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Forward

All truths are easy to understand once they are discovered; the
point is to discover them. (Source: Galileo Galilei, “Dialogue on
the Two Chief World Systems”)

To the student:

Many students start out liking math. Some like it well enough that they even
want to teach it. However, when they reach advanced math classes (such
as abstract algebra), they become bewildered and frustrated. Their text-
books talk about strange mathematical thingamabobs they’ve never heard
of, which have nonsensical properties that come from who knows where.
In lectures, the professor/oracle makes pronouncements (a.k.a “theorems”)
and utters long incantations (a.k.a “proofs”) , but it’s hard to see the point
of either.

If the above paragraph describes you, then this book is meant for you!

There’s a good reason why higher math classes are bewildering for most
students. I believe that we math instructors tend to take too much for
granted.! It’s easy to forget that we're only able to understand abstrac-
tions because we have concrete examples that we keep referring back to,
consciously or subconsciously. These examples enable us to fit new abstract
ideas in with specific behaviors and patterns that we’re very familiar with.

My father always says that trying to understand math is frustrating, but once you've
got it it’s even more frustrating to try to explain it to others.
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But students who don’t have a firm hold on the examples have nothing to
hold on to, and are left grasping (and gasping) for air.

To be sure, most students have previously been exposed to various impor-
tant examples that historically gave rise to abstract algebra. These examples
include the complex numbers, integers mod n, symmetries, and so on. They
can give definitions and do some basic computations according to the rules.
But they haven’t been given a chance to internalize these examples. They
can kind of follow along, but they aren’t “fluent”.

Our hope is that after reading this book students will be able to say, “I’ve
seen complex numbers, integers mod n and permutations before, but now
I understand what makes them tick. I can see they have deep underlying
similarities, which they share with other mathematical structures.”

This is actually a very good time to be learning abstract algebra. Ab-
stract algebra hs moved from the outer boondocks inhabited by specialists
and puzzle enthusiasts out into the center stage of modern science and tech-
nology. Two areas where abstract algebra has made strong contributions
stand out particularly: information processing and physics. Coding of in-
formation is at the heart of information technology, and abstract algebra
provides all of the methods of choice for information coding that is both
reliable (impervious to errors) and private. On the other hand, many if
not most of the great advances in physics in the past 100 years are due to
deeper understanding of physical symmetries and the groups that produce
them (the Lorentz group in special relativity is just one example). We try
as much as possible to make connections with these two areas, and hope to
do so increasingly in future editions.

We hope you enjoy the book. Send us your comments!

To the instructor

This book is not intended for budding mathematicians. It was created for
a math program in which most of the students in upper-level math classes
are planning to become secondary school teachers. For such students, con-
ventional abstract algebra texts are practically incomprehensible, both in
style and in content. Faced with this situation, we decided to create a book
that our students could actually read for themselves. In this way we have
been able to dedicate class time to problem-solving and personal interaction
rather than rehashing the same material in lecture format.



Admittedly it falls short of the typical syllabus for an upper-level ab-
stract algebra class. But what’s the point of covering the syllabus, if the
students don’t retain anything? The unhappy fact is that many students
at this level haven’t yet mastered the important basic examples (complex
numbers, etc.) that provide motivation, so it’s unrealistic to expect them
to grasp abstractions if they don’t even understand what’s being abstracti-
fied.So instead we have dived deeply into basic examples—and these are the
just the basic examples that will be most useful to those who go on to a
career in high school teaching.

The book is highly modular, and chapters may be readily omitted if stu-
dents are already familiar with the material. Some chapters (“Preliminaries”
and “Sigma Notation”) are remedial. Other chapters cover topics that are
often covered in courses in discrete mathematics, such as sets, functions,
and equivalence classes. (Much of this material is taken from the Morris’
book, with some amplifications.) We have found from experience that stu-
dents need this re-exposure in order to gain the necessary facility with these
concepts, on which so much of the rest of the book is based.

Whenever possible we have introduced applications, which may be omit-
ted at the instructor’s discretion. However, we feel that it is critically impor-
tant for preparing secondary teachers to be familiar with these applications.
They will remember these long after they have forgotten proofs they have
learned, and they may even be able to convey some of these ideas to their
own students.

Additional resources

This is the Information Age, and a mere textbook is somewhat limited in
its ability to convey information. Accordingly, as we continue to use the
book in our classes, we are continuing to build an ecosystem to support the
book’s use:

e The book’s web site is http://abstractalgebra.altervista.org/.

¢ An electronic version of the book is available at https://s12x.aimath.
org/book/aafmt/.

e For a print copy, we recommend an on-demand print service such as
https://www.printmel.com/.


http://abstractalgebra.altervista.org/
https://sl2x.aimath.org/book/aafmt/
https://sl2x.aimath.org/book/aafmt/
https://www.printme1.com/
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e A comprehensive set of short video presentations of the book’s con-
tent may be found on the EAAEA YouTube channel: https://www.

youtube.com/playlist?1list=PL2uooHqQ6T7PW5sna4EX8rQX2WvBBdM8Qo.

A second YouTube channel with worked exercises may be found at:

https://www.youtube.com/playlist?list=PL2uooHqQ6T7NMO1Lk51X3tDyQF8URCwWK.

e An “Instructor’s Supplement” is available upon request: email the
editor thron@tamuct.edu from a verifiable faculty email address.

e Any instructor wishing to customize the material or extract certain

portions may email the editor thron@tamuct.edu to request the XTEX source

code.
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Unless the LORD builds the house, the builders labor in vain.
Unless the LORD keeps the city, the watchman is wakeful in
vain. It is vanity to rise up early, stay up late, and eat the bread
of sorrows, for He gives sleep to those He loves.” (Psalm 127:1-2)

Organization plan of the book

A chapter organization diagram is given in Figure 1.0.1. Brief descriptions
of the chapters and their dependencies are as follows:
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Figure 1.0.1. Interdependence of chapters

1. Preliminaries: A review of properties of integers, rationals, and reals,
at the high school level. We only review the properties — we do not
formally construct these number systems. Some remedial exercises are
included. Used in: All other chapters.

2. Complex numbers: Basic properties of complex arithmetic, polar form,
exponentiation and roots. Some exercises require proofs of complex
number properties. The last section presents applications to signal
processing and fractals. Used in: Symmetries (10); all theory chapters

(

3. Modular arithmetic: The gold-standard example of finite groups and
rings. Arithmetic properties, Euclidean algorithm, Diophantine equa-
tions; We bring out homomorphism properties (without the terminol-
ogy). Used in: all subsequent chapters
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11.
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. Modular arithmetic, decimals, and divisibility: application of modu-

lar arithmetic to decimal representation of real numbers (in arbitrary
bases) and divisibility rules.

Sets. Basic set properties. Can be skipped if students have an ade-
quate background in discrete math. Used in: functions

Functions. Basic ideas of domain, range, into, onto, bijection. This
chapter can be skipped if students have an adequate background. Used
in: all subsequent chapters

Introduction to cryptography: Explains the concepts of public and
private key cryptography, and describes some classic cyphers as well
as RSA. Used in: Further topics in Cryptography (13)

Sigma notation: This chapter prepares for the “polynomials” chapter.
Sigma notation is useful in linear algebra as well. Can be skipped if
students are already familiar with this notation. Used in: Polynomials

(9)

Polynomials: fundamental example of rings. Euclidean algorithm for
polynomials over fields. FTOA, prove easy part and discuss the hard
part. Will cover this again more rigorously in later chapter. Used in:
Introduction to Groups (12), Introduction to Rings (20)

Symmetries: Symmetries are a special case of permutations. They
are treated first because they are easily visualizable, and because they
connect algebraic aspects to geometry as well as complex numbers.
Used in: Permutations (11)

Permutations: In light of Cayley’s theorem, this example is key to the
understanding of finite groups. Students are introduced to the me-
chanics of working with permutations, including cycle multiplication.
Cycle structure is explored, as are even and odd permutations. Used
in: Introduction to Groups (12)

Introduction to Groups: This chapter introduced basic properties of
groups, subgroups, and cyclic groups, drawing heavily on the examples
presented in previous chapters. Used in: all subsequent chapters

Further topics in cryptography. Diffie-Hellman key exchange, elliptic
curve cryptography over R and over Z,



14.

15.

16.

17.

18.

19.

20.

21.

Equivalence relations and equivalence classes. This is necessary for
understanding cosets. This chapter may be skipped if studentshave
seen them before. Used in: Cosets and Factor Groups (15)

Cosets and Factor Groups: Introductory properties, Lagrange’s theo-
rem, Fermat’s Theorem, simple groups. Used in: all subsequent chap-
ters.

Error Detecting and Correcting Codes. A discussion of block codes.
Some knowledge of linear algebra is required.

Isomorphisms of Groups: Examples and basic properties; direct prod-
ucts (internal and external); classification of abelian groups up to iso-
morphism. Used in: all subsequent chapters

Homomorphisms of Groups: Kernel of homomorphism; properties;
first isomorphism theorem. Used in: all subsequent chapters

Group Actions: Besides basic definitions, this chapter contains a long
discussion of group actions applied to regular polyhedral, as well as
the universal covering space of the torus.

Introduction to Rings: Includes definitions and examples; subrings
and product rings; extending polynomial rings to fields; isomorphisms
and homomorphisms; ideals; principal ideal domains; prime ideals and
unique factorization domains; division rings; fields; algebraic exten-
sions.

Appendix: Induction Proofs — patterns and examples. Some proofs in
the book require induction. This section gives the background needed
for students to write formal induction proofs.
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Glossary of symbols

N,Z,Q,R,C: natural numbers (positive integers), integers, rationals,
real numbers, complex numbers

Q*,R*, C*: rationals, real numbers, complex numbers without 0
Zy: Integers mod n

Qs: Quaternion group ({£1,+i, 45, +j + k})

®,®: Modular addition and multiplication

M, (Z,R,C...): n xn matrices with entries in Z, R,C . . ..

3;V:  There exists; for all

cisf: cosf +isinf

|z], |z],]S|,|G|,]g]: Absolute value of the real number x; modulus of
the complex number z; number of elements in the set S or the group
G; order of the group element g.

a—=b: a divides b.

GL,(R):  General linear group of invertible n x n matrices with
coefficients in R.

mod(m,n): Remainder of m when divided by n
a=b (modn): ais equvalent to b mod n

a €S: aisan element of the set S



:=:  Defined as

U(n):  Group of units (elements with multiplicative inverses) mod
n.

,U,N,\:  Empty set, union, intersection, set difference

x:  Cartesian product or vector cross product (depending on con-
text)

iff:  If and only if

fog: Composition of f and g (apply ¢ first, then f
€ijk:  Levi-Civita (totally antisymmetric tensor) symbol
Id:  Identity function

id,e:  Identity element of a group

ged, lem:  Greatest common divisior, least common multiple

1 2 ... ..
( K >: Permutation in tableau format
ap a2 ... Qp

(a1---ap,)(b1---bp,)...: Permutation in cycle notation
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Preliminaries

3.1 In the Beginning &

Let’s start at the very beginning

A very good place to start

When you read you begin with A B C
When you sing you begin with Do Re Me

(Oscar Hammerstein, The Sound of Music)

God made the integers; all else is the work of man. (Leopold
Kronecker, German mathematician, 1886)

If Maria had been more mathematically inclined, she might have contin-
ued: “When you count, you begin with 1 2 3”. Ordinarily we think of the
“counting numbers” (which mathematicians call the natural numbers or
positive integers) as the “very beginning” of math.

It’s true that when we learn math in school, we begin with the counting
numbers. But do we really start at the “very beginning”? How do we know
that 1 +1 = 27 How do we know that the methods we learned to add,
multiply, divide, and subtract will always work? We’ve been taught how to
factor integers into prime factors. But how do we know this always works?

Mathematicians are the ultimate skeptics: they won’t take “Everyone
knows” or “It’s obvious” as valid reasons. They keep asking “why”, break-
ing things down into the most basic assumptions possible. The very basic

10
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assumptions they end up with are called axioms. They then take these
axioms and play with them like building blocks. The arguments that they
build with these axioms are called proofs, and the conclusions of these
proofs are called propositions or theorems.

The mathematician’s path is not an easy one. It is exceedingly difficult
to push things back to their foundations. For example, arithmetic was used
for thousands of years before a set of simple axioms was finally developed
(you may look up “Peano axioms” on the web).! Since this is an elementary
book, we are not going to try to meet rigorous mathematical standards.
Instead, we’ll lean heavily on examples, including the integers, rationals,
and real numbers. Once you are really proficient with different examples,
then it will be easier to follow more advanced ideas.?

This text is loaded with proofs, which are as unavoidable in abstract
mathematics as they are intimidating to many students. We try to “tone
things down” as much as possible. For example, we will take as “fact” many
of the things that you learned in high school and college algebra—even though
you’ve never seen proofs of these “facts”. In the next section we remind you
of some of these “facts”. When writing proofs or doing exercise feel free to
use any of these facts. If you have to give a reason, you can just say “basic
algebra”.

We close this prologue with the assurance that abstract algebra is a
beautiful subject that brings amazing insights into the nature of numbers,
and the nature of Nature itself. Furthermore, engineers and technologists
are finding more and more practical applications, as we shall see in some of
the later chapters.

The original version of this chapter was written by David Weathers.

3.2 Integers, rational numbers, real numbers

We assume that you have already been introduced to the following number
systems: integers, rational numbers, and real numbers. These number sys-
tems possess the well-known arithmetic operations of addition, subtraction,
multiplication, and division. The following statements hold for all of these
number systems.

!The same is true for calculus. Newton and Leibniz first developed calculus around
1670, but it wasn’t made rigorous until 150 years later.

2Historically, mathematics has usually progressed this way: examples first, and axioms
later after the examples are well-understood.
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Warning 3.2.1. There are number systems for which the following prop-
erties do NOT hold (as we shall see later). So they may be safely assumed
ONLY for integers, rational numbers, and real numbers. O

3.2.1 Properties of arithmetic operations

We assume the following properties of arithmetic operations on the integers,
rational numbers, and real numbers. In the following list of properties, a, b, ¢
are arbitrary numbers (integers, rational, or real), unless otherwise specified.
We use the notation a- b to denote the product of @ and b (i.e. a multipliled
by b).

(A) Additive identity: 0 +a =a,a+ 0 = a.
(B) Multiplicative identity: 1-a =a,a-1 = a.

(C) Additive inverse. For every number a there is a unique number
denoted —a such that a + —a =0 and —a + a = 0. Note that a + —b
is usually written as a — b.

(D) Multiplicative inverse (**real and rational numbers only**) For ev-
ery nonzero real or rational number a there is a unique number 1/a
such that a-1/a=1and 1/a-a = 1.

(E) Addition is associative: (a+b) +c = a+ (b+ ¢). (Note that the
parentheses indicate which operation is performed first: for example,
in (a4 b) + ¢ the a + b is done first, and then c is added to the result.

(F) Multiplication is associative (a-b)-c=a-(b-c) (Same comment
applies as in previous property.)

(G) Addition is commutative : a+b = b+ a (Be careful about this one!
It’s easy to take for granted. We will see that in some number systems,
it’s not true.)

(H) Multiplication is commutative : a-b = b-a (Same comment applies
as in previous property.)

(I) Multiplication distributes over addition: a-(b+c) = (a-b)+ (a-c)
and (a+b)-c= (a-c)+ (b-c). (Technically, these are called the left
distributive and right distributive properties respectively.
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(J) Zero divisor property a-0=0and 0-a =0.

Exercise 3.2.2.

(a) For each of the properties (D,E,F,G,H) above, give a specific equation
(with actual numbers) that illustrates the property. For example, for
property (E) a specific example would be (3+5)+4 =8+4 =12 is
equal to 3+(5+4) = 3 + 9 = 12.

(b) Give a specific example that shows that subtraction is not commutative

(c) Give a specific example that shows that division is not associative.

Exercise 3.2.3. Which of the above properties must be used to prove each
of the following statements? (Note each statement may require more than
one property)

O

Note that the associative property allows us to write expressions without
putting in so many parentheses. So instead of writing (a + b) + ¢, we may
simply write a + b + c. By the same reasoning, we can remove parentheses
from any expression that involves only addition, or any expression that
involves only multiplication: so for instance, (a-(b-¢)-d)-e=a-b-c-d-e.
Using the associative and distributive property, it is possible to write any
arithmetic expression without parentheses. So for example, (a - b) - (¢ + d)
can be written as a-b-c+a-b-d. (Remember that according to operator
precedence rules, multiplication is always performed before addition: thus
3 -4+ 2 is evaluated by first taking 3 - 4 and then adding 2.)
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There properties can be used to prove arithmetic statements that ordi-
narily we take for granted. For example, we automatically replace —1 - a
with —a, but this really needs to be justified. In fact, this requires one of
the other properties in the above list:

Exercise 3.2.4. Show that a+(—1-a) = 0and(—1-a) = 0 (this is the same
thing as showing that —1 - a is the additive inverse of a, or —1-a = —a).
Which of the above properties did you use? O

Exercise 3.2.5. Rewrite the following expressions without any parenthe-
ses and simplify as much as possible, but without using the commuitative

property.
(@) (+y)++2) w) -2y w
(b) 05-(z+y)+(y+2)+ (2 +2x))

(© (((a+b)+e¢)-d)+e)-f)+g)+h

Exercise 3.2.6. For parts (a—c) of the preceding exercise, now apply the
commutative property to the results to simplify the expressions as much as
possible. O

Exercise 3.2.7. Given the expression: (((a —b) 4+ b) +b)(a — b) + b?

(a) Simplify the expression without using distributive or commutative prop-
erty.

(b) Simplify the expressionwithout using the commutative property.

(c) Simplify the expression using all laws.

Exercise 3.2.8. Given the expression: (r+p)(s+¢q) —(p+s)(¢+7)



3.2 INTEGERS, RATIONAL NUMBERS, REAL NUMBERS 15

(a) Simplify the expression without using distributive or commutative prop-
erty.

(b) Simplify the expression without using the commutative property.

(c) Simplify the expression using all laws.

3.2.2 Order relations

We also have order relations on the real, rational, and integer number
systems, which are expressed by the terms ‘greater than’ and ’less than’
with corresponding symbols > and <. If ¢ and b are numbers, then the
mathematical statement ‘a > b’ is logically identical to the statement ‘b < a’
(another way of saying this is: a > b if and only if b < a). Positive
numbers are defined to be those numbers greater than the additive identity
0, and negative numbers are defined to be those that are less than 0. We
assume the following properties of the order relation on the integers, rational
numbers, and real numbers:

(A) The multiplicative identity 1 is positive.

(B) Given two numbers, exactly one of these three are true: either the first
number is greater than the second, or the second number is greater
than the first, or the two numbers are equal.

(C) The sum of two positive numbers is positive. The sum of two negative
numbers is negative.

(D) The product of two positive or two negative numbers is positive. The
product of a positive and negative number is negative.

Exercise 3.2.9. Using the above properties, show that 1+1, 1+1+1, and
141+ 1+1 are all positive. (It can be shown by induction that the sum of
any number of copies of 1 must be positive. The set {1,1+1,14+1+1,...}
is called the set of positive integers.) O

Exercise 3.2.10. Suppose a > b, b > 0 and ab = 0 (note that ‘b > 0’ means
that either b > 0 or b = 0). What can you conclude about the values of a
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and b7 Use one (or more) of the properties we have mentioned to justify
your answer. O

Exercise 3.2.11. Suppose ab > cb,b < 0, and ¢ < 0. For each of the
following statements, either prove that it is always true, or give an example
to show that it is not always true:

a) a>b

(
(b) a <O.

(c) b<e

)
)
)
(d) a<ec

O

Besides these order properties, there is a special order property that
applies only to integers. This property is called the principle of well-
ordering, and may be stated as a proposition as follows:

Proposition 3.2.12.(Well-ordering principle) Any set of positive integers
has a smallest element.

This may seem obvious, but in mathematics we have to do our best not to
take anything for granted. Sometimes the most “obvious” statements are
the most difficult to prove. In this case, the well-ordering principle can be
proved from the principle of mathematical induction (see Chapter 26). The
proof is beyond the scope of this course.?

3.2.3 Manipulating equations and inequalities

Following are some common rules for manipulating equations and inequal-
ities. Notice there are two types of inequalities: strict inequalities (that
use the > or < symbols) and nonstrict inequalities (that use the > or <
symbols).

31t is also possible to prove the principle of mathematical induction from well-ordering
principle-it’s a matter of personal preference which is taken as an axiom, and which is
taken as a consequence.
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(A) Substitution: If two quantities are equal then one can be substituted
for the other in any true equation or inequality and the result will still
be true.

(B) Balanced operations: Given an equation, one can perform the same
operation to both sides of the equation and maintain equality. The
same is true for inequalities for the operation of addition, and for mul-
tiplication or division by a positive number.

(C) Imequality reversal: Multiplying or dividing an inequality by a neg-
ative value will reverse the inequality symbol.

(D) Fractions in lowest terms: The ratio of two integers can always be
reduced to lowest terms, so that the numerator and denominator have
no common factors.

Exercise 3.2.13. Give specific examples for statements (A-D) given above.
You may use either numbers or variables (or both) in your examples.. For
(A) and (B), give one example for each of the following cases: (i) equality,
(ii) strict inequality, (iii) nonstrict inequality. O

Exercise 3.2.14. Parts (a-f) of this exercise give a sequence of successive
steps in a proof of an important arithmetic fact. For each of the steps, give
either an arithmetic operation property (from Section 3.2.1) or an equation
manipulation rule (from Section 3.2.3) which justifies the step.

(a) 1-1=0
(b) (1-1)-a=0-a
(c) (1—1)-a=0
d) 1-a+(-1)-a=0
)
)

O

As a result of the previous exercise, we have a proof of the following
proposition:
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Proposition 3.2.15. For any integer, rational, or real number a the fol-
lowing equation holds: —a = (—1) - a.

This proposition may seem way too obvious to you, but it’s actually
saying something very significant. “—a” denotes the additive inverse of a,
while “(—1)-a” denotes the additive inverse of 1 times the number a. There
is no a priori reason why theses two things should be the same. Try to
think back to when you first learned this arithmetic stuff-at that time, it
probably wasn’t as obvious as it seems now. The exercise shows that it
actually follows from even more basic facts about arithmetic.

The following exercise walks you through a proof of another important
fact.

Exercise 3.2.16. For each step in the following argument, give either an
arithmetic operation property (from Section 3.2.1) or an equation manipu-
lation rule (from Section 3.2.3) which justifies the step.

We first suppose that a > b and ¢ > d.

d) a+(c—b)—d>0

a+c)+ (=b+—d) >0

(

f) ((a+c¢)+(=b+—d))+(b+d) >b+d
(g) (a+c)+((-b+—-d)+ (b+d)>b+d
(h) (a+c)+(=b+—-d)+(d+b)) >b+d
(i) (a+c)+ (=b+ ((—d+d)+b) >b+d
(G) (a+c)+(-b+(0+b)>b+d

(k) (a+¢c)+(=b+b) >b+d

(1) (a+¢c)+0>b+d
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O

The preceding exercise gives us a proof of the following proposition,
which we will need later in the book.

Proposition 3.2.17. Let a, b, ¢, d be integer, rational, or real numbers such
that @ > b and ¢ > d. It follows that a + ¢ > b+ d.

Finally, we’re going to prove is that —1 is negative. At this point you
may be thinking, “ Duh, it’s got a minus sign, so of course it’s negative!” But
if you look back in Section 3.2.1 property (B), you’ll see that the minus sign
on —1 just means that it’s the additive inverse of the multiplicative identity
1. On the other hand, negative numbers were defined in Section 3.2.2 as
numbers that are less than the additive identity 0. Just because we’ve
decided to write the additive inverse of 1 as —1, doesn’t mean that we can
automatically assume that —1 < 0. Remember, be skeptical!

Proposition 3.2.18. —1 <0

Proo¥r. This will be our first exposure to a proof technique called proof
by contradiction. We’ll make use of this technique throughout the book.
In this case, the idea goes as follows. There’s no way that —1 could be
positive, because if it were then 1 4+ (—1) would also have to be positive,
which it isn’t because we know it’s 0. There’s also no way that —1 could
be 0, because if it were we’d have —1 = 0, and adding 1 to both sides gives
0 = 1, which is false because 1 is positive and 0 isn’t. Since -1 isn’t positive
and it isn’t equal to 0, the only option left is that it’s negative. This is the
gist of the argument, but we have to write it out more carefully to satisfy
those nit-picking mathematicians. Every step in our argument must have a
solid reason.

So here goes the formal proof. We'll give a logical sequence of mathe-
matical statements, followed by a reason that justifies each statement—this
is called statement-reason format.

First we show that —1 > 0 is false:



20 CHAPTER 3 PRELIMINARIES

Statement Reason
Suppose —1 >0 . Proof by contradiction: supposing the opposite
1>0 Prop. (A) in Section 3.2.2
14+ (1) >0. Prop. (C) in Section 3.2.2
1+(-1)=0 Prop. (B) in Section 3.2.1
Contradiction is acheived | The last 2 statements contradict
—1 > 0 is false The supposition must be false
Next, we show that —1 = 0 is false:
Statement Reason
Suppose —1 =0 Proof by contradiction: supposing the opposite
1+(-1)=1+0 Follows from previous statement by substitution
0=1 Props. (A) and (B) in Section 3.2.1
0>0 Prop. (A) in Section 3.2.2
Contradiction is achieved | 0 > 0 contradicts Prop. (B) in Section 3.2.2
—1 =0 is false The supposition must be false

According to Property (B) in Section 3.2.2, there are three possibilities:
either —1 > 0,—1 = 0, or —1 < 0. We have eliminated the first two
possibilities. So the third possibility must be true: —1 < 0. This completes
the proof.

|:|4

Exercise 3.2.19. Using Proposition 3.2.15 Proposition 3.2.18, and one of
the order relation properties, show that the additive inverse of any positive
number is negative. O

3.2.4 Exponentiation (VERY important)

Exponentiation is one of the key tools of abstract algebra. It is essential
that you know your exponent rules inside and out!

(I) Any nonzero number raised to the power of 0 is equal to 1. °

(IT) A number raised to the sum of two exponents is the product of the
same number raised to each individual exponent.

4The 'O’ symbol will be used to indicate the end of a proof. In other words: Ta-daa!
5Technically 0° is undefined, although often it is taken to be 1. Try it on your calculator!
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(ITI) A number raised to the power which is then raised to another power
is equal to the same number raised to the product of the two powers.

(IV) The reciprocal of a number raised to a positive power is the same
number raised to the negative of that power.

(V) Taking the product of two numbers and raising to a given power is
the same as taking the powers of the two numbers separately, then
multiplying the results.

Exercise 3.2.20. For each of the above items (I-V), give a general equation
(using variables) that expresses the rule. For example one possible answer
to (1) is: a¥"* = 2¥ - 2% . O

Exercise 3.2.21. Write an equation that shows another way to express a
number raised to a power that is the difference of two numbers. %

3.3 Test yourself

Test yourself with the following exercises. If you feel totally lost, I strongly
recommend that you improve your basic algebra skills before continuing with
this course. Trying to do higher math without a confident mastery of basic
algebra is like trying to play baseball without knowing how to throw and
catch.

Exercise 3.3.1. Simplify the following expressions. Factor whenever pos-
sible

3
(b) 53 (€) a(y —1) —y(z —1)
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Exercise 3.3.2. Same instructions as the previous exercise. These examples
are harder. (Hint: It’s usually best to make the base of an exponent as
simple as possible. Notice for instance that 47 = (22)7 = 2!4))

(a) 61/2-21/6 X 33/2 . 21/3 (d) 93.34.45.9-5.3-4.4-3

z(x—3)+33—=
© -2 () () @ e

O

Exercise 3.3.3. Same instructions as the previous exercise. These examples
are even harder. (Hint: Each answer is a single term, there are no sums or
differences of terms.)

a® + a3 — 2a? (z + y)*Y(z — y)*Y
RNCE W ( (@2 —y?)7 >
(b) axb3x(ab)—2x(a2b)z/2
(c) (x+y 1 2(zy + 1) ( 66 9836 1/2
(g) 5993 + 3>
(3* +97)(1 — 3%) 243 6
(@ FHE=S)
322 —x 2z (a+b)(b+c)+ (a—Db)(b—rc)
© ——1 +t1 (1) Ll
O
Exercise 3.3.4. Find ALL real solutions to the following equations.
(a) o% =5z (d) 37" = 3(3%)
(b) (z = VT)(z+V7) =2 (e) 16° =2t
(c) 24+ = 4(2) () 17— 1= 110
O

Exercise 3.3.5. (Challenge problems) These problems come from Chinese
high school math web sites (thanks to J. L. Thron)
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. . n+4 __ n
(a) Simplify: 22(2,7&2))

363

(b) Given m = 7% and n = 97, express 63 in terms of m and n.

(¢) Given 2¥3Y = 10 and 2Y3* = 15, find z and y.

(d) Show that the following expression always has real roots: (z—3)(z—2) =
a(a + 1), where a is any real number.

8:r+2

32y

(f) Solve for x: (62+7)%(3z+4)(x+1) = 6 (multiply to obtain two quadratic
terms, then substitute)

(e) If 3z — 5y +3 =0, find

(g) Solve for x: 9% + 12% = 16*. (divide the equation by one of the terms)

(h) Solve for x: % + % = % + %rg. (Simplify the numerators in each
fraction)

(i) Given that m = 20192 + 20202, evaluate /2m — 1. (use the fact that
2020 = 2019-+1)

(j) Solve for 2: Va2 +9 + V22 -9 = 5+ /7. (To avoid squaring twice,
use difference of squares to obtain a second equation, then use the two
equations together to eliminate one of the square roots.)

(k) Given a = 4'/3421/341, evaluate %4—&%—1—&%. (Write out the expressions
11__9;3 and (1 + )3, and see if you can relate them to the given

expressions)

for

(1) Solve for z: = = \/ x — %+ \/ 1— % (To avoid squaring twice, use differ-
ence of squares to obtain a second equation, then use the two equations
together to eliminate one of the square roots.)

(m) Suppose that a+b-+c = 0 and a3+b>+c® = 0. Show that a”+b"+c" =0
for all odd values of n. (Look at two cases: (a) at least one of a,b,c is
equal to 0; (b) exactly two of the numbers have the same sign (without
loss of generality, you may assume that a,b > 0 and ¢ < 0)).

(n) Given a®> —9a +1 =0, find a® — 7a +

. (solve the first equation
7.1 lve the first ti

a

for a? and for a® + 1, and use substitutions.)
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Given that z1 and x5 are both solutions to the equation 2 + 1 = 1/x,
find 2021%1=?2 (graph the functions y = 22 + 1 and y = 1/xz).

Given that  +y = 3 and zy = 1, evaluate x° + 3 (use the first two
expressions to find quadratic equations for x and y, then substitute
repeatedly for 22 and y? in 2° + 3°).

a+b:a+czb+c,ﬁndthevalueof abe

b (a+b)(b+c)(c+a)
(Be careful! There may be more than one answer. Take two of the equa-
tions and clear the denominators. Both sides will have a common factor,
which may or may not be zero.)

Given that

Given x = 2 + /2, find z* — 423 + 722 — 20z + 16.(Find a quadratic
equation satisfied by 2 + /2.

Given 42™* — 2072 = 3 and z* + % = 3, find 42~ + y*.
Given 30% = 2010 and 67Y = 2010, find 2! + ¢~ L.

Given a+b =6 and ab+ (¢ —a)? +9 =0, find a + b+ ¢ (Try to find a
particular solution for a,b, c. Look at the signs of the terms.)

12342
24692 + 24672 — 2

Given 2% = 10,20 = 5.2¢ = 200, compute a — 4041b + 2020¢ — 6060.
(Exponent rules!)
Yz xz

o 1, = 2, = 3, find z. (Take reciprocals and
rT+y y+z T+ =z
break the fractions apart. Then add together the equations.)

Simplify (no calculator required!)

Given

Given that ai,as, ... a1g00 are the first 1000 terms of a geometric series
with a; = 1/5 and aj9p0 = 20. The product aj - az - ... - ajpo can be
expressed as 2¥. Find z. (Recall that the nth term of a geometric series
has the form ar™. Group terms in the geometric series in pairs.)

Without using a calculator, determine which is larger: 92 or 15°.
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Complex Numbers

HORATIO: O day and night, but this is wondrous strange!

HAMLET: And therefore as a stranger give it welcome. There are more
things in heaven and earth, Horatio, Than are dreamt of in your
philosophy.

(Source: Shakespeare, Hamlet, Act 1 Scene 5.)
Although complex numbers are defined to include “imaginary” numbers,
the practical applications of complex numbers are far from “imaginary”. We

shall touch on some of the applications in this chapter: but there are many
many more in engineering, in physics, and in other sciences as well.

Thanks to Tom Judson for material used in this chapter.

4.1 The origin of complex numbers &

4.1.1 A number that can’t be real (and we can prove it!)

Way back in your first algebra class, you saw equations like:

e 22 =4
e 22 =236
o 22 =7

25


https://www.youtube.com/watch?v=yhSLFJJZ9us&index=3&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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You also learned how to solve them either by hand, or using the SQRT button
on a simple calculator. The solutions to these equations are

o v =12
e r =16
e r — +2.64575131106459. ..

But what about equations like:
22 =—1

Your simple calculator can’t help you with that one!' If you try to take
the square root of -1, the calculator will choke out ERR OR or some similar
message of distress. But why does it do this? Doesn’t —1 have a square
root?

In fact, we can prove mathematically that —1 does not have a real square
root. As proofs will play a very important part in this course, we’ll spend
some extra time and care explaining this first proof.

Proposition 4.1.1. —1 has no real square root.

PrROOF. We give two proofs of this proposition. The first one explains all
the details, while the second proof is more streamlined. It is the streamlined
proof that you should try to imitate when you write up proofs for homework
exercises.

Long drawn-out proof of Proposition 4.1.1 with all the gory details:

We will use a common proof technique called proof by contradiction.
Here’s how it goes:

First we suppose that there exists a real number a such that a? =
—1. Now we know that any real number is either positive, or zero, or
negative—there are no other possibilities. So we consider each of these three
cases: a > 0,ora =0, or a <0.

e In the case that a > 0 then a? = a - a = (positive)-(positive) = a
positive number (that is, a> > 0). But this couldn’t possibly be true,
because we have already supposed that a? = —1: there’s no way that
a’? > 0 and a® = —1 can both be true at the same time!

t’s true that the fancier graphing calculators can handle it, but that’s beside the
point.
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e In the case that a = 0, then a®> = a-a = (0) - (0) = 0. But a? = 0 also
contradicts our supposition that a® = —1.

e In the case that a < 0, then a?= a - a = (negative)-(negative) = a
positive number, so a®> > 0. As in the first case, this contradicts our
supposition that a® = —1.

So no matter which of the three possible cases is true, we’re still screwed:
in every case, we always have a contradiction. We seem to have reached a
dead end — a logically impossible conclusion. So what’s wrong?

What’s wrong is the supposition. It must be the case that the supposition
is not true. Consequently, the statement “there exists a real number a such
that a> = —1” must be false. In other words, —1 has no real square root.
This completes the proof. O 2

The above proof is pretty wordy. Often the first draft of a proof can be
pretty messy. So it’s usually good to go back and rewrite the proof in such
a way as to bring out the essential details. Here’s our second crack at the
above proof:

Streamlined proof of Proposition 4.1.1 (suitable for writing up
homework exercises)

The proof is by contradiction. Suppose Ja € R such that a? = —1
(note the symbol “J” means “there exists,” the symbol R denotes the real
numbers, and the expression “a € R” means that a is contained in R, that
is, a is a real number).

There are two cases: either (i) a > 0 or (ii) a < 0.

In Case (i), then a?= a - a = (nonnegative)-(nonnegative) = 0, which
contradicts the supposition.

In Case (ii), then a>= a-a = (negative)-(negative) > 0, which contradicts
the supposition.

By contradiction, it follows that —1 has no real square root. O
You may note that in the streamlined case, we reduced the number of cases
from three to two. That’s because we noticed that we really could combine
the “positive” and the “zero” case into a single case.

So far we’ve only considered square roots, but naturally we may ask the
same questions about cube roots, fourth roots, and so on:

2The ’[0’ symbol will be used to indicate the end of a proof. In other words: Ta-da!


https://www.youtube.com/watch?v=YHSLFJJZ9US&INDEX=3&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Exercise 4.1.2. Imitate the proof of Proposition 4.1.1 to prove that —2
has no real fourth root. O

Exercise 4.1.3. Try to use the method of Proposition 4.1.1 to prove that
-4 has no real cube root. At what step does the method fail? O

Notice that the nth root of a is a solution of the equation ™ —a = 0
(and conversely—any solution of " —a = 0 is an nth root of a). Based on
this observation, we may generalize the notion of “root”:

Definition 4.1.4. Given a function f(x) which is defined on the real num-
bers and takes real values, then a root of f(z) is any solution of the equation

f(z)=0. A

Exercise 4.1.5.

(a) Sketch the function f(x) = x? + 9. Does the function have any real
roots? Explain how you can use the graph to answer this question.

(b) Prove that the function f(z) = 249 has no real roots. (You may prove
by contradiction, as before).

(c) Graph the function f(z) = 2%+ 722 + 5 (you may use a graphing calcu-
lator). Determine whether f(x) has any real roots. Prove your answer
(note: a picture is not a proof!).

O

Exercise 4.1.5 underscores an important point. A graph can be a good visual
aid, but it’s not a mathematical proof. We will often use pictures and graphs
to clarify things, but in the end we're only certain of what we can prove.
After all, pictures can be misleading.

Exercise 4.1.6. *3 Suppose that a - 2?® +b-2*™ + a = 0 has a real root,
where a,b, m,n are nonzero integers. What can you conclude about the
signs of a and b? Prove your answer. O

3 Asterisks (*) indicate problems that are more difficult. Take the challenge!
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4.1.2 Unreal, but unavoidable

Mathematicians have known Proposition 4.1.1 for thousands of years, and for
a long time that settled the question. Unfortunately, that nasty v/—1 kept
popping up in all sorts of inconvenient places. For example, about 400 years
ago, it was very fashionable to study the roots of cubic polynomials such as
23— 152 —4 = 0. A mathematician named Bombelli came up with a formula
for a solution that eventually simplified to: z = (2++/—1)+(2—+/—1). By
canceling out the /—1 terms, he got the correct solution x = 4. But how
can you cancel something that doesn’t exist?

Since mathematicians couldn’t completely avoid those embarrassing v/—1’s,
they decided to put up with them as best they could. They called v/—1 an
1maginary number, just to emphasize that it wasn’t up to par with the real
numbers. They also used the symbol i to represent /—1, to make it less
conspicuous (and easier to write). Finally, they created a larger set of num-
bers that included both real and imaginary numbers, called the complex
numbers. *

Definition 4.1.7. The complex numbers are defined as

C={a+bi:a,beR},

where i = —1. If 2 = a + bi, then a is the real part of z and b is the

imaginary part of z. (Note that the imaginary part of a complex number
is a real number. It is the coefficient of 7 in the expression z = a + bi.) A

Examples of complex numbers include

e 1+1

5.387 — 6.4321
_

N[

3i (equal to 0+ 37)

7.42 (equal to 7.42 + 0i).

e 0 (equal to 0+ 07).

“The web site http://math.fullerton.edu/mathews/n2003/ComplexNumberOrigin.html
gives more information about the origin of complex numbers.
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Exercise 4.1.8.

(a) Write down the complex number with real part 0 and imaginary part 7.

(b) Write down a complex number whose real part is the negative of its
imaginary part.

(c) Write down a complex number that is also a real number.

4.1.3 A mathematical revolution

The creation of complex numbers was a revolutionary event in the history of
mathematics. Mathematicians were forced to recognize that their beloved
“real” numbers just weren’t good enough to deal with the mathematical
problems they were encountering. So they had to create a mew number
system (the complex numbers) with new symbols (i) and new arithmetic
rules (like i -7 = —1).

In fact, this was not the first time that a controversial new number
system was founded. The ancient Greeks thought that all numbers could
be expressed as a ratio of integers 7* — in other words, the Greeks thought
all numbers were rational. It came as a huge shock when someone proved
that some real numbers are not rational. We will presently give the original
proof, but first we will need some properties of odd and even integers:

Exercise 4.1.9.

(a) Fill in the blanks: The product of two odd integers is _< 1> , and
the product of two even integers is <2 > .

(b) Use proof by contradiction to prove the following statement: If m is an
integer and m? is even, then m is also even. (*Hint*)?

(c) It is possible to make a more general statement than part (b).Use proof
by contradiction to prove the following statement: If m is an integer d
is a positive integer, and m? is even, then m is also even. (*Hint*)
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x (equal to m/n??)

1

Figure 4.1.1. Isosceles right triangle

Proposition 4.1.10. Given a right isosceles triangle where both legs have
length 1 (see Figure 4.1.1) . Let x be the length of the hypotenuse. Then x
is irrational-that is, it cannot be expressed as a ratio of integers.

PRrROOF. The proof is by contradiction. Suppose that x is rational: that
is, x = 7 for some integers m and n.We can always reduce a fraction to
lowest terms ( as noted in Section 3.2.3), so we can assume m and n have
no common factors.

Since z is the hypotenuse of a right triangle, the Pythagorean Theorem
gives us 22 = 12 4+ 12 = 2. We can plug = = - into 2 =2 to get (%)2 =2,
which can be rearranged to give

m? = 2n°.

From this we see that m? is divisible by 2, which means that m? is even.
Exercise 4.1.9 part (b) then tells us that m is even, so there must be an
integer j such that m = 2j. Plugging m = 2j into m? = 2n? gives 452 = 2n?,
which simplifies to 2j2 = n2. Hence n? is even, and as before we conclude
that n is even. So n = 2k for some integer k.

At this point, we have m = 2j and n = 2k, which means that m and n
have a common factor of 2. But at the beginning of the proof, we said that
m and n were reduced to lowest terms, so they have no common factor. This
is a contradiction. Therefore our supposition must be false, so x cannot be
rational. O

5 All *Hints* can be found at the end of the book (or by clicking on the *Hints* link.)


https://www.youtube.com/watch?v=YHSLFJJZ9US&INDEX=3&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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We have seen in our proofs that whenever we make a statement, we
also need to give a reason that justifies the statement. In many cases, it’s
possible to state a proof very succinctly in “statement—reason” format. For
instance, here is a “statement—reason” proof of Proposition 4.1.10:

Statement Reason
x is the hypotenuse of the right | Given
triangle in Figure 4.1.1
x is rational supposition (will be contradicted)
2 =2 Pythagorean Theorem
x = m/n where m,n are integers | Definition of rational
m,n have no common factors Fraction can always be reduced
(m/n)? =2 Substitution
m? = 2n? Rearrangement
m = 2k where k is an integer Exercise 4.1.9 part (b)
(2k/n)? =2 Substitution
n? = 2k? Rearrangement
n = 2j where j is an integer Exercise 4.1.9 part (b)
m and n have a common factor | 2 is a factor of both
supposition is false Contradictory statements
x cannot be rational Negation of supposition

Note that the preceding proof amounts to a proof that /2 is irrational,
since we know that v/2 is the length of the hypothesis in question. Given the
results of Exercise 4.1.9, we can use a similar proof to find more irrational
numbers.

Exercise 4.1.11.

(a) Prove that the cube root of 2 is irrational. (*Hint*)

(b) Prove that the nth root of 2 is irrational, if n is a positive integer greater
than 1.

(¢) Prove that 21/" is irrational, if n is a negative integer less than -1.

O

In the proof of Proposition 4.1.10, we “plugged in” or substituted one
expression for another. For example, when we discovered that m was di-
visible by 2 we substituted 2j for m, which was useful for the algebra that
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followed. Substitution is a key technique used throughout all of abstract
algebra.

Exercise 4.1.12. Use substitution to prove the following statement: if 3|n
and 4|m, then 12/mn (the notation “3|n” means that 3 divides n). (*Hint*)

O

Exercise 4.1.13. Use substitution to prove the following statement: if 12|n
and n|4m, where n and m are integers, then 3jm. (*Hint*) O

We should also come clean and admit that our proof of Proposition 4.1.10
falls short of true mathematical rigor. The reason is that we made use of
Exercise 4.1.9, and we never actually proved part (a) of the exercise. Even
though it’s something that “everybody knows”, mathematicians still want a
proof! Now, part (a) is a consequence of a more general proposition known
as Fuclid’s Lemma:. Before giving this lemma, let’s be precise about what
we mean by “prime number”:

Definition 4.1.14. A prime number is a natural number (i.e. positive
integer) bigger than 1 that only has one factor bigger than 1, namely itself.
A

Now we are ready to state Euclid’s lemma:

Proposition 4.1.15. Let a and b be integers, and let p be a prime number.
If p divides ab, then either p divides a, or p divides b.

Remark 4.1.16. In mathematics, when we say “either X is true or Y is
true”, we also include the possibility that both X and Y are true. So in this
case, when we say “p divides a, or p divides b”, it’s possible that p divides
both a and b. AN

PROOF. We're not ready to give a proof yet, but we’ll give one later (see
Exercise 5.5.23 in Section 5.5.4). O

Exercise 4.1.17. Modify the proof of Proposition 4.1.10 to prove that /3
is irrational. (You will find Proposition 4.1.15 to be useful in the proof.) ¢

Exercise 4.1.18. Prove that /6 is irrational. O


https://www.youtube.com/watch?v=YHSLFJJZ9US&INDEX=3&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Exercise 4.1.19. Prove that p*/" is irrational, if p is a prime and n is any
integer with |n| > 1. O

Exercise 4.1.20.

(a) Suppose that a,b,c are integers and (a/b)? = c. Suppose further that
a and b have no common factors except 1: that is, any integer = > 1
which divides b doesn’t divide a. Prove by contradiction that b = 1.

(b) Generalize part (a): Suppose that a,b,c are integers and (a/b)" = c,
where n is a positive integer. If a and b have no common factors, prove
by contradiction that b = 1.

(c) Use part (b) to prove the following: Let a and n be integers, both greater
than 1. Let z be a real nth root of a. If z is not an integer, then z is
irrational.

O

The inconvenient truth expressed in Proposition 4.1.10 forced mathe-
maticians to extend the ’real’ numbers to include irrational as well as ra-
tional numbers. But complex numbers opened the floodgates by setting a
precedent. New generations of mathematicians became so used to work-
ing with “unreal” numbers that they became accustomed to making up
other number systems whenever it suited their purpose. Within a few cen-
turies after the complex numbers, several new number systems were created.
This eventually prompted mathematicians to study the properties of general
numbers systems. The outcome of this is what is known today as abstract
algebral

To close this section, here’s another exercise to practice using substitu-
tion:

Exercise 4.1.21.

(a) Suppose that:
e ¢ is a negative number;
e 1 is a positive integer;

e the equation " = a has a real solution for the unknown x.
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What can you conclude about n? Make a clear statement and prove
your statement. (*Hint*)

(b) Replace the condition “n is a positive integer” in part (a) with “n is a
negative integer.” Now what can you conclude about n? Make a clear
statement and prove your statement.

Exercise 4.1.22. Do imaginary numbers “really” exist? Write two or three
sentences to express your opinion.% O

4.2 Arithmetic with complex numbers &

4.2.1 Complex arithmetic

To add two complex numbers z = a + bi and w = ¢ + di, we just add the
corresponding real and imaginary parts:

(a+bi)+ (c+di) = (a+c)+ (b+ d)i.

Using this definition, we may prove directly that complex addition (like
regular addition) is commutative:”

Proposition 4.2.1. Addition on complex numbers is commutative.

PROOF. We just need to show that for any two complex numbers z and w,
it’s always true that z + w = w + z. Writing z = a4+ bi and w = c+ di as
above, the proof using statement-reason format runs as follows:

Statement Reason

z+4+w = (a+bi) + (c+ di) | substitution
=(a+c)+ (b+d)i | definition of complex addition
=(c+a)+ (d+b)i | real addition is commutative
= (c+di)+ (a+bi) | def. of complex addition
=w+ 2. substitution

5There is no “right” answer to this question.
It is important to realize that this must be proved and can’t just be assumed. Later
on we will define operations that are not commutative.


https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
https://www.youtube.com/watch?v=xok7xHQuTzU&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=4
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O

Notice how we started in this proof with one side of the equality, and
through a series of steps ended up with the other side. This is a good method
to follow, when you're trying to prove two things are equal.

Exercise 4.2.2. Prove that addition on complex numbers is associative.

Now that we have addition worked out, let’s do multiplication. We
observe that the complex number a + b7 looks just like the polynomial a +
bx, except the imaginary i replaces the unknown z. So we’ll take a cue
from polynomial multiplication, and multiply complex numbers just like
polynomial factors, using the FOIL (first, outside, inside, last) method.
Better yet, with complex numbers it’s more convenient to use FLOI (first,
last, outside, inside) instead. The product of z and w is

(a + bi)(c+ di) = ac + bdi® + adi + bei = (ac — bd) + (ad + be)i.
Question: How did we get rid of the 72 in the final equality? Answer:

Remember, we defined i2 = —1, and we just made the substitution.

A bevy of nice properties follow from this definition:

Example 4.2.3. Complex multiplication is commutative. This may be
proved as follows. (Note that here we are combining statement-reason and
paragraph proof formats. It’s OK to mix and match formats, as long as you
get the job done!)

(a+ bi)(c+ di) = (ac — bd) + (bc + ad)i (FLOI)
On the other hand:
(c+di)(a+bi) = (ca —db) + (cb+ da)i (FLOI)
= (ac — bd) + (be + ad)i (commutativity of real multiplication)

Since we obtain the same expression for (a + bi)(c+ di) and (c+ di)(a + bi),
it follows that (a + bi)(c + di) = (¢ + di)(a + bi). ¢

Similar proofs can be given for other multiplicative properties:

Exercise 4.2.4. Prove the associative law for multiplication of ‘complex
numbers. (Follow the style of Example 4.2.3). O
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Exercise 4.2.5. Prove the distributive law for complex arithmetic: that is,
if u,w, and 2z are complex numbers, then (u)(w + 2) = uw + uz. O

Two arithmetic operations down, two to go! Let’s consider subtraction
of complex numbers. We may define z — w using complex addition and
multiplication as: z —w =z + (—1) - w.

Exercise 4.2.6. Given that z = a+bi and w = c+di use the above definition
of subtraction to derive an expression for z —w in terms of a, b, ¢, d. Express
your answer as (Real part) + (Imaginary part)i. O

Division is a little more complicated. First we consider division of a
complex number by a real number. In this case we can define division as
multiplication by the reciprocal, just as with real numbers:

b

a4+ b )
-4,
c

1 1 1 a
=(a+bi) - —=a-—+bt)-—=—+-
( ) c c (b) c c
where we have used the distributive, associative, and commutative proper-

ties of complex multiplication.

Now let’s try to make sense of the ratio of two complex numbers:

w  c+di

2 a+bi

This notation suggests that it should be true that

w .

P (c+di) - P
But what is 1/(a + bi)? To understand this, let’s go back to arithmetic
with real numbers. If we have an ordinary real number r, then 1/r is the
multiplicative inverse of r: that is, - 1/r = 1/r -r = 1. We also write 1/r
as 7~!. By analogy, to make sense of 1/z = 1/(a + bi), we need to find a
complex number z~! such that 271 -z =2 271 = 1.

Exercise 4.2.7. Given that z = a + bi is a complex number and z # 0
(recall that 0 is the same as 0 + 0¢). Show that the complex number

a b
YT a2yt

satisfies zw = wz = 1, where z = a + bi. (*Hint*) O


https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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Based on the previous exercise, we are able to define z~! for the complex
number z = a + bi:
1 a b . a — bi
S I R R L B DL

where the second equality follows from the distributive law. We finally arrive
at the formula for dividing two complex numbers:

c+di a—bi

a:bi = (et di) e

or alternatively
c+di  a—bi
a+bi a®+b?
(These formulas holds as long as a + bi # 0).

- (c+di).

It seems obvious that we should be able to write this formula more
compactly as
c+di  (c+di)(a— bi)
a+bi a? + b?
and in fact we can. This is because the distributive and associative laws
once again comes to our rescue. Starting with the first expression above for
(c+ di)/(a + bi) we have:

)

di -
Z—j_ b:j = (c+di) - ;27_’_;2 (from above)
. . 1 e
= (c+di) - <(a —bi) - a2+b2> (distributive law)
. . 1 L
= ((c+di) - (a — b)) - P (associative law)

_ (c+di)- (a—bi)

PR (definition of division).

We summarize the formulas for complex addition, multiplication, and
division below:

e Addition: (a+bi) + (c+di) = (a+c)+ (b+ d)i
e Multiplication: (a + bi)(c + di) = (ac — bd) + (ad + be)i

c+di  (c+di)(a— bi)
a+bi a? + b?

e Division:

Exercise 4.2.8. Evaluate each of the following.
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(a) (3—2i)+ (5i — 6) " Z j b
(b) (5— 44)(7 + 2i) c.m |
144 1—3i

(¢) (VT +6i)(VT — V6i) (1) 1_i+1+i

(d) (a—bi)(a+ bi) e

(e) (a+ bi)(b+ ai) (m) N

(f) 2+ \/32)2 (n) ;45 (*Hint*)

(&) A+)(E1+)(=1 =1 =9 (o) (1+4)* (*Hint*)

(h) S}/g)%-i)(—l—l—\/gi)(—\/g_i)(l_ ) i

@ ( 5+\/5+i\/m>4 (a) (143!
(*Hlnt*) (I‘) ,L'1001 + Z-l()()g

L 142 |
0 5—3; (s) (ﬁ>+<ﬁ)

O

Exercise 4.2.9. If the nonzero complex number z has equal real and imag-
inary parts, then what can you conclude about 227 What can you conclude
about 24?7 (*Hint*) O

Exercise 4.2.10. z = 3 + i is a solution to 22 — 6z + k = 0. What is the
value of k7 O

You are probably familiar with the fact that the product of two nonzero
real numbers is also nonzero. Is the same true for complex numbers? The
answer is yes.

Proposition 4.2.11. Given that z = a4+ bi, w = ¢+ di, and z - w = 0.
Then it must be true that either z =0 or w = 0.

The proof of Proposition 4.2.11 is outlined in the following exercise.

Exercise 4.2.12. Complete the proof of Proposition 4.2.11 by filling in the
blanks. Note that some blanks may require an expression, and not just a
single number or variable.


https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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(a) The proof is by contradiction. So we begin by supposing that z #
<1> andw# < 2> (which is the negation of what we're trying
to prove).

(b) Since z # < 3 > , it follows that 2 has an inverse 2! such that 2~ 1.z =
<4> .

(c) Since z-w = 0, we can multiply both sides of this equation by _ <5 >
and obtain the equation w = < 6 > . This equation contradicts the
supposition that <7 > .

(d) Since our supposition has led to a false conclusion, it follows that our
supposition must be < 8 > . Therefore it cannot be true that <9 > |
so it must be true that < 10 > .

4.2.2 Comparison of integer, rational, real and complex ad-
dition properties

It is obvious that addition with integers, rational numbers, and real num-
bers have very similar properties. In this section, we explore some of these
properties.

For instance, integers have an additive identity, that is, one special
unique integer that can be added to any integer without changing that
integer. The additive identity of the integers is 0, because for instance
540 =>5and 0+5 = 5. In general, if we let n be an arbitrary integer, then
n—+0=0+n =n. It’s pretty easy to see that 0 is also the additive identity
of the rationals, and the additive identity of the reals.

Every integer also has an additive itnverse,that is a corresponding num-
ber that can be added to the integer such that the sum is the additive identity
(that is, 0). For example, the additive inverse of the number 5 is —5, be-
cause 5+ (—5) = 0 and (—5) 4+ 5 = 0. In general, if we let n be an arbitrary
integer, then n + (—n) = (—n) +n = 0.

Notice an important difference between additive identity and additive
inverse: the number 0 is the identity for all integers, but each integer has a
different inverse.
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Integers Rationals Reals Complex (a +
(n,m, k) (o 20 F) (z,y,2) bi,c+di, e+ fi)
Additive | n+0=0+ | 2 4+0=0+ | 24+0=0+ | (a + bi) +--- =
identity n=n 2 =21 T =z
Additive | n + (—n) = %+. —
inverse (—n)4+n =0
Associa- | n+(m+k) = | 2+ (g +1)=

tive law (n+m)+k

Commu- | n+m = m+
tative law | n

Table 4.1: Additive properties of different number systems

Exercise 4.2.13. Complete all entries of Table 4.1, which shows the addi-
tive properties of integers, rationals, reals, and complex numbers.

O

4.2.3 Comparison of integer, rational, real and complex mul-
tiplication properties

Just as we’ve talked about the additive identity and inverse for different
number systems, in the same way we can talk about the multiplicative iden-
tity and inverse for different number systems.

The integers have multiplicative identity 1 because n-1 =1-n = n.
However, most integers do not have a multiplicative inverse. Take the num-
ber 5, for example. There is no integer that can be multiplied by 5 to give
1 (of course, 5 - % = % -5 =1, but % is not an integer, so it doesn’t count).

On the other hand, the real numbers do have multiplicative inverses,
with just one exception.

Exercise 4.2.14. Which real number does not have a multiplicative in-
verse? Explain your answer. %

Exercise 4.2.15. Complete all entries of Table 4.2, which shows the mul-
tiplicative properties of nonzero rationals, reals, and complex numbers.


https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4

42 CHAPTER 4 COMPLEX NUMBERS

Rationals Reals (z,y,2) Complex (a + bi,
(o 20 %) c+di,e + fi)
Multiplicative | --- z-l=1lz=x2|(a+bi)-...=...
identity
Multiplicative | --- T - % = % -x =
inverse lifx#0
Associative law | --- z(yz) = (zy)z
Commutative | --- Ty = yx
law

Table 4.2: Multiplicative properties of different number systems

Exercise 4.2.16. Prove FOIL for complex numbers: that is, if u, v, w, and
z are complex numbers, then (u + v)(w + 2) = vw + uz + vw + vz. O

Tables 4.1-4.2 show that complex numbers also follow the same funda-
mental algebraic rules that real numbers do. This makes life a lot simpler!
From now on, in our proofs we may freely apply these properties to complex
numbers, just like with real numbers. But it’s important to realize that we
had to go through the process first of establishing the properties specifically
for complex numbers, because there are number systems in which these basic
properties do not hold—be forewarned!

4.2.4 Modulus and complex conjugate

We are familiar with the absolute value of a real number: for instance,
| — V7 | = V7. In general, for a real number = the absolute value can be
defined as |z| = V2. (Here and elsewhere, the square root symbol is used
to denote the positive square root.)

Definition 4.2.17. For a complex number z, the absolute value or mod-
ulus of z = a+bi is |z] = Va® + b2 A

Complex numbers have an additional operation that real numbers do
not have.
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Definition 4.2.18. The complex conjugate of a complex number z =
a + bi is defined to be Z = a — bi. A
Example 4.2.19. Let 2z =2+ 3¢ and w =1 — 2¢. Then
z=2+43i=2-3iandw=1-2{=1+2i.
Notice also that
z4+w=(2+3i)+ (1 —2i) =3+iand zw = (2+3i)(1 — 2i) =8 — 1,

so that
z+w=3—17and zw = 8 + 1.

On the other hand, you may check that
Z+w=(2-3i))+(14+2i))=3—iand zw = (2 — 3i)(1 + 2i) = 8 +1.

What a “coincidence”!

Another remarkable “coincidence” occurs when we multiply complex
numbers by their complex conjugates:

z2-Z2=(2+30)(2—-3i) =13 and w-w = (1 — 2i)(1 + 2i) = 5,
while on the other hand, we may compute the moduli of z and w as

|z = V22 432 = V13 and |w| = /12 + 22 = V/5.

Exercise 4.2.20. Evaluate each of the following.

(a) @ (0 (V3- z‘>_1
(b) (4 — 5i) — (di — 4)
(©) (9—1)(9—4)

(d) (3+4i) + (3 +41) m) ((T=9)7")

(g) (V3—i)"

-1

(&) (VT +8i) — (VT + &) (i) (a-+ bi)(a+ bi)


https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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() (a+ bi) + (a + bi) 1) A=Ti)-(3+3)~ 1

O

In order to use the complex conjugate and modulus operations effec-
tively, we need to know how they interact with the arithmetic operations
of addition, multiplication, subtraction, and division. In the following, we
prove several propositions that estabish important properties of these two
operations.

Proposition 4.2.21. Given z and w are complex numbers, then Z + w =
Z+w.

ProoOF. We may write z as a + bi and w as ¢+ di. Then

Z+w=a+bi+c+di

= (a—bi) + (c — di) by definition of conjugate
=(a+c)—(b+d)i commutative, associative
=(a+c)+ (b+d) by definition of conjugate
=z4+w by definition of complex addition

O

Exercise 4.2.22. Prove each of the following propositions (follow the style
of Proposition 4.2.21).

(a) (2) = (8) |2 = |2°] (*Hint*)
(b) z-w = zw (h) 2! = |ZZ|2 (*Hint*)
(c) If a is real, then az = az

@) |1 =2 O 171 = gy CHine)
() 2z = |z () @)t =271

() |zw| = [2]|w] (k) (zw) "t =wlz!
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Exercise 4.2.23. Simplify the following expression: (z + i2)(z — iZ) +
(z42)(z — 2). O

Exercise 4.2.24. Suppose that z is a complex number such that 2~ = z.

(a) Find the modulus of z.

(b) How many solutions does this equation have?

Exercise 4.2.25.

(a) Show that the complex number z = a + bi is a pure real number if and
only if Z = z. (Note that you actually need to prove two things here:
(i) If z is real, then z = z; (ii) If Z = 2, then z is real).

(b) Prove that i(z + z)(z — 2) is real for any complex number z.

(¢) In view of part (a), complete the following statement: “The complex
number z = a+bi is a pure imaginary number if and only if Z = ....... 7
Prove your statement.

Now that we have proved properties of complex numbers in the previous
two exercises, we may make use of these properties to prove facts about
complex numbers without having to write everything out as a + bi.

Exercise 4.2.26.

z—1

(a) Prove that If [z = 1 and z is not a real number, then

imaginary number. (*Hint*)

is a pure

(b) Prove that If |z] = 1 and z is not a pure imaginary number (i.e. z is not
of the form 0 = bi, then 27 is a pure imaginary number.

Exercise 4.2.27.


https://www.youtube.com/watch?v=XOK7XHQUTZU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=4
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(a) *Use appropriate properties from Exercise 4.2.22 to prove the following:
for any nonzero complex number z, the absolute value of z + z7! is
greater than v/3. (*Hint*)

Give an example of z such that |z + 27| = 2.

)

c¢) Give four additional examples of z such that |z + 27| = 2.
) **Show that for any nonzero complex number z, |z+ 21| > 2. (*Hint*)
)

Show by example that part (d) is not true if z + 2! is replaced with
2+ 271, Find the smallest possible value for |z + z71|.

4.3 Alternative representations of complex num-

0o

bers

4.3.1 Cartesian representation of complex numbers

There are several ways to represent complex numbers, that have different
conceptual advantages. For instance, a complex number z = a + bt can be
considered simply as a pair of real numbers (a,b), where the first number
is the real part and the second number is the imaginary part. We are used
to plotting ordered pairs (a,b) on an zy plane, where a is the x coordinate
and b is the y coordinate. Representing a complex number in this way as an
ordered pair (a,b) is called the rectangular or Cartesian representation.
The rectangular representations of z1 = 2+ 34, 20 = 1 — 24, and z3 = -3+ 2¢
are depicted in Figure 4.3.1.

Often the notation a + bi is also referred to as “rectangular representa-
tion”, since it’s so similar to (a,b). In the following, we will refer to a + bi
as the “rectangular form” of the complex number z.

Mathematicians naturally think of complex numbers as points on a plane
— in fact, the complex numbers are often referred to as the “complex plane”.
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21 =243
23 =—3+ 2%

-22:1—2i

Figure 4.3.1. Rectangular coordinates of a complex number

4.3.2 Vector representation of complex numbers

You should already know that a point in a plane can also be considered as
a vector: in other words, the ordered pair (a,b) can be identified with the
vector ai 4 bj, where i and j are the unit vectors in the x4+ and y+ directions,
respectively. So complex numbers can also be considered as two-dimensional
vectors.

Exercise 4.3.1.

a) Write the numbers 3 + 7¢ and —5 + 97 as vectors.

(a)
(b) Find the sum of the two vectors that you found in (a).
(c¢) Find the sum (3 + 7i) 4+ (=5 + 9i)

)

(d) What is the relation between your answers to (b) and (c)? Explain.

O

Although the preceding exercise may seem sort of pointless, in fact it
is extremely significant. This is our first example of an isomorphism: a
correspondence between mathematical systems that are essentially identical.
At this point we will not give a formal definition of isomorphism, but to get
the gist of the idea consider two mathematicians (Stan and Ollie) with very
different tastes. Stan thinks geometrically, so he always thinks of complex
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numbers as vectors in a plane; while Ollie thinks algebraically, so he writes
complex numbers as a + bi. If Stan and Ollie work on the same problem
involving complex addition, even though Stan’s answer will be a vector and
Ollie’s will look like a + bi, their answers will always agree (that is, if they
both do the problem right).

Of course this correspondence between complex numbers and vectors
breaks down when we consider multiplication, because we have never seen
multiplication of 2-D vectors before. But it works perfectly well if we stick
with addition.

4.3.3 Polar representation of complex numbers

Nonzero complex numbers can also be represented using polar coordi-
nates. To specify any nonzero point on the plane, it suffices to give an
angle 6 from the positive = axis in the counterclockwise direction and a
distance r from the origin, as in Figure 4.3.2. The distance r is the ab-
solute value or modulus defined previously, while the angle 6 is called the
argument of the complex number z.

a—+ b

Figure 4.3.2. Polar coordinates of a complex number

4.3.4 Converting between rectangular and polar form

We can see from the Figure 4.3.2 that

z=a+bi=rcosf+ (rsinf)i,
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where

r=|z| = Va2 + b2
a=rcosf

b=rsinb.

We will frequently use the abbreviation ‘cis’, which stands for “cosine plus
1 sine”:

cisf := cosf 4 isinf.
(In this expression, the notation “:=” means “is defined as”. Note that we’re

writing ‘i sin 0’ instead of (sin #)i, because then we don’t need a parenthesis.)
Multiplying both sides by r gives

rcisf = r(cos + isin6)

We know from trigonometry that adding 27 to 6 does not change cos6
or sinf. This means for example that the following complex numbers are
equal: 2.6cis (g) ,2.6 cis (27r + g) ,2.6cis (—27r + g) ,.... However, we can
always find a 6 between 0 and 27 such that z = rcisf; so the standard
representation of z = rcisf has 0 < 0 < 2.

Example 4.3.2. Let 2 = 2cis 5. Then
77
—92¢cos — = 1
a cos 3
and -
b= 2sin 3= V3.

Hence, the rectangular representation is z = 1 + /3. ¢

Conversely, if we are given a rectangular representation of a complex
number, it is often useful to know the number’s polar representation.

Example 4.3.3. Let z = 3v/2—3v/21 (see Figure 4.3.3). Then the modulus

of z is
r=+va2+b2=+/36=6.

We can find the argument 6 by noticing that the tangent is equal to —3v2

3v2
or —1. This means that § = arctan(—1). Since the angle is in the fourth

quadrant, this means that 6§ = %’T.
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In general, for the complex number a + b¢ we have

f = arctan <b> ,
a

where we must be careful to choose the value of 8 corresponding to the
quadrant where a + b is located. The best way to make sure you’ve chosen
the right 6 is to draw a picture (like Figure 4.3.3). ¢

Figure 4.3.3. Modulus and argument of z = 3v2 — 324

Exercise 4.3.4. Convert the following complex numbers to rectangular
form (that is, write as a + bi). Give ezact answers and not decimals (use
square roots if necessary).

(a) 2cis(m/6) (e) v2cis(57/3)
(b) 5cis(97/4)
(c) 3cis(m)

() cis(727r/4)

(f) %Cis(—ﬁr/()‘)

(g) 14cis(307/12)

Exercise 4.3.5. Convert the following complex numbers to polar represen-
tation (Give exact answers, no decimal approximations).
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) —2—2i (i) V6 — \/6i
f) V3+i
(g) —3i
(d) 2+ 2i (h) 2i +2V3 (k) —/50 — v/50i

1—1 (e
(

(i) —3v2—6i

O

Pictures are essential for gaining an intuitive grasp of how complex num-
bers work. They’re also a lot more fun to draw than mathematical symbols.

Exercise 4.3.6.

(a) Figure 4.3.2 shows polar and Cartesian representations of a complex
number z in the complex plane. Redraw the figure, and put Z in the
picture as well. Show the Cartesian coordinates of Z, as well as the
modulus and the complex argument (angle).

(b) Use your picture to obtain the polar representation of Z in terms of the
modulus and complex argument of z.

O

The close interrelationship between plane geometry and complex num-
bers is a rich source of mathematical insight. The following exercise explores
some aspects of this relationship.

Exercise 4.3.7.

(a) Consider the following set of complex numbers:
{# such that |z| < 2.}

In the complex plane, what does this set look like? Draw a picture, and
describe verbally.

(b) Use complex numbers to specify the set of all points on a circle of ra-
dius 5 with center at the origin (your answer should look like the set
specification given in part (a)).
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(c) Consider the following set of complex numbers:
{z such that |z —i| = 2.}

In the complex plane, what does this set look like? Draw a picture, and
describe verbally.

(d) Describe the following as a set of complex numbers: the set of all points
on a circle of radius 3 that passes through the origin and has center on
the positive z-axis.

4.3.5 Multiplication and powers in complex polar form

The polar representation of a complex number makes it easy to find prod-
ucts, quotients, and powers of complex numbers.

Proposition 4.3.8. Let z = rcis and w = scis ¢ be two nonzero complex
numbers. Then
z-w =rscis(f + ).

Alternatively, we may write

rcisf - scis¢ = rscis(6 + ¢).

PROOF. The proof uses the following trigonometric formulas (surely you
remember them!):

cos(0 + ¢) = cos b cos ¢ — sin O sin ¢
sin(f + ¢) = cosf - sin ¢ + sin b - cos ¢

Exercise 4.3.9. Fill in the blanks to complete the proof:
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z-w=rcisf - _<1>
=r(cosf+isin(_<2> ))-s(_<3>)
=rs-(cosf+isin(_<4> ))-(<5>)
=rs((cosfcosp —sinfsing) +i(_<6> ))
=rs(cos(f+ ¢) +isin(_< 7> ))
=rscis(_<8> )

g

Exercise 4.3.10. Use Proposition 4.3.8 and the polar expression for z that
was given in Section 4.3.4 to give a simple proof of the following identity:

2z = |2|*.

O

We will also want to divide complex numbers in polar form. But first,

we need to characterize multiplicative inverses. Note for example that
[2cis(3m/4)] 1 = (1/2) cis(—37/4) since

2cis(3n/4) - (1/2) cis(=3n/4) =2-(1/2) - cis(37/4 — 3w /4) = cis(0) = 1,
and similarly

(1/2) cis(—3m/4) - 2cis(37/4) = cis(0) = 1.

Exercise 4.3.11.

(a) Let z = 13cis (3F) . Find a complex number w (in complex polar form)
such that zw = wz = 1. Write w so that its argument is between 0 and
2m. What is the sum of the arguments of z and w?

(b) Let z = 2 cis (0.397) . Find a complex number w (in complex polar form)
such that zw = wz = 1. Write w so that its argument is between 0 and
27. What is the sum of the arguments of z and w?
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(c) Given that z = rcisé and w = scis¢. Determine what s and ¢ must
be so that w = z~!. That is, find values for s and ¢ (in terms of r and
6 so that
z-scisg =scis¢-z=1.

Specify ¢ in such a way that it lies in the interval [0, 27].
9

From Exercise 4.3.11 we may deduce that the inverse of a complex number
w = §Cis ¢ is

1
w™t = = cis(2m — ¢),
s
which we could also write as

wl = ! cis(—¢)

S

since changing the argument by 27 does not change the value of the number.

Now recall that to divide two complex numbers z and w, we rewrite =

as z-w™ . So with z = rcisf and w = scis ¢ we may divide as follows:
© ~ (reist) - (+cis(~9)) =~ cis(0 — )
— = (rcisf) - (—cis(—9¢)) = —cis(0 — ¢).
w s s
The previous discussion proves the following proposition.
Proposition 4.3.12. Let z = rcis§ and w = s cis ¢ be two nonzero complex

numbers. Then . ,
— = —cis(f — ¢).
w S

Alternatively, we may write

rost _ icis(9 — ).

scisp s

In summary, multiplication and division of complex numbers in polar form
proceeds as follows:

Multiplication:

e Multiply the two moduli together to get the modulus of the product.
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e Add the two arguments together to get the argument of the product.

Division:

¢ Divide the modulus of the numerator by the modulus of the denomi-
nator to get the modulus of the quotient.

e Subtract the argument of the denominator from the argument of the
numerator to get the argument of the quotient.

Example 4.3.13. If z = 3cis(7/3) and w = 2cis(7/6), then

zw = (2-3)cis(n/3+ 7/6) = 6cis(m/2) = 6i.

Exercise 4.3.14. Calculate each of the following products using complex
polar arithmetic. Give the answer in rectangular form if you can do so
without using roots or decimals. Otherwise, leave the answer in polar form.

d) V3eis (f3) - V56 cis (75) - v2Leis (f5)
(¢) Vs (f5) - 81/% cis (5) - 451/ cis (557%)

Exercise 4.3.15. Calculate each of the following quotients using complex
polar arithmetic. Give the answers in polar form.

5 cis (‘%’r)

@) s (2) Geis (7).
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22 + 24/2i © V27i
VENRSY V3 —3i

3—3i V17 — V/51i
(@) 2 —V12i (®) —17—17i

()

O

Proposition 4.3.8 is the key fact used in finding the following formula for
powers of complex numbers in polar form:

Proposition 4.3.16.(de Moivre’s Theorem)

Let z = rcisf be a nonzero complex number. Then for n = 1,2,... we
have
(rcis@)™ = r" cis(n#). (P(n))

(We identify this statement as “P(n)” for later convenience.)

Before giving the proof, we first give some general explanation of the
ideas behind the proof.

Ideas Behind the Proof: We will use a very common proof technique
called induction. ® Induction is commonly used to prove statements of
the form “P(n) is true for n = 1,2,3,...”, where n is some equation or
statement involving the quantity n.

Notice that we actually want to prove an infinite number of statements:
that is, we want to prove:

e (rcisf)! =rlcisd
e (rcisf)? = r?cis(26)

o (rcisf)? =1r3cis(30) ...

The first statement is obviously true. The second statement (for n = 2) can
be proved using Proposition 4.3.8:

Exercise 4.3.17. Prove (rcisf)? = r? cis(26) using Proposition 4.3.8. ¢

8In the Appendix we give a more thorough treatment of the topic of induction. Here
we give only a brief presentation.
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The third statement (for n = 3) can be proved using the statement for
n=2

Exercise 4.3.18. Fill in the blanks to complete the proof:

(rcisf)® =rcisf- ((<1> ) (associative)
=rcisf-(r?_<2> ) (by the previous exercise)
=73 cis(f+_<3>)) (by Proposition 4.3.8)
= <4>) (by basic algebra)

O

So we have actually used the statement for n = 2 to prove the statement for
n = 3. We could continue in this fashion to prove n = 4 from n = 3:

Exercise 4.3.19. Prove (rcisf)* = r* cis(46), using Proposition 4.3.8 and
the result of the previous exercise (*Hint*) O

Obviously it would take a long time to prove n = 5 from n = 4, n = 6 from
n = 5, and so on. So instead, we will prove the following statement that
covers all these cases:

If (rcis0)F = r* cis(k0) is true, then (rcis0) ! = 1 cis((k+1)0) is also true.

This allows us to “ladder up”: if the statement is true for some integer,
then it’s also true for the next integer.

In summary, the induction proof has two basic elements:

e Prove the statement P(n) for n = 1 (this is called the “base case”);

e Assuming that P(n) is true for n = k, it follows that P(n) is also true
for for n = k + 1 (this is called the “induction step”).

Now that we’ve given the ideas, here is the actual proof of Proposition 4.3.16:

Proor. We will use induction on n. First, for n = 1 the proposition is
trivial. This establishes the “base case”.
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Next, assume that P(n) is true for n = k: that is, 2¥ = r¥ cis(k6). Then
using this fact and exponent rules, we may rewrite zF! as

Sl Lk
= r¥ cis(k6) r(cis )
= 7k cis(k6 + 0)]
= R cis[(k 4 1)4).

This establishes the “induction step”, which completes the proof. O

Example 4.3.20. We will compute z'° where z = 1 + 4. Rather than
computing (1 +4)'° directly, it is much easier to switch to polar coordinates
and calculate z'° using de Moivre’s Theorem:

210 — (1 + Z')lo

- (vaen ()"

5
= (v2)Y¥cis (;)
T
— 320is ()
2
= 32i.
¢
Notice that de Moivre’s Theorem says nothing about a complex number
raised to negative powers. For any real number x, we know x~" means
(z™)~!. Complex numbers happen to work the same way.
Definition 4.3.21. Given a complex number z = rcisf,
27 = (")
A

Example 4.3.22. Let z = 2cis(7/4). What is 2737

8cis(37/4))""  (by de Moivre’s Theorem)

cis(5m/4) (by Exercise 4.3.11)
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¢

Exercise 4.3.23. Calculate each of the following expressions. Write the
answer as a+ bi if you can do so without using roots or decimals. Otherwise,
you may leave the answer in polar form.

(a) (1+10)7° (f) (—vV2—-v24)"
(b) (1-1)° (8) (=2+20)7°

(c) (V3+1i)° (h) (V2+v2—iv2—+2)6

o (vV15-3/5i)°
® 62—

(d) (=)'
(1—9)10

(e) (1—1i)/2)! 0) —vzme

4.3.6 A Remark on representations of complex numbers

We have seen that a complex number z can be expressed in a number of
different ways:

As a + bi, where a and b are real numbers;
e As a point in the Cartesian (two-dimensional) plane;

e As a pair of real numbers (a,b) that give the rectangular coordinates
of the point in the plane;

e As a pair of numbers (r,0) where » > 0 and 0 < 6 < 27, that give the
polar coordinates of the point in the plane;

e Asr-(cosf+i-sinf), or the equivalent form 7 - cis(6).

In abstract mathematics, it is very common to represent the “same” entity
in a number of different ways. One of the main goals of abstract algebra is
to identify mathematical structures that are the “same” algebraically even
though they appear to be different. Mathematical structures that are the
“same” algebraically are said to be isomorphic. We will be seeing isomor-
phic structures throughout this course.


https://www.youtube.com/watch?v=J7M1JJJKYEM&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=5

60 CHAPTER 4 COMPLEX NUMBERS

The importance of isomorphism in mathematics cannot be overstated.’
Realizing that the same thing can be represented in two different ways is
often the key to mathematical progress, and can lead to enormous simplifi-
cations. For instance, we have seen that it’s easier to add complex numbers
in Cartesian form, while it’s much simpler to multiply complex numbers in
polar form. Since Cartesian and polar forms are simply two different ways
of representing the same thing, we can freely switch back and forth between
the two forms, using whichever is most convenient at the moment.

Exercise 4.3.24.

(a) Using de Moivre’s formula for 23 where z = cis 6, find formulas for cos 30
and sin 36 in terms of cos# and siné. (*Hint*)

(b) Using part (a), find a formula for cos 36 in terms of cosd. (*Hint*)

(c) Show that for any n, it is always possible to find a formula for cosnf in
terms of cos .

(d) * Show that for any even n, it is always possible to find a formula for
cosnf in terms of even powers of cos 6.

4.4 Complex numbers and roots of algebraic equa-
tions

0o

4.4.1 Roots of unity and regular polygons Ik

As we mentioned before, complex numbers got their start when mathemati-
cians started considering the solutions to algebraic equations. One particu-
larly important equation is

=1, where n € N.

For example, when n = 4 the complex numbers which solve z* = 1 are z = 1,
—1, i, and —i. In general, the complex numbers that satisfy the equation

9There are other types of “morphisms” as well, such as homeomorphism (in topology),
diffeomorphism (in differential topology), and just plain morphism (in category theory).
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2™ =1 are called the nth roots of unity. (In other words, “nth root of
unity” means the same thing as "nth root of 17.)

Exercise 4.4.1.

(a) Give two distinct square roots of unity (that is, 2" = 1 for n = 2).

(b) For what integers n is —1 an nth root of unity?

O

It turns out that in general we can find n different nth roots of unity, as
per the following proposition:

Proposition 4.4.2.The complex number z is an nth root of unity if and
only if z satisfies the following condition:

2k
z = cis <7T> , where k is an integer between 0 and n — 1.
n

To illustrate this proposition, consider the case n = 4. Then the equation
gives: z = cis(2km/4) where k = 0, 1, 2, 3, which works out to cis(0), cis(7/2),
cis(m), and cis(37/2). Converting to Cartesian form we get 1,4, —1, —i as our
four roots, in perfect agreement with what we found in the first paragraph
of this section.

So, let’s give a proof!

PRrOOF. The proposition is an “if and only if” assertion, meaning that we’ll
have to prove it both ways. We’ll start with the “only if ” part. To this
end, we suppose z is a complex nth root of unity. Our goal is to show that
z must satisfy the given formula. Any complex number may be written in
polar form, so we may write z = r cis(6) where r is the modulus and 6 is the
complex argument of z. So we may deduce:

=r" =1 (properties of modulus

2" =1 (z is a nth root of unity)
=(rcis(d))" =1 (polar form of z)
=7r"cis(nf) =1 (de Moivre’s theorem)
=|r" cis(nd)| = |1] (take modulus of both sides)
)
)

=r=1. (Since 7 is a nonnegative number
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Now substituting » = 1 back into the third line in this series of implications,
we get:

cis(nf) =1 (substitution
= cos(nf) + isin(nb) = 1 (definition of cis
= cos(nf) = 1 and sin(nf) =0 (equality of complex numbers
=nfd =m- 2w (periodicity of sin and cosine, from trig
=0 =m- 271 /n. (basic algebra

To recap, we have:

z = rcis(f) where r = 1 and 6 = 2wm/n, where m is an integer.

Now, any fraction of the form m/n can be written as an integer plus a
fractional part between 0 and 1. Furthermore, the fractional part always
has the form k/n where k is an integer between 0 and n — 1. In other words:

m/n=1~0+k/n where ¢ and k are integers and 0 < k < n.

It follows by substitution that

z =cis(2mrm/n) (from last equality in previous series)
=z =cis(2r({ + k/n)) (substitution)
= z = cis(2nl) cis(27k/n) (algebraic properties of cis)
= z = cis(27k/n). (def. of cis and trig)

Our goal has been achieved: z must definitely have the form cis(27k/n)
where 0 < k < n.

Now for the “if” part; we must show that complex numbers which satisfy
the formula as also nth roots of unity. By de Moivre’s Theorem,

2k
2" = cis (nﬂ) = cis(2km) = 1.

n

Finished!
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Remark 4.4.3. Note that the condition

2k
z = cis <7T> , where k is an integer between 0 and n — 1.
n

does indeed specify n distinct values for z. This is because k/n produces n

different fractions between 0 and 1, so %T’T gives n different angles between 0

and 27. Our vector representation of complex numbers tells us that different
angles must produce different complex numbers. A

Exercise 4.4.4.

(a) Using Proposition 4.4.2; write three cube roots of unity in polar form.
Convert to the form a + bi.

(b) Using Proposition 4.4.2, write six 6th roots of unity in polar form. Con-
vert to the form a + bi.

Exercise 4.4.5. In this exercise you will give a different proof that there
are exactly 4 4th roots of unity, by showing that any complex apart from 1,
-1, i, or —i cannot possibly be a 4th root of unity. First we suppose that w
is a complex number such that w ¢ {1, —1,7,—i}.

(a) Show that (w —1)(w + 1)(w — i)(w + i) # 0. (*Hint*)

(b) Show that this implies that w is not a 4th root of unity. (*Hint*)

Exercise 4.4.6.

(a) Multiply out the product (z—1)(z —cis (£))(z —cis (4F)) and simplify.
(*Hint*)

(b) Use your result in (a) to show that there are exactly 3 cube root of unity.
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O

When represented in the complex plane, the roots of unity have some
very interesting geometric properties:

Example 4.4.7. The 8th roots of unity can be represented as eight equally
spaced points on the unit circle (Figure 4.4.1). For example, some 8th roots
of unity are

2
2 2
(US — _£ + £Z
2 2
s V2 V2.
w’=———-—1
2 2
7 V2 V2.
w'=——-—1i.
2 2
In fact, the 8th roots of unity form a regular octagon. ¢
Y
i
w3 w
-1 0 1 x
wd w’
—1

Figure 4.4.1. 8th roots of unity

Exercise 4.4.8. Sketch the cube roots of unity in the complex plane. Use
the distance formula (from geometry) to show that the three points are all
the same distance from one another. Connect the three points to form a
triangle. What kind of triangle is it? O
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Exercise 4.4.9. Prove (using geometry) that the 4th roots of unity form
a square. (Hint: Besides showing that all sides are equal, you also have to
show that they are perpendicular.) O

Exercise 4.4.10. *Prove (using geometry) that the 6th roots of unity form
a regular hexagon. (Hint: Draw lines from each point to the origin, forming
6 triangles. What can you say about these triangles?) O

Once again, we see an interesting relationship between complex numbers
and plane geometry. Let us explore this relationship a little further.

Exercise 4.4.11.

(a) Draw a picture of the 6th roots of unity in the complex plane. Label

them A,B,C,D,E,F with A = 1,B = cis (%), and C, D, E, F going

counterclockwise around the circle.

(b) Fill in each of the following blanks with the letter corresponding to the
product of the two complex numbers. For example, B - B = cis (21) .

6
cis (%’r) = cis (%”) =C.

B- A= <1> B-C= <3> B-E= <5>
B-B= <2> B-D= <4> B-F= <6>

(c¢) Using your answers from part (b), on your picture draw an arrow from

A to B - A; similarly draw arrows from B to B- B, C' to B - C, and so
on. What do you observe about the arrows?

(d) It appears that multiplying all of the corners of the hexagon ABCDEF
by B produces a rotation of the hexagon. What is the angle of rotation?

(e) Fill in the blanks:

EFE-A= <1> EF-C= <3> F-FE= <5>
EF-B= <2> EFE-D= <4> EF-F= <6> .

(f) Just as in part (c), use your answers from part (d) to draw arrows from
Ato F-A, BtoE-B,etc. What do you observe about the arrows?
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(g) Fill in the blanks: If you choose one particular 6th root of unity and
multiply it with all the other 6th roots, the new values correspond to
different < 1> of the original hexagon. The angle of <2 > is
equal to the complex argument of the <3 > .

Exercise 4.4.12.

(a) Just as in part (b) of Exercise 4.4.11 fill in the blanks with the correct
letter A, B,C, D, E or F (recall that A denotes the complex conjugate
of A).

N
I

<3> <5>
<4> <6> ).

ol Al

<1>
<2>

oo/

(b) Just as in part (c) of Exercise 4.4.11, draw arrows from A to A, B to
B, etc. What do you observe about the arrows?

(c) We refer to the geometrical motion produced by complex conjugation
as “flipping”. What is the axis of the “flip” that is produced by taking
the complex conjugates of the sixth roots of unity?

¢

The previous exercises (when suitably generalized) lead to the following
stupendous conclusion:

e Every rigid motion of a regular n-gon is equivalent to some combina-
tion of complex conjugation and multiplication by one of the nth roots
of unity. (By “rigid motion” we mean any motion that a rigid object
could undergo, without stretching or bending or distorting it in any
way. We’ll have more to say about rigid motions in Chapter 13.)

Exercise 4.4.13.

(a) What geometrical motion corresponds to the following algebraic opera-
tion: Multiply all 6th roots by D, then take the complex conjugates.
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(b) What geometrical motion corresponds to the following algebraic oper-
ation: “Take the complex conjugates of all 6th roots, then multiply by
D'”

(¢) What geometrical motion corresponds to the following algebraic opera-
tion: “Multiply all 6th roots by C, then take the complex conjugates.”

(d) What geometrical motion corresponds to the following algebraic oper-
ation: “Take the complex conjugates of all 6th roots, then multiply by
C'”

O

Exercise 4.4.13 also gives us our first exposure to a phenomenon that is
quite common in abstract algebra, namely the existence of non-commutative
operations (also known as mon-abelian operations). We saw that both
multiplication by a nth root of unity and complex conjugation corresponded
to motions of a regular n-gon. However, the order of the motions matters:
rotating first and then conjugating (i.e. “flipping”) gives a different result
than conjugating first, then performing the rotation afterwards.

Exercise 4.4.14. If you’ve studied matrix multiplication, then you may
have seen non-commutative operations before:

(a) Give an example of two 2 x 2 matrices that do not commute: that is
AB # BA.

(b) Give an example of two 2 x 2 matrices that do commute.

O

The previous exercises give a small hint as to the extensive and beau-
tiful relationship between the complex numbers and plane geometry. The
following exercises further explore this relationship.

Exercise 4.4.15. Consider a plane with Cartesian coordinates. Let O be
the point (0,0), let A be the point (a,b), and let C' be the point (¢, d). Also,
let w=a+ bi and z = c+ di. We may consider the three complex numbers
0,w, z as representing the vertices of triangle OAC.

(A word to the wise: drawing a picture can be extremely helpful.)
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(a) Express the lengths of the three sides of the triangle in terms of w and
z. For example, the length of side OA is |w|.

(b) Show that multiplying 0,w, and z by %' rotates the triangle so that
side OA lies along the real axis (you may use polar coordinates).

(c) Let 0,w’, and 2’ be the three vertices of the rotated triangle. Show that

Rel?'] = “gr[jw and Im[2'] = Z”“g‘j'“’.

(d) Show that the area of the rotated triangle is ‘@| (Since rotation
doesn’t change the area, your formula also gives the area of triangle
OAC.

(e) Let OA'C’" denote the rotated triangle. Express the cosine of angle
ZA’OC" in terms of w and z.

(f) Let |OA[,|OC’|, and A’C’| denote the lengths of the three sides of the
rotated triangle. Use complex arithmetic with w and z to prove the law
of cosines:

|A'C")? = |OA'|2 +0C")? — 2|0 A'||OC| cos(£A'OC").

(Since rotation does not change lengths or angles, you have also proved
the law of cosines for the original triangle OAC'.)

Exercise 4.4.16. As in the previous problem, consider points O, A,C in
the Cartesian plan represented by complex numbers 0,w, and z respectively.

(a) The segments OA and OC are two sides of a parallelogram P, where
0O, A, C are three of the four vertices of P. Let D be the fourth vertex
of P. Let v be the complex number that represents D. Express v in
terms of w and z.

(b) We have seen that points in the plane are associated with vectors, which
in turn may be represented by complex numbers. For example, the vec-
tor AC is represented by the complex number z — w. Find the complex
number that represents the vector OD.

(c) Let F and G be any two points in the plane, represented by the complex
numbers ¢ and r respectively. Show that OF is perpendicular to OG if
and only if ¢/r is imaginary (you may use polar coordinates).
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(d) Show that the two diagonals of the parallelogram P are perpendicu-
lar if and only if the parallelogram is a rhombus, i.e. all sides of the
parallelogram are equal.

O

Exercise 4.4.17. As in the previous problems, consider points O, A, C in
the Cartesian plan represented by complex numbers 0,w, 2z respectively.

(a) The perpendicular bisector of side OA corresponds to the set of complex
numbers {w/2+itw,t € R}. Similarly, the perpendicular bisector of OC
corresponds to the set of complex numbers {z/2 + isz, s € R}. Express
the perpendicular bisector AC as sets of complex numbers.

(b) The perpendicular bisectors of OA and OC' intersect at a point B in
the Cartesian plane, which corresponds to a complex number v. Since
v is on both perpendicular bisectors, we may write v = w/2 + it'w and
v = z/2 + is’z. By setting these expressions, we may solve for s’ in
terms of ¢,w, z. Since s’ is real we have s’ = §, so that we may obtain
another equation for s’ in terms of ¢/, w, z. Solve for ¢’ by setting these
two equations equal. Then solve for s’ using your solution for #'.

(c) Since we have v = w/2+it'w and v = z/2+1is'z, we may also write v as
the average of these two expressions: v = 1/2(w/2 + it'w) + 1/2(z/2 +
is'z). By plugging in the values of ¢’ and s’ and rearranging, show that
we may write v = (w4 v)/2 + i’ (w — v), where 7’ is real.

(d) Conclude that the perpendicular bisectors of triangle OAC' all meet at
a single point.

segments OA and OC' are two sides of a parallelogram P, where O, A, C
are three of the four vertices of P. Let D be the fourth vertex of P. Let
v be the complex number that represents D. Express v in terms of w
and z.

(e) We have seen that points in the plane are associated with vectors, which
in turn may be represented by complex numbers. For example, the vec-
tor AC is represented by the complex number z — w. Find the complex
number that represents the vector OD.

(f) Let F and G be any two points in the plane, represented by the complex
numbers ¢ and r respectively. Show that OF is perpendicular to OG if
and only if ¢/r is imaginary (you may use polar coordinates).
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(g) Show that the two diagonals of the parallelogram P are perpendicu-
lar if and only if the parallelogram is a rhombus, i.e. all sides of the
parallelogram are equal.

¢

In fact, many intricate theorems in plane geometry that require long
proofs using conventional methods can be proven much more easily using
complex numbers. We will not be exploring this further; but we hope these
examples will stimulate your imagination!

4.4.2 Complex nth roots in general 5

In the previous section, we characterized all complex solutions of the equa-
tion 2" = 1; we called these solutions the nth roots of unity. A natural
question to ask then is, What about the nth roots of any complex number?
That is, given a complex number a + bi, can we find all solutions to the
equation z"™ = a + bi? Let’s explore some simple cases first.

Exercise 4.4.18.

a) Find all square roots of 1.

(
(b) Find all square roots of 4.
(c
(d

)
)
) Find all square roots of -1.
) Find all square roots of -2.
)

(e

In each of the above cases, given one of the square roots, you can find a
second square root by multiplying by (fill in the blank).

O

We may use the observation from part (e) of the previous exercise to
find find alternative square roots of other complex numbers.

Exercise 4.4.19.

(a) The complex number 147 is one square root of 2i. Can you find another
one?


https://www.youtube.com/watch?v=o5wpaYsDU4o&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=7
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(b) Find two square roots of 8i. (*Hint*)

(¢) Find two square roots of —8i.

O

Next, let us consider the case of cube roots. Consider for example the
cube roots of 1 + 4, which are the solutions to

2 =141
We may rewrite this in polar form as
(rcis0)® = V2cis <%) ,
where rcisf is z in polar form. De Moivre’s theorem then gives us:
3 cis 30 = V/2cis (%) .
One solution for r and 6 which satisfies this equation is:
P =vV2=r=2Y0 and 30=n/4=0=n/12,
so that
2 = 2Y0 cis(m/12).

We may use deMoivre’s theorem to verify that this z is indeed a cube root
of 1+ 4. But is it the only one? In fact, if we multiply this z by cis(27/3)
and cube the result, we find:

(21/6 cis(m/12) - cis(27r/3)>3 - (21/6 cis(w/12))3 - (cis(27/3))>

=(1+4)-1
=1+1,

so that z-cis(27/3) is also a cube root of 1414. Why does this work? Notice
that cis(27/3) is a cube root of unity, so it turns into 1 when cubed. The
same thing happens with cis(47/3), which is the other cube root of unity—
you may check that z - cis(47w/3) is an additional cube root of 1 4 . This
example suggests a general procedure for finding 3 distinct cube roots of
complex numbers:
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e Find a single cube root using de Moivre’s Theorem;

e Multiply your result by cis(27/3) and cis(47/3) to obtain 3 distinct
cube roots.

This takes care of cube roots. But let’s not stop there! We can use a
similar procedure to find n distinct nth roots of any complex number:

e Find a single root using de Moivre’s Theorem;

e Multiply your result by all n roots of unity to obtain n distinct roots.

Exercise 4.4.20. Show that the 2-step procedure above gives all nth roots
of a given complex number. That is, show that any complex nth root of z
can be obtained as an nth root of unity times any other complex nth root
of z. You may proceed as follows. Suppose z is a complex number, and w;
and ws are nth roots of z. Show that there exists an nth root of unity u
such that wy is the product of u and wo, i.e. w1 = u - wo. O

Exercise 4.4.21. (In this exercise, you may leave your answers in polar
form)

(a) Find all fifth roots of —i.
(b) Find all fourth roots of —1 + /3.

(c¢) Find all fourth roots of \/1/2 +2/4+ i\/1/2 —/2/4. (*Hint*)
(d) Find all sixth roots of —164.

(e) Find all seventh roots of 5 — 5i.

Exercise 4.4.22. In previous exercises, we have considered nth roots where
n is a positive integer. But what about negative roots?

(a) For parts (a-e) in Exercise 4.4.21, find the corresponding negative roots
(i.e., in part (a) find the negative 5th roots, etc).
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(b) Explain the relationship between the moduluses of the roots you found
in Exercise 4.4.21, and the roots you found in part (a).

(c) Explain the relationship between the complex arguments of the roots
you found in Exercise 4.4.21, and the complex arguments you found in

part (a).

4.4.3 Complex roots of polynomial equations &

Next we consider more general algebraic equations than the basic nth root
equations we've been looking at so far. As a first example, consider the
equation 22 + pz = ¢, where p and ¢ are real numbers. Using the quadratic
formula, it is not too hard to show that if a—+bi is a solution of z>+pz = ¢ then
the complex conjugate a — bi is also a solution. This is because 2% + pz = ¢
can also be written as 22 4+ pz — ¢ = 0, and the quadratic formula tells us

that there are two solutions, given by:
_pEVP -9 _ —p VP +4g

2 2 2

z

The —p/2 term is always real, but the square root term is either real or
imaginary depending on the sign of p? + 4¢ (since ¢ could be negative). If
the square root term is real, then both roots are real, and each root is its
own complex conjugate. If the square root term is imaginary, then the +
means that the imaginary parts of the two roots are negatives of each other,
so that the two roots are complex conjugates.

Exercise 4.4.23. Consider the cubic equation 23+ pz% + gz = r, where p, ¢
and r are all real numbers.

3

a) Using an appropriate identity from Exercise 4.2.22, show that 23 =73,

(
(b

Similarly, show pz2 = pz? and gz = ¢z, and 7 = r.

(d
(e

)
)
(c) Use (a) and (b) to show that 23 + p22 +qz —r = 23 + pz2 + gz — r.
Using (c), show that z3+p22—|—qz—r = 0 implies that E3+p22—|—q§—r =0.
)
)

Using (d), show that if z is a solution to 23 4+ pz? 4+ ¢z = r then % is also
a solution.


https://www.youtube.com/watch?v=HKtljwos03o&index=8&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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O

Exercise 4.4.24. Suppose the cubic equation 22 4+ pz% + gz = r has an odd
number of solutions. Show that at least one of the solutions must be real.

O

The proof in Exercise 4.4.23 can be straightforwardly generalized to quar-
tic, quintic, and higher-degree polynomials as well. The result is:

Proposition 4.4.25. Given that the complex number z is a solution of
2"+ an 12" N+ an_92" 2+ ...+ a1z = ag, where ag,ai,...a,_1 are real
numbers. Then Z is also a solution to the same equation.

Exercise 4.4.26. Given that 3 —7i and —2 4 ¢ are solutions to an equation
of the form z* 4+ a3z + ag2% + a1z + ag = 0 where ag, a1, as, a3 are real.

(a) Find two other solutions to the same equation.

(b) *Find ag, a1, as,as. (*Hint*)

O

Exercise 4.4.27. Given that p(z) = 2% + a22® + a1z + a9 = 0, where
ap, a1, a are real numbers. Suppose p(1) = 16, and suppose that 1+ 2i is a
root of p(z).

(a) Find two other solutions to the same equation.

(b) Find ag, a1, as.

O

Exercise 4.4.28. Given the equation 2" +a,_12" ' +an_22""2+.. . +a1z =
ag, where ag, a1, ...a,_1 are real numbers. Let N be the number of solutions
of the equation that are not real. Prove that either N = 0 or IV is divisible
by 2. (*Hint*) O

Exercise 4.4.29. Suppose that p(z) is a fourth degree polynomial with real
coefficients. Suppose that p(z) = p(—z). Suppose also that 3 + 47 is a root
of p(z) and that p(0) = 1.
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(a) Find three other roots of p(z).

(b) Find p(z2).

O

The most famous result concerning complex roots of polynomials is
known as the Fundamental Theorem of Algebra:

Proposition 4.4.30. Given any equation of the form 2" + a,_12"" ' +
An_22""24...4+a12 = ag, where n > 0 and ag, a1, ...an,_1 are real numbers.
Then there exists at least one and at most n distinct complex numbers which
solve the given equation.

The Fundamental Theorem of Algebra actually has two parts. The easy
part is the “at most n distinct complex roots” part, and the hard part is
the “at least one complex root” part. We will eventually prove the easy
part in Chapter 12, but sadly the hard part is beyond our scope. For more
information on this see the Remark at the end of the chapter.

Exercise 4.4.31.

(a) Give an example of an equation of the form 22 + a1z = ag that has only
one solution.

(b) Give an example of an equation of the form 2% + asz? + a1z = ap that
has only one solution.

¢) Can you give an example of an equation of the form z°+a9z°+ a1z = ag
Can you gi ple of quati f the f 3 2
that has exactly two solutions?

Exercise 4.4.32. Using the Fundamental Theorem of Algebra and Exer-
cise 4.4.28, prove the following proposition: Given an equation of the form

2" an 12" N an_02" % +. . . +a1z = ag, where n > 0 and ag, a1, ....an_1
are real numbers. Suppose the equation has no real solutions. Then the
equation has at least two distinct solutions. O

Exercise 4.4.33. Using the Fundamental Theorem of Algebra and Exer-
cise 4.4.28, prove the following proposition: Given an equation of the form
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2" ap_ 12" N an_92" 2+ .. .+ a1z = ag, where n is a positive odd number
and ag,aq,....a,_1 are real numbers. Then the equation has at least one
real solution. O

Exercise 4.4.34. Give an example of a polynomial of the form 2% + a52° +
asz* + ... + a1z = ag, that has no real solutions, and exactly two distinct
complex solutions. O

Remark 4.4.35. (historical background) The Fundamental Theorem of Al-
gebra is a famous “hard problem” in the history of mathematics. Some of the
greatest mathematicians in history (including Euler, Lagrange, Laplace, and
Gauss) thought they had proofs, only to have later mathematicians point
out flaws or gaps in the arguments. See http://www-history.mcs.st-and.
ac.uk/HistTopics/Fund_theorem_of_algebra.html for more details. In
the modern mathematics curriculum, the proof is usually given in courses
on complex analysis as an easy consequence of “Liouville’s theorem”, which
was first proved in 1847. Modern college students who learn basic concepts
from the theory of complex variables can readily grasp the theorem which
stymied the greatest mathematical minds of history. A

4.5 Applications of complex numbers &

4.5.1 General remarks on the usefulness of complex numbers

We have already discussed that it took some time for complex numbers to be
generally accepted by mathematicians, who tended to have a preference for
“pure” numbers such as the integers. But complex numbers have had their
revenge. Today the “purest” form of mathematics, namely number theory, is
heavily dependent on complex numbers. The famous Fermat’s Last Theorem
was proved using techniques that involved complex numbers.

But quite apart from pure mathematics, complex numbers have proved
to be extremely practical. Complex numbers are indispensable tools for
scientists and engineers. Virtually all of modern physics is based on complex
numbers. Engineers build bridges using complex numbers. Without complex
numbers, there would probably be no computers, cell phones or most other

1%See http://wuw-history.mcs.st-and.ac.uk/HistTopics/Fermat’s_last_theorem.
html for some of the long and sordid history of Fermat’s Last Theorem.


http://www-history.mcs.st-and.ac.uk/HistTopics/Fund_theorem_of_algebra.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Fund_theorem_of_algebra.html
https://www.youtube.com/watch?v=beo_65G9I7Q&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=6
http://www-history.mcs.st-and.ac.uk/HistTopics/Fermat's_last_theorem.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Fermat's_last_theorem.html
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electronics. A strong argument could be made that complex numbers are
even more useful than “real” numbers.

Much of the practical usefulness of complex numbers comes from their
close relationship with the trigonometric functions cosine and sine. We have
seen a little bit of this already in the representation z = rcisf. Complex
numbers give a powerful way to express complicated functions of sine and
cosine in a very simple way. We will give an introduction of this in the next
section—you may see it again, or have already seen it, in your differential
equations course.

4.5.2 Complex numbers in electrical engineering: phasors

We have already seen there is a close relationship between complex numbers
and the trigonometric functions sine and cosine. This relationship is the
basis for much of the usefulness of complex numbers — as we shall explain
in this section.

Figure 4.5.1 shows the graphs of the cosine and sine functions. They
look like waves: for instance, the graph of y = cos(t) is a wave that includes
the point (0,1). The amplitude of this wave is 1. The period of this wave
is 27 radians.

135

cos(t)

- sinft)

15 -

Figure 4.5.1. Graphs of cosine and sine

Note that some references use the word “wavelength” instead of “pe-
riod”. This is because they are considering equations like y = cos(x) where
the independent variable = represents distance. We are considering the in-


https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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dependent variable to be time: so it is appropriate to use the word “period”
instead.

Of course, there are cosine and sine waves with different periods. How-
ever, in this section we will only be looking at cosine and sine waves with
period 2w. We re-emphasize: all the cosine and sine waves in this chapter
(and any that you use in the homework problems) have period 27.

Now we can create other waves by using the cosine as a “parent function”.
For instance, the graph of y = Acos(t 4+ 0) where A > 0 is similar to the
graph of y = cos(t), with the following differences:

e The amplitude is A

e The phase shift (relative to the cosine curve) is 6.

Remark 4.5.1.

e You may have studied “parent functions” in high school, and if so you
may remember that the graph of y = f(¢t + ¢) is shifted to the left
compared to the graph of y = f(t). It follows that a positive phase
shift will shift the graph to the left, while a negative phase shift will
shift it to the right (see Figure 4.5.2).1!

e If the variable ¢ is considered as time, then y = A cos(t+0) is advanced
by 6 (corresponding to a left shift of the graph), while y = A cos(t —6)
is delayed by 6 (corresponding to a right shift of the graph).

A

Exercise 4.5.2. Sketch the function y = 1.5cos(t +7/3). Label the ampli-
tude and phase shift on your graph. O

Exercise 4.5.3. Give the equation of a cosine wave with amplitude 7 and
phase shift —7/2. Graph the function. How is this function related to a sine
wave? O

1You should be careful when you encounter the term “phase shift” in other books,
because some books define a positive phase shift as moving the graph to the right. This
is not wrong: it’s just different terminology.
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) | Phase=-1.5
4 Amplitude=5 =

----- 5cos(t)
——5cos(t-1.5)

Figure 4.5.2. Cosine wave with amplitude and phase shift

Exercise 4.5.4. Give the equation of a cosine wave with amplitude 1/2
and phase shift 2w. Graph the function. How is this wave related to the
original cosine wave with phase shift 07 O

Exercise 4.5.5.

(a) Sketch the function y = sin(t).

(b) Find three different choices of A, # such that sin(t) = A cos(t+6). What
are the possible values of A7 (*Hint*)

O

In summary, amplitude and phase are two important properties of cosine
and sine waves; and in fact the amplitude and phase uniquely determine the
actual wave, as you saw in Exercises 4.5.3 and 4.5.4. Now earlier in this
chapter, we saw a different mathematical object that was characterized by
amplitude and phase. Naturally, we’re referring to the complex numbers.
We will now make a deep connection between these two types of mathemat-
ical objects that, on the surface, are very different.

Recall that the real part of the complex number z = a + bi is a, and the
imaginary part is b. We also use the notation Re[z] to denote the real part


https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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of the complex number z, and the notation Im[z] to denote the imaginary
part.

Exercise 4.5.6. Show that Re[Acisf - cis(t)] = Acos(t + ). (*Hint*) O

Exercise 4.5.7. Show that Im[Acisf - cis(t)] = Asin(t + 6). O

The previous two exercises show that:

e A cosine wave with amplitude A and phase shift # can be represented as
the real part of the complex number A cis f times the complex function
cis(t).

e A sine wave with amplitude A and phase shift 8 can be represented as
the imaginary part of the complex number A cis# times the complex
function cis(t).

We may also understand this situation in terms of two-dimensional vectors
with the help of Figure 4.5.3. We've already shown how complex numbers
can be seen as two-dimensional vectors: in particular, the complex number
cisf is identified with cos#i + sin6j. As t varies, the point cis(t + €) moves
around the unit circle,and the real part of cis(¢ + ) is the projection of the
moving point onto the x-axis. In other words, the cosine wave on the right
side of Figure 4.5.3 tells us the vector’s horizontal distance to the y-axis as
a function of time ¢.

Now when two waves cross each other they produce a wave of a different
shape—we may see this in water waves at the beach or pool (or physics class).
This is called wave superposition. We will now see how complex numbers
make it easy to compute the shape of this new wave.

Exercise 4.5.8.

(a) Using cisf = cos@ + isin 6, complete the following argument by filling
in the blanks:

2cos(t 4+ m/2) 4+ 2 cos(t — 57 /6) = Re[2cis(t + 7/2)] + Re[ <1 > )]
= Re[2cis(t) - cis(m/2)] + Re[_< 2 > )]
= Re[(2cis(n/2) 4+ 2cis(—57/6) ) - <3 > )]
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Im Re

cis(8)

z = cis{t +0)
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\ i
\, i
. .

x = cos(t +8)

Figure 4.5.3. Graphs of the vector representation and the wave represen-
tation of cosine

(b) Convert 2 cis(7/2) and 2 cis(—57/6) to cartesian form, and find the sum.
Then convert back to polar form.

(¢) Use your result in (b) to simplify the right-hand side of (a).

(d) Your result in (c) shows that the sum of the two cosine waves 2 cos(t +
7/2) and 2 cos(t — 57/6) is also equal to a cosine wave. Find the ampli-
tude and phase shift of the sum. Is the amplitude equal to the sum of
the amplitudes? Explain.

Let us summarize our findings:

e Associated with each sine or cosine wave is a complex number A cis(6)
such that A is the amplitude and 6 is the phase shift of the wave. This
complex number is called the phasor associated with the wave.


https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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e The sum of two sine or cosine waves is also equal to a cosine wave

e The amplitude and phase shift of the sum of two cosine waves may be
obtained by adding the phasors of the two constituent cosine waves.

Exercise 4.5.9. A radio antenna receives three cosine-wave signals. The
first signal has an amplitude of 4 and a phase shift of 0. The second has an
amplitude of 3 and a phase shift of 7/2. The third signal has an amplitude
of 2 and a phase shift of —7/3.

(a) On graph paper, plot the three phasors corresponding to the three sig-
nals. (The three phasors are 4 cis(0), 3 cis(7/2), and 2 cis(—7/3))

(b) Use your picture in (a) to graphically add the three phasors. (Remember
how to add vectors: add the z-components, and add the y-components.)

(c) Convert the three phasors to rectangular form, and add them together
algebraically.

(d) Use your result from (c) to find the amplitude and phase shift of the
sum of the three signals.

Exercise 4.5.10. As in the previous problem, a radio antenna receives
three cosine-wave signals. The three signals have equal amplitude. The first
signal have a phase shift of 0. The second has a phase shift of 27/3. The
third signal has a phase shift of 47/3.

(a) What is the amplitude of the sum of the three signals?

(b) What is the phase shift of the sum of the three signals?

O

We hope that from the examples in this section, you may get some idea
of how important complex numbers are in the study of signals. In fact, for
many electrical engineers complex numbers are their “bread and butter”.



(-]

4.5 APPLICATIONS OF COMPLEX NUMBERS ¥ 83

4.5.3 Complex numbers and fractals: the Mandelbrot set

The intricate Mandelbrot set (see Figure 4.5.4) is a beautiful application of
complex numbers. The Mandelbrot set is defined by means of iteration of
the function f(z) = 22 + c¢. The definition is a little complicated: we show
how it works using a couple of examples.

First consider ¢ = 1, so f(z) = 22 4+ 1. We start with z = 0, which
gives f(0) = 1; and we iterate by evaluating the function on the result of
the previous evaluation. So we compute f(1) = 2, f(2) =5, f(5) = 26,.....
It is clear that |f(z)] is getting larger and larger after repeated iterations.

On the other hand, if we use ¢ =i and start with z = 0, we get f(0) =1
at first, and repeated iteration gives f(i) = —1+41, f(—1+1i) = —i, f(—i) =
—1+14,...so that this time | f(2)| doesn’t continue to grow indefinitely after
repeated iterations.

The Mandelbrot set is defined to be the set of values ¢ for which the
iterations of f(z) = 22 + ¢ starting from z = 0 do not grow indefinitely upon
iteration. Thus 7 is in the Mandelbrot set, while 1 is not.

Exercise 4.5.11. Which of the following numbers is in the Mandelbrot set?
Demonstrate your answers.

Exercise 4.5.12. In the definition of the Mandelbrot set, we mentioned
that you have to check whether the iterations “grow indefinitely”. The
question, is, How far do you have to check? We can actually give an answer:

(a) Given any two complex numbers z,w, show that:
|z + w| < |z] + [w].

This is called the triangle inequality for complex numbers (it is closely
related to the ‘triangle inequality’ for vectors). (*Hint*)

(b) Prove the following variation of the triangle inequality: Given two com-
plex numbers z,w then |z| > |z — w| — |w].


https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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(c) Suppose that |c¢| < 2, and suppose that z > 2. Use (b) to show that
|22 4+ | > |2].

(d) In order to guarantee that a number c is in the Mandelbrot set, all we
have to do is show that one of the iterates of the function f(z) = 22 +¢
is larger than a given positive number . What is the value of r?

Figure 4.5.4. (Left) The Mandelbrot set: the set itself is colored in maroon.
The set has delicate filaments that extend from the different bulb-shaped
areas, which are outlined in lighter color.(Right) Detail of the Mandelbrot
set, along the top edge of the heart-shaped region shown in the figure at
left.

Exercise 4.5.13.(Programming exercise)

(a) Write an Excel spreadsheet that can multiply two complex numbers.
Put the real and imaginary parts of the first number in cells Al and B1;
Put the real and imaginary parts of the second number in cells C1 and
D1; Put the real and imaginary parts of the result in cells E1 and F1.
Use your sheet to compute (3 + 44)(7 — 8i).

(b) Copy your Excel sheet, and modify it to compute the square of a complex
number. Put the real and imaginary parts of the first number in cells
A1l and B1; Put the real and imaginary parts of the result in cells C1
and D1. Use your sheet to compute (12 — 5i)2.
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(c)

Copy and modify your Excel sheet to compute 22, (22)2, ((22)2)%,... (20
number altogether) for a given complex number z. Put the real and
imaginary parts of z in cells A1 and B1; Put the real and imaginary parts
of the results in columns C and D. Use your sheet with z = 0.8 + 0.63.
Plot the results as 20 points in the plane (use Scatter Plot). What do
you notice about your numbers?

Modify your Excel sheet to compute the first 100 iterates of the function
f(z) = 2% + ¢ for given complex numbers z,c (see Exercise 4.5.11).
Put the real and imaginary parts of z in cells Al and B1l; Put the
real and imaginary parts of ¢ in cells A2 and B2; put the results in
columns C and D. Using your sheet, determine which of the following
numbers is in the Mandelbrot set: (i) z = —1.04039 + 0.2509294¢; (ii)
¢ = —0.1155989 + 0.7639405:.

Exercise 4.5.14.sing ¢ = —3/4 + 0.01 compute the sequence for 100 itera-
tions, and note the iteration at which the value exceeds 2. Do the same thing
for ¢ = —3/4 4 0.001, but for 1000 iterations. Do you see any relationship
between your results and the value of 7?7 %


https://www.youtube.com/watch?v=BEO_65G9I7Q&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=6
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4.6 Hints for “Complex Numbers” exercises

Exercise 4.1.9(b) Start your proof this way: “Given that m is an integer
and m? is even. Suppose that m is odd. Then ...” (complete the proof by
obtaining a contradiction. You should make use of part (a) in your proof.

Exercise 4.1.9(c) The proof is similar to that in (b). What modifications do
you need to make?

Exercise 4.1.11(a) Start out your proof this way: “Let = be the cube root
of 2. Then z satisfies the equation 2> = 2.” For the rest of the proof,
follow closely the proof of Proposition 4.1.10. (Or use the statement—reason
format, if you prefer.

Exercise 4.1.12 Since 3|n, it follows that n = 35 for some integer j. Obtain
a similar equation from 4|m, and multiply your equations together.

Exercise 4.1.13 Since n|4m, it follows that 4m = n - j for some integer j.
Since 12|n, then what can you substitute for n?

Exercise 4.1.21 Try using contradiction. Suppose n is even, so that n = 2k

for some integer k.

Exercise 4.2.7 To show zz~! = 1, rewrite 2! as (a — bi) - Tib?. This is
justified by the distributive law. Remember also that showing z 'z = 1
requires its own proof.

Exercise 4.2.8(i) In the answer = + yi, x and y both turn out to be integers!

Exercise 4.2.8(n) Yes, you can do it! Find the first few powers of 4, and see
the pattern.

Exercise 4.2.8(0) It’s easiest to compute (1 + )2 - (1 + 1)

Exercise 4.2.9 If you have trouble with this one, do some examples.
Exercise 4.2.22(f) Use part (e).

Exercise 4.2.22(g) and (h) See Exercise 4.2.7.

Exercise 4.2.26 Use part (b) of the previous exercise, plus some of the results
from Exercise 4.2.22.

Exercise 4.2.27(a) Use the formula |w|?> = w - w. (d) This one requires
calculus.

Exercise 4.3.19 Just make minor changes to the previous exercise.

Exercise 4.3.24(a) Replace cis. .. with cos...+isin... on both sides of the de
Moivre equation. Then do the algebra on the right-hand side, and separate
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the real and imaginary parts. Recall that two complex numbers are equal
iff their real parts and imaginary parts are equal separately. (b) Use a basic
identity involving cosine and sine.

Exercise 4.5.5(b) What left shifts will change a cosine curve into a sine curve?
Exercise 4.5.6 Use Proposition 4.3.8 to evaluate cisf - cis(t), and recall that
cis(a) means the same as as cos(«) + i sin(«).

Exercise 4.4.5(a) We have already shown in Proposition 4.2.11 that the prod-
uct of two nonzero complex numbers is never equal to 0. Use this to show
that the product of four nonzero complex numbers is never equal to 0.

Exercise 4.4.5(b) Multiply out the inequality that you proved in (a).

Exercise 4.4.6(a) It’s easier to multiply the numbers in polar form, you don’t

have to convert to Cartesian. Note that cis (%”) is the complex conjugate

: 2
of cis (?)
Exercise 4.4.9 Besides showing that all sides are equal, you also have to show

that they are perpendicular.

Exercise 4.4.10 Draw lines from each point to the origin, forming 6 triangles.
What can you say about these triangles?

Exercise 4.4.15(c) Note that OA = |z],0C = |w|. and AC = |z — w]|.
Exercise 4.4.18(c) Use your answer to part (b).

Exercise 4.4.21(c) To find the polar form of this number, try squaring it.
Exercise 4.4.26(b) If r is a solution to the above equation, then z —r divides
24+ a3z3 + a2z2 “+ a1z + ag.

Exercise 4.4.28 Let M be the number of distinct solutions with positive
imaginary part. Then how many distinct solutions are there with negative
imaginary part? And how many non-real solutions are there altogether?

Exercise 4.5.12 You may show that (|z+w|)? < (2| + |w|)?. When you take
the square, use the identity that expresses |z|? in terms of z and its complex
conjugate. After simplification, use polar form.
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4.7 Study guide for “Complex Numbers” chapter

Note: all study guides were written by Katrina Smith.

Section 4.1, The origin of complex numbers

Concepts
1. nth roots of a real number
2. Roots of a real function
3. Proof by contradiction
4. Irrational number: cannot be written as a quotient of integers
5. Definition of ¢ (square root of —1)
6. Definition of complex numbers: C = {a + bi, a,b € R}
Notation
1. Symbols for number systems: R=real numbers, Z=integers, N=natural
numbers (positive integers), Q=rational numbers, C=complex num-
bers
2. Imeans “there exists”, and € means “element of”. So 3z € C,z3 = —1
means “there exists a complex number x such that 23 = —1.
Competencies
1. Given a real number, prove whether it has any real nth roots. (4.1.2,
4.1.3)
2. Use proof by contradiction to prove a value or function has no real
roots. (4.1.2, 4.1.3)
3. Given an nth root which is not an integer, prove that it is irrational.

(4.1.11, 4.1.17)
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Section 4.2, Arithmetic with complex numbers

Concepts:

1.

Complex arithmetic

. Identity & inverse (additive & multiplicative)

Associative law

. Commutative law

. Absolute value or modulus of complex number

Complex conjugate

Key Formulas

. Complex addition: (a + bi) + (c+di) = (a+c¢) + (b+ d)i

. Complex multiplication (FLOI): (a+bi)(c+di) = (ac—bd) + (ad+ bc)

(c+di) (c+di)(a—bi)

. Complex division: (a1 b) = @+ 09 ,when (a 4 bi) # 0
. Modulus of complex number: | z |= va? + b?

Complex conjugate of a complex number: z =a — bi

Competencies

1.

Simplify expressions involving complex numbers in a4+ bi form, includ-
ing inverse and complex conjugation. (4.2.8, 4.2.20)

. Simplify algebraic expressions with variables in a + bi form, including

inverse and complex conjugation. (4.2.8d, e, k, 4.2.20i, j)

. Be able to state the associative, inverse, identity, commutative, and

distributive properties for different number systems. (4.2.15)

. Prove identities for a complex number z involving algebraic expres-

sions, modulus, complex conjugate without converting back to Carte-
sian form. (4.2.22a-i)
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Section 4.3, Alternative representations of complex numbers

Concepts:

1.

- W N

Forms of complex number: rectangular and polar form
Converting from rectangular form to polar form and vice versa
Complex multiplication and division using polar form

De Moivre’s Theorem (raising complex numbers to integer powers)

Key Formulas

Converting from polar form to rectangular: a = r cos ;b = rsin 6

Converting from rectangular form to polar: r =| z |= Va? + b?;
b

6 = tan—! > (** be careful about tan~! — make sure it’s in the
a

right quadrant **)

Multiplication of complex numbers: 7 cisf - scis ¢ = rscis(f + ¢)

cis 6
4. Division of complex numbers: Tny <I> cis(0 — ¢)
scis¢ S
5. De Moivre’s Theorem: (rcisf)™ = r™ cis(nf)
Notes
(a) rcis@ := r(cosf +isinf); “:=” means “is defines as”
Competencies

1.

Be able to convert back and forth between rectangular form and polar
form. (4.3.4, 4.3.5)

. Perform complex multiplications and divisions using polar form (if the

problem is stated in terms of rectangular form, convert to polar form
first). (4.3.14, 4.3.15)

Raise complex numbers to positive and negative integer powers using
de Moivre’s theorem. (4.3.23)

. Prove trigonometric formulas for cos(nf) and sin(nf) using de Moivre’s

theorem. (4.3.24)
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Section 4.4, Complex numbers and roots of algebraic equa-
tions

Concepts:

1.

nt" roots of unity

th

. n"" roots of arbitrary complex numbers
. The Fundamental Theorem of Algebra

. Complex roots of polynomials with real coefficients come in conjugate

pairs.

Key Formulas

1.

2k
Roots of unity: z = cis <W> ,wherek =0,1,....n—1
n

Competencies

1.

2.

Know how to find n'” roots of unity for any n € N. (4.4.4)

Relate complex conjugation and multiplication by n‘* roots of unity
to rigid motions of a regular n-gon. (4.4.11 - 4.4.13)

. Find all n*" roots of a given complex number by (1) Finding a single

root using de Moivre’s theorem: (2) Multiplying that single root by all
n'" roots of unity. (Note: there are always n n' roots for any complex
number.) (4.4.19, 4.4.21).

. Be able to prove complex conjugation properties of roots of polynomial

equations with real coefficients. (4.4.23)

. Use complex conjugate properties of roots to reconstruct polynomials.

(4.4.26)
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Modular Arithmetic

What goes up, must come down

Spinnin’ wheel, got ta go round

Talkin’ ’bout your troubles it’s a cryin’ sin

Ride a painted pony, Let the spinnin’ wheel spin
(Source: “Spinnin’ Wheel”, Blood, Sweat, and Tears)

Cycles are everywhere. So are integers. Modular arithmetic combines
the two by wrapping the integers around a circle.

Thanks to Tom Judson for material used in this chapter. David Weathers
also contributed a section.

5.1 Introductory examples &

Modular arithmetic was originally motivated by common, real-life situa-
tions. So we begin our introduction by describing several problems based
on practical situations for you to think about. We don’t ask you to find the
solutions just yet — instead, focus on the similarities between the different
problems.

Example 5.1.1. Don has whipped up some stew that he wants to slow-
cook in his crockpot. The stew is supposed to cook for exactly 40 hours.
The crockpot is not automatic, so Don has to turn it on and off by hand.
When would be a good time for Don to turn on the crockpot? (Additional
information: Don is away at work from 8 a.m. to 5 p.m. every day. Also,

92
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Don would like to avoid waking up in the middle of the night to turn the
crockpot on or off.) ¢

Example 5.1.2. Jennifer owns a vintage 1957 Thunderbird which has had
two previous owners. She claims that the car’s first owner drove it 129,000
miles, the second owner drove it 77,000 miles, and she’s driven 92,500 miles.
If her claim is true, then what should the odometer read? Note that on old
cars the odometer only goes up to 99,999. ¢

Example 5.1.3. April 15, 2012 was on a Friday. What day of the week
was December 24 of 20117 (Note 2012 is a leap year!) ¢

Example 5.1.4. A lunar year is 354 days. If Chinese New Year is deter-
mined according to the lunar year, and Chinese New Year is February 14 in
2010, then when is Chinese New Year in 20117 In 20127 In 20097 ! ¢

Example 5.1.5. The hour hand on Tad’s old watch is broken and does
not move. Currently the watch shows a time of 3:46. Tad has just begun
a 3-part test, where each part takes 75 minutes (plus a 10-minute break
between parts). What time will the watch read when the first part is over?
The second part? The entire test? ¢

Example 5.1.6. A racing car starts at the 3 mile mark of a 5-mile circuit.
It goes another 122 miles. Then, it turns around and drives 444 miles in the
reverse direction. Where does the car end up? ¢

Example 5.1.7. Suppose our race car is driving around the 5-mile track
again. If it starts at the 3 mile mark and makes 17 consecutive runs of 24
miles each, what mile marker does it end up at? ¢

Exercise 5.1.8. Try to describe what all of the preceding problems have
in common. Describe some differences. O

!Note that the Chinese calendar actually adds extra months in some years, so not every
Chinese year is 354 days. So this example is not 100% accurate


https://www.youtube.com/watch?v=GJFW597Y4NE&INDEX=8&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Notice that in each example the set of possible answers is restricted to a
finite set of integers. For instance, in the odometer example (Example 5.1.2)
we know even before working the problem that the answer must be an integer
between 0 and 99,999 (inclusive). In other words, there are 100,000 possible
answers to the question, regardless of the particular mileages involved.

Exercise 5.1.9. Give the number of possible answers for Examples 5.1.1
and 5.1.3. O

Each example above requires arithmetic to solve, but it’s arithmetic with
a twist. For example, in Example 5.1.6 if the car is at the 3-mile mark and
travels another 3 miles, then it arrives at the 1-mile marker. This is a strange
equation: 3 + 3 = 1. The reason of course is that the location “cycles”
back to 0 instead of increasing to 5,6, 7, ... This “arithmetic with cycles” is
actually called modular arithmetic. The size of one cycle (which is equal
to the number of possible answers described in Exercise 5.1.9 is called the
modulus.

Exercise 5.1.10. Give the modulus for the seven examples at the beginning
of this chapter. O

In summary, modular arithmetic refers to arithmetic done according to
a modulus, so that the numbers reset (or cycle around) every time you reach
the modulus.

5.2 Modular equivalence and modular arithmetic

In order to understand the situation more thoroughly, let us focus on the
5-mile racetrack example used in Examples 5.1.6 and 5.1.7. The racetrack
(with mile markers) is shown in Figure 5.2.1.

Let’s say the car starts at mile marker 0. The car may then travel forward
(counterclockwise) or backwards (clockwise) any number of miles; we may
define the car’s net displacement as the the total number of forward miles
traveled minus the the total number of backward miles. Net displacement is
a very useful concept if you are a race car driver. For example, the winner
of the Indianapolis 500 is the the first driver to achieve a net displacement
of 500 miles (in this case, only forward motion is allowed!)

We may characterize the displacement of the car using a conventional
number line, as shown in Figure 5.2. Moving forward around the racetrack
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Figure 5.2.1. 5-mile racetrack

corresponds to moving right (positive direction) on the number line; while
moving backward around the racetrack corresponds to moving left (negative
direction).

Figure 5.2.2. Displacements on a 5-mile racetrack

Exercise 5.2.1. Compute the net displacement for the following multi-stage
trips:

(a) 346 miles in the forward direction, then 432 miles in the backward di-
rection, then 99 miles in the forward direction.

(b) A forward displacements of 44 miles, followed by 13 additional forward
displacements of 53 miles (one after the other).

(c) Repeat the following sequence 25 times: a forward displacement of 17
miles, followed by a backward displacement of 9 miles, followed by a
forward displacement of 22 miles.

O

From the preceding exercise, it appears that we may use ordinary addi-
tion, subtraction and/or multiplication to compute the car’s net displace-
ment after a trip involving several stages.
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On the other hand, if we want to represent the position of the car on the
track as it relates to net displacement, we would have to relabel the number
line as shown in Figure 5.2.3, using only the integers 0, 1,2, 3, 4.

v
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Figure 5.2.3. Positions on the 5-mile racetrack

Exercise 5.2.2.

(a) Compute the positions on the racetrack corresponding to each of the
net displacements that you computed in Exercise 5.2.1.

(b) How are your answers in (a) related to the corresponding answers in
Exercise 5.2.17

¢

You may have noticed that different displacements may correspond to
the same position. For example, displacements of 8, 23, and -17 all corre-
spond to the same position (namely 3). We say that two displacements that
correspond to the same position are equivalent. The fact that displacements
8 and 23 are equivalent on a 5-mile racetrack may be expressed mathemat-
ically as: 8 = 23 (mod 5) (in words, we say ‘8 is equivalent to 23 mod
5).

How can you tell when two displacements correspond to the same po-
sition? In our racetrack example we may notice that 8, 23, and -17 all
have remainder 3 when divided by 5. So in this example at least, we can
see that the position on the racetrack corresponds to the remainder when
the displacement is divided by the length of the racetrack (which serves as
the modulus). You may verify that this is true for any displacement: the
position is what’s left after all whole multiples of 5 are taken out.

This seems to indicate that we can define a notion of equivalence in
terms of remainders. But let’s be careful here. You’ve probably been finding
remainders since elementary school-but have you really thought about what
you're doing? How do you know there will always be a remainder? And
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how do you know there’s only one? Why couldn’t some numbers have two
different remainders, and some have none at all? It appears that before we
can define modular equivalence in terms of remainders, first we’re going to
have to establish some solid facts about remainders:

Proposition 5.2.3.(The division algorithm) Given any integer a and
any positive integer m, then there exists a unique number r between 0 and
m — 1 such that a = ¢ - m + r for some integer ¢. In this expression, ¢ is
called the quotient, and r is called the remainder.

PrOOF. It turns out that proving this “simple” fact is not so simple! Al-
though this fact has been used for millennia (it’s sometimes called Eu-
clidean division, because Euclid used it ca. 300 B.C.), the first rigorous
proof was found relatively recently. There are actually two things to prove:
first, that the remainder r exists, and second, that it’s unique. We're going
to punt on the ‘existence’ part: you can find the proof in a book on num-
ber theory.? The ‘unique’ part is proved by the following fill-in-the-blanks
exercise:

Exercise 5.2.4. Fill in the blanks in the following proof that the remainder
is always unique.

We'll give a proof by contradiction. Suppose that a has two different re-
mainders when divided by m. Let’s call these two different remainders r
and s, where 0 <7,s< <1> andr#s.

It follows that a = ¢-m +rand a =p-m+ < 2> , where g and p
are < 3 > . Setting these two expressions equal and rearranging enables
us to obtain an expression for r — s, namely: r —s = (_<4 > )-m. Thus
r — s is an integer multiple of <5 > .

On the other hand, we know that r > 0 and s < <6 > , so by
arithmetic we obtain r — s > < 7> . Furthermore, r < <8 > and
s> <9> ;sor—s < _ <10> . Combining these two results, we find
that r — s is an integer between < 11 > and <12 > .

Now, the only integer multiple of m between <13 > and <14 >
is <15 > . It follows that r —s=_<16 > ,orr=_< 17> . But this
contradicts our supposition that < 18 > . So our supposition cannot be
true: and a cannot have < 19 > . Thus the remainder when a is divided
by m is unique, and the proof is complete. O

20r check the internet, e.g.: http://www.oxfordmathcenter.com/drupal7/node/479.
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O

We’ll use the notation “mod(a,m)” to indicate the remainder of a when
divided by m. This notation is used in most mathematical software (such
as Excel, Matlab, and so on), and it reflects the fact that the remainder is
a function of a and m.

Remark 5.2.5. Unlike many references, we do not use the expressions
“a mod m” or “a (mod m)” to denote the remainder when a is divided by
m. In this book we never write “a mod m” or “a (mod m)” as stand-alone
expressions. Here’s the reason why. Suppose for the moment that we do
use 17 (mod 5) to denote the remainder of 17 mod 5. Then we could write
2 = 17 (mod 5), but it would be false to write 17 = 2 (mod 5), since 17
is not the remainder of 2 mod 5. In tthis book the (mod n) refers to the
relation ‘=" and not to the b. Thus for us, 2 = 17 (mod 5), and 17 = 2
(mod 5) are both correct. A

Now that we know that unique remainders really do always exist, we're
in a position to use them in our definition of modular equivalence:

Definition 5.2.6. Two integers a and b are equivalent mod m if both a
and b have the same remainder when divided by m. To denote that a and
b are equivalent mod m, we write: a = b (mod m). A

Remark 5.2.7. Notice that Definition 5.2.6 uses the 3-lined “=” here
instead of the usual = sign. This notation is used to emphasize the fact that
modular equivalence resembles equality, but is not quite the same thing.
For example, we have already seen that 8 and 23 are equivalent mod 5,
even though they are not equal. In a later chapter we’ll discuss equivalence
relations, and we’ll see that equivalence is in some sense a generalization of
equality. For now, be alerted to the fact that “=" and “=" do not necessarily
have the same properties. It’s tempting for instance to make statements such
as, “a = b (mod m) implies a — b = 0 (mod m)”. But just because this is
true for = doesn’t mean it’s also true for =! In this case the statement turns
out to be true, but it requires proof — and in this class you are not allowed
to make assertions that have not been proven.? A

The following result enables us to verify when we’ve indeed found a
remainder.

3This may be one reason why not many mathematicians are politicians, and vice-versa.
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Proposition 5.2.8. If a = r (mod m) and 0 < r < m — 1, then r =
mod (a,m).

PROOF. Given that a = r (mod m), by the definition of modular equiva-
lence it follows that a and r have the same remainder mod m. But since
0 <r <m —1, the remainder of r is r itself. It follows that the remainder
of a is also r: so r = mod(a, m). O

There is an alternative (and very useful) way to determine modular
equivalence. Suppose that a = b (mod m), so that a and b have the same
remainder when divided by m. Let’s call this remainder r. Then we can
write a = p-m +r and b = g - m + r for some integers p, ¢ It follows from
basic algebra that a —p-m = b — ¢-m. We then proceed step-by-step using
basic algebra as follows:

a—p-m=b—q-m

= a—-b=p-m—q-m

= a—b=(p—q)-m

= a — b is divisible by m.
In summary, we have shown that

Ifa=b (mod m) then a — b is divisible by m.
which we can also write as
a=b (modm)= a—bis divisible by m.

It turns out that the converse statement is also true.* The converse state-
ment is:
If a — b is divisible by m then a =b (mod m).

One way to prove this is to prove the contrapositive, which is logically equiv-
alent.” In this case, the contrapositive statement is, “If @ # b (mod m), then
a — b is not divisible by m”).

4In general, if you have a statement of the form “If A then B”, then the converse is “If
B then A”. Similarly, the converse of “A = B” is, “B = A”.

5In general, the contrapositive of “If A as true then B is also true”, is “If B is not
true then A is not true”. Alternatively: if you have a statement “A = B”, then the
contrapositive is “not B = not A”. Unlike the converse, the contrapositive is always true
if the original statement is true
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Exercise 5.2.9. Finish the proof of the contrapositive by filling in the
blanks:

Suppose a # b (mod m). Let r be the remainder of a when divided by

<1 > , and let s be the remainder of < 2 > when divided by <3 > .
Since the remainders are unequal, it follows that one must be bigger than
the other: let us choose a to be the number with the larger remainder,
so that r > <4 > . By the definition of remainder, we may write a =
p-m+_<5>  and we may also writeb=¢q- _<6> + < 7> . Then
by basic algebra, a —b=(p—¢q)- <8> +(r— <9> ).

We want to show that r — s is the remainder of @ — b when divided by
m. To do this, we need to show that » — s is between 0 and < 10 > .
Since r > s it follows that r —s > < 11 > . Furthermore, Since r < m
and s > 0, it follows that r —s < <12 > . So we have shown that r — s
is between <13 > and < 14 > | so by Proposition < 15 > it follows
that r — s is the remainder of a — b when divided by m. However, r —s > 0,
which means that a — b is not divisible by < 16 > . This is exactly what
we needed to prove, so the proof is complete. O

We summarize Exercise 5.2.9 and the preceding discussion together in
the following proposition.

Proposition 5.2.10. Given any two integers a and b, and a modulus m (m
is a positive integer). Then

a=b (modm)if and only if a — b=k -m,
where k is an integer.

We may rewrite Proposition 5.2.10 more elegantly using mathematical short-
hand as follows: Given a,b, m € Z, then

a=0b (modm) iff m|(a—b).

Note the two shorthand expressions we have used here: the symbol ‘€’
means ‘contained in’ or ‘elements of’, while the single vertical line ‘|” means
“divides’.

The following proposition establishes important facts about modular
equivalence that we’ll need later.

Proposition 5.2.11. Given any integers a,b,c and a positive integer n
such that @ = b (mod n) and ¢ = b (mod n). Then it is also true that
a=cc=a,b=a,and b= c (all these equivalences are (mod n)) .
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Remark 5.2.12. This proposition actually establishes that modular equiv-
alence is both transitive and symmetric. If you haven’t seen this terminology
before don’t worry—we’ll talk about transitive and symmetric relations in the
Equivalence Relations chapter. A

Exercise 5.2.13. Prove Proposition 5.2.11. (*Hint*)® O

Exercise 5.2.14. Suppose January 25 is a Thursday.

(a) Use Definition 5.2.6 to determine whether January 3 is a Thursday.
Show your reasoning.

(b) Use Proposition 5.2.10 to determine whether January 31 is a Thursday.
Show your reasoning.

(c) Find the nearest Thursday to January 15. Show your reasoning.

(d) Find the nearest Thursday to April 18. Show your reasoning. (Note:
the year is not a leap year.)

Exercise 5.2.15. Determine whether or not the following equivalences are
true. Explain your reasoning. If the equivalence is not true, change one of
the numbers to make it true.

(a) 71 =13 (mod 4) (d) 50 =13 (mod 7)
(b) —23 =13 (mod 6) (e) 654321 = 123456 (mod 5)
(¢) 101 =29 (mod 6) (f) 1476532 = —71832778 (mod 10)

O

Let us now return to the problem of finding the position corresponding
to the net displacement following a multi-stage trip. When you computed
racetrack positions in Exercise 5.2.2, most likely you simply took the net
displacements you computed in Exercise 5.2.1, divided by 5 and took re-
mainder. However, our new concept of modular equivalence gives us another

6 All *Hints* can be found at the end of the book (or by clicking on the *Hints* link.)
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way of solving this problem — one that can be much, much easier if we're
dealing with large displacements.

Example 5.2.16. Suppose Dusty drives around the 5-mile track 112 miles
in a positive direction, then 49 miles in a negative direction, then 322 miles
in a positive direction. To find Dusty’s net displacement we may take 112 —
49 + 322 = 385 and then take the remainder mod 5 (which turns out to be
0). But notice that:

mod(112,5) = 2,
mod (—49,5) =1,
mod (322,5) = 2,

and we compute
24142=5=0 (mod?5).

We have obtained the same answer with much less work. How did we do it?
By replacing each number with its remainder. ¢

Can we do the same thing with multiplication?

Example 5.2.17. Suppose I travel on my racetrack at a 113 miles per hour
in the positive direction for 17 hours. We may compute:

Net displacement : 113 - 17 = 1921 miles
Final position : 1921 = 384 - 5 4+ 1 = final position = 1.

On the other hand, we may reach the same conclusion by a somewhat easier
route:
mod(113,5) = 3,
mod (17,5) = 2,
and we compute
3:2=6=1 (mod b).
Again, we have obtained the correct answer by replacing each number with

its remainder. ¢

Does this work in general? In fact it does! However, this requires a
mathematical proof. We will discuss the proof in a later section — but at
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least our discussion shows that arithmetic with remainders is meaningful
and useful.

If we're doing arithmetic (mod n), then the remainders will necessarily
be between 0 and n — 1 (inclusive). This set of remainders has a special
name, which later on we’ll use extensively:

Definition 5.2.18. The set of integers {0, 1,...,n — 1} is called the set of
integers mod n, and is denoted by the symbol Z,,. A

Remark 5.2.19. In this chapter, we are considering Z,, as a subset of Z.
Later on in Chapter 17 we will view Z,, from an entirely different perspective.
(You don’t really need to know this now—just file it away for future reference.)
A

Exercise 5.2.20. Now you're ready! Give answers for the seven examples
at the beginning of this chapter. O

5.3 Modular equations &

5.3.1 More uses of modular arithmetic

Supermarkets and retail stores have a nasty little secret. Every time you
scan your purchases, they’re using modular arithmetic on you! In fact,
modular arithmetic is the basis for bar codes you see in stores. We will use
these practical examples to introduce modular equations.

Exercise 5.3.1. Universal Product Code (UPC) symbols are now
found on most products in grocery and retail stores. The UPC symbol (see
Figure 5.3.1) is a 12-digit code which identifies the manufacturer of a product
and the product itself. The first 11 digits contain the information, while the
twelfth digit is used to check for errors that may occur while scanning. If
dids - - - d1o is a valid UPC code, then

3-di+1-do+3-d3g+---+3-di1+1-di2=0 (mole).

So the scanning device that cashiers use reads the code and adds up the
numbers mod 10. If they don’t add to zero, then the device knows it hasn’t
scanned properly. (Smart little bugger, that scanner is!)


https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=q7oRlAvv_4g&index=9&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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0 50000 30042% M6

Figure 5.3.1. A UPC code

(a) Show that the UPC number 0-50000-30042-6, which appears in Fig-
ure 5.3.1, is a valid UPC number.

(b) Show that the number 0-50000-30043-6 is not a valid UPC number.

(c) (for geeks) Write a program or Excel spreadsheet that will determine
whether or not a UPC number is valid.

(d) One common scanning error occurs when two consecutive digits are ac-
cidentally interchanged. This is called a transposition error. The
UPC error detection scheme can catch most transposition errors. Us-
ing the UPC in (a) as the correct UPC, show that the transposition
error 0-50003-00042-6 is detected. Find a transposition error that is not
detected.

(e) Using the UPC in (a) as the correct UPC, show that the single-digit
error 0-50003-30042-6 is detected.

(f) **Prove that the UPC error detection scheme detects all single digit
errors. (*Hint*)

O

It is often useful to use an inner product notation for these types of
error detection schemes.” In the following text, the notation

(di,da, ... dg) - (wi,wa,...,wg) =0 (mod n)

"You may have seen inner products (a.k.a. “dot products”) in one of your math classes
talking about vectors.
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will be used to mean

dywy + dowg + - -+ + djwr, =0 (mod n).

Exercise 5.3.2. Every book has an International Standard Book Number
(ISBN-10) code. This is a 10-digit code indicating the book’s language,
publisher and title. The first digit indicates the language of the book; the
next three identify the publisher; the next five denote the title; and the tenth
digit is a check digit satisfying

(di,dg,...,d1o) - (1,2,...,10) =0 (mod 11).

ISBN-10 codes are nice in that all single-digit errors and most transposition
errors can be detected. One complication is that dig might have to be a 10
to make the inner product zero; in this case, the character ‘X’ is used in the
last place to represent 10.

(a) Show that 3-540-96035-X is a valid ISBN-10 code.

(b) Is 0-534-91500-0 a valid ISBN-10 code? What about 0-534-91700-0 and
0-534-19500-07

(c) How many different possible valid ISBN-10 codes are there?

(d) Write a formula of the form djp =... (mod ...) to calculate the check
digit in an ISBN-10 code. (*Hint*)

(e) *Prove that any valid ISBN-10 code also satisfies:

(dl,dg, ce ,dlo) . (10,97 cey 1) =0 (mod 11).

(f) * Prove that if (d1,da, ..., dg, d1g) is a valid ISBN-10 code, then (dy9, dy, .
is also a valid ISBN-10 code (as long as djg is not equal to X).

(g) (for geeks) Write a computer program or Excel spreadsheet that calcu-
lates the check digit for the first nine digits of an ISBN code.

(h) A publisher has houses in Germany and the United States. Its German
prefix is 3-540. Its United States prefix will be 0-abc. Find four possi-
bilities for abc such that the rest of the ISBN code will be the same for
a book printed in Germany and in the United States.

ydady)


https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(i) **Prove that the ISBN-10 code detects all single digit errors. (*Hint*)

(j) **Prove that the ISBN-10 code detects all transposition errors. (*Hint*)

¢

5.3.2 Solving modular equations

In Exercise 5.3.2 part (h) you solved a modular equation with three vari-
ables by trial and error: you couldn’t solve for one variable at a time, so
you had to test out sets of values for a, b, ¢ together and see if the the
ISBN equation held. The UPC and ISBN error detection schemes them-
selves, given again below, are examples of modular equations with 12 and
10 variables, respectively:

(B-di)+(1-d2)+(3-dg)+---+(3-di1)+(1-di2) =0 (mod 10).
(dl,dg,...,dlo)-(10,9,.‘.,1) =0 (IIlOd 11)

Can the above equations be solved? You may remember from college
algebra that a single equation with several variables usually has several
solutions. If we want to narrow it down to a single solution we have to
supply additional information, as in the following exercise.

Exercise 5.3.3. Suppose you're given the following UPC: 1-54637-28190-7.
Write a modular equation to solve for the missing check digit, then solve it.

O

In the preceding exercise you should have come up with an equation that
looks like:
B-1)+...+3B:00+(1-2)=0 (mod 10).

How did you solve this? One possible method is to add up all the terms
the left side of the equation short of the variable, and then figure out how
much you need to add to that sum to get a number divisible by 10. Keep
this method and your own method (if different) in mind, as they are good
intuition on how to solve these problems in general.

Is there a unique answer for 7 Practically, for a UPC code x must be
between 0 and 9 (that is, z € Zjo: with this restriction, there is indeed only
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one solution. But if we remove that restriction, then there are many solu-
tions. For instance z = 12 and x = 22 both work (check this for yourself).
Can you think of any other integers that work?

In fact any integer equivalent to 2 (mod 10) also works. But from our
intuitive methods, would we have come up with these other possible solu-
tions? In most cases not. Therefore we need to come up with a general
method that will give us all possible integer solutions of a modular equa-
tion. Just as in basic algebra, we’ll start with simpler equations and move
to more complicated ones.

Example 5.3.4. Let’s start with a basic modular equation involving addi-
tion:

8+xz=6 (mod 11)

From algebra we understand how to solve an equation with an = sign,
but what do we do with this = sign? In fact, we can turn it in to an = sign
by using Proposition 5.2.10, which says that 8 + 2 = 6 (mod 11) means the
same as:

8+x=k-11+6
And then we can solve for z like any other equation. The result is
r=k-11-2

So we solved for x, but what numbers does = actually equal? What does
k-11 —2 mean? k is an integer, therefore x can equal -2 (if £ = 0), or -13
(if k = —1), or 9 (if K = 1), and so on. In other words x equals —2 plus
any integer multiple of 11, which, by the definition of modular equivalence,
means

x=-2 (mod 11)

This is a correct solution: but it’s not the only way to write it. It would be
just as valid to write

e r=—13 (mod 11)
e =20 (mod 11)

e =130 (mod 11)


https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Notice however that there is only one way to write the solution in terms of
a number in Zj1, namely:

mod(z,11) =9

In order to avoid ambiguity, mathematicians and textbooks always write
solutions mod n in terms of numbers in Z,. In our current example, it’s
easy enough to obtain the standard solution (x =9 (mod 11)) directly from
the equation x = k - 11 — 27 by taking one of the 11’s and adding it to the
—2 to get

r=(k-1)-11+11-2=(k—1)-114+9.

Since k is an arbitrary integer, £ — 1 is also an arbitrary integer. So we get
z=9 (mod 11).

¢

To summarize our general method for solving modular equations so far:

1. Turn the = sign into an = sign using the definition of modular equiv-
alence. This introduces an additional variable k.

2. Find (by trial and error if necessary) the value of k that puts z in the
appropriate range.

3. Change the equation back into an equivalence.

Exercise 5.3.5. Find all x € Z satisfying each of the following equations.

(a) 54+x =1 (mod 3)

(b) 254+ 2 =6 (mod 12)

Now let’s spice things up with some multiplication:

Example 5.3.6. Given the equation

5r4+3=9 (mod 11).
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Using the definition of modular equivalence, this becomes

S5r+3 =11k +9.

Solving this equality using basic algebra gives us

11k +6
- —
Now remember that x must be an integer. In order for the right side to
be an integer, we need to find a k that makes % an integer. At this point

we may use trial and error to find a k in Z5 such that 11 -k + 6 is a multiple
of 5. We get k = 4; and in fact adding 5 - n to 4 also works for any n € Z,
since bn is always divisible by 5. Now we can solve for x by substituting
k = 4 4 5n back in to the previous equation:

_11(4+5-n)+6

xr =

5
B 11~4+6+11~(5n)
B 5 5
=10+ 11n

Therefore x = 10 (mod 11) is the general solution. You may check (which
is always a good idea!) by plugging 10 + 11n for a couple values of n back
into the original equation, and you’ll see these numbers work. ¢

Just to make sure you’ve mastered the process, we’ll give another exam-
ple:

Example 5.3.7. To solve the equation 4z + 5 = 7 (mod 11) we proceed
step by step (note that the symbol = is mathematicians’ shorthand for
“implies” ):

dr+5=7 (mod 11)
=4r+5=11k+7 (by modular equivalence)

11k +2
4

=z (basic algebra)

Now, 11k + 2 is a multiple of 4 when k = 2, as well as when k equals 2 plus
any multiple of 4. Therefore £ = 2 + 4n, hence we may continue from the
previous equation:


https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO

110 CHAPTER 5 MODULAR ARITHMETIC

2+ 11k
Tr =
4
24+11-(2+14
xr = + i +4n) (substitution)
=z =06+ 11n. (simplification)
Therefore z = 6 (mod 11) is the general solution. ¢

Remark 5.3.8. Example 5.3.7 demonstrates some good practices that you
can make use of when you write up your own proofs:

e Instead of using a sentence to explain your reasoning for each step,
place the reason to the right in parentheses. This shrinks down the
size of the proof.

e Another way to shrink the proof is to use mathematical equations, ex-
pressions, and symbols (such as =, V) whenever you can to accurately
communicate your steps in the proof.

JAN

In summary, a general method for solving modular equations is:
1. Turn the = sign into an = sign using the definition of modular equivalence
(just as with modular addition). This introduces another constant k.

2. Solve the resulting equation for your variable z. If the expression is not
a fraction, then go to step 5. Otherwise, go to step 3.

3. By trial and error, find a value kg for £ which makes the fraction into an
integer.

4. Substitute kg + n-(denominator) in for k, and simplify.

5. Change the equation back into an equivalence.

Exercise 5.3.9. Find all x € Z satisfying each of the following equations.
(If there’s no solution, then you can say “no solution”— but show why!)
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(a) 9z = 3 (mod 5) (f) 272z = 2 (mod 9)
(b) 52 =1 (mod 6) (g) 3+2 =2 (mod 7)

(¢) 7z =9 (mod 13) (h) 52 +1=13 (mod 23)
(d) 8z =4 (mod 12) (i) 5z +1=13 (mod 26)
(e) 11z =2 (mod 6) () 3z +2=1 (mod 6)

O

One major disadvantage of our solution method is the use of trial and
error in step 3. If large numbers are involved, then this step can take a long
time. However, there are techniques to speed things up:

Example 5.3.10. Consider the equation 792 =9 (mod 15). In Section 5.2
we mentioned that when we're doing arithmetic mod n, we can replace any
number with its remainder mod n without changing the answer. In this
example then, we can replace the 79 with its remainder mod 15, which is 4.
Thus we have
4dr=9 (mod 15),

which leads to

_ 15k +9

-
By rewriting the numerator, we can simplify the right-hand side:

12 1 1
:( k+3k)+ (8 + ):3k+2+3k+ ‘

and we readily discover that k¥ = 144n makes the right-hand side an integer,
so that

15- (144
x = 5-( —Zn)+9:6+15n,0rm56(m0d15).

Here’s another example, which is just a little more complicated.


https://www.youtube.com/watch?v=Q7ORLAVV_4G&INDEX=9&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Example 5.3.11. To solve the equation 447x + 53 = 712 (mod 111) we
proceed as follows:

447z + 53 =712 (mod 111)

= 447x =659 (mod 111) (subtract 53 from both sides)
= 32z =104 (mod 111) (modular equivalence)
= 3x =104 + 111k (basic algebra)
104 + 111
x :O%k (basic algebra)
2
=z =34+ 3 + 37k (basic algebra)

It should be clear that no value of k makes the right side an integer. Hence
x has no solution. You may have run into a similar situation in a previous
exercise. ¢

Exercise 5.3.12. Find all z € Z satisfying each of the following equations.

a) 1122 = 2 (mod 6) (f) 469z + 122 = 1321 (mod 231)

(
(b) 74z =9 (mod 13) (g) 246z + 200 = 401 (mod 81)

(h) 3394411z =2 (mod 297)

)
)
(c) 856z =4 (mod 123) (*Hint*)
(d) 272z = 24 (mod 9)

)

(e) 242z + 39 = 489 (mod 236) (i) 530z — 183 = 215 (mod 128)

O

From parts (h) and (i) of Exercise 5.3.12 we see that even our trick with
modular equivalences doesn’t make all modular equations easy to solve.
When the coefficient of x and the modulus are both large, you may end
up needing lots of trial and error. Such “brute force” methods are rather
distasteful to snobby mathematicians, who prefer “elegant” solutions. Later
we’ll talk about an “elegant” method (the Euclidean algorithm) that solves
modular equations without any trial and error whatsoever.
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5.4 The integers mod n (a.k.a. Z,)

5.4.1 Remainder arithmetic

Several times now in this chapter we’ve simplified our modular calculations
by replacing numbers with their remainders mod n (remember, we have de-
fined these remainders as the set Z,). We will now fulfill the promise we
made at the end of the first section by proving that if you replace numbers
with their remainders, we don’t change the result of our modular calcu-
lations. That is, we’ll show that modular arithmetic can be thought of
as arithmetic on the remainders, or“remainder arithmetic” (as opposed to
“integer arithmetic” or “complex arithmetic” which we’re already familiar
with).

Before we do this, we need to address an important issue. Consider the
case of Zs = {0,1,2,3,4}, so 3 and 4 are in Zs. However the sum 3 + 4 is
7, which is not in Zs. If we're going to do arithmetic with the remainders,
we should define a “sum” on Z,, such that the result is also in Z,,. This
motivates the following two definitions:

Definition 5.4.1. Modular Addition

The sum mod n of two remainders mod n is the remainder left after dividing
their regular sum by n; that is, if a,b € Z,, then

adb=rifa+b=r+snand r € Z,.

A

Note that in Definition 5.4.1 we write a @ b = r rather than a® b =r
(mod n), since a®b is defined to be equal to the remainder. The same holds
for the following definition:

Definition 5.4.2. Modular Multiplication

The product mod n of two remainders mod n is the remainder left after
dividing their regular product by n; that is, if a,b € Z,, then

a®b=riffa-b=r+snand r € Z,.


https://www.youtube.com/watch?v=EWMBFYQCPFS&INDEX=10&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=EwMbFYQCpfs&index=10&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo

114 CHAPTER 5 MODULAR ARITHMETIC

A

Before we continue, we should take special note of the following impor-
tant points.

Remark 5.4.3.

e It is important to note that the operations & and © depend on the
modulus involved. We must always make sure that the modulus is
clearly specified before talking about & and ©.

e Although technically we could define ¢ & m and £ ® m for any two
integers £,m € Z, in the following we will restrict the operations to
elements of Z,,. So for example if we are working in Z7, we may write
3@4=0and 506 =2, but we won’t write expressions like 7 ® 6 or
13 © 22.

A

Our first step towards showing that ordinary arithmetic can be replaced
with arithmetic with remainders is the following proposition:

Proposition 5.4.4. Given ¢, m € Z.

(a) mod (¢ + m,n) = mod(¢,n) ® mod(m,n),
(b) mod(¢-m,n) = mod(¢,n) ® mod(m,n).
Before we prove Proposition 5.4.4, let’s give an example of how it can
be applied. Suppose we want to compute the following remainders:
mod (8640 + 1059895,7) and mod(8640 - 1059895, 7).

OK, let’s apply the proposition. If we let £ = 8640, m = 1059895 and n = 7,
then we have the following correspondence

mod (¢ + m,n) — mod (8640 4+ 1059895, 7)

By division we may compute mod(8640,7) = 2 and mod(1059895,7) = 4.
This gives us the correspondence:

mod (¢,n) — 2; mod(m,n) — 4.
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Using these correspondences, Proposition 5.4.4 gives us immediately that
mod (8640 + 1059895,7) = 2@ 4, and mod (8640 -1059895,7) =2 ® 4,

which gives us 6 and 1 for the sum and product, respectively. Isn’t this an
awful lot simpler than adding and multiplying those two large numbers?

So let’s get back to the proof. We’ll do (a) here: part (b) is left as an
exercise.

ProoOF. For simplicity we let a := mod(¢,n) and b := mod(m,n). Then
according to the definition of remainder mod n we have

{=a-+sn and m=2>b+1tn.

Adding these two equations (which is basically substitution) and basic alge-
bra we find
l+m=a+b+(s+t)n

Now by the definition of @, there is some p € Z such that a+b = (a®b)+pn;
therefore

l+m = (a®b)+pn+(s+t)n = (a®b)+(p+s+t)n. (subs. and basic algebra)
Hence by the definition of modular equivalence,
l+m=a®db (modn).

Now since a @ b is between 0 and n — 1 by definition, it follows from Propo-
sition 5.2.8 that
mod (¢ +m,n) =a @ b.

Recalling the definitions of a and b above we get finally:

mod (¢ +m,n) = mod(¢,n) ® mod(m,n),
and we’re finished! O
Exercise 5.4.5.

(a) Prove part (b) of Proposition 5.4.4.

(b) Come up with a definition for modular subtraction (use the symbol ©).
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(c) Using your definition, prove the following:

Given {,m € Z. If a = mod(¢,n) and b = mod(m,n), then mod(¢ —
m,n) =aob.

O

The diagram in Figure 5.4.1 gives a way to visualize Proposition 5.4.4. In
the diagram we only show the relation between + and &®: the situation with
- and @ is similar. On the left side of the diagram, we show two numbers /¢
and m being added to give £ +m. The arrows from left to right show that
the numbers ¢, m, and £ 4+ m can all be “translated” by taking remainders.
If we “translate” ¢ and m first and then take the modular sum; or we can
take £ + m first and then “translate” the result. In either case, we end up
with the same answer.

Integers Integers mod n

“Translate” from Z to Z,
A'm > a,b
mod(#, n)=a and mod(m, n)=b

Remainder
Addition addition
inZ in Z,
m > a®b

mod(/+m, n)=a ® b.

Figure 5.4.1. Visualization of Proposition 5.4.4.

Exercise 5.4.6. Make a diagram similar to Figure 5.4.1 for modular mul-
tiplication instead of modular addition. O

Now that we’ve proven Proposition 5.4.4, we can combine operations
into more complicated expressions and show equivalence.

Exercise 5.4.7.

(a) Using part (b) of Proposition 5.4.4 above, show that if £ € Z and a =
mod (¢4, n) then mod(¢2,n) = a ® a. (*Hint*)]
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(b) Using part (a) prove a similar relation involving £3.
(c) Using part (b) prove a similar relation involving 4.

(d) From parts (a),(b) and (c), what do you infer about £ where k is any
natural number? (Note that to actually prove this fact requires the use
of induction.)

Exercise 5.4.8. Given ¢,m,p € Z and a = mod(¢,n),b = mod(m,n), and
¢ = mod(p,n). Show the following equivalences using Proposition 5.4.4.

a) mod(({+m)+p,n)=(adb) dec. (*Hint*)

mod

4+ (m+p),n)=ad (bdc).

(

0+
(c (¢-m)-p,n)=(a®b) e
(
(

(
(b
(d

) (
) (
) mod(
) mod((€-m)+p,n)=(a®b)Dec.
) (

(e) mod((£{+m)-p,n)=(a®b)Oc.

O

We can use similar methods as in Exercise 5.4.8, to show that any arith-
metical expression involving integers with no matter how many additions,
multiplications, and subtractions, can be shown to be equivalent mod n to
the corresponding arithmetical expression in 7, using the modular opera-
tions @, ©, 8.

This completes our discussion showing that arithmetic mod n can be
reduced to arithmetic in Z,,. What we’ve shown can simplify other modular
arithmetic arguments as well:

Exercise 5.4.9. Use Proposition 5.4.4 twice and the first definition of mod-
ular equivalence (Definition 5.2.6) to prove the following propostions. (It is
also possible to prove these propositions directly from the definitions, but
the point of this exercise is to look at the proof from a different perspective.)

Proposition: Given ¢,m,z,y € 7Z where { = z (modn) and m = y
(mod n), then
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(a) L+ m=x+y (mod n),
(b) £-m=xz-y (mod n).

O

This proposition shows that we can freely replace numbers in arithmetic
expressions involving + and - with other numbers that are equivalent mod
n, as long as we’re only interested in the result mod n. For example, suppose
we want to find the following remainder:

mod(80056 - 69944, 56).

We may notice that 80056 = 80000 (mod 56) and 69944 = 70000 (mod 56).
So we can replace 80056 with 80000 and 69944 with 70000 in the computa-
tion:

mod (80000 - 70000, 56) = mod (5600000000, 56) = 0.
By noticing some patterns we were able to save ourselves quite a bit of work.

Note that we were careful to specify that replacement with modular
equivalents works in modular equations that involve addition and/or mul-
tiplication. It does mot work for integer exponents. for example, it is not
true that 2! = 24(mod3), even though 1 = 4(mod3). It turns out that expo-
nents can be replaced with simpler exponents in modular equivalences, but
we won’t find out how this works until Section 18.3.2 (if you want to look
ahead!)

Exercise 5.4.10. Prove or disprove, using the proposition in Exercise 5.4.9:

(a) 778721005 - 495 = 56002 - 492 - 213 (mod 7)

(b) (12345 - 6789) + 1357 = (98765 - 13579) + 9876 (mod 10)

(c) (4545 -5239) + 1314 = (7878 - 3614) + 4647 (mod 101)
)

(d) 765432121234567-234567878765432 = 456456456456456456-789789789789789789789
(mod 10)

(e) 543254325432543254325432% = 12121212121212121212127 (mod 10)
(f) 786786786786786786786° = 456456456456456456456! (mod 10)
(g) 65432187654321 = 12345612345678 (mod 5)
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5.4.2 Cayley tables for Z,

The fact that we can replace integers with their remainders mod n leads
us to a simpler way of thinking about modular arithmetic. First, recall
the integer number line, pictured (again) in Figure 5.4.2: We may relabel

Figure 5.4.2. The usual number line

the integers with their remainders mod 5, pictured in Figure 5.4.3: All the

B
o
[EY
N —
w
=
o
[N
N —f—
w
B
o ——
=

Figure 5.4.3. The number line mod 5

numbers equivalent to 0 mod 5 are labeled 0; all the numbers equivalent to
1 mod 5 are labeled 1; and so on. The whole infinite set of integers then is
reduced to repetitive cycles of the integers 0 through 4. In other words, all
the integers are equivalent to either 0, 1,2, 3, or 4, mod 5.

Furthermore, as we just discussed, the sum and product mod 5 of any
two numbers is exactly equivalent to the sum and product mod 5 of their
corresponding remainders. Therefore, the sum or product of any two num-
bers mod 5 can be determined by the sum or product of the integers 0 — 4.
So we only have to focus on the sums and products of these five numbers to
get the result of any modular calculation mod 5.

So let’s calculate these sums and products. We are only using the re-
mainders for mod 5 (recall we have already defined this set as Zs). The
following table then gives the results of addition mod 5 for Zs:

As an example of how to read this table, the entry in the “2” row and the
“3” column is 0, which tells us that 2@ 3 = 0 (remember, this result depends
on fact that we’re working in mod 5).

The following table gives the results of multiplication mod 5 for Zs:
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B w N = oD
W N = OO
O W N
— O R W NN
N = O W W
WK = O

Table 5.1: Addition table for Zs

©|0 1 2 3 4
0{0 0O O 0 O
170 1 2 3 4
210 2 4 1 3
310 3 1 4 2
410 4 3 2 1

Table 5.2: Multiplication table for Zs

Again, looking at the entry in the ”2” row and the ”3” column we see 1,
which tells us that 2© 3 = 1.

Similarly, for each set of numbers Z, we can construct a table to de-
termine the result of any possible calculation mod n. Tables like these are
known as Cayley tables.® We will see them often throughout the course.

Exercise 5.4.11. Use the above Cayley tables for @& and ® in Zs to calculate
each of the following. (Remember, compute the remainders before doing the
arithmetic.)

(a) mod (456 - (252 + 54), 5)

(b) mod (523 + (4568 - (43 + 20525)) , 5)

(c) mod((456 - 252) + (456 - 54), 5)

(d) mod (523 + ((4568 - 43) + (4568 - 20525)) , 5)

O

Later on (in the chapter on Equivalence Relations) we’ll show another way
of looking at the integers mod n.

8Technically, this kind of operation table is only called a “Cayley table” if the operation
satisfies the “group properties” (see Section 5.4.7).
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5.4.3 Closure properties of 7Z,

Let’s look a little further into the arithmetic properties of the numbers 7Z,
that we’ve just defined.

Example 5.4.12. To start exploring, first consider Zg. Tables 5.3 and 5.4
are the addition and multiplication tables for Zg, respectively.

52

N O ULk W N~ OO
O O Uk W
= O O Uk W NN
N = OO Uk Ww
W N H OO U
=W N OO0 Oyt
Ui W N OO
Oy UL W N~ O N

N O Otk W R O

Table 5.3: Addition table for Zg

N O U W~ oG
oo o000 o oo
N O U R WD = O
DN OO RN O
TN T = O wolw
O OO O
WO =] N Ul Ot
N OO N RO
— N W Lo N O

Table 5.4: Multiplication table for Zg

¢

There is an important feature exhibited in both Table 5.3 and Table
5.4 that is easy to overlook. Notice that every entry in the table is also an
element of Zg. You can think of the set {0,...,7} as a closed box, and when
you add or multiply any two numbers in that box mod 8, you always get
another number in that box, never outside of it (indeed because addition
and multiplication mod 8 return a remainder that is some number 0-7). We
express this mathematically by saying that Zg is closed under addition and
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multiplication mod 8. (Alternatively we may say: addition and multiplca-
tion mod 8 have the property of closure.) It seems reasonable that the
same should be true for any Z,, and we state this formally as a proposition
(as mathematicians are wont to do):

Proposition 5.4.13. Z, is closed under modular addition and multiplica-
tion, for all positive integers n.

Exercise 5.4.14. Prove Proposition 5.4.13. That is, show that the modular
sum and modular product of two elements of Z,, are also in Z,. (*Hint*) {

In general closure is not hard to prove (when it’s true), but it should not
be taken for granted. There are many examples of number systems that are
not closed under various operations. For instance, the positive integers are
not closed under the operation of subtraction, because (for example) 5 —7 is
not a positive integer. Similarly, the positive integers are not closed under
the operation of square root, because the square root of 2 is not an integer.

Exercise 5.4.15. For each of the following number systems, state whether
or not they are closed under (i) addition (ii) subtraction (iii) multiplication
(iv) division (v) square root. In cases where closure holds you can simply
state the fact (no proof is necessary). In cases where closure doesn’t hold,
give a counterexample. For example, we know that the negative real num-
bers are not closed under square root because v/—1 is not a negative real
number. (*Hint*)

(a) The integers (d) The positive rational numbers
(b) The rational numbers (e) The positive real numbers
(c) The real numbers (f) The nonzero real numbers

O

Exercise 5.4.16. Prove that the complex numbers are closed under com-
plex addition and multiplication. O
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5.4.4 Identities and inverses in Z,

Next, we want to look at some additional properties that were introduced in
Chapter 4, namely identities and inverses (both additive and multiplicative).
This time we’ll go through these properties more quickly.

Consider first the additive identity. Remember that an additive identity
is an element which, when added to any other element a, gives a result of a.
For the specific case of Zg, we can see from the first row of Table 5.3 that
0@ a = a for any a € Zg. Similarly, the first column of Table 5.3 show that
a®0=a for any a € Zs.

Is 0 an additive identity for any Z,? Not surprisingly, the answer is Yes:

Proposition 5.4.17. 0 € Z,, is the additive identity of Z,.

ProOOF. Given any a € Z,, then a @ 0 is computed by taking the remainder
of a+0 mod n. Since a+0 = a, and 0 < a < n, it follows that the remainder
of a is still a. Hence a ® 0 = a. Similarly we can show 0 ® a = a. Thus 0
satisfies the definition of identity for Z,,. O

Exercise 5.4.18. Give a similar proof that 1 is the multiplicative identity
for Z,, when n > 1. What is the multiplicative identity for Z,, when n = 17

O

5.4.5 Inverses in 7Z,

Now let’s find out whether the integers mod n have additive and multi-
plicative inverses. Additive inverse first: for each element of Z, is there a
corresponding element of Zg such that their modular sum is the additive
identity (that is, 0)? You may see in Table 5.3 that each row of the addition
table contains a 0 (e.g. 1®7 = 0). It follows that each element of Zg has an
additive inverse. But will the same be true for Zo7, or Zs41, or Zssgy? We
can’t just take this for granted—we need to give a proof:

Proposition 5.4.19. Let Z, be the integers mod n and a € Z,. Then for
every a there is an additive inverse a’ € Z,,.

In other words: for any a € Z,, in we can find an a’ such that:

a®ad =d ®a=0.
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We structure the proof of Proposition 5.4.19 as an exercise. We prove
the two cases a = 0 and a # 0 separately.

Exercise 5.4.20.

(a) Show that 0 € Z,, has an additive inverse in Z,.

(b) Suppose a is a nonzero element of Z, (in mathematical shorthand, we
write this as: a € Z,, \ {0}), and let ' =n —a.

(i) Show that @ is in Z,, . (*Hint*)

(ii) Show that a ®d’ =da' ®a =0 (mod n): that is, o’ is the additive
inverse of a.

O

That takes care of additive inverse. What about multiplication? That
is, no matter what n is, given a € Z,, is there always another element of Z,
which multiplies to give the multiplicative identity?

Before attempting to prove this, first let’s see if it’s true in Zg. Consider
the multiplication table for Zg in Table 5.4. We find that rows 0, 2, 4, and
6 do not contain a 1. This means that for a = 0, 2, 4, or 6, there’s no
b € Zg such that a®b =1 (mod 8). So 0, 2, 4, and 6 have no multiplicative
inverses in Zsg.

Actually, it’s not too hard to see that 0 never has a multiplicative inverse
for any Z,, (why?). This means that it’s impossible to prove a multiplicative
version of Proposition 5.4.19, since we have a counterexample that shows
that not every element of Z,, has an inverse, no matter what n is.

Remark 5.4.21. This example shows that it’s often easier to disprove
something than to prove it! To disprove a general statement, you only need
to find just one counterexample, whereas an unlimited number of examples
can never prove a general statement. A

But all is not lost as far as multiplicative inverses are concerned. We’ll
see later that they play a very important role when we consider arithmetic
with the nonzero elements of Z,,:

Exercise 5.4.22.
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(a) Find an integer n > 2 such that all nonzero elements of Z,, have multi-
plicative inverses.

(b) Find two additional values of n > 5 such that all nonzero elements of
Z., have multiplicative inverses.

(c) What do the three numbers you found in (a) and (b) have in common?

O

5.4.6 Other arithmetic properties of & and ©®

In many respects, @ and ® are very similar to the ordinary arithmetic
operations + and -. It makes sense that they too should be associative,
distributive, and commutative (recall these properties were defined in Sec-
tion 3.2.1). But as mathematicians, it’s not enough for something to “make
sense” —we need solid proof. So let’s buckle down and crank out some proofs.

Proposition 5.4.23. In the following n is an arbitrary positive integer and
a, b, ¢ denote arbitrary elements of Z,.

(a) Modular addition and multiplication are commutative:
a®db=0bda
a®b=>b0Oa.

(b) Modular addition and multiplication are associative:

(a®db)®dec=a® (bDc)
(a®b)©ec=a® (bOc).

(¢) Modular multiplication distributes over modular addition:

a®b®dc)=(a®b)®(a®c).

Proor. We’ll prove associativity, and you’ll prove the other parts as ex-
ercises (the proofs are pretty similar). The proof strategy is familiar: we’ll
prove modular arithmetic properties by making use of the corresponding
properties of ordinary arithmetic.
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Modular addition is associative: Given a,b,c are elements of Z,,
we may apply part (a) of Exercise 5.4.8 and get

mod((a+0b) +c¢),n) =(a®b) Gc.
Similarly, we may apply part (b) of Exercise 5.4.8 to get
mod(a+ (b+¢),n) =a® (b D c).

Now here’s where we use regular arithmetic. The associative property of
integer addition tells us that (a +b) +c¢ = a+ (b+ ¢), so the left-hand sides
are equal. So (a®b)®c=a® (b® c), and the proof is complete. O

Exercise 5.4.24. Explain the step in the above proof where we used part
(a) of Exercise 5.4.8 to conclude that mod ((a+b)+¢,n) = (a®b)De. What
values are we using for ¢, m, p, and why is it OK to use these values? O

Exercise 5.4.25.

a) Prove that addition mod n is commutative.

(

(b
(c
(d) Prove part (c) of Proposition 5.4.23.

Prove that multiplication mod n is commutative.

Prove that multiplication mod n is associative.

)
)
)
)

5.4.7 Group: a central concept in abstract algebra

It’s time for us to make a confession. We have an ulterior motive. We've
been spending lots of time and effort discussing modular arithmetic because
it provides good examples of one of the central concepts in abstract algebra,
namely the notion of a group.

Notice that the set Z, with the operation of @ has an identity, and
inverses, and the property of closure. Furthermore, Z,, is associative under
@, as we just showed. Any combination of a set and an operation that has
those three properties, as well as the associative property, is called a group.
Here’s the formal definition:

Definition 5.4.26. A group is a set combined with an operation that has
the following properties:
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Closure: the set is closed under the operation;

Identity: the set has an identity element for the operation;

Inverse: every element of the set has an inverse under the operation;

Associative: the operation is associative.

AN

Notice that we do not include the commutative property in this list. Later
on we’ll see examples of groups that are not commutative. Groups that do
have the commutative property are called abelian groups.

Now that we’ve defined groups, in retrospect we may look back and see
that we’ve encountered groups before. In fact, we’ve been working with
groups since the very beginning of the book!

Exercise 5.4.27. For each of the following sets of numbers, determine
which of the four group properties holds, using the operation of addition. If
a property does not hold, give a specific counterexample which shows that
the property is false. State also whether or not each set is a group.

(a) Integers; (b)Positive integers; (c) Rational numbers; (d) Real numbers;
(e) Complex numbers. O

We’ve shown several examples of group under the operation of addition
(4 or @). But what about multiplication? With multiplication, things turn
out quite differently.

Exercise 5.4.28. For each of the following sets of numbers, determine which
of the four group properties holds, using the operation of multiplication. If
a property does not hold, give a specific counterexample which shows that
the property is false. State also whether or not each set is a group.

(a) Integers; (b)Positive integers; (c) Rational numbers; (d) Real numbers;
(e) Complex numbers. O

Based on our experience with the previous exercise, we may generalize:

Exercise 5.4.29.
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(a) Explain why it is impossible for any set of (real or complex) numbers
which contains both 0 and 1 to be a group under the operation of mul-
tiplication.

(b) Explain why Z, is not a group under ® for any n > 1.
O

We’ve seen in Exercise 5.4.29 that 0 causes a problem for multiplication,
as far as making groups is concerned. But what if we remove 0 from the
set? We may have better luck:

Exercise 5.4.30.
(a) Show that the nonzero elements of Z3 is a group under ©.

(b) Can you find an n > 3 such that the nonzero elements of Z,, do not
form a group under ®? If so, tell which n, and explain why Z,, fails to
be a group in this case.

O

Now that you know what a group is, we’ll be referring back to this
definition fairly frequently throughout the rest of the book. In particular,
we’ll be saying a lot more about multiplicative groups, which turn out to be
somewhat more intricate (and more interesting) than additive groups.

5.5 Modular division &

Before getting to modular division, we’ll look at something else first. This
all may seem irrelevant, but please be patient: we’ll get to the point soon
enough.

5.5.1 A sticky problem

The following problem may not seem to have anything to do with modular
arithmetic, but it’s an interesting problem and fun to think about. (And it
turns out to be relevant after all!)”

Example 5.5.1. Someone gives us a pencil and two unmarked sticks of
lengths 52 cm and 20 cm respectively (see Figure 5.5.1). We are told to

9This section is by David Weathers, edited by C.T.
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Figure 5.5.1. Two sticks

Figure 5.5.2. First mark

make measuring sticks by using the pencil to make markings on the sticks.
Question: what is the smallest length that we can accurately measure?
Clearly we can measure 20 cm lengths with the shorter rod, but is it possible
to make smaller measurements?

Here’s one way to look at the situation. Imagine for a moment that we
lay the 20 cm measuring stick next to the 52 c¢m stick such that the ends
line up. At that point we could make a 20 cm mark on the 52 cm stick (see
Figure 5.5.2).

At this point we move the 20 cm stick further down the the 52 cm stick such
that one end is on the pencil mark, and and make another mark. Now there
are two 20 cm sections marked on the 52 cm stick, as shown in Figure 5.5.3.
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Figure 5.5.3. Second mark

Figure 5.5.4. Remaining distance

Since we know the sum of the marked sections is 40 cm, and the length
of the large stick is 52 cm, the remainder of the distance must be 12 cm, as
shown in Figure 5.5.4. So we’ve actually made progress. At the beginning
we were only able to measure lengths larger than 20 cm: but now we can
measure 12 cm with the latest mark we’ve made.

But let’s not stop there. We can use the 12 cm section to divide up the
20cm stick. This will subdivide the 20 cm stick into a 12 cm section and a
8 cm section, as shown in Figure 5.5.5.

Now we’re rolling! Let’s subdivide the 12 cm section using the 8 cm sec-
tion. This will produce an 8 cm section and a 4 cm section (see Figure 5.5.6).
Now if we try to use the 4 cm section to subdivide any of the other sections,



5.5 MODULAR DIVISION 131

l—-—n.ch.——-\
[ :

Figure 5.5.5. More subdivision
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Figure 5.5.6. More subdivision

we will no longer have a remainder. This is because 4 cm evenly divides all
the other lengths we have created, as shown in Figure 5.5.7.

¢

Exercise 5.5.2. Using the method above, find the smallest measure given
sticks of length:

(a) 30 cm and 77 cm.
(b) 7 feet and 41 feet (Pretty long sticks!).
(c) 33 in and 72 in.

O

While working on the exercises, you may have noticed that the units
of measure used do not matter. The only thing that matters is the actual
count of those units of measure.

Exercise 5.5.3. Using the method above:
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Figure 5.5.7. More subdivision

(a) Convert the measurements in Exercise 5.5.2 part (a) into millimeters,
and solve the problem again. How is your result using millimeters related
to your answer to part (a) in the previous exercise?

(b) Convert the measurements in Exercise 5.5.2 part (b) into inches, and
solve the problem again. How is your result using inches related to your
answer to part (a) in the previous exercise?

(c) Use what you've discovered in part (b) to quickly find a solution to the
two-sticks problem when one stick is 720 inches and the other is 600
inches.
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5.5.2 Greatest common divisors

You may be familiar with the notion of greatest common divisor (gecd) of
two numbers. The gcd is defined as the greatest number that divides the
two given numbers. ged’s play a key role in modular arithmetic, as we shall
see.

The general question we now consider is: What’s a good way to find
the ged of two integer numbers? It may be easy to find the ged of small
numbers like 12 and 20, but what if you have to find the gcd of 583768 and
2605684477

At this point, let’s think back to our two-sticks problem. We saw that
when we began with sticks of length 52 and 20 we ended up with a minimum
measurable distance of 4, which just so happens to be the ged of 52 and 20.
Was this a coincidence? Not at alll The minimum measureable distance has
to evenly divide the two sticks’ lengths, otherwise we could find a smaller
measurable distance using the marking-off procedure described in the previ-
ous section. This implies that the minimum measureable distance must be
a common divisor. To show that it’s the greatest common divisor takes a
little more work—we’ll give the proof below. For now, we’ll assume that the
minimum measureable distance is in fact the ged.

So to get the ged of 583768 and 260568447, in theory we could try
creating one stick of length 583768 and another of length 260568447 and
follow the same procedure. Of course this isn’t practical. So instead, we’ll
try to duplicate the same procedure mathematically, without resorting to
actual sticks. Notice that when we subdivided a larger stick of length a into
sections of the length of b, the result was essentially the same as dividing a
by b while leaving a remainder r. See if you can complete the connection in
the following example.

Example 5.5.4. Let’s use algebraic language to express the two-sticks
algorithm applied to 52 and 20. Let’s start by setting this up as a division
problem with a remainder (recall Proposition 5.2.3), since this is effectively
what is being done in the stick example above.

92=20-q + r1,

where ¢ and r1 are integers (we put the subscript ‘1’ on the variables ¢; and
r1 because we're going to repeat the process). By division with remainder
we find g1 = 2 and 71 = 12. Now we repeat the process, but this time
dividing the remainder 12 into the smaller stick length 20:
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20=12.qo + 7o,

which yields g2 = 1,79 = 8. Here we go again, this time dividing the second
remainder 8 into the first remainder 12:

12=8-qg3+ ;3

This yields g3 = 1,73 = 4. One more time, this time dividing the new
remainder 4 into the previous remainder 8:

8=4-qu+ry

This yields g4 = 2,74 = 0.

Now notice that 8 is divisible by 4. In the equation before that, we have
12 =4 -2+ 4. Since the right hand side is a sum of multiples of 4, the left
hand side must also be a multiple of 4. In the next equation up 20 = 12-x+8
again, the right hand side is a sum of multiples of 4, so the left hand side
must also be a multiple of 4. Continuing this logic upward shows that all
intervals created along the way are divisible by 4. Hence the algorithm has
generated a divisor of the original lengths 52 and 20. In summary, the last
nonzero remainder gave us the ged.

The procedure we have just described is called the Fuclidean algo-
rithm. (An algorithm is a mathematical procedure designed to compute a
specific result). The Euclidean algorithm is very powerful, and in fact can
be used to calculate ged’s of large numbers as we’ll see below.

¢

As noted above, the divisor produced by the Euclidean algorithm turned
out to be the greatest common divisor. Let’s prove this in general.

Proposition 5.5.5. The Euclidean algorithm applied to two integers will
give the gcd of those two integers.

PROOF. This proof is broken up into two parts, (A) and (B). Part (A) shows
that the algorithm always produces a divisor of the two given integers. Part
(B) shows that the produced divisor is indeed the ged.
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(A) Given integers a and b and a > b if we were to plug them into the
Euclidean Algorithm we get:

a=b-q +m

b=r1-qg+r2

TL=72-¢3+ 73

until there is an equation with no remainder left.
Tk—2 = Tk—1"qk—1 + Tk
Th—1 =Tk gk +0
It is clear that r; divides rp_,. Consider the next equation up.
Th—2 = Tk—1"qQk—1 + Tk =Tk " qk—1 "Gk T Tk

This shows that r; divides the right hand side, so ry must divide r;_o.
In the next equation up, the right can be set up as multiples of r; which
means the next r term is divisible by r, Continue all the way to the
top and it must be that r; divides both a and b

(B) Now suppose there is another number ¢ that divides a and b such that
a1 -c = a and by - ¢ = b. We can rewrite the initial equation of the
algorithm as follows.

ap-c=b1-c)-qg+ri=a-c—(b1-¢c)-q1=m
This shows that ¢ must divide ;. Consider the next equation.
bi-c=(r1)-q@@+ro=br-c—(r1) qg=r

Since ¢ divides both 71 and b; then ¢ must divide ro also. Repeat all
the way to the bottom and ¢ will have to divide 7.

Since ¢ divides 7y, ¢ is no larger than ri. So all divisors of a and b must
be no larger than 7. From part (A) we know that r; divides both a
and b. Therefore r; must be the ged of @ and b.

The Euclidean algorithm may be summarized as follows.
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1: Start with two integers a and b where a > b
Divide b into ¢ and find the remainder r

If r = 0, b is the greatest common divisor.

If the remainder is not 0, then replace a with b and b with r and return
to step 1.

Exercise 5.5.6. What is the greatest common divisor of:

(a) 1168 and 23387
(b) 2343 and 46977
(c) 1006 and 135817

O

Let’s analyze this algorithm just a little further. In the first step when
we divide a by b, the remainder satisfies the equation, r1 = a — ¢1 - b, where
q is an integer. In other words, r; can be written in the general form:
ry =n-a+m-b, where n and m are integers.

Exercise 5.5.7.

(a) Show that 79 can also be written in the form: ro = n-a+ m - b, where
n and m are integers.

(b) Show that for k > 2, if r,_o and r;_; can both be written in the form
n-a+ m-b where n and m are integers, then r; can also be written in
the same form.

(c) Show that the ged of two numbers a and b can always be written in the
form n - a +m - b where n and m are integers.

O

The above exercise amounts to an inductive proof of the following propo-
sition.

Proposition 5.5.8. The gecd of two numbers a and b can be written in the

form n - a + m - b where n and m are integers.

This proposition will be useful in the next section.



5.5 MODULAR DIVISION 137

5.5.3 Computer stuff

For the computationally inclined reader here are two examples, in C++
syntax, of functions that calculate the greatest common divisor.

int gcdLoop (int a, int b){
int divisee=a;
int divisor=b;
int remainder;
//if they are the same, then either is the greatest divisor
if (a == b)
return a;
//1f a < b, then switch, otherwise the algorithm will not work.
if (a < b){
divisee=b;
divisor=a;
}
// At this point, a is the larger of the two numbers
doq{
// %’ returns the remainder of the integer division.
remainder = divisee Y divisor;
//Set up the next iteration if the remainder is not 0 --
// if the remainder is 0, then we’re done
if (remainder !'=0){
divisee = divisor;
divisor = remainder;}
else
{break;}
while (1);
return divisor;

}
This second example is also in C++, but uses recursion.

int gcdRecurse (int a, int b){
int remainder;
if (a == b)
return a;
if (a <$ b)
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{
//’%’ returns the remainder of the integer division
remainder = b ¥ a;

if (remainder == 0)
return a;
else
return gcdRecurse(a, remainder);
}
else
{
remainder = a % b;
if (remainder == 0)
return b;
else
return gcdRecurse(b, remainder);
}

//By calling itself, it will repeat the process until the remainder is 0O

}

Exercise 5.5.9. Create a spreadsheet (with Excel, LibreOffice, or OpenOf-
fice) that calculates the ged of two integers that uses the procedure above
Excel has a built-in ged function, but you’re not allowed to use it for this ex-
ercise.But you may use the MOD function: “=MOD(A2,B2)” will compute
the remainder when A2 is divided by B2. You may refer to the spreadsheet
in Figure 5.5.8 for ideas. O

5.5.4 Diophantine equations

Let’s look now at another type of problem, which has played a key role in
the history of mathematics.

Definition 5.5.10. A Diophantine equation in the variables m,n is an
equation of the form
a-m+b-n=c

where a, b, c are integers, and m and n are assumed to have integer values.

A
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A B C
1  Larger# Smaller# Remainder
2 1053 863 130
3 863 190 103
4 130 103 87
5 103 a7 16
6 87 15 7
7 16 7 2
3 7 2 1
9 2 1 0

Figure 5.5.8. Spreadsheet for computing ged

Example 5.5.11. Find all integers m and n such that 16m + 42n = 8.

To solve this, let us list each of the steps in finding the ged of 42 and 16,
as we explained in the previous section:

42 = (16) - 2 + 10

16 = (10)- 146
10=(6)-1+4
6=(4)1+2
4=(2)-2+40

Now let’s start over again, but this time we’ll keep track of what we’re
doing. If we start at the top of the list, but move the 16 -2 to the other side

of the equation, this yields:
421416 (—2) = 10.

Let’s define a shorthand “pair notation” for the left-hand side. Let’s repre-
sent any expression of the form 42 - x + 16 - y as (z,y). Using this rule, we
denote 42-1+16- (—2) by the pair (1, —2). Then our previous equation can

represented in “pair notation” as:

(1,-2) = 10.
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This “vector notation” can save a lot of writing over the course of a long
computation.

Now consider the next equation down the list, which is 16 = (10) - 1 +6.
Using pair notation, we can write 16 with (0,1) (since 16 =42-04 16 - 1).
We’ve already seen that 10 = (1, —2), so we get:

(0,1) = (1,—2) +6.

Now we can move the (1, —2) to the left-hand side and subtract it from (0, 1)
to get:
(—1,3) = 6.

Now the next equation down the list is 10 = (6) - 1 + 4. Making similar
replacements, we find:

(1,-2) = (-1,3) +4 = (2,-5)=4.

Repeat again for the next equation down the list: 6 = (4) - 1 4+ 2, which
gives:
(-1,3) = (2,-5)+2 = (-3,8) =2.

At this point, we’ve gone as far as we can go. (Verify this: what happens if
you try to continue?) Now if we replace the pair notation (—3,8) with what
it originally represents, we get:

42-(-3)+16-8 = 2.
If we multiply this equation by 4, we have
42 - (—12)+ 16 - 32 = 8.

It follows that m = 32,n = —12 is an integer solution to our original equa-
tion, 16m + 42n = 8.

Unfortunately we’re not quite done yet, because we’re supposed to find
all integer solutions. But we do have a particular solution, and we can
leverage this information as follows.!” Suppose that m,n is an arbitrary

10What we’re doing here is a common ploy in mathematics. We’re using a particular
solution to reduce the problem to a homogeneous equation (if you’re not familiar with this
terminology, then don’t worry about it). Exactly the same method is used in differential
equations, and in linear algebra.
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solution, so that 42n + 16m = 8. We may subtract from this equality the
equation for the particular solution m = —12,n = 32:

42n + 16m =8
— (42(-12) + 16(32) = 8)
42(n+12) +16(m—32)=0

Rearranging and dividing by common factors, we obtain:
21(n+12) = —8(m — 32).

Now since the right-hand side is divisible by 8, then the left-hand side must
also be divisible by 8. This implies that n 4+ 12 must be divisible by 8, or

n+ 12 =8k (for some integer k).
If we plug this in to the equation just above, we get:
21(8k) = —8(m — 32), or m — 32 = —21k.
We may rearrange to obtain finally:
m =32—21k and n = —12+ 8k (where k is an arbitrary integer)

as the most general solution to 16m + 42n = 8. ¢

Example 5.5.12. We'll give another example, giving just the computations
and no other words. We find integer solutions to 1053z 4 863y = 245 as
follows:

1053 = 863 + 190 = 190 = (1, —1)
863 =4-190 + 103 = 103 = (0,1) — 4 - (1,—1) = (—4,5)
190 = 103 + 87 = 87 = (1, —1) — (—4,5) = (5, —6)
103 =87+ 16 = 16 = (—4,5) — (5,—6) = (=9,11)
87=5-164+7=7=(5,—6) —5-(=9,11) = (50, —61)
16=2-7+2=2=(=9,11) — 2- (50, —61) = (—109, 133)
7=3-2+41=1=(50,—61) — 3 (=109, 133) = (377 — 460).

This means that: 377 - 1053 — 460 - 863 = 1 (You may check this on a
calculator.)
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Now we may multiply both sides by 245, which gives:
(245 - 377) - 1053 — (245 - 460) - 863 = 245.
Thus x = (245 - 377) = 92365 and y = —(245 - 460) = —112700, so that
1053 - 92365 — 863 - 112700 = 245

is an integer solution.

To find all integer solutions, we suppose that (z,y) is an arbitrary so-
lution to 1053z 4 863y = 245. We can subtract our computed solution to
give:

1053(z — 92365) + 863(y + 112700) = 0,

or
1053 (2 — 92365) = —863(y + 112700).

The left-hand side is divisible by 1053, and our computation shows that
gcd(1053,863)=1, so by Euclid’s Lemma (Proposition 4.1.15 in Chapter 4)
it must be the case that by y + 112700 is also divisible by 1053. If we write
y + 112700 = 1053k, it follows by algebra that x — 92365 = —863k. This
means that

x = 92365 — 863k, y = —112700 + 1053k
is the most general solution.

This solution is correct, but we can simplify it by shifting the value of
k. Note that 92365 = 107 - 863 + 24 and 112700 = 107 - 1053 + 29. So we
may replace k with (£ + 107) to obtain:

x = 92365 — 863(¢ + 107),y = —112700 + 1053(¢ + 107),
which after working out the algebra gives us:

x =24 — 8630,y =29 + 1053¢.

Exercise 5.5.13. Using the process above, find all integer solutions to the
following equations.

(a) 45m + 16n = 27
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(b) 360m + 14n = 32

c) 389m + 50n = 270

)

()

(d) 4801m + 500n = 1337
)
)

e) 3524m + 7421n = 333

(
(f) 20m+17Tn =12

143

Exercise 5.5.14. Modify the spreadsheet from Exercise 5.5.9 to find the
coefficients n and m such that na + mb = ged(a, b) for given integers a, b.

Refer to Figure 5.5.9 for ideas. O

A B C D E F

1 | Larger# Smaller# Remainder Quotient Firstcoef Second coef

2 1053 1 a

& 863 0 1

4 1053 863 130 1 1 -1

5 863 190 103 4 -4 5

6 190 103 87 1 5 -G

7 103 87 16 1 -9 11

8 87 16 7 5 50 -61

2, 16 7 2 2 109 133

10 7 2 1 3 377 460

11 2 1 0 2

Figure 5.5.9. Spreadsheet for computing ged

Do all Diophantine equation have solutions? Let’s investigate.

Exercise 5.5.15. Explain why the following Diophantine equations have

no integer solutions.

(a) 2m +4n =1 (*Hint*)

(b) 3m +2Tn =2
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O

The previous exercise shows that not all Diophantine equations can be
solved. The following proposition shows which can and cannot be solved.

Proposition 5.5.16. Given the Diophantine equation an + bm = ¢, where
a, b, c are integers. Then the equation has integer solutions for n and m if
and only if ¢ is a multiple of the ged of a and b.

PRrROOF. Since this is an “if and only if” proof, we need to prove it both
ways. We’ll do “only if” here, and leave the other way as an exercise.

Since we're doing the “only if” part, we assume that an + bm = c is
solvable. We’ll represent the ged of a and b by the letter d. Since ged(a, b)
divides both a and b, we may write a = da’ and b = db’ for some integers
a’, V. By basic algebra, we have an + bm = d(a’n + b'm). If we substitute
this back in the original Diophantine equation, we get:

d(an+bm)=c

It follows that ¢ is a multiple of, d, which is the gcd of a and b. O

Exercise 5.5.17. Prove the “if” part of Proposition 5.5.16. (*Hint*) ¢

At the beginning of this section, we “introduced” Diophantine equations.
But we have seen them before:

Exercise 5.5.18.

(a) Find the general integer solution to: 242m + 119n = 53.
(b) Use your solution to solve the modular equation: 242z = 53 (mod 119).

(c) Use your solution to solve the modular equation: 119y = 53 (mod 242).

O

This example shows that Diophantine equations are just modular equa-
tions in a disguised form! Furthermore, each Diophantine equation is asso-
ciated with two modular equations:

Exercise 5.5.19. Given that (m,n) is a solution to a-m +b-n = ¢, give
(a) a modular equation with base b involving the constants a and ¢ which
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has m as a solution; and (b) a modular equation with base a involving the
constants b and ¢ which has n as a solution. O

In Example 5.3.11, we saw that not all equations of the form ax =
¢ (mod b) have an answer. We now have the means to determine which
modular arithmetic equations have an answer:

Proposition 5.5.20. Given a modular equation ax = ¢ (mod b), where
a, b, c are integers. Then the equation has an integer solution for x if and
only if ¢ is an integer multiple of the greatest common divisor of a and b.

Exercise 5.5.21. Prove both the “if” and the “only if” parts of Proposi-
tion 5.5.20. (*Hint*) O

Exercise 5.5.22. Which of the following equations have integer solutions?
If solutions exist, find them all. If no solutions exist, prove it!

(a) 152 =3 (mod 12)

(b) 4z =17 (mod 23)

(c) 503z = 919 (mod 1002)

(d) 504z = 919 (mod 1002)
)

(e) 423z + 60 = 720 (mod 101)

O

To close off this section, we take care of some unfinished business. Way
back when we were showing the existence of irrational numbers, we made
use of Fuclid’s lemma (Proposition 4.1.15 in Chapter 4). We weren’t able
to give a real proof then—but now we can, thanks to Proposition 5.5.16.
In the proof, we use the terms “prime” and “relatively prime”: recall that
a prime number is a natural number > 1 whose only factor > 1 is itself
(Definition 4.1.14); and two numbers are relatively prime if they have no
common factors > 1.

Exercise 5.5.23.
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(a) Let p be a prime, and let a be an integer. Show that a is relatively prime
to p if and only if there exist integers m and n such that pm + an = 1.
(*Hint*)

(b) Suppose p is prime, and suppose a is relatively prime to p. Suppose also
that p divides ab. By multiplying the equation in part (a) by b, show
that p must divide b. (*Hint*)

(c) Prove Euclid’s Lemma: Let p be a prime number, and let a and b be
integers. If p divides ab, then either p divides a or p divides b. (*Hint*)

O

Euclid’s lemma can be used to prove another “obvious” fact about nat-
ural numbers that “everybody knows” (but few people can prove): namely,
that all natural numbers greater than 1 can be factored as a product of
primes in exactly one way. This fact is known as the FPundamental Theo-
rem of Arithmetic. There are two parts to the proof: first, showing that
such a factorization alwasy exists; and second, that there is only one way
to do it (up to rearrangement of the factors). Both parts may be proved by
induction, and a proof of the first part is given in Section 26.4.

5.5.5 Multiplicative inverse for modular arithmetic

This section is supposed to be about modular division, but so far we’ve been
talking about all kinds of other stuff. You may be wondering, So where’s
the modular division? You’re about to find out!

Recall that the set Z, under the operation & forms a group: it has
closure, it’s associative, it has an additive identity, and all elements have
inverses. On the other hand Z, does not form a group under ® for any
n > 2.

Why is this? Because the inverse property fails for the element 0. The
multiplicative identity must be 1, yet 0-m # 1 for all m € Z,.

But let’s not give up so easily in our quest to form multiplicative groups.
Since it appears that 0 is a problem, suppose we take all the elements of
Zy, except 07 We write the set of nonzero elements of Z,, as Zj, \ {0}. Let’s
see whether this a group under ®. We remind you that a ® b is defined by:
a®b=r where a,b,r € Zy, and a - b = kn + r where k an integer.)

Example 5.5.24. The Cayley table for Zs \ {0} is:
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©|1 2
111 2
2 12 1

Notice that each column has 1, meaning that each element has an inverse.
It is also closed, associative and has an identity. Thus Z3 \ {0} is a group
under ©. ¢

Example 5.5.25. The Cayley table for Z4 \ {0} is

|1 2 3
111 2 3
212 0 2
313 2 1
Notice that the 2 column does not have a 1 in it, meaning that 2 does
not have an inverse in Z4. Thus, Z4 \ {0} is not a group under ©. ¢

The fact that 2 has no inverse is due to 2 being a divisor of 4. This makes
all integer multiples of 2 to cycle between the values 0 and 2 (mod 4).

Example 5.5.26.

Finding the multiplicative inverse in Z, \ {0} for small values of n is not
difficult. But what about finding the multiplicative inverse of 3 in Zg; \ {0}7

Really all we’re looking for is a number k& such that 3k = 1 (mod 31).
Since 31 is prime, it must be relatively prime to 3, meaning the gcd of 31
and 3 must be 1. 1 is a multiple of 1, so there is a solution and in fact this is
just a special case of an earlier proposition. We convert it to a Diophantine
equation:

3k+31=1

Using the ged algorithm, we find:
314+3-(—10) =1,
and applying (mod 31) gives
3-(—-10) =1 (mod 31).

Finally, we use the definition of modular arithmetic to convert —10 into a
member in Zs:
3-(21)=1 (mod 31).


https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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¢

Exercise 5.5.27. Prove or disprove that the following sets form a group
by either finding a multiplicative inverse for all members, or by finding a
member that does not have a multiplicative inverse.

a) Zs \ {0}

(a)
(b) Z7\ {0}
(c) Zo\ {0}

)

(d) Make a conjecture for which sets Z,, \ {0} form a group under multipli-
cation.

Proposition 5.5.28. If p is a prime number, then all elements in Z, \ {0}
have an inverse under multiplication mod p.

PRrROOF. Let a,p be known integers where a < p and p is prime. There exists
an inverse to a under multiplication (mod p) when there is a solution k to
the equation ak = 1 (mod p) where k is an integer. By Proposition 5.5.20,
this equation can be solved if and only if the ged of a and p is equal to 1.
Since p is prime and a < p then the ged of a and p must be 1. O

The previous proposition is actually a special case of the following:

Proposition 5.5.29. Let n > 1 be an integer, and let a be an element of
Z,\{0}. Then a has a multiplicative inverse in Z,, if and only if ged(a,n)=1
(that is, a is relatively prime to n).

The proof of this proposition is up to you:

Exercise 5.5.30. Let n > 1 be an integer, and let a be an element of

Zin \ {0}

(a) Prove the “only if” part of Proposition 5.5.29. That is, prove that if a
has an inverse in Z, \ {0} then gcd(a,n)=1. (*Hint*)
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(b) Prove the “if” part of Proposition 5.5.29. That is, prove that if gcd(a, n)=1
then a has an inverse in Z,, \ {0} . (*Hint*)

Exercise 5.5.31. Show that if n is not prime, then Z, \ {0} is not a group
under multiplication. (*Hint*) O

5.5.6 Chinese remainder theorem

We now are experts at finding solutions to congruences of the form ax = ¢
(mod b). But what about multiple congruences? Take for example:

x=4 (mod7); x=5 (mod)9).

Can we find an x that solves both at the same time?

The first-century Chinese mathematician Sun Zi considered problems
like this, and was able to come up with a general method of solution. His
result is now known as the Chinese Remainder Theorem.

We may apply Sun Zi’s solution (expressed in modern algebraic lan-
guage) to our particular case as follows. For the first congruence we have
the general solution x = 4+ 7k, where k is any integer in Z. If we substitute
4 4 7k for x in the second congruence, we get:

447k=5 (mod9)=T7k=1 (mod9).

At this point we could use the Euclidean algorithm to find k. But it’s often
easier to use the trial-and-error methods that we developed earlier. In this
case, the method amounts to adding multiples of 9 to the right-hand side
until you get something that is divisible by 7. In this case, we find:

Tk=14+3-9 (mod9)=7k=28 (mod9)=k=4 (mod9).

This means k = 95 + 4 for some integer j. We substitute 95 + 4 for k back
into x =4 4 7k to get:

z=4+47(95+4) = 44635 + 28 = 32 + 635.

So the answer must be x = 32 (mod 63) When we check, 32 =9-3+5 =
7-44+4and 95=9-10+5 =7-13 + 4 and indeed that is the case. Notice


https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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the ending modulus was the least common multiple of the first and second
modulus (7 and 9, respectively) in the original set of modular equations.

Now, not all multiple congruences have an answer. Take the following
pair of congruences:

r=3 (mod 4); r=4 (mod 6).

We follow the same pattern. There is a solution for the first congruence
x = 4k + 3 where k is any integer. Plug this into the second congruence to
yield:

4k +3=4 (mod6)=4k=1 (mod 6).

From the Euclidean algorithm, we know there is a solution to this congruence
if and only if ged(4,6) = 1, but we know ged(4,6) = 2. Therefore there is
no solution.

Exercise 5.5.32. Solve the following pairs of congruences or show that
they have no common solution:

a) =2 (mod 3); =z =3 (mod 4).
=12 (mod 23); x =7 (mod 11).
(¢) =3 (mod 13); =20 (mod 31).
(d) =2 (mod 6); =z =056 (mod 72).

Exercise 5.5.33.

(a) Find a pair of congruences of the form: x = a (mod 9); z =b (mod 15)
that have no common solution.

(b) Given congruences of the form
ar =b (mod 3); cx=d (mod 7)

which both have solutions. Show that common solutions also exist.
(*Hint*)
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(c) *Prove the following: Given a pair of congruences
ar =b (mod m); cx =d (mod n)

which both have solutions, such that ged(m,n)=1. Then the congru-
ences also have a common solution. (*Hint*)

(d) *Prove the following: Given a pair of congruences
x=0b (mod m); x=d (mod n).

such that ged(m,n)=1. Then there exist common solutions to both
congruences; and all common solutions are congruent mod mn. (*Hint*)

O

We can use the same method to solve any number of simultaneous con-
gruences. Take for example:

=4 (mod7); z=5 (mod9); xz=1 (mod?2).

From the above example we know the general solution for the first two
congruences is z = 32 (mod 63). So we need to solve:

x =32 (mod 63); x=1 (mod 2)
We solve this by the same process as before:

r=1+2k=1+2k=32 (mod 63) =2k =31 (mod 63)
=2k =31463 (mod 63)=2k=94 (mod 63)
= k=47 (mod 63).

Substitute to obtain x = 1+ 2(47 + 635) = 95 + 1265 = 95 (mod 126)..

Exercise 5.5.34. Solve the following sets of congruences or show that they
do not have a solution:

(a) =2 (mod 3); x=3 (mod 4); x=4 (mod5).
(b) =12 (mod 23); x=7 (mod 11); 2 =3 (mod 4).


https://www.youtube.com/watch?v=KDD2FQHXLFA&INDEX=11&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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5.6 Hints for “Modular Arithmetic” exercises

Exercise 5.2.13: Use the alternative definition of modular equivalence in
Proposition 5.2.10.

Exercise 5.3.1(f): Prove by contradiction: suppose the codes dy,ds, ... dio
and e, ea, ... e19 are both valid, and suppose that all digits are equal except
for the n’th digit (so d,, # ey). There are two cases: (a) n is even; (b) n is
odd. In case (a), show that this implies e, — d,, = 0 (mod 10), and derive a
contradiction. Prove case (b) similarly.

Exercise 5.3.2(d): Use the fact that 10 = —1 (mod 11).

Exercise 5.3.2(i): Prove by contradiction: Suppose the codes dy,ds, ... dig
and e, ea, ... e19 are both valid, and suppose that all digits are equal except
for the n’th digit (so d,, # ey). Show that d,, — e,, satisfies (d,, — ex)n =0
(mod 11), and show that the only solution is d,, — e, = 0.

Exercise 5.3.2(j): Suppose the code di,ds,...d;o is valid, and suppose the
code is still valid when the digits d,, and d,41 are exchanged. Write down
two modular equations, and take the difference between the two modular
equations. Use this to find an equation involving d,, and dj41.

Exercise 5.3.12(c): Find a negative number that is equivalent to 856 (mod 123).

Exercise 5.4.7(a): Let m = ¢ and b = a. Check the conditions of the
proposition still hold, and apply the proposition.

Exercise 5.4.8(a): You will need to use Proposition 5.4.4 twice.
Exercise 5.4.14: Use the definitions of & and ©.

Exercise 5.4.15: Be careful about 0!

Exercise 5.4.20(b)(i): Use the fact that 0 < a < n.

Exercise 5.5.15(a): The left-hand side is always even, no matter what m and
n are.

Exercise 5.5.17: Use Proposition 5.5.8.
Exercise 5.5.21: Use Proposition 5.5.16.

Exercise 5.5.23(a): Use Proposition 5.5.16. (b): p must divide the left-hand
side of the multiplied equation (explain why). (c): Consider two cases (I) a
is relatively prime to p; (II) a is not relatively prime to p.

Exercise 5.5.30: Use Proposition 5.5.20.

Exercise 5.5.31: Use the previous exercise.
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Exercise 5.5.33(b): If y is a particular solution to ax = b (mod 3), then
x = y+ 3k is also a solution. Similarly, if z is a particular solution to cx = d
(mod 7), then x = z + 7/ is also a solution. Set the two expressions equal,
and show there is always a solution for k, £ regardless of the values of y, z.

Exercise 5.5.33 (¢): Follow the method used in the Chinese Remainder The-
orem, and for each modular equivalence obtained show that a solution exists.

Exercise 5.5.33 (d): Suppose that z and y are both solutions to the given
pair of congruences. Show that z —y =0 (mod m) and x —y =0 (mod n).
This implies that both m and n divide  — y (explain why).
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5.7 Study guide for “Modular Arithmetic” chap-
ter

Section 5.1, Introductory examples

Concepts:

1. Modular arithmetic

2. Modulus

Competencies

1. Be able to give the modulus involved in a practical problem involving
“cycles”. (5.1.10)

Section 5.2, Modular equivalence and modular arithmetic
Concepts:

1. Net displacement

2. Modular equivalence: two numbers are equivalent mod m if they have
the same remainder under division by m.

3. Modular equivalence (alternative formulation): Given a,b, m € Z, then
a = b(modm) iff m | (a —b)

4. Integers modulo m (these are the possible remainders of integers under

division by m)

Notation

1. € means ‘contained in’ or ‘elements of’

2. = means modular equivalence, similar to equality, but not quite the
same

3. | means ‘divides’
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Competencies

1. Determine whether or not two integers are equivalent modulo a given
base. (5.2.15)

Section 5.3, Modular equations
Concepts:

1. Application of modular arithmetic to UPC and ISBN codes
2. Transposition errors in scanning codes

3. Solving modular equations

Key Formulas

1. Inner product of two tuples: (di,da, ..., dg) (w1, ws,...,wg) = diw;+
dowa + - - - + dpwy,

2. UPC check formula: (dl, Clg, d3, d4, e ,d12)'(3, 1, 3, 1, ey 1) = O(mod 10)

3. ISBN formula: (dy,ds,...,d1o) - (1,2,...,10) = 0(mod 11)

(note dyp might have to be a 10 to make the inner product 0, ‘X’ is
used to represent 10).

Competencies

1. Be able to validate UPC codes and find errors. (5.3.1)
2. Be able to validate ISBN codes and find errors. (5.3.2)

3. Be able to solve modular equations with small coefficients using trial
and error. (5.3.5, 5.3.9)

4. In modular equations, replace coefficients with their remainders before
solving. (Example 5.3.10, 5.3.12)
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Section 5.4, The integers mod n (also known as Z,)

Concepts:

1

. Modular addition and multiplication

. Cayley tables for addition and multiplication in Z,,
Closure properties of Z,

Additive & multiplicative identities and inverses in Z,
Commutative, associative, & distributive properties in Z,

Definition of a group (a set with an operation that is closed, associa-
tive, has an identity, and all set elements have inverses)

Key Formulas

. Modular addition: a,b € Z,, thena®b =1 iff a+b=r+snandr € Z,

Modular multiplication: a @b=1r iff a-b=7r+ snandr € Z,

(note that = is used rather than = in modular addition and multipli-
cation equations, since a @ b is defined as equal to the remainder for
modular addition and modular multiplication.)

Competencies

1.

Be able to draw “commutative diagrams” that relate arithmetic in Z
to arithmetic in Z,,. (5.4.6)

Prove modular equivalence between arithmetic expressions involving
integers and modular arithmetic expressions involving the integers’
remainders. (5.4.7, 5.4.8)

Simplify expressions mod n by replacing terms in the expression with
their remainders. (5.4.10)

Know how to tell whether a set is closed under a certain arithmetic
operation. (5.4.15)

Create tables for addition and multiplication mod n.
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6. Be able to find multiplicative inverses of elements in Z,,, or prove they
have none. (5.4.22)
7. Know the group properties by memory. (Definition 5.4.26)

8. Be able to show if elements of a given Z,, are a group or not. (5.4.30)

Section 5.5, Modular division
Concepts:

1. Greatest common divisors (ged)
2. Euclidean algorithm for finding gecd
3. Computing ged using spreadsheets

4. Diophantine equations: a-m+b-n = ¢, where a, b, c are integers, and
m and n are assumed to have integer values.

5. Multiplicative inverse for modular arithmetic: If @ € Z,,, then x € Z,,
is the multiplicative inverse of a in Z,, if a ® = = 1.

6. Chinese remainder theorem

Key Formulas

1. Euclidean algorithm formulas: a =b-q; +r1,b =171 - qa + 72,
TL="72"¢3+73,...

Competencies

1. Be able to find the greatest common divisor using the Euclidean algo-
rithm. (5.5.6)

2. Be able to find all integer solutions to a Diophantine equation. (5.5.13)

3. Know the four group properties by heart (closure, identity, inverse,
associative) and be able to tell from a Cayley table whether or not a
certain set with a given operation is a group. (5.5.27)

4. Solve pairs of congruences or show they have no common solution.(5.5.32)
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Modular Arithmetic,
Decimals, and Divisibility

"I’'m all about that, all about that bass I'm all about that, all about that
bass I'm all about that bass, no treble We gon’ take it to a whole another
level” (Source: ”All About That Bass”, Meghan Trainor)

We grew up working with numbers in base 10. so let’s explore the how we
represent numbers, find the k'th decimal of integer and non-integer numbers,
and deriving divisibility rules of integers all in base 10. The problem is that
bases come in all different sizes, so we will also delve into converting integers
and non-integers from base 10 to other bases and vice versa!

This chapter is by Adam McDonald and Chris Thron.

6.1 Decimal representations

6.1.1 Decimal representation formula

We are so used to writing decimal numbers, that we take for granted what
we're doing. Let’s think a little more carefully about what’s really going
on when we write a decimal number. Let’s start with integers. Essentially,
representing an integer as a decimal means writing writing the integer in
terms of powers of 10. For example, the number 72483 means:

72483 =7-10" +2-10° +4-10* +8-10" + 3 - 10°. (6.1.1)

158
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In general, a m + 1-digit decimal number n which has digits d,, dp—1 ... do
(from largest to smallest) has the value:

n=dnl0™ + dp_110™ 4 - 4 dp. (6.1.2)

Note that each digit d; must be in Zo.

6.1.2 Formulas for decimal digits of of integers

It is easy for a human being to identify the digits of a decimal number,
because we're used to decimal arithmetic. But we want a way of mathemat-
ically defining the digits. This is useful when we need to have a computer
recognize the decimal digits of a number (computers use binary rather than
decimal numbers, so it takes some doing to get them to produce decimal
digits).

Let’s do this first with a simple example. We’ll take our favorite number
n = 72483, and see if we can develop a mathematical process to read off
the digits. The lowest digit (i.e. the number in the one’s place) is found
by taking the mod base 10: 3 = mod(n, 10). Then if we subtract this digit
from n, we get 72480, which is divisible by 10. When we divide by 10, we
obtain 7248. Notice that the one’s digit of this new number is equal to the
10’s digit of n. So we can repeat the same process and take the modulus
base 10 to obtain 8 = mod (7248, 10). We then take 7248 — 8 = 7240, divide
by 10, and repeat the process until we get all the digits (from lowest to
highest).

Let’s generalize this to an arbitrary integer, n expressed in base 10. The
lowest digit (i.e. the number in the one’s place) is found by calculating
mod(n, 10). Let’s call this dy. We compute (n — dy)/10 which we will call
a1. The second digit d; is equal to mod(aj,10). To obtain the third digit
da, we first compute ag = (a1 — d1)/10 and then dy = mod(ag,10). From
here, we will repeat the same steps to get the rest of the digits. We may
summarize the entire process in the following series of equations:



160CHAPTER 6 MODULAR ARITHMETIC, DECIMALS, AND DIVISIBILITY

ap =n; dy = mod(n,10)

—d
a) = %1700; dy = mod(az, 10)
al —dl_

10

a9 = dy = mod(az, 10)

a ,1—d —1
Oy, = -zl Cm=l g

10 ’

This sequence of m + 1 equations can be summarized as follows:

m = mod (@, 10),

ap =n; dy = mod(n,10)

1 —dp_
ak:aklliokl; di = mod (ay, 10), k=1,...m

These equation specify a recursive process or recursive method, so called be-
cause we're repeating the same calculation again and again with the results
of previous calculations. The neat thing is that we can use a similar process
to find digits of numbers in other bases as well. We’ll explain how this works
in the next section.

Exercise 6.1.3. Apply the above recursive method to obtain the sequences
{ax} and {d} for the following cases:

(a) The 100’s digit of n = 238.
(b) The 1000’s digit of n = 52812.
(c) The 10000’s digit of n = 27819.

O

The above procedure can be long, particularly if we’re trying to find d,,
for a large value of m. Fortunately, there’s a way to shortcut the process:

Example 6.1.4. Let’s find the digit dg for the number n = 1928307465 (we
may note in this case dg = 8). First, we can remove the digits above dg digit
taking n modulo 10

mod (n,107) = 8307465.
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On the other hand, we can obtain all digits below dg by taking n modulo
107:
mod (n, 107) = 307465

Now subtracting the two we get:
mod(n,107) — mod(n, 10%) = 8000000

From this point, we easily obtain dg by dividing by 10. So in summary, we
have:
mod (n, 107) — mod (n, 10°)

d p—
6 106

¢

This formula can be generalized to find the digit d; for any positive
integer n:

d 1 k+1y _ d 1 k
dy = mod (n, 10 1)Ok mod (n, 10") (6.1.5)

Exercise 6.1.6. Show how the formula in (6.1.5) can be used to find the
following digits.

(a) The 2nd digit of n=238 base 10
(b) The 4th digit of n=21657 base 10

(c¢) The 3rd digit of n=4356 base 10

6.1.3 Formulas for decimal digits of nonintegers

So far we’ve been talking about finding decimal digits of integers. What
about other real numbers? Happily, it turns out there are similar formulas
that work for any real number, as we will now show. To make things simple,
in this section we will consider numbers between 0 and 1. Then for a general
real number, we can separate it into its integer part and fractional part, and
use our previous formulas for the integer part and the formulas in this section
for the rest.
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Numbers between 0 and 1 have a decimal expansion like integers do:
t=d 1107 +d 91072+ +d 107"+ ... where d_j € Z1p (6.1.7)

Fractional numbers differ from integer in that the decimal expansion may
be infinite, that is to say it may go on forever.!

Let’s see if we can compute the d_j digit of a decimal number less than
1. But first, let’s recall some useful notation:

Definition 6.1.8. The floor is the highest integer less than or equal to the
given decimal number, x, and is represented as |z]. A

Earlier, we used two methods, recursive method and a generalized for-
mula, to find dj of a decimal interger.We can do the same to find d_j of the
fractional part of a decimal number. We willl take the fraction representa-
tion of x = 0.17428 and find its third decimal digit, d_3. This will be done
using two different methods (just like we did with integers). First, we will
use a recursive method, then we will find a direct formula. Let’s begin with
the recursive method, which gives us the digits one by one. We may notice
that the first decimal digit of x is actually the integer part of 10z: in other
words, d_; = |10z |. We may subtract this from 10z to obtain b_; = 0.7428.
Notice that b_; contains all the digits of x except d_;. So let’s do it again.
Multiplying b_; by 10 and taking the floor, we obtain d_y. Subtracting this
from 10b_1 gives us b_s = 0.428. Once more should do it! Multiply b_5 by
10 and taking the floor gives d_3 = 4. Done!

In general, the recursive process for finding d_;, is as follows:

d_1=1[10z]; b_1 =10z —d_;
d_g = |10b_1]; b_g=10b_; —d_»

: (6.1.9)
d_p = [10b_gy1]; b_p =10b_p11 —d_y

This process can take a very long time if we're trying to find d_j for
large values of k. Recall that formula (6.1.5) gives an easy way of finding

In fact it is true that “almost all” numbers between 0 and 1 have infinite decimal
expansions—and yes, “almost all” has a mathematically precise definition!



6.1 DECIMAL REPRESENTATIONS 163

individual decimal digits of integers. Can we do the same thing for fractions?
Yes we can!

Example 6.1.10. Find d_3 of the decimal number x = 0.17428
Since we're looking for d_s, Let’s multiply by 103.

0.17428 - 10° = 174.28

Then take the floor:
|174.28| =174

Finally, take the modulus base 10 (which is the 1’s place of the number, as
we’ve seen before):

mod (174, 10) = 4

This gives us the correct value of d_g. ¢
Let’s recap the steps in Example 6.1.10s:
(i) multiply the given = by 10¥,
(ii) take the floor of the number found in step (i),

(iii) find the modulus of number in step (ii) base 10.

This procedure can be generalized to the following formula:

d_j, = mod([z - 10%],10) (6.1.11)

Exercise 6.1.12. Complete the following exercises using the recursive
method from Equation (6.1.9) and re-do them by using Equation (6.1.11):

(a) Find the 2nd decimal digit of 0.238 base 10
(b) Find the 4th decimal digit of 0.54289 base 10

(¢) Find the 3rd decimal digit of 0.7129 base 10
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6.1.4 Repeating decimals

You have probably encountered fractions with infinite decimal expansions,
suchas 1/9 =0.11111...,1/11 = 0.09090909 .. ., and 1/7 = 0.142857142857 . . ..
It is a strange and wonderful fact that these infinite decimal expansions al-
ways repeat: for example, the decimal expansion for 1/7 has the sequence
142857 that keeps on repeating. This observation suggests two questions:

1. Why do decimal fractions repeat?

2. What is the period of repetition?

In this section we’ll answer these two questions. But first we need to
prove a preliminary proposition.

Proposition 6.1.13. Let n > 2 be an integer such that gcd(n,10) = 1.
Then there exist a positive integer m such that mod(10™,n) = 1.

PrOOF. Consider the infinite sequence: mod (10,7), mod (10%,n), mod (103,n),....
All of these numbers are between 1 and n — 1. Since the sequence is infinite
and only can take at most n — 1 values, it follows there must be at least two
values that are equal, so mod(10%, n) = mod (107, n), where k > j. But,

mod (10%, n) = mod (107 - 10"/, n) [exponent rules]

= mod(10/,n) ® mod(10*77,n)  [Proposition 5.4.4].

Since mod (10¥,n) = mod(107,n), it follows by substitution that

mod (10’,n) = mod(10?,n) ® mod (1077, n),

which “implies” mod(10¥~7,n) = 1 (but see Ezercise 6.1.14!) So if we set
m = k — j, we have mod (10™,n) = 1, and the proof is finished. O

Exercise 6.1.14.

1. What is wrong with the following argument?

16=4-4
mod (16,6) = mod(4 - 4,6)
4 =mod(4,6) ® mod(4,6)
41=434 (in mod 6)
1=4 (in mod 6).
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2. Explain why the condition ged(n,10) = 1 is required in Proposi-
tion 6.1.13.

Proposition 6.1.13 leads to the following definition:

Definition 6.1.15. Given a positive integer n with ged(10,n) = 1. The
smallest positive integer m such that mod(10™,n) = 1 is called the multi-
plicative order of n (mod 10)).

(Note that the order of n is guaranteed to exist because of Proposi-
tion 6.1.13). A

We can now prove that a large class of fractions repeat, as follows:

Proposition 6.1.16. Let n > 1 be a positive integer with ged(10,n) = 1,
and let m be the multiplicative order of n (mod 10) . Then the decimal
expansion of % repeats every m digits.

PRrROOF. Given that m is the multiplicative order of n mod 10, from Def-
inition 6.1.15, we get mod((10™ — 1),n) = 0. In other words, 10™ — 1 is

divisible by n, so that 1072_1 is an integer. Letting k = 1072_1, it follows
that:
L i bstituti
—=— substitution
n 10m—1
k 1
= factor
10m \1—-10—"™
_F 1+107™ i i
= lo—m ( + 10 + - ) geometric series
=k-100"+k-1072" - .. distributive law and algebra

Next from the definition of k, we may conclude that k£ < 10™ (verify this).
So k-107™ < 1, and the nonzero decimal digits of k£-107" are all contained
in the first m decimal places to the right of the decimal point. Similarly, the
nonzero decimal digits of k-1072" all lie within the second m decimal places
(between the 107! place and the 1072 place), the nonzero decimal digits
of k- 107%™ are all in the following m decimal places, and so on. In other
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words, the terms k-107™, k-1072™, ... are all within successive blocks of m
digits. Thus k is the repeating sequence in the repeating decimal (possibly
padded by some zeros, in case k has less than m nonzero digits), and that
the fraction repeats every m digits. U

Exercise 6.1.17. Given that the fraction j/n < 1 and ged(10,n) = 1, show
that j/n is still a repeating fraction with the same period as 1/n. O

Exercise 6.1.18. In Proposition 6.1.16 we proved that the decimal ex-
pansion of % repeats every m digits for a positive integer n > 1 with
ged(10,n) = 1. Does the proposition still hold if ged(10,n) # 17 If yes
then prove it, and if no then give a counterexample. O

6.1.5 Divisibility rules

How do we know if a decimal integer, m, is divisible by an decimal integer,
n? In this section we will be discovering the divisibility rules for different
integers, n. We will start with finding the divisibility rule for n = 3.

Example 6.1.19. Is 234 divisible by 37 Answering this question is equiv-
alent to showing whether or not mod(234,3) = 0. Let’s first write the
decimal representation of 234:

234 =200+30+4=2-102+3-10+4

Since mod(10,3) = 1, we get

mod (234, 3) = mod(2-10% +3-10 4 4, 3) [substitution]
=mod(2-(1)2+3-(1) +4,3) [Props. 5.2.8 and 5.4.4]
=mod(9,3) =0 [arithmetic]

¢

Let’s generalize Example 6.1.19. Suppose we have a decimal number, n,
with digits dy...d,, so that the number can be written as d,,dm—1 ... dp.
Then we can write

n=dp 10" +dy,_1-10""+...4+dy-10°
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It follows that

mod (n,3) = mod(dy, - 10™ + dp—1 - 10™ 71 -+ dy - 10°, 3)
= mod(dy, + dpp—1+ -+ dp,3) = 0.

This observation leads to the following proposition.

Proposition 6.1.20. An integer is divisible by 3 if and only if the sum of
its digits is divisible by 3.

Example 6.1.21. Is 6472 divisible by 117 In the following argument we
use the fact that 10 = —1 (mod 11), which means that we can replace 10
with —1 whenever we are taking mod’s base 10.
mod (6472,11) = mod (6 - 10> +4-10* +7-10 + 2 1,11)
=mod(6-(—1)3+4- (=12 +7-(=1)+2,11)
=mod(—6+4—7+2,11) = mod(—7,11) =4

Since mod (6472, 11) # 0, 6472 is not divisible by 11. ¢

Proposition 6.1.22. A number is divisible by 11 if and only if the alternat-
ing sums of the digits is divisible by 11. (Note: alternating sums is where
the signs of the number alternate when summing.)

PrOOF. Given an integer with digits dp . ..d, where the number is writeen
as d,d,—1 ...d1dy we can write

n=dy 10" +dy_1-10" "+ ... +dy-10°

it follows that:

mod (n,11)
= mod (dp, - 10™ 4+ dpp—1 - 10" 4 4 dp - 10°,11) [substitution]
= mod(dp, - (—1)™ + dp1- (=)™ -+ dy-(=1)%11) [mod(10,11) = —1]
=mod ((—1)™(d, — dm—1+--+-+do-1),11) [factor out (—1)™]

Therefore, mod(n, 11)=0 if and only if the alternating sums of the digits of
the number d,, . .. dy is divisible by 11. O

Exercise 6.1.23.
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A B C
1 :base 3?-
2

3 |10“n{n>:ﬂil‘\.-'lod{ﬁn,3?}.|
4| 1 1
5 | 10 10
6 100 26
7 1000 1
8 10000 10
o | 100000 26
10| 1000000 1
11 10000000 10
12 | 100000000 26

13 |

Figure 6.1.1. Spreadsheet to compute the powers of 10 mod 37

(a) In Proposition 6.1.20 we showed that a number is divisible by 3 if and
only if the sum of its digits is divisible by 3. Write a similar argument
and state a proposition for a number that is divisible by 9.

(b) Figure 6.1.1 shows a table giving the different powers of 10 mod base
37.

Based on the results shown in Figure 6.1.1, propose a divisibility rule
to check whether numbers are divisible by 37. Apply your rule to the
following numbers: 17094, 411108, 365412

(c) Create a spreadsheet similar to the the spreadsheet in Figure 6.1.1. Use
your spreadsheet to find mod(10™,111) for 0 < n < 8. Come up with a
proposition for numbers in base 111 and prove it similarly the divisibility
rule for numbers in base 11 was proved in Proposition 6.1.22.

¢

Here’s a number-magic trick involving divisibility that you can try on
your friends. This example is thanks to Mr. Ogungbesan Adedoyinsola, a
student at the University of Lagos.



6.1 DECIMAL REPRESENTATIONS 169

Example 6.1.24. Let n=321. The digits in reverse order give m = 123.
Now subtract n —m = 321 — 123 = 198. We can add the digits of 198 to
get 1 + 9+ 8 = 18. Since the sum of the digits of 198 is divisible by 9, 198
is divisible by 9. ¢

Exercise 6.1.25. Repeat Example 6.1.24 with the numbers: 4567, 314142,
583651. O

Amazing! But we have the mathematical tools to see why it works:

Exercise 6.1.26.

(a) Take any decimal integer, write the digits in reverse order, and subtract
the reversed number from the original number. Show that the result is
always divisible by 9.

(b) If the decimal integer has an odd number of digits, show that the result
obtained in (a) will always be divisible by 99.

(c) Show that if you take any decimal integer n, rearrange the digits, multi-
ply by any power of 10, and subtract n from the resulting number, then
your final result will always be divisible by 9.

O

There are many variations on this theme—maybe you can come up with
one yourself.

Exercise 6.1.27. Take any number with an even number of digits, reverse
the number, and add the two together. Show that the result is always
divisible by 11. %

Exercise 6.1.28. Take any number with any number of digits. Write the
digits in reverse order and append them to the end of the original number
(for example, if the original number is 2834, the end result is the number
28344382). Show that the result is always divisible by 11.(Hint: Think about
Exercise 6.1.27). O

Exercise 6.1.29.%*
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e Factor the number 1001, and use your result to design a procedure
that does the following. Given a number n with m digits, using a
single subtraction (and no multiplication) construct a number n’ with
m — 3 digits such that mod (n,7) = mod (n/,7), mod (n,11) =
mod (n/,11), and mod (n,13) = mod (n/,13).

e Explain how it is possible to use your procedure to take an arbitrarily
large number n and obtain a number with three or fewer digits which
has the same divisibility with respect to 7, 11, and 13 as n does.

e Use your procedure to test (by hand) the numbers 14142131356237 and
314159653589 for divisibility by 7,11, and 13, using only subtraction
and 3 final divisiions of a 3-digit number.

Exercise 6.1.30.%*

e Prove that the following rule works for divisibility by 7. Given a m-
digit number, remove the last digit dy to obtain a m — 1-digit number,
then subtract 2dy from the m — 1-digit number. Then the new number
has the same divisibility by 7 as the original number.

e Use the result in (a) to test the number 27182818284590 for divisibiilty
by 7.

e Obtain similar rules for divisibility by 13 and 19.

e Use your rules from (c) to test 27182818284590 for divisibility by 13
and 19.

6.2 Decimal representations in other bases

We’ve mentioned above that we can express numbers in other bases besides
base 10. First we should explain what it means to represent a number in
base b, where b > 2 is a positive integer. Recall that the base 10 number
dndy—1 .. .d1dy represents the integer:

dndn_1 ...didy =dp - 10" +dp_1 - 10"+ ... +d; - 10 + do.
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For a number expressed in base b, we simply replace the 10’s with b’s:

(dpdp_1...dido)y =dp - b" +dp_y - D"+ ...+ dy-b+dyp.

For example, (6342)s represents the number:

(6342)s =6-8> + 3-8 +4-8' +2.8%
Note that if (d,dn—1...d1do)p is a base b representation, then all of the
digits dy, ... d, must be between 0 and b — 1.

In order to be able to use other base representations effectively, we’ll
need to know how to convert numbers back and forth between other bases
and base 10. Let’s see how this is done.

Example 6.2.1. Find 137 in base 6. I will solve this following the recursive
method described in Section 6.2, but using base 6 instead of base 10.

ao = 137; dy = mod(137,6) =5

137 —

a) = 3725 = 22; d; = mod(22,6) =4
22 -4

2= —p— = 3; do = mod(3,6) =3
3—3

CLg:T:O

Since ag = 0 we can stop. To write the solution take the moduli in
reverse order. Therefore, 137 in base 6 is 345. ¢

Example 6.2.2. Find 121 in base 3. Once again using the recursive method
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ap =121; do = mod(121,3) =1

a1:1213_1:40; d; = mod(40,3) = 1

@z%zli’); dy = mod(13,3) =1

a3:133_1:4; d3 = mod(4,3) =1

a4:4;31:1; d4s mod (1,3) =1
1-1

a5:T:0

Since a5 = 0 we do not have to continue. To write the solution take the
moduli in reverse order. Therefore, 121 in base 3 is 11111. ¢

Example 6.2.3. Find the 5th digit of 65432 in base 3. (This is the co-
efficient of 3* in the base 3 representation). We may use Eq. 6.1.5, just
replacing base 10 with base 3:

mod (65432, 3%) — mod (65432, 3%)

dy = 5

¢

You might be thinking that this is very similar to how we found the &'th
digit of a decimal integer in Section 6.1.2 and you would be correct! The
main difference is that the base in the modulus is not a base of 10 but the
base of the number we are finding (in the above example base 3). Also,
instead of finding only one of the digits of a number in base 10, we are
finding all the digits of a number in another base (in the above example it
is base 3). We know we are done finding the entire number when a,, = 0
and we write the final number in the reverse order of how we found the
modulus’.

Exercise 6.2.4.

(a) Find 1567 in base 5.

(b) Find 344 in base 3.
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(c) Find 7281 in base 7.
(d) Find 3491 base 4.

(e) Find 65432 in base 3.

O

Being able to represent numbers in base 2 is important in computer
science because this is how computers do arithmetic. In base 2 the digits
are called bits. All information that is stored in the computer is stored
in the form of bits. A block of 8 bits is called a byte: computer memory
is measured in terms of kilobytes, megabytes, or gigabytes. Integers are
commonly stored as either 2 or 4 bytes.

Example 6.2.5. Find 31 in base 2.

ap = 31; dp = mod(31,2) = 1, a1 = 3127_1 =15; by = mod(15,2) =1
as = 152_ L_ 15; by = mod(14,2) = 0; ag = 142_ 0 15; b3 = mod(7,2) =1
ay = % = 15; by = mod(6,2) = 0; as = % =15; by = mod(3,2) =1
a6:%:15; bg = mod(1,2) = 1; mz%:(); by = mod(0,2) =0

Therefore N = 31 written in base 2 is 0110101. If stored as a 2-byte integer,
N would be represented as 060000000000110101 (the ‘Ob’ prefix indicates
that the number is a binary number). ¢

Exercise 6.2.6. Express the following as 2-byte binary integers
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O

Base 16 is also often used: numbers in base 16 are called hexadecimal
numbers. In hexadecimal (or ‘hex’) representation, the letters A, B,C, D, E, F’
are used to represent 10,11,12,13,14,15 respectively. In many computer
languages (like Java, C++, and Python), a hexadecimal number is indi-
cated by the prefix ‘0x’. So for example, the hex number Ox ABC D signifies
10-16% 4+ 11-16% + 12 - 16 + 13.

Exercise 6.2.7. Find the hex representations of the following decimal num-
bers

(a) 4095
(b) 10000.
(c) 123456

O

Converting numbers from base 10 to another base is fun! But how about
converting numbers from another base to base 107 Piece of cake:

Example 6.2.8. Convert 121 in base 3 to a number in base 10.
(121)3=1-324+2-3'+1-3"=1-94+2-3+1-1=(16)10 ¢
Example 6.2.9. Convert 4752 in base 8 to a number in base 10

(4752)g = 4-834-7-82+5-814+2.80 = 4.512+4+7-64+5-84+2-1 = (2538)10
¢

Do you recognize this from before? All that we’re doing is using the
defining equation for base b representation:

)y =dpm - (D)™ +dpm1- ()™ L 4+... +do (6.2.10)

Exercise 6.2.11. Convert the given numbers with their bases to a number
in base 10:
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1. 456 base 7
2. 32102 base 4

3. 8714 base 9

O

Earlier we mentioned the importance of converting numbers in base 10
to base 2. It is just as important to convert numbers in base 2 to base 10.

Example 6.2.12. Convert 1011 in base 2 to a number in base 10.

(1011) =1-234+0-2241-21 +1-2°=1-84+0-4+1-2+1-1 = (11)19
¢

Exercise 6.2.13. Convert the given numbers in base 2 to a number in base
10:

(a) 10101
(b) 11011001

(¢) 100111011

Exercise 6.2.14. In computer graphics, colors are often represented using
RGB notation. Colors have red, green, and blue components; and each
component has an intensity level from 0 to 255, which can be stored as
a single byte. Each byte is represented as two hex digits, so colors are
represented as a six-digit hex number. For example, OxFFFFFF represents
intensities of 255 for red, green and blue, corresponding to the color white,
while 0x000000 represents black. 0xFF0000, 0x00FF00, 0x0000FF represent
pure red, pure green, and pure blue respectively.

Find the red, green, and blue intensities for the following colors in hex
representation:

(a) OxAA45E2
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(b) 0x29A4F3

(c) 0x774422
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Set Theory

“A set is a Many that allows itself to be thought of as a One.”
(Georg Cantor)

“(Set theory is) the finest product of mathematical genius and
one of the supreme achievements of purely intellectual human
activity.” (David Hilbert)

“Set” is one of the most fundamental concepts in mathematics, and sets
have been a part of mathematics since ancient times. However, a truly
rigorous theory of sets was only developed about a hundred years ago. We
won’t get into the difficulties involved in coming up with a rigorous theory
(we’ll just mention “Russell’s paradox” in passing). Instead, we’ll focus on
the algebraic properties of sets: in particular the operations of intersection,
union, and complement, and proving identities involving these operations.

7.1 Set Basics &

You've probably seen sets, set relations, and set operations in previous
classes. In fact, in the previous two chapters of this book you’ve already
been working with sets. So we’ll review them quickly before moving on to
further properties and proofs concerning sets and their accessories.

This chapter is an adapted and expanded version of a chapter by D. and
J. Morris.

177
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7.1.1 Definition and examples

First of all, let’s give a precise mathematical definition for “set”:

Definition 7.1.1. A set is a well-defined collection of objects: that is, it
is defined in such a manner that we can determine for any given object x
whether or not x belongs to the set. The objects that belong to a set are
called its elements or members. We will denote sets by capital letters,
such as A or X; if a is an element of the set A, we write a € A. A

Two common ways of specifying sets are:

e by listing all of its elements inside a pair of braces; or

e by stating the property that determines whether or not an object x
belongs to the set.

For example, we could define a particular set E by listing its elements:
E =1{2,4,6,...},
or by specifying properties which characterize its elements:
E ={z:2 >0 and z is divisible by 2}.

(here the “:” signifies “such that”). We can also describe FE in a less mathy
way by simply calling it “the set of positive even numbers”.

We write 2 € E when we want to say that 2 is in the set E, and —3 ¢ E
to say that —3 is not in the set E.

Sets don’t have to involve numbers. For example, we could define a
certain set X by listing:

X = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday},
or by property:
X = {z : z is the name of a weekday (in English)}.

For the purposes of this book, it would be good enough to say, “X is the set
of weekday names (in English)” (we’re not so snobby about set brackets).

Exercise 7.1.2.
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(a) What elements are in the following set:
S = {z : x is the name of a U.S. state and x begins with ‘W’}
Write the set as a list of objects.
(b) Rewrite the following as a list ={z : = is a type of regular polygon with less than 6 sides}.
(¢) Rewrite the following set of dates by using a property:
T = {Jan. 4th 2011, Jan. 11th 2011, Jan. 18 2011, Jan. 25 2011, ..., Dec. 27 2011}
(Note: January 1 2011 was on a Saturday).

(d) Write the set of odd integers O: (i) as a list, and (ii) by using a property.

O

It is possible for the elements of a set to be sets in their own right. For
instance, we could define

T = {z : x is a National League baseball team}.
A more mathematical (but less interesting) example would be
S ={x:x is a set of integers}.

Then elements of S would include the sets {1, 2, 3,4}, {the set of odd integers},
{0}, and so on.

We can even go farther, and define sets of sets of sets. For instance, the
set L of major baseball leagues in the U.S. has two elements:

L = {American League, National League}.
However, the American League A consists of a set of teams:
A = {Yankees, Red Sox, ...},
whle the National League N also consists of a set of teams:
N = {Cubs, Phillies, ...}.

Each of these teams consists of a set of players: so altogether the set L is a
set of sets of sets!

Exercise 7.1.3.
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(a) Describe the 215 century as a set of sets of sets of sets of sets of sets of
sets. (*Hint*)

(b) (For you biologists out there) Describe the animal kingdom as a set of
sets of sets of sets of sets of sets of sets of sets (*Hint*)

O

This notion of “sets of sets” can bring us into dangerous territory. For
example, consider the set

S = {z : z is a set which is not an element of itself}.

We may then pose the question: is S an element of itself?!

Let us consider the possibilities:

e Suppose first that S is an element of itself. Then S must satisfy the
defining property of elements of S — that is, S must be an example of
a set x for which “z is not an element of itself.” It follows that S is not
an element of itself. This contradicts our supposition — so apparently
our supposition is wrong, and S must not be an element of itself.

e On the other hand, suppose that S is not an element of itself. Then
S satisfies the defining property of elements of S — that is, S is an
example of a set x for which “x is not an element of itself.” It follows
that S is an element of S. Once again this contradicts our supposition
— so apparently S must be an element of itself!

How do we get out of this mess? No matter what we assume, we end up with
a contradiction! The problem, as is often the case, lies in hidden assumptions
that we have made. Our definition of .S makes reference to the unknown =z,
where x is an “arbitrary” set. Herein lies the rub: the notion of “arbitrary”
set is not well-defined. Put another way: the set of “all possible sets” is
NOT a set!

In the following discussion we will avoid this problem by always start-
ing out with a well-defined set that contains all the sets and elements of
interest in a particular example or problem. Such an all-encompassing set is
referred to as a universal set. Note each particular problem will have its

L This question is called Russell’s paradox, and plays an important role in the history
of set theory.
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own universal set. For instance, if we are talking about public opinion polls
in the United States, an appropriate universal set might be the set of Amer-
ican citizens. If we're talking about sets of prime and composite numbers,
our universal set could be either the set of integers, or the set of natural
numbers. If we are talking about roots of algebraic equations, depending
on our particular interest we might choose the universal set to be the set
of real numbers, or the set of complex numbers. When we talk about sets
in a general way, we often denote sets by captial letters A, B, C, ..., and it’s
assumed that all these sets are subsets of some universal set U.

7.1.2 TImportant sets of numbers

We will refer often to the following sets of numbers. Although we are pre-
suming that these sets are “given”, the reader should be aware that it’s not
at all easy to formally define them in a mathematically precise way. (Al-
though we won'’t give any definitions here, you may encounter them in other
mathematics courses, such as logic or analysis.)

e N = {n:nis anatural number} = {1,2,3,...}; (Note that according
to our definition the natural numbers do not include 0. Some books
include 0 as a natural number.)

e 7Z={n:nisaninteger} ={...,—1,0,1,2,...};
e Q= {r:r is a rational number};

e R ={z:xis areal number};

You may recall that in Chapter 4, we defined the set of complex numbers
C as
C := {x + iy, such that z,y € R}.

This is just one example of a favorite gambit of mathematicians, namely
creating new sets from existing sets in various imaginative ways. You'll be
seeing many more examples of this as we go along.

Subsets and proper subsets

Definition 7.1.4. A set A is a subset of B, written A C B or B D A, if
every element of A is also an element of B. A
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For example, using this notation we may write:
{sons of John and Jane Doe} C {children of John and Jane Doe}

and
{4,5,8} € {2,3,4,5,6,7,8,9}

and
NcZcQcRcC.

According to Definition 7.1.4, every set is a subset of itself. That is, for
any set A, A C A, since every element in A is (of course) in A. Sometimes
though we may want to take about subsets of A that really are strictly
contained in A, without being all of A. Such subsets are called proper
subsets. Formally, a set B is a proper subset of a set Aif B C A
and B # A. For instance, if John and Jane Doe had only sons, then
{sons of John and Jane Doe} is not a proper subset of { children of John
and Jane Doe}.

Remark 7.1.5. In this book, we use ‘C’ for subset, and we have no special
symbol to distinguish “proper subset” from “subset”. Some authors use ‘C’
to denote subset, and ‘C’ to denote proper subset. This has the advantage
that then ‘C’ and ‘D’ are similar to ‘<’ and ‘>’, while ‘C’ and ‘D’ are like
‘<’ and ‘>’. But we rarely have to distinguish the case of proper subsets,
so it’s not worth defining a special symbol for them. A

If A is not a subset of B, we write A ¢ B; for example, {4,7,9} ¢
{2,4,5,8,9}. Two sets are equal, written A = B, if we can show that
A C Band B C A.

It is convenient to have a set with no elements in it. This set is called
the empty set and is denoted by (). For instance, if John and Jane Doe
had only daughters, then

{sons of John and Jane Doe} = ()

Note that the empty set is a subset of every set.

Exercise 7.1.6. Let S be a set with a single element.

(a) How many subsets does it have?

(b) How many proper subsets does it have?
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(¢) How many nonempty subsets does it have?

(d) How many nonempty proper subsets does it have?

Exercise 7.1.7.

(a) Can you give an example of a set with exactly three subsets? How about
exactly three proper subsets?

(b) What is the smallest number of elements a set must have in order to
have at least eight proper subsets?

7.1.3 Operations on sets

In our days of carefree innocence, we were introduced to operations on
integers, rational numbers, etc.. An operation on the integers takes two
integers and always comes up with another integer. For instance, the '+’
operation gives 2 + 3 = 5 (of course, we know now that this means that +
has the property of closure).

Exercise 7.1.8. What’s wrong with the following statement: “Subtraction
is an operation on the natural numbers.” O

In a similar way, we can construct new sets out of old sets using set
operations. The mathematical definitions of the basic set operations are as
follows:

Definition 7.1.9. The union AU B of two sets A and B is defined as

AUB={z:z€ Aorx € B};

Definition 7.1.10. the intersection of A and B is defined by

ANB={z:2z € Aandx € B}.
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A
For example: if A= {1,3,5} and B = {1,2,3,9}, then
AUB=1{1,2,3,59} and ANB={1,3}.

We may also consider the union and the intersection of more than two sets.
For instance, the union of three sets Aj, As, and A3 can be written A7 U
A9 U Az or U':i)):l A;.

Similarly, the intersection of the same three sets can be written as A; N
Ay N As or m?zl A;.

Remark 7.1.11. There’s actually a technical difficulty with our notations
for Ay U Ay U A3 and A; N A N A3. The problem is that the notation is
ambiguous: does A; U A U A3 mean (A; U Ay) U A3 or Ay U (Ay U A3)?
As it turns out, it doesn’t make any difference (we’ll show this in the next
section). Since it doesn’t matter which order we do the U, we just leave off
the parentheses (and the same for N). This is really nothing new: you're
used to writing 3 +4 + 7+ 9 instead of ((3+4) + 7) + 9, because it doesn’t
matter what order you add the numbers. A

Exercise 7.1.12.

(a) Find three sets Ay, As, Az such that AJUAsUA3 = Z and A1NAsNA3 = ()

(b) Find three sets Aj, Ay, A3 such that (i) Ay, A, Az C C; (ii) A1 N Ag #
@,AQ N As #* @,Al N As # (Z); and (111) AiNAyN Az = 0

(c) Find three sets that satisfy all conditions of part (b) and in addition
satisfy A1 U Ay U A3 = C.

O

We may generalize to intersections and unions of collections of n sets by
writing:

n

Jai=4u...u4,

i=1
and

ﬁAi:Alﬂ...ﬁAn
=1
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for the union and intersection, respectively, of the collection of sets A1, ... A,.

Example 7.1.13. Specify the following sets, either by:

e listing the elements;
e describing with a property; or

e giving another set that we’ve already defined that has the same ele-
ments.

(a) Ui {i}
(b) Ui {1, -7}
(¢) Uz {L,- i}

Solutions:

(&) Uiz {7} = {1 U{ZTUBU.- - Ufn}
={1,...,n} [list of elements]

= all integers from 1 to n. [property]

(b) Ui {1,...,i} = {1} U{L, 2} U{1,2,3}U...U{1,...,n}
={1,...,n} [list of elements]

= all integers from 1 to n. [property]

(c) UX{1,...,i} = [by part (b)] {1,...,00} =N

Exercise 7.1.14. Specify the following sets, either by:

e listing the elements;
e describing with a property; or

e giving another set that we’ve already defined that has the same ele-
ments.
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)
b) M {L,....4}
) mz 1{1 i)
)
)

Exercise 7.1.15.

(a) Find an infinite collection of sets {A;},7 =1,2,3,... such that (i) A; C
R,i = 1,2,3,...; (ii) each A; is a closed interval of length 1 (that is,
A; = lai, a; + 1] for some a;; and (iii) |J;2; A; = [0,00). (That is, the
union of all the A;’s is the set of all nonnegative real numbers.)

(b) Find an infinite collection of sets {A;},i =1,2,3,... such that (i) 4; C
R,i = 1,2,3,...; (ii) each A; is an open interval of length 1 (that is,
A; = (a;,a; + 1) for some a;; and (i) |J;2; A; = (0,00). (That is, the
union of all the A;’s is the set of all positive real numbers.)

(c) Find an infinite collection of sets {A,},n = 1,2,3,... such that (i)
A, C [-1/2,1/2],n = 1,2,3,...; (ii) each A, is an open interval of
length 1/n; and (iii) (,~; An = {0}.

(d) **Find an infinite collection of sets {A4,},n = 1,2,3,... such that (i)

A, C [0,1],n = 1,2,3,...; (ii) each A, is an open interval of length
1/n; (iii) Apt1 C Ap,n=1,2,3,...; and (iv) (02, A, = 0.

O

When two sets have no elements in common, they are said to be disjoint;
for example, if E is the set of even integers and O is the set of odd integers,

then F and O are disjoint. Two sets A and B are disjoint exactly when
ANB=0.

Exercise 7.1.16.

(a) Find disjoint nonempty sets Aj, Aa, As, A4 such that Ule A, = 7.
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(b) Find disjoint nonempty sets Ay, Ag, Az, A4 such that Uj‘zl A; =R,

(¢) Find disjoint nonempty sets A, Ao, A3, A4 such that Ule A; =C.

O

If we are working within the universal set U and A C U, we define the
complement? of A (denoted by A’), to be the set

A'={z:2€Uandz ¢ A}

Definition 7.1.17. The difference of two sets A and B is defined as
A\B=AnB ={x:2€ Aand z ¢ B}.
A

Note that it’s not necessary for B to be inside A to define A\ B. In fact,
A\ (AN B) is exactly the same thing as A\ B (you may draw a picture to
see why this is true).

Exercise 7.1.18. Suppose that A C B. What is the largest subset of B

that is disjoint from A? O

The set difference concludes our set operations for now. The following exam-
ple and exercises will give you an opportunity to sharpen your set operation
skillls.

Example 7.1.19. Let N be the universal set, and suppose that

A = {x € N: z is divisible by 2}
B = {z € N : z is divisible by 3}
C = {zx € N: z is divisible by 6}
D = {the odd natural numbers}

Then specify the following sets:

(a) AnNB

2Please note the spelling: ’complement’, not ’compliment’, thank you!


https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(b) CUA
(c) D\ B
(d) B

Solutions:

(a)
AN B ={x € N:zis divisible by 2 and = is divisible by 3}
= {z € N: z is divisible by 6}
=C

CUA = {x € N:zis divisible by 6 or z is divisible by 2}
=1{2,4,6,8,10,12,...}
=A

D\B={zxeN:xz e D and x ¢ B}
= {x € N: z is an odd natural number and z is not divisible by3}

= {x € N: z is an odd natural number that is not divisible by 3}

B’ = {x € N: z is divisible by 3}’
= {z € N : z is not divisible by 3}

Exercise 7.1.20. Let N be the universal set and suppose that
A = {x € N: z is divisible by 2}
B = {x € N : z is divisible by 3}
C = {z € N: z is divisible by 6}
D = {the odd natural numbers}
Specify each of the following sets. You may specify a set either by describ-

ing a property, by enumerating the elements, or as one of the four sets
A, B,C,D:
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(a) (ANnB)\C (¢c) AUBUCUD
(b AnBNCnND

Exercise 7.1.21. Let N be the universal set and suppose that

A={z:2 e Nand x is even},
B ={z:z €N and zx is prime},
C ={z:z € N and z is a multiple of 5}.

Describe each of the following sets. Make your description as concise as
possible.

(e) (AUuB)
(

g) BNnC

)
fy AAuB’
()
(d) AUB (h) An(BUCY

7.2 Properties of set operations &

Now that we have the basics out of the way, let’s look at the some of the
properties of set operations. The individual steps of the following proofs
depend on logic; and a rigorous treatment of these proofs would require
that we introduce formal logic and its rules. However, many of these logical
rules are intuitive, and it should be possible for you to follow the proofs even
if you haven’t studied mathematical logic.

First, we give two rather obvious (but very useful) properties of U and
N:

Proposition 7.2.1. Given any sets A, B, It is always true that

ANBCA and AcC AUB.


https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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PRroOOF. The style of proof we’ll use here is often described as element by
element, because the proofs make use of the definitions of AN B and AU B
in terms of their elements.

First, suppose that = is an element of AN B. we then have:

reANB [supposition]
=szrxc€AandzeB [def. of N]
=z € A [logic]

Since every element of AN B is an element of A, it follows by the definition
of C that AN B C A.

Exercise 7.2.2. Give a similar proof of the second part of Proposition 7.2.1.
O
O

Many useful properties of set operations are summarized in the following
multi-part proposition:

Proposition 7.2.3. Let A, B, and C be subsets of a universal set U. Then

1. AUA ' =U and ANA =10

2. AUA=A ANA=A, and A\ A = 0;

3. AUl =Aand AND =0

4 AUU=Uand ANU = A:

5. AU(BUC) = (AUB)UC and AN (BNC) = (AN B) A C:

6. AUB=BUAand ANB = Bn A:;

7. AU(BNC) = (AUB)N(AUC) and (BAC)UA = (BUA)N (CU A);
8. AN(BUC) = (ANB)U(ANC) and (BUC)NA = (BNA)U(CN A).

Proor. We'll prove parts (1), (2), (5), and (7), and leave the rest to you!
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(1) From our definitions we have:

AUA ={z:z€Aorxzec A} [def. of U]
={r:zcAorxz¢ A} [def. of complement]

But every x € U must satisfy either x € A or ¢ A. It follows that AU A’
includes all elements of U; so AUA" =U.

We also have

ANA' ={z:xeAandz € A"} [def. of N]
={r:z€Aand z ¢ A} [def. of complement]

But there is no element z that is both in A and not in A, it follows that
there are no elements in AN A’; so ANA" = (.

(2) Observe that

AUA={z: z€Aorxzec A} [def. of U]
={z: ze A}
=A
and
ANA={z: z€ Aand x € A} [def. of N]
={r: ve A}
Also,
A\A=AnA [def. of \]
= 0. [by part 1]

(5) For sets A, B, and C,

AUu(BUC)=AU{x: z€ Borze(} [def. of U]
={z: x€AorzeBorze(C} [def. of U]
={r: x€AorzeB}UC [def. of U]
=(AUuB)UC. [def. of U]

A similar argument proves that AN (BNC)=(AnB)NC.
(7) We show that these two sets are equal by showing that:


https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(I) Every element x in AU(BNC) is also an element of (AUB)N(AUC);
(IT) Every element z in (AUB)N(AUC) is also an element of AU(BNC).

(It’s actually a rather common strategy to prove that two sets are equal by
showing that every element of one set is an element of the other set, and
vice versa.)

Let’s begin by proving (I). Take any element x € AU (B N C). Then
x € Aor (xr € BNC), by the definition of U. We may therefore consider
two cases: (i) x € A, or (ii) z € BN C. (Actually some z’s are included in
both cases, but that’s not a problem.)

Case i: If x € A, the by Proposition 7.2.1 we know x € AUB and x € AUC.
By the definition of N, we then have z € (AU B)N (AU C).

Case ii: If ¢ € BN C, then by Proposition 7.2.1 we know = € B and « € C.
By Proposition 7.2.1, then z € AU B and x € AU C. By the definition of
N, this means that z € (AUB)N(AUC).

This completes the proof of (I). Now we’ll prove (II). Take any element
x € (AUB)N(AUC). Then we may consider two cases: (i) z € A, or (ii)
r ¢ A
Case i: If x € A, then by by Proposition 7.2.1 it’s also true that x €
AU (BNQO).
Case ii: Suppose x ¢ A. Now, since x € (AUB)N(AUC), by the definitions
of N'and U we know that (x € A or z € B) and (z € A or z € C). But since
x & A, it must be true that x € B, and also x € C. By the definition of N,
this means that x € BNC. by Proposition 7.2.1, we have that € AU(BNC).
This completes the proof of (II), which completes the proof of (7). O

Exercise 7.2.4. Fill in the blanks in the following proof of Proposition 7.2.3
part (3):

Observe that

AUD={z:z€ Aor x e} [Def. of U]
={z:ze______ } [0 has no elements|
= Def. of set A
and
AnNb={z: ze ______ andx € ______ )
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Exercise 7.2.5. Prove parts 4,6,8 of Proposition 7.2.3 using element-by-
element proofs. %

The following rules that govern the operations N,U and ' follow from the
definitions of these operations:

Proposition 7.2.6.(De Morgan’s Laws) Let A and B be sets. Then

(1) (AuB) =A'nB;
(2) (AnB)=A"UB.

We will use the same strategy we used to prove Proposition 7.2.3 part
(7)-that is, we show that sets are equal by showing they are subsets of each
other.

PROOF.

We’ll prove (1), and leave (2) as an exercise. The proof will show that the
sets on the left and right sides of the equality in (1) are both subsets of each
other.

First we show that (AUB) C A'NB’. Let x € (AUB)’. Then z ¢ AUB.
So z is neither in A nor in B, by the definition of U. By the definition of ’,
z € A and x € B'. Therefore, x € A’ N B’ and we have (AU B)' C A'N B'.

To show the reverse inclusion, suppose that x € A’ N B’. Then z € A’
and x € B', andsox ¢ Aand v ¢ B. Thusz ¢ AUB and so x € (AU B)".
O

Exercise 7.2.7. Prove Proposition 7.2.6 part (2). O

Proposition 7.2.3 and Proposition 7.2.6 provide us with an arsenal of rules
for set operations. You should consider these as your “rules of arithmetic”
for sets: just as you used arithmetic rules in high school to solve algebraic
equations, so now you can use these rules for set operations to solve set
equations. Here is an example of how to do this:


https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Example 7.2.8. Prove that

(A\B)N(B\ A) = 0.

PROOF. To see that this is true, observe that

(A\B)N(B\A)=(AnB)YN(BNnA) [definition of \]
=AnA'NnBnB [by Proposition 7.2.3 parts 5 and 6]
=0n0 [by Proposition 7.2.3 part 1]
— ®~
O ¢

Exercise 7.2.9. Prove the following statements by mimicking the style of
proof in Example 7.2.8; that is use the definitions of N,U,\, and ' as well
as their properties listed in Proposition 7.2.3 and Proposition 7.2.6. This
type of proof is called an “algebraic” proof. Every time you use a property,
remember to give a reference!

(You may find it easiest to begin with the more complicated side of the
equality, and simplify until it agrees with the other side. if you make that
work, then start with the other side and simplify until the simplified versions
of both sides finally agree.)

(a) (ANB)\ B=0.

(b) (AUB)\ B=A\B.

(c) A\(BUC)=(A\B)\C.

(d) (AnB)\(BNnC")=AnBnNnC.
(e) AU(B\C)=(AuC)u(BUC).

(f) (A\B)U(B\A)=(AUB)\ (AN B).

(g) (AUBUC)ND)=(ANnD)uU(BND)u(CnND,).
(h) (ANnBNC)UD=(AuD)N(BUD)N(CUD,).
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7.3 Do the subsets of a set form a group? &

Some of the properties in Proposition 7.2.3 may ring a bell. Recall that in
the Section 5.4.7 of the Modular Arithmetic chapter we defined a group to
be a set combined with an operation that has the following properties:

1. The set is closed under the operation (in other words, the operation
has the property of closure);

2. The set has a unique identity;
3. Every element of the set has its own inverse;

4. The set elements satisfy the associative property under the group op-
eration;

5. Some groups satisfy the commutative property under the group oper-
ation.

If you forgot what these properties mean, look back at Section 5.4.3 and the
following subsections, where we discuss these properties as applied to the
integers mod n.

What we’re going to do now is a first taste of a magic recipe that you're
going to see again and again in Abstract Algebra. We're going to turn sets
into elements. Abracadabral

What do we mean by this? Let’s take an example. Take the 3-element
set S = {a,b,c}.

Exercise 7.3.1.

(a) List the subsets of S = {a,b,c}. Include the empty set and non-proper
subsets of S. How many subsets are in your list?

(b) If you listed the subsets of {a,b}, how many subsets would be in your
list?

(c) If you listed the subsets of {a,b,c,d}, how many subsets would be in
your list?

(d) **If you listed the subsets of {a,b,c,...,z,y,z}, how many subsets
would be in your list? (*Hint*)


https://www.youtube.com/watch?v=CISWHN56NJC&INDEX=12&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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O

Let’s take the list of subsets of {a,b,c} that you came up with in part
(a) of the previous exercise. We can consider this list as a set of 8 elements,
where each element is a subset of the original set S = {a, b, c}. Let’s call this
8-element set G. Remember, the elements of G are subsets of the original
set S.

So now let’s face the question: Is G a group?

Recall that a group has a single operation: that is, a way of combining
two elements to obtain a third element. We actually have two candidates
for an operation for G: either intersection or union. So we actually have
two questions:

e Is G with the operation U a group?

e [s G with the operation N a group?

We’ll take these questions one at a time. First we investigate group
properties for the set G with the operation U:

Exercise 7.3.2. Let G be the set of subsets of the set {a,b, c}.

(a) Does the set G with the operation U have the closure property? Justify
your answer.

(b) Does the set G with the operation U have an identity? If so, what is it?
Which part of Proposition 7.2.3 enabled you to draw this conclusion?

(c) Is the operation U defined on the set G associative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(d) Is the operation U defined on the set G commutative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(e) Does each element of G have a unique inverse under the operation U? If
so, which part of Proposition 7.2.3 enabled you to draw this conclusion?
If not, provide a counterexample.

(f) Is the set G a group under the U operation? Justify your answer.
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O

Although Exercise 7.3.2 deals with a particular set of subsets, the results
of the exercise are completely general and apply to the set of any subsets of
any set (and not just {a,b,c}.

Now we’ll consider N:

Exercise 7.3.3. Given a set A, let G be the set of all subsets of A.

(a) Does the set G with the operation N have the closure property? Justify
your answer.

(b) Does the set G with the operation N have an identity? If so, what is it?
Which part of Proposition 7.2.3 enabled you to draw this conclusion?

(c) Is the operation N defined on the set G associative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(d) Is the operation N defined on the set G commutative? Which part of
Proposition 7.2.3 enabled you to draw this conclusion?

(e) Does each element of G have a unique inverse under the operation N? If
so, which part of Proposition 7.2.3 enabled you to draw this conclusion?
If not, provide a counterexample.

(f) Is the set G a group under the N operation? Justify your answer.

O

No doubt you’re bitterly disappointed that neither N nor U can be used to
define a group. However, take heart! Mathematicians use these operations to
define a different sort of algebraic structure called (appropriately enough) a
Boolean algebra. We won’t deal further with Boolean algebras in this course:
suffice it to say that mathematicians have defined a large variety of abstract
algebraic structures for different purposes.

Although N and U didn’t work, there is a consolation prize:

Exercise 7.3.4. Besides U and N, there is another set operation called
symmetric difference, which is sometimes denoted by the symbol A and is
defined as:

AAB = (A\ B)U (B\ A).
Given a set U, let G be the set of all subsets of U. Repeat parts (a)—(f) of
Exercise 7.3.3, but this time for the set operation A instead of N. %
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7.4 Hints for “Set Theory” exercises

Exercise 7.1.3(a): A century is a collection of years, ....

Exercise 7.3.1(d): Guess the pattern from the previous parts of this exercise.
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7.5 Study guide for “Set Theory” chapter

Section 7.1, Set Theory

Concepts:

1.

Definition of a set

. Sets of sets

. Universal set

. Subsets and proper subsets
. Empty set

. Union and intersection of sets

Disjoint sets

. Complement set

. Difference of sets

Competencies

1.

Given a description of the elements of a set, list the elements (and vice
versa). (7.1.2)

. Be able to describe sets of sets. (7.1.3)

. Be able to specify sets given operations on the sets. (7.1.14, 7.1.20)

Section 7.2, Properties of set operations

Concepts:

1.

2.

Properties of set operations

De Morgan’s Laws



200 CHAPTER 7 SET THEORY

Key Formulas

1. Given any sets A, B, it is always true that AN B C A and
ACAUB.

2. Properties of set operations: Let A, B, and C be subsets of a universal
set U. Then
(a) AUA'=Uand ANA =10
(b AUA=A ANA=A and A\ A =)

(c) AUD=Aand AND=0;
(

d) AUU=Uand ANU = A;
() AU(BUC)=(AUuB)UC and AN(BNC)=(ANB)NC;
(f) AuUB=BUAand ANB=BNA

g) AU(BNC)=(AUB)N(AUCQC);

)
)
)
)
)
)
)
h) AN(BUC)=(ANB)U(ANCO).

(
(
3. De Morgan’s Laws: Let A and B be sets. Then
(a) (AUB) =A'nB;
(b) (ANnB) =A"UB.
Competencies

1. Prove set identities algebraically, making use of the above properties
of set operations. (7.2.9)

Section 7.3, Do the subsets of a set form a group?
Concepts:

1. Group properties (Definition 5.4.26)

Competencies

1. Be able to prove or disprove group properties of set operations. (7.3.2)
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Functions: Basic Concepts

The idea of a function should be familiar to you from previous math classes.
Your calculus class no doubt was all about functions defined on real numbers.
In this book, we will be more interested in functions on finite sets. Rather
than “doing things” to these functions (such as integrating and differenti-
ating), instead we will dig more deeply into the basic nature of functions
themselves. This will eventually lead us to discover profound connections
between groups and functions (see the Permutations chapter).

This chapter is an adapted and expanded version of a chapter by D. and
J. Morris.

8.1 The Cartesian product: a different type of set
operation &

In the previous chapter, we introduced set operations such as U and N. In
this chapter we are going to need yet another set operation. This operation
is called the ”Cartesian product”, and is denoted by the symbol x. In order
to define the Cartesian product, we will first need a preliminary definition:

Definition 8.1.1. For any objects x and y, mathematicians use (x, y)
to denote the ordered pair whose first coordinate is x and whose second
coordinate is . Two ordered pairs are equal if and only if both coordinates
are equal:

(x1,91) = (w2,92) iff 21 = 29 and y1 = yo.

201
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Example 8.1.2. The “coordinate plane” (or “zy-plane”) that is used for
graphing functions is one example of a set of ordered pairs. The zy-plane
corresponds to R x R (sometimes written as R?), and is the set of ordered
pairs of real numbers:

RxR={(z,y)|lz € R,y € R}

Notice that the elements of R? are not real numbers, but rather ordered
pairs of real numbers. In other words,

z € Rand y € R, but (z,y) ¢ R.

¢

We arrive at our general definition of Cartesian product by replacing R
and R in our previous example with arbitrary sets A and B:

Definition 8.1.3. For any sets A and B, we define the Cartesian product
of A and B (denoted A x B as:

Ax B={(a,b)lac A,be B}

In other words, x is an element of A x B if and only if = is an ordered pair
of the form (a,b), where a is an element of A and b is an element of B.

A

Example 8.1.4.
1. {2,3,4,5,6,7,8,9,10,J,Q, K, A x{&%, 0, &, &} = {a standard deck of cards }
2. {1,2,3} x {a,b} = {(1,a), (1,b), (2,a), (2,b),(3,a), (3,b)}.

3. {a,b} x {1,2,3} = {(a, 1), (a,2), (a,3), (b, 1), (b,2), (b,3)}.

Exercise 8.1.5. In view of the previous example, is X commutative? Fx-
plain your answer. O

Exercise 8.1.6. Specify each set by listing its elements.
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(a) {a,i} x {n,t} (c¢) {1,2,3} x {3,4,5}
(b) {Q, K} x {%, 0, #, O} (d) {y,9,Y,G} x{y,9,Y, G}

O

Now A x B can be considered an operation on the sets A and B, just like
AUB and AN B. But there is a very significant difference. Recall that if A
and B are both subsets of the same universal set U, then so are AU B and
AN B. This is not the case for A x B! The operation A x B takes the sets
A and B and creates another set with a completely new type of element!

Exercise 8.1.7. Let A = {a,b} and let B = {b, c}.

(a) Write the elements of A x B (there are four).

(b) What is AN (A x B)? (Another way of thinking about this is: what
elements of A are also elements of A x B7?)

(¢) What is BN (A x B)? (Another way of thinking about this is: what
elements of B are also elements of A x B?)

(d) We have shown in the previous chapter that the subsets of {a,b,c} are
closed under U and N. Are the subsets of {a, b, c} also closed under x?
Ezplain your answer.

O

We have been trying to emphasize that A x B is a very different set from
the sets A and B. One question we could ask is: how does the number of
elements in A X B compare with the numbers of elements in the sets A and
B? By considering the above examples, you may be able to figure out a
formula for yourself. Go ahead and try, before reading the answer below.

Proposition 8.1.8. Given any sets A and B, then:

A x B =|A|-|B|

Here the notation ”|S|” means the number of elements in S.
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PrROOF. We can prove this formula by some creative arranging. Suppose
the sets A and B have m and n elements, respectively. We may list these
elements as follows:

A= {a17a2,a3, ...,am} and B = {b1,b2,b3, ,bn}

It follows that the elements of A x B are:

(alabl)v ((11,62), (a17b3)7 T (alabn)a
(a’?vbl)v (ag,bg), (aQ’bfﬂ)? e <a27bn)7
(a3ab1)v (a3ab2)a (a37b3)’ T (a’3vbn)>
(am,b1), (am,b2), (am,b3), -+ (am,bn).

In the above table that represents the elements of A x B:

e cach row has exactly n elements, and

e there are m rows,

It follows that the number of entries in the table is m - n. O

Exercise 8.1.9.

(a) If B = {vanilla, chocolate, strawberry}, then what is B x (}?

(b) Using the definition of Cartesian product, show that for any set A,
AxD=0.

8.2 Introduction to functions &

8.2.1 Informal look at functions

You have seen many examples of functions in your previous math classes.
Most of these were probably given by formulas, for example f(z) = 2°. But
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functions can also be given in other ways. The key property of a function is
that it accepts inputs, and provides a corresponding output value for each
possible input.

Example 8.2.1. For the function f(z) = 23, the input x can be any real
number. Plugging a value for z into the formula yields an output value,
which is also a real number. For example, using z = 2 as the input yields
the output value f(2) = 23 = 8. ¢

The following properties are true of any function f:

1. Any function has a set of allowable inputs, which we call the domain
of the function.

2. Any function also has a a set that contains all of the possible outputs,
which we call the codomain of the function.

In Example 8.2.1, any real number can be used as the input x, so the
domain is R, the set of all real numbers. Similarly, any output is a real
number, so the codomain can also be taken as R.

Example 8.2.2. For the function f(z) = 2?2, the input x can be any
real number. The output is always a real number, so we can use R as the
codomain. So we can take the domain and the codomain as the same set —
but we don’t have to. You may have already noticed that the output of f
is never a negative number, so we could have used the interval [0,00) =
{z € R | z > 0} as the codomain. This shows that the codomain of
a function is not unique — you can choose a different codomain and not
change the function. However, the domain of a function is unique. If the set
of allowable inputs is changed, then the function is changed in an essential
fashion. ¢

Example 8.2.3. g(z) = 1/z is not a function from R to R. This is because
0 is an element of R, but the formula does not define a value for g(0). Thus,
0 cannot be in the domain of g. To correct this problem, one could say that
g is a function from the set {x € R |z # 0} of nonzero real numbers, to R.

¢

Intuitively, a function from A to B can be thought of being any process
that accepts inputs from the set A, and assigns an element of the set B to
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each of these inputs. The process need not be given by a formula. Indeed,
most of the functions that arise in science or in everyday life are not given
by exact formulas, as illustrated in the following exercise.

Example 8.2.4.

1. Each point on the surface of the earth has a particular temperature
right now, and the temperature (in degrees centigrade) is a real num-
ber. Thus, temperature defines a function temp from the surface of
the earth to R: temp(x) is the temperature at the point x.

2. The items in a grocery store each have a particular price, which is a
certain number of cents, so price can be thought of as a function from
the set of items for sale to the set N of all natural numbers: price(x)
is the price of item z (in cents).

3. If we let People be the set of all people (alive or dead), then mother (i.e.
biological mother) is a function from People to People. For example,

mother(Prince Charles) = Queen Elizabeth.

(To avoid ambiguity, we need to say that, by “mother,” we mean
“biological mother.”)

4. In contrast, grandmother is not a function from People to People. This
is because people have not just one grandmother, but two (a maternal
grandmother and a paternal grandmother). For example, if we say
that Prince Charles wrote a poem for his grandmother, we do not
know whether he wrote the poem for the Queen Mother, or for his
other grandmother. A function is not ever allowed to have such an
ambiguity. (In technical terms, grandmother is a ‘“relation,” not a
function. This will be explained in a later section)

Functions are often represented as a table of values.

Example 8.2.5. The following table represents the prices of items in a
grocery store:
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item | price (in cents)
apple 65
banana 83
cherry 7

donut 99

eggs 155

This table represents a function price with the following properties:

The domain of price is {apple, banana, cherry, donut, eggs}.
price(banana) = 83.

price(guava) does not exist, because guava is not in the domain of the
function.

The codomain of price can be taken as N, since all our prices are natural
numbers. Now of course we don’t really need all of N: we can kick
some numbers out of N that aren’t actual prices, and the resulting set
would still be a codomain. In fact, we could keep kicking numbers out
until we get the set ...

{65,83,7,99,155}. This “smallest possible codomain” is what we call
the range of price. The range is the set of actual outputs of a function.
No matter what codomain we choose, it is always true that the range
is a subset of the codomain.

¢

It is also possible to represent each row of the table by an ordered pair.
For example, the first row of the table is apple | 65. This has apple on the left
and 65 on the right, so we represent it by the ordered pair (apple, 65), which
has apple on the left and 65 on the right. The second row is represented by
(banana, 83). Continuing in this way yields a total of 5 ordered pairs (one
for each row). To keep them gathered together, we can put the 5 ordered
pairs into a single set:

{ (apple, 65), (banana, 83), (cherry, 7), (donut, 99), (eggs, 155) }

This set of ordered pairs contains exactly the same information as a table
of values, but the set is a more convenient form for mathematical manipu-
lations.

Exercise 8.2.6. Here is a function f given by a table of values.
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m.&wmw‘&
NI NCREJUREN |

(a) What is the domain of f?
(b

What is the range of f7

d) Represent f as a set of ordered pairs.

)

)
(c) What is f(3)?
()

)

(e) Find a formula to represent f. (*Hint*)

Example 8.2.7. Not every table of values represents a function. For exam-
ple, suppose we have the following price list, which is a slight change from
Example 8.2.5:

item | price (in cents)
apple 65
banana 83
cherry 7
donut 99
banana 155

There’s a problem here. Lines 2 and 5 of the table list two different prices
for a banana. So you might pick up a banana, expecting to pay 83 cents,
and end up having the cashier charge you $1.55. This is not allowed in a
function: each input must have exactly one output. So if a table represents
a function, and an item appears in the left side of more than one row, then
all of those rows must have the same output listed on the right side. (In
such a case, the duplicate rows are unnecessary because they add no new
information.) ¢

The following remark summarizes the characteristics that a 2-column
table must possess if it does indeed correspond to a function.
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Remark 8.2.8. A 2-column table represents a function from A to B if and
only if:

1. every value that appears in the left column of the table is an element
of A,

2. every value that appears in the right column of the table is an element
of B,

3. every element of A appears in the left side of the table, and

4. no two rows of the table have the same left side, but different right
sides.

A

Just as with tables, not all sets of ordered pairs represent functions. For
instance, if we convert the table in Example 8.2.7 into a set of ordered pairs,
we get:

{ (apple, 65), (banana, 83), (cherry, 7), (donut, 99), (banana, 155) }

Do you see why this set of ordered pairs doesn’t represent a function? It’s
because the input "banana” has two different outputs: 83 and 155 cents.

Suppose on the other hand we start with the set of ordered pairs from
Example 8.2.5 and delete the ordered pair containing “donut”. Our set of
ordered pairs then becomes

C := { (apple, 65), (banana, 83), (cherry,7), (eggs, 155) }.

In Example 8.2.5 the domain was A := {apple, banana, cherry, donut, eggs}.
However, the set C no longer tells us the price of a donut, which is one of the
items in A. Therefore C' doesn’t specify a function on the domain A because
it doesn’t define an output for all possible inputs in A. This is similar to
the case of g(z) = 1/x, which we previously saw was not a function from R
to R because the input 0 had no output in R. (However, you should note
that g(x) is a function if we change the domain to R\ {0}.)

Exercise 8.2.9. Let A = {a,b,c,d} and B = {1,3,5,7,9}. Which of the

following sets of ordered pairs represent functions from A to B?
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a. {(a,1),(b,3),(c,5),(d, 7)} g {(a,a),(b,a),(c,a),(d,a)}

b. {(a,1),(b,2),(c,3), (d, 4)} h. {(a,1), (b,3), (c,5), (d,5), (e,3)}
c. {(a,1),(b,3),(c,5),(d,3)} .

0 {(a1).(6.3).(0.5). (d.7). (2.9)) i. {(1,a),(3,2),(5,2),(7,2),(9a)}
e. {(a,l),(b,3),(c,5)} J {(C7 1)’(b73)’(377)7(d79)}

£ {(a,1), (b, 1), (c, 1), (d, 1)} k. Ax B

Exercise 8.2.10. In Exercise 8.2.9, those sets that correspond to functions
from A to B are subsets of A x B. Explain why the set of ordered pairs
describing a function from A to B must necessarily be a subset of A x B.

In summary, a set of ordered pairs C' is a function from A to B if and
only if :

e CCAXB
e cach input a € A is part of an ordered pair in C

e and each input a € A is paired with only one output b € B.

It is sometimes helpful to represent a function f: A — B by drawing an
arrow diagram:

e a dot is drawn for each element of A and each element of B, and

e an arrow is drawn from a to f(a), for each a € A.
For example, suppose

e A={a,b,c,d,e},

o B=1{1,234}, and

o f={(@a,1),(b,3),(c,4),(d,4),(e,3)}.

An arrow diagram of f is shown in Figure 8.2.1 Notice that:
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—,

(o
3
@4

m O N T W

Figure 8.2.1. Arrow diagram for function f.

1. There is exactly one arrow coming out of each element of A. This is
true for the arrow diagram of any function.

2. There can be any number of arrows coming into each element of B
(perhaps none, perhaps one, or perhaps many). The elements of B
that do have arrows into them are precisely the elements of the range
of f. In this example, the range of f is {1,3,4}.

8.2.2 Official definition of functions

The preceding section provided some intuition about how and why functions
are represented as sets of ordered pairs, and since ordered pairs are elements
created by a Cartesian product, we learned how to view a function from A
to B as a particular subset of A x B. This view leads to our official definition
of a function:

Definition 8.2.11. Suppose A and B are sets.
A set f is a function from A to B if

(a) fCAXB
(b) Ya € A,3 a unique b € B s.t. (a,b) € f

(Condition (b) can also be stated as follows: every a € A is in one and only
one ordered pair in f).
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We write “f: A — B” to denote that f is a function from A to B. We
also call A the domain of f, and B the codomain of f.

If the pair (a,b) € f, then we say that b is the image of a under the
function f.

A

Notation 8.2.12. Suppose f: A — B.

1. For a € A, it is convenient to have a name for the element b of B, such
that (a,b) € f. The name we use is f(a):

f(a) =0 if and only if (a,b) € f.

2. Each element a of A provides us with an element f(a) of B. The
range of f is the set that includes all of these elements f(a). That is,

Range of f = {b € B:3a € A with f(a) = b}.

The range is always a subset of the codomain. The range can be
denoted { f(a) |a € A}.

A

Example 8.2.13. Suppose that the function f is defined by f(z) = 22, on
the domain {0,1,2,4}. Then

1. to represent f as a set of ordered pairs, each element of the domain
must appear exactly once as a first coordinate, with the corresponding
output given in the second coordinate. Since there are four elements in
the domain, there will be four ordered pairs: {(0,0), (1,1),(2,4), (4,16)};

2. to give a table for f, we include one row for every element of the
domain. The table will be:

f(n)
0
1
4
16

=N o= O S
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. if we are asked what is f(3), the answer is that f(3) is undefined,

because 3 is not in the domain of f. Even though we know that
32 =9, the formula we gave for f only applies to elements that are in
the domain of f! It is not true that f(3) =9;

. the range of f is the set of possible outputs: in this case, {0,1,4,16};
. if we are asked what is f(2), the answer is f(2) = 4;

. is f a function from {n € N | n < 4} to {0,1,4,16}? The answer is no,

because the first set is {0, 1,2, 3,4}, which includes the value 3, but 3
is not in the domain of f.

. is f a function from {0,1,2,4} to {n € N | n < 16}? The answer is

yes; even though the second set has many values that are not in the
range, it is a possible codomain for f. A codomain can be any set that
contains all of the elements of the range.

Exercise 8.2.14. The following table describes a certain function g.

—_
OOO@»-bl\Dﬁ
—_
—_

(a) What is the domain of g7

(b) What is the range of g?

c) What is g(6)?

e) Represent g as a set of ordered pairs.

)
)
()
(d) What is ¢g(7)?
(e)
(f) Draw an arrow diagram to represent g.
(g) Write down a formula that describes g.

(Express g(n) in terms of n.)


https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO

214 CHAPTER 8 FUNCTIONS: BASIC CONCEPTS

O

Exercise 8.2.15. Suppose

e fis a function whose domain is {0,2,4,6}, and

e f(z) =4x — 5, for every z in the domain.
Describe the function in each of the following ways:

(a) Make a table.
(b) Use ordered pairs.

(¢c) Draw an arrow diagram involving two sets.

Exercise 8.2.16. Which of the following sets of ordered pairs are functions
from {x,y,z} to {a,b,c,d,e}?

e If it is such a function, then what is its range?

e If it is not such a function, then explain why not.

Exercise 8.2.17. Which of the following are functions from {1,2,3} to
{w, h,0}? (If it is not such a function, then explain why not.)

(a) {(1,w),(1,h),(1,0)} (¢) {(1,h),(2,0),(3,w)}
(b) {(1,h),(2,h),(3,h)} (d) {(w,1),(h,2),(0,3)}
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Exercise 8.2.18. For the given sets A and B, write each function from A
to B as a set of ordered pairs. (It turns out that if |A| = m and |B| = n,
then the number of functions from A to B is n™. Do you see why?)

1. A={a,b,c}, B={d} 4. A={a,b}, B={c,d,e}
2. A={a,b}, B ={c,d}
3. A={a}, B={b,c,d} 5. A={a,b,c}, B={d,e}

8.3 Omne-to-one functions &

8.3.1 Concept and definition

We begin this section with an example.

Example 8.3.1.

e Suppose Inspector Gadget knows two facts:

1. Alice is the thief’s wife, and
2. Alice is Bob’s wife.

Then the inspector can arrest Bob for theft, because a person cannot
(legally) be the wife of more than one husband.!

e On the other hand, suppose the inspector knows:

1. Alice is the forger’s mother, and

2. Alice is Charlie’s mother.

Then the inspector does not know enough to be sure who the forger
is, because it could be some other child of Alice.

! According to U.S. law as of 2017.


https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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This example illustrates a fundamental difference between the wife function
and the mother function: two different people can have the same mother, but
only one person can have any particular person as their legal wife. In math-
ematical terms, this important property of the wife function is expressed by
saying that the wife function is one-to-one. ¢

Example 8.3.2. Now let’s revisit the function we saw in Example 8.2.4
part (1). Temp is the function from the set of points on the earth to the set
of measured temperatures at those points. Is Temp a one-to-one function?
Not at all: it’s very likely that at any given time, at least two points on the
equator have exactly the same temperature (to arbitrary precision). 2

Another way to say this is that at any given time,

there exists a temperature b for which we can find two points on earth =
and y such that Temp(x) = Temp(y) = b.

Exercise 8.3.3. Is the function AtomicNumber from the set of chemical
elements to the set of natural numbers a one-to-one function? Explain why
or why not. O

Remark 8.3.4. If you have an arrow diagram of a function, then it is easy
to tell whether or not the function is one-to-one. For example:

1. The function f in Figure 8.3.1(a) is not one-to-one. This is because the
arrow from b and the arrow from c go to the same place, so f(b) = f(c).
In general, if arrows from two different elements of the domain go to
the same element of the range, then the function is not one-to-one.

2. The function g of Figure 8.3.1(b) is one-to-one. This is because the
arrows from two different elements of the domain never go to the same
element of the range. In short, there is only one element of the domain
that goes to any one element of the range.
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(a) (b) (c)

g

F h

Figure 8.3.1. Arrow diagrams of three functions f, g, and h.

Exercise 8.3.5. Is function h of Figure 8.3.1 one-to-one? Explain why or
why not. O

This concept of one-to-one is very useful. If we know A is a function, we
know that every input of A has exactly one output. But if we know that A
is a one-to-one function, then we also know that every output in the range
of A is caused by exactly one input. Alternatively, we can say that every
potential output in the codomain has at most one input.

We have given an informal idea of the meaning of one-to-one—now it’s
time for a formal definition.

Definition 8.3.6. Suppose f is a function with domain A and codomain
B. We say f is one-to-one iff for all aj,as € A such that f(a1) = f(a2),
we have a1 = as. AN

Some higher math books use the fancy term injective instead of one-
to-one. It means the same thing.

Exercise 8.3.7.

2Tt’s not only likely: it’s a sure thing. This can be proven mathematically, given that
Temp is a continuous function. Can you prove it?
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Each of the following sets of ordered pairs is a function from {1,2, 3,4}
to {a,b,c,d,e}. Either prove that the function is one-to-one, or prove that
it is not.

Exercise 8.3.8. Notice that in part (a) of the previous problem, it’s not
true that every element in the codomain is the image of an element of the
domain. Explain why this doesn’t prevent the function f from being one-
to-one. O

8.3.2 Proving that a function is one-to-one

The concept of one-to-one will be very important in this course, and one of
the tools we will need is the ability to prove that a function is one-to-one.
Though many of the functions we will encounter throughout this book are
not algebraic, we will learn this style of proof using algebraic functions, as
they are a bit easier to deal with. Here are some examples of this type of
proof.

Example 8.3.9. Determine which of the following functions are one-to-one.
If so, give a proof. If not, give a counterexample.

(a) f: R — R, defined by f(x) =z + 1.

Let’s go back to the definition of one-to-one. Suppose we know that
f(z) = f(y), where x,y are real numbers. Can we conclude that = = y?
If so, then that means that f is one-to-one.

So let’s follow through on this. f(z) = f(y) means that z +1 =y + 1.
Subtracting 1 from both sides of the equation, we find that indeed,
x = y. Hence, f is one-to-one, according to the definition.
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f: C—=Rby f(z) = Re[z].

Let’s start the same way as the previous example. Suppose we know
that f(z) = f(w), where w, z are complex numbers. Can we conclude
that w = 27 In this case, f(z) = f(w) simply means that the real
parts of z and w are equal. But there are many complex numbers in
C which have the same real part: for example, 2 + ¢ and 2 + 2i. Since
f(2+1i) = f(2421), it’s not always true that f(z) = f(w) implies z = w.
This single counterexample is enough to prove that f is not one-to-one.

f:A— R, where f(z) =Re[z] and A = {2 € C:Im[z] =4 }.

Notice that the function is the same as in the previous example, but
the domain is different. This makes a big difference, and we don’t get
the same answer with this new domain. How can that be? Well, let’s
try to do the same as before, and see what goes haywire. Once again,
suppose we know that f(z) = f(w), where w,z € A. As before, this
means that Re[z] = Re[w]. But since z,w € A, we also know that
Im[z] = Im[w] = 4. Since z and w have the same real and imaginary
parts, they are equal. So f is one-to-one.

g: R — R, defined by g(x) = |z|.

We demonstrate this by finding two distinct real numbers whose image
is the same:

g(1) =1 =1=[-1]=g(-1),
but 1 # —1. This shows that g is not one-to-one.
h: N — N, defined by h(z) = |z|.

Since all natural numbers are nonnegative, we have |z| = x for every
natural number x. So given that h(xz) = h(y), we can argue as follows:

h(z) = hy) = |z| = |y| =z =y.

Hence h is one-to-one. (Note that the function h agrees with g in the
previous example, but the result is different because the domains are
different.)

h: R — R, defined by h(z) = —2? + Tz — 4.

If we try to apply the definition directly as above, we run into complica-
tions. So we try an indirect approach. We know how to solve h(x) =y
using the quadratic formula:
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7TE433 -4y
—
The + is a tipoff that in some cases there may be two values of x that
give the same y. We're free to choose y, so let’s choose a value that
gives a simple result. Take y = 8 for instance, which gives us:

7T+1
xr =

hz)=y=> -2’ +Te—4d=y=z=

or x = 3,4.

We can verify that in fact h(3) = 8 and h(4) = 8. Since in this case two
different x’s give the same y, it follows that A is not one-to-one.

This example gives us a chance to point out a common mistake. Suppose
we chose y = 33/4 instead of y = 8. Then we would get z = 7/2 as the
unique value x such that f(x) = 33/4. But this is not enough to prove
that A is one-to-one. In order to be one-to-one, each y be the image of
at most one x for all possible values of y in the codomain.

¢

Remark 8.3.10. In previous classes you may have seen the horizontal
line test to show whether or not a function f : R — R was one-to-one. We
may show how this works using the function f(z) = x+1 (which we already
know is one-to-one from Example 8.3.9 above). Figure 8.3.2 is the graph of
f, together with the graph of a horizontal line (dotted line).

Now, the the horizontal line has an equation of the form y = ¢ (Why
is this?). Any solution of the equation f(z) = ¢ corresponds to a point of
intersection between the graphs of y = ¢ and y = f(x). Now here’s the key
point. If for every horizontal line there’s at most one intersection for every
horizontal line, then for every real number ¢, the equation f(x) = ¢ has at
most one solution —which is the same thing as saying that f(z) is one-to-one.
We may state this result in general as follows:

(Horizontal line test for one-to-oneness) The function f: R — R is one-to-
one if and only if the graph of f(x) intersects every horizontal line at most
once.

So the horizontal line test proves that f is a one-to-one function, right?
Alas, pictures are not proofs—although they can be pretty convincing. Typ-
ically, a mathematician will use pictures to convince herself of what’s true
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Figure 8.3.2. Graph of function f(z) = x + 1 (with horizontal line used

for horizontal line test).

before attempting a real proof. (It’s a lot easier to prove something when
you're confident that it must be true.)

On the other hand, to disprove a function is one-to-one, you only need
a single counterexample. Consider the function g(x) = |z| from Part 2 of
Example 8.3.9, which is graphed in Figure 8.3.3. Using the graph we can
easily identify two values in the domain that produce the same value in
the codomain. However, while the horizontal line test here suggests our
counterexample, we still need to verify that the counterexample works. So
again we need the disproof in Part 2 of Example 8.3.9, not just a picture.

35 9

Figure 8.3.3. Graph of function f(x) = |z| (with horizontal lines used for

horizontal line test).
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In summary, the horizontal line test can only suggest whether or not
a function is one-to-one. In the end, you still need to prove or disprove.
Furthermore, the horizontal line test is usually only a good tool for functions
whose domain and codomain are R (or subsets of R). A

Exercise 8.3.11. Suppose that the function f has domain [a, b] and codomain
[c,d] (where for example [a,b] signifies the interval {a < z < b,z € R}).
State the horizontal line test for one-to-one functions in this case. What
changes, if any, need to be made in the horizontal line test for f: R — R ?

¢

Exercise 8.3.12. Graph each function and use the horizontal line test to
determine whether or not the following functions are one-to-one.

a [0, 7] = R, f(z) = cos(x).

(c
d

[ | = [-1,1], f(z) = cos(z/2).
[ | = [-10,10], f(x) = sin(z/2).

[ 9y

(a) f:

(b) f:[0,7] = [-1,1], f(z) = sin(z).
) fi[-mm

(d) f:[-mm

) i3

(e | —10,5], f(xz) =6 — 2z.

Exercise 8.3.13.

(a) Sketch the function f: R — R, where f(z) = z(x — 2)(z + 2).

(b) Using the horizontal line test, determine whether f is a one-to-one func-
tion.

(c) Now consider the same function f, but restricted to the domain [—1,1]
(that is, the interval —1 < z < 1). Is the function still one-to-one?
Ezplain your answer.

O

When you don’t know whether or not a particular function is one-to-one,
a good strategy is to try to prove that it’s one-to-one. If the proof works,
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then great you’re done. If the proof fails, the manner in which it fails may
indicate an example to show that the function is not one-to-one. Here’s an
example of this technique.

Example 8.3.14. Let f: N — N be defined by f(n) = (n —2)?+ 1. Is f
one-to-one?

(Aside: Please take note of the domain in this problem. As we’ve noted
previously, a function may be one-to-one on one domain, and not on a
different domain.)

First let’s try to prove that f is one-to-one. Start with arbitrary elements
m,n € N, and suppose that f(m) = f(n). By the definition of f, this means
that (m —2)2+1= (n—2)?2+1, or (m—2)? = (n—2)%. Two numbers have
the same square, if and only if they are equal in absolute value, so it follows
that m — 2 = £(n — 2). There are now two cases:

e If m —2 = +(n —2) then adding 2 to each side, we get m = n.

e If m—2=—(n—2) = —n+ 2, then adding 2 to each side, we get
m=—n+4.

Since m,n € N, it’s not hard to see that if n > 4, then —n + 4 is not a
natural number. But if n is 1,2,3 then —n + 4 € N. For example n = 1
gives m = 3, which suggests that f(1) = f(3). We may indeed check that
f1)=r@3).

Now the great thing about cases where f is not one-to-one is that the
writeup of the solution is very simple. All you have to do is give one example
of two different values that return the same function value. In the current
example we have:

Solution: f is not one-to-one because f(1) =2 and f(3) = 2.

So the writeup is easy: two values is all it takes. The hard thing is finding
the two values! ¢

There is an equivalent way to show functions are one-to-one that is also
useful. To see it, recall the wife function from the beginning of the section.
The wife function is one-to-one because one woman can’t be (legally) married
to two different husbands. We can express the same thing in a different way
by saying that two different husbands must be married to two different wives.
These two statements are contrapositives of each other, and are in fact
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equivalent. (“contrapositive” is a logical term—you may have run across it
before in other math classes.)

If we generalize this reasoning to arbitrary one-to-one functions, we have
the following two equivalent statements:

e A function is one-to-one iff any element of the range is mapped from
only one element of the domain;

e A function is one-to-one iff two different elements of the domain always
map to two different elements of the range.

We formalize this equivalence in the following alternative definition of
one-to-one:

Definition 8.3.15.(Alternate) Suppose f: A — B. We say f is a one-to-
one function iff for all a;,as € A such that a; # ag, we have f(a1) # f(a2).
A

Here is an example of how to use this definition in a proof:

Example 8.3.16.
Let g: Zas — Za3 be defined by g(n) =5 ® n. Is g(n) one-to-one?

Solution:
Suppose ny,ne € Zog, and g(ny1) = g(na).
Then,
50n1 =50ng [given)]
5 has a multiplicative inverse, m, in Zss [Prop. 5.5.28]
mo®Bon)=maoe (56 ng) [substitution]
]

n1 = N9 [associativeity and inverse property

Example 8.3.17. We know from calculus that the function e* : R — R
is a strictly increasing function since its derivative is always positive. In
mathematical terms, we can say

x > y implies e* > Y.
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We can use this fact and Definition 8.3.15 to prove that e* is a one-to-one
function as follows:

Take any two real numbers x1 and xo where x1 # x9. If 1 > xo, then by
the above equation it follows that e** > e*2. On the other hand, if z1 < xo,
then by the above equation it follows that e** < e*2. In either case, we have
e’ =#£ %2, By Definition 8.3.15, it follows that e® must be one-to-one. ¢

Exercise 8.3.18.

(a) Show that any strictly increasing function from R to R is one-to-one.
(b) Show that any strictly decreasing function from R to R is one-to-one.

(c) Does the answer to (a) or (b) change if we change the domain and
codomain to [0,1]? Ezplain your answer.

Exercise 8.3.19. Suppose f: Q — R is a function such that f(q1) — f(g2)
is irrational whenever ¢; # ¢o. Show that this implies that f is one-to-one.
(Recall that Q is the set of rational numbers.) O

We close this section with a bevy of exercises. Use whatever method you
like, but make sure they’re solid proofs.

Exercise 8.3.20.

For each of the following functions, either prove the function is one-to-
one, or prove that it is not.

f:10,1] = [0,1], f(z) = 1.
g:RT - R g(x) =z.

(a)
(b)
(¢) h:R—R h(z)=a>
(d
(e
() ¢:R—=Rq(z)

) h:RT - R h(x) =22
) p:la,b] = [3a,3b+ 10],p(z) = 3z + 2.

_ 1
|z+1]+1"
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(&) r:[=11 = [0,1],r(x) = gy
(h) s:R—=R,s(z)=(z+1)(z+2)(z+3).

i) t:RT =R t(z)=(z+1)(z+2)(xz+3).

Exercise 8.3.21. For each function, either prove that it is one-to-one, or
prove that it is not.

(a) f:Q — Q defined by f(r) = 3r —

(b) f: R — R defined by f(z) = (z + 2)2.

(¢) f: N — N defined by f(n) = (n+2)2.

(d) f:Z — Z defined by f(n) = (n— Dn(n+1) + 1.

(e) f: N — N defined by f(n) = (n— Dn(n+1) + 1.
(f) f: A— A defined by f(z) = (z — )a(x + 1) ,where

A={z eRand x> 1} (requires calculus).

(
(g) g: R — R defined by g(z) = |“$|.

Exercise 8.3.22. For each function, either prove that it is one-to-one, or
prove that it is not.

(a) g: Zg — Zg defined by g(n) =nd 2.

(b) g: Zg — Zg defined by g(z) =z d x .

(

(€) ga: Z7 — Z7 defined by g,(n) = n®a , where a can be any fixed element
of Z7.

)
)
(¢) g: Zg — Zg defined by g(n) =n®2 .
d) g: Z11 — Z11 defined by g(n) =n©® 2.
)

(f) fo: Zsa — Zso defined by fi(n) =n©b, b € Zsz, and b is odd.
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(g) fo: Z188 — Z18s defined by fb(n) =n@®b,be& Zigg, and b is even.
(h) g: Zs — Zg defined by g(n) =nonon .
(i) g: Z7 — Z7 defined by g(n) =nonon .

Exercise 8.3.23. For each function, either prove that it is one-to-one, or
prove that it is not.

(a) g: C\ {0} — C\ {0} defined by g(z) = 271 .

(b) 7: A — R defined by r(z) = Re[z] + Im[z], where
A={zeC:Im[z] > 0}.

(¢c) g : C — C defined by g(z) = az + b where a and b are fixed complex
numbers and a # 0.

(d) g:C — C defined by g(z) = 2.

(e) Let n € Z and let h, : C\ {0} — C\ {0} be defined by h,(z) = 2".
For which values of n is the function h(z) a one-to-one function? Prove
your answer.

8.4 Onto functions &

8.4.1 Concept and definition

In an arrow diagram of a function f: A — B, the definition of a function
requires that there is exactly one arrow out of each element of A, but it
says nothing about the number of arrows into each element of B. There
may be elements of B with lots of arrows into them (unless the function is
one-to-one), and there may be other elements of B that have no arrows into
them. The function is called onto” if all of the elements of B are hit by
arrows; none are missed.

Example 8.4.1. Figure 8.4.1 shows arrow diagrams of various functions,
some onto and some not. In Figure 8.4.1,
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e f is onto, but not one-to-one.
e g is both one-to-one and onto.
e h is neither one-to-one nor onto.

e | is one-to-one, but not onto.

Figure 8.4.1. Arrow diagrams for various functions

Example 8.4.2. Not every woman is a mother. This means that if you
draw an arrow from each person to his or her mother, there will be some
women who have no arrows into them. So the function

mother: People — Women
is not onto. ¢
Exercise 8.4.3. Is the function AtomicNumber: { Chemical Elements } —
N onto? Explain why or why not. O

The following is the ”official” definition of onto.
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Definition 8.4.4. Suppose f: A — B. We say f is onto if for all b € B,
there is some a € A such that f(a) = b. A

Some higher math books use the fancy term surjective, which means
exactly the same as onto.

You may think of onto functions as follows. If a function is onto, then
no matter what element I pick in the codomain, there is always some value
in the domain that produces it. Alternatively, I could say that every pos-
sible output in the codomain has at least one input. (Contrast this to the
definition of one-to-one, which says that every possible output has at most
one input.

Exercise 8.4.5. If the function f is onto, then what is the relation between
the range of f and the codomain of f7 (*Hint*) O

Exercise 8.4.6. Each of the following sets of ordered pairs is a function
from {1,2,3,4,5} to {&, , 0, &}. Either prove that the function is onto,
or prove that it is not.

(a) a={(1,%),(2,0),(3,9),(4,8),(5 &)}
(b) b= {(1,%),(2,9),(3,%),(4,9), (5 &)}
(€) ¢={(1,9),(2,9),(3,9),(4,9),(59)}
(d) d={(1,0),(2,#),(3,9), (4, #),(5 &)}
(€ e={(1,%),(2,8),(3,9),(4,4),(5,&)}

8.4.2 Proving that a function is onto

First we give some simple examples of onto proofs. Later we will show a
more systematic approach.

Example 8.4.7.
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e Consider the function: f: R — R defined by f(z) =« + 1.

Let y be an arbitrary value in the codomain R. To show that f is onto,
we just need to show that for any such y, there is an x in the domain
such that f(z) = y. Now if we set x = y—1, then f(z) = (y—1)+1 = y.
It’s also true that x is in the domain of f, since x is a real number.
This completes the proof that f is onto.

Consider the function h: N — N, defined by h(x) = |z|.

Let y be an arbitrary value in the codomain N. Since all natural
numbers are nonnegative, we have |y| = y. So we may take x = y,
and obtain h(z) = y (note x is also in the domain of h). Therefore h
is onto.

¢

Just as with one-to-one, it is typically easier to prove that a function is

not onto. All you have to do is provide a counterexample, as the following
examples show.

Example 8.4.8.

e Consider the function f: {1,2,3} — {a,b,c} defined by f = {(1,b),

(2,a),(3,a)}. Notice that ¢ never appears as an output in this function.
This shows that f is not onto.

Consider the function g: R — R defined by g(z) = |z|. To show that
g is not onto, we only need to find a single number y in the codomain
that is not mapped onto. y = —1 is one example, since we can never
have |z| = —1 for any real number . This shows that g is not onto.

Consider the function h: [0,5] — [0,12] defined by h(z) = 2z + 2.
Notice that h(0) = 2 and h(x) > 2 as long as = > 0. It follows that
there is no x in the domain which is mapped to 0, which is in the
codomain. This shows that g is not onto.

Consider the function q: Zs — Zs defined by ¢(x) = x®xz. We may list
the values of q(x) for z = 0,1,2,3,4: they are 0,1,4,4,1 respectively.
There is no z such that g(x) = 3, so ¢ is not onto.
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Remark 8.4.9. We may use a variant of the horizontal line test to indicate
whether a function f : R — R is onto. For instance, recall the function
f(xz) = x + 1 shown in Figure 8.3.2. In the case of an onto function, the
equation f(x) = c has at least one solution for any real value ¢ € R. (Recall
that for one-to-one it was at most one, so there’s a slight difference here.)
By tweaking the argument we used for the original horizontal line test, we
arrive at the following general rule:

(Horizontal line test for onto-ness) The function f: R — R is onto if and
only if the graph of f(z) intersects every horizontal line at least once.

From Figure 8.3.2, it appears that f(z) = x + 1 is onto. Just as before,
this observation doesn’t qualify as a mathematical proof. Nonetheless, it
strongly hints that we should try to prove onto-ness rather than looking for
a counterexample.

On the other hand, the line y = —1 in Figure 8.3.3 does not intersect
the graph of f(z) = |z| defined on the set of all real numbers. This indi-
cates that —1 is not in the range of the function. Once we’ve verified this
mathematically, we have sufficient proof that f(x) is not onto. A

Exercise 8.4.10. Suppose that the function f has domain [a, b] and codomain
[c, d], where [a,b] and [c,d] are intervals of real numbers. Restate the hor-
izontal line test for onto functions in this case. What changes need to be
made in the statement? O

Exercise 8.4.11. Use the horizontal line test to determine whether the
following functions are onto. For those functions that are not onto, give a y
in the codomain which is not in the range of the function.

(a) g: R > R, g(z) = bz — 2 @ f ¢ /6] > 0,1/, f(x) =
O o] > L1 ) =
cos(x). (e) f:[0,m/4] — [0, \/5/2]7 f(z) =
1 — cos(x).
() f : [0,7] — [-1,1), f(z) = )
sin(x). (f) f:1[1,3] = 10,5], f(z) =6 — 2z.

O
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We now give some examples of rigorous “onto” proofs. These proofs
typically require working backwards, so some preliminary scratchwork may
be helpful before writing out the actual proof.

Example 8.4.12. Define g: R — R by g(z) = 52 — 2. Determine whether
g is onto.

Scratchwork 8.4.13. Just as in the previous examples, given any y € R
we need to find a value of x that makes g(z) = y. So we start with the
equation g(z) = y and solve for x:

gx)=y=>5r—-2=y [by substitution]
y+2 : :
== [solve for x using basic algebra]

A

Now that we have a formula for z, let’s do our proof. (Although you need
the scratchwork to come up with the formula for z, you don’t actually need
to include the scratchwork in your proof.)

PRrROOF. Given y € R, let z = (y + 2)/5. Since the reals are closed under
addition and non-zero division, it follows that x € R. Then

g(x):5x—2:5<y5+2>—2:(y+2)—2:y.

Therefore g is onto. O

Example 8.4.14. Define h: [0,2] — [-7,—1] by h(z) = —3x—1. Determine
whether h is onto.

Scratchwork 8.4.15. Starting with the equation h(xz) = y and solving for
x, we find z = (y +1)/(—3). We need to verify that x is in the domain of h
whenever y is in the codomain. Notice that

y>-7=>y+1>-6 [basic algebra]

1
= % <2 [ basic algebral
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We also have

y<-1l=y+1<0 [basic algebral

1
= % >0 [ basic algebral

We conclude that 0 < 2 < 2, so x is in the domain of h. Thus A is onto. A

Now that we have a formula for z, let’s do our proof. (Although you need
the scratchwork to come up with the formula for x, you don’t actually need
to include the scratchwork in your proof.)

PrOOF. Given y € R, let z = y_—? By basic algebra, -7 <y < -1=0<
% < 2, so x is in the domain of h. Also,
1
h(z) = -3 <y+> 1=y
-3
Therefore h is onto. 0

Example 8.4.16. Define f: C — C by f(z) = 22. Determine whether f is
onto.

Scratchwork 8.4.17. As in the previous examples, given any z € C we
need to find a value of w that makes f(w) = z. So as before we solve for
w. This time it’s helpful to use polar form, so we write z = rcisf and
w = SCis ¢:
f(w) =z = (scis$p)? = rcish [by substitution]
= 52 cis2¢ = rcisf [De Moivre’s Theorem]
= s =+/r and ¢ = /2 is a solution [substitution]

A

Now that we have z, we can proceed as before.

PRrROOF. Given z = rcisf € C, let w = /rcis(6/2). By the definition of
polar form, w € C and we have

f(w) = (Vreis(0/2))? = (Vr)?cis(20/2) = rcisf = z,

where we have used De Moivre’s Theorem. It follows that f is onto. 0 4

Exercise 8.4.18. For each function, either prove that it is onto, or prove
that it is not.
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f:R=R, f(zx)=1 (g)q:]R—>(O,1],q(a:):||11.

(a)
(b) g:R =R, g(z) =z (h) ¢:RT = [0,1],9(z) = i
)

(¢) g:[-1,1] = [-2,2],9(z) = x. ‘

(@) h:R - R A(z) = 2 (i) [2,4] — [2,10],7(z) = 4z — 6.
(e) h:[=2,2] = [0,4], h(z) = 22, () [3,4] — [3,10],r(z) = 4= — 6.
(f) p: R = R,p(x) =3z +2. (k) s:R—=R,s(zx) =+v/x+5-5.

Exercise 8.4.19. For each of the following functions, either prove that it
is onto, or prove that it is not.

C — C defined by g(z) = 22 + 1.

(a) g:

(b) g: C\ {0} — C defined by g(z) = 21 .

(c) g: C\ {1} — C\ {0} defined by g(z) = (» — 1)~ .
(d) g: R x[0,1] — C defined by g((x,y)) = |z|cis(2my).
) g

(e C — R defined by g(z) = |z|.

Exercise 8.4.20. For each of the following functions, either prove that it
is onto, or prove that it is not.

(a) g: Zg — Zg defined by g(x) =z D x .

(b) g: Zs — Z5 defined by g(z) = (2 ©2)® 3 .

(d) g: Zg — Zg defined by g(z) =z 0x oz .

e) g: Zy — Zy7 defined by g(z) =z 0x O x .

) ()

) (z) =

(¢) g: Zy — Z7 defined by g(z) = (z O z) B 1 .
) ()

(e) ()

(f) g: Zr — Zy defined by g(n) = n®x , where x can be any fixed element

of Z7.
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(g8) f:Zsy — Zszy defined by f(n) =n®b, b€ Z32, and b is odd.

(h) f: Zigg — Zigs defined by f(n) =n©®b, b e Z188, and b is even.

8.5 Bijections &

8.5.1 Concept and definition
Some “especially nice” functions are both one-to-one and onto.

Definition 8.5.1. A function is a bijection if and only if it is both one-
to-one and onto. AN

In words, a bijection has the following properties:

e All inputs have only one output (function)
e All outputs are paired with only one input (one-to-one)

e And all possible outputs of the codomain are paired (onto)

Example 8.5.2. Consider a hypothetical country Z, in which

e every person is married to at least one other person (no singles),

e everyone is married to at most one other person (no polygamists or
polyandrists), and

e cvery marriage is between a man and a woman (no same-sex mar-
riages).

Let Men = {male inhabitants of Z}, and Women = {female inhabitants of Z}.
Then the function wife: Men — Women is a bijection, since:

e Two different men cannot have the same wife, so we know that wife is
one-to-one.


https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
https://www.youtube.com/watch?v=m0F1__joNzw&index=13&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo

236 CHAPTER 8 FUNCTIONS: BASIC CONCEPTS

e Every woman is the wife of some man (because everyone is married),
so wife is also onto.

Similarly, the function husband: Women — Men is also a bijection. ¢

Remark 8.5.3. In the country Z described above, it is clear that the
number of men is exactly equal to the number of women. (If there were
more men than women, then not every man could have a wife; if there were
more women than men, then not every women could have a husband.) This
is an example of the following important principle:

If A and B are finite sets, and there exists a bijection from A to B, then A
and B have the same number of elements.

Finding a bijection is one way to show two sets have the same number
of elements. A

Exercise 8.5.4. Draw an arrow diagram of a bijection. O

Exercise 8.5.5. Is the function AtomicNumber: { Chemical elements } —
N a bijection? Justify your answer. O

8.5.2 Proving that a function is a bijection

Since a bijection is both one-to-one and onto, a proof that a function is a
bijection (usually) has two parts:

1. Show that the function is one-to-one.
2. Show that the function is onto.
The two parts can come in either order: it is perfectly acceptable to first

prove that the function is onto, and then prove that it is one-to-one.

How would you show that function is not a bijection? You guessed it,
by counterexample. You only need a counterexample that shows either the
function is not onto, or is not one-to-one, because a bijection requires both.

Example 8.5.6. Define f: [1,3] — [-2,8] by f(x) = 5x — 7. Then f is a
bijection.

PRrROOF. It suffices to show that f is both one-to-one and onto:



8.5 BIJECTIONS ¥ 9237

e (one-to-one) Given x1, 2 € R, such that f(x1) = f(z2), we have
5$1—7:5$2—7.

Adding 7 to both sides and dividing by 5, we have

(5:U1—7)+7 (51’2—7)+7

5 N 5 ’

Which implies 1 = z2. So f is one-to-one.
e (onto) Given y € R, let x = (y + 7)/5. Then

y+7

f(x)—5x—7—5< -

)—7—(y+7)—7_y.

We need to verify that x is in the domain of f for every y is in the
codomain:

—2<y<8=5<y4+7<15 [basic algebra]
7
=1< % <3 [basic algebra]

=z € [l,3] [substitution]

So f is onto.

Since f is both one-to-one and onto, we conclude that f is a bijection.

O ¢

Exercise 8.5.7. For each function below, either prove that it’s a bijection,
or prove that it is not.


https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(h) e:RT — [0,1],e(z) = |x|1+1.
(i) f:R—=>R, f(x) =4 -6
(.]) g [O’ 27] - [_5a —2],g(1:) = \3/>_ i)
(k) h:[-1,2] = [0,10],h(x) = /(x +1)2+1
O
Exercise 8.5.8. Let a,b € R, and define f: R — R by f(z) = ax +b.
(a) Show that if @ # 0, then f is a bijection.
(b) Show that if @ = 0, then f is not a bijection.
O

Exercise 8.5.9. Let a,b € R, and define f: [1,2] — [4,7] by f(z) = ax +b.
Find all values of a and b such that f is a bijection. O

When a function is defined piecewise, the one-to-one and onto proofs are
a little harder:

Example 8.5.10.

For instance, consider the function f from R to R defined by:
e’ ifz>0
flz) = 5 .
1—2 ifz<0

By graphing this function you can see that the horizontal line tests suggest
that f(z) is indeed one-to-one and onto. To complete the actual proof, we
may prove onto and one-to-one separately. We may prove the function is
onto by proving:

(a) If y > 1, there exists an x > 0 such that f(z) =y.

(b) If y <1, there exists an < 0 such that f(z) =y.
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From these two facts, it follows that f(x) is onto, because no matter whether
y > 1 or y < 1) there exists an x such that f(x) =y.

To show that f(x) is one-to-one, we will need to show:

(¢) If z1 > 0 and z2 > 0, then f(z1) = f(x2) implies z1 = x3.

(d) If 21 > 0 and 3 <0, then f(x1) # f(x2).

(e) If z; <0 and z2 <0, then f(z1) = f(x2) implies z1 = x3.

From these facts it follows that f(z) is one-to-one, because no matter whether

x>0 or x <0) it is always true that f(z1) = f(z2) = =1 = x2. ¢

Exercise 8.5.11. Prove statements (a)—(e) in Example 8.5.10. For ex-
ample, you can prove (a) as follows. Given y > 1, setting x = In(y) gives
f(z) = y since f(x) = e® in this case. O

Exercise 8.5.12. Define a function f from R to R by:

1)z ifx>0
f@»_{x+1 if z <0.

Prove or disprove:

(a) f is onto; (b) f is one-to-one;

Exercise 8.5.13. Define function g from R to R by:

g(m):{l/x ifx>0

rz—1 ifx<0.

Prove or disprove:


https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(a) g is onto; (b) g is one-to-one.
¢
Exercise 8.5.14. Define function A from R to R by:
3 .
x if |[x] > 1
h(z) =
@) {xl/?’ if |z| < 1.
Prove or disprove:
(a) h is onto; (b) h is one-to-one. O

So far we have only looked at functions from R to R. Of course, bijections
can have different domains and ranges. We close this section with several
exercises which examine bijections on various domains and codomains.

Exercise 8.5.15. For each function, either prove that it is a bijection, or
prove that it is not.

(a) h: C\ {—3} — C\ {0} defined by h(z) =

z+3
1
(b) g: A — B defined byg(z):;,whereA:{zeC:()< |z| < 1} and
B={zeC:|z| > 1}.

(c) f: A— B defined by f(z) = 22, where A = {rcis§ € C:r >0 and 0 <
0 <m/2}and B={rcisd € C:r>0and 0 <6 <r}.

(d) f: A — C defined by f(z) = 2%, where A= {rcis§ € C:r >0 and 0 <
0 <m/2}.

(e) f: A — C defined by f(z) = z*, where A = {rcis§ € C:r>0and 0 <
0 < 2mw/k}, where k > 1 is an integer. (Is it a bijection for all possible
values of k7 If so then prove it, and if not find a counterexample.)

(f) f:[0,1) — T defined by f(0) = cis276, where T = {z € C: |z| = 1}.

Exercise 8.5.16. For each function, either prove that it is a bijection, or
prove that it is not.
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(a) g
(b)
()
(d

: Zg — Zg defined by g(x) = (z ©®3) B 3.
: Ly — Z7 defined by g(z) = (x ©4) 4 .

<

: Z11 — Zq; defined by g(z) =2 ©2 .

Q

: Z7 — Z7 defined by g(z) =z O x .

Q

) (z)
(e) g: Zg — Zg defined by g(z) =20z 0 .

g:
(f) h: Zs — Z5 defined by h(z) =30 z0z0z)® 2.
) h: (z)

(g Zy — Zy defined by h(x) =20z 0x0x .
O
Exercise 8.5.17. Define f: N x N — N by f(m,n) =m? +n — 1.
(a) Prove or disprove: f is onto. (*Hint*)
(b) Prove or disprove: f is one-to-one. (*Hint*)
(c) Prove or disprove: f is a bijection.
O

Exercise 8.5.18. Define g: Z x Z — Z X Z by g(m,n) = (m + n,m + 2n).
(a) Prove or disprove: g is onto. (*Hint*)
(b) Prove or disprove: g is one-to-one. (*Hint*)

(c¢) Prove or disprove: g is a bijection.

Exercise 8.5.19. Define g: Z X Z — Z X Z by g(m,n) = (m +n,m —n).

(a) *Prove or disprove: g is onto.
(b) Prove or disprove: g is one-to-one.

(c) Prove or disprove: g is a bijection.


https://www.youtube.com/watch?v=M0F1__JONZW&INDEX=13&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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9
Exercise 8.5.20. Suppose A, B, and C are sets. Define
fi(AxB)xC— Ax (BxC)by f((a,b),c) = (a,(b,c)).
Show that f is a bijection. O

8.6 Composition of functions &

8.6.1 Concept and definition

The term “composition” is a name that mathematicians use for applying
one function to the result of another. Actually, this comes up fairly often in
everyday life.

Example 8.6.1.

1. The father of the mother of a person is a grandfather of the person.
(To be precise, it is the maternal grandfather of the person — and his
or her other grandfather is paternal.) To express the relationship in a
mathematical formula, we can write:

Vi, <grandfather(x) = father(mother(x))).

A mathematician abbreviates this formula by writing
grandfather = father o mother

and says that the (maternal) grandfather function is the composition
of father and mother.

2. The brother of the mother of a person is an uncle of the person, so
uncle is the composition of brother and mother:

vz, (uncle(x) = brother(mother(x))),

or, more briefly,
uncle = brother o mother.

(For the sake of this example, let us ignore the issue that uncle and
brother are not functions in general.)


https://www.youtube.com/watch?v=lbCtiPOKbxk&index=14&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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3. The daughter of a child is a granddaughter, so granddaughter is a com-
position of daughter and child:

granddaughter = daughter o child.

Exercise 8.6.2. State the usual name for each composition. (Ignore the
fact that sister, daughter, and many of the other relations are not functions
in general.)

husband o sister
husband o mother
husband o wife

husband o daughter
mother o sister
daughter o sister

parent o parent

child o child

parent o parent o parent

child o brother o parent

Definition 8.6.3. Suppose f: A — B and g: B — C. The composition
of g and f (denoted g o f) is the function from A to C' defined by

go f(a) =g(f(a)) for all a € A.
A

The notation g o f is read as “g compose f” or “g composed with f.”
Since go f(a) = g(f(a)), the notation g o f(a) is sometimes read as ”g of f
of a.”


https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Example 8.6.4. Define f: R — R and g: R — R by f(x) = 3z and
g(z) = 22. Then go f and f o g are functions from R to R. For all 2 € R,
we have

go f(z) = g(f(x)) = 9(3z) = (32)* = 92
and

fog(z) = f(g(x)) = f(2?) = 3(a*) = 3>,
Notice that (in this example) fog # go f, so composition is not commutative.

¢

Warning 8.6.5. To calculate the value of the function go f at the point a,
do not begin by calculating g(a). Instead, you need to calculate f(a). Then
plug that value into the function g This may seem strange, but it follows
from the fact that g o f(a) means the same thing as g(f(a)), and you're
always supposed to evaluate what’s inside the parentheses first and work
your way outward. O

Exercise 8.6.6. Fill in the blanks of the following proof to show that
function composition is associative.

PROOF. Suppose f: X - Y, g:Y - W, ,and h: W — Z. Then
ho(go f)(x) =h((go f)(x) =_<1>,

and
(hog)of(z)=(hog)((<2> )=_<3> .

Since the two right-hand sides are equal, it follows that h o (g o f)(z)
(hog)o f(x); in other words function composition is associative. [

<

Example 8.6.7. Figure 8.6.1 provides an arrow diagram to illustrate the
composition g o f.

e Starting from any point of A, follow the arrow (for the function f that
starts there to arrive at some point of B.

e Then follow the arrow (for the function g) that starts there to arrive
at a point of C.
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Figure 8.6.1. Arrows for the composition g o f are dotted.

For example, the f-arrow from a leads to m and the g-arrow from m leads
to u. So gof(a) = u. Notice how we write the result as go f with g on the left
and f on the right even though f appears on the left in Figure 8.6.1. This
is an unfortunate consequence of the fact that when we calculate g( f (x))
we work right to left, computing f(z) first and applying g to the result. ¢

Note that in the definition of g o f (Definition 8.6.3), the domain of g :
B — (' is required to be equal to the codomain of f : A — B. Actually go f
can be defined as long as the domain of g contains the specified codomain
of f. This is true because the codomain of a function is not unique: if
f:A— Dand D C B, then B is also a valid codomain of f. The reason
for the requirement on the domain of g is further explored in the following
exercise.

Exercise 8.6.8. Let f: N — Zs defined by f(n) =n (mod 5). Let g: R —
R defined by:

g(z) = x°.

(a) Is it possible to define f o g7 Ezplain your answer.

(b) Is it possible to define g o f? Ezxplain your answer.


https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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O

Exercise 8.6.9. The following formulas define functions f and g from R
to R. Find formulas for f o g(x) and g o f(z).

(a) f(z)=3z+1and g(z) = 2% + 2

(b) f(z) =3z +1 and g(z) = (x — 1)/3

(¢) f(z) =az +b and g(z) = cx + d (where a,b, ¢, d € R)
(d) f(z) = |z and g(z) = 2”

(e) f(x) = |2] and g(x) = —2

Exercise 8.6.10. Let A = {1,2,3,4}, B = {a,b,c,d}, and C = {&, $,0, &}.
The sets of ordered pairs in each part are functions f: A - Bandg: B — C.
Represent g o f as a set of ordered pairs.

Exercise 8.6.11. The folllowing formulas define functions f and g from C
to C. Find formulas for f o g(x) and g o f(z).
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(a) f(rcis@) = (r+3)cis(d — 7/6) and g(rcis@) = (rcis0)?
(b) f(a+bi) = 3a+ 4bi and g(a + bi) = (a + bi)?

(c¢) f(rcisf) =logr + if and g(a + bi) = e®cisb (Note the domain of f is
CA\{0}).

(d) f(rcisf) =r3cis(d + 2) and g(rcisf) = 2r cis( + 4)

(e) f(z) =|z| and g(z) = —=

Exercise 8.6.12. The folllowing formulas define functions f and g from Z;,
to Zj, for different values of k. Find formulas for f o g(x) and g o f(x).

f,9: Zis = Z15, where f(n) = (TG n) @6 and g(m) = (6 ©m) © 2
f,9: Zas — Zas, where f(n) =n©n and g(m) =m® 3

)

)

) f.9:Z7 — Z7, where f(n) = (3®n)®5 and g(m) = (4O m) &6
) f,9: Zaoo — Zog, where f(n) = (4@ n)®19 and g(m) = (50 m) H9
)

(e) f,9:Zq— Zg, where f(n) =(a®n)®band g(m)=(cOm)dd

8.6.2 Proofs involving function composition

The properties of f o g depend on the properties of f and g, and vice versa.
Usually these properties are proven by using the definition of composition,
along with the definitions of other functional properties. Here is one exam-
ple.

Example 8.6.13. Suppose f: A— B and g: B — C, where A C C. Show
that if
go f(a) = a, for every a € A,

then f is one-to-one.


https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Scratchwork 8.6.14. In proving such statements, it is often helpful to draw
a picture (see Figure 8.6.2) showing the sets involved, and arrows joining
the the different values. To show that f is one-to-one; we may show that
f(a1) = f(a2) implies a; = as. In the picture, we have drawn f(a1) = f(a2).
Now we are also given that g o f(a) = a, for every a € A. So as the picture
shows, ¢(f(a1)) = a1. But what about ¢g(f(a2))? On the one hand, we
know g o f(az2) = ag from the problem’s givens. But on the other hand,
since f(az) = f(ar) we have g(f(a2)) = g(f(a1)), or g(f(az)) = ar. By
substitution, it follows that a1 = as. A

Figure 8.6.2. Scratchwork picture for Example 8.6.13.

PROOF. Given that g o f(a) = a, for every a € A, by the definition of
composition, this means that, for any ay,as € A we have

g(f(a1)) = a1 and g(f(a2)) = as.
Now suppose f(a1) = f(az2). Then by the definition of a function,
9(f(ar)) = g(f(a2))
By our original hypothesis we then get a; = ao, and thus f is one-to-one.

O ¢

Example 8.6.15. Suppose f: A — B and g: B — C. Show that if f and ¢
are onto, then g o f is onto.
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Scratchwork 8.6.16. To show that g o f is onto, we need to show that
for any ¢ € C, there exists a a € A such that g o f(a) = ¢. As Figure 8.6.3
shows, we can work our way backwards. Given any ¢, since g is onto we can
find a b such that g(b) = ¢. Furthermore, since f is onto we can find a a
such that f(a) = b. By substitution, this gives g(f(a)) = ¢, or go f(a) = c.
AN

Figure 8.6.3. Scratchwork picture for Example 8.6.15.

PRrROOF. Let ¢ be an arbitrary element of C. Since g is onto, there exists
a b in B such that g(b) = ¢. Since f is onto, there exists a a in A such
that f(a) = b. It follows that g o f(a) = g(f(a)) = g(b) = ¢. Since ¢ is an
arbitrary element of C', this implies that g o f is onto. ] ¢

Example 8.6.17. Suppose f: A — B and g: B — C. Show that if go f is
one-to-one, and the range of f is B, then ¢ is one-to-one.

PROOF. Suppose b; and by are distinct elements of B. Since the range of f
is B, it follows that there exist a; # ag such that f(a1) = b1 and f(ag) = bs.
Since g o f is one-to-one, it follows that g o f(a1) # g o f(a2). But by
definition of o, go f(a1) = g(f(a1)) = g(b1); and similarly g o f(a2) = g(b2).
By substitution, it follows that g(b1) # g(b2). Thus distinct elements of B
always map to distinct elements of C' under the function g: which is the
same as saying that g is one-to-one.

An alternative proof runs as follows. Let ¢ € C' be such that ¢ = g(b1)
and ¢ = g(b2). Then since the range of f is B, there exist a; and ay such
that f(a1) = by and f(a2) = by. It follows by substitution that g(f(a1)) =
g(f(a2)). But this is the same as saying that g o f(a1) = g o f(az). Since
g o f is one-to-one, it follows that a; = as. Applying f to both sides of
this equation gives f(a1) = f(a2), or by = ba. We have shown that for any
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c € C, there is at most one b € B such that g(b) = c¢. This means that g is
one-to-one. O ¢

Exercise 8.6.18.
(a) Suppose f: A — Band g: B — C. Show that if f and g are one-to-one,
then g o f is one-to-one.

(b) Suppose f: A — B and g: B — C. Show that if g o f is one-to-one,
then f is one-to-one.

(c) Suppose f: A — B and g: B — C. Show that if g o f is onto, then g is
onto.

(d) Give an example of functions f: A — B and g: B — C, such that go f
is onto, but f is not onto.

(e) Suppose f: A — B and g: B — C. Show that if g o f is onto, and g is
one-to-one, then f is onto.

(f) Suppose f: A — B and g: B — C. Show that if f is onto and go f is
1-1, then g is 1-1.

(g) Define f: [0,00) — R by f(z) = z. Find a function g: R — R such that
g o f is one-to-one, but g is not one-to-one.

(h) Suppose f and g are functions from A to A. If f(a) = a for every a € A,
then what are fog and go f7

Exercise 8.6.19. Suppose f: A — B and g: B — C. Use properties
from the different examples and exercises earlier in this chapter to prove the
following. In your solutions, refer to the the specific examples or exercises
you are using to draw your conclusions.

(a) Show that if f and g are bijections, then g o f is a bijection.
(b) Show that if f and g o f are bijections, then g is a bijection.

(c) Show that if g and g o f are bijections, then f is a bijection.
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O

We have shown that various properties of fog follow based on properties
of f and g. We can also show corresponding “negative” properties as the
contrapositives of these properties.

Example 8.6.20. Suppose f: A - B and g: B — C and g is not onto.
Then g o f is not onto.

ProOOF. This is just the contrapositive of Exercise 8.6.18(c) , which says
that g o f is onto implies that ¢ is onto. O ¢

Exercise 8.6.21. Suppose f: A— B and g: B — C.

(a) Show that if f is not one-to-one, then g o f is not one-to-one.

(b) Prove or disprove: go f is a bijection if and only if both g and f are
bijections.

Exercise 8.6.22. Using properties from Exercises 8.6.18 and 8.6.19 (or
their contrapositives), determine which of the following are bijections.

(a) fog in Exercise 8.6.9 parts (a)-(e).
(b) fog in Exercise 8.6.11 parts (a)-(e).

(¢) fogin Exercise 8.6.12 parts (a)-(e).

Exercise 8.6.23. Suppose f: A— B, g: B— A and f o g is a bijection.

(a) Give an example to show that g o f is not necessarily a bijection.

(b) Add the condition that g is onto. Show that in this case, g o f must be
a bijection.


https://www.youtube.com/watch?v=LBCTIPOKBXK&INDEX=14&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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O

The following exercise leads into the next section:

Exercise 8.6.24. Suppose

° f:A—>B,
° g:B—)A,
e go f(a) = a, for every a € A, and

e fog(b) =0, for every b € B.

Show that f is a bijection. O

8.7 Inverse functions &

8.7.1 Concept and definition

The word ”inverse” commonly means something that is “backwards” or
“opposite” to something else. So an inverse of a function should be a function
that is somehow backwards or opposite to the original function. You have
actually seen inverse functions many times before, perhaps without realizing
it.

Example 8.7.1. In Example 8.5.6, we showed that f(x) = 5z — 7 is a
bijection. A quick look at the proof reveals that the formula

_y+7

TT T

plays a key role. This formula is obtained by replacing f(z) in f(z) = 5z —7
with y, and solving for x.

In order to see x = %7 as an “inverse function,” we translate into the

language of functions, by defining g: R — R by g(y) = (y + 7)/5. Then the
above assertion can be restated as:


https://www.youtube.com/watch?v=kUOf7DDgfHw&index=15&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo
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This tells us that g does exactly the opposite of what f does: if f takes x
to y, then g takes y to x. We will say that ¢ is an “inverse” of f. ¢

Example 8.7.2. Let f: Rt — R* be defined by: f(z) = z2. We may
define g: Rt — R* by: g(y) = \/y. Note that in this case the domains and
ranges are restricted to positive real numbers. Given this restriction, by the
definition of square root we have

y:x2<:>x:\/§.

In view of the definitions of f and g, we may see that this is the same formula
as in the previous example: y = f(z) < = = g(y). ¢

Example 8.7.3. In the previous examples, the domain and codomain were
the same-but this doesn’t always have to be the case. Let f: R — R™T
be defined by f(r) = e*. We may define g: Rt — R by g(y) = In(y),
where 'In’ denotes the natural logarithm function. Here we also obtain
y = f(x) & x = g(y) as before, as long as x is in the domain of f and y is
in the domain of y. ¢

The < statement which has popped up in the last three examples can
be re-expressed as a pair of equations involving f and g, as the following
proposition shows:

Proposition 8.7.4. Suppose that f: X — Y and ¢g: Y — X are functions
such that
Ve e X,Vy €Y, (y =flz) e z= g(y)).

Then the following statements are also true:

(a) g(f(z)) == for all z € X. and

() fl9y) =y forallyeY,

We will furnish the proof of (a), while the proof of (b) is left as an
exercise.

PROOF. The proof of (a) runs as follows. Suppose that y = f(z) < = = g(y)
for all x, y in the respective domains of f and g. Then for any x € X, we may
define z as z = f(z). By the < statement it follows that © = g(z). But then


https://www.youtube.com/watch?v=KUOF7DDGFHW&INDEX=15&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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we may substitute the first equation into the second and obtain g(f(x)) = x.
Since x was an arbitrary element of X, it follows that ¢g(f(z)) = z for all
reX. O

Exercise 8.7.5. Prove part (b) of Proposition 8.7.4. O

Exercise 8.7.6. Prove the converse of Proposition 8.7.4. That is, given
that

g(f(z)) =z forallz € X and f(g(y)) =yforalycy,
it follows that

Ve X,Vy ey, (y:f(as) @x:g(y)).

Finally, we can give the definition of an inverse function:

Definition 8.7.7. Suppose f: X — Y and g: Y — X are functions. We
say that g is an inverse function for the function f if and only if:

(a) f(g(y)) =y (in other words, f o g(y) =y) for all y € Y, and
(b) g(f(x)) =z (in other words, go f(z) = z) for all z € X.

A

Example 8.7.8. The husband of the wife of any married man is the man
himself — in other words,

husband (wife(y)) ='y.

Also, the wife of the husband of any married woman is the woman herself,
so that
wife(husband(x)) = x.

It follows that the wife function is an inverse of the husband function. In
fact, it’s pretty clear that husband is the only inverse of wife. ¢

Exercise 8.7.9. In each case, use Definition 8.7.7 to determine whether g
is an inverse of f.



8.7 INVERSE FUNCTIONS ¥ 9255

(a) f: R — Ris defined by f(x) =92z — 6 and
g: R — R is defined by g(y) = (y + 6)/9.
(b) f: Rt — R* is defined by f(z) = 222 and
g: Rt — R* is defined by g(y) = \/y/2.
(¢) f: RT — RT is defined by f(z) = 2/x and
g: R™ — R* is defined by g(y) = 2/y.
(d) f: RT — R* is defined by f(z) =vx+1—1 and
g: RT — RT is defined by g(y) = v* + 2y.

8.7.2 Which functions have inverses?

It turns out that most functions do not have inverses.

Exercise 8.7.10. Which of the functions depicted in Figure 8.4.1 have
inverses? O

From the previous exercise, you may have guessed the following rule:

Proposition 8.7.11. Suppose f: X — Y. Then f hasaninverseg: ¥ — X
if and only if f is a bijection.

This is another “if and only if” proof, so it must be proved in both
directions. We will prove the forward direction of this proposition. You will
prove the reverse direction. The forward direction says that if f: X — Y
has an inverse g: Y — X, then f is a bijection. In other words we must
assume the first statement, and from that prove that f is one-to-one and
onto.

PROOF. (forward direction) Assume there is a function g: Y — X that is
an inverse of f. Then by the definition of an inverse function,

(a) f(g(y)) =y forally €Y, and

(b) g9(f(z)) =z forall z € X.


https://www.youtube.com/watch?v=KUOF7DDGFHW&INDEX=15&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Suppose then that f(x1) = f(x2) for some x1,29 € X. Then since g is a
function we have

9(f(21)) = g(f(x2))
Therefore by (b), 1 = x2. Hence f is one-to-one.

Now suppose y € Y. Then since g is a function, there exists a unique z € X
such that ¢g(y) = x. Substituting into (a) we get

fx) =y.
Therefore Yy € Y, 3z € X s.t. f(x) = y. Hence f is onto. So f is both
one-to-one and onto: thus f is a bijection. O

Exercise 8.7.12. Prove the reverse direction of Proposition 8.7.11. (*Hint*)

O

A function that has an inverse is said to be invertible. The following
exercise deals with a very important class of invertible functions/bijections.

Exercise 8.7.13. Given a number a € Z,, consider the function f, : Z,, —
Zy, given by fa(m) =a ® m.

(a) Show that the function fg defined on Z7 is a bijection by finding an
inverse of fg.

(b) For the six numbers a = 0,1, 2,3, 4,5 in Zg, which of these give bijections
for f,? FEzplain your answer. Suppose that a € Z, is relatively prime
to m. Show that in this case, f, : Z, — Z, is a bijection (you may want
to refer to Section 5.5.4). (*Hint*)

(c) Suppose that a € Z,, such that ax =1 (mod n) does not have an integer
solution z. Show that in this case, f, : Z, — Z, is not a bijection.
(*Hint*)

O

We close out this section with several exercises that prove various prop-
erties of inverses.

Exercise 8.7.14.

(a) Prove that any inverse of a bijection is a bijection.
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(b) Show that the inverse of a function is unique: if g; and g2 are inverses
of f, then g1 = go. (*Hint*)

Remark 8.7.15.

(a) Exercise 8.7.14 is key because it enables us to talk about the inverse of
a function, since there is never more than one inverse. We will use the
special notation f~! to denote the inverse of the function f.

(b) According to Definition 8.2.11, any function can be specified by a set of
ordered pairs. That is, if f : X — Y, we can also write f C X XY,
where for all z € X there is a unique y € Y such that (z,y) € f. If f is
a function that has an inverse, f~! can also be expressed as a subset of
Y x X:

F={2) | (@ ef}
This is simply a restatement of the fact that

y=fz)iff x = [~ (y).
A

In Definition 8.7.7 we defined the inverse of a function f by specifying
how it acted on single points: that is, for a function f : A — B we require
! to satisfy f~'o f(a) =aand fo f~!'(b) =bforalla € Aand B € B.
But we can look at this situation in a different way. In fact f o f~! and
f~1'o f are functions in their own right. What kind of functions are they?
Let’s see:

Definition 8.7.16. For any set A, define the identity map Ild4: A — A
by lds(a) = a for every a € A. A

Exercise 8.7.17.

(a) Show that Id4 is invertible.(*Hint*)

(b) Find the inverse of Id 4.(*Hint*)


https://www.youtube.com/watch?v=KUOF7DDGFHW&INDEX=15&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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(c) Suppose f: X — Y and g: Y — X. Show that g is the inverse of f if
and only if

fog=Idy and go f = Idx.
(*Hint*)

¢

We close this section with an exercise that shows two very important
properties of inverses.

Exercise 8.7.18.

(a) Suppose f: A — Band g: B — C are bijections. Show that (go f)~! =
f~log™l. (*Hint*)

(b) Suppose f: X — Y is a bijection. Show that the inverse of f~!is f.
That is, (f~1)~! = f.

8.8 Do functions from A to B form a group?

At the end of the Sets chapter in Section 7.3 we considered the question,
Do the subsets of a set form a group? Let’s consider a similar question, but
this time with functions.

Recall (once again) from Section 5.4.7 that a group is a set together with
an operation defined on that set such that:

1. The set is closed under the operation (in other words, the operation
has the property of closure);

2. The set has a unique identity;
3. Every element of the set has its own inverse;

4. The set elements satisfy the associative property under the group op-
eration;
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If we're going to make a group out the set of functions from A to B, the
first thing we need to do is define an operation. So far, the only operation
we have on functions is composition. But this gives us a problem, because
the composition of two functions that have the same domain and the same
codomain isn’t always well-defined:

Exercise 8.8.1. Give an example of sets A and B and two functions f :
A — B and g : A — B such that the composition f o g is not well-defined.
¢

For f o g to be well-defined, the domain of f must contain the range of
g. We can guarantee this by taking B = A, so we consider only functions
from a set A to itself:

Exercise 8.8.2. Given that f: A — Aand g: A — A, show that fog and
g o [ are both well-defined functions from A to A. O

Exercise 8.8.2 confirms that the set of functions from A to A is closed
under the operation of composition. So far, so good—but we still have more
fish to fry. We still need to find an identity for our set. This one’s not hard:
Definition 8.7.16 gives us the identity map Id 4.

That takes care of two group properties—we have two more to go. Let’s
look at inverses. We’ve seen that not all functions have inverses under com-
position. So to make this part work, we’ll have to further restrict ourselves
to the set of invertible functions from A to A.

The last thing we need to verify is the associtive property. Fortunately,
you already showed that function composition is associative in Exercise 8.6.6.

The foregoing discussion amounts to a proof of the following proposition.

Proposition 8.8.3. Let A be a set, and let G be the set of all invertible
functions from A to A. Then G is a group under composition.

In the following exercise we look at some particular sets of functions, and
investigate whether or not these sets form groups under composition. Recall
that to show whether or not a set with binary operation is a group, you just
need to show the properties: closure, identity, inverse, and associative. We're
lucky in this case that we don’t have to prove associative in every single case,
because the operation of function composition is always associative, as we’ve
proven before. So it’s enough just to prove closure, identity, and inverse.
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Exercise 8.8.4.

(a) Let G be the set of all nonzero functions from R to R of the form
f(x) = ax, where a is a nonzero real number. (For example, the func-
tions g(x) = —7x and h(x) = v/2z are both elements of G;.) Prove
or disprove: (i1 is a group under composition. (Note: G is the set of
nonzero linear functions from R to R.)

(b) Let G2 be the set of all nonzero functions from R to R of the form

f(z) = ax + b where a and b are real numbers which are not both
zero. (For example, the functions p(z) = 29.4x + 42.3, ¢(x) = 15 and
r(z) = —mx are all elements of G3.) Prove or disprove: Gy is a group

under composition. (Note: G is called the set of all nonzero affine
functions from R to R.)

(c) Let G3 be the set of all nonconstant functions from R to R of the form
f(x) = ax 4+ b where a is a nonzero real number and b can be any real
number. Prove or disprove: G3 is a group under composition.

(d) Let G4 be the set of all functions from R to R of the form f(z) =
ax3,where a is a nonzero real number. Prove or disprove: Gy is a group
under composition.

(e) *Let G5 be the set of all functions from R to R of the form

ax, for x rational
-]

bx, for x irrational

where a and b are nonzero rational numbers. Prove or disprove: G5 is
a group under composition.

O

Finally, recall that some groups are commutative (commutative groups
are also called abelian groups). Are groups under composition always
abelian? Let’s find out:

Exercise 8.8.5. For each of the examples in Exercise 8.8.4 which are groups,
prove or disprove that the group is abelian. To check this, you just need to
check whether or not the formula fog=go f for all f, g in the set. What
this means is that if the group is not abelian, all you need to do is provide
a single counterexample. O
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8.9 Hints for “Functions: basic concepts” exer-
cises

Exercise 8.2.6(e): There is a formula of the form f(x) = az? + bz + ¢

Exercise 8.4.5: Can there be any elements in the codomain that are not in
the range?.

Exercise 8.5.17(a): Consider the values f(1,7) for i = 1,2,3,.... (b): Con-
sider the values f(2,7) and f(1,7).

Exercise 8.5.18(a): Given any element (i,j) of Z x Z, set i = m + n and
J =m+ 2n and solve for m and n in terms of ¢ and j.

Exercise 8.5.18(b): Suppose that g(m,n) = g(p,q). It follows that (m +
n,m+2n) = (p+¢,p + 29).

Exercise 8.7.13: (c) Use Proposition 5.5.20, and recall that az =1 (mod n)
means the same thing as a © ¢ = 1 for a,z € Z,. You may use this fact to
find an inverse for f,. (d) Use the fact that a ® z = 1 has no solution to
show that f, is not onto, which implies that f, has no inverse.

Exercise 8.7.17: (a) Notice that f(z) = z is the identify function when the
set A is equal to R. Think about how you would show that f(z) is invertible
in this case. Then apply the same proof, replacing x with a and f with Id4.
(b) Again, think of the case f(x) = z. What is the inverse of this function?

Exercise 8.7.12: Given that f is a bijection from X to Y. We may define a
function g from Y to X as follows. Given any y € Y, since f is onto there is
at least one z such that f(z) = y. Furthermore, since f is one-to-one there
is at most one = such that f(z) = y. Putting these two facts together gives
us that there is exactly one x such that f(z) = y. We may define g(y) as
this unique x. It remains to show that for any y € Y, f(g9(y)) = y; and for
any r € X, g(f(z)) = =.

Exercise 8.7.18: (a) Apply Definition 8.7.7 directly, replacing f with go f
and g with g=' o f=1. (b) Apply Definition 8.7.7 again, this time replacing
f with f~'. What should g be replaced with?
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8.10 Study guide for “Functions: Basic Concepts”
chapter

Section 8.1, The Cartesian product: a different type of set
operation

Concepts:

1. Ordered pairs (z,y)
2. Cartesian product of sets: the set of all ordered pairs

3. Order of a set S (i.e. number elements), denoted by | S |.

Key Formulas
1. Equality of ordered pairs: (z1,y1) = (z2,y2) iff x1 = 29 and y; = yo.
2. Cartesian product: A x B = {(a,b)|a € A,b € B} (Definition 8.1.3)
3. Order of a Cartesian product: Given any sets A and B, then:

| Ax B|=|A]|-|B]|. (Proposition 8.1.8)

Competencies

1. Given a pair of finite sets, list the elements of the Cartesian product.
(Example 8.1.4, 8.1.6, 8.1.7)

2. Determine the number of elements in a Cartesian product. (8.1.9)

Section 8.2, Introduction to functions
Concepts:

1. A function accepts inputs, and provides a single output for each input.

2. Domain & codomain of functions (“inputs” and “possible outputs” of
the function).

3. Range of a function (range are the “actual outputs”; range is contained
in any possible codomain)
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. Image of an element of the codomain: f(a) is the image of a under the

function f.

. Arrow diagrams representing functions

“Official” definition of a function as a subset of the Cartesian product
of domain and codomain (Definition 8.2.11)

Competencies

1.

Be able to give the domain, range, f(z), the set of ordered pairs, and
write a formula to represent a function. (8.2.6, 8.2.14)

Be able to represent a function using: a formula; a set of ordered pairs;
a 2-column table; an arrow diagram.

Know if a set of ordered pairs represents a function. (8.2.9, 8.2.16)

Section 8.3, One-to-one functions

Concepts:

1. One-to-one functions (injective): each element of the range is the image
of a unique element of the domain.

2. Contrapositive of a statement: the contrapositive of a statement of
the form “If A then B” is, “If not B then not A”. The contrapositive
is logically equivalent to the original statement.

Competencies

1. Be able to identify one-to-one functions. (8.3.3, 8.3.5)

2. Be able to use the horizontal line test on real-valued functions to de-
termine one-to-oneness. (8.3.12, 8.3.13)

3. Prove whether functions are one-to-one or not. (8.3.20, 8.3.21)
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Section 8.4, Onto functions
Concepts:

1. Onto functions (surjective): each element of the codomain is the image
of at least one element of the domain.

2. Onto proofs
3. Horizontal line test to show onto-ness (applies only to real-valued func-

tions)

Competencies

1. Be able to identify onto functions. (8.4.3)

2. Be able to use the horizontal line test for real-valued onto functions.
(8.4.11)

3. Prove whether a function is onto or not. (8.4.18, 8.4.19, 8.4.20)

Section 8.6, Composition of functions
Concepts:

1. Composition of two functions: apply the second function to the output
of the first function. Note: functions are applied right to left.

2. Proofs involving function composition

Competencies

1. Be able to draw arrow diagrams of function compositions (Figure 8.6.1)
2. Be able to compute the composition of two functions. (8.6.2, 8.6.9)

3. 1-1 and onto proofs of compositions of functions, based on the 1-1 and
onto properties of the functions being composed. (8.6.18-8.6.24)
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Section 8.7, Inverse functions
Concepts:

1. Inverse functions: the functions f: X — Y and g: Y — X are inverses
of each other iff ¢(f(x)) =z for all z € X, and f(g(y)) = y for all
y € Y. (Definition 8.7.7)

2. A function has an inverse iff it is a bijection (both 1-1 and onto).
(Theorem 8.7.11)

3. Identity map: Idg: A — A by ld4(a) = a for every a € A. (Definition
8.7.16)

4. f: X - Y and g: Y — X are inverses of each other iff fog =
Idy and go f = Idx. (8.7.18)

5. Inverse of compositions: if f: X — Y and ¢g: Y — Z both have
inverses, then so does go f and (go f)~' = f~log™!. (8.7.18)
Competencies

1. Determine whether or not g is an inverse of f. (8.7.9)

2. Prove that the invertible functions must be bijections. (Theorem
8.7.11, Exercises 8.7.12, 8.7.14)

3. Show that Id4 is invertible and find the inverse. (8.7.17)

4. Prove facts about inverse of compositions and inverse of inverse func-
tions (8.7.18a, b, ¢)

Section 8.8, Do functions from A to B form a group?
Concepts:

1. Abelian group (same as commutative group)
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Competencies

1. Be able to determine whether particular sets of functions form groups
under composition. (8.8.4)

2. Be able to prove whether or not a particular group of functions is
abelian or not. (8.8.5)
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Introduction to
Cryptography &

Cryptography is the study of sending and receiving secret messages. The aim
of cryptography is to send messages across a channel so only the intended
recipient of the message can read it. In addition, when a message is received,
the recipient usually requires some assurance that the message is authentic;
that is, that it has not been sent by someone who is trying to deceive the
recipient. Modern cryptography is heavily dependent on abstract algebra
and number theory.

Prerequisites: The cryptographic systems we’ll be looking at are all based
on modular arithmetic. To understand this chapter, the reader should be
familiar with the material in Chapters 5 and 8. Section 25.2 also uses some
simple matrix multiplication.

Thanks to Tom Judson for material used in this chapter.

9.1 Overview and basic terminology

The message to be sent is called the plaintext message. The disguised
message is called the ciphertext. The plaintext and the ciphertext are both
written in an alphabet, consisting of letters or characters. Characters
can include not only the familiar alphabetic characters A, ..., Z and a,
.., z but also digits, punctuation marks, and blanks. A cryptosystem,
or cipher, has two parts: encryption, the process of transforming a

267
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plaintext message to a ciphertext message, and decryption, the reverse
transformation of changing a ciphertext message into a plaintext message.

There are many different families of cryptosystems, each distinguished
by a particular encryption algorithm. Cryptosystems in a specified crypto-
graphic family are distinguished from one another by a variable parameter
called a key. A classical cryptosystem has a single key, which must be kept
secret, known only to the sender and the receiver of the message. If person
A wishes to send secret messages to two different people B and C, and does
not wish to have B understand C’s messages or vice versa, A must use two
separate keys, so one cryptosystem is used for exchanging messages with B,
and another is used for exchanging messages with C'.

Some systems use two separate keys, one for encoding and another for
decoding. These are called public key cryptosystems, because typically
the encoding key is made public while the decoding key is kept secret. A
public key cryptosystem allows A and B to send messages to C using the
same encoding key. Anyone is capable of encoding a message to be sent to
C, but only C' knows how to decode such a message.

On the other hand, in single or private key cryptosystems the same
key is used for both encrypting and decrypting messages. To encrypt a
plaintext message, we apply to the message procedure which transforms a
plaintext message into an encrypted message. We will call this procedure an
encryption function, and denote it by the letter f. Given the encrypted
form of the message, we can recover the original message by applying the
decryption function f~!, which basically undoes the transformation per-
formed by the encryption function.! Both the encryption function f and the
decryption function f~! must be relatively easy to compute; however, they
must be virtually impossible to guess if only examples of coded messages
are available.

In Section 9.2 we will look at private key cryptography, beginning with
a classic example from antiquity. In Section 9.3 we will look at a famous
example of a public key cryptosystem, which was only discovered in the last
century and has had an enormous impact on information security in the
digital age.

1n fact, f~1 is the inverse of f—we will study inverse functions in general in Chapter 8.
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9.2 Private key cryptography

9.2.1 Shift codes

Example 9.2.1. One of the first and most famous private key cryptosys-
tems was the shift code used by Julius Caesar. We first represent the alpha-
bet numerically by letting A = 0,B =1,...,Y = 24,Z = 25. This means
for example that the word BAY would be represented numerically as:
1,0, 24.
An example of a shift encoding function is
f(n) = mod(n + 3,26).
which can also be written as
f) =nes,

with the understanding that n refers to the numerical value assigned to each
letter, and & refers to addition in Zgg. This encoding function takes

0—3,1—4,...,24—1,25—2,

so that our numerical representation of BAY is changed to: 4, 3,1, which is
the numerical representation of EDB.

The decoding function is the inverse of the function f, which we can find
in the usual way by solving the equation m = n @ 3 for n. The result is
n=m O 3, so that

ftm)=mo3 or f(m) =m o 23.
Suppose we receive the encoded message DOJHEUD. To decode this
message, we first represent it numerically:
3,14,9,7,4,20,3.
Next we apply the decryption function to get
0,11,6,4,1,17,0,

which is the numerical representation of ALGEBRA. Notice here that there
is nothing special about either of the numbers 3 or 26. We could have used
a larger alphabet or a different shift. ¢

Exercise 9.2.2.
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(a) Encode IXLOVEXMATH using the cryptosystem in Example 9.2.1.

(b) Encode the same message using the encoding function f(n) =n @ 10.

O

Exercise 9.2.3.

(a) Decode ZLOOA WKLVA EHARQ WKHA ILQDO, which was encoded
using the cryptosystem in Example 9.2.1.

(b) Decode: OFOBIDRSXQIYENYPVYGCPBYWDROROKBD, which was
encoded using a shift code with a shift of 10.

Exercise 9.2.4.

(a) The following is a ciphertext that was encoded using a shift code with
a shift of 9.

FWHKYVOGVFGCVQWFIHOKYVQGVFGCVHSPOKYVQGVFGCV
Find the plaintext.

(b) A plaintext is encoded using a shift code with a shift of 14. The resulting
ciphertext is shift-encoded again, using a shift of 14. The result is:

VIGOQTGAQWMPQYVIJGNGUUUWTGAQWCTGXQNVCKTG
Find the plaintext.

O

Cryptanalysis is concerned with deciphering a received or intercepted
message. Methods from probability and statistics are great aids in deci-
phering an intercepted message; for example, the frequency analysis of the
characters appearing in the intercepted message often makes its decryption
possible.

Example 9.2.5. Suppose we receive a message that we know was encrypted
by using a shift transformation on single letters of the 26-letter alphabet. To
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find out exactly what the shift transformation was, we must compute b in the
equation f(n) =n+ b mod 26. We can do this using frequency analysis.
The letter E = 04 is the most commonly occurring letter in the English
language. Suppose that S = 18 is the most commonly occurring letter in
the ciphertext. Then we have good reason to suspect that 18 = 4 @ b, or
b = 14. Therefore, the most likely encoding function is

f(n)=na14.
The corresponding decoding function is
fHm)=mao12.

It is now easy to determine whether or not our guess is correct. ¢

Exercise 9.2.6. The following ciphertext was encoded using a shift code.
Both the letters E and I are encoded as vowels.

IWPDAIWPEYOEOPDAMQAAJKBPDAOYEAJYAOYWNHBCWQOO
Find the plaintext. O

Exercise 9.2.7. In the following shift-coded ciphertext, one of the double-
letter patterns represents ‘ss’.

SGDDRRDMBDNELZSGDLZSHBRHRHMHSREQDDCNLEFDNQFBZMSNQ
Find the plaintext. %

Exercise 9.2.8.

(a) For the English alphabet, how many different shift codes are there?

(b) Thai script has 44 letters. How many different shift codes are there for
the Thai language?
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9.2.2 Affine codes

Let us investigate a slightly more sophisticated cryptosystem. Suppose that
the encoding function is given by

f(n) = mod(an + b, 26),
which can also be written as
f(n)=(aon)®b.

We first need to find out when a decoding function f~! exists. Such a
decoding function exists when we can solve the equation

m=an-+b (mod 26) or a®On=mob

for n in Zog. By Proposition 5.5.20 in Chapter 5, this is possible exactly
when a has an inverse in Zgg, which means that ged(a,26) = 1. Such a
cryptosystem is called an affine cryptosystem.

Exercise 9.2.9.

(a) Which of the numbers 0, 1, 2, ..., 10 have inverses mod 267

(b) For the numbers in (a) which have inverses mod 26, compute the in-
verses.

O

Exercise 9.2.10. Find the decoding function for the following affine en-
coding functions (used on the English alphabet).

(a) f(n)=B6Gn)® 14
(b) f(n)=(Bon)® 15
(¢c) f(n)=(TGn)®23

O

Exercise 9.2.11. Show that the general formula for the decoding function
for f(n)=(a®n)dbis

flm)=(@tom)o(atob).
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(That is, show that fo f~1(m) =m, and f~! o f(n) = n. Note that n and
m are variables, while a and b are constants which characterize the encoding
function.) O

Example 9.2.12. Let’s consider the affine cryptosystem encoding function
f(n) = (a ®n) @b, where ® and ¢ are multiplication and addition mod
26 respectively. For this cryptosystem to work we must choose an a € Zog
that is invertible. This is only possible if ged(a,26) = 1. Recognizing this
fact, we will let @ = 5 since ged(5,26) = 1. The reader may check that
a~! = 21. Therefore, we can take our encryption function to be f(n) =
(5@n)®3. Thus, ALGEBRA is encoded as 3,6, 7,23, 8,10, 3, or DGHXIKD.
The decryption function will be

i) =(2lon) e 21e3) = (21on) s 15.

Exercise 9.2.13. For each of the following functions, (i) determine whether
the function is a valid encoding function; (ii) if the function is valid, find the
decoding function. (Assume the function is working on an alphabet with 26
letters.)

=(4on)&

= (5en)®13
=(1160n)® 14
= (

130n) & 22

Exercise 9.2.14.

(a) The general form for an affine cryptosystem encoding function is f(n) =
(a ®n) ®b. How many different possible values of a are there, for an
affine cryptosystem that works on the English alphabet of 26 letters?

(b) For the same situation as (a), how many different possible values are
there for b7
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(c) What is the total number of affine cryptosystems that work on an al-
phabet of 26 letters?

Exercise 9.2.15. The Spanish alphabet has 29 letters. Give answers to
parts (a), (b), and (c) of Exercise 9.2.14, but with the Spanish alphabet
instead of the English alphabet. O

Exercise 9.2.16. The Hebrew alphabet has 22 letters. Give answers to
parts (a), (b), and (c) of Exercise 9.2.14, but with the Hebrew alphabet
instead of the English alphabet. O

Exercise 9.2.17. Suppose that the encoding function for an affine cryp-
tosystem is f(n) = (a ® n) @ b, and the decoding function is f~!(m) =
(' ®m) @ V. Suppose that a different cryptosystem uses the encoding func-
tion g(n) = (¢’ ®n) @ V. What is the decoding function for this second
cryptosystem? O

Exercise 9.2.18.

(a) The following message was encoded using an affine cryptosystem that
encodes A as M and B as B.

CKMYCZMLCOZCWKOHUCKDOHLMZLLNMZGZOEVUFYU

Find the plaintext.

(b) The following message was encoded using an affine cryptosystem that
encodes A as G and C as C.

MQTNOELNWNETEHCEWHISCFKYHHFYKGCCEIPXQWFISCF
Find the plaintext.

(¢) The following message was encoded using an affine cryptosystem that
encodes R as S and S as D.

OMFMFENSOMNDSFNDLADOMNOSFNDLAJNAALOZAUFSDONAU
Find the plaintext.
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(d) The following message was encoded using an affine cryptosystem that
encodes M as N and O as D.
NVEMBNVEHLJHJEMBNZJHLDWOBVJDI
Find the plaintext.

9.2.3 Monoalphabetic codes

In both shift codes and affine codes, one character in the encoded message
represents exactly one character in the original message. Cryptosystems that
employ such a one-to-one substitution are called monoalphabetic cryp-
tosystems. The “cryptoquips” that appear regularly in many newspapers
make use of this type of cryptosystem (see Figure 9.2.1).

CRYPTOQUIP

XKFB ZKQZ ENG XQL SFQYYG

TQCTIIMYFH TG Q PIB QSZDLZ,
D’C LNSF KF LNOOFSFH ZKF

QEIBG IO HFPFDZ.

Yesterday’s Cryptoquip: MONTH IN WHICH
MANY LOUD, POWER-PACKED MUSIC
CONCERTS TAKE PLACE ON A DAILY BASIS:
ROCKTOBER.

Today’s Cryptoquip Clue: Z equals T

CRYPTOQUIP BOOK 1!  Send $4.50 (check/m.o.) to
CryptoClassics Book 1, P.O. Box 536475, Orlando, FL 32853-6475

The Cryptoquip is a substitution cipher in which one letter stands for
another. If you think that X equals O, it will equal O throughout the
puzzle. Single letters, short words and words using an apostrophe
give you clues to locating vowels. Solution is by trial and error.

© 2002 by King Features Syndicate, Inc.

Figure 9.2.1. Example of cryptoquip (source: “Cecil Whig”, http://wuw.
cecildaily.com/diversions/cryptoquip/).

Exercise 9.2.19. What is the total number of monoalphabetic cryptosys-
tems? O


http://www.cecildaily.com/diversions/cryptoquip/ 
http://www.cecildaily.com/diversions/cryptoquip/ 
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Although there are many different possible monoalphabetic cryptosys-
tems, they are relatively easy to break using frequency analysis. (You may
even find web sites that can automatically decode cryptoquips.)

9.2.4 Polyalphabetic codes

A cryptosystem would be more secure if a ciphertext letter could represent
more than one plaintext letter. To give an example of this type of cryptosys-
tem, called a polyalphabetic cryptosystem, we will generalize affine codes
by using matrices. The idea works roughly the same as before; however, in-
stead of encrypting one letter at a time we will encrypt pairs of letters (as
before, letters are represented by elements of Zag). We can store a pair of
letters n; and ny in a vector
()
n= .
n2

Let A be a 2 x 2 invertible matrix with entries in Zsg. We can define an
encoding function by
f(n)=(A®n)®b,

where b is a fixed column vector and matrix operations are performed in
Zgs. The formula for the decoding function (which is the inverse of the
encoding function) is very similar to the decoding function formula that we
found for affine encoding:

fTHm)=(A"om)e (4" ob),

where A~ is the matriz inverse of A: that is, A~1A = AA~! = I, where
I is the 2 x 2 identity matrix. *Note* that in these formulas, we are using
modular matrix multiplication instead of regular matrix multiplication: that
is, the regular - and + operations are replaced by ©® and &:

Exercise 9.2.20. Perform the following operations using modular matrix
multiplication (mod 26):

(@(i;)(j) (C)(1§§)<220 210>
(b) (116 123><i,) () (123 123><123 123>
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Example 9.2.21. Suppose that we wish to encode the word HELP. The
corresponding digit string is 7,4,11,15. If

35
=(13)
(2 2

A "( 25 3 )‘

(You may check that mod(AA~!,26) = mod(A~14,26) = I.) If b =

then

2
5 ) then our message is encrypted as RRGR, where HE encrypts as
RR and LP encrypts as GR. ¢

In order to make use of polyalphabetic cryptosystems, we need to be
able to find the inverse of a 2 x 2 matrix with entries in Zsg. As we *noted*
above, this inverse is under matrix multiplication mod 26, rather than regu-
lar matrix multiplication. Still, we can try to make use of the matrix inverse
formula from regular matrix multiplication:

a b\ ' 1 d b\ ([ kd —kb
c d ad—be\ —¢ a ) \ —kc ka )’
1

ad — be’
This suggests that the following formula may be valid mod 26:

a b\ ' [ kod —kob
c d "\ —-kGc kGa )’

k=(aodeboc),

where

where

and (---)~! means inverse under multiplication in Zgs. We will see in the
following exercise that this works as long as (a ©® d) © (b ® ¢) has a multi-
plicative inverse in Zgg.
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Exercise 9.2.22. Suppose that (¢ ©d) © (b®c) has an inverse in Zgg: that
is to say, suppose there is a k € Zgg such that k ® ((a ®d) © (b®¢)) = 1.
Show that the matrices:

[ a b B kod —-kob
A_<c d> and B_<—k®c k®a>

are inverses of each other in Zsg. That is, show that AB = BA = I under
matrix multiplication mod 26.

O

. . . b
The previous exercise leaves open the question of whether ( CCL d )

has an inverse when (a ® d) & (b ® ¢) has no inverse in Zgg. Once again,
we can reach back to our previous matrix knowledge to resolve this issue.
Recall that the quantity ad — bc is called the determinant of the matrix

< Z Z > . There is also a famous formula for the determinant of the product

of matrices:

det(A)det(B) = det(AB).

This same formula carries over to matrix multiplication mod 26, because
(as we've seen) in any equation using only the operations of multiplication,
addition, and subtraction, we can replace these operations with their mod-
ular versions and still have a true equation. We can use this to show that

(a®d)© (b® c¢) must have an inverse in Zgg in order for ( (Z Z ) to have

an inverse:

Exercise 9.2.23. Suppose that A = @ d ) is a matrix with entries in
Zsag, such that (e ® d) © (b ® ¢) has no inverse in Zyg. Show that A has no
inverse in Zgg. (*Hint*) O

Exercise 9.2.24. Find matrix inverses in Zog for the following matrices. If
no inverse exists, then prove there is no inverse.

(&) (290 ?) (b) (223 g)


https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO

9.2 PRIVATE KEY CRYPTOGRAPHY 279

o (1) 0 (32)

Exercise 9.2.25. For the same matrices as in Exercise 9.2.24, find the
matrix inverses in Zgg. O

Exercise 9.2.26. Given that

3 4 2
A(2 3>, andb<5>.

(a) Use the encryption function f(p) = Ap + b to encode the message
CRYPTOLOGY.

(b) What is the decoding function?

O

Frequency analysis can still be performed on a polyalphabetic cryptosys-
tem, because we have a good understanding of how pairs of letters appear
in the English language. The pair th appears quite often; the pair ¢z never
appears. To avoid decryption by a third party, we must use a larger matrix
than the one we used in Example 9.2.21.

9.2.5 Spreadsheet exercises

Spreadsheets can be used to automate many of the calculations that we have
looked at in the previous sections.

Shift encoding and decoding spreadsheet &

Exercise 9.2.27. In this exercise, you will use a spreadsheet to create
an automated shift encoder for English. Please refer to Figure 9.2.2 for
guidance:

(i) Put the Shift value in cell C2.
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A/B C D E FIG|H| I |
1 AUTOMATED SHIFT ENCODING FOR ENGLISH
2 Shift: 15
2
4 Tables:
5 A | OlA Plaintextt: H E L L O
6 B | 1B Numerical: 7 4 11 11 14
7 C | 2|C Shifted: 22 19 0 0 3
8 D | 3D Ciphertextt W T A A D
9 E 4|E Numerical: 22 19 0 0 3
10 F | 5|F Unshifted: 7 4 11 11 14
11 G | 6|G Recovered: H E L L O
12 H | 7|H

Figure 9.2.2. Automatic shift encoder for English.

(ii) Put the alphabet (starting with A), numerical values for the letters
(starting with 0), and the alphabet again in columns A, B, C starting
on line 5.

(iii) Type your plaintext in row 5, starting in column F.

(iv) Row 6 beginning in column F contains the numerical values for the
plaintext. The formula in cell F6 is: “=VLOOKUP (F5, $A$5:$B$30,2)”.
The significance of this formula is as follows:

e The function VLOOKUP means that the program will look up a
given value in a given table;

e The F5 is the first argument of VLOOKUP, which means that
the value being looked up is in cell F5;

e The $A$5:$B$30 is the second argument of VLOOKUP, which
means that it represents the cells containing the table that the
value will be looked up in. The dollar signs are used to guaran-
tee that the table will remain fixed when the formula is copied
and pasted into another cell; The 2 which is the third lookup of
VLOOKUP indicates that the value in the second column in the
same row as the looked-up value is placed in the cell where the
formula is located.

(v) Row 7 beginning in column F gives the encoded numerical values. The
formula in cell F7 is “=MOD(F6+$C$2,26)”. The dollar signs on C2
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guarantee that when the formula is copied, the shift still refers to the
value in C2.

(vi) Row 8 beginning in column F gives the ciphertext. The formula in cell
F8is: “=VLOOKUP(F7,$B$5:$C$30,2)”.

(vii) Rows 9,10, and 11 are similar to rows 6,7,8 respectively. Try to do this
yourself.

Once you have completed the formulas, select cells F6 through J11, and use
the spreadsheet’s “Fill Right” capability to carry the formulas to the other
columns. (If your plaintext is longer, you can select more columns and fill
right. O

Exercise 9.2.28. The Spanish alphabet has 3 more letters than English:
‘Ch’ (comes after C in the alphabet), ‘LI’ (comes after L in the alphabet),
and ‘Nn’ (comes after N). Modify the sheet you created in Exercise 9.2.27
to make a Spanish language shift encoder. Use your sheet to decode the
following message:

MS KIUPVX UIB NIKPS VX MB BPMUYAM MS UMQXA
(Note that ‘Ch’ counts as a single letter.) O

Affine encoding and decoding spreadsheet 5

Exercise 9.2.29. Create a spreadsheet that can perform any affine encoding
on English plaintext. You may model your spreadsheet on the sheet in
Figure 9.2.3. Use your spreadsheet to decode the following message:

EMBNDOBFDZXIDPEMBSBJJJZOBFDZVOBUDSEVHOB

which was encoded using an affine encoding function with b = 21. %

Exercise 9.2.30. In order to decode an affine cryptosystem on English
letters with encoding function f(p) = (a ® p) @ b, it is necessary to find the
inverse of a under multiplication mod 26. We have ways of finding inverses
of individual numbers. But we can also use spreadsheet software to find all
inverses in one fell swoop as described below.
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AlB|(C|D E FIG |H|[I|]J
1 Spreadsheet for affine encode/decode
2 a: 3
3 b 8
4 anf-1} 9
5
B |A 0 A Plaintext: H E L L O
7 |B 1B Mumerical: 74 11 11 14
g8 C 2C Affine: 3 20 15 15 24
9 D 3D Ciphertext DU p P ¥
10 [E 4E Numerical: 3 20 15 15 24
11 F 5F Affine inverse: 7 4 11 11| 14
12 |G 6 G Plaintext: HE L L O
12 4 T4

Figure 9.2.3. Automatic affine encoder for English.

Open a sheet in your favorite spreadsheet software (Excel, LibreOffice,
or OpenOffice). Put the numbers 0 through 25 in column A, starting at
row 3, and also in row 2 starting in column B. To fill up the table, put
the formula “=MOD($A3%*B$2,26)” in cell B3, as shown in Figure 9.2.4.
This formula causes the software to take the product of the contents of cells
A3 and B2, and put the result mod 26 into cell B3. The dollar signs are
important: these indicate “fixed reference”. For example, the ‘$A3’ means
that when this formula is copied to other cells, the reference to column A
remains unchanged while the column may change. On the other hand, the
‘B$2’ means that when the formula is copied to other cells, the reference to
column 2 remains unchanged.

At this point, select the range of cells from B3 to AA28 (this will be a
square region of 26 x 26 cells. Use your spreadsheet’s “Fill down” and “Fill
right” feature to fill all the cells in this region. The location of all of the
‘1”s in this table shows all of the inverses. For example, there is a '1’ in the
row labeled 9 and column labeled 3. This means that 9 and 3 are inverses
of each other mod 26.

Use this spreadsheet table to create a 2-column table: in the first column,
put the numbers 0 through 26, and in the second column, put the inverses
(if the number has no inverse, just put a ‘—’). O
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A/BIC/IDE|F|G H I
1 Multiplication table mod 26.
2 012 3 456 7
3  0|=MOD($A3*BS$2,26)

4 1]
5
6

2
3

Figure 9.2.4. Mod 26 multiplication table.

Exercise 9.2.31. Following the previous exercise, find all inverses of the
numbers mod 29 (this can be used in affine encoding of Spanish, which has
29 letters). O

Exercise 9.2.32. Make a spreadsheet that can do polyalphabetic coding.
you may base your sheet’s design on Figure 9.2.5. The figure shows the en-

coding of the word CRYPTOLOGY using A = ( i1’> ; ), and b = < ; > .

Use your spreadsheet to decode the following words that were encoded
using f(p) = Ap + b with the given A and b.

13 5 7
(a) VVDGOFOKLY, A = ( 0 o ) and b = < 3 )
14
18

(b) VWFGTWQKTA, A — ( 167 133 ) and b — < ) .

(c) EXUFQPRRGA, A — ( g ‘71 ),andb: < g )

9.3 Public key cryptography

If traditional cryptosystems are used, anyone who knows enough to encode
a message will also know enough to decode an intercepted message. In 1976,
W. Diffie and M. Hellman proposed public key cryptography, which is based
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AB CD E FIG|H| I J K LIMN|OPOQR| S T UV
1 Matrix A: Vector b: Ainvmod 26  -Ainv*bh
2 35 J| | _modad-be2e) 1t [221 6
312 2| | inverse mode 26 by hand) 1| |25 3 22
4 | Tables:

5 0A Plaintext: C Y T L G

6 1B R P O O Y

7 2C

8 3D Numerical: 224 19 11 6

S 4 E 17 15 14 14 24

10 5F

11 6G Encoded 15 19 25 1 10

12 7H numerical: 12 4 23 15 4

13 81

14 91 Ciphertext: P T Z B K

15 10 K M E X P E
1L

12 M Numerical: 15 19 25 1 10
13 N ciphertext 12 4 23 15 4
14 O

15 P Decoded 2 24 19 11 6
16 Q numerical: 17 15 14 14 24
17 R

18 S Decoded C Y T L G
197 plaintext: R P O O Y

NN N R P R
W MNP O WO ~NO-O
IHwImpoUOWOoOZZrAS-TIOMMOODE

[}
=

)
1

Figure 9.2.5. (Semi-)automatic polyalphabetic encoder/decoder for En-
glish. Note that cell N3 is entered by hand, based on the value in N2.

on the observation that the encryption and decryption procedures need not
have the same key. This removes the requirement that the encoding key be
kept secret. The encoding function f must be relatively easy to compute,
but f~! must be extremely difficult to compute without some additional
information, so that someone who knows only the encrypting key cannot
find the decrypting key without prohibitive computation. It is interesting
to note that to date, no system has been proposed that has been proven to
be “one-way;” that is, for any existing public key cryptosystem, it has never
been shown to be computationally prohibitive to decode messages with only
knowledge of the encoding key.
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0o

9.3.1 The RSA cryptosystem Ex

The RSA cryptosystem introduced by R. Rivest, A. Shamir, and L. Adleman
in 1978, is based on the difficulty of factoring large numbers. Though it is not
a difficult task to find two large random primes and multiply them together,
factoring a 150-digit number that is the product of two large primes would
take 100 million computers operating at 10 billion instructions per second
about 50,000 years under the fastest algorithms currently known.

Let us look at how RSA works in a practical context. Suppose that
Jennifer is running an online boutique, and wants to receive credit card in-
formation from customers over the internet. Unfortunately it’s all too easy
to snoop the internet, and it certainly wouldn’t be good for Jennifer’s cus-
tomers if their credit card numbers were stolen. So she needs a suitable code
for the credit card information in order to protect her customer’s privacy.
The code may be constructed as follows:

(a) Choose two random 150-digit prime numbers p and ¢. (This is easier
said than done! We will consider some possible ways of doing this in
Section 9.3.4.)

(b) Compute the product n = pq as well as m = (p — 1)(¢ — 1). (It can be
shown that m is actually the number of positive integers in Z,, that are
relatively prime to n.)

(c) Find a large random integer F that is relatively prime to m. This is done
by making a guess for E, then using the Euclidean algorithm to check
whether ged(E,m) = 1. If not, then keep guessing until you find an
FE that works. In general relatively prime numbers are not uncommon,
and the Euclidean algorithm is pretty quick (especially for a computer),
so FE is not too difficult to find.

(d) Using the Euclidean algorithm, find D such that DE =1 (mod m).

Now, let’s say that Jennifer has a customer whose credit card number is
x. Before requesting the credit card information, Jennifer’s computer sends
the numbers E and n to the customer’s computer, which then calculates
y = 2% mod n and sends y to Jennifer’s computer, Jennifer recovers x by
computing y” mod n, which (as we shall show in a minute) turns out to be

x, as long as x is less than n.

Notice some amazing things here. First, £ and n are sent out openly
over the internet. Jennifer doesn’t care if snoopers find out this information.
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In fact, she sends the same E and n to each customer! But this does not
compromise her customers’ security, because only Jennifer knows m, and it
takes both E and m to find D. As long as no one can figure out m, the
credit card numbers are safe!

To summarize: once the public key (E,n) and the private key D have
been constructed, the process of encoding and decoding is simple:

e To encode a numerical plaintext z: compute mod (¥, n) .

e To decode a numerical ciphertext y: compute mod (y”,n).

Example 9.3.1. Before exploring the theory behind the RSA cryptosystem
or attempting to use large integers, we will use some small integers just to
see that the system does indeed work. Suppose that we wish to send some
message, which when digitized is 395. Let p = 23 and ¢ = 29. Then

n=pg=667 and m=(p—1)(¢g—1)=616.

We can let £ = 487, since gcd(616,487) = 1. The encoded message is
computed to be
mod (395%%7,667) = 570.

(This may seem like a very long computation, but there are fast ways of doing
this: see Exercise 9.3.3 below.) Using the Euclidean algorithm, we determine
that 191FE = 1+ 151m; therefore, the decrypting key is (n, D) = (667,191).
We can recover the original message by calculating

mod (5701, 667) = 395.

This really seems like magic. How in the world does it work? First of
all, we know that DE = 1 mod m; so there exists a k such that

DE =km + 1.

This means that
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At this point we need FEuler’s theorem from Chapter 18, which states the
following. Suppose m is the number of positive integers less than n that are
relatively prime to n. Then it is true that:

2™ =1 (mod n).
for any x that is relatively prime to n.

We can use this to simplify our previous expression for y:
yP = @™z = (1)F2 = 2 mod n,
and presto! We have our result.

We can now ask how one would go about breaking the RSA cryptosys-
tem. To find D given n and E, we simply need to factor n and solve for D
by using the Euclidean algorithm. If we had known that 667 = 23 - 29 in
Example 5, we could have recovered D.

Exercise 9.3.2. Show that if p and ¢ are primes, then the number of
positive integers less than pg which are relatively prime to pg is (p—1)(g—1).
(*Hint*) O

9.3.2 Message verification

There is a problem of message verification in public key cryptosystems.
Since the encoding key is public knowledge, anyone has the ability to send
an encoded message. If Alice receives a message from Bob, she would like
to be able to verify that it was Bob who actually sent the message. Sup-
pose that Bob’s encrypting key is (n’, E’) and his decrypting key is (n’, D’).
Also, suppose that Alice’s encrypting key is (n, E) and her decrypting key
is (n, D). Since encryption keys are public information, they can exchange
coded messages at their convenience. Bob wishes to assure Alice that the
message he is sending is authentic. Before Bob sends the message x to Alice,
he decrypts x with his own key:

¢/ = mod(z”’, n').
Anyone can change 2’ back to x just by encryption, but only Bob has the
ability to form z’. Now Bob encrypts 2’ with Alice’s encryption key to form
y' = mod(a'",n),

a message that only Alice can decode. Alice decodes the message and then
encodes the result with Bob’s key to read the original message, a message
that could have only been sent by Bob.
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0o

9.3.3 RSA exercises ¥

Exercise 9.3.3. This problem demonstrates a fast method for computing
very large powers of numbers in modular arithmetic using a spreadsheet.
You will need this method in order to do the subsequent problems. We will
demonstrate the method by computing mod (23**°, 617).

(a) Use a spreadsheet to compute the following sequence of numbers:
23, mod (232,617), mod (23%,617), ..., mod (23%°®, 617)

Note that each power of 23 in this series is the square of the previous
power. So to compute any number in this series, square the previous
number and reduce mod 617. You may use the MOD spreadsheet func-
tion. It is easiest to put all the numbers in a single column. (This way,
you can use the spreadsheet’s “Fill down” feature.)

(b) Write 485 as a sum of powers of 2. (This is the same thing as finding
the binary expansion of 485.)

(c) Using the results of (b), identify a set of entries from the table you found
in part (a), such that the product of these entries is equivalent to 2348
(mod 617). (*Hint*)

(d) Use your result from (c) to compute mod (2343, 617).

Exercise 9.3.4. Building off the previous exercise, create a spreadsheet that
can compute mod(z9,n) for general x,q,n. You may follow the pattern of
the spreadsheet in Figure 9.3.1. Some of the formulas in the spreadsheet
are:

e Cell A8: =B3

o Cell BS: =MOD(AS,2)
e Cell A9: =(A8-B8)/2
Cell D9: = D8%*2

Cell E9: = MOD(ES*ES, $B$4)
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e Ccll F&: = B8

o Cell G8: = E8F8

e Cell H8: =GS8

e Cell H):: = MOD(G9*HS8,$B$4)

You may obtain the rest of the formulas using the spreadsheet’s “fill down”
capability.

A B C D E F G H

1 COMPUTING LARGE POWERS MODULO A BASE
2 \number 222
3 power 3894
4 |base 617
5
6 |Binary expansion of power

Reduced Binary Exponent mod(num.fexp., Bin. Exp. Of |Factors |Running product
7 power expansion (power of 2) |base) power of power |mod base
8 3894 0 1 222 0 1 1
9 1947 1 2 541 1 541 541
10 973 1 4 223 1 223 328
11 436 0 8 369 0 1 328
12 243 1 16 421 1 421 497
13 121 1 32 162 1 162 304
14 60 0 64 330 0 1 304
15! 30 0 128 308 0 1 304
16 15 1 256 463 1 463 76
17 7 1 512 270 1 270 159
18 3 1 1024 94 1 94 138
19 1 1 2048 198 1 198 176
an n n Annc 2295 n 1 172

Figure 9.3.1. Spreadsheet for taking large powers modulo a given base.

O

Exercise 9.3.5. Using your spreadsheet from the previous exercise, encrypt
each of the following plaintexts using RSA. Before encoding, divide the
plaintext into blocks of integers of length 2; that is, if the plaintext is 142528,
encode 14, 25, and 28 separately.

(a) n = 3551, E = 629, plaintext = 31

(b) n = 2257, E = 47, plaintext = 23
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(c) n=120979, E = 13251, plaintext = 142371
(d) n =45629, F = 781, plaintext = 231561

Exercise 9.3.6. Decrypt each of the following RSA messages y. (In this
case, do not break y into blocks—decode the entire number.)

(a) n = 3551, D = 1997,y = 2791

(b) n=5893,D =81,y = 34

(c) n= 120979, D = 27331,y = 112135
)

(d) n=79403,D = 671,y = 129381

Exercise 9.3.7. Encrypted messages are often divided into blocks of n
letters. A message such as THE WORLD WONDERS WHY might be
encrypted as JIW OCFRJ LPOEVYQ IOC but sent as JIW OCF RJL
POE VYQ IOC. What are the advantages of using blocks of n letters? ¢

Exercise 9.3.8. Construct an RSA cryptosystem as follows:

(a) On the web, find two four-digit primes
(b) Use these primes to compute n and m.

(c) Choose a value of E which is less than m, and use you Diophantine
Equation spreadsheet (Exercise 5.5.14 in the Modular Arithmetic chap-
ter) to find the inverse D under multiplication mod m. If it turns out
that E is not relatively prime to m, try again.

(d) Test your cryptosystem by encoding ‘123’, and then decoding it. To
encode, use the spreadsheet that you created in Exercise 9.3.4 earlier in
this chapter. To decode, make another copy of the same sheet.
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9.3.4 Additional exercises: identifying prime numbers 5

We saw in Section 9.3.1 that the RSA algorithm depends on finding very
large primes. In practice, large primes are found using trial and error. That
is, we choose a large random number and test to see whether it’s prime. If
the test fails, then try, try again.

So it all comes down to figuring out how to test whether a number is
prime. In this section, we consider some possible ways of doing this.

“Brute force” method, and sieve of Eratosthenes

On way to do this is sheer brute force: try dividing by 2,3,4, ..., and if
nothing divides then the number is prime. There are various ways to make
this process more efficient, as we will see in the following exercises.

Exercise 9.3.9. To test whether the number n is a prime, you divide n

all the integers 1,2,3,... up to a, and see if any of them divides evenly.
How large does a have to be in order to guarantee that n really is a prime?
(*Hint*) ¢

When testing whether n is prime, by the “brute force” method, as long
as n is odd we don’t need to divide by even numbers (Why?). This means
that you only need to test about half of the numbers up to a—more precisely,
we only need to test [a/2] numbers, where [z] means “the next integer
larger than x”. ([z] is called the ceiling of x.)

We can pull the same trick with factors that are divisible by 3. Once
we’ve tested 3 as a factor, we don’t need to check 9,15,21,... or any other
number that is divisible by 3. (Why?) So it seems that this reduces the
number of factors that we need to check by about a third, since every third
integers are divisible by 3. However, we need to be careful here. We've
already ruled out the numbers that are divisible by 2, so the numbers that
are divisible by both 2 and 3 have already been ruled out. In other words
(using m to denote a positive integer, and using the the notation [{---}| to
denote the size of sets):

{m <aand (2| mor3|m)} =
{m <aand 2| m}|+ |{m <aand 3| m}|—|[{m <aand6|m}|
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If we are not so careful with the “ceiling function” (which changes the result
by at most 1 anyway), this tells us:

a a a
< d?2 3 N+ - — .
[{m <aand 2 | m or 3 | m}| 2+3 5

We can turn this around and find the number of integers which are not
divisible by 2 or 3:

This gives the number of trial divisions required to test whether n is prime.
(Of course we also need to test divisibility by 2 and 3, which are 2 additional
divisions.)

The same reasoning can be extended to take into account divisibility by
5,7, 11, and so on:

Exercise 9.3.10. Using the same reasoning as above, show that after divid-
ing by 2, 3,5 the number of additional divisions required to test for primality

is approximately:
1 1 1
1—=)({1—-=1=-=].
(12 (-3) (5)
¢

The technique of eliminating numbers to check based on previous divis-
ibility is called the sieve of Eratosthenes.

Fermat’s test for primality

Even using various tricks to reduce the number of computations, the brute
force method requires far too many calculations to be useful for RSA encod-
ing. A different algorithm for testing primality is Fermat’s factorization
algorithm, which depends on the following fact:

Exercise 9.3.11. Let n = ab be an odd composite number where a,b € N.
Prove that n can be written as the difference of two perfect squares :

n=a>—y*=(x—y)(z+y),
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where both x and y are greater than 1. Consequently, a positive odd integer
can be factored exactly when we can find integers x and y such that n =
x? — % (*Hint*) O

We can use this fact to factor n by trying different pairs of squares in
order to get n as the difference of the two. Of course, we want to do this
systematically. So we want to see what values of x and y we actually need
to check:

Exercise 9.3.12. In the formula n = 22 — y? = (z — y)(x + y), what is the
smallest possible value for = that needs to be tested? (*Hint*) O

There are other special conditions that « and y must satisfy:

Exercise 9.3.13. For the purposes of this exercise, assume that n is an odd

number and that n = 2% — y2.

(a) Show that if z is odd then y is even, and if x is even then y is odd.
(*Hint*)

(b) Show that for any odd number m, then mod (m?,4) = 1. (*Hint*)

(c) Let m = x +y. Show that m is odd, and that we can rewrite n =
(x —y)(z+y) as: n=m(m —2y).

(d) Show that if mod (n,4) =1, then y must be even. (*Hint*)

(e) Show that if mod (n,4) = 3, then y must be odd. (*Hint*)

O

The Fermat primality testing scheme is better for finding factors that
are nearly equal. The brute force method of Exercise 9.3.14 is much better
when one factor is much bigger than the other one.

Exercise 9.3.14.

(a) Create a spreadsheet that factors large numbers using the brute force
scheme. You may use the spreadsheet in Figure 9.3.2 for inspiration.
Some of the formulas in the spreadsheet are:

o Cell AT: =A6+2
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e Cell B6: =$B$2/A6
o Cell C6: =IF(B6=FLOOR(B6,1),A6,0)
o Cell E2: =MAX(C6:099999)

You may obtain the rest of the formulas using the spreadsheet’s “fill
down” capability.

(b) Use this spreadsheet to factor n = 3551. Then, use your result to find
the decoding key D for Exercise 9.3.5 part (a).

(c) Use this spreadsheet to find the decoding key D for Exercise 9.3.5 part
(b).

(d) Use this spreadsheet to find the decoding key D for Exercise 9.3.5 part
().

(e) Use this spreadsheet to find the decoding key D for Exercise 9.3.5 part

(d).
(f) Given the encryption key (n, E) = (451,231), find D.

(g) Given the encryption key (n, E) = (3053,1921), find D.

9
A B C D E
1 BRUTE FORCE FACTORING
2 Number n: 45629 Mayx. factor 443
3 sqrt(n) 213.609
4
5 Trial factors Quotient Which are factors?
6 3 15209.7 0
7 5 9125.8 0
8 7 6518.43 0
Q Q ENRQa a n

Figure 9.3.2. Spreadsheet for brute force factoring method

Exercise 9.3.15.

(a) Make a spreadsheet for Fermat’s factoring method. You may use the
spreadsheet in Figure 9.3.3 for inspiration. Some of the formulas in the
spreadsheet are:


https://www.youtube.com/watch?v=TKGDFDUF_GW&INDEX=33&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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e Cell AT:
e Cell B6:
e Cell C6:
Cell D6:
e Cell E2:
e Cell E3:

—A6+1
=SQRT(AG*AG

_ $B$2)

295

=IF(B6=FLOOR(B6,1),A6-B6,0)

=IF(B6=FLOOR(B6,1),A6+B6,0)
=MAX(C6:C99999)
=MAX(D6:D99999)

You may obtain the rest of the formulas using the spreadsheet’s “fill
down” capability.

(b) Use this spreadsheet to factor n = 7433551. Then, use your result to
find the decoding key D for (n, E) = (7433551, 12345).

(c¢) Use this spreadsheet to factor n = 16394854313. Then, use your result
to find the decoding key D for (n, E') = (16394854313, 34578451).

O
A B C D E
1 FERMAT FACTORING
2 Number n: 45629 Small factor: 103
3 sgrt(n) 213.609457 Big factor: 443
4
5 Trial x sqrt(xn2-n) |Small factor |Big factor
6 214 12.922848 0 0
7 215| 24.4131112 0 0
8 216| 32.0468407 0 0
9 217| 38.2099463 0 0

Figure 9.3.3. Spreadsheet for Fermat difference-of-squares factoring

method

Exercise 9.3.16. * Using the results from Exercise 9.3.13 parts (d) and
(e), modify the spreadsheet that you created in Exercise 9.3.15 to make it
twice as efficient. In other words, modify the formula in cell A6 so that you
can replace the formula in A7 with the formula: ‘=A642". O
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Probabilistic methods using the “little Fermat theorem”

In practice, neither the brute force nor the Fermat method is used to verify
large prime numbers. Instead, probabilistic methods are used: these methods
can show that it’s very, very likely that n is a prime, but they don’t prove
for certain. The principal test of this type is the Miller-Rabin test for
primality. This test uses some of the principles described below.

In Exercise 18.3.15 in Section 18.3.2, we will prove the following fact
(which is widely known as Fermat’s little theorem):

If p is any prime number and a is any nonzero integer, then a?~! = 1
(mod p).

We can use Fermat’s little theorem as a screening test for primes. For
example, 15 cannot be prime since

2=t = 9ol =4 (mod 15).
However, 17 is a potential prime since
21771 =916 =1 (mod 17).
We say that an odd composite number n is a pseudoprime if

21 =1 (mod n).

Exercise 9.3.17. Which of the following numbers are primes and which
are pseudoprimes?

(a) 341 (b) 811
(c) 601 (d) 561
(e) 771 (f) 631

O

Let n be an odd composite number and b be a positive integer such that
ged(b,n) = 1. If ' = 1 (mod n), then n is a pseudoprime base b. We
can get a more accurate test for the primality of n if we test n versus a
number of prime bases. If n is a pseudoprime for several prime bases, then
we can say with high confidence that n is most probably a prime.
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Exercise 9.3.18. Show that 341 is a pseudoprime base 2 but not a pseu-
doprime base 3. O

There exist composite numbers that are pseudoprimes for all bases to
which they are relatively prime. These numbers are called Carmichael
numbers. The first Carmichael number is 561 = 3 - 11 - 17. In 1992,
Alford, Granville, and Pomerance proved that there are an infinite number
of Carmichael numbers [4]. However, Carmichael numbers are very rare.
There are only 2163 Carmichael numbers less than 25 x 10°. For more
sophisticated primality tests, see [1], [6], or [7].

Remark 9.3.19. (historical background) Encrypting secret messages goes
as far back as ancient Greece and Rome. As we know, Julius Caesar used
a simple shift code to send and receive messages. However, the formal
study of encoding and decoding messages probably began with the Arabs in
the 1400s. In the fifteenth and sixteenth centuries mathematicians such as
Alberti and Viete discovered that monoalphabetic cryptosystems offered no
real security. In the 1800s, F. W. Kasiski established methods for breaking
ciphers in which a ciphertext letter can represent more than one plaintext
letter, if the same key was used several times. This discovery led to the use
of cryptosystems with keys that were used only a single time. Cryptography
was placed on firm mathematical foundations by such people as W. Friedman
and L. Hill in the early part of the twentieth century.

During World War II mathematicians were very active in cryptography.
Efforts to penetrate the cryptosystems of the Axis nations were organized in
England and in the United States by such notable mathematicians as Alan
Turing and A. A. Albert. The period after World War I saw the development
of special-purpose machines for encrypting and decrypting messages. The
Allies gained a tremendous advantage in World War II by breaking the
ciphers produced by the German Enigma machine and the Japanese Purple
ciphers.

By the 1970s, interest in commercial cryptography had begun to take
hold. There was a growing need to protect banking transactions, computer
data, and electronic mail. In the early 1970s, IBM developed and imple-
mented LUZIFER, the forerunner of the National Bureau of Standards’
Data Encryption Standard (DES).

The concept of a public key cryptosystem, due to Diffie and Hellman,
is very recent (1976). It was further developed by Rivest, Shamir, and
Adleman with the RSA cryptosystem (1978). It is not known how secure
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any of these systems are. The trapdoor knapsack cryptosystem, developed
by Merkle and Hellman, has been broken. It is still an open question whether
or not the RSA system can be broken. As of 2014, 360-digit numbers have
been factored—in practice, RSA keys of more than 1000 digits may be used.

There’s been a great deal of controversy about research in cryptography
in recent times: the National Security Agency would like to keep information
about cryptography secret, whereas the academic community has fought for
the right to publish basic research. What’s not controversial is that cryp-
tography has come a long way since 1929, when Henry Stimson, Secretary
of State under Herbert Hoover, dismissed the Black Chamber (the State
Department’s cryptography division) in 1929 on the ethical grounds that
“gentlemen do not read each other’s mail.” A
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9.5 Hints for “Applications (I): Introduction to
Cryptography” exercises

Exercise 9.2.23: Prove by contradiction. If A has an inverse, then there
exists a matrix B such that AB = I. Take the determinant of this equation,
and show that it produces a contradiction to the fact that (a ©® d) & (b ©® ¢)
has no inverse.

Exercise 9.3.2: It is possible to list all of the numbers between 1 and pq
which are not relatively prime to pgq.

Exercise 9.3.3(c): Remember your exponent rules!

Exercise 9.3.9: Consider the case where n is the product of two equal factors:
n = a-a. Then how large must a be? Compare this with the general case
where n is the product of two unequal factors: n = xy. Show that the
smaller of these two factors must be smaller than a.

Exercise 9.3.11: Suppose n = ab. Choose a to be the smaller factor. Write
a=x—yand b =x + y, and solve for x and y. To finish the proof, you
need to prove that x and y must both be integers.

Exercise 9.3.12: Solve for z. What value of y makes x as small as possible?

Exercise 9.3.13(a): Prove by contradiction. (b): Write m = 2k+1. (d): Use
part (c), part (b), and the distributive law. (e): This is similar to part(b).
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9.6 Study guide for “Applications (I): Introduc-

tion to Cryptography” chapter

Section 9.2, Private key cryptography

Concepts:
1. Shift codes (monoalphabetic cryptosystem — one-to-one substitution)
2. Affine codes (monoalphabetic cryptosystem — one-to-one substitution)
3. Affine codes (polyalphabetic cryptosystem — ciphertext represents more
than one letter)
4. Modular matrix multiplication
5. Matrix inverses in Z,
Competencies
1. Know how to encode and decode using the shift code method. (9.2.2,
9.2.3, 9.2.6, 9.2.7)
2. Be able to find the decoding function when given a valid encoding
affine function. (9.2.10, 9.2.13)
3. Be able to solve modular matrix multiplication. (9.2.20)
4. Be able to find matrix inverses in Z,, when they exist. (9.2.24)

Section 9.3, Public key cryptography

Concepts:
1. RSA cryptosystem (more advanced encryption system: uses modular
exponentiation to encrypt and decrypt messages)
2. Binary expansion (like decimal expansion, except it uses base 2 instead
of base 10)
3. Identifying prime numbers by brute force (Euler totient function and

sieve of Eratosthenes)
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4. Identifying prime numbers by Fermat’s test for primality (Fermat’s
factorization algorithm)

5. Pseudoprime numbers

Key formulas

1. Fermat’s factorization algorithm: If n is an odd composite number,
then n = 22 — y? = (z — y)(x + y) for some z and y

2. Pseudoprime formula: the odd number n is a pseudoprime base b if

mod(b" 1t n) =1

Competencies

1. Compute binary expansion of exponent, either by hand (9.3.3) or by
spreadsheet (9.3.4).

2. Using binary expansion of exponent to rapidly compute modular ex-
ponentials by spreadsheet. (9.3.3, 9.3.4)

3. Given a base, encoding (decoding) key, and message, encrypt (decrypt)
RSA messages. (9.3.5, 9.3.6)

4. Given a base and encoding (or decoding) key, use brute force method
by spreadsheet to find the corresponding decoding (or encoding) key.
(9.3.9)

5. Use Fermat’s factoring method by spreadsheet to factor large numbers.
(9.3.15)

6. Determine if a number is pseudoprime relative to a given base. (9.3.17)
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Sigma Notation

We’re about to start looking at polynomials, which means we’ll be working
with sums of terms—sometimes many terms. Such sums are often written
using a special notation known as “sigma notation”. It’s possible that you
are already a master of sigma notation. If not, you can brush up with the
material in this section. (At very least, you should try some of the exercises
to make sure that you haven’t gotten rusty.)

David Weathers wrote the original version of Sections 10.1-10.4. Johnny
Watts started Sections 11.1-10.5, while Rachel McCoy made significant im-
provements to Section 10.5.

10.1 Lots of examples &

In mathematics one often encounters sums everywhere. Sometimes these
sums have very few terms, but occasionally the sums can reach hundreds,
thousands or even an infinite number of terms. In these cases, rather than
listing each and every term or listing the first several terms and assuming the
pattern is obvious, one can represent a sum using summation notation,
often referred to as sigma notation.

Sigma notation has four main parts: the index variable, the starting
value, the final value and the formula. These parts are illustrated in the
following example.

Example 10.1.1. Consider:
10

> (i+2)

i=1
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In this case, the ¥ symbol lets us know that this is a sum. The ¢ = 1
serves two functions. It tells us that the index variable is ¢, and that ¢ has
a starting value of 1. The 10 is the final value, and the (i + 2) to the right
of the X is the formula. The ¢ in the formula, takes each integer value from
the starting value (1) to the final value (10). Therefore we have:

10
S (i42)=3+4+5+6+T7+8+9+10+11+12=75.
=1

¢

This notation has a lot of flexibility. For example, the sum’s formula can
be a constant value:
10
> 5=5+5+5+5+5+5+5+5+5+5=50.
i=1
Or we could have the index as an exponent:

10
2(21‘):21_|_22_|_23_|_24_|_25_|_26_|_27_|_28_|_29_|_210
i=1
Now all the examples so far have a numerical value that can be calculated.
However, summation notation can also be used to express functions of vari-
ables such as:
10
Z(wl):.5[71+JI2+$3+$4+$5+JJ6+$7+$8+5L‘9+JJ10
i=1
Note that any variables in the formula that do not match the index are left
as variables (such as x in the previous example). While we do not know
what the sum value is other than in terms of x, we can much more concisely
state the sum in sigma notation.

Another typical use for the index in the formula is to denote an index in
a coeflicient. Consider the polynomial:

ax® + br + c.

Instead of using a different letter, we can use a subscript to denote a different
value but use the same letter:

a2x2 + a1x + ag.


https://www.youtube.com/watch?v=W9VTSHE5SJE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=43
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And when we use subscripts, we can use the index in the formula to denote
that subscript.

Changing the starting and/or final values does not affect the pattern of
the formula, but it does change the number of terms and any index values
used in that formula. Take one of the previous examples:

10
Zi:1+2+3+4+5+6+7+8+9+10
=1

If we were to change the ¢ = 1 to ¢ = 4 then the sum would lose terms 1,2,3:

10

Zi:4+5+6+7+8+9+10
1=4

Likewise, if we were to also change the 10 to 6, it would lose the terms 10,9,8

and 7;
6

Zi:4+5+6.
=4

Exercise 10.1.2. Evaluate the following:
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10.2 Algebraic rules for Sigmas

As with any algebraic notation, there are rules that allow us to do algebraic
manipulations with expressions that involve sigmas. In this section, we
explore some of these rules.

10.2.1 Constant multiples, sums, and products of sums

Many of the rules for manipulating sigmas follow from the commutative
law of addition and the associative and distributive laws for addition and
multiplication. To motivate these rules, we will look at simple examples and
then generalize.

Let’s first consider the example:

We know this is the sigma notation for 2-142-2+42-34+2-4+2-5. Using
the distributive property of addition and multiplication of integers, we know
this sum is the same as 2- (14 2+ 3+ 4+ 5). Now we convert the sum in
the parenthesis to sigma notation to yield
5
2- i.
i=0
The same argument could be used for any sum multiplied by any constant.
We can write this rule as:
b b

edi=c > d, (10.2.1)

1=a 1=a
where ¢ denotes an arbitrary constant and d; represents the term of the sum
corresponding to index i. Suppose next we take the sum of two sums and
combine them into a single sum using the commutative law:

4 4
it > P =(0+1+2+3+4)+ (20 +2' 422+ 2%+ 2%
i=0 j=0
=(0+2)+1+2Y+2+2) +(3+2%) + (4+2Y
4

_|_
> (i +29).

=0
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Applying the same process to an arbitrary sum of two sums gives:

Yowity yi=) (wity) (10.2.2)
i=0 j=0

=0

Now let’s look at an example of a product of two sums. Using the
commutative law of addition and the distributive law repeatedly, we have:

4 3
(Zz) Zl = (14+2+3+4)(1+1/2+1/3)
=1

=17
S 114 1/24+1/3)+2(1+1/2+1/3) +3(1+1/2+1/3) +4(1 +1/2 +1/3)
—1141-(1/2)+1-(1/3)+2-142-(1/2) +2-(1/3) +3-1+3-(1/2) +3-(1/3)
A4 (1/2) +4-(1/3).

We see that the product of a sum of 4 terms with a sum of 3 terms gives a
sum of 4 -3 = 12 terms. Furthermore, the 12 terms consist of all possible
products of (a term from the first sum) times (a term from the second sum).
We introduce the following notation to describe this:

4 3 4 4.3
() () -2y
i=1 i=1 j=1
We may generalize the above example to the product of two arbitrary sums

as follows:

(éx) ]éyj =2 (= g:lyj

=1

n m
=D vy

i=1 j=1

(10.2.3)

Exercise 10.2.4. In view of Equation (10.2.2), one might suppose that the

following is true:
n n ” n
1=0 1=0 =0

(a) Is this statement always true? If not, give an example of sequences {z;}
and {y;} such that the equality does not hold.
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(b) Is this statement ever true? If possible, give an example of sequences
{z;} and {y;} such that the equality does hold.

O

We may now use Equations (10.2.2) and (10.2.3) to break down compli-
cated multiple sums into simpler parts which may be evaluated more easily:

Exercise 10.2.5. Given that 3270 i = 210 and Y20, 7% = 2870, Evaluate
the following double sums:

(a) 20 20
SN (i+4)?

i=1 j=1

20 20

SN -4

i=1 j=1

20 20

> (Bi—4j)?

=1 j=1

10.3 Change of variable and rearrangement of sums

0o

Change of variable (a.k.a. substitution) is an extremely powerful technique
in mathematics. We’ve used change of variable in previous chapters, and
most likely you’ve seen change of variable when doing integrals in calculus.
Change of variable can also be used to simplify sums (in fact, there is a very
close relationship between integrals and sums, so it’s no surprise that the
same techniques are useful in both regimes).

Consider for example the following sum:

7

> (i-1)

=2


https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
https://www.youtube.com/watch?v=cVfYaB4Gn4M&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=44
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If we write this out term by term, we get 1 + 2+ 3 + 4+ 5+ 6 which has a
very easy representation as a sigma, namely 2521 j. It follows that

7 6

di-1)=>)

i=2 j=1

Writing it this way, we can see how we got from one some to the other by
making the replacement ;7 = ¢ — 1. We also had to change the limits of
the sum accordingly (just like you have to change integral limits when you
change variable).

A similar example is:

col

29: 272 = 29: 2772 .73
j=5

i=5
9
=> 275
§=5

We may substitute i = j—5. Noticingthat j =5=4i=0andj=9=17=4,
we obtain
12 4
1 i—2 _ i
IR 33
j=5 i=0

Exercise 10.3.1. Take the following sigma notation examples and change
the formula and final value so that the starting value becomes 0 and the
sum maintains the same value. Calculate the value of both the listed sum
and the resulting sum to show that the value is the same.
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O

Breaking up sums and re-indexing can sometimes make things a lot sim-
pler. Consider the following example:

o ZCIS<M;>.

Let’s break this up into two sums, from £ = 1 to 10 and from k& = 11 to 21:

() ()

It would be nice to combine these two sums into one. But to do this, we need
to make the summation limits the same. So we’ll change variable: j = k—10
in the second sum. Then the sum from k£ = 11 to 21 becomes a sum from

oS () S (5.

Now let’s massage the sum over j a little bit. Using the properties of cis,
the summand can be rewritten:

or(i .
20 20
. (27 +
=cis | —
20 "
. (275 .
= cis (20> cis(m)
. (2w
=—cis| —|.
20

Furthermore, we don’t change anything if we replace the j with k, since it’s
just a sum index anyway. Making these substitutions, we have:

10 11
Z . (2mk . [ 27k
S = C1S (20) -+ kEZI —CIS <20> .


https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
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Now we can split the 11’th term off from the second sum, and combine the
two sums from 1 to 10:

10 10
. {27k . [ 27k (2711
S = E cis <20> + ,;1 —cis <20> — cis < 50 )
10
= E cis @ — cis @ — cis 2r - 11
P 20 20 20

10
. (2711
=>» (0)—cis < 50 >

Exercise 10.3.2. By splitting up the sums and rearranging, evaluate the
following sums:

(a) lele cis (L7k)
(b) Sp2, cis (%)
O

We’ve already seen cases where one sigma is inside another, when taking
the product of two sums. Nested sums like this can often be rearranged to
obtain useful formulas.

Example 10.3.3. Consider the product of the sums Z?:o 3" and Z?:o 377,
By the distributive law and additive commutivity we have:
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[
(]
w
2
d

This sum has 9 terms, where each term corresponds to a pair (7, j) as shown
in Figure 10.3.1. These terms can be arranged along diagonal lines (as shown
in the figure) so that all terms on each diagonal have the same value. So we
can add the terms diagonal-by-diagonal as follows:

2 2
S>3 =3742.3"1+3.304+23" 3
i=0 j=0
=1/94+2/3+34+6+9
7
=18 —.
9
We may rewrite the five terms on the right in summation notation to obtain
the following equalities:

2 2 3 2
D) I SIEE S
n=1 n=1

i=0 j=0

N

=3+ n@E"+3)
n=1
2
=3+ ) (3-m)(3"+3™)

m=1


https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
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i—j="2 igj=-1 [i=j=0
(0,2) 12)  @2f

. ’
j values ’ .

rs /s
Vd s

% ) si—Jj=1
(0,1) (11 (2:1)

/s

/° .’ i—j=2
< . - val
00 (1,0} (20 1 values
Figure 10.3.1. Grid points corresponding to the terms in the sum:

> Z?:o 377

Exercise 10.3.4.how that the sum on the right-hand side of the preceding
equation can be written alternatively as:

3 2 2
Z n33—n + Z n3n—3 =34+ Z n(3n—3 + 33—n)
n=1 n=1 n=1

Exercise 10.3.5. By generalizing the above example, rewrite each of the
following expressions as a product of sums:

(a)
4 3
PORTEED ST
n=1 n=1
(b)
10
11+ (11 —n)(5" +57"
n=1
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The situation becomes interesting when the sum inside depends on the
the index variable of the outside sigma:

3 i
2 2.1
i=0 j=0
Unlike previous double sums, the inside sum will change depending on
what 7 is. When i = 0 then 7% 1 = 29:0 l=1so0l would be the first
term in the outside sum. When i = 1 then > % 1 = Zjl':o 1=141=2
so 2 would be the next term. With each successive term, the inside sum

increases by 1, so the result is 1 +2 + 3+ 4 = 10.

Note that the index of the outer sum may appear in any or all parts of
the inner sum. Here are some examples:

3 10 3 107 3 21 A
221; ZZ@'; 22(3”9&).
1=0 j=1 =0 j=1 =0 j=1

In some cases, nested sums may be simplified by exchanging the order
of summation. Take for example:
2 i
> 21
i=0 j=0
The first term has ¢ = 0 and j = 0: we write this as (4, j) = (0,0). When i =
1, then we have two terms: 7 = 0 and j = 1. Finally, when 7 = 2, we have j =

0,1, or 2. Altogether we have the index pairs: (0,0), (1,0),(1,1),(2,0),(2,1),(2,2).
These index pairs may be displayed on a grid, as shown in Figure 10.3.2.

Alternatively, we can arrange these index pairs by j coordinate. When
j is 0, i takes the values (0,1,2); when j is 1, ¢ takes the values of (1,2); and
when j is 2, ¢ takes the value 2. This can be expressed as the sum:

2

=7

So far our examples have only two sigmas, but it’s quite possible to
have an unlimited number of nested sigmas. For example, with three nested
sigmas we would have grid points in three dimensions. It doesn’t matter
what order you sum the terms in—as long as you include them all!


https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
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°
(2,2)
j values

.y e

i values

©0.0° (L0} 20y

Figure 10.3.2. Grid points corresponding to the terms in the sum:

S .
> i=0 Z;:o L.

Exercise 10.3.6. Draw a grid point diagram (similar to Figure 10.3.2) for
each of the following sums. Then use the grid point diagram as a guide to
exchanging the order of summation.

3 j+3
(b) Z Z(z +j) (Write as the sum of two summations.)
i=0i=j

(© > ) (2i+1)

7k
k=0 1=0

6 itl
(d) Z Z(z —j) (Write as a nested sum plus two additional terms.)

i=1 j=i

5 10
(e) D> ij

i=1 j=i

n 2n
(f) Z Zj:ci (Write as the sum of two summations.)

i=m j=i
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) Z Z(z —4j)? (You may assume m > 0. Write as the sum of two
i=m j=0
summations. )

Exercise 10.3.7.

(a) Using a grid point diagram, interchange the order of summation in the

following nested sum:
5 k
Z > L+ k)
=1¢=1

(b) Using a grid point diagram, interchange the order of summation in the
following nested sum:

(c) Using what you've from (a) and (b) above, give a general formula for
intechanging sums of the form:

M m
> fmyn),
m=1n=1

where f(m,n) is an arbitrary expression involving the variables m and
n.

Exercise 10.3.8.

(a) In Exercise 10.3.7, all sums had 1 as lower limit. Repeat the exercise
(parts a,b,c) but use 0 as the lower limit on all sums.

(b) Repeat Exercise 10.3.7 again, but use 2 as the lower limit on all sums.


https://www.youtube.com/watch?v=CVFYAB4GN4M&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=44
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(c) Based on what you have learned from (a) and (b), give a general formula
for interchanging the order of summation in the following expression:

Exercise 10.3.9. Using exchange of summation and other sum manipula-
tion techniques, find the exact values of the following sums:

() D3 i(8 ) @ X3 55+

20 7 .
10 10 ?
) 3G 0) © 2. G m

i=1 j=1

==t (*Hint*)
10 4 1 10 ¢

© X3 7 (6 3226+
=1 j=1 =1 j=1

10.4 Common Sums B

There are several sums, even a few infinite sums, for which the total value
is known. One very basic example is:

Exercise 10.4.1. Evaluate the preceding sum. Be careful-the answer is
NOT 1. O

Another very useful example is:


https://www.youtube.com/watch?v=i5RI-Ssnwps&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=54
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k
di=14243- 4 (k—1)+k
i=1

If one were to take the first term 1 and add it to the last term k, we get
k+ 1. If we take the second term 2 and add to the second-to-last term k — 1
again we get k + 1. This is true for all terms in between. In the case of an
even number of terms (such as 1+ 2+ 3 +4), the terms split evenly. In the
case of an odd number of terms (such as 1+2+3+4+5+6+7) we have 3
pairs that add to 8 but an additional term in the middle. In either case, we
take the first term add to the last term and multiply that quantity by 1/2
the number of terms. The formula is thus:

Ck(k+1
E:“:(;g)'

i=1

We can use the same reasoning to arrive at the following formula.

k
Zi:a+(a+1)—l—(a+2)---+(k‘—1)+k:(k:+a)(l<:—a+1)/2,

i=a

where a and k are integers and a < k.

Exercise 10.4.2.

(a) Write the sum of odd integers from 2a + 1 to 2k + 1 in sigma notation.
(Note that every odd number can be expressed as 2n + 1, where n is an
integer.)

(b) Give a formula for the sum that you wrote in (a). (Use the same rea-
soning that we used to find sums of consecutive integers.)
(c) Write the sum of even integers from 2a to 2k in sigma notation.
(d) Give a formula for the sum that you wrote in (c).
e) Write the sum of every 5 integer from a to a 4 5k in sigma notation.
)

f) Give a formula for the sum that you wrote in (e).

(
(


https://www.youtube.com/watch?v=I5RI-SSNWPS&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=54
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O

All of the sums in Exercise 10.4.2 have a constant difference between
consecutive terms (this constant difference is also called the step size). The
step sizes for parts (a), (c), and (e) are 2,2, and 5 respectively. Any sum with
a constant step size is called an arithmetic sum: and all arithmetic sums
can be evaluated using the same technique that was used in parts (b),(d),
and (f) of the exercise.

Geometric sums are defined as the sum of non-negative integer powers
of a common base. For example, here is a geometric sum with base 1/2:

ZT}G)Z <§)0+<;)l+<;)2”'+(;>n=1+;+i+;...+<;>n

We can evaluate this sum using an algebraic trick. Let S be the value of
this sum. We can solve for S by multiplying S term-by-term by 1/2 and
subtracting:

1 1 1 1 1
S:1+2+ +27 and §S:§+“'+W,

1 1

Solving this last equation for S gives:

so that

This same technique can be used to prove the formula for a great variety
of geometric sums, as we show in the following exercise.

Exercise 10.4.3.
(a) Let
n
S = Z art,
i=0
where both a and r are complex numbers, and n is a positive integer.
Use the “sum subtraction” technique (used above for the geometric sum
with base 1/2) to derive the the following general formula:

zar —alzjr

+1
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rrtl —q

(Note the formula can also be written: Y & ar’ = a———
r—

)

(b) Unfortunately, there is one value of r» where the above formula doesn’t
work. What is this uncooperative value of r, and what is the correct
formula in this case?

Exercise 10.4.4.

(a) Evaluate Y1 ()"

n=0

(b) Evaluate S 1% ()"

n=0

(¢) Evaluate 1% (%)n

n=0

(d) What do you think happen when the upper limit of the sum gets arbi-
trarily large?

Exercise 10.4.5. Use “sum subtraction” to obtain a general formula for

the following sum:
n
S = Z w- 2",
k=m

Where m,n are arbitrary integers (m < n) and w, z are arbitrary complex
numbers. O

Exercise 10.4.6.

(a) Let z = cis(27/3). Evaluate 3.2 _, 2",
(b) Let z = cis(27/10). Evaluate S20__, 2™
(c) Let z = cis(27/13). Evaluate 27114:2 2"

(d) Write down an equation that generalizes the results of parts (a),(b),(c).
Prove your equation.


https://www.youtube.com/watch?v=I5RI-SSNWPS&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=54
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O

Some sums can be evaluated by grouping terms together to partially
cancel out. Two examples are:

1-2+43—44...—1000 = (1—2)+(3—4)+. . .+(999—1000) = (—1)+(—1)+...4(—1) = —500.

1—44+9-164+25-36+...+49% = 1+ (=4 +9) + (=16 +25) + ... + (—48% + 49%)
=14+5+9+...+97
=(1+4-0)+(Q+4-1)+...+(1+4-24)
—(14+...+1)+4-(04+1+...424)

24
=24+4- (24415

=24+ 1200 = 1224.

In calculus you saw (or will see) sums that have an infinite number of
terms, otherwise known as infinite series. Some examples include:

* > D
‘ :Zoﬂ: HETIRECTIA)
1=
o
) _ (_1)21,21—1—1 _ .731 £U3 1,‘5
W =) i Tww T E
=0

Although we won’t be talking about infinite series, the same summation
notation that we’ve been using also applies to sums with an infinite number
of terms.

10.5 Summation by parts

Those who have studied integrals in calculus may be familiar with the pro-
cess of integration by parts. This is used when you need to find the integral
of the product of two terms. While this process is used for continuous
situations, there is a version of this process for discrete situations called
summation by parts.

To show how summation by parts works, we’ll look at a particular case.
Consider the following product of sums:

() ()
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If we broke this up into individual terms, we’d obtain n - n = n? terms
of the form a;b;. Figure 10.5.1 shows the terms arranged on a grid. We've
separated these terms into two parts using a diagonal line, and we’ve further
grouped terms either by row (above the line) or by column (below the line).
You’ll see in a minute why we’ve arranged things like this.

sl
#"fasbs,

Figure 10.5.1. Arrangements of terms in the product of sums

(Zi:l an) <Z§z=1 bn)-

Now let’s go back and express the sum of all these terms a different way.
We’ll introduce the notation:

k k
Ak = Zaj and Bk = ij.
j=1 i=1

Ay, and By, are the kth partial sums for the series ) a; and ) bj, respec-
tively. The product of sums that we started with can be written succinctly
as A5B5.

We may use this new notation to re-express the grouped terms in the
figure. Consider first the terms below the diagonal line. These terms are
grouped by column, and each group is encircled by an oval:

e The sum of the first oval(column on far left) is: a1b; = a1 Bi;
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e The sum of the second oval(column second from the left) is: as (b1 + b2) =
az Ba;

e The sum the third oval(column third from the left) is: a3 (by + by + b3) =
a3 Bs;

e The sum of the fourth oval(column fourth from left) is: a4 (by + b2 + b3 + by) =
a4 By;

e The sum of the fifth oval(column on the far right) is: a5 (b1 + by + bg + by + bs) =
CL5B5.
Adding these five sums together accounts for all the terms below the diagonal
line:

5
a1B1+aBa+ ... +asB5 = ZakBk’
k=1

where we’ve used summation notation to make the expression more compact.
Now let’s repeat this process for the horizontal ovals above the diagonal

line:

e The sum for the first oval(bottom row above line) is: a1bg = A;bo;

e The sum for the second oval( second row from bottom) is: (a1 + ag) bg =
Azbs;

e The sum for the third oval(second row from the top) is: (a1 + as + a3) by =
Asba;

e The sum for the fourth oval(top row) is: (a; + a2 + as + a4) bs = Aybs.
Adding these five sums together accounts for all the terms below the diagonal
line:

5—1
Aiby + ...+ Ayubs = ZAkkarl'
k=1

Since we’ve now accounted for terms both above and below the line, we
obtain the sum of all terms by adding together:

5 5—1

AsBs = Z ap By, + Z Agbgy1-
k=1 k=1
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By rearranging this equation, we find:

5 5-1
Z apBy = A5;Bs — Z Abit1-
k=1 k=1

There’s really nothing special about the number ‘5’ in our above expression—
we just chose it because this was a relatively simple case that we could
illustrate. To get the general formula, we simply replace ’5’ with 'n’:

n n—1
> axBr = AuBn— ) Abir.
k=1 k=1

Notice the striking similarity between this formula and the formula for in-

tegration by parts:
b b
/ udv = uv[Z—/ vdu.
a a

The resemblance makes a lot of sense, since integration is essentially a kind
of summation (more precisely, a summation taken to a limit.)

Now let’s look at some examples to see how we can make use of this
formula.

Example 10.5.1. Evaluate > ) _, 2¢71k.

In order to use the summation by parts formula, we need to define ay
and By, so that the summand 251k is the product of aj and By. Just as
in integration by parts, we want to make our choice based on what makes
the calculations easiest. Note that Bj is a partial sum of k terms, and
that Kk =1+ ...+ 1. So it’s natural to choose B, = k, which means that
ap = k=1,

Based on our choice of By and aj, we can now figure out b, and Ai. As
we noted above, By, is the sum of k 1’s, so that b, = 1. This leaves us with
ai = 2571, so that

k
Ak = Z aj.
j=1

As we’ve seen before, we may rewrite this by shifting the starting value of
the index, so that

k—1 2k 1
A = off =2 T~ _ 9k 4
k Z:O 2_1 )
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where we’ve used our standard formula for the sum of geometric series.

Summarizing our progress so far, we have:
ap =21 Bpy=k b.=1 A,=2F—-1.
Plugging the above values into the summation by parts formula, we find:

n n—1

ZQk_lk:(Qn—l)n—Z<2k—1).

k=1 k=1

The summation on the far right can be evaluated by breaking it into two
separate parts:

i
L

n—1 n—1
(2’“—1):;2’“—;1:(2"—1)—(71—1).

B
Il
—

¢

We can put this into our equality and do some further algebraic puttering
to obtain the final result:

zn:Q’Hk: 2" =1n—2"=1)+(n—1)
) =2"n—-n—-2"-1)4+(n-1)
=2"n — 2"
=2"(n—1).

Exercise 10.5.2. Evaluate ) ;_; k? by taking By, = k and a;, = k. You will
need the expression for the sum 1+ 2+ ... 4+ m that we derived previously.

O

From the preceding examples we may see that By = k is a frequent
choice. This is closely related to the fact that uw = x is a frequent choice
when applying the integration by parts formula.

Exercise 10.5.3. Prove the following equation using summation by parts:

n n n
Zng?Z
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Exercise 10.5.4.

(a) Evaluate >_}_, 3"k.

(b) Evaluate > 7 _, 3¥k2.

(c) Evaluate Y1, cis(27k/7) - k.



11

Application: Sigma Notation
in Linear Algebra

11.1 Introduction to sigma notation in linear al-
gebra &

Linear algebra is the algebra of real space: not just 3-dimensional space,
but n-dimensional generalizations. The important mathematical objects in
linear algebra are vectors and matrices: You may remember that matrices
represent functions (transformations) that act on vectors. Although linear
algebra is a relatively recent field of mathematics (which got its start in
the mid-1800’s), since the advent of computers it has risen to the ‘top of
the heap’ so to speak, so that most modern applications of mathematics to
real-world problems are built on linear algebra.

Sigma notation is a powerful notational tool for expressing relations and
proving identities in linear algebra. In this chapter, we will look at some
of the ways that sigma notation can be used to prove properties of vectors
and matrices in three-dimensional space. These properties are basic to in
the physics of moving objects and fields.

This chapter ties together material from several chapters in the book.
Besides sigma notation, we need concepts from sets, functions, and just a
little bit from permutations (we’ll give the background you need in this
chapter). To understand the chapter, the reader should already have seen
vectors and matrices (up to size 3 x 3) and know a little bit about how they
work.
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In the following discussions, we will assume that all matrices have real
entries. However, all of the results that we will prove also apply (in some
cases, with slight modifications) for matrices with complex entries, or ma-
trices with entries in Z,.

11.2 Matrix multiplication

It should come as no surprise that summation notation commonly shows
up when working with matrices. In the following discussion, we will follow
the common practice of denoting a matrix with a capital letter in italics,
and the entries of the matrix with the same letter in lowercase. Thus for
example, a4 denotes the entry of matrix A in row 2, column 4.

Consider the example of multiplying the 3 x 3 matrix A and the 3 x 2
matrix B.

a1 a1z a13 biq bi2
AB=| a1 az2 a3 ba1 b2
as1 asz2 as3 b1 b32

a1,1b1,1 +ai12ba1 + a1 3031 a1,1b12 + a1 2ba2 + a1 3032
= | a21b11 +az2b21 +as3b31 as1bi2+ az2b22 + az3b32
a3 1b1,1 +azpba1 +az3bz1 as1bio +aszobao 4+ az3b3

Wouldn’t it be nice if we could shorten that mess? Fortunately we can!
Let the matrix C' be the product AB, where A is an m X n matrix and B is
an n X p matrix , which implies that the dimensions of C will be m x p.!
If the row number is given by the first index (in this case i), and the column
number is given by the second index (in this case j), we can write the entries
of C as:

n
Cij = E a; by j
k=1

Exercise 11.2.1. In the above formula, both 7 and j are restricted to a
particular range of values. What are the possible values of ¢ and 57 %

'Remember the requirement for multiplying any two matrices is that the number of
columns of the first must match the number of rows of the second.
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Let’s show how this formula works in a specific case. Suppose A is a
3 x 3 matrix and B is a 3 X 2 matrix as in our previous example, then the
result of the product AB is a 3 x 2 matrix that we can call C. Now suppose
we want to find the entry on the third row in the second column of C, then
we would compute:

3

c32 = Z a3 kb2

k=1
=as1b1,2 + az2b2 2 + as3bs 2.
Sure enough, when we look at the long version we wrote earlier for the
product AB our result matches the entry on the second row, third column.

The above formula makes it possible to calculate individual matrix ele-
ments, without having to compute the entire matrix.

Exercise 11.2.2.

(a) Let the entries of A be given by a;; = v/i+j for 1 < 4,5 < 100. Let
C = A- A (we can also write C = A?). Compute €10,10-

(b) Let the entries of A and B be given by a;; = (i + j)? and b; ; = % for
1<4,7<27. Let C = A- B Compute cgg.

(c) For the matrices A and B in part (b), give a general formula for ¢y 5, 1 <
k < 27 where C = AB.

Exercise 11.2.3.

(a) Let the entries of A and B be given by a; ; = 2/+7 and b; ; = 27(F9) for
1 <4,5 <50. Let C = AB. Compute c711.

b) Let the entries of A and B be given by a; ; = 377 and b; ; = 4=+ for
(b) g Y Qi,j i,
1<14,j <22. Let C = AB. Compute c5 4.

(c) Let the entries of A and B be given by a;; = r'*7 and b; ; = s~(+9) for
1 <14,j < N, where r and s are arbitrary real numbers. Let C = AB.
Give a general formula for ¢; ;, 1 <i,j < N. (Note the same formula
works if 7 and s are taken as complex numbers.)
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Exercise 11.2.4.

(a) Let the entries of A and B be given by a;; = 29 and b;; = 279 for
1<4,j <20. Let C = AB. Compute c11,11.

(b) For A, B,C as in part (a), compute cg 6.

(c) Let the entries of A and B be given by a;; = 29 and b; ; = 27% for
1<14,7 < N. Let C = AB. Give a general formula for ¢; ; that is valid
for any (i,7) with 1 <4,7 < N.

(d) Let the entries of A and B be given by a;; = w” and b; j = w™% for
1 <i,5 < N, where w is a fixed complex number. Let C = AB Give a
general formula for ¢; ; that is valid for any (4, j) with 1 <1i,5 < N.

Exercise 11.2.5.

(a) Let z = cis(w/4), and let the entries of A and B be given by a;; = z%
and b; j = 274 for 1 <1i,j < 8. Let C = AB Compute csq and c35 .

(b) Let z = cis(2r/N), and let the entries of A and B be given by a;; = 2%
and b;; = 279 for 1 <i,j < N. Let C = AB Give a general formula
for ¢ j, which is valid for all k with 1 <k < N.

(c) Let z = cis(2m/N), and let the entries of A and B be given by a;; = 2%
and b; ; = 27 for 1 < 4,7 < N. Let C = AB Give a general formula
for cjy1,% which is valid for all £ with 1 <k <N — 1.

Exercise 11.2.6. Given three matrices A, B, C with sizes m xXn,nxp,pxq
respectively.

(a) Let D = BC. Write a formula for the entries d; ; of D in terms of the
entries of B and C (b; ;;, and ¢, ;, respectively).
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(b) Let G = AD. Write a formula for the entries go; of G in terms of the
entries of A, B and C.

(c) Let H = (AB), and let M = HC. Write a formula for the entries my
of M in terms of the entries of A, B and C.

(d) Using parts (b) and (c), show that matrix multiplication is associative.
(*Hint*)

11.3 The identity matrix and the Kronecker delta

The identity matrix I often comes up when working with matrices. You may
remember that an identity matrix has 1’s on its diagonal and 0’s everywhere
else:

1 0 -- 0 0]
01 0 0
I= M : M
00 --- 10
100 -~ 0 1]

Notice that the (i,7) entry lies on the diagonal if and only if its row
index (i) is equal to its column index (j). This pattern is expressed in
summation notation by the so-called Kronecker delta.? The Kronecker
delta is written as d; ; and takes the following values:

1if i =3,

=

0if i # 7.
By comparison with our description of the identity matrix, we may see
that the ¢, j entry of the identity matrix is equal to ¢;;. We may denote the

2 After Leopold Kronecker (1823-1891), a prominent German mathematician who made
many contributions to abstract algebra and number theory. Outside of those areas, he is
most famous for his strong opposition to the theory of transfinite numbers first proposed
by Georg Cantor (1845-1918). Most (but not all) mathematicians today would say that
Cantor was right and Kronecker was wrong. This is a fascinating research topic if you're
interested in the history of mathematics.
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(i,7) entry of I as [I]; ), so that:

[1]i; = dij-

Exercise 11.3.1.

(a) We know that if a matrix B is the inverse of the n x n matrix A then we
have the equations: BA = I and AB = I. Rewrite these matrix equa-
tions in summation notation, making use of the Kronecker delta d;; (As
above, denote the (4, j) entries of A and B as a;; and b; j respectively.
You will need to choose your indices in order to make the product work
out correctly.)

(b) What matrix equation corresponds to the following system of equations
n

in summation notation: Z 0ikOkj = 0ij.
k=1

O

It is possible to use the Kronecker delta to define matrices besides the
identity matrix. For example, consider the 4 x 4 matrix A with entries a; ;
defined by:

Q5 ‘= 5i+17j, 1< i,j < 4.

In this case, the entry is 1 if the column index is one greater than the row
index, and 0 otherwise:

o O O O
o O O
o O = O
O = O O

Exercise 11.3.2. Write out the following matrices:

1
(a) The matrix C' defined by Cij = 5(_5i,j+l + 51'7]‘,1) 1<9,7 <6.

(b) The matrix D defined by di ;= —2(52'7]‘ +5i+1,j +5i_17j, 1<4,5 <5.

(C) The matrix U defined by Ujj = 5i,j—1+25i,j—2+35i,j—3; 1 <4, <4,
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(d) The matrix X defined by x; j := —26; j + 26;4—; 1<4,5<5.

O

For matrices that are expressable in terms of Kronecker deltas, it is
possible to find matrix products using summation notation.

Example 11.3.3. Let v be the 10 x 1 matrix given by
V4,1 Zj,j=1...10.

(Note that v is essentially a column vector.) Let us compute C'v, where the
matrix C' defined by

1 . .
Cij = 5(—51'—1,]‘ +6iv14), 1<i,j<10.

The summation notation expression for the product is:

10

[CV]Z']‘ = Z Ci kVk,j-

k=1

The first thing to notice is that the second index j must be 1 since v is a
10 x 1 matrix. We may also substitute the expressions for d; ; and vy ; and
simplify:

10
1
[CV]i1 = Z 5(_&_17]- + 6iv1,4)k [Definitions of ¢;  and vy 1]
k=1
1 10 1 10
=3 Z Sic1xk + 3 Z Sit1. 1k [Summation rules]
k=1 k=1

At this point, we need to think about how the §’s function within these two
sums. Consider the first sum, namely:

10
> Sk
k=1

For each value of ¢ = 1, ..., 10, this sum will give a different result:

e When ¢ = 1, all terms in the sum are 0, so the result is zero.
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o When ¢ = 2, the only term that contributes is the k¥ = 1 term, since
01 = 0 unless k = 1. So for i = 2, the sum gives 1.

e Similarly when ¢ = 3,...,10, the only term that contributes is the

k =14 —1 term, since d3 3 = 0 unless k¥ =i — 1. So the sum gives ¢ — 1
for 2 <1 < 10.

We may summarize these findings as follows:

10 0 ifi=1
§ di—1kk =« . . ,
) i—1 if2<4<10.

The second sum may be evaluated similarly: this time, ¢ = 10 is the excep-

tional case:
1+ 1 f1<¢<9
1) k= -
Z’“k { if i = 10.

Substituting these expressions into our matrix product formula gives:

~J+2=1 if i =1
[Cvln =< -S4+ =1 if2<i<9
~2+9=-45 ifi=10.

The result is a 10 x 1 column vector with entries all 1, except for a —4.5 in
the 10*" entry. ¢

Let’s try another example, this time with two square matrices.

Example 11.3.4. This time we’ll compute the entries of the matrix product
FV, where the entries f;; of F' and v;; of V' are given by:

fij = Oit15 — dij; vy =217 1<4,j<20.



334CHAPTER 11 APPLICATION: SIGMA NOTATION IN LINEAR ALGEBRA

We may begin once again with the matrix product formula:

20
[FV]i; = Z fikVk;j [Matrix mulitplication formula |
k=1
20
= (Bip1h — 0ip) 2 [Substitution]
k=1
20
= Z 5,-+1,k2k+j - 5i7k2k+j [Substitution]
k=1
= 9iFlHi _ gitJ [Select nonzero term in each summation]
= 2t (2-1) [Exponent rules & common factor]
— 9itJ

The shakiest step in this computation is the one labeled “Select nonzero
term in each summation”, and we should double-check to make sure we did
it right. When ¢ = 1,2,...,19, then it is always true that 6;,1 will be
nonzero for a single value of k£ between 1 and 20, so the sum over k of 6;41 1
will reduce to a single term. But the case ¢ = 20 is different. In this case,
02041,k 1s equal to O for all values of k between 1 and 20. So we’ll have to
redo the calculation in this case:

20
k+j k+j 92—+
Z5zo+1,k2 I — G902 =0 — 221
k=1
_ 5204

This brings us to the final result:

2i+J if1<i<19and1<;<20
[FV]i; = 04i g .
=297 ifi=20and 1 < j < 20.

Exercise 11.3.5. Let v be the 10 x 1 matrix (a.k.a column vector) given
by: v;1 = 42,7 =1...10. Compute Dv, where the entries of D are given
by dm‘ = —251'7]' + 5i+17j + (51'_17]', 1 <4,5 <10 (The matrix D is an
example of a discrete second derivative matriz.) O
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Exercise 11.3.6. Let F' and B be the 50 x 50 matrices defined by fi,j =
div1,j — 0ij, and b;j = ;5 — 6;—1,5, respectively. ( F' and B are exam-
ples of forward difference matrixz and backward difference matrix,
respectively.)

(a) Compute F'B. Compute BF'.

O

It turns out that matrices defined using Kronecker deltas play a promi-
nent role in numerical analysis, and in particular the numerical solution of
ordinary and partial differential equations.

11.4 Abbreviated matrix notations

In the following discussion, we will be seeing lots of sums involving matrices.
This being the case, it’s worth our while to try to simplify our notation. In
our expression for C = AB, we had:

n
Cij = E a; kb j
k=1

Now, notice that the index k runs over all columns of A and all rows of B
(recall that matrix multiplication is only defined if the number of columns
of A is equal to the number of rows of B). This being the case, we don’t
really need to mention that k runs from 1 to n—we should simply understand
that the index k runs over all possible values. We can therefore convey the
same information by simply writing:

Cij =Y ikbij.
k

This makes more complicated matrix multiplications much simpler. For
example, if D = (AB)C where A is n x p, Bis p x q, and C'is ¢ X r instead
of

we may write

di,m

Z (Z az’,kbk,j> Cjm;s
j k
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which further simplifies to
diym = Z a; kK, Cjm-
j7k

We could write either > i OF > k,;: all possible values of k and j are summed
over, so it doesn’t matter which order we mention the indices.

There is an even more abbreviated notation that is commonly used in
physics, called Finstein notation (yes, it’s that Einstein!) Notice that
in our expression for ¢;j, the subscript k is repeated: that is, it appears
as a subscript on a; and on by ;. Similarly, in our expression for d;,, the
summed subscripts (j and k) are also repeated: both appear as subscripts
in two terms. The Einstein rule may be summarized as:

Repeated indices are assumed to be summed.

So for example, the expression

dijm = Z (Z ai,kbk,j> Cjm
J k
in Einstein notation simplifies to:
dim = ; kbk jCjm-
Exercise 11.4.1. Write the following expressions in both abbreviated no-

tations. Note that all indices are summed over the full range of possible
values.

(a) D2, <Z?=1 (X b=y aibsi) Ck,k)
(b) iy (Snis (Sl atnbue ) comn)

Exercise 11.4.2. Suppose A, B,C, D are n X n matrices. Write the com-
plete (unabbreviated) expression corresponding to the following sums in
Einstein notation:
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(a) aijak,ebprbie

(b) d; jakebjibig
O

In the following sections we will use the first type of abbreviated notation
(not Einstein notation).

11.5 Matrix transpose and matrix inverse

11.5.1 Matrix transpose

Transpose is another operation on matrices that lends itself to summa-
tion notation. Recall that the transpose of a matrix changes the rows to
columns,so that the first row becomes the first column, the second row be-
comes the second column, and so on. The transpose of matrix A is denoted
as AT. Using indices and recalling that first index is the row and the second
is the column, we can express this as:

[AT], = [A]

’i,] - .]71 ’
that is, the (i,7) entry of AT is equal to the (j,i) entry of A. Since we
typically write the (j,4) entry of A as a;;, we may also write:
T
[A }'L,‘] = aj7i'
Don’t get caught up with the particular indices ¢ and j—the important thing
is that the indices are switched when you take the transpose. For example,

we can also write [ATL.Z. = a; j or [AT]k m = Am.k-

Now let’s demonstrate the power of our new notation to prove an im-
portant property of transpose:

Proposition 11.5.1. If A and B are matrices such that the matrix product
is defined, then
(AB)T = BTAT.

Proor. We'll prove this by expressing the (7, ) entry of the left-hand side
in summation notation, doing some algebraic hocus-pocus, and showing that
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it agrees with the (i, j) entry of the right side. First we make things clear by
specifying that A has n columns and B has n rows (these dimensions have
to agree, or the product is not defined). This gives us

[AB]i,j = Z ai7kbk7j.
k

(remember that we decided to use abbreviated notation, so we leave off the
summation limits) so the (4, j) entry of the left-hand side is:

[(AB)T]”‘ = [AB]]',@' = Z aj,kbk,i~
k

’

At this point we can introduce A and B transpose because the j, k entry
of any matrix is the k, j entry of its transpose:

Zaj,kbk,i = Z [AT]k,j [BT]i,k;.
k k

Since the terms of A and B are being expressed as a summation, they
commute (i.e. order doesn’t matter), which allows us to say (using our
definition of matrix product):

D (AT B =D [BY], [AT], = [BTAT],

k k

Voila, we have the (i,7) entry of the right-hand side, and the proof is
complete. 0

Exercise 11.5.2. Give a formula for (ABC)T, and prove your formula
using summation notation. O

Exercise 11.5.3. We know that the transpose of a n X n matrix isa n xn
matrix. So we can consider transpose as a function from M, (R) to M, (R),
where M, (R) is the set of n x n matrices with real-number entries. Prove
or disprove the following;:

(a) Transpose defines an invertible function from M,,(R) to M, (R).

(b) Transpose preserves addition, i.e. AT+ BT = (A+ B)T for any matrices
A, B € My(R).
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(c) Transpose preserves multiplication, i.e. AT - BT = (A - B)T for any
matrices A, B € M, (R).

11.5.2 Matrix inverse

We can also express matrix inverse equations in summation notation. Recall
that the inverse of a matrix A is a matrix A~! such that AA~! = I and
AT1A=1T.

Exercise 11.5.4.

(a) Express the equations AA~! = I and A='A = I using summation nota-
tion. You may use the notation [A]; ; and [A™1]; ; to express the entries
of the two matrices.

(b) Suppose that A and B are invertible square matrices of the same size
(so that A= and B! exist and are also of the same size). Prove that
(AB)"'=B7tA"!

11.6 Rotation matrices in 3 dimensions

In three-dimensional space, the dot product (or scalar product) of two
vectors v := [v1,v2,v3]T and w := [wy, wq, w3]" is defined as

VW = VW + vawy + v3wg = E vjw;,

J

where we have made use of summation notation to shorten the expression.
If we also define the length of the vector v (denoted by [|v||) as

o]l == (v- 0)"/2,

then we may then write the cosine formula as

v-w

cos(6)

~ ollllwl”
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where 0 is the angle between the two vectors v and w. (You may have
encountered this formula in physics class or precalculus.)

Any 3 x 3 matrix A produces a function from three-dimensional space
to itself as follows: given any vector v := [vq,v2,v3]T, then the image vector
is Av. Using summation notation, we may write:

[A’U]z = Z Aijvj-
J

Now whenever we move an object in space, to get the new locations
of various points on the object we have to define a function whose domain
and codomain are subsets of R3. If that object is a rigid sphere (like the
earth), and the motion is such that the center of the sphere does not change,
the motion is called a rotation. The function that describes a rotation in
R3 can actually be expressed as a matrix as described above. But not
all 3 x 3 matrices are rotation matrices. They must have some particular
mathematical properties, as described in the next two paragraphs.

First, a rotation matrix R must preserve lengths and angles. In other
words, if v and w are any two 3-d vectors , then ||Rv|| = ||v||, ||[Rw|| = ||v]|,
and furthermore the angle between Rv and Rw must be the same as the
angle between v and w. In view of the cosine formula, this means that the
dot product must be preserved: Rv- Rw = v-w. In fact, since vector length
is the square root of a dot product, all of these conditions will be satisfied
as long as

Rv-Rw=v-w

for any two 3-d vectors v and w.

Another important property of rotation matrices is that they preserve
handedness. Handedness in three dimensions is defined as follows. Suppose
you have three mutually perpendicular unit vectors (u,v,w) in R® (note
the order of the three vectors is important). Point your index finger in the
direction of u, and simultaneously point your thumb in the direction of w
(make sure you're using your right hand!). Now without moving your thumb
or index finger try to line up your middle finger with the direction of v. If
you are able to do so, then (u,v,w) determines a right-handed coordinate
system. If on the other hand your middle finger can only point in the —wv
direction, then w,v,w determines a left-handed coordinate system. Note
that the handedness of a set of vectors depends on how you represent them
in space.
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Exercise 11.6.1.

(a) Draw a set of x, y, and z axes so that the vectors ([1,0,0]T, [0,1,0]",
[0,0,1]T) form a right-handed system.

(b) Draw a set of z, y, and z axes so that the vectors ([1,0,0]T, [0,1,0]T,
[0,0,1]T) form a left-handed system.

O

When we say that any rotation matrix R preserves handedness, we mean
that the handedness of three vectors (u, v, w) is the same as the handedness
of the three vectors (Ru, Rv, Rw). So for example, if you draw your co-
ordinate system so that the unit xz,y, and z ([1,0,0]T, [0,1,0]T, [0,0,1]T)
form a right-handed coordinate system, then the image vectors {R[1,0,0]T,
R[0,1,0]", R[0,0,1]T} must also form a right-handed coordinate system.

It turns out that this second condition is mathematically equivalent to
the condition that the determinant of R is positive, i.e. det(R) > 0. We
won’t prove this, but we can give a few examples to show that it is reason-
able. Consider the 3 x 3 matrix —I, which has determinant equal to —1.
This matrix will map the x, y, and z axes to the —z, —y, and —z axes
respectively. By using the right-hand rule, you may verify that if the x, y,
and z axes form a right-handed coordinate system, then the —z, —y, and
—z axes form a left-handed coordinate system.

The following exercise gives some other examples of matrices R with
det(R) < 0 which do not preserve handedness.

Exercise 11.6.2.

(a) Find a matrix R which maps the unit vectors along the x, y, and z axes
to the unit vectors along the —z, y, and z axes respectively. What'’s its
determinant?

(b) Show that the function defined in (a) maps a right-handed coordinate
system to a left-handed coordinate system.

¢) Repeat parts (a) an or the case where the z, y, and z axes to the
R t part d (b) for th here th d to th
y, x, and 2z axes respectively.
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O

So let’s go back to the first condition for rotation matrices, namely that
they preserve inner products: Rv-Rw = v-w. Let’s rewrite this in coordinate
notation. First, note that [Rv]; and [Rw], can be written as ), r4v; and
Zj ri;w; respectively, where 7y is the (k, j) entry of R. Therefore we have:

Rv- Rw = Z[Rv]k[Rw]k
k

- () (S |
k i J
= Z(Tkz‘vi)(Tkjwj)
i7j7k
= Z TkiTkjU;Wj.
i7j7k
Recall our rotation condition: Rv - Rw = v - w, which must be true for any
two vectors v and w. In summation notation, this becomes:

E TkiTkjViW; = E UmWm
1.,k m

Now let’s consider different possibilities for v and w. For example we may
let v =w = [1,0,0]T. this means that v; = d;; and wj = d;1, where 0 is our
old friend the Kronecker delta. Plugging this into our summation notation

expression gives:

D rkitki0inbin = m1mi.
1,5,k m

Because of the §’s, when we sum over 7, j, and m the only terms that con-

tribute will be i = j = m = 1. In summary, we obtain:

E Te1Tk1 — 1.
k

Using this strategy, we can obtain a whole bunch of identities:

Exercise 11.6.3.

(a) Repeat the foregoing argument with v = [1,0,0] and w = [0,1,0] (i.e.
plug these two vectors into the rotation condition). Show how this gives
you the value of Z”k TEITED.
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(b) We may generalize the argument in (a) by choosing v and w to be
all different possible combinations of the different coordinate vectors
{[1,0,0],[0,1,0],[0,0,1]}. To do this, you may express v as vy = Jk;
and w as wy = dyj, where i and j are both from the set {1,2,3}. By
using these replacements into the rotation condition, show that if R is

> " rriteg = dij.
k

(c) Show the converse of (a), namely: given that

> itk = 0ij,
k

a rotation matrix then

show that
Z TkiTkjViW; = Z UmWm
i7j7k m

for all v, w.

(d) Show that the expression ), ryi7y; = d;; can be rewritten in matrix
form as:

R'R=1.

We summarize these results in a proposition:

Proposition 11.6.4. A 3 x 3 matrix R is a rotation matrix if and only if
det(R) >0 and RTR = 1.

We will pick up on rotation matrices in Section 11.8.2 when we talk about
determinants, and again in Section 11.8.5 when we prove Euler’s rotation
theorem.

11.7 Matrix traces

Another cool application of summation notation with matrices is to prove
things about the trace of a matrix. The trace only applies to square matrices
(equal number of rows and columns) and is the sum of all the entries on
the diagonal-that is, the sum of all entries with the same column and row
number. In summation notation, the trace of an n x n matrix as:
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TI"(A) =ay1tago+...+apn = Zam

This time we are using the index ¢ for both the row position and the column
position, so its the position of the index that denotes row and column. The
formula for the product used two different letters for the indices because
they were not always equal, but for trace the row and column number will
always be equal, so we only need one letter.

The next exercise covers some basic properties of traces:

Exercise 11.7.1.

(a) Prove that if A and B are square matrices of the same size, then
Tr(A+ B) =Tr(A) + Tr (B).

(b) Prove that if A is a square matrix with real entries and k is a real
number, then Tr (kA) = kTr (A).

O

In the above exercise, we have considered the trace of the sum of two
matrices. Now we consider the trace of the product of two matrices. To this
end, let A and B be a n x n matrices. So first we have:

Tr(AB) = Z[AB ii = Z (Z a; kb;“) = Z ; j:bg ;.-

7 i,k

All we’ve done here is take the matrix product formula, and set the
second index of the second matrix entry equal to first index of the first
matrix entry. Now to make things interesting, let’s find the trace for the
reverse order:

Tr(BA) = Z[BA ii = Z (Z bi K z) = Z ay,ibi k-

% i,k

Let’s play with this last equation a bit. As we mentioned before, we
can change the sum over i, k to a sum over ¢, k without changing anything.
Furthermore, since b; ; and a; are numbers, they commute under multipli-
cation:
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Tr (BA) = bisak; = apibik.

Finally, we rename the indices by changing & to ¢ and i to k. (Remember,
it’s the positions of the indices that are important, not the letters we call
them by!) After renaming, we get:

Tr (BA) = ai kb,
ik

which agrees with our original expression for Tr(AB).

Exercise 11.7.2. In the above proof that Tr(AB) = Tr(BA), we assumed
that both A and B were square matrices. Show that the formula is still
true when A is a m x n matrix and B is a n x m matrix. (Notice that AB
and BA are both square matrices, so that Tr (AB) and Tr (BA) are both
well-defined.) O

Exercise 11.7.3. Show that Tr(ABC) = Tr(CAB), as long as the di-
mensions of A, B, C are such that the products are well-defined. (*Hint*)

O

Exercise 11.7.4. Show that
Tr(ABCD) = Tr(DABC) = Tr(CDAB) = Tr(BCDA),

as long as the matrices have dimensions so that all of these products are
defined. Notice that all of these arrangements of the matrices A, B,C, D
are cyclic rearrangements of each other (i.e. it’s as if the A, B,C, D are
written on a clock face, and are always read around clockwise) (we will have
a lot more to say about cyclic rearrangements (a.k.a cyclic permutations) in
Chapter 14.) O

Exercise 11.7.5. In linear algebra, given two n X n matrices A and B we
say that A is stmilar to B if there exists an invertible matrix S such that

B=S"14S.

(a) Prove that if A is similar to B, then B is similar to A. (*Hint*)
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(b) Prove that if A is similar to B, then Tr(A) = Tr(B). (*Hint*)

Exercise 11.7.6. Let A be a n x n diagonal matrix with positive entries, so
that the entries of A are given by: [A]; ; = a;0;; where a; > 0,1 =1,...,n.
Define the matrix log A as follows: [log A]; ; = log(a;)d;j, where log refers to
natural logarithm. Show that:

Tr(log A) = log(det A).

(Remember that the determinant of a diagonal matrix is the product of the
entries on the diagonal.) This formula is actually quite general, and applies
to many non-diagonal matrices as well, as long as log A is properly defined.

’ O

11.8 Levi-Civita symbols and applications

11.8.1 Levi-Civita symbols: definitions and examples

When dealing with vectors and matrices in physics, one often finds lurking
the Levi-Civita symbol,* which is written as an epsilon (the Greek letter )
with various numbers of subscripts. The possible values it can take are 1, -1,
or 0, depending on the values of the subscripts (we refer to these subscripts
as “indices”). This might not seem too useful since it can only take three
different values, but you will see that it does a great job of simplifying
expressions that ordinarily would be much more complicated.

For an epsilon with two indices (written as €;;), each index can be either
1 or 2. The different values that ¢;; can take are:

lifi=1,j=2,
€ =< —1ifi=2j=1,
0ifi=j.

3In some cases, the formula can be used to estimate the determinants of very large
matrices: see http://arxiv.org/pdf/hep-1lat/9707001.

4Levi-Civita actually refers to one person, not two: the Italian mathematician Tullio
Levi-Civita, (1873-1941), who worked on mathematical physics (including relativity).
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For an epsilon with three indices, each index can be either 1,2,or 3. The
values of ¢, are:

1 Where (/l:?j? k) = (1727 3)7 (27 3? 1)’ or (3’ 1?2)’
€ijk = § —1 where (i,7,k) = (2,1,3),(1,3,2), or (3,2,1),

0 where i = j,i =k, or j = k, i.e., if any index is repeated.

What’s the rule behind this definition? The six possible rearrangements
of (1,2,3) in the definition of €;;, are called permutations. We will be
studying permutations in detail in Chapter 14-but for now, we may simply
think of them as rearrangements of the integers 1,2, ...n (in this particular
case, we have n = 3. The three arrangements (2, 1,3), (1, 3,2), and (3,2,1)
can all be obtained from (1,2, 3) by a single exchange of two numbers. For
example, (2,1,3) is obtained from (1,2,3) by exchanging 1 «+ 2; and the
other two rearrangements exchange 2 <+ 3 and 1 <> 3 respectively. On the
other hand, to get (2,3,1) or (3,1,2) from (1,2, 3) requires two exchanges.
Since the number of exchanges for (2,1, 3), (1,3,2), and (3,2,1) is odd, these
are called odd permutations, while the others (including (1,2, 3) are called
even permutations. So the definition of €;;; may be summarized as follows:
it’s equal to 1 if (4,7,k) is an even permutation, —1 if (7,7, k) is an odd
permutation, and 0 if (¢, 7, k) is not a permutation (i.e. there are repeated
indices.

You may wonder, Why this strange definition? We’ll see more reasons
later, but for now we can relate the definition of €;;, to rotations of the
x,1y,z axes in 3-dimensional space. Let’s call these axes 1,2,3 instead of
x,1, z Now, if it is possible to rotate the axes so that 1 moves to 2, 2 moves
to 3, and 3 moves to 1: in other words (1,2, 3) has moved to (2,3,1). It’s also
possible to move (1,2,3) to (3,1,2). Notice that these two are exactly the
even permutations! On the other hand, it is not possible to move (1,2, 3) to
(1,3,2): To do so would require turning one of the axes around (this is called
a reflection). So the sign of ¢, distinguishes rotations from reflections.
Besides this geometrical interpretation, we’ll have a lot more to say about
even and odd permutations in Section 14.6.)

We may simplify the notation somewhat if we define the sign of a per-
mutation as follows:

. 1 if o is an even permutation,
sign(o) =

—1 if o is an even permutation.
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We may then concisely express the general definition of the Levi- Civita
symbol with n indices as:

sign (i1, 19, .. .1,) if no indices are repeated,
€ —
i 0 if any index is repeated.

The symbol with n indices is sometimes called an n-dimensional Levi-
Civita symbol: for instance, €;; is a 3-dimensional Levi-Civita symbol. The
reason for this is that most often they are used with vector spaces that have
the same dimension as the number of indices in the symbol. So the Levi-
Civita symbol with three indices, €;;;, is most useful in three dimensions, as
we’ll see shortly.

Exercise 11.8.1. Using the general definition of the Levi-Civita symbol,
show that:

(a) Zeijéij =0
4,J
(b) €iyiy...in0ii, = 0 for any j, k such that 1 < j <k <n,

(¢) €ijk = €jki = €xij-

In the Set Theory chapter you saw the formula:
|AUB| = |A|+ |B|—|ANnB|.

This means that you may count all the elements contained in set A or
set B by counting the elements in A and B separately, then subtracting
their intersection. You have to subtract the intersection because the overlap
between A and B gets counted twice in the separate counts of A and B.
(Think of a set diagram, where A and B are represented by intersecting
circles.) When we split up summations depending on whether indices are
equal or unequal, we have to add and subtract in a similar way. We can
prove this using Levi-Civita symbols.

Exercise 11.8.2.
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(a) Show that for any values i, j, k € {1,2,3}, it is always true that
1= |€z’jk’ + 57;j + 5jk + 5zk — 251]5’Lk
(*Hint*).

(b) Show that

ik i, ik i

1,3,k 1,7,k all unequal

(*Hint*)

11.8.2 Levi-Civita symbols and determinants

Now that we’ve defined Levi-Civita symbols, we can actually use them for
something! The first application we’ll look at is determinants. Suppose you
have a 2 x 2 matrix A:

A= < air  ai12 )
a1  G22
(Note that previously we separated multiple subscripts with a comma, e.g.

a; j: but from now on we’ll leave out the comma (e.g. a;;), which is the way
most math books do it.)

Then the determinant is:

ail a2
a1 Q22

det(A) = = aj1a22 — a12a21

We can write this using the Levi-Civita symbol as:

detA = Z Eijah'an

1,J
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Let’s check this by evaluating the double sum. Remember that in this
case, both ¢ and j run from 1 to 2

detA = E €ij01,02;
i7j

= E E €ijA1;02;
i

J

= E (€i1a15a21 + €2a1;a22)

)

=€11011021 + €12011022 + €21G12021 + €22012022

Looking at the definition, we know that €17 and €99 equals zero, so the
leftmost and rightmost terms go to zero. For the remaining terms we have
€12 which equals 1, and €27 which equals -1. So we're left with:

detA = ar1a22 — ar2a91,

which is exactly the definition you learned in linear algebra.

The natural generalization to a 3 X 3 matrix as:

detA = E €ijk01i025A3k-
4,5,k

Exercise 11.8.3. Show that the above formula using €;;;, does agree with
the determinant that you obtain from row (or column) expansion. O

Exercise 11.8.4. There is a formula for the determinant of a n x n matrix
in terms of an n-index Levi-Civita symbol. Guess what the formula should
be (you don’t need to prove it). O

Based on our definition of the Levi-Civita symbol €;;, in terms of the
sign of the permutation (7, j, k), we can also write the formula for a 3 x 3
determinant as:

detd= Y sign(0) - aisn)aze(2)a39(3).

permutations ¢
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Exercise 11.8.5. Use this formula to prove that the determinant of any
3 x 3 square matrix A is equal to the determinant of its transpose. That is,

detA = detAT
(*Hint*) O

An important concept to keep in mind when dealing with these Levi-
Civita symbols is what they mean based on when indices are equal or un-
equal, and how that relates to permutations. To see how this works, let’s
look at a proof to show that if any two rows in a 3 x 3 matrix are equal, the
determinant is 0. Based on our definition we start out with:

detA = Z 6ijka1ia2ja3k
Z.7‘7'7k:
We want to show what happens when any two rows are equal, so let’s do

one case where row 1 equals row 2. In that case az; = a1;. That means we
can rewrite our determinant as:

detA = Z 6ijka1ia1ja3k
Z.7‘7'7k:
Now the letters ¢, j, k are just “dummy indices” or placeholders, so we can

replace them with any letters we want. So we can replace ¢ with j and
vice-versa without changing the value:

detA = Z €4ikA1A1;A3k
Jiik
Now remember what we discussed earlier, if you interchange two indices
(that is, an odd permutation) of €;;;, you get its negative, so €, = —€;j.
Furthermore, We can replace Zm’k with Z”k because the order of sum-
mation doesn’t matter. This gives us

detA = Z *Eij]@aljaliagk,
1,5,k

Hey, whaddya know: this is exactly equal to the negative of our original
expression for detA! There’s only one way that a number can be its own
negative—the number must be zero. We conclude that if the first row is the
same as the second row in a 3 X 3 matrix, the determinant is always zero.

Exercise 11.8.6.
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(a) We showed that if the first and second row of a 3 x 3 matrix is the same,
the determinant is zero. Now finish the proof that the determinant of a
3 x 3 matrix is always zero if any two rows are the same; that is, prove
it for the remaining cases.

(b) Show that any 3 x 3 matrix which has two columns equal also has de-
terminant equal to 0.

O

We can take the notion of equal and unequal indices as step farther
by proving that the determinant of a product of two matrices is equal to
the product of their determinants. Let’s start with a simple 2 x 2 matrix.
If matrices A and B are both 2 x 2, we want to prove that det(AB) =
detAdetB. We can write det(AB) as:

det(AB) = €xy[ABJ12[AB]y,
T,y

Based on what we learned on how to represent products in terms of sum-
mation symbols, we can expand this as:

det(AB) = Z €xy Z a1ibiz Z az;bjy
z,y | @ J

:g €y g a1702;bizbjy
x7y

i?j

= Z a1;a2; [Z Exybixbjy] )
i,J

:B)y

where in the last equality we have exchanged the order of summation.

At this point we can now consider the product of two possibilities for
our indices, one where i = j and another where i # j:

det(AB) =Y (.)+ Y (..).
i=j i
Of the two sums on the right-hand side, the first makes zero contribution:
Exercise 11.8.7. Given that ¢ = j, show that Zx,y €zybizbjy is equal to 0.

Use this to show that the first summation in the square brackets makes zero
contribution. (*Hint*) O
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Since we can ignore the case where ¢ = j, let us look at the case where
1 # j. There are actually two cases: ¢ = 1,5 = 2 and ¢ = 2,5 = 1. Notice
that:

z Ea:ybi:pbjy = Z Exyblxbgy when i =1,5 = 2;

z?y "'E7y
E Gzybixbjy = — E exyblg;bgy when 7 = 2,j =1.
$7y x’y

These two cases can be summarized as:

E nybiwbjy: E Exyeijblxbgy.
T,y T,y

This gives us:

Z a1;a2; [Z Gmybz‘xbjy] = Z a1;a2; [Z Ea:yeijblbey]
i,j i,J

x,y z,y

= Z €;501;02; (Z Exyblazbe) )

i, z,Y

where in the second line we have noticed that the terms with z,y in the
RHS of the first line can be separated from the terms with 4,j. At this
point we are just about done, since we may recognize the two terms in this
final expression as det A and det B, respectively. Since the original expression
we started with was det(AB), we have:

det(AB) = detAdetB.

This proof as it stands only works for 2 x 2 matrices, but it turns out
that a similar proof works for n x n matrices. A key step in the proof was
the identity:

g ea:ybixbjy:§ ezyeijblbeya
Z‘?y

a;7y

which held whenever i,j € {1,2} and ¢ # j. A similar equality holds in the
3 x 3 case (and indeed in the n x n case).

Exercise 11.8.8.
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(a) Show that

E exyzbixbjybkz:§ EazyzGijkblachyb?)z?

T,Y,2 T,Y,2
whenever i, j, k € {1,2,3}. (*Hint*)

(b) Give a complete proof of det(AB) = detAdetB for the case where A

and B are 3 x 3 matrices.

O

We may use some of the facts which we’ve established in this section to
prove some important properties of rotation matrices.

Exercise 11.8.9. Recall from Section 11.6 that a rotation matrix R must
satisfy RTR = I and det R > 0.

(a) Using Exercise 11.8.5 and the determinant product formula det A det B =
det(AB), show that det R = 1 and det RT = 1.

(b) Since det R = 1 it follows that R € SL3(R) and hence R is invertible.
Use this fact to show that RT = R™!.

O

The results of the previous exercise are important, so we’ll restate them
as a proposition.

Proposition 11.8.10. For any rotation matrix R, det R = 1 and RT =
R7L

11.8.3 Levi-Civita symbols and cross products

You may have seen the formula for the cross product of two vectors in
vector calculus, or college physics. Given two three-dimensional vectors
a = (ay,a9,a3) and b = (b1, by, b3), the cross product of a and b can be
expressed as (note that the absolute value brackets in the formula indicate
that it’s a determinant and not a matrix.)
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e ey e3
axb= a; az az |,
b1 by b3

where e1, ez, e3 are the vectors along the z, y, and z directions in R3 (some-
times they’re written as i, j, k instead).

It may seem strange that the matrix we’re taking the determinant of
has some entries that are vectors, and some entries that are numbers. But
since we can still do addition and scalar multiplication with vectors, we can
plug the vectors into the determinant formula and still get a result—which
happens to be a vector. (Hey, if it works, don’t knock it!)

For example, suppose we have the vectors:

a=[224] and b=[-12 —3].
Then the cross product a x b is given by the determinant:

(3] ey e3
axb=| 2 2 4

-1 2 -3
Therefore:
cbeo |2 4 o] 2 4,22
AEPTO g 3T 1 3T 2

= — l4e; + 2e3 + Ges.
Or we can write the last line in a more familiar fashion:
[—14, 2, 6].

So all we have to do to define a cross product using the Levi-Civita symbol
is to simply plug these terms into the formula for the 3 x 3 determinant from

earlier:
3 3
axb=detd = Z Z Z eijkeiajbk.
i=1 j=1 k=1

If you compare this formula with our original definition of 3 x 3 determinant
(just before Exercise 11.8.3), you'll see that we have dropped the first index
on each term. The reason is that the e terms will always be on the first row,
a on the second, and b on the third.
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We can actually shorten this up a little bit more, by rewriting the formula
to find the i*" component of a x b. In other words, we don’t want the
summation of all three e; terms, just one particular e; term. That means
we remove the summation over ¢, which leaves us with:

3
(axb); = Z Z €ijk ;b
k=1

j=1

So for example, the first component (intuitively the x component, or as we
would say, the e; component) is:

(a X b)l = a2b3 — a3b2.

Exercise 11.8.11. Find the formulas for (a x b)s and (ax b)s. (There’s an
easy solution if you apply cyclic permutations to the indices in the formula
for (a x b);. O

Exercise 11.8.12. Use the Levi-Civita symbol to find the cross product of
the vectors a =[2, —3, 2] and b=[1, 4, —3]. O

Exercise 11.8.13. Use the Levi-Civita symbol-based equation for the cross
product to show a x b = —b x a. O

In the following discussion, we will be writing many multiple sums in-
volving the indices ¢, j and k, where each of these indices runs from 1 to 3. It
is convenient to simplify the notation by representing the multiple sum as a
single sum over multiple indices. For instance, with this simplified notation
we may rewrite our expression for a X b as

axb= Z eijk.eiajbk,
i7j7k

and we may rewrite the expression for (a X b); as

(a X b)l = Zeijkajbk.
g,k

Note that we do not bother to indicate that the indices i, j, k£ run from 1 to
3: this is understood by the nature of ;.
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11.8.4 Proof of the vector BAC-CAB Rule

As another example, suppose we want to prove what is known as the BAC —
C AB rule, which states:

ax(bxc)=b(a-c)—c(a-b).
We’'ll arrive at this formula this by two different routes: the brute-force
method or the symmetry method. Let’s start with the brute force method.

PROOF.(1) (brute force method) We can rewrite this using Levi-Civita sym-
bols by using our definition of cross product. First we find the cross product
of b and c:

(b X C)i = Z eijkbjck.
j?k
The tricky part is taking the cross product of that result with a. Let’s use
d to represent b x ¢, . Then the first component of d is:

d1 = (b X C)l = b203 — bgcg.

We can find the other components by noting that the indices are cyclic
permutations. Recall that €123 is equivalent to €231 because the cycles (123)
and (231) are equivalent. So to go from d; to dg, we need an equivalent cycle
that replaces the 1 in the i position (the first position) with a 2. Now the
J position, the second position, would have to be 3, because in this cycle 2
goes to 3, and similarly for the last position it will become a 1. So 1 becomes
2, 2 becomes 3, and 3 becomes 1. Using this replacement we get ds:

doy = (b X 0)2 = b361 — b103.
The same strategy gives us ds:
d3 = (b X 0)3 = blcg — bgcl.

By substitution (and some algebraic rearranging) we can find a x d, which
is the same as a x (b x c):

(a X (b X C))l = (a X d)l = a2d3 — a3d2 =Qa9 (blcg — bgcl) — as (bgCl — b163)
=b1 (azca + azcs) — ¢ (a2b2 + azbs) .

Again, we can use the strategy of cyclically permuting the indices to easily
find b9 and bs:

(a X (b X C))2 = (a X d)2 = a3d1 — a1d3 =as (b263 — bgcg) — al (blcg — bQCl)

=by (a363 + alcl) — C2 (a1b1 + a3b3) ,
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(a X (b X C))3 = (a X d)3 = a1d2 — agdl =a] (bgcl — b163) — a9 (6203 — bgCQ)
=bs (a1c1 + azca) — c3 (a1by + azbz) .

Recall the definition of dot product in three dimensions:
a-b =aiby + agby + asbs.
Look closely at the first component of our resulting vector:
(ax (bxc)); = b (asca + azes) — c¢q (a2b2 + azbs) .

The right hand side is the difference of two terms: by (ag2ce + ascs) and

c1 (agbg + asgbs). The first term can be seen as by times something that

is “almost” a dot product: it’s just missing the term ajc;. Similarly, the

second term is ¢; times an “almost” dot product that’s just missing a a1b;.

What are we going to do about the missing terms? Why, just add them in!

In fact, we can simply add and subtract a1b1c1 and rearrange to get:

by (GQCQ + a363) —C1 (ang + a3b3) =b; (GQCQ + a363) —C1 (agbg + CL3b3) + aibic; —aibia
= (b1 (a2c2 + ages) + arbicr) — (1 (agb2 + agbs) + arbicy)
=b (CLQCQ + aszcs + a101) —C1 (a2b2 + agbs + albl)
=bi(a-c)—ci(a-b).

It’s magic! So we have shown

(ax(bxc));=bi(a-c)—ci(a-b)

The same steps can be used to justify adding missing terms in the other two
components as well:

(ax(bxc))y=by(a-c)—ca(a-b).

(ax(bxc));=0bs(a-c)—cz(a-b).

Since we have all three components of the vectors represented and multiplied
by the same thing we can shorten this to:

ax(bxc)=b(a-c)—c(a-b).
Done! (]

The other way of proving the BAC-CAB rule requires a bit more finesse
than our previous brute force approach. This time around we are going
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make more use of the symmetries of €, so that we do not have to write out
every single term.

PROOF.(2) (Symmetry method) First let us write the BAC-CAB rule in a
way that allows us to more easily ask what happens for every possible value
our indices can take, so that we may organize them and get rid of any zero
terms.

We begin by writing the ith component of a x (b x ¢) using Levi-Civita
symbols as

(a X (b X c))z - Z leijkaj (Z 6kmnbmcn>]

J:k m,n
= Z [Eijkaj (ekmnbmcn)] .
j7k7m7n

By separating out the sum over k, we can rewrite this as:

(ax (bxc))= Z [Z Gz‘jkﬁkmn] a;bmcp.

j?m?n k"

Let’s define the quantity inside the [...] as Sijmn:

Sijmn = § €ijk€kmn-
k

Then we will be able to simplify our expression for (a x (b x c)), if we
can find a simpler expression for S;jm,,. This quantity will have a different

value for each choice of i, j, m,n.

Let’s focus on the indices ¢ and j. First, if ¢ = j then €, = €, = 0,
S0 Siimn = 0. On the other hand, if 7 # j, there is only one value of k that
makes €;;; nonzero (because we must have k£ # 4,j). We must also have

m,n # k in order for €gy,, # 0. It follows that there are two possibilities for
which S;jyn # 0:

(A) i#j,m=1iand n=7j;

(B) i #j, m=jand n=i.
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In case (A) we have:

Sijij = [Z Gz‘jkékij] = [Z E?jk] =1

k

In case (B) we have:

k
In summary we have:

Sijmn = 1if m =14, n=j, and i # j;
Sijmn = —1ifn =14, m = j, and i # j;
Sijmn = 0 otherwise.
Let’s plug this back into our expression for (a x (b x ¢)),. We can then
separate the terms where m = ¢, n = j from the terms where n =i, m = j.

Notice that there is no longer a sum over 3 indices but only one index, since
m and n are determined by ¢ and j:

Z ajbicj — Z CijjCZ'

JJ# JJF#i
—_———
(terms for m =4, n = j) (terms for m = j, n = 1)

Now if we add a;b;c; to the first set of terms, and add —a;b;c; to the
second set of terms, then the overall sum doesn’t change but the two ex-
pressions simplify:

E ajbicj— E ajbjci
J J

This is the same as:

bi(a-c) —c¢i(a-b),
which is the BAC — C AB rule. O

In this case the brute force method wasn’t much harder than the sym-
metry method, but for more complicated expressions it is far easier to use
the symmetries of € to prove a statement rather than do it term by term.
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The symmetry method gives an added windfall, namely a general identity
that will prove useful later:

Exercise 11.8.14. Using some facts from the discussion above, show that
Sijmn = Y_j €ijk€kmn can also be written in terms of Kronecker deltas as
follows:

Sijmn = 6zm6]n - 5m53m

11.8.5 Proof of Euler’s Rotation Theorem

In Section 23.2.6 we prove Euler’s formula for regular polyhedra. Our proof
depends on the following proposition:

Proposition 11.8.15.(Fuler’s Rotation Theorem): Any rotation (be-
sides the identity) in three dimensions has exactly one axis which is fixed
by the rotation.

In this section, we’ll prove this beautiful theorem! (Note the proof re-
quires familiarity with properties of eigenvalues and determinants, which is
a topic that is covered in most undergraduate Linear Algebra classes.)

First, we need to establish a general identity involving three-dimensional
Levi-Civita symbols.

Proposition 11.8.16. Given any 3 x 3 matrix A, then
D eireaiare =Y | €reajit.
j7k7€ j7k7£

(Observe the minute difference between the two sides: there’s an a;; on
the left-hand side which becomes an aj; on the right. Minute differences
matter!)

PROOF. Let us consider the case i = 1:
Z €jke01j ke = Z €jke0j10k-
j7k7£ j7k7£

and we’ll leave the cases ¢ = 2,3 as exercises.

On both right and left sides there are terms with j =1, j =2, and j = 3.
We'll consider these cases one by one.
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e j = 1: these terms are equal on both sides, since in this case a1; =
aj1 = aii.

e j = 2: in view of the €, on both sides, since j = 2 the only nonzero
terms are k =3,/ =1or k =1, = 3. On the left-hand side this gives
a12a31 — a12a13, while on the right-hand side we get as1a31 — as1a13

e j = 3: once again, in view of the €, on both sides, since j = 3 the
only nonzero terms are k = 1,£{ =2 or k =2,/ = 1. On the left-hand
side this gives aj3a12 — aizae1, while on the right-hand side we get

az1a12 — a31021-
Adding all left-hand side terms gives
a12a31 — 12013 + 13Q12 — A13021 = G12031 — G13021,
while adding all right-hand side terms gives
a21a31 — (21013 + a31Q12 — (31021 = —0A21A13 + A31A12.
Miraculously, these turn out to be equal.

Exercise 11.8.17. Complete the proof of Proposition 11.8.16 by showing
equality for the cases i = 2, 3. O

g

No doubt this formula seems entirely unmotivated and somewhat useless
(although you have to admit it’s kind of cute.) However, it becomes incred-
ibly useful when we apply it to rotation matrices. To this end, suppose R
is a rotation matrix whose (j, k) entry is denoted by ;. Then the equality
in Proposition 11.8.16 applied to matrix R becomes:

Z €jkeTigTke = Z €jkeT jiTke,
j?k‘?K j7k7£

which implies (by rearranging terms)
S (S eere | = S [ S e
J k¢ J ke
The expressions in parentheses on the left and right are identical. So let’s

define:
zj = Z €jkeThes
k0
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and we can replace the parenthetical expressions in our equality by z;:

E Tij2j = E TjiZj.
J J

363

Rewriting this in matrix notation gives Rz = RTz. Using the fact that
R™ = R™! (see Proposition 11.8.10) and a series of algebraic manipulations,

we find:

R:=R '%2=R:-—R'2=0
=R>%>—I2=0
= (R+I1)(R—1)z=0.

Now, there are two cases to consider:

e In the case where (R—1)z # 0, then it must be true that y := (R—1)z
is a nonzero vector which satisfies (R + I)y = 0. This implies that y
is an eigenvector of R with eigenvalue —1. Now since R is 3 x 3, it
must have 3 eigenvalues in total. Let A\; and A2 be the 2 remaining
eigenvalues. We know from linear algebra that the product of the
eigenvalues is equal to the determinant of R, which is equal to 1 by
Proposition 11.8.10. This imples that —1-A; - Ao =1 or A - Ao = —1.

Now, the A’s could be complex, or they could be real. If complex,
then they must be complex conjugates of each other (since R is a real
matrix), but then their product would be positive (why is this?). Since
their product is negative, this is not possible.

We may conclude that the A’s are real. Now let w be an eigenvector

for the eigenvalue \;. Then Rw = Ajw, so that |Rw| = |Ai]||w].
But we know from the properties of rotations (see Section 11.6 that
|Rw|| = |lw||. This implies |A\;| = 1. The same argument shows
[A2] = 1.

So what’ve we got? We know that A; and Ay are real. We also know
that |A\1| = |A2] = 1, so each A is either +1 or —1. Finally, we know
that A1 - Aa = —1. This means that one of the A\’s must be —1, and
one must be 1. Since the remaining eigenvalue is —1, It follows that
there is a unique eigenvector with eigenvalue 1, which is the unique
fixed axis of the rotation.

In the case where (R — I)z = 0, then the vector z is fixed by the
rotation R. But is it the only fixed vector? We’ll show that if there
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is another fixed vector, then R must be the identity. Suppose that
there’s another vector y which is not parallel to z and is also fixed by
the rotation, so that Ry = y. Since R' = R~!, we may multiply both
sides by RT and obtain y = RTy, or

Yj =D Tmjtim:
m
By the same token, we have z = RTz, or

Zk = E TnkZn-
n

Consider now the vector w defined by:
w; = Zeijkyjzk.
Gk

Since y and z are both fixed under the rotation R we may replace ¥,
and z with > rm;ym and Y, rpizy, respectively, so that:

W; = Z eijk(rmjym)(rnkzn): Z €ijkTmjTnkYm2Zn-

Jkm,n Jk,m,n

Now we may compute Rw using summation notation as:
[Rw], = Z T W;
i

= Z €iikTtiTmjTnkYm<Zn

i7j7k7m7n
:E E €ijkTtiTmiTnk | YmZn-
m7n i7j7k

It looks like we're venturing deeper and deeper into mathematical
muck. But lo! The expression in parentheses is something that we’ve
seen before, in Exercise 11.8.8:

E eijkrﬁirmjrnkzg €tmn€ijkT1i725T3k,
i,5,k .5,k
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and we may further simplify using other facts we’ve picked up here
and there:

§ Etmn€ijkT1iT2573k = €mn E €iikT1iT25T3k
P9,k 4,5,k
= €pmn det R

= €mn-

So, breathing a huge sigh of relief, we may replace what’s in the paren-
theses with €g,,,,, and obtain

[Rw]y = Z EtmnYmZn = Wp.

m,n

So we have three vectors fixed by R: z,y, and w. If we can show that
these are linearly independent, then all vectors must be fixed by R,
and R must be the identity.

To show that the vectors are linearly independent, it’s enough to show
that det[w y 2] # 0, where [w y 2] is the 3 x 3 matrix with columns
w,y, 2. We know that the transpose has the same determinant, so we
may find the determinant using the Levi-Civita formula as:

detfw y 2] = detfw y 2]*
= €ijkWiYj 2k
i7j7k‘
Y (z mym) -
iajuk m7n

= g €ijk€imnYjZkYm<Zn

Z7J7k7m7n

= Z (qukqmn> YiYm~ZkZn

Jkmn \ i

(note that in the third line when we substituted in the expression for
w;, we had to change the summation indices from j, k to m,n to avoid
conflict with the j, k indices that we were already using for a different
summation.) In the final line, we’ve separated out the summation over
i for a reason. Exercise 11.8.14 tells us that:

Z €ijk€kmn = 6@m53n - 5177,5]7’)’7,
k
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Assuming this is true (you really should try to prove it, if you haven’t
already), this enables us to evaluate our expression quite nicely.

Exercise 11.8.18. Using the previous identity, show that

Z (Z eijkeimn> YiYmzZkn = (y-y)(z-2)—(y- 2)2

Jkmmn \ i

= [lyl[?||z[|* sin(),

where 6 is the angle between the vectors y and z. (Recall the inner
product of two vectors a - b is given by Y, a;b;, while ||a||*> =a-a.) O

On the basis of the previous exercise, we may conclude that w,y, z are
linearly independent vectors (and thus a basis of R3), so long as y and
z are nonzero, nonparallel vectors.

Now let’s recap. We showed that in the case where (R —1)z = 0, then
z gives the direction of a fixed axis. We also showed, that if there is a
different fixed axis, then the rotation must be the identity. So as long
as R is not the identity, then R must have a unique fixed axis. We're
done ... almost.

Exercise 11.8.19. Actually we're not quite done. We never showed that
the vector z defined by z; := > jk EigkTjk is a nonzero vector. We’ll take
care of this case in this exercise.

(a) Show that if z = 0, then it must be true that r;; = r;; for all i,j €
{1,2,3}: in other words, R is symmetric.

(b) Show that if R is a symmetric rotation matrix, then (R? — I)v = 0 for
any vector v.

Once we’ve shown (b), we have that (R+ I)(R — I)v = 0 and we’re back to
the two cases that we’ve proved already. O

Now we'’re really done!
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11.9 Hints for “Sigma Notation” and “Applica-
tions of Sigma Notation” exercises

Exercise 10.3.9(e): This is a more difficult one. Exchange order of summa-
tion. You will need to use a summation formula from the next section. The
denominator factors as the difference of squares. Part of the final answer
will look like 1 +1/2 +1/3 + ...+ 1/19, which you can evaluate using a
spreadsheet or some other method.

Exercise 11.8.8: Both sides are 0 if any of the two indices i, j, k are equal
(show this). Then you only need to consider the three possible cases where
1,7,k are all unequal.

Exercise 11.8.18(a): You will need to change around the indices in the for-
mula from Exercise 11.8.14. Make the following replacements: k — 4,7 —
J»j — k. Then use the fact that €;j;, = €z (see Exercise 11.8.1. to obtain

E €ijk€imn — 5jm5kn - 6jn5km
A

You may plug this form into the expression on the left-hand side. You then
obtain 2 terms, which you can evaluate separately. Summing over a delta
eliminates one of its two indices: for example:

> SimOknYiYmznin = > _ YiliZkk;

Jkm,n ak

since the only m term that contributes is m = j, and the only n term that
contributes is n = k. From there, it’s a short hop to the expression with
inner products.

In order to get the expression with sin 6, you will need the cosine formula
for inner products (see Section 11.6).

Exercise 11.2.6: Write matrices G and H from parts (b) and (c) in terms of
A, B, and C.

Exercise 11.7.3: Notice that the product AB is in both terms. So for sim-
plicity you can define M := AB, and use a previous result.

Exercise 11.7.5(a) You don’t need summation notation here, just use basic
properties of inverses. (b): Use one of the previous exercises.

Exercise 11.8.1: There are two possibilities to consider, i = j and i # j.

Exercise 11.8.2(a): Hint: Make a table for all possible values of i, j, k.
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Exercise 11.8.2(b): Multiply the equation you found in (a) by a;j; and sum
over all 4, 7, k.

Exercise 11.8.5: Notice that ay g(1)a2 ¢(2)@3,4(3) 18 equal to ag—1(1) 104-1(2) 20¢-1(3),3
and that sign(¢) is equal to sign(¢~1).
Exercise 11.8.7: Replace €;, with —¢,,, and show that the expression is

equal to the negative of itself. (Alternatively, you can just verify the two
cases: i =j=1and i =j=2.)
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11.10 Study guide for “Sigma Notation” chapter

Section 10.1, Lots of examples
Concepts:

1. Summation notion (sigma notation) — ¥ is the symbol used to denote
summation it is called sigma

(a) Index variable — variable used in the equation that will change
and is located beneath the ¥ symbol

(b) Starting value — located below the ¥ and is the value that begins
the summation

(c) Final value — located above the ¥ and is the last value in the
summation

(d) Formula — located to the right of ¥, which includes the variable,
used to calculate the result

Competencies

1. Evaluate expressions given in summation notation. (10.1.2)

Section 10.2, Sigma notation properties
Concepts:

1. Addition and scalar multiplication of sums

2. Changing the summation index without changing the sum (10.3.1)

Key formulas

1. Formulas for addition and scalar multiplication of sums:

b
C-di:C-Zdi

(b) > (witw)=> zi+) ui
=0 =0

0

E

(a)

3 |l
Q

<.
I
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(c) Z(c‘:ci—i-d-yi):c-ZxH—d-Zyi
i=0 i=0

=0

Competencies

1. Be able to change the starting value and formula of sigma notations
and maintain the same results. (10.3.1)

Section 10.3, Nested sigmas
Concepts:

1. Nested sigmas — The entire sum of the inside sigma must be calculated
for each value of the index of the outside sigma. Note that the index
of the outer sum may appear in any or all parts of the inner sum.

2. Rearranging the order of summation — exchange the order of the sum-
mations and adjust the limits.

Competencies

1. Be able to exchange the order of sums and use other sum manipulation
techniques to calculate values of summations. (10.3.6, 10.3.9)

Section 10.4, Common Sums
Concepts:

1. Common summation formulas

2. Geometric series — sum of non-negative integer powers of a common
base

Key formulas

LY e k(k+1)

4 2
i=1
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k

2. Zi=a+(a+1)+(a+2)+-~-+(k—1)—|—k:(k+a)*w

; 2
1=a
where a and k are integers and a < k.

n—1

i 1—r"
E ar = a
< 1—r
1=0

Competencies

1. Be able to write the sum of given integers in sigma notation and give
the formula for that sum. (10.4.2)

Section 11.1, Sigma notation in linear algebra
Concepts:

1. Matrix multiplication with sigma notation
2. Kronecker delta

3. Abbreviated matrix notations

4. Matrix transpose

5. Matrix inverse

6. Rotation matrices

7. Matrix traces — the sum of all the entries on the diagonal

Competencies

1. Be able to write the formula for a given entry of a matrix in terms of
other matrices. (11.2.6)

2. Understand the relationship between the Kronecker delta and the iden-
tity matrix. Also, how to use it to write matrix equations in summa-
tion notation. (11.3.1)

3. Be able to write sigma notations in both forms of abbreviated nota-
tions. (11.4.1)
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4. Be able to expand abbreviated notations into unabbreviated expres-
sions. (11.4.2)

5. Be able to express the equations for an identity matrix using summa-
tion notation. (11.5.4)

6. Understand the basic properties of traces. (11.7.1)
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Polynomials

In this chapter we’ll be looking at polynomials from an algebraic point of
view. First we’ll review basic polynomial arithmetic that you’ve seen in high
school; then we’ll jump off from there and see how far we can generalize.
We’ll look at polynomial long division, and show that there are many strik-
ing resemblances with integer division. Finally, we’ll say something about
factoring of polynomials.

This chapter is by Jennifer Lazarus, based on preliminary work by David
Weathers, Johnny Watts, and Semi Harrison (edited by C.T.). Thanks to
Tom Judson for the original chapter source.

12.1 Why study polynomials?

Undoubtedly you’ve seen polynomials quite a bit in high school math. You’ve
added and multiplied them; you’ve graphed them; you’ve factored them:;
you’ve found roots. Let’s take a moment to remind ourselves why polyno-
mials and their operations are important.

Polynomials are used to express relationships between variables. For
example, we may consider the situation of a vehicle that is moving on a
straight road. We’ll use x to denote the position, and ¢ to denote time. If
(for example) the vehicle has an initial displacement of 100 meters, initial
velocity equal to 40 m/sec, and constant acceleration —5 m/ sec?, then we
may write the following relationship between position (x) and time (¢):

T = —th + 40t + 100

373
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(the factor of —g in the 2 term comes from calculus). In this equation, we
have expressed x as a function of ¢: in other words, ¢ is the independent
variable, and z is the dependent variable.

Now suppose a second vehicle is moving along the same road in the
opposite direction. We’ll represent this vehicle’s position as y, and suppose
that y depends on t as follows:

y = t* — 30t + 600.

If we’re interested in the position of the second vehicle relative to the
first, then we should take y — z, which we can also write as y + (—1)x:

5
y+ (—1)z = (t* — 30t 4 600) + (—1)(—5752 + 40t + 100).

This equation illustrates two operations with polynomials, namely scalar
multiplication and polynomaial addition. Naturally we may perform the
operations and obtain:

7
y—x:§t2—70t+500.

If we are interested in the time(s) at which the two vehicles meet (hopefully
without colliding!), then we need to find the solution(s) (also known as the
roots of y —x =0, or

7
5752 — 70t + 500 = 0.

It is interesting to note that even though the coefficients of this polynomial
are rational numbers, in general the solution(s) will not be rational numbers.
(In fact, we know from the quadratic formula that in some cases the solutions
are not even real numbers!)

Now suppose instead that the two vehicles are moving on two perpen-
dicular roads which cross at (0,0). In this case, the square of the distance
between the two vehicles is given by (using the Pythagorean theorem)

(Distance between vehicles)? = z2 + y?

5
— (f§t2 + 40t + 100)? + (¢? — 30t + 600)*.

Here we see both polynomial addition and polynomsial multiplication.
Using polynomial arithmetic (which we explain in detail in the next section),
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we find:
29
(Distance between vehicles)? = Zt”‘ — 260t> 4 3200¢* — 28, 000t + 370000.

If we would like to find the time(s) at which the relative distance is equal to
500, we should solve

29

500% = Zt‘l — 260t 4 3200t — 28, 000t + 370000,

which can be rearranged to give

29
Zt‘* —260t3 + 3200¢? — 28,000t + 120000 = 0.

This equation has two real solutions and two complex solutions. (In Sec-
tion 12.6.3 we will see that a polynomial of degree four always has at least
1 and at most 4 distinct complex roots.) The real solutions correspond to
the two times that the cars are 500 meters apart.

Exercise 12.1.1. Suppose vehicle 1 has an initial position of o = 150 m,

an initial velocity of vg = 60 m/sec, and a constant acceleration of a = —8

In/sec2. Additionally, suppose vehicle 2 has an initial position of yy = 80

m, an initial velocity of v9 = —50 m/s, and a constant acceleration of a = 2
2

m/sec”.

(a) Express the position of the second vehicle relative to the first, assuming
they are moving on the same road in opposite directions. Determine the
time(s) at which the vehicles meet.

(b) Determine the time, ¢ > 0, at which the distance between the vehicles
is equal to 400 m, if the vehicles are moving on two perpendicular roads
which cross at (0,0). Give an answer that is correct to three decimal
places.

O

The above discussion gives just one example of an application of polyno-
mials to a practical situation. There are myriads of other examples where
polynomials describe the behavior of real-world systems, and polynomial op-
erations and equations are used to make useful predictions and estimations.



376 CHAPTER 12 POLYNOMIALS

12.2 Review of polynomial arithmetic &

Let’s briefly review what you’ve previously learned about polynomial arith-
metic in earlier algebra classes. In this section we’ll cover polynomial ad-
dition, subtraction, and multiplication. Polynomial division is a bit more
complicated, so we’ll talk about that later.

In your earlier classes, most likely you considered polynomials with in-
teger, rational, or real coefficients. But everything we do in this chapter
also applies to polynomials with complex coefficients. And in fact, there
are even more exotic types of polynomials to which the same formulas and
results apply. We’ll consider these later in the chapter.

We’'ll begin with an example. Let
p(x) =2 -32+2 and q(z) = 52% 4+ 322 — 62+ 5.
Then we can add p(z) and ¢(z) as follows:
p(x) 4+ q(x) = (2% — 3z 4+ 2) + (523 4 32% — 62+ 5)
=(1+5)2® + 322 + (-3 -6)x + (2+5)
=62 +32° — 92 +7
Notice, we first grouped together terms with the same power of z, and then

we added the coefficients.

Multiplication of polynomials is a bit more involved, so we’ll start with
polynomials of single terms (monomials) and work our way up from there.
Suppose we have:

p(z) = 52° and ¢(z) = 32°.
Then their product is
p(z)q(x) = 523322
= (5-3)z?),
= 1527,

where we combined the coefficients and the exponents (remember your ex-
ponent rules!).

Let’s extend ourselves a bit and multiply a polynomial of two terms by
a monomial:

p(x) = 52 + 2z and ¢(x) = 3%


https://www.youtube.com/watch?v=2FuGOJ3kHTU&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=47
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According to the distributive law, we multiply each term in the first poly-
nomial with the second polynomial:

p(@)q(z) = (52° + 22)3°
= 503322 + 22322
= (5-3)zB? 4 (2. 3)z(1+2)
= 1525 + 62°.
In order to multiply a two term polynomial by another two term polynomial,
e.g.
p(z) = 52° + 2z and ¢(z) = 32? — 6z,
we extend the distributive law even further. Like before, each term in the

first polynomial is being multiplied by the second polynomial. Then the
product is

p(x)q(z) = (52> + 22)(32* — 62)
= 52°3(32% — 6z) + 22(32% — 62)
At this point we just have the sum of two terms, each involving a monomials

times a two-term polynomial, which we now know can be calculated using
the distributive property,

= 52%(32% — 62) + 2x(32% — 62)

= (152° — 302) + (623 — 122?)

= 152° — 302" + 62° — 122°
This is just the same result as the FOIL method you learned in high school,
but thinking in terms of the distributive property has the advantage of

being applicable to polynomials that have more than just two terms each.
For instance, with

p(z) = 523 + 42% — 2z and ¢(z) = 32? — 6z,
we obtain
p(2)q(z) = 523(32% — 6x) + 422 (32* — 62) — 22(32° — 6)
= (152° — 302%) + (122* — 2423) + (=623 + 122?)
= 1527 — 302" 4 122 — 242° — 62° 4 1242
= 152° + (=30 + 12)2* + (—24 — 6)2 + 1222
= 152° — 182" — 302% + 1222


https://www.youtube.com/watch?v=2FUGOJ3KHTU&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=47
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Again notice that we are grouping like terms by exponent. Later, when
we give a more general way of multiplying polynomials, this method of
distribution is what you need to have in mind.

Exercise 12.2.1.

(a) Let p(z) = 42% + 7z and ¢q(x) = —22% — 3z + 2. Using polynomial
arithmetic, compute both the sum and the product of p(z) and ¢(z).

(b) Let p(z) = 322 + 8z — 2 and q(x) = 222 — 5z + 9. Using polynomial
arithmetic, compute both the sum and the product of p(z) and ¢(z).

12.3 Polynomial operations in summation nota-
tion

In the preceding section, we discussed familiar polynomial operations. In
this section we give general formulas for these operations in terms of summa-
tion notation. These formulas are important both theoretically and practi-
cally: theoretically, because they give us a way to express general polynomial
operations in proofs; and practically, because they provide instructions for
programming polynomial operations on computers.

So far we have been using polynomials with real (and occasionally com-
plex) coefficients—but keep in mind that the formulas that we obtain will also
apply to other types of polynomials as well, as we shall see in Section 12.4.

First we give the summation representation for an arbitrary polynomial:

Definition 12.3.1. A polynomial may be written as

N
f(z) = ap + a1z + agx® + - +aya = Zanx”,
n=0

Where a,, is the coefficient of 2™, n=1,2,... N. It is possible for a,, =
0, in which case we usually omit the corresponding z™ term (for instance, we
write —7 4+ 22 rather than —7 4+ 0z 4 2%). When we write a polynomial as a
sum in this way we will assume that ay # 0 (here ay is called the leading
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coeffictent. Thus the largest power of x that appears in the polynomial is
xV: this largest power is called the degree of the polynomial. VAN

Remark 12.3.2. According to Definition 12.3.1, we write polynomials in
ascending order. This differs from Section 12.2, where we wrote polynomials
in descending order as is customary in secondary school. Since the operation
‘+’ is commutative, the two ways are equivalent: but we will increasingly
use this new way, which turns out to be useful for a number of reasons. A

Example 12.3.3. Express the following polynomials in summation nota-
tion:

(a) pr(z) =1+ +a*+a®

(b) pa(x) = 0+ z + 222 + 323 + 42 + 52° + 62° + 727

(c) p3(x) = 5z + 42 + 323 + 22%

(d) pa(z) =z + 42* + 927 + 162 + 2525

(e) ps(x) = —3ix3 4 4a* + 5i°2° (note that here i denotes /—1)

(f) pe(x) = V2cis(m/3)x>4+/3 cis(2m/3) 20— 2942 cis (4 /3) 212 4-/5 cis (57 /3) 215+
\/6x18

(g) pr(z) =0+ Ja+ 222+ 22 + 22!

(h) ps(z) =i+ (1 420z + (2+ 3i)x* + (3+4i)a® + (44 5i)z* + (5 + 67)
(6 + 7i)

Answers
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i

(2) pr(x) = Z?:O iiil

(h) ps(z) = Y0_o(a + (a + 1)i)a"

Note that we don’t always begin the sum at 0, depending on the poly-
nomial. Also, the power of x may be a function of the index, as in pg.

¢

Exercise 12.3.4. Write down the polynomial that each summation repre-
sents.

> i—o(i? + 2)2?
(b) p(z) = 327 5(r + 1)i"e
Z ( )s 2s

Exercise 12.3.5. Re-express the following polynomials in summation no-
tation, and give the degree of each polynomial.

(a) 2+ 0z + 622 + 023 + 102* + 025 + 142° + 027 + 1828
(b) cis(Z)z? + 023 + cis(m)a? + 025 + cis(2F)2®

(
(d

)
)
¢) 142z +42? + 823 4 16x* + 322°
) 144z + 1122 + 3023 + 852 (*Hint*)
)

1.3, 1.4 1.5
1-— m—f—az 7$+l’ N

(e

Remark 12.3.6. In cases where there is no apparent pattern in the co-
efficients, then summation notation may not be beneficial. For example,
suppose:

p(z) =7+ 2222 + 23 — 62° 4 428 — 29,



12.3 POLYNOMIAL OPERATIONS IN SUMMATION NOTATION 381

Since there’s no clear pattern in the coefficients, there’s no advantage in
writing p(x) in summation notation. A

Although the following definition may seem rather obvious, nonetheless
we should state it to be precise.

Definition 12.3.7. Two polynomials are said to be equal if and only if
their corresponding coefficients are equal. That is, if we let

M N
p(z) = Z ama™; q(z) = Z bpx",
m=0 n=0
then p(x) = ¢(x) if and only if M = N and a,, = by, for all 0 <m < M. A
Now we’re ready to express our arithmetical rules in summation notation.

Definition 12.3.8. We define the sum of two polynomials as follows.
Let

M N
p(z) = Z ama™; q(z) = Z bpx",
m=0 n=0
Then the sum of p(z) and g(x) is
max(M,N)
ple)+a(e)= D (a+bp)a"
k=0

In this formula, if M > N then it’s understood that by = 0 when k& > N,
and if N > M then it’s understood that a = 0 when k£ > M. A

Notice that we have taken the upper limit of the sum to max(M, N) in
order to make sure to include all nonzero terms from both polynomials.

Now that we have a formula for adding polynomials, the next step is to
obtain a formula for multiplying polynomials, using summation notation.
To do this, let’s repeat the polynomial multiplication procedure we used
in Section 12.2, only this time we’ll use two general polynomials instead of
specific examples. As with addition, we use

M N
pa) = S ama™ al@) = 3 b
m=0 n=0
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In the multiplication example in Section 12.2, we split up the first polyno-
mial, and multiplied each term of the first polynomial by the second poly-
nomial. When applied to p(x) and g(z), this becomes:

p()q(z) = apz® - q(x) + a1zt - q(z) + ... + anz™ - ¢(z)
M
= Z amz™ - q(x)
m]\ZO N
= Z amx™ - (Z bnx”> ,
m=0 n=0

where in the last equation we have replaced ¢(z) with its expression in
summation notation. Now since a,,2™ is constant with respect to n, we
may pull a,,z" inside the sum over n, which gives:

M N M N
p(x)q(z) = Z Z(amxm)bnm” = Z Zambnfnm+”,

m=0n=0 m=0n=0
where we have used our multiplication rule for monomials: (a,;,z™)b,z" =

b ™™,

Although this expression is correct, it’s kind of a hodgepodge. The
reason is that not all the terms with the same power of x are grouped
together. So let’s try to collect terms according to like power of x.

We'll start with 2°. Since terms have the form a,,b,z™", this means
we need to find all values of m and n such that m + n = 0. Since both m
and n are nonnegative, the only possibility is m = 0,n = 0, which gives the
term agboxz®.

Next let’s look at z!. In this case we want terms a,,b,2z™ " which have
m +n = 1. There are two: ajbox! and agbyz!.

If we treat 22 similarly, we have three terms: asbox?, a1b12?, and agbaz?.
Then z3 has four terms: asbox?, agb12?, a1baz3, and agbzxz3. Do you see the
pattern? For zF we will get k + 1 terms: apbox®, ar_1b12", ..., a1bp_1z",
and agbiz®. Since + is commutative, we may sum these terms together to
obtain the coefficient of zF, which we will denote as cj:

k
cr = apby + arbg—1 + -+ ax_1b1 + arpby = Zajbk,j,
7=0
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This is the coefficient of z* in the summation notation expression for the
product. At last we have our general formula:

Definition 12.3.9. The product of two polynomials p(x) = Z%:O amx™
and ¢(z) = ZnN:o b,x™ is given by:

M+N

pelale) = 3

k=0

where
k
C — Z ajbk,j
j=0

for each k. A

Let’s verify the formula by computing f(z), where:
f(z) = (1 + 2% — 223)(x + 42°).
f(z) is the product of p(z) and ¢(x), where:
p(z) = 12 + 0z + 12% + (—2)2® and q(z) = 02° + 12! + 022 + 423

Both polynomials have degree 3, so the degree of the product is 3+3=6:

m-+4n 6
p)g(z) = Y epat = cpat.
k=0 k=0
Now all we have to do is find the values of the seven coefficients cy, ..., cg,

some of which may be zero. Let us start with cg:

0

Co — Zaib[),i == aob[) =0-1=0.
=0
Already we’ve found a term that is zero. We still need to find six more
coefficients—how about we look at the fifth coefficient:
4

cy = Z aiby—; = apby + a1b3 + azby + azby + aqbp.
=0

Notice that as = by = 0 since p(z) and g(x) both have degree 3, so the first
and last terms are both 0. Altogether we have

c4=0+0-44+1-04(-2)-14+0=—2.
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Doing the same for the other coefficients gives us:
f(z) = 02° + 12" + 02® + 52° + (—2)a* + 42° + (—8)a®

Getting rid of the zero terms and dealing with the negatives gives us the
simplified version:

f(z) =z + 52 — 22" + 4a° — 8.

Exercise 12.3.10.
Perform the following polynomial multiplications in two ways: first, by
following the procedure described in Section 12.2; and second, by using the

coefficient formula in Definition 12.3.9 directly. Verify that the two methods
agree.

5+ x)(3x + 2?%)
V3 + 1)(2V3 + 523)
7/2 — 3z 4 42%)(2 + 23)

(a) (=
(b) (=
(c) (
(d) (=7z% + 423 + 82°)(3 — 5z + 102?)

O

The coefficient formula enables us to compute a single coefficient for a
product of polynomials without having to compute the rest of the product.
Here are some exercises for practice:

Exercise 12.3.11.

(a) Give the coefficient of x!% in the polynomial p(z)?, where p(z) =
2711(20 z".

(b) Give the coefficient of 22° in the polynomial p(z) - ¢(x), where p(z) =
S pa™ and q(z) = SF_, 2™,

(c) give the coefficient of 233 in the polynomial p(x) - ¢(x), where p(z) =
32 and gfa) = Yo (33 e
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12.4 More exotic polynomials

So far we’ve performed algebraic operations on polynomials with integer,
rational, real, or complex coefficients. We may identify different sets of
polynomials according to the type of coefficient used. For instance we may
define:

e Z[x] is the set of polynomials in the variable x with integer coefficients;

e Q] is the set of polynomials in the variable x with rational coeffi-
cients;

e R[z] is the set of polynomials in the variable x with real coefficients;

e C[z] is the set of polynomials in the variable z with complex coeffi-
cients.

We refer to Z[x] as “the set of polynomials over Z”, Q[x] as “the set of
polynomials over Q”, and so on.

However, we can generalize polynomials far beyond these cases. In this
section, we introduce several new types of polynomials and define arithmetic
operations (addition and multiplication) on these new types. In order to do
this, we’ll make use of the summation notation formulas in the last section
(reproduced here for convenience):

M N
@)= ana™ g@) =3 b,
m=0 n=0

max(M,N)
pl)+q@)= Y (a+bp)a"
k=0
M+N k
p(x)q(z) = Z Ckl“ka where ¢, = Zajbk_j.

k=0 Jj=0

We'll just need to replace conventional addition and multiplication (using
real or complex numbers) with other addition and multiplication operations
that are appropriate to the coefficients that we are working with.
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Polynomials over Z,

Consider first Zj,[z], where Z, denotes the integers mod n. For example,
two polynomials p(z) and ¢(z) in Z4[z] are

p(x) =1+ 3z +2°
q(z) = 2+ 2z + 32° + 323,

In this case, we should consider the variable = as representing an unknown
element in Z,4, so the '+’ operation in these expressions should be interpreted
as addition in Z4. All operations on coeflicients will also make use of addition
mod Z4. So for polynomial addition we may use the above formulas for
polynomial addition only use + in Zj instead of ordinary 4. For example,
using p(x) and ¢(z) defined above we have:

p(z)+q(z) = (1+2)+ (3+2)z + (0+3)z? + (14 3)z3
=3+ + 322

To multiply, we can use the same strategy, namely, use the previous formula
for polynomial multiplication, but replace both 4+ and - with their counter-
parts in Z4. Alternatively, we may use the distributive law as in Section 12.2,
with the understanding that we are distributing modular multiplication over
modular addition. As before, we group together all terms with like powers
of x and use modular arithmetic to combine these terms into a single term.
The result is:

p(@)g(x) =1-2+ (3-2+1-2)x+ (3-2+1-3)2>+
(1-243-3+1-3)2>+(1-2+3-3)2+
(1-3)z° + (1-3)2®

=2 + 122 + 223 4 32 + 325 + 32°.

Exercise 12.4.1. Compute the sum and product of p(z) and ¢(z).

(a) p(z) = 1+ +222, q(z) = 32% +23,where both polynomials are in Zs[z].

(b) p(z) = 14+42% + 323422, g(x) = 5+222 + 23, where both polynomials
are in Zg|x].
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O

It turns out that Zg|x] in particular is of great practical use (in polyno-
mial codes), so we include some exercises to get you warmed up for what’s
coming.

Exercise 12.4.2. Compute the sum and product of p(z) and g(z), where
both polynomials are in Zs[x].

(a) pz) =1+z+2?% q(z) =14+ 22+ a3
(b) p(z) =1+ 2% + 2%, q(x) = 2% + 23 + 2%

(c) p(x) =14z + 2>+ 23+ 24 q(z) = p(x).

Polynomials over nZ

Recall that nZ consists of all integer multiples of n: for example, 5Z =
{...,—15,-10,-5,0,5,10,15,...}. We may consider the set nZ[z], the set
of all polynomials whose coefficents are all multiples of n. Certainly it is
possible to add and multiply these polynomials, because any such polynomial
is also in Z[z]. But it is important to note that any sum or product of
polynomials in nZ[z] is also in nZ|x]: in other words, nZ[z] is closed under
addition and multiplication.

Exercise 12.4.3.

(a) Suppose that p(z) = agz? + a1z +ag and g(z) = byz + by, and both p(x)
and ¢(z) are elements of 5Z[z|. Prove that p(z) + ¢(z) and p(z)g(x) are
also elements of 5Z[x]. (*Hint*)

(b) Repeat the proof of (a), except replace 5Z[x| with nZ[z], where n is an
arbitrary positive integer.

(c) Repeat the proof of (b), except use general polynomials p(z) = Z?Zl a;jx’!
and g¢(z) = Y v, bra®.
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Polynomials over R[z]

Our next example is R[z][y], which represents polynomials in the variable
y whose coeflicients are polynomials in a different variable x. For example,
the following two polynomials are elements of Rx][y]:

pla,y) = (1+32) + (1 +2%)y + (52)y°
q(z,y) = (3z) + (2 + 22)y + (42%)y>.

We may add them as follows:

p(z,y) + q(z,y) = (1 +32) + 32) + (1 + 22) + (24 22))y + (5z + 42?)y?
= (1+62) + (3+ 2z + 2%y + (5x + 4z%)y>.

We will multiply p(z,y) and ¢(x,y) using the summation formula for coef-
ficients found in Definition 12.3.9.

0
co = Z a;bo_; = agbg = (1 + 33}) . (3IL‘) =3z + 922,
=0

1
c1 =Y aibo_i = agby + arbo = ((1+3z) - (24 22)) + (1 + 27) - (32))
=0
= (1482 4 622) + (2 + 2z + 222 + 22°)
= 3+ 10z + 822 + 22°.

2
o =Y aibo_i = agby + arby + agbo = (1 + 3x) - (427)) + (1 + %) - (2 + 22) + ((52) - (32)
i=0
= (422 +122%) + (2 + 22 + 222 + 223) + 1522
=2+ 22 + 2122 + 1423,

3
cs =Y abo_i = arby + agby = ((1+2?) - (42?)) + ((52) - (2 + 22)
=0
= (42? + 42") + (102 4 102?)
=10z 4 142% + 42*.
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4
cy = Zaib()—i = agby = 5z - 422 = 2023,
=0

Therefore, we have the following:

p(z,y)q(z,y) =co + c1y + c2y® + c3y® + cay®
=(3z 4 922) + (3 + 10z + 8% + 223)y + (2 + 2z + 212% 4 1423)y?
+ (102 + 1422 + 42h)y® + (202%)y*.

Exercise 12.4.4. Compute the sum and product of p(z,y) and ¢(z,y)
where:

p(z,y) = (1 +8x) + (3 — 2x)y? and
q(z,y) = (5x + 622)y — (2 + 62)y>

Polynomials over M,

Next we consider M, [z], the set of polynomials in the variable z with coeffi-
cients that are nxn matrices with real entries. Consider the two polynomials
p(z), q(z) € Ma[z] given by:
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We add p(z) and q(z) as follows:
P(x)Jrq(x):([:; Z]+[;‘ _34]%[‘21 ﬂ w2>
(L 8= 5]+ f )
s S )+l 2
(R A
:[_35 170]+[§ §]x+[180 ‘21] 2

Again, we will use the summation formula for the coefficients to compute
the product of p(z) and ¢(z).

oo

co = Zaibo—i = apbp = - =

0 1 5] [4 2] [-19 28
£ —2 4] |-3 6] |-20 20]"

1 - .- _

-1 5] [2 =1 (4 3 4 2
C1:Zaibl_i:aob1+a1boz . + :||: :|

— -2 4] [0 9 2 —4| |[-3 6
1= - - L B L
[-2 46 I B 72]
-4 38] " |20 —20] |16 18]"

2 -

-1 5 9 —1 4 3 2 -1

co = E a;jba—; = apba + a1by + asbg = [_2 4} - {8 ) } + [ : [ }
i=0

BRNERE:
2 1 |-3 6
31 6] [8 23] [-4 —2] [35
_[14 6]+[4 —38}+_5 10}_[23
3 -
4 37 9 -1 [-1 0] [2 -1
03:Zaib3—i:a1b2+02b1:|:2 —4}{8 1]—1—{2 1 '[O 9]

=0
160 -1 n -2 1] |58 0
|-14 —6 4 71 |-10 1|’

27
—22

|
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4
~1 0] [0 1] _[-9 1
C“Zzaib‘*‘i:‘”?b?:[z 1]'[8 1]:[26 —1]'
1=0

Therefore, we have the following:

p(2)q(x) = co + c1 + cox? + 333 + eyt
Rt 28+ 5 72 o4 35 27 24 58 0:113+ -9
=20 20 16 18 23 —22 —-10 1 26
Exercise 12.4.5. Compute the sum and product of p(x) and ¢(z), where:

= b oo g

-l 3

12.5 Polynomial properties and summation nota-
tion

In the past several sections, we have looked at polynomials with different
types of coefficients. These different types of polynomials have a lot in
common. In this section, we will look more deeply into just what it is that
is common to all.

Since we want our discussion to be general, we don’t want to restrict our-
selves to any particular set of coefficients. Instead, we will denote our poly-
nomials by R[x], where the set of coefficients R can represent R, C, Q, Z, Z,,
or M, (i.e. n x n matrices). This means that the results of this section will
be valid for many different types of polynomials. The only properties that
we require of the set R are the following:

(I) R has two binary operations, denoted as + and - (i.e. addition and
multiplication);
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(IT) R is closed under both addition and multiplication;

)
(III) Addition in R is commutative;
(IV) Addition and multiplication are both associative;
(V) Multiplication distributes over addition: e.g. a-(b+¢)=a-b+a-c
and (a+b)-c=a-c+b-c

(We will see somewhat later that all of these properties a characteristic of a
type of mathematical structure called a “ring”. But for the time being, we
may simply recognize them as properties that are common to the number
systems that we have been using so far.)

Given that R has addition and multiplication operations, we may define
addition and multiplication in R[z] using Definitions12.3.8 and 12.3.9. Let’s
first make sure that the definitions give well-behaved, closed operations in
Rizx].

Proposition 12.5.1. Given that R satisfies conditions (I)-(V) listed above.
Then Definitions 12.3.8 and 12.3.9 produce closed addition and multiplica-
tion operations in R|x].

You will prove Proposition 12.5.1 in the following exercise.

Exercise 12.5.2.

(a) Prove that Definition 12.3.8 gives a closed operation in R[x] by showing
that whenever p(x) and ¢(x) are polynomials in R[x], then p(z) + ¢(x)
is also a polynomial in R[z].

(b) Prove that Definition 12.3.9 gives a closed multiplication operation in
R[z] by showing that whenever p(x) and ¢(x) are polynomials in R[z],
then p(z)q(z) is also in Rx].

¢

Now that we’ve shown that the operations of addition and multiplica-
tion in R[x] are properly defined, we may verify that these operations have
workable properties.
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Proposition 12.5.3. Given that R satisfies conditions (I)-(V) listed above,
then addition in R[x] is both commutative:

p(z) + q(x) = q(v) + p(z),

and associative:

(p(z) + q(2)) +r(z) = p(x) + (¢(z) + r(z)).

PROOF. First, we show commutativity: Given two polynomials p(x) and
q(x) where

@)=Y was  ql@) = b,
=0 =0
then
max(m,n) '
p@)+q(@)= > (ai+b)a,
=0
and
max(m,n) .
p(x) +al@)= Y (bi+a)a’.
=0

Since the addition is commutative, we have a; + b; = b; + a; for all 7. It
follows that all coefficients of p(x) + ¢(x) are equal to the corresponding
coefficients of g(x) + p(x). By the definition of polynomial equality, this
means that p(x) 4+ q(z) = q(x) + p(z). O

PrROOF. Next we’ll prove additive associativity. To do this, we must intro-
duce a third polynomial, r(x), with degree ¢ and coefficients ¢;,i =0... /.
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We have,

(0(z) +4(2) +7(z) = ( S a4 b) Y e
i=0 i=0 i=0
max(m,n) ' ¢ '

:< Z (ai + bz)I‘z) + Z cr
i=0 i=0

max((m,n),l) A
= (ai + bi + ¢;)z’
=0
max(m,(n,f))
= (@i + bi + ci)a’
=0

m max(n,l)

— Z aixi —+ Z (bi + ci)xi

Therefore, by the definition of polynomial equality and polynomial ad-
dition, (p(z) + q(x)) + r(x) = p(z) + (¢(x) + r(x)). Note that we have used
additive associativity of the coefficients (i. e. (a; +b;) + ¢ = a; + (bi + )
for all 7).

g

It’s also true that the set R[x] has an additive identity and additive
inverses. We’ll look first at identity.

Proposition 12.5.4. Given that R satisfies properties (I)-(V), then the
additive identity of R[z] is 02°, where 0 denotes the additive identity of R.

PROOF. The proof has two parts: (i) p(z)+02° = p(x) and (i) 02°+p(z) =
p(x),Vp(x) € Rlz]. We'll prove (i) and leave (ii) as an exercise.

(i) Given an arbitrary polynomial p(z) = >"1" a;z' € R[z]. Then,
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So part (i) of the proof is finished.

Exercise 12.5.5. Complete part (ii) of the proof of Proposition 1.6.6. ¢

O

In the following we’ll write the additive identity of R[z] as 0 instead of 0z,
but don’t forget that the additive identity of R[x] is also a polynomial in
Rlx].

Before we prove additive inverse, we should first clarify some notation.
If a is an element of a ring R, then we’ll write the additive inverse of a as
—a. (This is obvious if R is R, Z, or some other familiar set of numbers—but
we also need to think about the general case where R is some other set such
as Zn, and the 4 operation is not regular addition.) Using this notation, we
may now characterize the additive inverse of a polynomial.

Exercise 12.5.6. Determine the additive inverse of each element in Z5 and
explain your answer. O

Proposition 12.5.7. Let p(z) = Y. ;a;2" be a polynomial in R[z], where
R satisfies properties (I)-(V). Then the additive inverse of p(z) is ¢(x) =
S o(—a;)xt, where —a; is the additive inverse of a; in R.

Exercise 12.5.8. Prove Proposition 12.5.7 by showing that p(z)+¢(x) and
q(z) + p(x) both sum to the additive identity of R[x]. O
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If we compare our results with the definition of group (Definition 5.4.26,
we make an important discovery:

Proposition 12.5.9. Let R[z] be the set of polynomials over a set R that
satisfies properties (I)-(V). Then R[z] is an abelian group under addition
(recall that “abelian” means that the group’s operation is commutative).

Exercise 12.5.10. Prove Proposition 12.5.9. You may use the propositions
that we already proved in this section. O

Next, we consider the proof for multiplicative associativity in general,
but before giving a proof, let’s do an example to see how this works.

Exercise 12.5.11. Show that the multiplication of two linear polynomials
and one quadratic polynomial is associative. (use ag + ajz,by + b1z, and
co + c1x + cox? as your polynomials.) O

We’ve been talking about polynomial addition—now it’s multiplication’s
turn. First we prove multiplicative associativity in R|x]:

Proposition 12.5.12. Multiplication in R|x] is associative:

PROOF. We’ve seen that the product of two polynomials p(z) and ¢(x) may
be written in summation notation as:
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Now we multiply a third polynomial, (z), to calculate its product with

(p(z)q(x)):

In the above calculation we have twice brought multiplicative terms inside
of summations, using the distributive law. The last step uses a familiar
exponent rule.

To complete the proof of associativity, we need to show that the summa-
tion expression for p(z)(g(x)r(x)) may be simplified into the same expres-
sion. The calculation is very similar, and we leave it as an exercise:

m n /£

Exercise 12.5.13. Show p(x)(¢(z)r(x)) also simplifies to Z Z Z agbjepaITE,
i=0 j=0 k=0

Give a justification for each step of your calculation. %

The exercise shows that (p(z)q(z))r(z) and p(x)(g(z)r(z)) both simplify
to the same expression, so they are equal. This completes the proof. O

Next we consider the distributive property for polynomials.

Proposition 12.5.14. Polynomials in R[z| have both right distributivity
across addition:

(¢(x) + r(2))p(x) = q(@)p(z) + r(z)p(z),
and left distributivity across addition:

p(z)(q(x) +r(z)) = p(z)q(x) + p(z)r(z).



398 CHAPTER 12 POLYNOMIALS

Proor. To show right distributivity, we have:

(q(z) +r(2))p(z) = < zn: bjx! + ze: ijfj> i a;z’
j=0 j=0 i=0
:(maxz(?g)b +¢j)x )Zal

J=0
max(n,f) m
:< Z (bjz? + C]l‘])> Z a;x’
7=0 =0
max(n,f) m
= <(b]x] + cja?) Z a;x >
j=0 1=0
max(n,f) m
= Z(bja:j + cja’ )a;x
j=0 =0
max(n,f) m
= Z Z(bjx a;x’ + cjalax’)
7=0 =0
max(n,f) m max(n,f) m
= Z bjxla;x’ + Z c;! a;w
j=0 =0 =0 =0
n m £ m
= Z Z bjz! a;xt + Z Z c;r’ a;x
7=0 =0 j—O =0

( ) (x ) (Sv)p(x),

which gives us right distributivity. We'll leave left distributivity up to you:

Exercise 12.5.15. Provide justification for each of the steps in the calcu-
lation in Proposition 12.5.14 O

Exercise 12.5.16. Prove that polynomials in R[z| have left distributivity
across addition. O

g
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12.6 Polynomials and division

So far, we have looked at addition and multiplication of polynomials. We’ve
also dealt with subtraction, because subtraction is simply addition of ad-
ditive inverses. So it’s only natural to consider the question of polynomial
division.

We’ve just mentioned that subtraction is the same as addition of additive
inverses. Similarly, division is multiplication by multiplicative inverses.

Do polynomials have multiplicative inverses? Be careful here. In high-
school algebra or in calculus, the polynomial p(z) has a perfectly good mul-
tiplicative inverse, namely 1/p(z). But 1/p(x) is not a polynomial, so for us
it doesn’t count!

Exercise 12.6.1.

(a) Which elements of R[z] have multiplicative inverses that are also ele-
ments of R[x]?

(b) Which elements of R[z] have multiplicative inverses that are also ele-
ments of R[x]?

12.6.1 :_)Fhe Division Algorithm for polynomials over fields

In Chapter 5, we used the following fact about integers: for any two integers
a and b with b > 0, then there exist unique integers ¢ and r such that
a = bg+r, where 0 < r < b. This fact was known to the ancient Greeks, who
proved it using what’s known as the division algorithm.' It turns out that
a similar division algorithm exists for many types of polynomials. In this
section we’ll give the proof. But first, as usual, we look at some examples.

Example 12.6.2. Dividing polynomials in R[z] is very similar to long
division of real numbers. For example, suppose that we divide 2% —2?+2x—3
by z — 2.

! As we said before, you may find a proof in any book on number theory. Or, take a
look at: http://2000clicks.com/mathhelp/NumberThO9EuclidsAlgorithm.aspx.


https://www.youtube.com/watch?v=qc8GBcukwr4&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=49
http://2000clicks.com/mathhelp/NumberTh09EuclidsAlgorithm.aspx
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r—2 2% — 22 4+ 2z — 3
2 - 222
22 4+ 2z — 3
2 - 2z
4r — 3
4r — 8
)

In the example, we need to take the leading power term of x in the divisor
and multiply by something that will make it equal to the the leading power
term in the dividend. In this case it’s #2. This gives 2% - (v — 2) = 2% — 222
Subtract from the dividend to yield a remainder of 2% + 2z — 3 and repeat
until the remainder is of a degree less than the divisor.

Hence, 2% — 22 + 22 — 3 = (x — 2)(2% + o +4) + 5, which you may check
by multiplying out the right-hand side. ¢

In Zy[z] the process of division is very similar. You may want to use a
Cayley table for multiplication, to determine what terms go in the quotient.
Additionally, when subtracting the product of the quotient and divisor from
the dividend, each negative term must be replaced with its equivalent in Z,,
which is the remainder mod p.

Example 12.6.3. Divide (223 4 322 + = + 4) by (x + 2) where both poly-
nomials are in Zs[z].

202 + 4z + 3
a:+2]2x3+3m2+ x + 4

203 4+ 4a?
427 + r + 4
422 + 3z
3r + 4
3z + 1
3

Exercise 12.6.4. Find ¢(z) and r(x) in the following equations. All poly-
nomials are in R[z].
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(a) 2243z +27 = (z — 2)q(z) + ()
(b) 1523 4+ 132 — 27 = (z — 5)q(x) + r(z)

(c) 1023 — 22 + 3z + 27 = (222 — 4)q(x) + r(2)

Exercise 12.6.5.

(a) Divide 32° + 2% 4+ 42* + 2 by 2 + 3 where both polynomials are in Zs[z].
(b) Divide 27 + 2% + 23 + 2 by = + 1 where both polynomials are in Zs[z].

(c) Divide 42° + 2z* + 323 + 522 + 2 + 6 by = + 6 where both polynomials
are in Zz|x].

(d) Divide 25+ 924623 +22?+7x+3 by 22+ 72+9 where both polynomials
are in Zn[z].

(e) Divide 723 + 222 + 4z + 8 by 5z + 6, where both polynomials are in
Zlg[.%'].

O

We are now ready to prove the division algorithm for polynomials. In
order to make our results as general as possible, we won’t be too specific
about the coefficients.In Section 12.5 we gave five properties that our set
of coefficients R should satisfy (including associativity, distributivity, and
commutativity of addition). In this section we will refer to our set of coeffi-
cients as F', and we require that F' have the same properties as R plus two
more:

(VI) F has a multiplicative identity (which we will denote as 1)

(VII) The nonzero elements of F' have multiplicative inverses: that is, if
a € F and a # 0, then there exists an element a~! € F such that

a-at=a1la=1.
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These properties are characteristic of a type of mathematical structure
called a field. We'll study fields more extensively in Chapter 24: but for
now, we simply recognize Properties (I)-(VII) as common properties of many
(but not all) of the number systems we’ve seen so far.

Exercise 12.6.6. Of the number systems R, C,Q,Z,Z,, M, which all
satisfy (I)-(V), which do not satisfy (VI) and (VII)? O

Proposition 12.6.7. (Division algorithm for polynomials) Suppose that
the set F' has addition and multiplication operations that satisfy (I)-(VII).
Let f(z) and g(z) be nonzero polynomials in F'[z], where the degree of g(x)
is greater than 0. Then there exist unique polynomials ¢(z) and r(z) in F[z]
such that

1) = g(@)a(@) + (),

where the degree of r(x) is less than the degree of g(x).

PROOF. We will first prove the existence of g(x) and r(z). We define a set
S as follows:

S ={f(zx) — g(x)h(x), for all h(z) € F[z]}.

This set is nonempty since f(z) € S. Let r(x) be a polynomial of smallest
degree in S.? This means that there must exist a ¢(z) such that

r(z) = f(x) = g(x)q(z).

We need to show that the degree of r(x) is less than the degree of g(x).
Let’s prove this by contradiction. So we assume the contrary, namely that
degg(x) < degr(x). Let n,m be the degree of g(z), r(z) respectively, where
n < m. Then we may write

g(z) = ao + arx + - - + a,z"
and
r(z) =by + b1z + -+ bpz™,

where a, # 0 and b, # 0. Taking a cue from the process of long division,
we define a new polynomial /() by

r'(z) :==r(z) — bmaglxm_”g(x)

2At this point we can’t assume that there’s only one such polynomial, so we have to
say “a polynomial” rather than “the polynomial”.
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It’s tedious to write out all the terms of r/(x). Fortunately, it’s not really
necessary. We only need to remark that the degree of /() is less than the
degree of r(z), since the leading-order terms of r(z) and b,,(a;!)z™ "g(x)
are both b,,z™, so they cancel. We may plug in r(z) = f(z) — g(z)q(z) to
obtain

(@) = f(2) = g(x)a(x) — bnay '™ "g(x)
— () - 9(a) (@) — bnay '™ ")
This shows that 7/(z) is also in S (look back at the definition and see!).
But degr’(z) < degr(x), which contradicts our condition that r(x) is an
element of S with smallest degree. The rules of proof by contradiction allow

us to conclude that our assumption is false: namely, it must be true that
deg g(x) > degr(z). This finishes the proof of existence.

To show that g(x) and r(z) are unique, suppose that polynomials ¢'(z)
and r'(x) satisfy f(z) = g(z)¢'(z) + 7' (x), so that

f(z) = g(z)q(z) + r(z) = g(x)d'(z) + 7'(2).
This implies
9(@)la(z) = ¢'(z)] = r'(z) —r().

If g(z) — ¢’(x) is not the zero polynomial, then since the field F' has no zero
divisors it follows that deg(g(z)) < deg(g(z)[g(z) — ¢/(x)]). This in turn
implies

deg g(z) < deg(g(z)[a(z) — ¢'(2)]) = deg(r'(z) — r(z)).

However, the degrees of both 7(z) and /() are strictly less than the degree
of g(x), so their difference can’t have such a large degree. It follows that
q(z) — ¢'(x) = 0, which implies that ¢(z) = ¢/(z) and r(x) = 7'(x). O

12.6.2 Greatest common divisors of polynomials

In the Modular Arithmetic chapter, we used the Euclidean algorithm to
find the gcd’s of sets of integers. Now that we have a division algorithm for
polynomials, we can find ged’s of polynomials in the same way.

To illustrate this, we begin with an example in R[z].

Example 12.6.8.
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Suppose that we would like to find the ged of a(x) = 24 —523+52%+52—6
and b(x) = x* + 523 + 522 — 52 — 6. We first divide a(z) by b(z) to determine
the remainder, ry.

1
2t + 523 + 522 — 5 —6 = 525 4+ bx? + 5 — 6
—zt - 5x3  — ba? + ox + 6

—1023 + 10z

So r; = —1023410z. We then divide b(z) by r1 to determine the second
remainder, ro.

1 1
—10t T 2
—1023 + 10x x4+ 525 + 5x? — bx — 6
—zt + a2
525 + 622 — bx — 6
—523 + b
622 — 06

So r9 = 622 — 6. We then divide r; by r5 to determine the third remain-
der, r3.

—5y
622 —6 | —102° + 10z
1023 — 10z

Notice that r3 = 0. This means that 622 — 6 divides both a(z) and b(z).
Furthermore, any real, nonzero multiple of 622 — 6 will divide both a(z) and
b(x). For convenience, we choose the multiple with a leading coefficient of
1. This means that x? — 1 is the ged of a(z) and b(z). You should check
that 22 — 1 divides both a(z) and b(x). ¢

Exercise 12.6.9.

(a) Use the Euclidean algorithm to compute the gecd of a(z) = 52® — 222 —
221 + 21 and b(z) = 5t — 723 + 1522 — 21z in R[z].
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(b) Use the Euclidean algorithm to compute the ged of a(z) = 42t — 423 —
4z% + 122 — 8 and b(x) = 82* — 823 + 822 — 122 + 4 in R[z].

O

Now that we’ve seen some examples with coefficients in R[z], lets see how
the Euclidean algorithm can be applied to determine the gcd of polynomials
in Zy[z], where p is prime.

Example 12.6.10. Suppose that we would like to find the ged of a(x) =
ot + 223 + 522 + 52 + 1 and b(z) = 2* + 52% + 522 + 22 + 1 in Z7[z]. We
first divide a(x) by b(x) to determine the remainder, ry.

1
2 4+ 5a 4522+ 20+ 1 ’ 2+ 225 4+ 52?2 4+ bx
62 + 223 + 222 + bz
423 + 3z

+ +
S =

So r1 = 423 4+ 3z. We then divide b(z) by r; to determine the second
remainder, 7o.

2r + 3
423 + 3z 2+ 5+ Bt + 2 4+ 1
62t + x2
522 4+ 622 4+ 2¢ + 1
23 + 5x

62 + 1

So 19 = 622 + 1. We then divide 7 by r2 to determine the third remain-
der, rs.

3z
622 + 1 ] 423 + 3z
33 + 4dx

Notice that r3 = 0. Therefore, 622 + 1 divides both a(z) and b(x). We
multiply 622+ 1 by the inverse of 6 to obtain the ged for a(x) and b(z). The
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result is 22 + 6. We leave it to the reader to check that z2 + 6 divides both
a(z) and b(x). ¢

Exercise 12.6.11.

(a) Use the Euclidean algorithm to compute the ged of a(z) = 23 + 22 4 3z
and b(x) = 323 + 222 + x + 4 in Zs[z].

(b) Use the Euclidean algorithm to compute the ged of a(z) = 2 + 222 + 2
and b(z) = 222 — x + 1 in Z3[z].

0o

12.6.3 Polynomial roots and the FTOA (easy part) &

When you first learned about factoring polynomials with integer or real coef-
ficients, you may have been told (or noticed on your own) that a polynomial
of degree n has at most n roots. This result is important enough that it has
a name: it’s part of the Fundamental Theorem of Algebra, or FTOA
for short (sadly, it’s only the easy part of FTOA—we’ll discuss the hard part
later).

Most likely though you’ve never seen a proof of the FTOA. No worries—
the proof is at hand! In keeping with our previous discussion, we will state
our results in terms of F'[z], where the set of coefficients F satisfies properties

(I)-(VIL).

The following preliminary proposition gives us a way to relate polynomial
values to polynomial remainders.

Proposition 12.6.12. Let F satisfy properties (I)-(VII), f(x) € F[z], and
a € F. When f(z) is divided by = — a, the remainder is f(a).

PROOF. According to Proposition 12.6.7, if we divide f(z) by = — a, it
will produce two unique polynomials g(x) and r(x) such that f(z) = (x —
a)q(x) + r(z). Since the degree of x — a is 1, then according to the division
algorithm, the degree of r(z) must be less than 1. Therefore r(x) must be
a constant r, and we may write:


https://www.youtube.com/watch?v=Uh-czcHjyq4&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=50
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If we set x = a then we get:

O

This proposition can save lots of time when finding remainders under
division by monomials.

Exercise 12.6.13.

(a) Find the remainders when Z}C[fl kx*~1 is divided by  — 1 and = + 1,
respectively.

(b) Find the remainders when 2,1{0:00 (%)k z¥ is divided by  — 1/2 and = +
1/2, respectively.

(c¢) Find the remainders when 21160:00 3Fz¥ is divided by 2 +1/9 and 2 —1/9,
respectively.

O

The following proposition is an important special case of Proposition 12.6.12.

Proposition 12.6.14. Let F' satisfy properties (I)-(VII), f(x) € F[x], and
a € F. Then x — a divides f(z) if and only if f(a) = 0.

PRrOOF. From Proposition 12.6.12 f(z) = (z — a) - ¢(x) + f(a). Therefore
f(a) =0 if and only if f(x) = (x —a) - q(x), which is true if and only if x —a
divides f(x). O

We may also restate Proposition 12.6.14 as: a is a root of the polynomial
f(z) if and only if x — a divides f(x).

We will need to take care of some preliminaries in order to prove (the
easy part of) the Fundamental Theorem of Algebra. From basic algebra
with real numbers, we know that if ab = 0 then either a = 0 or b = 0 (see
also Proposition 4.2.11 of Chapter 4). Actually, this zero-divisor property
hold for any set R that satisfies (I)-(VII):
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Proposition 12.6.15. Suppose that F' satisfies properties (I)-(VII). Given
a,b € F and ab = 0, then either a =0 or b = 0.

Exercise 12.6.16. Prove Proposition 12.6.15. (Hint: you may follow the
steps given in Exercise 4.2.12 O

It turns out that if F' satisfies the zero-divisor property, then F[z] satisfies
the same property:

Proposition 12.6.17. Suppose F satisfies Properties (I)-(VII), and sup-
pose p(z),q(x) € F[z]. Then p(z)q(x) = 0 iff either p(z) = 0 or ¢(z) = 0.

PROOF. Since this is a “iff” proof, we must actually prove both the “if”’
statement and the “only if” statement.

First we prove the “if” part. It follows from the formula for multiplica-
tion of polynomials that if either p(z) = 0 or ¢(x) = 0, then the product
p(z)g(x) must also be 0. That was easy!

The “only if” part is harder. We will prove the contrapositive, namely
that p(x) # 0 and ¢(z) # 0 implies that p(z)g(x) # 0. Let

n

p(z) = Zaia:i and ¢(z) = ij:cj,
=0

j=0
where a,,, # 0 and b, # 0. We can then write

m-+n k

p(z)q(z) = Z ¢k, where ¢ = Zaibk,i,
k=0 i=0

Consider the coefficient ¢, 4+, which may be expanded out as
Cm4+n = aObm+n + albm+n—1 +...tanby+---+ an+m—1bl + an+mbO-

Take a look at these terms for a moment. Which of them are nonzero? Notice
how we’ve separated out the term a,,b, in the middle of the expansion. Since
am # 0 and b, # 0, this term is nonzero. Now, are there any other nonzero
terms? All terms have the form a;b;, and for every other term in the series
(besides a;,b,) we have either ¢ > m or j > n. If i > m then a; = 0, since
the degree of p(z) is m and all coefficients of terms of higher degree are 0.
For the same reason, if j > n then b; = 0. It follows that except for the
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term a,, by, all other terms a;b; are 0, which implies that ¢+, = amb, # 0.
But this means that p(z)q(z) has a nonzero term, namely cp1,2™"", so
p(z)q(x) # 0. The proof is completed. O

And here’s the result we’ve been waiting for. Now that we’ve prepared
the ground, it’s not so difficult to prove.

Proposition 12.6.18.(Fundamental Theorem of Algebra: easy part) Sup-
pose F' satisfies properties (I)-(VII), and let f(z) be a polynomial in F[z]
of degree n. Then the equation f(x) = 0 has at most n solutions: that is,
there are at most n distinct elements {z1,...z,} of F such that f(x,,) =0
for 1 <m <n.

PROOF. Suppose a; is a solution to f(z) = 0. Then by Proposition 12.6.14
it follows that = — ay divides f(x). Therefore f(x) = (z — a1)gn—1(x) where
the degree of g,—1(z) =n — 1.

Now if as # a; is another solution then using our above result we have

flag) = (a2 — a1)gn—1(az) = 0.

Since ag — a; # 0, it follows that g,—1(a2) = 0. So we can write g,—1(x) =
(x — az)gn—2(x) where the degree of go(x) =n — 2.

Continuing in the same way, if there are distinct roots a1, as, ..., a, then

f(x) = (z —a1)(z — a2)...(x — an)go,

where the degree of g is 0 (in other words, go is a constant.). So there can’t
be any more solutions, a,+1, because (x — an+1) doesn’t divide gp. O

The previous theorem immediately gives us an extremely important gen-
eral property of roots of polynomials:

Proposition 12.6.19. Suppose F satisfies properties (I)-(VII), and let ¢
be any element F. Then ¢ has at most n n'" roots.

PRrROOF. Given C € F, then the polynomial 2" — ¢ is an element of F[z]. By
Proposition 12.6.18, the equation " — ¢ = 0 has at most n solutions. This
is exactly the same thing as saying that ¢ has at most n n'" roots. O

Exercise 12.6.20.

(a) Find all fourth roots of 5625 in R[z]|. Give exact solutions.
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(b) Find all fifth roots of 3125¢ in C[z]. Give exact solutions.
(c¢) Find all fifth roots of 5 in Zr.

(d) Find all sixth roots of 1 in Zs.

O

Take note of the “at most” qualification in Proposition 12.6.18. There
are cases of polynomials in F[x] which do not have any roots in F. For
example, there are polynomials in R[z| that have no roots at all in R[z], as
the next examples illustrate.

Example 12.6.21. Find the roots of p(x) = 222 + 2z + 5.

Since this is a quadratic polynomial we can use the famous quadratic
formula:

. —b+ Vb? — dac

2a

In p(x),a = 2,b = 2, and ¢ = 5. We substitute those values into the
formula and obtain the following:

2422 -4-2.5  —2+\-36 -2+6i
v 2.2 - 1 Ty
143

2

So the roots of p(x) are x :—% + %i, —% — %z Neither of these roots are
elements of R. As noted above this does not contradict FTOA, which only

guarantees there won’t be more than 2 roots. ¢

The next example is a cubic polynomial in Z[z]. To find the rational
roots, we will make use of the following proposition.

Proposition 12.6.22. Let f(z) = apz™ + an—12"" 1 4+ ... 4+ ag be a poly-
nomial in Z[z]. Any rational roots of f(x) expressed in lowest terms have
numerators, p, which are factors of ay and denominators, ¢, which are factors
of ay,.
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PROOF. Let f(x) = apa"™ + apn—12" "1 + ... 4+ ag be a polynomial in Z[r] and
suppose that p/q is a root of f(x), where the fraction p/q is in lowest terms
(so p and q are relatively prime).

First we will show that p is a factor of ap. Since p/q is a root of f(x) we
have f <§) = 0, which implies

p n p n—1
an () + an_1 (> +...+ay=0.
q q

Multiplying both sides by ¢", we have,

n n—1
(an (p> + an1 <p> T a0> ¢ =0,
q q

which simplifies to

anp” + an_l(p”_lq) +...+agq" =0.

This expression can be rearranged to obtain:

n—2

p(=anp" ' — a1 (0" 2q) — .. — arq" ") = aoq”

Since f(z) € Z[z], all the coefficients a; are also integers. p and ¢ are
also integers. Since integers are closed under addition and multiplication, it
follows that both sides of the above equation are integers. Since p divides the
left-hand side, it must also divide the right-hand side. Therefore p divides
apq”. Now p and ¢ are relatively prime: so in order for p to divide agq™, it
must divide ag. In other words, p is a factor of ag—which is just what we
wanted to prove.

It turns out the proof that ¢ is a factor of a,, is basically the same, if we
use a little trick. The first equation that we wrote down above was:

p n p n—1
an () + an—1 () +...4+a9=0.
q q

Let’s multiply both sides by (¢/p)™. After simplifying, and rearranging we

get:
q n q n—1
agp <> + aq () +..+a,=0.
p p
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Now, this new equation corresponds exactly to the first equation with the
following replacements:

ap — ag; Ap—1 —> A1; ... Qg —> Ap; P < (q.

We can then go through the entire previous argument, making these
replacements. We concluded previously that p is a factor of ag—so if we
apply the identical argument to the equation with replacements, we obtain
that ¢ is a factor of a,. You may fill in the details in the following exercise.

Exercise 12.6.23. Starting with the equation ag (q/p)"+a1 (q/p)" ' +...+
an = 0, give the complete argument which shows that ¢ is a factor of a,. ¢

g

Now let’s get some practice using Proposition 12.6.22.

Example 12.6.24. Find the roots of f(x) = 323 + 1022 + 11z + 6.

Since this is a cubic polynomial, we can’t use the quadratic formula, at
least not to begin with. The coefficients are integers, so we may use Propo-
sition 12.6.22, which says that any rational roots of p(z) have numerators
that are factors of ag and denominators that are factors of a,. This does
not guarantee that there are rational roots: sometimes polynomials are irre-
ducible, but we still try every method possible to find those roots unless we
know that we can’t reduce the polynomial. So we will proceed with trying
to find the roots of f(x) using Proposition 12.6.22.

In f(z), possible numerators of any rational roots are: p = +1, £2, +3, £6.
The possible denominators are: ¢ = +1,+3. So we have as possible rational
roots the following: p/q = +1,+3,+2,4+2,+3,46. By Proposition 12.6.14,
if f(p/q) = 0 then (x —p/q) is a factor of f(z); which would make p/q a root
of f(x). After testing all possibilities we find the following rational root:
f(=2) = 3(-2)3 +10(-2)2 + 11(=2) + 6 = 0. Therefore, z = —2 is a root
of f(z) and (z + 2) is a factor of f(x). We then use long division to factor
f@).
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3z2 + dr  + 3
r+2 |35 + 102 + 1lz + 6

323 + 622
427 4+ 1lxz + 6
4?2 + 8x
3z + 6
3r 4+ 6
0

So now we have f(z) = (z +2)(322 + 42 +3). We use the quadratic formula

to find the following roots for 3z + 4z +3. = = %\/& So there are two
—2—/5i _9 —24+5i ¢
3 4T 3 -

complex roots and one real root. They are z =

Exercise 12.6.25.

(a) Find the roots of f(z) = 222 + z + 1. Give exact solutions.

(b) Find the roots of f(x) = 523 + 1722 + 7x + 3. Give exact solutions.

O

In the exercises above, the leading coefficient is not 1. The situation is
especially simple if the leading coefficient is 1. In such a case, the rational
roots are integers:

Exercise 12.6.26.

(a) Given that p(z) € Z[z], and p(x) has leading coefficient 1, show that all
rational roots of p(z) are integers.

(b) Find the roots of f(x) = 2% — 13z + 12.
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12.6.4 Algebraic closure and the FTOA (hard part)

We’ve been referring to the “easy” part of the Fundamental Theorem of
Algebra. It’s time now to consider the “hard” part.

Proposition 12.6.18 says that any polynomial in F[z] of degree n has
at most n roots that are elements of F', as long as F satisfies properties
(I)-(VII). But the proposition can’t guarantee the existence of even one
root—and we’ve shown in Example 12.6.21 that there may be no roots at all!

Exercise 12.6.27. Give an example of a polynomial in Q[z] which has
roots in R but no roots in Q. O

For some special cases of F' however, a nonconstant polynomial in F[z]
(i.e. a polynomial with degree 1 or more) always has roots in F. As a
lead-in, we may notice that for every nonconstant polynomial in R[x] that
we looked at we were always able to find complex roots, even when weren’t
able to find real roots. This might lead us to conjecture that every noncon-
stant polynomial in R[z] has at least one root in C. The hard part of the
Fundamental Theorem of Algebra affirms that this is true. What’s more,
not just nonconstant polynomials in R[z], but also those in C[x] all have at
least one in C. Here’s the statement of the theorem:

Proposition 12.6.28.(Fundamental Theorem of Algebra: hard part) Any
nonconstant polynomial in C[z] has at least one complex root.

There are several proofs of this theorem. The most elegant involves
the field of mathematics known as “complex analysis”, and specifically the
theory of integrals of functions whose domain and codomain are C. This

proof is one of the highlights in most undergraduate complex analysis classes.
3

Here are some examples that illustrate Proposition 12.6.28.
Example 12.6.29. We begin with an example of a linear binomial in C[z].

Let p(z) = (34 2i)x + (2 — i). Find the root of p(x) (since p(z) is linear, it
will only have one root).

3For a visualizable, constructive proof that uses basic calculus, see https://arxiv.
org/abs/2002.04418.
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First we set p(z) equal to zero and then proceed to find the root as
follows. Begining with (3 + 2i)z + (2 — i) = 0, we may rearrange to obtain

—241
r=—:",
3+ 21

and multiplying numerator and denominator by 3 — 2¢ and simplifying gives

A+
13

T

€ Clx].

Example 12.6.30. Let’s do another example, but this time with a quadratic
trinomial in C[z]. Let p(z) = (1 +i)z? + (2 —i)x + (3 + 3i). Find the roots
of p(x).

Since this is a quadratic polynomial we can use the quadratic formula
and obtain the following:

—2-i) V=2 =41 +0)(3+30) (—2+1i)+/3—4i— 24

xTr = =

2(1 + 1) (2 + 2i)
C(24+9)EV3-28i  (=2+0)+V3-280 2-2i
(24 24) (2 + 2i) 2 —2i
6461+ (2—2i)v3—-280  3+3i+(1—1i)v/3—28i
8 4

S0 the two roots are  — {3—1—31‘—(1—4@')\/3—281" 3+3i+(1—4i)\/3—28i}‘ ¢

Exercise 12.6.31.

(a) Find the root of p(z) = (4 — 3i)z + (2 + 67). Give an exact solution.

(b) Find the roots of p(z) = (2 +i)x® + (2 — 3i)z + (7 + 3i). Give exact
solutions.
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Proposition 12.6.32. Any polynomial p(x) of degree n in C[z] can be
completely factored as a constant times a product of n linear terms, as
follows:

p(z) =blx —a1)(z —az)...(z — an). (12.6.33)

where b,aq,...,a, € C.

PROOF. Let p(x) be an arbitrary polynomial of degree n in C[z]. By
Proposition 12.6.28, p(z) has at least one complex root a. So (z — a) is
a factor of p(z) and we can write p(x) = (z — a1)p1(z); where the degree
of pi(z) is n — 1. If pi(z) is linear, then we are done, but if p;(z) is not
linear, then by Proposition 12.6.28 it also has a complex root az. So (x —as2)
is a factor of pa(z) and we can write p(x) = (x — a1)(z — a2)p2(x); where
the degree of pa(z) is n — 2. The same argument continues until we reach
Pn—2(x), which has degree 1. But this means that p,_o(z) can be written
as bx — ¢, which we may rewrite as b(x — ay,), where a,, = ¢/b. It follows
finally that p(z) = b(x — a1)(z — a2) ... (z — an). O

Exercise 12.6.34. Suppose p(z) is a polynomial of degree n such that the
coefficient of 2™ is 1 (such a polynomial is called a monic polynomial).
Show that for a monic polynomial, the coefficient b in Proposition 12.6.32
is equal to 1. O

Now let’s apply Proposition 12.6.32 to an example.

Example 12.6.35. Let f(x) = 2* — 42% 4 1022 — 242 + 24 be a polynomial
in C[z]. Notice that the coefficients of f(z) are integers, so f(z) is also in
Z|z]. Therefore we can use Proposition 12.6.22 to factor out our first linear
term. Since ag = 24 and a,, = 1, possible rational roots are

P 41,49,43 44, 46,48, +12.
q

By Proposition 12.6.14, if f(p/q) = 0 then (x — p/q) is a factor of f(x)
i.e. p/q a root of f(x). After testing all possibilities we find the following
rational root: f(2) = 2% —4(2)3 4 10(2)? — 24(2) + 24 = 0. Therefore, v = 2
is a root of f(z) and (x — 2) is a factor of f(x). After dividing f(x) by
(x — 2) we have the following:

f(2) =(z —2)(2® — 222 + 62 — 12) = (z — 2)(z*(z — 2) + 6(x — 2))
=(z —2)(z — 2)(2* + 6) = (x — 2)*(2* + 6).
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Solving 22 + 6 = 0 for = gives us additional roots: z = —v/6i,2,v/6i. In
summary, we have

f(x) = (2 = 2)(x — 2)(z + V6i) (z — V6i).

So as Proposition 12.6.32 states, f(x) factors completely into a product
of linear terms. ¢

Remark 12.6.36. Although f(z) is a fourth degree polynomial, and factors
into the product of 4 linear terms, yet it only has 3 distinct roots because
of the repeated factor (x — 2). This agrees with Proposition 12.6.18, which
implies that a polynomial of degree 4 has at most n distinct solutions. A

Take a moment to savor the full generality of Proposition 12.6.28. We
don’t have to restrict ourselves to polynomials with real coefficients: even if
the polynomial’s coefficients are imaginary or complex, the proposition still
guarantees that the polynomial has a root. Further, Proposition 12.6.32
then guarantees that it can be factored into a product of linear factors.

Exercise 12.6.37. Factor each of the following polynomials into a product
of linear terms.

(a) p(z) = 23+ (=6 +i)x® + (13 — 6i)x + 13i = 0 (hint: evaluate p(—i)).
(b) f(z) = 2% — 6ix? — 11z + 6i = 0 (hint: evaluate f(i)).

Exercise 12.6.38.

(a) Suppose that p(z) € C[z] and p(x) = p(—x). Show that p(x) is actually a
polynomial in 22, so that p(x) can be written as q(2?) where q(x) € C|x].
(Hint: If p(a) = 0, then what about p(—a)? Use this fact to get two
linear factors of p(z), and multiply them together. The case where
p(0) = 0 should be treated separately.)

(b) Suppose that p(xz) € C[z] and p(z) = —p(—z). Show that p(x) can be
written as zq(x?) where ¢(z) € C[z].
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12.7 Hints for “Polynomial Rings” exercises

Exercise 12.3.5(d): Note 4 =3+ 1 and 11 = 32 + 2.

Exercise 12.3.11(d): Are there any common factors you can take outside the
summations before multiplying?

Exercise 12.4.3: Note that if as is in 5Z, then ag = 5al, where ), is also an
integer. The same thing holds for al the other coefficients in p(z) and ¢(z).

Exercise 12.6.20(b): Use the method in Section 4.4.2.
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Symmetries of Plane Figures

0o

“In all the arts it is symmetry that gives pleasure, preserving
unity, and making the whole beautiful.” (Augustine, Of True
Religion, xxx.55 (Tr. J. H. S. Burleigh)

“It is only slightly overstating the case to say that physics is the
study of symmetry.” (Philip W. Anderson, 1977 Nobel laureate

in physics)

“So our problem is to explain where symmetry comes from. Why
is nature so nearly symmetrical? No one has any idea why.”
(Richard Feynman, 1965 Nobel laureate in physics)

The above quotes give some flavor of the importance and the mystery of
symmetry, in both art and science. In keeping with our practice throughout
this book, we will introduce this general topic by means of a basic example,
namely symmetries of plane figures. Many of the concepts that you will
learn in this chapter are applicable to symmetries in general. In particular:
wherever you find a symmetry, you will always find a group lurking behind
it (see Section 5.4.7 for the mathematical definition of a group).

Thanks to Tom Judson for material used in this chapter.

419
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13.1 Definition and examples

In plane geometry we talk about various shapes: triangles, rectangles, pen-
tagons, and so on. Shapes are important because real objects have shapes
(duh), and objects are important. What would life be without triangles?

Now suppose you and your friend cut an equilateral triangle out of a
piece of plain white paper and put it on the table. Then you tell your friend
to go out of the room. While she’s gone, you take the triangle and move
it, but in such a way that it looks exactly the same. You can do this by
rotating the triangle, or flipping it over, or by some combination of these two
actions. When your friend comes back into the room, although the triangle
has been moved there’s no way for her to tell. This type of motion is called a
symmetry operation. Clearly we may perform symmetry operations on other
objects besides equilateral triangles, but only if the shape of the object has
some kind of regularity. In the following discussion, we will explore the
relationship between shapes and symmetry operations.

We'’ve given an intuitive picture of what symmetry means—now let’s try
to translate that into mathematics. We start with a definition:

Definition 13.1.1. A symmetry of a geometrical figure is a rearrangement
of the figure that (i) preserves distances and angles between points of the
figure, and (ii) leaves the appearance and location of the figure unchanged.

A

Remark 13.1.2. The meaning of “preserves distances” can be expressed
more precisely as follows. Take any two points A and B of the original
figure. The figure is then rearranged so that A and B are sent to points A’
and B’ respectively. Then in order for the rearrangement to be a symmetry,
the distance between A and B must always be equal to the distance between
A’ and B’.

Similarly, the meaning of “preserves angles” can be expressed more pre-
cisely as follows. Take any three points A, B, C of the original figure. The
figure is then rearranged so that A, B, C are sent to A’, B', C’ respectively.

In order for the rearrangement to be a symmetry, ZABC must always be
equal to ZA'B'C’ regardless of the choice of A, B,C. ! A

Tt can be shown mathematically that a rearrangement that preserves distances must
necessarily preserve angles as well. So strictly speaking, the additional angle preservation
requirement is not necessary.


https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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A motion that preserves distances and angles between parts of a figure
is also called a rigid motion. Intuitively, you may think of the figure as a
rigid object, and the “rearrangement” is effected by moving the rigid object
in some fashion. For example, any rotation that does not change the shape
of the object is a rigid motion.

Figure 13.1.1. Mercedes Logo

Example 13.1.3. Consider the Mercedes logo shown in Figure 13.1.1.

e Imagine pinning the center of the logo to the page and spinning the
logo 120° counterclockwise about its center. The resulting image looks
exactly like the original, because each of the three points on the cir-
cumference moves to the location of the next point over. So a 120°
counterclockwise rotation is a symmetry of the logo.

e If you rotate the image 180° counterclockwise about the center, the
resulting image is no longer identical to the original (try it!). So a
180° counterclockwise rotation is not a symmetry of the logo.

e We could also “flip over” the logo (like flipping a pancake) in such a way
that the left half moves to the right, and vice versa. Then the vertical
point stays in the same place while the left and right point exchange
positions, leaving the appearance of the logo unchanged. The motion
has the same effect as if the logo were refiected across the vertical
axis. After the motion, the logo looks the same.

e Shifting the original image (shifts are also called translations in any
direction is a rigid motion, and the resulting image looks the same as
the original, but the location is different. Hence this shift is not a
symmetry of the Mercedes logo.
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Exercise 13.1.4. List six different symmetries of the Mercedes logo. (*Hint™*)

O

This is not the first time we’ve played with symmetries of a figure. At the
end of Chapter 1, we saw that the complex sixth roots of unity determined a
regular hexagon in the complex plane, and that complex multiplication and
complex conjugation could be used to rotate or reflect the hexagon. Let us
investigate the hexagon a bit further.

. . ,
~ - L .
Before motion (motion is After motion
indicated by arrows)

Figure 13.1.2. Hexagon and 60° rotation

Example 13.1.5. Figure 13.1.2 shows a 60° counterclockwise rotation of a
regular hexagon where the vertices of the hexagon are labeled A, B,C, D, E, F.
(Notice how the letters run counterclockwise around the hexagon. We will
consistently follow this pattern. The reason is that in mathematical conven-
tion, a counterclockwise rotation is considered as positive, while a clockwise
rotation is considered as negatve.)

The rotation moves A to B, B to C, and so on. Now of course there are
other points on our figure, namely all the points on the line segments between
the vertices. But notice that if we account for where the vertices are moved
to, then the movement of the line segments is automatically accounted for.
If we know where A and B are moved to, we know exactly where AB is.
Therefore, our 60 degree rotation can be defined by the movement of the
vertices {A, B,C,D, E, F'}.


https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO
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Now if we input a point from {A, B,C, D, E, F'}, our rotation outputs a
point from {A, B,C, D, E,F}. We have used this “input-output” language
before, namely in the Functions chapter.

In fact, we can think of the 60 degree rotation as a function rgy from
{A,B,C,D,E,F} — {A,B,C,D,E,F}, where (using ordered pair nota-
tion)

T60 = {(Av B)v (Ba C)v (Cv D)’ (D’ E)? (EvF)v (F’ A)}

Before leaving this example, we make note of a peculiarity that has tripped
up many a student. If you compare the 'before’ hexagon (shown at left in
Figure 13.1.2) with the ‘after’ hexagon (shown at right), it appears that the
original vertex B has been relabeled as’ A, C' has been relabeled as B, and
so on. However, according to our function we say that A goes to B, not B
goes to A. This is because we're thinking of symmetry as a motion rather
than a relabeling. The fact that original vertex B is relabeled as A means
that A moved to B, and not vice versa. So you should take care in future
examples—whenever you see a vertex X being relabeled as Y this means that

Y — X, and not vice versa.?
¢
Exercise 13.1.6.
(a) Is rgp one-to-one? Explain why or why not.
(b) Is rgp onto? Explain why or why not.
(c) Is r¢p a bijection? Explain why or why not.
O

Exercise 13.1.6 exemplifies a general property of symmetries:

Proposition 13.1.7. If S is the set of points that represent a figure, all
symmetries of the figure are bijections from S — §.

PROOF. Since the result of any symmetry acting on .S must be all of .S, then
every point of S must be in the range of S. Thus any symmetry is onto.

2 Actually, we could have defined symmetries as relabelings rather than motions, and
all of the conclusions of this chapter would still hold. We’d just have to rewrite all of our
tableaus to reflect this different convention.
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Furthermore, the symmetry must map two different points to two different
points, since the distance between points must be left unchanged by the
symmetry. Hence any symmetry is one-to-one. So since any symmetry is
both onto and one-to-one, it follows that any symmetry is a bijection. [J

Proposition 13.1.7 says that all symmetries are bijections, but the con-
verse is not true: not all bijections are symmetries.

Exercise 13.1.8. Create a bijection from {A, B,C,D,E, F} — {A,B,C,D,E, F}

that does not correspond to a symmetry of the regular hexagon in Fig-
ure 13.1.2. Ezplain why it is not a symmetry. O

Example 13.1.9.

A D . A D
identity
B C B C
A D C B
180°
rotation
B A
A A
reflection
vertical axis
B B
A C
reflection
_
horizontal axis
B D

Figure 13.1.3. Symmetries of a rectangle

Figure 13.1.3 shows all symmetries of a rectangle.


https://www.youtube.com/watch?v=8WVETSTKSFU&INDEX=18&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO

13.2 COMPOSITION OF SYMMETRIES 425

Exercise 13.1.10.

(a) Explain why a 90° rotation, a 270° rotation, or reflection across a diag-
onal are not symmetries of the rectangle ABCD.

(b) What subcategory of rectangle would have a 90° rotation, 270° rotation,
and a reflection across a diagonal as symmetries?

(c) What rotation angle does the identity symmetry correspond to? (Give
the easiest answer.)

(d) Write each of the symmetries of a rectangle as a function (use either a
table, ordered pairs, arrow diagram, etc.)

13.2 Composition of symmetries

Since the symmetries of a figure are functions, we can do anything with
symmetries that we can do with functions—including composition. That is,
we can perform two symmetries on a figure back-to-back, and since they are
both functions, by definition of function composition the result is a func-
tion. In fact, we saw in the Functions chapter that the composition of two
bijections is a bijection. So the composition (or net motion) resulting from
two symmetries is a bijection. But a bijection of a figure is not necessarily a
symmetry. as we showed in Exercise 13.1.8 above. This raises the question:
is the composition of two symmetries a symmetry? That is: if one symmetry
is followed by another on a figure, is the net motion a symmetry? You will
investigate this question in the following exercise.

Exercise 13.2.1. With reference to the symmetries of a rectangle in Exam-
ple 13.1.9, let r180 be the 180° counterclockwise rotation and let s, be the
reflection across the vertical axis. (Note that reflection across the vertical
axis is sometimes called “horizontal reflection,” since the figure “flips” from
left to right. Admittedly this is confusing, but that’s what people call it so
what can you do?)

(a) Write the function rigp in ordered pair notation.

(b) Write the function s, in ordered pair notation.
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(c) Write the function rigg o s, in ordered pair notation. Is it a symmetry
of the rectangle? If so, then which one?

(d) Write the function s, o r1gp in ordered pair notation. Is it a symmetry
of the rectangle? If so, then which one?

O

At this point let us introduce an alternative notation for symmetries
that’s easier to write. This notation is called tableau form, and for rigg it
looks like the following;:

(A B C D
"=\ p A B

To form these, we simply put the inputs of our function on the top row
and their corresponding outputs on the bottom row.

Example 13.2.2. For example, since

Sy = {(A7D)’ (Bv C)? (C’ B)’ (Da A)}’

then the top row of the tableau for s, would read, “ABCD”, and the bottom
row of the tableau would read, “DCBA”. Hence

(A B C D
=\p ¢ B 4)°

Example 13.2.3. Suppose we wanted to find 7159 o s, using the tableau
forms for r189 and s, above. That is

. _(A B C D\ (A B CD_,
"so°s =\ p A B D C B A) "'

To see how this works, let’s “follow” each possible input (A, B,C, D) as we
put it into the composition. Remember that the composition of functions
works right to left; we are first reflecting the rectangle and then rotating it.
So starting from the right,
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e s, takes A — D, and rig9 takes D — B. Therefore ri1g9 o f5, takes
A — Bjie. (rig00sy)(A) = B.

e s, takes B — C, and r1g takes C' — A; therefore r1gp0s, takes B — A

e s, takes C — B, and rigg takes B — D; therefore rigg o s, takes
C—>D

e 3, takes D — A, and rigg takes A — C; therefore rigg o s, takes

D—C

N [
X A B C D
3 r oS,
180 B A D C

-3t

Figure 13.2.1. Composition of symmetries using tableaus.

[€— =
et
m€E— 0
n€— T

) e
T €
€0
D€

Figure 13.2.1 shows this process using tableaus. If you think about it,
it’s really just a variation on an arrow diagram.

In summary we have

.. _(A B C DY (ABCDY_(ABCD
"0 =\ p A B D C B A) \B A D C

Exercise 13.2.4.

(a) Write s, in tableau form, where s, is reflection across the horizontal
axis. (Note sp is sometimes referred to as “vertical reflection,”, since
the two reflected halves are stacked on top of each other.)

(b) Does 1180 © Sy = sp7
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(¢c) Compute sp, 0 s,. Is this a symmetry? If so, which one?

(d) Compute s, o r180. Is this a symmetry? If so, which one?

O

Exercises 13.2.4 and 13.2.1 seem to indicate that the composition of two
symmetries of a figure is a symmetry of the figure. We can actually prove
that this is always true.

Proposition 13.2.5. Suppose f and g are both symmetries of a figure.
Then f o g is itself a symmetry of the same figure.

PRrROOF. Recall that composition works from right to left. Since g is a
symmetry, g takes the points of the figure and rearranges them so that the
angles and distances of points in the figure are preserved. The symmetry f
then takes the points of this preserved figure and moves them in such a way
that the angles, and distances of points in the figure are preserved. Hence
the net result of f o g preserves angles and distances between points in the
figure. Therefore by definition, f o g is a symmetry of the figure. U

Exercise 13.2.6. With reference to the hexagon in Figure 13.1.2, for the
symmetries f and g in parts (a)-(d) below:

(i) Write the symmetries f and g in tableau form.
(ii) Compute f o g and go f, expressing your answers in tableau form.
(iii) Describe the symmetries that correspond to fog and go f, respectively.

Note id denotes the identity symmetry, that is the symmetry that leaves all
points unchanged. Also, all rotations are counterclockwise.

f = rotation by 240°, g = rotation by 120°
f =id, g = rotation by 120°

f =rotation by 240°, g =reflection across the line BE

f =rotation by 180°, g =reflection across the line CF'
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o |id p1 py g1 p2 p3
id | id p1 op2 o pe 3
pr | pr p2 idpz g o
p2 | p2 id  pr op2 opz
pr| g1 g2 psidoopr po
po | p2 pz g1 op2 id o py
ps | g3 g1 g2 op1 p2 id

Table 13.1: Composition of the symmetries of an equilateral triangle

13.3 Do the symmetries of an object form a group?

0o

With reference to the set of symmetries of a particular figure, Proposi-
tion 13.2.5 tells us that this set is closed under the operation of composition.
Given this fact, the next natural inquiry is to see if this set of symmetries
forms a group under composition. Let’s look first at a particular example
to see if it works.

Example 13.3.1. Figure 13.3.1 shows all the symmetries of an equilateral
triangle: id is the identity ; p; is the 120° counterclockwise rotation; ps is
the 240° counterclockwise rotation; p; is the reflection across the median
through A; uo is the reflection across the median through B; and us is the
reflection across the median through C'. We remind the reader once again of
the comment we made in Example 13.1.5: for example, in the symmetry pq
the triangle’s vertices A, B, C' before the motion appear to be relabeled as
C, A, B respectively, which means that C' — A, A — B, and B — C rather
than vice-versa.

¢

Table 13.1 displays all possible compositions of the symmetries shown in
Figure 13.3.1. The table is arranged like a multiplication table: for exam-
ple, the table entry in the row marked “p;” and the column marked “u;”
corresponds to the composition p; o p1. From now on we will refer to all
such tables as Cayley tables, regardless of the operation being represented
(addition, multiplication, composition, ...)

Remark 13.3.2. NOTE it is very easy to get mixed up with Cayley tables
for the composition operation. When looking up the value of f o g, you use
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C c
identity o A B C
e (A B c>
A B A B
C B
rotation (A B C
P=\B c 4
A B C A
C A
rotation (A B C
2=\c 4 B
A B B C
C B
reflection (A B C
Ml_(A C B>
A B A C
C A
reflection (A B C
“2_(0 B A)
A B C B
C C

reflection (A B C
Hs = (B A 0)
A B B A

Figure 13.3.1. Symmetries of an Equilateral Triangle
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the row headings for f and the column headings for g, but when computing
fog, it is g that is applied first and then f. A

Exercise 13.3.3. Verify the following entries in Table 13.1 by (i) writing
the symmetries in tableau form and (ii) computing the composition directly.

a) Row 2, column 4

(
(b) Row 4, column 2
(¢) Row 3, column 6

)
)
)
)

(d) Row 6, column 3

Exercise 13.3.4. Use Table 13.1 to answer the following questions.

(a) Explain why Table 13.1 shows that id satisfies the definition of an iden-
tity element.

(b) Does every element in S have an inverse? List the inverses for each
symmetry that has an inverse.

(c) Explain why Table 13.1 shows that composition is not commutative.

O

So far so good. The composition operation on S has closure, an identity,
and inverses for each element. There is one more group property left to
check — the associative property. It is difficult to check this property on the
Cayley table of .S; we would have to prove it for all 3-symmetry combinations
in S, which would be a bit exhausting.? However, luckily we can prove the
symmetries of any figure are associative in general.

Proposition 13.3.5. The set of symmetries S of any figure under compo-
sition is associative.

3In mathematics, there is a type of proof called “proof by exhaustion,” but this is typ-
ically a last resort. One famous mathematician (George Polya) once said, ”Mathematics
is being lazy. Mathematics is letting the principles do the work for you so that you do not
have to do the work for yourself.”
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PRrROOF. By definition, we know any symmetry of a figure is a function. From
the Functions chapter, we know that composition of functions is associative.
Therefore for any three symmetries s1, s9, $3 € S, by the associative property
of functions,

(31 o 82) 083 =810 (82 o 83).

Therefore S is associative under composition. O

Tada! The set of symmetries of an equilateral triangle are indeed a group
under function composition.

We’ve managed to prove this for one example; what about for the set
of symmetries of any figure? Could we prove the set of symmetries of any
figure are a group under composition? We've already proved the closure and
associative properties hold for any figure (Propositons 13.3.5 and 13.2.5).
Now what about the identity and existence of inverses? We could create
Cayley tables for the infinite number of figures, but we have better things
to do. So let’s prove these properties generally.

Proposition 13.3.6. The set of symmetries S of any figure has an identity.

PROOF. By the definition of a symmetry, the ”non-movement” of a figure
is a symmetry: it corresponds to the identity function id. Then for any
symmetry s € S, using results from the Functions chapter we have

idos=soid=3s

So by the definition of identity, id is the identity of S. 0

Proposition 13.3.7. All elements of the set S of symmetries of any figure
have inverses.

PrROOF. Given a symmetry s € S, by definition s is a bijection. In the
Functions chapter, we showed that every bijection has an inverse s~!. It
remains to show that s~! is itself a symmetry. This means that we have to
show:

(i) s~! leaves distances unchanged between points in the figure;

(i) s~! leaves angles unchanged between points in the figure;
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(iii) s~! leaves the appearance of the figure unchanged.
These three items are proved as follows:

(i) This proof is similar to (ii), and we leave it as an exercise.
(ii) We show that s~! leaves angles between points unchanged as follows:

e Choose any three points A, B,C in the figure, and let A’ =
s7YA),B' =s7YB),C" = s71(0).

e By the definition of inverse, it follows that s(A4’) = A,s(B’) =
B,s(C") =C.

e Since s is a symmetry, it follows that ZA'B'C' = ZABC.

e Since A, B,C were arbitrary points in the figure, we have shown
that s~! leaves angles between points unchanged.

(iii) In the Functions chapter, we showed that s~ is also a bijection. Hence
it leaves the appearance of the figure unchanged.

O

Exercise 13.3.8. Write out the proof of Proposition 13.3.7 part (i). (*Hint*)
¢

And finally, as the grand finale for this series of propositions, we have:

Proposition 13.3.9. The set S of symmetries of any figure forms a group.

Exercise 13.3.10. Prove Proposition 13.3.9 (make use of the propositions
that we’ve proved previously.) ¢

Exercise 13.3.11.

(a) Write the Cayley table for the symmetries of a rectangle.

(b) List the inverses of each symmetry of the symmetries of a rectangle.
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O

Exercise 13.3.12.

(a) Describe all symmetries of a square (For example, “reflection about the
vertical axis ” describes one symmetry: give similar descriptions of all
symmetries of the square. For rotations, use counterclockwise rotations
rather than clockwise: it’s the mathy way of doing rotations.)

(b) Label the square’s vertices as A, B, C, D, and write down each symme-
try in tableau form. As in Figure 13.3.1, denote each symmetry by a
variable (you may use pi, p2,... for the rotations and puq, po, ... for the
reflections).

(c) Write the Cayley table for the symmetries of a square.

(d) For each symmetry of a square, list its inverse.

Exercise 13.3.13. With reference to the logos in Figure 13.3.2:

(a) For which logos do the set of symmetries include all symmetries of the
equilateral triangle? (Note: there are at least two!)

(b) For which logos do the set of symmetries include all symmetries of the
rectangle?

(¢) For which logos do the set of symmetries include all symmetries of the
hexagon?

(d) Which logos have set of symmetries which are proper subsets of the set
of all symmetries as the rectangle?

(e) Give two logos such that all symmetries of the first logo are also sym-
metries of the second logo.

(f) Which logos have no symmetries except for the identity?
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{ii) (ifi)

N, AYA
”&{0 Va¥ @

Figure 13.3.2. Logos for Exercise 13.3.13

13.4 The dihedral groups

We have investigated the symmetries of equilateral triangle, square, and reg-
ular hexagon. But what about other regular polygons: heptagon, octagon,
nonagon, decagon, and so on? (Recall from geometry that a regular poly-
gon has all sides equal and all angles equal.) In this section, we will take a
general look at the symmetries of n-sided regular polygons.

We already know from Exercise 13.3.10 that the symmetries of any n-
sided regular polygon form a group. We define the nth dihedral group to
be the group of symmetries of a regular n-gon. We will denote this group
by D,.

Let us try to count the number of elements of D,, . We can number the
vertices of a regular n-gon by 1,2, ..., n (Figure 13.4.1). Any symmetry will
move the n-gon so that each vertex is replaced by another vertex. Notice
that any vertex can replace the first vertex: so there are exactly n choices
to replace the first vertex. Suppose we replace vertex 1 by vertex k: then
vertex 2 must be replaced either by vertex k + 1 or by vertex k — 1, because
these are the only vertices next to vertex k. So for each of the n choices
for replacing vertex 1, there are two choices for replacing vertex 2: which
makes 2n possible choices altogether. If you think about it, you’ll see that
once the replacements for vertices 1 and 2 are determined, the entire sym-
metry is fixed (again, because vertices must remain next to each other). We
summarize our conclusion in the following proposition.

Proposition 13.4.1. The dihedral group, D,,, is a group of order 2n.

Let us try to characterize these 2n elements of the dihedral group D,,.



436 CHAPTER 13 SYMMETRIES OF PLANE FIGURES &

rotation
_—

Figure 13.4.1. Rotations and reflections of a regular n-gon

First, we know that the elements of the dihedral group includes n rota-

tions: 360° 360°
y— 2 yoey(n—1)- .

n n

We will denote the rotation 360°/n by r. Notice that:

i 360

_ : 360°
e ror = rotation by 2. ==

. o
. roror:rotatlonby?)-%

We can generalize this pattern by writing:

k _

: 360° _
r rotation by k- > (k=1,2,3,...),

where the notation 7* means that we compose r with itself k& times: ror.

..oT.
We can also continue this pattern with £ = 0 and write:

r? = rotation by 0 - @ =id.

We also have

r™ = rotation by n - % = rotation by 360° = id,
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since rotation by 360 degrees is tantamount to not moving the figure at all.

Exercise 13.4.2.

(a) Using the above definition of ¥, show that r* o r™ = r™** for any
natural numbers k, m.

(b) Show that ¥ o "k =pn=F ok =id for 1 < k < n.

(c) What does (b) tell us about the inverse of r*?

O

From the above discussion, it should be clear that the n rotations in D,

can be expressed as:

id,r,rg,...,rn_l,

where we have included id since it is “rotation by 0 degrees” (as mentioned
above, we could also write id as r?). This gives us a nice way of characterizing
the rotations in D,,. But until now we don’t have a nice way of writing the
reflections. We’ll take care of that now!

We have labeled the vertices of the n-gon as 1,2,...,n. In the following
discussion, we will use the letter s to denote the reflection that leaves the
vertex labeled 1 fized, that is, s(1) = 1.* Another way of saying the same
thing is: the vertex labeled 1 is “fixed by” s.

Exercise 13.4.3.

(a) Write the reflection s for the pentagon in tableau form.
(b) How many vertices are fixed by s? What are they?

(c) What is s2? (Recall that s> means the same as s o s.)

Exercise 13.4.4.

(a) Write the reflection s for the octagon in tableau form.

4In math books you may also find the termi “invariant” instead of “fixed”.
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(b) How many vertices are fixed by s? What are they?

(c) What is s%?

O

By generalizing the arguments used in the preceding exercises, it is pos-
sible to prove for any n that:

s =id.

Now we have already shown there are n distinct rotations. Suppose we
follow each of these rotations by the reflection s: that is, consider the set

S={soid,sor,sor? ... ,sor" !}

It appears that S has n elements: but are these elements distinct? The
following exercise provides an answer:

Exercise 13.4.5. Prove the following proposition by filling in the blanks:

Proposition. If 0 < p,q < n and p # q, then sorP and s o r? are distinct
elements of D,,: that is, sorP # sord.

PROOF.

e The proof is by contradiction. Given 0 < p,q < n and p # ¢, and
suppose that sor? <1 > sor?

e Compose both sides of the equation with s, and obtain the equation:
so(sorP)=_<2> .

e By the associative property of composition, this can be rewritten: (so

s)o_<3> = _<4>
e Since sos = _< 5 > | this can be rewritten: ido <6 > = <7> .
e Since id is a group identity, we have: P = <8 > .

e But we have already shown that rP and r? are distinct symmetries if
0 < p,q <n and p # q. This is a contradiction.
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e Therefore we conclude that our supposition was incorrect, and s o
rP <9 > sori This completes the proof.

O O

Exercise 13.4.6. Prove the following proposition:

Proposition If 0 < ¢ < n then s and s o r? are distinct elements of D,,:
that is, s # s o r?. (*Hint™*) O

Exercise 13.4.7. Fill in the blanks to prove that given any integers p,q
with 0 < p,qg <mn, sorP #£r?:

e The proof is by contradiction: so given integers p, ¢ with 0 < p,q < n,
we suppose < 1> .

¢ By multiplying both sides on the right by "~ P, we obtain s o rP o
<2> =7r%0 _<3>

e By associativity, we have so <4 > = <5 >

e Using the fact that < 6 > =id, we obtain s=_< 7>

e The left side of this equation is a reflection, and the right side is a
< 8 > , which is a contradiction.

e This contradiction implies that our supposition is incorrect, so given
integers p, g with 0 < p,q < n, we conclude _< 9 > .

O
The preceding exercises have shown that the rotations and {s,sor,so
r2,...,50r" 1} are all distinct elements of D,,. Since there are 2n of these

symmetries altogether, and since D,, has 2n elements, we have proved the
following:

Proposition 13.4.8. The 2n elements of D, may be listed as:

{id,r, 72, ...,r" s sorsor? ... sor" 1},
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or alternatively as

{sjork, (j=0,1; k=0,1,...n—1},

where we are using the notation: s = 70 = id.

There is actually another way to characterize the elements of D,,, as we
shall see in the following exercises:

T ; 4

N ’

N : 7
N | 4
N ! 7
N ! 7
N : 7

I ) 2 L=
7

’ N

’

|
|
|
!
!
|
|
1
|

Figure 13.4.2. Lines of reflection for a square (Dy)

_—

1 1
2 6 6 2
3 5 5 3
4 4
1 1
| . | | . |
3 4 4 3
Figure 13.4.3. Types of reflections of a regular n-gon

Exercise 13.4.9.
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a) List four reflections of the square in tableau form. (*Hint*)

(
(b) Let u be any of the reflections in part (a). What is p o u?

d

)
)
(c) How many reflections have no fixed vertices?
(d) How many reflections fix exactly one vertex?
)

(e) How many reflections fix exactly two vertices?

Exercise 13.4.10.

a) List five reflections of the pentagon in tableau form. (*Hint*)

(
(b) Let p be any of the reflections in part (a). What is p o pu?

(
(d

)
)

¢) How many reflections have no fixed vertices?
) How many reflections fix exactly one vertex?
)

(e) How many reflections fix exactly two vertices?

Exercise 13.4.11.

(a) List six reflections of the hexagon in tableau form. (*Hint*)
(

b) Let p be any of the reflections in part (a). What is po pu?

)

)

(¢) How many reflections have no fixed vertices?

(d) How many reflections fix exactly one vertex?
)

(e) How many reflections fix exactly two vertices?

Exercise 13.4.12.

441
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(a) Complete the second row of the following tableau that represents the
reflection of the nonagon that fixes vertex 4:

1 2 3 45 6 7 8 9
B = 4

(b) Complete the second row of the following tableau that represents the
reflection of the 10-gon that fixes vertex 4:

1 2 3 4 5 6 7 8 9 10
pe=\ 4

(c) Complete the second row of the following tableau that represents the
reflection of the 10-gon that exchanges vertices 6 and 7:

/1 2 3 4 5678 9 10
me=\_ _ 16 _ _ _

(d) What is pq o 1?7 What is po o po? What is ps o pus?

O

The preceding exercises are generalized to arbitrary n in the following
proposition. Although we do not give a complete proof, it is reasonable that
we can generalize Exercise 13.4.10 to all odd n-gons, and we can generalize
Exercise 13.4.11 to all even n-gons:

Proposition 13.4.13.

e The dihedral group D,, contains n distinct reflections (in addition to
n distinct rotations);

e For any reflection u € D,,, we have po u = id.

Exercise 13.4.14.

(a) Based on results we’'ve shown, prove that sor? must be a reflection, for
0<p<n.
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(b) Using part (a) and other results we’ve shown, show that (sorP)o(sorP) =
id. (*Hint*)

(c¢) Using part (b) and composing on the left by " Pos, show that 7" Pos =
sorP for 0 < p<n.

O

All of our results on dihedral groups can now be summarized in the
following proposition:

Proposition 13.4.15. Every element of the group D,,, n > 3, consists of
all compositions of the two elements r and s, satisfying the relations:

(¢c) "Pos=so0r" P for 0 <p<n.

Proposition 13.4.15 enables us to compute any composition of elements
of D,, directly, without the need of tableau form:

Example 13.4.16. In Ds, to compute (s o 7%) o (s o r?) we have (using
Proposition 13.4.15 and associativity):

30 5) o r* by associativity

(sord)o(sort)=so(r
=50 (sor?)ort by Prop. 13.4.15(c)
= (so0s)orord by associativity
=idoroid by Prop. 13.4.15(a) and (b)

=r
¢

In fact, following the method of Example 13.4.16 it is possible to derive a
general formula for the composition of two reflections. Such a formula may
be very useful in certain situations: for instance, in the following exercises.
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Exercise 13.4.17. Using only associativity and Proposition 13.4.15, com-
plete the entire Cayley table for D4. Remember, there is a row and a column
for each element of Dy4. List the elements as indicated in Proposition 13.4.8.
You don’t need to show all your computations. (But don’t use tableau form—
no cheating!) O

Exercise 13.4.18. Using only associativity and Proposition 13.4.15, com-
plete the entire Cayley table for Ds. You don’t need to show all your com-
putations. (But don’t use tableau form — no cheating!) O

Exercise 13.4.19. Consider an 8-gon with vertices labeled counterclock-
wise as 1,2,...8. Let s be the reflection that leaves vertex 1 fixed, and let r
be counterclockwise rotation by 27 /8. Using only associativity and Proposi-
tion 13.4.15, compute the following. Express your answers in the form s™r",
where m,n are positive integers.

r"sr™, where 0 < m < 8.

2 3 onid

)
)
)
d) sr’™s, where 0 < m < 8.
) rsresrosr
)

ST4ST4

Exercise 13.4.20. For each of the computations in Exercise 13.4.19, deter-
mine whether the result is a rotation or reflection. If the result is a rotation,
give the angle of rotation; and if it’s a reflection, give the line of reflection.
For example, the symmetry sr is a reflection about the line which passes
through the midpoints of segments 12 and 56. O

Exercise 13.4.21.
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(a) In the group D,, let r be counterclockwise rotation by 27/n and let
s be the reflection that leaves vertex 1 fixed. We have shown that
rks = sr" % Let u be an arbitrary reflection in D,. Show that a
similar equation holds for r and y: namely, r*u = pr™=*. (Hint: we've

shown that p can be written as sr™ for some integer m.)

(b) Let p be an arbitrary rotation in D,,, and let u be an arbitrary reflection
in D,,. Show that pu = pp~!. (Hint: Look at the hint for (a), and
consider that p can be written in terms of r.

Exercise 13.4.22.

(a) In the group D,, let r be counterclockwise rotation by 27/n and let s
be the reflection that leaves vertex 1 fixed. Is r*s?r2s a reflection or
rotation? Prove your answer.

(b) Let p be an arbitrary rotation in D,,, and let u be an arbitrary reflection
in D,,. Is p*13p? 11 a reflection or rotation? Prove your answer.

(c) Let k,£,m,n be integers. Given the symmetry p*s‘p™s", under what

conditions is this symmetry a reflection? Under what conditions is this
symmetry a rotation? Prove your answers.

13.5 For further investigation

In this chapter, we have looked at the groups involved with symmetries
of plane figures. But really, there is no need to restrict ourselves to two
dimensions. Three-dimensional regular figures (such as the tetrahedron,
cube, icosahedron, and dodecahedron) also have symmetry groups associated
with them.We will say more about the symmetries of regular polyhedra in
Chapter 23.

Neither do we need to restrict ourselves to symmetries of objects. The
symmetries of patterns also play an important role in art and architecture.
For instance, every possible regular repeating pattern that can be put on
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wallpaper (or used as floor tiling) is associated with a symmetry group. It
turns out that there are exactly 17 of these symmetry groups: they are
called the wallpaper groups. For an excellent elementary reference on this
subject, I highly recommend “17 Plane Symmetry Groups” by Anna Nel-
son, Holli Newman, and Molly Shipley, available on the web (as of Jan-
uary 2014) at http://caicedoteaching.files.wordpress.com/2012/05/
nelson-newman-shipley.pdf.

In physics, symmetry groups are used to describe the regular three-
dimensional patterns associated with crystals. Many references for the
crystallographic groups can also be found on the web: one I recommend
is ” Crystallographic Point Groups (short review)” by Mois I. Aroyo, avail-
able on the web at: http://www.crystallography.fr/mathcryst/pdf/
uberlandia/Aroyo_Point.pdf.

13.6 An unexplained miracle

It’s good for us to step back for a moment and take stock of what we’ve
accomplished so far. We’ll begin with some exercises.

Exercise 13.6.1.

(a) Give the Cayley table for the integers mod 4 under addition.

(b) Give the Cayley table for the four rotations of the square (4-sided poly-
gon). You may use r to denote rotation by 90 degrees, so that the
rotations will be {id, r, %, r3}.

(¢) Give the Cayley table for the four complex 4'th roots of unity. You may
use z to denote cis(7/2) so that the roots will be {1, z, 2%, 23}.

(d) Do you see any connection between your answers to (a), (b), and (c)
above?

O

Exercise 13.6.1 show a deep connection between three extremely diverse
concepts that arose from three totally different fields of study:

e Arithmetic mod n, which first arose from the study of the natural
numbers and their divisibility properties;
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e The n’th complex roots of unity, a concept that arose from the study
of roots of polynomials.

e The rotations of a regular n-gon, which is a purely geometrical phe-
nomenon.

We express the amazing similarity between these three diverse concepts
by saying that they are all described by the “same” group. (The techni-
cal term for this is “isomorphism”: we will study this concept in detail in
Chapter 20.)

Take a moment to appreciate how incredible this is. How is it that
three concepts with totally different backgrounds and completely different
applications end up being described in exactly the same way?

But the wonders do not stop there. It turns out that an infinite version
of this same group is an important part of the so-called Standard Model of
quantum physics, that is used to explain the existence of particles such as
electrons, protons, and neutrons. How is it that a mathematical structure
introduced by an 18" century mathematician ° to study integer division
could end up influencing the theory of elementary particles that were not
even dreamed of in the 18" century?

This mystical unity of description across widely different phenomena says
something very profound about the universe. Galileo  expressed it this way:
”"Mathematics is the language with which God has written the universe.”
When Galileo said this, his mathematics consisted of little more than what
today we would call “high school algebra” —he had not an inkling of abstract
algebra. But what Galileo expressed based on his limited mathematics has
turned been fulfilled with a vengeance by abstract algebra.

Physicist Eugene Paul Wigner” won the 1963 Nobel Prize in Physics, in
part because of his application of the theory of groups to quantum physics.
In 1960 Wigner wrote a famous paper called ”the Unreasonable Effectiveness
of Mathematics in the Natural Sciences,” ® in which he states: ” The miracle
of the appropriateness of the language of mathematics for the formulation
of the laws of physics is a wonderful gift which we neither understand nor

5This mathematician was Leonhard Euler (1707-1783). The integers mod n were fur-
ther developed by Carl Friedrich Gauss (1777-1855).
6Galileo Galilei, Ttalian physicist (1564-1642), whose work on the motion of objects
was foundational to the later work of Isaac Newton.
71902-1995
8The paper can be found at: http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
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deserve.” To this day, apparently no physicist or mathematician has yet
offered a satisfactory explanation for Wigner’s “miracle”.
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13.7 Hints for “Symmetries of Plane Figures” ex-
ercises

Exercise 13.1.4: The rearrangement that doesn’t move anything is still con-
sidered to be a symmetry: for obvious reasons, it is called the identity).

Exercise 13.3.8: The proof is very similar to part (ii) of the same proposition.
Exercise 13.4.6: The proof is very similar to the previous proof.

Exercise 13.4.9: Look at Figure 13.4.2 for some ideas.

Exercise 13.4.10(a): Look at Figure 13.4.3 for some ideas.

Exercise 13.4.11(a): Look at Figure 13.4.3 for some ideas.

Exercise 13.4.14(b): If p is a reflection, then what is o u?
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"For the real environment is altogether too big, too complex,
and too fleeting for direct acquaintance. We are not equipped
to deal with so much subtlety, so much variety, so many per-
mutations and combinations. And although we have to act in
that environment, we have to reconstruct it on a simpler model
before we can manage it.”

(Source: Walter Lippmann, Pulitzer prize-winning journalist)

We mentioned at the beginning of the “Functions” chapter that we would
be interested in functions on finite sets. In this chapter we will investigate
the gory details of bijections (functions that are one-to-one and onto) whose
domain and range are the same finite set. Until now we have looked at
functions as a process, a machine; mappings that take set elements to other
set elements. In this chapter, we will begin to consider functions as things,
objects; as set elements in their own right.This new point of view will cul-
minate in the realization that all finite groups are in some sense just groups
of functions. You may not understand this yet, but don’t worry—you will by
the end of the chapter!

Thanks to Tom Judson for material used in this chapter.

14.1 Introduction to permutations

In Chapter 13 we saw that all symmetries are bijections whose domain and
codomain were the same. Thus symmetries are special cases of permutations,
which are defined mathematically as follows.

450
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Definition 14.1.1. A bijection whose domain and codomain are equal is
called a permutation. The set of all bijections from a finite set X to itself
is called the set of permutations on X and is denoted as Sx. A

Example 14.1.2. Let us recall for a moment the equilateral triangle AABC
from the Symmetries chapter. Let T be the set of vertices of AABC] i.e.
T ={A, B,C}. We may list the permutations of T" as follows. For input A,
we have 3 possible outputs; then for B we would have two possible outputs
(to keep the one-to-one property of each combination); and finally for C'
only one possible output. Therefore there are 3-2 -1 = 6 permutations of
T. Below are the six permutations in St:

= Q
~

PR
[SulieN
= QW

A~
BB
Qm W
& Q
~~
R
Q=
solive R Nv
= Q
~

QQ
N

¢

Which of these permutations are symmetries of the equilateral triangle? In
the Symmetries chapter we saw that they all are: so in this case the set of
symmetries on T is equal to St.

Now suppose instead we label the vertices of an isosceles triangle as
A, B,C, and let T represent these vertices. In this case, St is the same as
before: it doesn’t matter what arrangement or position the vertices are in,
or even if A, B, and C are vertices at all. The permutations depend only
on the set T, and are oblivious to whether or not they correspond to the
vertices of some figure.

But what about the symmetries of an isosceles triangle? It turns out
that an isosceles triangle has only two symmetries (see exercise below). So
the set of symmetries on 1" is a subset of Sp, but not the whole set.

Exercise 14.1.3. Suppose that the two congruent sides of triangle ABC
are AB and BC'). Give the two symmetries, in tableau form. O

Exercise 14.1.4. Suppose T is used to represent any three-sided figure.
Which permutation(s) do(es) the set of symmetries of T always contain? ¢
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Exercise 14.1.5. Suppose X = {A, B,C, D}.

a

(
(b

) How many permutations are there on X7

) List Sx.

(c) List the elements in Sx that are not symmetries of the square.
)

(d) What additional elements in Sx are not symmetries of the rectangle?

O

Actually, any symmetry is a permutation, since a symmetry is by defi-
nition a bijection from a finite set of points to itself. But as we’ve seen in
Exercises 14.1.3, 14.1.4, 14.1.5 (as well as Exercise 13.1.8 from the Symme-
tries chapter), not all permutations (bijections) are symmetries. Given a set
X that represents a figure, the set of symmetries from X — X is therefore
a subset of Sx.

14.2 Permutation groups and other generalizations

We saw in the Symmetries chapter that the set of symmetries of any fig-
ure form a group under the operation of function composition. Since we’ve
already seen that permutations are closely related to symmetries, this nat-
urally leads to the question: is Sx a group under function composition?
Fortunately, this time the answer is easier to prove.

Proposition 14.2.1. Given any set X, Sx is a group under function com-
position.

PROOF.

e First then, if f,g € Sx, then f o g would be, by definition of composi-
tion, a function from X — X. Further, since it is a composition of two
bijections, f o g would be a bijection (proved in Functions chapter).
Therefore by definition f o g is permutation from X — X. In other
words fog € Sx. So Sx is closed under function composition.

e Second, the identity of Sx is just the permutation that sends every
element of X to itself (We will call this permutation id, just like we
did with symmetries.).
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e Third, if f € Sx, then by definition f is a bijection; hence from the
Inverse section of the Functions chapter we know f has an inverse f~!
from X — X that is also a bijection. Hence f~! € Sx. Therefore
every permutation in Sx has an inverse.

¢ Finally, composition of functions is associative, which makes the group
operation associative.

Hence Sx is a group under function composition. O

14.2.1 The symmetric group on n numbers

We can label the vertices of a triangle as A, B, C or 1,2, 3 or apple, pear, cherry
or whatever, without changing the triangle. No matter how we label the
triangle, the symmetries of the triangle will be the ”same” in some sense
(although we write them down differently).

Since symmetries are special cases of permutations, this motivates us to
investigate the effect of relabeling on permutations in general.

For starters, we’ll look at a simple example. Let X = {A, B,C, D} and
Y ={1,2,3,4}. Suppose

(A B C D\ (A B C D
=\pb ¢ B A)]° " \¢ D 4 B

(1 2 3 4\ (1 2 3 4
T“la321) P73 a2
Is u = 77 Technically no, because their domain/codomains are different,

yet we can clearly see that they are somehow equivalent. But how do we
express this equivalence?

and

Suppose we start with the tableau for u. We cross out every ‘A’ in
the tableau and replace with ‘1’. Similarly, we replace B,C, D with 2, 3,4
respectively. Then what we end up with is exactly 7. In other words,
performing a “face-lift” on p gives 7. Therefore p and 7 are equivalent, as
are ¢ and p.

Exercise 14.2.2.
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a) Write p o o in tableau form.

(a)

(b) Write 7 o p in tableau form.

(¢) Is po o equivalent to 7o p? Ezplain your answer.
)

(d) Is o o p equivalent to p o 7? FExplain your answer.

Let’s summarize our findings so far:

e The sets Sx and Sy are equivalent in the following sense: for each
element of Sy we can find an equivalent element of Sy by replacing
A,B,C,D with 1,2,3,4.

e Further, in the exercises we saw that the composition of two particular
elements in Sx is equivalent to the composition of the two equivalent
elements in Sy. Although we’ve only shown this for two particular
examples, it makes sense that the same thing would work no matter
which two elements in Sx that we choose (after all, all we’re doing is
replacing letters with numbers—and we’re always replacing the same
letter with the same number). So we can say that composition acts
the “same” on both sets.

So far we have only looked at sets with four elements. Now it’s time to
generalize these results to sets of any size. First, some notation:

Notation 14.2.3. The order of a set Y is the number of elements of Y,
and is written as |Y|. ! A

Now let X = {1,2,...,n}, and consider any set Y with |Y| = n. We
could do a similar “face-lifting” as above to show that Sx is equivalent to
Sy. So the group Sx is equivalent to the permutations of any set of n
elements.

Notation 14.2.4. Let X = {1,2,...,n}. Instead of writing Sx, we write
Sn. Sy is called the symmetric group on n numbers. A

"You're probably used to seeing |...| as representing absolute value. Of course a set
is not a number, so it has no absolute value. We use |Y| to denote order because it’s a
measure of the size of set Y, just as the absolute value of a number is the “size” of the
number.
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14.2.2 Isomorphic groups

In Section 13.6 we compared the groups Z,, the n rotations of a regular n-
gon, and the n'* roots of unity. We saw that, as long as you made a suitable
pairing (bijection) between the elements of any two of these sets, then their
Cayley tables were exactly the same.

We've just seen the very same thing for S,. If | X| = |Y| = n and we
replace each of the elements in X with a corresponding element in Y, we
concluded that the composition of any two elements in Sx is equivalent to
the composition of the two equivalent elements in Sy. That’s exactly the
same thing as saying that the Cayley table entries are equivalent between
the two groups.

This ”equivalence of groups” is one of the premier concepts in abstract
algebra, almost as important as the concept of a group itself. When two
groups are equivalent like this, we say that they are isomorphic groups;
we also say that the bijection that causes the groups to be equivalent is an
isomorphism. We will see in a later chapter how to show in general that
two groups are isomorphic; but for now, forming the groups’ Cayley Tables
and seeing if you can match elements to make the tables the same is a very
good strategy.

Exercise 14.2.5. Let W = {G,H} and Z = {J, K }.

(a) Write the Cayley Tables for Sy and Sz. It would be helpful to write
the entries of Sy and Sz in tableau form.

(b) Give a bijection from W to Z, and the corresponding bijection from
Sw to Sz, that would show Sy is isomorphic to Sz. (Remember that
a bijection can be thought of as a “relabeling” of elements of W as
elements of Z.)

(¢) *How many possible bijections from W to Z give rise to isomorphisms
from Sy to Sz7?

Exercise 14.2.6. Let X = {A,B,C} and Y = {M, N, P}.

(a) Write the Cayley Tables for Sx and Sy
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(b) Give a bijection from X to Y, and the corresponding bijection from Sx
to Sy, that would show Sx is isomorphic to Sy.

(c) *How many possible bijections from X to Y produce isomorphisms from
Sx to Sy?

(d) *Nowlet X ={A,B,...M}andY = {N,O,...Z}. How many different
bijections from X to Y produce isomorphisms from Sx to Sy?

14.2.3 Subgroups and permutation groups

Let’s summarize this section so far. The permutations on a set X of n
elements is a group under function composition (denoted by S,,). Further,
for any figure with n sides, the symmetries of that figure is a subset of
S, containing at least the identity permutation, and that subset is itself a
group under function composition. This example motivates the following
definition.

Definition 14.2.7. A subset of a group G that is itself a group under the
same operation as G is called a subgroup of G. A

The notion of subgroup is a key concept in abstract algebra, which will
be used throughout the rest of the book.

Example 14.2.8. From the above definition of subgroup it follows that:

e The symmetries of a rectangle are a subgroup of Sjy.
e The symmetries of an isosceles triangle are a subgroup of Ss.
e Dj is a subgroup of Ss.

e The permutations of {1,2,3} are a subgroup of the permutations of
{1,2,3,4}. Hence S3 is a subgroup of S4. By the same token, S,, can
be considered as a subgroup of .S, whenever m < n.

Definition 14.2.9. A subgroup of S, is called a permutation group. /A
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Exercise 14.2.10. Consider the subset G of S5 consisting of the identity
permutation id and the permutations

1
7=\
__[
~\3
1
=13

(a) Write the Cayley table for G. Label your rows and columns as: id, o, 7, p.

NN NN NN
_w = W W w

U B b O
Ut Ut
N——

(b) Use the Cayley table to explain whether G is a subgroup of S5 or not.

Remember: you don’t need to show the associative property, since func-
tion composition 1S associative.

Exercise 14.2.11. Consider the subset G of S4 consisting of the identity
permutation id and the permutations

N
77 \2
1
=3
N
=13

(a) Write the Cayley table for G (Label your rows and columns as: id, o, T, 11).

NN N W N
N W — W =W
~
N————

(b) Use the Cayley table to explain whether or not G is a subgroup of Sy.

O

As the example shows, a permutation group need not comprise all sym-
metries of a figure or all rearrangements of a set. Many permutation groups
have no evident practical interpretation whatsoever. Nonetheless they are
still useful, because as we shall see they can be used to characterize the
groups that contain them.
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14.3 Cycle notation &

14.3.1 Tableaus and cycles

In the Symmetries chapter, we introduced tableau notation to deal with
bijections because of its brevity and ease of use for function composition.
But as you may have noticed in the last section, even tableaus can become
cumbersome to work with. To work effectively with permutation groups, we
need a more streamlined method of writing down and manipulating permu-
tations. This method is known as cycle notation.

1 2 3 4 5 6
Example 14.3.1. Suppose p € S and p = (2 345 6 1>. Then
p(1) =2, p(2) =3, p(3) =4, p(4) =5, p(5) =6, and p(6) = 1.

A shorter way to represent this is

1—-+2,2—-33—-44—55—6and6— 1.

We can visualize this as a “wheel”, as shown in Figure 14.3.1

VSl
4 1

\s &/

~

Figure 14.3.1. Cycle representation of the permutation (123456).

We shall write this trail of inputs and outputs as (123456); and rather
than “wheel”, we call this a cycle. Reading the cycle from left to right
indicates that 1 goes to 2, 2 goes to 3, ..., and the 6 at the end goes back
to 1.

Exercise 14.3.2. Show that (123456) = (345612) by drawing a figure
similar to Figure 14.3.1 for each cycle. O

Exercise 14.3.3. Show that (123456) and (234561) both have the same
tableau (so they are in fact the same permutation). O


https://www.youtube.com/watch?v=OIPN8WDRQZE&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=20
https://www.youtube.com/watch?v=DdlusCIP-4k&list=PL2uooHqQ6T7PW5na4EX8rQX2WvBBdM8Qo&index=21

14.3 CYCLE NOTATION 459

From the previous two exercises, it is clear that there are many ways to
write the same cycle: we can begin with any element we want, and work
our way around until we get back to the same element. To avoid possible
confusion, from now on we will follow the convention of starting the cycle
with the “smallest” or “first” element of the domain.

For this particular permutation, since our cycle contains all the inputs
in the domain of p, it represents the whole function (because it gives us the
outputs for every input). Therefore in cycle notation,

p = (123456)

Exercise 14.3.4. Write the following permutation of Sg in cycle notation:

(12345 6
F=\3 45 16 2/)°

O
Exercise 14.3.5. Given the permutation p = (152634) in Sg :
(a) Write u in tableau form.
(b) Write p as a figure similar to Figure 14.3.1

O

Exercise 14.3.6. Given the permutation p = (165432) in Sg :

(a) Write u in tableau form.
(b) Write u as a figure similar to Figure 14.3.1

(¢c) Compare your answer to (b) with Figure 14.3.1 of p = (123456). Explain
the difference between u and p.

Definition 14.3.7. The length of a cycle is how many elements the cycle
contains; i.e. how many elements are in the parentheses. Formally,
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if (a1,a2,...,a,) is a cycle, then the length of (aj,as,...,a,) is n.
AN

For example, the permutation p in Example 14.3.1 above is represented
by a cycle of length six.

Remark 14.3.8. Notice how we have used the notation a; to indicate

arbitrary elements in a cycle. This is a common practice in abstract algebra.
A

Now not all permutations in Sg correspond to a cycle of length six. For
instance:

1 2 3 45 6

Example 14.3.9. Suppose 7 € Sg and 7 = (1 4 2 3 5 6

> . Then

e 1 — 1, which means that 1 “stays put.” So we don’t use 1.
e 24 4— 3, and 3 — 2; so we have (243).
e Finally, 5 — 5 and 6 — 6; so they also stay put.

Hence
T = (243)

¢

Based on the procedure in the previous example then, how would we
represent the identity permutation on a set of n elements? All the elements
stay put, so technically id would equal the “empty cycle”. Some references
in fact use “()” to denote the identity: but in this book we will always denote
the identity permutation by id as a reminder that this is in fact the group’s
identity element.

Warning 14.3.10. Cycle notation does not indicate the domain of the
permutation. For instance, the permutation (243) in Example 14.3.9 had
domain {1,2,3,4,5,6}, but (243) could also refer to a permutation on the
domain {1,2,3,4}. When working with permutations in cycle notation,
make sure you know what the domain is. (In most cases, it’s clearly specified
by the context.) O

Exercise 14.3.11. Write each of the following permutations in S7 in tableau
form.
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(a) w = (243)
(b) w = (2365)
(c) w=(14257)

Exercise 14.3.12. Draw a figure similar to Figure 14.3.1 depicting each of
the following permutations in Ss.

(a) o = (25)
(b) o = (135)
(¢) o = (1342)

O

A final question that may come to mind is: do all permutations correspond
to some cycle? Certainly, as we’ve seen, all cycles correspond to some per-
mutation in S,,. However, can all permutations in .S,, be represented as a
cycle? We will take the next several parts of this section to explore this
question.

14.3.2 Composition (a.k.a. product) of cycles

Since cycles represent permutations, they can be composed together. If we
change the cycles to tableaus, we know how to compose them. Now let’s
figure out how to compose them using the cycles themselves.

Notation 14.3.13. Given permutations ¢ and 7, instead of writing o o 7
we write the shorthand notation: o7. Furthermore, instead of calling this
the composition of ¢ and 7, we refer to it as the product of ¢ and 7. 2 A

Example 14.3.14. Suppose we want to form the product (that is, compo-
sition) o7, where 0,7 € Sg and o = (1532), 7 = (126).

20Once again we see mathematicians’ annoying habit of reusing familiar terms to mean
something new in a different contexts. In this case, the “product” of permutations means
something quite different from ordinary multiplication.
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Figure 14.3.2. Product of cycles o and 7, showing the derivation of
or(1) =1.

Figure 14.3.2 provides a visual representation of how the product o7 acts
on 1. Remember that we operate from right to left, so the figure shows ‘1’
coming in from the right. The action of 7 takes 1 to 2. ( For convenience
we have “flattened” the permutations 7 and o, so they no longer appear as
circles.) Then we pass over to o, which takes 2 to 1. The final result is 1:
therefore o(7(1)) = 1.

Evidently 1 remains unchanged by the permutation, so let’s look at what
happens to 2. We see this in Figure 14.3.3. First, 7 moves 2 to 6. Moving on
to o, we find that o leaves the 6 unchanged. The result is that o(7(2)) = 6.

Figure 14.3.3. Product of cycles o and 7 (continued), showing o7(2) = 6.

We have seen that o7 takes 2 to 6: so now let’s see where o7 takes 6.
(Perhaps you can see that we’re trying to build a cycle here.) The top part
of Figure 14.3.4 uses the same process to show the result: o(7(6)) = 5. The
middle part of Figure 14.3.4 shows that o(7(5)) = 3; and the bottom part
of Figure 14.3.4 shows that o(7(3)) = 2. We already know that o(7(2)) = 6,
so we have closed out our cycle. We have shown 2 — 6 — 5 — 3 — 2, which
amounts to the cycle: (2653).

So far 4 is unaccounted for: but a quick inspection of Figure 14.3.4 shows
that 4 is not affected by either 7 or . So the entire action of 7 followed
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2 T

Figure 14.3.4. Product of cycles o and 7 (continued), showing 6 — 5 —
3 =2

by o is summarized by the cycle (2653), meaning that we can write: o7 =
(2653). 1N

Exercise 14.3.15. Using the same permutations o and 7 as above:

(a) Write the product 7o in cycle notation.

(b) By comparing your results for o7 and 7o, fill in the blank in the following
statement: In general, permutations donot ____________.

Example 14.3.16. At the beginning it may be helpful to draw a picture, as
in the previous example. However, once you gain experience, you should be
able to find the product of cycles directly. Consider the product o7 where
0 =(AEDBF) and 7 = (ABDFE). Then we have:

o 7 takes A — B and o takes B —F; hence o7 takes A — F.
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e 7 takes FF — F, and o takes ¥ — D; hence o7 takes F' — D.

e 7 takes D — F, and o takes F' — A; hence o7 takes D — A.

We have finished a cycle: (AFD). Let us check where the other letters
B,C, FE go:

o 7 takes B — D, and o takes D — B; hence o7 takes B — B.
e Neither 7 nor ¢ affects C'; hence o7 takes C — C.

e 7 takes F — A, and o takes A — FE; hence o1 takes £ — E.

Since B, C, E are unaffected by o7, we conclude that o7 = (AFD). ¢

Exercise 14.3.17. Given that 6 = (135), o = (347), and p = (567) are
permutations in S7, compute the following:

(a) do (c) dp () ap
(b) o6 (d) po (£) po

14.3.3 Product of disjoint cycles

Definition 14.3.18. Two cycles are disjoint if their parentheses contain no
elements in common. Formally, two cycles (a1, aq,...,ax) and (b1, ba, ..., b;),
are disjoint if a; # bj,Vi,j such that 1 <¢<kand 1 <j <1, A

For example, the cycles (135) and (27) are disjoint, whereas the cycles (135)
and (347) are not.

Example 14.3.19. Given o = (135), 7 = (27), 0,7 € S7; let us compute
oT.

Notice right away that every number affected by 7 is unaffected by o;
and vice versa. Since the two cycles always remain separate, it is appropriate
to represent o7 as (135)(27), because the cycles don’t reduce any farther. ¢
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Now since 57 is closed under function composition, it follows that o7 =
(135)(27) must be a permutation in S7.

Exercise 14.3.20. Write the permutation o7 from Example 14.3.19 in
tableau form. O

This permutation can’t be represented by one cycle, but rather by two
disjoint cycles. So we have an answer to our previous question: all cycles
are permutations, but not all permutations are cycles. Some are represented
by two disjoint cycles: and in fact some are represented by more than two
disjoint cycles.

1
6

— o
o
ISR
-

Example 14.3.21. Suppose p € S; and p = (
Then

[N R )
[SAREN |
N———

e 1—6,6—2 and 2 — 1; therefore we have the cycle (162).
e 3 — 4 and 4 — 3; therefore we have (34).

e Finally, 5 — 7 and 7 — 5; therefore we have (57).
Hence p = (162)(34)(57), as we may verify by computing the product (162)o
(34) o (57) directly.

We may represent this process graphically as follows. The permutation
p can be represented as a digraph as shown in Figure 14.3.5(a). We can
make the digraph appear much simpler by rearranging the vertices as in
Figure 14.3.5(b). We shall see that all permutations can be simplified in
this manner. ¢

6 3. 5
U R
(@) (b)

Figure 14.3.5. (a) Digraph representation of permutation (b) Rearrange-
ment of digraph into cycles

Exercise 14.3.22. Write the following permutations in cycle notation.
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) p= (123450 @ wo (L 23450
P=\2 15 6 3 4 “T\4516 23

123456 123456
(b)"_256413> (d)T_<534126>

Exercise 14.3.23. Write each of the following permutations in Sy in tableau
form.

(a) p = (259)(347). (c) T = (286)(193)(457).
(b) o = (25678)(14)(39). (d) w = (257)(18).

Exercise 14.3.24. Write the permutations of Dg in cycle notation (recall
that Dg is the group of symmetries of a hexagon). O
Exercise 14.3.25. Write the symmetries of a square in cycle notation. ¢

There is one more issue we need to explore with the product of disjoint
cycles, which we will do in the following exercise.

Exercise 14.3.26. In parts (a)—(d) below, write both permutations on the
set {1,2,3,4,5,6} in tableau form.

(a) (123)(45) and (45)(123). (c) (1352)(46) and (46)(1352)

(b) (14)(263) and (263)(14) (d) (135)(246) and (246)(135)

(e) From your results in (a)-(d), what do you conjecture about the product
of disjoint cycles?

O

The examples in Exercise 14.3.26 seem to indicate that the product of
disjoint cycles is commutative. This is in fact true, as we shall now prove.
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Proposition 14.3.27. Disjoint cycles commute: that is, given two disjoint
cycles 0 = (a1,a2,...,a;) and 7 = (b, b, ..., b;) we have

orT =70 = (a1,az,...,a;)(b1,ba,...,bg)
PROOF. We present this proof as a fill-in-the-blanks exercise:

Exercise 14.3.28. Fill in the blanks to complete the proof:

Recall that permutations are defined as bijections on a set X. In order
to show that the two permutations o7 and 7o are equal, it’s enough to show
that they are the same function. In other words, we just need to show that
or(x) =_<1> foralxzelX.

We'll define A = {a1,as,...,a;} and B = {b1,bo,...,by}. By hypothesis
A and B are disjoint, so A <2 > B = <3 > . Givenan arbitrary z € X,
there are three possibilities: (i) 2 € A and z ¢ B; (ii) v € _<4> and
r¢ _<6> ;({i)xr¢g <7> ander ¢ <8> .

(i) In this case, since x ¢ B it follows that 7(z) = x. We then have
or(z) = o(r(z)) = o(x). Furthermore, since z € A it follows that
o(x) € A, so o(z) ¢ B. We then have 7o(z) = 7(c(z)) = o(x). It
follows that o7(z) = 70(x).

(ii) In this case, since z ¢ <9 > it follows that < 10> (z) =xz. We

then have 7o(z) = _< 11> = _< 12> (). Furthermore, since x €
<13 > it followsthat <14 > ()€ <15> ,so <16> (x) ¢
< 17> . We then have o7(z) = _<18> = _<19> (x). It

follows that o7(x) = T7o(x).

(iii) In this case, since x ¢ A it follows that _< 20 > (z) = z. Similarly
since x ¢ <21 > it follows that <22 > (x) = x.We then have
To(zr) =_<23> andor(z) =_<24> . It follows that o7(z) =
To(x).

In all three cases we have o7(z) = _< 25 > | so therefore o7 = 70. O

0

What we’ve discovered about products of two disjoint cycles is also true for
products of any number of disjoint cycles. Since disjoint cycles act indepen-
dently, they all commute.

Exercise 14.3.29. Write each of the following permutations on X =
{1,2,...,9} in tableau form.
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(a) (1346)(298)(57)  (b) (57)(1346)(298)  (c) (298)(57)(1346)

(d) Which of the above permutations are the same? Which are different?
FExplain your answer.

Exercise 14.3.30. Write each of the following permutations 2 different
ways using cycle notation.

(a) (147)(258)(369)  (b) (12)(35)(46)(78)  (c) (14359)(28)(67)

14.3.4 Products of permutations using cycle notation

Finally, now that we know how to deal with permutation compositions that
simplify to disjoint cycles, we can now compose any set of permutations we
want. We will start with a couple examples.

Example 14.3.31. Given the permutations p = (257)(134) and p =
(265)(137) in S7, write up in cycle notation.

e 1—-3,3—=>3,3—4,and 4 — 4; therefore 1 — 4.

e 44 4—4,4—1,and 1 — 1; therefore 4 — 1.

This gives us the cycle (14). Continuing,

e 232 2—6,6—6,and 6 — 6; therefore 2 — 6.
e 6—>6,6—>55—5,and 5 — 7; therefore 6 — 7.
e 7—1,1—1,1— 3, and 3 — 3; therefore 7 — 3.

e 3—>7,7—7,7—7,and 7 — 2; therefore 3 — 2.

So we have the cycle (2673). Now the only input not included in our cycles
is 5, so logically it should stay put. But let’s test it just in case we made a
mistake in our work above.
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e 5—55—2 2—2 and 2 — 5; therefore 5 does indeed stay put.

So, we finally have: up = (14)(2673) ¢

Example 14.3.32. Find the product (156)(2365)(123) in Sg .

e 1 > 22— 3, and 3 — 3; therefore 1 — 3.
e 3—1,1—1, and 1 — 5; therefore 3 — 5.
e 5—5 5— 2 and 2 — 2; therefore 5 — 2.

e 23, 3—06,and 6 — 1; therefore 2 — 1.

So we have (1352).

e 4 does not appear in any of the cycles, so we know it won’t be acted
on by any of the cycles. Hence 4 stays put.

e 6 — 6,6 — 5, and 5 — 6; hence 6 stays put.

Therefore (156)(2365)(123) = (1352). ¢

Exercise 14.3.33. Given the following permutations in S,
o = (1257)(34), 7 = (265)(137), and p = (135)(246)(78)
find the products:

(a) o7 (c) p
(b) 7o (d) ap

Exercise 14.3.34. Compute each of the following. Note that e.g. (123)?
means the same as (123)(123).
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(a) (1345)(234) (c) (143)(23)(24) (e) (1254)(13)(25)2
(b) (12)(1253) (d) (1423)(34)(56)(132) (f) (1254)2(123)(45)

14.3.5 Cycle structure of permutations

Over the last several subsections, we’ve seen permutations represented as no
cycles (id), a single cycle, or the product of any number of disjoint cycles.
This worked because both a single cycle and a product of disjoint cycles
can’t be reduced to a simpler form in cycle notation. Are there any other
possibilities? Are there permutations that can’t be represented as either a
single cycle or a product of disjoint cycles? The answer to this compelling
question is given in the following proposition. This type of proposition is
called an “existence and uniqueness” statement, and for convenience we’ll
divide the statement into two parts:

Proposition 14.3.35.

(a) Every permutation o in S, can be written either as the identity, a single
cycle, or as the product of disjoint cycles.

(b) These disjoint cycles are uniquely determined by the permutation o.

The following proof is a formalized version of the procedure we’ve been using
to change permutations from tableau form to cycle notation. Admittedly, it
looks intimidating. However, we include it for your “cultural enrichment”,
because higher-level mathematics is typically like this. It’s often the case
that particular examples of a certain principle are relatively easy to explain,
but constructing a general proof that covers all cases is much more difficult.

Before starting the proof, we remind you that the notation o = (a1 as ... ay)
means:

U(al):az O’(ag):ag... ...a(ak):al,

and o(x) = z for all other elements x € X.

PROOF. Let’s begin with (a) We can assume that X = {1,2,...,n}. Let
o € Sy, and define X7 = {1,0(1),0%(1),...}. The set X; is finite since
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X is finite. Therefore the sequence 1,0(1),02(1),... must repeat. Let j
be the first index where the sequence repeats, so that o/1(1) = o¥(1) for
some k < j;. Then if we apply o' to both sides of the equation we get
o/171(1) = o*71(1). Repeating this k — 1 more times gives ¢/17%(1) = 1.
This implies that the sequence repeats at index j; — k: but we’ve already
specified that j; is the first index where the sequence repeats. The only way
this can happen is if k = 0. It follows that X; = {1,0(1),02(1),...0/17}(1)},
where ¢71(1) = 1.

Now there are two possible cases:

(i) X; accounts for all the integers in X; i.e. X; =X

(ii) there are some integers in X not accounted for in X (that is, X\ X; #

0).

If case (ii) holds, then let ¢ be the smallest integer in X'\ X; and define
Xo by {i,0(i),02(i),...}. Just as with X1, we may conclude that X5 is a
finite set, and that Xo = {i,0(4),...,07271(i)} where ¢72(i) = 1.

We claim furthermore that X; and X, are disjoint. We can see this by
contradiction: suppose on the other hand that X; and X5 are not disjoint.
Then it must be the case that oP(1) = ¢9(i) for some natural numbers p, q
with 0 < p < j; and 0 < g < j2. Applying o to both sides of this equation,
gives oPT1(1) = o9*1(i). If we continue applying o to both sides a total
of jo — q times then we obtain o?™/279(1) = ¢72(7). But since ¢72(i) =
i, it follows that oP*7279(1) = i, which implies that i € X;. This is a
contradiction, because we know i € X\X;. The contradiction shows that
the supposition must be false, so X1 and Xs are disjoint.

Continuing in the same manner, we can define finite disjoint sets X3, X4, .. ..
Since X is a finite set, we are guaranteed that this process will end and there
will be only a finite number of these sets. Some of these sets X; will have
only a single element: in this case, o; = id, and it is not necessary to include
these sets in the list. We may remove these sets, and relabel the remaining
sets as X1,...Xs. If 0; is the cycle defined by

_foo(x) zeX;
oi7) = { z r & X,
then o = o109 - 05. Since the sets X1, Xo,..., X, are disjoint, the cycles

01,09,...,05 must also be disjoint.
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Now recall case (i) above. In this case, ¢ = o;. Hence, o is either a
single cycle or the product of r disjoint cycles.Note that if o = id, then the
process described above will yield all single-element sets, so that » = 0 and
{X1,...X,} = (this is why we treat the id as a special case). But if ¢ # id,
the process will create at least one cycle of length > 2. This completes the
proof of (a).

Now on to (b). To show uniqueness of the disjoint cycles, we suppose
that o = 01...05 and also 0 = py...p,, where the o;’s are disjoint cycles
and the p;’s are also disjoint cycles. The proof may be accomplished by
showing that S = R, where S := {01,...0s} and R := {p1,...,pr}. To do
this, we may show every cycle in S is also in R, and vice versa. So take
oj € S, and write 0; = (a1 a2 ... ay). Since oj(a1) = ag, it follows that
o(a1) = ag. But this means that there must be a cycle py € R such that
pe(a1) = ag. In the same way we may show that p(az) = as,...p(ay) = a;.
Since py is a cycle, it follows that py(x) = x for = ¢ {a1 a2 ... as}. It follows
that pe(x) = oj(x) for all z € X, and hence py = 0;. Thus every element
of S is also an element of R. The proof is then completed by the following
exercise:

Exercise 14.3.36. Complete the proof of Proposition 14.3.35 by showing
that every p; in R is also in the set S. O

O

Proposition 14.3.35 is a classification theorem. You have seen classifi-
cation theorems before: for instance, you know that any natural number
> 1 can be written uniquely as the product of primes. Proposition 14.3.35
similarly gives us a standard way to represent permutations. It allows us to
characterize the types of permutations in S, according to their cycle sizes,
as shown in the following example.

Example 14.3.37. We know that every permutation in Sy is the product
of disjoint cycles. Let us list all possible cycle lengths and number of cycles
for the permutations of S5.

e First of all, S5 contains the identity, which has no cycles.

e Second, some permutations in S5 consist of a single cycle. The single
cycle could have length 2, 3, 4, or 5 (remember, we don’t count cycles
of length 1).
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e Third, some permutations in Ss consist of the product of two disjoint
cycles. To enumerate these, suppose first that one of the cycles is a
cycle of length 2. Then the other cycle could be a cycle of length 2
(for instance in the case (12)(34)) or a cycle of length 3 (as in the case
(14)(235)). There are no other possibilities, because we only have 5
elements to permute, and a larger disjoint cycle would require more
elements.

e It’s not possible to have three or more disjoint cycles, because that
would require at least six elements.

To summarize then, the possible cycle structures for permutations in S5 are:

e The identity
e single cycles of lengths 5, 4, 3, or 2

¢ two disjoint cycles of lengths 2 and 3; and two disjoint cycles of lengths
2 and 2

Exercise 14.3.38. Following Example 14.3.37, list all possible cycle struc-
tures of permutations in the following:

(a) Se (b) S7 (c) Ss

14.4 Algebraic properties of cycles &

14.4.1 Powers of cycles: definition of order

Let’s revisit the product of cycles. We will look at what happens when you
compose a cycle with itself multiple times.

Example 14.4.1. Consider the product (1264)(1264), which we may also
write as (1264)2. As in the previous section, we can use a diagram (see
Figure 14.4.1) to compute this product. But let’s try to understand better
what’s really going on.
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Y
= PR
6 1 6 1
S 4 A o 4

Figure 14.4.1. Diagram of (1264)2, showing in particular how the permu-
tation takes 1 to 6.

(1) Notice for all elements x # 1,2, 6,4, = stays put in (1264); hence x stays
put in (1264)2. So the product (1264)? does not involve any elements
except 1,2,6 and 4.

(2) Now let’s look at what happens when x = 1,2,6, or 4. By squaring the
cycle, we are applying it twice to each input; hence each input is moved
two spots around the wheel (see Figure 14.4.2) . In other words,

1—-6; 6—>1; 2—4;, 4—2,
Altogether: (1264)2 = (16)(24).

ﬂ

6 1
S g

Figure 14.4.2. (1264)?: streamlined notation

¢

With this methodology in mind, let’s explore powers of cycles a bit further.

Exercise 14.4.2. Compute each of the following.

(a) (1264)3 (b) (1264)* (c) (1264)°

Exercise 14.4.3. Compute each of the following:
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(a) (125843)2 (c) (125843)4 (e) (125843)6
(b) (125843)3 (d) (125843)5 (f) (125843)7

O

Do you notice a pattern from these two exercises? Let us investigate in
a bit more detail: this will help us build up towards a proof of a general
statement.

Exercise 14.4.4. Let X = {1,2,...,10},let A = {2,5,7,8}, and let 0 € Sx
be the cycle o = (2578).

(a) What is 0(2)? What is 02(2)? What is 03(2)? What is 0*(2) What is
03,482,991(2)?

(b) What is o(5)? What is 0%(5)? What is ¢3(5)? What is o0#(5) What is
03,482,991(5)?

Fill in the blank: If z € A then o*(z) = o ™04 (k. ),

)

d) What is ¢(1)? What is o(3)?
) What general statement can you make about o*(z) for z € X\ A?
)

**Let K={k:0"z)=2 Ve € X}. s2€ K? Is3€ K? Is4 ¢ K?
Given any positive integer k, what’s a simple way of telling whether or
not k € K7

O

Hopefully you’re beginning to see the picture! To generalize these results,
we need some additional terminology:

Definition 14.4.5. The order of a cycle ¢ is the smallest natural number
k such that o* = id. The order of ¢ is denoted by the notation |o|. 2 A

After that long build-up, we now have (Ta-da!):

Proposition 14.4.6. The order of a cycle is always equal to the cycle’s
length.

ProoF. To prove this, we essentially have to prove two things:

3This is in keeping with our practice of using |...| to denote the “size” of things.
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(A) If o is a cycle of length k, then o* = id;

(B) If o is a cycle of length k, then 07 #id Vj:1<j<k.

The proof for (A) follows the same lines as our investigations in Exer-
cise 14.4.4. In that exercise, we considered separately the elements of X

that are moved by the cycle, and those elements that are not moved by the
cycle.

Exercise 14.4.7. Prove part (A) by filling in the blanks.

Let 0 € Sx be an arbitrary cycle of length k. Then ¢ can be written as
(apay ... ag_1), for some set of elements ag,aq,...ar_1 in X. In order to
show that o* = id, it is sufficient to show that o%(z) = < 1> Vz € X.
Let A be the set {ag,a1,...ar_1}. Now for any x € X, there are two
possibilities:

(i) z € X\A4;

(i) z € A.

We’ll deal with these two cases separately (as we did in Exercise 14.4.4).

(i) In this case, o(r) = <2> It follows that o%(z) = o(o(z)) =
o( <3> )= _<4> . We can use the same argument to show
that 03(z) = < 5> , and that ¢¥(z) = < 6> for any natural

number <7 > .

(i) In this case, then x = a; for some integer j,1 < j < <8> . It
follows from the definition of cycle that o(z) = 0(a;) = @ mod (j+1,k)-
Furthermore, 0%(2) = /(@ mod (j+1,4) = _< 9> . Similarly it follows

k() — _ _
that 0%(2) = @ mod (j+ <10> k) = 0 <11> = 7.

Cases (i) and (ii) establish that Vo € X, <12> = z. It follows that
ob=_<13> .

¢

The proof of (B) is also structured as an exercise.

Exercise 14.4.8.. In this exercise we use the same notation as part (A),
that is: o € Sx has length k and is represented as: o = (aj az ... ag).
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(a) What is o(a;)? What is 0%(a1)? What is 03(a1)? What is 0¥~1(a;)?

(b) Conclude from part (a) that o/ # id for j = 1,2,3,...,k — 1.

O

Example 14.4.9. Here’s a nice application of Proposition 14.4.6, which
simply uses rules of function composition. This should also give you a good
start on the next exercise.

(1264)% = (1264)%(1264)% = id (16)(24) = (16)(24)

¢
Exercise 14.4.10. Compute the following:
(a) (1264)1 (c) (352)(136)(1254)102
(b) (125843)33 (d) (348)(456)5(1325)10

O

Exercise 14.4.11. If ¢ is a cycle of odd length, prove that ¢ is also a
cycle. (*Hint™*) O

14.4.2 Powers and orders of permutations in general

Now that we know the order of cycles, let’s see if we can tackle other per-
mutations as well:

Definition 14.4.12. The order of a permutation 7 is the smallest positive
integer k such that 7% = id. As before, the order of 7 is denoted by the
notation |7|. A

Proposition: Let 7 be a permutation, and let k = |7|. Then 7¢ = id if and
only if mod(¢, k) = 0.
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Exercise 14.4.13. Fill in the blanks with the appropriate variables in the
following proof of the proposition. (*Hint*)

Proof: For any integer ¢ we may write £ = ak + b, where b € Z -1~ . It
follows that

7l = g2 hE<E> (<A <> (R <E> <D () <8>p<9> — p<10>

Therefore 7¢ = id if and only if 7<11> = id. However, we know that

<12 > < k, and we also know that < 13 > is the smallest positive
integer such that 7<14> = id. Hence it must be the case that b = < 15> ,
which is the same thing as saying that mod(¢, <17 > ) =0. O

Can we characterize the order of a permutation that is a product of
disjoint cycles? Let’s explore.

Example 14.4.14. Let 7 = (24)(16). Notice that (24) and (16) are dis-
joint, so they commute (recall Proposition 14.3.27). We also know that
permutations are associative under composition. So we may compute 72 as
follows:

2= ((24)(16)) ((24)(16))
= (24) ((16)(24)) (16) (associative)
= (24)((24)(16)) (16) (commutative)
— (29)0) (16)(16)) (associative)
= id id (2-cycles have order 2)
= id

Exercise 14.4.15.

(a) Let ¢ = (237) and 7 = (458). By following the format of Exam-
ple 14.4.14, show that (07)3 = id (write out each step, and cite the
property used).

(b) ** If o and 7 are disjoint cycles with |o| = |7| = k, what may you
conclude about |o7|? (You don’t need to give a proof).
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O

Associativity and commutativity are powerful tools for rearranging products
of disjoint cycles, and bear in mind that any disjoint cycles commute.

Exercise 14.4.16.

(a) Let o and 7 be any disjoint cycles. using associative and commutative
properties (see Proposition 14.3.27, show that (o7)% = o272 (write out

each step, and cite the property used).

(b) If o and 7 are disjoint cycles and k is a natural number, what may you
conclude about (o7)* in terms of powers of o and 77 (You don’t need
to give a proof).

Exercise 14.4.17. Suppose then 7 = (123)(45). Compute each of the
following

O

Notice what happened to the disjoint cycles in the previous exercise. For
instance [(123)| = 3, and in parts (a)-(f) of the exercise you had the repeating
pattern {(132),id, (123), (132),id, ...}. Similarly, the 2-cycle (45) yielded the
repeating pattern {id, (45),id, (45)...}.

In73, 75,79, ... the (123)’“ part of 7% becomes id,while in 72, 74,75, . . . the

(45)F part becomes id. In order for 7% = id, we must have both (123)* = id
and (45)% = id, which first happens when k = 6. Which is the least common
multiple of 2 and 3. Which makes sense. To visualize this idea, think about
the question posed in the following figure:

Disjoint cycles are like gears, so they should first align back at “1”, or
id, when they’ve been “turned” a number of times that is precisely the
least common multiple of the number of teeth on the gears. The order of a
permutation of disjoint cycles should just be the least common multiple of
the orders of it’s respective cycles.
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K

Figure 14.4.3. How many times does the small gear (at left) need to turn
to return all gears to their original position? (Each turn rotates all gears
clockwise by 1 position.)

In fact, we can prove it. We will start with two disjoint cycles:

Proposition 14.4.18. If o and 7 are disjoint cycles, then

lo7| = lem ([o, |7]),
where ‘lcm’ denotes least common multiple.

PrRoOOF. Let j = |o|,k = ||, and m = lem (k,7). Then it’s enough to
prove:

(i) (o)™ =id;
(ii) (o7)™ #id if n € N and n < m.

To prove (i), first note that & divides m, so that m = j - p for some natural
number p. Similarly, m = k - g for some g € N. It follows:

(o)™ =0o™1™  (by Exercise 14.4.16)
= ¢JPr¥4  (by definition of lem)
= (67)P(t¥)4  (by exponentiation rules) *
=id?id?  (by definition of order)
=id  (by definition of id).
To prove (ii), let n < m. It follows either k or j does not divide n. Let’s

suppose it’s k (the case where it’s j is virtually identical). In this case we
must have n = p- k + r where p,ré N and r < k. It follows:

4These are the same exponentiation rules you saw in high school algebra: z% = (m“)b
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(o))" =o™1™  (by Exercise 14.4.16)
= g P+ (substitution)
= (¢7)Po"t™  (by exponentiation rules)
=id?o"r™  (by definition of order)
=o'r" (by definition of identity)
Now since r < k, and |o| = k, it follows that o” # id. Thus there is some

x such that o"(x) # z. But since o and 7 are disjoint, it must be the case
that 7(x) = z. It follows that:

o"t"(z) = o"(x) # x.

From this we may conclude that (o7)" is not the identity. This completes
the proof of (ii). O

What Proposition 14.4.18 establishes for two disjoint cycles is also true
for multiple disjoint cycles. We state the proposition without proof, because
it is similar to that of Proposition 14.4.18 except with more details.

Proposition 14.4.19. Suppose o1, 039,...,0, are n disjoint cycles, where
ki,ko, ..., k, are the lengths, respectively, of the n disjoint cycles. Then

lorog - on| = lem (k1, ko, ..., kn).

Now we can find the order of any permutation by first representing it as a
product of disjoint cycles.

Exercise 14.4.20. What are all the possible orders for the permutations
in each of the following sets (look back at your work for Exercise 14.3.38).

(a) Se (b) S7 (c) Ss

Exercise 14.4.21. Compute the following:
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(a) [(1254)2] (c) [(13658)'3(1254)1(473)|
(b) 1(13658)2(473)2(125)| (d) 1(123456789)3%|

Exercise 14.4.22. Let o be a permutation in S,.
(a) Show that there exists an integer k£ > 1 such that 0% = .
(b) Show that there exists an integer £ > 1 such that of = o7,

(c) Let K be the set of all integers k > 1 such that o* = o. Show that K
is an infinite set (that is, K has an infinite number of elements).

(d) Let L be the set of all integers £ > 1 such that ¢ = 0=, Show that L
is an infinite set.

(e) What is the relationship between the sets K and L?

14.4.3 'Transpositions and inverses

The simplest nontrivial cycles are those of length 2. We will show that these
2-cycles are convenient “building blocks” which can be used to construct all
other cycles.

Definition 14.4.23. Cycles of length 2 are called transpositions. We will
often denote transpositions by the symbol 7 (the greek letter “tau”). A

Exercise 14.4.24. Compute the following products:

(a) (14)(13)(12) (d) (49)(48)(47)(46)(45)
(b) (14)(18)(19)
(c) (16)(15)(14)(13)(12) (e) (12)(13)(14)(15)(16)(17)(18)

¢

Exercise 14.4.25. In light of what you discovered in the previous exercise,
write each cycle as a product of transpositions:
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(a) (1492) (c) (472563) (e) (arazasasag)

(b) (12345) (d) <a1a2a3> (f) (a1a2a3a5a6a7a8)

The preceding exercises demonstrate the following proposition:

Proposition 14.4.26. Every cycle can be written as the product of trans-
positions:

(a1,az,...,a,) = (ar1ay)(a1an-1) - - - (a1a3)(ara2)

PROOF. The proof involves checking that left and right sides of the equation
agree when they act on any a;. We know that the cycle acting on a; gives
aj41 (or a1, if j = n); while the product of transpositions sends a; first to
ai, then to Aj41- ]

Recall that we also know that any permutation can be written as a product
of disjoint cycles, which leads to:

Proposition 14.4.27. Any permutation of a finite set containing at least
two elements can be written as the product of transpositions.

PROOF. First write the permutation as a product of cycles: then write each
cycle as a product of transpositions. O

Exercise 14.4.28. Express the following permutations as products of trans-
positions.

(a) (14356) (d) (17254)(1423)(154632)
(b) (156)(234) (e) (142637)(2359)
(c) (1426)(142) (f) (13579)(2468)(19753)(2864)

O

Even the identity permutation id can be expressed as the product of trans-
positions:

Exercise 14.4.29. Compute the following products:
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(a) (12)(12) (b) (57)(57) (¢) (ar1az)(araz)

(d) What can you conclude about the inverse of a transposition?

The preceding exercise amounts to a proof of the following:

Proposition 14.4.30. If 7 is a transposition, 771 = 7.

We can use the inverses of transpositions to build up the inverses of
larger cycles:

Proposition 14.4.31. Suppose p is a cycle: u = (ajaz...ap). Then
pl = (a1apan_1 ... az).

Proor. By Proposition 14.4.26 we can write
w= (aran)(aran—1)--- (a1a3)(ajaz).

Now consider first just the last two transpositions in this expression. In the
Functions chapter, we proved the formula (fog)~! = g~1o f~! for invertible
functions f and g. Since transpositions are invertible functions, we have

((@ras)(@102)) " = (a12) (1)~ = (a102)(er09)

(the second equality follows because every transposition is its own inverse.)

If we apply similar reasoning to the last three transpositions in the ex-
pression, we find

-1
(e (@a)(@an)) = [(@a3)(@a2)] " (@102) " = (ar02)(ara3)(a104)

Applying this result inductively, we obtain finally:

-1
pt = (@a)(@ras) - (@1a,-1)(aran),
from this expression we may see that a; — ay, an — Apn_1,Gn-1 — Gp_9,...,02 —
a1, which corresponds to the cycle we want. O

Because the product of permutations is an associative operation, we may
find the inverse of any product of cycles by taking the inverses of the cycles in
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reverse order. (Actually, this is just a special case of the inverse of function
composition: (fio fao...ofn 10 fy) L= floft o...0fr0f1.)

Example 14.4.32. [(1498)(2468)] ! = (2468) 1 (1498) ! = (2864)(1894) =
(164)(289). ¢

Example 14.4.33. (1357)72 = [(1357)—1]2 = (1753)% = (1753)(1753)

e |

(15)(37).
Exercise 14.4.34. Calculate each of the following.
(a) (12537)~! (d) (1254)~1(123)(45)(1254)
(b) [(12)(34)(12)(47)]"" (e) (123)(45)(1254)
(c) [(1235)(467)]2 (f) (742)77(286)" 13
O

Exercise 14.4.35. In Section 14.3.5 we introduced the notion of the “cycle
structure” of a permutation. Using some of the ideas that we have intro-
duced in this section, prove that if o is any permutation, then o~! has the
same cycle structure as o. O

14.5 “Switchyard” and generators of the permu-
tation group &

Switchyards are used by railroads to rearrange the order of train cars in a
train (see Figure 14.5.1). In this section we will study a “switchyard” of
sorts. The design of our mathematical “switchyard” is not realistic, but the
example will help us understand some important fundamental properties of
permutations.

Figure 14.5.2 shows how the switchyard works. The figure shows the
particular case of a switchyard with 12 positions. A railroad train with 12
cars pulls in from the right, and circles around until it fills the circular track.
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Figure 14.5.1. Grandview Yard (Pennsylvania Railorad) in Grandview
Heights, OH around 1900 (source: http://www.ghmchs.org/thisweek/
photo-listingl0O.htm.

The positions (we’ll call them slots for short) are numbered 1 through
12 as are the railroad cars. At the starting position, each railroad car is at
the corresponding numbered slot: car 1 is in slot 1, ... car 12 is in slot 12.

From the starting position, the train can move in one of two ways:

e The train can move circularly around the track, so that car 1 can end
up at any one of the 12 slots.

e Alternatively, the cars in slots 1 and 2 can switch places.

These two types of motions can be represented as permutations. In tableau
notation, the first row of the tableau corresponds to the train car, while
the second row corresponds to the slot it moves to. For example, if the
train cars 1,2,3,...,11,12 move counterclockwise one slot to occupy slots
2,3,4,...,12,1 respectively, then the permutation (in tableau notation) is:

12345 6 7 8 9 10 11 12
23456789 10 11 12 1
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= Numbered slots
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The cars in thesel '," Train ‘fm;
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two pgsmons can M_Jq £ T e 123 4 5 .12
be switched. #7 D>
After rearrangement,
train cars go back out

The entire train rotates
around the circle

Figure 14.5.2. “Switchyard” diagram

In cycle notation, the same permutation would be (1 2 3 4 ... 12). We
will denote this permutation by r. On the other hand, if cars 1 and 2 are
switched, then this corresponds to the permutation (12). We will denote
this permutation by ¢. In summary:

r=(12...12); t=(12).

Let’s look at some other motions of the train. Suppose for example we shift
the train counterclockwise by two positions. This corresponds to performing
the permutation 7 twice in succession, which is ror or r2. If we think about
the process of composition, what’s going on is the first » moves car 1 (which
occupies slot 1) to slot 2; while the second r moves whatever’s in slot 2
(which happens to be car 1) to slot 3. The resulting composition can be
interpreted as showing where each of the cars end up after both moves. The
same thing will be true if we compose any number of permutations.

It follows that all rearrangements of the cars that can be accomplished by
the switchyard may be obtained as compositions of the permutations r and t.
So what rearrangements are possible? I’'m glad you asked that question! The
following exercises are designed to help you figure this out. But first, let’s
consider one type of rearrangement that’s particularly important. Suppose
we want to switch two consecutive cars that are not 1 and 2: say for example
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we want to switch cars 5 and 6, and leave the rest of the cars unchanged.
Can we do this?

At this point, in order to follow along the reader may find it helpful to
make his/her own model of a switchyard.® Figure 14.5.3 shows a simple
model made out of a jar lid with numbers stuck on with putty. We’ll illus-

Figure 14.5.3. “Switchyard” model in home position

trate the motions necessary to switch cars 5 and 6 using the model. First,
we rotate cars 5 and 6 to slots 1 and 2 by rotating 4 slots clockwise. This
permutation is shown in Figure 14.5.4, and is written mathematically as
r=4,

Next, we exchange the two cars (which we can do since they’re in the
first two positions). Figure 14.5.5 shows the switch, which is denoted by ¢.

Finally, all we need to do is rotate counterclockwise 4 slots (), as shown
in Figure 14.5.6.

Altogether, these three steps give the composition 74 otor~* (remember
that permutations are applied right to left, just like functions). Note also
that in the case of a 12-slot switchyard, 7—% could also be written %, since a
clockwise rotation of 4 slots is the same as a counterclockwise rotation of 8
slots. (If the switchyard has n positions, the general rule is that =™
as we saw in the Symmetries chapter.)

— pnN—m
=T y

®The models in this section (and photos) were made by Holly Webb.
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Figure 14.5.4. First stage in switching cars 5 and 6: clockwise rotation
—4
rt.

Figure 14.5.5. Second stage in switching cars 5 and 6: switch ¢.

Exercise 14.5.1. First we’ll look at a switchyard with 4 positions. As
above, r = counterclockwise rotation by 1 position = (1234); while ¢ ex-
changes two cars: ¢t = (12).

(a) Write (23), (34), and (41) as products of powers of r and t. (Together
with (12), these are all the consecutive 2-cycles.)

(b) Write (123), (234), (341), (412) as products of powers of r and t.
(These are all the counterclockwise consecutive 3-cycles.)

0o
X489
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Figure 14.5.6. Third stage in switching cars 5 and 6: counterclockwise

rotation 7.

(c) Write (132), (243), (314), (421) as products of powers of r and t.
(These are all the clockwise consecutive 3-cycles.) (*Hint*)

(d) Write (13) as products of powers of r and t.

(e) Show that any transposition can be written as products of powers of r
and ¢.

(f) Show that any permutation on 4 elements (that is, any permutation in
S4) can be obtained as a product of powers of r and ¢).

Exercise 14.5.2. Now we’ll look at a general switchyard with n positions.
In this case, rotation by 1 position is given by » = (12 ... n). We use the
same switch transposition, ¢t = (1 2).

(a) Write the transposition (k k @ 1) as a product of powers of r and ¢.
Here @ denotes addition mod n. (Note that we use (k k@ 1) instead of
(k k+1) because we want to count (n 1) as a consecutive transposition.)

(b) Show that any consecutive cycle of the form (m m@®1 ... m®p) can
be written as a product of powers of r and ¢ by filling in the blanks:

e First, (m m@® 1 ... m @ p) can be written as a product of con-
secutive transpositions as ________________. (*Hint*)
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e Then, by replacing each transposition in this expression with its
expression in terms of products of ________ , then we obtain
an expression for __________ asaproductof .

(c) Write the transposition (1 k) as a product of a consecutive cycle of length
k and the inverse of a consecutive cycle of length k — 1. (*Hint*)

(d) Prove that any transposition (1k) can be written as a product of con-
secutive transpositions.

(e) Prove that any transposition (1 k) can be written as a product of powers
of r and ¢.

(f) Prove that any transposition (pg) can be written as a product of powers
of r and .

(g) Prove that any permutation in S,, can be obtained as a product of powers
of r and t.

O

What we have shown in the previous exercise is that the two permuta-
tions r and t generate the group S,. In other words, all of the information
contained in the huge and complicated group 5, is characterized in just two
permutations! The study of group generators is an important part of group
theory, but unfortunately it is beyond the level of this course.

Exercise 14.5.3. Using “switchyard”, we proved that S, is generated by
the permutations (12) and (12...n). Prove that the group S, is generated
by the following sets of permutations.

1. (12),(13),...,(1n)

2. (12),(23),...,(n—1,n)
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14.6 Other groups of permutations &

14.6.1 Even and odd permutations

We saw in the previous section that any permutation can be represented
as a product of transpositions. However, this representation is not unique.
Consider for instance:

o id = (12)(12)
o id = (13)(24)(13)(24)
o id = (15)(26)(79)(14)(34)(34)(14)(79)(26)(15)

Although these representations of id are vastly different, by some “strange
coincidence” they all involve the product of an even number of transposi-
tions.

Exercise 14.6.1. ***** Write id as a product of an odd number of trans-
positions (If you succeed, you automatically get an A in this course!) O

As you might guess from the previous exercise, there’s something fishy
going on here. To get to the bottom of this, we need to get a better handle
on what happens when you multiply a permutation by a transposition. In
particular, we know that any permutation can be written as a product of
disjoint cycles: so what happens to these cycles when we multiply by a
transposition? To get warmed up, let’s first look at some special cases.

Exercise 14.6.2. Write 7o as the products of disjoint cycles, where o =
(12345678) and: (a) 7 = (25); (b) 7= (16); (c) 7= (48); (d) 7= (35). O

As always it is helpful to have a good representation of the situation,
preferably in pictures. For the following argument, we will represent a cycle
as a “pearl necklace”, as shown in Figure 14.6.1. This is not so different from
our previous representation of cycles (for instance, in Figure 14.3.1), but we
are not including labels for the particular elements in the cycle because we
want to emphasize the general structure and not get bogged down in details.

Figure 14.6.2 shows how we may represent the multiplication (ab)C' of
transposition (ab) with cycle C, where a and b are elements included within
C. The transposition effectively redirects the arrow pointing into a, so that
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Figure 14.6.1. “Pearl necklace” representation of a cycle.

now it points into b. The transposition also redirects the arrow pointing into
b so that it now points into a. As a result, there are now two cycles instead
of one. The sum of the lengths of the two cycles is equal to the length of
the original cycle.

a %) %)
O O @)
/O " /O N JO )
O /Q O /(‘) O /(‘)
\O\*O-/'.b \O\.o~.-~--~"b \O\.o ®

(a) (b) (c)

Figure 14.6.2. (a) Cycle C, including elements a and b; (b) Product of
transposition (ab) with cycle C, showing redirection of arrows into a and
b; (c) The result of (ab)C' is two separate cycles.

Using this representation, we can now investigate what happens when
we multiply a transposition (ab) times an arbitrary permutation o. We
already know that o can be thought of as a collection of disjoint cycles (plus
stationary elements, that are unaffected by o). There are several possibilities
for how a and b can fit within the cycles of o, as shown in Figure 14.6.3.
Each possibility may or may not change the number of cycles, as well as the
sum of the lengths of all cycles.

Exercise 14.6.3. In each of the following situations, we are considering
the multiplication of a transposition (ab) with a permutation . Match
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Q‘” .*\O O O "“-o\
| ‘0 e L X
'\“ 5‘) 1,‘\ /’ \Z’) " ‘\\‘ /‘ b
(a) (b) (c)
,»O«\.a
bt ‘e o ‘o ®,
(d) (e) (f)

Figure 14.6.3. Multiplication of (ab) times a permutation o, showing the
different ways that a and b can be situated within the cycles and stationary
elements of 0. Note that case (a) corresponds to the situation described in
Figure 14.6.2.

each situations to the correct case (a)—(f) in Figure 14.6.3. For example,
(ab) = 12 and o = (1234)(567) corresponds to case (d), because a and b are
consecuitve elements in one of the cycles of o.

(a) (ab) = (36), 0 = (123)(456)(78)
(b) (ab) = (45),0 = (123)(678)

(¢) (ab) = (34),0 = (123)(567)

(d) (ab) = (45), 0 = (23)(45)(67)
(e) (ab) = (34), 0 = (278)(13546)

Exercise 14.6.4. Draw a set of pictures (similar to Figure 14.6.2(c)) for
each of the possibilities (a)—(f) in Figure 14.6.3 showing the effect of the
transposition (ab) on the cycles. Keep in mind that the transposition merely
redirects the arrows into a and b so that they point into b and a, respectively.

¢
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Exercise 14.6.5. Using your results from the previous exercise, complete
Table 14.1. O

Dia- | Change in num- | Change in sum | Is column 3 minus
gram in | ber of cycles of cycle lengths | column 2 even or
Fig. 14.6.3 odd?

a) +1 0 odd
b) | —
c) | N
d) | —
e
f

(
(
(
(
(
(

)
) | I

Table 14.1: Multiplication of permutation by transpositions

If you did the previous exercise correctly, you will find that no matter
where the transposition falls, the entry in the last column is always ‘odd’.
Consider what this means. Suppose I have a permutation ¢ whose sum of
cycle lengths minus number of cycles is equal to N. I then multiply ¢ by a
transposition to obtain another permutation 7, whose sum of cycle lengths
minus number of cycles is equal to M. The last column of Table 14.1shows
that it must be true that M — N is always odd. In other words, if M is
even then N is odd: and vice versa. We may express this concisely using
the following definition:

Definition 14.6.6. for any permutation o written in disjoint cycle notation,
the number

mod(sum of cycle lengths minus number of cycles,2)

is called the parity of o. A permutation with parity 0 is called an even
permutation, while a permutation with parity 1 is called an odd permu-
tation. . Often books will use the terms “even parity” and “odd parity”
instead of parity 0 and 1, respectively. AN

We may summarize our argument so far as follows:
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Proposition 14.6.7. Given a permutation o and a transposition (ab), then
the parity of (ab)o is different from the parity of o.

So far we have considered multiplying permutations on the left by a
transposition. What about multiplying them on the right? It turns out we
can use the “direction-reversing” property of permutation inverses to answer
this very elegantly.

Exercise 14.6.8.

(a) Considerthe “necklace” diagrams (a)-(f) of permutations shown in Fig-
ure 14.6.3. If we take the inverse of each permutation, how does its
diagram change? What happens to the arrows? How do the shapes of
the cycles change (if at all)?

(b) In Exercise 14.6.4 you multiplied each of the permutations (a)-(f) in
Figure 14.6.3 on the left by (ab). How do the results change if you
multiply the inverses of each permutation on the left by (ab)?

(c) Prove that ((ab)ail)*1 = o(ab).

(d) Using (a-c) above, prove the following statement: For any permutation
o and any transposition (ab), (ab)o and o(ab) have the same cycle
structure.

O

Now here’s the punch line. We know that every permutation can be writ-
ten as a product of transpositions. From what we have just shown, an odd
permutation must be the product of an odd number of transpositions; while
an even permutation must be the product of an even number of transposi-
tions. It is impossible to write an even permutation as the product of an odd
number of transpositions; and vice versa. We summarize our conclusions in
the following proposition.

Proposition 14.6.9. A permutation o can be written as the product of an
even number of transpositions if and only if ¢ is an even permutation. Also,
o can be written as the product of an odd number of transpositions if and
only if ¢ is an odd permutation.
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Exercise 14.6.10. Prove that it is impossible to write the identity permu-
tation as the product of an odd number of transpositions. O

Exercise 14.6.11. Suppose o is an n-cycle. How can you tell whether o is
an even or odd permutation? O

In the following exercises you will explore a bit further the parity prop-
erties of permutations.

Exercise 14.6.12.

(a) Prove that the product of two even permutations is even.
(b) Prove that the product of two odd permutations is even.

c at is the parity of the product of an even permutation and an o

What is th ity of th duct of tati d dd
permutation? What about the product of an odd permutation and an
even permutation? Prove your answers.

Exercise 14.6.13. For each of the following sets, describe which permuta-
tions are even and which are odd, according to their cycle structure. (*Hint*)

(a) S6 (b) S7 (C) Ss

Exercise 14.6.14. This exercise requires some knowledge of linear algebra.
It also relates back to the discussion of Levi-Civita symbols in Section 11.8.1

Suppose o is a permutation in Sy. We can define a 4 x 4 matrix P, using
index notation as follows:

1 i =oli),
[P”]”_{o if j # o(d).

(Here ¢ and j can take any values from 1 to 4.) The matrix P, is in fact
known as the permutation matrix associated with the permutation o.
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(a) Write down the matrix P, when: (i) o = (13); (ii) o = (132); (iii)
o= (12)(34); (iv) o = (1234).

(b) Using the formula that you guessed in the previous problem, evaluate
det P, when: (i) o = (24); (ii) o = (143); (iii)) o = (14)(23); (iv)
o = (1423). Check your answer using the row (or column) expansion
method for computing determinants.

(c) How is the value of det P, related to the “evenness” or “oddness” of the
permutation o?

(d) For the 4 permutations in part (a), show that when you multiply the 4x1
column vector [1,2,3,4]7 times the matrix P,, you obtain the second
row of the tableau for o. In other words, the matrix P, “performs” the
permutation ¢ on column vector entries.

(e) Show that the result in (b) is true in general: namely, that P,[1,2,3,4]7 =
[o(1), 0(2),0(3), o (4)]""

14.6.2 The alternating group

We have shown that all permutations are either even or odd. In other words,
for any n € Z we have that S, is the union of two disjoint sets: S, = A,UB,,
where A, and B, are the even and odd permutations respectively. We are
particularly interested in the set A,, because it has nice properties with
respect to product of permutations:

Exercise 14.6.15.
(a) Show that id € A,,.
(b) Show that if o € A, then 0~! € A,. (*Hint*)
(c) Show that if o, u € Ay, then op € A,,. (*Hint*)
¢

In light of the previous exercise, it’s beginning to look like A, could be
a group under permutation product. Let’s check off the group properties:
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Is A, closed under permutation product? Yes, according to Ex. 14.6.15(c).

Does A, have an identity element? Yes, according to Ex. 14.6.15(a).

Does A,, have inverses for every element? Yes, according to Ex. 14.6.15(b).

e Is A, associative? Yes, because the operation is composition, and
composition is associative.

We have thus essentially proven the following proposition:

Proposition 14.6.16. The set A, is a group.

Definition 14.6.17. The group A, of even permutations is called the
alternating group on n numbers. A

Exercise 14.6.18. Prove or disprove: the set of odd permutations B, is
also a group. O

We know that A,, is a group — but how big is it? Of course, it depends
on the number of odd permutations B, since A, and B, together make up
Sn. So which is bigger: A, or B,? The answer is ...neither!

Proposition 14.6.19. The number of even permutations in S,, n > 2, is
equal to the number of odd permutations; hence, |A,| = n!/2.

PRrROOF. The key to the proof is showing that there is a bijection between
A, and B,. Since a bijection is one-to-one and onto, this means that A,
and B, must have exactly the same number of elements.

To construct a bijection, notice that (12) € S,, and define a function
f: A, = S, by: f(o0) = (12) oo. (Notice that we are taking A, as our
domain, and not S,,). To show that f is a bijection, we need to show three
things:

(a) By is a valid codomain for f: that is, f(c) € B, Vo € Ap;
(b) f: A, — B, is onto: that is, Vu € B,, 0 € A,, such that f(o) = u;

(c) f is one-to-one: that is, f(o1) = f(o2) implies o1 = o3.
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Parts (a) — (c) will be proven by (none other than) you, in the following
exercise:

Exercise 14.6.20.
(a) Show part (a). (*Hint*)
(b) Show part (b). (*Hint*)

(c) Show part (c). (*Hint*)

Exercise 14.6.21.

(a) What is |A4]?

(b) List all the permutations of A4 (Write them in cycle notation. Make
sure you have them all — you should have as many as part (a) indicates).

O

Exercise 14.6.22. Give all possible cycle structures for elements in each
of the following sets. (You don’t need to list all the permutations, just the
cycle configurations e.g. “pair of 2-cycles”.)

(a) A (b) A7 (c) As

14.7 Additional exercises

1. Show that Ajp contains an element of order 15. (*Hint*)
2. Does Ag contain an element of order 267

3. Find an element of largest order in S,, for n =3,...,10.
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10.

11.

. In Chapter 4 we used the term ‘non-abelian’ to describe groups in

which not all elements commute. To show that a group is non-abelian,
it’s enough to find a single pair of elements a,b € S,, which do not
commute (that is, ab # ba).

(a) Prove that S, is non-abelian for every n > 3.

(b) Show that A,, is non-abelian for every n > 4.

(c) Prove that D, is non-abelian for every n > 3.

. Let 0 € S,. Prove that o can be written as the product of at most

n — 1 transpositions. (*Hint*)

. Let 0 € §,. If 0 is not a cycle, prove that o can be written as the

product of at most n — 2 transpositions. (*Hint*)

Prove that in A,, with n > 3, any permutation is a product of cycles
of length 3.

. Let G be a group and define a function f, : G — G by f,(a) = ga.

Prove that f, is a permutation of G.

. For aw and $ in 5, we say that a and 8 are conjugate permutations

if there exists an o € S,, such that cac™! = B. Show that if a and 3
are conjugate permutations, and « € A,,, then also 8 € A,,.
Let 7 = (a1,a2,...,ax) be a cycle of length k.

(a) Prove that if o is any permutation, then o701
as:

can be expressed

oro !t = (0(ay),0(az),...,o(ay)).

it follows that oro~! is also a cycle of length k.

(b) Let u be any cycle of length k. Prove that there is a permutation
o such that oro~! = p.

(c) Using the notation of the previous exercise, show that any two
cycles of length k are conjugate.

Show that a~'8~taf is an even permutation for all o, 8 € S,,.
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14.8 Hints for “Permutations” exercises

Exercise 14.4.13: The first blank should be replaced by k

Exercise 14.5.1(c): Take advantage of the previous part.

Exercise 14.5.2(b): Note for instance that (12 3) = (1 2)(2 3).

Exercise 14.5.2(c): Note for instance that (14) = (123 4) 0o (123)~L.
Exercise 14.6.13: Use the cycle structures you found in Exercise 14.3.38

Exercise 14.6.15(b): If you write o as the product of transpositions 7y - - - 7,
then what is 017

Exercise 14.6.15(c): If o =71+ -7, and = A1 - - - Ay, then what about ou?
Exercise 14.6.20(a): If o is even, then what about (1 2) o o?

Exercise 14.6.20(b): If u is odd, then what about (1 2) o u? Also, what is
f((12)op)?

Exercise 14.6.20(c): If (1 2)o1 = (1 2)o2, then what can you conclude about
o1 and o927 Why are you able to conclude this?

Exercise 14.4.11: Let ¢ be the length of ¢: then what is the order of 67 On
the other hand, let k be the order of ¢2: then what do you know about o2#?

14.8.1 Hints for additional exercises (Section 14.7)

Exercise 1: Consider the cycle structure.

Exercise 5: We know that o can be written as the product of disjoint cycles.
So let 01,09,...0, be disjoint cycles such that ¢ = o102...0,,, and let
¢; be the length of the cycle o;. How many transpositions does it take to
construct each of these disjoint cycles? And what is the largest possible
value of the sum of ¢;?

Exercise 6: Use the notation of the previous problem, and write a formula
(in terms of ¢;...¢, and m) for the number of transpositions it takes to
construct o.
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Introduction to Groups &

“There are more groups in heaven and earth, Horatio, than are
dreamt of in your philosophy.” Shakespeare, Hamlet, Act 1 Scene
V (paraphrase by J. Hill)

“Groups tend to be more extreme than individuals.” (Daniel
Kahneman, 2002 Nobel Prize winner in Economics)

“I am rarely bored alone; I am often bored in groups.” (Dr.
Laurie Helgoe, psychologist)

You may have noticed that we have been voyaging deeper and deeper
into unfamiliar mathematical territory. We’re using more symbols and fewer
numbers. We introduce unfamiliar terminology and strange notation. We
deal with outlandish mathematical objects that are harder and harder to
visualize.

Please rest assured that these elaborations have a practical purpose’.

We live in a complicated world, and complicated mathematical structures
are needed to describe it well. However, underlying this confusing tangle
of complicated structures are some deep commonalities. The purpose of
abstraction is to identify and characterize these commonalities. In this way
we can make connections between very different fields of mathematics, and
gain a much more holistic view of how things work together.

One of the commonalities that we have been (more or less) subtly em-
phasizing in the previous chapters is the ubiquity of groups, together with

!(that is, besides tormenting math students)
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related notions such as isomorphisms and subgroups. Now that you've stud-
ies several specific groups (such as C,Z,, D, S,, A, and so on) our hope is
that from these examples you’ve begun to get a feel for how groups work,
and how one should think about groups in general. In this chapter, we will
study groups in the abstract: that is, we will describe properties that are
common to all groups, whether finite or infinite, commutative (abelian) or
non-abelian, and so on.

Thanks to Tom Judson for material used in this chapter.

15.1 Formal definition of a group

Historically, the theory of groups first arose from attempts to find the roots
of polynomials in terms of their coefficients. But groups have moved far
beyond their original application, and now play a central role in such areas
as coding theory, counting, and the study of symmetries. Many areas of
biology, chemistry, and physics have benefited from group theory. In the
preceding chapters we’ve already worked with a number of different groups,
including the integers mod n and the symmetries of a rectangle or regular
polygon. Recall that a group basically consists of a set and a “compatible”
operation:

Exercise 15.1.1.

(a) What operation is the set Z,, a group under?

(b) What operation is the set S3 a group under?

The following definition formalizes the notion of “operation”.

Definition 15.1.2. A binary operation or law of composition on a set
G is a function G x G — G that assigns to each pair (a,b) € G x G a unique
element a o b, or ab in G, called the composition of a and b. A

Remark 15.1.3.


https://www.youtube.com/watch?v=IVNQQUG2NGY&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=25

15.1 FORMAL DEFINITION OF A GROUP 505
e Notice that the word ”composition” is now used to denote any opera-
tion on the elements of a set, and not just composition of functions.

e When the law of composition on a set is a basic algebraic operation
such as multiplication or addition, we’ll call it with its usual name.
When it isn’t, we will often refer to a o b as the “product” of a and b
(as we did in the Permutations chapter).

A

In the Modular Arithmetic chapter we introduced what properties a set
and operation must have to be called a group:

Exercise 15.1.4. What are the four properties a set G and a binary op-
eration must exhibit in order for the set to be a group under that binary
operation? %

Building on our previous discussion, we now proudly present the follow-
ing formal definition.

Definition 15.1.5. A group (G,o) is a set G together with a law of
composition (a,b) — a o b that satisfies the following axioms.

1. The set G is closed under the law of composition. That is,

Ya,b € G,a0b=c for some c € G.

2. There exists an element e € G, called the identity element, such
that for any element a € G

eoa—=aoe=a.

3. For each element a € G, there exists an inverse element in G,
denoted by a~!, such that

aoat=aloa=c.

4. The law of composition is assoctiative. That is,
(aob)oc=ao(boc)

for a,b,c € G.
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A

Remark 15.1.6. When the group operation is obvious or has been pre-
viously specified, we may denote the group by G rather than (G,o). For
instance, the group of integers under addition is typically denoted by Z and
not (Z,+), since the operation + is understood. A

One very important class of groups is the commutative groups, which
are given their own special designation:

Definition 15.1.7. A group (G, o) with the property that a o b= bo a for
all a,b € G is called abelian® or commutative. Groups not satisfying this
property are said to be non-abelian or noncommutative. A

Finally, based on our discussion before about the order of sets, we have:

Definition 15.1.8. A group is finite, or has finite order, if it contains
a finite number of elements The order of a finite group is the number of
elements that it contains. If G is a group containing n elements, we write
|G| = n. A group that is not finite is called infinite, and such a group is
said to be of infinite order. A

The group Zs is a finite group of order 5, so |Z|5 = 5; while the integers
Z form an infinite group under addition, and we sometimes write |Z| = co.

Definition 15.1.9. The trivial group, consists of the single element e (or
id, in our previous notation). A

Exercise 15.1.10. Prove that the trivial group is in fact a group according
to Definition 15.1.5. O

2In honor of Neils Henrik Abel (1802-1829), an astounding mathematician who sadly
died very young of tuberculosis. There is some discussion among mathematicians over
whether ‘abelian’ should be capitalized. The word has become so common in mathemat-
ics that it’s usually treated as a regular word and not a proper name. This should be
considered as a special honor to Abel, since his name has become part of the fundamental
language of mathematics.
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15.2 Examples

There are multitudes upon multitudes of groups besides those we’ve seen so
far. Some are modifications of groups we are very familiar with.

Example 15.2.1. The set R\ {0} of non-zero real numbers is written as
R*. Let’s prove that (R*,-) is a group.

(1) Closure:

Suppose a,b € R*. Then to prove closure we must show ab € R*; that
is, we must show (i) ab € R and (ii) ab # 0:

(i): Since a,b € R, and we know R is closed under multiplication, then
ab € R.

(ii): Suppose ab = 0. Then as we noted in Section 3.2.1, we know either
a=0or b=0. But a,b € R*; i.e. a,b # 0. So we have a contradiction.
Hence ab # 0.

Therefore ab € R*; and so R* is closed under multiplication.

To finish the proof that R* is a group, we must establish axioms (2) through
(4) in Definition 15.1.5. We leave this up to you in the following exercise:

Exercise 15.2.2.

(a) Finish proving that (R*,-) is a group.
(b) Either prove or disprove that (R*,+) is a group.
(c) What is the order of (R*,-)?

Exercise 15.2.3. Let C* be the set of non-zero complex numbers.

(a) Why is C* not a group under the operation of complex addition?

(b) Prove C* is a group under the operation of (complex) multiplication.
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(¢) What is |[(C*,-)|?

(d) Is (C*,-) an abelian group? Justify your answer.

Remark 15.2.4. Groups based on sets of numbers that include 0 (such
as R, C,Q) are assumed to have the group operation + (unless otherwise
stated). For groups based on sets of numbers that exclude 0 such as R*, C*, Q*,
the group operation is assumed to be multiplication (unless otherwise stated).

JAN

Exercise 15.2.5.

(a) Why is it impossible for a set of complex numbers S which has more
than one element and includes 0 to be a group under multiplication?
Why is the condition |S| > 1 necessary?

(b) Why is it impossible for a set of complex numbers S that excludes 0 to
be a group under addition?

O

Some groups use exotic operations that you may never have seen before:

Example 15.2.6. Let S = R\ {—1} and define a binary operation on S by
a*xb=(a+b)+ (ab). It turns out that (5,x*) is an abelian group. We will
prove closure and the commutative property; the rest of the proof will be
left to you.

(a) Closure: Suppose a,b € S. We need to show that a xb € S; i.e. firstly
that a x b € R and secondly a x b # —1. First, since both additiona
and multiplication are closed in R, it follows that (a + b) 4+ (ab) € R
and hence a x b € R. For the second point, we will use a contradiction
argument and suppose that a *b = —1, i.e. (a +b) + (ab) = —1. Using

basic algebra to rearrange this expression, we get a(b— 1) = —(b — 1),
which implies that either a = —1 or b = —1. But a and b are assumed
to be in S, so this is a contradiction. Hence a x b = —1 is impossible,

and the proof is complete.
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(b) Commutativity: Suppose a,b € S. We need to show that a *b = bx*a:
By the definition of the operation * we have a * b = (a + b) + (ab),
which is equal to (b + a) + (ba) since addition and multiplication in R
are commutative. Since b* a = (b+ a) + (ba) by definition, it follows
that a * b is commutative.

Exercise 15.2.7. Finish the proof that (S, %) is an abelian group. %

¢

The following example shows a famous (among mathematicians!) group
that has important applications in physics:

Example 15.2.8. The quaternion group (denoted by Qg) consists of 8
elements, which are commonly denoted as follows: 1, 4, j, k, —1, —i, —j7,
—k. The binary operation for (Jg is determined by the following relations:

e 1 is the identity;

e -1 commutes with all other elements, and (—1)? = 1;
o —1i=—i,—1-j=—j—1 k=—k

o P=j2=k=—1

cij=kj k=ik i=j

jri=—kk-j=—iji-k=—j.

Exercise 15.2.9.

(a) Use the information given above to complete the Cayley table for Qs.

(b) From the Cayley table, deduce that Qs is closed under the binary oper-
ation we have defined above.

(c) Find the inverses of all of the elements of Qg.
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O

Example 15.2.10. Recall that any point in the plane can be represented
in Cartesian plane as a pair of real numbers (z,y). We may consider these
points as 2-dimensional vectors, which can be added via the usual vector
addition rule. For example, (0.5,0.9) + (1.2,3.4) = (0.5 4+ 1.2,0.9+ 3.4) =
(1.7,4.3). The general formula for addition of two vectors (x1,y;) and
(2,y2) is

(x1,y1) + (22, 92) = (1 + 22, y1 + ¥2).

Let us show that 2-d vectors in the Cartesian plane form a group. First,
we prove closure. Closure means that the sum of two 2-d vectors is also a
2-d vector. This follows from the formula (z1,y1) + (z2,y2) = (x1 + 22,91 +
y2), and since z1 + x2 and y; + y2 are both real numbers it follows that
(x1 + z2,y1 + y2) is also a 2-d vector.

Next, we prove that 2-d vectors have an identity. For any 2-d vector
(x,y) we have (x,y) + (0,0) = (x,y) and (0,0) + (z,y) = (z,y). It follows
that (0,0) is the identity for 2-d vectors.

Next, we show that 2-d vectors have inverses. For any 2-d vector (z,y)
we have (z,y) + (—z,—y) = (0,0) and (—=z, —y) + (x,y) = (0,0). It follows
that any 2-d vector (z,y) has an inverse (—z, —y).

Finally, we show that 2-d vectors are associative. For any three 2-d
vectors (x1,y1), (z2,y2), (z3,y3) we have

(w1, y1)+((z2, y2)+(23,¥3)) = (1, Y1) (X223, Y2+¥3) = (21+(T2+23), Y1+ (y2+Y3)).

We also have

(w1, y1)+ (22, y2))+(23,Y3) = (T1+22, y1+y2)+ (23, y3) = ((21+22)+23), (Yy1+Y2)+ys3).

By associativity of ordinary addition of real numbers, we have 1 + (z2 +
x3) = (x1+x2) + 3 and y1 + (y2 + y3) = (y1 + y2) + y3. it follows therefore
by substitution that

(xla yl) + ((1’27192) + ($37?J3)) - ((mhyl) + ($27y2)) + (1'3, y3>
, and we have shown that 2-d vectors are associative. ¢

In the previous example, it seems that we have built up the group of 2-d
vectors from two copies of the real numbers. In fact we may generalize this
procedure, and use pairs of groups to build up other groups.
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Exercise 15.2.11. Let H = Z x Z (all integer coordinate-pairs).

(a) Define a binary operation o on H by (a,b) o (¢,d) = (a + ¢,b+ d), for
(a,b),(c,d) € H. This operation is in fact just coordinate-pair addition.
Is (H,o0) a group? If so, is (H, o) abelian? Justify your answers.

(b) Define a binary operation o on H by (a,b)o(c,d) = (ac,bd), for (a,b), (¢,d) €
H. This is just coordinate-pair multiplication. Is (H,o) a group? If so,
is (H, o) abelian? Justify your answers.

Exercise 15.2.12. Let G = R* x Z (all pairs such that the first element is
a nonzero real number, and the second is an integer)

(a) Define a binary operation o on G by (a,m)o (b,n) = (a+b,m+n). Is
(G,o0) a group? If so, is (G, o) abelian? Justify your answers.

(b) Define a binary operation o on G by (a,m)o (b,n) = (ab,mn). Is (G, o)
a group? If so, is (G, o) abelian? Justify your answers.

(c) Define a binary operation o on G by (a,m) o (b,n) = (ab,m + n). Is
(G, 0) a group? If so, is (G, o) abelian? Justify your answers.

The previous two exercises follow a pattern that we may generalize:

Definition 15.2.13. Given two groups G and H, we define the product of
groups G and H (denoted by G'x H) as the set of pairs {(g,h),g € G,h € H}.
If (g1, h1) and (go2, ha) are two elements of G x H, then we define the group
operation (g1, h1) o (g2, h2) as follows:

(g1, h1) © (g2, he) := (9192, hiha),

where g1go uses the group operation in GG and hyho uses the group operation
in H. A

Exercise 15.2.14.

(a) Consider (3,6) and (2,4) as elements of Zy x Z7. Compute (3,6)0(2,4).
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(b) Consider (3,6) and (2,4) as elements of R* x Z1y. Compute (3,6)0(2,4).

(c) Consider (3,6) and (2,4) as elements of Q* x Q*. Compute (3,6)0(2,4).

O

Exercise 15.2.15. Show that the product of two groups is a group. O

Exercise 15.2.16. Let Z = {(a1,a2,...,ay) : a; € Zz}. Define a binary
operation on Z5 (which we will denote as ‘+’) by

(CLl,CLQ,...,CLn)+(b1,b2,...7bn):(al@bl,QQ@bQ,...,an@bn),

where @ denotes addition in Zy. Prove that Z% is a group under this oper-
ation. This group is important in algebraic coding theory. O

In previous chapters we’'ve used Cayley tables to describe group oper-
ations. With Cayley tables we can prove a set and operation are a group
even when we don’t know what the elements in the set really are or what
the binary operation is.

The next three exercises are very useful in helping determine whether or
not a given Cayley table represents a group.

Exercise 15.2.17. Given h is an element of (G, o).

1. Show that h is an identity element of G if and only if there exists a
g € G such that ho g = g. (*Hint*)

2. Show that h is an identity element of G if and only if there exists a
g € G such that goh =g.

O

In Exercise 15.2.17 we were careful to say an identity element. Could a
group have multiple identity elements? Let’s settle the question once and
for all:

Exercise 15.2.18. Use Exercise 15.2.17 to prove the following proposition:
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Proposition 15.2.19. The identity element in a group G is unique; that
is, there exists only one element e € G such that eg = ge = g for all g € G.

(*Hint*) O

Exercise 15.2.20. Show that if G is a group, then for every row of the
Cayley table for G no two entries are the same. Show also that for every
column of the Cayley table no two entries are the same. (*Hint*) O

Exercise 15.2.21. For each of the following multiplication tables defined
on the set G = {a, b, c,d} tell whether (G,o) represents a group, and if so,
whether it is abelian. Support your answer in each case. Assume that the
associative property holds in each case. Note the identity is not always the
first element listed!

ola b ¢ d ola b ¢ d
ala b ¢ d ald ¢ b a
(a) b|b a d c (¢) ble d a b
clc d a b clb ¢ d a
d|ld a b c dla b ¢ d
ola b ¢ d ola b ¢ d
al|lb a d c al|lb ¢ d a
(b) bla b ¢ d (d blec d a b
cld ¢ b a cld a b c
dlec d a b dla b ¢ d

Exercise 15.2.22. For each of the following multiplication tables, fill in
the blanks to make a Cayley table for a group.

O‘ab d O‘abcd
ala b _ al|c _ _
(&) b|l- a - _ (b) b|- b ¢ d
cle - a _ cl| - - -
dld - _ _ d| - - - _



514 CHAPTER 15 INTRODUCTION TO GROUPS ¥

o‘abcd o‘abcd
a|d o ala b _ d

(c) b _ o (d) b -
c| _ _ cle - - _
d| _ _d dl|d

(There are two different ways to
complete this one: find both)

Exercise 15.2.23. * Show that it is impossible to complete the following
Cayley tables to make a group.

ola b ¢ d ola b ¢ d
a| - - ala - _ _
(a) b|b o (¢) b c - -
cl|d _ c _ _
d| c _ d -
ola b ¢ d ola b ¢ d
ala o alb _ _ _
(b) b _ - (d) b c -
c| - - c _ _
d| _ - d _

15.2.1 The group of units of Z,

Back in the Modular Arithmetic chapter, we used the addition table for Zg
to show that Zg with modular addition was a group. We extended this and
showed that Z, under modular addition is a group for any n. But we ran
into problems with modular multiplication on Zg, as we can see from the
Cayley table (reproduced below),

From Table 15.1 we can see several problems. Notice that 0,2,4,6 have
no inverses. In fact, from Table 15.1 we see that only numbers that are
relatively prime to 8 have inverses in Zg. The same is true for any Z,. It
follows that in order to get a group under modular multiplication using the
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O U W N~ O
oo o000 ooo
N O TR W= O
BN O O RN O
CTN T = O wo|lw
O OO RO
LW O =] N Ul Ot
N OO N RO
— N W Lo = O

Table 15.1: Cayley table for (Zg, )

elements of Z,, we’ll have to kick out the non-relatively prime numbers in
order to guarantee that every element has an inverse. For instance,Table 15.2
is the result when Table 15.1 is restricted to the rows and columns labeled
(1,3,5, and 7).

N otw G
- U |
DU~ oo| o
W = =3 Ut ot
=W Ot g

Table 15.2: Multiplication table for U(8)

Exercise 15.2.24. Prove that the Cayley table in Table 15.2 represents a
group. (Note that associativity holds because we already know that modular
multiplication is associative.) O

Exercise 15.2.25. Is the group in Table 15.2 abelian? Justify your answer.
O

For convenience, let’s define some notation:

Definition 15.2.26. The set of nonzero numbers in Z, that are relatively
prime to n is called the set of units of Z,, denoted by U(n). A

We have just seen that U(8) is a group under modular multiplication.
One might suspect that U(n) is a group for any n. For starters, it is clear
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that 1 serves as an identity element, because 1-k = k-1 = k mod n for
any n. In fact, U(n) is an abelian group, as you will show in the following
exercises.

Exercise 15.2.27. In this exercise, we prove that U(n) is a group under
multiplication mod n for any n. We know that modular multiplication is
associative, so it remains to show the closure and inverse properties.

(a) Fill in the blanks to show that U(n) is closed under modular multipli-
cation:

Let k,m be arbitrary elements of U(n). It follows that both k£ and
< 1> are relatively prime to <2 > . So neither £ nor <3 >
has any prime factors in common with <4 > . It follows that the
product <5 > also has no prime factors in common with <6 > .
Furthermore, the remainder of < 7 > under division by < 8 > also
has no prime factors in common with < 9 > . Therefore the product
of <10> and < 11 > under modular multiplication is also an ele-
ment of <12 > ., so_ < 13 > is closed under modular multiplication.

(b) It remains to show that U(n) is closed under inverse. Suppose that
m € U(n) and x is the inverse of m. What modular equation must x
satisfy? (*Hint*)

(c) Show that the equation in = that you wrote in part (b) has a solution
as long as m is relatively prime to n.

Exercise 15.2.28. Show that U(n) is abelian. O

Remark 15.2.29. Whenever we talk about the group U(n), we always
assume the operation is multiplication. Similarly, whenever we talk about
Z.,, we always assume the operation is addition. A

15.2.2 Groups of matrices

Matrices provide many examples of interesting groups.
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Exercise 15.2.30. We use M(C) to denote the set of all 2 x 2 matrices
with complex entries. That is

M, (C) = {(‘C‘ Z) | a,b,c,dE(C}

(a) Show that My(C) a group under matrix addition. Is it abelian? If so,
prove it: if not, find a counterexample.

(b) What is the order of this group?

(c) Is My(C) a group under matrix multiplication? Is it abelian? Justify
your answers.

Exercise 15.2.31. Let M,,(C) be the set of all n x n matrices with complex
entries. Show that M,,(C) is a group under matrix addition. What is the
order of this group? O

There are multiplicative groups of 2 x 2 matrices as well, but not all
matrices can be included. To specify those which are included, we need the
following definition

Definition 15.2.32. For the 2 x 2 matrix A = (Z Z), the quantity ad—be
is called the determinant of A and is denoted by det(A). A

The following exercise is algebraically a little complicated, but turns
out to be essential in order to prove properties of multiplicative groups of
matrices.

Exercise 15.2.33. Using matrix multiplication and the definition of deter-

minant, prove that if A = a b and B= °© / , then
c d g h

det(AB) = det(A) det(B)
. This is known as the determinant product formula. O

We're now ready to define a set of 2 x 2 matrices which is suitable to
form a multiplicative group.
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Definition 15.2.34. Let GL2(C) be the subset of My(C) consisting of
matrices A such that

A= (" P) and det(4) #0
(¢ 3 (4) #

A

The proof that GLy(C) is a group is contained in the following exercise.

Exercise 15.2.35.

(a) Show that for any matrix A = <i Z) € GL2(C), the matrix
1 d —b
b= 3@ (—c a >
satisfies
AB =BA=1.

(b) Using Exercise 15.2.33, show that GLy(C) is closed under matrix mul-
tiplication.

(c) Show that matrix multiplication in GL2(C) is associative.

(d) Complete the proof that GL2(C) is a group under matrix multiplication.

GL3(C) is called the 2-dimensional general linear group over the com-
plex numbers. O

Exercise 15.2.36.Prove or disprove: GLy(C) is abelian. O

It turns out that we can define a multiplicative group of n X n matrices
for any positive integer n, in similar fashion as we defined GLy(C). Rather
than using determinant, we present an alternative way of characterizing the
n X n matrices that are suitable members of a multiplicative group.

Definition 15.2.37. An n x n matrix A is called snvertible if there exists
a n X n matrix B such that AB = BA = I,,, where I, is the n x n identity
matrix. A
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It is fairly straightforward to prove the group properties under matrix
multiplication for this limited set of matrices:

Exercise 15.2.38. Show that the set of n x n invertible matrices with
complex entries form a group under matrix multiplication. You may assume
that matrix multiplication is associative (this is proved in another chapter).

O

Definition 15.2.39. The set of n x n invertible matrices is called the n
dimensional general linear group, and is denoted by GL,(C). A

15.3 Basic properties of groups

Now that we have a general definition of groups, we can use this definition
to prove properties that are true of all groups. We’'ll begin by proving some
essential properties that we’ve shown for specific groups, but need to know
in general:

Proposition 15.2.19 shows that group identities are unique — it turns out
that inverses in a group are also unique:

Proposition 15.3.1. If g is any element in a group G, then the inverse of
g is unique.

Exercise 15.3.2. Fill in the blanks to complete the following proof of
Proposition 15.3.1.

(a) By the definition of inverse, if ¢’ is an inverse of an element g in a group
G,theng- <1> =4 <2> =e.

(b) Similarly, if ¢” is an inverse of g then g <3> = <4> -g=e.

(¢c) We may show that ¢’ = ¢” as follows:

g=9 _<5> (definition of identity)
=q¢-(<6> -¢g") (part b above, def. of inverse)
= -9 <7> (associative property of group G)
= <8> .4 (part a above, def. of inverse)
=q" (def. of identity)
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O

Exercise 15.3.3.

(a) Consider the group C*, and let a = 5+ 3i € C*. What is a=1?

(b) Consider the group defined by the set S = R\ {—1} and the binary
operation a * b = a + b+ ab. What is 5717

(c) Consider the group defined by the set G = R* x Z and the operation
(a,m) o (b,n) = (ab,m +n). What is (3,2)71?

(d) Consider the group U(12). What is 5717

-1
(e) Consider the group GLy(R). What is <§ g) ?

An important property of inverses is:

Proposition 15.3.4. Let G be a group. If a,b € G, then (ab)™! =b"la~L.

Remark 15.3.5. We’ve actually seen this property before, in the permu-
tations chapter: recall that for two permutations ¢ and 7, we showed that
(or) ' =7"1o7 L. A

PROOF. By the inverse property, 3a~!, b~ € G. By the closure property,
ab € G and b~'a™! € G. So we only need to verify that b~'a™! satisfies
the definition of inverse (from Proposition 15.3.1, we know the inverse is
unique). First, we have:

(ab)(b~'a™) = a(bb~1)a~! (associative property of group G)
= aea"! (def. of inverse)
= aa~! (def. of identity)

= e. (def. of inverse)

The remainder of the proof is left as an exercise:
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Exercise 15.3.6. Fill in the blanks to complete the proof of Proposi-
tion 15.3.4

(b"'a"t)(ab) =" (a ta)b ( )
=bleb ( )
=b07"b ( )
=e. ( )
0
]

By repeated application of Proposition 15.3.4, we may find the inverse of
the product of multiple group elements, for example: (abed)™! = d~ e 1b~ta"t.

Proposition 15.3.4 shows that in general, when finding inverses of prod-
ucts it is necessary to take the products of inverses in reverse order. One
might ask, Is it ever the case that it’s not necessary to reverse the order?
Glad you asked! We address this question in the following exercise:

Exercise 15.3.7. Given a group G and a,b € G, prove that G is abelian if
and only if (ab)™! = a=b7! for all a,b in G. (*Hint*) O

Proposition 15.3.4 characterizes the inverse of a product: now we shall
characterize the inverse of an inverse. From ordinary algebra we know that
—(—a) =a and 1/(1/a) = a. This generalizes to arbitrary groups as follows:

Proposition 15.3.8. Let G be a group. For any a € G, (a7 1)~ ! = a.

PRrROOF. If a € G, then since G is a group, then a~! € G exists. And again,
since G is a group, there also exists (a=)~! € G.

Now, by the definition of inverse, a~!(a~!)~! = e. Consequently, multi-
plying both sides of this equation by a, we have (the argument continues in
the following exercise):

Exercise 15.3.9.

ala™(a™H)™) = ae (multiplication by a
1y—1

)

(@™)"" =ae ( )
e(a™H ™t =ae ( )
( )

aH 'l =a. (
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Exercise 15.3.10.

(a) Suppose a,b € C*, where a = 4 + 3i and b = 5 — 12i. What is (ab)~'?
What is (ba)~1?

(b) Suppose a,b € G, where G is the group defined by the set S = R\ {—1}
and the binary operation a xb =a + b+ ab. If a = 10,0 = 1, what is
(a*b)~1? What is (b*a)~1?

(c) Suppose 0,7 € Sg, where o = (3456),7 = (1625). What is (o7)7!?
What is (70)~1?

(d) Consider the group U(5). What is (4 ® 3)~'? What is (3 ®4)71?
(e) Suppose a,b € GLa(R), where

6 7 5 —2
a—(2 3> aundb—(2 _1>

What is (ab)~'? What is (ba)~1?

O

In high school algebra we wrote equations like 6 + x = —+/2 or 5z = 6,
and we could always find a real number x that was a solution. Now we can
see that this follows from the fact that R is a group under addition and
R* is a group under multiplication. Similarly, we have seen that equations
like ax = b (mod n) and a + x = b (mod n) had solutions for x € U(n)
and = € Z,, respectively because U(n) and Z,, are groups under modular
multiplication and modular addition, respectively.

Noticing a pattern here, the question then is this: does the equation
ax = b have a solution for any group G?7 In other words, if a and b are two
elements in a group G, does there exist an element € G such that ax = b7
If such an x does exist, is it unique? The following proposition answers both
of these questions affirmatively.

Proposition 15.3.11. Let G be a group and a and b be any two elements
in G. Then the equations ax = b and za = b have unique solutions in G.
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Note we need separate proofs to show that x exists and is unique for both
ax = b and za = b, since we don’t know whether the group is abelian. The
proof for ax = b is a fill-in-the-blank exercise, while the proof for za = b
you’ll do on your own:

Exercise 15.3.12.

(a) Complete the proof that ax = b has a unique solution by filling in the
blanks:

Suppose that az = b. First we must show that such an x exists. Since
a € G and G is a group, it follows that a~! exists. Multiplying both

sides of ax = b on the left by a~!, we have
a taz) =a" b (left multiplication by a=!)
(e ta)z =a"1b ( )
ex =a'b ( )
z=a"'b ( )

We have thus shown that az = b implies = a~'b, so ax = b can have
at most one solution. We may also verify that x = a~'b is indeed a
solution:

a(a1b) = (aa™1)b ( )
—eb ( )
=b ( )

This completes the proof that the solution both exists, and is unique.

(b) Prove now the existence and uniqueness of the solution of xa = b (similar
to part (a)).

O

The key method used in these proofs, the composition of both sides of the
equation by a1, is something you’ve seen many times before. For instance
in high school algebra, to solve the equation bx = 6 above, we teach our
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kids to divide each side by 5. Remember that dividing by 5 is the same as
multiplying by its reciprocal 1/5. And 1/5 is the multiplicative inverse of 5.
So in fact we are composing (multiplying) each side of the equation by 5!
in order to solve for x.

As in our example then, composing both sides of the equation by a~!

is not only useful for the proofs, but in actually solving for x. Therefore,
no matter what crazy elements and strange binary operation make up our
group, we can still solve for x using the same algebra we learned in high
school. In other words, given a group G and a,b € G, if ax = b, then
x = a~'b; if za = b, then = ba—'; and so on. Use this methodology in the
following exercises.

Exercise 15.3.13. Given a,b € C*, where a = 3 — 3i and b = 2 4 124; solve
for x in each of the following equations.

Exercise 15.3.14. Suppose G is the group defined by the set S = R\ {—1}
and the binary operation a * b = a + b + ab. Solve for = in each of the
following equations.

(a) 11xz = —3 (b) xx11 = -3 (c) =3xx =11 (d) xx(—=3) = 11.

O

Exercise 15.3.15. Given p,u € Sg, where p = (532)(164) and pu =
(18753)(26); solve for z in each of the following equations.

(a) pz = p (b) zp=p (c) px=p (d) zp = p.

Exercise 15.3.16. Given the group U(9), solve for x in each of the following
equations.

(a) bOx =8 (b) z®5 =8 (c) 80z =5 (d) @8 =5.
O
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Exercise 15.3.17. Given A, B € GL2(R), where

6 5 -2 -1
(Y man- (2

Solve for X in each of the following equations.

(a) AX =B (b) XA=DB () BX = A (d) XB = A.

Exercise 15.3.18.

(a) Given a group G and a,b € G, prove that if G is abelian, then any
solution of ax = b is also a solution of za = b (and vice versa).

(b) Given a group G that is not abelian, show that it is always possible to
find an equation of the form ax = b which has a solution that is not a
solution to xa = b.

O

In our work so far, we’ve frequently used the substitution property.
For instance if x = y, then we know also that a - x = a - y, regardless of the
operation -. But suppose I gave you the equation a-x = a-y. Is it necessarily
true that x = y? If a,x,y € R and the operation is multiplication, then it’s
true as long as a # 0. To show this, we may use the method we talked
about in the previous proposition: multiply each side of the equation by
a~! (that is, divide by a), and the result is # = y. In basic algebra courses
this property is often called the law of cancellation. Now this works for
real numbers: but suppose a, x, y were elements of some other group. Would
the law of cancellation still hold? In fact, using the method shown above,
you can prove this property holds for any group G.

Proposition 15.3.19. If GG is a group and a, b, c € G, then ba = ca implies
b= c and ab = ac implies b = c.

This proposition tells us that the right and left cancellation laws
are true in groups. We leave the proof as an exercise.

Exercise 15.3.20.
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(a) To prove Proposition 15.3.19, we need to prove both that ba = ca implies
b = ¢, and that ab = ac implies b = ¢. Why do these two statements
require two different proofs?

(b) Prove Proposition 15.3.19.

O

We can use exponential notation for groups just as we do in ordinary
algebra:

Definition 15.3.21. If G is a group and g € G, then we define ¢° = e. For
n € N, we define

gt =g-g-g
—
n times

and

n times
A
Exercise 15.3.22. Using Definition 15.3.21, prove that
(g =97,
i.e. the inverse of ¢" is equal to g~" for any group element g and for any
natural number n. O

Proposition 15.3.23. In a group, the usual laws of exponents hold; that
is, for all g, h € G,

1. g™g" = g™ for all m,n € Z;

o

(g™)" = g™ for all m,n € Z;

3. (gh)™ = (h=tg=1)~™ for all n € Z. Furthermore, if G is abelian, then

(
(gh)™ = g"h™.
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ProOF. We will prove part (1), and you will do the rest. We can break
part (1) into four cases: (a) m,n > 0; (b) m,n < 0; (¢) m > 0,n < 0; (d)
m < 0,n>0.

Consider first case (a). Using Definition 15.3.21, we have

99" =9-9---99-9---9,
—_——
m times  n times

and
m

g =g-g---g.
—
m+n times

Since the right-hand sides of these expressions are equal, then so are the
left-hand sides: so ¢g™g" = g™ ™.

The proof of case (b) is exactly the same, except on the right-hand sides
we should replace all ¢’s with g—!

Y 3

and we should also replace ‘m times’, ‘n

times’, and ‘m+n times’ with ‘—m times’, ‘—n times’, and ‘—(m+n) times’
respectively (recall that m and n are negative, so —(m+n) is positive). These
replacements gives us g™g" = (g_l)_(m+”), and according to Definition

15.3.21 we may rewrite this as ¢"¢"™ = g™ *". This completes the proof of
case (b).

In case (c), we have

m times —ngmes

We now have two subcases to consider. First, if m > —n, then all of the g~*

factors cancel and we end up with

99" =g-9---9.

m-+n times

Second, if m < —n, then all of the g factors are canceled and we end up
with
m n -1 —1 -1

99 =9 9 g

—(m-+n) times

In either of these subcases, the right-hand side agrees with the definition of
g™ ™™, so the equality is proved.

Case (d) is just like (c), except we exchange the signs on the g’s, m’s
and n’s on the right-hand sides. This completes the proof of part (1).
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Exercise 15.3.24. Prove parts (2) and (3) of Proposition 15.3.23. O

O
Notice that (gh)™ # g"h™ in general, since the group may not be abelian.

If the group is Z or Z,, we write the group operation additively and the
exponential operation multiplicatively; that is, we write ng instead of ¢”.
The laws of exponents now become

1. mg+ng = (m+n)g for all m,n € Z;
2. m(ng) = (mn)g for all m,n € Z;

3. m(g + h) = mg + mh for all m € Z.

It is important to realize that the last statement can be made only because
Z and Z,, are abelian groups.

Remark 15.3.25. (historical background) Although the first clear ax-
iomatic definition of a group was not given until the late 1800s, group-
theoretic methods had been employed before this time in the development
of many areas of mathematics, including geometry and the theory of alge-
braic equations.

Joseph-Louis Lagrange used group-theoretic methods in a 1770-1771
memoir to study methods of solving polynomial equations. Later, Evariste
Galois (1811-1832) succeeded in developing the mathematics necessary to
determine exactly which polynomial equations could be solved in terms of
the polynomials’ coefficients. Galois’ primary tool was group theory.

The study of geometry was revolutionized in 1872 when Felix Klein pro-
posed that geometric spaces should be studied by examining those prop-
erties that are invariant under a transformation of the space. Sophus Lie,
a contemporary of Klein, used group theory to study solutions of partial
differential equations. One of the first modern treatments of group theory
appeared in William Burnside’s The Theory of Groups of Finite Order [1],
first published in 1897. A

15.4 Subgroups &

We first came across subgroups in the Permutations chapter. We saw that
Sh, the set of permutations on a set of n elements, is a group under function
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composition. Yet we also saw that the set of symmetries of an n-sided figure,
which is a subset of S,,, is itself a group under function composition. So a
subgroup is a subset of a larger group that is itself a group under the same
operation as the larger group. Formally then:

Definition 15.4.1. A subgroup H of a group (G,o) is a subset H of G
such that when the group operation of G is restricted to H, H is a group in
its own right. A

By definition, all subgroups are subsets: but is the reverse true? If not,
what makes a subset a subgroup? What special properties must subsets
possess in order to qualify as subgroups?

The key to answering this question is the observation that any subset
H C G that is a subgroup of G must also be a group in its own right: and
we’re already experts at deciding whether a set with a binary operation is
a group:

Example 15.4.2. Consider the set of even integers 27 = {...,—2,0,2,4,...}.
A more mathematically concise definition is:

27 = {zx € Z|z = 2n for some n € Z}

27 is actually a subgroup of Z, under the operation of addition. To show
this, according to the definition of subgroup we need to show:

(&) (Z,+) is a group;
(b) 2Z C Z;

(c¢) (2Z,+) is a group.

Items (a) and (b) can be dispatched in short order. From our work in
Chapters 1 and 2, we know Z is a group under addition: this takes care
of (a). For item (b), we have that any element m € 2Z can be written as
m = 2n, where n € Z: hence m € Z also.

To show (c), we must verify all the group properties for 2Z under the
operation +:


https://www.youtube.com/watch?v=WJJBOBKY3ZI&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=26

530

CHAPTER 15 INTRODUCTION TO GROUPS &

e (Closure): Given z,y € 2Z, it follows x = 2n and y = 2m for some

n, m € Z. Therefore

r4+y=2n+2m=2(n+m)

Since Z is closed under +, it follows (n +m) € Z, so 2(n +m) € 2Z.
Since x and y were arbitrary, it follows that 27 is closed under addition.

(Associative): Suppose w,z,y € 2Z. Then w,x,y are integers, and
w~+ (x+y) = (w+ x) +y by the associativity of (Z,+). Hence 27Z is
associative under addition.

(Identity): 0 € 27Z, since 2 -0 = 0: and for any x € 2Z,
O+z=2z+0==2x.

Hence 27 has an identity under addition, namely O.
(Inverse): Given x € 27, where x = 2n,

—x = —(2n) = 2(—n), [associative and commutative properties of Z
under multiplication]

and since —n € Z (closure of Z under multiplication) it follows that
—x € 27Z. Now since

—r+zx=x+(—x) =0,

it follows Va € 27, 3z~ ! € 2Z, namely 27! = —z.

This completes the proof that 2Z is a subgroup of Z under addition. ¢

Exercise 15.4.3. Given any fixed integer m, prove that

mZ=A...,—2m,—m,0,m,2m, ...}

is a subgroup of Z under the operation of addition. O

Notice that by definition, the operation used in the subgroup must be

the same operation that’s used in the group it’s contained in. For example,
R* is not a subgroup of R, because (R*,+) is not a group.

Exercise 15.4.4. Prove or disprove:
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(a) GL2(R) is a subgroup of My (R).

(b) U(n) is a subgroup of Z,.

O

We can make the task of proving subgroups a bit easier. First notice that
in Example 15.4.2, 27 was associative simply by virtue of the fact that it’s
contained in the group Z and has the same operation. This will be true in
general: the associate property will always hold for any subset of a group G
under that group’s operation. We may also make the following observation
about identity elements:

Exercise 15.4.5. Prove the following: Suppose G is a group with identity
element e, and let H be a subgroup of G with identity element f. Then
e=f. %

Exercise 15.4.5 and our observation about associativity lead to the fol-
lowing simplified subgroup criteria (which we state as a proposition):

Proposition 15.4.6. A subset H of a group G is a subgroup if and only if:

(a) The identity e of G is in H.

(b) If hi,he € H, then hihy € H (that is, H is closed under the group
operation),

(c) If h€ H, then h~! € H.

Exercise 15.4.7. The set T is defined as the subset of C whose elements
all have a modulus of 1; that is

T={ceC:l=1}
(a) Using Proposition 15.4.6 above, prove that T is a subgroup of C*.
(b) What is |T|?

(c) Prove or disprove that T is abelian.
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O

Exercise 15.4.8. Let Hy = {1,—1,i,—i}, (these are the fourth roots of
unity, which we studied in Section 4.4.1).

(a) Using Proposition 15.4.6, prove that Hy is a subgroup of T. (Note you
should first verify that Hy is a subset of T.)

(b) What is |Hy|?

(c) Prove or disprove that Hy is abelian.

Exercise 15.4.9. Let’s generalize the last exercise. Suppose now that H,
is the set of n'” roots of unity. That is

H,={ze€C:2"=1}

a) Prove that H,, is a subset of T.

(a)

(b) Using Proposition 15.4.6, prove that H is a subgroup of T.

(¢c) What is |H,|?
)

(d) Prove or disprove that H,, is abelian.

Exercise 15.4.10. Let Q* be defined in the following way:
Q* ={p/q : p,q are nonzero integers }

In other words Q is the set of non-zero rational numbers (Q* =Q \ 0).

(a) Using Proposition 15.4.6, prove that Q* is a subgroup of R*.

(b) Prove or disprove that Q* is abelian.
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O
Exercise 15.4.11. Prove that
G ={a+bV2:a,bc Q and a and b are not both zero}
is a subgroup of R* under the group operation of multiplication. %

Exercise 15.4.12. Let G be the group of 2 x 2 matrices under addition

and
H:{(a b) :a+d:0}.
c d

(a) Prove that H is a subgroup of G.

(b) Prove or disprove that H is abelian

Exercise 15.4.13. We define SLy(R) to be the set of 2 x 2 matrices of
determinant one; that is, a matrix

a b
1=(c )
is in SL2(R) exactly when ad — bc = 1. We call this the Special Linear
Group .

(a) Using Proposition 15.4.6, prove that SL2(R) is a subgroup of GL2(R).

(b) Prove or disprove that SLs(R) is abelian.

Exercise 15.4.14. Let G consist of the 2 x 2 matrices of the form
cosf —sinf
sinf@ cosf

where 0 € R.
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(a) Prove that G is a subgroup of SL3(R). (Recall your angle addition
formulas from trigonometry!)

(b) Prove or disprove that G is abelian.

(G is called the set of 2 x 2 rotation matrices.) O

There is an alternative way to prove a subset H of G is a subgroup
of G that can save some time. It turns out that the three conditions in
Proposition 15.4.6 can be combined into a single statement:

Proposition 15.4.15. Let H be a subset of a group G. Then H is a
subgroup of G if and only if H # (), and whenever g, h € H then gh™! is in
H.

ProoOF. We first prove the “if” direction, so we assume H be a nonempty
subset of G and whenever g,h € H then gh™! is in H. Proposition 15.4.6
says that if H contains the identity and is closed under inverse and the group
operation, then H is a subgroup. Let’s prove these one by one. First, since
H is nonempty, it contains some element g: and letting h = g we obtain
g9~ ' = eisin H. Second, since e € H and g € H, then eg~! = ¢! is also in
H: so H is closed under inverse. Finally, let g,h € H. We must show that
their product is also in H. But we have already shown that A € H implies
that h=! € H, so that, g(h~!)~! = gh € H. We have established the three
required conditions, so we may conclude that H is a subgroup of G.

To prove the “only if”’ direction, we may assume that H is a subgroup
of G. Given any elements g, h € H, we need to show that gh~' € H. Since
h is in H, its inverse h~!' must also be in H. Because of the closure of the
group operation, gh~! € H. This completes the proof. O

Example 15.4.16. Using the proposition above, let’s re-prove that T is a
subgroup of C*.

PROOF. Based on the proposition, there are four things we need to show:
C* is a group;

(a)

(b) T # 0;
)
)

a

(¢) T C*;

(d) Given z,y € T, 7yt € T.
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Items (a), (b), and (c) we have shown before. As to item (d),
z,ye T
= |z|=1and |y =1
S oy = Ja] - |y~ = [al/ly] = 1/1 = 1
= vy~ eT
O 4

Exercise 15.4.17. Use Proposition 15.4.15 to re-prove the following:
(a) Q* is a subgroup of R*.
(b) SL2(R) is a subgroup of GLa(R).

15.5 Cyclic groups &

In this section we will explore an important property of some groups and
subgroups.

15.5.1 Definitions

Example 15.5.1. Consider the group Z. Let us try to find the smallest
subgroup of Z that contains the number 1.

(1) We start with the smallest subset possible, P = {1}.

(2) The subset has to be a group under addition. But so far P does not

contain an additive identity. So we need to add 0 to the set, giving us
P ={0,1}.

(3) Zero is its own inverse under addition, but notice that our set does not
include an inverse for 1. So we add —1 to P, giving us P = {—1,0,1}.

(4) Is P closed under addition? Certainly when we add 0 to 1 and —1, we
get 1 and —1, respectively. And —1 + 1 = 0. But what about when we
add 1 and 1, or —1 and —1?7 So we need to add 2 and —2 to the set,
giving us P = {-2,-1,0,1,2}.
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(5) Now, what about 142, or (—1) + (—2)? So we need 3 and —3, giving
us P={-3,-2,-1,0,1,2,3}.

(6) And we can see that this process would keep going until we get all the
integers. In other words,

pP={.,-3-2,-1,01,23,...} =Z.
Therefore the smallest subgroup of Z that contains 1 is Z itself. ¢

From the last example, we saw that P was generated through repeated
additions of 1 and repeated additions of —1 (with 0 thrown in for good
measure). Zero in fact can be calculated by adding 1 and —1, and can be
thought of as a zero multiple of 1. In addition, the repeated additions of 1
and —1 can be thought of as positive and negative multiples of 1. Therefore
we can think of all the elements of P as integer multiples of 1. We denote
the set of all integer multiples of 1 as (1); therefore,

(1)={n-1l:neZ}=P

In Example 15.5.1 we also saw that P was in fact Z; therefore Z = (1). We
say that Z is generated by 1, as per the following definition:

Let us extend this concept to groups in general:

Definition 15.5.2. Given a group G and an element a € G, then the set
generated by the element a is denoted by (a), and is defined as the set
obtained by repeated multiplication of the identity e by the group elements a
and a~!. Using the notation we introduced right before Proposition 15.3.23,
we can write this as

(a) ={ ,a_3,a_2,a_1,e,a,a ,a’, ...}
or
(a) ={d": kez}
(a) is sometimes called the orbit of a. A

Remark 15.5.3. If we are using the “+” operation, as in the case of the
integers above, we write (a) = {na : n € Z}. A

Exercise 15.5.4. List the set (3) for 3 € R*. O
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We have special terminology for the case where all the elements of a group
are generated by a single element:

Definition 15.5.5. If a group G contains some element a such that G = (a),
then G is a cyclic group. In this case a is a generator of G. A

We have seen above that 1 is a generator of Z, and thus Z is a cyclic
group. A cyclic group may have more than one generator:

Exercise 15.5.6. Show that —1 is a generator of Z; that is that Z = (—1).
¢

Example 15.5.7. Consider the group Zg. (1) is computed as follows:

e 1=1
e 14+1=2
e 1+14+1=3

1+1+1+1=4

1+1+14+1+1=5

1+41+141+14+1=0

e Notice that we've already generated all the elements in Zg. So we
don’t have to worry about finding the additive integer multiples of
17! (Note that (17! = 5)), because these calculations can’t produce
any new elements.

e So (1) ={1,2,3,4,5,0} = Zsg.
Therefore Zg is a cyclic group generated by 1. ¢

We’ve just seen that 1 is a generator of Zg, but that doesn’t mean it’s
the only generator. A cyclic group can have more than one generator:

Exercise 15.5.8.

(a) In the group Zg, show that (5) = Zsg.
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(b) Find all generators of Zg: that is, find all numbers a € Zg such that
<CL> = ZG-

Exercise 15.5.9. Given a group G, suppose that G = (a). Prove that
G = {a71). 9

Exercise 15.5.10.

(a) Show that Z, is cyclic for any integer n > 1 by identifying a number a
such that (a) = Z,.

(b) For n > 2, show that Z, has at least 2 generators by finding a number
by, such that (b,) = Zy,.

Example 15.5.11. The group of units, U(9) is a cyclic group. As a set,
U(9) is {1,2,4,5,7,8}. Computing (2), we get

(2) :{2152,2254,2358,2457,2555,2651}
={2,4,8,7,5,1}
=U(9)

So (2) ={2" (mod 9):neZ} =U(9) ¢

Exercise 15.5.12. Find any other generators of U(9) if they exist (say so
if no others exist). O
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15.5.2 Orbits (cyclic subgroups)

In this section we further explore properties of the set (a) for arbitrary group
elements a € G. We have seen that in some cases, (a) is actually a group.
We'll see in a minute that in fact (a) is always a group. Let’s look at some
examples first.

Example 15.5.13. Suppose that we consider 4 € Z.

(4) ={...,—8,-4,0,4,8,...}.
which happens to be the set 4Z.

Exercise 15.5.14. Prove that 4Z is a subgroup of Z. %

It follows from this exercise that 47 is the cyclic subgroup of Z generated
by 4. ¢

Exercise 15.5.15. Let H = {2" : n € Z} = (2) under multiplication.

a) List the elements in H

(

(b) Show that H C Q*.
(
(d

)
)
c¢) Show that H is closed under multiplication.
) Show that H is closed under inverse.

)

(e) Is H a subgroup of Q*? Ezplain your answer.

O

It follows from this exercise that H is the cyclic subgroup of Q* generated
by 2.

By now we’ve seen enough examples so that we’re ready to prove the
general result.

Proposition 15.5.16. Let G be a group and a be any element in G. Then
the set
(a) = {a" : k € 7}
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is a subgroup of G.

PROOF. The identity is in (a) since a’ = e. If g and h are any two elements
in (a), then by the definition of (a) we can write ¢ = a™ and h = a” for
some integers m and n. So gh = a™a™ = ™1™ is again in (a). Finally, if
g = a" in (a), then the inverse ¢g~! = ¢ is also in (a). O

Definition 15.5.17. Given a group G, for each a € G, we call (a) the
cyclic subgroup generated by a. A

Let us now consider in particular the case of finite groups. Let G be
a finite group, and let a be an element of G. Consider the set A :=
{a,aQ,a?’,...}. Since A C G and G is finite, the set A must also be fi-
nite. In particular, the list {a, a?, a3, .. } must contain duplicate elements,
since otherwise A would be infinite. We must therefore have a*
different natural numbers k,[. This is the key fact in proving the following
exercise:

= a! for two

Exercise 15.5.18. Let G be a finite group, and let a € G where a # e.
Show there exists a natural number m > 0 such that ™ =e. (*Hint*) ¢

In view of the preceding exercise, we may make the following definition:

Definition 15.5.19. If a is an element of a group G, we define the order
of a to be the smallest positive integer n such that a” = e, and we write
|a] = n. If there is no such integer n, we say that the order of a is infinite
and write |a| = oo to denote the order of a. ? A

Example 15.5.20. Let us consider the orders of different elements in the
infinite group Z.

e First, what is |0|? According to Definition 15.5.19, we need to find
the smallest positive integer such that n -0 = 0 (remember, Z is an
additive group. We get n = 1, so |0] = 1, and the cyclic subgroup
generated by 0 is (0) = {0}

3Yet another use of the term “order” and the absolute value sign. But you should be
used to it by now.
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e What is 1|7 1+1=2; 1+ 1+1=3; ... In fact you'll never get to
0 adding a positive number of ones. So |1| = oo, and as we’ve seen,
(1) =Z.

e Similarly, | — 1| = oo.

Exercise 15.5.21.

(a) In the group Z¢, What is |1|?7 What is |5|?

(b) Given any group G, If e is the identity element of G then what is |e|?

O

Example 15.5.22. The order of 2 € Zg is 3, because under repeated
modular addition we have

202=4; 2&262=0.

Therefore the cyclic subgroup generated by 2 is (2) = {0,2,4}. ¢

Exercise 15.5.23. Find the order of each element of U(9). Find also the
cyclic subgroup generated by each element. %

Exercise 15.5.24.

(a) Find the order of each element of Zj3. Find also the cyclic subgroup
generated by each element.

(b) Based on your experience with this problem, would you say there is any
relationship between the order of a group element (denoted by |a|) and
the order of the cyclic subgroup generated by the element (denoted by
|{(a)|? If so, what would you say the relationship is?
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O

Let us now consider specifically the cyclic subgroups of finite groups. In
the following exercises, you may wish to make use of the laws of exponents
listed in Proposition 15.3.23.

Exercise 15.5.25. Let G be a finite group, and let a € G where |a| = n.
Show that (a=1)" = e. O

Exercise 15.5.26. In the following exercises, G is a finite group, and a € G
where |a| = n.

a) Show that for any integer m € Z, a™ = a ™°4 (™-2) - (*Hint*)

(
(b) Let A = {e,a,a?, ...,a" '}. Show that (a) C A and A C (a).

(
(d

)
)
c) Prove that |(a)| = |A|. (Note that |A| is the number of elements in A.)
) If m,k € Z,, and m # k, show that a™ # a*.

)

(e) Prove that |a| = |A|. (This together with part (c) implies that |a| =

[(@)].)
O

Due to its importance, we will state the final result of the preceding
exercise as a proposition.

Proposition 15.5.27. Let G be a finite group, and let a € G. Then
|a| = [(a)].

Exercise 15.5.28. Let G be a finite group, and let a € G such that |a] =n
for n > 0. Show that there exists a natural number m such that ™! = a™,
and express m in terms of n. O

Example 15.5.29. Not every group is a cyclic group. Consider the sym-
metry group of an equilateral triangle D3 (which is the same as S3). D3 has
6 elements: we saw the Cayley table for D3 in Chapter 13 (see Table 13.1.
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D3 aka 53

7 N\

{id, p1,p2}  {id,u}  {id, e} {id, ps}

\\//

{id}

Figure 15.5.1. Subgroups of D3(a.k.a.S3)

You may verify by using the table that no single element generates the en-
tire group, so Ds is not cyclic.. The cyclic subgroups of S3 are shown in
Figure 15.5.1. ¢

Although not every group (and not every subgroup) is cyclic, we may
use cyclic subgroups to help us enumerate all possible subgroups of a given
group, with the benefit of the following result:

Proposition 15.5.30. Given a group G and a subgroup H C G, and
suppose that a € H. Then (a) C H.

Exercise 15.5.31. Prove Proposition 15.5.30 O

Proposition 15.5.30 makes it much easier to find subgroups of a given
group, because it greatly cuts down on the possibilities.

Example 15.5.32. We showed in Example 15.5.29 that D3 has 4 cyclic
subgroups, and that every element of Ds is in at least one of these subgroups.
Proposition 15.5.30 shows that, for example, any subgroup containing p;
must also contain id and pg, since (p1) = {id, p1,p2}. Let’s try to find a
larger subgroup H C Ds that contains p;. If we add any other element
(which must be py for some k& = 1,2 or 3), then we must also add pyp; and
p2ik, which means that H contains all 6 elements of Ds. It follows that
H = Ds3. Similarly, if we try to find a subgroup K that contains ux by
adding another reflection 11;(j # k), we find that p;u, and pjp, must also
be in K, which means that p; must also be in K. But we’ve just finished
shown that if py € K and ux € K, then K = G. It follows that the only


https://www.youtube.com/watch?v=TCNL9IS0KJC&LIST=PL2UOOHQQ6T7PW5NA4EX8RQX2WVBBDM8QO&INDEX=27
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proper nontrivial subgroups of D3 are the fo