is equal to the order of the orbit of
any edge e, denoted as |Oe|.

polyhedron number of edges (|Oe|) order of group (|G|)
cube 12 24

tetrahedron – –

octahedron – –

dodecahedron – –

(b) Based on the table, guess an equation for |G| in terms of Oe.

(c) Prove your equation using Proposition 23.2.21.

♢

Now in Exercises 23.2.25, 23.2.35, and 23.2.47 we showed another way of
counting the elements of G: by counting the stabilizers of faces, vertices, and
edges (plus the identity). But does this work for every polyhedron? Could
there possibly be a rotational symmetry that doesn’t stabilize anything?
It turns out that this isn’t possible (at least in three dimensions). The
argument (which depends on a key fact proved by the famous mathematician
Leonhard Euler) goes as follows.

Euler proved in 1775 that any rotation in three dimensions has a unique
fixed axis. (We won’t give the proof here, but it’s related to the cross product
discussed in Section 11.8.1.) Now if we rotate a polyhedron, then the axis
must intersect the polyhedron twice: that is, it must intersect two elements
of X where X = {faces, vertices, edges}. Let’s call these two elements ϵ1
and ϵ2. Since the rotation leaves the two intersections unchanged, there’s
one point of ϵ1 which maps to itself (and similarly for ϵ2). If the rotation
is a symmetry, then ϵ1 must be fixed by the rotation, because there’s no



824 CHAPTER 23 GROUP ACTIONS

way it couldn’t map to a different element of X and still have one point
which remains in ϵ1. The same argument holds for ϵ2. This shows that any
rotational symmetry must stabilize at least two elements of X.

We can take the argument even further. The rotational symmetry which
stabilizes ϵ1 and ϵ2 can’t possibly stabilize any other elements of X: this
is because the center point of any stabilized element (be it face, vertex, or
edge) is unchanged by a rotational symmetry, and Euler tells us that there
is only one fixed axis and hence exactly two fixed points.

So since every rotational symmetry (besides the identity) stabilizes ex-
actly two elements, then if we sum up all of the (non-identity) stabilizers for
all elements of X then we will count each (non-identity) symmetry exactly
twice. It follows that

2(|G| − 1) =
∑
x∈X

(|Gx| − 1)

(note that we use |G|−1 and |Gx|−1 because we’re not counting the identity
symmetry).

Let’s apply this formula to a regular polyhedron with |Of | faces, |Ov|
vertices and |Oe| edges. Applying Proposition 23.2.21 to faces, edges, and
vertices gives:

|Gf | =
|G|
|Of |

; |Ge| =
|G|
|Oe|

; |Gv| =
|G|
|Ov|

.

Now for the sum. Since there are Of faces, Oe edges, and Ov vertices we
have:

2(|G| − 1) =
∑
x∈X

(|Gx| − 1)

=
∑
faces

(|Gf | − 1) +
∑
edges

(|Ge| − 1) +
∑

vertices

(|Gv| − 1)

= |Of |
(

|G|
|Of |

− 1

)
+ |Oe|

(
|G|
|Oe|

− 1

)
+ |Ov|

(
|G|
|Ov|

− 1

)
= 3|G| − |Of | − |Oe| − |Ov|.

Rearranging, we find:

|Of |+ |Ov|+ |Oe| = |G|+ 2.
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But we’ve also seen that |G| = 2Oe for regular polyhedra. Substituting and
rearranging a little further gives:

|Of |+ |Ov| − |Oe| = 2.

This powerful equation is called Euler’s formula . Let’s see how it can be
useful in determining properties of regular polyhedra.

Exercise 23.2.62. A certain regular polyhedron has 20 triangular faces.

(a) Using Proposition 23.2.21, find the number of edges.

(b) Using Euler’s formula, find the number of vertices.

(c) Using Proposition 23.2.21, find the number of edges which meet at each
vertex.

♢

Exercise 23.2.63.

(a) Verify Euler’s formula for the cube and tetrahedron.

(b) Explain why the proof we have given does not apply to the soccer ball.
Verify that notwithstanding, Euler’s formula still works for the soccer
ball anyway!

♢

Remark 23.2.64. Euler’s formula has far more general application than
we’ve shown here. It works for any network of edges and vertices which can
be drawn on a sphere. Variants of the formula work for networks drawn
on other shapes (like a donut, or a donut with multiple holes). Pursuing
this topic further would lead us into the area of mathematics known as
algebraic topology , which is a fascinating topic but unfortunately a much
bigger mouthful than we can swallow at this point. △

We don’t need to limit ourselves to Euler’s formula. There are lots of
other fun facts we can prove:

Exercise 23.2.65.
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(a) Modify the proof of Euler’s formula to prove the following formula for
the soccer ball:

2 = |faces|+ |edges|+ |vertices| −X · |G|,

where |G| is the order of the symmetry group of the soccer ball. Find
the value of X.

(b) Prove that the following formula is true for any network of edges and
vertices which can be drawn on a sphere:

|faces|+ |edges|+ |vertices| − 2 ≡ 0 (mod |G|),

where |G| is the order of the rotational symmetry group of the network.

♢

Exercise 23.2.66. Let X be a polyhedron consisting of faces, edges and
vertices. The symmetry group of X is G. X is not a regular polyhedron–the
vertices and edges are not all identical. This is what we know about X:

� There are two types of vertices, and two types of edges.

� Type I vertices are all G-equivalent; and every Type I vertex has 5
edges which are all G-equivalent. (This implies that the stabilizer
subgroup of any Type I vertex has order 5.)

� Type II vertices are all G-equivalent.

� Type I edges are all G-equivalent; and the 180-degree rotation about
the axis through the origin and the center of any Type I edge is a
symmetry. (In other words, the stabilizer subgroup of any Type I
edge has order 2.)

� Type II edges are all G-equivalent; and Type II edges are not fixed by
any symmetries.

� All faces are triangles, and all are G-equivalent.

(a) Use the Orbit-Stabilizer Theorem (Proposition 23.2.21) to express the
number of Type I vertices, Type I edges, and Type II edges in terms of
|G|.
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(b) Prove that |G| is divisible by 10.

(c) Since every edge is shared by two faces, it follows that:

2 · (number of edges) = (number of faces)(number of edges per face).

Use this fact to express the number of faces in terms of |G|.

(d) Compute the order of the stabilizer subgroup of any face in X.

(e) Use Euler’s formula to express the number of Type II vertices in terms
of |G|.

(f) Using the Counting Formula applied to Type II vertices, show that the
order of the stabilizer subgroup of any Type II vertex is 3 or less. Then
show that order 1 and order 2 are both impossible, so that the order
must be 3.

(g) Using Euler’s formula, compute |G|. Give explicitly the number of ver-
tices and edges of each type, and the number of faces.

(h) Look up on the web, and see if you can identify this polyhedron (this is
an example of an Archimedian solid).

♢

23.2.7 Are there other regular polyhedra?

We have investigated four regular polyhedra: cube, tetrahedron, octahedron,
and dodecahedron. Could there be any others? What does group theory
tell us?

Exercise 23.2.67. Let us suppose we have a regular polyhedron with nf
faces, ne edges, and nv vertices. Let us further suppose that each face has
f edges per face and v edges which meet at each vertex. (Note in particular
that v ≥ 3, because 2 parallel edges which join together form a single edge
and not a vertex.) Let G be the group of rotational symmetries.

(a) Use the Counting Formula to obtain three different equations for |G| in
terms of nf , ne, nv, f , and v.
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(b) Use part (a) and Euler’s formula to find an equation that relates f, v,
and |G| (that is, these are the only 3 variables in the equation).

(c) Suppose that f = 3. Find the possible values of v. For each value of v,
find the corresponding values of |G|, nf , ne, and nv.

(d) Suppose that f = 4. Find the possible values of v. For each value of v,
find the corresponding values of |G|, nf , ne, and nv.

(e) Suppose that f = 5. Find the possible values of v. For each value of v,
find the corresponding values of |G|, nf , ne, and nv.

(f) Suppose that f ≥ 6. Show that this would imply v < 3, which is
impossible.

(g) Besides the four polyhedra we have investigated, could there be any
others? If so, what are their properties?

♢

Take a moment to appreciate how amazing these results are. Since poly-
hedra are geometrical objects, one would think that one would have to con-
sider geometrical facts about angles and how they fit together in order to
determine which ones are possible. In particular, we know from geometry
that a regular polyhedron couldn’t have more than 6 regular polygons meet-
ing at an edge, because then we’d have more than 360 degrees. Geometry
also tells us that polyhedral faces couldn’t have more than 6 sides, since then
we couldn’t have more than 2 meeting at a vertex. But we have figured out
which regular polyhedra can exist, purely on the basis of algebra with no
considerations of angles whatsoever!

The other wonderfully mysterious fact is that all of the regular polyhedra
that we have determined to be possible do actually exist. It seems that our
simple algebraic representations have captured some deep properties of the
three-dimensional world that we live in.

23.2.8 Reflection symmetries of polyhedra

We have never shown that the rotational symmetries are the only symmetries
of the regular solids In fact, there are others! Recall that in the dihedral
group, besides rotations there were reflections. Consider for example the
hexagon: it had 6 rotations (including the identity) and 6 reflections. It’s
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possible to rotate the hexagon and keep the hexagon in the same plane.
However, to reflect the hexagon, you have to “flip” it, which requires three
dimensions. It turns out that something similar is true for the regular solids.
There are also reflection symmetries for the regular solids: in fact, there are
as many reflections as rotations, just as in the dihedral group. Also like
the dihedral group, to reflect a solid requires one extra dimension. It is
rather mind-blowing to think that if we lived in a world with four physical
dimensions, it would be possible to turn your right hand into your left hand
just by “flipping” in the fourth dimension!

23.2.9 Finite subgroups of the group of rotations in 3 dimen-
sions

The set of all possible rotations in 3 dimensions forms a group, which is
called the special orthogonal group and is denoted by the symbol SO3.
(SO3 is actually the intersection of the “orthogonal group” O3 with the
special linear group in three dimensions, which is why it’s called “special”.)
All of the rotational symmetry groups of regular polyhedra which we’ve been
considering are finite subgroups of SO3.

In Chapter 13 we encountered another class of finite subgroups of SO3,
namely the dihedral groups Dn which consist of rotations and flips (we
should be careful to include D2, which is generated by a single 180-degree
rotation and a flip). Although a flip is not a 2-d rotation, it is a rotation
in 3-dimensions (as we indicated in Section 23.2.8). Naturally, the rotation
groups for the different n-gons (which are subgroups of the Dn form another
class of finite subgroups of SO3.

Are there any other finite subgroups of SO3. The answer is no For a
proof, the reader may consult “Classifying Finite Subgroups of SO3” by
Hannah Mark, which (as of April 1 2020) can be found at: homepages.

math.uic.edu/~kauffman/FiniteRot.pdf (if the link doesn’t work, you
may try a Google search).

Once again, note the amazing power of mathematics. Mathematics tells
reality what it can and cannot do. Mathematics commands the universe,
and the universe must obey.

homepages.math.uic.edu/~kauffman/FiniteRot.pdf
homepages.math.uic.edu/~kauffman/FiniteRot.pdf
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23.3 Group actions associated with subgroups and
cosets

It turns out that if the set X is also a group, then it’s always possible to
define a group action of X on itself, where the group action is identical to
the group operation: g.x := gx.

Example 23.3.1. Consider the group Z5 which as we know is a group
under addition. We will show that Z5 is a Z5-set where the group action
is g.x := g + x. To do this we must show the identity and compatibility
conditions. First, 0.x = 0+x = x for all x ∈ Z5, so the identity condition is
met. Secondly, we need to show compatibility: by the associative property of
addition in Z5, we have (g1+g2).x = (g1+g2)+x = g1+(g2+x) = g1.(g2.x)
for all x, g1, g2 ∈ Z5. So the compatibility condition is met. Therefore, by
definition of G-set, Z5 is a Z5-set. ♦

Exercise 23.3.2.

(a) Recall Q∗ is the nonzero rational numbers under multiplication. Show
that Q∗ is a Q∗-set.

(b) RecallH5 is the complex 5th roots of unity under complex multiplication
(see Section 4.4.1). Show that H5 is an H5-set.

(c) Let T be the unit circle in the complex numbers under multiplication
(see Figure 4.4.1 in Section 4.4.1). Find a group G such that T is a
G-set, and prove the statement.

♢

We can generalize the results of the preceding exercise in the following
proposition:

Proposition 23.3.3. For any group G, G is a G-set with action equal to
the group operation in G: g.h := gh for any g, h ∈ G.

Exercise 23.3.4.: Prove the above proposition. ♢

Exercise 23.3.5.
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(a) Let G = {2n | n ∈ Z}: G is a multiplicative subgroup of Q∗. Show that
Q∗ is a G-set.

(b) Let T be the unit circle in the complex numbers under multiplication.
Show T is an H5-set.

♢

In Exercises 23.1.12 and 23.3.5, we’ve seen cases where G is a group and
H is a subgroup of G. In this situation, H will always produce a group
action on G:

Proposition 23.3.6. If G is a group, and H is a subgroup of G, then G is
an H-set using the definition h.g := hg.

Exercise 23.3.7. Prove the above proposition. ♢

Recall our discussion of cosets in Chapter 18 In particular, a left coset
consists of a group element g acting on a subgroup H of G. The group
element acts on each element of the subgroup to create a coset. In other
words, a coset is a subgroup shifted by action of a group element. If G is
a group, we can let L be the set of left cosets. We will see in the following
examples that we can define a group action on L. That is the set of left
cosets, L is a G-set. Let G be the additive group of real numbers. That is,
G = (R,+), and let H be all integer multiples of 2π. That is, H = {2kπ :
k ∈ Z}, or H = 2πZ for short.

Exercise 23.3.8. Prove that 2πZ is a subgroup of (R,+). ♢

Example 23.3.9. Let L be the set of left cosets of 2πZ in the group (R,+).
Recall from Definition 18.1.4 in Chapter 18 that the set of left cosets L is
defined as x+ 2πZ = {x+ h : h ∈ 2πZ}. For example, the left coset which
contains π/3 is the set {π/3 + 2kπ, k ∈ Z}, which we could also write as
{. . . π/3 − 4π, π/3 − 2π, π/3, π/3 + 2π, π/3 + 4π, . . .}. It turns out that L
is G-set under the action (g, x+ 2πZ) → g + x+ 2πZ. Let’s verify the two
conditions of a G-set:

(a) For the identity condition note that e ∈ G = 0. Then, 0 + x + 2πZ =
x+ 2πZ for any x+ 2πZ ∈ L. So the identity condition is true.
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(b) For the compatibility condition consider two real numbers a, b. Then, by
associativity of real number addition, (a+b)+x+2πZ = a+(b+x+2πZ)
for any x+2πZ in L. So the compatibility condition is true. L is a G-set
of the additive group of real numbers.

This example has a very practical significance. We know that angles on
a unit circle are arbitrary up to multiples of 2π. So we can think of each
angle as a coset: that is, the angle θ where 0 ≤ θ < 2π corresponds to
the coset θ + 2πZ, which represents the set of values {θ + 2kπ}, where
k ∈ Z. Now consider what an arbitrary rotation ϕ does to the angle θ.
For instance, consider the case where θ = π

4 – then θ + H = {π4 + 2kπ}.
We’ll suppose that the rotation angle is ϕ = 15π

2 . According to the group
action, ϕ + θ + H = 15π

2 + {π4 + 2kπ} which will result in the new coset
{31π

4 + 2kπ} = {7π
4 + 2kπ}. As we can see, the action of the additive group

(R,+) on the cosets θ + 2πZ corresponds to rotation by arbitrary angles
around the unit circle. If the rotation is more than 2π, the action still works
because the cosets take care of any extra factors of 2π. ♦

In the following exercise you will generalize the above example by show-
ing how the set of all left cosets from a particular subgroup of group G is a
G-set.

Exercise 23.3.10. Let G be a group and H be a subgroup of G. Let
L = {xH | x ∈ G} which is the set of all left cosets of H in G. Then G acts
on L by g.xH = (gx)H, which is also a coset of H. Show that G is acting
on L, which means that L is a G-set. ♢

23.3.1 The integer lattice

In this section we’ll take a close look at a group action on a set of cosets. This
example can be thought of as a two-dimensional version of Example 23.3.9,
and can be envisioned using computer graphics.

Let G be the xy-plane under addition (that is, G = (R2,+)). Let H =
Z × Z, which is a subgroup of G (H is called the integer lattice : see
Figure 23.3.1). Cosets of H in G may be written as a +H = {(x +m, y +
n) : m,n ∈ Z}, where a := (x, y) can be any element of G. Recall from
Proposition 18.2.4 that cosets form a partition, so H and its cosets partition
R2.
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Figure 23.3.1. Diagram showing H (the integer lattice) with the unit
square shaded. This figure and the similar figures in the section were created
using the software “GeoGebra” (see http://www.geogebra.org).

The unit square (the shaded area in Figure 23.3.1) is the area on the
xy-plane that is [0, 1) × [0, 1), meaning the square includes the points on
the x and y axes, but not on the lines x = 1 and y = 1. Note that H
has only one point in the unit square, namely (0, 0), similarly any coset of
the form a + H has only one point in the unit square (we will prove this
mathematically later). We can say that a ∈ R2 maps H to produce a coset
a+H.

Example 23.3.11. Consider a particular group element a = (0.7, 0.5).
Let’s use a graphical illustration to model the point a mapping the integer
lattice H which results in the coset a+H.

You can duplicate the above illustration by physically by drawing the
coset points (red diamonds) on a plastic transparency, placing it over a graph
of the integer lattice (blue points) and moving the transparency 0.7 units to
the right and 0.5 units upwards. ♦

We will be needing to use the floor function , also known as the greatest
integer function. The floor function takes a real number, x ∈ R as input
and outputs the greatest integer that is less than or equal to x. We will use
these brackets, ⌊ ⌋, to represent the floor function. Mathematically we can

http://www.geogebra.org
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Figure 23.3.2. The integer lattice, H, is represented by blue points, while
the elements of the coset (0.7, 0.5) + H are represented by red diamonds.
The dotted black arrows show the creation of the coset.

express this as:
⌊x⌋ = max{m ∈ Z | m ≤ x}.

Here are just a few quick examples: ⌊4⌋ = 4, ⌊π⌋ = 3, and ⌊−2.3⌋ = −3.

Exercise 23.3.12. In the following you will show that there is a bijection
between cosets of the form a + H, where a ∈ R2 and points of the unit
square.

(a) Let (m,n) be the lower left point of the lattice square which contains
the point a. Using the floor function, give expressions for m and n.

(b) Show that a + (−m,−n) is inside the unit square. This implies that
a+H contains at least one point inside the unit square.

(c) Use proof by contradiction to show that the coset a + H cannot have
two different points inside the unit square.

Since each coset a+H contains exactly one point in the unit square, and each
point in the unit square is contained in exactly one coset a +H, it follows
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that there exists a one-to-one and onto correspondence (i.e. a bijection)
between points in the unit square and cosets of H. ♢

Example 23.3.13. Continuing from Example 23.3.11: let b = (0.8, 0.3),
where b ∈ G. Find the point h = (m,n) ∈ H such that b + a + h is inside
the unit square (recall a = (0.7, 0.5)).

The element b acts on the coset a+H as follows:

b+ a+H = {(0.8 + (0.7 +m), 0.3 + (0.5 + n)) : m,n ∈ Z}
= {(0.8 + 0.7 +m, 0.3 + 0.5 + n) : m,n ∈ Z}
= {(1.5 +m, 0.8 + n) : m,n ∈ Z}.

If m = −1 and n = 0, then b + a + h = (1.5 − 1, 0.8 + 0) = (0.5, 0.8), so
h = (−1, 0). ♦

Exercise 23.3.14. Generalize the above example as follows. Let a, b ∈ R2

such that a = (ax, ay) and b = (bx, by). Let h = (m,n) wherem = −⌊bx+ax⌋
and n = −⌊by + ay⌋ (note that h ∈ H). Verify graphically the formulas for
m and n, and show algebraically that b+ a+ h is in the unit square. ♢

The point b+ a+ h = (0.5, 0.8) is the only point of the coset b+ a+H
which is inside the unit square. By basic properties of cosets, it follows that
b+a+H = (0.5, 0.8)+H. Recall that by definition a left coset of the integer
lattice a+H means adding the same point, a = (x, y), to each point in the
integer lattice, H. A group action simply changes one coset of H in G to a
different coset. The top illustration in Figure 23.3.3 show the displacement
of the coset a+H when acted on by b on the left from Example 23.3.13.

Our above discussion can help us describe the motion of a character on
the screen of a “wraparound” video game. Imagine the unit square is your
TV or computer screen. Suppose the character starts near the right edge at
the point a = (0.7, 0.5), and undergoes linear motion to the right and up in
the direction of the displacement vector b = (0.8, 0.3). Then he moves off
the right edge of the screen and re-appears instantly at the left edge, ending
up at the previously found point c = (0.5, 0.8) as shown in Figure 23.3.4. So
the point b+ a+ h = c where h = (−1, 0).

In our conclusion of Exercise 23.3.12, we found that there’s a bijection
between the points of the unit square and the cosets of H. So instead of
observing an entire coset, we only need to look at the point that is currently



836 CHAPTER 23 GROUP ACTIONS

Figure 23.3.3. From Example 23.3.13, the top figure is illustrating the
displacement of the coset a + H for a = (0.7, 0.5) when acted on by b =
(0.8, 0.3) on the left. The bottom figure is illustrating the coset c′ + H,
where c′ = b+ a. The lattice, H is represented by blue points, the elements
of the coset a+H are represented by red diamonds, and the elements of the
final coset b+ a+H = c′ +H are represented by purple crosses.
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Figure 23.3.4. Demonstrating the “wraparound” effect, when only viewing
the unit square, when b = (0.8, 0.3) acts on the coset a + H where a =
(0.7, 0.5).

inside the unit square, as seen in Figure 23.3.4 for example. What appears
to be a jumpy motion in the unit square (i.e. when the point jumps from the
right edge to the left edge) can also be understood in terms of a continuous
“motion” of cosets.

Example 23.3.15. Consider group elements a = (−0.6,−0.4) and b =
(0.9, 1.6) where a, b ∈ R2. Let’s first find the point h = (m,n) ∈ H such
that b + a + H is inside the unit square. From Exercise 23.3.14, m =
−⌊−0.6 + 0.9⌋ = −⌊0.3⌋ = 0 and n = −⌊−0.4 + 1.6⌋ = −⌊1.2⌋ = −1, so
h = (0,−1)

Next, let’s find the point b+a+h in the unit square, let’s call this point
c.

c = (0.9, 1.6) + (−0.6,−0.4) + (0,−1) = (0.3, 0.2)

So c = (0.3, 0.2) and is a point inside the unit square.

Lastly, let’s graph the “movement” of the points that are visible to only
the unit square throughout the group action b on a + H. Similar to Fig-
ure 23.3.4.
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The Figure 23.3.5 (top) we have shown “paths” which follow the action of
b on a+H. Note that each path is a continuous straight segment. However,
if we restrict our field of view to the unit square (see Figure 23.3.5 (bottom)),
there appears to be four disconnected segments, but the top figure shows us
how these can be envisioned as a continuous motion.

♦

Exercise 23.3.16.

(a) Given a = (0.8, 0.6) and b = (1.4, 0) find the point h ∈ H such that
b + a + h is inside the unit square, and find c in the unit square, such
that c+H = b+ a+H.

(b) Given a = (0.8, 0.6) and b = (1.2, 1.3) find the point h ∈ H such that
b+ a+ h is an element of the unit square, and find c in the unit square,
such that c+H = b+ a+H.

(c) Given a = (0.8, 0.6) and b = (0, 3.5) find the point h ∈ H such that
b + a + h is inside the unit square, and find c in the unit square, such
that c+H = b+ a+H.

(d) Illustrate the first part (a) with a graph. Graph the point a+ h. Then
graph the point b+ a+h, or simply c. Include ordered pairs to indicate
the position of these points. Include arrows to indicate the apparent
“movement” from the point a+ h to the point c within the unit square.

(e) Create similar graphs illustrating parts (b) and (c).

♢

Exercise 23.3.17. Show that H is not an R2-set. (*Hint*) ♢

Exercise 23.3.18. Show that the set of all cosets of the form {a+H, a ∈ R2}
is a R2-set by answering the following:

(a) Let b ∈ R2. Define the action of b on (a+H) (in other words complete
the following equation: b.(a+H) = ?).

(b) Prove the identity condition.
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Figure 23.3.5. The top figure is illustrating the movement of the coset
a+H for a = (−0.6,−0.4) when acted on by b = (0.9, 1.6) on the left (only
one arrow, labeled a, representing the movement of a acting on H is shown
so the image wouldn’t be cluttered). The bottom figure is illustrating the
“wraparound” effect when only viewing the unit square. The movements
are numbered in order and there are different patterns for clarity.
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(c) Prove the compatibility condition.

♢

We can think about this example in another way. Suppose we have a
torus, which is the mathematical word for a donut shape. We could imagine
creating a “map” of the surface of the torus by cutting the torus apart as
shown in Figure 23.3.6. If we spread this map out flat, it would look like
a square (see Figure 23.3.7). If we wanted to use the map to chart motion
on the surface of the torus, then any motion that goes off the right edge
would reappear at the left edge; and any motion that goes off the top edge
would reappear at the bottom. So you see this is exactly what we saw for the
previous example. So using cosets of Z2 in R2, we’ve created a mathematical
representation for motion on the surface of a torus.

Figure 23.3.6. Torus, showing two cut lines.

Figure 23.3.7. The cut torus, flattened out.
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We can generalize the two previous examples by considering cosets of a
subgroup H in a group G that contains H.

Example 23.3.19. Let H be a subgroup of G and LH the set of left cosets
of H. The set LH is a G-set under the action g.(xH) = (gx)H (note that
gx ∈ G so (gx)H is a coset of H). Again, it is easy to see that the identity
condition is true. Since (gg′).(xH) = (gg′x)H = g.((g′x)H) = g.(g′.(xH)),
the compatibility condition is also true. ♦

So far, we’ve been looking at group actions on left cosets. What about
right cosets? Let’s investigate.

Exercise 23.3.20. Consider the case where G = S3, H = {id, (12)}, and
R is the set of right cosets of H. Define a function from G × R → R by
(g,R) → Rg. Does this function define a group action of G on R? (*Hint*)
♢

The previous exercise shows that we can’t always do the same thing with
right cosets that we can do with left cosets. Let’s look at an alternative:

Exercise 23.3.21.

(a) Repeat the previous exercise, but this time use the function (g,R) →
Rg−1.

(b) Show that in general the function (g,R) → Rg−1 defines an action of G
on the right cosets of H.

♢

23.4 Conjugation

23.4.1 Commutative diagrams and the definition of conjuga-
tion

When we talked about permutations, we saw that the objects we were per-
muting didn’t really change the situation. For example, we saw that permut-
ing {1, 2, 3, 4} was the “same thing” as permuting {A,B,C,D}. Now what
do we really mean by the “same thing”? Well for example, if we take any
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permutation of {1, 2, 3, 4} and replace 1 with A, 2 with B and so on, then
we’ll get a permutation of {A,B,C,D}. To be specific let’s take σ = (123)

and f =

(
1 2 3 4
A B C D

)
. It’s possible to represent this situation with

diagram in Figure 23.4.1. This type of diagram is called a commutative
diagram .

The commutative diagram illustrates the construction of a conjugation.
We can begin in the upper right corner and move to the upper left, in the
opposite direction of the f arrow. This motion corresponds to applying the
inverse of f , that is f−1 (this naturally requires that f must be a bijection).
Then, moving from upper left to lower left represents applying the permuta-
tion σ = (123), as shown in the diagram. Finally, by moving from lower left
to lower right (which corresponds to applying the function f), we end up
at the lower right-hand corner. The three motions, performed one after the
other thus corresponds to the composition of functions f−1, then σ, then f ,
which we write as fσf−1 (recall that function composition proceeds from
right to left).

On the other hand, moving directly from upper right to lower right
corresponds to the application of the permutation µ. Since this motion
starts at upper right and ends at lower right just like the previous one, it
should represent the same permutation as before. This gives us the result:
µ = fσf−1.

Figure 23.4.1. Commutative diagram of a conjugate mapping.

We may also think of this another way. The paths fσ and µf both
take us from upper left to lower right. So we can write fσ= µf . By right
multiplying by f−1 we discover the algebraic structure of the conjugate of
σ, fσf−1 = µ.
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There’s a shortcut way to obtain µ. Actually, µ is simply σ relabeled
according to f . That is, if we take the cycle representation of σ and replace
the numbers according to f (1 → A, 2 → B, 3 → C), then we end up with
µ. We will call this shortcut, “the relabeling method”.

Exercise 23.4.1. For each σ and f , complete a commutative diagram like
the one in Figure 23.4.1. Find the conjugate mapping using the relabeling
method, and verify that the result agrees with f ◦ σ ◦ f−1.

(a) σ = (12)(35) and f =

(
1 2 3 4 5
A B C D E

)

(b) σ = (2346) and f =

(
1 2 3 4 5 6
A B C D E F

)

(c) σ = (147)(2563) and f =

(
1 2 3 4 5 6 7
A B C D E F G

)
♢

Now instead of f going between different sets, we can choose f to map
{1, 2, 3, 4} to itself. In this case, f itself is a permutation. To be more
consistent with our earlier notation for permutations, we’ll use the symbol
τ instead of f in the following discussion. What τ corresponds to is just
relabeling the objects that we’re permuting. Figure 23.4.2 shows an example
where both τ and σ are permutations on the set {1, 2, 3, 4}. The diagram
shows that if we do a permutation σ on the originally-labeled objects, and
compare to the same permutation of the relabeled objects, we find that the
relabeled permutation is exactly given by τστ−1. The permutations σ and
τστ−1 are called conjugate permutations, and the operation which takes
σ to τστ−1 is called conjugation .3

Conjugate permutations and cycle structure

Two permutations that are conjugate are in many ways very similar. We
could almost call them the “same” permutation, only they act on a relabeled
set of objects. In particular, it’s true that two conjugate permutations must
have the same cycle structure. For instance, in the example we did earlier

3Note this is quite different from conjugation of complex numbers. Unfortunately,
“conjugation” is a very popular word in mathematics, and is used in many different senses.
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Figure 23.4.2. Conjugate mapping with τ and σ permuting {1, 2, 3, 4}.

in Figure 23.4.1 we saw that both permutations were three-cycles. This will
be true in general because conjugation simply means relabeling the objects
that are permuted, without changing anything else.

Example 23.4.2. Let σ = (153)(276) and τ = (427)(165). Then

τ =

(
1 2 3 4 5 6 7
6 7 3 2 1 5 4

)
.

Relabeling σ according to τ gives the conjugate (136)(457). You can check
that computing τστ−1 will give the same result as the relabeling method. ♦

Exercise 23.4.3. Given σ and τ use the relabeling method to find the
permutation conjugate to σ. Check your work by computing τστ−1.

(a) σ = (6247) and τ = (527)(63). σ and τ act on the set {1, 2, 3, 4, 5, 6, 7}.

(b) σ = (256)(134) and τ = (21643). σ and τ act on the set {1, 2, 3, 4, 5, 6}.

(c) σ = (14)(27356) and τ = (463). σ and τ act on the set {1, 2, 3, 4, 5, 6, 7}.

♢

We’ve proved and tested that conjugate permutations have the same
cycle structure. It turns out that the reverse is also true: namely, any two
permutations with the same cycle structure are conjugate.
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Example 23.4.4. Let σ = (12)(3456)(789), µ = (149)(2658)(37). Notice
that σ becomes µ if we use the following relabeling:

1 → 3; 2 → 7; 3 → 2; 4 → 6; 5 → 5; 6 → 8; 7 → 1; 8 → 4; 9 → 9.

We can use this information to write τ in tableau notation:

τ =

(
1 2 3 4 5 6 7 8 9
3 7 2 6 5 8 1 4 9

)
,

from which we find, τ = (1327)(468). Then you may check that σ and µ are
conjugate according to: µ = τστ−1. ♦

Exercise 23.4.5. In each of the following find a permutation τ that makes σ
and µ conjugate. Check that σ and µ are conjugate according to: µ = τστ−1.

(a) σ = (135)(792)(468), µ = (236)(189)(457)

(b) σ = (2879)(3561), µ = (2461)(5793)

(c) σ = (25)(13578), µ = (36)(28154)

♢

These examples lead up to the following theorem:

Proposition 23.4.6. Given a permutation group G, and two permutations
σ, µ ∈ G. Then σ and µ are conjugate if and only if they have exactly the
same cycle structure.

Proof. The “only if” part follows from remarks we have made above: the
conjugation operation simply re-labels the elements of the permuted set, so
two conjugate permutations must have the same cycle structure. For the
“only if” part, we may write σ in cycle notation as

σ = (a11 a12 . . . a1n1)(a21 a22 . . . a2n2) . . . (ak1 ak2 . . . aknk
).

Suppose that τ has the same cycle structure, which means that τ can be
written as

τ = (b11 b12 . . . b1n1)(b21 b22 . . . b2n2) . . . (bk1 bk2 . . . bknk
).

Then we can define a bijection f by: f(aij) = bij , for any i and j. Using the
above cycle structures, we can show that τ is equal to fσf−1. All we have
to do is show that this works for any bij . For example, consider b11: then
fσf−1(b11) = fσ(a11) = f(a12) = b12, which is exactly equal to τ(b11). □
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23.4.2 Conjugacy and group action

We will now relate the idea of conjugacy with the notion of group action
that was introduced earlier in the chapter.

Example 23.4.7. Let G be the dihedral group D4. Recall that D4 con-
sists of four rotations and four reflections. In fact we can write D4 =
{e, r, r2, r3, s, s ◦ r, s ◦ r2, s ◦ r3}, where r is counterclockwise rotation by
90◦, and s is the reflection that leaves vertices labeled 1 and 3 fixed. Let
H be the subgroup {e, s}. We’ll define our mapping from H × G → G as
follows:

(h, g) → hgh−1.

For example, consider the case h = s and g = r. Then (s, r) → s ◦ r ◦ s−1.
We can simplify this, since s is a reflection, so s−1 = s. furthermore, by part
c of Proposition 13.4.15 in Section 13.4, we can show r ◦ s = s ◦ r3. This
gives us

s ◦ r ◦ s−1 = s ◦ r ◦ s = s ◦ s ◦ r3 = r3.

♦

Exercise 23.4.8. Complete the previous example with G = D4 and H =
{e, s} by listing all the pairs (h, g) with h ∈ H and g ∈ G together with the
result of the mapping hgh−1. Simplify your expression for hgh−1 as much
as possible. ♢

Note something very interesting in the previous exercise. When h = e
the all elements of G remain unchanged by the mapping, but when h = s
all the rotations map to their inverses. We can generalize Example 23.4.7
using the following definition.

Definition 23.4.9.iven two group elements g, h in G, then hgh−1 is said to
be a conjugate element to g. In this case, we would say that h acts on g
by conjugation. △

The definition of conjugation gives us a new group action for any sub-
group H acting on a group G which contains H:

Proposition 23.4.10. If H is a subgroup of G, then G is an H-set under
conjugation. That is, we can define an action H ×G→ G, by h.g = hgh−1

for h ∈ H and g ∈ G.
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The proof is contained in the following exercise.

Exercise 23.4.11. Fill in the blanks to prove the proposition:

First, we have that < 1 > is in H and e.g = < 2 > g < 3 > = g. So
the identity condition for a group action holds.

Also, observing that

(h1h2).g = < 4 > g < 5 > = h1(h2g < 6 > ) < 7 > = h1.( < 8 > .g)),

we see that the compatibility condition is also satisfied. ♢

23.4.3 Order of conjugate elements

In order to illustrate some properties of the action of conjugation, we will
take a familiar example: the group of rotational symmetries of a cube. What
are the conjugate elements? We’ve seen that the rotations can be classified
into:

� Stabilizers of faces;

� Stabilizers of vertices;

� Stabilizers of edges;

� Stabilizers of everything (the identity).

Which of these are conjugate?

Consider the conjugates of rz, which is a 90◦ counterclockwise rotation
around the z axis. Supposing that g is an arbitrary rotational symmetry,
what does grzg

−1 do? First, the g−1 will rotate another pair of faces to
the top and bottom positions. Then, rz will rotate that pair of faces by
90◦. Then g will rotate the two rotated faces back to their original places.
The net result will always be a 90◦ rotation of an opposite pair of faces of
the cube. The question now is, are all such 90◦ rotations conjugate to each
other? In particular, are 90◦ counterclockwise rotations the same as 90◦

clockwise rotations? For instance, is rz conjugate to r−1
z . In fact it is, as

we’ll see in the next example.

Example 23.4.12. Let g = r2x then consider r2x◦rz◦r−2
x . What will this ro-

tation do? First r−2
x will take the top face to the bottom face and vice versa.
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Then rz will rotate the face z− (which is now on top) 90◦ counterclockwise
and z+ (which is now on the bottom) 90◦ clockwise. Then r2x will rotate z−
back to the bottom and z+ back to the top. So we see r2x ◦ rz ◦ r−2

x = r−1
z .

(This is related to the formula srs−1 = r−1, which we saw in Chapter 13.)
♦

We have also seen that it’s possible to rotate any pair of opposite faces
to the top and bottom face. This means that any 90-degree rotation of any
pair of opposite faces of the cube is conjugate to rz.

Exercise 23.4.13.

(a) Find g such that ry = g ◦ rz ◦ g−1.

(b) Find g such that r−1
x = g ◦ rz ◦ g−1.

(c) What are the orders of rz, ry, and r
−1
x ? On the basis of your findings,

make a conjecture about the orders of conjugate elements.

♢

The order of rotations appears to play an important role in determining
which group elements are conjugate.

Exercise 23.4.14.

(a) Find two different rotations that are conjugate ◦r2z , and express them
both in the form g ◦ r2z ◦ g−1.

(b) What do you notice about the orders of these three rotations?

♢

Let’s consider stabilizers of vertices.

Example 23.4.15. ry ◦ rz is a 120 degree stabilizer of vertex +++. Con-
sider the conjugation of ry ◦ rz by the group element ry, that is, ry ◦ (ry ◦
rz) ◦ r−1

y . First, r−1
y takes + + − to + + +. Then ry ◦ rz rotates + + −

120 degrees counterclockwise. Then ry rotates + + − back to its original
place. The net result is a 120 degree counterclockwise rotation of the vertex
+ + −. ♦

Exercise 23.4.16.
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(a) Which elements of the cube are stabilized by rz ◦ ry stabilize? What is
the order of this stabilizer?

(b) Consider the conjugate r2x ◦ (rz ◦ ry) ◦ r−2
x . Which cube elements will

this stabilize? What is the order of this stabilizer? (*Hint*)

(c) Express ry ◦rz as a conjugate of rz ◦ry: that is, find g such that ry ◦rz =
grz ◦ ry ◦ g−1. (*Hint*)

♢

Finally, let’s consider conjugates of stabilizers of edges.

Example 23.4.17. The rotation r2z ◦r−1
y stabilizes the edge x−z−. It’s a 180

degree rotation about an axis through this edges x−z− and x+z+. Consider
the conjugate r2z ◦ (r2z ◦ r−1

y ) ◦ r−2
z . What does this rotation do? First,

r−2
z takes x+z− to x−z−. Then (r2z ◦ r−1

y ) rotates about the axis through
x+z− 180 degrees, switching the two faces. Then r2z rotates x+z− back to
its original position. The net result is a 180 degree rotation about the axis
through x+z− and x−z+. ♦

Exercise 23.4.18.

(a) The rotation r2y ◦ rz stabilizes the edge x+y+. One conjugate of this
rotation ry ◦ (y2 ◦ z) ◦ r−1

y What does the conjugate stabilize?

(b) What is the order of any conjugate of a stabilizer of an edge of a cube?
Is the order always the same? Explain your answer.

♢

For all the examples we’ve seen so far, the order of a conjugate of any
stabilizer is the same as the order of the stabilizer itself. Of course, examples
are not proof–but in this case they’re a strong indication that this may be
a general property. In fact, we can show:

Proposition 23.4.19. Let G be a group, g ∈ G, and g̃ is conjugate to g.
Then |g| = |g̃|: that is, g has the same order as g̃.

Proof. The proof is outlined in the following exercise.
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Exercise 23.4.20. Fill in the blanks to complete the proof that a group
element and its conjugate always have the same order.

Suppose that g̃ is conjugate to g. This means that there exists an x ∈ G
such that g̃ = < 1 > . Suppose |g| = n. Compute g̃n as follows:

g̃n = (g̃ . . . g̃ (n times)

= ( < 2 > ) . . . ( < 3 > ) (n substitutions)

= xg( < 4 > )g . . . g( < 5 > )gx−1 (associative property)

= xg( < 6 > )g...g( < 7 > )gx−1 ( inverse property)

= x( < 8 > )x−1 ( identity property)

= x( < 9 > )x−1 (definition of order)

= < 10 > (identity and inverse properties)

From Proposition 15.5.41, it follows that |g̃| divides | < 11 > |. On the
other hand,

( < 12 > )g̃( < 13 > ) = g (inverse property).

The same proof with g and g̃ interchanged shows that |g| divides | < 14 > |
Therefore, |g| = < 15 > ♢

□

Exercise 23.4.21. We’ve shown that if elements are conjugate they must
have the same order.

(a) What is the converse of the above statement?

(b) Prove or disprove the converse using previous examples to help you.

♢

23.4.4 Conjugacy classes and the class equation

We have seen before that g-equivalent elements form an equivalence class.
This means that the operation of conjugacy defines an equivalence relation,
and every set of conjugate elements is an equivalence classes. These equiva-
lence classes are known as conjugacy classes. The upshot is that we have
the group G partitioned into 5 conjugacy classes, consisting of:
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� the identity,

� 90◦ stabilizers of faces,

� 180◦ stabilizers of faces,

� stabilizers of vertices,

� stabilizers of edges.

This is exactly the method we used before to count up the number of
elements in G. What we’ve just done for the rotational symmetries of a
cube can be done for any group. We have the general formula:

|G| =
∑

(orders of conjugacy classes).

This is known as the class equation .

Example 23.4.22. We can verify that the class equation correctly calcu-
lates the order of the group of rotational symmetries of a cube.

|G| =|conjugacy class of 90 degree stabilizers of faces|
+ |conjugacy class of 180 degree stabilizers of faces|
+ |conjugacy class of stabilizers of vertices|
+ |conjugacy class of stabilizers of edges|
+ |conjugacy class of identity|

=6 + 3 + 8 + 6 + 1

=24.

♦

Let’s use the class equation to verify |G| for some other familiar groups.

Example 23.4.23.

Consider the group S3. Note this is the same as the dihedral group of
an equilateral triangle. Let s be the reflection that leaves the vertex labeled
‘1’ fixed, and let r be the counterclockwise rotation by 120 degrees. We can
find the conjugacy classes of S3 by creating a table with a column for each
of the elements in the group. Each row will represent a conjugacy class.
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It’s clear that id has its own conjugacy class of one element. For example,
r2 ◦ id ◦ r = r2 ◦ r = id. We can verify that id is only conjugate to itself.

We can see that r has two conjugates. For example:

id ◦ r ◦ id = r

s ◦ r ◦ s = s ◦ s ◦ r2 = id ◦ r2 = r2 by Proposition 13.4.15 in Chapter 13.

We don’t need a row for r2 because it belongs to the same conjugacy
class as r. Computing the row for s completes the table, since s is conjugate
to all the other reflections.

g id r r2 s s ◦ r s ◦ r2
g ◦ id ◦ g−1 id id id id id id

g ◦ r ◦ g−1 r r r r2 r2 r2

g ◦ s ◦ g−1 s s ◦ r s ◦ r2 s s ◦ r2 s ◦ r

The table shows that S3 is partitioned into three conjugacy classes, cor-
responding to the three rows of the table: id, rotations (r and r2) and
reflections (s, s ◦ r, s ◦ r2) : the classes have orders 1, 2, and 3 respectively.
The class equation verifies the order of S3.

|S3| = 1 + 2 + 3 = 6 ♦

Exercise 23.4.24.

(a) Complete a conjugacy table like the one in Example 23.4.23 for G = D4.
As in the example r is a counterclockwise rotation by 90◦ and s is the
reflection that leaves the vertex labeled ”1” fixed. Compute and simplify
the conjugate expressions as compositions of r and s. We show one row.
How many more rows are needed to complete the table?

g id r r2 r3 s s ◦ r s ◦ r2 s ◦ r3
g ◦ id ◦ g−1 — – – – – – – –

Remember, once a group element appears in a row, you don’t need to
compute a row for that element, because you have already found its
conjugacy class.

(b) Verify that the class equation correctly calculates |D4|.
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♢

Example 23.4.25. We can also create a conjugacy table for using permu-
tation notation. Here is the conjugacy table for S3 using permutations.

g (1) (123) (132) (23) (13) (12)

g ◦ (1) ◦ g−1 (1) (1) (1) (1) (1) (1)

g ◦ (123) ◦ g−1 (123) (123) (123) (132) (132) (132)

g ◦ (23) ◦ g−1 (23) (13) (12) (23) (12) (13)

Recall the relabeling method in Exercise 23.4.3. We recommend using
this method to save time when making conjugacy tables.

For instance, to simplify (12) ◦ (23) ◦ (12) we can relabel (23) according
to (12). That is: 2 → 1 and 3 → 3. So, (12) ◦ (23) ◦ (12) = (13). ♦

In the next exercise you may practice creating a conjugacy table using
both permutation notation and the relabeling method.

Exercise 23.4.26.

(a) Create a conjugacy table for A4 (the subgroup of even permutations in
S4–see Section 14.6.2). We show one a table with one row. How many
more rows are needed to complete the table? (Use the relabeling method
to save time in creating your table.)

x (1) (12)(34) (13)(24) (14)(23) (123) . . .

g ◦ (1) ◦ g−1 – – – – – . . .

(b) Verify that the class equation correctly calculates |A4|.

♢

Exercise 23.4.27. Let G be an abelian group of finite order and x, g ∈ G.
Simplify the conjugate expression x ◦ g ◦ x−1. How many conjugacy classes
are in the abelian group G? How many elements are in each conjugacy class?
♢
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23.5 Hints for “Group Actions, with Applications”
exercises

Exercise 23.1.12(b): Notice 0 ∈ 2Z, but 1 + 0 is not in 2Z. So the action
of Z on 2Z is not well-defined. (d) Note that the group operation of C is
addition.

Exercise 23.2.25: Note there are two rows for stabilizers of faces, because
some stabilizers of faces have order 2 and some have order 4.

Exercise 23.2.19(a): There are two elements. (d): There are three elements.

Exercise 23.2.23(a): Express |G| two different ways by applying the Counting
Formula to edges, and then to faces.

Exercise 23.2.23(c): You may take the ratio (faces/edges) / (vertices/edges).

Exercise 23.2.25: There are two rows for faces, because there are two kinds
of stabilizers for faces.

Exercise 23.2.31(b): It may be helpful to calculate the rotation using cycle
notation.

Exercise 23.2.32 For example, RBb and R2
Bb are the 120- and 240- degree

rotations around the axis
↔
Bb, Both stabilize face b. So Gb = {id, RBb, R2

Bb}.
The same group stabilizes another set as well–can you figure out which one?

Exercise 23.2.42: How many group elements (rotations) are in Gx+? What
else do they stabilize?

Exercise 23.2.53(b): What is |G| according to the counting formula? How
many stabilizers have we found so far?

Exercise 23.2.56(b): Use the Counting Formula.

Exercise 23.2.57(b): See the previous hint.

Exercise 23.3.17: Does a+ h have to be in H?

Exercise 23.3.20: H itself is a coset, and take g1 = (123) and g2 = (23). Is
it true that acting on H by g1 followed by g2 is the same as acting on H by
g2g1?

Exercise 23.4.16: (b) Take the answer to part (a), and apply the rotation r2x
(why does this work?) (c) Find a rotation that map the fixed point set of
ry ◦ rz to the fixed point set of rz ◦ ry.
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Introduction to Rings and
Fields

The integers are like a golden ring in a chain, whose beginning
is a glance and whose ending is eternity. (Source: Khalil Gibran
(paraphrase))

The kingdom of heaven is like treasure hidden in a field. When
a man found it, he hid it again, and then in his joy went and
sold all he had and bought that field.(Source: Jesus of Nazareth
(quoted by Matthew))

Groups and rings are the two basic abstract structures in study of ab-
stract algebra, These are not the only abstract structures studied,but most
others are modifications of these two. groups and rings are basic in the areas
of particle physics, cryptography, and coding theory (see Section 24.11 for
more information). They also creep into other areas of mathematics like
analysis and number theory. As we proceed, you may notice many similari-
ties between the properties of rings and those of groups. Let’s begin with a
review of common number systems.

This chapter is by Christy Douglass and Chris Thron, with contributions
by Jennifer Lazarus and Adam McDonald.

24.1 Definitions and Examples

Some of the number systems we’ve studied in previouos chapters are:

855

https://www.youtube.com/watch?v=xKUyYlAq24c&feature=youtu.be
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� Z=integers

� Q=rational numbers

� R=real numbers

� C=complex numbers

� Zn=integers mod n.

� Z[x],Q[x],R[x], . . . = polynomials with coefficients in Z,Q,R . . .

When studying rings (and groups), we put a lot of focus on the inte-
gers. The integers Z have two operations: addition(+) and multiplication(·).
These operations have the following properties:

(I) Closure: if a, b ∈ Z then a+ b and a · b are in Z.

(II) Associativity: if a, b, c ∈ Z then (a+b)+c = a+(b+c) and (a ·b) ·c =
a · (b · c).

(III) Zero: there is an element 0 ∈ Z such that for all a ∈ Z, a + 0 =
0 + a = a.

(IV) One: there is an element 1 ∈ Z such that for all a ∈ Z, a·1 = 1 ·a = a.

(V) Commutativity of Addition: if a, b ∈ Z, then a+ b = b+ a.

(VI) Additive Inverses: for every a ∈ Z, there exists an element −a ∈ Z
such that a+ (−a) = 0.

(VII) Distributivity: for every a, b, c ∈ Z we have that a(b+ c) = ab+ ac
and (b+ c)a = ba+ ca.

Note that commutativity of multiplication is not a property of all
rings, so a(b+ c) = (b+ c)a is not necessarily true for a ring.

All of the number systems listed at the beginning of this chapter have
properties I-VII. Similar properties are found in other number systems.1

Definition 24.1.1. Any number system with the two arithmetic operations
(+ and ·) that satisfy properties I-VII is called a ring . △

1The reader may recall that some of these same properties were listed in Section 12.5,
when we were talking about coefficients of polynomials.
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As well as having properties I − V II, multiplication is commutative in
all of the above number systems. This leads us to the following definition:

Definition 24.1.2. A number system is a commutative ring if it is a
ring where multiplication is also commutative. △

The properties of a ring are so similar to those of a group that it warrants
a short discussion. The main difference between a ring and a group is that a
ring has two binary operations (usually called addition and multiplication)
while a group has only one operation. In fact, if you consider just the
operation of addition, then a ring is a group with respect to addition. As far
as multiplication, a ring is “almost” a group with respect to multiplication
except that not all elements have multiplicative inverses.

Now that we know what a ring is, how do we prove a number system
forms a ring? If you said that we would have to prove that the number
system fulfills properties I − V II, then you would be correct! Let’s look
at some examples that will show us how to prove a number system forms a
ring.

The rings we’ve talked about so far (Z,Q,R,C) have all been infinite
rings. But there are finite rings as well. In fact Zn is also a ring for any
integer n ≥ 2. We’ll show this in the following example:

Example 24.1.3. Prove that Zn is a ring for any integer n ≥ 2.

Proof. Recall that Zn = {0, 1, 2, . . . , n − 1}. It is also important to note
that the operations of addition and multiplication will be defined as modular
sum and modular product, notated as ⊕ and ⊙, respectively. We should
address each of the seven properties listed above to show that we have a
ring. It turns out that we have already shown each of these properties in
the chapter on modular arithmetic, Chapter 5. Let’s divide our proof into
seven steps, one for each required ring property.

(I) First we must show that Zn is closed under ⊕ and ⊙. In Proposition
5.4.13, we showed that the modular sum and modular product of
two elements of Zn are also in Zn. In other words, a ⊕ b ∈ Zn and
a⊙ b ∈ Zn, for all a, b ∈ Zn. So Zn is closed under ⊕ and ⊙.

(II) Second, we must show that the associative property holds for Zn. In
Proposition 5.4.23 (b), we show that (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) and
(a⊙ b)⊙ c = a⊙ (b⊙ c). So the associative property holds for Zn.

https://www.youtube.com/watch?v=XKUYYLAQ24C&FEATURE=YOUTU.BE
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(III) Third, we will show that the zero property holds for Zn. In Propo-
sition 5.4.17, we show that 0 ∈ Zn and a ⊕ 0 = 0 ⊕ a = a, for any
a ∈ Zn, so 0 is the additive identity of Zn and the zero property holds.

(IV) Our next step is to show that Zn has the multiplicative identity prop-
erty (one). Again, we will refer to Section 5.4.1. In particular, Ex-
ercise 5.4.18 showed us that 1 ∈ Zn and 1 ⊙ a = a ⊙ 1 = a, for any
a ∈ Zn. So, the identity property of multiplication holds for Zn.

(V) The commutative property of ⊕ for Zn must be proven next. Propo-
sition 5.4.23 (a) shows us that a ⊕ b = b ⊕ a and a ⊙ b = b ⊙ a,
for all a, b ∈ Zn. Note that for a set to be a ring, we only need to
show that commutativity of addition holds. Because commutativity
of multiplication also holds for Zn, we may also have a commutative
ring. Let’s continue with our proof that Zn is a ring before we jump
to that conclusion.

(VI) The sixth property that we must show is that of the additive inverse.
We will refer back to Proposition 5.4.19. Here we let a′ = n − a, for
any a ∈ Zn. We show that a′ ∈ Zn and a⊕ a′ = a′ ⊕ a = 0 (mod n):
that is, a′ is the additive inverse of a.

(VII) For our last step, we will show that the distributive property holds
true for Zn. Once again, we have already shown that this is true. In
Proposition 5.4.23 (c), we show that a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c).
Since ⊙ commutes in Zn, it follows that a ⊙ (b ⊕ c) = (b ⊕ c) ⊙ a =
(a⊙ b)⊕ (a⊙ c) and the distributive property holds.

We have shown that all seven ring properties hold true in Zn over ⊕ and
⊙. Additionally, we have shown that Zn commutes over ⊙. So, Zn is a
commutative ring and our proof is complete. □ ♦

We’ve already mentioned that Q is a ring. Sometimes we can use rings
to create larger rings by adding additional elements. Such rings are called
extension rings. We will discuss these further in Section 24.3. For now,
let’s look at a particular example.

Example 24.1.4. Prove that Q[ 3
√
2] = {a0+a1 3

√
2+a2(

3
√
4) | a0, a1, a2 ∈ Q}

forms a ring.

Note: Q[ 3
√
2] is the set of all polynomials of the form:
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a0(
3
√
2)0+a1(

3
√
2)1+a2(

3
√
2)2+· · ·+an( 3

√
2)n, where a0, a1, a2, · · · , an ∈ Q.

In this case, we have defined Q[ 3
√
2] using only the first three terms.

(We will explain why three terms is enough later on in the proof.)

Proof. To prove thatQ[ 3
√
2] forms a ring, we must showQ[ 3

√
2] has all seven

ring properties listed above. It will be useful to define a couple of arbitrary
elements in our set: let a, b ∈ Q[ 3

√
2] such that: a = a0 + a1

3
√
2 + a2

3
√
4 and

b = b0 + b1
3
√
2 + b2

3
√
4.

Property (1): First, we need to prove that Q[ 3
√
2] is closed under addition

and multiplication. We will divide this task into two parts:

(a) If a, b ∈ Q[ 3
√
2] then a+ b ∈ Q[ 3

√
2]. This is called additive closure.

(b) If a, b ∈ Q[ 3
√
2] then ab ∈ Q[ 3

√
2]. This is called multiplicative closure.

First, we will look at additive closure (a).

Remember that we have already defined two arbitrary elements inQ[ 3
√
2],

a and b. So,

a+ b = (a0 + a1
3
√
2 + a2

3
√
4) + (b0 + b1

3
√
2 + b2

3
√
4)

= (a0 + b0) + (a1 + b1)
3
√
2 + (a2 + b2)

3
√
4.

Now let c0 = (a0 + b0), c1 = (a1 + b1) and c2 = (a2 + b2). Since Q is closed
under addition, then c0, c1, c2 ∈ Q and a+ b = c0 + c1

3
√
2 + c2

3
√
4. It should

now be clear that this sum is indeed an element of ∈ Q[ 3
√
2]. We have shown

that adding any two elements in Q[ 3
√
2] will always produce another element

of Q[ 3
√
2]. So, Q[ 3

√
2] is closed under addition.

Now let’s prove multiplicative closure (b). We will again use a and b as
defined earlier, so that:

ab = (a0 + a1
3
√
2 + a2

3
√
4)(b0 + b1

3
√
2 + b2

3
√
4)

= (a0b0 + 2a1b2 + 2a2b1) + (a0b1 + a1b0 + 2a2b2)
3
√
2

+ (a0b2 + a1b1 + a2b0)
3
√
4.

Again, we must show that this product is also an element of Q[ 3
√
2]. Let’s

use a strategy similar to the one we used for additive closure.

https://www.youtube.com/watch?v=XKUYYLAQ24C&FEATURE=YOUTU.BE
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Suppose we let d0, d1, d2 ∈ Q such that d0 = (a0b0 + 2a1b2 + 2a2b1),
d1 = (a0b1+a1b0+2a2b2), and d2 = (a0b2+a1b1+a2b0). Since Q is closed un-
der multiplication, then d0, d1, d2 ∈ Q and ab = d0+d1

3
√
2+d2

3
√
4 ∈ Q[ 3

√
2].

We have shown that multiplying any two elements in Q[ 3
√
2] produces an-

other element in Q[ 3
√
2], so Q[ 3

√
2] is closed under multiplication.

Exercise 24.1.5. Recall that in our definition of Q[ 3
√
2], we only included

three terms in the polynomial expansion. In this exercise, we will see why.

(a) Show that if we include 4 terms, then we get the same set. In other
words, show that any polynomial of the form d0+d1

3
√
2+d2

3
√
4+d3(

3
√
2)3

can also be rewritten in the form a0+a1
3
√
2+a2

3
√
4 where a0, a1, a2 ∈ Q.

(b) Show similarly that if we include 5 terms, we still get the same set (use
a similar method).

(c) Given a polynomial of the form d0 + d1
3
√
2 + d2

3
√
4 + . . . + dn(

3
√
2)n,

show that it can be rewritten in the form a0 + a1
3
√
2 + a2

3
√
4 where

a0, a1, a2 ∈ Q by giving explicit formulas for a0, a1, a2.

(d) In the definition of Q[ 3
√
2], we included a term proportional to 3

√
4. Show

that this term is necessary, by showing that a0+a1
3
√
2 is not closed under

multiplication.

♢

Let’s continue with our proof of Example 24.1.4. We have shown that
Q[ 3

√
2] satisfies the first property of rings. Now, let’s take a look at property

(2). We must show associativity for addition and multiplication. In other
words, we must show that:

(a) If a, b, c ∈ Q[ 3
√
2] then (a+ b) + c = a+ (b+ c), and

(b) If a, b, c ∈ Q[ 3
√
2] then (ab)c = a(bc).

For associativity of addition, let a, b, c,∈ Q[ 3
√
2]. Since all of the numbers

in Q[ 3
√
2] are real numbers, and the real numbers are associative, then it

follows automatically that numbers in Q[ 3
√
2] also associate. We can make

a similar argument for associativity of multiplication. Associativity is an
example of an inherited property.
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Definition 24.1.6. An inherited property is a property such that, if the
property is true for a set of numbers S, then it’s also true for any subset of
S. △

Exercise 24.1.7. Show that additive closure is not an inherited property
by providing a counterexample. ♢

Back to our proof of Example 24.1.4.

Property (3): This is known as the zero property. To prove this prop-
erty, we must show that 0 ∈ Q[ 3

√
2] and also that a + 0 = 0 + a = 0 for all

a ∈ Q[ 3
√
2]. Notice that 0 = 0 + 0 3

√
2 + 0 3

√
4 ∈ Q[ 3

√
2]. Since all numbers,

a ∈ Q[ 3
√
2] are real numbers, it follows that a + 0 = 0 + a = 0. So 0 is the

zero element of Q[ 3
√
2] and property (3) holds true.

The proof of property (4) is left as an exercise.

Exercise 24.1.8. Prove that 1 is the identity of Q[ 3
√
2]. (You may use the

proof of the zero element as a model.) ♢

The proofs of properties (5) and (7) resemble the proof of property (2).

Exercise 24.1.9. Prove properties (5) and (7). (You may use the proof of
property (2) as a model.) ♢

We have shown that Q[ 3
√
2] satisfies all seven properties of rings. There-

fore, by Definition 24.1.1, Q[ 3
√
2] is a ring and our proof is complete. □

♦

Exercise 24.1.10. Let Q[2
1
2 ] be the set of all numbers {a + b · 2

1
2 } with

a, b ∈ Q. Is Q[2
1
2 ] a ring? ♢

Exercise 24.1.11.

(a) Let M2(R) be the set of 2 × 2 matrices with entries in R. Show that
M2(R) is a ring under the operations of matrix addition and multipli-
cation.

https://www.youtube.com/watch?v=XKUYYLAQ24C&FEATURE=YOUTU.BE
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(b) Give an example to show that M2(R) is not commutative under multi-
plication.

(c) Show that although the distributive law holds in M2(R), it is not true
that X(Y +Z) = Y X+ZX for all a, b, c ∈ M2(R). This shows that you
have to be very careful about the order of multiplication when dealing
with rings that aren’t commutative.

♢

Exercise 24.1.12. Define the set C3(R) as the set of all 3 × 3 circulant

matrices of the form:

a c b
b a c
c b a

, where a, b, c ∈ R. Prove or disprove that

C3(R) is a ring. ♢

Exercise 24.1.13. Suppose R is a ring. Prove that M2(R) is also a ring. ♢

24.1.1 Polynomial rings

Take any ring R and the set of polynomials over that ring R[x]. It turns
out that R[x] is also a ring. In this section, we will prove this, and explore
some properties of R[x].

Actually, we’ve already completed most of the proof that R[x] is a ring.
Recall that in Section 12.5 we proved several properties of polynomials R[x],
under very general assumptions about the set of coefficients R. In fact,
properties (I)-(V) in Section 12.5 are all included in the ring properties
listed in Section 24.1. So all of the properties shown in Section 12.5 apply
to R[x] as long as R is a ring.

Exercise 24.1.14. Go back to Section 12.5 and identify the propositions
that prove that the set R[x] satisfies the ring properties (I,II,III,V,VI,VII)
from Section 24.1. ♢

We are still missing property IV, the identity property. We can take care
of this in short order.

Exercise 24.1.15. Show that the polynomial p(x) = 1x0 is a multiplicative
identity for the set of polynomials C[x]. ♢
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Proposition 24.1.16. Suppose that R is a ring with a multiplicative iden-
tity 1. Then 1x0 is a multiplicative identity of R[x].

Exercise 24.1.17. Prove Proposition 24.1.16. ♢

Putting Exercise 24.1.14 and Proposition 24.1.16 together, we have im-
mediately:

Proposition 24.1.18. The set of polynomials over a ring is also a ring.
That is, if R is a ring, then R[x] is also a ring.

Proposition 24.1.18 is a powerful result. We may use this proposition to
build larger and larger rings. For example, Proposition 24.1.18 tells us that
((Z[x])[y])[z] is a ring of polynomials in x, y, z (usually this is written as
Z[x, y, z]). Apparently there are many examples of mathematical structures
that are rings, which makes them an interesting and fruitful object of study.

24.1.2 Some Ring Proofs

Remember that rings must satisfy the multiplicative identity property. For
the set of integers, the multiplicative identity is uniquely 1. We can show
that the multiplicative identity for any ring is unique.

Proposition 24.1.19. The multiplicative identity of a ring, R, is unique.

Proof. We need to show that if x is a multiplicative identity, then x = 1.

x is a multiplicative identity Given

x · 1 = 1 · x = 1 Definition of Multiplicative Identity

1 is a multiplicative identity Given

1 · x = x · 1 = x Definition of Multiplicative Identity

x = 1 Substitution

□

Exercise 24.1.20. Show that the additive identity of a ring R is unique.
(You may model your proof on the proof of Proposition 24.1.19). ♢

https://www.youtube.com/watch?v=XKUYYLAQ24C&FEATURE=YOUTU.BE
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Way back in Section 3.2.1 we mentioned the zero divisor property for
real numbers: the product of two real numbers is zero if and only if at least
one of the two numbers is zero. In fact, the “only if” part of this statement
is not true for general rings:

Exercise 24.1.21.

(a) Show that two nonzero numbers can multiply to give zero in Z6.

(b) Show that if n is not prime, then there are two nonzero numbers in Zn
that multiply to give zero.

♢

We can, however, show the “if” part:

Proposition 24.1.22. Given a ring, R, for any x ∈ R we have x ·0 = 0 ·x =
0.

Proof. We will use properties of rings in our proof.

0 = 0 + 0 Definiton of Additive Identity

x · 0 = x · (0 + 0) Substitution

x · 0 = x · 0 + x · 0 Distributive Property

x · 0 +−(x · 0) = (x · 0 + x · 0) +−(x · 0) Substitution

x · 0 +−(x · 0) = x · 0 + (x · 0 +−(x · 0)) Associativity of Addition

0 = x · 0 + (0) Additive Inverse

0 = x · 0 Additive Identity

We have shown that 0 = x · 0. It remains to show that 0 = 0 · x, since
multiplication in rings is not always commutative.

Exercise 24.1.23. Complete the proof of Proposition 24.1.22 by showing
that 0 = 0 · x, for x ∈ R. ♢

□

In the following proposition, we show that we may construct the additive
inverse of any ring element by multiplying the element by the additive inverse
of 1.
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Proposition 24.1.24. Let R be a ring, let −1 be the additive inverse of 1,
and let −x denote the additive inverse of x ∈ R. Then −x = (−1) · x.

Exercise 24.1.25. Prove Proposition 24.1.24. ♢

Since there are many rules that ring operations obey, we can simplify
algebraic expressions in rings in much the same way as we do in basic algebra.

Exercise 24.1.26. Given A,B,C ∈ R where R is a commutative ring, we
can show that (B + (−C)) · (A · (B + C)) = A · (B · B + (−C) · C)). Give
the reasons for the following steps in the simplification:

(B + (−C)) · (A · (B + C)) = (A · (B + C)) · (B + (−C)) Comm. prop.

= A · ((B + C) · (B + (−C))) Assoc. prop.

= A · (((B + C) ·B) + ((B + C) · (−C))) < 1 >

= A · ((B ·B + C ·B) + (B · (−C) + C · (−C))) < 2 >

= A · ((B ·B +B · C) + ((−C) · (B) + (−C) · C)) < 3 >

= A · (B ·B + (B · C + (−C) · (B) + (−C) · C)) < 4 >

= A · (B ·B + (B · C +B · (−C)) + (−C) · C)) < 5 >

= A · (B ·B + (B · (C + (−C)) + (−C) · C)) < 6 >

= A · (B ·B + (B · (0) + (−C) · C)) < 7 >

= A · (B ·B + (0 + (−C) · C)) < 8 >

= A · (B ·B + (−C) · C)) < 9 >

♢

24.2 Subrings

Earlier we mentioned that two important topics studied in Abstract Algebra
are groups and rings. Just like groups have subgroups, rings have subrings.

Definition 24.2.1. A ring that is a subset of another ring is called a
subring . △

Suppose R is a ring, and S ⊂ R. To prove S is a subring, we must show
that S satisfies all seven ring properties. S will inherit certain properties
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(associativity, commutativity, and distributive) from R, making lighter work
of our proof that S is also a ring.

To show that S ⊂ R is a ring, we must show the following:

� Additive Inverse: a ∈ S ⇒ −a ∈ S.

� Closure: a, b ∈ S ⇒ a+ b ∈ S and ab ∈ S.

� Zero: 0 ∈ S, such that 0 + a = a+ 0 = a, for all a ∈ S.

� One: 1 ∈ S, such that 1 · a = a · 1 = a, for all a ∈ S. Note that for S
to be a subring of R, the multiplicative identities must be the same.

If S is a subring of R except that 1 /∈ S, then S is a subring of R
without unity .

Examples of subrings:

(a) Z is a subring in Q.

(b) R is a subring of C.

(c) If R is a ring, then R is a subring of R[x].

Let’s look at a subring proof together:

Example 24.2.2. Given two rings R1 and R2 which share the same + and
· operations, show that R1 ∩R2 is a subring of both R1 and R2.

Proof. Let’s begin by showing that R1 ∩ R2 ⊂ R1 and R2. By definition
of ∩, a ∈ R1 ∩R2 ⇒ a ∈ R1 and a ∈ R2. So R1 ∩R2 ⊂ R1 and R2.

Next, we will show the additive inverse property. Let a be an arbitrary
element in R1∩R2. Then a ∈ R1 and R2, by the definition of ∩. Remember
that R1 and R2 are rings with the same + operation, so −a ∈ R1 and R2.
This means that −a ∈ R1 ∩R2 and the additive inverse property holds.

Our next task is to show that R1 ∩R2 contains the zero element. Since
R1 and R2 are rings with the same + operation, then 0 ∈ R1 and R2. By
definition of ∩, 0 ∈ R1 ∩R2, and the zero property holds.

In the following exercise, you will complete the proof that R1 ∩ R2 is a
subring by showing that it has a multiplicative identity.
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Exercise 24.2.3. Given rings R1 and R2, with the same · operation, Show
that 1 ∈ R1 ∩ R2. You can model your proof after the zero property proof.
♢

□ ♦

We have shown in Exercise 24.1.11 that M2(R), forms a ring. In the
following exercise, we will consider some subrings of M2(R).

Exercise 24.2.4.

(a) Show that the set of all matrices of the form:[
a 0
0 0

]
is a subring of all 2x2 matrices, M2(R).

(b) Show that the set of all matrices of the form:[
a 0
0 b

]
is a subring of M2(R).

(c) Prove or disprove: The set of all matrices of the form:[
a 0
b d

]
is a subring of M2(R).

♢

In Section 24.1, we learned that C, the set of all complex numbers, forms
a ring. Consider the following subset of C:

Exercise 24.2.5. Prove or disprove: {1,−1, i,−i} forms a subring of C. ♢

Exercise 24.2.6. Let Z+ Zi denote the set of complex numbers with real
and imaginary parts that are both integers. Prove or disprove Z + Zi is a
subring of C. ♢
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The set nZ represents the set of all integers, n·k ∈ Z, such that n is some
integer and k ∈ Z. For example, 2Z represents the set of all even integers.
It should be clear that nZ ⊂ Z, for all n ∈ N, but is it a subring as well?

Exercise 24.2.7.

(a) Prove or disprove: 2Z is a subring (with or without unity) of Z.

(b) Prove or disprove: 3Z is a subring (with or without unity) of Z.

(c) Show that mZ is a subring (without unity) of nZ iff n divides m.

♢

If R is a finite ring, the addition and multiplication Cayley tables for S
can be obtained from the corresponding tables of R. We can cross out the
rows and columns with heading elements in R that are not also in S. Let’s
look at an example.

Example 24.2.8. {0, 2, 4} is a subring of Z6 without unity.

Proof. The Cayley tables for modular addition and modular multiplica-
tion of Z6 are:

Now, we are wanting only {0, 2, 4} of Z6. We will keep those values and
cross out all rows and columns that are not {0, 2, 4}.
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This results in the following:

Since all the rows and columns have all the elements {0, 2, 4} in the
modular addition and modular multiplication tables, then all four subring
properties are satisfied and {0, 2, 4} is a subring of Z6

□ ♦

We can generalize this idea with the following exercise.

Exercise 24.2.9. If R = Zmn and S = {0,m, 2m, ...(n− 1)m}, then S is a
subring of R without unity. (Z6 = Zmn, where m = 2 and n = 3.) ♢

24.3 Extension Rings

We have learned that a subring can be formed from a subset of a ring. One
example we used was that {0, 2, 4} is a subring of Z6. We can also extend a
ring into a larger set, called an extension ring. We would say that Z6 is an
extension ring of {0, 2, 4}.

Definition 24.3.1. If R is a subring of S, then we can say that S is an
extension ring of R. △

Extension rings can be used to create number systems that are more
”complete” in some sense. In fact, you’ve seen extension rings several times
before. The integers form a very simple number system, but integers lack
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multiplicative inverses. The set of rational numbers is in fact an extension
ring of the integers, which includes the multiplicative inverses that integers
lack. Similarly, real numbers are ”incomplete” in the sense that some real
numbers do not have roots (e.g. there is no real square root of -1). The com-
plex numbers form a larger number system that includes the real numbers,
and also has the missing roots.

Another example of extension ring that we’ve seen before is the poly-
nomial ring Q[x], which contains the ring Q. Some polynomials lack multi-
plicative inverses as the following proposition shows.

Proposition 24.3.2. p(x) = 1 + x has no multiplicative inverse in Q[x].

Proof. We will show by contradiction that 1 + x has no multiplicative
inverse in Q[x]. Suppose on the contrary that 1 + x has an inverse that can
be written as q(x) =

∑N
n=0 anx

n, where aN is the leading nonzero coefficient
and N ≥ 0. Then

(1 + x)q(x) = (1 + x) ·
N∑
n=0

anx
n = aNx

N+1 + · · ·+ a0.

Since aN ̸= 0, it follows that the degree of (1 + x)q(x) is equal to N + 1,
so it is not a constant polynomial. In particular, (1 + x)q(x) ̸= 1. This
contradicts the supposition that q(x) is the multiplicative inverse of 1 + x.
Therefore, (1 + x) does not have a multiplicative inverse in Q[x]. □

We can actually go further, and take infinite power series in addition to
finite polynomials. This gives us an even larger extension ring:

Example 24.3.3. Let Q̂[x] be the set of power series with rational coeffi-
cients:

Q̂[x] = {
∞∑
n=0

anx
n} , where an ∈ Q.

Show that Q̂[x] is an extension ring of Q[x].

Now, the question is does p(x) have a multiplicative inverse in Q̂[x]? There
are 3 methods we can do to figure this out.

1. Taylor series

2. Long division
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3. Linear recurrence relation

We will explore all three methods in the following example.

Example 24.3.4. Find the multiplicative inverse of (1 + x) in Ẑ[x]

1. First Method: Taylor series

The Taylor series expansion for the function f(x) about the point
a = 0 is given by:

f(x) = f(0) + f ′(0)x+
f ′′(0)x2

2!
+
f ′′′(0)x3

3!
+ · · ·

For f(x) = 1
1+x , we have:(

1

1 + x

)′
= ((1 + x)−1)′ = −1!(1 + x)−2 ⇒ when x = 0, f ′(x) = −1

((1 + x)−1)′′ = −1(−2)(1 + x)−3 = 2!(1 + x)−3 ⇒ when x = 0, f ′′(x) = 2

((1 + x)−1)′′′ = 2(−3)(1 + x)−4 = −3!(1 + x)−4 ⇒ when x = 0, f ′′′(x) = −3

In general:

((1 + x)−1)(n) = (−1)nn!(1 + x)−n−1 ⇒ when x = 0, fn(x) = (−1)nn!

Therefore,

(1 + x)−1 = 1− x+ x2 − x3 + · · · =
∞∑
n=0

(−1)nxn ∈ Q̂[x] (24.3.5)

This is a multiplicative inverse of (1 + x) in Ẑ[x] (also in Q̂[x]).

2. Second Method: Long Division

Use long division to divide 1
1+x :
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1 − x + x2 − x3 + · · ·
1 + x 1 + 0x + 0x2 + 0x3 + · · ·

−1 + −x
−x + 0x2

+x + x2

x2 + 0x3

−x2 − x3

−x3 + · · ·
...

3. Third Method: Linear Recurrence Relation:

We want:

1 = (a+ x)
∞∑
n=0

anx
n = 1 + 0x+ 0x2 + · · ·

Use distributive law:

1 = a

∞∑
n=0

anx
n + x

∞∑
n=0

anx
n distributive law

=
∞∑
n=0

anx
n +

∞∑
n=0

anx
n+1 simplify

=
∞∑
n=0

anx
n +

∞∑
n=1

an−1x
n change second summation index

= a0 +

∞∑
n=1

anx
n +

∞∑
n=1

an−1x
n separate one term from sum

= a0 +
∞∑
n=1

(anx
n + an−1x

n) combine two sums

= a0 +

∞∑
n=1

(an + an−1)x
n factor out xn
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Now we can write:

1 + 0x+ 0x2 + · · · = a0 +
∞∑
n=1

(an + an−1)x
n

Equate like powers of x for the two polynomials:

1 = a0

0 = a1 + a0 = a1 + 1 ⇒ a1 = −1

0 = a2 + a1 = a2 +−1 ⇒ a2 = 1

0 = a3 + a2 = a3 + 1 ⇒ a3 = −1

0 = a4 + a3 = a4 +−1 ⇒ a4 = 1

...

0 = an + an−1 ⇒ an = (−1)n

♦

Exercise 24.3.6. Find the inverse of a+ x in Q̂[x] by the:

1. long division method

2. recurrence relation method

♢

Exercise 24.3.7. Find the inverse of 1 + x in Ẑ2[x] by the:

(a) long division method

(b) recurrence relation method

♢

Exercise 24.3.8. Find the inverse of 3 + 2x in Ẑ5[x] by the:

(a) long division method
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(b) recurrence relation method

♢

Exercise 24.3.9. Find the multiplicative inverse of (1+2x+3x2) in Ẑ5[x],
in Ẑ7[x], and in Q̂[x] by the:

(a) long division method

(b) recurrence relation method

♢

♦

24.4 Product Rings

In certain situations, we may want to combine two or more rings to form
a larger ring. Product rings allow us to do just that. In fact, the product
operation for rings is very similar to the product of groups (see Defini-
tion 15.2.13).

Definition 24.4.1. If R1, R2 are rings, then the product ring, R1 × R2 is
the set of pairs (a, b), a ∈ R1 and b ∈ R2, with the following operations:

1. (a, b) + (c, d) = (a+1 c, b+2 d)

2. (a, b) · (c, d) = (a ·1 c, b ·2 d)

where +1, ·1 is the addition and multiplication for R1 and +2, ·2 is the ad-
dition and multiplication for R2

△

How do we know that the product ring is a ring? As with any ring, we
must show that the seven ring properties hold true.

Proof.

(I) Closure:
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(a) Additive closure: If (a, b), and (c, d) are in R1 ×R2, then (a, b) +
(c, d) is also in R1 ×R2.

(a, b) + (c, d) = (a+1 c, b+2 d) Def. of product add.

a+1 c ∈ R1 and b+2 d ∈ R2 Closure of R1, R2

(a+1 c, b+2 d) ∈ R1 ×R2 Definition of R1 ×R2

(b) Multiplicative closure: If (a, b) and (c, d) are in R1 × R2, then
(a, b)(c, d) is also in R1 ×R2.

(a, b)(c, d) = (a ·1 c, b ·2 d) Def. of product mult.

a ·1 c ∈ R1 and b ·2 d ∈ R2 Closure of R1 and R2

(a ·1 c, b ·2 d) ∈ R1 ×R2 Definition of R1 ×R2

(II) Associativity:

(a) Associativity of Addition: For (a, b), (c, d), (e, f) ∈ R1 ×R2,
((a, b) + (c, d)) + (e, f) = (a, b) + ((c, d) + (e, f).

((a, b) + (c, d)) + (e, f)

= ((a+1 c) +1 e, (b+2 d) +2 f) Def. of product add.

= (a+1 (c+1 e), b+2 (d+2 f)) Assoc. of add. in R1 ×R2

= (a, b) + ((c, d) + (e, f)) Def. of product additon

(b) Associativity of Multiplication: For (a, b), (c, d), (e, f) ∈ R1 ×R2,
((a, b)(c, d))(e, f) = (a, b)((c, d)(e, f)).

We leave this part of the proof as an exercise.

Exercise 24.4.2. Prove the associative property of multiplication for
R1 ×R2. ♢

(III) Commutativity of Addition: For all a, b, c ∈ R1 ×R2,
(a, b) + (c, d) = (c, d) + (a, b).

(a, b) + (c, d) = (a+1 c, b+2 d) Definition of product addition

= (c+1 a, d+2 b) Commutativity of +1 and +2

= (c, d) + (a, b) Definition of product addition
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(IV) Zero: Show that the additive identity for R1 ×R2 is (01, 02).

(a, b) + (01, 02) = (a+1 01, b+2 02) Definition of product addition

= (a, b) Additive identities for R1 and R2

(01, 02) + (a, b) = (a, b) (similar to above)

(V) One: Show that the multiplicative identity for R1 ×R2 = (11, 12).

The proof of this property is left as an exercise.

Exercise 24.4.3. Prove that the multiplicative identity for R1×R2 =
(11, 12). ♢

(VI) Additive inverse: The additive inverse of (a, b) = (−a,−b).

(a, b) + (−a,−b) = (a+1 −a, b+2 −b) Def. of product addition

= (01, 02) Additive inverses of R1 and R2

= additive identity of R1 ×R2 proven in part(IV)

(VII) Distributive property: For (a, b), (c, d), (e, f) ∈ R1 ×R2:

� (a, b)((c, d) + (e, f)) = (a, b)(c, d) + (a, b)(e, f) and

� ((c, d) + (e, f))(a, b) = (c, d)(a, b) + (e, f)(a, b).

Exercise 24.4.4. Prove the distributive property for the product
ring R1 ×R2. ♢

□

Exercise 24.4.5. Give the addition and multiplication tables for the fol-
lowing product rings:

1. Z2 × Z2 with elements: {(0, 0), (0, 1), (1, 0), (1, 1)}

2. (Z2 × Z2)× Z2 with elements: {0, 0, 0), (0, 0, 1), etc}

3. Z2 × Z3 (6 elements)

♢
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24.5 Isomorphic rings

Sometimes we encounter rings that are basically the “same”. In this section
we will give a mathematical definition for what the “same” means in this
context. Before we give the definition, we will start out with an example.

Example 24.5.1. Consider the two rings R1 = Z[x] and R2 = Z[y]. Ob-
viously, these two rings are basically the same except we replace x with
y. We can make a formal correspondence between the two rings by defin-
ing a function ϕ : R1 → R2 as follows: ϕ(anx

n + an−1x
n−1 + . . . + a0) =

(any
n+an−1y

n−1+ . . .+a0). Note that ϕ is a bijection because it has an in-
verse (see Proposition 8.7.11). Additionally, ϕ preserves the operations of ad-
dition and multiplication: ϕ(x+1y) = ϕ(x)+2ϕ(y) and ϕ(x·1y) = ϕ(x)·2ϕ(y).
In other words, ϕ gives us a way to “translate” every operation we do in R1

to a corresponding operation in R2. ♦

The above example may seem trivial, but it turns out that in some cases
similar construction can make deep connections between rings that seem
quite different:

Example 24.5.2. Consider the function ϕ : R1 → R2, where

R1 = {z = a + bi ∈ C}, R2 =

{
A =

[
a b
−b a

]
∈ M2

}
and ϕ is defined

as: ϕ(a + bi) =

[
a b
−b a

]
. We can see that ϕ is also a bijection since

ϕ−1

([
a b
−b a

])
= a+ bi, for all A ∈ R2.

To further explore the structure of the function ϕ, let’s consider two
arbitrary elements of R1, say z = a+ bi and w = c+ di. Using addition of
complex numbers, then applying the ϕ function, we get

ϕ(z + w) = ϕ(a+ bi+ c+ di)

= ϕ((a+ c) + (b+ d)i)

=

[
a+ c b+ d
−b− d a+ c

]
.
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We get the same result if we first apply the ϕ function on z and w, then use
addition of matrices:

ϕ(z) + ϕ(w) = ϕ(a+ bi) + ϕ(c+ di)

=

[
a b
−b a

]
+

[
c d
−d c

]
=

[
a+ c b+ d
−b− d a+ c

]
.

In other words, ϕ(z+1 w) = ϕ(z)+2 ϕ(w), where +1 and +2 are addition as
defined by R1 and R2, respectively. But what about multiplication?

Let’s consider z and w as defined earlier. We can see that

ϕ(z · w) = ϕ((a+ bi) · (c+ di))

= ϕ((ac− bd) + (ad+ bc)i)

=

[
ac− bd ad+ bc
−ad− bc ac− bd

]
.

Note that multiplication of complex numbers was used here. Also,

ϕ(z) · ϕ(w) = ϕ(a+ bi) · ϕ(c+ di)

=

[
a b
−b a

]
·
[
c d
−d c

]
=

[
ac− bd ad+ bc
−ad− bc ac− bd

]
,

where multiplication of matrices was used. So, ϕ(z ·1 w) = ϕ(z) ·2 ϕ(w),
where ·1 and ·2 are multiplication as defined by R1 and R2, respectively. ♦

The two examples above show how we can relate different rings that have
the same structure. In both examples we use a bijection that preserves the
addition and multiplication operations to make a correspondence between
two rings. We may generalize this type of bijection as follows.

Definition 24.5.3. Let ϕ : R1 → R2 be a bijection between rings R1 and
R2. We say that ϕ is an isomorphism from R1 to R2 if the following two
equations are satisfied for all x, y ∈ R1:

ϕ(x+1 y) = ϕ(x) +2 ϕ(y) (24.5.4)
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ϕ(x ·1 y) = ϕ(x) ·2 ϕ(y) (24.5.5)

.

Two rings R1 and R2 are called isomorphic if there exists an isomor-
phism from R1 to R2. △

Exercise 24.5.6. Show that isomorphism is an equivalence relation on
rings: that is show that isomorphism satisfies the reflexive, symmetric and
transitive properties. ♢

Exercise 24.5.7. Let ϕ : R1 → R2, where R1 = Q[
√
2] = {a + b

√
2 :

a, b ∈ Q} and R2 =

{[
a b

√
2

b
√
2 a

]
∈ M2

}
. Prove or disprove that ϕ is an

isomorphism. ♢

Example 24.5.8. Show that f : C → C is an isomorphism, where f
maps every element of C to its complex conjugate in C. In other words, if
z = a+ bi ∈ C, where a, b ∈ R, then f(z) = a− bi ∈ C.
Proof. In order for f to be an isomorphism, we must first show that the
sets are indeed rings and that the function f is a bijection. Then we must
show that the two equations above are true for all z, w ∈ C. At the begin-
ning of this chapter, we concluded that C satisfies all seven properties of a
ring. Also, given any w = a − bi ∈ C, f−1(w) = a + bi ∈ C. So f is a
bijection.
As we continue, remember that +1, ·1 and +2, ·2 refer to addition and mul-
tiplication as defined by the first and second rings, respectively. In our case,
both additions are regular complex addition and both multiplications are
regular complex multiplication. So we will use + to represent both +1 and
+2 and similarly for ·.

(1) First we must show that f(z +w) = f(z) + f(w), for any z, w ∈ C. We
begin with our two arbitrary elements of C, z = a+ bi and w = c+ di,
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where a, b, c, d ∈ R. Then

f(z + w) = f((a+ bi) + (c+ di)

= f((a+ c) + (b+ d)i)

= (a+ c)− (b+ d)i

= a+ c− bi− di

= (a− bi) + (c− di)

= f(z) + f(w).

So property one of isomorphisms is satisfied.

(2) Secondly, we must show that f(z · w) = f(z) · f(w). Using z and w as
defined above,

f(z · w) = f((a+ bi) · (c+ di))

= f((ac− bd) + (ad+ bc)i)

= (ac− bd)− (ad+ bc)i.

On the other hand,

f(z) · f(w) = f(a+ bi) · f(c+ di)

= (a− bi)(c− di)

= (ac− bd)− (ad+ bc)i

This shows f(z · w) = f(z) · f(w), so property two of isomorphisms is
satisfied.

□ ♦

Note that there can be more than one isomorphism between two rings.

Exercise 24.5.9. In Example 24.5.8 we gave an isomorphism from C to
itself. Give another example of an isomorphism from C to itself. (Hint :
Make your example as easy as possible.) ♢

Exercise 24.5.10. Given ϕ : Q[x, y] → Q[x, y], defined by ϕ(p(x, y)) =
p(y, x):
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(a) Show that ϕ is an isomorphism.

(b) Give another isomorphism between Q[x, y] and Q[x, y].

♢

When we restrict the isomorphism, so that R1 = R2, we have a special
type of isomorphism known as an automorphism.

Definition 24.5.11. A ring automorphism is a ring isomorphism whose
domain is equal to its range. △

Example 24.5.12. Show that f(a + bi) = a − bi is a ring automorphism
from C to C.

We showed in Example 24.5.8 that this function is a ring isomorphism.
It should be clear that the domain and range of f are the same, so f is also
a ring automorphism. ♦

Exercise 24.5.13. Consider the function f((a, b, c)) = (a,−b, c), where
a, b, c ∈ R.

(a) show that f is a homomorphism by proving that:

(1) f((a, b, c) + (d, e, f)) = f((a, b, c)) + f((d, e, f)), and

(2) f((a, b, c) · (d, e, f)) = f((a, b, c)) · f((d, e, f)).

(b) Is f an isomorphism? (*Hint*)

(c) Is f an automorphism?

♢

24.6 Ring homomorphisms: kernels, and ideals

As we have seen above, ring isomorphisms are functions that are bijections
and preserve the additive and multiplicative operations. It is possible to
have functions that are not bijections but still preserve the additive and
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multiplicative operations. One important example is a function that we are
very familiar with:

Example 24.6.1. Define the function f : Z → Zn defined by f(x) =
mod(x, n), where n is a fixed integer > 1. In Proposition 5.4.4 we showed
that for any ℓ,m ∈ Z we have:

(a) mod(ℓ+m,n) = mod(ℓ, n)⊕ mod(m,n), and

(b) mod(ℓ ·m,n) = mod(ℓ, n)⊙ mod(m,n).

We may rewrite these equations in terms of f as f(ℓ +m) = f(ℓ) ⊕ f(m)
and f(ℓ ·m) = f(ℓ)⊙ f(m). ♦

We may generalize this example with the following definition.

Definition 24.6.2. A function f : R1 → R2 between rings R1, R2 is called
a ring homomorphism if f has the following properties:

f(ℓ+1 m) = f(ℓ) +2 f(m) (24.6.3)

and

f(ℓ ·1 m) = f(ℓ) ·2 f(m). (24.6.4)

△

Notice that a homomorphism is an isomorphism without the bijection
requirement. Figure 24.6.1 shows the relationship between homomorphisms,
isomorphisms and automorphisms.
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Figure 24.6.1. Ring Functions

Following are a number of examples of ring homomorphisms.

Example 24.6.5. Prove or disprove that f : Q → Q defined by : f(x) = 2x
is a ring homomorphism.

Proof. f is not a homomorphism since it does not follow Equation 24.6.4:
For example, f(1 · 1) = 2(1 · 1) = 2 but f(1) + f(1) = 2(1) · 2(1) = 4. Many
other counterexamples can be found.
□ ♦

Example 24.6.6. Prove or disprove that f : Z6 → Z3 defined by: f(x) =
mod(x, 3) is a ring homomorphsm.

Proof. f is a homomorphism since,

f(x+6 y) = mod(x+6 y, 3) = mod(x, 3) +3 mod(y, 3),

where +n is addition in Zn, and
f(x ·6 y) = mod(x ·6 y, 3) = mod(x, 3) ·3 mod(y, 3),

where ·n is multiplication in Zn
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□ ♦

Exercise 24.6.7. Given integers m,n > 1, define g : Zmn → Zn defined by
g(x) = mod(x, n). Show that g is a homomorphism. ♢

Example 24.6.8. Prove or disprove that f : R[x] → R, defined by f(p(x)) =
p(0), is a homomorphism. (Note that this function maps a polynomial to
its constant term.)

Proof. We will divide this proof into two parts, one for each property of
ring homomorphisms:

(a) Let p(x), q(x) be arbitrary elements of R[x], where p(x) and q(x) have
constant terms of a0, b0 ∈ R, respectively. Then p(x) +1 q(x) is some
polynomial in R[x], with a constant term equal to a0 + b0. So,

f(p(x) +1 q(x)) = a0 + b0.

Also, f(p(x)) +2 f(q(x)) = a0 + b0.

The first ring homomorphism property holds. Let’s look at the second
property:

(b) p(x) ·1 q(x) is some polynomial in R[x], with a constant term equal to
a0 · b0. So,

f(p(x) ·1 q(x)) = a0 · b0.
Also, f(p(x)) ·2 f(q(x)) = a0 · b0.

So, the second ring homomorphism property holds and we can say that
f is a ring homomorphism.

□ ♦

The homomorphism in Example 24.6.8 is just one example of an impor-
tant class of homomorphisms.

Exercise 24.6.9. Give a ∈ Q define the function fa : Q[x] → Q by
fa(p(x)) = p(a). For what values of a is fa a homomorphism? ♢

Exercise 24.6.10. Define the function f : R[x] → C3(R) by

f(anx
n + an−1x

n−1 + · · ·+ a0) = anB
n + an−1B

n−1 + · · ·+ a0,
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where B =

0 0 1
1 0 0
0 1 0

 .
(a) Show that f is onto. You may show this by showing that for any matrix

A ∈ C3(R) there exists some p(x) ∈ R[x] such that f(p(x)) = A.

♢

24.6.1 Homomorphism kernels and ideals

When we discussed homomorphisms of groups, we introduced the notion of
the kernel of a homomorphism. According to Definition 22.3.3, the kernel of
a group homomorphism is the inverse image of the identity element of the
codomain. We may make a similar definition for ring homomorphisms.

Definition 24.6.11. If f : R1 → R2 is a ring homomorphism, then the set
{x ∈ R1|f(x) = 0} is called the kernel of f , notated Ker(f). △

Example 24.6.12. Find the kernel of f : R[x] → R, given byf(p(x)) = p(0).

We are looking for the set of all p(x) such that p(0) = 0. We know from
the polynomials chapter that p(0) = 0 implies that x divides p(x). (So,
there is no constant term!) In summary, Ker(f) = {xp(x) : p(x) ∈ R[x]}. ♦

Exercise 24.6.13. Given fa : Q[x] → Q, where fa(p(x)) = p(a). Find
Ker(fa). ♢

Exercise 24.6.14. In Exercise 24.6.10, we defined a function f : R[x] →
C3(R).

(a) For what values of a is x3 + a in Ker(f)?

(b) Consider the polynomial p(x) = (x3 − 1) · q(x) + a2x
2 + a1x+ a0. Show

that p(x) ∈ Ker(f) if and only if a0 = a1 =2= 0.
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♢

We saw previously that the kernel of a group homomorphism is always
a subgroup of the domain (see Proposition 22.3.4). We may ask the same
question of rings: Given a ring homomorphism f , is Ker(f) also a ring?

Exercise 24.6.15.

(a) Given the homomorphism f defined in Example 24.6.1, show that f−1(0)
is not a ring. Which properties fail?

(b) Given the same example, show that f−1(1) is also not a ring. Which
ring properties fail?

♢

Although the set f−1(0) is not a ring, nonetheless it does have some nice
properties.

Exercise 24.6.16. Given the function f defined in Example 24.6.1, and let
S = f−1(0).

(a) Show that if a, b ∈ S, then a+ b ∈ S. In other words, S is closed under
addition.

(b) Show that if a, b ∈ S, then a · b ∈ S. In other words, S is closed under
multiplication.

(c) Show that if a ∈ S, then −a ∈ S. In other words, S is closed under
additive inverse.

♢

The following proposition generalizes the results in Exercise 24.6.16.

Proposition 24.6.17. The kernel of a homomorphism f : R1 → R2 satisfies
the following properties:

1. If a, b ∈ f−1(0), then a+ b ∈ f−1(0).

2. If a ∈ f−1(0) and b ∈ R1 then ab ∈ f−1(0).
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3. 0 ∈ f−1(0).

4. If a ∈ f−1(0), then −a ∈ f−1(0).

Proof.

1.

a, b ∈ f−1(0) given

f(a) = 0, f(b) = 0 def. of inverse

f(a+ b) = f(a) + f(b) def. of homomorphism

f(a+ b) = 0 + 0 = 0 substitution & zero property

a+ b ∈ f−1(0) def. of inverse

2.

a ∈ f−1(0), b ∈ R1 given

f(a) = 0 def. of inverse

f(a · b) = f(a)ḟ(b) def. of homomorphism

f(a · b) = 0 · f(b) = 0 substitution & Prop. 24.1.22

ab ∈ f−1(0) def. of inverse

3.

f(a) = f(a+ 0) additive identity

f(a+ 0) = f(a) + f(0) def. of homomorphism

f(a) = f(a) + f(0) substitution

−f(a) + f(a) = −f(a) + f(a) + f(0) substitution

0 = 0 + f(0) additive inverse

0 = f(0) additive identity

0 ∈ f−1(0) def. of inverse
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4.

a ∈ f−1(0) given

f(a) = 0 def. of inverse

− a ∈ R1 def. of homomorphism

f(0) = f(a+ (−a)) additive inverse

f(0) = f(a) + f(−a) def. of homomorphism

f(0) = 0 proven above

0 = 0 + f(−a) substitution

0 = f(−a) additive identity

−a ∈ f−1(0) def. of inverse

□

Any set J which has properties (1-4) is called an ideal. We formalize the
definition of ideal as follows.

Definition 24.6.18. Given a ring R, suppose J ⊂ R satisfies the following
properties:

(a) J is closed under the ring’s additive operation: in other words if j1, j2 ∈
J then j1 + j2 ∈ J .

(b) J is closed under multiplication by elements in R: in other words, if
j ∈ J and r ∈ R then rj ∈ J .

(c) J is closed under additive inverse in R.

Then J is called an ideal of R. △

Exercise 24.6.19. In Example we showed the property that for any ho-
momorphism f : R1 → R2, we have 01 ∈ Ker(f). Using Definition 24.6.18,
show that for any ideal J the zero element is an element of J . ♢

In view of Definition 24.6.18, we may restate Proposition 24.6.17 as fol-
lows.

Proposition 24.6.20. The kernel of a homomorphism is always an ideal.
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Exercise 24.6.21. Find the kernel for the functions in Examples 24.6.5
and 24.6.6, and Exercise 24.6.7. Determine whether or not these kernels are
ideals. ♢

Example 24.6.22. Let f : Z → Z7 be defined by : f(x) = mod(x, 7)

(a) Prove or disprove f is a ring homomorphism.

(b) What is the kernel of f?

(c) Is Ker(f) an ideal?

(a) To determine whether f is a ring homomorphism, we must verify Equa-
tions (24.6.3) and (24.6.4):

f(x+ y) = mod(x+ y, 7) = mod(x, 7) +7 mod(y, 7) definition of +7

= f(x) +7 f(y) definition of f

Also,

f(x · y = mod(x · y, 7) = mod(x, 7) ·7 mod(y, 7) definition of ·7
= f(x) ·7 f(y) definition of f

It follows that f is a ring homomorphism.

(b) Remember that the kernel is the set {x ∈ R|f(x) = 0} If f(x) = 0, then
x is a multiple of 7. So, the kernel of f is {x|x = 7n, n ∈ Z}.

(c) Proposition 24.6.20 shows that Ker(f) must be an ideal. You may also
show the three properties directly.

Exercise 24.6.23. Show that Ker(f) is closed under addition, multi-
plication, and additive inverse. ♢

♦

Exercise 24.6.24. Look back at Proposition 5.4.4. What is the relationship
between this proposition and part(a) of Example 24.6.22? ♢

Exercise 24.6.25. Let f : C → R be defined by f(a+ bi) = a.
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(a) Prove or disprove: f is a ring homomorphism:

(b) What is the kernel of f?

(c) Is Ker(f) an ideal?

♢

Exercise 24.6.26. Let f : C → R be defined by: f(a+ bi) = b.

(a) Prove or disprove that f s a ring homomorphism.

(b) What is the kernel of f?

(c) Is Ker(f) an ideal?

♢

Exercise 24.6.27. Let f : Z2 × Z2 → Z2 be defined by: f(a, b) = a.
(Remember that Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}).

(a) Prove or disprove: f is a ring homomorphism.

(b) Find the kernel of f .

(c) Determine if Ker(f) is an ideal.

♢

Exercise 24.6.28. Let f : Q×Q → Q be defined by: f(a, b) = b

(a) Prove or disprove: f is a ring homomorphism.

(b) Find the kernel of f .

(c) Determine if the kernel of f is an ideal.

♢
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24.7 Further properties of ideals and principal ide-
als

We arrived at the concept of ‘ideal’ by studying kernels of ring homomor-
phisms. It turns out that ideals are objects of interest in their own right,
without any reference to homomorphisms. In the following, we will investi-
gate some additional properties of ideals.

Example 24.7.1. Given the ring Z and J = {0, 7, 14, 21, · · · }. Prove or
disprove J is an ideal. ♦

Proof. We can see that J ⊂ Z, and J is closed under addition however J
fails properties (b) and (c). □

Exercise 24.7.2. Give examples that show the set J in Example 24.7.1
fails to satisfy properties (b) and (c). ♢

Exercise 24.7.3.

(a) Given a ring R show that every ideal in R is a group under the ring’s
additive operation.

(b) Give an example of a ring which has an additive subgroup that is not
an ideal.

♢

Exercise 24.7.4. Show that condition (c) in Definition 24.6.18 is not really
necessary: in other words, show that conditions (a) and (b) imply (c). ♢

In Exercise 15.6.7 we showed that the intersection of subgroups is also a
subgroup. It turns out the same is true for ideals:

Proposition 24.7.5. The intersection of ideals is an ideal.

Exercise 24.7.6. Prove Proposition 24.7.5. ♢

We will now look at an important class of ideals.
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Definition 24.7.7. If a ∈ R, then the set generated by a is
Ra ≡ {ra, r ∈ R} △

Proposition 24.7.8. For every a ∈ R, the set Ra is an ideal.

Exercise 24.7.9. Prove Proposition 24.7.8 by showing that Ra satisfies all
properties of an ideal. ♢

Definition 24.7.10. A principal ideal is an ideal that is generated by a
single element. In other words, Ra ≡ {ra, r ∈ R} is a principal ideal . △

Exercise 24.7.11. Show that every ring R is also a principal ideal. (*Hint*)
♢

Example 24.7.12. Consider the ring of integers Z. Then 2Z = {0,±2,±4, · · · }
is a principal ideal and is generated by 2. In fact, for any integer k, the set
kZ = {0,±k,±2k, · · · } is a principal ideal. ♦

Not all ideals are principal ideals.

Example 24.7.13. Z[x] : J ≡ {2p(x) + xq(x), p(x), q(x) ∈ Z[x]}
Show that J is an ideal, but not a principal ideal.

Proof.

2 ∈ J and x ∈ J definition of J

Suppose J = aZ[x] for some a ∈ Z[x] supposition

Since 2 ∈ J, a = 1 or a = 2 only elements to divide 2

If a = 1, then 1Z[x] = Z[x] ̸= J

If a = 2, then x /∈ 2Z[x]. So 2Z[x] ̸= J x has no even coef.

Therefore, there does not exist an a such that a ∈ Z[x] = J . Which means
J is not a principal ideal by the definition of principal ideal. □ ♦
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24.8 Quotient Rings

Quotient rings allow us to form a ring of equivalence classes, much like
quotient groups studied in Chapter 18. Follow the next example to make
sense of this concept.

Example 24.8.1. Define f : Z10 → Z5 by f(n) = mod(n, 5).

(a) Show that f is a ring homomorphism.

(b) Find the kernel of f .

(c) Find f−1(m) for all m ∈ Z5.

(a)

f(a+ b) = mod(a+ b, 5) = mod(a, 5) + mod(b, 5) = f(a) + f(b)

andf(ab) = mod(ab, 5) = mod(a, 5) mod (b, 5) = f(a)f(b).

So f is a ring homomorphism.

(b) The Ker(f) is f−1(0) = {0, 5}.

(c)

f−1(0) = the set of all n ∈ Z10 such thatf(n) = 0 = {0, 5}
f−1(1) = the set of all n ∈ Z10 such thatf(n) = 1 = {1, 6}
f−1(2) = the set of all n ∈ Z10 such thatf(n) = 2 = {2, 7}
f−1(3) = the set of all n ∈ Z10 such thatf(n) = 3 = {3, 8}
f−1(4) = the set of all n ∈ Z10 such thatf(n) = 4 = {4, 9}.

Notice that f−1(0)∪f−1(1)∪f−1(2)∪f−1(3)∪f−1(4) = Z10 and f
−1(m)∩

f−1(n) = ∅ if m ̸= n.
We may recall the definition of partition from Section 17.2 (Definition
17.2.1), which we repeat here for convenience.

Definition 24.8.2. A partition of a set S is a set of subsets A1, . . . An
such that:
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(a) ∪nm=1Am = S

(b) Ai ∩Aj = ∅ whenever i ̸= j

△

The sets f−1(0) . . . f−1(4) are called inverse images. The inverse images
of f divide Z10 into equivalence classes. (Review Definition 17.4.2.) (Actu-
ally, we showed in Proposition 17.3.12 that the inverse images of a function
always divide the domain into equivalence classes.)

Figure 24.8.1. Equivalence classes

We can create an addition and multiplication table on the equivalence
classes. For example: {4, 9}+ {1, 6}:

4 + 1 = 5

9 + 1 = 0

4 + 6 = 0

9 + 6 = 5

Addition table:
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+ {0, 5} {1, 6} {2, 7} {3, 8} {4, 9}
{0, 5} {0, 5} {1, 6} {2, 7} {3, 8} {4, 9}
{1, 6} {1, 6} {2, 7} {3, 8} {4, 9} {0, 5}
{2, 7} {2, 7} {3, 8} {4, 9} {0, 5} {1, 6}
{3, 8} {3, 8} {4, 9} {0, 5} {1, 6} {2, 7}
{4, 9} {4, 9} {0, 5} {1, 6} {2, 7} {3, 8}

Multiplication table:

· {0, 5} {1, 6} {2, 7} {3, 8} {4, 9}
{0, 5} {0, 5} {0, 5} {0, 5} {0, 5} {0, 5}
{1, 6} {0, 5} {1, 6} {2, 7} {3, 8} {4, 9}
{2, 7} {0, 5} {2, 7} {4, 9} {1, 6} {3, 8}
{3, 8} {0, 5} {3, 8} {1, 6} {4, 9} {2, 7}
{4, 9} {0, 5} {4, 9} {3, 8} {2, 7} {1, 6}

♦

The equivalence classes form a ring. This is our first example of a quo-
tient ring . We write this ring as Z10/Z5. (Recall we used a similar notation
for quotient groups.) We will formally define quotient rings below.

Definition 24.8.3. Let J be an ideal of ring R. The quotient ring of
R by D is the set R/J consisting of all equivalence classes modulo J in R,
together with binary operations + and · defined by the following:

(x+ J) + (y + J) = (x+ y) + J and

(x+ J) · (y + J) = (x · y) + J.

△

Exercise 24.8.4. The quotient ring Z10/Z5 is isomorphic to another ring
that we are familiar with. Can you identify this familiar ring? (*Hint*) ♢

In the example above, we can say that Z10/Z5 is a quotient ring of Z10

by Z5 with four elements: Z10/Z5 = {0+Z5, 1+Z5, 2+Z5, 3+Z5, 4+Z5}.

Exercise 24.8.5. Define f : Z3 × Z3 → Z3 by f(a, b) = a.



896 CHAPTER 24 INTRODUCTION TO RINGS AND FIELDS

(a) Show that f is a ring homomorphism.

(b) What is the kernel of f?

(c) What are the inverse images of f?

(d) Use the definition of partition to show that the inverse images form a
partition of the domain of f .

(e) Make an addition and multiplication tables for the quotient ring, which
consist of the inverse images.

(f) What ring is isomorphic to the quotient ring? (*Hint*)

♢

24.9 Integral domains, Principal ideal domains and
fields

In high school algebra, we learn that if a · b = 0, then either a = 0 or b = 0.
This real number property is helpful when solving polynomial equations.
We will see that ring elements do not always follow this rule.

Definition 24.9.1. If a, b ∈ R with a ̸= 0, b ̸= 0, and ab = 0, then a and b
are called zero divisors. △

Before looking at general properties of zero divisors, let’s look at some
examples.

Example 24.9.2. In Z21, {3, 6, 9, 12, 15, 18, 7, 14} are all zero divisors, since:
3 · 7 = 6 · 7 = 9 · 7 = 12 · 7 = 15 · 7 = 18 · 7 = 14 · 3 = 0. ♦

Exercise 24.9.3. Find the zero divisors in Z4 and Z15. ♢

In general, in Zp·q, the elements {p, 2p, . . . (q−1)p} and {q, 2q, . . . (p−1)q}
are all zero divisors.

Exercise 24.9.4. Which of the following rings have zero divisors: Z, R, C,
and/or Q? ♢
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The zero divisor property is closely related to invertibility, as shown in
the following proposition.

Proposition 24.9.5. Suppose that R is a ring, and suppose a ∈ R has a
multiplicative inverse. Then a is not a zero divisor–in other words, there is
no b ∈ R such that b ̸= 0 and ab = 0.

Exercise 24.9.6. Prove Proposition 24.9.5(*Hint*) ♢

Many rings have no zero divisors, other than zero itself.

Definition 24.9.7. A commutative ring that has no zero divisors is called
an integral domain . △

Z, R, C, and Q are all integral domains.

Example 24.9.8. Show that Zp is an integral domain if p is prime.

Proof. We have shown in Example 24.1.3 that Zp is a commutative ring
for all p ∈ Z. It remains to show that Zp has no zero divisors. We will show
this by contradiction.

Suppose Zp has a zero divisor a ∈ Zp such that a ̸= 0. Then by Defini-
tion 24.9.1, there is some b ∈ Zp such that b ̸= 0 and a⊙ b = 0. So:

a⊙ b = mod(ab, p) = 0 Def. of ⊙
p divides ab Proposition 5.2.10

p divides a or b Euclid’s Lemma

But how can p divide a or b when p > a and p > b? It is not possible. So our
assumption that Zp has a zero divisor a is false. So Zp has no zero divisors
and Zp is an integral domain. □ ♦

Example 24.9.9. Prove that Q[ 3
√
2] is an integral domain.

Proof. In Example 24.1.4 we showed that Q[ 3
√
2] is a ring. It remains to

show that Q[ 3
√
2] is commutative and contains no zero divisors. We know

that elements of Q[ 3
√
2] are real numbers, which are commutative by nature.

Thus, Q[ 3
√
2] inherits commutativity from the real numbers. Additionally,
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real numbers have no zero divisors. So again, this property is inherited by
Q[ 3

√
2] and we can conclude that Q[ 3

√
2] is an integral domain. □ ♦

Exercise 24.9.10. Prove that Zn is an integral domain if and only if n is
prime. ♢

Exercise 24.9.11. Let R and S be integral domains. Prove that R × S is
also an integral domain. ♢

Exercise 24.9.12. Prove or disprove:

(a) The ring M2(R) is an integral domain.

(b) The subring of M2(R) consisting of diagonal matrices is an integral

domain. (By “diagonal matrix” we mean matrices of the form

[
a 0
0 b

]
).

(c) The subring of M2(R) consisting of upper triangular matrices is an in-

tegral domain. (Upper triangular matrices have the form

[
a b
0 c

]
).

♢

An important property of integral domain is the cancellation law of mul-
tiplication, as shown in the following proposition.

Proposition 24.9.13. Given integral domain D and a, b, c ∈ D. If ab = ac
and a ̸= 0, then b = c.

Proof.

ab = ac Given

ab− ac = 0 Substitution

a(b− c) = 0 Distributive Law

Since D is an integral domain, then D has no zero divisors. This means that
a = 0 or b− c = 0. But we know that a ̸= 0. So b− c = 0 and b = c. □
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In Definition 24.7.10 we learned that a principal ideal is generated by a
single element of a ring, R. We can now combine this idea with that of the
integral domain.

Definition 24.9.14. A principal ideal domain is an integral domain, all
of whose ideals are principal. △

It turns out that Z, R, C, Q, Zp, R[x], C[x], Q[x], and Zp[x] are all
principal ideal domains. Unfortunately, we are not prepared to prove this
here.2

Let’s explore another important ring subset known as the prime ideal.
We shall see that the concept of prime ideal is closely related to prime
numbers.

Example 24.9.15. Suppose we are given the set J ⊂ Z : J = {· · · ,−12,−6, 0, 6, 12, · · · }.
Prove or disprove that p, q ∈ Z and p · q ∈ J implies p ∈ J or q ∈ J . ♦

Proof. We can disprove this by counterexample. Consider, for example,
3, 4 ∈ Z. It is true that 3 · 4 = 12 ∈ J , but neither 3 nor 4 is in J . (Many
other counterexamples can be found.) □

Exercise 24.9.16.

(a) Suppose J = {· · · ,−14,−7, 0, 7, 14, · · · } in the example above. Prove
or disprove that p, q ∈ Z and p · q ∈ J implies p ∈ J or q ∈ J .

(b) Suppose J = {· · · ,−2a,−a, 0, a, 2a, · · · } for some a ∈ Z and p, q ∈ Z.
For what values of a is it true that p · q ∈ J implies p ∈ J or q ∈ J?

♢

The previous exercise is an example of a prime ideal, defined below.

Definition 24.9.17. A prime ideal J ⊂ R is an ideal such that if p, q ∈ R
and p · q ∈ J , then either p ∈ J or q ∈ J . △

2The proof that Z is a principal ideal domain makes use of the well-ordering prin-
ciple which states that any subset of N has a smallest element. The interested reader
may consult https://faculty.atu.edu/mfinan/4033/abstractbk.pdf (p. 219) for more
details.

https://faculty.atu.edu/mfinan/4033/abstractbk.pdf
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Definition 24.9.18. When a principal ideal Ra is also a prime ideal, then
the generator a is called a prime element △

In Exercise 24.9.16 (a) you showed that 7 is a prime element. However,
the result of (b) implies that 7n where n > 1 is not a prime element. The
following definition applies to powers of prime elements.

Definition 24.9.19. Suppose a is a prime element in the ring R. Then for
any positive integer n, an is called a prime power and R(an) is called a
prime power ideal . △

We will explore these concept in the next exercise.

Exercise 24.9.20.

(a) In the ring of integers, show that 2Z is a prime ideal.

(b) In the ring of integers, show that 8Z is not a prime ideal, but it is a
prime power ideal.

♢

We will conclude this section with an important result in abstract algebra
that closely resembles prime factorization of integers.

Proposition 24.9.21. In a principal ideal domain, any principal ideal is
the intersection of prime power ideals.

Proof. This is a more difficult proof and will not be studied in this class.
□

In the following example, we will see that all principal ideals factor as
an intersection of prime power ideals.

Example 24.9.22. Show that 12Z = 22Z ∩ 3Z. ♦

Proof. Recall that:

12Z = {12n : n ∈ Z} = {· · · ,−24,−12, 0, 12, 24, · · · },
22Z = 4Z = {4n : n ∈ Z} = {· · · ,−8,−4, 0, 4, 8, · · · }, and
3Z = {3n : n ∈ Z} = {· · · ,−6,−3, 0, 3, 6, · · · }.
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Since 4 and 3 are relatively prime, then the only common multiples of 4 and
3 will be multiples of 4 · 3 or 12. In other words, 22Z ∩ 3Z = 4Z ∩ 3Z =
(4 · 3)Z = 12Z. □

Exercise 24.9.23. Show that 42Z = 2Z ∩ 3Z ∩ 7Z. ♢

Proposition 24.9.21 is the algebraic way of proving that any integer is
the product of primes. The proposition also shows that polynomial can
be factored uniquely. We will explore this more in Section 24.10 when we
discuss polynomial rings. We need a bit more ring theory first.

24.9.1 Division rings and fields

All of the rings we have seen so far have multiplicative identities. But it
is impossible to define multiplicative inverses for all the elements. In fact,
it’s (almost) never possible to have a multiplicative inverse of the additive
identity (which we denote as 0), as long as the distributive property holds.

Exercise 24.9.24. There is one and only one case of a ring R in which
every element has a multiplicative inverse. What is R? ♢

Exercise 24.9.25. Suppose the ring R has more than one element. Show
that the additive identity of R has no multiplicative inverse. ♢

Although the zero element never has a multiplicative inverse, there are
cases where multiplicative inverses exist for every nonzero element of a ring.
Such a ring is called a division ring.

Definition 24.9.26. Given a ring R suppose every nonzero element of R
has a multiplicative inverse in R, then R is called a division ring . △

Let’s explore an important example of division rings. In Example 15.2.8
we introduced a special group called the quaternion group,
Q8 = {1,−1, i,−i, j,−j, k,−k}, with the following relations:

(a) 1 is the identity

(b) −1 commutes with all other elements, and (−1)2 = 1

(c) −1 · i = −i,−1 · j = −j,−1 · k = −k

https://www.youtube.com/watch?v=Q5q-LL4QW4o&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=48
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(d) i2 = j2 = k2 = −1

(e) i · j = k, j · k = i, k · i = j

(f) j · i = −k, k · j = −i, i · k = −j

Exercise 24.9.27. Show that all of the equalities in parts (e) and (f) above
may be derived from (a), (b), (c) and the equation ijk = −1. ♢

We can extend the quaternion group by taking linear combinations of
the elements of Q8 with real coefficients. This new set, simply known as
the quaternions, was discovered by William Rowan Hamilton of Dublin in
1843. Hamilton’s quaternions, notated by H in his honor, are widely used
today in computer graphics to describe motion in three dimensional space
and multiple antennae communications systems. We may define this set
formally as follows.

Definition 24.9.28. The set of real quaternions, denoted by H, is defined
by:

H = {a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R},
where i2 = j2 = k2 = ijk = −1.

Note that ij = −ji, ik = −ki, and jk = −kj, so H does not commute
over multiplication.

Using the distributive law and the commutative law of addition, we define
addition on H as follows.

(a0 + a1i+ a2j + a3k) + (b0 + b1i+ b2j + b3k)

= (a0 + b0) + (a1 + b1)i+ (a2 + b2)j + (a3 + b3)k.
(24.9.29)

Multiplication of quaternions is also defined using the distributive law and
commutative law of addition. △

Exercise 24.9.30. Evaluate the following products of quaternions.

(a) (1 + i+ j + k)2

(b) (1 + i+ j + k) · (1− i− j − k)
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(c) (1 + i+ j + k) · (1 + 2i+ 3j + 4k)

(d) (a0 + a1i+ a2j + a3k) · (a0 − a1i− a2j − a3k)

♢

In the following exercises, we will show that H forms a division ring.

Exercise 24.9.31. Prove that the set of quaternions H, defined above,
forms a ring. ♢

Of course, not all rings are division rings. In order to show that H
is a division ring, we must show that every nonzero element of H has a
multiplicative inverse in H. This proof is more advanced so you will be
guided through it.

We will begin by defining the conjugates in H. (Note that the term con-
jugates, like many other mathematical terms, can refer to different things in
different contexts. The reader must always consider context to fully under-
stand the meaning of such terms.)

Definition 24.9.32.et a = a0 + a1i+ a2j + a3k ∈ H. Then the conjugate
of a is denoted by ā and given by:

ā = a0 − a1i− a2j − a3k.

△

Note the following relationship between a and ā:

a · ā = (a0 · a0 + a1 · a1 + a2 · a2 + a3 · a3) + (−a0 · a1 + a0 · a1 − a2 · a3 + a2 · a3)i
+ (−a0 · a2 + a0 · a2 − a1 · a3 + a1 · a3)j + (−a0 · a3 + a0 · a3 − a1 · a2 + a1 · a2)k
= a0 · a0 + a1 · a1 + a2 · a2 + a3 · a3
= a20 + a21 + a22 + a23

Exercise 24.9.33.

(a) Using a and ā as defined above, show that ā · a = a · ā.
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(b) Note that if a ̸= 0, a · ā is a nonzero real number and thus has a
multiplicative inverse (a · ā)−1. Show that a ·

(
(a · ā)−1 · ā

)
= 1 and(

(a · ā)−1 · ā
)
· a = 1.

(c) Give an expression for the multiplicative inverse of a ∈ H for a ̸= 0.

♢

We have shown that the set of quaternions H is a ring and that every
nonzero element of H has a multiplicative inverse in H. So, H is a division
ring.

Exercise 24.9.34.

(a) Give three examples of infinite division rings.

(b) Give three examples of finite division rings.

♢

Division rings with commutative multiplication are called fields. Fields
are one of the most important objects of study in all of mathematics.

Definition 24.9.35. A division ring F is called a field if the multiplication
operation is commutative. △

In many of the rings we’ve seen so far, the field axioms are also satisfied.
Figure 24.9.1 shows the relationship between the ring classes.
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Figure 24.9.1. Ring Classes

Exercise 24.9.36. Which of the following rings are also fields? Explain
your answers.

(a) Z (b) Q (c) R (d) C (e) R[x] (f) Mn(R) (g) 3Z (h) Z4

(i) Zp where p is prime ♢

Example 24.9.37. Let S be the set of all real 2 × 2 matrices of the form[
a b
−b a

]
where a, b ∈ R. Show that S is a field.

Proof. We know from Exercise 24.1.11 that the set of all 2 × 2 matrices
form a ring. It remains to show that S is a division ring with multiplicative
commutativity. It will be important in our proof to know that S has the
multiplicative inverse property. Let’s show that first.

Let A ∈ S be defined by

[
a b
−b a

]
. Then A−1 =

[
a

a2+b2
− b
a2+b2

b
a2+b2

a
a2+b2

]
(as

long as a and b are not both 0) because A · A−1 = A−1 · A = 1. It should
be clear that A−1 ∈ S. Thus every nonzero element of S has an inverse in
S and the multiplicative inverse property holds. We are now ready to show
that S is a division ring.
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We will show that S is a division ring by showing that it has no zero
divisors. At this point, Proposition 24.9.5 comes in handy. We’ve already
seen that every nonzero element A ∈ S has an inverse. Proposition 24.9.5
immediately tells us that A is not a zero divisor. Since A was an arbitrary
element of S, then there are no zero divisors in S and S is a division ring.

We have shown that S is a division ring, but we must now prove com-
mutativity of multiplication.

Given X =

[
a b
−b a

]
and Y =

[
c d
−d c

]
∈ S, then:

X · Y =

[
ac− bd ad+ bc
−ad− bc ac− bd

]
and Y ·X =

[
ac− bd ad+ bc
−ad− bc ac− bd

]
.

We have shown that X · Y = Y · X for any X,Y ∈ S, so S is commu-
tative over multiplication. So S is a division ring with commutativity of
multiplication, which means S is a field. □ ♦

Exercise 24.9.38. Show that the set of matrices S =

[
a b
0 a

]
where a, b ∈ R

is not a field. ♢

Looking bac at Section 24.3 we can see that we were creating fields
without knowing it! The sets Q̂[x], R̂[x], Ẑp[x], Ĉ[x] are all fields that are
extensions of Q[x], R[x], Zp[x], C[x].

24.9.2 Further properties of fields

We’ve just introduced several new concepts, including integral domain, prin-
cipal ideal domain, division ring, and field. Let’s consider how they are re-
lated. We know that every field is a division ring (by definition). We also
know that not every division ring is a integral domain (H is a example).
What about the relation between integral domain and field?

Exercise 24.9.39. Show that every field is an integral domain. ♢

Now, what about the relation between field and principal ideal domain?
This is a very interesting question. To answer it, we will need a series of
propositions.

Proposition 24.9.40. If J is an ideal of the ring R and 1 ∈ J , then J = R.
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Exercise 24.9.41. Prove Proposition 24.9.40 ♢

Proposition 24.9.42. Given J is an ideal in ring R and a ∈ J . If a has a
multiplicative inverse a−1 ∈ R, then J = R.

Proof. To show that J = R, we can show that J ⊂ R and R ⊂ J . We
already know that J ⊂ R, by definition of ideal. To show that R ⊂ J , we
must show that every element in R is also in J . Consider arbitrary element
r ∈ R. We will show that r ∈ J also.

a ∈ J implies a−1 ∈ R Given

a · a−1 = 1 Def. of mult. inverse

a ∈ J and a−1 ∈ R implies a · a−1 = 1 ∈ J Def. of ideal

J = R Proposition 24.9.40

□

Proposition 24.9.43. Given field F , the only two ideals in F are {0} and
all of F .

Proof. Suppose J is an ideal in field F . Then either J = {0} or J has a
nonzero element a. By the definition of field, a must have an inverse; and
by Proposition 24.9.42, it follows that J = F . □

We’ve also discussed principal ideal domain which is a special type of
integral domain.

Exercise 24.9.44. What is the relationship between fields and principal
ideal domains? ♢

See if you can prove this final proposition that relates the ideas of field
and ideal.

Proposition 24.9.45. Suppose that R is a commutative ring such that
every ideal contains the multiplicative identity 1. Then every element in R
has a multiplicative inverse. In other words, R is a field.

Exercise 24.9.46. Prove Proposition 24.9.45 ♢
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24.10 Polynomials over fields

We saw in the previous section that R[x] is a ring whenever R is a ring. We
may ask a similar question about fields: If F is a field, then is F [x] also a
field? We investigate this question in the following exercises.

Exercise 24.10.1.

(a) Give the zero divisors of Z4 and Z15.

(b) Find two nonzero polynomials in Z4[x] of degree 1 and 3 respectively
whose product is 0.

(c) Suppose n = pq, where p and q are integers greater than 1. Show that
there exist two nonzero polynomials in Zn[x] with degree greater than
1 whose product is 0.

♢

Do polynomials have multiplicative inverses? Be careful here. In high-
school algebra or in calculus, the polynomial p(x) has a perfectly good mul-
tiplicative inverse, namely 1/p(x). But 1/p(x) is not a polynomial, so for us
it doesn’t count! For a set of polynomials to be a field, the nonzero elements
must have inverses that are polynomials themselves.

Exercise 24.10.2.

(a) Consider the polynomial p(x) = 1x as an element of R[x]. Show there
is no polynomial in R[x] that is a multiplicative inverse of p(x).

(b) Prove or disprove: Polynomial rings over fields are also commutative
groups over multiplication.

♢

Exercise 24.10.3. Which elements of R[x] have multiplicative inverses? ♢

Exercise 24.10.4. Given a field F , which elements of F [x] have multiplica-
tive inverses? ♢
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Exercise 24.10.5. Suppose that F is a field. Does this mean that F [x] is
also a field? Either prove the implication, or give a counterexample. ♢

We may ask the question, Can F [x] have zero divisors if F is a field?
First let’s look at an example.

Exercise 24.10.6. Let p(x) =
∑5

i=0 aix
i and q(x) =

∑3
j=0 bjx

j be polyno-
mials in Zp[x], where a5 ̸= 0 and b3 ̸= 0.

(a) What is the degree of p(x)q(x)?

(b) Give an expression for the highest order term in p(x)q(x). How do you
know that this expression is not zero? (*Hint*)

Note that since p(x)q(x) has a nonzero term, then it can’t be the zero
polynomial. ♢

We may generalize the results of the previous exercise:

Exercise 24.10.7. Let p(x) =
∑n

i=0 aix
i and q(x) =

∑m
j=0 bjx

j be polyno-
mials in F [x], where F is a field and an ̸= 0, bm ̸= 0.

(a) What is the degree of p(x)q(x)?

(b) Give an expression for the highest order term in p(x)q(x). How do you
know that this expression is not zero?

♢

Exercise 24.10.7 establishes the following proposition:

Proposition 24.10.8. If F is a field, then F [x] has no zero divisors.

The property of having no zero divisors turns out to be a very important
consideration in the process of polynomial division, which we discuss in the
next section.

And here’s the result we’ve been waiting for. Now that we’ve prepared
the ground, it’s not so difficult to prove.

Proposition 24.10.9.(Fundamental Theorem of Algebra: easy part) Let
F be a field and let f(x) be a polynomial in F [x] of degree n. Then the
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equation f(x) = 0 has at most n solutions: that is, there are at most n
distinct elements {x1, . . . xn} of F such that f(xm) = 0 for 1 ≤ m ≤ n.

Proof. Suppose a1 is a solution to f(x) = 0. Then by Proposition 12.6.14
it follows that x− a1 divides f(x). Therefore f(x) = (x− a1)gn−1(x) where
the degree of gn−1(x) = n− 1.

Now if a2 ̸= a1 is another solution then using our above result we have

f(a2) = (a2 − a1)gn−1(a2) = 0.

Since a2 − a1 ̸= 0, it follows that gn−1(a2) = 0. So we can write gn−1(x) =
(x− a2)gn−2(x) where the degree of g2(x) = n− 2.

Continuing in the same way, if there are distinct roots a1, a2, ..., an then

f(x) = (x− a1)(x− a2)...(x− an)g0,

where the degree of g0 is 0 (in other words, g0 is a constant.). So there can’t
be any more solutions, an+1, because (x− an+1) doesn’t divide g0. □

The previous theorem immediately gives us an extremely important gen-
eral property of fields:

Proposition 24.10.10. Let F be a field, and let c be any element F . Then
c has at most n nth roots.

Proof. Given the field F let F [x] be the associated polynomial ring over the
field F . The polynomial xn−c is an element of F [x]. By Proposition 24.10.9,
the equation xn − c = 0 has at most n solutions. This is exactly the same
thing as saying that c has at most n nth roots. □

Exercise 24.10.11.

(a) Find all fourth roots of 5625 in R[x]. Give exact solutions.

(b) Find all fifth roots of 3125i in C[x]. Give exact solutions.

(c) Find all fifth roots of 5 in Z7.

(d) Find all sixth roots of 1 in Z7.
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♢

Take note of the “at most” qualification in Proposition 24.10.9. There
are cases of polynomials in F [x] which do not have any roots in F . For
example, there are polynomials in R[x] that have no roots at all in R[x], as
the next examples illustrate.

Example 24.10.12. Find the roots of p(x) = 2x2 + 2x+ 5.

Since this is a quadratic polynomial we can use the famous quadratic
formula:

x =
−b±

√
b2 − 4ac

2a

In p(x), a = 2, b = 2, and c = 5. We substitute those values into the
formula and obtain the following:

x =
−2±

√
22 − 4 · 2 · 5
2 · 2

=
−2±

√
−36

4
=

−2± 6i

4

=
−1± 3i

2
.

So the roots of p(x) are x =−1
2 + 3

2 i,−
1
2 − 3

2 i. ♦

The next example is a cubic polynomial in Z[x]. To find the rational
roots, we will make use of the following proposition.

Proposition 24.10.13. Let f(x) = anx
n + an−1x

n−1 + ... + a0 be a poly-
nomial in Z[x]. Any rational roots of f(x) expressed in lowest terms have
numerators, p, which are factors of a0 and denominators, q, which are factors
of an.

Proof. Let f(x) = anx
n+ an−1x

n−1 + ...+ a0 be a polynomial in Z[x] and
suppose that p/q is a root of f(x), where the fraction p/q is in lowest terms
(so p and q are relatively prime).

First we will show that p is a factor of a0. Since p/q is a root of f(x) we

have f
(
p
q

)
= 0, which implies

an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ ...+ a0 = 0.
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Multiplying both sides by qn, we have,(
an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ ...+ a0

)
qn = 0,

which simplifies to

anp
n + an−1(p

n−1q) + ...+ a0q
n = 0.

This expression can be rearranged to obtain:

p
(
−anpn−1 − an−1(p

n−2q)− ...− a1q
n−1
)
= a0q

n.

Since f(x) ∈ Z[x], all the coefficients ai are also integers. p and q are
also integers. Since integers are closed under addition and multiplication, it
follows that both sides of the above equation are integers. Since p divides the
left-hand side, it must also divide the right-hand side. Therefore p divides
a0q

n. Now p and q are relatively prime: so in order for p to divide a0q
n, it

must divide a0. In other words, p is a factor of a0—which is just what we
wanted to prove.

It turns out the proof that q is a factor of an is basically the same, if we
use a little trick. The first equation that we wrote down above was:

an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ ...+ a0 = 0.

Let’s multiply both sides by (q/p)n. After simplifying, and rearranging we
get:

a0

(
q

p

)n
+ a1

(
q

p

)n−1

+ ...+ an = 0.

Now, this new equation corresponds exactly to the first equation with the
following replacements:

an → a0; an−1 → a1; . . . ; a0 → an; p↔ q.

We can then go through the entire previous argument, making these
replacements. We concluded previously that p is a factor of a0—so if we
apply the identical argument to the equation with replacements, we obtain
that q is a factor of an. You may fill in the details in the following exercise.
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Exercise 24.10.14. Starting with the equation a0 (q/p)
n + a1 (q/p)

n−1 +
... + an = 0, give the complete argument which shows that q is a factor of
an. ♢

□

Now let’s get some practice using Proposition 24.10.13.

Example 24.10.15. Find the roots of f(x) = 3x3 + 10x2 + 11x+ 6.

Since this is a cubic polynomial, we can’t use the quadratic formula, at
least not to begin with. The coefficients are integers, so we may use Propo-
sition 24.10.13, which says that any rational roots of p(x) have numerators
that are factors of a0 and denominators that are factors of an. This does
not guarantee that there are rational roots: sometimes polynomials are irre-
ducible, but we still try every method possible to find those roots unless we
know that we can’t reduce the polynomial. So we will proceed with trying
to find the roots of f(x) using Proposition 24.10.13.

In f(x), possible numerators of any rational roots are: p = ±1,±2,±3,±6.
The possible denominators are: q = ±1,±3. So we have as possible rational
roots the following: p/q = ±1,±1

3 ,±2,±2
3 ,±3,±6. By Proposition 12.6.14,

if f(p/q) = 0 then (x−p/q) is a factor of f(x); which would make p/q a root
of f(x). After testing all possibilities we find the following rational root:
f(−2) = 3(−2)3 + 10(−2)2 + 11(−2) + 6 = 0. Therefore, x = −2 is a root
of f(x) and (x+ 2) is a factor of f(x). We then use long division to factor
f(x).

3x2 + 4x + 3
x+ 2 3x3 + 10x2 + 11x + 6

3x3 + 6x2

4x2 + 11x + 6
4x2 + 8x

3x + 6
3x + 6

0

So now we have f(x) = (x+2)(3x2+4x+3). We use the quadratic formula

to find the following roots for 3x2 + 4x + 3. x = −2±
√
5i

3 . So there are two

complex roots and one real root. They are x = −2−
√
5i

3 ,−2, −2+
√
5i

3 . ♦

Exercise 24.10.16.
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(a) Find the roots of f(x) = 2x2 + x+ 1. Give exact solutions.

(b) Find the roots of f(x) = 5x3 + 17x2 + 7x+ 3. Give exact solutions.

♢

In the exercises above, the leading coefficient is not 1. The situation is
especially simple if the leading coefficient is 1. In such a case, the rational
roots are integers:

Exercise 24.10.17.

(a) Given that p(x) ∈ Z[x], and p(x) has leading coefficient 1, show that all
rational roots of p(x) are integers.

(b) Find the roots of f(x) = x3 − 13x+ 12.

♢

24.10.1 Algebraic closure of fields

In Section 24.10.2 we discussed the so-called Fundamental Theorem of
Algebra (hard part), (Proposition 12.6.28)which states that any polyno-
mial in C[x] has a root in C[x]. This property leads to a host of important
consequences. Since this property is so important, it’s been given a name:

Definition 24.10.18. A field F is algebraically closed if and only if
every nonconstant polynomial in F [x] has a root in F (see Figure 24.10.1).
△

With this new definition in mind, we can restate Proposition 12.6.28 as
follows:

Proposition 24.10.19. C is algebraically closed.

There are fields besides C that are algebraically closed, but there are
also lots of fields that aren’t:

Exercise 24.10.20.
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Figure 24.10.1. F is algebraically closed: every p(x) ∈ F [x] has an a ∈ F
such p(a) = 0.

(a) Are the rational numbers algebraically closed? Justify your answer.

(b) Are the real numbers algebraically closed? Justify your answer.

♢

Exercise 24.10.21.

(a) In the field Z5, evaluate the polynomial x4 + 2 for all elements of Z5.

(b) Using part (a), show that Z5 is not algebraically closed.

(c) Use the polynomial x6+2 to determine whether or not Z7 is algebraically
closed.

♢

In Section 12.6.4 we proved polynomial factorization (Proposition 12.6.32),
namely that any polynomial in C[x] factors as a product of linear factors.
The very same proof goes through for any algebraically closed field F . Thus
we have:

Proposition 24.10.22. Let F be an algebraically closed field. Then any
polynomial p(x) of degree n in F [x] can be completely factored as a constant
times a product of n linear terms, as follows:

p(x) = b(x− a1)(x− a2) . . . (x− an), (24.10.23)

where b, a1, . . . , an ∈ F .
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24.10.2 Field extensions and algebraic elements

We’ve seen quite a few fields that are not algebraically closed. For example,
the rational numbers Q are not algebraically closed, because e.g. x2 − 2 has
no roots in Q. However, we were able to find a larger field (namely R) that
contains Q which has the root that Q is lacking. In this section, we’ll talk
about situations like this in a general context.

First we need some terminology to describe the case where one field is
contained in another:

Definition 24.10.24. Given a field E and F ⊂ E, then F is called a sub-
field of E if F is also a field with the same field operations as E. Conversely,
E is called an extension field of F . △

The following exercise should bolster your understanding of Definition 24.10.24

Exercise 24.10.25.

(a) Give an example of a field F that has a nontrivial extension field (that
is, the extension field contains elements that are not in F ).

(b) Give an example of a field, F that is a subset of a field E, but is not a
subfield of E. Explain.

♢

We also need terminology to describe roots of polynomials in F [x] that
aren’t in F :

Definition 24.10.26. Let F be a subfield of E, and let a ∈ E. If p(a) = 0
for some p(x) ∈ F [x], then a is algebraic over F (see Figure 24.10.2).
Otherwise, a is transcendental over F . △

Exercise 24.10.27.

(a) Give an example of a complex number z ∈ C \R which is algebraic over
Q (in other words, z satisfies f(z) = 0 where f(x) ∈ Q[x]). Justify your
answer.
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Figure 24.10.2. a ∈ E is algebraic over F : there exists p(x) ∈ F [x] such
that p(a) = 0.

(b) Suppose that z ∈ C is algebraic over R. Show that z̄ is also algebraic
over R.

(c) Show that every element of C is algebraic over R.

♢

Exercise 24.10.28.

(a) Given that a ∈ C is algebraic over Q, show that
√
a is also algebraic

over Q.

(b) Given that a ∈ C is algebraic over Q, show that a1/n is also algebraic
over Q for any natural number n.

♢

Remark 24.10.29. It’s not so easy to show that elements are transcenden-
tal. This is because to show that a is transcendental over F , you need to
show that there’s no polynomial whatsoever in F [x] which has a as a root.
Let’s consider in particular the case F = Q. We saw in Chapter 4 that R
has lots of irrational numbers, but so far we haven’t definitely identified any
real number that is transcendental over Q.

In 1844, Joseph Liouville gave the first proof that a transcendental num-
ber exists. Liouville constructed a number (using infinite series) with special
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properties, and was able to show that it’s impossible to construct a polyno-
mial in Q[x] that has that number as a root. Hermite showed about 30 years
later that e was transcendental, and π was added to the list (by Lindemann)
10 years after that.

Even today, only a handful of classes of numbers have been shown to
be transcendental. This is not to say that there aren’t lots of them. In
fact, Georg Cantor in 1874 was able to show that “almost all” real numbers
are transcendental over Q. This is a fascinating topic, and there’s lots of
information on the Internet if you’re interested in pursuing it further (one
place to look is http://mathworld.wolfram.com/TranscendentalNumber.
html). △

For field extensions which have no transcendental elements, the following
definition applies:

Definition 24.10.30. Suppose E is an extension field of F . Then E is
called an algebraic extension of F if every a ∈ E is algebraic over F . △

Exercise 24.10.31.

(a) Give an example of a extension field that is algebraic. Justify your
answer.

(b) Give an example of a field extension that is not algebraic. Justify your
answer.

♢

A field extension may be algebraic, but still contain polynomials that
have no roots. There’s a special term for field extensions which contain
roots for all their polynomials:

Definition 24.10.32. Let E be an algebraic extension field of F . Suppose
that for every p(x) ∈ E[x], there exists a ∈ E such that p(a) = 0. Then E
is an algebraic closure of F (see Figure 24.10.3). △

Here’s an example of an algebraic closure:

Proposition 24.10.33. C is an algebraic closure of R.

http://mathworld.wolfram.com/TranscendentalNumber.html
http://mathworld.wolfram.com/TranscendentalNumber.html
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Figure 24.10.3. E is an algebraic closure of F : every p(x) ∈ E[x] has an
a ∈ E such that p(a) = 0; and every b ∈ E has an f(x) ∈ F [x] such that
f(b) = 0.

Proof. Let a+bi ∈ C be arbitrary and let p(x) = (x−(a+bi))(x−(a−bi)) =
x2 − 2ax+ a2 + b2 ∈ R[x]. We see that a+ bi is a root of p(x). Since a+ bi
is arbitrary, we can say that any element of C is a root of some polynomial
in ∈ R[x]. By Definition 24.10.30 this makes C an algebraic extension of R.
Additionally, by Proposition 24.10.19, C is algebraically closed. Therefore,
by Definition 24.10.32, C is the algebraic closure of R. □

Does every field have an algebraic closure? Let’s look at some field
extensions we’re already familiar with:

Exercise 24.10.34.

(a) Give an example that shows that C is not an algebraic closure of Q .
Explain.

(b) Give an example that shows that R is not an algebraic closure of Q .
Explain.

♢

Although we won’t prove it here, it can be shown that every field has an
algebraic closure. 3 In particular, there is a subfield of C which is an alge-
braic closure of Q: this subfield is called the field of algebraic numbers.

Exercise 24.10.35. Draw a set diagram that shows the relationships be-
tween the sets Q,R,C, and A, where A denotes the set of algebraic numbers.

3see https://soffer801.wordpress.com/2011/10/25/

every-field-has-an-algebraic-closure/ for a nice discussion.

https://soffer801.wordpress.com/2011/10/25/every-field-has-an-algebraic-closure/
https://soffer801.wordpress.com/2011/10/25/every-field-has-an-algebraic-closure/
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(For example, the “set bubble” representing Q should be inside the bubble
representing C, since Q ⊂ C.) ♢

24.10.3 Applications of algebraic field extensions

We’ve already seen how field extensions play an important role in math-
ematics. The irrational numbers were first introduced using an algebraic
field extension of Q (although later it was discovered that not all irrational
numbers are algebraic over Q). Similarly, the complex numbers were cre-
ated as an algebraic field extension of the real numbers. But this is just the
beginning. Algebraic field extensions have played a pivotal role in a great
number of deep mathematical results obtained over the last 200 years. Here
is a short list of results which make use of algebraic field extensions:

� The quadratic formula expresses the roots of quadratic polynomials
in terms of algebraic operations on the coefficients plus a square root.
There are similar (but vastly more complicated) formulas for solving
cubic and quartic (3rd and 4th degree) polynomial equations, which
involve algebraic operations and taking nth roots, for different values
of n. How about quintic (5th degree) polynomials? Amazingly, it is
possible to prove that there is no general formula for the solution of
a quintic equation in terms of roots and algebraic operations. Not
just the formula is not known–there is no formula. Period. This stu-
pendous result is associated with the mathematicians Evariste Galois,
Niels Henrik Abel, and Paolo Ruffini, and was proved in the mid-19th
century.

This result relates to field extensions because every solution to an
equation that involves only roots and algebraic operations must belong
to certain type of field extension of the rationals. This fact imposes
conditions on the type of numbers that can be expressed in such a
form. It can be shown that there are roots of 5th-degree equations
that don’t meet these conditions—hence they can’t possibly satisfy
such an equation.

� Beginning with the Greeks, mathematicians tried for thousands of
years to find a way to trisect an angle, using only straightedge and
compass. In 1837, Pierre Wantzel finally showed that it is impossible.
His proof built on previous results of Galois. (Think of how many
hours over how many centuries were spent on a futile quest!)
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This result relates to field extensions in similar fashion as the previous
one. Geometrical points in the plane are identified as complex num-
bers (as we described in Section 4.4). Every point constructed based
on a set of points is an algebraic combination of the corresponding
complex numbers, together with square roots. This means that every
constructable point must be contained in a series of field extensions
created by successively adding square roots to an existing field. It can
be shown that trisecting an angle involves finding a cube root which
cannot possibly belong to such a series of extensions. You may consult:

https://terrytao.wordpress.com/2011/08/10/a-geometric-proof-of-the-

impossibility-of-angle-trisection-by-straightedge-and-compass/

to get a flavor of how this proof goes.

� A similar constructability problem is known as “squaring the circle”: Given a square
of side 1, find a circle with the same area using only straightedge and compass. This
can be shown to be impossible, as a consequence of the transcendence of π alluded
to in Remark 24.10.29.

24.11 References

The following links talk about different applications of rings:

https://pdfs.semanticscholar.org/8ff4/9f31c24cc10b72af379fa364becc89eb5a36.

pdf

https://wdjoyner.files.wordpress.com/2018/04/sm462-notes-on-ring-thry.

pdf

http://www.ihes.fr/~brown/GergenLectureI.pdf

https://www.wireilla.com/ns/maths/Papers/3414ijscmc05.pdf

http://math.mit.edu/~mckernan/Teaching/12-13/Spring/18.703/book.

pdf

https://www.math.ias.edu/~avi/PUBLICATIONS/HrubesWi2013.pdf

http://ijgt.ui.ac.ir/article_5453_9f9342e7224465dd42f3537a6a7fe39a.

pdf
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https://pdfs.semanticscholar.org/8ff4/9f31c24cc10b72af379fa364becc89eb5a36.pdf
https://wdjoyner.files.wordpress.com/2018/04/sm462-notes-on-ring-thry.pdf
https://wdjoyner.files.wordpress.com/2018/04/sm462-notes-on-ring-thry.pdf
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https://www.wireilla.com/ns/maths/Papers/3414ijscmc05.pdf
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http://math.mit.edu/~mckernan/Teaching/12-13/Spring/18.703/book.pdf
https://www.math.ias.edu/~avi/PUBLICATIONS/HrubesWi2013.pdf
http://ijgt.ui.ac.ir/article_5453_9f9342e7224465dd42f3537a6a7fe39a.pdf
http://ijgt.ui.ac.ir/article_5453_9f9342e7224465dd42f3537a6a7fe39a.pdf
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24.12 Hints for “Introduction to Rings” exercises

Exercise 24.8.4: Look at the Cayley tables and imagine that the tables
contain only the first element in each pair.

Exercise 24.8.5: This is similar to Exercise 24.8.4.

Exercise 24.5.13: Part (b): Check if f has an inverse.

Exercise 24.7.11: Can you think of an element in R that generates all of R?

Exercise 24.9.6: Take the expression ab = 0 and multiply both sides on the
left by a−1.

Exercise 24.10.7: Use Proposition 24.9.5 part b and remember that Zp is a
field.
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Polynomial Codes

25.1 Polynomials with coefficients in Z2

We are used to polynomials with coefficients that are integers or real num-
bers. But as we mentioned in the previous chapter, it is also possible to have
polynomials with coefficients from other number systems. In this chapter,
we will be looking particularly at the the set of polynomials with coefficients
in Z2: this set is denoted by Z2[x]. For a polynomial in Z2[x], all coefficients
are either 0 or 1.

Example 25.1.1. The polynomials in Z2[x] are:

. The constant polynomials: 1 and 0 (there are only 2)

. The linear polynomials: x and x+ 1 (there are only 2)

. The quadratic polynomials: x2, x2 + 1, x2 + x,x2 + x+ 1,

And so on for higher-degree polynomials. ♦

Exercise 25.1.2.

(a) How many different polynomials in Z2[x] have degree 3?

(b) How many different polynomials in Z2[x] have degree 4?

(c) How many different polynomials in Z2[x] have degree n, where n ≥ 1?
Make a guess.

923
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(d) Prove that your guess is correct (Hint : Use induction, if you know how.
Otherwise, you can make a more informal argument.)

♢

A polynomial in Z2[x] can also be represented as a binary n-tuple (or
binary vector) whose entries are 1’s and 0’s. If the degree of the polynomial
is n, then there must be at least n+ 1 entries in the tuple.

Example 25.1.3. The polynomial f(x) = x3 + x2 + x can be represented
by the binary 4-tuple: (1 1 1 0). It can also be represented by the 5-tuple
(0 1 1 1 0) or the 6-tuple (0 0 1 1 1 0): these representations may be useful
when adding or subtracting polynomials, as we’ll see in a moment. ♦

Addition, subtraction and multiplication are best explained by examples.

Example 25.1.4. Let f(x) = x2+x+1 and g(x) = x3+x+1 be polynomials
in Z2[x]. We may represent f(x) and g(x) by the 4-tuples (0 1 1 1) and
(1 0 1 1) respectively (note that we have used n-tuples of the same length:
the length is determined by the highest degree of the two polynomials).
Adding the polynomials is the same as adding corresponding entries of the
in mod 2. It follows that the sum f(x) + g(x) is:

( (0⊕ 1) (1⊕ 0) (1⊕ 1) (1⊕ 1) ) = (1 1 0 0),

which corresponds to the polynomial x3 + x2. (Actually, when we repre-
sent polynomials as n-tuples in this way, polynomial addition is identical to
addition in Zn2 , where Zn2 = Z2 × . . .Z2︸ ︷︷ ︸

n times

.)

If on the other hand we take f(x)− g(x), we find that we get the same
answer (Try it!). This will always be the case, because in Z2 addition and
subtraction are the same operation.

♦

We will be using these polynomials to represent certain special types of
codes, as we shall see shortly.
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25.2 Cyclic Binary Codes

Recall from the chapter on algebraic encoding, that a code is linear if the
code is determined by the null space of some matrix H ∈ Mm×n(Z2).

1 So
consider the codes generated by the following generator matrix:

G1 =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


Using the methods in the previous chapter we find the resulting code words
for the matrix are as follows:

(000) 7→ (000000) (100) 7→ (100100)
(001) 7→ (001001) (101) 7→ (101101)
(010) 7→ (010010) (110) 7→ (110110)
(011) 7→ (011011) (111) 7→ (111111).

This matrix follows the typical rules of linear codes. However there is
an additional interesting and useful property of these codewords. In order
to describe the property we need the following definition.

Definition 25.2.1. The cyclic 1-shift of a codeword is the codeword
obtained by taking the leftmost bit in the codeword and moving it to the
rightmost position. The cyclic n-shift of a codeword is the result of n
1-shifts applied to that codeword. In the following we sometimes leave off
the word “cyclic” for short: so “1-shift” means the same as “cyclic 1-shift”,
etc. △

According to this definition, (00101) when cyclic 1-shifted results in
(01010), or when cyclic 3-shifted results in (01001).

Exercise 25.2.2. Shift the following codewords by the given cyclic shift.

(a) (1011) 1-shifted

1Mm×n(Z2) is the set of matrices of dimension m× n whose elements are elements of
Z2.
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(b) (1010101) 1-shifted

(c) (1001011) 3-shifted

(d) (0101011010101) 5-shifted

(e) (0101001111001) 7-shifted

(f) (zn, zn−1 · · · z1, z0) 1-shifted, where zn ∈ Z2

(g) (zn, zn−1 · · · z1, z0) 3-shifted, where zn ∈ Z2

(h) (zn−2, zn−3 · · · z1, z0, zn, zn−1) (n− 2)-shifted where zn ∈ Z2

♢

Now let’s return to the code generated by the matrix G1 given above.
Notice that each cyclic 1-shift of a codeword is also a codeword. For example,
the cyclic 1-shift of the codeword (001001) is (010010), which is also a code
word. This is the same as stating that the set of codewords is closed under
cyclic 1-shifts.

Definition 25.2.3. A linear code that is closed under cyclic 1-shifts is said
to be a cyclic code . △

Not all linear codes are cyclic codes. Take the following generator matrix:

G2 =



1 0 0
1 1 0
1 1 1
1 1 1
0 1 1
0 0 1


The resulting code words for the G2 are as follows

(000) 7→ (000000) (100) 7→ (111100)
(001) 7→ (001111) (101) 7→ (110011)
(010) 7→ (011110) (110) 7→ (100010)
(011) 7→ (010001) (111) 7→ (101101).

Notice that (101101) is a code word but (011011) is not a code word.
Therefore the code that uses G2 as a generator matrix is not a cyclic code.
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Cyclic codes may be easily implemented on computers using shift regis-
ters. Figure 25.2.1 gives some indication of how this is done for the code
with generator matrix G1.

Figure 25.2.1. Shift register implementation of the code generated by ma-
trix G1. The uncoded bits are placed in the bottom “registers” (represented
by rectangles) for six “clock ticks”. At each “clock tick”, the other bits all
move according to the dotted arrows. Binary multiplication and addition
are performed on the bits according to the ⊗ and ⊕ symbols.

Exercise 25.2.4. For each of the following sets of code words, prove or
disprove that they are closed under cyclic 1-shifts.
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(a)
(000000) (111100) (001111) (110011)
(011110) (100010) (010001) (100101)

(b)
(000000) (011100) (111100) (110011)
(011110) (100010) (010001) (101101)

(c)
(000000) (111000) (000111) (101010)
(001110) (010101) (011100) (111111)

♢

Exercise 25.2.5.

(a) Prove or disprove: A cyclic code is closed under cylic 2-shifts.

(b) Prove or disprove: A cyclic code is closed under cylic 3-shifts.

(c) Prove or disprove: A cyclic code is closed under cylic n-shifts for any
n ∈ N. (Use induction if you can–otherwise, you may make a more
informal argument.)

♢

Example 25.2.6. An interesting (and sometimes useful) property of some
binary codes is that the reverse of each codeword is also a codeword. Take
for example the following cyclic code of length 4 :

S = {(0000), (1010), (0101), (1111)}

The codewords (0000) and (1111) read the same backwards and forwards:
such codewords are called palindromic. The remaining two codewords
(1010) and (0101) are reverses of each other. Thus the reverse of every
codeword in S is also a codeword in S.

Codes for which the reverse of every codeword is a codeword are called
reversible codes. Such codes are interesting because they can be read
either backwards or forwards (although the forward and backward readings
will be different!), and are useful in certain data storage applications2. ♦

2See Massey, J. L. (1964). “Reversible codes”. Information and Control, 7(3), 369-380.
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Exercise 25.2.7.

(a) Give an example of a binary code that is not reversible.

(b) Show that all cyclic codes of length 2 and 3 are reversible codes.

(c) Show that all cyclic codes of lengths 4 are reversible codes. (Hint : How
many code words are palindromic? You don’t need to check these. The
remaining code words divide into pairs, where the two code words in a
pair are reverses of each other. You just need to show that the two code
words in each pair are cyclic shifts of each other.)

(d) *Show that all cyclic codes of length 5 are reversible codes. (Hint : You
will need to use the cyclic codes are defined to be linear.)

♢

Exercise 25.2.8. Let S be a binary cyclic code, and suppose that S contains
a palindromic codeword w. Show that the reverse of every cyclic shift of w
is also a cyclic shift of w. ♢

Exercise 25.2.9. Suppose a code C has a generator matrix G with two
columns, such that the two columns are reverses of each other. Show that
C is a reversible code. ♢

Exercise 25.2.10. Suppose a code C is reversible, and has an odd number
of codewords. Prove that at least one codeword in C is palindromic. Is it
possible that C could have exactly two codewords are palindromic in this
case? ♢

25.3 Polynomial Codes: definition and basic prop-
erties

In Section 25.1 we mentioned that any polynomial in Z2[x] can be written
as a binary n-tuple: for example, the polynomial x6 + x4 + x would be
represented as (1010010) . Notice that in the n-tuple, the coefficient of the
highest order term is on the left, and the coefficient of the lowest-order term
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written on the right. We did this because this is how you write polynomials
in high school or college algebra. However, the reader should take note
that many references on polynomial codes reverse this order, and list the
lowest-order coefficient on the left.

Now we’ll turn the relationship around. Any list or vector of binary
digits, similar to the code words in the previous section, can be represented
as a polynomial. For example (101101) can be represented as the polynomial
1x5 + 0x4 + 1x3 + 1x2 + 0x+ 1 = x5 + x3 + x2 + 1.

Exercise 25.3.1. Suppose a vector contains 10 binary digits (binary digits
are also referred to as bits).

(a) What is the highest possible degree of the polynomial corresponding to
the vector?

(b) If the degree of the corresponding polynomial is 6, what can you say
about the vector?

(c) If the corresponding polynomial has only even powers of x, what can
you say about the vector?

♢

Recall that we have defined a code of length n (or n-bit code) as a set
of binary n-tuples. We can use polynomials to generate codes as shown in
the following example.

Example 25.3.2. Let p(x) = x3 + 1. Consider all polynomials of degree ≤
2: they are

0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1.

Take p(x) times each of these polynomials and represent the results as binary
6-tuples:
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0 · p(x)) = 0x5 + 0x4 + 0x3 + 0x2 + 0x+ 0 = (000000),

1 · (p(x)) = x3 + 1 = (001001),

x(p(x)) = x4 + x = (010010),

x2(p(x)) = x5 + x2 = (100100),

(x+ 1)p(x) = (010010) + (001001) = (011011),

(x2 + 1)p(x) = (100100) + (001001) = (101101),

(x2 + x)p(x) = (100100) + (010010) = (110110), and

(x2 + x+ 1)p(x) = (100100) + (010010) + (001001) = (111111).

So we have the following set:

(000000) (100100) (001001) (101101)
(010010) (110110) (011011) (111111).

We call this set of codewords the code of length 6 (or 6-bit code) generated
by p(x). ♦

We generalize this example with the following definition.

Definition 25.3.3. Let p(x) be a polynomial of degree d with coefficients
in Z2 and S be the set of all polynomials in Z2[x] with degree m or less. The
polynomial code generated by p(x) of length d+m+1 is the subset of
Zd+m+1
2 corresponding to the set of products of p(x) with each polynomial

in S. △

Exercise 25.3.4. Find the 7-bit codes generated by the following polyno-
mials.

(a) x5 + x3 + x2 + 1

(b) x4 + x3 + x

(c) x5 + x4 + x2 + x

(d) x4 + x2
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♢

Exercise 25.3.5. Find the 5-bit codes generated by each of the following
polynomials:

(a) x+ 1

(b) x3 + x+ 1

(c) x2 + x

♢

In our previous discussion of binary codes in Chapter 19, we made a big
deal about linear codes. Recall that a linear code is a code that is closed
under addition:

Exercise 25.3.6. Show that the following code is a linear code

{(0000), (1010), (0101), (1111)}

♢

Notice that in Exercise 25.3.6, we used the cyclic polynomial code from
Example 25.2.6. Therefore it is possible for a polynomial code to be a linear
code. But are all polynomial codes linear codes? That’s the million-dollar
question. Let’s explore a bit:

Exercise 25.3.7. Let p(x) = x3 + x+ 1, let G1 be the set of 6-tuples that
are multiples of p(x).

(a) Show that (100111) and (010110) are multiples of p(x).

(b) Show that (100111) + (010110)is a multiple of p(x). (Here ‘+’ is in the
sense of Z2[x].)

(c) Show that the polynomial code consisting of multiples of p(x) is a linear
code (that is, it is closed under addition).
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♢

The preceding exercise is not a general proof, but it is possible to gen-
eralize the method used to show that polynomial codes are indeed linear
codes. It’s actually not difficult to obtain the generator matrix for a given
polynomial code, as the following example shows.

Example 25.3.8. Consider the (6, 3) code corresponding to the polynomial
x3 + 1. We therefore have

1 encodes as x3 + 1,

x encodes as x4 + x,

x2 encodes as x5 + x2.

All of the above polynomials also have n-tuple representations. Using n −
tuples, the same encoding information can be written as

(001) 7→ (001001),
(010) 7→ (010010),
(100) 7→ (100100).

To obtain the generator matrix, we simply write the codewords for
(100), (010), and (001) as column vectors next to each other.



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


Since the smallest weight of any of the nonzero codewords is 2, this code

has the ability to detect all single errors.

♦

Exercise 25.3.9. Give the generator matrix for the codes generated by the
following polynomials.

(a) The (5,3) code generated by x2 + x.
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(b) The (7,4) code generated by x3 + x.

(c) The (9,5) code generated by x4 + x2 + 1.

♢

We now have enough information to approach the question of when a
polynomial code is a cyclic code. We must first define a cyclic shift in terms
of polynomials. We understand to perform a cyclic shift on an n-tuple,
we just take the left most digit in the n-tuple and put it on the right of
the n-tuple. (1011) would turn into (0111). However moving the terms of
a polynomial does not change its value. In this case we have to multiply
the whole polynomial by x to shift the terms up a degree, but there is an
additional step needed to move the highest term to the lowest. To do this,
we have to use modular polynomial division.

Example 25.3.10. The n-tuple (0111) when cyclically shifted once, results
in (1110). So the polynomial p(x) = x2 + x+1 when cyclically shifted once
is x3 + x2 + x. When we multiply p(x) by x, we get x3 + x2 + x. In this
case, multiplication by x gives the cyclic shift.

The n-tuple (1011) when cyclically shifted once results in (0111). So the
polynomial p(x) = x3 + x + 1 when cyclically shifted once is x2 + x + 1.
We multiply p(x) by x to yield xp(x) = x4 + x2 + x, which is not the same
codeword as (0111). Therefore, we must divide by x4 + 1.

x4 + x2 + x = 1 · (x4 + 1) + (x2 + x− 1)

and the last term −1 gets taken (mod 2) to yield.

x2 + x+ 1

Which is the same as the n-tuple (1110). ♦

Proposition 25.3.11. A cyclic shift of a n-bit polynomial codeword p(x) is
the same as multiplying the codeword p(x) by x then taking the remainder
after dividing by xn + 1.

Proof.

Case 1: The polynomial codeword has a degree of less than n− 1. In
this case, a polynomial of the form p(x) = 0xn−1+an−2x

n−2+an−3x
n−3 · · ·+
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a1x + a0 where an ∈ Z2, when multiplied by x would result in xp(x) =
an−2x

n−1 + an−3x
n−2 · · · + a1x

2 + a0x + 0 Which is the cyclically shifted
code word. Then when taking the remainder after division by xn + 1, we
notice that the degree of xn + 1 is larger than xp(x), so the quotient must
be 0 and the remainder will be xp(x).

Case 2: The polynomial codeword has a degree equal to n− 1. In this
case, a polynomial of the form p(x) = an−1x

n−1 + an−2x
n − 2 + an−3x

n −
3 · · · + a1x + a0, where an ∈ Z2, when multiplied by x would result in
xp(x) = an−1x

n+an−2x
n−1 · · ·+a1x2+a0x+0. This is close to the cyclically

shifted codeword, but has an xn term that is not in any codeword. We then
divide by xn+1, since both xp(x) and xn+1 have a xn term, the quotient is
1. Then taking the remainder will yield, an−2x

n−1 · · ·+ a1x2+ a0x− 1. But
remember we’re doing arithmetic in Z2, so −1 = 1. Thus the remainder is
an−2x

n−1 · · ·+ a1x
2 + a0x+ 1 which is the cyclically shifted codeword. □

Exercise 25.3.12. For the following polynomials, calculate their cyclic shift
by multiplying by x then taking the remainder after division of xn + 1.

a x3 + x2 + 1 where n = 4

b x7 + x4 + x2 where n = 8

c x9 + x8 + x7 + x5 + x4 + x2 + 1 where n = 10

♢

Proposition 25.3.13. Any cyclic shift of p(x) can be written as a sum of
p(x) + q(x)(xn+1), where p(x) is a codeword and q(x) is some polynomial.

Proof. Given a n-bit codeword p(x), the cyclic shift of p(x) is calculated
by xp(x) = q(x)(xn + 1) + r(x) where q(x) is some polynomial and r(x) is
a polynomial of degree less than n. Simply subtract q(x)(xn+1) from both
sides to yield xp(x)− q(x)(xn + 1) = r(x). □

We next introduce the notion of a complete polynomial, which resembles
the idea of a generator of a cyclic group.3

Definition 25.3.14. A complete polynomial is a polynomial f(x) ∈
Z2[x] of degree n such that for every nonzero polynomial g(x) ∈ Z2[x] of

3In fact, a complete polynomial IS the generator of a group of nonzero polynomials
under multiplication.
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degree n or less, there exists a positive integer k such that g(x) − xk is
divisible by f(x). △

Example 25.3.15. The polynomial x3 + x + 1 is complete. First, we set
the equation equal to 0. x3 + x+ 1 = 0 Add x+ 1 from both sides to yield:
x3 = x + 1. (Remember, addition is the same as subtraction in Z2[x].)
Multiply by x to get

x4 = x2 + x,

and again to get
x5 = x3 + x2.

Now substitute x+ 1 for x3 to get x5 = x+ 1 + x2. Multiply again by x to
yield.

x6 = x3 + x2 + x,

and substitute again for x3 to get (after some algebra)

x6 = x2 + 1

Multiply once more by x to get x7 = x3 + x = 1.

So if we list the possible polynomials of degree 2 or less, each is paired
to a power of x.

x0 = 1
x1 = x
x2 = x2

x3 = x+ 1
x4 = x2 + x
x5 = x2 + x+ 1
x6 = x2 + 1
x7 = 1

Therefore the polynomial x3+x+1 is complete for polynomials of degree 2
or smaller. ♦

With these properties in place, we can now show how to generate a cyclic
code with polynomials.

Example 25.3.16. Let p(x) be x + 1 and f(x) = x5 + 1 be a polynomial
to be encoded. The product of the two would be the codeword f(x)p(x) =
x6 + x5 + x+ 1. To cycle the codeword left, we would need to multiply by
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x. This would yield x7 + x6 + x2 + x. However, since this is a 7-bit code,
there is no place for an x7 term. So we need to shift the x7 term to an x0

term. This is done by taking the remainder after dividing by x7 + 1.

x7 + 1 goes into x7 + x6 + x2 + x once, this cancels the x7 term and
has x6 + x2 + x − 1 as the remainder, but remember that this operation is
done (mod 2) so the remainder is x6 + x2 + x − 1. x7 + 1 does not divide
any further as all the remaining terms are of a lesser degree. This new term
we can then divide by x+ 1 to show that it is in the code. x+ 1 goes into
x6 + x2 + x + 1 exactly x5 + x4 + x3 + x2 + 1 times (mod 2). We can
continue multiplying by x and taking the remainder after division by x7+1
to generate additional codewords.

So for the 7-bit polynomial code generated to be cyclic, p(x) must divide
x7 + 1. Using polynomial division we can show that x7 = (x+ 1)(x6 − x5 +
x4 − x3 + x2 − x+ 1) + 0. So p(x) divides any product of x7 + 1.

We can show that x+1 divides xn+1. First lets show that p(x) divides
x2 + 1. (p(x))2 = x2 + 2x + 1, but remember 2x = 0 in Z2 so (p(x))2 =
x2 + 1. Likewise we can show that x + 1 divides x3 + 1. Using polynomial
multiplication, we can show that (x + 1)(x2 − x + 1) = (x3 + 1). However
we need to show that x+ 1 divides xn + 1 for any n. ♦

Proposition 25.3.17. If a polynomial p(x) divides xn + 1, then the n-bit
polynomial code generated by p(x) is cyclic.

Proof. Let C be the code generated by p(x), and let f(x) be an arbitrary
codeword in C. Then by Definition 25.3.3, f(x) = a(x)p(x). Let g(x) be the
cyclic shift of f(x) by 1. By Proposition 25.3.11, g(x) is the remainder of
xf(x) when divided by xn + 1. By Proposition 25.3.13, g(x) = xf(x) +
q(x)(xn + 1). Since p(x) divides xn + 1, then xn + 1 = s(x)p(x). By

substitution, g(x) = xa(x)p(x) + q(x)s(x)p(x) = p(x)

(
xa(x) + q(x)s(x)

)
.

Therefore, g(x) is a multiple of p(x): in other words, g(x) is in the code
generated by p(x), which is none other than C. We have thus shown that
any cyclic shift of an arbitrary codeword in C is also in C. This is exactly
what it means for the code C to be a cyclic code. Thus the proposition is
proved. □



26

Appendix: Induction
proofs–patterns and

examples

26.1 Basic examples of induction proofs

Below is a complete proof of the formula for the sum of the first n integers,
that can serve as a model for proofs of similar sum/product formulas. 1

Proposition 26.1.1. For all n ∈ N, the following equation (which we
denote as P (n)) is true:

n∑
i=1

i =
n(n+ 1)

2
. (P (n))

Proof. (By induction):

Base case: When n = 1, the left side of P (n) is 1, and the right side is
1(1 + 1)/2 = 1, so both sides are equal and P (n) holds for n = 1.

1This section was taken (with permission!) from A. J. Hildebrand’s excellent notes on
induction (reformatted and minor edits by C.T.).

938



26.2 ADVICE ON WRITING UP INDUCTION PROOFS 939

Induction step: Let k ∈ N be given and suppose formula P (n) holds for
n = k. Then

k+1∑
i=1

i =
k∑
i=1

i+ (k + 1) (by definition of
∑

notation)

=
k(k + 1)

2
+ (k + 1) (by induction hypothesis)

=
k(k + 1) + 2(k + 1)

2
(by algebra)

=
(k + 1)((k + 1) + 1)

2
(by algebra).

Thus, P (n) holds for n = k + 1, and the proof of the induction step is
complete.

Conclusion: By the principle of induction, we have proved that P (n) holds
for all n ∈ N. □

26.2 Advice on writing up induction proofs

Here are four things to keep in mind as you write up induction proofs.

#1: Begin any induction proof by stating precisely, and promi-
nently, the statement you plan to prove. This statement typically
involves an equation (or assertion) in the variable n, and we’re trying to
prove this equation (or assertion) for all natural numbers n bigger than a
certain value. A good idea is to write out the statement and label it as
“P (n)”, so that it’s easy to spot, and easy to reference; see the sample
proofs for examples.

#2: Be sure to properly begin and end the induction step. From
a logical point of view, an induction step is a proof of a statement of the
form, “for all k ∈ N, P (k) ⇒ P (k + 1)”. To prove such a statement, you
need to start out by asserting,“let k ∈ N be given”), then assume P (k) is
true (“Suppose P (n) is true for n = k”), and, after a sequence of logical
deductions, derive P (k + 1) (“Therefore P (n) is true for n = k + 1”).

#3: Use different letters for the general variable appearing in the
statement you seek to prove (n in the above example) and the
variable used for the induction step (k in the above example). The
reason for this distinction is that in the induction step you want to be able to
say something like the following: “Let k ∈ N be given, and suppose P (k) ....
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[Proof of induction step goes here] ... Therefore P (k+ 1) is true.” Without
introducing a second variable k, such a statement wouldn’t make sense.

#4: Always clearly state, at the appropriate place in the induction
step, when the induction hypothesis is being used. E.g., say “By the
induction hypthesis we have ...”, or use a parenthetical note “(by induction
hypothesis)” in a chain of equations as in the above example. The induction
hypothesis is the case n = k of the statement we seek to prove (i.e., the
statement “P (k)” and it is what you assume at the start of the induction
step. The place where this hypothesis is used is the most crucial step in
an induction argument, and you must get this hypothesis into play at some
point during the proof of the induction step—if not, you are doing something
wrong.

26.3 Induction proof patterns & practice prob-
lems

Induction proofs, type I: Sum/product formulas

The most common, and the easiest, application of induction is to prove
formulas for sums or products of n terms. Many of these proofs follow the
same pattern. Here are some examples of formulas that can be proved by
induction:

(i)
∑n

i=1 i(i+ 1) = n(n+1)(n+2)
3

(ii)
∑n

i=0 i!i = (n+ 1)!− 1.

(iii)
∑n

i=0 r
i = 1−rn+1

1−r (r ̸= 1) (sum of finite geometric series)

(iv)
∑n

i=0 2
i = 2n+1 − 1 (sum of powers of 2)

In the following exercises, we will guide you through the proofs of (i)
and (ii). For parts (iii) and (iv), you’re on your own!

Exercise 26.3.1. Fill in the blanks for the following induction proof of
formula (i) above.

Proof. We seek to show that, for all n ∈ N,
n∑
i=1

i(i+ 1) =
n(n+ 1)(n+ 2)

3
. ( P (n))
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Base case: When n = 1, the left side of P (1) is equal to < 1 > , and the
right side is equal to < 2 > , so both sides are equal and P (1) is true.

Induction step: Let k ∈ N be given and suppose P (k) is true. Then

k+1∑
i=1

i(i+ 1) =

k∑
i=1

i(i+ 1) + < 3 >

=
k(k + 1)(k + 2)

3
+ < 4 > (by induction hypothesis)

=
(k + 1)(k + 2)(k + 3)

3
.

Thus, P ( < 5 > ) holds, and the proof of the induction step is complete,

Conclusion: By the principle of induction, it follows that < 6 > is true
for all n ∈ N. □

♢

Exercise 26.3.2. Provide an outline for the proof of formula (ii) by re-
sponding to each of the parts below.

(a) What is the equation that must be shown for all n ∈ N? (Call this
equation “P (n)”).

(b) Identify the base case, and show that equation P (n) holds for the base
case.

(c) Write the left-hand side of P (k + 1).

(d) Separate off the last term in the sum, so that you have a sum from 1 to
k plus an additional term.

(e) Use the induction hypothesis to replace the sum from 1 to k with a
simpler expression.

(f) Use algebra to obtain P (k+1), which completes the proof of the induc-
tion step.

(g) What is the final conclusion which can be drawn from the above argu-
ment?
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♢

Exercise 26.3.3.

(a) Prove formula (iii) above using induction.

(b) Prove formula (iv) above using induction.

♢

Induction proofs, type II: inequalities

A second general type of application of induction is to prove inequalities
involving a natural number n. These proofs also tend to be on the routine
side; in fact, the algebra required is usually very minimal, in contrast to
some of the summation formulas.

In some cases the inequalities don’t “kick in” until n is large enough. By
checking the first few values of n one can usually quickly determine the first
n-value, say n0, for which the inequality holds. Then one may use n = n0
as the base case, instead of n = 0.

Here are some examples of integer inequalities that can be proved using
induction:

(i) 2n > n

(ii) 2n ≥ n2 (n ≥ 4)

(iii) n! > 2n (n ≥ 4)

(iv) (1− x)n ≥ 1− nx (0 < x < 1)

(v) (1 + x)n ≥ 1 + nx (x > 0)

In the following exercises, we will guide you through the proofs of (iii)
and (iv). For the others, you’ll have to wing it.

Exercise 26.3.4. Fill in the blanks in the following proof of (iii).

Proof.
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We are trying to show that

n! > 2n (P (n))

holds for all n ≥ 4. (Note that the inequality fails for n = 1, 2, 3. But
this doesn’t matter, because we only have to show that it works for for all
n from 4 onwards.)

Base case: For n = 4, the left and right sides of P (4) are equal to < 1 >
and < 2 > , respectively, so P (4) is true.

Induction step: Let k ≥ 4 be given and suppose < 3 > is true. Then

(k + 1)! = k! · (k + 1)

> 2k · < 4 > (by < 5 > )

≥ 2k · 2 (since k ≥ 4 and so k + 1 ≥ 2))

= < 6 > .

Thus, < 7 > holds, and the proof of the induction step is complete.

Conclusion: By the principle of induction, it follows that P (n) is true for
all n ≥ 4. □

♢

Exercise 26.3.5. Provide an outline for the proof of the inequality (iv) by
giving answers for each of the parts below.

Proof.

(a) What statement do you need to prove for every real number 0 < x < 1
and any n ∈ N? Call this statement “P (n)”.

(b) Base case: Show that the left and right sides of P (n) are equal in the
base case.

(c) Induction step: Let k ∈ N be given and suppose P (k) is true for any
real number 0 < x < 1. What do we seek to show?

(d) Rewrite (1 − x)k+1 as (1 − x)k · (1 − x). Then use P (k) to obtain an
inequality. Using basic algebra, simplify the right-hand side until you
obtain a quantity that is greater than 1− (k + 1)x.
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(e) What may you conclude about P (k + 1)?

(f) Conclusion: What is the ultimate conclusion of the argument?

□ ♢

Exercise 26.3.6.

(a) Prove inequality (i) above using induction.

(b) Prove inequality (ii) above using induction.

(c) Prove inequality (v) above using induction.

♢

Induction proofs, type III: Extension of theorems from 2 vari-
ables to n variables

Another very common and usually routine application of induction is to
extend general results that have been proved for the case of 2 variables to
the case of n variables. Below are some examples. In proving these results,
use the case n = 2 as base case. To see how to carry out the general induction
step (from the case n = k to n = k+1), it may be helpful to first try to see
how get from the base case n = 2 to the next case n = 3.

Here are some examples of mulitple-variable theorems that can be proved
using induction:

(i) Show that if x1, . . . , xn are odd, then x1x2 . . . xn is odd.

(ii) Show that if ai and bi (i = 1, 2, . . . , n) are real numbers such that
ai ≤ bi for all i, then

n∑
i=1

ai ≤
n∑
i=1

bi.

(iii) Show that if x1, . . . , xn are real numbers, then∣∣∣∣∣sin
(

n∑
i=1

xi

)∣∣∣∣∣ ≤
n∑
i=1

|sinxi| .

(Use the trig identity for sin(α+ β).)
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(iv) Show that if A1, . . . , An are sets, then

(A1 ∪ · · · ∪An)c = Ac1 ∩ · · · ∩Acn.

(This is a generalization of De Morgan’s Law to unions of n sets. Use
De Morgan’s Law for two sets ((A ∪B)c = Ac ∩Bc) and induction to
prove this result.)

We’ll give outlines of the proofs of (i) and (ii).

Exercise 26.3.7. This exercise will provide a proof of (i).

(a) We will need the following assertion in the proof:

If x and y are odd, then xy is also odd.

We know that x is odd if and only if mod(x,2)=1. Use this and facts
from modular arithmetic to prove the needed assertion.

(b) Fill in the blanks in the following proof of (i).

Proof. We will prove by induction on n the following statement:

If x1, . . . , xn are odd numbers, then x1x2 . . . xn is odd. (P (n))

Base case: For n = 1, the product x1 . . . xn reduces to < 1 > , which
is odd whenever x1 is odd. Hence P (n) is true for n = 1.

Induction step.

� Let k ≥ 1, and suppose (∗) is true for n = k, i.e., suppose that any
product of < 2 > odd numbers is again odd.

� We seek to show that < 3 > is true, i.e., that any product of
< 4 > odd numbers is odd.

� Let x1, . . . , xk+1 be odd numbers.

� Applying the induction hypothesis to x1, . . . , xk, we obtain that
the product < 5 > is odd.

� Since xk+1 is < 6 > and, by part (a) the product of two odd
numbers is again odd, it follows that x1x2 . . . xk+1 = (x1 . . . xk)xk+1

is odd.



946CHAPTER 26 APPENDIX: INDUCTION PROOFS–PATTERNS AND EXAMPLES

� As x1, . . . , xk+1 were arbitrary odd numbers, we have proved < 7 > ,
so the induction step is complete.

Conclusion: By the principle of induction, it follows that P (n) is true
for all n ∈ N. □

♢

Exercise 26.3.8. Complete an outline of a proof of (ii) by responding to
the following items.

(a) What statement do we want to prove for all natural numbers n and for
all real numbers ai and bi (i = 1, . . . , n) such that ai ≤ bi? Call this
statement “P(n)”. (Note that the condition “for all real numbers ai and
bi” must be part of the induction statement we seek to prove.)

(b) Base case: Show that P (1) is true.

(c) Induction step: Let k ≥ 1. Write P (k).

(d) We seek to prove that P (k) implies P (k+1). We may rewrite P (k+1)
as follows (fill in the blanks): Let a1, . . . , ak+1 and b1, . . . , bk+1 be given
real numbers such that for each i. Then

k+1∑
i=1

ai = + ak+1.

(e) Assuming that P (k) is true, use Proposition 3.2.17 to show that P (k+1)
is also true. This is equivalent to showing that P (k) implies P (k + 1).

(f) Conclusion: What is the final conclusion?

♢

26.4 Strong Induction, with applications

One of the most common applications of induction is to problems involving
recurrence sequences such as the Fibonacci numbers, and to representa-
tion problems such as the representation of integers as a product of primes
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(Fundamental Theorem of Arithmetic), sums of powers of 2 (binary repre-
sentation), and sums of stamp denominations (postage stamp problem).

In applications of this type, the case n = k in the induction step is
not enough to deduce the case n = k + 1; one usually needs additional
predecessors predecessors to get the induction step to work, e.g., the two
preceding cases n = k and n = k−1, or all preceding cases n = k, k−1, . . . , 1.
This variation of the induction method is called strong induction. The
induction principle remains valid in this modified form.

Strong induction and recurrences

In the induction proofs we’ve looked at so far, we first had to prove a base
case, and then used a preceding case (n = k) to prove the case n = k + 1
in the induction step. But when we aply induction to two-term recurrence
sequences like the Fibonacci numbers, we’ll need two preceding cases, n = k
and n = k − 1, in the induction step, and two base cases (e.g., n = 1 and
n = 2) to get the induction going. The logical structure of such a proof is
of the following form:

Base step: P (n) is true for n = 1, 2.

Induction step: Let k ∈ N with k ≥ 2 be given and assume P (n) holds
for n = k and n = k − 1.

[... Work goes here ...]

Therefore P (k + 1) holds.

Conclusion: By the principle of strong induction, P (n) holds for all n ∈ N.

Note that in the induction step, one could also say “Assume P (n) holds for
“ n = 1, 2, . . . , k”; this is a bit redundant as only the last two of the cases
n = 1, 2, . . . , k are needed, though logically correct.

Here is a worked-out example of a proof by strong induction.

Proposition 26.4.1. Let an be the sequence defined by a1 = 1, a2 = 8,
and an = an−1+2an−2 for n ≥ 3. Then an = 3 ·2n−1+2(−1)n for all n ∈ N.

Proof. We’ll prove by strong induction that, for all n ∈ N,

an = 3 · 2n−1 + 2(−1)n. (P (n))
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Base case: When n = 1, the left side of P (1) is a1 = 1, and the right
side is 3 · 20 + 2 · (−1)1 = 1, so both sides are equal and P (1) is true.

When n = 2, the left and right sides of P (2) are a2 = 8 and 3 · 21 + 2 ·
(−1)2 = 8, so P (2) also holds.

Induction step: Let k ∈ N with k ≥ 2 be given and suppose P (n) is
true for n = 1, 2, . . . , k. Then

ak+1 = ak + 2ak−1 (by recurrence for an)

= 3 · 2k−1 + 2 · (−1)k + 2
(
3 · 2k−2 + 2 · (−1)k−1

)
(by P (k) and P (k − 1))

= 3 ·
(
2k−1 + 2k−1

)
+ 2

(
(−1)k + 2(−1)k−1

)
(by algebra)

= 3 · 2k + 2(−1)k+1 (more algebra).

Thus, P (k + 1)) holds, and the proof of the induction step is complete.

Conclusion: By the strong induction principle, it follows that P (n) is
true for all n ∈ N. □

Strong Induction and representation problems

For applications to representation problems one typically requires the in-
duction hypothesis in its strongest possible form, where one assumes all
preceding cases (i.e., for n = 1, 2, . . . , k) instead of just the immediate pre-
decessor (as in simple induction) or two predecessors (as in strong induction
applied to two-term recurrences).

Below is a classic example of this type, a proof that every integer ≥ 2
can be written as a product of prime numbers. This is the existence part
of what is called the Fundamental Theorem of Arithmetic; the other part
guarantees uniquess of the representation, which we will not be concerned
with here (it can also be proved by induction, but the proof is a little more
complicated).

Recall the definition of prime from Chapter 4: an integer n > 1 is called
prime if it has no factor greater than 1 other than itself. An integer n > 1
that is not prime is called composite : in other words, n can be written as
n = ab with integers a, b satisfying 2 ≤ a, b < n. Using these definitions, we
may now state and prove:

Proposition 26.4.2.(Fundamental Theorem of Arithmetic: existence)
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Any integer n ≥ 2 is either a prime or can be represented as a product
of (not necessarily distinct) primes, i.e., in the form n = p1p2 . . . pr, where
the pi are primes.

Proof. We will prove by strong induction that the following statement
holds for all integers n ≥ 2.

n can be represented as a product of one or more primes. (P (n))

Base case: The integer n = 2 is a prime since it cannot be written as a
product ab, with integers a, b ≥ 2, so P (n) holds for n = 2.

Induction step:

� Let k ≥ 2 be given and suppose P (n) is true for all integers 2 ≤ n ≤ k,
i.e., suppose that all such n can be represented as a product of one or
more primes.

� We seek to show that k + 1 also has a representation of this form.

� If k+1 itself is prime, then P (n) holds for n = k+1, and we are done.

� Now consider the case when k + 1 is composite.

� By definition, this means that k + 1 can be written in the form k +
1 = ab, where a and b are integers satisfying 2 ≤ a, b < k + 1, i.e.,
2 ≤ a, b ≤ k.

� Since 2 ≤ a, b ≤ k, the induction hypothesis can be applied to a and b
and shows that a and b can be represented as products of one or more
primes.

� Multiplying these two representations gives a representation of k + 1
as a product of primes.

� Hence k + 1 has a representation of the desired form, so P (n) holds
for n = k + 1, and the induction step is complete.

Conclusion: By the strong induction principle, it follows that P (n) is true
for all n ≥ 2, i.e., every integer n ≥ 2 is either a prime or can be represented
as a product of primes. □
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26.5 More advice on induction and strong induc-
tion proofs

Should I use ordinary induction or strong induction? With some
standard types of problems (e.g., sum formulas) it is clear ahead of time
what type of induction is likely to be required, but usually this question
answers itself during the exploratory/scratch phase of the argument. In the
induction step you will need to reach the k + 1 case, and you should ask
yourself which of the previous cases you need to get there. If all you need to
prove the k+ 1 case is the case k of the statement, then ordinary induction
is appropriate. If two preceding cases, k − 1 and k, are necessary to get to
k + 1, then (a weak form of) strong induction is appropriate. If one needs
the full range of preceding cases (i.e., all cases n = 1, 2, . . . , k), then the full
force of strong induction is needed.

How many base cases are needed? The number of base cases to be
checked depends on how far back one needs to “look” in the induction step.
In standard induction proofs (e.g., for summation formulas) the induction
step requires only the immediately preceding case (i.e., the case n = k), so
a single base case is enough to start the induction.

� For Fibonacci-type problems, the induction step usually requires the
result for the two preceding cases, n = k and n = k − 1. To get
the induction started, one therefore needs to know the result for two
consecutive cases, e.g., n = 1 and n = 2.

� In postage stamp type problems, getting the result for n = k+1 might
require knowing the result for n = k − 2 and n = k − 6, say. This
amounts to “looking back” 7 steps (namely n = k, k− 1, . . . , k− 6), so
7 consecutive cases are needed to get the induction started.

� On the other hand, in problems involving the full strength of the strong
induction hypothesis (i.e., if in the induction step one needs to assume
the result for all preceding cases n = k, k − 1, . . . , 1), a single base
case may be sufficient. An example is the Fundamental Theorem of
Arithmetic.

How do I write the induction step? As in the case of ordinary in-
duction, at the beginning of the induction step state precisely what you are
assuming, including any constraints on the induction variable k. Without
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an explicitly stated assumption, the argument is incomplete. The appropri-
ate induction hypothesis depends on the nature of the problem and the type
of induction used. Here are some common ways to start out an induction
step:

� “Let k ∈ N be given and assume P (k) is true.” (typical form for
standard induction proofs)

� “Let k ≥ 2 be given and assume P (n) holds for n = k− 1 and n = k.”
(typical form for induction involving recurrences)

� “Let k ∈ N be given and assume P (n) holds for n = 1, 2, . . . , k.”
(typical form for representation problems)

26.6 Common mistakes

The following examples illustrate some common mistakes in setting up base
case(s) and the induction step.

Example 1.

– Base step: n = 3.

– Induction step: Let k ∈ N with k ≥ 3 be given and assume
P (n) is true for n = k and n = k − 1.

– Comment: BAD: When k = 3 (the first case of the induction
step), the induction step requires the cases 3 and 2, but only 2 is
covered in the base step.
FIX: Add the case n = 2 to the base step.

Example 2.

– Base step: n = 1 and n = 2.

– Induction step: Let k ∈ N with k > 2 be given and assume
P (n) is true for n = k and n = k − 1.

– Comment: BAD. Gap between base case and the first case of
the induction step: The first case k = 3 of the induction step
requires the cases 3 and 2, but the base step only gives the cases
1 and 2.
FIX: Start induction step at k = 2 rather than k = 3: “Let
k ∈ N with k ≥ 2 be given . . . ”
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Example 3.

– Base step: n = 1 and n = 2.

– Induction step: Assume P (n) is true for n = k and n = k − 1.
Then ...

– Comment: BAD. The variable k in the induction step is not
quantified.
FIX: Add “Let k ∈ N with k ≥ 2 be given.”

Example 4.

– Base step: n = 1 and n = 2.

– Induction step: Let k ∈ N be given and assume P (n) is true
for n = k and n = k − 1.

– Comment: BAD. Here the first case induction step is k = 1,
with the induction hypothesis being the cases n = k and n = k−1.
But when k = 1, the second of these cases, n = k − 1 = 0, is out
of range.
FIX: Add the restriction k ≥ 2 to the induction step: “Let k ∈ N
with k ≥ 2 be given.”

26.7 Strong induction practice problems

1. Recurrences: The first few problems deal with properties of the
Fibonacci sequence and related recurrence sequences. The Fibonacci
sequence is defined by F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for
n ≥ 3. Its first few terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

In the following problems, use an appropriate form of induction (stan-
dard induction or strong induction) to establish the desired properties
and formulas. (Note that some of these problems require only ordinary
induction.)

(a) Fibonacci sums: Prove that
∑n

i=1 Fi = Fn+2 − 1 for all n ∈ N.
(b) Fibonacci matrix: Show that, for all n ∈ N,(

1 1
1 0

)n
=

(
Fn+1 Fn
Fn Fn−1

)
. (P (n))
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(c) Odd/even Fibonacci numbers: Prove that the Fibonacci num-
bers follow the pattern odd,odd,even: that is, show that for any
positive integer m, F3m−2 and F3m−1 are odd and F3m is even.

(d) Inequalities for recurrence sequences: Let the sequence Tn
(“Tribonacci sequence”) be defined by T1 = T2 = T3 = 1 and
Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 4. Prove that

Tn < 2n (P (n))

holds for all n ∈ N.
We’ll give an outline for the proof of (d).

We will prove P (n) by strong induction.

Base step: For n = 1, 2, 3, Tn is equal to , whereas the right-
hand side of P (n) is equal to 21 = 2, 22 = 4, and 23 = 8,
respectively. Thus, P (n) holds for n = 1, 2, 3.

Induction step: Let k ≥ 3 be given and suppose P (n) is true
for all n = 1, 2, . . . , k. Then

Tk+1 = Tk + Tk−1 + (by recurrence for Tn)

< 2k + 2k−1 + (strong ind. hyp. & (P (k), P (k − 1), P (k − 2))

= 2k+1

(
1

2
+

1

4
+

)
= 2k+1 · < 2k+1.

Thus, holds, and the proof of the induction step is complete.

Conclusion: By the strong induction principle, it follows that
P (n) is true for all n ∈ N.

2. Representation problems. One of the main applications of strong
induction is to prove the existence of representations of integers of
various types. In these applications, strong induction is usually needed
in its full force, i.e., in the induction step, one needs to assume that
all predecessor cases n = 1, 2, . . . , k.

(a) The postage stamp problem: Determine which postage amounts
can be created using the stamps of 3 and 7 cents. In other words,
determine the exact set of positive integers n that can be written
in the form n = 3x+7y with x and y nonnegative integers. (Hint :
Check the first few values of n directly, then use strong induction
to show that, from a certain point n0 onwards, all numbers n
have such a representation.)
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(b) Binary representation: Using strong induction prove that ev-
ery positive integer n can be represented as a sum of distinct
powers of 2, i.e., in the form n = 2i1 + · · · + 2ih with integers
0 ≤ i1 < · · · < ih. (Hint : To ensure distinctness, use the largest
power of 2 as the first “building block” in the induction step. )

(c) Factorial representation. Show that any integer n ≥ 1 has a
represention in the form n = d11!+d22!+ · · ·+drr! with “digits”
di in the range di ∈ {0, 1, . . . , i}. (Hint : Use again the “greedy”
trick (pick the largest factorial that “fits” as your first building
block), and use the fact (established in an earlier problem) that∑k

i=1 i!i = (k + 1)!− 1.)

26.8 Non-formula induction proofs

Below is a sample proof of the statement that any n-element set (i.e., any
set with n elements) has 2n subsets. This illustrates a case where the result
we seek to prove is not a formula, but a statement that must be expressed
verbally, and where the induction step requires some verbal explanation, and
not just a chain of equalities. Additional practice problems follow below.

Proposition 26.8.1. For all n ∈ N, the following holds:

Any n-element set has 2n subsets. (P (n))

Proof.(By induction):

Base case: Since any 1-element set has 2 subsets, namely the empty
set and the set itself, and 21 = 2, the statement P (n) is true for n = 1.

Induction step:

� Let k ∈ N be given and suppose P (k) is true, i.e., that any k-element
set has 2k subsets. We seek to show that P (k+ 1) is true as well, i.e.,
that any (k + 1)-element set has 2k+1 subsets.

� Let A be a set with k + 1 elements.

� Let a be an element of A, and let A′ = A − {a} (so that A′ is a set
with k elements).
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� We classify the subsets of A into two types: (I) subsets that do not
contain a, and (II) subsets that do contain a.

� The subsets of type (I) are exactly the subsets of the set A′. Since
A′ has k elements, the induction hypothesis can be applied to this set
and we conclude that there are 2k subsets of type (I).

� The subsets of type (II) are exactly the sets of the form B = B′ ∪{a},
where B′ is a subset of A′. By the induction hypothesis there are 2k

such sets B′, and hence 2k subsets of type (II).

� Since there are 2k subsets of each of the two types, the total number
of subsets of A is 2k + 2k = 2k+1.

� Since A was an arbitrary (k+1)-element set, we have proved that any
(k+1)-element set has 2k+1 subsets. Thus P (k+1) is true, completing
the induction step.

Conclusion: By the principle of induction, P (n) is true for all n ∈ N.
□

26.9 Practice problems for non-formula induction

1. Number of subsets with an even (or odd) number of elements:
Using induction, prove that an n-element set has 2n−1 subsets with an
even number of elements and 2n−1 subsets with an odd number of
elements.

2. Number of regions created by n lines: How many regions are
created by n lines in the plane such that no two lines are parallel and
no three lines intersect at the same point? Guess the answer from the
first few cases, then use induction to prove your guess.

3. Sum of angles in a polygon: The sum of the interior angles in a
triangle is 180 degrees, or π. Using this result and induction, prove
that for any n ≥ 3, the sum of the interior angles in an n-sided polygon
is (n− 2)π.

4. Pie-throwing problem: Here is a harder, but fun problem. Consider
a group of n fraternity members standing in a yard, such that their
mutual distances are all distinct. Suppose each of throws a pie at his
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nearest neighbor. Show that if n is odd, then there is one person in
the group who does not get hit by a pie. (Hint : Let n = 2m+ 1 with
m ∈ N, and use m as the induction variable. Consider first some small
cases, e.g., n = 3 and n = 5.)

26.10 Fallacies and pitfalls

By now, induction proofs should feel routine to you, to the point that you
could almost do them in your sleep. However, it is important not to become
complacent and careless, for example, by skipping seemingly minor details
in the write-up, omitting quantifiers, or neglecting to check conditions and
hypotheses.

Below are some examples of false induction proofs that illustrate what
can happen when some minor details are left out. In each case, the statement
claimed is clearly nonsensical (e.g., that all numbers are equal), but the
induction argument sounds perfectly fine, and in some cases the errors are
quite subtle and hard to spot. Try to find them!

Example 26.10.1. Let us “prove” that for all n ∈ N,

n∑
i=1

i =
1

2
(n+

1

2
)2 (P (n))

Proof: We prove the claim by induction.

Base step: When n = 1, P (n) holds.
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Induction step: Let k ∈ N and suppose P (k) holds. Then

k+1∑
i=1

i =
k∑
i=1

i+ (k + 1)

=
1

2

(
k +

1

2

)2

+ (k + 1) (by ind. hypothesis)

=
1

2

(
k2 + k +

1

4
+ 2k + 2

)
(by algebra)

=
1

2

((
k + 1 +

1

2

)2

− 3k − 9

4
+ k +

1

4
+ 2k + 2

)
(more algebra)

=
1

2

(
(k + 1) +

1

2

)2

(simplifying).

Thus, P (k + 1) holds, so the induction step is complete.

Conclusion: By the principle of induction, P (n) holds for all n ∈ N. ♦

Example 26.10.2. Now we will “prove” that all real numbers are equal. To
prove the claim, we will prove by induction that, for all n ∈ N, the following
statement holds:

For any real numbers a1, a2, . . . , an, we have a1 = a2 = · · · = an. (P (n))

Base step: When n = 1, the statement is trivially true, so P (1) holds.

Induction step: Let k ∈ N be given and suppose P (k) is true, i.e., that
any k real numbers must be equal. We seek to show that P (k + 1) is true
as well, i.e., that any k + 1 real numbers must also be equal.

Let a1, a2, . . . , ak+1 be given real numbers. Applying the induction hy-
pothesis to the first k of these numbers, a1, a2, . . . , ak, we obtain

a1 = a2 = · · · = ak. (1)

Similarly, applying the induction hypothesis to the last k of these numbers,
a2, a3, . . . , ak, ak+1, we get

a2 = a3 = · · · = ak = ak+1. (2)

Combining (1) and (2) gives

a1 = a2 = · · · = ak = ak+1, (3)
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so the numbers a1, a2, . . . , ak+1 are equal. Thus, we have proved P (k + 1),
and the induction step is complete.

Conclusion: By the principle of induction, P (n) is true for all n ∈ N.
Thus, any n real numbers must be equal. ♦

Example 26.10.3. Here is a “proof” that for every nonnegative integer n,

5n = 0. (P (n))

Proof: We prove that P (n) holds for all n = 0, 1, 2, . . . , using strong
induction with the case n = 0 as base case.

Base step: When n = 0, 5n = 5 · 0 = 0, so P (n) holds in this case.

Induction step: Suppose P (n) is true for all integers n in the range
0 ≤ n ≤ k, i.e., that for all integers in this range 5n = 0. We will show that
P (k + 1) also holds, so that

5(k + 1) = 0. (P (k + 1))

Write k + 1 = i + j with integers i, j satisfying 0 ≤ i, j ≤ k. Applying
the induction hypothesis to i and j, we get 5i = 0 and 5j = 0. Then

5(k + 1) = 5(i+ j) = 5i+ 5j = 0 + 0 = 0,

proving P (k + 1). Hence the induction step is complete.

Conclusion: By the principle of strong induction, P (n) holds for all
nonnegative integers n. ♦

Example 26.10.4. Let’s “prove” that for every nonnegative integer n,

2n = 1 (P (n))

Proof: We prove that P (n) holds for all n = 0, 1, 2, . . . , using strong induc-
tion with the case n = 0 as base case.

Base step: When n = 0, 20 = 1, so P (0) holds. (Note: it is perfectly
OK to begin with a base case of n = 0.)

Induction step: Suppose P (n) is true for all integers n in the range
0 ≤ n ≤ k, i.e., assume that for all integers in this range 2n = 1. We will
show that P (k + 1) also holds, i.e.,

2n = 1 (P (k + 1))
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We have

2k+1 =
22k

2k−1
(by algebra)

=
2k · 2k

2k−1
(by algebra)

=
1 · 1
1

(by strong ind. hypothesis applied to each term)

= 1 (simplifying),

proving P (k + 1). Hence the induction step is complete.

Conclusion: By the principle of strong induction, P (n) holds for all
nonnegative integers n. ♦

Example 26.10.5. We will “prove” that all positive integers are equal. To
prove this claim, we will prove by induction that, for all n ∈ N, the following
statement holds:

For any x, y ∈ N, if max(x, y) = n, then x = y. (P (n))

(Here max(x, y) denotes the larger of the two numbers x and y, or the
common value if both are equal.)

Base step: When n = 1, the condition in P (1) becomes max(x, y) = 1.
But this forces x = 1 and y = 1, and hence x = y.

Induction step: Let k ∈ N be given and suppose P (k) is true. We seek
to show that P (k + 1) is true as well.

Let x, y ∈ N such that max(x, y) = k + 1. Then max(x − 1, y − 1) =
max(x, y)−1 = (k+1)−1 = k. By the induction hypothesis, it follows that
x− 1 = y − 1, and therefore x = y. This proves P (k + 1), so the induction
step is complete.

Conclusion: By the principle of induction, P (n) is true for all n ∈ N.
In particular, since max(1, n) = n for any positive integer n, it follows that
1 = n for any positive integer n. Thus, all positive integers must be equal
to 1 ♦
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GNU Free Documentation License

Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

961
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1. Applicability And Definitions

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using



GFDL LICENSE 963

a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose ti-
tle either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name men-
tioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this defi-
nition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.
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3. Copying In Quantity

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the con-
ditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.
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B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to con-
flict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedi-
cations”. You must delete all sections Entitled “Endorsements”.
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6. Collections Of Documents

You may make a collection consisting of the Document and other documents re-
leased under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and anyWarranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.
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If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify, sub-
license or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. Future Revisions Of This License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

Addendum: How to use this License for your doc-
uments

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.



GFDL LICENSE 969

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.
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direct product, 732

Abelian group, 506

classification, 736

Actions

compatibility property of, 792

group, 790, 794, 795

left and right, 795

Adleman, L., 285

Algebra

high school and college, 11

Algebraic

element, of a field, 916

Algebraic closure

of a field, 918

Algebraically closed

field, 914

Amplitude, 77

Argument

of complex number, 48

Arithmetic

modular, 94

Arrow diagram, 210

Associative

in ordinary arithmetic, 12

Associative property, 41

modular
addition/multiplication,
125

Associativity
of function composition, 244

Automorphism
inner, 750
of a group, 721, 749

Axiom, 11

BAC − CAB rule, 357
Balanced operations

in ordinary arithmetic, 17
Banded matrix, 765
Bijection

as a permutation, 451
definition of, 235
relation to inverse functions,

255
Binary

operation, 504
Binary n-tuple, 924
Binary Relation, 581
Bits

check bits, 683
information bits, 683

Block code, 663, 683
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Burnside’s conjecture, 653
Burnside, William, 528

Caesar, Julius, 269
Cancellation law

for groups, 525
Carmichael numbers, 297
Cartesian product

formal definition, 202
Cayley table, 512
Cayley’s Theorem, 727
Cayley, Arthur, 730
Ceiling

of a real number, 291
Center

of a group, 548
Centralizer

of an element, 654
Check bits, 683
Chinese Remainder Theorem, 149
Cipher, 267
Ciphertext, 267
Cis

definition, 49
Class equation, 851
Classification

abelian groups, 736
Closure

integers mod n, 121
Code

block code, 683
dual, 698
group, 672
Hamming, 698
ISBN, 105
linear, 680
minimum distance of, 666
orthogonal, 698
reversible, 928
UPC, 103

Codeword, 660
palindromic, 928
weight of, 666, 674

Codomain, 205
of a function, 212

Commutative
diagram, 842
in ordinary arithmetic, 12

Commutative property, 41
for compositions, 244
modular

addition/multiplication,
125

of disjoint cycles, 466
Complement

definition, 187
Complete polynomials, 935
Complex numbers

addition, 35
additive properties, 41
complex conjugate, 43
definition, 29
definition of, 29
division rule, 38
imaginary part, 29
modulus, 42
polar representation, 48
real part, 29
rectangular or Cartesian

representation, 46
subtraction, 37
vector representation, 47

Complex plane, 46
Composite number

definition, 948
Composition

Associative property, 244
definition of, 243
law of, 504
of cycles, 461
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of permutations, 452
of sets, 642
of symmetries, 452

Conjugacy
class, 850

Conjugate
element, 846

Conjugate, complex, 43
Conjugation

of permutations, 843
operation on groups, 846
relabeling method, 843

Contrapositive, 99, 223
Converse, 99
Coset

double, 655
leader, 696
left, 624
representative, 624
right, 625

Cryptanalysis, 270
Cryptoquip, 275
Cryptosystem

affine, 272
definition of, 267
monoalphabetic, 275
polyalphabetic, 276
private key, 268
public key, 268
single key, 268

Cycle
as products of transpositions,

483
composition, 461
disjoint, 464
inverse of, 485
length of, 459
order of, 475
powers of, 473
transposition, 482

Cycle notation, 458
Cyclic

n-shift, 925
1-shift, 925
code, 926

Cyclic group, 537
generator, 537

Cyclic subgroup
in EC cryptography, 570

De Morgan’s laws for sets, 193
Decimal representation

of integers, 158
Decoding function, 663
Decoding table, 696
Decryption

definition, 268
function, 268

Degree
of a polynomial, 379

Determinant
of a 2 × 2 matrix, 517

Dickson, L. E., 653
Diffie, W., 283
Digraph, 584

of a permutation, 465
Diophantine equation, 138
Direct product

of groups, 732
order of elements, 736

Direct product of groups
internal, 746

Disjoint
definition of, 186

Disjoint cycles
order of, 481
powers of, 481

Distributive
in ordinary arithmetic, 12

Distributive property



974 INDEX

modular
addition/multiplication,
125

Division algorithm
for polynomials, 399

Domain, 205
of a function, 212

Element
centralizer of, 654
identity, 505
inverse, 505
of a set, 178
order of, 540

Element by element proof, 190
Empty set, 182
Encoder, 660
Encoding function, 664
Encryption

definition, 267
function, 268

Equality
of polynomials, 381

Equation,Diophantine, 138
Equivalence class, 607, 800
Equivalence relation, 595
Error, 661
Error detection codes

ISBN, 105
Euclid’s lemma, 33

proof, 145
Euclidean algorithm, 134
Euler ϕ-function, 634
Euler’s formula

For networks on a sphere, 825
Euler’s theorem, 635
Euler, Leonhard, 633
Even parity

coding scheme, 661
Exponent laws, 526

Fermat
factorization algorithm, 292
last theorem, 76
little theorem, 296, 636

Field
algebraic closure of, 918
algebraic element of, 916
algebraic extension, 918
algebraically closed, 914
extension, 916
transcendental element of,

916
Finite fields

in EC cryptography, 570
First Isomorphism Theorem

for groups, 787
Fixed point set

of a group element, 802
Floor function, 591, 833
FOIL (FLOI) method, 36, 377
Fractions

in ordinary arithmetic, 17
Frequency analysis, 271
Function

as a bijection, 255
decryption, 268
encoding, 663
encryption, 268
formal definition, 211
inverse of, 254
invertible, 256
onto, 227
strictly increasing, 224

G-equivalent, 799
G-set, 794
Galois, Évariste, 528
Generator

in EC cryptography, 570
of a cyclic group, 537
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Geometric series
sum of, 318

Group
abelian, 506
alternating, 499
automorphism, 721
automorphism of, 749
center of, 654
commutative, 506
cyclic, 537
definition, 126, 195, 505
dihedral, 435
factor, 643
finite, 506
Heisenberg, 547
homomorphism of, 776
infinite, 506
isomorphic, 455, 702, 707
isomorphism of, 707
monster, 653
non-abelian, 506
noncommutative, 506
of units U(n), 515
order of, 506
permutation, 456
quotient, 643
simple, 645
special linear (SLn(R)), 533
sporadic, 653
symmetric, 454
trivial, 506
wallpaper, 446

Group code, 672, 680

Hamming code
definition, 698
perfect, 699
shortened, 699

Hamming distance, 665, 666
Hamming, R., 700

Hellman, M., 283
Homomorphic image, 776
Homomorphism, 776

kernel, 784
surjective , 788

Horizontal line test
for one-to-one functions, 220
for onto functions, 231

Identity
additive, 40
element, 505
in ordinary arithmetic, 12
of a permutation, 452
of permutation groups, 460
of transpositions, 483

Identity map, 257
Image

of an element under a
function, 212

Imaginary number, 29
Imaginary part, 29
Index of a subgroup, 629
Induction, 56
Inequality

nonstrict, 16
strict, 16

Inequality reversal
in ordinary arithmetic, 17

Information bits, 683
Injective (one-to-one), 217
Inner product, 674

notation, 104
Integer lattice, 832
Integers mod n, 103

as equivalence classes, 613
Integers mod n

additive identity, 123
Integers modulo, 615
Internal direct product, 746
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Intersection, 183
Inverse

additive, 40
element, 505
function, 254
in ordinary arithmetic, 12
integers mod n, 123
multiplicative, 37
of a cycle, 485
of permutations, 453
of transpositions, 484

Inverse function
in cryptography, 268
notation, 257
relation to bijection, 255

Invertible function, 256
Irrational number

definition of, 31
existence proof, 31

Isomorphic groups, 455
Isomorphism

definition of, 455
of groups, 707
of rings, 756

Jordan, C., 653

Kernel
as a normal subgroup, 784
of a homomorphism, 784

Key
definition of, 268
private, 268
public, 268
single, 268

key
in cryptogaphy, 551

Klein, Felix, 528
Kronecker delta, 330

Lagrange, Joseph-Louis, 528, 633

Law of cancellation, 525
Law of cosines, 68
Left regular representation, 728
Length

of a vector, 339
Lie, Sophus, 528
Lower-triangular matrix, 765

Mandelbrot set, 83
Matrices

invertible, 518
similar, 345

Matrix
backward difference, 335
banded, 765
determinant, 278
discrete second deriviatve,

334
forward difference, 335
generator, 684
lower triangular, 765
null space of, 675
nvertible, 518
parity-check, 681
rotation, 534
transpose, 337

Matrix groups
GL2, 518
M2, 517

Maximum-likelihood decoding,
669

Message block, 686
Metric

definition, 668
Minimum distance, 674
Modular addition, 113
Modular arithmetic

on equivalence classes, 614
Modular equations, 103

addition, 107
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Modular equivalence

alternative definition, 100

first definition, 98

Modulus, 42, 94

Natural number, 181

non-abelian operations, 67

Normal subgroup, 637, 784

Normalizer, 549

Null space

of a matrix, 675

Number

natural, 181

One-to-one

alternate definition, 224

definition, 217

horizontal line test, 220

informal definition, 216

Onto, 227

formal definition, 229

horizontal line test for, 231

Operation

binary, 504

definition of, 196

operations

non-abelian, 67

Orbit

of a group element, 536

Of a G-set, 800

Order

of a group element, 540

of a set, 454

disjoint cycles, 481

of a cycle, 475

of a group, 506

of a permutation, 477

of group elements

in product group, 736

Order relation

in ordinary arithmetic, 15
Ordered pair

as a function, 210
definition of, 201

Palindromic
codeword, 928

Parity
canonical parity-check

matrix, 681
odd, 662
parity check bit, 662

Partition, 588
definition of, 588

Period, 77
Permutation, 347

conjugate, 843
cycle, 458
definition of, 451
identity, 452, 460
inverse, 453
matrix, 497
odd and even, 347, 495
parity, 495

Permutation group, 456
Permutation matrix

determinant, 498
Permutations

conjugate, 501
Phase shift, 78
Phasor, 81
Plaintext, 267
Platonic solids, 820
Point doubling

in elliptic curves, 566
Polar coordinates, 48
Polygon

regular, 435
Polyhedron

regular, 797
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Polynomial
leading coefficient, 379
addition, 374
coefficients, 378
monic, 416
roots, 374
scalar multiplication of, 374

Polynomial code
generated by a polynomial,

931
Polynomials

over Mn, 389
over R[x], 388
over Zn, 386
over nZ, 387
product, 383
sum, 381

Power set, 587
Prime

definition, 33
Miller-Rabin test for, 296
relatively, 145

Private Key
in cryptography, 551

Product
of groups, 511
of polynomials, 383

Proof
statement-reason format, 19

Proof by contradiction, 26
Proofs

“statement−reason” format,
32

Proposition
mathematical, 11

Pseudoprime, 296
Public Key

in cryptography, 551

Quaternion group (Q8), 509, 723

Quotient
under integer division, 97

Range, 207
Recursive process, 160
Reflection, 347
Reflection (rigid motion), 421
Reflexive, 594

property of relations, 592
Regular representation

left, 728
right, 729

Relation
binary, 581
definition of, 581
reflexive, 592, 594
symmetric, 592, 594
transitive, 592, 594

Relatively prime
definition, 145

Remainder
under integer division, 97

Repetition
encoding, 662

Representatives
as coset leaders, 696

Reversible code, 928
Rhombus, 69, 70
Right regular representation, 729
Rigid motion, 421
Ring isomorphism, 756
Rivest, R., 285
Root

of a real function, 28
Roots

of polynomial equations, 73
of unity, 61

roots
of polynomial, 374

Rotation
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as rigid motion, 421

scalar multiplication
of polynomials, 374

Set
definition of, 178
elements, 178
empty set, 182
generated by group element,

536
Set difference, 187
Set operations, 183

complement, 187
De Morgan’s laws for sets,

193
disjoint, 186
intersection, 183
set difference, 187
symmetric difference, 197
union, 183

Sets
disjoint, 186

Shamir, A., 285
Shannon, C., 700
Sieve of Eratosthenes, 292
Simple group, 645
Soccer ball, 820
Standard generator matrix, 684
Statement-reason

proof, 19
Step size

for arithmetic sum, 318
Subdiagonal

of a matrix, 757
Subgroup, 456

commutator, 655
cyclic, 540
definition of, 529
index of, 629
isotropy, 801

necessary conditions, 531
normal, 637, 639
relation to subset, 529
stabilizer, 801

Subring
Without unity, 866

Subset
definition of, 181
proper, 182

Substitution
as proof technique, 33
in ordinary arithmetic, 17

Substitution property, 525
Sum

of polynomials, 381
of sets, 641

Surjective
also see onto, 227

Symmetric, 594
property of relations, 592

Symmetric Key
in cryptography, 551

Symmetry
definition, 420

Syndrome of a code, 693

Table
multiplication, 120

Theorem, 11
Trace

of a matrix, 343
Transcendental

element, of a field, 916
Transitive, 594

property of relations, 592
Translation

as a rigid motion, 421
Transpose

of a matrix, 337
Transposition
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definition of, 482
error, 104

triangle inequality
for complex numbers, 83

Union, 183
Unit

in Zn, 744
Unit square, 833
Units

group of (U(n)), 515
Universal set, 180

Vector space

inifinite dimensional, 756
vector space

over R, 753

Wallpaper groups, 446
Wave superposition, 80
Wavelength, 77
Weight of a codeword, 666
Well defined, 618

zero
vector, 753

Zero divisors
in ordinary arithmetic, 13
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