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Preface

This is an introduction to probability theory, designed for self-study. It covers
the same topics as the one-semester introductory courses which I taught at
the University of Minnesota, with some extra discussion for reading on your
own. The reasons which underlie the rules of probability are emphasized.

Probability theory is certainly useful. But how does it feel to study it?
Well, like other areas of mathematics, probability theory contains elegant
concepts, and it gives you a chance to exercise your ingenuity, which is often
fun. But in addition, randomness and probability are part of our experience
in the real world, present everywhere and yet still somewhat mysterious. This
gives the subject of probability a special interest.

With self-study in mind, detailed solutions are given for all the exercises
here. The exercises are mixed in with the exposition, and you are encouraged
to solve them (on paper) as you read the theory. To get the benefit of
an exercise, please work it out, or attempt it seriously, before reading the
solution. Tackling at least some of the exercises is essential for learning.

Many facts are stated as numbered lemmas or remarks, often with de-
scriptive names. This adds some noise, but should help in following the train
of thought on your own. If a proof is given, the purpose is to clarify con-
cepts, and all details are explained. Proofs are always optional in this book,
but readers are encouraged to work at them, since proofs are one of the
ways in which we internalize mathematical ideas. Internalizing ideas means
making them part of our thinking, rather than leaving them as recipes from
an outside source. Solving problems, working through examples, and think-
ing about the physical meaning of concepts are other ways of internalizing
mathematics.

When reading this book on a computer (which is the intended way) you
can use links to hop back and forth between exercises and solutions, as well
as to follow references to equations and theorems. There is a large table
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of contents and a large index with links to topics and definitions. (Most
pdf viewers can return from following a link, coming back to the previous
spot. This saves time. There may be a button to return, or a keystroke like
“ctrl-left-arrow” or “alt-left-arrow”.)

The order of the chapters is fairly logical, but a different order might be
just as natural. Later chapters assume knowledge of calculus. Depending on
your interests, some chapters can be omitted, or read quickly.

Learning mathematics always requires some “intense solitary thought”,
but it is also a human activity. If you have an opportunity to discuss your
work and share ideas with others, try to do that. There are many good
textbooks on probability theory, and dipping into another book can be very
stimulating, especially if you find a different approach to a topic.

It is just possible that there are a few misprints. Corrections and sugges-
tions will be gratefully received at probabilitybook@gmail.com. I particularly
wish to thank Larry Susanka, who contributed many insightful comments on
probability.

This book is dedicated to all the participants in my probability classes.
Thanks for listening!

John Baxter

September 2023
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Chapter 1

Probability and Events

In this chapter we try to explain the real-world background for probability.
The discussion does not make much use of mathematics, and can be read
quite rapidly. After working through later chapters, readers may find it
worthwhile to look over this introduction again, and compare it with the
precise statements of mathematical probability.

1.1 Common sense probability

Events in the real world are often unpredictable, and happen without clear
causes. Such events are said to be random. To deal with randomness we
all use “common sense probability”, and we do so with little or no use of
mathematics. For example, no one needs to study probability theory to
decide whether it is safe to cross the road. But the concepts in probability
are of interest, and mathematical probability theory is used widely in science
and industry. In this book we are studying mathematical probability theory.
We will build upon our understanding of common sense probability.

Can we give a simple definition of the concept of probability? A simple
definition of a concept would be one that is expressed in terms of other
concepts. But some concepts seem to be so basic that they cannot be given
this sort of definition. For example: we all have some understanding of the
geometrical concept of three-dimensional space, but if someone asked you to
give a simple definition of space, what would you say? We seem to build
up our intellectual understanding of space gradually, not through a simple
definition, but through the use of this concept as we experience the world
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Chapter 1. Probability and Events

around us.

Is probability like that, or not? Certainly probability is a very different
property from space or time. But let’s try an experiment.

Box 1 Box 2

Figure 1.1: Box 1 and Box 2

Example 1.1 (The two boxes). Imagine that someone presents you with
a choice of two boxes, Box 1 and Box 2. You cannot see inside either box,
but you are allowed to choose one of the two boxes, and then reach into that
box and take out one object. You must select an object in the box without
looking, so you have no control over which object you obtain from the box.

You know that Box 1 contains six objects. One is a valuable diamond,
and the other five objects are merely stones from the road. And you also
know that Box 2 contains six objects. Five of these objects are valuable
diamonds, and the remaining one is a stone without value. See Figure 1.1.

Remember, you must choose either Box 1 or Box 2 before you make your
selection from the box. After you make your selection, you will be holding
one object in your hand, either a valuable diamond or a worthless stone.
Assuming that you wish to get rich, which box should you choose?

The unanimous answer is surely “Box 2”. That is an example of common
sense probability. But now comes the challenge: explain why you would
choose Box 2, without using the word “probability”, and without using any
synonym, such as “chance” or “odds” or “likelihood”.
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An answer to this challenge might help in formulating a definition of
probability. However, in Example 1.1 we didn’t state exactly what constitutes
an explanation, so someone might respond by simply saying “Box 2 gives
you more ways to win”. Such an answer certainly identifies a difference, but
doesn’t explain why this difference matters. So one could debate whether
this is a sufficient explanation. But it doesn’t give us a definition.

At any rate, as far as your author knows, no one has ever given a simple
definition of probability. And that’s ok! In this book we will build up our
understanding of probability through examples and mathematical properties,
drawing on our experience with probability in the real world.

Exercise 1.1. Consider a more complicated version of Example 1.1. Keep
Box 2 the same, but change Box 1 to have 10 diamonds and 90 stones. In
that case Box 1 certainly gives you “more ways to win”. Is Box 2 still a
better choice?

[Solution]

1.2 Probability as belief?

One can regard probability as a way of measuring what might be called
“degree of belief”. To a possible future event, we assign a number between 0
and 1, called the probability, which expresses our confidence that the event
will happen.

Probability 1 for any event means we are certain the event will happen,
probability 0 means we think it is impossible. Probability values which are
between 0 and 1 mean we are not sure.

Our common sense probability judgments are based on knowledge. Your
knowledge might be different from mine, and as a result we might assign
very different likelihood to the same possible event. So it is natural to try to
describe probability as a belief inside your head, i.e. something subjective.
Is this a sensible definition?

Defining probability as “degree of belief” turns out to be an elegant way
to think about the formulas of probability theory. And it is not wrong, just
insufficient. We must still try to connect those probabilities inside our heads
with the external world, and explain the brutal fact that correct assessments
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of probability tend to keep you alive, and incorrect assessments of probability
tend to kill you. A practical connection between probability and the real
world will be stated as Probability Fact 1.1, after some discussion of concepts.

1.3 Experiments

We will use the phrase “experimental situation” as a convenient general term
to describe a situation in which you know the setting but may have incom-
plete information. For brevity we might also just say “experiment” to de-
scribe this situation.

For example, perhaps someone will take an action, or has taken an action,
and the result of this action is unknown to you, although you may learn the
result later. We are calling the situation and the action an experimental
situation, even though it need not arise from something you do in a scientific
laboratory. It might just be tossing a coin, and indeed a coin toss is one of
our standard examples.

The result of the experiment will often be called the outcome.

A real experiment takes place at a definite place and time, is carried out
by particular people, and so on. Most of those details are irrelevant when
calculating a probability.

When we talk about the outcome of the experiment, we usually only mean
the features which are essential for our purposes. So for a coin toss we tersely
say that the outcome is either a head or a tail.

1.4 Repeated coin tosses

Think more about tossing a coin.

We are not surprised that the result of tossing a coin is unpredictable. It
seems that small changes, even ones that are too small to notice, can have
an effect on the result of the toss. The coin is usually spinning in the air,
and if it spins just a little faster, or we toss it just a little higher, that can
change the result. Even if we try to toss the coin the same way each time,
for most people there seems to be some kind of “shakiness” in the motions
of their arms and hands. Perhaps that leads to unpredictability.

Suppose someone asserts, in everyday language, that a particular coin
has probability .55 of coming up heads when tossed. This number .55 does
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1.4. Repeated coin tosses

not help very much in predicting what will happen the next time we toss the
coin! What is such a probability value good for?

It is perhaps surprising that probability does tell us something useful
in this situation, provided that we are willing to toss the coin many times.
Given that the probability of a head is .55, we expect that if we toss the
coin 10000 times, it is likely that approximately 5500 of the results will be
heads, although it is unlikely that exactly 5500 heads will be obtained. Please
note that there are two vague words in the previous sentence: “likely” and
“approximately”. And yet, despite the vagueness, this is a key insight about
the world.

The concept of the frequency gives us a convenient way to express what
probability tells us. Here’s the definition of frequency. We’ll state it for the
coin-tossing situation, but it applies to any experimental situation.

Definition 1.2 (Frequencies). When the coin is tossed N times, and heads
occur on M of the tosses, we say that the frequency f of heads is given by

f =
M

N
. (1.1)

Thus the frequency of heads is the fraction of times that a head is obtained.

Our interpretation of the probability .55 is: if we toss the coin many
times, we are confident that the frequency of heads will be approximately
.55. This is an example of the “Frequency Interpretation of Probability”.
The general statement is given below in Probability Fact 1.1.

Readers will be familiar with this way of thinking about probability. We
expect that a baseball player with a high batting average is more likely to
get a hit than someone with a low average, and so on.

But perhaps we should try to be surprised, just for a moment! Suppose
we toss a coin 10, 000 times, and get 5439 heads. If we toss the coin another
10, 000 times, we certainly don’t know what will happen on any particular
toss. And yet, even if no one told us the probability of a head with this coin,
we feel confident that the total number of heads the next time will not be
too different from what was obtained the first time! So in this limited sense
we can predict the future, and that is still enormously helpful.

Try to imagine a world in which the frequency in one series of tosses
told us nothing about the frequency in the next series of tosses. That world
would be far more chaotic than the one we live in. Planning and decision-
making might be so difficult that we could not survive. And the concept of
probability would not exist.
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1.5 Selecting from the box

Return to the experiment described in Example 1.1. Imagine that you are
able to repeat this experiment many times.

Suppose that on each repetition you choose Box 2, and then remove one
object from Box 2, which must be either a diamond or a stone. What do you
think will happen?

Each repetition of this experiment is supposed to be a fresh start, with
no connection to the results of the previous repetitions. Box 2 contains five
diamonds and one stone, each time. We can picture the box as being shaken
vigorously each time before the object is selected, so we have no idea of the
positions of objects inside. And we should assume that the diamonds and
the stone are indistinguishable by touch, so we have no control at all over
which object is selected.

In a long series of repetitions of this experiment, very likely you will
obtain a diamond from the box in approximately 5/6 of the repetitions.

Of course, if Box 1 were chosen for each repetition of the experiment,
we would expect that approximately 1/6 of the time a diamond would be
obtained. If we define “success” to mean that a diamond is obtained, we
can say that Box 2 is a better choice than Box 1 because it gives a larger
frequency of success.

To express our thoughts more concisely, we can use probability language
instead of frequency language.

Thus we would say that when selecting an object from Box 2, the probabil-
ity of success is 5/6, and when selecting an object from Box 1, the probability
of success is only 1/6.

In conversations about practical situations, most people people seem well
aware of the connection between probability and frequency. In theoretical
discussions this connection is often called the “frequency interpretation of
probability”.

1.6 The frequency interpretation

We will be talking about an interpretation for the probability of an event.
The word “event” is used in ordinary speech, but let’s define a slightly more
precise usage here.
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1.6. The frequency interpretation

Definition 1.3 (Events). We will use the term “event” to describe the
occurrence or non-occurrence of a property of the outcome of an experiment.
We often denote such an event by a letter, so for example we might speak of
the event A.

Remember that the concept of probability has not been given a precise
definition, although we’ve talked about common sense probability, and we’ve
talked about probability as a degree of belief. In a particular situation, one
may estimate the probability of an event by means of careful observation,
or, less precisely, from general experience. Once we have decided on the
probability of an event, the general laws of probability will then determine the
probabilities of other events. We don’t have a neat definition of probability,
but thinking about frequencies will help us to use probability correctly.

Here’s a convenient standard notation: for any event A, let us write P(A)
to denote the probability that we assign to an event A.

If the event is defined for a particular experiment, imagine carrying out
the experiment repeatedly, for a total of N repetitions. Sometimes each
experiment in the sequence of repetitions is called a “trial”. The repeated
experiments are distinct actions, but are supposed to take place in similar
settings.

What does it mean to say that settings are “similar”? Settings which look
similar may have subtle differences that influence the outcomes which we
observe. This means that we must think hard when applying probability to
real-world settings, and use our practical experience as well as mathematical
theory. But we won’t worry about that right now.

In Section 1.4 we talked about the frequency with which a head is obtained
in coin-tossing. In the general, the frequency with which an event occurs is
defined in the same way: it is the fraction of the trials for which the event
actually occurs.

Any physically meaningful probability value must be consistent with the
following.

Probability Fact 1.1 (The frequency interpretation of probability).
For an event A, the observed frequency of occurrence of A, in any sufficiently
long sequence of repetitions of similar experimental situations, will likely be
close to P(A).
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Chapter 1. Probability and Events

In applications, we can use the frequency interpretation to find a proba-
bility that we don’t know, and to predict a frequency from a probability that
we do know.

If the frequency of an event in repeated experiments does not match the
probability that we have assigned to the event, that indicates an error.

Remark 1.4 (Do we have a definition of probability here?). The
answer to this question depends on your standards for definitions. However,
it must be noted that the frequency interpretation of probability cannot
provide a precise definition of probability. Since the word “likely” is used,
a definition based on the frequency interpretation would be circular, since
you would have to already know at least something about the meaning of
probability, in order to understand its definition! Furthermore, the statement
is vague. Look at those weasel-words “sufficiently long” and “close”, in the
statement. If you want the observed frequency to be, say, within 1% of the
probability, how long is “sufficiently long”?

And yet, despite its theoretical deficiencies, the frequency interpretation
is the most important practical statement we can make about the connec-
tion between mathematical probability statements and physical probability
statements. Whatever assumptions we make later about mathematical prob-
abilities must be consistent with the frequency interpretation.

As in our discussion of choices from Box 1 and Box 2, in general we can
use probability language as a convenient way to express frequencies of events.
In some practical situations frequency language may seem more informative,
and either formulation is correct.

Example 1.5 (Events that are certain and events that are impos-
sible). For some experiment, let A be an event which is certain to occur,
and let C be an event which is impossible. Then we say that P(A) = 1, and
P(C) = 0. Are these definitions forced on us by the frequency interpretation?

The frequency interpretation says that if we repeat the experiment many
times, the measured frequency of A is likely to be close to P(A).

Consider N repetitions of the experiment. Since A is certain, it will occur
N times, giving an experimental frequency of N/N = 1. The frequency
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interpretation says that this experimental frequency is likely to be close to
P(A) when N is large. If P(A) were different from 1, say P(A) = .8, it
wouldn’t be likely at all that the experimental frequency was close to P(A).
So yes, the value of P(A) in this case must be equal to 1.

In the same way, the frequency interpretation requires that P(C) = 0.

1.7 Adding up probabilities

Suppose you are working in a big office in Chicago, it’s 2:30 pm, and the
phone rings.

You know that the phones where you work only receive calls from the
branch offices. There are branch offices in exactly five cities: New York City,
Baltimore, Miami, San Francisco and Los Angeles.

Like most people, you are familiar with the concept of probability as it
is used in practical situations. Based on the experience of people working in
your office, it is believed that at this time of day, the probability that the
call is from New York is .20, the probability that the call is from Baltimore
is .17, the probability that the call is from Miami is .20, the probability that
the call is from San Francisco is .18, and the probability that the call is from
Los Angeles is .25.

Suppose you would like to know the probability that this particular call
is from the east coast. Is that an easy number to find?

It is easy. We simply add up the probabilities of calls from the cities on
the east coast: New York, Baltimore and Miami. So:

probability call is from the east coast = .20 + .17 + .20 = .57 (1.2)

But why do we add the probabilities for the separate cities? Can we justify
this calculation?

If we think of probabilities simply as degrees of belief, it’s not clear why
adding is ok. Feelings are not numbers. So let’s think about frequencies
instead.

Think of each incoming call as an experiment. Suppose that, typically,
your phones get a total of 100 calls per day, during the time period from 2:00
pm to 3:00 pm. The probabilities stated earlier suggest that you will likely
get around 20 calls from New York, 17 calls from Baltimore, and 20 calls
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from Miami. So you will get approximately 57 calls from the east coast, out
of a total of 100 calls.

Since the frequency of east coast calls is 57/100, the probability of a call
being from the east coast should be around .57, and that is what you get by
adding the probabilities.

What do you think of this argument? It is a bit careless, because the
frequency interpretation applies to a large number of repetitions of the ex-
periment, and 100 calls is not a large number of repetitions. But the idea is
sound. To argue more carefully, think about a longer period, as long as you
like, say 30 days. Then the total number of calls to the office during that
time of day will be roughly 30× 100 = 3000. Call that number N . Since N
is large, we feel reasonably confident that approximately N × .20 calls will
come from New York, N × .17 calls will come from Baltimore, and N × .20
calls will come from Miami. Thus approximately N × (.20 + .17 + .20) calls
will come from the east coast. And so:

frequency of calls from the east coast =
N × (.20 + .17 + .20)

N
= .20+.17+.20.

By the frequency interpretation, the sum .20 + .17 + .20 is the correct prob-
ability.

The same argument could be carried out in general, of course! So we
have an important general rule, stated next. We will state this rule rather
formally. It has to be stated that way, because it is a general rule, which is
supposed to apply to many different situations. And we need to be careful
in what we say, because we want our theoretical arguments to be reliable.
Thinking theoretically is a lot less work that carrying out experiments, but
it has to be right!

Probability Fact 1.2 (Probabilities are additive over cases). LetD1, . . . , Dk

be events for a some experiment.
Suppose that events D1, . . . , Dk are mutually exclusive, meaning that

at most one of the events Di can occur. Let A be the event that one of
D1, . . . , Dk occurs. This means that if any of the events D1, . . . , Dk occurs,
by definition A occurs. Then:

P(A) = P (D1) + . . .+P (Dk) . (1.3)
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In the situation with the office phone call, we could let D1 denote the
event that that call came from New York, D2 denote the event that the
call came from Baltimore, and D3 denote the event that the call came from
Miami. A would be the event that the call came from the east coast. Then
equation (1.3) and equation (1.2) say the same thing.

An important special case of Probability Fact 1.2 is the situation in which
D1, . . . , Dk cover all possibilities, meaning that one of these events always
occurs. In that case we have:

P (D1) + . . .+P (Dk) = 1. (1.4)

Why does equation (1.4) follow from equation (1.3)? Well, since D1, . . . , Dk

cover all possibilities, A always happens! (It’s a really boring event.) Just
as in Example 1.5 we then conclude immediately that P(A) = 1, so equa-
tion (1.3) turns into equation (1.4).

1.8 Back to the boxes!

Return again to the problem of choosing from one of two boxes (Example 1.1).
In Section 1.5 we stated that the frequency of success using Box 2 was 5/6.
We didn’t really justify this statement, although it certainly seemed plausible.
Let’s give a more careful analysis now, to practice using Probability Fact 1.2.

Think about the six objects in Box 2. Our practical experience tells us
that each of these objects would be chosen approximately one-sixth of the
time. Since five of these objects are diamonds, the combined frequency of
obtaining a diamond is 5/6. In probability language, we would say that
each object has probability one-sixth of being chosen, and then say that by
Probability Fact 1.2,

the probability that a diamond is chosen =
1

6
+

1

6
+

1

6
+

1

6
+

1

6
=

5

6
.

That’s more or less the whole story. But we might say a bit more.
Why do we think that each object in the box has probability one-sixth to

be chosen? There are six objects, and we think that each one has the same
chance of being chosen, don’t we? That’s true, but we should realize that we
are building in our real-world experience when we assert that.

It is related to the comment made at the end of in Section 1.4. We said
that if we toss a coin many times, and then perform a second sequence of
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tosses with the same coin, we expect that the frequency of heads in the second
series of tosses will be roughly consistent with the frequency of heads in the
first series.

Now we are considering a situation involving the six different objects in
Box 2, rather than a single coin. However, the six objects are the same in any
way which affects the results of the experiment. For that reason, we expect
that in a long series of trials, each object will be selected with roughly the
same frequency. In the language of probability, we think that each of the six
objects has the same probability of being selected. If this assumption turns
out to be false, we will conclude that we did not understand the experiment.

If we accept that each of the six objects has the same probability of being
chosen, call this probability p. By equation (1.4),

p+ p+ p+ p+ p+ p = 1,

so yep, p = 1/6.

1.9 Some simple examples

Example 1.6 (One coin toss). For a coin toss there seem to be only two
interesting events, the event H that the result is a head, and the event T
that the result is a tail.

A coin is said to be fair if the probability of obtaining a head is equal to
the probability of obtaining a tail. Gamblers are typically expected to use
fair coins in their games.

A real coin may be fair or unfair. For any coin,

P(H) +P(T ) = 1. (1.5)

Exercise 1.2. How is equation (1.5) related to Probability Fact 1.2?
[Solution]

Example 1.7 (Rolling Dice). Instead of thinking about tossing a coin,
let’s consider rolling a die. Most people have played games in which a die is
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rolled, or perhaps two dice are rolled. The die is a cube, so it has six faces.
Rolling the die a single time is an experiment with six possible outcomes.
The outcome of the experiment is the number of dots on the uppermost face
of the die when it settles. The possible outcomes are 1, 2, 3, 4, 5, 6.

A die is said to be fair if all the outcomes 1, 2, 3, 4, 5, 6 have the same
probability.

One possible event when rolling a die is the event that the outcome is 5.
We might call this event A. The event A only occurs when the outcome is 5.

Another possible event is the event that the outcome is an odd number.
We might call this event B. B is described by a property that three of the
possible outcomes have. If the die gives a 1, a 3, or a 5, we say that the event
B occurred.

Exercise 1.3. When rolling a fair die many times, what fraction of the rolls
(approximately) will result in an odd number?

[Solution]

Remark 1.8 (Comparing experiments). Rolling a fair die is physically
different from the experiment of selecting an object from a box containing
six possible choices, as described in Section 1.5. However, in both cases there
are six basic events, everything can be described in terms of those events,
and the probabilities of the basic events are equal to 1/6 in both cases. Thus
one can translate any problem dealing with one of these experiments into
a similar problem dealing with the other, and the corresponding numerical
answers must agree.

This observation applies to the fair case. Unfair dice certainly exist,
perhaps due to variations in the density of the material. On the other hand,
there isn’t an obvious way to modify the experiment in Section 1.5, in order
to have different probabilities for the six basic events.

Exercise 1.4 (Lottery tickets). This book does not advocate buying lot-
tery tickets. But we can think about them without making a purchase. Sup-
pose that a company offers n lottery tickets for sale, where n may be a large
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integer. Exactly one of these tickets is the winning ticket, and the purchaser
will receive a large sum of money. The remaining tickets are worthless, and
of course we don’t know which ticket is the winner. You have purchased one
ticket. Let W be the event that your ticket turns out to be the winner.

(i) Let P(W ) be the probability of W . Find P(W ).

Note that the experiment of Section 1.5, using Box 1, essentially solves
this problem for n = 6.

Common sense probability likely gives you the answer as well.

(ii) A certain wealthy gambler buys k lottery tickets, where k may be any
number less than or equal to n Let G be the event that the gambler
wins the lottery with one of purchased tickets. Find P(G).

[Solution]

Remark 1.9. Let W and G be the events described in the lottery of Exer-
cise 1.4. Suppose that n is equal to 106. Is P(W ) a physically meaningful
probability value? Think about deciding whether the price of the ticket is
reasonable. P(W ) is certainly relevant to that decision.

We found P(W ) theoretically, using Probability Fact 1.1. Suppose that
you wish to use the frequency interpretation to test the validity of the value
calculated for P(W ). In principle this can be done. However, the whole lot-
tery is part of the experiment, and a ridiculously large number of repetitions
of the lottery would be required to accurately measure the frequency with
which W occurs.

On the other hand, when k is comparable in size to n, the value of P(G)
could be tested experimentally with fewer repetitions. This is indirectly a
test of P(W ).

Example 1.10 (Sampling from a population). One can think about
making a random selection from a population as an experiment. Pollsters do
this all the time, of course.

It’s easier to think about a population of jelly beans than about a popula-
tion of people, so suppose you have a large bowl containing many jelly beans,
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some yellow and some red. In this experiment we assume that there are n
jelly beans altogether, k yellow ones and n− k red ones. In the experiment,
you randomly select exactly one bean, and record its color.

Specifying the experiment includes specifying the actual number of beans
of each color that are in the bowl.

We prepare for the experiment by stirring the jelly beans vigorously, so
that the beans in the bowl are thoroughly mixed. That is not the experiment,
just part of the setup.

Let C be the event that the selected bean is yellow. We would like to
know P(C), that is the probability that the selected bean is yellow.

Calculations in the setting of this experiment will be similar to calcula-
tions for the lottery described in Exercise 1.4. This seems especially clear
if we think of the number of the winning lottery ticket as being randomly
chosen after the tickets have been sold. The event that your own ticket is
the winner corresponds to the event that a particular jelly bean is selected.
The set of tickets bought by the wealthy gambler in part (ii) of Exercise 1.4
would correspond to the set of yellow jelly beans in the bowl.

1.10 Probability distributions

One usually wants to know the probabilities for the possible outcomes of
an experiment, and perhaps for some of the possible events. Here’s some
standard terminology.

Definition 1.11 (Probability distributions). A rule which assigns prob-
abilities for some family of related events is called a probability distribution
for the events. The probability which the rule prescribes for an event A is
usually denoted by P(A).

A simple example of a probability distribution is a rule which gives the
probability of each possible outcome of an experiment. We might find such
a distribution experimentally, as in the next section.

The use of the word “distribution” in Definition 1.11 may reflect the fact
that the probability values for all the outcomes must add up to one. In that
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respect, assigning probabilities to various possible events is a bit like splitting
up a unit quantity of material and distributing it to various locations.

The phrase “family of related events” in Definition 1.11 is not precise. It
might refer to all events, or to some limited collection of events which are
of interest at the moment. We will see examples of distributions in specific
settings later.

1.11 Collecting statistics

It’s more fun to talk about frequencies than to actually perform experiments
and measure them. But perhaps we should take a moment to look at some
examples.

Statistical data

We will refer to experimental data which is systematically recorded and tab-
ulated as statistical data (and see [8] for a discussion of correct grammatical
usage of the word “data”!).

General features of such data are referred to as statistical properties. If
our data is the result of a sequence of repeated experiments, one statistical
property is the frequency of a particular event. Of course one can calculate
many other statistical properties in this setting, such as the frequency of
obtaining the same outcome twice in a row, or the degree of variation in the
data, etc. But at present we will just focus on the frequency.

Collecting data to learn probabilities

In the case of the experiment of rolling a die, a probability distribution gives
the probability of each possible result. For a fair die, the probabilities for the
values 1, 2, 3, 4, 5, 6 are 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, respectively, but of course
a die may be unfair.

Suppose we have a die, but we don’t know the probability distribution
associated with this die. In this situation, one might roll the die repeatedly
and use the frequency interpretation to get an idea about the distribution.

Imagine rolling the die 20 times, recording the results. (To save time, we
can use a computer to simulate rolling the die. This means that a computer
program produces numbers that have similar statistical properties to the
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1.11. Collecting statistics

results of performing the actual repeated experiments. It’s not obvious that
this can be made to work, but it does work, pretty well.)

For a particular sequence of 20 trials, the outcomes happen to be

2, 5, 5, 5, 6, 2, 2, 4, 2, 1, 1, 1, 2, 4, 3, 2, 4, 4, 2, 6

You can check that the counts for the outcomes 1, 2, 3, 4, 5, 6, are 3, 7, 1, 4, 3, 2.
Thus the frequencies for outcomes 1, 2, 3, 4, 5, 6, are 0.15, 0.35, 0.05, 0.2, 0.15, 0.1,
respectively. See Figure 1.2a.

These numbers are not probabilities, of course. They are just numbers
that tell us something about the recorded outcomes for a particular experi-
ment. But if we think about making additional rolls of the same die, we can
hope that these numbers give us some idea of the probability of each possible
outcome.

That hope is based on the frequency interpretation of probability, which
says that the probability of obtaining a particular value on one roll of the die
should be similar to the observed frequency for that value, when we have a
long sequence of repeated trials.

However, a sequence of 20 trials does not seem long, especially when
there are six possible outcomes. So it seems rash to draw a conclusion about
probabilities based on these frequencies.

Longer sequences of trials

Let’s try to get a more accurate estimate for the probability of each possible
result. If we roll the die 100 times, recording the results, the frequencies for
1, 2, 3, 4, 5, 6 are 0.11, 0.33, 0.11, 0.19, 0.07, 0.19, respectively. See Figure 1.2b.

Even 100 repetitions is not very many. So let’s do more repetitions.
If we roll the die 1000 times, recording the results, the frequencies for

1, 2, 3, 4, 5, 6 are 0.099, 0.308, 0.099, 0.187, 0.109, 0.198. See Figure 1.2c.
This is fairly consistent with the results for 100 trials, but of course is

likely to be more reliable.
Let pi be the probability of obtaining the value i when rolling this par-

ticular die. If we have to start playing a gambling game using this particular
die, as a practical choice we might as well assume that

p1 = 0.099, p2 = 0.308, p3 = 0.099, p4 = 0.187, p5 = 0.109, p6 = 0.198.

If you happen to know that this example was made up by a person who
likes simple numbers, then you may suspect that the actual probabilities for
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outcomes 1, 2, 3, 4, 5, 6 are .1, .3, .1, .2, .1, .2, respectively. However, in real
world situations we should not expect such convenient values for the proba-
bilities.

Let’s do a sequence of 10000 trials, to check for consistency. This time we
find that the frequencies for 1, 2, 3, 4, 5, 6 are 0.0989, 0.2984, 0.09870, 0.20070, 0.1053, 0.198,
respectively. (See Figure 1.2d.)

Now we feel reasonably confident that we have a good approximation for
the probability distribution for this die.

Remark 1.12 (Messy data!). By now you will have noticed that when ran-
domness is involved, recorded observations seem rather messy. If we display
all the data in a plot, we are unlikely to obtain obtain a nice neat picture.
This is in contrast to, for example, the beautiful curves we get when plot-
ting solutions of differential equations. We can deal with randomness but we
cannot eliminate it.

With this in mind, it is striking that elegant patterns of behavior do
emerge in data associated with large random systems. The Central Limit
Theorem of probability shows this for a long series of coin tosses ([10] and
Chapter 18). It is also one of the key insights of statistical physics.

The data for die rolls was obtained by simulation using a computer. We
won’t take time to discuss how a computer actually carries out such simula-
tions. The next exercise asks you to consider a different kind of simulation.

Exercise 1.5 (Simple simulations). Suppose you are thinking about some
experiment with three possible outcomes, each of which is supposed to have
probability 1/3. For convenience, let’s give the three outcomes labels: a, b, c.

The physical apparatus for this experiment is complicated and expensive,
so you won’t actually perform the experiment today. But you would like to
play with some statistical data corresponding to these probabilities. You can
try to simulate this experiment using different equipment. That is, instead of
actually doing the experiment, you will do some other experiment (perhaps
something that is easier to perform repeatedly), which will produce the same
values, with the same statistical properties as the real experiment.

What matters is that your simulation is supposed to produce one of the
labels a, b, c, with equal probability for each label. You may not have the
equipment you need, though. Here are some cases to consider.
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(i) Suppose you have in your possession a fair die. How can you perform
the simulation?

(ii) Suppose you don’t have the fair die, but you have a fair coin and an
unfair coin, and the unfair coin is known to produce a head with prob-
ability 1/3. How can you perform the simulation?

[Solution]

1.12 Brownian motion

Our examples have been rather simple, although the principles they illus-
trate also apply to very complex situations. Randomness seems to exist
everywhere, and is almost unavoidable.

When discussing coin-tossing in Section 1.4, we suggested that most peo-
ple seem to have some kind of “shakiness” in their arms and hands, which
causes the result of the coin toss to be unpredictable. One might try to ex-
press this in a more general way by saying that the small motions of their
arms are unpredictable, and this unpredictability then leads to unpredictable
results for coin tosses. But then one can ask, “why are the small arm motions
unpredictable?”. This type of questioning can be continued. It seems to lead
us consider more and more detailed pictures of physical processes, at smaller
and smaller scales. Randomness and unpredictability apparently exist at all
known levels of description.

This book has no ultimate explanation for randomness. However, to
illustrate randomness on a small scale, and how its effects can spread, let’s
briefly consider a famous example: Brownian motion.

It’s 1827, and biologist Robert Brown is peering into his microscope ([4],
[6]). He sees little particles moving around in fluid, in a very irregular man-
ner. The original particles come from pollen grains, but as he continues
his observations he finds that all little particles in fluid seem to move in a
rather similar way. They constantly change direction and do not seem to get
“tired”. He finds that even water that has been trapped inside rocks can
contain moving particles, and they must have kept moving during millions
of years. Apparently the statistical properties of this particle motion do not
change.
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What Brown saw is related to heat. Nowadays we interpret heat as dis-
orderly motion of atoms and molecules. So let’s think about disorder. You
can create disorder, for example by dropping something, so that the energy
of its fall is transformed into heat when it hits the ground. You can move
disorder around, for example when a hot object is placed in contact with
a cold object. But it is very difficult to make a large disorderly collection
become more orderly.

The universe seems to be full of disorder, especially at small scales. The
particles that Brown observed were large compared to molecules. That’s why
he could see them. But physicists think that the motion of Brown’s particles
is caused by collisions with molecules of the fluid which contains the particles.

These “invisible” molecules in the fluid are moving in a disorderly way.
We can’t predict the details of the movement of the molecules, and we think
of their movement as random behavior.

It’s interesting to consider how the fluid molecules interact with a particle
that Brown observes. Any such particle will receive many impacts per second
on all sides, from the tiny molecules. At normal temperatures the particle is
going to be hit a lot.

The effect of the collisions on the particle is roughly the same in all
directions, because of the disorderly motion of the molecules. However, the
number of impacts on each side naturally fluctuates, so that briefly one side
of the particle receives more collisions than the other.

We shouldn’t be surprised that there are fluctuations. Fluctuations are
part of random behavior. If you think of tossing a fair coin many times, there
will inevitably be periods when more heads than tails occur, just by chance.
It all evens out in the long run, of course.

But random fluctuations are what cause the particle movement that
Brown observed. When more molecules hit a particle on one side than the
other, it will move. Since the resulting particle motion is large enough to be
observable in a microscope, those tiny invisible molecules must have a lot of
energy.

By our standards molecules move rather violently! If the molecules of
your body somehow became orderly, and all moved in a single direction,
your body would hurtle away at a speed of hundreds of meters per second.

Brownian motion provides us with a vivid picture of disorder. It also
gives us an example of how random behavior on a small scale is pervasive,
and can lead to random behavior on a larger scale.
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1.13 Solutions for Chapter 1

Solution (Exercise 1.1). Yep!
You knew, that didn’t you? The success frequency using the new version

of Box 1 will even worse than before (1/10 rather than 1/6).

Solution (Exercise 1.2). Either a head or a tail must be obtained. Hence
events H,T cover all possibilities. These events are mutually exclusive, since
the coin cannot come up both heads and tails!

By equation 1.4, with D1 = H and D2 = T , P(T ) +P(H) = 1.
This is equation (1.5).

Solution (Exercise 1.3). Let Di be the event that outcome i occurs, for
i = 1, . . . , 6. By equation (1.4),

P(D1) + . . .+P(D6) = 1.

For a fair die, P(D1) = P(D2) = . . . = P(D6), and so we have

6P(D1) = 1.

Thus P(D1) = 1/6, and so P(Di) = 1/6 for each i = 1, . . . , 6. (Yup, we used
the same argument in Section 1.8.)

Let B be the event that an odd number is obtained. Clearly

B = D1 ∪D3 ∪D5.

By equation (1.3),

P(B) = P(D1) +P(D3) +P(D5) =
3

6
=

1

2
.

Using the Frequency Interpretation, we expect that in a large number of rolls,
approximately 1/2 of the rolls will result in an odd number.

Solution (Exercise 1.4). Suppose that each ticket has an identification
number.

Let Dj be the event that ticket j is the winning ticket.
The events Dj, j = 1, . . . , n are clearly mutually exclusive and cover all

possibilities.
As far as we know, no ticket is favored, and we will calculate probabilities

based on that. Since no ticket is favored, P(Di) is the same for every j.
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By equation 1.4, P(D1) + . . .+P(Dn) = 1.
Hence

P(Dj) =
1

n

for every j.

(i) Suppose you purchased ticket t. W is the event that ticket t is the
winning ticket. Thus W = Dt, and so P(W ) = 1/n.

(ii) We can always number the tickets so that tickets 1, . . . , k are the ones
that the wealthy gambler purchases. This is just to make it easier to write
down the argument. Then

G = D1 ∪ . . . ∪Dk,

and so by equation (1.3) we know that

P(G) = P(D1) + . . .+P(Dk) =
k

n
.

Solution (Exercise 1.5).

(i) For each roll of the fair die, report the result as label a if the die gave
a 1 or a 2, report label b if the die gave a 3 or a 4, and report label c if the
die gave a 5 or a 6.

The die will give 1 on approximately 1/6 of the tosses and the die will
give a 2 on approximately 1/6 of the tosses. Hence label a will be reported
approximately 1/3 of the time, which is what is desired. Similarly labels b
and c will each be reported 1/3 of the time.

(ii) Toss the unfair coin. If the coin gives a head, report label a. Otherwise,
continue the simulation by tossing the fair coin. If the fair coin gives a head,
report label b. If the fair coin gives a tail, report label c.

Clearly label a will be reported on approximately 1/3 of the times you
perform the simulation. You will report label b during approximately 1/2 of
the times that you don’t report a. Since 1/2 of 2/3 is 1/3, this is what is
desired. Similarly label c will be reported approximately 1/3 of the times.
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Chapter 2

Assumptions for probability,
and their consequences

In this chapter we lay out the general structure of mathematical probability.
General statements are necessarily abstract, but the abstractions of proba-
bility theory are fairly pleasant.

2.1 Abstract outcomes

Often we want to know whether or not the result of a given experiment has
a certain property that we are interested in. The occurrence of this prop-
erty is what we call an “event”. The complete result of the experiment is
called the “outcome”. There may be many possible outcomes for a given
experiment, some of which have the property we are interested in. Calculat-
ing the probability of an event typically requires us to consider all possible
outcomes. With that in mind, let’s think about representing outcomes in a
mathematical model.

In a calculation, we necessarily restrict our attention to abstract rep-
resentations of outcomes. These mathematical representations of physical
outcomes will also be called “outcomes”, or perhaps “abstract outcomes” if
we want to emphasize that these are objects of thought.

Each abstract outcome is a mathematical object, from which all inessen-
tial properties have been ruthlessly stripped. Thus if a botanist is experi-
menting in breeding roses, a beautiful new plant in the real world might be
represented abstractly by a single letter which indicates its color. In general,
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Chapter 2. Assumptions for probability, and their consequences

the representation must include whatever properties of the outcome that we
are interested in, but need not have more details.

If we base our calculations on the possible outcomes, then the events that
we are interested in must be represented in terms of the outcomes. When a
physical event is defined by a certain property, we will represent the event as
the set of outcomes which have this property.

Is that an adequate way to represent an event? As a set? The next
example tests this approach.

Example 2.1 (Brown hair as a set of outcomes). Consider an exper-
iment in which one person is randomly selected from a population. The
person selected is the physical outcome of the experiment!

Since the outcome is a person, the outcome has a lot of properties. One
of the properties of the outcome is hair color. Let A be the event that the
selected person has brown hair.

Notice we have defined A physically in terms of a property of the outcome.
Now suppose we wish to represent this event in an abstract model.

We can give each person in the population an identification code. An
abstract outcome would be the ID of the randomly selected person. The
abstract version of A would be the set of all IDs of people that have brown
hair.

The question is whether this representation of A is sufficient for our needs.

Suppose that no one told you what property defines A, but instead showed
you the entire set of people who have that property, would you be able to
guess what the property was?

The entire set of people with the property defining A consists of exactly
those members of the population who have brown hair. If you became aware
of that fact, you might guess that hair color was the property that defines
A. On the other hand, it is conceivable that some other property might
occur in exactly the same set of people. So we must admit that knowing
the set of outcomes does not really tell you what physical property is under
consideration.

However, since you know the abstract representation of A as a set of
outcomes, then, if a particular outcome occurs as a result of the experiment,
you can tell whether or not event A occurred : just check whether the outcome
is in the set which represents A. And that sort of information should be
enough for a probability calculation.
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We should keep in mind that mathematical terminology steals words from
ordinary language. If a mathematical term is well chosen, then its meaning
in ordinary language will suggest its mathematical meaning, but one cannot
simply rely on ordinary language to guess the exact mathematical definition.
The word “event” in ordinary language usually suggests that something in-
teresting has happened. In mathematical probability theory an event is just
a set of outcomes.

The following is some standard terminology for situations where we want
to systematically represent all possible outcomes for an experiment.

Definition 2.2 (Sample space models). The set of all possible abstract
outcomes is called the sample space, often denoted by the uppercase Greek
letter Ω (“Omega”). The abstract outcomes are the “points” making up the
sample space, and they are traditionally called “sample points”. A sample
point is often denoted by the lowercase Greek letter ω (“omega”).

The sample space is said to be a “model” for an experiment when its
sample points can be interpreted as the possible outcomes of that experiment.

Certain subsets of the sample space will be referred to as “events”, al-
though of course they are mathematical objects rather than physical events.
When we use the sample space as a model for an experiment, these subsets
provide mathematical representations for actual physical events.

Any one-point set {ω} is an event in the model. It represents the event
that the result of the experiment is the outcome represented by ω.

Since ω represents a possible result of an experiment, it would not be
unreasonable to also say that ω itself is an event. However, since we are rep-
resenting general events as sets of sample points, probably it’s less confusing
to stick to that, and use {ω} rather than ω when we are talking about events.

It should be emphasized that a sample space is a mental concept. It
represents something about the real world, but only indirectly. Even a very
large sample space has no weight!

For a sample space which consists of a finite number of outcomes, every
nonempty subset of the sample space can be interpreted as representing a
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physical event, although not necessarily an interesting one. In more compli-
cated sample spaces, we don’t try to give an interpretation for every possible
subset, so not every subset is called an event.

We will find later that the general properties of probability are often
sufficient to solve a problem efficiently without committing our thoughts to
any explicit choice of a sample space. On the other hand, if we cannot think of
any sample space at all to represent the outcomes of a proposed experiment,
it might be a good idea to investigate whether the experiment makes sense.

Here are some standard examples of experiments and corresponding sam-
ple spaces.

Example 2.3 (Tossing a coin once). The points of the sample space Ω
should represent exactly two physical outcomes, the occurrence of a head, and
the occurrence of a tail. So we can take Ω = {1, 0}, a set with only two points.
Here the point 1 represents the outcome in which a head is obtained, and
the point 0 represents obtaining a tail. There are four events in the sample
space Ω: {1, 0} , {1} , {0} , ∅, where ∅ denotes the empty set, i.e. the set with
no members. The event {1, 0} in the sample space describes a physical event
which always happens. The empty set ∅ contains no sample points. It is a
subset of the sample space, so by definition it is a mathematical event. But
there is no physical outcome which would correspond to this event, so we
will say that it is an impossible event.

Like all sample spaces, the set Ω is a thought in our heads, not something
in the real world. We could use letters rather than numbers to represent
sample points, so that “h” would mean a head was obtained and “t” would
mean a tail. Then we would have Ω = {“h”, “t”}. What matters is the
interpretation. The interpretation associates one sample point with the result
in which the coin toss gives a head, and the other sample point with the result
in which the coin toss gives a tail.

For brevity, sometimes we’ll refer to getting a head as “success”, and
getting a tail as “failure”. Of course, the name doesn’t matter, and we could
switch, and call getting a tail “success”, if we felt like it.

Example 2.4 (Rolling a die once). Much as in the case of a coin toss,
we can take Ω = {1, 2, 3, 4, 5, 6}, so that the outcome is simply the number
obtained on the roll of the die.
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There are 64 possible subsets of this sample space, and each subset is an
event in the sample space which represents a physical event. For instance
the event {2, 4, 6} in the sample space represents the physical event that an
even number was obtained.

In general, for any property that you can express about the outcome of
an experiment, there is a corresponding set of points in the same space which
represents the same statement.

Incidentally, we claimed that there are 64 possible events in the sample
space for one roll of a die. Did that number make sense?

In general, it useful to know the following fact.

Lemma 2.5 (Number of subsets). Any set of size k has exactly 2k subsets.
(The empty set is one of the 2k sets.)

Proof. We can build a subset by making a decision for each object in the set:
“include” or “don’t include”. Thus we build a subset by making k decisions,
each of which has two choices. This gives 2× . . .× 2︸ ︷︷ ︸

k factors

ways to build the subset.

We can apply Lemma 2.5 to the sample space for rolling a die. In that
case k = 6, and 2k = 64. Each of the 64 subsets is the mathematical
representation of a possible event.

After considering tossing a coin once, we might consider tossing it n times,
where n can be 1, 2, . . ..

Example 2.6 (Tossing a coin a million times). An outcome in the
sample space for the experiment of tossing a coin one million times must
record the result of each toss! Our choice for a sample point is a sequence
(x1, . . . , x1000000), where each xi is either 1 or 0, and xi tells what happened
on the ith toss. We could use a similar sample space for tossing a coin n
times, for any n.

Tossing a coin one million times would not be practical for an individual,
but it would be perfectly feasible in an industrial setting. Notice however
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that Ω contains 21000000 sample points. (We did say that a sample space is
a mental concept, rather than a real object, didn’t we?) Every subset is an
event in the sample space, and so there are 22

1000000
possible abstract events!

Each of these abstract events has a physical interpretation, though very very
few of the details of such events are significant.

It may seem absurd to consider such a large sample space. Nevertheless,
since we are able to reason precisely in an abstract setting, we are able to
reliably establish useful facts.

Exercise 2.1. Consider the experiment of tossing a coin 400 times, and
recording the result of all 400 tosses. This is not a very complicated experi-
ment, and could easily be carried out by hand by one person.

You can use a sample space for this experiment similar to that in Exam-
ple 2.6. Let N be the number of sample points in this sample space.

According to google, the number 1082 is likely an upper bound for the
number of atoms in the observable universe. How does the number 1082

compare with N?
[Solution]

Example 2.7 (Drawing a card). A standard deck of playing cards consists
of 52 distinct cards. There are four types of cards. The types are called
“suits”, and every card belongs to exactly one suit. Each suit has 13 cards,
and the names of the suits are “spades”, “hearts”, “diamonds” and “clubs”.

If the deck is shuffled a few times, cards become arranged in a fairly ran-
dom order. Drawing the top card from the deck is equivalent to selecting one
member of a population of 52 (with no member of the population favored).
What would be a reasonable model for this sampling experiment?

We could certainly number the cards, in an arbitrary manner. A number
in {1, . . . , 52} is then an abstract representation for a card, and we could build
our model using these abstract “cards”. Let’s agree to call each number in
{1, . . . , 52} an abstract outcome of the experiment of drawing a card.

Suppose that we are interested in the physical event A that a “heart” card
is drawn. Since our abstract model contains an abstract outcome (a number
label) representing each possible outcome, we can represent the event A as
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the set of abstract outcomes that represent “heart” cards. Thus A contains
13 sample points.

We have already discussed experiments involving sampling from a bowl
of jelly beans (Example 1.10), or from the population of a country. The
reader will have no difficulty constructing appropriate sample spaces for these
experiments, when needed.

2.2 Distributions and set-functions

Mathematical probability theory tells us how to reliably calculate new prob-
abilities from given probabilities. Mathematics doesn’t tell us how to get the
probabilities that we start with. To quote the physicist E.T.Jaynes, “ No
matter how profound your mathematics is, if you hope to come out even-
tually with a probability distribution, then at some point you have to put
in a probability distribution” ([5]). The probabilities we start with must
somehow come from the physical description of an experiment.

Probability Assumption 2.1 (Existence of a distribution). When we
work with a model, and represent events as subsets of a sample space, it
is assumed that there is a mathematical probability P(A) for each event,
although we may not know the value of every probability.

This probability P(A) is of course a function of A. Since the domain of
P is made up of sets, one often speaks of P as a probability set-function.

Definition 2.8 (Probability models and probability terminology). A
sample space, together with a given probability set-function, will be called a
probability model.

Any rule which specifies probabilities can be called a distribution (Def-
inition 1.11). So a probability set-function can also be called a probability
distribution, and we frequently use that terminology.

Of course we often start analyzing a problem by thinking directly about
probabilities for physical events connected with a particular experiment.
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There need not be any sample space chosen at that stage, so the proba-
bility values P(A) are associated with the actual physical events A, or rather
with our mental conceptions of them. In this case we would not think of P
as a set-function, but one can still refer to the family of values P(A) as a
distribution.

Let’s pause for a moment to compare what we are doing here with our
discussions in Chapter 1. In that chapter we talked about probability facts,
namely the frequency interpretation and additivity. But in Probability As-
sumption 2.1, we are apparently starting to make assumptions. What hap-
pened? Did we lose the courage of our convictions?

Here’s what’s going on. In Chapter 1 we were talking about physical
probability, for real-world situations. Now we are talking about abstract
models, things which we can reason about mathematically. Our abstract
models are indeed relevant to the real world, but only if we build in the correct
mathematical assumptions. It is those assumptions that we are talking about
here.

Remark 2.9 (Interpreting a model). A “model” in mathematics may
represent an experiment, but Definition 2.8 doesn’t say much by itself about
the physical situation that a probability model represents. The connecting
link between a probability model and the real world is the interpretation of
the model, and the interpretation is not part of the mathematical definition.
But we usually need to have at least a rough interpretation in mind to work
successfully with a model.

In a valid interpretation of a probability model, the value of the probabil-
ity for the abstract event A should be approximately equal to the probability
of the physical event represented by A.

Making sure that a model is valid is ultimately a physical problem rather
than a mathematical one, although mathematics may help us to test the
validity of a model. When we discuss the applications of a mathematical
probability model in this book, we will confidently assume that our model is
a valid one. In the real world such confidence can be misplaced.

In this book we will study the general mathematical properties that prob-
ability models have, and then apply those properties when we use a proba-
bility model to represent an experiment. Some simple examples are given in
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Sections 2.4 and 2.6. In later chapters we will deal with more complicated
models. The same rules apply in all situations.

2.3 Events defined in terms of other events

Events in a mathematical model are represented by sets, and so relationships
are often expressed using set language. Consequently, readers will need to
know the basic terminology for set operations. This material is likely familiar,
but Section 2.8 reviews all the concepts and notations which are needed. It’s
a good idea to look through that section, since notations and terminology
for set operations can vary slightly.

Here are some set concepts and notations which are often used.
For sets A1, . . . , Ak, the union of A1, . . . , Ak is the set consisting of every

element which is a member of at least one of the sets A1, . . . , Ak. This set is
denoted by A1∪ . . .∪An. When A1, . . . , An are events, the union A1∪ . . .∪An

represents the event that at least one of the events A1, . . . , An occurred.
For sets A1, . . . , Ak, the intersection of A1, . . . , Ak is the set consisting

of every element which is a member of all of the sets A1, . . . , Ak. This set
is denoted by A1 ∩ . . . ∩ An. When A1, . . . , An are events, the intersection
A1 ∩ . . . ∩ An represents the event that every one of the events A1, . . . , An

occurred.
We often consider situations in which some events A1, . . . , Ak aremutually

exclusive, meaning that at most one of these events can occur. In that case
no sample point can be a member of more than one of the sets A1, . . . , An,
and we say that these sets are disjoint.

The empty set is denoted by ∅. Note that the definition of disjointness
implies that for any set A, the sets A and ∅ are disjoint.

For any sets A,B, the set difference B−A is the set of all elements which
are members of B but not A. And in situations where all sets are subsets of
some fixed set U , it is convenient to write U−A as Ac. The set Ac is referred
to as the complement of A. If A is defined by some property, notice that Ac

is the set of all elements in U which do not have this property.
We often denote of elements in a finite set S by |S|. If a set if not finite

we say it is infinite, and say that |S| = ∞.
See Section 2.8 for more discussion of sets.

Probability Assumption 2.2 (Set operations and sample space events).
If A1, . . . , Ak are events in a sample space, then so are A1 ∪ . . . ∪ Ak and
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A1 ∩ . . .∩Ak. If A and B are events in the sample space, then so are A−B
and Ac.

To justify this assumption, recall that events in the sample space corre-
spond to meaningful statements about the physical result of an experiment.

If we think that given statements α1, . . . , αk are meaningful, then surely
we must also think that the statement “at least one of the statements α1, . . . , αk holds”
is meaningful, and “all of the statements α1 . . . αk hold” is meaningful.

It is also meaningful to say “α1 is true and α2 is not true”.

Translating such observations into set language gives us Probability As-
sumption 2.2.

Remember Probability Fact 1.2 , which dealt with adding probabilities of
mutually exclusive events. Suppose now that we are given events D1, . . . , Dk

which happen to be disjoint subsets of a sample space. Then there is no
outcome ω which is a member of more than one of these sets. Whatever
properties these events describe must therefore be mutually exclusive. Thus
we can rephrase Probability Fact 1.2 using set notation as follows.

Probability Assumption 2.3 (Additivity of probability). LetD1, . . . , Dk

be disjoint events in some probability model. Then

P (D1 ∪ . . . ∪Dk) = P (D1) + . . .+P (Dk) . (2.1)

Also, probabilities in the model are such that

P(Ω) = 1. (2.2)

If we think think of a probability simply as a number that measures
degree of belief, we could scale all our probability values up or down by a
factor, without changing their usefulness. Since Ω represents an event that
always happens, equation (2.2) tells us that we are using a belief scale for
which certainty is 1. Of course this scale fits the statement of the frequency
interpretation, so it is the natural scale for probability.
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Remark 2.10. If D1, . . . , Dk are disjoint events in some probability model,
and D1 ∪ . . . ∪Dk = Ω, Probability Assumption 2.3 implies that

P (D1) + . . .+P (Dk) = 1. (2.3)

Thus Probability Assumption 2.3 includes the abstract version of equation (1.4).

Remark 2.11 (Set notations without sets!). If A and B represent phys-
ical events, we may still use set notation to describe combinations of these
events, even when we are not representing A and B as sets. For example,
the event that A occurs and B occurs will still be expressed as A ∩B.

This convention can be justified in two ways. First, it is a convenient
brief notation. Second, for any experiment, one could define some sample
space model to represent the experiment. In that case the event that both
A and B occur would indeed be represented by the intersection of two sets
in the sample space.

Many examples in probability theory involve experiments which only have
a finite number of possible outcomes. Each possible outcome is represented
by a sample point ω in the sample space. As we noted in Definition 2.2,
the event {ω} is a particularly simple event, since it is a one-point set. We
can make some formulas a bit neater by introducing the following special
notation for the probability of a one-point set.

Definition 2.12 (Probability mass functions). For any probability model,
we can optionally write P({ω}) as p(ω), for brevity.

The function p is referred to as as a probability mass function, or more
briefly as a probability function.

The word “mass” in the name “probability mass function” is intended to
suggest a lump of probability attached to each sample point. Theorem 2.13
states that the probability of an event can be pictured as the sum of the
masses of all the sample points in the event.
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We include a proof of the next theorem, Theorem 2.13, to emphasize that
this rule follows from the assumptions that we have already made: additivity,
and the fact that one-point sets are events.

Theorem 2.13 (Finite events). Let Ω and P be a probability model. If
A is a finite set of sample points, then A is an event, and

P(A) =
∑
ω∈A

P({ω}) =
∑
ω∈A

p(ω). (2.4)

Proof. By the definition of union,

A =
⋃
ω∈A

{ω} . (2.5)

If equation (2.5) does not seem clear, please check a concrete example. For
example, show from the definition of union that

{1, 2} = {1} ∪ {2} .

The sets {ω} in equation (2.5) are obviously disjoint. Applying the addi-
tivity of probability to equation (2.5) then gives equation (2.4).

Equations (2.2) and (2.4) of course tell us that when Ω is a finite set,∑
ω∈Ω

p(ω) = P(Ω) = 1. (2.6)

When setting up a probability model with a finite sample space, if we
can decide on the value of P({ω}) for each sample point ω, then (by equa-
tion (2.4)) all other probabilities P(A) are determined. So a simple proba-
bility model is usually defined by listing the probabilities of the outcomes.
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2.4 Some basic examples

Example 2.14 (Probabilities for a single coin toss). There are only
two possible outcomes. As in Example 2.3, we can choose to represent these
outcomes by 0 and 1. The outcome is 1 if a head is obtained, and the outcome
is 0 if a tail is obtained. Thus the sample space Ω is given by Ω = {0, 1}.

By equation (2.3), P({1}) + P({0}) = 1. Using the notation of Defini-
tion 2.12, this says that p(1) + p(0) = 1.

If the probability of a head is p and the probability of a tail is q, then
p+ q = 1. For a fair coin, p = q = 1/2.

Example 2.15 (Probabilities for a single roll of a die). We take Ω =
{1, 2, 3, 4, 5, 6}, with the same interpretations as Example 2.4.

If the die is fair, then the probability of each possible outcome is the
same, so P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({5}). Using
our probability mass function notation, this says that p(1) = p(2) = p(3) =
p(4) = p(5) = p(6).

By equation (2.3), p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1.
Thus in the fair case p(i) = 1/6 for each i.

Exercise 2.2. Suppose that Ω = {1, 2, 3, 4, 5, 6}, and assume that P({ω}) =
1/6 for each ω ∈ Ω. Let A = {2, 4, 6}, so that A represents the physical event
that an even number is obtained. Show from the definitions that P(A) = 1/2.

[Solution]

2.5 Symmetry in probability

In games, we generally try to use a fair coin.
The true test of fairness is to toss the coin a large number of times, and

see if we obtain approximately the same fraction of heads and tails. If we
can’t do that, we can at least examine the coin carefully, to see if there is
anything about the physical properties of the coin which would favor heads
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or tails. If the physical properties of the coin seem similar when viewed from
either side, we would say that the coin is symmetric with respect to heads and
tails. Since there is nothing that would lead us to assign a higher probability
to one side over the other, it seems reasonable to assign equal probability to
each of the two possible outcomes.

Symmetry in probability calculations has been used for a long time, and
in the old days it was sometimes described as “the Principle of Indifference”,
or “the Principle of Insufficient Reason”. This principle says we should assign
equal probabilities to possible outcomes if we have no positive reason to do
otherwise. We already used a somewhat similar approach in Section 1.8.

The use of symmetry is dangerous if it is based on ignorance. For ex-
ample, suppose you decide to gamble with someone who is tossing a coin,
and you know very little about the person and the coin. As a believer in
the Principle of Insufficient Reason, you may feel you have no choice but to
assign a probability of 1/2 to the occurrence of a head. If your new friend
obtains five tails in a row you may regret this probability assignment.

More generally, even if you make a careful examination of the setting
of an experiment, you may overlook some factor. Then the setting of the
experiment may be less symmetrical than you think.

Of course, in a real-life situation, you need not stick to your original
assumptions, when new information starts to come in. Chapter 4 (on con-
ditional probability) deals with rules for updating probability assessments,
when you obtain additional information.

2.6 More examples

Example 2.16 (Probabilities for tossing a fair coin twice). Consider
the experiment of tossing a coin twice. As in Example 2.3, we think of 1 as
representing a head, and zero as representing a tail. The result of each toss is
represented that way, and there are two tosses, so we take every sample point
to be an ordered pair of numbers, each of which is either one or zero. The
first number represents the result of the first toss, and the second number
represents the result of the second toss.

There are two choices for the first number, and two for the second number,
so there are four sample points, and Ω = {(1, 1), (1, 0), (0, 1), (0, 0)}. Our
interpretation is that (1, 1) represents obtaining two heads, (1, 0) represents
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getting a head followed by a tail, (0, 1) represents getting a tail and then a
head, and (0, 0) represents getting two tails.

We need to find p( (1, 1) ), p( (1, 0) ), p( (0, 1) ), p( (0, 0) ).
It will be easy to find these probability values, once we introduce the

general concept of independence (Section 5.1). If you have used independence
in any previous study of probability, you must be impatient to use it here! But
for the moment we’ll just consider the fair case, and calculate probabilities
based on an extra assumption: that all outcomes should be equally likely.

By equation (2.6), the four outcome probabilities should add to one, and
so

p( (1, 1) ) = p( (1, 0) ) = p( (0, 1) ) = p( (0, 0) ) =
1

4
.

Exercise 2.3. In the two-toss experiment of Example 2.16, when the coin is
fair, use the four-point sample space Ω to calculate the probability that the
same result is obtained on both coin tosses.

[Solution]

Exercise 2.4. In the two-toss experiment of Example 2.16, when the coin is
fair, use the four-point sample space Ω to calculate the probability that the
first toss produces a head.

You know the answer already, but we are checking here that the sample
space for two tosses is consistent with the sample space for one toss.

Exercise 5.3 will show that the same result holds when we model tossing
a general coin, one which is not necessarily fair.

[Solution]

Exercise 2.4 is an example of what we do when getting familiar with a
new tool. We check that it works properly!

Exercise 2.5 (First toss of a million). In Exercise 2.4 you considered
finding the probability of success on one toss of a fair coin, when using the
model for two tossses. To no one’s suprise, the model for two tosses agrees
with the model for one toss.
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How about using the model for tossing a fair coin a million times, as in
Example 2.6? That has to work too, doesn’t it? But you will check that
now.

You are only allowed to work with the big sample space. Any event you
consider must be a subset of that space, which has 21000000 points.

Just as in the case of tossing a fair coin twice (Example 2.16), we will as-
sume that all sample points have the same probability. And that probability
is . . . .

Let A be the event that the very first toss of the coin results in a head.
Using the big sample space, find P(A).

(And yes, we will rerun this problem in Exercise 7.9 for the case of a coin
which might be unfair. That works too.)

[Solution]

Example 2.17 (Probabilities for two rolls of a fair die). Just as we
can toss a coin twice, we can roll a die twice, or roll two different dice at
the same time. The sample space is larger, but the principle is the same.
Ω = {(i, j) : i = 1, . . . , 6, j = 1, . . . 6}. There are 36 sample points.

Assume that the die is fair. We would like to know the probability distri-
bution on this sample space. We are willing to assume that all sample points
of Ω have the same probability p.

By equation (2.6), 36p = 1. Hence p( (i, j) ) = 1/36 for all i, j
In problems involving experiments with two steps, it is often helpful to

list the sample points in a table. Let the row indices refer to the first element
in a pair and column indices refer to the second element in a pair. Then we
list Ω as:

1 2 3 4 5 6
1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

(2.7)

We will revisit this experiment after introducing the concept of indepen-
dence (Chapter 5).
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One is often interested in the sum of the scores on the two dice. Let Ak

be the event that the sum of the numbers obtained on the two rolls is equal
to k.

The largest possible sum is 12. So we see that Ak is empty for k > 12.

The smallest possible sum is 2. So A1 is empty.

To find P(Ak), we need to count the number of outcomes in (x1, x2) in
Ak, for each k with 2 ≤ k ≤ 12. Each outcome has probability 1/36, and we
add these probabilities, as usual.

A2 = {(1, 1)} , P (A2) =
1

36
,

A3 = {(1, 2), (2, 1)} , P (A3) =
2

36
,

A4 = {(1, 3), (2, 2), (3, 1)} , P (A4) =
3

36
,

A5 = {(1, 4), (2, 3), (3, 2), (4, 1)} , P (A5) =
4

36
,

A6 = {(1, 5), (2, 4), (3, 3), (4, 2), (4, 1)} , P (A6) =
5

36
,

A7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} , P (A7) =
6

36
,

A8 = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} , P (A8) =
5

36
,

A9 = {(3, 6), (4, 5), (5, 4), (6, 3)} , P (A9) =
4

36
,

A10 = {(4, 6), (5, 5), (6, 4)} , P (A10) =
3

36
,

A11 = {(5, 6), (6, 5)} , P (A11) =
2

36
,

A12 = {(6, 6)} , P (A12) =
1

36

(2.8)

Exercise 2.6. In the experiment of Example 2.17, let A be the event that
the first roll produces the number 5.

Find P(A), using the sample space Ω of Example 2.17.
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You are checking that the two-roll model is consistent with the one-roll
model. And yes, yes, again this is obvious physically. We are just testing for
bugs in our mathematical machinery.

[Solution]

Exercise 2.7. Consider the experiment of rolling a fair die twice.
Find the probability that the first roll produces an even number and the

second roll produces a number larger than four.
As in Example 2.17, let Ω consists of the pairs (x1, x2), where xi = 1, . . . , 6

and x2 = 1, . . . , 6.
We will return to this problem in Exercise 5.5.
[Solution]

Exercise 2.8. Again consider the experiment of rolling a fair die twice. Find
the probability that the sum of the numbers obtained on the two rolls is less
than or equal to 5.

[Solution]

Exercise 2.9. When rolling a fair die twice, let C be the event that the sum
of the numbers obtained on the two rolls is an even number.

Find P(C).
Let D be the event that that sum of the numbers obtained on the two

rolls is larger than 6.
Find P(D) and P(C ∩D).
[Solution]

Example 2.18 (Probability of drawing a card from a deck). This is
the experiment defined in Example 2.7. We said that drawing the top card
from a deck is equivalent to selecting a member of a population of 52, with
no member of the population favored. Thus each card has same probability
to be drawn, and we know these probabilities sum to one. Hence each card
has the probability 1/52 to be drawn.
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Sometimes people think about dealing cards, which means removing cards
repeatedly, starting from the top of the deck. The deck is shuffled before
dealing, to arrange the cards of the deck in random order. Thus the third
card dealt from the deck is a random sample from the deck, just as the top
card is a random sample. And so the probability that any particular card
will be the third card dealt is exactly the same as the probability that it is
the first card dealt, 1/52 in both cases.

We can picture the process more concretely if we think of randomly laying
out all 52 cards face down on a table, forming a long row. Instead of drawing
the top card from the deck, one might think of turning over the first card in
the row. The third card drawn is the third card that we turn over, and so
on. The probability that a particular card is in the first position is clearly
the same as the probability that it is in the third position.

Exercise 2.10. Let Ω = {ω1, ω2, ω3, ω4, ω5} be a sample space with associ-
ated probability mass function p. Suppose that p (ω2) = 2p (ω1), p (ω3) =
3p (ω2), p (ω4) = 4p (ω3), p (ω5) = 5p (ω4). Find p (ω3).

[Solution]

Exercise 2.11. A certain combination lock will only open when the correct
code is entered. The code consists of 4 digits in order. The allowable digits
are 0, . . . , 9. A stranger who does not know the correct code attempts to open
the lock by entering 4 arbitrarily chosen digits. Find the probability that the
lock opens. Express your reasoning in terms of an appropriate sample space
and a probability mass function. If it seems appropriate with your model,
you may assume that all sample points are equally probable.

[Solution]

Exercise 2.12. An experiment consist of tossing a certain coin six times, and
counting the number of heads which are obtained. If we regard the outcome
of the experiment to be the number of heads which are obtained, then an
appropriate sample space for this experiment is Ω = {0, 1, 2, 3, 4, 5, 6}. This
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sample space is only adequate for listing the outcomes. It is definitely not
an adequate sample space for computing probabilities of outcomes.

Suppose that the coin which is used in this experiment is unfair, and
actually the probability of a head on each toss is 1/3. We will show later
that the correct probability mass function p for Ω is given by

p(j) =

(
6

j

)(
1

3

)j (
2

3

)6−j

,

where
(
6
j

)
is the binomial coefficient given by(

6

j

)
=

6!

j!(6− j)!
.

(We will not use this particular sample space Ω when we derive this for-
mula. This sample space is too simple to represent what is going on in the
experiment, which involves a number of steps.)

As a small test of whether our formula for p is correct, use the binomial
theorem (if you happen to know it) to verify that the values of p sum to one.
If you haven’t met the binomial theorem before, omit this problem. And do
not worry, the binomial theorem is derived in Section 8.2.

[Solution]

Exercise 2.13 (The number wheel experiment). At a booth in a fair-
ground, we find a large wheel marked with the numbers from 0 to 100. By
spinning the wheel, and seeing where it stops, a random number is chosen.
This will be considered as the outcome of an experiment.

(a) Provide a suitable sample space for this experiment. Assume that each
outcome has equal probability, and find the probability mass function.

(b) Answer the following questions.

(i) What is the probability that the number is 3?

(ii) What is the probability that the number is even?

(iii) Let A be the event that the number is smaller than 20, and let B be
the event that the number is larger than 60. Find P(A ∪B).
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(iv) What is the probability that the number is less than 50 and is divisible
by 3? Remember that zero is divisible by any number.

[Solution]

Exercise 2.14 (Probability of a complement). The following obvious
consequence of additivity is often surprisingly useful. Let A be an event for
some experiment. Prove that

P (Ac) = 1−P(A). (2.9)

[Solution]

Exercise 2.15. In Exercise 2.11, find the probability that the lock does not
open.

[Solution]

Exercise 2.16. Using the probability model in Exercise 2.12, find the prob-
ability that at least one head is obtained in the six tosses.

[Solution]

Exercise 2.17. Let A,B be any events. Show that A and B−A are disjoint,
and

B = (A ∩B) ∪ (B − A) , (2.10)

and so by additivity,

P(B) = P(A ∩B) +P(B − A). (2.11)

Thus
P(B − A) = P(B)−P(A ∩B). (2.12)

See Figure 2.1.
[Solution]
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B

A

A∩B

B−A

A−B

Ω

Figure 2.1: Exercise 2.17: B = (A ∩B) ∪ (B − A). B − A is red, A − B is
blue, and A ∩B is purple. A = (A ∩B) ∪ (A−B).

Example 2.19 (Choosing a positive integer). Suppose someone says to
you: “Think of a number, any number.” Probably they mean that you should
choose a positive integer, and they don’t want you to favor any particular
number. Strictly speaking, this is impossible! To check that, consider the
following argument.

Let pk is the probability that you choose k. Assume that pk is the same
for all k. Let c be the value of pk.

By additivity, the probability that you choose a number less than or equal
to n is exactly

p1 + . . .+ pn.

Any probability is less than or equal to one, so you must have

p1 + . . .+ pn ≤ 1.

If it is really true that pk = c for all k, then

nc ≤ 1, i.e. c ≤ 1

n
.
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This can only be true for all n if c = 0. But then the probability of choosing
a number less than or equal to n is zero, for every n. So the chance that you
choose a number less than a million is zero, and the chance that you choose
a number less than a trillion trillion is also zero, and so on. So it seems you
will stand silently. No one will want to play this game with you!

In real life, if someone asks you to think of a number, you will proba-
bly not have a precise recipe in mind, but you likely have a finite range of
possible numbers in mind, and try to choose one of them without being too
predictable.

Here is one more fact that is often useful.

Lemma 2.20 (Monotonicity). If A1 and A2 are events,

A1 ⊂ A2 =⇒ P (A1) ≤ P (A2) . (2.13)

Here we use =⇒ to mean “implies”.
In words, we can say that probability ismonotone increasing as a function

of events, i.e. bigger sets give bigger probabilities. No surprise here, and
that’s good!

Proof. From the definitions, A2 = A1 ∪ (A2 − A1), and the sets A1, A2 − A1

are disjoint (see Figure 2.2).
Hence P (A2) = P (A1) +P (A2 − A1).

Notice the technique in this proof. We broke sets up into disjoint pieces,
and then used additivity. This is a general trick. It is used, for example, in
the proof of equation 2.14.

The next exercise tells us that if an event has probability one, then we
might as well think of that event as being the whole same space, since it
includes everything that has a chance of happening.

Exercise 2.18 (Probability one includes essentially everything). Sup-
pose that P(A) = 1.

For any event B, prove the following statements.
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A2

A1

A2 −A1

Ω

Figure 2.2: Lemma 2.13: A2 = A1 ∪ (A2 − A1). A1 is purple, A2 −A1 is red.

(i) P(B − A) = 0.

(ii) P(A ∩B) = P(B).

Lemma 2.20 is useful for writing down the argument. Figure 2.1 shows the
general relation between the events, but explain why under the assumptions
of this exercise, you have P(B − A) = 0.

[Solution]

Definition 2.21 (Uniform distribution on a finite set). When a prob-
ability model uses a finite sample space and assigns the same probability
to every sample point, we will refer to this assignment of probabilities as a
uniform distribution on the finite set Ω.
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Theorem 2.22 (Fair sampling). Let S be a set of n objects, and let T be
a subset of S containing j objects. Suppose an object is chosen randomly
from S, in such a way that all objects in S are treated the same way by the
selection process. Then the probability that the chosen object is a member
of T is j/n.

Proof. The simplest choice for a sample space is Ω = S.
Then the set T is also the abstract representation of the event that the

selected object lies in T .
We want to show that P(T ) = j/n.
We are told that there is symmetry in the selection process: all objects

are treated in exactly the same way. Hence P({ω}) is the same for all ω ∈ Ω.
Let’s call this number p.

Since P(Ω) = 1, we know by additivity that∑
ω∈Ω

p(ω) = 1.

Hence np = 1 , so p = 1/n.
Using additivity again,

P(T ) =
∑
ω∈T

p(ω) = jp =
j

n
.

It should be emphasized that Theorem 2.22 is not a surprising fact. If
there are n ways that something can happen, and if j of those ways are
“good”, and all ways seem equally likely, we would naturally think that the
likelihood of a good result depends on how big j is, compared to n. So j/n
is the value we expect for the probability of a good result.

With that in mind, the proof of Theorem 2.22 can be thought of as yet
another test of the theory of probability. The general theory gives the answer
we expect.

Exercise 2.19. Theorem 2.22 deals with the situation of Example 1.10. So
let’s review jelly bean selection.
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Consider picking a jelly bean randomly from a bowl. Suppose that there
are 75 yellow beans, 53 red beans, 27 purple beans, and 18 green beans in
the bowl. Find the probability that the selected jelly bean is red.

[Solution]

Exercise 2.20.

(a) A box contains 25 white marbles and 13 blue marbles. Our experiment
consists of randomly selecting one marble. We assume that each marble has
the same probability of being selected. What is the probability that the
selected marble is blue?

(b) Now we prepare a new experiment, which we will call experiment 2.
We replace every blue marble in the box by 10 blue marbles, and we replace
every white marble in the box by 10 white marbles. The actual procedure
for experiment 2 is the same as before: randomly select one marble, in such
a way that every marble has the same chance of being selected. What is the
probability that the selected marble is blue?

[Solution]

Example 2.23 (Choosing two beans). Return to the setting of Exer-
cise 2.19. A new experiment in this setting consists of randomly selecting
two jelly beans. If the chooser is planning to eat the jelly beans, it seems
clear that the precise manner in which the beans are extracted from the bowl
does not matter. The outcome here should be the set of two beans that is
selected.

Let A be the event that a red bean and a green bean are selected. We
would like to find P(A).

No jelly bean is favored in the choosing, so any set of two beans has the
same chance of being selected. This is the crucial fact, since it allows us to
use Theorem 2.22.

Using the chosen set as the sample point, Theorem 2.22 tells us that

P(A) =
|A|
|Ω|

,

where as usual we denote the number of elements in a set S by |S|.
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However, we still need to calculate |A| and |Ω|. The necessary formula is
given later, in equation 8.2. But we don’t have to wait until we get to that
equation. The idea that is used in deriving equation 8.2 can already be used
right here: we will think about selecting the jelly beans one at a time.

This may seem unnecessarily complicated, since when we eat the two jelly
beans we don’t care which one was chosen first. However, it seems to be a
good way to calculate the probability that a particular set of two jelly beans
is chosen.

Notice that by thinking about getting the jelly beans one at a time we
have modified our experiment. Now it is a two-step experiment. We must
define a new sample space Ω. Now a sample point ω is not a set of two jelly
beans from the bowl, it is an ordered pair (b1, b2), where b1 represents the
first jelly bean chosen, and b2 represents the second.

A key point: We definitely want to eat two jelly beans, so we only allow
sample points with b2 ̸= b1. That is, after the first bean is selected, it is
removed from the bowl, and is no longer available for the second selection.

No jelly bean is favored, so again all sample points are equally likely.
Using Theorem 2.22 in this new sample space, we have

P(A) =
|A|
|Ω|

.

What is the event A using this sample space? A is the set of all pairs
(b1, b2), where either b1 is red and b2 is green, or else b1 is green and b2 is red.

There are 53×18 ways of choosing a red bean and then a green. There are
18×53 ways of choosing a green bean and then a red. Thus |A| = 2×(53×18).

We find |Ω| in much the same way. The total number of beans is 75 +
53 + 27 + 18 = 173. Hence there are 173 ways to choose the first jelly bean.
Having chosen the first bean, there are then 172 ways to choose the second
jelly bean.

Notice that the choice of first bean determines the available choices for
the second bean, but the number of choices for the second bean is always the
same, and does not depend on what the first bean was.

Combining our facts,

P(A) =
2× 53× 18

173× 172
.
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Exercise 2.21 (Choosing two red beans). In the setting of Example 2.23,
let R be the event that both chosen beans are red. Find P(R).

[Solution]

2.7 Beyond additivity

It is useful to say something about probabilities for unions which are not
disjoint!

Theorem 2.24 (Inclusion-Exclusion formula). Let A and B be any
events, and let P be a probability set-function. Then

P(A ∪B) = P(A) +P(B)−P(A ∩B). (2.14)

The reason for the name of this formula will be evident from the proof.

Proof. See Figure 2.1 for the general relation between the events A,B,A ∩
B,B − A. A ∪ B consists of all the colored regions in the figures. A − B is
blue, A ∩B is purple, and B − A is red.

If an outcome is in A ∪ B, and it is not in both events, then either the
outcome is in A but not in B, or else the outcome is in B but not in A. It
follows that A ∪ B is the disjoint union of A ∩ B, A − B, or B − A. By
additivity,

P(A ∪B) = P(A−B) +P(B − A) +P(A ∩B). (2.15)

Similar arguments show even more easily that P(A) = P(A−B)+P(A∩
B) and P(B) = P(B − A) + P(A ∩ B). This is also clear from Figure 2.1.
Adding these two equations gives

P(A) +P(B) = P(A−B) + 2P(A ∩B) +P(B − A)

Comparing this equation to equation (2.15) gives equation (2.14).
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Relating the proof of Theorem 2.24 to the name of the formula, note that
A∩B is the set of outcomes which are included in both A and B, while A−B
is the set of outcomes we obtain from A when we exclude the outcomes in B.

In the proof of Theorem 2.24 we used the technique of breaking up non-
disjoint sets into disjoint pieces. This is often a useful procedure. We have
seen it already in the proof of Lemma 2.20.

In the statement of Theorem 2.24, consider the special case of finite sets
for which all the outcomes have the same probability. Remember that in
this situation we find the probability of any event by simply counting the
number of outcomes in the event, and then multiplying by the probability
of a single outcome. We can then say that the term −P(A ∩ B) in (2.14)
compensates for “double-counting” outcomes, since any outcome in A ∩ B
contributes both to P(A) and to P(B).

When events are not disjoint, we don’t have additivity, but we still have
an inequality, as the next theorem shows. Please work Exercise 2.22 after
reading the next theorem.

Theorem 2.25 (Subadditivity property). Let A1, . . . , Ak be any events
for some probability model. Then

P (A1 ∪ . . . ∪ Ak) ≤
k∑

j=1

P (Aj) . (2.16)

Proof. Consider the case k = 2. Let A = A1, B = A2. Equation (2.16)
follows at once from (2.14).

This proves the theorem for k = 2.
The statement is obviously true for k = 1. (Right?)
A proof by induction for the case k > 2 is left to the reader, in Exer-

cise 2.23.

The title for Theorem 2.25 uses the word “subadditivity”. Since one of
the meanings of “sub” is “below”, subadditivity seems like a suitable name
for property expressed in equation (2.16). This inequality says that the
probability of a union of events is never greater than the sum of the separate
probabilities.
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Exercise 2.22 (Obtaining an estimate). In Exercise 2.1 on sample
spaces, we considered the experiment of tossing a fair coin 400 times.

(a) We accept that for each sample point ω, P({ω}) is exactly the same.
What is this probability value?

(b) Consider the event A of ever obtaining 20 heads in succession during
these 400 tosses. By definition, A occurs if there is any index k such that
you get a head on toss k, toss k + 1, toss k + 2, . . . , toss k + 19.

Does this event feel likely or unlikely?

(c) Use subadditivity to find an estimate for the probability of A, and
decide whether A is likely or unlikely.

[Solution]

Exercise 2.23 (The Old Induction Trick). Prove the case k > 2 of
Theorem 2.25. (This sort of argument, passing from k = 2 to general k, is
useful in many situations. If you haven’t seen it before it is worth working
through.)

[Solution]

2.8 A review of set operations

Since we represent physical events by sets of abstract outcomes in a sample
space, set operations will play a basic role.

This section contains definitions and notations for all the standard set
operations. Readers can quickly skim through it, and then refer back again
as needed. Notations and terminology for sets can differ slightly, so even an
experienced reader might benefit from a quick survey. You might want to
recall something that J.R.R. Tolkien said about hobbits: “they liked to have
books filled with things that they already knew, set out fair and square with
no contradictions”. We are entering hobbit-mode now.

Here we go. The members of a set can be called “elements” of the set,
or “points” of the set, although of course such points need not have any
geometrical meaning. Sometimes we may list the contents of a set as a
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sequence. The order in which the contents are listed is irrelevant, since sets
are not ordered. The words “set” and “collection” have the same meaning
throughout this book. Use of the word “collection” makes it possible to
avoid too many repetitions of the word “set”. For example if we happen to
be dealing with a set of sets, we would tend to use the phrase “collection of
sets” rather than “set of sets”.

Definition 2.26 (Unions of sets). Let A1, . . . , Ak be any sets. The union
of A1, . . . , Ak is the set consisting of every element which is in at least one of
the sets A1, . . . , Ak. We can write the union of two sets A1, A2 in symbols as
A1 ∪ A2, and the union of A1, . . . , Ak as A1 ∪ . . . ∪ Ak.

It is easy to check from the definition that A ∪ B = B ∪ A, or in other
words that union is a commutative operation. It is also easy to check that
A ∪ (B ∪ C) = A ∪ B ∪ C = (A ∪ B) ∪ C, so that union is an associative
operation.

Definition 2.27 (Intersections of sets). Let A1, . . . , Ak be any sets. The
intersection of A1, . . . , Ak is the set consisting of those elements which are in
every one of A1, . . . , Ak. We can write the intersection of two sets A1, A2 in
symbols as A1 ∩ A2, and the intersection of A1, . . . , Ak as A1 ∩ . . . ∩ Ak.

Like union, intersection is a commutative and associative operation, as
can easily be checked.

Usually a set that we deal with is defined by some property, i.e. a sample
space event is the set of all sample points which have a certain property.
For sets we have the option of using property language as an alternative
to set language. Union corresponds to “or” and intersection corresponds to
“and”. That is, if set A is the collection of objects that satisfy property α,
and set B is the collection of objects that satisfy property β, then A ∪ B is
the collection of all objects for which “α or β ” is true, and A ∩ B is the
collection of all objects for which “α and β ” is true. Writing “A∪B” seems
a little shorter than writing “α or β”, but is not necessarily clearer.

Remark 2.28 (The inclusive sense of the word “or”). It should be
emphasized that when we say that A ∪ B is the collection of all objects for
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which “α or β ” is true, we are using the word “or” in the inclusive sense,
which includes the possibility that both statements might be true.

The inclusive sense is one of the two correct uses of the word “or” in
English. For example, if I say, “I dream of being rich or famous”, this does
not mean that I would be heartbroken if I were both, so I am using the
inclusive sense.

On the other hand, suppose you are ordering supper at your favorite
diner, and your order comes with a free dessert. When the waiter says: “You
can have jello or rice pudding”, this is very likely an example of using “or”
in the exclusive sense, meaning that exactly one of two possibilities is true.

In mathematics, if we mean “or” in the exclusive sense, we will say so
explicitly, unless it is obvious.

Definition 2.29 (Set difference and complement). For any sets A and
B, A − B denotes the set difference, simply meaning the set of elements
which are in A but not in B. The set difference A−B is sometimes written
as A \B, but we won’t use that notation.

If you think that your reader knows the “universe” U of elements that
you are currently interested in, then for any set A contained in U , the set
U−A can be written more briefly as Ac. The set Ac is called the complement
of A. In probability theory the set U is often the sample space Ω.

Just as union corresponds to “or” in property language, and intersection
corresponds to “and” in property language, set difference and complement
correspond to “not” in property language.

If a subset A of the sample space represents the occurrence of a certain
physical event E, then Ac represents the event that E does not occur. Com-
plements are sometimes more convenient than set differences.

Exercise 2.24 (De Morgan’s Laws). Please verify the following facts:

(Ac)c = A, (2.17)

(A ∪B)c = Ac ∩Bc, (2.18)

(A ∩B)c = Ac ∪Bc. (2.19)

In property language, equation (2.17) expresses the meaning of a “double
negative”. Equations (2.18) and (2.19) are known as De Morgan’s laws.
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Using equation (2.17) one can deduce either of De Morgan’s laws from the
other.

[Solution]

Definition 2.30 (Venn diagrams). Visual images seem to aid our thinking
at times, and books often represent sets and their relationships with pictures,
called Venn diagrams. Venn diagrams for sets are not pictures of actual sets,
but they are schematic representations which show certain properties.

Most readers will have seen such diagrams, often outside mathematics.
Figure 2.1 is a good example.

In general, readers are encouraged to follow any urge to draw pictures
when thinking about any problems or concepts!

Definition 2.31 (Set membership). We can express membership in a set
by “∈”, Thus x ∈ A means that x is a member of A.

Using ∈ takes less space than using the word “in”, so we’ll tend to use ∈
in formulas later.

Definition 2.32 (Set comparison). We write A ⊂ B to mean that every
member of A is also a member of B. In this case we say that A is a subset,
or that A is included in B.

If A is a subset of B, but A is not equal to B, we say in words that A is a
proper subset of B. We do not have a separate notation for proper inclusion.
(The inclusion relation is sometimes written A ⊆ B, in which case A ⊂ B
might denote proper inclusion, but we won’t use that convention.)

The word “contains” is used in two ways for sets. If x ∈ A we say that
A contains x, but occasionally if A ⊂ B one also says B contains A. The
context usually makes the meaning clear.
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Definition 2.33 (Disjoint sets and the empty set). Any sets A,B are
disjoint if there is no element which is in both sets. Thus A and B are
disjoint if A ∩B = ∅, where ∅ denotes the empty set.

Sets A1, . . . , Ak are disjoint if there is no point which is a member of more
than one of the sets A1, . . . , Ak.

In property language, disjoint sets correspond to mutually exclusive
properties. If A1, . . . , Ak are disjoint events in a sample space, then a sample
point can be a member of at most one of A1, . . . , Ak. That is, at most one
of the corresponding physical events can occur.

Exercise 2.25. When manipulating sets we often use simple observations
such as

A ⊂ B =⇒ A ∩B = A,

A ∩ (B − A) = ∅.
(2.20)

Here we use =⇒ to mean “implies”.
Please prove the facts in equation (2.20).
[Solution]

Number of elements in a set A set can be finite or infinite. The number
of elements in a finite set S will be denoted by |S|. If S is an infinite set we
will write |S| = ∞.

Exercise 2.26 (Intersection distributes over union). Prove that

B ∩ (A1 ∪ . . . ∪ Ak) = (B ∩ A1) ∪ . . . ∪ (B ∩ Ak) . (2.21)

[Solution]

Equation (2.21) can be expressed by saying that “and distributes over
or”.

You are asked to show in the next exercise that “or distributes over and”.
This second fact is not hard either, but it is worth checking, especially since
we only have one distributive law in the case of numbers!
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Exercise 2.27 (Union distributes over intersection). Write an equation
in terms of set operations expressing the fact that union distributes over
intersection. Then prove this equation. Give two proofs. The first proof
should only depend on the basic definitions of union and intersection. The
second proof should use equation (2.21) and De Morgan’s Laws.

[Solution]

In practical situations, using “and” and “or”, we easily recognize the
truth of the rules in Exercises 2.26 and 2.27, even though we may not think
of them abstractly.

George Boole seems to have been the first person to observe (in 1854) that
such general algebraic properties can be formulated for logical statements
involving “and”, “or”, and “not”.

2.9 Solutions for Chapter 2

Solution (Exercise 2.1). (a) We can take the sample space to be the
set of all sequences (x1, . . . , x400), where each xi can be either H or T . Since
there are two choices for each xi, the sample space contains 2400 points.

(b) Writing 2400 as (24)100 = 16100, we see that the number of points in the
sample space is much larger than 10100, and hence it is much larger than the
number of atoms in the observable universe.

Of course the number of abstract events for the sample space is 2N , which
is a far bigger number than N .

Solution (Exercise 2.2). Since A = {2, 4, 6},

A = {2} ∪ {4} ∪ {6} ,

so by the additivity of probability we have

P({2}) +P({4}) +P({6}) = 1

6
+

1

6
+

1

6
=

1

2
.

If you think that we just repeated the proof of Theorem 2.13, you are
correct.
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Solution (Exercise 2.3). Let A be the event that the same result is ob-
tained on both coin tosses. Then

A = {(1, 1), (0, 0)} = {(1, 1)} ∪ {(0, 0)} .

By the additivity of probability,

P(A) = P( {(1, 1)} ) +P( {(0, 0)} ) = 1

4
+

1

4
=

1

2
.

If you think that we just repeated the proof of Theorem 2.13, you are
correct.

Solution (Exercise 2.4). Let Ω = {(1, 1), (1, 0), (0, 1), (0, 0)}.
Remember that the sample point (1, 0) represents the result that the first

toss gives success (a head) and the second toss does not, and so on.
Let H1 denote the event that the first toss produces a head. Then H1 =

{(1, 1), (1, 0)}, so

P (H1) = P({(1, 1)}) +P({(1, 0)}) = 1

4
+

1

4
=

1

2
,

in agreement with the probability found using the sample space for one coin
toss.

Solution (Exercise 2.5). To save writing, let N = 1000000.
Let (x1, . . . , xN) be a sample point in A.
Then x1 = 1, and there are two choices for each of the remaining xi, for

i = 2, . . . , N . Thus |A| = 2N−1.
Since the coin is fair, each of the 2N sample points is equally likely. Thus

P({ω}) = 2−N for each sample point ω, and so (by additivity)

P(A) = 2N−1 2−N = 2−1 =
1

2
,

as we knew.

Solution (Exercise 2.6). Using the sample space of Example 2.17,

A = {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)} .

Hence

P(A) = P({(5, 1)})+P({(5, 2)})+P({(5, 3)})+P({(5, 4)})+P({(5, 5)})+P({(5, 6)}).

Hence P(A) = 6/36 = 1/6, consistent with the model for rolling a single die.

74



2.9. Solutions for Chapter 2

Solution (Exercise 2.7). Let A the event that the first roll gives an even
number. Let B be the event that the second roll gives a number larger than
four. Our sample space consists of all pairs (x1, x2), where each xi can be
1, 2, 3, 4, 5 or 6.

Each outcome (x1, x2) has probability 1/36.
To obtain an outcome in A∩B, it is easy to see that there are 3 ways to

choose x1 and 2 ways to choose x2. Thus there are 3 × 2 = 6 outcomes in
A ∩B, so P(A ∩B) = 6(1/36) = 1/6.

Solution (Exercise 2.8). Using the sample space of Example 2.17, let A
be the event that the sum of the numbers on the two dice is at most equal
to 5. Consider an outcome (x1, x2) in A.

Since x2 is greater than zero, x1 cannot be larger than 4. When x1 = 1,
x2 can be any of 1, 2, 3, 4. When x1 = 2, x2 can be any of 1, 2, 3. When
x1 = 3, x2 can be 1 or 2. When x1 = 4, x2 must be 1. Thus the number of
outcomes in A is equal to 4+3+2+1 = 10. Hence P(A) = 10(1/36) = 5/18.

Solution (Exercise 2.9). The sets A2, . . . , A12 are disjoint.
We will use equation (2.8).
Since C = A2 ∪ A4 ∪ A6 ∪ A8 ∪ A10 ∪ A12,

P(C) = P(A2) +P(A4) +P(A6) +P(A8) +P(A10) +P(A12)

=
1

36
+

3

36
+

5

36
+

5

36
+

3

36
+

1

36
=

18

36
=

1

2
. (2.22)

Since D = A7 ∪ A8 ∪ A9 ∪ A10 ∪ A11 ∪ A12,

P(D) =
6

36
+

5

36
+

4

36
+

3

36
+

2

36
+

1

36
=

7

12
.

Since C ∩D = A8 ∪ A10 ∪ A12.

P(C ∩D) = P(A8) +P(A10) +P(A12) =
5

36
+

3

36
+

1

36
=

1

4
.

Solution (Exercise 2.10). Since P(Ω) = 1 we have p(1) + p(2) + p(3) +
p(4) + p(5) = 1.

We find easily that p (ωn) = n!p (ω1), for n = 1, 2, 3, 4, 5.
Hence (1 + 2 + 6 + 24 + 120) p (ω1) = 1, and so p (ω1) = 1/153. This

gives p (ω3) = 3!/153 = 6/153.
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Solution (Exercise 2.11). The sample space Ω can be taken to be the set
of all sequences (k1, k2, k3, k4), where each ki is in {0, . . . , 9}. Since there are
10 choices for each ki, the number of sample points is 104. We have no reason
to think that the owner of the lock prefers a particular code, so we consider
that each sample point ω has the same probability p(ω) of being the correct
code. These probabilities add to one, so p(ω) = 1/10000 for all ω. Hence for
any given sample point, such as the sequence which the stranger enters, the
probability that this particular sequence is the correct code is 1/10000.

Solution (Exercise 2.12). By the binomial theorem,

(a+ b)6 =
6∑

j=0

(
6

j

)
ajb6−j.

If we take a = 1/3 and b = 2/3, the right side of this equation is p(0)+ . . .+
p(6). The left side is clearly equal to one.

Solution (Exercise 2.13).

(a) Ω = {0, 1, . . . , 100}. Since the probability values are equal and sum to
1, p(ω) = 1/101 for every ω.

(b)

(i) P ({3}) = p(3) = 1/101.

(ii) There are 51 even numbers in the sequence 0, 1, . . . , 100. Summing up
p(ω) for these ω, the probability is 51/101.

(iii)

Since A contains 20 numbers, P (A) = 20/101. Since B contains 40
numbers, P (B) = 40/101. A and B are disjoint, so P(A ∪ B) =
P (A) +P (B).

(iv) Numbers divisible by 3 are of the form 3 × k. Numbers of this form
which are less than 50 are the numbers 3 × 0, 3 × 1, 3 × 2, . . . , 3 × 16.
Hence there are 17 numbers in the event described, and the event has
probability 17/101.

Solution (Exercise 2.14). Ω = A ∪ Ac, and this is a disjoint union. By
additivity, P(A) +P(Ac) = P(Ω) = 1.

76



2.9. Solutions for Chapter 2

Solution (Exercise 2.15). From the solution to Exercise 2.11, the prob-
ability that the lock opens is 1/10000. Hence the probability that the lock
does not open is 1− 1/10000 = 9999/10000,

Solution (Exercise 2.16). By the statement of Exercise 2.12, the proba-
bility that no head is obtained is

(
6
0

)
(2
3
)6 = 64/729. Hence the probability

that at least one head is obtained is 1− 64/729 = 665/729.

Solution (Exercise 2.17). By definition, if ω ∈ B − A then ω /∈ A, so A
and B − A are disjoint.

If ω ∈ A ∩ B then ω ∈ B, by definition. If ω ∈ B − A then ω ∈ B, by
definition. Hence if ω ∈ (A ∩B) ∪ (B − A) then necessarily ω ∈ B.

On the other hand, if ω ∈ B then either ω ∈ A or ω /∈ A. In the first
case ω ∈ A ∩ B, and in the second case ω ∈ B − A. Thus in all cases
ω ∈ (A ∩B) ∪ (B − A).

We have shown that B and (A ∩B) ∪ (B − A) are the same set. This
proves equation (2.10).

Since A ∩ B ⊂ A, and since we know that A and B − A are disjoint, we
know that A ∩B and B − A are disjoint.

Hence by additivity we obtain equation (2.11).

Solution (Exercise 2.18). (i) For any events A,B, B − A ⊂ Ac, so
monotonicity tells us that P(B − A) ≤ P(Ac). When P(A) = 1, P(Ac) =
1−P(A) = 0, so P(B − A) = 0.

(ii) For any events A,B, B = (B ∩ A) ∪ (B − A), and this is a disjoint
union, so P(B) = P(B ∩ A) +P(B − A).

If P(A) = 1 then P(B − A) = 0 by part (i).

Solution (Exercise 2.19). There are 173 beans in the bowl. By Theo-
rem 2.22 the probability of picking a red bean is 53/173.

Solution (Exercise 2.20).

(a) There are 38 sample points, all of equal probability 1/38. Let A be the
event. A contains 13 sample points, so P(A) = 13/38, by Theorem 2.22.

(b) There are 380 sample points, all of equal probability 1/380. Let B be
the event. A contains 130 sample points, so P(A) = 130/380 = 13/38, by
Theorem 2.22.
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Solution (Exercise 2.21). Imagine choosing one bean at a time.
As in Example 2.23, Ω is the set of all pairs (b1, b2), where b1 represents

the first bean selected and b2 presents the second bean selected, with b2 ̸= b1.
There are 173 beans. There are 173 ways to choose the first bean, and,

having selected the first bean, there are 172 ways to choose the second bean.
Thus

|Ω| = 173× 172,

and

P({ω}) = 1

|Ω|
=

1

173× 172

for every ω.
When choosing two red beans, there are 53 ways to choose the first bean

and, having chosen the first bean, there are 52 ways to choose the second
bean. Thus

|R| = 53× 52,

and

P(R) =
53× 52

173× 172
.

Solution (Exercise 2.22).

(a) There are 2400 sample points ω, each one of the same probability p.
Hence 2400p = 1, so p = 2−400.

(c) Let Aj be the event that a head is obtained during tosses j, j+1, . . . , j+
19. This event is defined for j = 1, . . . , 381.

Since the result of the other tosses is not specified, each set Aj contains
2380 sample points, and each sample point has probability 2−400. Thus

P (Aj) = 23802−400 = 2−20.

Notice that we get the same probability for Aj, if we think of tosses j, j +
1, . . . , j + 19 as a small experiment by itself.

By the definition of A, A = A1 ∪ . . . ∪ A381. By subadditivity,

P(A) ≤ P (A1) + . . .+P (A381) =
381

220
≈ 0.00036335.

This is a small value.
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Solution (Exercise 2.23). Assume it is known that for any events A1, A2,

P (A1 ∪ A2) ≤ P(A1) +P(A2). (2.23)

We will prove by induction that equation (2.16) holds for all k ≥ 2.
For some integer k ≥ 2, suppose it is known that for any eventsA1, . . . , Ak,

P (A1 ∪ . . . ∪ Ak) ≤
k∑

j=1

P (Aj) . (2.24)

Let A1, . . . , Ak+1 be given. Define

A = A1 ∪ · · · ∪ Ak.

By the meaning of union,

A1 ∪ . . . ∪ Ak ∪ Ak+1 = A ∪ Ak+1.

By equation (2.23),

P(A1 ∪ . . . ∪ Ak+1) ≤ P(A) +P(Ak+1).

Since we have assumed the truth of equation (2.24), we know that

P(A) ≤
k∑

j=1

P (Aj) .

Combining the last two equations,

P(A1 ∪ . . . ∪ Ak+1) ≤
k∑

j=1

P (Aj) +P(Ak+1) =
k+1∑
j=1

P (Aj) ..

Thus equation (2.16) holds with k replaced by k + 1.
By induction, equation (2.16) holds for all k ≥ 2.

Solution (Exercise 2.24). To verify (Ac)c = A, note that by definition Ac

is the set of elements which are in the universe but not in A.
By definition, (Ac)c is the set of elements which are in the universe but

not in Ac. Thus (Ac)c is the set of elements x in the universe such that the
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statement “x is not in A” is false, i.e. the statement “x is in A” is true. This
shows that equation (2.17) holds.

To verify that (A ∪B)c = Ac∩Bc, note that by definition (A ∪B)c is the
set of elements x in the universe for which the statement “x is in A ∪ B” is
false. That is (A ∪B)c is the set of elements x in the universe for which the
statement “x is in A or x is in B” is false.

Equivalently, (A ∪B)c is the set of elements x in the universe such that
both of the two statements “x is in A” or “x is in B” are false. Thus (A ∪B)c

is the set of elements x in the universe such that x ∈ Ac and x ∈ Bc. This
shows that equation (2.18) holds.

To verify that (A ∪B)c = Ac∩Bc, note that by definition (A ∪B)c is the
set of elements x in the universe for which the statement “x is in A ∪ B” is
false. That is (A ∪B)c is the set of elements x in the universe for which the
statement “x is in A or x is in B” is false.

Equivalently, (A ∩B)c is the set of elements x in the universe which are
not in A ∩B.

Thus (A ∩B)c is the set of elements x in the universe such that at least
one of the statements “x ∈ Ac”, “ x ∈ Bc” is true.

Thus (A ∩B)c is the set of elements x in the universe such that x ∈
Ac ∪Bc. This shows that equation (2.19) holds.

One way to deduce equation (2.19) from (2.18) using (2.17), is to start
by stating (2.17) with A replaced by Ac and B replaced by Bc. This gives:

(Ac ∪Bc)c = (Ac)c ∩ (Bc)c .

By equation (2.17),
(Ac ∪Bc)c = A ∩B.

Hence
(A ∩B)c = ( (Ac ∪Bc)c )

c

By equation (2.17),
(A ∩B)c = Ac ∪Bc.

One can make the last argument a bit more readable by noticing a simple
consequence of equation (2.17):

“Two events are equal if and only if their complements are equal.”
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Solution (Exercise 2.25). Yep, these follow from the definitions.
To prove that A ⊂ B =⇒ A ∩B = A, assume that A ⊂ B.
Then if x ∈ A then x ∈ B. Hence x ∈ A ∩B.
On the other hand, if x ∈ A ∩ B then by definition x ∈ A and x ∈ B, so

in particular x ∈ A.
We have shown that A = A ∩B.
This proves the first equality.
To prove that A ∩ (B − A) = ∅, consider x ∈ A. If x ∈ B − A then by

definition x is not a member of A, which is false. Thus x /∈ B − A. Since A
and B − A have no members in common, A ∩ (B − A) = ∅.

Solution (Exercise 2.26). Let x be a point in B ∩ (A1 ∪ . . . ∪ Ak). By
definition, x ∈ B and there is some index j such that x ∈ Aj. Then x ∈
B ∩ Aj. Hence by definition x ∈ (B ∩ A1) ∪ . . . ∪ (B ∩ Ak).

Let y be a point in (B ∩ A1)∪ . . .∪ (B ∩ Ak). By definition, there is some
index j such that y ∈ B ∩ Aj. Then y ∈ B and y ∈ Aj. Hence y ∈ B and
y ∈ A1 ∪ . . . ∪ Ak, so by definition y ∈ B ∩ (A1 ∪ . . . ∪ Ak).

We have proved that B ∩ (A1 ∪ . . . ∪ Ak) and (B ∩ A1) ∪ . . . ∪ (B ∩ Ak)
contain exactly the same points, so they are the same set.

Solution (Exercise 2.27). We must show that:

B ∪ (A1 ∩ . . . ∩ Ak) = (B ∪ A1) ∩ . . . ∩ (B ∪ Ak) . (2.25)

First proof: Let x be a point in B ∪ (A1 ∩ . . . ∩ Ak). By definition, this
means that at least one of the following statements holds:

(i) x ∈ B.

(ii) x ∈ A1 ∩ . . . ∩ Ak.

If statement (i) is true then x ∈ B ∪ Aj for every j, and so by definition
x ∈ (B ∪ A1) ∩ . . . ∩ (B ∪ Ak).

If statement (ii) is true, then x ∈ Aj for every j. Hence again we have
x ∈ B ∪ Aj for every j, so again x ∈ (B ∪ A1) ∩ . . . ∩ (B ∪ Ak).

Thus in all cases, x ∈ (B ∪ A1) ∩ . . . ∩ (B ∪ Ak).

Let y be a point in (B ∪ A1) ∩ . . . ∩ (B ∪ Ak).
By definition, for every index j = 1, . . . , k, y ∈ B ∪ Aj.
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If y ∈ B, then statement (i) holds with x replaced by y.
If y /∈ B, then for every index j, y ∈ Aj must hold, since otherwise

y ∈ B∪Aj would be false. Hence in this case y ∈ A1∩. . .∩Ak, so statement (ii)
holds with x replaced by y.

We have shown that either statement (i) or statement (ii) holds, so y ∈
B ∪ (A1 ∩ . . . ∩ Ak).

We have proved that B ∪ (A1 ∩ . . . ∩ Ak) and (B ∪ A1) ∩ . . . ∩ (B ∪ Ak)
contain exactly the same points, so they are the same set.

This proves equation (2.25).

Second proof: Let C be any set, and let D1, . . . , Dk be any sets.
By equation (2.21),

C ∩ (D1 ∪ . . . ∪Dk) = (C ∩D1) ∪ . . . ∪ (C ∩Dk) .

Then
(C ∩ (D1 ∪ . . . ∪Dk))

c = ((C ∩D1) ∪ . . . ∪ (C ∩Dk))
c .

Using equations (2.19) and (2.18),

Cc ∪ (D1 ∪ . . . ∪Dk)
c = (C ∩D1)

c ∩ . . . ∩ (C ∩Dk)
c .

Using equation (2.19),

Cc ∪ (D1 ∪ . . . ∪Dk)
c = (Cc ∪Dc

1) ∩ . . . ∩ (Cc ∪Dc
k) . (2.26)

Let C = Bc, and let Dj = Ac
j. By equation (2.17), Cc = B and (Dj)

c = Aj.
Thus equation (2.26) gives equation (2.25).

Incidentally, using equation (2.17) here is correct, but we could express
things in another way: since C can be any set, Cc can be any set, and since
Dj can be any set, Dc

j can be any set. And so, in equation (2.26) we can
replace Cc by any B and Dc

j by any Aj.

82



Chapter 3

Models with continuous sample
spaces

Probability models come in many forms, and the theory of probability applies
to all of them. Having a wide range of examples deepens our understanding
of general properties. In this chapter we discuss models that have continuous
sample spaces. These will used in applications later.

Our discussion of the general principles of probability resumes in Chap-
ter 4. Impatient readers can read through the present chapter quickly, and
return later as needed. Exercises 3.1, 3.2, 3.3, 3.4, 3.5 will be useful in seeing
the main ideas here.

3.1 Choosing a point in a continuous interval

In this section we introduce a new class of sample space models. These
models are more abstract than the simple models described in Section 2.1,
but the general properties of probability remain true.

The particular model we discuss here has a sample space which is made
up of an infinite number of points. And not just that: the sample space
forms a continuous interval, meaning an interval with no gaps.

Consider the physical experiment of choosing a location at random on
a yardstick. Since a yardstick is three feet long, one might represent the
yardstick as the interval [0, 3] of the real line. We can then think of the
experiment more abstractly as choosing a point in the interval [0, 3]. The
outcome is the point chosen, and the sample space Ω is simply the interval
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[0, 3] itself.

A point in Ω is a real number, so evidently we have chosen to represent a
physical point on the yardstick as a real number. However, specifying a real
number means specifying an infinite number of decimal digits! For an actual
physical location, this is very wasteful, since an infinitely precise description
of position has no experimental meaning. Thus for a sample point ω in [0, 3]
it seems that we can only use the first few digits from the decimal expansion
of ω, and the number ω is a misleadingly precise description of a physical
location.

But this rather vague interpretation of ω seems acceptable for practical
purposes. We know that a mathematical interval is an extreme idealization,
and no one could expect that [0, 3] would match up perfectly with a real
physical yardstick.

Still though, since we acknowledge the imprecision in the interpretation,
a reader may suspect that we are cluttering up the sample space with a lot
of irrelevant details. Can’t we find a simpler model?

As an alternative sample space, if we are satisfied by specifying positions
with an accuracy of six decimal places, we could agree to conceptually divide
the yardstick into subintervals of length 10−6, and just let the sample space
Ω be a set consisting of integers that label these sections. That sample space
would be less complicated mathematically, and we could adequately describe
any location by simply stating which subinterval contains it.

However, notice that using the interval [0, 3] as the sample space preserves
much more of the geometrical setting for the experiment. And we will find
that meaningful calculations of probabilities are actually clearer and more
elegant if we use real numbers as sample points. So we will stick with using
an interval of the real line as the sample space for this experiment, and for
similar situations.

Does that choice seem strange? It actually should not come as a great
surprise that using a continuous interval of real numbers can make life easier,
when modeling the physical world. Readers have likely already experienced
the benefits of using the real line in calculus, to help solve problems about
physical objects and physical processes.

Now let’s think about how to assign probabilities to events, when the
sample space is a continuous interval of the real line.
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3.2. Probabilities of subsets of an interval

3.2 Probabilities of subsets of an interval

Since we are going to be talking quite a bit about intervals, let’s state a
definition, just to make sure we all agree on what we are talking about.

Definition 3.1 (Intervals). An interval of the real line is defined as a subset
of the form [a, b], or [a, b), or (a, b], or (a, b). A one-point set {b} = [b, b]
counts as an interval too.

As a warmup to defining probabilities, let’s look at what doesn’t work.
What doesn’t work is equation (3.1) in Theorem 2.13. The problem is that
Theorem 2.13 dealt with the probability of an event A which is composed of
a finite number of points. Until now, that has been the only situation that
we have had to deal with, and it’s a nice situation, because the additivity of
probability basically tells us everything we need.

Theorem 2.13 says that when there are only a finite number of sample
points in A, then

P(A) =
∑
ω∈A

P({ω}) (3.1)

If you have a probability model with a finite sample space, every event is
a finite set of points, so we can define the probability of all possible events by
figuring out the appropriate value of P({ω}) for each sample point ω. Equa-
tion (3.1) then gives you the probability of any event A. Very convenient.

But now we are in a new world. When the sample space is an interval of
the real line, the sample space certainly contains an infinite number of points.
Furthermore, for any single sample point ω, the one-point set {ω} seems
rather useless all by itself when modeling the choice of a random location,
since the idea of specifying a physical position with infinite precision is a
fantasy. And if A is any set which contains only a finite number of points,
the same argument suggests that A is not going to help in modeling real
events either. So we cannot avoid dealing with events which are infinite sets
of points.

After thinking about it, it seems that when choosing a random point in
an interval, the most useful events will be subintervals. If A = [u, v], then A
is the event that the chosen point lies somewhere in the interval [u, v]. This
event seems physically meaningful, at least if the length of [u, v] is not too
small to measure.
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So now we have a specific question to think about. Given a subset Ω of
the real line, and modeling the random selection of a point from Ω, how can
we define a probability distribution for intervals which are contained in Ω?

3.3 The uniform probability distribution on

an interval

We are considering randomly choosing a point from a subset Ω of the real
line. We take the sample space to be Ω, so that any point x in Ω represents
the outcome that x is the chosen point. Events are sets of outcomes, so
events are subsets of the Ω.

Consider a special case. Let’s add the assumption that the random point
will be chosen from Ω, in such a way that no point of Ω is favored. For
simplicity, we’ll also assume that Ω is an interval of positive length, or is
made up of a finite number of such intervals.

How should we define probabilities in this case?

Physically, it seems clear that a long interval is more likely to contain
that chosen point than is a short one. Building on that insight, it seems
reasonable to make a specific mathematical assumption:

The probability that a point lies in a subinterval A of Ω
should be proportional to the length of A.

This means that there is some constant c such that for any subinterval A of
Ω,

P(A) = c length(A). (3.2)

Definition 3.2 (Uniform distributions on subsets of the real line).
Let Ω be a subset of the real line which is an interval, or the union of a finite
number of intervals.

Let P be a probability distribution on Ω such that for some constant c,
equation (3.2) holds for every subinterval A of Ω.

Then we say that the probability distribution P is the uniform distribu-
tion on Ω.
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When using Definition 3.2, how do we find the constant c in equation
(3.2)?

For simplicity, let’s assume that Ω is an interval.
We also must have P(Ω) = 1, so equation (3.4) tells us that

c length(Ω) = 1,

i.e.

c =
1

length(Ω)
. (3.3)

We conclude that when A is a subinterval of Ω,

P(A) =
length(A)

length(Ω)
. (3.4)

Exercise 3.1. When Definition 3.2 holds, and Ω is not a single interval,
but is the union of several disjoint intervals B1, . . . , Bk, what is the correct
formula for P(A), instead of equation (3.4)?

[Solution]

In an experiment, if you want to describe properties of positions, using
a ruler or some other measuring device, you will likely describe one or more
subintervals which are ranges specified by your measurements. Thus a typ-
ical event when choosing a random point seems likely to be a finite union
of intervals. If A denotes such an event, then there are disjoint intervals
I1, . . . , Im such that

A = I1 ∪ . . . ∪ Im. (3.5)

See Figure 3.1. Mathematically, other events are certainly possible, but we
don’t need to consider these at the moment.

Remark 3.3 (One-point events never happen here!). In the situation
of Definition 3.2, let ω be a point of Ω, and let A = {ω}.

Since A = [ω, ω], by formula (3.4) we have

P(A) =
length([ω, ω])

length(Ω)
= 0.
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Ω
I1 I2 I3 I4

Figure 3.1: A = I1 ∪ I2 ∪ I3 ∪ I4.

Event A never happens!
On the other hand, every time you perform the experiment, some location

is chosen. So some one-point event always happens!
This sounds like a nasty paradox. To see that there is really no problem,

let’s look at an analogous story about length.
Every one-point set has zero length, right? So the unit interval is made

up of sets which have zero length. But the good old unit interval has length
equal to one.

Is that a paradox? Well, the length of the unit interval is definitely not
found by adding up the lengths of the points that compose it. So the length
story seems ok.

Let’s go back to the experiment of choosing a point. Let c denote a
particular point. Suppose that you randomly choose a point from the interval
every second of every day for a trillion years. What’s the probability that
the particular point c will be one of the points that is chosen during that
period? The correct answer is zero, right?

We should keep in mind that the real line is an abstraction, and points
of the real line are not physical objects. We can often think about models as
if points of the real line are physical objects, but it’s not so.

Incidentally, when one-point events have zero probability, the probability
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of an interval does not depend on whether of not we include the endpoints.
That is, when choosing a random point,

P([a, b]) = P([a, b)) = P((a, b]) = P((a, b)). (3.6)

Why is that true? By additivity,

P([a, b]) = P([a, a]) +P((a, b)) +P([b, b])

P([a, b)) = P([a, a]) +P((a, b))

P((a, b]) = P((a, b)) +P([b, b]))

And we are assuming that P([a, a]) = P([b, b]) = 0.

Exercise 3.2. A certain factory makes special telephone cables. Occasion-
ally defects occur in the pieces of cable which are produced. The defects are
rare, and seem equally likely to occur at any point in a cable.

There are four communication centers, A,B,C,D. They are connected
using cables of the sort just described. One cable runs from A to B, another
from B to C, and a final cable runs from C to D. Cable AB is 3 miles long,
cable BC is 4 miles long, and cable CD is 2 miles long.

After the cables are installed, the staff discovers that a signal is unable to
pass from A to D via the three cables. However, a signal passes successfully
from B to C.

Assuming that there is only one defect in the three cables, the defect
must lie in either the cable from A to B or in the cable from C to D. Find
the probability that the cable from C to D is the one with the defect.

[Solution]

Exercise 3.3. A certain street is 600 feet long. Sam lost his lucky penny
somewhere along this street. He knows he lost it there, but has no idea in
what part of the street it has fallen.

His friends Alice, Bob and Clancy decide to search for for Sam’s coin.
Alice searches the first 300 feet, Bob searches the next 200 feet, and Clancy
searches the final 100 feet. The searchers are careful, so they will not miss
the coin.

(i) Let A be the event that the coin is located in the interval that Alice is
searching. Find P(A).
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(ii) Suppose that we learn the following additional information. After five
minutes, the coin has not yet been found. Alice has already searched
two-thirds of her section. Bob has searched half of his section, and
Clancy has searched three-quarters of his section.

Let A be the event that Alice eventually finds the coin. Based on all
the information we now have, find the probability of A.

This part of the problem is an example of a conditional probability
calculation, and we have not yet covered conditional probability. How-
ever, you can solve this problem by building a new model, with a new
sample space.

[Solution]

3.4 Probability densities on intervals

Let Ω be an interval of the real line, or perhaps a finite union of intervals.
We will think of Ω as part of a model for the experiment of choosing a

random point. Of course we have to have a probability distribution defined
too. So far we have talked about uniform distributions. But that might not
match the physical conditions of the experiment. It might be that the point
is more likely to be chosen from one region rather than another.

A probability distribution which is not uniform can be represented by
using a probability density function which is larger in some regions and smaller
in others.

As the name suggests, a probability density which is defined on a portion
of a line tells us the “probability per unit length”.

Definition 3.4 (Probability densities). A probability density f is a func-
tion such that

(i) f is nonnegative, and

(ii) the integral of f over Ω is equal to one.

If P is a probability distribution such that

P([a, b]) =

∫ b

a

f(x) dx, (3.7)
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for every interval [a, b] which is contained in Ω, then we say that f is a
probability density for P.

In calculus,
∫ b

a
f(x) dx is usually referred to as “the integral of f over the

set [a, b]”. Equation (3.7) says that the probability of [a, b] is given by the
integral of the probability density over the set [a, b].

Conditions (i) and (ii) in Definition 3.4 are needed because probabilities
are nonnegative, and because we must have P(Ω) = 1.

The integral of a function over a single point is of course equal to zero, so
when a probability distribution has a density, equation (3.6) holds. So when
there is a density we don’t need to be fussy about endpoints of intervals:

P([a, b]) = P([a, b)) = P((a, b]) = P((a, b)).

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Exercise 3.4: the probability of choosing from a set is the integral
of the density over the set.
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Exercise 3.4. Let Ω = [0, 3]. Let f be a probability density on Ω which is a
multiple of e−x. A point is chosen at random from [0, 3], with a probability
distribution given by the density f . Find the probability that the point is
chosen from the interval [1, 2]. See Figure 3.2.

[Solution]

Exercise 3.5 (Constant densities give uniform distributions). Let Ω
be a subset of the real line which is the union of a finite number of disjoint
intervals. Let f be a constant function on Ω such that the integral of f over
Ω is equal to one.

Let P be the distribution with density f . Prove that P is the uniform
distribution on Ω, in the sense of Definition 3.2.

[Solution]

A general form of Definition 3.4 will be given in Definition 15.5, The
general definition applies to a wide range of sample spaces, not just the real
line.

Remark 3.5 (With densities, one-point events never happen). We
noted in Remark 3.3 that in the case of a uniform probability distribution
on an interval, one-point events always have probability zero. The same is
true for any distribution that is given by a probability density. To see that,
consider equation (3.7) with b = a.

Since [a, a] = {a}, in this case equation (3.7) says that

P({a}) =
∫ a

a

f(x) dx,

and the integral over an interval of zero length is zero.

3.5 Cleaning up integral notations

Formulas are easier to understand if we simplify the notation.
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For example, in equation (3.7), unless we want to show the formula for f
explicitly, there is really no need to write f(x) dx in the traditional calculus
manner. It is clearer to just write

P([a, b]) =

∫ b

a

f. (3.8)

Even this notation can be improved. The best notation for the integral of f
over a general set A is:

integral of f over A =

∫
A

f. (3.9)

Thus equation (3.8) becomes

P([a, b]) =

∫
[a,b]

f. (3.10)

Actually, if equation (3.10) holds for all intervals [a, b], then for any event
A it is true that

P(A) =

∫
A

f. (3.11)

This form is convenient, but what does it mean, when A is not an interval?
Presumably we know what the event A means, or we wouldn’t be talking

about it. And so we know what P(A) means. But what about
∫
A
f?

The concept of integrating a function over a set actually makes sense for
lots of sets, not just sets which are intervals.

To see this physically, think about a wire whose mass density might vary
along the wire. The mass of any part of the wire is found by integrating
the mass density function over that part of the wire. This makes sense even
if the part of the wire that you are interested in consists of many separate
pieces. Just find the mass of each piece (by integrating the mass density)
and then add up the masses.

In calculus this is how we can find the integral of a function f over a set
A, if A is the union of two disjoint intervals [a, b] and [c, d]:∫

A

f =

∫ b

a

f +

∫ d

c

f. (3.12)
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For example, if we have to integrate a function which has a different formula
on different parts of an interval A, we often calculate the integral over A as
the sum of the integrals over the separate parts.

For general sets we can do the same thing. We can find the integral over
a set by integrating over the pieces of the set, and then adding up the results.
We will call this the additive property for integration over a set.

And notice that the additivity of integration over sets is exactly what we
need if equation (3.11) is used to define a probability distribution. After all,
if A = D1∪D2, where D1, D2 are disjoint events, the additivity of probability
says we must have P(A) = P(D1) + P(D2). That probability equation can
only true if: ∫

A

f =

∫
D1

f +

∫
D2

f. (3.13)

And that’s additivity for integrating over a set.
So we know how densities define probabilities, and we know how integra-

tion over a set works. That’s all we need to understand probability densities.
But let’s nail this down by giving a nice general definition of the process of
integrating over a set.

Our definition should capture the idea that the integral of f over a set A
is the integral using the values of f on the set A, and nothing else. Using that
idea, it is pleasantly simple to give a general definition of

∫
A
f , as follows.

Definition 3.6 (Integration over a set). Let f be a function and let A
be a set.

Define a new function g as follows:

g(x) =

{
f(x) if x ∈ A,

0 otherwise.
(3.14)

Then by definition ∫
A

f =

∫
g. (3.15)

We might say that g in equation (3.14) is formed by discarding the values
of f on Ac.

Does equation (3.13) follow from Definition 3.6? Sure, and it’s a pleasant
exercise. See Example 11.4 for a nice way to write down the argument.
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3.6. Choosing a point in the plane: throwing darts

Incidentally, when it comes to actually computing an integral over a set,
which notation you use won’t make much difference. But the modern

∫
A

notation seems clearer for thinking.

Remark 3.7 (Intervals characterize densities). Let Ω be an interval of
the real line, or perhaps a finite union of intervals.

Suppose you are studying a distribution P on Ω, and you come up with
a function f such that P([s, t]) =

∫
[s,t]

f for every subinterval [s, t] of the

sample space. Then by definition f is a valid density for P. Does that mean
that for any event you can go ahead and calculate P(A) using P(A) =

∫
A
f?

One would hope so, and happily that is actually true! Very convenient. We
won’t write down a formal proof, but it illustrates a general principle: there
are lots of intervals, and knowing that an equation is true for intervals is
good evidence that it holds in general.

We’ll return to this subject in Remark 9.12.

More examples of densities on the real line are given in Section 3.7.

3.6 Choosing a point in R2: throwing darts

Consider the experiment of throwing darts at a dart board. Assume that the
thrower is rather inaccurate, so the point where the dart hits is random. (If
the thrown dart misses the target completely, we will ignore that throw, and
consider that the experiment did not occur.)

The outcome of the experiment is the point of impact, i.e. the location
at which the dart hits the board. We can represent this outcome as a point
on an idealized copy of the dart board, which we take to be a region called
T in R2, where R2 is the set of all coordinates (x1, x2) in the plane, i.e. R2

is the set of all pairs of of real numbers.
The dart board region T is our sample space Ω in this model. An event

is then simply a sub-region of the dart board region. See Figure 3.3 for a
picture of Ω and an event A.

If the thrower under consideration is very inaccurate, for simplicity we
might assume that every part of the target has the same chance of being
hit. In that case it seems natural to assume that the probability of hitting
a particular region on the target is proportional to the area of the region.
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A

Ω = T

Figure 3.3: An event on the dart board

Since the probability of hitting the whole target must be 1 (remember that
we disregard any throw that hits elsewhere), this means that the probability
of hitting some region A of the dart board is given by:

P(A) =
area(A)

area(Ω)
. (3.16)

Like the formula for subsets of the real line which was given in equation (3.4),
equation (3.16) is a continuous analog of Theorem 2.22.

Definition 3.8 (Uniform distribution on a region in the plane). If a
probability set-function P is defined on subsets of a region T of the plane,
and is such that probability is proportional to area, it will be said to be a
uniform probability distribution on T .
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3.6. Choosing a point in the plane: throwing darts

Example 3.9 (Probability of missing the central region). Someone is
throwing darts at a target represented by a disc of radius 5, centered at the
origin of R2.

The point of impact (x, y) is random, with a uniform distribution on the
target.

Let A be the set of points (x, y) in the target such that
√
x2 + y2 > 2.

Since
√
x2 + y2 = r, the distance of the point (x, y) from the origin, A

represents the physical event that the dart lands more than two units of
distance from the center. See Figure 3.4.

A

Figure 3.4: A is the event that the dart misses the center region

Let us find P(A).
Since the probability distribution is uniform,

P(A) =
area(A)

area(T )
,

where T = Ω is the target region, and of course area(A) = area(T ) −
area(Ac) = 25π − 4π = 21π. Thus

P(A) =
21

25
.

97
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The next two exercises are mostly a test to see if you can still calculate
areas. It’s ok to skip them, as long as the statements of the questions make
sense to you.

Exercise 3.6. Let Ω be the rectangle consisting of all points x, y such that
0 ≤ x ≤ 2 and 0 ≤ y ≤ 5. Let P be the uniform probability distribution on
Ω, so that this sample space and distribution form a model for choosing a
point at random from Ω.

(i) Let A be the event that the chosen point (x, y) is such that x < y. Find
P(A).

(ii) Let B be the event that y < 4− 2x. Find P(A ∩B).

[Solution]

Exercise 3.7. Someone is throwing darts at a target represented by the unit
disc. The point of impact (x, y) is random, with a uniform distribution on
the target.

Let A be an event defined in terms of the height of the point of impact:
A is represented by the set of points (x, y) in the target such that − 1√

2
≤

y ≤ 1√
2
.

Find P(A).
[Solution]

Just as in the case of an interval, we can easily define probability densities
for regions in the plane. Two-dimensional integrals take more calculation
than one-dimensional integrals, but the ideas are the same.

3.7 More examples of densities

Readers likely don’t have an urgent need for more examples at the moment.
But it may be enlightening to glance over the examples here, and return
later, when using densities in later chapters.
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3.7. More examples of densities

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0
density f

Figure 3.5: Exercise 3.8

Exercise 3.8. For the experiment of choosing a number from the interval
[0, 3], suppose that points near 0 are more likely to be chosen, specifically that
the probability set-function is given by a density f of the form f(x) = c(3−x),
where c is some constant.

(i) Find c.

(ii) Calculate the probability that selected number is less than 1/2.
See Figure 3.5.
[Solution]

Exercise 3.9. Consider a probability model with sample space Ω equal to
[0, 4] and probability density f(t) = 1

8
t.

(i) Check that f is a probability density.

(ii) Let P be the probability set-function with density f . Suppose that a
random number t is selected. Let A be the event that (t − 1)2 > 2.
Find P(A).
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

(t− 1)2

Figure 3.6: Exercise 3.9

See Figure 3.6.
[Solution]

Exercise 3.10. Consider the probability model in Exercise 3.9. Using the
P with density f , let t be the randomly selected point. Let A be the event
that 2t− 2 ≤ (t− 1)2. Find P(A)

See Figure 3.7.
(You finally get to use equation (3.11) in a situation where A is not an

interval!)
[Solution]

Remark 3.10 (To what extent is the probability density unique?).
The purpose of a density f is to define a probability set-function P.

If one just changes f at few points, it makes no difference in any integral
involving f , and so it makes no difference in the definition of P. So such a
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2

2

4

6

(t− 1)2

2t− 2

Figure 3.7: Exercise 3.10

modified function works, i.e. is a correct probability density for the probabil-
ity set-function P. It is just as valid as the original function f , even though
it may have a more cumbersome definition.

We might think about the density f as a kind of probability machine.
One turns the crank on this machine (i.e. integrates f) to get a probability.
That is the sole purpose of f , its raison d’être. Any other function h such
that

∫
A
h =

∫
A
f for all events A also deserves the honor of being called a

probability density for P.

Example 3.11 (A uniform density on an infinite interval?). Much
as in Example 2.19, consider a constant probability density f on an infinite
interval, like [0,∞) for example. Does such a density make sense?

Let k be the constant value of f . k is a nonnegative number since f is
a density. Since

∫∞
0
f =

∫
Ω
f = P(Ω) = 1, k cannot be zero. On the other

hand, since

1 ≥ P([0, n]) =

∫
[0,n]

f = k n,

101



Chapter 3. Models with continuous sample spaces

for every n, we are forced to conclude that k must be zero. This contradiction
shows that a constant probability density on an infinite interval does not
exist.

A nonconstant probability density on an infinite interval is certainly pos-
sible, as the next exercise illustrates.

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 3.8: f(x) = ce−.8x

Exercise 3.11 (The exponential density). Let λ be a positive constant.
Let f(x) = ce−λx for x ≥ 0, f(x) = 0 otherwise. Assuming f is a probability
density on R, find c.

See Figure 3.8.
[Solution]

Exercise 3.12. Let α and β be positive constants. Let f(x) = ce−αx for
x > 0, f(x) = ceβx for x < 0. Assuming f is a probability density on R, find
c.
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2 1 1 2 3 4

0.1

0.2

0.3

0.4

0.5

Figure 3.9: α = .8, β = 1.3

See Figure 3.9.
[Solution]

3.8 Solutions for Chapter 3

Solution (Exercise 3.1). Since Ω = B1∪ . . .∪Bk, and the sets B1, . . . , Bk

are disjoint, we know by additivity that

P(Ω) = P(B1) + . . .+P(Bk).

But P(Ω) = 1, and by equation (3.2) we know that P(Bi) = c length(Bi).
Thus

1 = length(B1) + . . .+ length(Bk),

so

c =
1

length(B1) + . . .+ length(Bk)
.
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Replacing c in equation (3.3) by this value gives the correct form of equa-
tion (3.4):

P(A) =
length(A)

length(B1) + . . .+ length(Bk)
. (3.17)

Remark 3.12. You could extend the definition of length to include sets
which are not intervals. So in the situation of this problem, when Ω is the
union of disjoint intervals B1, . . . , Bk, we could agree to define

length(Ω) = length(B1) + . . .+ length(Bk).

Then equation (3.4) would still be valid.

Solution (Exercise 3.2). Choose numbers a, b, c, d such that the length of
[a, b] is equal to the length of the cable from A to B, and the length of [c, d]
is equal to the length of the cable from C to D. Choose the numbers so that
the intervals [a, b] and [c, d] are also disjoint.

Let Ω = [a, b] ∪ [c, d].
We can think of a point in one of the intervals [a, b], [c, d] as a position

coordinate which describes the possible location of the cable defect.
Let P be the uniform probability distribution on Ω.
Let H represent the event that the defect lies in the cable from C to D.

Then H = [c, d].
By equation (3.17),

P(H) =
length(H)

length([a, b]) + length([c, d])
=

d− c

(b− a) + (d− c)
=

2

3 + 2
=

2

5
.

Solution (Exercise 3.3). Let Ω be the union of disjoint intervals U, V.W ,
where length(U) = 300, length(V ) = 200, and length(W ) = 100.

We can think of a point in one of the intervals U, V,W as a position
coordinate which describes the possible location of the lost penny.

Let P be the uniform distribution on Ω.

(i) The abstract event representing A is U .

P(U) =
length(U)

length(Ω)
=

300

600
=

1

2
.

104



3.8. Solutions for Chapter 3

(ii) Let Ū , V̄ , W̄ be the unsearched parts of U, V,W , respectively. We will
assume that these unsearched parts are intervals. (If the unsearched parts
were made up of many pieces, the same method would work, it would just
take longer to write down.)

Then Ū , V̄ , W̄ are intervals with length(Ū) = (1/3)length(U) = 100,
length(V̄ ) = (1/2)length(U) = 100, length(W̄ ) = (1/4)length(W ) = 25.

Now let the sample space be Ω̄ = Ū ∪ V̄ ∪ W̄ . This represents the
unsearched road.

A point in Ω̄ represents the possible position of the missing coin, in the
unsearched road.

The original description of the problem gives no reason to treat any sec-
tion of the whole road differently from any other section. The decision about
where to search for the coin does not seem connected in any way to the actual
location of the coin. So it seems that there is still no reason to treat any
section of the unsearched road differently from any other section.

So the appropriate distribution for the location of the missing coin is the
uniform distribution on Ω̄. Let P̄ be the uniform distribution on Ω̄.

In this model, the event that Alice eventually finds the coin is Ū . Using
equation (3.17),

P̄(Ū) =
length(Ū)

length(Ū) + length(V̄ ) + length(W̄ )
=

100

100 + 100 + 25
=

4

9
.

Solution (Exercise 3.4). The requested probability is P([1, 2]), where the
density for P is given by ce−x on [0, 3], for some constant c.

Since P(Ω) = 1, ∫ 3

0

ce−x dx = 1,

so

1 = −ce−x

∣∣∣∣3
0

= c(1− e−3).

Thus

c =
1

1− e−3
.

Thus

P([1, 2]) =

∫ 2

1

ce−x dx = −ce−x

∣∣∣∣2
1

= c(e−1 − e−−2) =
e−1 − e−2

1− e−3
.
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Solution (Exercise 3.5). We are told that f is a constant function. Let c
be the vaue of f .

Let A be any subinterval of Ω. Then∫
A

f =

∫
A

c.

From calculus we know that integrating c over an intervalA gives c length(A).
We are given that f is a probability density for P. Thus P(A) =

∫
A
f .

We have shown that P(A) = c length(A) for every subinterval A,
By Definition 3.2, P is the uniform probability distribution on Ω.

Solution (Exercise 3.6).

(i) The set Ac = {(x, y) : y ≤ x}∩Ω is a triangle with base 2 and altitude
2. Hence its area is (1/2)4 = 2. The set Ω is a 2× 5 rectangle, so its area is
10. Thus P(Ac) = 2/10 = 1/5, and so P(A) = 4/5.

Alternatively, note that

area(A) =

∫ 2

0

∫ 5

x

1 dy dx =

∫ 2

0

(5− x) dx =
−(5− x)2

2

∣∣∣∣2
0

= −9

2
+

25

2
= 8.

Thus P(A) = area(A)/area(Ω) = 8/10 = 4/5.

(ii) The line y = 4− 2x crosses the line y = x at the point (4/3, 4/3).
Let’s find the area of (A ∩ B)c. The integral of a function of the form

mx+ b over an interval is equal to the length of the interval times the value
of the function at the midpoint. Thus

area( (A∩B)c ) =

∫ 4/3

0

(4− 2x) dx+

∫ 2

4/3

x dx =
4

3

(
4− 2

(
2

3

))
+
2

3

(
5

3

)
=

14

3
.

Hence

P(A ∩B) =
area(A ∩B)

area(Ω)
=

16
3

10
=

16

30
=

8

15
.

Solution (Exercise 3.7). Let M+ =
{
(x, y) : y > 1√

2

}
∩ Ω, and let M− ={

(x, y) : y < − 1√
2

}
∩ Ω.

Then A = Ω− (M+ ∪M−), so area(A) = π − area(M+)− area(M−) =
π − 2 area(M+).
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Let S be the square with vertices ( 1√
2
, 1√

2
), ( 1√

2
,− 1√

2
), (− 1√

2
,− 1√

2
), (− 1√

2
, 1√

2
).

Then Ω−S is the union of four regions, M+ and three other regions with
the same area as M+. Hence

π − 4 = 4 area(M+),

so

area(M+) =
π − 4

4
.

Thus

area(A) = π − 2 area(M+) = π − π − 4

2
=
π

2
+ 2.

Hence

P(A) =
area(A)

area(Ω)
=

π
2
+ 2

π
=

1

2
+

2

π
.

Solution (Exercise 3.8).

(i)

1 = P(Ω) =

∫ 3

0

c(3− x) dx = −c(3− x)2

2

∣∣∣∣3
0

=
9

2
.

Thus c = 2/9.

(ii) The probability is∫ 1/2

0

cf(x) dx =
2

9

∫ 1
2

0

(3− x) dx = −1

9
(3− x)2

∣∣∣∣1/2
0

=
9−

(
5
2

)2
9

=
11

36
.

Solution (Exercise 3.9).

(i) f is clearly nonnegative on Ω, so we only need to check that
∫
Ω
f = 1.∫

Ω

f =

∫ 5

0

1

8
t dt =

1

16
t2
∣∣∣∣4
0

=
42

16
= 1.

(ii) We need to write A more explicitly.
So we must rewrite the inequality (t− 1)2 > 2 in an appropriate form.
If t ≥ 1, then t− 1 ≥ 0, and (t− 1)2 > 2 is equivalent to t− 1 >

√
2, i.e.

t > 1 +
√
2.

If t < 1, then t − 1 < 0, so 1 − t > 0, and (t − 1)2 > 2 is equivalent to
1− t >

√
2, i.e. t < 1−

√
2.
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Combining these statements with the fact that 0 ≤ t ≤ 4, we see that
A = (1 +

√
2, 4].

Thus

P(A) =

∫ 4

1+
√
2

1

8
t dt =

t2

16

∣∣∣∣4
1+

√
2

=
1

16

(
16−

(
1 +

√
2
)2)

=
1

16

(
16−

(
1 + 2

√
2 + 2

))
=

1

16

(
13− 2

√
2
)
.

Solution (Exercise 3.10). We could consider cases, as in the previous
problem, but perhaps it’s faster to rewrite the inequality which defines A in
a different way first. A is the set of t such that (t− 1)2 − 2t+ 2 ≥ 0.

This inequality says t2 − 4t+ 3 ≥ 0, i.e. (t− 1)(t− 3) ≥ 0.
The polynomial (t−1)(t−3) is zero at t = 1 and t = 3, positive for t < 1,

positive for t > 3, and negative otherwise.
Hence A = [0, 1] ∪ [3, 4], and so

P(A) =

∫ 1

0

1

8
t dt+

∫ 4

3

1

8
t dt =

1

16

(
t2
∣∣∣∣1
0

+ t2
∣∣∣∣4
3

)
=

1

16
(1−0+16−9) =

8

6
=

1

2
.

Solution (Exercise 3.11). Since

1 =

∫ ∞

−∞
f = c

∫ 0

−∞
0 dx+ c

∫ ∞

0

e−λx dx = c
1

−λ

∣∣∣∣∞
0

e−λx =
c

λ
,

we must have c = λ.

Solution (Exercise 3.12). Since

1 =

∫
Ω

f = c

∫ ∞

0

e−αx dx+c

∫ 0

−∞
e−βx dx = c

1

−α

∣∣∣∣∞
0

e−αx+c
1

β

∣∣∣∣0
−∞

eβx =
c

α
+
c

β
,

we must have

c =
1

1
α
+ 1

β

=
αβ

α + β
.

Note that the answer here agrees with the answer to Exercise 3.11 if we
set λ = α and let β → ∞. Why should that be the case?
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Conditional probability

4.1 Conditional probability defined

A

B

Ω

Figure 4.1: Events on the dart board

Consider any experimental situation, and any possible events A,B for
this experiment. Suppose that, based on your knowledge of the experimental
setup, you know the value of probabilities such as P(B) and P(A).
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Now suppose the experiment has been performed. Although you do not
yet know the result, someone tells you that the event B did occur. This
extra knowledge, combined with what you already knew, gives you a new
experimental situation, and a new probability for the event A. We call this
new probability “the conditional probability that A occurred given that
B occurred”. This probability value is written as P(A |B).

How do you find P(A |B)?
As a simple example, we can think about the experiment of throwing

darts at a dart board, described in section 3.6. The throw takes place, but
we are not looking. We ask someone a specific question: “Did the dart land
in region B?” (See Figure 4.1.). Imagine that the answer is “yes”, so we
have one additional piece of information about the experiment. We do not
have any other additional information.

The question is: what probability should we now assign to the event that
the dart landed in region A?

It should be emphasized that conditional probabilities are not different
from any other probabilities. Every probability is conditional on some infor-
mation! Mathematicians use the word “conditional” here merely to empha-
size the way in which your knowledge has changed from what you started
with.

We are currently thinking about physical probabilities for an actual ex-
periment. There is simple formula for the conditional probability .

Fact 4.1 (The conditional probability formula). Let A and B be phys-
ical events for some experiment. If P(B) ̸= 0,

P(A |B) =
P(A ∩B)

P(B)
, (4.1)

or equivalently
P(A ∩B) = P(B)P(A |B). (4.2)

If you construct a probability model for the experiment, you will define
theoretical probabilities for the abstract events in your model. The proba-
bilities P(A) in a valid model will be the appropriate probabilities based on
your initial knowledge. In the case of a probability model the conditional
probability formula holds by definition, but the definition must follow the
physical rule.
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Definition 4.2 (The conditional probability formula). Let A and B be
events in a model for some experiment. If P(B) ̸= 0, the P(A |B) is defined
by equation (4.1).

Both equation (4.1) and equation (4.2) are useful forms of the conditional
probability formula. We might call equation (4.2) the “mutiplied-through”
form of the conditional probability formula.

Much of our real-world knowledge about people or things can be regarded
as approximate forms of conditional probability assessments! For example,
if we are getting ready to deal with a person’s possible reactions to some
situation that might occur, we may be using a thought process analogous
to (4.2). B would represent the event that the situation occurs, and A would
represent the event that the person reacts in a particular way.

Example 4.3 (Computing conditional dart probabilities). Let’s go
back to the experiment of throwing darts (section 3.6). We said in section 3.6
that if the thrower is very inaccurate, one might use a model in which the
probability of hitting any region of the target is proportional to the area of
that region. (We also agreed that if the thrower misses the target entirely
then we will ignore the throw. )

In the model for this experiment, we will let Ω be the region in the plane
representing the target. For any region A inside the target, in our model
the set A is used to represent the event that the dart lands in A. We are
assuming that

P(A) =
area(A)

area(Ω)
. (4.3)

Now consider the target shown in Figure 4.1. Then P(A |B) is the prob-
ability that a dart which hits B also hits A. Of course this can only happen
if the dart lands in A ∩B.

If you tell me that the dart hit B, and nothing else, then I don’t know
in what part of B the dart landed. So to understand P(A |B) it seems
appropriate to think of a new experiment, in which the target is B. In this
new experiment we ignore any throw which does not hit B. By the same
reasoning which made equation (4.3) seem valid, we now assume that

probability to hit A ∩B =
area(A ∩B)

area(B)
.
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So we suspect that P(A |B) is simply given by

P(A |B) =
area(A ∩B)

area(B)
. (4.4)

Is equation (4.4) consistent with the general conditional probability formula
given in equation (4.1)?

Well, using equation (4.3),

P(A ∩B)

P(B)
=

area(A∩B)
area(Ω)

area(B)
area(Ω)

=
area(A ∩B)

area(B)
.

So yes, (4.4) is exactly what equation (4.1) tells us.

4.2 Why the conditional probability formula

holds

Like additivity, the conditional probability formula is a fundamental rule in
probability. In this section we will spend some time justifying this formula.

Thinking about information To show that equation (4.1) is correct phys-
ically, think first about events S1 and S2 which are subsets of B. Physically,
this means that S1 and S2 are special cases of event B.

Suppose that P(S1) = P(S2). This means that, based on everything you
know initially, these two events are equally likely.

If someone tells you now that B occurred, does that extra piece of infor-
mation give you any reason to believe that one of the events S1, S2 is now
more likely than the other? It is hard to see how that could be the case.
The extra information does not treat either event differently. You may know
ways in which events S1 and S2 differ from each other physically, but you
already knew that when you initially decided that S1 and S2 had the same
probability.

Now let’s think more generally, about any events S1 and S2 which are
subsets of B. If we learn that B occurred, that extra information does not
seem to treat either event differently. So it is plausible that the relative sizes
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4.2. Why the conditional probability formula holds

of P(S1 |B) and P(S2 |B) should be the same as the relative sizes of P(S1)
and P(S2). In other words, it is plausible that for some constant c,

P(S |B) = cP(S) (4.5)

for every event S which is a subset of B.
Applying equation (4.5) with S = B, we see that P(B |B) = cP(B), and

of course P(B |B) = 1! Thus c = 1/P(B), and so we have

P(S |B) =
P(S)

P(B)
(4.6)

for every event S which is a subset of B.
That’s the story when the event S is a subset of B. What about the

general case, when we are interested in an event A which need not be a
subset of B?

For any event A, we can see that A is the union of the two parts, the part
S = A∩B that is contained in B and the part A−B that is outside B: that
is,

A = S ∪ (A−B).

The rules of probability apply to conditional probability, so conditional
probability is additive:

P(A |B) = P(S |B) +P(A−B |B), (4.7)

Since S = A ∩B is a subset of B, we know by equation (4.6) that

P(S |B) =
P(S)

P(B)
=

P(A ∩B)

P(B)
. (4.8)

Also, since B and A − B are disjoint, they are mutually exclusive. If B
happens then A−B certainly does not happen. That is,

P(A−B |B) = 0.

Then equation (4.7) says that P(A |B) = P(S |B). Hence equation (4.8)
tells us that equation (4.1) holds, which is the general conditional probability
formula.

Thinking about frequencies We’ve given one justification for the condi-
tional probability formula. Now let’s give another, this time using frequen-
cies.
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Chapter 4. Conditional probability

The frequency interpretation applies to conditional probabilities, since
it applies to all probabilities. So we can use the frequency interpretation
(Probability Fact 1.1) to derive a formula for P(A |B).

The frequency interpretation says that, when the experiment is per-
formed, P(B) is roughly equal to the fraction of the time that we see B
occur. The frequency interpretation for probabilities given B tells us that if
we only look at times when B occurs, the fraction of the time that we see A
occur is P(A |B).

If we want to know the fraction of the time that we see both A and B
occur, we can find this number as a “fraction of a fraction”: take the fraction
of the time that B occurs, and multiply that fraction by the fraction of those
times when we see A occur. Replacing the fractions by the corresponding
probabilities, this says that

P(A ∩B) = P(B)P(A |B).

This is the multiplied-through form of the conditional probability formula,
equation (4.2).

This completes the derivation of the conditional probability formula from
the frequency interpretation of probability. The next example just writes out
the same “fraction of a fraction” computation more explicitly.

Example 4.4 (Writing out the fractions). P(A |B) is the frequency
with which A occurs in the situation in which the original experiment was
performed and B occurred. The frequency with which A occurs in this
experimental situation is the right approximation to P(A |B).

To get this frequency, repeat the original experiment many times, say
N times, but only record results for those times when the physical event B
occurs. The fraction of those recorded times for which the physical event A
occurs will give us a good approximation to P(A |B).

We are assuming that N is large. Suppose that during the N repetitions
of the experiment, the physical event B occurred M times.

By the frequency interpretation for the unconditional probability, we
know it is likely that

M

N
≈ P(B). (4.9)

We are only interested here in the case that P(B) > 0, so that B can happen.
When P(B) > 0, equation (4.9) tells us thatM will be large when N is large.
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4.3. Using the conditional probability formula

Suppose that during the M times that B occurred, the physical event A
occurred L times.

By the frequency interpretation for the conditional probability, it is likely
that

L

M
≈ P(A |B). (4.10)

Thus

P(A |B) ≈
L
N
M
N

. (4.11)

Let’s look at the fraction L/N . L counts the times when B occurred
and A occurred. Thus, by the frequency interpretation for the unconditional
probability, we know it is likely that

L

N
≈ P(A ∩B). (4.12)

Apply equations (4.9) and (4.12) to equation (4.11). This allows us to
conclude:

P(A |B) ≈ P(A ∩B)

P(B)
. (4.13)

Equation (4.13) is based on approximations that become more and more ac-
curate as the number of trials increases. Thus the approximation in equation
(4.13) tells us that P(A |B) and P(A∩B)

P(B)
must be equal, and so equation (4.1)

holds.

4.3 Using the conditional probability formula

Exercise 4.1. In the experiment described in Exercise 2.19, you are choosing
a jelly bean from a bowl containing 75 yellow beans, 53 red beans, 27 purple
beans, and 18 green beans.

Let A be the event that the selected bean is yellow, red or green. Let B
be the event that the selected bean is red, purple or green.

Find P(A |B), using the conditional probability formula.
[Solution]
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Exercise 4.2. In the setting of Exercise 4.1, when the experiment consists
of choosing two jelly beans in succession, let B be the event that the first
bean chosen is red.

(i) Find P(B).

(ii) From the description of the experiment, R is the event that both beans
chosen are red. Thus P(R |B) is the probability of choosing a a red
bean in the second selection, from the remaining beans, after the first
selection resulted in a red bean. Use this observation to find P(R |B)
by applying Theorem 2.22 to an appropriate population, without using
the conditional probability formula.

(iii) Fnd P(R) using the multiplied-through form of the conditional proba-
bility formula, equation (4.2).

Check that your answer agrees with the probability found in Exer-
cise 2.21.

[Solution]

Remark 4.5 (Conditional probabilities are often simpler). The cal-
culation in part (ii) of Exercise 4.2 illustrates a general fact: a conditional
probability often holds in an experimental situation which is simpler than
the original model. While calculating such a conditional probability, we tem-
porarily live in the simpler model, and forget everything else. Then, as in
Exercise 4.2, we can return to the original model, and use the conditional
probability we have found to calculate something there.

Exercise 4.3. In the experiment of Exercise 4.2, suppose you learn that the
second jelly bean chosen was purple. What is the probability that the first
jelly bean chosen was also purple?

[Solution]
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4.3. Using the conditional probability formula

Exercise 4.4. Let A,B be events with P(B) ̸= 0. Show that

P(A |B) = P(A ∩B |B). (4.14)

[Solution]

Just for fun, the next exercise takes the “fraction of a fraction” idea to a
new level.

Exercise 4.5 (Telescoping conditional probabilities). Simplify

P(A)P(B |A)P(C |A ∩B)P(D |A ∩B ∩ C).

It is assumed that P(A), P(A ∩B), and P(A ∩B ∩ C) are nonzero.
[Solution]

The mathematical properties of conditional probability mirror the way
we think. The next exercises illustrate this, and provide some practice in
manipulating conditional formulas.

Exercise 4.6 (Conditioning on an additional event). Suppose that
B,C are events for some probability model. Suppose that P(B) ̸= 0. For
any event D, define Q(D) = P(D |B). This is just to simplify notation.

When using Q as your distribution, the fact that B occurred is “built
into” your probability model.

Assume that P(B ∩ C) ̸= 0.
Show that Q(C) ̸= 0, and that for any event A we have

Q(A |C) = P(A |B ∩ C). (4.15)

[Solution]

The event B ∩ C is the event that B occurred and C occurred. Thus
Equation (4.15) is exactly what we expect from the idea that a conditional
probability uses additional information, since in calculating Q(A |C) we are
adding still more information to the extra information that we already used
to calculate Q(A).
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Exercise 4.7 (Conditioning on stronger information). Suppose that
B,C are events for some probability model. Suppose that P(B) ̸= 0. For
any event D, define Q(D) = P(D |B).

Let C be an event with P(C) > 0, such that C is a subset of B.
Show that Q(C) ̸= 0, and that for any event A we have

Q(A |C) = P(A |C). (4.16)

[Solution]

Exercise 4.8. Let A,B be events in some experiment.
Let C be an event such that P(B ∩ C) ̸= 0. Show that

P(A ∩ C |B ∩ C) = P(A |B ∩ C). (4.17)

[Solution]

4.4 Total probability

The name of the next theorem seems a little pretentious, since the statement
is a simple consequence of additivity and the conditional probability formula.
However, breaking a problem up into cases is a fundamental technique, and
is frequently used.

Theorem 4.6 (The Law of Total Probability). Let D1, . . . , Dk be dis-
joint events with union D, and let M be an event. Then

P(M ∩D) =
k∑

i=1

P (Di)P (M |Di) . (4.18)

In this equation, it appears that we must assume that P(Di) > 0, so that
P(M |Di) will be defined. However, we can use the equation in all situations,
with the following convention: if P(Di) = 0 then we simply interpret the
whole term P (Di)P (M |Di) as zero.
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4.4. Total probability

When applying this theorem, we typically look for cases Di where we
know P (M |Di). So we break up problems into simpler parts.

Often the event M is such that M ⊂ D1 ∪ . . . ∪Dk. Then M ∩D = M ,
so equation (4.18) becomes

P(M) =
k∑

i=1

P (Di)P (M |Di) , (4.19)

Proof. We checked in Exercise 2.26 that intersection distributes over union,
so we know that

M ∩D =
k⋃

i=1

M ∩Di. (4.20)

(Actually, one likely doesn’t even think about “the distributive property”
when writing down equation (4.20). Instead one can just think about cases,
i.e. think about the possible ways thatM ∩D can happen: the possible ways
are M ∩D1, . . . ,M ∩Dk.)

Since D1, . . . , Dk are disjoint, additivity gives

P(M ∩D) =
k∑

i=1

P (M ∩Di) . (4.21)

Consider a term P(M ∩ Di) on the right side of equation (4.21). If
P (Di) ̸= 0 then

P(M ∩Di) = P(Di)P(M |Di) (4.22)

by the conditional probability formula given in equation (4.2).
If P(Di) = 0, then, since M ∩Di ⊂ Di we also have P(M ∩Di) = 0. So

equation (4.22) holds with P(Di)P(M |Di) replaced by zero.
This gives equation (4.18).

The following simple corollary is sometimes convenient.

Corollary 4.7. For some experiment, let D1, . . . , Dk and M be events. Let
D be the event that at least one of D1, . . . , Dk occurs.

Suppose that at most one of the events D1, . . . , Dk can occur, and that
P (M |Di) = p for i = 1, . . . , k, where p is some number.

Then P(M |D) = p.
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Chapter 4. Conditional probability

Exercise 4.9. Prove Corollary 4.7.
[Solution]

Does Corollary 4.7 seem physically obvious? (Think of a hall with many
doors, and suppose that for every door i, a hungry tiger waits behind that
door with probability p. Given that you must pass out through one of the
doors, is it hard to calculate your chance of survival?)

Example 4.8 (Sampling without replacement). Consider the setting
described in Exercises 4.1 and 4.2, where the bowl contains 75 yellow beans,
53 red beans, 27 purple beans, and 18 green beans.

As in Exercise 4.2, think about an experiment with two steps. In the first
step we stir the bowl, and then select one jelly bean randomly, with no jelly
bean in the bowl favored. We note the color of the chosen jelly bean, but do
not replace the jelly bean in the bowl.

In the second step, we stir the bowl again, and then select a second jelly
bean, again with no jelly bean favored.

Let A1 be the event that the bean selected in step 1 is yellow or red. Let
B2 be the event that the bean selected in step 2 is yellow or green. We would
like to find P (A1 ∩B2).

Because the bowl is stirred, we are confident that the only way the first
step can affect the second step is by altering the numbers of jelly beans of
each color in the bowl.

Let Y1 be the event that the first bean selected is yellow, and let R1 be
the event that the first bean selected was red. Then A1 = Y1 ∪R1.

Let Y2 be the event that the second bean selected is yellow, and let G2

be the event that the second bean selected was green. Then B2 = Y2 ∪G2.
We could solve this problem by choosing a sample space consisting of all

possible pairs of beans that could be selected, and then adding up probabili-
ties of outcomes. Instead we will use the law of total probability here, which
says that

P (A1 ∩B2) = P (Y1)P (B2 |Y1) +P (R1)P (B2 |R1) .

Remember, the initial numbers of jelly beans in the bowl are as follows:
75 yellow beans, 53 red beans, 27 purple beans, and 18 green beans.

By Theorem 2.22, P (Y1) = 75/173 and P (R1) = 53/173.
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4.4. Total probability

We can also use Theorem 2.22 to find P (B2 |Y1) and P (B2 |R1). The
point here is that step 2 of the experiment is a “self-contained” sampling
experiment, that is, a sampling experiment that can be considered by itself.

Given Y1: Given Y1, we know that the bowl contains 74 yellow beans and
18 green beans, and 172 beans altogether. Thus there are 92 beans in the
bowl that are yellow or green. Thus by Theorem 2.22, P (B2 |Y1) = 92/172.

Given R1: Similarly, given R1, we know that the bowl contains 75 yellow
beans and 172 beans altogether, and there are 93 beans in the bowl that are
yellow or green. Thus by Theorem 2.22, P (B2 |R1) = 93/172.

The rest is arithmetic.

P (A1 ∩B2) =
75

173

92

172
+

53

173

93

172
.

Exercise 4.10. Solve part (ii) of Exercise 3.3 again, applying the Law of
Total Probability (Theorem 4.6). The natural sample space for part (i) of
Exercise 3.3 is an interval of length 600. Use that as your sample space when
applying the Law of Total Probability in part (ii).

[Solution]

Exercise 4.11. There are two boxes on the table. Box 1 contains 10 red
balls and 30 green balls. Box 2 contains 50 red balls and 10 green balls. Our
experiment takes place in two steps.

(1.) First, toss an unfair coin. The probability of a head is 2/3 for this
unfair coin.

(2.) If the result of the coin toss is a head, choose one ball at random from
Box 1. Otherwise, choose one ball at random from Box 2. All the balls
in Box 1 have the same chance to be selected. All the balls in Box 2
have the same chance to be selected.

Let A be the event that green ball is selected.
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Chapter 4. Conditional probability

(i) Find P(A), using the following sample space argument.

Take Ω to be the set of all pairs (i, b), where i is the number of the
box that is chosen, and b identifies the ball that is chosen from Box i.
Let C1 be the event that Box 1 is chosen, and let C2 be the event that
Box 2 is chosen. You may assume from the physical description that
every outcome in C1 has the same probability, and every outcome in
C2 has the same probability. The physical description also tells us the
values of P (C1) and P (C2). Do not use the conditional probability
formula or the law of total probability.

(ii) Find P(A) again, using the law of total probability.

[Solution]

We will return to the next exercise in Example 9.15. There we will see
how to use random variable concepts to obtain more information.

Exercise 4.12 (Choosing from overlapping intervals). A fair coin is
tossed. Suppose that if the result of the coin toss is a head, a point is chosen
at random from [0, 3], with no point favored. If the result of the coin toss is a
tail, a point is chosen at random from [2, 4], with no point favored. (Uniform
distributions on continuous intervals are discussed in Section 3.3.)

Let J be an interval of the real line, and let A be the event that the
chosen point is in J . Using the Law of Total Probability, find P(A) in each
of the following four cases: (i) J ⊂ [0, 2), (ii) J ⊂ [2, 3), (iii) J ⊂ [3, 4], (iv)
J disjoint from [0, 4].

You are not required to define a sample space for this experiment. In your
solution you can simply work with the laws of probability, without specifying
a sample space.

Notice that if you want to have a sample space that represents every-
thing that happens in the two steps of the experiment, it will be a bit more
complicated than usual.

[Solution]
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4.5 The theorem of Bayes

Theorem 4.9 (Bayes). Let A and B be events for some probability model,
such that P(A) > 0 and P(B) > 0. Then

P(A |B) =
P(A)P(B |A)

P(B)
. (4.23)

Theorem 4.9 is an immediate consequence of the conditional probability
formula, applied twice. First write P(A ∩ B) as P(A)P(B |A) using equa-
tion (4.2). Then find P(A |B) using equation (4.1).

The formula in equation (4.23) was found by Thomas Bayes, and pub-
lished in a posthumous volume of his work in 1763. Although this formula
bears his name, the same formula was independently found by Laplace. De-
spite its simplicity, the formula is frequently used, often repetitively as ex-
perimental results are accumulated.

If we think of A as describing a “cause”, and B as describing an “effect”
due to this cause, we might think of the formula of Bayes as showing how to
calculate the probability of a possible cause when a certain effect is observed.

The quantity P(B) in the denominator of equation (4.23) can often be
calculated using the Law of Total Probability.

The number P(A) is sometimes called a “prior” probability, meaning
the probability of A before an experiment takes place, while P(A |B) is the
“posterior” probability of A, meaning that it is the probability of A after the
event B is observed in the experiment.

Notice that we need to have some idea of the value of P(A) to use Bayes.
Let’s write out a form of equation (4.23) using the Law of Total Proba-

bility. Let an eventM be a subset of the union of disjoint events D1, . . . , Dk.
Suppose that we observeM , and we wonder which of the events Dj occurred.
By equation (4.19),

P(Dj |M) =
P (Dj ∩M)

P(M)
=

P (Dj)P (M |Dj)∑k
i=1P (Di)P (M |Di)

. (4.24)

In ordinary life we frequently use reasoning similar to the Theorem of
Bayes. Consider the following.
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Example 4.10 (An everyday mystery). Grandma has just finished bak-
ing one of her delectable cherry pies. She places it in an open window to
cool. Shortly thereafter, she observes that the pie is missing. There are sev-
eral people who may have passed her window during the interval. Only one,
however, has an extreme fondness for pie. Rolling pin in hand, Grandma
knows where to focus the next stage of her investigation.

Exercise 4.13 (Putting some numbers on Example 4.10). In the sit-
uation of Example 4.10, the pie was only in the window for a short period
of time. Suppose that there are only three people who could have passed
by Grandma’s window during this time period: Alice, Brandon, and Clyde.
Let A be the event that Alice passed by, and let B and C the corresponding
events for Brandon and Clyde. Grandma thinks it is very unlikely that two
people passed her window during this period, so she considers these events
to be disjoint.

Grandma originally had no reason to think any of the three people is more
likely than the others to pass by. She sets P(A) = P(B) = P(C) = δ, where
δ is some positive number. Here P represents the probability that Grandma
would have assigned to an event, before she discovers that her pie is missing.

Let T be the event that the pie in the window is taken. Alice and Brandon
are highly reliable and have never shown any tendency to eat excessively
large quantities of pie. Clyde, on the other hand, has a bad track record.
Based on past events, Grandma sets P(T |A) = .01, P(T |B) = .01, and
P(T |C) = .5.

Calculate P(C |T ).
[Solution]

Grandma can deal with her problem without using numbers, of course.
In other situations the precision of mathematical calculation may be needed,
as the next exercise illustrates.

Exercise 4.14 (A positive result in a test for disease). A rare but
serious disease is present in approximately .01% of the people in a large
population, i.e. a fraction 1/10000 of the population have the disease.
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There is a test for this disease. A positive result for this test is an indi-
cation of disease.

The test is good but not perfect. When a healthy person is tested, the
probability of a false positive is .01, i.e. one percent.

For simplicity, assume that the test never misses an actual case of the
disease. That is, assume that the probability of a false negative is zero.

Suppose that someone is randomly selected from the population and
tested. The result of the test is positive. Find the probability that the
person has the disease.

[Solution]

Exercise 4.15. In the experiment of Exercise 4.11, suppose you learn that
a red ball was selected. Find the probability that the toss of the coin for this
experiment produced a head.

[Solution]

Exercise 4.16. Return to the experiment of Exercise 4.12.
Let B be the event that a point in the interval (2, 3) is obtained. Find

P(H |B).
[Solution]

Exercise 4.17 (Bayes and the chosen coin). (i) To practice using the
theorem of Bayes, let’s model a situation in which one of two coins is
randomly chosen and then tossed. As usual when tossing a coin, we’ll
think of getting a head as “success” for the toss. The coins are named
coin 1 and coin 2. Coin 1 has success probability 2/5 and coin 2 has
success probability 4/7. Suppose that each of the two coins has the
same probability to be chosen.

After the coin was chosen and tossed, you find that the result was a
tail. You don’t know which coin was tossed. Find the probability that
coin 2 is the coin that was tossed.

Before calculating this probability, decide whether you think the prob-
ability is greater than 1/2 or less than 1/2.

125



Chapter 4. Conditional probability

(ii) Suppose now that in addition to coin 1 and coin 2 we also have coin 3.
Like coin 2, this coin also has success probability 4/7. A new experi-
ment is carried out, in which one of these three coins is selected with
equal probability, and the selected coin is tossed. The result is a tail.
Find the probability that the selected coin had success probability equal
to 4/7.

[Solution]

The next exercise gives you a chance to practice with algebra and inequal-
ities. Even if you don’t do the problem, think about equation (4.25) and see
if it agrees with your own feelings about physical probabilities.

Exercise 4.18. Consider two coins, coin a and coin b. Coin a has success
probability pa, and coin b has success probability pb, where pa > pb. That is,
coin a is luckier than coin b.

Suppose now that one of these two coins is randomly selected. Let A
be the event that coin a is selected, and let B be the event that coin b is
selected.

Assume that P(A) > 0 and P(B) > 0, so either coin could be chosen.
If we don’t choose coin a then we must choose coin b. So of course P(A) +
P(B) = 1.

After the selection, suppose that the selected coin is tossed. Let H be
the event that this toss gives success. Show that P(H) > 0 and

P(A |H) > P(A). (4.25)

Thus obtaining a success with the coin makes you more confident that it is
the lucky coin.

[Solution]

4.6 Tree diagrams

Pictures are helpful in any field of mathematics. In probability problems it
can be helpful to represent events using a “tree of possibilities”, a.k.a. a tree
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diagram. Tree diagrams do not introduce any new concepts, but they can
assist us in seeing what is going on, when a computation involves several
events.

Drawing a tree diagram seems to be an art rather than a science, since
the goal is to display ideas visually within a limited space. We can only make
a few general remarks here, and then give some examples.

When using a tree diagram, we only need to draw the part of a tree that
represents events which we are interested in.

There is no general rule about whether a tree diagram will be useful.
When drawing your own diagram, just starting a tree may be enough to
suggest how to actually approach the problem, and you can switch to using
equations.

There is some standard terminology for describing tree diagrams. Every
tree has a root. The branches spread out from the root. The trees in tree
diagrams may be drawn upside down, with the root at the top, or lying on
one side! We’ll draw our diagrams here with the root on the left side.

Every branch has two ends. The ends of the branches are often called
“nodes”. The root is a node. A branch begins at one node and ends at
another, and you have to remember which is which (the starting node is the
one which is closer to the root).

In a probability tree diagram, the nodes represent events. The root of
the tree represents Ω. The ending node of any branch represents an event
which is a subset of the event represented by the starting node. So a branch
represents inclusion. And the end of one branch can be the starting node for
another branch. So tree diagrams can potentially be large.

If a branch starts with an event A and ends with an event B, then we
often label the connecting branch with the conditional probability P(B |A).
Each node along a chain of branches is always a subset of the earlier nodes
in the chain. A key fact: the probability of a node which lies at the end of
a chain of branches is equal to the product of the conditional probabilities
along the chain! (This follows from repeated use of the multiplied-through
form of the conditional probability formula.)

Figure 4.2 shows a small tree diagram for Exercise 4.2. Notice that only
the relevant parts of the tree are shown. Since this is such a simple situation,
a tree diagram is not needed, but the picture does show how trees work. Note
the informal labelling.

Let’s change Exercise 4.2. Instead of calculating the probability of two
red jelly beans, let’s find the probability of winding up with a red and a
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Ω P(Ω) = 1

r, r

r
53
173

52
172

P(r, r) = 1 · 53
173
· 52
172

Figure 4.2: Obtaining two red jelly beans, one at a time (Exercise 4.2).

green. Figure 4.3 shows a tree diagram for that calculation. To get the final
answer for this problem, note that you add the probabilities of two events:
getting a red and then a green, and getting a green and then a red. So you
add the probabilities associated with two paths on the tree, and the final
answer is

2 · 53 · 18
173 · 172

.

Notice that in a tree diagram, every fork creates nodes that represent
disjoint events. Thus nodes which are not on the same chain of branches
necessarily represent disjoint events. That’s why you add probabilities for
these nodes. Thus interpreting a tree diagram uses the Law of Total Proba-
bility, in an informal manner.

When looking at tree diagrams in probability books, you will notice var-
ious ways of labelling nodes in practical situations. Informality is the order
of the day, and making ideas clear is the priority.

If a branch starts at a node called A and ends at a node representing
A∩M , you may see the ending node labelled with “M”, rather than A∩M .
In other words, we often label a node using only the additional properties
which distinguish it from the preceding node. However, to make sense of
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Ω P(Ω) = 1

r, g

g, r

r

g

53
173

18
173

53
172

18
172

P(r, g) = 1 · 53
173
· 18
172

P(r, g) = 1 · 18
173
· 53
172

Figure 4.3: Obtaining one red and one green jelly bean, one at a time, in
either order.

the diagram you should think of the ending node as representing the event
A ∩M .

Example 4.11. Just for fun, let’s make a tree diagram which is a bit bigger
than the one shown in Figure 4.3. Think of randomly selecting jelly beans,
one at a time, from a bowl containing two red jelly beans, one yellow jelly
bean, and one green jelly bean. We want the red ones, so we will stop as
soon as we obtain both red beans!

Let An be the event that it takes exactly n tries to get both red ones.
Here n might be 2, 3, or 4. Suppose we would like to find P(An).

Figure 4.4 is a tree diagram for this problem, where getting a red bean
is represented by an upward branch, getting a yellow bean is represented by
a horizontal branch, and getting a green bean is represented by a downward
branch. To find P(An), add up the probabilities for the paths with length n.
This gives P(A2) = 1/6, P(A3) = 1/3 and P(A4) = 1/2.
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2
4

1
3

1
3

1
2

1
2

1
1

1
3 1

2 1
2

1
1

1
4
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3

1
2

1
2

1
1

1
3 2

2

1
1

1
4

2
3

1
2 1

2

1
1

1
3

2
2

1
1

Figure 4.4: Sampling until two red jelly beans are obtained, starting with 2
red, 1 yellow, and 1 green. Upward indicates a red bean, horizontal indicates
a yellow bean, and downward indicates a green bean. There is one path of
length two, four paths of length three, and six paths of length four.

A nice example of a tree diagram is given in [12], for the Monty Hall
problem (see Section 6.2 for information about Monty Hall).

4.7 Solutions for Chapter 4

Solution (Exercise 4.1). Since |B| = 53 + 27 + 18 = 98 and |Ω| =
75 + 53 + 27 + 18 = 173, P(B) = 98/173 by Theorem 2.22.

A∩B is the event that the selected bean is red or green. HenceP(A∩B) =
71/173 by Theorem 2.22.

By the conditional probability formula, P(A |B) = (71/173)/(98/173) =
71/98.

Solution (Exercise 4.2). There are 75 yellow beans, 53 red beans, 27
purple beans, and 18 green beans in the bowl.
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(i) There are 173 beans in the bowl, and 53 of them are red. By Theo-
rem 2.22,

P(B) =
53

173
.

(ii) After the selection of a red bean, the bowl contains 75 yellow beans,
52 red beans, 27 purple beans, and 18 green beans. This is the setting for
the second selection, given that B occurred. So we are solving part (i) again,
but in a new setting. By Theorem 2.22,

P(R |B) =
52

172
.

(iii) By the mutiplied-through version of the conditional probability for-
mula, equation (4.2),

P(R) = P(B)P(R |B) =
53

173

52

172
.

Notice that this agrees with the probability found in Exercise 2.21, which
we solved without using conditional probabilities.

Solution (Exercise 4.3). Let P1 be the event that the first jelly bean
selected was purple, and let P2 be the event that the second jelly bean selected
was purple. We would like to find P(P1 |P2).

We can use a sample space consisting of all pairs of jelly beans (j1, j2),
where j1 ̸= j2. Since there are 75+ 53+ 27+ 18 = 173 jelly bean altogether,
the sample space contains 173 · 172 sample points. The physical description
of the experiment tells us that all sample points are equally likely.

Let p denote the probability of a sample point. Then

p = 1
173·172 .

The number of purple jelly beans is 27, and the number of non-purple
jelly beans is 173− 27 = 146.

Since there are 27 purple jelly beans, P1 ∩ P2 contains 27 · 26 sample
points.

We have

P (P1 ∩ P2) = (27 · 26)p.
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Using the same sample space, a sample point in P2 consists of all sample
points (j1, j2), such that j2 is purple. There are 27 choices for j2, and for
each possible j2 there are 172 choices for j1. Thus P2 contains 172 ·27 sample
points, and so P (P2) = (172 · 27)p.

Hence

P (P1 |P2) =
P (P1 ∩ P2)

P (P2)
=

(27 · 26)p
(172× 27)p

=
27 · 26
172× 27

=
13

86
. (4.26)

Thinking backwards As an alternative method, we might ignore the
physical times at which the steps occur, and just think about the possible
pairs of jelly beans (j1, j2) that are obtained. One could think about building
a pair by (mentally) selecting j2 first, and then selecting j1. There are 173
choices for j2, and then, having chosen j2, there are 172 choices for j1.

Thus to find P (P1 |P2), think that a purple jelly bean has already been
chosen for j2. P (P1 |P2) is the probability that the choice of j1 now gives a
purple jelly bean. Thus

P (P1 |P2) =
26

172
=

13

86
, (4.27)

as before.

Notice that in equation (4.26) we apply the conditional probability for-
mula to obtain P (P1 |P2), while in equation (4.27) we think of a physical
situation in which P2 has occurred, and then perform a calculation to find
P(P1) in that situation.

Solution (Exercise 4.4). By the conditional probability formula (equation
(4.1)),

P(A ∩B |B) =
P(A ∩B ∩B)

P(B)
=

P(A ∩B)

P(B)
= P(A |B).

The first and last equalities hold by the conditional probability formula. The
middle equality holds because B ∩B = B.

Solution (Exercise 4.5).

P(A)P(B |A)P(C |A ∩B)P(D |A ∩B ∩ C)

= P(A)
P(A ∩B)

P(A)

P(A ∩B ∩ C)
P(A ∩B)

P(A ∩B ∩ C ∩D)

P(A ∩B ∩ C)
.

Cancelling does the rest.
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Solution (Exercise 4.6). By definition,

Q(C) =
P(C ∩B)

P(B)
.

Since we assume that P(C ∩B) > 0, Q(C) > 0 also.
By definition,

Q(A |C) = Q(A ∩ C)
Q(C)

=

P(A∩C∩B)
P(B)

P(B∩C)
P(B)

=
P(A ∩ C ∩B)

P(B ∩ C)
= P(A |B ∩ C).

Solution (Exercise 4.7). Since C ∩B = C, everything follows from Exer-
cise 4.6.

Solution (Exercise 4.8).

P(A ∩ C |B ∩ C) = P(A ∩ C ∩B ∩ C)
P(B ∩ C)

=
P(A ∩B ∩ C)
P(B ∩ C)

= P(A |B ∩ C).

The first and last equalities hold by the conditional probability formula. The
middle equality holds because C ∩ C = C.

Solution (Exercise 4.9). By total probability,

P(M ∩D) =
k∑

i=1

P (Di)P (M |Di) =
k∑

i=1

P (Di) p = pP(D).

Dividing by P(D) gives the result.

Solution (Exercise 4.10). As in the solution for part (i) of Exercise 3.3,
P(A) = 300/600 = 1/2.

Suppose that the situation described in part (ii) of Exercise 3.3 holds.
That is, Alice has searched two-thirds of her section, Bob has searched half
of his section, Clancy has searched three-quarters of his section. We use
probabilities based on this information.

Let N be the event that the coin has not yet been found.
Let A be the event that the coin is located in Alice’s interval, let B be

the event that the coin is located in Bob’s interval, and let C be the event
that the coin is located in Clancy’s interval. The events A,B,C are disjoint,
and A ∪B ∪ C = Ω. Part (ii) of Exercise 3.3 asks us to find P(A |N).
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By equation (4.19),

P(N) = P(A)P(N |A) +P(B)P(N |B) +P(C)P(N |C).

If event A holds, then the activities of Bob and Clancy have no influence on
the discovery of the coin.

Let I be Alice’s interval and let J the part of Alice’s interval which has
not yet been searched. Then P(N |A) is simply the probability that the coin
is located in J . Thus

P(N |A) = length(J)

length(I)
=

1

3
.

The values of P(N |B) and P(N |C) are found similarly.
This gives

P(N) =

(
1

2

)(
1

3

)
+

(
1

3

)(
1

2

)
+

(
1

6

)(
1

4

)
=

3

8
.

We need to find P(N |A). By the Conditional Probability Formula,

P(N |A) = P(N ∩ A)
P(N)

=

(
1
2

) (
1
3

)
3
8

=
4

9
.

Solution (Exercise 4.11).

(i) The probability of a head is given to be 2/3.
Hence P (C1) = 2/3. There are 40 outcomes in C1, each of equal proba-

bility. Hence every outcome in C1 has probability (2/3)(1/40).
P (C2) = 1/3. There are 60 outcomes in C2, each of equal probability.

Hence every outcome in C2 has probability (1/3)(1/60).
There are 30 outcomes in A ∩ C1, each with probability 1/60. Hence

P (A ∩ C1) = 1/2.
There are 10 outcomes in A ∩ C2, each of probability 1/180. Hence

P (A ∩ C2) = 1/18.
Thus P(A) = 1/2 + 1/18.

(ii)

P(A) = P (C1)P (A |C1) +P (C2)P (A |C2) =
2

3

30

40
+

1

3

10

60
=

1

2
+

1

18
.
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Solution (Exercise 4.12). Let H be the event that the coin toss gives
a head. Let T be the event that a tail is obtained. Since the coin is fair,
P(H) = P(T ) = 1/2.

Let J be subinterval of [0, 4]. Let A be the event that the chosen point is
in A.

By the Law of Total Probability,

P(A) = P(H)P(A |H) +P(T )P(A |T ). (4.28)

Case (i): J ⊂ [0, 2) When H occurs, the point is chosen from [0, 3) with
uniform probability on [0, 3). By equation (3.4),

P(A |H) =
length(J)

length([0, 3))
=

1

3
length(J). (4.29)

When T occurs, the point is chosen from [2, 4], so P(A |T ) = 0.
Substituting in equation (4.28),

P(A) =
1

6
length(J ∩ [0, 3)) (4.30)

Case (ii): J ⊂ [2, 3) When H occurs, the point is chosen from [0, 3) with
uniform probability on [0, 3). By equation (3.4),

P(A |H) =
length(J)

length([0, 3))
=

1

3
length(J). (4.31)

When T occurs, the point is chosen from [2, 4] with uniform probability.
By equation (3.4),

P(A |T ) = length(J)

length([2, 4])
=

1

2
length(J). (4.32)

Substituting in equation (4.28),

P(A) =
1

2

1

3
length(J) +

1

2

1

2
length(J) =

5

12
length(J). (4.33)

Case (iii): J ⊂ [3, 4] When H occurs, the point is chosen from [0, 3), so
P(A |H) = 0.
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When T occurs, the point is chosen from [2, 4] with uniform probability.
By equation (3.4),

P(A |T ) = length(J)

length([2, 4])
=

1

2
length(J). (4.34)

Substituting in equation (4.28),

P(A) =
1

4
length(J). (4.35)

Case (iv): J disjoint from [0, 4] In all cases, the point is chosen from
[0, 4], so P(A) = 0.

Solution (Exercise 4.13). Grandma considers that the events A,B,C are
mutually exclusive. Let D be their union.

The physical statement of the problem tells us that Alice, Brandon and
Clyde are the only people that could have taken the pie. Hence T ⊂ D, so
T ∩D = T . By the Law of Total Probability (Theorem 4.6),

P(T ) = P(A)P(T |A) +P(B)P(T |B) +P(C)P(T |C)
= δ(.01) + δ(.01) + δ(.5). (4.36)

By definition,

P(C |T ) = P(T ∩ C)
P(T )

=
P(C)P(T |C)

P(T )
=

δ(.5)

δ(.52)
=

50

52
.

This number is close to one, and directs Grandma’s attention to Clyde.
Note that in our solution we could have appealed to equation (4.24), but

instead we simply repeated the derivation of that equation. This is often
natural.

Solution (Exercise 4.14). Let A be the event that the person who is
tested actually has the disease. Let B be the event that the test is positive.

Using equation (4.24) or its derivation,

P(A |B) =
P(A ∩B)

P(B)
=

P(A)P(B |A)
P(A)P(B |A) +P(Ac)P (B |Ac)

. (4.37)

We are given that P(A) = .0001. Hence P(Ac) = .9999.
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We are given that P(B |Ac) = .01 and P(B |A) = 1.
Thus

P(A |B) =
.0001(1)

.0001(1) + .9999(.01)
=

1

1 + 99.99
=

1

100.99
.

Remark 4.12 (The worst case for a positive test recipient). By equa-
tion (4.37),

P(A |B) =
1

1 +
(

P(Ac)
P(A)

)(
P(B |Ac)
P(B |A)

) . (4.38)

Notice that for any given values of P(A), P(Ac) and P(B |Ac), the quan-

tity P(B |Ac)
P(B |A)

decreases when P(B |A) increases.
Thus the denominator of the fraction in equation (4.38) decreases when

P(B |A) increases.
We conclude that P(A |B) increases when P(B |A) increases.
So taking P(B |A) = 1 gives the largest possible value for P(A |B) when

the other numbers are known. Thus in Exercise 4.14 we have calculated
P(A |B) in the worst case.

Solution (Exercise 4.15). Let R be the event that a red ball was selected,
and let H be the event that the coin which was tossed produced a head.

We wish to find P(H |R).

P(H |R) = P(H ∩R)
P(R)

=
P(H)P(R |H)

P(H)P(R |H) +P (Hc)P (R |Hc)
=

1
3
10
30

1
3
10
30

+ 2
3
50
60

=
1

6
.

Solution (Exercise 4.16). Using Bayes,

P(H |B) =
P(H ∩B)

P(B)
.

Thus

P(H |B) =
P(H)P(B |H)

P(B)
.

By the solution to Exercise 4.12,

P(H |B) =
1
2

1
3
length((2, 3))

5
12
length((2, 3))

=
2

5
.
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Solution (Exercise 4.17).

(i) The coins had equal chances of being chosen, and the result (a tail) is
more likely if coin 1 was tossed. This makes it more likely that coin 1 was
used, so we should expect that the probability that coin 2 was used is less
than 1/2.

Let A be the event that coin 2 was used, and let B be the event that the
result was a tail. We wish to calculate P(A |B).

Using Bayes,

P(A |B) =
P(A)P(B |A)

P(B)
=

P(A)P(B |A)
P(A)P(B |A) +P(Ac)P(B |Ac)

=
1
2

(
3
7

)
1
2

(
3
7

)
+ 1

2

(
3
5

) =
5

12
<

1

2
.

(ii) Now we let A be the event that the selected coin had probability equal
to 4/7, i.e. the event that coin 2 or coin 3 was used. Similarly to part (i),
we then have

P(A |B) =
P(A)P(B |A)

P(B)
=

P(A)P(B |A)
P(A)P(B |A) +P(Ac)P(B |Ac)

=
2
3

(
3
7

)
2
3

(
3
7

)
+ 1

3

(
3
5

) =
10

17
>

1

2
.

Solution (Exercise 4.18).

P(A |H) =
P(A ∩H)

P(H)
=

P(A)P(H |A)
P(A)P(H |A) +P(B)P(H |B)

.

That is,

P(A |H) =
P(A)pa

P(A)pa +P(B)pb
. (4.39)

Take a look at the final expression in equation (4.39). If we replace pb by pa,
then the denominator gets bigger. So the fraction gets smaller. This tells us
that

P(A |H) >
P(A)pa

P(A)pa +P(B)pa
=

P(A)

P(A) +P(B)
= P(A).
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Independence and its
consequences

5.1 Independence defined

Consider an experiment. Let A be an event which describes one property of
the result, and let B be an event which describes another property of the
result.

Definition 5.1 (Physical independence). We will say that physical events
A and B are independent if knowledge that A occurred does nothing to
change your opinion about P(B), and vice versa.

More precisely, if P(A) ̸= 0 we have

P(B |A) = P(B). (5.1)

and if P(B) ̸= 0 we have

P(A |B) = P(A). (5.2)

Equation (5.1) says that

P(A ∩B)

P(A)
= P(B),
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and so
P(A ∩B) = P(A)P(B). (5.3)

In the same way, Equation (5.2) also implies equation (5.3).
Notice that equation (5.3) also holds when P(A) = 0 or P(B) = 0, and

this equation is symmetric in A and B.

Exercise 5.1. Please check that equation (5.3) holds when P(A) = 0.
[Solution]

Furthermore, equation (5.3) implies equation (5.1) when P(A) ̸= 0, and
equation (5.3) implies equation (5.2) when P(B) ̸= 0.

So equation (5.3) is a single equation that completely expresses the phys-
ical independence of events A,B. This equation is naturally used as the
definition of independence in a mathematical model.

Definition 5.2 (Mathematical Independence). Let A,B be events in a
mathematical model. Whenever (5.3) holds, we say that the events A and B
are independent. Equivalently, we say that the pair A,B is independent.

Sometimes it is convenient to express independence more colloquially, by
saying that A is independent of B. Of course this also implies that B is
independent of A.

Equation (5.3) is the whole definition of mathematical independence.
Sometimes one refers to mathematical independence as “statistical indepen-
dence”. This reflects the fact that mathematical independence will hold in a
model whenever the experimental statistics fit equation (5.3). We can assert
that events are independent without identifying an underlying physical cause
to explain why they are independent.

Incidentally, when we say “A and B are independent events”, it may
sound as if there is a property called “independence” that each event can
have separately. That is not the case, and one should keep in mind that in-
dependence expresses a relationship, and is property of two events considered
together.

When (5.3) holds for two events, we also say that the probability of the
events is multiplicative, meaning that the probability of the intersection is
equal to the product of the separate probabilities.
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Remark 5.3. Let A,B be events with P(B) ̸= 0. Our discussion shows that
following statements are equivalent.

(i) A,B are independent.

(ii) P(A |B) = P(A).

We can use whichever formulation is convenient.

Example 5.4 (Tossing a coin twice). Consider the experiment of tossing
a coin twice. Let H1 be the event that the result of the first toss is a head,
and let H2 be the event that the result of the second toss is a head.

Let p = P(H1). Based on our experience with coins, we expect that also
P(H2) = p. What about the probability of obtaining two heads in succession,
i.e. P(H1 ∩H2)?

In ordinary experience, neither the coin nor the tosser is significantly
altered by the result of the first coin toss. So we expect that when P(H1) > 0,
P(H2 |H1) = P(H2). And indeed experience shows us that the probability
of a head on the second toss is unaffected by the result of the first toss. Thus

P(H1 ∩H2) = P(H1)P(H2 |H1) = P(H1)P(H2).

By Definition 5.2, H1, H2 are independent.
Equation (5.3) is easy to verify directly when P(H1) = 0! Thus in all

cases, H1, H2 are independent. Thus

P(H1 ∩H2) = P(H1)P(H2) = p2.

The same argument works for any combination of heads or tails on the
two tosses. Thus, with q = 1− p we also have

P(H1 ∩Hc
2) = P(H1)P(Hc

2) = pq,

P(Hc
1 ∩H2) = P(Hc

1)P(H2) = qp,

and
P(Hc

1 ∩Hc
2) = P(Hc

1)P(Hc
2) = q2.
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Exercise 5.2 (Sample space for two tossses). We can choose a particular
sample space Ω to model tossing a coin twice. For example, let 1 denote a
head and let 0 denote a tail, and take Ω = {(1, 1), (1, 0), (0, 1), (0, 0)}.

The interpretation is that (1, 0) represents the physical outcome that a
head is obtained on the first toss and a tail is obtained on the second toss.
The other sample points are interpreted similarly.

(i) Define H1 = {(1, 1), (1, 0)} and define H2 = {(1, 1), (0, 1)}. (Please check
that H1 and H2 represent the physical events H1, H2 in Example 5.4.)

Find H1 ∩H2 as a set of sample points.

(ii) Let q = 1 − p. Using the coin tossing interpretation, show that the
correct definition for P on this sample space is the following.

P({(1, 1)} = p2,

P({(1, 0)} = pq,

P({(0, 1)} = qp,

P({(0, 0)} = q2.

(5.4)

(iii) Verify that the values in part (ii) give P({(1, 1)}) + P({(1, 0)}) +
P({(0, 1)}) +P({(0, 0)}) = 1.

[Solution]

In previous comments we have mentioned that an abstract sample point
need only represent the properties of an outcome that we currently wish to
analyze. Example 2.14 provided a model that represents tossing a coin once.
Now in Exercise 5.2 we have considered a model for two tosses. The model
for two tosses also gives a representation for a single toss, since each of the
two tosses is a single toss by itself. Are these representations consistent? The
next exercise addresses that question.

Exercise 5.3. (This extends Exercise 2.4 from the case of a fair coin to the
case of a general coin.)

In the model for Exercise 5.2, let A be the event that the first of two
tosses results in a head. Check that P(A) = p, using the sample space for
two tosses. That means you can use equation (5.4) but nothing else.
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Do the same for the event B that the second of two tosses results in a
tail.

[Solution]

Exercise 5.4 (Independence for two tosses). In Exercise 5.2 we derived
equation (5.4) by assuming independence for the results of the tosses.

For the events A and B of Exercise 5.3, show mathematically that P(A∩
B) = P(A)P(B). You must base your answer entirely on equation (5.4).

[Solution]

Exercise 5.5. Return to the situation of Exercise 2.7. This deals with the
experiment of rolling a fair die twice. You are asked to find the probability
that the first roll produces an even number and the second roll produces a
number larger than four.

Use independence to obtain the answer. You may use the fact that any
event which only involves the first roll is independent of any event which only
involves the second roll.

(And of course, if your answer now does not agree with the value found
in Exercise 2.7, something is wrong.)

[Solution]

Exercise 5.6. When rolling a fair die twice, let A be the event that the sum
of the numbers obtained on the two rolls is an even number.

Find P(A). You have solved this problem in Exercise 2.9. This time use
independence to save work.

[Solution]

Exercise 5.7 (Simple cases of independence). Please check the following
two easy special cases of independence.

For any events A,B,

P(A) = 0 or P(A) = 1 =⇒ A and B are independent. (5.5)
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[Solution]

Exercise 5.8 (Independent and disjoint?). Suppose that events A,B are
disjoint. Under what conditions will A,B also be independent?

[Solution]

We will see many examples of independent events in the rest of this
book. Independence simplifies probability calculations immensely, if it holds.
But an unjustified assumption of independence can lead to disaster (see for
example [11]).

5.2 Independence for sampling with replace-

ment

As in Example 4.8 and Example 2.23, we consider a two-step experiment.
We select two jelly beans, one at a time. Each selection is random, and is
such that no jelly bean in the bowl is favored.

However, unlike Example 4.8 and Example 2.23, after we have noted the
color of the first jelly bean that is selected, we replace it in the bowl before
proceeding to make the second selection.

Let A1 be the event that the bean selected in step 1 is yellow or red. Let
B2 be the event that the bean selected in step 2 is yellow or green. We would
like to find P (A1 ∩B2).

Assume that in the bowl, before any selections, there are y yellow beans,
r red beans, and g green beans.

Consider each step as an experiment in itself. As usual, by Theorem 2.22
we have

P (A1) =
y + r

y + r + g
, P (B2) =

y + g

y + r + g
. (5.6)

Because we stir the bowl before each selection, experience tells us that the
results of step 1 and step 2 are physically independent, and so we confidently
assume that A1 and B2 are mathematically independent. Hence we can find
P (A1 ∩B2) at once:

P (A1 ∩B2) = P (A1)P (B2) . (5.7)
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5.2. Independence for sampling with replacement

Notice that we did not need to actually specify a sample space for the
two-step experiment. Instead we simply followed the rules of probability,
using independence.

Remark 5.5 (A bit more about the “why” of independence). In an
experimental situation, we would expect statistical independence for events
A and B if there is no connection between the processes involved in A and
the processes involved in B. But that’s not the only case. Even when there
is a connection, we frequently still expect independence.

Consider a person tossing a coin twice. There is a very direct physical
connection between the two tosses, since the same person is doing the tossing.
Nevertheless, experience shows that it doesn’t matter, at least as far as the
statistics of the two tosses is concerned.

The jelly bean experiment might be a little easier to analyze. Let’s think
about that.

When choosing a jelly bean, we prepare for the experiment by stirring the
bowl of jelly beans vigorously, so that the beans in the bowl are thoroughly
mixed. When we select a jelly bean twice, we have a two-step experiment,
and we will stir the bowl of jelly beans before each step of the experiment
(although the second stirring may not be necessary). We feel that that the
two selections have statistically independent results. Why?

To fix our ideas, let’s imagine that in the experiment we always select the
top bean in the center of the bowl. Call that the “pickup location”.

For simplicity, let’s also assume that the bowl only contains yellow and
red jelly beans, and that there are exactly the same number of yellow and
red jelly beans.

Given these assumptions, we are confident that the chance of a yellow
bean being selected on the first choice is 1/2. And we actually don’t believe
this depends on the state of the bowl before the beans are stirred. Suppose,
for example, that all the red beans were initially in one part of the bowl,
and all the yellow beans were in a different region. We still think that a
vigorous stirring is just as likely to move a red bean into the pickup location
as a yellow bean. So knowing where the beans are before the stirring doesn’t
seem to help at all in predicting the color of the bean that is chosen after the
stirring.

That statement applies to the both choices. Knowing the result of the
first choice simply gives us a bit of information about the state of the jelly
beans before the second stirring. So stirring the bowl between the two choices
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should make the results of the two choices statistically independent.
To explore this idea further, let us now change the experimental proce-

dure. Suppose that we didn’t stir the bowl between the two choices, but
we gave it a good stir at the beginning, before any beans were selected. If
we chose the top bean at the pickup location when we made the the first
selection, then we would select the bean just below it in the second selection.
Could this spoil independence? Apparently not. Experience suggests that
a reasonably thorough stirring of the bowl will make the colors of adjacent
beans statistically independent, or close to it.

It would be nice to give a mathematical model showing precisely why
this is true. But that seems to be an unsolved hard problem. (Notice that
such a model would have represent the positions of all the jelly beans and
their shapes, and we would have to somehow show that they typically move
in a disorderly manner.) Our probability model for choosing jelly beans
doesn’t concern itself with the details of stirring. We do not try to give a
mathematical explanation of why red or green beans are equally likely, and
why the two choices are independent. Our judgement about the probability
of selecting a bean is just built into the model, based on our general practical
experience.

5.3 Independence applies to complements

Lemma 5.6 (Independence and complements). Let A and B be any
events in a probability model. Each of the following statements is mathe-
matically equivalent to any of the others.

(i) A,B are independent.

(ii) A,Bc are independent.

(iii) Ac, B are independent.

(iv) Ac, Bc are independent.
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The phrase “mathematically equivalent” for two statements means that
if either one of the statements is true then the other is true also. The equiv-
alence stated in Lemma 5.6 seems totally reasonable if we think about infor-
mation. If you know whether or not A occurred, then you know whether or
not Ac occurred, and so on!

Using the definition of independence, Lemma 5.6 can be restated as fol-
lows.

Lemma 5.7 (Equations for independence and complements). Let A
and B be any events in a probability model. Each of the following four
equations is mathematically equivalent to any of the others.

P(A ∩B) = P(A)P(B), (5.8)

P(A ∩Bc) = P(A)P(Bc), (5.9)

P(Ac ∩B) = P(Ac)P(B), (5.10)

P(Ac ∩Bc) = P(Ac)P(Bc). (5.11)

The sets A∩B, A∩Bc, Ac∩B and Ac∩Bc are represented in Figure 5.1.

A proof for Lemma 5.7 is requested in Exercise 5.9. To give a mathemat-
ical proof we will have to think about the precise definition of mathematical
independence, not just the physical meaning. As usual, you are encouraged
to work at the proofs, but the physical meaning is the most important thing.

Exercise 5.9. Prove Lemma 5.7.
For efficiency, we might start by proving the following.

Substitution Fact For any events D1, D2, suppose that:

P (D1 ∩D2) = P (D1)P (D2) (5.12)

holds. Then

P (Dc
1 ∩D2) = P (Dc

1)P (D2) . (5.13)

In other words, replacing D1 by Dc
1 throughout the first equation gives an-

other true statement.
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Chapter 5. Independence and its consequences

Of course, since order doesn’t affect the intersection operation, and order
doesn’t affect multiplication either, the Substitution Fact also implies that a
true statement is also obtained from equation (5.12) if D2 is replaced by Dc

2.

Once the Substitution Fact is proved, you can apply it to proving the
lemma.

[Solution]

A

A c

Ω

(a) A divides the space

B

B c

Ω

(b) B divides the space

A∩B

A c ∩B c

A c ∩B

A∩B c

Ω

(c) The pieces

Figure 5.1: The pieces of Ω generated by A and B

Exercise 5.10 (A test for independence). LetA,B be events withP(A) >
0 and P(Ac) > 0.

(i) Suppose that

P(B |A) = P(B |Ac) (5.14)

Show that A,B are independent.

(ii) Suppose that equation (5.14) does not hold. Show that A,B are not
independent.

[Solution]
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5.4 Using independence to simplify calcula-

tions

We often use independence to justify ignoring events. For example, suppose
that in some large and complicated experiment we think about three events,
A, B, and C. Physically, suppose we believe that A and B depend on certain
properties of the experimental setup which are unrelated to the occurrence
or non-occurrence of C.

As a practical matter, when calculating something about A and B, for ex-
ample P(B |A), we can completely ignore C, even if we know whether or not
C occurred. We do this automatically in our problems. Calculations of prob-
abilities would be hopelessly complex if we could not make simplifications of
this sort!

That’s the physical picture. It would be interesting to consider mathe-
matical ways to express the fact that C can be ignored, but we won’t take
time for that, except in the next exercise.

Exercise 5.11. Assume that

P(A ∩ C) = P(A)P(C), (5.15)

P(B ∩ C) = P(B)P(C), (5.16)

P(A ∩B ∩ C) = P(A ∩B)P(C). (5.17)

Show that then
P(B |A ∩ C) = P(B |A) (5.18)

Equation (5.18) is an example of ignoring C, when the three independence
statements (5.15), (5.16) and (5.17) all hold. One might be guess the first
two independence statements should be sufficient, but they ain’t. Something
like condition (5.17) is needed too.

[Solution]

5.5 Extending independence to unions

This section gives us a chance to play a little more with the general definition
of independence.
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Chapter 5. Independence and its consequences

The following lemma is not surprising, but it states a useful fact.

Lemma 5.8 (Independence using cases). LetA1, . . . , Ak be disjoint events
in some probability model. Let B be an event such that Ai, B are indepen-
dent for each i = 1, . . . , Ak. Then A1 ∪ . . .∪Ak and B are also independent.

Physically, Lemma 5.8 seems obvious. After all, for each i, being given
information about the occurrence or non-occurrence of Ai has no affect on
our opinion about B. If someone tells us the exciting news that at least one
of the events Ai occurred, that is less information than telling us about a
particular Ai.

A mathematical proof of Lemma 5.8 is a good exercise.

Exercise 5.12. Prove Lemma 5.8.
[Solution]

5.6 Solutions for Chapter 5

Solution (Exercise 5.1). Since A∩B ⊂ A, we have P(A∩B) ≤ P(A) = 0.
Thus P(A) = 0 implies that P(A ∩B) = 0.

Thus when P(A) = 0, equation (5.3) is equivalent to the assertion that
0 = 0.

Solution (Exercise 5.2).

(i) (1, 1) is the only point in both H1 and H2, so H1 ∩H2 = {(1, 1)}.

(ii) We already showed that H1 ∩H2 = {(1, 1)}.
Similarly H1∩Hc

2 = {(1, 0)}, Hc
1 ∩H2 = {(0, 1)}, and Hc

1 ∩Hc
2 = {(0, 0)}.

Comparing this with the facts in Example 5.4 gives equation (5.4).

(iii)

P({(1, 1)}) +P({(1, 0)}) +P({(0, 1)}) +P({(0, 0)}) = p2 + pq + qp+ q2

= p(p+ q) + q(p+ q) = (p+ q)2 = 1.
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Solution (Exercise 5.3). A = {(1, 1), (1, 0)}, so P(A) = P({(1, 1)}) +
P({(1, 0)}) = p2 + pq = p(p+ q) = p.

B = {(1, 0), (0, 0)}, so P(B) = P({(1, 0)}) + P({(0, 0)}) = pq + q2 =
(p+ q)q = q.

Solution (Exercise 5.4). From the solution of Exercise 5.3, P(A) = p and
P(B) = q.

Also A ∩B = {(1, 0)}, so P(A ∩B) = pq by equation (5.4).
Thus P(A ∩B) = P(A)P(B).

Solution (Exercise 5.5). Let A the event that the first roll gives an even
number. Let B be the event that the second roll gives a number larger than
four.

We can look at the first roll as a separate experiment. The sample space
has 6 outcomes of equal probability, so P(A) = 3(1/6) = 1/2.

Similarly we can look at the second roll as a separate experiment, so
P(B) = 2(1/6) = 1/3.

By independence, P(A ∩B) = P(A)P(B) = (1/3)(1/2) = 1/6.
This approach is more efficient than the method used to solve Exercise 2.7.

Physically we are sure that the two methods are both valid.

Solution (Exercise 5.6). Let B1 be the event that the first roll gives an
even number, and let C1 be the event that the first roll gives an odd number.

Let B2 be the event that the second roll gives an even number, and let
C2 be the event that the second roll gives an odd number.

Clearly P(B1) = 1
6
+ 1

6
+ 1

6
= 1

2
. Similarly P(C1) = 1

2
, P(B2) = 1

2
and

P(C2) =
1
2
.

The sum of an even number and an odd number is odd. Even plus even
is even, and odd plus odd is even.

Thus
A = (B1 ∩B2) ∪ (C1 ∩ C2) .

Using additivity and independence,

P(A) =
1

2

1

2
+

1

2

1

2
=

1

2
.

Solution (Exercise 5.7). Suppose that P(A) = 0. Then for any B, P(A∩
B) ≤ P(A) = 0, so P(A∩B) = 0 = P(A)P(B). Thus by definition A,B are
independent.

Now suppose that P(A) = 1. By Exercise 2.18, P(A ∩ B) = P(B) =
P(B)P(A), so by definition A,B are independent.
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Chapter 5. Independence and its consequences

Solution (Exercise 5.8). Suppose that A,B are disjoint. Then P(A∩B) =
0.

If A,B are also independent then P(A ∩ B) = P(A)P(B). Since 0 =
P(A)P(B), at least one of the events A,B has zero probability.

If P(A) = 0 or P(B) = 0, then A,B are independent by Exercise 5.7.
This shows that when A,B are disjoint, then A,B are independent if and

only P(A) = 0 or P(B) = 0.

Solution (Exercise 5.9). First let us prove the Substitution Fact.
Suppose that equation (5.12) holds. We need to show that equation (5.13)

holds.
That is, suppose that P (D1 ∩D2) = P (D1)P (D2). We need to show

that if we replace D1 by Dc
1 in this equation we get another true equation.

To prove this, note that Dc
1 ∩ D2 is exactly the part of D2 which is not

in D1. Thus
P(Dc

1 ∩D2) = P(D2)−P(D1 ∩D2).

(For a justification, see equation (2.12) and Figure 2.1.)
Since P(D1 ∩D2) = P(D1)P(D2),

P (Dc
1 ∩D2) = P (D2)−P (D1)P (D2)

= (1−P (D1))P (D2) = P (Dc
1)P (D2) ,

as claimed.
This proves the stated Substitution Fact.
To prove the lemma, we consider some applications of the Substitution

Fact.
Suppose that equation (5.8) is true. Replacing A by Ac gives equa-

tion (5.10), so this equation must also be true.
On the other hand, suppose that equation (5.10) is true. Replacing Ac

by (Ac)c = A gives equation 5.8, so equation 5.8 must be true also.
We have shown that the truth of either one of equations (5.8) and (5.10)

implies the truth of the other.
Switching between B and Bc shows that equations(5.8) and (5.9) are

equivalent.
Switching between A and Ac shows that equations (5.9) and (5.11) are

equivalent.
Thus we can change any one of the equations into any of the other equa-

tions, using one or two substitution operations, and these substitution oper-
ations preserve truth.
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Solution (Exercise 5.10).

(i) Suppose that P(B |A) = P(B |Ac).
By the Law of Total Probability (Theorem 4.6),

P(B) = P(A)P(B |A) +P(Ac)P(B |Ac). (5.19)

Hence

P(B) = P(A)P(B |A) +P(Ac)P(B |A). (5.20)

Since P(A) +P(Ac) = 1,

P(B) = P(B |A). (5.21)

By Remark 5.3, A,B are independent.

(ii) We must show that if A,B are independent then equation (5.14) must
hold! (Does it make sense that this formulation is equivalent to what is asked
in part (ii) of the question? It certainly will if you think about it. We could
get fancy here and talk about the “contrapositive” form of a statement, but
we don’t need to.)

Since A,B are independent, Remark 5.3 tells us that

P(B |A) = P(B).

Also, by Lemma 5.6, if A,B are independent then also Ac, B are independent.
So we can replace A by Ac in the equation just obtained. This gives

P(B |Ac) = P(B),

so P(B |Ac) = P(B |A).

Solution (Exercise 5.11).

Proof. By the conditional probability formula,

P(B |A ∩ C) = P(B ∩ A ∩ C)
P(A ∩ C)

=
P(A ∩B)P(C)

P(A)P(C)
=

P(A ∩B)

P(A)
= P(B |A),

proving equation (5.18).
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Solution (Exercise 5.12).

P (B ∩ (A1 ∪ . . . ∪ Ak)) = P ((B ∩ A1) ∪ . . . ∪ (B ∩ Ak)) .

By assumption, A1, . . . , Ak are disjoint, so B ∩ A1, . . . , B ∩ Ak are disjoint.
Hence

P (B ∩ (A1 ∪ . . . ∪ Ak)) = P (B ∩ A1) + . . .+P (B ∩ Ak)

= P(B)P (A1) + . . .+P(B)P (Ak)

= P(B) (P (A1) + . . .+P (Ak)) = P(B)P (A1 ∪ . . . ∪ Ak) .

By definition, this shows that B and A1 ∪ . . . ∪ Ak are independent.
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Chapter 6

Tricky little problems

Sometimes very simple problems are enlightening, for example if they illus-
trate the need to be careful when setting up an abstract model of a real-world
setting. In this short chapter we’ll work through two well-known examples.

6.1 One or two successes

The happy Sam problem A local charity has a booth at the fair. This
booth offers donors the opportunity to play a game. In this game, your
chance of winning is p, and if you win, you receive a small prize.

Let us think about a donor named Sam, who visits the fair one afternoon.
He plays the game exactly twice during the afternoon. Sam is easy to please,
so he is happy if he wins at least one prize. If he does not win any prize, he
is unhappy.

Let A be the event that Sam wins both times he plays the game. We
assume that the results of the two games are independent, so the probability
of A is p2. This is what we will call the unconditional probability of A in
this setting.

His friends meet Sam some time after he leaves the fair. They know that
Sam played two games at the fair, but they do not know the results of the
two games. However, they observe that Sam is happy. Thus his friends know
that Sam won at least one game at the fair. Based on their information
about Sam, what probability should his friends assign to A?

We can use a model for Sam’s games which is similar to the model for two
coin tossses (Example 5.4). Let W1 be the event that Sam won the first time
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he played the game, and let L1 be the event that he lost. Then P(W1) = p
and P(L1) = q, where q = 1− p. Define W2, L2 similarly.

Let B be the event that Sam won at least one game at the fair. There
are three ways that could have happened: Sam could have won both games,
Sam could have won the first and lost the second, or Sam could have lost the
first and won the second. That is:

B = (W1 ∩W2) ∪ (W1 ∩ L2) ∪ (L1 ∩W2) .

After they meet Sam, his friends know that the event B has occcurred.
Sam’s friends want to know P(A |B), where A = W1 ∩W2.
Using additivity and independence,

P(B) = P(W1)P(W2) +P(W1)P(L2) +P(L1)P(W2) = p2 + pq + qp.

Notice that A ⊂ B, so A∩B = A. Since P(B) = p2+2pq, the conditional
probability formula (4.1) tells us that

P(A |B) =
p2

p2 + 2pq
=

p

p+ 2q
=

p

1 + q
.

When p = 1/2, this says that the probability that Sam won both games is
only 1/3.

For comparison, consider a different problem about Sam’s games.

The Sam’s witness problem The afternoon of the fair, you are strolling
through the fair, and you happen to pass by the charity booth at a moment
when Sam is playing one of his two games. You observe that Sam wins.

You don’t see Sam again that day but you are told that he played the
game twice.

Like Sam’s friends, you know that the event B has occurred. However,
you also have some additional information. What probability should you
assign to A?

Exercise 6.1. Solve the Sam’s witness problem. [Solution]

The difference between these two problems about Sam may be evident,
but in many problems such differences may be obscured by the wording.
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Here is an example of a loosely phrased version of the happy Sam problem:
“Sam played two games at the fair, and he won at least one game. Find the
probability that he won the other game.”

A common variant of this problem: “A couple has two children. Given
that one of the children is a girl, find the probability that the other child is
a girl.”

Remark 6.1 (Using a sample space for independence). In our analysis
of the happy Sam problem, we didn’t bother to define a sample space, but just
worked with events. Just as in Exercise 5.2, we could have defined a sample
space. For example, we could let Ω = {(1, 1), (1, 0), (0, 1), (0, 0)}. Here (1, 1)
represents the outcome that Same won both games, (1, 0) represents the
outcome that Sam won the first game but lost the second game, and so on.
Would that be better? For example, is it easy to see that P({(0, 1)}) = qp?
Since we are familiar with the sample space for two coin tosses, it likely is
easy. But working with events like Wi and Li lets us use the the definition
of independence directly, and that seems better for our thinking.

6.2 The Monty Hall problem!

This is well-known, but worth reviewing. A good history of this problem is
given in [9]. Apparently some mathematicians refused to believe the correct
answer. The embarrassing details are given in section 1.10 of [9].

At any rate, here is the problem. It is inspired by a game which was
sometimes played on the television show Let’s Make a Deal , hosted by Monty
Hall. The idealized version of the game which is described here may not
match what actually used to happen, so our Monty Hall is not quite the real
Monty Hall.

We assume that in this game, three doors are visible to the contestant,
and the contestant is asked to choose one of these doors. The contestant will
be awarded whatever prize is concealed behind the selected door. There is
a valuable prize, perhaps a sports car, behind one door, and something very
disappointing is behind each of the other two doors.

Of course we assume that the prize can lie behind any door, with no door
favored. The contestant has no idea which door has the prize.
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So far, so good. Now comes the twist. We assume that after the contes-
tant has chosen a door, but before revealing whether the contestant’s guess
was correct, Monty Hall often opens one of the two doors which were not
selected by the contestant, always revealing one of the disappointing non-
prizes when he does so. Then, Monty Hall offers the anxious contestant an
opportunity to switch his or her choice to the other unopened door.

The basic question here is whether the contestant would benefit by switch-
ing.

We begin by focusing our attention on the original choice by the contes-
tant. Let C be the event that the contestant’s choice is correct. Since no
door was favored in setting up the game, P(C) = 1/3.

Here P refers to probabilities based on the information we have before
Monty Hall opens a door.

But notice that Monty Hall does not physically move the valuable prize.
So if the contestant’s choice is correct at the moment of the choosing, the

contestant’s choice is correct for ever. If the choice is wrong, it stays wrong.
We also know there is only one alternative left after Monty Hall has opened
a door. Thus, if the contestant’s original choice was wrong, the contestant
should switch to the other unopened door.

The contestant will choose correctly approximately 1/3 of the time, and
incorrectly 2/3 of the time. Hence the policy of “always switching” pays off
2/3 of the time, while “never switching” pays off 1/3 of the time. So switch!

That answers the basic question. But there seems to be something about
the Monty Hall problem that makes people doubt the answer. It is not com-
pletely clear why. Monty Hall’s actions do complicate the problem. But
sloppy wording of the problem can also cause trouble, if Monty Hall’s proce-
dure is not explained precisely.

Consider the following variation of the Monty Hall problem.

Example 6.2 (The defective door problem). Suppose Monty Hall is on
vacation. In the absence of a skilled host, the manager of the game show
decides that they can only provide a simplified version of the game. The
contestant will choose a door, and will then be given whatever prize lies
behind the door.

However, fate is about to intervene.
After the contestant has chosen a door, one of the other doors suddenly

swings open. The door must have been defective in some way, although no
one knew about this until now. Perhaps a vibration in the floor, or a gust of
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wind, has now made the door open.
We think that the location of the prize does not effect the condition of

any of the doors, and the location of the prize cannot cause any door to open
or not open. However, it happens that the door which opened is not the one
concealing the valuable prize. So the contestant’s door and one other door
remain unopened, and we know that one of them hides the valuable prize.

The manager of the game show notices that this accident has presented
the audience with exactly the same situation that would have been the result
of Monty Hall’s usual antics. To live up to the expectations of the audience,
the manager offers the contestant the opportunity of switching his or her
choice to the other unopened door.

We ask the same question as before. Does the contestant benefit by
switching?

Exercise 6.2. Please solve the defective door problem.
[Solution]

Example 6.2 seems more natural than the Monty Hall problem, and some-
times people may solve the wrong problem.

Exercise 6.3 (Mega-Monty). In order to convince people that switching
is the right policy for the standard Monty Hall problem, the following varia-
tion is sometimes presented. An argument which is claimed to work for the
standard Monty Hall problem can be “stress-tested” on this version of the
problem.

Suppose that for a special edition of the game show, a long hallway is used,
with 100 doors. The prize is behind one of the doors, and the miserable
contestant must choose one door. After the choice has been made, in a
surprising act of generosity Monty Hall opens 98 of the remaining doors,
none of which have prizes, and then offers the contestant a chance to switch
his or her choice to the other unopened door.

Again we ask, does the contestant benefit by switching?
[Solution]
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Exercise 6.4 (Monty with a tell).

Part 1 Returning to the Monty Hall game with the usual three doors,
imagine you have been invited to appear as a contestant. The game will be
hosted by Monty’s sister, Ivy Hall, who sometimes replaces Monty.

You prepare by carefully watching recordings of all previous shows for
which Ivy was the host. By the end of each show the audience knows where
the prize was located for that show, so that information is in the recording.

The three doors for this contest are arranged in a line going from left to
right. You excitedly notice the following behavior pattern. Whenever the
door originally chosen by the contestant is the door with the valuable prize,
so that Ivy Hall can choose which of the two remaining doors to open, Ivy
always opens the remaining door on the left.

Eventually you appear on the game show, and select your door. And then
Ivy Hall opens . . . the remaining door on the left!

At this point Ivy Hall offers you the usual opportunity to switch your
choice. As you stand there, weighing your chances, Ivy notices your indeci-
sion, and makes an unusual extra offer. She will pay you an additional $100,
win or lose, if you do not switch.

What should you do?

Part 2 Suppose the same situation arises as in Part 1, except that in this
case you observe that Ivy Hall has opened the remaining door on the right.
Everything else is the same.

What should you do?

[Solution]

6.3 Solutions for Chapter 6

Solution (Exercise 6.1). The witness doesn’t just know that Sam won
one game, the witness can also specify which game it was, namely the game
that was played while the witness walked by.

The other game Sam played is well-defined, and the result of that game is
of course independent of anything that happens in the game that the witness
saw.
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Sam won the game that the witness saw, so the probability that Sam won
both games is just the probability that Sam won the other game, and this
is p.

.

Solution (Exercise 6.2). As usual, the choice made by the contestant is
not influenced by the location of the valuable prize.

In this problem the contestant’s choice is also unrelated to the location
of the defective door. This is in contrast to the situation when Monty Hall
opens a door, since Monty never opens the door chosen by the contestant.

Method 1 The idea of the solution is easy to state: we will use symmetry.
After noting that the choice of a door by the contestant has no effect on

anything else, we can ignore the contestant, and simply look at the doors.
After the defective door has opened, we see two remaining unopened doors.
One of these doors has the valuable prize. Nothing in the description of the
problem (except the contestant’s choice) treats either of these doors differ-
ently. So any probability statement that we derive, concerning the location
of the valuable prize, must also treat both these doors in the same way. Thus
the valuable prize is equally likely to reside behind either door.

There is no reason to switch.

Method 2

If you include the contestant’s choice of a door in the discussion, you might
say something like the following.

From the contestant’s viewpoint, the opening of the door is a random
event, independent of everything else. The chance of any particular door
opening is the same, a small probability.

Let C be the event that the contestant’s original choice of a door was
correct, meaning that it is the one with the valuable prize.

As usual P(C) = 1/3, so P(Cc) = 2/3 = 2P(C).
Let M be the event which describes the new situation after the door

opened. When deciding whether or not to switch, the contestant should be
interested in P(C |M).

The key idea in this approach: we are dealing with the situation in which
the door that opened was neither the door with the prize nor the door picked
by the contestant. Common sense probability tells us that this is twice as
likely to happen if the contestant chose correctly, since then the door with
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the valuable prize and the door picked by the contestant are one and the
same door, and there are two possible choices for the defective door. (We
could justify this probability statement more formally, but right now we are
focused on the physical meaning.)

Using our notation, P(M |C) = 2P(M |Cc).
The multiplied-through version of the conditional probability formula

(equation (4.2)) tells us that

P(M ∩ C) = P(C)P(M |C) and P(M ∩ Cc) = P(Cc)P(M |Cc).

The fact that P(M |C) = 2P(M |Cc) exactly compensates for the fact that
P(Cc) = 2P(C), and we have

P(M ∩ C) = P(M ∩ Cc).

In frequency language, this equation says that contestants will find them-
selves in situation M just as often when the chosen door is correct as when
it is incorrect.

And

P(C |M) =
P(M ∩ C)
P(M)

=
P(M ∩ Cc)

P(M)
= P(Cc |M).

Thus the chance of getting the valuable prize in this situation is the same,
whether or not you switch, and there is no reason to switch.

Solution (Exercise 6.3). Now the probability that the original guess was
correct is 1/100. This happens approximately 1/100 of the time. And so
switching brings success approximately 99 times out of 100.

Switch!

Solution (Exercise 6.4).

Part 1 Let L be the event that Ivy Hall opens the remaining door on the
left.

Let C be the event that the contestant picked the correct door. From
your study of past Ivy Hall shows, you know that P(L |C) = 1.

If Cc occurs, then the prize is behind one of the two doors which the con-
testant did not pick. Knowing that Cc occurred does not give us information
which favors either of those two doors.
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If Cc occurs, Ivy Hall must of course open the remaining door which does
not have the prize, wherever it is, left or right. Thus P(L |Cc) = 1/2.

By the Law of Total Probability (Theorem 4.6),

P(L) = P(C)P(L |C) +P(Cc)P(L |Cc) =
1

3
1 +

2

3

1

2
=

2

3
.

Thus

P(C |L) = P(C ∩ L)
P(L)

=
P(C)P(L |C)

P(L)
=

1
3
1
2
3

=
1

2
.

Since switching does not improve your chances of winning the valuable prize,
stick with your choice and take the $100.

Part 2 If the door you chose had been wrong, Ivy would have chosen the
remaining door on the left. She didn’t do that.

Don’t switch!
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Chapter 7

Independent sequences

The most important facts in this chapter are Definitions 7.1 and 7.7, and the
formulas in Section 7.2.

We’ve discussed independence for two events. But often we want to con-
sider more than two events, perhaps even a long sequence of events.

7.1 Sequences of experiments

Consider a big experiment which consists of a sequence of repetitions of a
smaller experiment. For example think about tossing a coin many times,
or rolling a die many times, or treating many patients with a particular
drug. We’ve considered repeated experiments in the past, but here we are
thinking of the whole sequence of smaller experiments as making up one big
experiment. We can call each repetition of the smaller experiment a “trial”.

In this situation we typically assume that the smaller experiments do not
influence each other in any significant way, so that properties of different
trials are described by independent events. Then we say that we have an
independent sequence of trials.

We would like to study some mathematical formulas connected with in-
dependent trials. Before doing that, we should state a more precise definition
of independence in this situation.

Definition 7.1 (Independent trials). We will say that a sequence of n
experiments is independent if, for each k < n, information about the results
for trials 1, . . . , k does not change our opinion about the probability of any
properties of the result of trial k + 1.
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For each i, let Di be a physical event that is defined completely by the
outcome of the i-th experiment. If the sequence of n experiments is inde-
pendent then we will say that the sequence D1, . . . , Dn is an independent
sequence of physical events.

Suppose that, based on our experience, we think that a certain sequence
of experiments is independent in the sense of Definition 7.1.

Let Di be an event that is defined completely by the outcome of the i-th
experiment. What can we say about these events?

Consider the event D1 ∩ . . . ∩ Dk. The occurrence or non-occurrence of
this event is certainly determined by the results of trials 1, . . . , k. So, by
Definition 7.1, information about D1 ∩ . . .∩Dk does not change our opinion
about the probability of Dk+1. If P(D1 ∩ . . . ∩Dk) ̸= 0, this says that

P (Dk+1 |D1 ∩ . . . ∩Dk) = P (Dk+1) . (7.1)

And as in Definition 5.1 we conclude that

D1 ∩ . . . ∩Dk and Dk+1 are independent events. (7.2)

Please do the next exercise!

Exercise 7.1. Let D1, . . . , Dn be an independent sequence of events. Show
that

P (D1 ∩ . . . ∩Dn) = P (D1) . . .P (Dn) . (7.3)

[Solution]

Definition 7.1 says what we mean by independence for a sequence of
physical events. It is not a definition of mathematical independence for an
abstract model, although of course consequences such as equation (7.3) must
hold in any valid model for an independent sequence of experiments. We’ll
think later about making a precise mathematical definition of an independent
sequence.

For now, let’s calculate some consequences of Definition 7.1.
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7.2 Outcome probabilities when tossing a coin

n times

In the present section we perform a key computation.
Consider n tosses of a coin. The coin need not be fair. The probability

of a head is some number p and the probability of a tail is q = 1− p.
We mentioned in Example 2.3 that when the result of a toss is a head,

we sometimes say that result is success. Using this sort of language can be
briefer, and it also makes it a bit easier to adapt our results about coin-tossing
to other situations which are similar.

We’ll usually record the success or failure of a toss using a number, either
0 or 1. Success is represented by 1 and failure is represented by 0.

The record of successes and failures for a whole sequence of n repeated
tosses is then a sequence (x1, . . . , xn), where for each j, xj is either zero or
one. We can call this sequence the “success record”.

Clearly there are 2n possible success records.
Should we use (x1, . . . , xn) as the sample point that records the whole

result of the experiment when the coin is tossed n times? Then our sample
space will simply be the set of all possible sequences of this sort.

We certainly can use that sample space, but the probability argument
may clearer if we simply just talk about events, without committing to a
particular sample space representation.

For each j = 1, . . . , n, let Wj be the event that toss j produced success.
Let D1

j = Wj and let D0
j = W c

j .
For any sequence (x1, . . . , xn) of zeros and ones, Dx1

1 ∩ . . . ∩ Dxn
n is the

event that:

(toss 1 produced x1) and (toss 2 produced x2) and . . .and (toss n
produced xn).

Thus

Dx1
1 ∩ . . . ∩Dxn

n is the event that the success record is (x1, . . . , xn) . (7.4)

For coin tosses, the tosses are independent trials. Thus events defined in
terms of different tosses are physically independent. Thus by equation (7.3),
for any success record (x1, . . . , xn) we know that

P (Dx1
1 ∩ . . . ∩Dxn

n ) = P (Dx1
1 ) · · ·P (Dxn

n ) . (7.5)
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Equation (7.5) is the key probability fact we need.
We know that D

xj
n = p if xj = 1 and D

xj
n = q if xj = 0. Thus

P (Dx1
1 ∩ . . . ∩Dxn

n ) = pkqn−k, (7.6)

where k is the number of indices j such that xj = 1.
We have proved:

Lemma 7.2 (Coin toss outcome probabilities). For any sequence (x1, . . . , xn)
of zeroes and ones, the probability of obtaining exactly that success record
is pkqn−k, where k is the number of successes in the sequence (x1, . . . , xn).

Lemma 7.2 lets us calculate a very useful probability, in the next lemma.

Lemma 7.3 (Probability of obtaining k successes). Let Gk be the prob-
ability that n tosses produce exactly k successes. Then

P(Gk) =
n!

k!(n− k)!
pkqn−k. (7.7)

Here 0! is interpreted as 1 in case that k = 0 or k = n.

Proof. Suppose a particular sequence of trials produces exactly k successes.
What would the success record look like?

It is a sequence (x1, . . . , xn) made up of zeros and ones. Since there are k
successes, exactly k ones must appear in the sequence. As noted in equation
(7.4), Dx1

1 ∩ . . .∩Dxn
n is the event that the success record is (x1, . . . , xn). We

don’t care in what order the successes occur, so for general n and k there are
many such success records. Gk is the union all the corresponding events.

That is, Gk is the union of events Dx1
1 ∩ . . . ∩ Dxn

n , over all sequences
(x1, . . . , xn) which have k successes.

Let m be the number of distinct sequences (x1, . . . , xn) which contain
exactly k ones.

Lemma 7.2 and the additivity of probability tells us that

P(Gk) = mpkqn−k. (7.8)
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The number m depends on n and k.
Equation (7.8) will give us equation (7.7), once we show that

m =
n!

k!(n− k)!
. (7.9)

How do we show that equation (7.9) holds? This is a counting problem.
We could explain right now how to count the number of sequences con-

taining the k ones. But it seems more efficient to do that in Lemma 8.2, as
part of a general discussion. So we will leave equation (7.9) as an I.O.U. for
the moment.

Exercise 7.2. Equation (7.9) tells us that m = n when k = 1. Verify in this
special case that m = n is the correct value.

[Solution]

Exercise 7.3. Consider the experiment of tossing a fair coin 5 times. Let A
be the event that the first three tosses produce at most 1 head in total. Let
B be the event that the last two tosses produce exactly 1 head in total. Find
P(A ∩B).

[Solution]

Exercise 7.4 (Overlapping sequence segments). Consider the experi-
ment of tossing a fair coin 8 times. Let A be the event that the first six
tosses produce exactly 4 heads. Let B be the event that the last five tosses
produce exactly 3 heads. Find P(A ∩B).

Hint: Let C = A∩B. A reasonable approach to finding P(C) is to break
up the problem into cases. LetMj be the event that the fourth, fifth and sixth
tosses produce exactly j heads. Then P(C) = P(C ∩M0)+P(C ∩M1)+ . . . .

[Solution]

Exercise 7.5. Consider n tosses of a fair coin. As in Example 2.6, you can
use a sample space Ω whose points are sequences of length n, made up of
zeros and ones.
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Let A be any event on your sample space Ω. Prove that P(A) can be
written as a fraction whose denominator is a power of 2.

Exercise 1.5 considered methods of simulating an experiment with three
equally likely outcomes. In such an experiment, each possible outcome must
have probability 1/3. The present exercise shows that tossing a fair coin,
even many times, can never perfectly simulate such an experiment.

[Solution]

Exercise 7.6 (Counting sequences). Consider tossing a coin 30 times.
Let D1

i denote the event that toss i produces a head and let D0
i denote

the event that toss i produces a tail.
Using the sequence sample space Ω of Exercise 7.5, with n = 30, please

answer the following questions.

(i) How many sample points are there in D1
5?

(ii) How many sample points are there in D1
5 ∩D0

7?

(iii) List all the sample points in D1
1 ∩D0

1 ∩D1
3 ∩D0

4 ∩ . . . ∩D1
29 ∩D0

30?

[Solution]

7.3 Bernoulli trials terminology

Like coin-tossing, many experimental situations involve repeated indepen-
dent experiments, each of which either results in an event called “success”
or an event called “failure”. The next definition provides a convenient name
for such experiments.

Definition 7.4 (Bernoulli trials). Let W1, . . . ,Wn be independent events,
each of which has the same probability p. We will say that the sequence
W1, . . . ,Wn form a sequence of Bernoulli trials. We will often refer to the
occurrence of Wi as success on trial i, and the occurrence of W c

i as failure
on trial i. The probability p will be called the probability of success.

We also speak of the experiments and models associated with the events
W1, . . . ,Wn as Bernoulli trials.
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Tossing a coin n times, when the probability of a head is p, gives an
example of Bernoulli trials, provided we interpret a head as “success” on
any toss. The event Wi in this situation is simply the event that a head is
obtained on toss i.

Any mathematical statement about a Bernoulli trial sequence can be
translated into a mathematical statement about a coin-tossing sequence with
the same success probability. Thus we are free to use either Bernoulli trial
language or coin-tossing language to describe the relevant concepts.

Translating Lemma 7.3 into the language of Bernoulli trials gives the
following.

Theorem 7.5 (Probability of k successes). LetW1, . . . ,Wn be a sequence
of Bernoulli trials with success probability p.

Let P be the appropriate probability for the model. Let Gk be the event
that exactly k successes occur. Then

P (Gk) =
n!

k!(n− k)!
pkqn−k, (7.10)

where 0! is interpreted as 1 in case that k = 0 or k = n.

One often writes n!
k!(n−k)!

as
(
n
k

)
, so equation (7.10) can also be written as

P (Gk) =

(
n

k

)
pkqn−k, (7.11)

where (
n

k

)
=

n!

k!(n− k)!
.

The expression
(
n
k

)
is called a “binomial coefficient”, since it appears in the

statement of the Binomial Theorem (equation (8.5)).

Definition 7.6 (The binomial distribution). The distribution given by
equation (7.10) is called the binomial distribution with parameter p.
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Figure 7.1: P(k heads) in 30 tosses, success prob 1/3.

Figure 7.1 shows a plot of P (Gk) versus k for 30 trials, with success
probability 1/3. Notice that the graph appears to be centered around k = 10,
although it is not symmetric around that point. Since the success probability
is 1/3, the average number of successes over many repetitions of a sequence
of 30 trials is also equal to 10, since (1/3) ∗ 30 = 10.

Also notice that those probabilities in Figure 7.1 get awfully small when
you move a moderate distance away from 10.

7.4 Mathematical independence for a sequence

Building on our experience with coin-tossing, let’s give a general mathemat-
ical definition. A precise definition of this sort is interesting, but it is not
really necessary for our work in this book. Our instincts about independence
will tell us what to do in most calculations. So readers can skip this section
if desired, or just skim it quickly.

Definition 7.7 (Independence for n abstract events). Let W1, . . . ,Wn

be a sequence of events in some probability model. Suppose that for every
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choice of events D1, . . . , Dn, where each Di is either Wi or W
c
i , the following

equation holds.

P (D1 ∩ . . . ∩Dn) = P (D1) · · ·P (Dn) . (7.12)

Then we say that the sequence W1, . . . ,Wn is an independent sequence
of events in the probability model.

Be careful to note that independence is a property of the whole sequence,
not of each event Wi by itself! Nevertheless, for brevity we do often express
independence by saying that “the events are independent”, rather than saying
that the events form an independent sequence.

Notice that equation (7.12) gives us 2n equations, when we substitute for
D1, . . . , Dn in all possible ways. That’s a lot of equations!

Why should we think that equation (7.12) is a reasonable definition?
Well, suppose your model deals with a sequence of independent physical

trials, and the abstract event Wi represents a physical event defined entirely
in terms of the result of trial i. Since Di is either Wi or W

c
i , we know that

Di also represents a physical event defined entirely in terms of the result of
trial i, and so by Exercise 7.1 we must believe that equation (7.12), holds for
any choice of D1, . . . , Dn.

But is that enough? Perhaps physically independent events have more
properties, which are not captured by those 2n equations given in equation
(7.12). Should we worry about that? A reassuring answer is given by the
fact that the 2n events D1 ∩ . . . ∩ Dn cover all the possible cases of what
can happen in n tosses. In other words, anything that can be said about the
outcomes can be expressed in terms of set operations on events of the form
D1 ∩ . . . ∩Dn.

So it is plausible that Definition 7.7 is a sound definition. But is it
beautiful? It is expressed using a lot of equations. On the other hand, all 2n

equations follow the same pattern. So it’s not too bad.
There is one exceptional case: for n = 2, Lemma 5.6 shows that the

single equation P(W1∩W2) = P(W1)P(W2) implies all four of the equations
obtained by substituting in equation (7.12).

This shows that the sequence W1,W2 is independent in the sense of Defi-
nition 7.7 if and only ifW1,W2 are independent in the sense of Definition 5.2.
That is good, since it avoids ambiguity when we use the word “independent”.

173



Chapter 7. Independent sequences

It’s too bad things are more complicated when n is greater than 2.
But don’t worry! You will usually find that your physical understanding

of independent events will let you guess the correct equations for any practical
problem. We used this approach in Method 1 for the solution of Exercise 7.3.
And of course that’s how our whole discussion of independent sequences got
started, leading us to equation (7.1). Physical reasoning lets us go directly
to the calculations we need for independent sequences, although it is not
sufficient for a general proof.

Incidentally, when we cover independent random variables in Chapter 12,
you will see a neater way to describe mathematical independence.

Remark 7.8 (Order does not matter for independence of sequences).
Note that if D1, . . . , Dn is an independent sequence as defined in Defini-
tion 7.7, then any reordering of the sequence is also independent. This is
true because the intersection of sets does not depend on the order in which
they are listed, and the product of their probabilities is also the same regard-
less of the order of the factors.

Your physical understanding of independence will make you confident
that the next exercise is correct. But working out the solution is a good way
to get a feeling for the mathematical definition.

Exercise 7.7. Let A,B,C be three sets which are mathematically inde-
pendent in the sense of Definition 7.12. Based only on the mathematical
definition, prove the following.

(i) Show that A,B are independent. (Suggestion: consider A ∩ B ∩ C and
A ∩B ∩ Cc.)

(ii) Show that A ∩B and C are independent.

[Solution]

Remark 7.9 (The length-one case). When n = 1, we should interpret
D1 ∩ . . . ∩ Dn simply as D1. It follows that any length one sequence satis-
fies Definition 7.7. Thus every sequence of length one is a (rather boring)
independent sequence.
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Notice we are not saying that D1 is independent of itself. In our present
terminology that would be a statement about the length-two sequenceD1, D1.

Whether or not you work Exercise 7.8, please be aware of the danger it
points out.

Exercise 7.8 (Pairwise independence is not enough). Here’s an im-
portant observation that comes up once in a while. For three events A,B,C,
suppose that you know all possible pairwise independence statements hold,
i.e.

• A,B is an independent pair, and

• B,C is an independent pair, and

• A,C is an independent pair.

You still cannot be sure that A,B,C is an independent sequence.
Here’s an example. Consider tossing a fair coin twice. Let A be the event

that the first toss produces a head, and let B be the event that that second
toss produces a head. Let C be the event that the results of the two tosses
agree, that is, C = (A ∩B) ∪ (Ac ∩Bc).

The statement of the experiment tells us that A,B are independent.
Show:

(i) that also B,C are independent and A,C are independent, but

(ii)

P(A ∩B ∩ C) ̸= P(A)P(B)P(C).

Thus A,B,C is not an independent sequence.
(See Figure 5.1. The event C is the union of two of the four pieces shown

in part (c) of the figure. Notice that each of the four pieces in part (c) has
probability 1/4, so calculations should not be hard.)

[Solution]
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7.5 Thinking about consistency again

In the case of two tosses of a coin, it was mentioned earlier that our physical
experience makes us confident that probability models for two tosses are
consistent with models for one toss. And we checked that in Exercise 2.4.

Let’s look now at more general sequences of tosses. As in Example 2.6,
suppose you are studying tossing a coin 1, 000, 000 times, and using the
sample space consisting of sequences (x1, . . . , x1000000), where each xi is either
1 or 0.

In this section we will check a couple of things.
First, let’s check that the probabilities of the outcomes add up to one.
The following notation is handy.
Let θ(1) = p and let θ(0) = 1−p. Notice, by the way, that θ(1)+θ(0) = 1.
Using the θ notation, equation (7.6) can be written neatly as

P (Dx1
1 ∩ . . . ∩Dxn

n ) = θ(x1) . . . θ(xn). (7.13)

If we want to show that the probabilities of the outcomes add up to one,
we must show that ∑

x1,...,xn

θ(x1) . . . θ(xn) = 1,

where the sum in this equation is over all possible values for x1, . . . , xn, and
each xi can be 1 or 0.

We have to do something with that big sum on the left side of the equa-
tion.

Using the distributive law as much as possible, we see that

(θ(1) + θ(0)) . . . (θ(1) + θ(0))︸ ︷︷ ︸
n factors

=
∑

x1,...,xn

θ(x1) . . . θ(xn).

Since θ(1) + θ(0) = 1,∑
x1,...,xn

θ(x1)× . . .× θ(xn) = 1× . . .× 1︸ ︷︷ ︸
n factors

= 1,

so the probabilities of the outcomes do indeed add up to one!

Here’s another exercise in checking.
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Exercise 7.9 (Consistency). You’ve tackled this problem already in the
case of a fair coin, in Exercise 2.5. Now consider the general case, when the
coin is not necessarily fair, and has success probability p.

Fnd P(D1
1) using the million-toss sample space. Remember, no peeking

at the one-toss space!
[Solution]

7.6 Solutions for Chapter 5

Solution (Exercise 7.1). When n = 2, equation (7.3) is simply the state-
ment of equation (7.2) with k = 1.

In general, using equation (7.2) repeatedly, we have

P (D1 ∩ . . . ∩Dn) = P (D1 ∩ . . . ∩Dn−1)P (Dn) ,

= P (D1 ∩ . . . ∩Dn−2)P (Dn−1)P (Dn) ,

= P (D1 ∩ . . . ∩Dn−3)P (Dn−2)P (Dn−1)P (Dn) ,

...

= P(D1) . . .P(Dn).

A more formal solution would phrase this as an induction argument.

Solution (Exercise 7.2). Let (x1, . . . , xn) be a sequence of ones and zeroes,
for which exactly one of the numbers xi is equal to one.

There are n choices for the index i with xi = 1. Hence there are exactly
n sequences of this type.

Solution (Exercise 7.3). Method 1 We consider the first three tosses as
a separate experiment to find P(A). The sample space consists of sequences
of length 3. A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. Thus P(A) = 4(1/8) =
1/2.

We consider the last two tosses as a separate experiment to find P(B).
B = {(1, 0), (0, 1)}, so P(B) = 2(1/4) = 1/2.

Using our physical understanding of independence, A and B should be
independent, since they depend on separate tosses. Thus P(A ∩ B) =
(1/2)(1/2) = 1/4.
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Method 2 The sample space for the five tosses consists of 32 sequences of
zeroes and ones. All have the same probability, so P({ω}) = 1/32 for every
sample point ω.

A consists of all sequences of the form

(0, 0, 0, x4, x5) or (1, 0, 0, x4, x5) or (0, 1, 0, x4, x5) or (0, 0, 1, x4, x5),

where x4, x5 can be zero or one. Thus A contains 4 × 2 × 2 points, so
P(A) = 16/32 = 1/2.

B consists of all sequences of the form

(x1, x2, x3, 1, 0) or (x1, x2, x3, 0, 1),

where x1, x2, x3 can be zero or one. Thus B contains 2× 2× 2× 2 points, so
P(B) = 16/32 = 1/2.

Consider a sample point (x1, x2, x3, x4, x5) ∈ A∩B. There are two possible
cases:

• xi = 0 for all i = 1, 2, 3 and xi = 1 for exactly one of the indices i = 4, 5.
There are 1 × 2 = 2 ways to choose x1, x2, x3, x4, x5, so there are two
sample points for this case.

• xi = 1 for exactly one of the indices i = 1, 2, 3, and xi = 1 for ex-
actly one of the indices i = 4, 5, There are 3 × 2 = 6 ways to choose
x1, x2, x3, x4, x5, so there are six sample points for this case.

Since A ∩B contains 8 sample points, P(A ∩B) = 8/32 = 1/4.

Of course, Method 1 is more efficient, and conceptually clearer.

Solution (Exercise 7.4). Let Li be the event that the first three tosses
produce exactly i heads.

LetMj be the event that the fourth, fifth and sixth tosses produce exactly
j heads.

Let Rk be the event that the last two tosses produce exactly k heads.
Then

P(Li) =

(
3

i

)
1

3i
, P(Mj) =

(
3

j

)
1

2j
, and P(Rk) =

(
2

k

)
1

2k
.

Also, for any i, j, k, Li,Mj, Rk is an independent sequence of events.
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Clearly Mj is empty for j > 3. Thus P(C) = P(C ∩M0) +P(C ∩M1) +
P(C ∩M2) +P(C ∩M3).

A is the event that the first six tosses produce 4 heads. Thus A ∩M0 is
empty, while A ∩M1 = L3, A ∩M2 = L2, and A ∩M3 = L1.

B is the event that the last five tosses produce 3 heads. Thus B ∩M0 is
empty, while B ∩M1 = R2, B ∩M2 = R1, B ∩M3 = R0.

Thus C ∩M0 is empty, C ∩M1 = L3 ∩M1 ∩R2, C ∩M2 = L2 ∩M2 ∩R1,
C ∩M3 = L1 ∩M3 ∩R0.

It follows that

P(C) = P(L3)P(M1)P(R2) +P(L2)P(M2)P(R1) +P(L1)P(M3)P(R0).

Substituting,

P(C) =

(
3

3

)(
3

1

)(
2

2

)
1

28
+

(
3

2

)(
3

2

)(
2

1

)
1

28
+

(
3

1

)(
3

3

)(
2

0

)
1

28

=
1

28
(1 · 3 · 1 + 3 · 3 · 2 + 3 · 1 · 1)

=
24

28
.

Solution (Exercise 7.5). Each outcome has probability 1/2k. By Theo-
rem 2.13, if an event A contains ℓ outcomes then P = ℓ/2k.

Solution (Exercise 7.6). (i) Let (x1, . . . , x30) be a sample point in D1
5.

Then x5 = 1. For each index i ̸= 5, there are two possible values for xi.
Hence there are 229 choices for (x1, . . . , x30), so |D1

5| = 229.

(ii) Let (x1, . . . , x30) be a sample point in D1
5 ∩D0

7.
Then x5 = 1 and x7 = 0. For each index distinct from 5 and 7, there are

two possible values for xi. Hence there are 228 choices for (x1, . . . , x30), so
|D1

5 ∩D0
7| = 229.

(iii) Let (x1, . . . , x30) be a sample point inD1
1∩D0

1∩D1
3∩D0

4∩. . .∩D1
29∩D0

30.
Then x1 = 1, x2 = 0, x3 = 1, x4 = 0, etc. Thus xi = 1 if i is odd and

xi = 0 if i is even. This is the only sample point in the event.

Solution (Exercise 7.7).

(i) From the definition of mathematical independence, P(A ∩ B ∩ C) =
P(A)P(B)P(C), and also P(A ∩B ∩ Cc) = P(A)P(B)P(Cc).
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Since P(C) + P(Cc) = 1 we have P(A ∩ B ∩ C) + P(A ∩ B ∩ Cc) =
P(A)P(B).

Also (A ∩ B ∩ C) ∪ (A ∩ B ∩ Cc) = A ∩ B, and the sets in this union
are disjoint because C and Cc are disjoint. Hence by additivity we have
P(A ∩B) = P(A ∩B ∩ C) +P(A ∩B ∩ Cc).

Thus we have shown that P(A ∩B) = P(A)P(B).

(ii) By definition, P(A∩B∩C) = P(A)P(B)P(C). By part (i), P(A)P(B) =
P(A ∩B). Hence P((A ∩B) ∩ C) = P(A ∩B)P(C), as claimed.

Solution (Exercise 7.8). From the statement of the problem P(A) = 1/2,
P(B) = 1/2, and A,B are independent.

Since A,B are independent, P(A ∩B) = P(A)P(B) = 1/4.
Using Lemma 5.6, P(A ∩ Bc) = P(A)P(Bc) = 1/4, P(Ac ∩ B) =

P(Ac)P(B) = 1/4, and P(Ac ∩Bc) = P(Ac)P(Bc) = 1/4.
Since C = (A ∩B) ∪ (Ac ∩Bc), P(C) = 1/4 + 1/4 = 1/2.

(i) Then P(A ∩ C) = P(A ∩ B) = 1/4, P(B ∩ C) = P(A ∩ B) = 1/4, so
A,C and B,C are independent.

(ii) However, A ∩B ∩C = A ∩B, so P(A ∩B ∩C) = 1/4, while of course
P(A)P(B)P(C) = 1/8.

Solution (Exercise 7.9). Let n = 1, 000, 000.
When the coin has success probability p, and p ̸= 1/2, sample points are

not equally likely. So we need to use independence.
The event D1

1 consists of points of the form (1, x2, . . . , xn).
That is,

D1
1 = {(1, x2, . . . , xn) : where xi = 0 or 1 for i = 2, . . . , n} . (7.14)

Thus

P(D1
1) =

∑
x2,...,xn

θ(1)θ(x2) . . . θ(xn) = p
∑

x2,...,xn

θ(x2) . . . θ(xn),

where the sum is over all possible values of x2, . . . , xn, and each xi can be
either 0 or 1, for i = 2, . . . , n.

By using the distributive law as much as possible, we see that

(θ(1) + θ(0)) . . . (θ(1) + θ(0))︸ ︷︷ ︸
n−1 factors

=
∑

x2,...,xn

θ(x2) . . . θ(xn).
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Hence ∑
x2,...,xn

θ(x2) . . . θ(xn) = 1× . . .× 1︸ ︷︷ ︸
n−1 factors

= 1,

and so P(D1
1) = p, as it must.
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Chapter 8

Counting

8.1 Counting ordered and unordered choices

Basic combinatoric methods, i.e. counting “permutations and combinations”,
are essential in analyzing many probability problems.

8.1.1 Ordered choices

Imagine that you are choosing a small administrative board to serve a club
with n members. Three positions must be filled: president, vice-president
and treasurer. No person can fill more than one position. The members
of the board must be members of the club. How many possible boards are
there?

Think of choosing the president first. This can be done in n ways. Next
choose the vice president. Since one member of the group is already assigned
to a position, you have n − 1 choices for the vice-president. Finally, choose
the treasurer from the remaining n− 2 people. The total number of ways to
do this is then n(n− 1)(n− 2).

Is it obvious that we should count the total number of ways by multiplying
the number of choices at each step? Sometimes people picture a “tree of
possibilities” to see this.

We can also compare this calculation with another one.
Suppose that a company owns 5 apartments buildings, and each building

has 3 floors, and each floor has 7 apartments. If you are asked to choose
one of the company’s apartments to live in, you have a total of 5 × 3 × 7
choices. Notice that in this situation, if you make a different choice at step
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one, you have a completely different set of choices for step two, and so on.
Perhaps that makes it slightly easier to picture what is going on. In the
case of choosing a board, if you make a different choice at step one, the set
of possible choices for step two is only altered slightly. However, because
you have already made a different choice at step one, there is no danger of
counting the same board twice.

Of course, in any calculation like this, the fact that we can simply multiply
the number of choices at each step depends on the fact that the number of
possible choices at each step does not depend on what choices were made in
previous steps.

The number of sequences of k distinct elements chosen from a set of
n elements is often denoted by P n

k . In case it is needed in a formula, we
interpret P n

0 as 1, which means that we think there is only one way to choose
nothing.

The argument just given for choosing a board tells us that

P n
k = n(n− 1) . . . (n− k + 1) =

n!

(n− k)!
. (8.1)

For k = n we use the standard convention that 0! = 1 in this formula.
As a matter of terminology, a sequence of k distinct elements chosen from

a set S is sometimes called a permutation of length k chosen from S.

8.1.2 Unordered choices

Now imagine that you are choosing a “clean-up” committee consisting of 3
members, from the club with n members. There are no special roles for the
members of the this committee. They are simply supposed to work together
to clean up after the next club meeting. You can still choose the members
one at a time, but choosing the same three people in a different order just
gives you the same committee.

If we think about choosing the committee members one by one, and count
the number of ways to do that, we know that there are n(n−1)(n−2) ways.
But counting these ordered choices means counting the same committee mul-
tiple times. How many times?

A given clean-up committee is a set of 3 people. Equation (8.1), with
k = n = 3, tells us there are 3! ways to perform the ordered choices which
give us the same committee.
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So the actual number of distinct possible clean-up committees is n(n −
1)(n− 2)/3!.

Generalizing the situation just described, let Cn
k denote the number of

subsets of size k from a set of n members. A brief way to refer to Cn
k is “n

choose k’”. Sometimes people refer to a chosen subset as a “combination”.
Then Cn

k is “the number of combinations of n things taken k at a time”.

Lemma 8.1. Cn
k is given by

Cn
k =

P n
k

k!
=
n(n− 1) . . . (n− k + 1)

k!
=

n!

k!(n− k)!
=

(
n

k

)
, (8.2)

where
(
n
k

)
is the binomial coefficient, defined by(

n

k

)
=

n!

k!(n− k)!
. (8.3)

By the definition, Cn
0 = 1. This is consistent with equation (8.1) with the

standard convention that 0! = 1.

Proof. We could imitate the argument just given when k = 3. But perhaps
it’s neater to rearrange the argument, as follows.

Consider choosing a sequence of k distinct elements from a set S contain-
ing n elements. When we thought about this choice, we chose the members
in order, one at a time. But we can also carry out the choice in two stages.

In stage 1, select an unordered subset A of size k. By the definition of
Cn

k , that can be done in Cn
k ways. We don’t know the actual numerical value

for Cn
k yet, but by definition Cn

k is the number of ways to choose A.
In stage 2, arrange the elements of A in order. By equation (8.1), with

n = k, this can be done in k! ways.
Clearly P n

k is found by multiplying the number of ways to perform stage 1
times the number of ways to perform stage 2. Hence P n

k = Cn
k k!, proving

equation (8.2).

We define
(
n
k

)
= 0 if k < 0 or k > n . This makes equation (8.2) true for

those values of k.
The reason

(
n
k

)
is called the binomial coefficient will be clear from equa-

tion (8.5) below (the binomial theorem).
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Lemma 8.2 (Counting successes using zeros and ones). Let S be the
set of all sequences (x1, . . . , xn), where each xi is zero or one.

Let Ak be the subset of S consisting of all sequences (x1, . . . , xn) such
that xi = 1 for exactly k indices i. Then

|Ak| =
(
n

k

)
. (8.4)

Proof. We can specify any sequence (x1, . . . , xk) by simply specifying the set
of indices i for which xi = 1. Hence the number of sequences (x1, . . . , xk)
which have k successes is exactly equal to the number of ways to choose a
subset of size k from a set of size n. That is, |Ak| =

(
n
k

)
.

Lemma 8.2 is what we need to finish deriving equation (7.9). That equa-
tion gives the formula for the Binomial Distribution (Theorem 7.5).

8.2 The binomial theorem

We have used the binomial theorem from time to time in examples. Let’s
give a general statement and proof of this theorem now, for comparison with
the proof that was just given for Theorem 7.5.

Consider expanding (a+ b)n. The usual first step is to write

(a+ b)n = (a+ b)(a+ b) . . . (a+ b)︸ ︷︷ ︸
n times

.

The next step is to apply the distributive law energetically, resulting in 2n

terms. Notice that each of your 2n terms is a product of n factors. The
factors are a’s and b’s, where we choose either a or b from each of the n
factors in the original expression for (a+ b)n.

To record a term, we could simply note the set of factors (a + b) from
which we chose a. That completely specifies the term.

For example, one of the terms in the expansion of

(a+ b)(a+ b)(a+ b)(a+ b)(a+ b)
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is ababb. We can record that term by saying that we chose a from the first
and third factors and chose b from the other factors.

The final step is called “collecting like terms”. Suppose you would like
to combine all terms which are equal to akbn−k. How many such terms are
there?

The number of such terms is exactly the same as the number of ways in
which you can select k factors from the n factors in the product (a + b)n.
Hence there are

(
n
k

)
terms which are equal (after rearranging the order) to

akbn−k.
This proves the binomial theorem:

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k. (8.5)

8.3 Two recursion formulas

To practice using counting arguments, we’ll prove two recursive formulas for
the binomial coefficients.

Here’s the first one.(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (8.6)

To prove (8.6), take any set of n elements, and choose one particular
element for a special role.

When choosing a subset consisting of k elements, there are two possibili-
ties. Either your subset contains the special element, or it does not.

If your subset does not contain the special element, then it is chosen from
the other n− 1 non-special elements. That can be done in

(
n−1
k

)
ways.

If your set does contain the special element, then your subset is charac-
terized by the k− 1 non-special elements it contains. Those elements can be
chosen in

(
n−1
k−1

)
ways.

Combining the two cases proves (8.6).

Exercise 8.1. Check equation (8.6) using algebra.
[Solution]
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Remark 8.3 (Pascal’s triangle). This is a pictorial device based on equa-
tion (8.6). It is used to quickly find small binomial coefficients. One often
writes coefficients in rows, with

(
n
k

)
, k = 0, 1, . . . , n in the n-th row. Elements

to left or right of the binomial coefficients are taken to be zero, and the rows
are staggered, meaning that each element in row n is placed in between the
two nearest elements above it in row n− 1. Equation (8.6) tells us that each
element in row n is the sum of the two nearest elements in the preceding row.
Thus:

0 1 0

0 1 1 0

0 1 2 1 0

0 1 3 3 1 0

and so on.

Here’s another recursion formula. For any n ≥ 1 and any k ≥ 1,(
n

k

)
=
n

k

(
n− 1

k − 1

)
. (8.7)

This formula has an easy algebraic proof.(
n

k

)
=

n!

k!(n− k)!
=
n

k

(n− 1)!

(k − 1)!(n− k)!

=
n

k

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
=
n

k

(
n− 1

k − 1

)
.

Just for fun, let’s make up a counting proof too. Think about choosing
a special clean-up committee made up of k members from a club with n
members. The members of the committee all must clean, but one member
of the committee is chosen to be the boss of the committee. That member
of the committee has a special role: the boss is responsible for making sure
that the job is done well.

We can choose the special clean-up committee in two stages:

First stage: Choose a set of k members. That can be done in
(
n
k

)
ways.
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Second stage: Select one member from the k people in the chosen set, and
make that person the boss. This can be done in k ways.

Hence the total number of possible special committees is

k

(
n

k

)
.

Alternatively, we can choose the special clean-up committee in a different
way.

Alternate first stage: Select one person from n people in the club. The
selected person will be the boss.

Alternate second stage: Select the remaining members of the clean-up com-
mittee from the remaining n − 1 members of the club. This can be
done in

(
n−1
k−1

)
ways.

Hence total number of possible special committees is

n

(
n− 1

k − 1

)
.

Equating the two different expressions for the number of possible special
committees gives equation (8.7).

The general theory of counting is known as combinatorics. It would be
enjoyable to explore this interesting area, but we need to restrain ourselves
and return to probability.

8.4 Random sets

8.4.1 Choosing a subset

Let S be a set containing a total of N elements. Consider the experiment of
randomly choosing a subset consisting of n elements, in such a way that no
element is favored. It seems most natural to represent a sample point by the
actual subset of elements that are chosen. Let Ω be the collection of subsets
of size n.

Let x be a particular point in the set S. The probability that x will be
one of the n random elements chosen is n/N , as was shown in Theorem 2.22.
Here we consider probabilities of choosing several particular points.
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Exercise 8.2.

(i) For the experiment in this section, find the number of sample points in
Ω.

(ii) Suppose you have a special interest in two of the elements in S, called x
and y. Let A be the event that both x and y are in the selected set. Assume
that n > 1. Find P(A).

(iii) Generalize your result in part (ii) to the situation where you are
interested in a particular set T of elements, with |T | = K. Let AT be the
event that all the elements in T are in the selected set. Assume that n ≥ K.
Find P (AT ).

[Solution]

Example 8.4. In Section 4.6 we considered the situation of Exercise 4.2 and
found two probabilities. Let’s find the same probabilities using our counting
tools.

In Exercise 4.2 we are choosing a set of two jelly beans from a bowl which
contains 75 yellow beans, 53 red beans, 27 purple beans, and 18 green beans.

Thus there are a total of 173 jelly beans in the bowl.
Let R be the event that a set of two red jelly beans is obtained, and let

M be the event that a set containing one red and one green jelly bean is
obtained. We wish to find P(R) and P(M).

Let Ω be the collection of all two-point subsets of the set of jelly beans
in the bowl. We assume that all sample points are equally likely. Clearly

|Ω| =
(
173

2

)
=

173 · 172
2

,

so for each ω ∈ Ω we have

P({ω}) = 1

|Ω|
=

2

173 · 172
.

The event R is the collection of all subsets made up of two red jelly beans.
Thus

|R| =
(
53

2

)
=

53 · 52
2

.
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Hence

P(R) =
53 · 52

2

2

173 · 172
=

53 · 52
173 · 172

.

The event M is the collection of all subsets made up of one red jelly bean
and one green jelly beans. There are 53 ways to choose the red bean and 18
ways to choose the green. Thus

|M | = 53 · 18.

Hence

P(M) = 53 · 18 2

173 · 172
= 2

53 · 18
173 · 172

.

Exercise 8.3. Consider the situation of Exercise 8.2, part (ii). In addition
to x and y, suppose you are also interested in a third point z. Let B be the
event that y and z are both in the selected set. Find P(B |A).

[Solution]

When choosing sets, one has to be careful in labelling the sizes correctly,
and counting. It’s not hard, just takes care. Let’s do a little practicing with
that, next.

Exercise 8.4. A bowl contains N marbles. K of the marbles are red, the
rest are green. A subset consisting of n marbles is selected. No marble is
favored. Let Ri be the event that there are exactly i red marbles in the
selected set.

From the description of the problem,

0 ≤ K ≤ N, 0 ≤ n ≤ N. (8.8)

(i) Suppose that all the following inequalities hold:

0 ≤ i ≤ K, (8.9)

i ≤ n, (8.10)

K − i ≤ N − n. (8.11)

Find P (Ri).
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C

T

C∩ T

C− T

S

Figure 8.1: Lemma 8.5: |S| = N , |T | = K, |C| = n, |C ∩ T | = i,
|C − (C ∩ T )| = n− i

(ii) Show that equations (8.9), (8.10), and (8.11) must hold in for any pos-
sible outcome. Thus Ri must be empty, i.e. Ri = ∅, when i does not
satisfy all the inequalities in those equations.

(iii) For what value of i is your answer to part (i) already given by Exer-
cise 8.2?

[Solution]

Abstractly, Exercise 8.4 deals with a set S of size N , having a specified
subset T of size K. In this situation another subset C, having size n, is
chosen.

For the moment, don’t think about how C is chosen. Let’s just consider
a simple question: if all we know is that C is a subset of S with size n, what
are the possible values for the size of C ∩ T?
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We’ll repeat the arguments for Exercise 8.4, starting by writing down
inequalities. Clearly K ≤ n and n ≤ n.

Let i denote the size of C ∩ T . Then we must have i ≥ 0, i ≤ K, i ≤ n.
Must i satisfy any other inequalities?

Well, note that C = (C ∩ T )∪ (C − (C ∩ T )). So |C − (C ∩ T )| = n− i,
and the elements of C−(C ∩ T ) are in S−T . So we also have n−i ≤ N−K,
or equivalently n+K ≤ N + i, which is equivalent to K − i ≤ N − n.

Notice that in the solution for Exercise 8.4 we argue slightly differently
to obtain the same inequality, as follows. T = (C ∩ T ) ∪ (T − (C ∩ T )). So
|T − (C ∩ T )| = K− i, and the elements of T − (C ∩ T ) are in S−C. So we
also have K − i ≤ N − n.

Incidentally, we might rewrite equations (8.9), (8.10), and (8.11) more
symmetrically:

0 ≤ i,

i ≤ K,

i ≤ n,

K + n ≤ N + i.

(8.12)

These inequalities in equation (8.12) are symmetric in K and n. They
had to be, because we have not used any information here which treats T
and C differently.

We have established that the size i of C ∩T must satisfy equation (8.12).
As shown in Exercise 8.4, no more conditions are needed. The following
lemma asserts all this for the record. The remarks already given can easily
be turned into a more formal proof.

Lemma 8.5 (Possible intersections of two subsets). Let S be a set
with |S| = N , and let T be a subset with |T | = K. Let n be an integer with
0 ≤ n ≤ n.

For any integer i satisfying equation (8.12), there exists a subset C with
|C| = n, such that |C ∩ T | = i.

Conversely, if C is a subset of S with size n, then i = |C ∩ T | satisfies
equation (8.12). See Figure 8.1.
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Definition 8.6 (The hypergeometric distribution). In Exercise 8.4 it
was shown that

P(Ri) =

(
K
i

)(
N−K
n−i

)(
N
n

) (8.13)

when i satisfies the inequalities in equation (8.12) (or equivalently when i
satisfies equations (8.9), (8.10), and (8.11) ).

For any distribution, if equation (8.13) holds when i satisfies the inequali-
ties in equation (8.12), withP(Ri) = 0 otherwise, we say that the distribution
is the hypergeometric distribution, with parameters N,K, n.

Since notations in other books will differ, for applications remember that:

• N is the total size of the population from which a random sample of
size n is selected,

• K is the size of a set of special elements in the population, and

• i is the number of special elements that are in the sample.

8.4.2 Choosing a sequence

Let S be a set containing n elements. Consider the experiment of randomly
choosing a sequence consisting of n elements, in such a way that no element
is favored during the successive choices. It seems most natural to represent
a sample point as the actual sequence of elements that are chosen. Let Ω be
the collection of subsequences of size n.

Exercise 8.5.

(i) Find the number of sample points in Ω.

(ii) Suppose you have a special interest in two distinct elements in S, called
x and y. Let A be the event that x is the third point chosen and y is the
seventh point chosen. (Assume that n > 6.) Find P(A). [Solution]
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Exercise 8.6. In the setting of Exercise 8.5, suppose that, in addition to x
and y, you are also interested in a point z, which is different from x and y.
Let B be the event that y is the seventh point chosen and z is fifth point
chosen. Find P(B |A). (Assume n > 6.)

[Solution]

Exercise 8.7. Recall Exercise 8.4. In that experiment, a subset consisting
of n marbles is chosen randomly from a bowl of n marbles, and Ri is the
event that exactly i of the chosen marbles are red. The total number of red
marbles in the bowl is K.

The final goal is to find P (Ri), but one may decide to choose the marbles
in the subset one at a time, afterwards ignoring the order in which the marbles
are chosen. Let’s try that approach.

The description of the experiment shows that the values of P (Ri) follow
the hypergeometric distribution, with parameters N,K, n (Definition 8.13.
So the approach we are trying now must eventually eventually produce the
formula for this distribution which was already given in equation (8.13).

To compare our model with Bernoulli trials (Section 7.3), let a sample
point be ω = (ω1, . . . , ωn), where ωℓ is the marble chosen at step ℓ. The
number of red marbles chosen is then the number of indices ℓ such that ωℓ

is red.
Ri is the set of all outcomes (ω1, . . . , ωn) such that exactly i of the marbles

ωℓ are red.
Much as when we studied coin tossing, let Wℓ be the event that the ℓ-th

marble chosen is red, so that W c
ℓ is the event that the ℓ-th marble chosen is

not red. Then for any ω = (ω1, . . . , ωn),

{ω} = D1 ∩ . . . ∩Dn, (8.14)

where Dℓ = Wℓ if ωℓ is red and Dℓ = W c
ℓ if ωℓ is not red.

Thus Ri is the union of all events of the form D1 ∩ . . . ∩ Dn, where for
each t, either Dt = Wt or Dt = W c

t , and where the Dt = Wt for exactly i of
the times t.

The next step in this approach would be to calculate P (D1 ∩ . . . ∩Dn).
But at this point there is an obstacle, since we don’t have independence.

Explain why the events D1, . . . , Dn are not independent.
[Solution]
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The next exercise shows that the sequence model considered in Exer-
cise 8.7 eventually leads to equation (8.13), as it should. There are more
steps this way, but the steps are not hard.

Exercise 8.8. In the setting of Exercise 8.7, consider the events D1∩. . .∩Dn

which make up Ri. Show that every event D1 ∩ . . . ∩ Dn has the same
probability, and find this probability.

A good way to think about this is to use the sample space of Exercise 8.7.
Thus a sample point is ω = (ω1, . . . , ωn), where ωℓ is the marble chosen

at step ℓ. The number of red marbles chosen is then the number of indices ℓ
such that ωℓ is red.

Since no marble is favored, all sequences (ω1, . . . , ωn) have the same prob-
ability.

[Solution]

Example 8.7 (Plotting a hypergeometric distribution). In the setting
of Exercise 8.7, suppose we have a bowl with 120 marbles, 40 of which are
red and the rest green. If you randomly select a single marble from this bowl,
the probability of a red marble is 1/3 (by Theorem 2.22, say).

In this setting, consider the experiment of Exercise 8.4 with the total
number of marbles equal to 120, the total number of red marbles equal to
40, and 30 marbles are chosen from the bowl.

In our present notation N = 120, K = 40 and n = 30.
We are interested in P (Ri), where Ri is the event that i red marbles are

obtained.
This experiment differs from n Bernoulli trials, since the successive colors

obtained in the n selections are not independent, and the values of P (Rn)
follow the hypergeometric distribution with parameters N,K, n. We will use
the formula for this distribution derived earlier in Exercise 8.4.

Figure 8.2b shows the graph of P (Ri) versus i for one experiment (N =
120, K = 40, n = 30). We see that this graph is similar to the coin-tossing
graph in Figure 8.2a, but the graphs are not identical.

For comparison, Figure 8.2c shows the graph of P (Ri) versus i when
N = 12000, K = 4000, n = 30. We see that this graph is almost identical to
the graph in Figure 8.2a. Why is that??
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(a) Figure 7.1 again. P(k heads),
30 tosses, success prob 1/3.

0 5 10 15 20 25 30

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(b) Probability that a randomly se-
lected subset of size 30 from a set of
120 contains i red marbles, when 40
out of the 120 are red.
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(c) Probability that a randomly se-
lected subset of size 30 from a set of
12000 contains i red marbles, when
4000 out of the 12000 are red.
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Exercise 8.9. Suggest an answer to the question posed at the very end of
Example 8.7.

[Solution]

8.5 Solutions for Chapter 8

Solution (Exercise 8.1).

Proof. (
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!
.

Bringing the summands to a common denominator gives

(n− k)(n− 1)! + k(n− 1)!

k!(n− k)!
=

n!

k!(n− k)!
=

(
n

k

)
.

Solution (Exercise 8.2).

(i) By definition, a sample point is a subset of S having size n. Hence there
are exactly

(
N
n

)
sample points.

(ii) Since no element is favored in the selection, every sample point must
have the same probability. Hence each sample point has probability 1/

(
N
n

)
.

By additivity,

P(A) =
∑
ω∈A

P({ω}) = |A| 1(
N
n

) .
A sample point in A is a subset of S containing x and y and n− 2 additional
elements from S. |A| is equal to the number of ways to choose n−2 elements
from S − {x, y}. Hence

P(A) =

(
N−2
n−2

)(
N
n

) .
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(iii) Similar arguments show that

P (AT ) =

(
N−K
n−K

)(
N
n

) . (8.15)

Solution (Exercise 8.3). Using, say, Exercise 8.2, part (iii),

P(A) =

(
N−2
n−2

)(
N
n

) , P(A ∩B) =

(
N−3
n−3

)(
N
n

) .

Hence

P(B |A) =

(N−3
n−3)
(Nn)

(N−2
n−2)
(Nn)

=

(
N−3
n−3

)(
N−2
n−2

) =

(N−3)!
(n−3)!( (N−3)−(n−3) )!

(N−2)!
(n−2)!(N−2)−(n−2) )!

=

(N−3)!
(n−3)!(N−n)!

(N−2)!
(n−2)!(N−n)!

=
(N − 3)!

(N − 2)!

(n− 2)!

(n− 3)!
=

n− 2

N − 2
.

We have followed the general pattern of the conditional probability for-
mula here. However, we would arrive at the same value for P(B |A) if we
considered the selection of x and y as part of the setting of the experiment,
so that the experiment consists of choosing the rest of the sample. Now the
sample space Ω′ is the set of all subsets of S−{x, y}, and we want the prob-
ability that when choosing n− 2 points from Ω′, the point z is in the chosen
set. By Theorem 2.22, this probability is (n− 2)/(N − 2).

In this way we don’t need use of the conditional probability formula. The
second method is a common approach to conditional probability problems.

Solution (Exercise 8.4).

(i) A sample point ω is a subset of size n. Suppose that ω ∈ Ri.
Since i ≤ K and i ≤ n, there are

(
K
i

)
choices for the red marbles in ω.

Since n− i ≤ N −K, there are
(
N−K
n−i

)
choices for the non-red marbles in

ω.
Hence there are

(
K
i

)(
N−K
n−i

)
choices for ω in Ri, that is, |Ri| =

(
K
i

)(
N−K
n−i

)
.

As usual, |Ω| =
(
N
n

)
. Hence

P (Ri) =

(
K
i

)(
N−K
n−i

)(
N
n

) . (8.16)

199



Chapter 8. Counting

(ii) Equation (8.9) says that every chosen red marble is a red marble.

Equation (8.10) says that every chosen red marble is a chosen marble.

Equation (8.11) says that every remaining red marble is a remaining
marble.

So all three of these equations must hold.

(iii) RK is simply the event that all the red marbles are chosen. If we think
of the red marbles as the elements of interest in the set, then part (iii) of

Exercise 8.2. tells us that P (RK) =
(N−K
n−K)
(Nn)

.

Solution (Exercise 8.5).

(i) A sample point is a sequence of distinct elements, having length n, so
there are exactly PN

n sample points, where PN
n is given by equation (8.1),

PN
n = N(N − 1) . . . (N − n+ 1) =

N !

(N − n)!
.

(ii) Since no element of S is favored in selecting the sequence, all sample
points have the same probability. Thus P({ω}) = 1/PN

n for all ω.

For any sequence ω in the event A, we are given the positions of x and
y in the sequence. Thus the ω is determined once the other elements in the
sequence are determined. The other n − 2 elements in the sequence form a
sequence consisting of distinct elements from S−{x, y}. Since |S − {x, y}| =
N − 2, there are PN−2

n−2 choices for the other elements in the sequence. This
shows that |A| = PN−2

n−2 .

P(A) =
∑
ω∈A

P({ω}) = |A| 1

PN
n

=
PN−2
n−2

PN
n

=
(N − 2) . . . ( (N − 2)− (n− 2) + 1)

N . . . (N − n+ 1)
=

1

N(N − 1)
. (8.17)

The positions of x and y in the sequence were given, but we see that the
probability is the same for any fixed choices of the positions.
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Solution (Exercise 8.6).

P(B |A) = P(A ∩B)

P(A)
=

PN−3
n−3

PN
n

PN−2
n−2

PN
n

=
PN−3
n−3

PN−2
n−2

=
(N − 3) . . . (N − 3− (n− 3) + 1)

(N − 2) . . . ((N − 2)− (n− 2) + 1
=
N − 3

N − 2
.

As in the solution for Exercise 8.3, we won’t need the conditional probability
formula if we take the setting of our experiment to include the fact that x is
the third point chosen and y is the seventh point chosen.

Solution (Exercise 8.7). To see what is going on, take n = 2.
Suppose D1 = W1 and D2 = W2. Then P (D1) = K/N and P (D2) =

K/N .
However, we can find P (D2 |D1) by thinking of the second choice as a

self-contained experiment, with N − 1 marbles K − 1 red marbles. Hence

P (D2 |D1) =
K − 1

N − 1
̸= P (D2) .

Thus independence does not hold.

Solution (Exercise 8.8). We’ll use the sample space of Exercise 8.7.
Thus a sample point is ω = (ω1, . . . , ωn), where ωℓ is the marble chosen

at step ℓ. The number of red marbles chosen is then the number of indices ℓ
such that ωℓ is red.

By equation (8.1),

|Ω| = N !

(N − n)!
.

Since all marbles are treated the same way, all sample points have the same
probability. For any (ω1, . . . , ωn),

P({(ω1, . . . , ωn)}) =
1

|Ω|
=

(N − n)!

N !
. (8.18)

Let K be total number of red marbles in the bowl.
Fix i, 1 ≤ i ≤ n and i ≤ K. Let D1∩. . .∩Dn be such that D1∩. . .∩Dn ⊂

Ri.
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Consider (ω1, . . . , ωn) ∈ D1 ∩ . . . ∩ Dn. Then ωℓ is red for exactly i
of the indices ℓ. Let V be the set of indices ℓ such that ωℓ is red. Let
W = {1, . . . , n} − V be the other indices.

There are i indices in V . So, using equation (8.1), the number of ways to
choose xℓ for ℓ ∈ V is

K!

(K − i)!
.

That is the number of ways to fill the red indices. The number of non-red
indices is n − i And the number of non-red marbles is N − K. Hence the
number of ways to fill the non-red indices is: is

(N −K)!

((N −K)− (n− i))!
.

Hence

|D1 ∩ . . . ∩Dn| =
K!

(K − i)!

(N −K)!

((N −K)− (n− i))!
.

Using equation (8.18),

P(D1 ∩ . . . ∩Dn) =
K!

(K − i)!

(N −K)!

((N −K)− (n− i))!

(N − n)!

N !
.

Thus

P(D1 ∩ . . . ∩Dn) =
K!(N −K)!

N !

(N − n)!

(K − i)! ((N −K)− (n− i))!
. (8.19)

Equation (8.19) shows in particular that P(D1 ∩ . . . ∩Dn) has the same
value for any set D1 ∩ . . . ∩Dn contained in Ri.

To check the probability value given by equation (8.19), note that a par-
ticular event D1 ∩ . . . ∩ Dn is determined once the set V of red indices is
chosen. Hence there are

(
n
i

)
events D1 ∩ . . . ∩Dn contained in Ri, and so

P(Ri) =

(
n

i

)
K!(N −K)!

N !

(N − n)!

(K − i)! ((N −K)− (n− i))!
,

i.e.

P(Ri) =
n!

i!(n− i)!

K!(N −K)!

N !

(N − n)!

(K − i)! ((N −K)− (n− i))!
. (8.20)
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That is,

P(Ri) =
K!

i!(K − i)!

(N −K)!

(n− i)! ((N −K)− (n− i))!

n!(N − n)!

N !
.

This agrees with equation (8.13), which says that

P(Ri) =

(
K
i

)(
(N−K
n−i

)(
N
n

) .

Solution (Exercise 8.9). When the total number of marbles is large, and
the total number of red marbles is large, choosing one marble has little effect,
meaning that the chance of a red marble on a second choice is almost the
same as it was on the first choice, regardless of whether or not the first marble
was red. Thus the outcomes (red or non-red) are almost independent, and
choosing a 30 marbles is almost like 30 independent trials in coin-tossing.

Incidentally, that graph in Figure 8.2b looks a bit narrower than the graph
in Figure 8.2a, doesn’t it? Could there be a reason for that?

A reason is given Remark 16.25.
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Chapter 9

Random variables

In this chapter we introduce a new concept, random variables. The benefits
of using this concept will become evident in the chapters that follow. The
current chapter has important definitions and examples, but not much in the
way of applications. Readers should try to enjoy the peaceful contemplation
of well-chosen concepts. This investment will pay off later.

9.1 Random variables defined

Definition 9.1 (Random variables). Physically, a random variable for
an experiment is a quantity whose value depends on the outcome of the
experiment. In our discussions the quantity will usually be a number, but it
might be a vector, a set, a symbol, or some other property.

Mathematically, a random variable is a function whose domain is the
sample space Ω of a model, and whose values can be of any kind. A real-
valued random variable is a function from a sample space Ω to the real
numbers.

To save words, we often simply use the phrase “random variable” to mean
a real-valued random variable, since that is the most common case for us.
Since we are following that convention, when we are dealing with a random
variable whose values are not numbers, we’ll try to say what the values are,
or at least add an adjective to make that clear. For example we might speak
of a “vector-valued random vector”, or a “random vector”, to indicate that
our random variable has vector values.

By convention, random variables are normally denoted by uppercase let-
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ters, with X, Y, Z being the most common choices.

Definition 9.1 is not quite complete, since it omits a mathematical tech-
nicality. This technicality has no practical significance for our work in this
book, and can be safely ignored, but a brief discussion is given below in
Section 9.7.

Notation for properties and sets of values
Suppose thatX is a real-valued random variable, and that for some reason

we want to consider the probability that X is greater than five and less than
eight.

The usual notation for this probability is P(5 < X < 8). That expresses
the probability using “property language”.

We can also write the same probability as P(X ∈ (5, 8) ). That expresses
the probability using “set language”.

The same kind of notation is used in general. If S is the set of all possible
values that have the property that we are interested in, we can write P(X ∈
S) to denote the probability that the value of X lies in the set S.

We could use a more formal mathematical notation for P(X ∈ S). If X
is a function on a sample space Ω, we could define an event A by

A = {ω : X(ω) ∈ S} . (9.1)

Then P(A) would be P(X ∈ S).
But usually it is more convenient to use the briefer notations which are

common in probability. So we just write P(X ∈ S) instead of defining A.
The notations used in probability theory are the following:

{X ∈ S} = {ω : X(ω) ∈ S} ,
P(X ∈ S) = P({X ∈ S}) = P({ω : X(ω) ∈ S}).

(9.2)

Readers will find that this type of notation is quite clear and easy to read.

Notation for random variables Since a random variable is a function,
why not use a typical function name, such as “f”, instead of an uppercase
letter? Perhaps an uppercase letter is used to remind the reader that the
domain of a random variable is the set of possible outcomes for an experiment.
This can be very different from the domain of a function in calculus, which
is usually an interval of the real line.
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Calling a random variable “X” offers another benefit. If we want to refer
to a value of the random variableX, we can denote the value by the lowercase
letter “x”. This reminds the reader of the source of the value.

In this chapter we will mainly consider a random variable whose set of
possible values is finite, i.e. a random variable with finite range. But most
of the concepts make sense for general mathematical random variables.

Example 9.2 (The result of one coin toss). For a single toss of a coin,
let X = 1 if the result is a head, and let X = 0 if the result is a tail. In other
words, X is equal to the number of heads obtained by this toss.

If the probability of a head is p, then the probability that X = 1 is equal
to p, and the probability that X = 0 is equal to 1− p.

X is a very boring random variable! However, we will soon see that more
interesting random variables can be built using random variables like X.

To represent X mathematically, if the sample space Ω is equal to the
two-point set {1, 0}, as in Example 2.14, then X(ω) = ω, but, as usual in
applications, there is no need to use any particular sample space. Given a
physical random variable X, the mathematical random variable representing
X is valid if it has the correct values and produces those values with the
correct probabilities.

Remark 9.3 (An example of an alternate sample space for one coin
toss). To emphasize the fact that the sample space is not unique, here’s a
extreme example of an alternate sample space. We could take Ω equal to the
whole unit interval [0, 1], and use the uniform probability P on [0, 1]. In this
case, define a random variable X̃ by X̃(ω) = 1 if 0 ≤ ω < p, and X̃(ω) = 0
if p ≤ ω ≤ 1. (Think about randomly choosing a point in the unit interval
(with a uniform probability distribution) and shouting “success!” or “Pay
me!” if the chosen point lies in the interval [0, p).)

Notice that with this definition we have arranged matters so that the
possible values of X̃ are 1 and 0, the probability that X̃ = 1 is equal to p,
and the probability that X̃ = 0 is equal to 1 − p. This exactly matches the
physically observable behavior of the random variable X which was defined
on the two-point set {0, 1}.

Remember, what matters are the values, and the probabilities of those
values. That’s what is “real” about the mathematical random variable.
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One might certainly say that using Ω = [0, 1] is wasteful, since we don’t
need such a big sample space, but the sample space is not incorrect. It might
even be appropriate in a complicated experiment, if there are additional
properties that must be represented using the same sample space.

Exercise 9.1 (Notation check). Let X̃ be the random variable defined in

Remark 9.3. Let S = {0}. Find
{
X̃ ∈ S

}
.

[Solution

Example 9.4 (The result of one roll of a die). For a single roll of a die,
let X be the number that shows on the die when it comes to rest. Then the
possible values for X are 1, 2, 3, 4, 5, 6.

If the die is fair, then the probability that X = i is equal to 1/6 for all
i. In general, the probability that X = i will be some probability pi, where
p1 + p2 + p3 + p4 + p5 + p6 = 1.

If the sample space Ω is equal to the six-point set {1, 2, 3, 4, 5, 6}, then
X(ω) = ω, but, as Remark 9.3 illustrates, we could can always use some
other sample space.

The language of random variables gives us a new way to describe some
events, but we still find probabilities using the same rules. The next exercise
illustrates this.

Exercise 9.2. Let X be the random variable defined in Example 9.4.

• Let A = {X > 4}, and let B be the event that X is an even number.
Find A and B, as subsets of {1, 2, 3, 4, 5, 6}.

• Find the probability that X is an even number.

[Solution]
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Example 9.5 (Number of successes in Bernoulli trials (coin tosses)).
Let A1, . . . , An be Bernoulli trials (see Section 7.3) with success probability
p. That is, A1, . . . , An are independent and P (Ai) = p for each i.

As our most typical example, the experiment consist of tossing a coin n
times, and Ai might be the event that toss i gives a head.

Let Sn be the total number of successes. (This notation is not related to
our earlier use of S to denote some set.) By definition, Sn is the number of
indices i such that Ai occurs. For the experiment of tossing a coin n times,
Sn is the number of heads which are obtained.

The possible values for Sn are 0, 1, . . . n, so Sn has a fairly simple range.
The event {Sn = k} is exactly the event Gk described in Theorem 7.5.

Thus equation (7.10) states that

P(Sn = k) =

(
n

k

)
pk(1− p)n−k. (9.3)

9.2 The probability of obtaining a value in a

set

Random variables are implicitly present in any probability model. Using the
terminology of random variables explicitly is often convenient, even when we
are performing the same old calculations.

Readers might want to look one more time at the calculation in the second
solution of Exercise 9.2. The calculation is trivial, of course, but it feels
liberating to simply write

P(X is even) = P(X = 2) +P(X = 4) +P(X = 6) =
1

6
+

1

6
+

1

6
=

1

2
,

without giving a thought to the sample space.
It’s useful to state a general version of the same argument.
Let X be any random variable, and let S be any set such that S only

contains a finite number of points in the range of X. Let x1, . . . , xk be the
numbers in the range ofX that are members of S, listed in any order, without
repetitions. If the value of X is a member of S, then the value of X must be
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equal to one of the numbers x1, . . . , xk. Thus

{X ∈ S} = {X = x1} ∪ . . . ∪ {X = xk} . (9.4)

Since the values x1, . . . , xk are distinct, the sets {X = x1} , . . . , {X = xk} are
disjoint. By the additivity of probability we have

P(X ∈ S) = P(X = x1) + . . .+P(X = xk). (9.5)

We typically use facts like equation (9.5) without comment. Equations of
this sort help us to think about events in terms of what they mean, rather
than as subsets of the abstract sample space.

Remark 9.6 (Adding some values which are outside the range). In
equations (9.4) and (9.5), suppose we increased the list x1, . . . , xk by including
some additional numbers which are not in the range of X. If a is a number
which is not in the range of X, then of course {X = a} = ∅, the empty set.
So equations (9.4) and (9.5) will continue to hold.

The next exercise extends equation (9.5) to general sets. All readers
should note the statements, and think about them enough to see that they
are true.

Exercise 9.3 (Cases for a random variable). Let X be any random
variable.

(i) For any sets S1, . . . , Sk, which need not be subsets of the range of X, if
S = S1 ∪ . . . ∪ Sk, show that

{X ∈ S} = {X ∈ S1} ∪ . . . ∪ {X ∈ Sk} . (9.6)

Some of the sets {X ∈ Si} may be empty, but that’s fine.

(ii) Suppose now that the sets S1, . . . , Sk are disjoint. Show that the sets
{X ∈ S1} , . . . , {X ∈ Sk} are disjoint. Let S = S1 ∪ . . . ∪ Sk. Show that

P(X ∈ S) = P(X ∈ S1) + . . .+P(X ∈ Sk). (9.7)

(By taking Sj = {xj}, we see that equation (9.7) includes equation (9.5) as
a special case.)

[Solution]
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9.3 Estimating probability sums

For the random variable Sn in Example 9.5, equations (9.3) and (9.5) can be
used to find the probability of any event defined in terms of the value of Sn.
However, when n is large it may take some work to extract the information
we need.

For example, toss a fair coin a million times. Let n = 1000000, so Sn is the
number of heads obtained. We are rarely interested in the tiny probability
that Sn is exactly equal to 499, 500. But we might be interested in, say,
the probability that at most 49.95% of the tosses resulted in a head, i.e.
P (Sn ≤ 499, 500). How do we find this probability, or at least estimate this
probability in some way? We know from equation (9.3) and additivity that
the probability is given by

P (Sn ≤ 499, 500) =

499,500∑
j=0

(
1, 000, 000

j

)(
1

2

)1,000,000

. (9.8)

True, but the size of this number does not exactly leap out at us. Not only
are there many terms, but any term that makes a significant contribution
to the sum must be the product of a very large number times a very small
number.

The Central Limit Theorem ([10]) is a powerful method for estimating
probabilities like P (Sn ≤ 499, 500). Incidentally, the Central Limit Theorem
tells us that P (Sn ≤ 499, 500) is approximately equal to .159.

9.4 Random variable distributions

Recall that we introduced the general idea of a probability distribution in
Definition 1.11. Any rule which assigns probabilities for a family of events can
be called a probability distribution. The next definition is a very important
example of this terminology.

Definition 9.7 (The distribution of a general random variable). For
any real-valued random variable X associated with any probability model,
the probability distribution of X is the rule that specifies P(X ∈ S) for
subsets S of R.
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If X and Y are random variables with the same distribution, we often
write X ∼ Y to express that fact.

Notice that since a distribution specifies probabilities, the probability
distribution of a random variable is something that can be measured exper-
imentally, or at least tested. If X is a random variable associated with a
repeatable experiment, and if someone asserts that P(X ≥ 5) is equal to
.3, then we could in principle perform many repetitions of the experiment,
and measure the average number of times that X ≥ 5 occurs, to see if this
frequency is close to .3. So distributions are “real”.

On the other hand, a sample space is an abstract concept in our minds,
which is useful but can never be directly measured. If two people are sepa-
rately creating probability models for the same experiment, they may come
up with very different sample spaces. But they must agree about the distri-
butions of any physically meaningful random variables.

At present we are mainly dealing with finite-range random variables.
Equation (9.5) shows that it is easy to find the distribution of a finite-range
random variable once we know the probability of each point in the range.
Sometimes it’s convenient to use the probability mass function notation (in-
troduced in Definition 2.12).

Definition 9.8 (The probability mass function for the distribution
of a random variable). Let X be a real-valued random variable for a prob-
ability model. The probability mass function for the distribution of X is the
function q on R defined by q(x) = P(X = x).

Clearly q(x) = 0 for any x which is not in the range of X, so q is deter-
mined by its values as a function on the range of X.

Let X be a finite-range random variable whose distribution has probabil-
ity mass function q. Let S be a subset of R, and let x1, . . . , xk be any list of
distinct numbers which includes all the numbers in the range of X that are
members of S. We can rewrite Equation (9.5) using q:

P(X ∈ S) = q(x1) + . . . q(xk). (9.9)
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We see from equation (9.9) that the probability mass function of a finite-
range random variable determines its distribution. So the probability mass
function itself is sometimes referred to as the distribution of the random
variable.

Example 9.9 (A random variable with a binomial distribution). For
the random variable Sn defined in Example 9.5, using equation (9.3) we have

P(Sn = k) =

(
n

k

)
pk(1− p)n−k. (9.10)

The distribution of Sn is exactly the binomial distribution defined in Defini-
tion 7.6. We say that Sn has a binomial distribution, and may also refer to
Sn as a binomial random variable.

Example 9.10 (A random variable with a hypergeometric distribu-
tion). Consider a set of N objects, K of which are in a certain target class.
Let a set of n objects be randomly selected from the N objects (sampling
without replacement). We assume that the inequalities in equation (8.8)
hold, i.e. K ≤ N and n ≤ N .

Let LN,K,n be the number of target objects in the selected set. P(LN,K,n =
i) is the value P (Ri) studied in Exercise 8.4 and Definition 8.6.

Thus the distribution of LN,K,n is the hypergeometric distribution, with
parameters N,K, n, which was defined in Definition 8.6.

By definition, the range of LN,K,n is the set of all i such that equa-
tion (8.12) holds.

By equation (8.16),

P(LN,K,n = i) =

(
K
i

)(
N−K
n−i

)(
N
n

) (9.11)

for i such that equation (8.12) holds. Otherwise P(LN,K,n = i) = 0.

Can we graph a random variable? Our main experience with functions
has likely been in the setting of calculus, and in calculus we certainly can
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understand a function better by plotting its graph. It can be difficult to
graph a random variable, though, since the domain of the random variable
might be very different from the real line. Example 9.5 illustrates this, since
for this example the domain is the sample space, and that might be the set
of all sequences of zeros and ones that have length n. There seems to be no
convenient way to portray the set of such sequences visually, at least when
n is greater than 2 or 3.

What we can do is to graph the probabilities for the values of the random
variable, i.e. the probability mass function.

For the random variable X of Example 9.5, Figure 7.1 shows a graph of
P(X = k) versus k for n = 30 and p = 1/3.

In Example 8.7 we considered a slightly different random variable. Here
L120,30,40 is the number of red marbles in a set of 30 marbles randomly se-
lected from a bowl containing 120 marbles, when 40 of the marbles in the
bowl are red, so L120,30,40 has a hypergeometric distribution. The graph of
P(L120,30,40 = i) versus i was given in Figure 8.2b.

9.5 Expressing the distribution of X using a

density on the real line

If X is a random variable which does not have a finite range, it may not be
obvious how to describe its distribution. How can we picture the distribution?
In the case of a finite-range random variable, we were able to picture the
probability mass function as describing lumps of “probability mass” located
at the values of the random variable. For a general random variable X, one
might still have a vague picture of a pile of probability mass lying on the
real line, even if there are no lumps. Just as before, we would say that the
amount of probability mass lying on a set S gives us the probability that the
value of X lies in the set S.

This picture has a precise mathematical description if it happens that the
distribution of X can be described using a probability density. We’ll state
that in the present section. Example 9.15 in the next section will put such
densities to work, and show how they simplify computations and clarify our
thinking.

Probably densities were defined using equation (3.7) of Section 3.4. Read-
ers may wish to review that definition, as well as Remark 3.7. The general
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definition says that a probability distribution has a probability density f if
the probability of every event A is given by the integral of f over A. Of
course in this section we are concerned with a particular kind of distribu-
tion, namely the distribution of a real-valued random variable X, and so the
density is defined on the real line.

Definition 9.11 (Density of the distribution of a real-valued random
variable). The distribution of a real-valued random variable X is described
by a probability density h on R if the probability that the value of X lies in
a set S is given by the integral of h over S, for subsets S of the real line.

In other words,

P(X ∈ S) =

∫
S

h, (9.12)

for subsets S of the real line.
(To be more precise mathematically, equation (9.12) holds for every set

S that we would ever use to describe an event. See Section 9.7 for another
comment on this.)

In equation (9.12), the integral of h over the set S is written as
∫
S
h.

This is the modern notation for integration over a set, as in equation (3.9)
of Section 3.5.

Although the general concept of integration over a set is not difficult (see
Definition 3.6), we are more familiar with the special case of integrating over
intervals, using calculus notation. When S is the interval [a, b],∫

S

h =

∫ b

a

h =

∫ b

a

h(x) dx. (9.13)

Remark 9.12 (Intervals are enough). In Remark 3.7 it is asserted that if
an equation like (9.12) is valid when S is an interval, then we are guaranteed
that it holds for all subsets S of the real line. So if you want to check that
some function h is the correct density for the distribution of X, it’s enough
to check that

P(X ∈ J) =

∫
J

h (9.14)

for all intervals J of the real line. When solving exercises, we often work
with intervals.
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Example 9.13 (Extending a given density to the whole line). Con-
sider the experiment described in Exercise 3.8. We are choosing a point
randomly from the interval [0, 3]. Let X be the random variable that gives
the location of the chosen point. The statement of Exercise 3.8 implies that
for any subset S of [0, 3],

P(X ∈ S) =

∫
S

f, (9.15)

where the probability density f on [0, 3] is given by

f(t) =
2

9
(3− t) (9.16)

for t ∈ [0, 3]. (See Figure 3.5.)
Is f a probability density for the distribution of X, in the sense of Defi-

nition 9.11?
Well, almost. There is one extra condition in Definition 9.11. For con-

venience, a probability density for the distribution of a real-valued random
variable should be defined everywhere on the real line. The function f is
only defined on [0, 3], and in Exercise 3.8, equation (9.15) is only assumed
to hold for subsets S of [0, 3]. Sometimes we may find ourselves dealing with
points which are outside the interval [0, 3]. We want to handle such situations
smoothly, without extra steps.

For example, suppose someone asks us to find P(X ∈ [1, 7]). How can we
do that? Well, notice that by definition X never takes values outside [0, 3].
So the event that X takes a value in [1, 7] is exactly the same as the event
that X takes a value in [1, 3]. Thus

P(X ∈ [1, 7]) = P(X ∈ [1, 3]) =

∫ 3

1

f(t) dt. (9.17)

That wasn’t hard, but after looking at equation (9.17), it seems sensible to
define a function h everywhere on the real line, as follows:

h(x) =

{
f(x) if x ∈ [0, 3],

0 otherwise.
(9.18)
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See Figure 9.1.
With definition of h, equation (9.17) is exactly the same as the statement

that

P(X ∈ [1, 7]) =

∫ 7

1

h(t) dt. (9.19)

Equation (9.19) suggests that h is a correct probability density function for
the distribution of X.

6 4 2 2 4 6

0.2

0.4

0.6

0.8

1.0
density h

Figure 9.1: The probability density h extends the density f on [0, 3] that was
shown in Figure 3.5.

Let’s check that, by running the same argument with the set [1, 7] replaced
by any subset S of R. Since X never takes values outside [0, 3], the event
{X ∈ S} is exactly the same as the event {X ∈ S ∩ [0, 3]}. Hence

P(X ∈ S) = P(X ∈ S ∩ [0, 3]) =

∫
S∩[0,3]

f(t) dt =

∫
S∩[0,3]

h(t) dt. (9.20)

Since h is equal to f on [0, 3] and is equal to zero everywhere else,∫
S∩[0,3]

h(t) dt =

∫
S

h(t) dt.
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Thus equation (9.20) is equivalent to the statement that

P(X ∈ S) =

∫
S

h(t) dt. (9.21)

By Definition 9.11, equation (9.21) says that h is a probability density for
the distribution of X. We can use equation (9.21) conveniently for any set S
we encounter, without fussing over whether S is or is not a subset of [0, 3].

Remark 9.14 (Extending densities in general). The situation of Ex-
ample 9.13 is not uncommon. Let D be a set which contains the range of
some random variable X. Frequently we are given a probability density f
on D, such that P(X ∈ S) =

∫
S
f for subsets S of D. If we wish to have

an official probability density for the distribution of X, we can obtain that
by extending f to a function h on the whole real line, and defining h be zero
outside D.

In this case we might describe the situation in words by saying: “the
distribution of X is given by a density f on D, and is zero outside D”. If f
is constant on D, we might also say “the distribution of X is uniform on D,
and is zero everywhere else”.

Exercise 9.4. Let X be a random variable whose distribution has a density
h which is equal to a constant on [3, 11] and is equal to zero elsewhere. Find
P(1 ≤ X ≤ 5).

[Solution]

9.6 Random variables as a tool for thinking

When modeling a real-world problem, random variables occur naturally, and
we naturally analyze the problem in terms of random variables.

Example 9.15. Recall Exercise 4.12. There we consider an experiment with
two steps: first a fair coin is tossed. Then, if the result of the toss is a head,
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in step two a point is chosen from [0, 3], with no point favored. If the result
of the coin toss is a tail, in step two a point is chosen from [2, 4], with no
point favored.

Our goal in Exercise 4.12 was to find the probability that the chosen point
lies in a given subinterval J of [0, 4].

Let X be the point chosen in step two. Then X is a random variable,
and we can restate the goal of the problem as: find P(X ∈ J). This leads us
to consider trying to obtain a probability density h for the distribution of X.

First, let’s think about conditional probabilities. If the coin toss gives a
head, the second step of the experiment consists of choosing a point from
[0, 3], with a probability distribution which is uniform on [0, 3]. Thus, con-
ditional on obtaining a head, we know by Exercise 3.5 that the distribution
of X has a density h1 which is given by

h1(x) =

{
1
3

if x ∈ [0, 3],

0 otherwise.
(9.22)

To say that h1 is a density for the distribution of X conditional on H means
that for all S,

P(X ∈ S |H) =

∫
S

h1. (9.23)

Similarly, if the coin toss gives a tail, the second step of the experiment
consists of choosing a point from [2, 4]. Conditional on obtaining a tail, the
distribution of X has a density h2 which is given by

h2(x) =

{
1
2

if x ∈ [2, 4],

0 otherwise.
(9.24)

To say that h2 is a density for the distribution of X conditional on T means
that for all S,

P(X ∈ S |T ) =
∫
S

h2. (9.25)

How can we combine the conditional densities h1, h2 to find h?
Just as in the solution to the original form of Exercise 4.12, we can use

the Law of Total Probability (Theorem 4.6). For any set S, applying the
Law of Total Probability to the event {X ∈ S} gives

P(X ∈ S) = P(H)P(X ∈ S |H) +P(T )P(X ∈ S |T ), (9.26)
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2 1 1 2 3 4 5 6

0.2
0.4
0.6
0.8
1.0

h

Figure 9.2: h is a density on R for the distribution of X, where X is chosen
from overlapping intervals.

where H,T are the events that the coin toss gives a head or a tail.
Probability densities are not probabilities, but they are closely related to

probabilities. Looking at equation (9.26) makes us think that we will get a
valid density h if we define h by a nice neat equation:

h = P(H)h1 +P(T )h2. (9.27)

And this is correct! Just integrate the right side of equation (9.27) over a
set S, use equations (9.23) and (9.25), and you will obtain the right side of
equation (9.26). Thus the integral of h over S gives us P(S).

A probability density is correct if it gives the correct probabilities when
you integrate it, so the function h defined by equation (9.27) is a valid density
for the distribution of X.

For this experiment, P(H) = P(T ) = 1/2, and equations (9.22) and
(9.24) give us h1 and h2. Substituting these values into Equation (9.27),

h(x) =


1
2

1
3

if x ∈ [0, 2),
1
2

1
3
+ 1

2
1
2

if x ∈ [2, 3),
1
2

1
2

if x ∈ [3, 4],

0 otherwise.

(9.28)

A graph of h is shown in Figure 9.2.
Please check that integrating h gives all the information obtained in

Cases (i), (ii), (iii), (iv) of the solution for Exercise 4.12. Of course the
density h contains much more information, and we can display the graph of
h!
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9.7 A technical point about sets

We mentioned in Section 9.1 that Definition 9.1 omitted a technicality. For
those who are interested, here are some remarks about that.

Remark 9.16 (Measurable sets). Recall that Definition 2.2 stated that
in any probability model, some subsets of a sample space are designated as
events. This definition did not say that every subset of the sample space is
an event. And, in fact, a complete description of a mathematical probability
model includes an extra requirement, something like this: every event must
be a “measurable set”.

What does the mathematical term “measurable” mean in this context?
It has a special meaning here, different from the ordinary meaning of an
experimental measurement.

As a typical example, consider the real numbers. Roughly speaking, a
measurable set of real numbers is any set which has an explicit description.
The term “explicit description” is used rather generously, since it includes
any mathematical construction using an infinite sequence of set operations
on intervals, or an infinite sequence of infinite sequences of set operations,
and so on, forever. Any set that could conceivably be used in our applications
of mathematics is a measurable set.

An optimistic person might conclude from these statements that every
subset of the real line is measurable, but sadly this is not the case. It can be
shown mathematically that there must exist subsets of the real line which are
nonmeasurable. So the best we can say is that any set which is “of interest”
is measurable.

One might philosophize that having such bizarre subsets lurking in the
background is part of the price that we pay for using a powerful abstraction
like the real numbers.

In contrast to the real numbers, every set of integers is a measurable set.
But real numbers are so useful in models that we will not give them up.

When studying advanced probability, it is necessary at times to check
that the mathematical theorems of probability can be applied without using
nonmeasurable sets. Definition 9.1 would then be slightly enlarged, to spell
out the technical requirements that a random variable must satisfy. However,
in applications these requirements are always met.

So in this book, if we are dealing with any real-valued function X on a
sample space, you may simply take it for granted that X is a valid random
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variable. And if S is any set that we are interested in, then you may take it
for granted that {X ∈ S} is an event.

To avoid a lot of verbiage, we’ll use the following convention.

Any statement about sets, such as “for all sets S”, or “for any
set S”, may actually mean “for all measurable sets S”, or “for
any measurable set S”. And the difference has no practical sig-
nificance.

These conventions apply, for example, to equation (9.7) and equation (9.12).

9.8 Solutions for Chapter 9

Solution (Exercise 9.1). By definition, X̃(ω) = 1 if 0 ≤ ω < p, and
X̃(ω) = 0 if p ≤ ω ≤ 1.

Thus {
X̃ ∈ S

}
=
{
ω : X̃(ω) = 0

}
= [p, 1].

Solution (Exercise 9.2).

• X is the number that shows on the die when it comes to rest. The
range of X is {1, 2, 3, 4, 5, 6}.
Let’s take the sample space Ω to be the six-point set {1, 2, 3, 4, 5, 6}, so
that X(ω) = ω for each ω ∈ Ω.

From the definition of X, A = {5, 6} and B = {2, 4, 6}.

• By additivity,

P(B) = P({2}) +P({4}) +P({6}) = 1

6
+

1

6
+

1

6
=

1

2
.

Omitting the sample space Let’s repeat the same argument again,
this time without using an explicit sample space. There is really no need
to define a sample space, as long as we understand the behavior of X.
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Each possible value of X has the same probability, so we can immedi-
ately say that

P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = P(X = 6).

These numbers add to one, so P(X = i) = 1/6 for i = 1, . . . , 6.

If the value of X is even, then the value of X is one of the numbers
2, 4, 6. Hence

{X is even} = {X = 2} ∪ {X = 4} ∪ {X = 6} .

By the additivity of probability,

P(X is even) = P(X = 2) +P(X = 4) +P(X = 6) =
1

6
+

1

6
+

1

6
=

1

2
.

With practice, reasoning about events in terms of the values of a ran-
dom variable will seem very natural.

Solution (Exercise 9.3).

(i) Wemust show that {X ∈ W} is the union of the sets {X ∈ W1} , . . . , {X ∈ Wk}.
For any sets A and B, one can prove that A = B by showing two facts:

first, that every member of A is a member of B, and second, that every
member of B is a member of A. Thus we consider two cases here.

(1.) Suppose that ω is in the union of the sets {X ∈ W1} , . . . , {X ∈ Wk}.
Then for some i, ω ∈ {X ∈ Wi}, and so X(ω) ∈ Wi, and thus X(ω) ∈ W ,
and so ω ∈ {X ∈ W}.

(2.) Suppose that ω ∈ {X ∈ W}. If X(ω) ∈ W , then X(ω) ∈ Wi

for some i, and so ω ∈ {X ∈ Wi}, and thus ω is in the union of the sets
{X ∈ W1} , . . . , {X ∈ Wk}.

Facts 1. and 2. show that {X ∈ W} is the union of the sets {X ∈ W1} , . . . , {X ∈ Wk},
as claimed.

(ii) LetW1, . . . ,Wk be disjoint sets. We claim that the sets {X ∈ W1} , . . . , {X ∈ Wk}
are disjoint.

To see that, suppose that for some sample point ω, we have ω ∈ {X ∈ Wi}
and ω ∈ {X ∈ Xj}. Then X(ω) ∈ Wi and X(ω) ∈ Wj. Since the sets
W1, . . . ,Wk are assumed to be disjoint, it must be the case that i = j.

Thus for i ̸= j, {X ∈ Wi} and {X ∈ Wj} have no points in common, i.e.
they are disjoint, as claimed.
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Let W be the union of the sets W1, . . . ,Wk. By part (i), {X ∈ W} is the
union of the sets {X ∈ W1} , . . . , {X ∈ Wk}, i.e.

{X ∈ W} = {X ∈ W1} ∪ . . . ∪ {X ∈ Wk} .

Using additivity, equation (9.7) holds.

Solution (Exercise 9.4). We are told that h is constant on [3, 11]. Let c
denote the value of h on [3, 11]. Since h is a probability density on R,∫ ∞

−∞
h = 1.

Since h = 0 outside [3, 11],∫ ∞

−∞
h =

∫ 11

3

h = c(11− 3) = 8c.

Thus c = 1/8.
Let J = [1, 5]. We’re asked to find P(X ∈ J). Since h is a density for the

distribution of X,

P(X ∈ J) =

∫
J

h =

∫ 5

1

h.

Since h = 0 outside [3, 11],

P(X ∈ J) =

∫ 5

3

h =

∫ 5

3

1

8
=

1

4
.
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Expected values, finite range
case

10.1 Expected value defined

We will define expected value in this chapter for the case of a random variable
with finite range, and then establish the main properties of expected values.

When more general random variables are studied, the definition of ex-
pected value will have to be appropriately extended. However the properties
of expected value will remain unchanged, for the most part.

Example 10.1 (Average payoff). Consider tossing an unfair coin. If the
result is a head, we say you have success. Let the probability of success be
3/5.

Suppose you toss the coin 1000 times, and for each success you receive 2
dollars. For failure you get nothing. What is the average amount of money
that you would expect to earn per toss?

The amount you actually receive on any given toss might be called the
“payoff”. So we are asking for the average payoff.

Notice that the payoff on any given toss is determined by the outcome of
the toss. Thus it is a function of the physical result of the toss, and so it is
a random variable in the physical sense. We want to know the average value
of this random variable over a sequence of repeated tosses.

If we choose a mathematical sample space to represent the physical ex-
periment, then the payoff is represented by a mathematical function whose
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domain is the sample space, so it is a random variable in the mathematical
sense. But let’s think physically for a moment.

In order to calculate the average payoff, think about the frequency of suc-
cesses. If you toss the coin 1000 times, it is likely that your success frequency
will be approximately 3/5. Since 3/5 × 1000 = 600, approximately 600 of
the tosses will result in success. Thus you expect to earn approximately 1200
dollars over the whole sequence of trials, so you expect to earn approximately
1.20 per toss. This is your “average payoff”.

In Example 10.1, we have just given a theoretical estimate for the average
payoff in repeated tosses, without actually performing any tosses. That is
certainly simpler than doing repeated experiments! We call this theoretical
estimate the expected value for the payoff random variable.

The expected value of a random variable is only a single number. But it
tells us something about all the possible values of the random variable, taken
together. This is a new idea.

The theoretical approach to finding an expected value is not just simpler
than the experimental alternative. It may also help us to understand the
experiment situation which is being studied.

Now we will give a precise mathematical definition for expected value, for
the case of a random variable with finite range.

Definition 10.2 (Expected value, finite range case). Let X be a ran-
dom variable. Suppose that the range of X is equal to {x1, . . . , xk}, where
x1, . . . , xk are distinct numbers.

The expected value of X, denoted by E [X], is defined by

E [X] =
k∑

i=1

xiP (X = xi) . (10.1)

In other books, E [X] is often written as EX .
The expected value ofX is also called the expectation ofX or themean

of X. A random variable with expected value zero is often called a mean
zero random variable.

Occasionally it is helpful to have a notation which explicitly states which
probability is being used to calculate the expected value. The expected value
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of X using probability set-function P is then denoted by

EP [X] . (10.2)

If a different probability set-function Q is used, then the corresponding ex-
pected value is denoted by EQ [X], and so on.

The expected value of X is defined by the sum in equation (10.1). This
sum is said to be a weighted average (Definition A.2). It is a weighted average
of the possible values of X, in which the weight of each value xi is the
probability P (X = xi) with which it occurs. Readers who have not used
weighted averages may find it worthwhile to work through some exercises in
Appendix A.

Example A.3 shows we can picture the expected value of X as the center
of mass of the distribution, when the distribution is represented as lumps of
probability mass located at the values of X.

Since expected value of X is defined in terms of the values of X and their
probabilities, it is determined by the distribution of X . The distribution of
a random variable is a real and testable physical property, so the expected
value is a real and testable physical property. Expectation can be calculated
using any valid sample space representation that you like, but the value must
be the same for any valid sample space.

Exercise 10.1 (One-toss payoff). In Example 10.1, consider just tossing
the coin once.

If the sample space for one toss is Ω = {0, 1}, the payoff function Y for
one toss is simply defined by Y (1) = 2, Y (0) = 0.

Use Definition 10.2 to find E [Y ].
[Solution]

Exercise 10.2 (Distinct values). In Definition 10.2, why are the numbers
x1, . . . , xn required to be distinct?

[Solution]
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Exercise 10.3 (Order of values is irrelevant). In Definition 10.2, x1, . . . , xk
is a list of the distinct values in the range of the random variable. Explain
why the order in which we list the values does not matter.

[Solution]

Is it important to check our general formulas, to make sure they are right?
Well, somebody should certainly check. Expectation is such an important
concept that it seems worthwhile to check that every property we need is a
consequence of the definitions. We won’t always take time to do this, but in
the proof of the next lemma we will.

Lemma 10.3 (Single event expectation). Let A be an event and let c be
a real number. Let X be the random variable defined by X(ω) = c if ω ∈ A,
X(ω) = 0 otherwise. Then

E [X] = cP(A). (10.3)

Proof. Case 1 If A is the empty set, then X(ω) = 0 for all ω, so the range
of X is {0}.

Then by definition E [X] = 0 ·P(X = 0) = 0 = cP(A), so equation (10.3)
holds.

Case 2 If c = 0 then again the range of X is {0}, and equation (10.3) holds
as in Case 1.

Case 3 If A = Ω, then the range of X is {c}, and by definition E [X] =
c ·P(X = c) = c ·P(Ω), so equation (10.3) holds.

Case 4 The only remaining case is that A ̸= ∅ and A ̸= Ω, with c ̸= 0.
Then the range of X consists of the distinct points 0, c.
Then by definition E [X] = c · P(A) + 0 · P (Ac) = c · P(A). Thus

equation (10.3) holds.

An important consequence of Lemma 10.3: for any constant c,

E [c] = c, (10.4)
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where E [c] denotes the expected value of the random variable which is equal
to c for all outcomes.

Hmm, we looked at a lot of cases when proving Lemma 10.3. The next
exercise would have saved some work!

Exercise 10.4 (Unused values in the definition are ok). Let X be a
random variable. Let y1, . . . , yn be distinct numbers, such that every nonzero
number in the range of X is included in the list y1, . . . , yn. Prove that

E [X] =
n∑

i=1

yiP (X = yi) . (10.5)

[Solution]

Exercise 10.5. Use Exercise 10.4 to give a shorter proof of Lemma 10.3.
[Solution]

Example 10.4 (One coin toss). Let X be as in Example 9.2. Notice that
X is the number of successes obtained in the coin toss (either 0 or 1).

Let A be the event that the toss gives success. Then X(ω) = 1 when
ω ∈ A, and X(ω) = 0 otherwise.

Applying Exercise 10.4, E [X] = 1 ·P(X = 1) + 0 ·P(X = 0) = p.

Example 10.5 (One roll of a die ). We deal with the result of rolling a die
(Example 2.15) similarly to Example 10.4. Let X be the number obtained
by rolling the die, so that the range of X is {1, 2, 3, 4, 5, 6}.

By definition, E [X] = 1·P(X = 1)+2·P(X = 2)+3·P(X = 3)+4·P(X =
4) + 5 ·P(X = 5) + 6 ·P(X = 6), i.e.

E [X] =
6∑

i=1

iP(X = i).
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Lemma 10.6 (Expectation of a scaled random variable). Let X be a
random variable and let c be a number. Then

E [cX] = cE [X] . (10.6)

Proof. The statement is true in general, but we only consider the case of a
finite-range random variable here.

If c = 0, then cX is the zero random variable. Using Lemma 10.3 (or the
definition of expected value), we know that E [cX] = 0, so we certainly have
E [cX] = cE [X].

From now on suppose that c ̸= 0.
Let x1, . . . , xk be the distinct numbers in the range of X. Since c ̸= 0,

we have X = xi if and only if cX = c xi. Hence the range of cX is the set
{c x1, . . . , c xk}, and the numbers c x1, . . . , c xk are distinct. By the definition
of expected value,

E [cX] = c x1P(cX = c x1) + . . .+ c xkP(cX = c xk).

But P(cX = c xi) = P(X = xi) (it’s the same event), so

E [cX] = c x1P(X = x1) + . . .+ c xkP(X = xk) = cE [X] .

The property of expectation stated in Lemma 10.6 is very simple, but it’s
important. Just to have a name for this property, we’ll call it the scaling
property. This is not a standard mathematical term, but it fits, since
Lemma 10.6 says that if we scale (up or down) all the values of X by a factor
c, then we scale E [X] by the same factor.

The next exercise is an example for an upcoming theorem, Theorem 10.8.
However, it is instructive to solve it directly here.

Exercise 10.6 (Finding expected value using cases). Consider the
number wheel described in Exercise 2.13.

Imagine a game in which the wheel is spun. Let Z be the number at
which the wheel stops. Then Z is a random variable, and the possible values
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for Z are 0, 1, 2, . . . , 100. We assume that each of these numbers occurs with
the same probability.

In this game, a payoff is given, based on the number where the wheel
stops, i.e. based on the value of Z.

Let the payoff be called X.

The rules are as follows:

• If Z = 0, then X = 0.

• If Z = 100, X = 5.

• If Z is even and less than 100, then X = 2.

• If Z is odd, then X = 1.

Thus X = φ(Z), where φ is defined in the obvious way:

φ(0) = 0,

φ(100) = 5,

φ(i) = 2 if i is even and less than 100,

φ(i) = 1 if i is odd.

(10.7)

(i) Find E [X], using the definition of expected value.

(ii) Show that

E [X] =
100∑
i=0

φ(i)P(Z = i). (10.8)

Does the statement of equation (10.8) feel right to you? Since φ(i) is the
value of X when Z = i, this equation says that E [X] is equal to a weighted
sum of values of X, but it’s not the same sum which is used in the definition
of E [X]. Instead it’s a sum over cases, where each case is given by the value
of Z. The weight of each case is the probability of the case.

[Solution]

231



Chapter 10. Expected values, finite range case

10.2 Expected value by cases

Please think about the statement of the next theorem until it seems reason-
able. The proof is optional, but it is not hard to understand the basic step:
grouping similar terms in a sum over cases, where each term is a value times
a probability.

Theorem 10.7 (Expectation by cases). Let D1, . . . , Dk be disjoint events
in some model, such that D1 ∪ . . . ∪Dk = Ω.

Let v1, . . . , vk be numbers, and let X be a random variable such that
X(ω) = vi at every point ω in Di. (Thus X has value vi whenever event Di

happens!)
Then

E [X] =
k∑

i=1

viP(Di). (10.9)

See Figure 10.1.

Proof. Let x1, . . . , xm be a list of the distinct numbers in the range of X.
If an event Di is nonempty, then it contains at least one point ω. By

assumption, X(ω) = vi . Thus for every nonempty Di, vi is a point in the
range of X.

For each i, if Di happens to be empty, change vi to one of the values
x1, . . . , xm. Such changes clearly make no difference to the sum in equation
(10.9), so they don’t affect the truth of the theorem.

Now we can say that the numbers v1, . . . , vk are a list of the values
x1, . . . , xm, possibly with repetitions, as Figure 10.1 illustrates.

Since D1 ∪ . . .∪Dk = Ω, for every xj there must be at least one event Di

such that vi = xj.
We can choose the labels for the numbers x1, . . . , xm so that x1 < x2 <

· · · < xm.
The order in which we write the events Di makes no difference in equation

(10.9). For convenience, relabel the events and associated values so that
v1 ≤ v2 ≤ . . . ≤ vk−1 ≤ vk.

For every j, let ij be the largest index i such that vi = xj. Because of the
ordering of the values, im must be k.

The following picture illustrates the general situation.
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The top row is simply D1, . . . , Dk, in order, but grouped.

D1 · · · Di1 Di1+1 · · · Di2 · · · · · · Dim−1+1 · · · Dim

v1 = · · · = vi1︸ ︷︷ ︸
x1

< vi1+1 = · · · = vi2︸ ︷︷ ︸
x2

< · · · · · · < vim−1+1 = · · · = vim︸ ︷︷ ︸
xm

. (10.10)

The events in Figure 10.1 are grouped in a similar way.
We see that

{X = x1} = D1 ∪ · · · ∪Di1 ,

and for j = 2, . . . ,m,

{X = xj} = Dij−1+1 ∪ · · · ∪Dij , (10.11)

Define i0 = 0. Then equation (10.11) holds for all j = 1, . . . ,m, which
saves writing.

Since the events Di are disjoint, for every j we have

P(X = xj) = P(Dij−1+1) + . . .+P(Dij)

By definition,

E [X] =
m∑
j=1

xjP(X = xj) =
m∑
j=1

xj
(
P(Dij−1+1) + . . .+P(Dij)

)
=

m∑
j=1

(
xjP(Dij−1+1) + . . .+ xjP(Dij)

)
=

m∑
j=1

(
vij−1+1P(Dij−1+1) + . . .+ vijP(Dij)

)
=

k∑
i=1

viP(Di).

In the proof of Theorem 10.7, did we really need to relabel the events Di

and values vi so that v1 ≤ v2 ≤ . . . ≤ vk−1 ≤ vk?
We didn’t do that in Figure 10.1, did we? And no, we don’t really need

the relabelling step. But if we didn’t do that, we wouldn’t be able to display
the general grouping picture given in equation (10.10).
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You can still talk about the grouping, though, by defining sets of indices:
you would define Nj be the set of indices i such that vi = xj. Then, instead
of saying:

P(X = xj) = P(Dij−1+1) + . . .+P(Dij),

you would say:

P(X = xj) =
∑
i∈Nj

P(Di),

and run the same argument.

D1 {
X= x1

}
D2{

X= x2

}
D3

D4{
X= x3

}
D5

Ω

Figure 10.1: For Theorem 10.7. Here v1 = x1, v2 = v3 = x2, and v4 = v5 =
x3, where x1, x2, x3 are distinct. {X = x1} = D1, {X = x2} = D2 ∪ D3,
{X = x3} = D4 ∪D5.

Exercise 10.6 is an example for the next theorem.

Theorem 10.8 (Expectation of a function of a finite-range random
variable). Let Y be a random variable on a sample space Ω. Let the distinct
values in the range of Y be y1, . . . , yk. In this theorem there is no need to
assume that y1, . . . , yk are numbers. They can be anything.
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Let φ be any real-valued function whose domain includes y1, . . . , yk. Then

E [φ(Y )] =
k∑

i=1

φ (yi)P (Y = yi) . (10.12)

Proof. Let Di = {Y = yi}, let vi = φ (yi), and apply Theorem 10.7.

Exercise 10.7. Suppose that the distribution of X is uniform on the points
{−2, 1, 0, 1, 2}. Find E [X2] in two ways: from the definition and using The-
orem 10.8.

[Solution]

Example 10.9 (Expectations on finite sample spaces). Let X be a
random variable defined on a finite sample space Ω. Let the distinct sample
points be ω1, . . . , ωn.

In Theorem 10.7, let Di = {ωi}. Equation (10.9) gives us a pleasantly
simple formula for expected value:

E [X] =
n∑

i=1

X(ωi)P({ωi}). (10.13)

Of course the values X(ωi) might not be distinct. But as usual that’s
ok, we only give each outcome its own probability weight, so there is no
“double-counting”.

10.3 The frequency interpretation for expec-

tation

Here is a general statement of the key fact linking expected value to the real
world. We have already seen this in Example 10.1.
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Probability Fact 10.1 (The frequency interpretation of expected
value). Let X be a random variable defined in terms of an experiment. If
the experiment is repeated many times, the theoretical expected value of the
corresponding mathematical random variable is likely to be approximately
equal to average experimental value of the random variable X obtained from
the repeated experiments.

Justifying the frequency interpretation for expected values We can-
not give a rigorous proof of a practical statement, but we will show that for
a random variable with finite range this rule is a direct consequence of the
frequency interpretation of probability. A similar argument was already used
in Example 10.1.

Let X be a random variable with finite range. Suppose that the range of
X consists of the distinct numbers x1, . . . , xk.

By definition,

E [X] = x1P (X = x1) + . . .+ xnP (X = xn) .

Suppose that X represents a physical random variable in some experiment.
Consider a sequence of N repetitions of the experiment.

Let Mi be the number of those experiments for which the value of X is
equal to xi. Then the average experimental value x̄ for X is given by

x̄ =
1

N
(sum of all measured values) =

1

N

k∑
i=1

xiMi =
k∑

i=1

xi
Mi

N
.

The frequency interpretation for probability says that for large N , it is
very likely that Mi/N ≈ P (X = xi). Applying this approximation to every
term in the sum for x̄,

x̄ ≈
k∑
i

xiP (X = xi) = E [X] . (10.14)

Equation (10.14) expresses Rule 10.1, so we have justified this rule.

A traditional name for Rule 10.1 is “the Law of Large Numbers”. Some
corresponding mathematical properties of expected value are given in two
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well-known theorems called “the Weak Law of Large Numbers” and “the
Strong Law of Large Numbers”. These are mathematical statements. The
law of large numbers expressed here in Rule 10.1 is a practical statement,
not a mathematical theorem.

10.4 Additivity of expectation

The frequency interpretation of expected value provides a strong connection
between theoretical calculations and experimental results. We can use the
physical interpretation of expected value to tell us what the mathematical
properties must be.

For example, consider two physical random variables X and Y which
are defined for the same experiment. The measured value of X + Y is, by
definition, the sum of the value of X and value of Y . By the frequency
interpretation, the average of the measured values of X+Y , over sufficiently
many repeated experiments, is approximately E [X + Y ]. And the average
value for X+Y is equal to the sum of the average value for X and the average
value for Y . This frequency argument leaves us in no doubt that additivity
must hold for mathematical expected values:

E [X + Y ] = E [X] + E [Y ] . (10.15)

Equation (10.15) is confirmed with the formal proof in Lemma 10.10, given
below. Additivity actually holds for expectations of all random variables (see
the statement of Theorem 14.9).

Lemma 10.10 (Additivity of expectation). Let X and Y be finite-range
random variables defined for the same probability model. Then

E [X + Y ] = E [X] + E [Y ] . (10.16)

Proof. Let x1, . . . , xn be the distinct numbers in the range of X, and let
y1, . . . , ym be the distinct numbers in the range of Y .

Let Dij = {X = xi, Y = yj}.
By Theorem (10.7),

E [X] =
n∑

i=1

m∑
j=1

xiP(Dij) (10.17)
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E [Y ] =
n∑

i=1

m∑
j=1

yjP(Dij) (10.18)

and

E [X + Y ] =
n∑

i=1

m∑
j=1

(xi + yj)P(Dij). (10.19)

The right side of equation (10.19) is the sum of the right sides of equations
(10.17) and (10.18). Hence E [X + Y ] = E [X] + E [Y ].

Exercise 10.8. If you love the frequency interpretation, write out a careful
derivation of the additivity property for physical random variables, using the
frequency interpretation.

[Solution]

Remark 10.11 (Using multiple indices). In the proof of Lemma 10.10,
does it seem strange to apply Theorem (10.7) to a situation in which the
disjoint sets are described by multiple indices i, j?

It is important to see that this is ok. Notice that the properties of the sets
D1, . . . , Dk in Theorem (10.7), such as disjointness and having union equal
to the whole space, do not depend on how the sets D1, . . . , Dk are labelled.

Also, the sum in equation (10.9) would not be changed if we listed the
sets D1, . . . , Dk in a different way, provided that we included all of the sets
and did not list any of them more than once.

So the way we label our indices doesn’t matter.

Here’s some useful terminology.

Definition 10.12 (Linear operations). Consider any set of mathematical
elements such that “addition” and “multiplication by a number” make sense.
Examples: the set of coordinate vectors in Rn, the set of functions on an
interval, the set of random variables on a sample space.)

An operation on such elements is said to be a linear operation if it pre-
serves addition and also preserves multiplication by a number. More pre-
cisely, a linear operation is an operation with the following properties:
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(i) The Additivity Property. The result of applying the operation to
a sum of elements is equal to the sum of the results of applying the
operation to each term separately.

(ii) The Scaling Property. The result of multiplying an element by a
constant and then applying the operation is the same as the result of
applying the operation first, and multiplying by the number afterwards.

Linearity is a handy term, and we often use it. The rules of calculus
tell us that integration of functions is an example of a linear operation. By
Lemma 10.10 and 10.6, the operation of taking expected value is a linear
operation. The next lemma records this fact for future reference.

Lemma 10.13 (Expectation is linear). Taking expected value is a linear
operation, i.e.

(i)
E [X + Y ] = E [X] + E [Y ]

and

(ii)
E [cX] = cE [X] .

10.5 Using linearity to find expectations

We will use linearity so much that it will seem instinctive. Here are a few
examples in which linearity plays a role in finding expectations.

10.5.1 Expected number of successes for Bernoulli tri-
als

As in Example 9.5, let Sn be the total number of successes in n Bernoulli
trials with success probability p. Then Sn has a binomial distribution. We
wish to find E [Sn].
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Before we perform this calculation, let’s try to make it seem a little im-
pressive. Remember that n could be huge, a million or a trillion. If we really
care about the result, our method had better be right. Definitions and proofs
are what gives us the confidence to produce numbers in situations where even
computers would be too slow.

Method 1: using additivity Let Xi = 1 on Ai and Xi = 0 on Ac
i . (Thus

Xi is the indicator function for the event Ai, as defined in Definition 11.1.)
We have already observed that Xi is the number of successes obtained in
trial i (either 0 or 1). From the definition of Sn, it follows that Sn = X1 +
. . . +Xn. By additivity, E [Sn] = E [X1] + . . . + E [Xn]. From the definition
of expectation, E [Xi] = 1 ·P (Xi = 1) + 0 ·P (Xi = 0) = p. Hence

E [Sn] = np. (10.20)

Notice that E [Sn] is exactly what we would immediately compute from
the frequency interpretation, which is the basis of the common sense reason-
ing used in Example 10.1.

Exercise 10.9 (Method 2 for expected number of heads). Method 2
is what you use when you don’t remember that expectation is additive. It is
perhaps unnecessary to add that this is not the right approach. Nevertheless,
we can learn from it.

By equation (9.3), P (Sn = k) =
(
n
k

)
pk(1− p)n−k.

Calculate E [Sn] again, this time using Definition 10.2 and this formula.

As in Example 10.1, we can guess ahead of time that E [Sn] = np. So if
we see a factor of np in the algebra we should hang onto it in the calculation.

Finishing the calculation will verify our guess.

[Solution]

10.5.2 Expected value of a hypergeometric random vari-
able

Consider the experiment of Exercise 8.4. In that experiment, we have a bowl
which contains N marbles. A subset of n marbles is selected, with no marble
favored. There are K red marbles in the bowl, the others being green. Let

240



10.5. Using linearity to find expectations

the random variable LN,K,n be the number of red marbles selected. We wish
to find E [LN,K,n].

LN,K,n has hypergeometric distribution with parameters N,K, n (Defini-
tion 9.10), and our calculation for the expected value applies to any such
random variable.

Since linearity worked so well for coin-tossing, it’s the natural method to
try here. And it works. But we need to set up the problem, and use all the
information we have. The tricks we use here are worth noting!

Method 1 for E [LN,K,n]: using additivity Assign each marble an iden-
tification number, so that the marbles are numbered from 1 to N . For con-
venience, let marbles 1, . . . , K be the red ones.

Let Xℓ = 1 if marble ℓ is selected, Xℓ = 0 otherwise. Since no marble is
favored, E [Xℓ] is the same for every ℓ.

Incidentally, the experiment was defined as choosing a subset of nmarbles.
But it’s ok to focus on what happens to a particular marble. From the
definitions,

LN,K,n = X1 + . . .+XK . (10.21)

By linearity,

E [LN,K,n] = E [X1] + . . .+ E [XK ] = KE [X1] . (10.22)

To find E [X1] with minimal work, note that from the description of the
experiment there are always exactly n marbles selected. Hence

X1 + . . .+XN = n, (10.23)

always.
Did we cheat here? When we write down this sum of N terms, did we

change the experiment? We’re only supposed to choose n marbles.
It’s ok, because we are not performing a new experiment, we are just

writing down a true mathematical fact about the random variables in the
model for the original experiment.

Mathematical expectation has been proven to be linear. So now you can
go ahead and take the expected value of equation (10.23). This gives

n = E [X1] + . . .+ E [XN ] = NE [X1] .

This gives E [X1] = n/N , and hence by equation (10.22) we have

E [LN,K,n] =
nK

N
, (10.24)
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so we are done.

Remark 10.14 (Special cases). Fact 1 Incidentally, since we showed
that E [X1] = n/N , and since Xi is always either 1 or 0, equation (10.1) tells
us that E [Xi] = P (Xi = 1). Thus our work has shown that the probability
of any particular marble being selected is exactly n/N .

Fact 2 Also, by equation (10.24) we know that E [LN,K,1] =
nK
N

= K/N .
Since LN,K,1 is always either 1 or 0, we know that the probability that a
single selected marble lies in the target set is K/N . This probability agrees
with the statement of Theorem 2.22.

Do you think that Fact 1 and Fact 2 are really the same statement? In
Fact 1, we have a particular element, and randomly choose n points. In
Fact 2, we have a particular set of K element, and randomly choose a one
point. But since the particular point could be any point, and the particular
set could be any set, it seems that in both cases we might as well say that
we have a random set and a random point, chosen independently, and we are
finding the probability that the random point is an element in the random
set.

Method 2 for E [LN,K,n]: direct calculation By “direct calculation” we
mean something like the method of Exercise 10.9. This is feasible, and a
calculation is given next. You should definitely skip it as long as you agree
that this is not the easy approach!

As in Definition 9.10, the range of LN,K,n is the set of all i such that
equation (8.12) holds.

By equation (9.11), for each i in the range of LN,K,n we have

P(LN,K,n = i) =

(
K
i

)(
N−K
n−i

)(
N
n

) .

Hence by definition:

E [LN,K,n] =
∗∑
i

iP(LN,K,n = i) =
∗∑
i

i

(
K
i

)(
N−K
n−i

)(
N
n

) =
∗∑

i>0

i
(
K
i

)(
N−K
N−i

)(
N
n

) ,
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where we write
∗∑
i

to mean a sum over the indices i in the range of LN,K,n,

and we write
∗∑

i>0

to mean a sum over the nonzero indices i in the range of

LN,K,n.
Using equation (8.7),

E [LN,K,n] =
∗∑

i>0

iK
i

(
K−1
i−1

)(
N−K
n−i

)
N
n

(
N−1
n−1

) =
Kn

N

∗∑
i>0

(
K−1
i−1

)(
N−K
n−i

)(
N−1
n−1

) . (10.25)

Sincd N −K = (N − 1)− (K − 1) and n− i = (n− 1)− (i− 1), this gives

E [LN,K,n] =
Kn

N

∗∑
i>0

(
K−1
i−1

)(
(N−1)−(K−1)
(n−1)−(i−1)

)(
N−1
n−1

) . (10.26)

By equation (8.12), the nonzero indices i in the range of LN,K,n are those
i such that

1 ≤ i, K − i ≤ N − n, i ≤ K, and i ≤ n. (10.27)

Let LN−1,K−1,n−1 denote a hypergeometric random variable with param-
eters N − 1, K − 1, n− 1.

Let ℓ = i− 1. Then equation (10.27) says that

0 ≤ ℓ, (K − 1)− ℓ ≤ (N − 1)− (n− 1), and ℓ ≤ n− 1.

This is exactly the statement that ℓ is in the range of LN−1,K−1,n−1. Hence

∗∑
i>0

(
K−1
i−1

)(
(N−1)−(K−1)
(n−1)−(i−1)

)(
N−1
n−1

) =
∗∗∑
ℓ

(
K−1
ℓ

)(
(N−1)−(K−1)

(n−1)−ℓ

)(
N−1
n−1

) , (10.28)

where we write
∗∗∑
ℓ

to mean a sum over the indices ℓ in the range of LN−1,K−1,n−1,

Using equation (9.11) with N,K, n replaced by N −1, K−1, n−1, equa-
tion (10.28) says that

∗∑
i>0

(
K−1
i−1

)(
(N−1)−(K−1)
(n−1)−(i−1)

)(
N−1
n−1

) =
∗∗∑
ℓ

P(LN−1,K−1,n−1 = ℓ).

This is the sum of the probabilities of the values of LN−1,K−1,n−1 over all
possible values, so the sum is equal to one! By equation (10.26), E [LN,K,n] =
Kn/N .
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10.5.3 Reflection symmetry

If x is a point on the real line we will say that the point −x is the mirror
image of x under reflection in the origin.

Consider a physical random variable X such that for any possible value
of X, the negative of that value is just as likely to occur. Over many ex-
periments, the positive and negative values of this random variable will tend
to cancel out. In the long run, the average should be close to zero. By the
Frequency Interpretation of Expected Value, it must be true that E [X] = 0.

The next exercise asks you to give a more precise argument to show that
E [X] = 0.

Exercise 10.10. LetX be a random variable with finite range. Let a1, . . . , ak
be distinct positive numbers, and suppose that the nonzero range of X is the
set of numbers a1,−a1, a2,−a2, . . . , ak − ak. In addition, suppose that for
each i = 1, . . . , k,

P(X = −ai) = P(X = ai). (10.29)

Use Definition 10.2 to show that E [X] = 0. As usual, Exercise 10.4 is
convenient in applying the definition of expected value.

[Solution]

Exercise 10.10 uses mathematical reasoning which is close to the physical
picture. But general mathematical arguments can be more powerful, as in
the next lemma.

Lemma 10.15 (Reflection symmetry gives mean zero). Let X be a
random variable such that X and −X have the same distribution.

If E [X] exists, then E [X] = 0.

Proof. The expected value of any random variable is determined by its dis-
tribution, and for this particular random variable X it is assumed that X
and −X have the same distribution. Therefore E [X] = E [−X].

Using linearity of expectation, E [−X] = −E [X], and so 2E [X] = 0.
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Does Lemma 10.15 give Exercise 10.15 as a special case? Sure! Saying
that P(X = −ai) = P(X = ai) is the same as saying that P(−X = ai) =
P(X = ai), and so the assumption of Exercise 10.15 is equivalent to the
assumption that X and −X have the same distribution.

Exercise 10.11. Let X be a random variable whose range is exactly the set
S of integers i with −1000000 ≤ i ≤ 1000000. Assume that the distribution
of X is uniform on S. Find E [X] in two ways:

(i) By calculation using the definition of expected value, and

(ii) using Lemma 10.15.

[Solution]

Exercise 10.12. Let X be a random variable whose range is exactly the set
S of integers i with 0 ≤ x ≤ 1000. Assume that the distribution of X is
uniform on S.

(i) Find the distribution of X − 500.

(ii) Find E [X].

[Solution]

10.6 Monotonicity of expectations

Exact values are often not available, so we need to be able to deal with
estimates and inequalities.

Lemma 10.16 (Monotonicity of expectations). LetX and Y be random
variables with finite range, such that X(ω) ≤ Y (ω) for all sample points ω.
Then

E [X] ≤ E [Y ] . (10.30)
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Chapter 10. Expected values, finite range case

Proof. By assumption, Y − X is a nonnegative random variable, i.e. all
values are nonnegative.

The definition of expected value in the finite range case shows that
E [Y −X] ≥ 0.

Since Y = X + (Y −X), additivity tells us that

E [Y ] = E [X] + E [Y −X] .

Since E [Y −X] ≥ 0, we are done.

Exercise 10.13. Give a derivation of the monotonicity property for physical
random variables, using the frequency interpretation.

[Solution]

Example 10.17 (E [X] and E [|X|]). Let X be a finite-range random vari-
able, and let x1, . . . , k be the distrinct numbers in the range of X. Using the
definition of expected value and the triangle inequality (Appendix B),

|E [X] | =

∣∣∣∣∣
k∑

i=1

xiP(X = xi)

∣∣∣∣∣ ≤
∞∑
i=1

|xiP(X = xi) | =
∞∑
i=1

|xi|P(X = xi).

The numbers |x1| , . . . , |xk| may not be distinct, if X happens to have both
positive and negative values. But using Theorem 10.12 we see that

∞∑
i=1

|xi|P(X = xi) = E [ |X| ] .

So we have proved an interesting inequality:

|E [X] | ≤ E [ |X| ] . (10.31)

A Better Proof for equation (10.31)
Of course, our proof used the finite-range property for X. But the in-

equality is true for general expected values. Furthermore, there is actually a
slick way to derive it, just using general properties: linearity and monotonic-
ity:
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Note that X ≤ |X|. Hence, by monotonicity, E [X] ≤ E [ |X| ].
But we also have −X ≤ |−X| = |X|. So, by monotonicity, E [−X] ≤

E [ |X| ]. Then, by linearity, −E [X] ≤ E [ |X| ].
One of the numbers E [X], −E [X] must be equal to |E [X] |. And each

of these numbers is less than or equal to E [ |X| ]. So we have shown that
equation (10.31) holds in general.

10.7 General random variables

We won’t take time to define expected value for general mathematical random
variables carefully in this book, but later we will use mathematical expecta-
tion for lots of random variables that do not have finite range. Expectation
can be defined for any bounded random variable, and for unbounded random
variables that are not too big.

A bounded random variable is a random variable which is a bounded
function on the sample space.

You could probably guess the definition of a bounded function, but we’ll
state it carefully anyway.

Definition 10.18 (Bounded functions). A function f on any set is said
to be bounded if there is some number c such that |f(x)| ≤ c holds for every
x in the domain of f .

For unbounded random variables, sometimes the expected value exists,
and sometimes it doesn’t.

Remark 10.19 (Linearity for expectation of general random vari-
ables). The linearity property holds for bounded random variables, as we
would hope. For unbounded random variables, the linear property comes
with a little bit of “fine print”, since expected values might not exist. So the
correct way to state additivity of expectation in the general case will be to
say that if E [X] and E [Y ] exist, then E [X + Y ] exists and equation (10.16)
holds (see Theorem 14.9). Similarly, the general version of the scaling prop-
erty says that if E [X] exists then E [cX] exists and equation (10.6) holds.

That seems easy to remember.
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Chapter 10. Expected values, finite range case

We’ll often stick to finite-range random variables when we want to give
a careful derivation of some fact. But much of what is true for finite-range
random variables is true in general.

Example 10.20 (Expectations with a density on the sample space).
Just so readers can see an example of calculating expected values using a dif-
ferent method from that given in equation (10.1), suppose that the sample
space Ω is a continuous interval [s, t] of the real line, as discussed in Chap-
ter 3. Assume that probabilities are given by a uniform distribution on [s, t]
(Definition 3.2).

As in Exercise 3.5, the uniform distribution on [s, t] is given by a constant
density, say f = c. And since P(Ω) = 1 must hold, we need to have

∫ t

s
f = 1,

and so c = 1/(t− s).
In that situation, if X is a random variable on the sample space, it turns

out that the correct formula for E [X] is:

E [X] =

∫ t

s

X(u)c du. (10.32)

In other words, here we find E [X] by integrating its value over the sample
space.

More generally, if the distribution on Ω = [s, t] is given by a density
function f (as in Definition 3.4), the correct formula for E [X] is:

E [X] =

∫ t

s

X(u)f(u) du. (10.33)

Not surprising, just different from finite-range case.

For more discussion of finding expectations using densities, see Section 15.3.

10.8 Solutions for Chapter 10

Solution (Exercise 10.1). The range of Y is {0, 2}, while P(Y = 0) = 2/5
and P(Y = 2) = 3/5.

By definition,

E [Y ] =
2

5
0 +

3

5
2 = 1.2
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Solution (Exercise 10.2). Each value v in the range should contribute to
the expected value E [X]. The contribution is given by the term vP(X = v)
in the sum which defines E [X].

Physically, the importance of a value v for the expected value should
depend on the probability that X is equal to v. If a value appears twice in
the sum, then its contribution to the sum is doubled. This is not consistent
with actual importance of the value.

Solution (Exercise 10.3). Definition 10.2 shows that E [X] is given by a
weighted sum of terms.

Addition is commutative! (Yes, I’ve been waiting for a chance to say
that.) Changing the order of the terms in a sum does not change the a value
of the sum.

Solution (Exercise 10.4). Let x1, . . . , xk be a list of the distinct elements
in the range of X. By definition,

E [X] =
k∑

j=1

xjP(X = xj).

To show that equation (10.5) holds, we need to compare two sums, and see
if they are equal:

k∑
j=1

xjP(X = xj)
?
=

n∑
i=1

yiP(X = yi).

The order of the terms in a sum does not matter.
Suppose that a value yi is not in the range. Then P(X = yi) = 0, and

the term yiP(X = yi) = 0, so that term contributes nothing to the sum on
the right. We can throw away any term like that from the sum on the right.

Suppose that 0 is in the range. Then 0 = xj for some j. The term
xjP(X = xj) = 0, so that term contributes nothing to the sum on the left,
and we can throw it away from the sum on the left. For the same reason, if
yi = 0 for some i, we can throw away the term yiP(X = yi).

After all this throwing away, the remaining sum on the left will have the
same terms as the remaining sum on the right, possibly in a different order.
So the sums are indeed equal.

Solution (Exercise 10.5). Apply Exercise 10.4 with n = 1 and y1 = c.
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Solution (Exercise 10.6).

(i) From the assumptions, the range of X is {0, 1, 2, 5}, and

{X = 0} = {Z = 0} ,
{X = 1} = {Z = 1} ∪ {Z = 3} ∪ . . . ∪ {Z = 99} ,
{X = 2} = {Z = 2} ∪ {Z = 4} ∪ . . . ∪ {Z = 98} ,
{X = 5} = {D = 100} .

(10.34)

Hence the distribution of X is given by:

P(X = 0) = P(Z = 0) =
1

101
,

P(X = 1) = P(Z = 1) +P(Z = 3) + . . .+P(Z = 99) =
50

101
,

P(X = 2) = P(Z = 2) +P(Z = 4) + . . .+P(Z = 98) =
49

101
,

P(X = 5) = P(Z = 100) =
1

101
.

(10.35)

By definition,

E [X] = 0 ·P(X = 0) + 1 ·P(X = 1) + 2 ·P(X = 2) + 5 ·P(X = 5)

= 0 · 1

101
+ 1 · 50

101
+ 2 · 49

101
+ 5 · 1

101
=

153

101
. (10.36)

(ii) By equation (10.35),

0 ·P(X = 0) = 0 ·P(Z = 0),

1 ·P(X = 1) = 1 ·P(Z = 1) + 1 ·P(Z = 3) + . . .+ 1 ·P(Z = 99),

2 ·P(X = 2) = 2 ·P(Z = 2) + 2 ·P(Z = 4) + . . .+ 2 ·P(Z = 98),

5 ·P(X = 5) = 5 ·P(Z = 100).

(10.37)

Since φ gives the value of X in terms of the value of Z, we can rewrite
equation (10.37) as:

0 ·P(X = 0) = φ(0) ·P(Z = 0),

1 ·P(X = 1) = φ(1) ·P(Z = 1) + φ(3) ·P(Z = 3) + . . .+ φ(99) ·P(Z = 99),

2 ·P(X = 2) = φ(2) ·P(Z = 2) + φ(4) ·P(Z = 4) + . . .+ φ(98) ·P(Z = 98),

5 ·P(X = 5) = φ(100) ·P(Z = 100).

(10.38)
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If you add up all the equations in statement (10.38), you obtain:

E [X] =
100∑
i=0

φ(i)P(Z = i),

which is equation (10.8).
To phrase this differently: the proof of equation (10.8) is just a matter of

grouping the terms in the sum, in order to obtain equation (10.36).

Solution (Exercise 10.7).

From the definition of expected value

E
[
X2
]
= 0 ·P(X2 = 0) + 1 ·P(X2 = 1) + 4 ·P(X2 = 4) =

2

5
+ 4 · 2

5
= 2.

Using Theorem 10.8

E
[
X2
]
= (−2)2 · 1

5
+ (−1)2 · 1

5
+ 0 · 1

5
+ 12 · 1

5
+ 22 · 1

5
=

4

5
+

1

5
+

1

5
+

4

5
= 2.

Solution (Exercise 10.8). Consider a long sequence of N repeated exper-
iments. Let the measured values of X in these experiments be x1, . . . , xN
and let the measured values of Y in these experiments by y1, . . . , yN . Then
the measured results for X + Y are x1 + y1, . . . , xN + yN . The corresponding
experimental averages are:

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi, x+ y =
1

N

N∑
i=1

(xi + yi) . (10.39)

Of course
1

N

N∑
i=1

(xi + yi) =
1

N

N∑
i=1

xi +
1

N

N∑
i=1

yi,

so
x+ y = x̄+ ȳ. (10.40)

The frequency interpretation for expected value tells us that for large N ,
x̄ ≈ E [X], ȳ ≈ E [Y ] and x+ y ≈ E [X + Y ]. Since these approximations
can be made as precise as we like by taking a large number of repetitions,
equation (10.40) implies E [X + Y ] = E [X] + E [Y ].
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Solution (Exercise 10.9). By definition

E [Sn] =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k.

The k = 0 term is zero, so

E [Sn] =
n∑

k=1

k

(
n

k

)
pk(1− p)n−k.

By equation (8.7)

E [Sn] =
n∑

k=1

k
n

k

(
n− 1

k − 1

)
pk(1−p)n−k =

n∑
k=1

kp
n

k

(
n− 1

k − 1

)
pk−1(1−p)(n−1)−(k−1).

Letting i = k − 1,

E [Sn] = np
n−1∑
i=0

(
n− 1

i

)
pi(1− p)(n−1)−i. (10.41)

Let Sn−1 denote the number of heads obtained in n−1 coin tosses, when the
coin has success probability p. Equation (10.41) says that

E [Sn] = np
n−1∑
i=0

P(Sn−1 = i).

Since the range of Sn−1 is {0, 1, . . . , n− 1},

n−1∑
i=0

P(Sn−1 = i) = 1.

Hence E [Sn] = np.

Solution (Exercise 10.10). By Exercise 10.4,

E [X] = a1P(X = a1)+. . .+akP(X = ak)−a1P(X = −a1)−. . .−akP(X = −ak) = 0.
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Solution (Exercise 10.11).

Method 1

range of X = {−10000000,−999999, . . . , 999999, 1000000} ,

and all these points have equal probability. There are 2000001 points in the
range. Hence, by definition,

E [X] =
1000000∑

i=−1000000

i
1

2000001
=

(
−1∑

i=−1000000

i
1

2000001

)
+0

1

2000001
+

1000000∑
i=1

i
1

2000001
.

Thus

E [X] =

(
−1∑

i=−1000000

i
1

2000001

)
+

1000000∑
i=1

i
1

2000001
.

Let j = −i in the first of these two sums. Then that sum becomes

−
10000000∑

j=1

j
1

20000001
,

and this term cancels with the second sum, so E [X] = 0.

Method 2 Again we note that

range of X = {−10000000,−999999, . . . , 999999, 1000000} ,

All points in the range have the same probability, and if j is in the range
then so is −j.

Since P(−X = j) = P(X = −j) = P(X = j), it follows that X and −X
have the same distribution. Hence by Lemma 10.15, E [X] = 0.

Solution (Exercise 10.12). We see that

range of X = {0, 1, . . . , 1000} .

All these values have the same probability, so

P(X = j) =
1

1001
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Let Y = X − 500.

range of Y = {0− 500, 1− 500, . . . , 1000− 500} = {−500,−499, . . . , 499, 500} .

Hence

Fact 1 Y and −Y have the same range.

We also see that for each i in the range of Y ,

P(Y = i) = P(X − 500 = i) = P(X = i+ 500) =
1

1001
.

Hence

Fact 2 All the points in the range of Y have the same probability.

Facts 1 and 2 imply that P(Y = i) = P(Y = −i) = P(−Y = i) for all i
in the range of Y . Thus the distributions of Y and −Y are the same.

By Lemma 10.15, E [Y ] = 0.
That is, E [X − 500] = 0.
Now we use linearity again. Since expectation is a linear operation,

E [X]− E [500] = 0, i.e. E [X] = 500.

Solution (Exercise 10.13). Consider a long sequence of N repeated ex-
periments. Let the measured values of X in these experiments be x1, . . . , xN
and let the measured values of Y in these experiments by y1, . . . , yN .

By assumption, xi ≤ yi for every i.
The corresponding experimental averages are:

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi. (10.42)

Since
1

N

N∑
i=1

xi ≤
1

N

N∑
i=1

yi.

we have x̄ ≤ ȳ.
Taking N larger and larger gives averages x̄ and ȳ which approximate

E [X] and E [Y ] as precisely as we like. Hence we must have E [X] ≤ E [Y ].
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Chapter 11

More properties of expected
value

11.1 Indicator Functions

In this section we introduce a simple notation which is useful when writing
expressions involving expectations or integrals.

Definition 11.1 (Indicator function of a set). Let a set S be given, and
let A be any subset of S. We define the indicator function of A, denoted
by 1A, as follows.

1A is a function on S, and for any x ∈ S:

1A(x) =

{
1 if x ∈ A,

0 otherwise.
(11.1)

It should be emphasized that indicator functions are a general idea, de-
fined for subsets of any set, not just sample spaces or subsets of the real line.
You can picture 1A(x) as a signal light which comes on when x is a member
of A.

Please check that from the definition,

1A = 1B ⇐⇒ A = B. (11.2)

Here we use ⇐⇒ to mean “if and only if” (i.e. “implies” in both directions).
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Chapter 11. More properties of expected value

Lemma 10.3 can be expressed using indicator functions. It says that:

E [c1A] = cP(A). (11.3)

In particular we have the fundamental equation connecting probability and
expected value:

E [1A] = P(A). (11.4)

It seems to be easier to manipulate numbers than sets, so it can be prof-
itable to translate set statements into indicator statements.

Exercise 11.1 (Basic indicator facts). Prove all the following facts:

12
A = 1A, (11.5)

1Ac = 1− 1A, (11.6)

1A∩B = min (1A,1B) = 1A1B, (11.7)

1A∪B = max (1A,1B) . (11.8)

[Solution]

As a rather trivial example, note that using equation (11.6) twice we have

1(Ac)c = 1− 1Ac = 1− (1− 1A) = 1A.

This gives another derivation of equation (2.24), which says that (Ac)c = A.

Exercise 11.2 (Indicator of a disjoint union). Suppose that A,B are
any subsets of a given set S. Show that

A and B are disjoint ⇐⇒ 1A∪B = 1A + 1B. (11.9)

[Solution]

Here’s a useful fact about numbers.
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Exercise 11.3 (Sum equals max plus min). Show that for any real num-
bers t, u,

t+ u = max (t, u) + min (t, u) . (11.10)

[Solution]

As a consequence of Exercise 11.3 and equations (11.7) and (11.8), we
have

1A∪B + 1A∩B = 1A + 1B. (11.11)

Rewriting equation (11.11) as

1A∪B = 1A + 1B − 1A∩B, (11.12)

taking expectations of both sides, and then by applying equation (11.4), we
obtain Theorem 2.24, the Inclusion-Exclusion formula.

You may remember that in the original proof for inclusion-exclusion, we
used the trick of breaking up events into disjoint pieces. That seemed useful,
but we don’t seem to be using that trick with this approach. Or are we?
Maybe the pieces are the one-point sets in the sample space.

Since 1A∩B is the zero function if and only if A ∩ B is the empty set,
equation (11.11) gives us equation (11.9) as a special case.

Note that using equation (11.7) we can rewrite equation (11.12) as

1A∪B = 1A + 1B − 1A 1B. (11.13)

Exercise 11.4. One can generalize Theorem 2.24 to the case of n sets. The
usual proof using set operations has two steps. In the first step, one guesses
the correct formula in some way. In the second step, one proves the conjec-
tured formula by induction.

Instead of using that approach, derive the correct formula for the case
n = 3, and prove it at the same time, by applying equation (11.13) twice.

[Solution]
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Remark 11.2 (Subadditivity for indicators). We used the Inclusion-
Exclusion formula to prove subadditivity, Theorem 2.25. But now that we
have indicator functions, it seems more direct just to note an obvious sub-
additivity fact for indicator functions: for any events D1, . . . , Dk, if D is the
union of these events, then

1D ≤
k∑

j=1

1Dj
. (11.14)

To prove equation (11.14), just evaluate both sides for a sample point ω, as
follows.

If ω ∈ D then ω ∈ Dj for at least one j. Thus the left side of the equation
is one, and the right side is greater than or equal to one.

And if ω is not in D, then the left side of the equation is zero, and the
right cannot be negative.

So equation (11.14) holds. Now take expectation of both sides of the
equality in this equation. Using monotonicity and linearity of expectation,
and equation (11.4), you will produce Theorem 2.25.

The next exercise is important for understanding how our concepts fit
together.

Exercise 11.5 (Random variable as a sum of constants times indi-
cators). Let X be a random variable with finite range. Let x1, . . . , xk be the
distinct values in the range of X.

(i) Explain why

X = x11{X=x1} + . . .+ xk1{X=xk}. (11.15)

(ii) Show that linearity of expectation and equation (11.4) imply equa-
tion (10.1), which is the defining formula for E [X].

Thus for finite range random variables, linearity of expectation and equa-
tion (11.4) imply everything about expected values.

[Solution]
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Remark 11.3 (Integral over a set using indicator notation). In cal-
culus we are very familiar with the idea of integrating a function over a set,
usually when the set is an interval.

In equation (3.15) we gave the general definition for integrating a function
over a set. The function g in equation (3.15) is easily seen to be equal to
1Af , so

∫
A
f can be conveniently expressed using indicator functions:∫

A

f =

∫
1Af. (11.16)

We’ll sometimes use this notation later, for convenience.

Example 11.4 (Additivity for integration). Back in Section 3.5 we men-
tioned that for disjoint sets, the integral over the union is the sum of the
integrals over the disjoint sets making up the union (equation (3.13)): i.e. if
A = D1 ∪D2, where D1, D2 are disjoint, then∫

A

f =

∫
D1

f +

∫
D2

f. (11.17)

This follows from the definition of integration over a set. We can express
the argument very neatly by using indicator function notation and equation
(11.16). Equation (11.9) tells us that

1A = 1D1 + 1D2 .

Since integration is an additive operation, integrating this equation gives
equation (11.17).

Exercise 11.6 (Writing a random variable using cases). LetD1, . . . , Dn

be events for some probability model. Suppose that:

(a) The events D1, . . . , Dn are disjoint, and

(b) The union of D1, . . . , Dn is the whole sample space Ω.
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Let Z be a random variable such that Z is constant on each set Di (as in
Figure 10.1). For each i, let vi be a number such that X(ω) = vi for every
ω ∈ Di. (Thus if Di is empty, vi can be any number.)

Under these assumptions, prove that

Z = v11D1 + . . .+ vn1Dn . (11.18)

[Solution]

11.2 Expectation over a set

We defined integration over a set in equation (3.15). In this section we define
a similar concept for expected value. The idea is simple but convenient.

Definition 11.5 (Expectation over a subset of the sample space).
Let a probability model be given with sample space Ω. For any real-valued
random variable and any event A, define the expectation of X over A by

expectation of X over A = E [Z] , (11.19)

where

Z(ω) =

{
X(ω) if ω ∈ A,

0 otherwise.
(11.20)

Since this definition is intended to apply to general random variables, we
have to mention that equation (11.19) is the definition of the expectation of
X over A, if E [Z] exists. If E [Z] does not exist, the the expectation of X
over A is undefined. Of course if the range of X is finite, the range of Z is
finite, so E [Z] certainly exists, and there is no problem.

Indicator function notation (Definition 11.1), gives us a handy way to
write expectation over a set:

expectation of X over A = E [1AX] . (11.21)
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This definition applies to any random variable, although in the present
chapter we will only study its properties in the case of random variables with
finite range.

Expectation over a set is especially useful when dealing with combining
several expectations obtained under differing assumptions. The key concept
for that purpose is called conditional expectation and it deserves its own
section.

11.3 Conditional expectation

The following definition holds for general random variables, not just random
variables with finite range.

Definition 11.6 (Conditional expectation). Let X be a random variable
on a sample space Ω, and let A be an event with P(A) > 0. The conditional
expectation of X given A, denoted by E [X |A], is defined by

E [X|A] = E [1AX]

P(A)
. (11.22)

Equation (11.22) is a convenient mathematical formula for conditional
expectation, but the physical meaning of conditional expectation is better
expressed in the following lemma. Like Definition 11.6, this lemma holds for
all random variables, not just random variables with finite range.

Lemma 11.7 (Conditional expection uses conditional probabilities).
Define the conditional probability set-function P̃ by

P̃(D) = P(D |A) (11.23)

for any eventD. The definition of P̃ says that it is the probability distribution
which incorporates additional knowledge, namely that event A has occurred.

Then: the conditional expectation of X given A, which was defined in
equation (11.22), is equal to the expected value of X using P̃ instead of P.
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When we are using P̃ as our probability set-function we can denote the
expectation of X by EP̃ [X]. Thus Lemma 11.7 can be stated compactly as:

E [X|A] = EP̃ [X] . (11.24)

And this equation expresses the fact that conditional expectation really does
mean what its name suggests.

Proof. For the proof we assume that X has a finite range.

Let x1, . . . , xk be a list of the distinct values in the range of X.

By Exercise 11.5,

X =
k∑

i=1

xi1{X=xi}.

Let A be an event with P(A) > 0. Then

1AX =
k∑

i=1

xi1A1{X=xi}.

Using equation (11.7), this says that

1AX =
k∑

i=1

xi1A∩{X=xi}.

Taking expected value of both sides of the equation, and using equation
(11.4),

E [1AX] =
k∑

i=1

xiP(A ∩ {X = xi}),

so

E [1AX]

P(A)
=

k∑
i=1

xi
P(A ∩ {X = xi})

P(A)
=

k∑
i=1

xiP̃({X = xi}).

By the mathematical definition, the left side of this equation is E [X|A].
The right side of the equation is equal to EP̃ [X] by the definition of

expected value.

This proves equation (11.24).

262



11.3. Conditional expectation

Our proof justified Lemma (11.7) for the special case of a random variable
X with finite range, but remember that this lemma holds for all random
variables X.

Conditional probabilities may be simpler to use than the original proba-
bility distribution, since they permit us to break up a calculation into cases.
In particular, we have the Law of Total Expectation, which generalizes the
Law of Total Probability (Theorem 4.6).

Theorem 11.8 (Law of Total Expectation). Let D1, . . . , Dk be disjoint
events with union D, and let X be a random variable such that E [X] exists.
Then

E [1DX] =
k∑

i=1

P (Di)E [X|Di] , (11.25)

where for each i if P (Di) = 0 we replace E [X|Di] by any number we like.
If D = Ω, this becomes

E [X] =
k∑

i=1

P (Di)E [X|Di] . (11.26)

Exercise 11.7. Let D1, . . . , Dk be disjoint events with union D. Prove that

1D =
k∑

i=1

1Di
. (11.27)

This equation generalizes equation (11.9), of course.
[Solution]

Exercise 11.8 (Proof of the theorem). Prove Theorem 11.8.
Equation (11.22) is convenient for this purpose. [Solution]

Example 11.9 (A simple model with two cases). Consider the following
very simple game.
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A player tosses a fair coin. If the toss gives a head, the player wins ten
dollars, and the game ends. Otherwise, a fair die is rolled, and the player
wins the number of dollars shown on the die. Let X be the amount that the
player wins. We wish to find E [X].

We will actually calculate E [X] twice, and compare the two approaches.

Method 1
What should be the sample space for this calculation? A reasonable

choice is to take the set Ω to consist of a symbol H together with the numbers
1, 2, 3, 4, 5, 6.

The symbol H represents the outcome for which the coin toss results in
a head. The number i represents the outcome for which the coin toss results
in a tail and then score on the die roll is i.

The distribution P for this sample space is obtained as follows.
By the description of the experiment, P(H) = 1

2
.

By the multiplied-through version of the conditional probability formula
(equation (4.2)),

P({i}) = P(Hc)P({i} |Hc).

In this equation we have physical probabilities, since the abstract model is
still being defined. We know the probabilities for a fair die roll, and we know
the roll of the die is not affected by the coin toss, so

P({i} |Hc) =
1

6
.

Thus in our model we should define

P({i}) = 1

2

1

6
=

1

12
for i = 1, 2, 3, 4, 5, 6.

Using the definition of E [X] gives

E [X] =
1

2
10 +

6∑
i=1

1

12
i =

1

2
10 +

1

12
(1 + 2 + 3 + 4 + 5 + 6) .

Method 2
Let’s start the problem again, and apply the Law of Total Expectation,

Theorem 11.8.

E [X] = P(H)E [X|H] +P(Hc)E [X|Hc] . (11.28)

264



11.3. Conditional expectation

Given H, X = 10, so

E [X|H] = 10.

The physical description of the situation given Hc is that we are rolling a fair
die, andX is the number shown on the die. We also know by equation (11.24)
that E [X|Hc] is equal to the expected value of X in this situation. So we
have a little self-contained problem, which we know how to solve: finding the
expected value for one roll of a fair die. Thus

E [X|Hc] =
1

6
(1 + 2 + 3 + 4 + 5 + 6) .

Since P(Hc) = 1/2 = P(H), substituting in equation (11.28) gives:

E [X] =
1

2
10 +

1

2

(
1

6
(1 + 2 + 3 + 4 + 5 + 6)

)
.

Either of the two methods of calculating E [X] seems equally easy in the
present example, but we can already notice two significant benefits of using
the Law of Total Expectation.

(i) The problem is decomposed in a natural way into simpler problems,
which are “self-contained problems”, i.e. problems which can be con-
sidered separately.

(ii) There is no need to define a sample space for the original problem.

These benefits are more significant in complex problems.

Exercise 11.9. A player has a fair die and a coin with success probabil-
ity 1/5. In the first stage of the experiment, the player rolls the die once.
Let k be the number obtained. The player then tosses the coin k times. Find
the expected number of successes obtained in this experiment.

[Solution]
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11.4 Solutions for Chapter 11

Solution (Exercise 11.1).

Proving equation (11.5) For any set A, the only possible values for 1A

are 0 and 1, Since 02 = 0 and 12 = 1, equation (11.5) follows.

Proving equation (11.6) From the definitions, 1Ac(t) = 0 exactly when
1A(t) = 1, and 1Ac(t) = 1 exactly when 1A(t) = 0. This is equivalent to
saying that 1Ac(t) = 1− 1A(t), so equation (11.6) holds.

Proving equation (11.7)
When t ∈ A ∩ B, 1A∩B = 1, and both of the statements 1A(t) = 1,

1A(t) = 1 hold. Hence 1A∩B(t) = min (1A(t),1B(t)).
When t /∈ A ∩ B, certainly 1A∩B(t) = 0 by definition. Also at least one

of the statements t /∈ A, t /∈ B holds. Thus at least one of the statements
1A(t) = 0, 1B(t) = 0, holds, so min (1A(t),1B(t)) = 0 = 1A∩B(t).

This proves the first equality in equation (11.7) for all possible cases.
When t ∈ {0, 1} and u ∈ {0, 1}, we see by checking cases that t u =

min(t, u). This proves the remaining equality in equation (11.7).

Proving equation (11.8) When t ∈ A ∪B, 1A∪B = 1, and at least one of
the statements 1A(t) = 1, 1A(t) = 1 hold. Hence 1A∪B(t) = max (1A(t),1B(t)).

When t /∈ A ∪ B, certainly 1A∪B(t) = 0 by definition. Also both of the
statements t /∈ A, t /∈ B holds. Thus both of the statements 1A(t) = 0,
1B(t) = 0, holds, so max (1A(t),1B(t)) = 0 = 1A∩B(t).

This proves equation (11.8) for all possible cases.

Proving equation (11.11) Since 1A∪B = max (1A,1B) and 1A∩B = min (1A,1B),
this proves equation (11.11).

Solution (Exercise 11.2).

=⇒ : Suppose that A and B are disjoint subsets of the given set S.
Let x be a point in S.
If x ∈ A then x ∈ A ∪ B and x /∈ B. Thus 1A(x) = 1, 1A∪B = 1 and

1B = 0. Since 1 = 1 + 0, equation (11.9) holds.
Similarly equation (11.9) holds if x ∈ B.
The remaining case is the case that x ∈ (A ∪B)c. In this case 1A∪B(x) =

0 = 1A(x) = 1B(x). Since 0 = 0 + 0, equation (11.9) holds in this case also.
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⇐= : Suppose that equation (11.9) holds. If there were a point x ∈ A∩B,
for that point we would have 1A∪B(x) = 1, 1A(x) = 1 and 1B(x) = 1. Since
1 ̸= 1 + 1, equation (11.9) would not hold at x.

Since equation (11.9) does hold, we conclude that A ∩B is empty.

Solution (Exercise 11.3). If t ̸= u, then one of these two numbers is the
max, and the other is the min. Thus t+ u = max (t, u) + min (t, u).

On the other hand, if t = u, then both number are equal to the max and
both are equal to the min. Hence once again we have t + u = max (t, u) +
min (t, u).

This proves equation (11.10).

Solution (Exercise 11.4). Using equation (11.13),

1A∪B∪C = 1(A∪B)∪C = 1A∪B + 1C − 1A∪B 1C .

Applying equation (11.13) to 1A∪B,

1A∪B∪C = 1A + 1B − 1A 1B + 1C − (1A + 1B − 1A1B)1C

= 1A + 1B + 1C − 1A 1B − 1A1C − 1B1C + 1A1B1C .

Using equation (11.7), this says that

1A∪B∪C = 1A + 1B + 1C − 1A∩B − 1A∩C − 1B∩C + 1A∩B∩C .

Taking expectations of both sides, and then applying equation (11.4), we
obtain

P(A ∪B ∪ C) = P(A) +P(B) +P(C)

−P(A ∩B)−P(A ∩ C)−P(B ∩ C)
+P(A ∩B ∩ C).

(11.29)

This is the generalization of equation (2.14) of Theorem 2.24, to the case of
three events.

Notice that the plus and minus signs alternate, depending on the number
of sets in the intersection. This pattern holds for all n.

Solution (Exercise 11.5).

(i) For any outcome ω, we must show that

X(ω) = x11{X=x1}(ω) + . . .+ xk1{X=xk}(ω). (11.30)
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Let xj be the value of X(ω). Then ω ∈ {X = xj}.
On the right side of equation (11.30), 1{X=xi}(ω) = 0 unless i = j. In

that case, 1{X=xi}(ω) = 1.

Thus the only surviving term on the right side of the equation is xj ·1 = xj.
This equals the left side, so we are done.

(ii) Taking expected value of both sides of equation (11.30) gives

E [X] = x1E
[
1{X=x1}

]
+ . . .+ xkE

[
1{X=xk}

]
.

Applying equation (11.4) to each term on the right side of this equation gives

E [X] = x1P({X = x1}) + . . .+ xkP({X = xk}).

This is equation (10.1).

Solution (Exercise 11.6). For any outcome ω, we must show that

Z(ω) = v11D1(ω) + . . .+ vn1Dn(ω). (11.31)

Suppose that ω ∈ Dj (it has to be somewhere).

On the right side of equation (11.31), 1Di
(ω) = 0 unless i = j. In that

case, 1Di
(ω) = 1.

Thus the only surviving term on the right side of the equation is vj ·1 = vj.
This equals the left side, so we are done.

Solution (Exercise 11.7).

Method 1 The argument here is similar to the solution to Exercise 11.6.

One checks directly that equation (11.27) holds by verifying that it holds
for every ω.

It holds when ω ∈ Di for some i, using disjointness, and it holds when ω
is not a member of any Di, since both sides of the equation are zero in that
case.

Method 2 When n = 1, the equation is obvious.

When n = 2, the equation is equivalent to equation (11.9).

To obtain the equation for general n, use The Old Induction Trick for
generalizing from 2 to n, (Exercise 2.23).
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Solution (Exercise 11.8). By equation (11.22),

E [X|Di] =
E [1Di

X]

P(Di)
for each i.

That is,
P(Di)E [X|Di] = E [1Di

X] for each i.

Thus equation (11.25) is exactly the statement that

E [X1D] =
k∑

i=1

E [X1Di
] .

By linearity of expectation, this will be true if

X1D =
k∑

i=1

X1Di
.

And this last equation holds, since equation (11.27) says that

1D =
k∑

i=1

1Di
.

Solution (Exercise 11.9). Let Dk be the event that the result of rolling
the die is the number k.

Let X be the number of successes when tossing the coin. By equa-
tion (11.26),

E [X] =
6∑

k=1

P(Dk)E [X|Dk] .

Since the die is fair, P(Dk) = 1/6 for all k.
To find E [X|Dk], think of a simple little self-contained experiment,

namely tossing a coin k times. We know from previous work that the expec-
tation is kp, where p is the success probability of the coin. Thus

E [X|Dk] = k

(
1

5

)
.

Hence

E [X] =
1

6

1

5
+
1

6

2

5
+
1

6

3

5
+
1

6

4

5
+
1

6

5

5
+
1

6

6

5
=

1 + 2 + 3 + 4 + 5 + 6

30
=

21

30
=

7

10
.
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Chapter 12

Independent random variables,
first applications

12.1 Two independent random variables

Definition 12.1 (Independence for physical random variables). Let
X and Y be physical random variables defined for the same experiment. We
say that X and Y are independent if every event defined in terms of the
values of X is independent of every event defined in terms of the values of
Y .

As usual we can express an independence statement in terms of infor-
mation. For independent random variables, information about the observed
value of X tells us nothing about the observed value of Y .

Definition 12.1 is a statement about physical random variables, not math-
ematical random variables. Here is a definition of independence for mathe-
matical random variables.

Definition 12.2 (Independence for mathematical random variables).
Let X and Y be real-valued random variables for some probability model.
We say that X and Y are independent if, for any subsets S and T of R, the
events {X ∈ S} and {Y ∈ T} are independent.
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Definition 12.2 applies to all mathematical random variables, not just
those with finite range. Probability theory uses lots of mathematical random
variables with infinite range, but in this chapter we will focus on the finite
range case.

In the special case of mathematical random variables with finite range, the
next lemma tells us that we can check independence by considering events of
the form {X = x} and {Y = y}. This is simpler than using Definition 12.2.

Lemma 12.3 (Checking independence for finite-range random vari-
ables). Let X and Y be finite range random variables. Then the following
statements are equivalent.

(i) X and Y are independent.

(ii) For every number x in the range of X, and every number y in the range
of Y ,

{X = x} , {Y = y} are independent events. (12.1)

Proof. (i) =⇒ (ii): Assume that X and Y are independent random vari-
ables. Let S = {x} and let T = {y}.

Since {X = x} = {X ∈ S} and {Y = y} = {Y ∈ T}, Definition 12.2 gives
equation (12.1).

(ii) =⇒ (i): Assume statement (ii) holds.
Let G and H be any sets of real numbers. Let c1, . . . , ck list the distinct

numbers in the range of X which are members of G. Let d1, . . . , dℓ list the
distinct numbers in the range of Y which are members of H.

For any sample point ω, if X(ω) ∈ G then X(ω) must be equal to some
ci and if Y (ω) ∈ H then Y (ω) must be equal to some dj. Thus

{X ∈ G} =
k⋃

i=1

{X = ci} , {Y ∈ H} =
ℓ⋃

j=1

{Y = dj} . (12.2)

Similarly, if ω ∈ {X ∈ G} ∩ {Y ∈ H}, then X(ω) = xi for some i and
Y (ω) = yj for some j. Thus

{X ∈ G} ∩ {Y ∈ H} =
⋃
ij

{X = xi} ∩ {Y = yj} .
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Hence

P({X ∈ G} ∩ {Y ∈ H}) =
∑
ij

P({X = xi} ∩ {Y = yj})

=
∑
ij

P(X = xi)P(Y = yj).

Using the distributive law, this says

P({X ∈ G} ∩ {Y ∈ H}) =

(∑
i∈C

P (X = ci)

)(∑
j∈D

P (Y = dj)

)
= P(X ∈ G)P(Y ∈ H).

Hence condition (ii) holds.

Statement (i) of Lemma 12.3 and statement (ii) of Lemma 12.3 are logi-
cally equivalent, for finite-range random variables. However: statement (i) of
Lemma 12.3 is convenient for applying independence to a physical situation,
while statement (ii) is convenient for showing that independence holds.

Exercise 12.1. Consider a two-step experiment, in which a fair coin is tossed
twice.

Let Xi = 1 if toss i gives success, and Xi = 0 otherwise.
Let Yi represent a “payoff” connected with this experiment. The rule is

that Yi = 5 if toss i gives success, and Yi = −5 otherwise.
By Lemma 12.3, we know that X1 and X2 are independent! Also Y1, Y2

are independent, for the same reason.
More complicated random variables may be harder to analyze. In this

problem you are asked to consider other random variables.

(i) Let X3 = X1X2.

Prove that X1, X3 are not independent.

(ii) Let Y3 = Y1Y2.

Prove that Y1, Y3 are independent.

[Solution]
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We are concentrating on finite-range random variables at the moment.
But for future reference, here’s a criterion that saves work when checking
independence for general random variables.

Lemma 12.4 (Intervals are sufficient). Real-valued random variables
X, Y are independent if for all intervals [a, b], [c, d], the events {X ∈ [a, b]}
and {Y ∈ [c, d]} are independent.

The proof depends on technicalities and is omitted.

12.2 Independent indicators

Lemma 12.5 (Sets are independent if and only if their indicators
are independent). Let A,B be events in some model. Then the indica-
tor functions 1A,1B independent are independent if and only if A,B are
independent.

Nothing surprising here if you think about information. Knowing whether
or not A occurred is exactly the same as knowing the value of 1A, and knowing
whether or not B occurred is exactly the same as knowing the value of 1B.
The proof is just a matter of checking that the definitions mean what you
think they mean.

Proof. Let 1A,1B are independent random variables.
Then for any number x in the range of X, and any number y in the range

of Y , {X = x} and {Y = y} are independent.
In particular, {X = 1} , {Y = 1} are independent. That is, A,B are in-

dependent.
Conversely, suppose that A,B are independent.
By Lemma 5.6, the independence of A,B implies the following facts:

• A,B are independent,

• A,Bc are independent,

• Ac, B are independent, and
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• Ac, Bc are independent.

These statements say that:

• {1A = 1} , {1B = 1} are independent,

• {1A = 1} , {1B = 0} are independent,

• {1A = 0} , {1B = 1} are independent, and

• {1A = 0} , {1B = 0} are independent.

We have shown that for every x in the range of 1A, and every y in the
range of 1B, {1A = x} , {1B = y} are independent.

Thus by Lemma 12.3, 1A,1B are independent.

12.3 Functions of independents

Let’s review notations from calculus:

Definition 12.6 (Compositions of functions). Let f and g be any func-
tions. Suppose that for any point t in the domain of g, g(t) is in the do-
main of f . Then f(g(t)) is defined, and we can define a new function h
by h(t) = f(g(t)). We will often denote this function simply as f(g). This
notation is only a shorthand for the function which sends t to f(g(t)), but it
seems to convey the meaning clearly.

People sometimes refer to the function f(g) using words, as “the compo-
sition of f with g”. However, it’s safer to write the composition symbolically,
since someone might interpret the same phrase as meaning g(f).

Another notation for the composition of functions is f ◦g. Thus f ◦g and
f(g) mean the same thing, and

f ◦ g(t) = f(g(t)). (12.3)

We can also use this notation when more functions are involved. For
example, f ◦ g ◦ h is the function f(g(h))).
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Let X and Y be real-valued physical random variables which measure
quantities for the same experiment. Suppose that X and Y are independent
physical random variables. Let φ and θ be functions on R. Since φ(X) is
determined by X, any information given by φ(X) is also information about
X. Similarly any information given by θ(Y ) is also information about Y .

By assumption, information about X does not change your opinion con-
cerning information about Y . So information about φ(X) does not change
your opinion concerning information about θ(Y ). Hence φ(X) and θ(Y ) must
be independent.

The mathematical version of this physical statement is expressed in much
the same way. The proof is just a matter of using the definitions carefully,
so it may not be a high priority for readers. The physical meaning of the
lemma is important, of course.

Lemma 12.7 (Functions of independents are independent). Suppose
X and Y are independent real-valued random variables for some probability
model, and φ and θ are functions on R. Then φ(X) and θ(Y ) are indepen-
dent.

Proof. We will use Definition 12.2. Let X and Y be real-valued random
variables for some probability model. Let S and T be subsets of R. We must
show that the events {φ(X) ∈ S} and {θ(Y ) ∈ T} are independent.

Let
G = {z : z ∈ R, φ(z) ∈ S} . (12.4)

To say that φ(X(ω)) ∈ S is logically equivalent to saying that X(ω) ∈ G.
Thus

{φ(X) ∈ S} = {X ∈ G} . (12.5)

Similarly, let H = {z : z ∈ R, θ(z) ∈ T}. Then

{θ(Y ) ∈ T} = {Y ∈ H} . (12.6)

Definition 12.2 tells us that {X ∈ G} , {Y ∈ H} are independent events.
Thus {φ(X) ∈ S} , {θ(Y ) ∈ T} are independent events.

Since S, T were any subsets of R, φ(X), θ(Y ) are independent by Defini-
tion 12.2.
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The following exercise is a simple test of Lemma 12.7.

Exercise 12.2. Let X, Y be finite range real-valued random variables, and
suppose that X, Y are independent.

Let G = 5X and let H = 16Y . Are G,H independent? Sure they are,
it’s physically obvious.

But let’s check that. We could appeal to Lemma 12.7. But it seems
instructive at this stage to use a more basic criterion.

So: using condition (ii) of Lemma 12.3, and without using Lemma 12.7,
show that G,H are independent.

[Solution]

12.4 Expectation of a product

The next theorem extends the multiplicative property from independent
events to independent random variables.

Theorem 12.8 (Expectation of a product of independents). Let X
and Y be independent random variables defined for the same probability
model. Assume that E [X] ,E [Y ] exist. Then E [X Y ] exists, and

E [X Y ] = E [X] E [Y ] . (12.7)

Proof. The theorem holds for general random variables, but we will only
write down a proof for the finite-range case.

We can follow the pattern of the proof of Lemma 10.10.
Let x1, . . . , xn be the distinct numbers in the range ofX, and let y1, . . . , ym

be the distinct numbers in the range of Y .
Let Dij = {X = xi, Y = yj}.
By Theorem (10.7),

E [X Y ] =
n∑

i=1

m∑
j=1

xi yj P(Dij). (12.8)
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Up to this point we have not used the assumption that X, Y are indepen-
dent. This tells us that

P(X = xi, Y = yj) = P(X = xi)P(Y = yj).

Hence

E [X Y ] =
n∑

i=1

m∑
j=1

xi yjP(X = xi)P(Y = yj). (12.9)

Using the distributive law, we see that

E [X Y ] =

(
n∑

i=1

xiP(X = xi)

)(
m∑
j=1

yjP(Y = yj)

)
. (12.10)

Thus E [X Y ] = E [X]E [Y ].

Exercise 12.3. Let X and Y be independent random variables with finite
range, such that E [X3] exists and E [Y 8] exists. Prove that E [X3Y 8] =
E [X3]E [Y 8].

[Solution]

Independence of random variables is a powerful tool in analyzing the
behavior of probability models.

12.5 Independence for a sequence of random

variables

Just as in the case of independence for events, we can consider a (possibly
long) sequence of random variables defined on the sample space of some
experiment. Here’s the general definition.

Definition 12.9 (Independent sequences of random variables). Let
X1, . . . , Xn be real-valued random variables which are defined on the same
sample space. The random variables X1, . . . , Xn are said to be independent
if the following holds.

278



12.5. Independence for a sequence of random variables

For any subsets D1, . . . , Sn of R,

P(X1 ∈ S1, . . . , Xn ∈ Sn) = P(X1 ∈ S1) · · ·P(Xn ∈ Sn). (12.11)

Take a moment to check that this definition agrees with Definition 12.2
when n = 2!

When the random variables happen to have finite range, things are sim-
pler, much as in Lemma 12.3.

Lemma 12.10 (Checking independence for a sequence of finite-range
random variables). Let X1, . . . , Xn be finite range random variables. Then
the following statements are equivalent.

(i) X1, . . . , Xn are independent.

(ii) For every sequence of numbers x1, . . . , xn, where xi is in the range of
Xi,

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · ·P(Xn = xn). (12.12)

The properties of independent sequences of random variables are simi-
lar to the properties of two independent random variables. Physical expe-
rience continues to be a reliable guide, and we will cheerfully write down
mathematical equations without proofs, based on our ideas about physical
independence.

Exercise 12.4 (Maximum of independent). Let X1, . . . , Xn be an inde-
pendent sequence.

Suppose that each random variable Xj has a uniform distribution on
{1, . . . , 10}. That is, suppose P(Xj = i) = 1/10 for i = 1, . . . , 10.

Let M be the maximum of X1, . . . , Xn. Find P(M ≤ 4).
[Solution]
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Exercise 12.5 (Minimum of independent). In the setting of Exercise 12.4,
let m be the minimum of X1, . . . , Xn. Find P(m > 4).

[Solution]

We could have fun proving independence properties based on the defini-
tion. For example,

A1, . . . , An are independent ⇐⇒ 1A1 , . . . ,1Anare independent. (12.13)

However, it seems better to just assume facts like that, and keep going.

12.6 Random walk

Sequences of independent random variables occur in many situations, in areas
such as economics, physics and biology.

In this section we present a simple example.
A bug is moving around randomly on the integers. The bug is sitting on

the origin initially.
The movement is as follows.
Every second, a fair coin is tossed. The first toss takes place at time 1,

and every second thereafter. Each toss results in a “step” by the bug, as
follows:

• If the bug is on integer k, a successful toss (a head) makes the bug
jump instantly to k + 1, and

• if the bug is on integer k, a failure makes the bug jump instantly to
k − 1.

This type of mathematical motion is called “random walk”, or more specif-
ically, “simple symmetric random walk”. (The word “simple” refers to the
fact that the bug can only jump a distance of one unit. The word “symmet-
ric” is used because the bug does not favor right or left.)

Since the bug changes direction frequently, it is moving very inefficiently.
A basic question: how far from the origin is the bug likely to be, after n
steps?
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12.6. Random walk

We can start by thinking about a more abstract model for the bug’s
motion. Let Xi be a random variable that represents the result of the coin
toss at time i. We will represent success by 1 and failure by −1, so that

P(Xi = 1) =
1

2
and P(Xi = −1) =

1

2
.

Our physical picture tells us that in the mathematical model, X1, . . . , Xn is
an independent sequence of random variables.

Define S0 = 0, and let

Sn = X1 + . . .+Xn for each n = 1, 2, . . . . (12.14)

S0 is the location of the bug at time 0. At time 1, the bug has just taken
a single step, and is now at S1 = X1. At time 2, the bug has taken its second
step, and is now at S1 = X1 +X2. And so on.

There are powerful techniques for analyzing random walk. In the present
chapter we will just consider one fact, which is a consequence of Theo-
rem 12.8:

Lemma 12.11 (Random walk squared distance).

E
[
S2
n

]
= n. (12.15)

Proof. Note first that, from the distribution, E [Xi] = 0 for every step. So
(by linearity) E [Sn] = 0. That doesn’t help us much.

Notice that the range of Sn contains quite a few points. It’s easy to see
that the largest possible value in the range is n (when every step is success),
and the smallest possible value is −n (when every step is failure).

A little more thought will convince you that when n is even, the range
consists of all even numbers from −n to n, and when n is odd, the range
consists of all odd numbers from −n to n.

The bottom line is that it won’t be easy to find E [S2
n] directly from the

definition of expected value.
However we can expand S2

n.

E
[
S2
n

]
= E

( n∑
i=1

Xi

)2
 = E

[(
n∑

i=1

Xi

)(
n∑

j=1

Xj

)]
.
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Thus

E
[
S2
n

]
= E

[
n∑

i,j=1

XiXj

]
. (12.16)

Equation (12.16) is the usual distributive law manipulation. If it looks
strange, please write out the case n = 3 to see what is going on!

Additivity of expectation then gives

E
[
S2
n

]
=

n∑
i,j=1

E [XiXj] .

Now comes the key point. For i ̸= j, Xi, Xj are independent random vari-
ables. In that case Theorem 12.8 tells us that

E [XiXj] = E [Xi]E [Xj] = 0.

Thus, keeping only the surviving terms on the right, we have:

E
[
S2
n

]
=

n∑
i=1

E
[
X2

i

]
.

Much simpler! The values of Xi are −1 or 1. So X2
i = 1, always. Hence

E [X2
i ] = 1, and we have E [S2

n] = n, as claimed.

Let’s pause to admire equation (12.15) for a moment. The largest possible
value for S2

n is n2. When n is large, the average value of S2
n is much smaller

than n2. So equation (12.15) is telling us that the distribution of Sn does
not put much weight near the extreme values.

We would like to make that last statement more precise.

12.7 The Markov Inequality

To extract a little more information from equation (12.15), one can use an
inequality (you will do that in Exercise 12.6). The inequality you will use is
known as the Markov inequality. Despite its simplicity, the Markov inequality
is useful in many situations.
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12.7. The Markov Inequality

0.2 0.4 0.6 0.8 1.0
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{
Y≥ 8

}

Y

8

Figure 12.1: Sample space [0, 1], uniform probability

Lemma 12.12 (The Markov Inequality). Let Y be a nonnegative random
variable such that E [Y ] exists. For any number α,

αP(Y ≥ α) ≤ E [Y ] . (12.17)

See Figure 12.1

This lemma applies to general random variables. (If Y has finite range
then of course the assumption that E [Y ] exists is automatically true.)

The proof of the lemma given here is also general, since it only uses
properties of expectation which always hold.

Proof. Let A = {Y ≥ α}. We claim that

α1A ≤ Y (12.18)

holds everywhere on the sample space.
Indeed, consider a sample point ω.
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If ω ∈ A, then by the definition of A we must have α ≤ Y (ω). Since
1A(ω) = 1, that is exactly what equation (12.18) asserts.

On the other hand, if ω /∈ A, then 1A(ω) = 0, and 0 ≤ Y (ω) holds since
Y is assumed to be nonnegative.

Thus equation (12.18) holds everywhere.
Since expectation is monotone,

E [α1A] ≤ E [Y ] .

And
E [α1A] = αE [1A] = αP(A),

using linearity for the first equality and equation (11.4) for the second equal-
ity.

Figure 12.1 illustrates the Markov inequality when the sample space is
[0, 1] and P is the uniform distribution on [0, 1]. We consider a continuous
sample space because it’s easier to draw the graph of a random variable in
that situation. In Figure 12.1, α = 8, and the blue area is αP(Y ≥ α). As

in Example 10.20, E [Y ] =
∫ 1

0
Y (u) du, and so we can picture the expected

value easily in this case: E [Y ] is equal to the entire area under the curve.

Exercise 12.6 (Searching for Charlie). Your pet bug escaped from the
origin at time 0, and has undoubtedly been performing simple symmetric ran-
dom walk ever since then. 10, 000 seconds have elapsed since Charlie started
roaming. You are distressed and searching frantically. Use the Markov in-
equality to estimate the probability that Charlie at least 500 units away from
the origin.

[Solution]

Exercise 12.7. Let X be a random variable such that E
[
eX
]
= 5, and let

β > 0 be a number.
Find an upper bound estimate for P(X ≥ β). Your estimate should be

in the form:
P(X ≥ β) ≤ something.

[Solution]
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Exercise 12.8. Is Lemma 12.12 an interesting statement when α ≤ 0?
[Solution]

Exercise 12.9. Let X be a nonnegative random variable such that E [X]
exists, and let α be any number.

Suppose someone asks you to find an upper bound for P(X > α).
The Markov inequality gives you an upper bound for P(X ≥ α), not

P(X > α). Can you use the Markov inequality to get what you need?
[Solution]

Exercise 12.10 (Using E [f(X)]). Let X be a random variable. Suppose
that f is a nonnegative function, which is strictly increasing on the range of
X.

You are given that E [f(X)] exists, and E [f(X)] = c, for some number c.
Let β > 0 be a number. Find an upper bound estimate for P(X ≥ β), in

terms of β, f , and c.
[Solution]

12.8 Solutions for Chapter 12

Solution (Exercise 12.1).

(i) Think about information. Suppose someone tells you that X1 = 0. Do
you know the value of X3? Heck yes! X3 is zero! So P(X3 = 0 |X1 = 0) = 1.

In contrast to the case that X1 = 0, if someone tells you that X1 = 1,
then the value of X3 is just the value of X2. Since X1, X2 are independent,
there are still two possible values for X3 in this case, and indeed

P(X3 = 0 |X1 = 1) = P(X2 = 0 |X1 = 1) =
1

2
. (12.19)

Thus
P(X3 = 0 |X1 = 0) ̸= P(X3 = 0 |X1 ̸= 0). (12.20)
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So knowledge about X1 can definitely change our opinion about X3.
More formally, Exercise 5.10 tells us that {X1 = 0} , {X3 = 0} are not

independent events.
The definition of independence for random variables then tells us that

X1, X3 are not independent.

(ii) There is more than one way to write down a solution. Exercise 5.10
seemed to match our thinking in part (i) so we’ll go with that here.

Notice that the range of Y1 is the set {5,−5} and the range of Y3 is the
set {25,−25}.

If Y1 = 5, then Y3 = 5Y2. Hence

P(Y3 = 25 |Y1 = 5) = P(Y2 = 5 |Y1 = 5) =
1

2
.

Similarly,

P(Y3 = 25 |Y1 = −5) = P(Y2 = −5 |Y1 = −5) =
1

2
.

Since {Y3 = 25}c = {Y3 = −25}, Exercise 5.10 tells us that {Y1 = 5} , {Y3 = 25}
are independent.

Using Lemma 5.6, we also have that {Y1 = 5} , {Y3 = −25} are indepen-
dent, {Y1 = −5} , {Y3 = 25} are independent, and {Y1 = −5} , {Y3 = −25}
are independent.

Hence, by Lemma 12.3, Y1, Y3 are independent.

Solution (Exercise 12.2). Let x1, . . . , xk be the distinct numbers in the
range of X, and let y1, . . . , yℓ be the distinct numbers in the range of Y .

Then 5x1, . . . , 5xk are the distinct numbers in the range ofG, and 16y1, . . . , 16yℓ
are the distinct numbers in the range of H.

For any i, j,

{G = 5xi} = {X = xi} , and {H = 16yj} = {Y = yj} .

Since X, Y are assumed to be independent, {X = xi} , {Y = yj} are indepen-
dent events. That is, {G = 5xi} , {H = 16yj} are independent events. Since
this is true for every value 5xi of G and every value 15yj of H, by Lemma 12.3
G,H are independent random variables.

Solution (Exercise 12.3). This exercise is just checking that you noticed
Lemma 12.7.

By that lemma, X3, Y 8 are independent random variables. Then we can
use Theorem 12.8.
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Solution (Exercise 12.4). Since M is the maximum, to say that M ≤ 4
is the same as saying that Xi ≤ 4 holds for every i = 1, . . . , n. Thus

{M ≤ 4} = {X1 ≤ 4} ∩ . . . ∩ {Xn ≤ 4} .

Since the events {X1 ≤ 4} , . . . , {Xn ≤ 4} are independent,

P(M ≤ 4) = P(X1 ≤ 4) · · ·P(Xn ≤ 4) =
4

10
· · · 4

10
=

(
4

10

)n

.

Solution (Exercise 12.5). Since m is the minimum, to say that m > 4 is
the same as saying that Xi > 4 holds for every i = 1, . . . , n. Thus

{m > 4} = {X1 > 4} ∩ . . . ∩ {Xn > 4} .

Since the events {X1 > 4} , . . . , {Xn > 4} are independent,

P(M > 4) = P(X1 > 4) · · ·P(Xn > 4) =
6

10
· · · 6

10
=

(
6

10

)n

.

Solution (Exercise 12.6). Let Sn be the random variable defined by equa-
tion (12.14). Thus Sn is Charlie’s location after n steps.

Let n = 10000.
We would like to estimate P(|Sn| ≥ 500).
That is the same as P(S2

n ≥ 250000).
Using the Markov Inequality,

250000P(S2
n ≥ 250000) ≤ E

[
S2
n

]
= 10000.

Hence

P(|Sn| ≥ 500) ≤ 10000

250000
= 1/25.

(With more work, one can get a much sharper estimate. But this inequal-
ity is already interesting.)

Solution (Exercise 12.7). We are told that E
[
eX
]
= 5, so we know how

to apply the Markov Inequality to eX .
What does {X ≥ β} look like in terms of eX?
The exponential function is a strictly increasing function, isn’t it? So the

statement that X ≥ β is exactly equivalent to the statement that eX ≥ eβ.
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So {X ≥ β} =
{
eX ≥ eβ

}
. And, using the Markov Inequality (with Y

replaced by eX and α replaced by eβ),

eβP(eX ≥ eβ) ≤ E
[
eX
]
= 5.

Thus

P(X ≥ β) ≤ 5

eβ
.

That finishes the problem.

Solution (Exercise 12.8). Since P(Y ≥ α) ≥ 0, for α ≤ 0 we always have
αP(Y ≥ α) ≤ 0.

Since Y is assumed to be nonnegative, E [Y ] ≥ 0.
So the statement that αP(Y ≥ α) ≤ E [Y ] is rather obvious.

Solution (Exercise 12.9). If X > α then certainly X ≥ α. In other words,
the statement “X(ω) > α” is a stronger statement than “X(ω) ≥ α”. Hence
{X > α} ⊂ {X ≥ α}.

So we always have P(X > α) ≤ P(X ≥ α). And so the upper bound
estimate for P(X ≥ α) is already an upper bound estimate for P(X > α).

Solution (Exercise 12.10). Applying the Markov inequality to f(X), we
have

αP(f(X) ≥ α) ≤ E [f(X)] = c. (12.21)

Since f is strictly increasing on the range of X, to say that X(ω) ≥ β is
exactly equivalent to saying that f(X(ω)) ≥ f(β). Hence

P(X ≥ β) = P( f(X) ≥ f(β) ).

Let α = f(β). Then equation (12.21) says that

f(β)P(X ≥ β) ≤ c.

Whenever f(β) > 0, we can write this as

P(X ≥ β) ≤ 1

f(β)
c.
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Waiting times

13.1 Waiting for the first head, with a dead-

line

We have mainly worked with mathematical random variables that have finite
range. Now we are going to broaden our view. The present section may
suggest why this is desirable.

Consider tossing a coin n times. Let p be the success probability for the
coin, where as usual by success for a toss we mean that the toss results in a
head. Let q = 1− p.

Let’s study the random variable Tn, which we define as the time of the
first success in the sequence of n tosses, if success ever occurs. Otherwise let
Tn = n.

We might imagine that n is our deadline, and we shut down the experi-
ment at time n if there has been no success by that time.

Our first goal is to write down the distribution of Tn.
Let Ai be the event that toss i gives success. Since the results of the

tosses are assumed to be physically independent, the events A1, . . . , An are
mathematically independent in the sense of Definition 7.7.

By assumption, P (Ai) = p. For any k = 1, . . . , n− 1, Tn > k means that
no success occurred on tosses 1 through k. Thus

{Tn > k} = Ac
1 ∩ . . . ∩ Ac

k, (13.1)

so
P (Tn > k) = qk. (13.2)
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Since q0 = 1, the same equation holds for k = 0. (As usual, interpret 00 as 1
to include the case p = 1 and k = 0.)

That gives us the value of P (Tn > k). If you want P (Tn = k), note that
for 1 ≤ k < n,

{Tn = k} = {Tn > k − 1} − {Tn > k} .
Thus for 1 ≤ k < n,

P (Tn = k) = qk−1 − qk = qk−1p. (13.3)

Please check that we can obtain the same probability by noting that
{Tn = k} = Ac

1 ∩ . . . ∩ Ac
k−1 ∩ Ak, and using independence!

We have found P(Tn = k) for k < n. To get P(Tn = n), we go back to
the description of the experiment.

Rember that we shut down the experiment by time n, whether or not
success has been achieved.

Thus {Tn = n} = {Tn > n− 1}, so

P (Tn = n) = qn−1. (13.4)

Combining these facts gives:

Lemma 13.1 (Distribution of Tn).

P (Tn = k) = qk−1p for 1 ≤ k < n; P (Tn = n) = qn−1. (13.5)

P(T = k) = 0 otherwise.

Exercise 13.1. As a check, please verify in some way that the values we
have found in equation (13.5) for P (Tn = 1) , . . . ,P (Tn = n) actually add
up to one.

[Solution]

Let’s find E [Tn].
Using Definition 10.2,

E [Tn] =
n−1∑
k=1

kqk−1p+ nqn−1. (13.6)
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If p = 0, the formula gives E [Tn] = n. We can check this value directly
from the definition of the experiment. When p = 0 the probability that a
head ever occurs is zero. By the definition of the experiment, if a head never
occurs then Tn = n. Thus when p = 0, P(Tn = n) = 1. Hence E [Tn] = n is
correct.

From now on assume that p > 0.
We need two tricks to evaluate the sum in the formula for E [Tn].
First, recall how we find the sum of a finite geometric series. Let

sn = 1 + q + q2 + . . . + qn, where for a moment we allow q to stand for any
number. The first trick is to multiply by q.

This gives q sn = q+ q2 + . . .+ qn+1 = sn − 1+ qn+1. Solving for sn when
q ̸= 1 gives the familiar formula for the sum of a finite geometric series:

sn = 1 + q + q2 + . . .+ qn =
1− qn+1

1− q
. (13.7)

The second trick is to differentiate both sides of equation (13.7) with respect
to q. This gives

n∑
k=1

kqk−1 =
1− qn+1

(1− q)2
− (n+ 1)qn

1− q
=

1− qn+1

p2
− (n+ 1)qn

p
. (13.8)

Replacing n by n−1 in equation (13.8), and substituting in equation (13.6),

E [Tn] =
1− qn

p
− nqn−1 + nqn−1,

so

E [Tn] =
1− qn

p
. (13.9)

Exercise 13.2. Derive equation (13.9) in a different way, without using the
differentiation trick.

First find E [Tn+1]− E [Tn].
[Solution]

Since q < 1, limn→∞ qn = 0. Hence for large n,

E [Tn] ≈ 1/p, (13.10)
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which is a tidier expression for E [Tn], although now it is only an approxima-
tion. We note that 1/p grows larger as p becomes smaller, which is completely
reasonable, since it is harder to obtain a head when p is smaller, and thus it
should take longer.

Equation (13.10) approximates one number by another. Can we think of
this approximation as arising from a new model?

13.2 Time of first success in ∞ trials

The simplicity of equation (13.10) suggests that we might gain a bit of ele-
gance by replacing a probability model with large n with a probability model
in which n = ∞, that is, a model in which the coin tossing goes on forever.
(By accepting a more complex concept we obtain a simpler calculation. Con-
ceptual thinking is our human strength, so this seems like a good strategy in
general.)

We will not try to use a sample space to build a rigorous mathematical
model for infinitely many coin tosses. This is possible, and is routine in ad-
vanced courses, but it requires significant technicalities. Here we will simply
use the rules of probability theory to calculate physically relevant numbers.

We are studying how long it takes to obtain the first head. For that
purpose, thinking about an infinite number of tosses seems like a reasonable
idealization. After all, in the physical picture there is not a natural limit on
the number of tosses. And the time of first success does not depend at all on
what happens in coin tosses after the first success.

Let T denote the time of the first head, in an infinite sequence of coin
tosses, if a head is ever obtained. The mathematical random variable T is
often simply referred to as the waiting time for the first success.

Of course, if a success is never obtained, we need a way to record that
fact. So:

By definition, if success is never obtained, T = ∞. (13.11)

Notice that if p = 0 we will never obtain a head, so the probability that
T = ∞ is one, and there is really nothing else to say about this situation.
From now on assume p > 0. Let q = 1− p.

We showed thatP (Tn > k) = qk, for k = 0, . . . , n−1. The same argument
shows that here we have

P(T > k) = qk (13.12)
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for every k = 0, 1, . . ..
And P(T = k) = P(T > k − 1)−P(T > k) = qk−1 − qk. Thus

Lemma 13.2 (Distribution of T ).

P (T = k) = qk−1p for 1 ≤ k <∞. (13.13)

P(T = k) = 0 otherwise.

Notice that {T = ∞} ⊂ {T > k} for every k. Thus P(T = ∞) ≤ qk for
every k. Since we are restricting attention now to the case that q < 1, qk → 0
as k → ∞. So

P(T = ∞) = 0 when p > 0. (13.14)

Definition 13.3 (The geometric distribution). The distribution of T
given by equation (13.13) is usually called the geometric distribution, with
parameter p.

The waiting time T has no direct physical meaning, since no real ex-
periment goes on forever. A mathematical random variable with a direct
physical interpretation is Tn, and T is one step further away from the phys-
ical world. However, part of the usefulness of the mathematical model for
infinitely many tosses is that we can almost picture it. And so we can still
be guided by reality as we use it.

We notice that P(T > k) → 0 rapidly (“exponentially fast” or “geomet-
rically fast”) as k → ∞. This suggests that calculations using T should give
us good approximations to the results of calculations with Tn.

Exercise 13.3 (The memoryless property of the geometric distribu-
tion). Someone is tossing a coin repeatedly, and waiting for the first success.
The success probability is p, where 0 < p < 1. Let T be the number of tosses
needed to obtain the first success. Let P be the distribution based on the
knowledge that the tosser has, at the time when the sequence of tosses starts.
Then P(T = n) is given by the geometric distribution with parameter p.
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Now consider the viewpoint of a spectator who comes upon the tosser
after n tosses have been made. The spectator learns that up to this time no
success has been obtained.

The spectator decides to wait until the first success. Thus the spectator
will wait for T −n additional tosses. Based on the knowledge that the tosser
(and the spectator) have at that moment, the probability that T − n = m is
given by

P (T − n = m |T > n) = P(T > n+m |T > n).

Calculate this conditional distribution for T − n, and show that

P(T > n+m |T > n) = P(T > m). (13.15)

This is called the memoryless property of the geometric distribution. It shows
that knowing how long you have already waited for success is not helpful in
estimating the additional time that you will have to wait.

[Solution]

What about the expectation of T? We have not defined expected values
for random variables which do not have finite range. But we can easily guess
the right definition. Simply replace the usual sum by an infinite series. Then

E [T ] =
∞∑
k=0

kP(T = k). (13.16)

The term with k = 0 contributes nothing, of course. So

E [T ] =
∞∑
k=1

kP(T = k) =
∞∑
k=1

kqk−1p. (13.17)

By definition,
∞∑
k=1

k qk−1p = lim
n→∞

n∑
k=1

kqk−1p.

Using equation (13.8)

∞∑
k=1

k qk−1p = lim
n→∞

(
1− qn+1

p
− (n+ 1)qn

)
.
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We have assumed in this discussion that p > 0, so q < 1. Then qn → 0 more
rapidly than n → ∞, so we have both (n + 1)qn → 0 and qn+1 → 0. (One
can use a calculus trick based on the Ratio Test to prove these statements.)
Thus

lim
n→∞

(
1− qn+1

p
− (n+ 1)qn

)
=

1

p
.

We have shown:

Lemma 13.4 (Expectation of a waiting time). Let T have the geometric
distribution, given in equation (13.13), with p > 0. Then

E [T ] =
1

p
. (13.18)

Letting n→ ∞ in equation (13.9) gives

lim
n→∞

E [Tn] = E [T ] . (13.19)

This limiting agreement increases our confidence that T is a useful approxi-
mation to Tn.

Remark 13.5 (The geometric series). The sum of a geometric series
is a standard calculus fact:

∞∑
k=0

xk =
1

1− x
, for all x ∈ (−1, 1). (13.20)

Remember that x0 means 1 in this series, even for x = 0. In other words,
the series is 1 + x+ x2 + x3 + . . ..

To recall why this equation (13.20) holds, remember first that the Ratio
Test shows the series in equation (13.20) converges, for |x| < 1. Let s be the
sum of this series. The same manipulation used in equation (13.7) applies
here:

xs = s− 1, and hence s =
1

1− x
.

We’ll use equation (13.5) in the next examples.
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Example 13.6. Here’s an alternative derivation of equation (13.18). First,
note that

E [T ] =
∞∑
k=1

kqk−1p = p
(
1 + 2q + 3q2 + . . .

)
. (13.21)

Then:

1 + 2q + 3q2 + . . . = 1 + q + q2 + q3 + . . .

+ 0 + q + q2 + q3 + . . .

+ 0 + 0 + q2 + q3 + . . .

+ 0 + 0 + 0 + q3 + . . .

...

. (13.22)

Adding the columns in equation (13.22) shows why the equation holds. This
is not a rigorous argument, but it is convincing.

Hence

1 + 2q + 3q2 + . . . = 1
1−q

+ q
1−q

+ q2

1−q

+ q3

1−q

...

.

Thus

1 + 2q + 3q2 + . . . =
(
1 + q + q2 + q3 + . . .

)( 1

1− q

)
,

=

(
1

1− q

)(
1

1− q

)
By equation (13.21),

E [T ] = p

(
1

1− q

)2

= p
1

p2
=

1

p
.
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Exercise 13.4 (One more derivation). Suppose you remember the for-
mula in equation (13.20) from your good old calculus days. You also remem-
ber from calculus that a convergent power series in x can be differentiated
term by term inside its interval of convergence. The same derivation trick
that gave us equation (13.7) can be applied directly, to show:

∞∑
k=1

kxk−1 =
1

(1− x)2
(13.23)

for x ∈ (−1, 1).
Check this, please. Then use equation (13.23) to obtain equation (13.18).
[Solution]

13.3 Solutions for Chapter 13

Solution (Exercise 13.1). Let vnk be the value calculated in equation (13.5)
for P(Tn = k).

Then vnk = qk−1p for k = 1, . . . , n− 1, vnn = qn−1 and vnk = 0 for all other
k.

In this problem we are asked to show that

vn1 + . . .+ vnn = 1. (13.24)

Looking at the formula for vnk , or perhaps looking back at equation (13.3),
we notice that for k = 1, . . . , n− 1 we have

vnk = qk−1 − qk. (13.25)

So
vn1 + . . .+ vnn−1 = (1− q) + (q − q2) + . . .+ (qn−2 − qn−1).

This is a good old telescoping sum. Cancelling out adjacent positive and
negative terms we see that

vn1 + . . .+ vnn−1 = (1− qn−1).

Since vnn = qn−1, it follows that

vn1 + . . .+ vnn = 1.
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Solution (Exercise 13.2). From the definitions, T1 = 1.

Notice that by the definition of Tn, if success occurs by time n or earlier,
then Tn+1 = Tn.

If success does not occur by time n, then necessarily Tn+1 = n + 1 and
Tn = n.

Thus Tn+1 − Tn is either 1 or 0, and P (Tn+1 − Tn = 1) is the probability
of no success by time n, i.e. qn.

Hence

E [Tn+1]− E [Tn] = E [Tn+1 − Tn] = qn. (13.26)

Since

E [Tn]−E [T1] = (E [T2]− E [T1])+(E [T3]− E [T2])+. . .+(E [Tn]− E [Tn−1]) ,

we have

E [Tn]− E [T1] = q + q2 + . . .+ qn−1.

Since obviously E [T1] = 1,

E [Tn] = 1 + q + . . .+ qn−1.

By the formula for the sum of a finite geometric series, this agrees with
equation (13.9).

One could also use induction and equation (13.26) to verify equation (13.9),
of course.

Solution (Exercise 13.3). By the conditional probability formula and
equation (13.12),

P(T > n+m |T > n) =
P({T > n+m} ∩ {T > n})

P(T > n)

=
P(T > n+m)

P(T > n)
=
qn+m

qn
= qm.

The second equality holds because {T > n+m} ⊂ {T > n}, and so

{T > n+m} ∩ {T > n} = {T > n+m} .
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Solution (Exercise 13.4).

d

dx

∞∑
k=0

xk =
∞∑
k=0

d

dx
xk =

∞∑
k=1

d

dx
xk. (13.27)

We dropped the k = 0 term here because x0 is constant.
Equation (13.27) shows that

d

dx

∞∑
k=0

xk =
∞∑
k=1

kxk−1. (13.28)

By equation (13.20),
∞∑
k=0

xk =
1

1− x
,

so
d

dx

∞∑
k=0

xk =
1

(1− x)2
. (13.29)

Comparing equations (13.28) and (13.29) proves equation (13.23).
Now let’s find E [T ]. Let q = 1 − p. By equation (13.13), P (T = k) =

qk−1p, for 1 ≤ k <∞, and P(T = k) = 0 otherwise.
Thus

E [T ] =
∞∑
k=1

kP (T = k) =
∞∑
k=1

kqk−1p = p
∞∑
k=1

kqk−1 = p
1

(1− q)2
=

p

p2
=

1

p
.
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Chapter 14

Random variables with
countable range

14.1 Countable range

The waiting time T defined in Section 13.2 of Chapter 13 is a good example
of a random variable which does not have finite range. Now we should discuss
the general properties of random variables which are somewhat similar to T .

Readers can probably guess many of the details, but please give some
time to this. Developing a feeling for the theoretical concepts will pay off in
your later work in probability.

14.2 Countability

Definition 14.1 (Countable sets). A set is said to be “countable” if its
elements can be listed in a finite or infinite sequence. A set which is not
countable is said to be uncountable.

It should be emphasized that, by definition, a finite set is a countable set.

Remark 14.2 (Sizes of infinity). After reading Definition 14.1, it is nat-
ural to wonder if there even is such a thing as an uncountable set, since
an infinite sequence seems to be the natural way to describe an infinite set!
However, it was proved by Georg Cantor (1874) that the real line is uncount-
able, in the sense of Definition 14.1. In other words, given any sequence of
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real numbers, there must always be real numbers which are left out, and
do not appear in the sequence ([7]). Cantor’s remarkable discovery showed
that, from the standpoint of mathematics, there are indeed different sizes
of infinity. Of course, out in the real world, life continued much as usual,
despite this disturbing news.

Recall the definition of a bounded function (Definition 10.18). The wait-
ing time T defined in Section 13.2 is definitely not a bounded function. How-
ever, we should be aware that a random variable which has infinite range can
still be bounded. The random variable 1/T is an example.

14.3 Countable additivity

The theoretical properties of mathematical probability theory are simpler if
we add two technical assumptions about mathematical probability models.
Fortunately, these technical assumptions hold for any model that is com-
monly used.

Probability Assumption 14.1 (Union of an infinite sequence of ab-
stract events). For any probability model that we use, whenever A1, A2, . . .
is a sequence of abstract events, the union of these sets is also an abstract
event.

When we consider probabilities for an infinite sequence of events, one
more assumption will be made:

Probability Assumption 14.2 (Additivity for an infinite sequence
of abstract events). For any probability model that we use, whenever
A1, A2, . . . is a sequence of disjoint events with union A,

P(A) =
∞∑
j=1

P (Aj) . (14.1)
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The property described in equation (14.1) is usually referred to as count-
able additivity.

From now on, Assumption 14.1 and Assumption 14.2 will hold, even if
we don’t mention them.

An infinite sequence of abstract events has no direct physical meaning.
Similarly the action of summing an infinite series of probabilities has no direct
physical meaning. Thus Assumption 14.1 and Assumption 14.2 do not seem
to contribute any physical insight to our probability models, despite their
technical usefulness. So it is interesting that in practice, for any experiment
we can always choose a valid probability model such that Assumptions 14.1
and 14.2 hold.

Where are Assumption 14.1 and Assumption 14.2 going to be used?
Sometimes we add up an infinite sequence of probabilities, in the process
of calculating a physically meaningful probability value. But our assump-
tions are also used behind the scenes, to guarantee that abstract events,
probabilities, and expectations exist and have convenient properties.

Since we now assume countable additivity, we could generalize some ear-
lier statements. Typically the generalization amounts to simply replacing a
finite sum by the sum of an infinite series. We usually don’t bother to state
generalizations of this sort, but simply use them when and if they are needed.

Incidentally, countable additivity often holds in mathematical models for
quantities other than probability, for example for quantities that represent
physical properties such as length, area, weight and displacement. Here’s an
example.

Example 14.3 (Chopping up the unit interval). Let Ai = (1/2i+1, 1/2i]
for i = 0, 1, . . ..

It is easy to see that the sets Ai are disjoint, that the union of all the sets
Ai is exactly equal to (0, 1], and that the length of Ai is 1/2

i+1.
Then

∞∑
i=0

length(Ai) =
∞∑
i=0

(
1

2

)i+1

=
1

2

∞∑
i=0

(
1

2

)i

=
1

2

1

1− 1
2

= 1.

Thus the sum of the lengths of the intervals Ai is equal to the length of
the union of these intervals, verifying a particular case of countable additivity
for length.
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Example 14.4 (More general chopping). Let b0 < b be real numbers,
and let bk < b be an increasing sequence of real numbers such that bk → b
(one often writes bk ↗ b to indicate an increasing limit).

You can easily convince yourself that the intervals [bi, bi+1) are disjoint,
and that

[b0, b) =
∞⋃
i=0

[bi, bi+1).

Clearly
length([bi, bi+1)) = bi+1 − bi.

Notice that

n∑
i=0

length([bi, bi+1)

=
n∑

i=0

(bi+1 − bi) = (b1 − b0) + (b2 − b1) + . . .+ (bn − bn−1) = bn − b0.

In other words, the sum telescopes.
Then

∞∑
i=0

length([bi, bi+1)) = lim
n→∞

n∑
i=0

length([bi, bi+1))

= lim
n→∞

(bn − b0) = b− b0 = length([b0, b)).

Thus the sum of the lengths of the intervals [bi, bi+1) is equal to the length
of the union of these intervals, verifying another particular case of countable
additivity for length.

Exercise 14.1. We have not bothered to describe a sample space on which
the mathematical waiting time T in Chapter 13 is defined. But suppose that
T and the random variables Tn of Chapter 13 are all defined on the same
sample space.

You can define Tn for an experiment with an infinite sequence of tosses.
Just agree that Tn = n if there is no head by time n − 1. The waiting time
T is also defined for the infinite sequence of tosses, of course. Notice that
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when Tn = n, either the first head occurs at a time which is ≥ n, or else the
first head never occurs. Thus:

{Tn = n} = {T = n} ∪ {T = n+ 1} ∪ . . . ∪ {T = ∞} . (14.2)

Using countable additivity, we must be able to calculate P (Tn = n) by find-
ing the sum of the series of probabilities of events on the right side of equation
(14.2).

Without assuming countable additivity, perform the calculation of the
sum of the series of probabilities of events on the right side of equation
(14.2). Assume p > 0 for simplicity and use equation (13.13) to get the
probabilities you need.

Check that the result agrees with equation (13.1).
[Solution]

Exercise 14.2. Let T be the mathematical waiting time in Chapter 13.
Find the probability that T is even, assuming countable additivity and

summing a series.
[Solution]

Example 14.5 (Even and odd). In the situation of Exercise 14.2, Lemma 13.2
tells us that

P (T = k) = qk−1p for 1 ≤ k <∞, (14.3)

and P(T = k) = 0 otherwise. You can use equation (14.5) to solve Exer-
cise 14.2. But let’s try to find the probability that T is even, without using
equation (14.3) explicitly.

We have

P(T = k + 1) = P({T > k} ∩ {success on toss k + 1})
= P(T > k)P(success on toss k + 1) = P(T > k)p,

(14.4)

using independence. Similarly

P(T > k + 1) = P({T > k} ∩ {failure on toss k + 1})
= P(T > k)P(failure on toss k + 1) = P(T > k)q,

(14.5)
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using independence. Thus

P(T = k + 2) = pP(T > k + 1) = pqP(T > k) = qP(T = k + 1).

By countable additivity,

P(T even) = P(T = 2) +P(T = 4) + . . . ,

while

P(T odd ) = P(T = 1) +P(T = 3) +P(T = 5) + . . .

= p+ qP(T = 2) + qP(T = 4) + . . .

= p+ qP(T even).

Since P(T odd) +P(T even) = 1, we have p+ (1 + q)P(T even) = 1, hence

P(T even) =
q

1 + q
. (14.6)

14.4 Calculus review: summing an absolutely

convergent series

We often have to consider the sum of an infinite series of nonnegative num-
bers, or, more generally, the sum of a series which converges absolutely. This
will be the case when adding probability values, but can also happen in other
situations. We can use some facts from calculus.

Series Property 14.1 (Convergence test). If the terms in the series are
nonnegative, and partial sums are bounded, then the series converges.

Series Property 14.2 (Rearrangement property). If the series con-
verges absolutely, then the terms in the series can be rearranged in any
order without changing the sum of the infinite series.

The Properties 14.1 and 14.2 imply another useful calculus fact:
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Series Property 14.3 (Exchanging the order of summmation). Let
real numbers aij be given for all positive integers i and j. Suppose that

∞∑
i=1

∞∑
j=1

|aij| <∞. (14.7)

Then
∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij, (14.8)

meaning that both sides of the equation are convergent, and they are equal.

We won’t bother to write out the proof of equation (14.8), but exchanging
the order of summation is an important trick.

14.5 Distributions for random variables with

countable range

We stated the mathematical definition of the distribution of a general random
variable X in Definition 9.7. When the random variable X has a finite range,
equation (9.5) of Section 9.2 gives a simple formula for calculating P(X ∈ S),
using the probability mass function for X. We can use a similar approach in
when X has countable range.

Let x1, x2, . . . be a sequence of distinct values, which includes all the
numbers in the range of X that are members of W . If the value of X is a
member of W , then that value must be equal to one of the numbers in the
sequence. Thus

{X ∈ W} = {X = x1} ∪ {X = x2} ∪ . . . . (14.9)

Since the values x1, x2, . . . are distinct, the sets {X = x1} , {X = x2} , . . . are
disjoint. By the countable additivity of probability we have

P(X ∈ W ) = P(X = x1) +P(X = x2) + . . . . (14.10)

This has the same form as equation (9.5) but now the expression on the right
can be either a finite sum or an infinite series.
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Using the probability mass function q for X (defined in Definition 9.8),
equation (14.10) can be rewritten as

P(X ∈ W ) = q(x1) + q(x2) + . . . . (14.11)

Thus the probability mass function forX characterizes the whole distribution
of X.

14.6 Expected values: countable range case

Definition 14.6 (Expected value with countable range). Let X be a
random variable whose range can be listed in a finite or infinite sequence of
distinct values x1, x2, . . .. When the sequence is finite, E [X] is defined in
Definition 10.2. When the sequence is infinite, the expected value E [X] is
defined by

E [X] =
∞∑
j=1

xjP (X = xj) , (14.12)

but only in the case that the series converges absolutely, i.e. when

∞∑
j=1

|xj|P (X = xj) <∞. (14.13)

We see from Definition 14.6 that the expected value of a random variable
is determined by its distribution.

Notice that Definition 14.6 agrees with Definition 10.2. That’s what we
want. We are interested in extending the definition of expected value to new
situations, but we don’t want to change the definition that we’ve already
given earlier.

In Definition 14.6, the expected value of X exists if the series in equa-
tion (14.12) converges absolutely, and only in that case.

Remark 14.7 (The meaning of existence). To clarify our terminology,
let us agree that if we say that E [X] exists, we mean that E [X] exists as
real number, in the sense of Definition 14.6. Sometimes we might say “ E [X]
exists as a real number”, just to avoid any possible misunderstanding.

308



14.7. Key properties

For a nonnegative random variable X, if E [X] does not exist as a real
number people sometimes say that E [X] = ∞. That notation is helpful in
showing what is going on, but, despite that notation, in this book we will
not say that E [X] exists in that case.

In calculus, the comparison principle for infinite series tells us that a
series which is dominated by a convergent series must itself be convergent. A
similar comparison principle holds for integrals of unbounded functions, and
for expected values of unbounded random variables.

Fact 14.8 (A comparison principle for unbounded random vari-
ables). E [X] exists if and only if E [ |X| ] exists. Furthermore, if E [X]
exists and |Y | ≤ |X| everywhere then E [Y ] exists also.

Fact 14.8 holds for general random variables, not just random variables
with countable range. In the case of an unbounded random variable with
countable range, we have defined expected value in terms of an infinite series,
so Fact 14.8 is an immediate consequence of the comparison principle for
infinite series. For general random variables, mathematical expected value is
defined in a less direct way, but the comparison principle holds in the general
case also.

14.7 Key properties

Let’s collect some facts that we know about expectations.

Theorem 14.9 (Four key properties of expected values). Four key
properties of expected value are valid for all random variables:

Linearity: If E [X] and E [Y ] exist then E [X + Y ] exists,

E [X + Y ] = E [X] + E [Y ] . (14.14)

This is the additive property of expectation.
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Also, if E [X] exists then for any number c, E [cX] exists, and

E [cX] = cE [X] . (14.15)

This is the scaling property of expectation.

Monotonicity: If E [X] exists and E [Y ] exists, and if X ≤ Y holds every-
where, then

E [X] ≤ E [Y ] . (14.16)

Expectation of an indicator This is equation (11.4), which says:

E [1A] = P(A).

Comparison principle This is Fact 14.8, which says:

E [X] exists if and only if E [ |X| ] exists. Furthermore, if E [X] exists
and |Y | ≤ |X| everywhere then E [Y ] exists also.

It is important to keep in mind that these properties hold for all random
variables, not just countable range random variables (see Theorem 15.2).
The comparison principle is only needed for unbounded random variables.

Exercise 14.3. Consider a mathematical random variable X such that all
the values of X are positive integers, and such that for some c > 0, P(X =
n) = c/n2 for n = 1, 2, . . ..

(i) Does such a mathematical random variable actually exist?

(ii) Assuming that X exists, does E [X] exist?

[Solution]
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Exercise 14.4. Let bj, j = 0, 1, 2, . . ., be strictly increasing numbers in [0, 1),
with b0 = 0. Suppose that bj ↗ 1 as j → ∞.

It is clear that the intervals [bj, bj+1) are disjoint and have union equal to
[0, 1). You may use this fact in what follows. (Please sketch a picture if this
fact is not clear!)

(i) Consider a probability model with sample space [0, 1] and the uniform
probability distribution. LetX(t) be the length of the interval [bj, bj+1) which
contains t. Write down a formula for E [X] as an infinite series of numbers.

(ii) Suppose that bj = 1− 1
2j
, for j = 0, 1, 2, . . ..

Calculate the exact numerical value of E [X] for the random variable in
part (i).

[Solution]

Exercise 14.5. Consider the probability model described in part (i) of Ex-
ercise 14.4. Let Y be the random variable defined by

Y (t) =
sin (bj+1)− sin (bj)

bj+1 − bj

for every t ∈ [bj, bj+1). Calculate E [Y ].
[Solution]

One of the most useful theoretical facts in Chapter 10 was Theorem 10.7.
This theorem extends to random variables with countable range, with little
change.

Theorem 14.10 (Expectation by cases). Let D1, D2, . . . be a sequence
of disjoint events in some model, whose union is the whole sample space.

Let v1, v2, . . . be numbers, and let X be a random variable such that
X = vi at every point of Di.

Then

E [X] =
∞∑
i=1

viP(Di), (14.17)
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in the sense that E [X] exists if and only the series on the right converges
absolutely, and in this case equality holds.

The proof is similar to the proof of Theorem 10.7, replacing finite sums
with sums of infinite series. Applying Theorem 14.10 gives the general for-
mula for the expectation of a function of a random variable:

Theorem 14.11 (Expectation of a function of a countable-range
random variable). Let Z be a countable-range random variable on a sample
space Ω. We do not assume that Z is real-valued. The values of Z can be
anything. Let the distinct values in the range of Z be v1, v2, . . ..

Let φ be any real-valued function whose domain includes v1, v2, . . .. Then

E [φ(Z)] =
∞∑
i=1

φ(vi)P(Di), (14.18)

in the sense that E [φ(Z)] exists if and only the series on the right converges
absolutely, and in this case equality holds.

14.8 Calculating expectation using the tail of

the distribution

Definition 14.12 (The tail of a distribution). For any real-valued ran-
dom variable X, probabilities of the form P(X > t) are sometimes called tail
probabilities, particularly when one is studying the behavior of P(X > t) as
t→ ∞. As a function of t, P(X > t) referred to as the tail of the distribution.
(Similar terminology applies to P(X < −t).)

If we know the tail of the distribution, then we can calculate everything
else about the distribution, with a little work. In particular, there is a nice
recipe for calculating expected values of nonnegative random variables. The
next lemma gives the most common case.
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14.8. Calculating expectation using the tail of the distribution

Lemma 14.13 (A tail expectation formula). Let X be a nonnnegative
random variable, and let a > 0 be such that the range of X is contained in
the set of numbers na, n = 0, 1, . . .. Then

E [X] = a
∞∑
k=1

P(X ≥ ka) (14.19)

Proof.

a
∞∑
k=1

P(X ≥ ka)

= a
∞∑
k=1

(P(X = ka) +P(X = (k + 1)a) +P(X = (k + 2)a) + . . .)

= a
∞∑
k=1

∞∑
ℓ≥k

P(X = ℓa) = a
∞∑
ℓ=1

P(X = ℓa)
ℓ∑

k=1

1

=
∞∑
ℓ=0

ℓaP(X = ℓa) = E [X] .

Exercise 14.6. Use equation (14.19) to calculate E [T ], where T is the wait-
ing time defined in section 13.2.

Note that this is the same calculation used in Example 13.6.
[Solution]

We have not yet defined expected values for general random variables,
but expectation can be defined in general. Lemma 14.13 is a special case of
the following general theorem, which holds for every random variable.

Theorem 14.14 (Expectation using the tail integral formula). Let X
be a nonnegative random variable. Then

E [X] =

∫ ∞

0

P(X > t) dt. (14.20)
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Equation (14.20) is completely general, in the sense that if either side of
this equation exists then both sides exist and are equal.

Exercise 14.7. Suppose that X satisfies the assumptions of Lemma 14.13.
Show that equation (14.20) implies equation (14.19).
[Solution]

14.9 Solutions for Chapter 14

Solution (Exercise 14.1). Since p > 0, we know that P(T = ∞) = 0.
So we want to show by calculation that

P(Tn = n) =
∞∑
k=n

P(T = k).

Using equation (13.13) and equation (13.5), we want to show that:

qn−1 =
∞∑
k=n

qk−1p.

Let j = k − n. As k runs from n to ∞, j runs from 0 to ∞. Thus

∞∑
k=n

qn−1p = pqn−1

∞∑
j=0

qj = pqn−1 1

1− q
= pqn−11

p
= qn−1,

as claimed.

Solution (Exercise 14.2).

{T even} = {T = 2} ∪ {T = 4} ∪ {T = 6} ∪ . . . .

Using countable additivity,

P(T even) = P(T = 2)+P(T = 4)+P(T = 6)+. . . =
∞∑
ℓ=1

P(T = 2ℓ) =
∞∑
ℓ=1

q2ℓ−1p

= p

∞∑
j=0

q2j+1 = pq
∞∑
j=0

(q2)j =
pq

1− q2
=

pq

(1− q)(1 + q)
=

q

1 + q
.
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Solution (Exercise 14.3).

(i) A mathematical random variable has to be defined on a sample space.
So let’s try Ω = {1, 2, . . .}, and define X(n) = n. Then at least this X will
have positive integer values.

We are supposed to have

P(X = n) =
c

n2

for some constant c.
With our definition of X, P(X = n) = P({n}). So we want to have

P({n}) = c

n2
.

This definition will give us a genuine distribution provided that

∞∑
n=1

P({n}) = 1,

i.e.
∞∑
n=1

c

n2
= 1.

So finally we see the essential requirement: is it true that

∞∑
n=1

1

n2
<∞?

Well, yes, it is true, by the Integral Test from calculus. So now we just define

c =
1∑∞

n=1
1
n2

,

and we have a genuine distribution, such that X does have the stated prop-
erties.

(ii) From our definitions, if E [X] exists then

E [X] =
∞∑
n=1

nP(X = n) =
∞∑
n=1

c

n
.

But it is a well-known calculus fact is that
∑∞

n=1
1
n
does not converge. So

E [X] does not exist.
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Solution (Exercise 14.4).

(i) By definition,
{X = bj+1 − bj} = [bj, bj+1).

Thus
P(X = bj+1 − bj) = bj+1 − bj.

Every point t in the sample space is a member of exactly one of the sets
[bj, bj+1). Hence the range of X consists of the points bj+1−bj. By definition,

E [X] =
∞∑
j=0

(bj+1 − bj)P(X = bj+1 − bj) =
∞∑
j=0

(bj+1 − bj)
2.

(ii) In this case,

E [X] =
∞∑
j=0

(
1

2j
− 1

2j+1

)2

=
∑
j=0

(
1

2j+1

)2

=
∞∑
j=0

(
1

4

)j+1

=
1

4

∞∑
j=0

(
1

4

)j

=
1

4

1

1− 1
4

=
1

3
.

Solution (Exercise 14.5). Every point t in the sample space is a member
of exactly one of the sets [bj, bj+1). Hence the range of Y consists of the
points

sin (bj+1)− sin (bj)

bj+1 − bj
.

By definition,

E [Y ] =
∞∑
j=0

(
sin (bj+1)− sin (bj)

bj+1 − bj

)
P

(
Y =

sin (bj+1)− sin (bj)

bj+1 − bj

)

=
∞∑
j=0

(
sin (bj+1)− sin (bj)

bj+1 − bj

)
(bj+1 − bj) =

∞∑
j=0

(sin (bj+1)− sin (bj)) .

The final series telescopes:

n∑
j=0

(sin (bj+1)− sin (bj))

= (sin (b1)− sin (b0)) + (sin (b2)− sin (b1)) + . . .+ (sin (bn)− sin (bn−1))

= sin (bn)− sin (b0) = sin (bn) .
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Letting n→ ∞, we see that

∞∑
j=0

(sin (bj+1)− sin (bj)) = sin 1,

so E [Y ] = sin 1.

Solution (Exercise 14.6). By equation (13.12),

P(T ≥ k) = P(T > (k − 1))qk−1.

By equation (14.19),

E [T ] =
∞∑
k=1

qk−1 =
∞∑
n=0

= qn =
1

1− q
=

1

p
,

in agreement with equation (13.18).

Solution (Exercise 14.7). By assumption, the range of X is contained in
the set of numbers na, n = 0, 1, . . .. Thus for na < t ≤ (n+ 1)a, {X > t} =
{X > na}.

Hence for na < t ≤ (n+ 1)a, P(X > t) = P(X > na). Thus∫ (n+1)a

na

P(X > t) dt = aP(X > na). (14.21)

By equation (14.20),

E [X] =

∫ ∞

0

P(X > t) dt =
∞∑
n=0

∫ (n+1)a

na

P(X > t) dt =
∞∑
n=0

aP(X > na).

Let k = n+1 in the summation. Then k runs from 1 to ∞, and {X > na} =
{X ≥ ka}. This gives equation (14.19).
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Chapter 15

Exponential waiting times

An exponential waiting time is the continuous-time analog of the coin-tossing
waiting time that was introduced in Section 13.2. The range of the expo-
nential waiting time is not a countable set. On the contary, it is the whole
interval [0,∞).

15.1 The exponential distribution

Definition 15.1 (The exponential distribution). For each λ > 0, let hλ
be the function on R defined by

hλ(t) =

{
λe−λt if t ≥ 0,

0 otherwise.
(15.1)

It was shown in Exercise 3.11 that
∫∞
−∞ hλ = 1, so that hλ is a probability

density on R.
The function hλ is referred to as the exponential density with parame-

ter λ. The distribution with probability density hλ is called the exponential
distribution with parameter λ.

Any random variable having this probability distribution will be referred
to as an exponential waiting time.

We’ll discuss examples of random variables with exponential distributions
in Section 15.4. A typical experimental example involves recording events
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which occur randomly, at an “average rate” λ per unit time. Let X denote
the length of time until the first event is recorded. It often turns out that
X is a random variable whose distribution is exponential with parameter λ.
For t ≥ 0, we then have

P(X > t) =

∫
{X>t}

hλ =

∫ ∞

t

λ e−λu du = −e−λu

∣∣∣∣∞
t

= e−λt. (15.2)

Equation (15.2) characterizes the exponential distribution.
In order to establish properties of exponential waiting times, we are going

to have to calculate some expected values. The next two sections say how to
do that in general.

15.2 Facts about general expectations

In this section we’ll outline some facts that are true for all expectations.
We use expected values freely in this book, but we will not state a rig-

orous definition of expectation for general random variables, although such
a definition can be given fairly easily (see Appendix M for an outline). The
general definition is consistent with the definitions given previously for ran-
dom variables with a finite range or a countable range. The properties which
hold for expectation are summarized in the next theorem.

Theorem 15.2 (Properties of expectations of general random variables).
(i) For every bounded random variableX, E [X] exists. (Bounded func-
tions are defined in Definition 10.18.)

If X is an unbounded random variable then E [X] exists if X is not too
large as a function on the sample space.

(ii) The value of E [X] is determined by the distribution of X, i.e. random
variables with the same distribution have the same expected value.
(And since random variables with the same distribution must have
the same expectation, we sometimes speak of “the expectation of the
distribution”, rather than the expectation of the random variable.)

(iii) The four key properties of expectation stated in Theorem 14.9 hold for
the general definition of expected value: linearity, monotonicity, the
formula for the expectation of an indicator function (equation (11.4)),
and the comparison principle.
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15.2. Facts about general expectations

In the case of a finite-range random variable, the expected value has a
frequency interpretation, as stated in Probability Fact 10.1. What can we
say more generally?

Remark 15.3 (Bounded random variables and experiments). Sup-
pose that a bounded random variable X is intended to model a measured
value in an experiment, and X does not have finite range. (Perhaps the ex-
periment involves measuring a random distance along a road, or the weight
of a random lump of butter, so it would be unnatural to use a finite-range
random variable.) In this case the E [X] has the same physical interpretation
described in Section 10.3. It is the long-run average of the measured value
of X.

See the discussion in Remark M.5 of Appendix M.

What about the interpretation of an unbounded random variable? If X
is unbounded, even if E [X] exists we won’t try to state a direct physical
interpretation for E [X]. In our work we will think of unbounded random
variables simply as mathematical tools, which help us to understand bounded
random variables.

Example 15.4 (Using the rules). We didn’t give a rigorous definition for
the expectation of a general random variable, but Theorem 15.2 says that the
four key properties of expectation which were stated earlier (in Theorem 14.9)
continue to hold for the general definition of expected value. That is usually
all you need.

For example, we studied the Markov inequality in Section 12.7, and then
used that inequality to understand the behavior of random walk. The deriva-
tion of that inequality only used linearity, monotonicity, and equation (11.4).
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15.3 Expectations when there is a density on

the sample space

We have noted two situations where it can be natural to use probability
densities. In Section 3.2, the sample space is an interval of the real line,
and probabilities are defined by equation (3.7). When the sample space is a
region in the plane, we mentioned that probability densities can be used in
a similar way, though we didn’t bother to give details.

Whenever a distribution has a probability density, the probability of an
event is given by integrating the density over the event.

Let’s recall the concept of integration over a set (introduced after equation
(3.11) in Section 3.4).

Suppose we have a sample space Ω on which integration is defined. Ω
doesn’t have to be an interval of the real line, as long as we know how to
integrate. So Ω might be a region in the plane, or more generally a region in
Rn, or even something else.

Let
∫
f denote whatever form of integral we are using on the sample space

Ω. If Ω is the real line, calculus books often write
∫
f as

∫∞
−∞ f , and if Ω is

the plane,
∫
f is often written as in calculus books as∫ ∞

−∞

∫ ∞

−∞
f(x, y) dy dx

The integral of a function f over a set A is denoted by
∫
A
f . If A is an

interval [a, b] of the real line, calculus books often write
∫
A
f as

∫ b

a
f(x), dx,

and if A is a subset of the plane,
∫
A
f is often written in calculus books as∫ ∫
A

f.

For thinking about the logic of a problem, it is likely clearer to just write
the integral over a set A as

∫
A
f , as long as the reader understands what sort

of integral you are working with.
Incidentally, a precise general definition of integrating a function f over

a set A, that works on any space, is given in Definition 3.6.

Probability densities were introduced in Definition 3.4, in the setting of
the real line. A general definition of a probability density is the following.

322



15.3. Expectations when there is a density on the sample space

Definition 15.5 (Probability densities for probability distributions
(general formulation)). In general, to say that f is a probability density
simply means that f is a nonnegative function whose integral over the whole
space is equal to one, i.e.

∫
f = 1. Here it is assumed that integration on

the space has been defined.
To say that a distribution has a probability density f means that the

probability of an event is given by integrating f over the event, i.e. for any
event A,

P(A) =

∫
A

f. (15.3)

Remark 15.6 (Comparison with the previous density definition).
Remark 3.7 shows that Definition 15.5 is consistent with the original defini-
tion given in Definition 3.4 for the real line case.

(In Definition 3.4, equation (15.3) is only required to hold for intervals,
but Remark 3.7 states that if equation (15.3) holds for events which are
intervals of the real line, then it actually holds for all events.)

Examples of densities on subsets of the real line were given in Sections 3.4
and 3.7. Appendix E has some examples of using probability densities on
subsets of the plane.

As noted in Example 10.20, if probabilities are given by a probability
density f on the sample space, we can also use f to find expected values.
For any random variable X on the sample space,

E [X] =

∫
Xf, (15.4)

provided of course that the integral of Xf exists.
Here

∫
Xf means the integral of Xf over the sample space Ω. If Ω is

an interval of the real line, say Ω = [s, t], then equation (15.4) is the same
statement as equation (10.33):

E [X] =

∫ t

s

X(u)f(u) du.
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But equation (15.4) holds for any sample space, for example if the sample
space is a region in the plane or in Rn. The only difference in those other
cases is that the integral in the equation (15.4) may require more work.

We are ready to start computing expectations when probabilities are given
by a density on the sample space. But what if we not told the definition of
a random variable X on any sample space? Instead, suppose that someone
simply gives us the probability distribution of X? Can we still find E [X]?

Theorem 15.2, part (ii), says that the distribution of a random variable
determines the expected value. So, yes, in principle it must be true that we
can find E [X], if someone tells us the distribution of X.

If it happens that the probability distribution of X is given by a density
function h on the real line, then there is a neat formula:

E [X] =

∫ ∞

−∞
th(t) dt, (15.5)

provided of course that the integral of th(t) exists.
More generally, for any function φ on the real line,

E [φ(X)] =

∫ ∞

−∞
φ(t)h(t) dt, (15.6)

provided that the integral of φ(t)h(t) exists.
Equation (15.6) is the formula for the expected value of a func-

tion of a random variable, in the case that the distribution of the
random variable has a density.

Equation (15.6) is often useful. Taking φ to be the function φ(t) = t
shows that equation (15.6) implies equation (15.5).

One can derive equation (15.6) from equation (15.4). The argument is
given in Appendix D.

Example 15.7 (Mean of a uniform distribution). Consider a random
variable X whose distribution is uniform on [a, b]. (This is a short way of
saying that the distribution of X on the real line is uniform on [0, 5] and zero
everywhere else. We talked about the probability density for the distribution
of such a random variable in Example 9.13 and Remark 9.14.)

Let’s find E [X]
By Exercise 3.5, a density for the uniform distribution on [a, b] is given

by the probability density f which is constant and equal to 1/(b − a) at all
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points of [a, b]. Using the function f in quation (15.4), we have

E [X] =

∫ b

a

t

b− a
dt =

1

b− a

t2

2

∣∣∣∣b
a

=
b2 − a2

2(b− a)
=
a+ b

2
. (15.7)

Thus the mean of X is the midpoint of the interval [a, b].

s

Exercise 15.1 (The Cauchy distribution). Let X be a random variable
whose probability distribution has a density h given by

h(x) =
c

1 + x2
(15.8)

for all x ∈ R. Then X is said to have a standard Cauchy distribution.

1. Find c.

2. Does E [X] exist?
[Solution]

Exercise 15.2. Let X be a random variable whose distribution is uniform
on [0, 5]. (This is a short way of saying that the distribution on the real line is
uniform on [0, 5] and zero everywhere else. We talked about the probability
density for the distribution of such a random variable in Example 9.13 and
Remark 9.14.)

Find E [sinX].
[Solution]

15.4 Properties of the exponential distribu-

tion

Now we are ready to get back to exponential waiting times.
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Exercise 15.3 (Mean of the exponential distribution). Let T be a
random variable whose distribution is exponential with parameter λ (Defini-
tion 15.1). Show that

E [T ] =

∫ ∞

0

λte−λt dt =
1

λ
. (15.9)

[Solution]

As noted in Section 14.8, for any random variable T the function t 7→
P(T > t) is sometimes called the tail of the distribution (on the right).

One of the things we learn from the tail is the rate at which the probability
ofP(T > t) approaches zero as t→ ∞. It is easy to calculate the tail function
for the exponential distribution.

Let T be a random variable having exponential distribution with parame-
ter λ. The tail function is P(T > t). By equation (15.2), the tail function for
the exponential distribution with parameter λ is given by P(T > t) = e−λt

for any t ≥ 0.
Of course, since T has an exponential distribution, P(T ≥ 0) = 1, so

P(T > t) = 1 for all t ≤ 0.
Clearly the tail of an exponential distribution approaches zero rapidly as

t→ ∞.

Exercise 15.4. In Theorem 14.14 we stated a useful general formula for
expectation called “The Tail-Integral formula for expectation”, although no
proof was given. Test the tail integral formula by calculating the mean of
the exponential distribution again.

[Solution]

Exercise 15.5 (Expectation of square of random variable with ex-
ponential distribution). The exponential distribution with parameter λ is
defined in Exercise 15.3. Suppose that X has this distribution.

Calculate E [X2].
[Solution]
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Recall from equation (13.12) and Definition 13.3: when T is the waiting
time for first success in coin-tossing with p > 0, the distribution of T is the
geometric distribution, and P(T > k) = qk, where q = 1 − p and k is a
nonnegative integer.

Let r = − log q, where log q denotes the logarithm of q with base e. Since
q < 1, r is a positive number. We have P(T > k) = e−r k, so the tail of
the geometric distribution seems quite similar to the tail of the exponential
distribution.

The similarity of these two distributions suggests that a random variable
T with exponential distribution is the continuous-time analogue of the wait-
ing time for first success in coin-tossing. And in fact, a random variable T
with exponential distribution is used as a model for a “lifetime” or a waiting
time in many situations.

For example, suppose you are measuring the rate of decay of some ra-
dioactive material, using a detection device such as a Geiger counter. The
random time until the first emission of a particle from the sample has an
exponential distribution. Similarly, the time spent waiting for a telephone
call at a sales desk, or a data request at a computer server, will often have a
distribution which is approximately exponential.

Discussing any kind of waiting times, one presumably wants to know
when the waiting begins. When waiting for the emission of a particle from
radioactive material, the wait starts when some observer starts to record
data. But radioactivity happens continually, so the starting time is not
connected at all to the physical process. Thus it seems as if the choice of
starting time could affect the observed statistical distribution of the waiting
time.

However, for the exponential distribution, just as with coin-tossing (Exer-
cise 13.3), the observed distribution does not depend on the choice of starting
time when waiting.

Lemma 15.8 (The “memoryless” property). Let T be a waiting time
having an exponential distribution with parameter λ. For some given time
s ≥ 0, let A = {T > s}. Then for any t ≥ 0,

P(T − s > t |A) = P(T > t), (15.10)

i.e.
P(T > s+ t |A) = P(T > t). (15.11)
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In Lemma 15.8, one can think of T as the time that some observer has to
wait, for a particular event to occur. If a new observer arrives at time s ≥ 0,
there are two possibilities.

• If the event has already occurred, the new observer has nothing to wait
for, and does not record the result.

• If the event has not yet occurred (i.e. if we are in the situation described
by A), then the new observer is waiting along with the original observer.
The new observer will wait time T − s until the event takes place.

The left side of equation (15.10) describes the statistical properties of
the time that the new observer records, given that the event has not
already occurred when the new observer arrives.

Exercise 15.6. Prove Lemma 15.8.
[Solution]

Remark 15.9 (Memoryless really means memoryless). In the setting
of Lemma 15.8, think of T as the waiting time for some physical event D.

Let [a, b] be a subinterval of (s,∞). Let T ∗ = T − s. Equation 15.10 says
that

P(T ∗ > t | {T > s}) = P(T > t). (15.12)

Let P∗ denote probabilities conditioned on {T > s}. Equation 15.12 says
that P∗(T ∗ > t) = P(T > t) for all t ≥ 0. Since these random variables are
nonnegative, P∗(T ∗ > t) = 1 = P(T > t) for all t < 0.

So P∗(T ∗ > t) = P(T > t) for all t.
Based on that equality, one can show that the whole distribution of T ∗

is the same as the whole distribution of T . So all statistical properties must
be the same for both random variables.

Remark 15.9 explains why we do not need to specify the starting time for
the exponential distribution.
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Let’s think more about the parameter λ in the exponential distribution
for T . We know now that P(T > t) = e−λt and that E [T ] = 1/λ. Both those
equations tell us that as λ increases the waiting time T becomes smaller. We
can make that statement more precise by considering the tail function s(t) =
P(T > t). Thinking about T as the lifetime of a randomly selected object,
we might call s the “survival function”, since it gives the probability that the
randomly selected object is still alive at time t. Thinking of the randomly
selected object as part of a large population, the frequency interpretation
says that s(t) represents the fraction of the population that is still alive at
time t. Notice that s(t) = e−λt satisfies a simple differential equation on
(0,∞):

s′(t) = −λs(t), (15.13)

Suppose that the initial size of the population is N , where N is some large
number. We would expect that at time t the surviving population would have
size approximately equal to Ns(t).

At time t +∆t, the size of the population is approximately Ns(t +∆t).
The number of objects that have died during the time interval [t, t + ∆t] is
approximately Ns(t)−Ns(t+∆t). Using equation (15.13),

s(t)− s(t+∆t) ≈ −s′(t)∆t = λs(t)∆t.

Thus the number of objects that have died during the time interval [t, t+∆t]
is approximately Nλs(t)∆t.

The number of living objects at time t is approximately Ns(t). Thus the
fraction of the current population which dies during [t, t+∆] is approximately

Nλs(t)∆t

Ns(t)
= λ∆.

Dividing by ∆t shows that the average death rate per object per unit time
is λ.

With this interpretation in mind, one might call λ the “death rate”, or
more briefly the rate for the exponential distribution which has parameter λ.

Equation (15.13) is a differential equation for the survival function s. We
assume s(0) = 1, since there has not been time for any deaths. Hence we
are interested in a solution s of equation (15.13) which satisfies the initial
condition s(0) = 1.
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Exercise 15.7 ( Uniqueness for the solution of equation (15.13) ). Let
s be a solution of equation (15.13). Show that s(t) = s(0)e−λt for all t. (This
is often shown in calculus courses.) Hint: Define f(t) = s(t)eλt. Calculate
f ′(t).

[Solution]

15.5 Solutions for Chapter 15

Solution (Exercise 15.1). (i) Since h is a probability density we must
have

∫
h = 1.

∫
h =

∫ ∞

−∞

c

1 + x2
dx = lim

b→∞

∫ b

−b

= lim
b→∞

c

(
arctanx

∣∣∣∣b
−b

)
= c lim

b→∞
(arctan b− arctan(−b)) = 2c lim

b→∞
arctan b = 2c

π

2
= c π.

Hence c = 1/π.

(ii) By equation (15.5),

E [X] =

∫ ∞

−∞
t h(t) dt.

However, we have to be careful in evaluating this integral, because the inte-
grand has both a positive and a negative part. The integral of the positive
part is ∫ ∞

0

t h(t) dt =
1

π
lim
b→∞

∫ b

0

t

1 + t2
dt.

Using the fact that t2 ≥ 1 on [1,∞), we have∫ ∞

0

t h(t) dt ≥ 1

π
lim
b→∞

∫ b

1

t

2t2
dt =

1

2π
lim
b→∞

∫ b

1

1

t
dt =

1

2π
lim
b→∞

(log b− log 2) = ∞.

Thus E [X] does not exist.
(In this calculation, we use log to denote logarithms to the base e. )
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Solution (Exercise 15.2). Let f be the function on [0, 5] defined by
f(x) = 1/5 for all x ∈ [0, 5]. Then f is a probability density for the uniform
distribution on [0, 5].

As in Example 9.13, we obtain a probability density h for the distribution
of X by extending f . We extend it to be equal to zero on the complement
of [0, 5], so h is given as in equation (9.18):

h(x) =

{
1
5

if x ∈ [0, 5],

0 otherwise.

By equation (15.6),

E [sinX] =

∫ ∞

−∞
sin(x)h(s) dx =

∫ 5

0

sin(x)
1

5
dx = −1

5
cosx

∣∣∣∣5
0

= −1

5
(cos 5− cos 0) =

1

5
(1− cos 5) .

Solution (Exercise 15.3). By equation (15.5),

E [T ] =

∫ ∞

−∞
t λe−λt dt =

∫ ∞

0

t λe−λt dt = lim
b→∞

∫ b

0

t λe−λt.

Using integration by parts,

E [T ] = lim
b→∞

(
te−λt

∣∣∣∣b
0

+

∫ ∞

0

e−λt dt

)
= lim

b→∞

(
te−λt

∣∣∣∣b
0

− 1

λ
e−λt

∣∣∣∣b
0

)
.

We know that te−λb → 0 as b → ∞, a consequence of L’Hôpital’s Rule, and
of course e−λb → 0 as b→ 0. Hence

E [T ] =
1

λ
.

Solution (Exercise 15.4). Let X be a random variable having exponential
distribution with parameter λ.

By Theorem 14.14,

E [X] =

∫ ∞

0

P(X > t) dt =

∫ ∞

0

e−λt dt = −e
−λt

λ

∣∣∣∣∞
0

=
1

λ
,

which is consistent with equation (15.9).
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Solution (Exercise 15.5). By equation (15.6),

E
[
X2
]
=

∫ ∞

0

x2λe−xλ dx = lim
b→∞

∫ b

0

x2λe−xλ dx.

We will use integration by parts to calculate the integral, and then use the
fact that b2e−b → 0 and be−b → 0 as b→ ∞. Thus

E
[
X2
]
= lim

b→∞

(
−x2e−xλ

∣∣∣∣b
0

+

∫ b

0

2xe−xλ dx

)

= lim
b→∞

(
−x2e−xλ

∣∣∣∣b
0

− 2x

λ
e−xλ

∣∣∣∣b
0

+

∫ b

0

2

λ
e−xλ dx

)

= lim
b→∞

(
−x2e−xλ

∣∣∣∣b
0

− 2x

λ
e−xλ

∣∣∣∣b
0

− 2

λ2
e−λx

∣∣∣∣b
0

)
=

2

λ2
(15.14)

Solution (Exercise 15.6).

P(T > s+ t |A) = P(T > s+ t)

P(A)
=

P(T > s+ t)

P(T > s)
.

By equation (15.10),

P(T > s+ t |A) = e−λ(s+t)

e−λs
= e−λt = P(T > t).

Solution (Exercise 15.7). Let f(t) = s(t)eλt.

f ′(t) = s′(t)eλt + s(t)λeλt = −λs(t)eλt + s(t)λeλt = 0.

By the Mean Value Theorem f(t)− f(0) = 0 for every t, so f(t) = f(0), i.e.
s(t)eλt = f(0) = s(0), and hence s(t) = s(0)e−λt.
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Chapter 16

Moments and inequalities

The mean of a distribution can be thought of as an average value for the
random variable which has that distribution. It can also be thought of as a
“central point” of the distribution. In this chapter we introduce the concept
of the variance of a distribution, which can be thought of as a measure of the
“width” of the distribution.

Readers may not wish to work all the exercises in this chapter. The goal
should be to develop a feeling for how the concept of variance is used.

16.1 Moments

If a random variable has a large range, then its distribution can be compli-
cated, even if the range is finite. We need to identify simple properties that
help us to understand the behavior of the random variable.

The expected value of a random variable X is usually the most important
such property, but an expected value is just one number. We can learn more
by calculating moments of the random variable.

Definition 16.1 (Moments of a random variable). For n = 0, 1, 2, . . .,
the n-th moment of the random variable X is E [Xn], provided that it exists.
The n-th absolute moment is defined to be E [ |X|n ].

The definition here is general, so we are using the fact that expected
values can be defined for general random variables (see Section 15.2).
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The first moment of X is the expected value E [X]. When it exists, and
when X represents some property of an experiment, we know E [X] is likely
to be close to the average measured value in repeated experiments. The first
absolute moment gives the same sort of information about the absolute value
of X. Thus the first absolute moment gives the average size of the random
variable.

By definition, the second moment of X is E [X2], so it gives the average
size of the square of the random variable. The significance of the second
moment will become clearer as we study the concept of variance.

All moments are expected values, and we have noted that mathematical
random variables can be so large that their expected values do not exist.
A random variable with a Cauchy distribution (Exercise 15.8) is a typical
example. And even if the expected value exists, higher moments may not.

Here are a few examples.

Exercise 16.1.

(i) Let Ω = (0, 1], with uniform distribution. Let X(t) = 1/t. Show that
E [X] does not exist.

(ii) Let Ω = (0, 1], with uniform distribution. Let X(t) = 1/
√
t. Show that

E [X] exists but E [X2] does not exist.

(iii) Let Ω = {1, 2, . . .}, and let P be a distribution on Ω such that P({n}) =
c/n5 for some constant c. Let X(j) = j. Show that E [X], E [X2] and
E [X3] exist but E [X4] does not exist.

[Solution]

Section 16.8 has some information that you can use if you are trying to
confirm that a moment exists.

16.2 Variance

Variance is a key concept in probability theory. The variance of X is simply
the second moment of the centered version of X.
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Definition 16.2 (Centered random variables). A random variable X
will be said to be centered if E [X] = 0. In this case X is also said to be a
mean zero random variable.

Let X be a random variable such that E [X] exists. The centered version
of X is the random variable X−E [X]. The value of X−E [X] is also called
the deviation of X from its mean.

In calculations we often write E [X] as µ, so that the deviation of X from
its mean is written as X − µ.

Definition 16.3 (Variance). Let X be a random variable whose expecta-
tion exists.

The centered second moment, E [(X − E [X])2], is called the variance
of X, and is denoted by Var (X), when this expected value exists. It is often
referred to as the mean square deviation of X.

The square root of the variance of X is called the standard deviation of
X, and is often written as σ in calculations.

If one must describe the properties of a probability distribution using
only two numbers, the mean and the variance of a distribution are usually
the most informative. The variance tells us how “spread-out” the distribution
is.

We often write the expression for Var (X) more neatly using µ to denote
E [X]:

Var (X) = E
[
(X − µ)2

]
. (16.1)

Remark 16.4 (Variance of a distribution). The distribution of X deter-
mines E [Xn] and Var (X), so we will at times speak of the “the moments
of a distribution” and “the variance of a distribution”, or “the moments of a
density” and “the variance of a density”.

Thinking about existence of the variance, note that we only speak about
the variance of X in situations where E [X] exists.

Denote E [X] by µ. Since X − µ = X + (−µ), the n = 2 case of
Lemma 16.27 tells us that E [(X − µ)2] exists if E [X2] exists.
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Since X = (X − µ) + µ, the n = 2 case of Lemma 16.27 also says that if
E [(X − µ)2] exists then E [X2] exists.

Thus we have the following:

Existence Fact Whenever E [X] exists, Var (X) exists if and only if E [X2]
exists.

That’s all we have to say about existence of the variance.

The next exercise is of major importance!

Exercise 16.2 (“Mean square minus square mean”). By expanding
equation (16.1), show that

Var (X) = E
[
X2
]
− (E [X])2 . (16.2)

[Solution]

Notice that equation (16.2) shows immediately that Var (X) ≤ E [X2].
Also, the definition of Var (X) shows that Var (X) ≥ 0, so equation (16.2)
tells us that

(E [X])2 ≤ E
[
X2
]
. (16.3)

Incidentally, we can replace X by |X| in equation (16.3), so we also have:

(E [ |X| ])2 ≤ E
[
X2
]
. (16.4)

Exercise 16.3 (Variance of a constant). Let X be a constant random
variable in some probability model, so that X = 7 everywhere. Find E [X]
and Var (X).

[Solution]

Remark 16.5 (When the variance is zero). Let X be a random variable
with mean µ and variance zero. Then E [(X − µ)2] = 0.

Since (X − µ)2 is a nonnegative random variable with mean zero, it is
tempting to conclude that (X −µ)2 is the zero random variable. That is not
quite true, but it’s almost true.
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The following fact holds: for any nonnegative random variable Y , if
E [Y ] = 0 then P(Y ̸= 0) = 0, i.e. P(Y = 0) = 1. (See Appendix F
for a derivation.)

So when Var (X − µ) = 0, we know that P( (X − µ)2 = 0 ) = 1, i.e.
P(X = µ) = 1. So a random variable with zero variance is equal to its mean
with probability one.

Exercise 16.4 (Variance of a uniform distribution). Let X be the ran-
dom variable on [0, 5] with X(ω) = ω. Using the uniform distribution on
[0, 5], calculate the mean and variance of X.

Then, generalize your work. Find the mean and variance of a random
variable X whose distribution is uniform on an interval [s, t].

[Solution]

Example 16.6 (Variance for a coin toss). Let X represent the result of
tossing a coin. X = 1 means a head (success) X = 0 means a tail. Assume
P(X = 1) = p.

Then E [X] = 1 ·P(X = 1) + 0 ·P(X = 0) = p.
Since X = X2 for this random variable, E [X2] = p also.
By equation (16.2),

Var (X) = p− p2 = p(1− p). (16.5)

Example 16.7 (Variance of a binomial random variable). Let Sn be
the number of successes in n tosses of a coin, when the coin has success
probability p. Using equation (9.3), we will show that

Var (Sn) = np(1− p). (16.6)

However, recall that we used additivity in section 10.5.1 to find mean
values easily. This suggests that hammering away with equation (9.3) may
not the easiest way to calculate Var (Sn).
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So you may want to leave the justification of equation (16.6) until you
have learned the general formula for the variance of a sum of independent
random variables, which is given in equation (16.29). Exercise 16.15 asks
you to derive equation (9.3) using that formula. (Incidentally, the proof of
Lemma 12.11 already used the method of Exercise 16.15!)

Nevertheless, for those who are interested, here’s the algebraic calculation
for justifying equation (16.6), using equation (9.3).

We can learn from Exercise 10.9, where we found

E [Sn] = np,

using algebraic manipulations. We will extend that method here.
By Theorem 10.8,

E
[
S2
n

]
=

n∑
k=0

k2P(Sn = k).

Looking at the solution for Exercise 10.9, it seemed to depend on can-
celling out the factor k from k!. But here we seem to need to remove a factor
k2 from k!. It’s not clear how to do that.

After some meditation, we decide to find a related quantity, namely
E [Sn (Sn − 1)].

By the formula for the expectation of a function of a random variable,
Theorem 10.8, we have

E [Sn (Sn − 1)] =
n∑

k=0

k(k − 1)P(Sn = k) =
n∑

k=0

k(k − 1)pk
n!

k!(n− k)!
.

Thus

E [Sn (Sn − 1)] =
n∑

k=2

k(k − 1)pk
n!

k!(n− k)!
,

since the k = 0 and k = 1 terms are zero. So

E [Sn (Sn − 1)] =
n∑

k=2

pk
n!

(k − 2)!(n− k)!
= p2n(n−1)

n∑
k=2

pk−2 (n− 2)!

(k − 2)!(n− k)!
.

We notice that (n− k)! = ( (n− 2)− (k− 2) )!. This suggests replacing k− 2
by j in the sum. Using equation (9.3) with n replaced by n− 2, we obtain

E [Sn (Sn − 1)] = p2n(n−1)
n−2∑
j=0

pj
(n− 2)!

j!( (n− 2)− j )!
= p2n(n−1)

n−2∑
j=0

P(Sn−2 = j).
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Since the range of Sn−2 consists of the numbers j = 0, 1, . . . , n− 2, we know
that

n−2∑
j=0

P(Sn−2 = j) = 1.

Hence E [Sn (Sn − 1)] = p2n(n − 1). That is, E [S2
n] − E [Sn] = p2n(n − 1).

Hence

E
[
S2
n

]
= E [Sn] + p2n(n− 1) = pn+ p2n2 − p2n = p(1− p)n+ p2n2.

By equation (16.2),

Var (Sn) = E
[
S2
n

]
− (E [Sn])

2 = p(1− p)n.

Example 16.8 (Variance of a geometric distribution). Let T be the
time of first success in ∞ Bernoulli trials, when the success probability on
each trial is p.

T is defined in section 13.2. We will find Var (T ).
First note that by equation 13.18,

E [T ] =
1

p
.

To get more information, we’re going to use the trick of differentiating a
series term-by-term.

We used that trick (for a finite series) in one of the derivations of the
expected value of Tn (see equation (13.8)).

In Exercise 13.4 we used the differentiation trick as one method to find
E [T ].

Now we want to use the same trick here, to get E [T 2].
Using the formula for the sum of a geometric series, we know that for

x ∈ (−1, 1),
1

1− x
= 1 + x+ x2 + x3 + x4 + x5 + . . . .

Differentiating term-by-term,

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + 5x4 + . . . .
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Differentiating term-by-term again, we have

2

(1− x)3
= 2 · 1 + 3 · 2x1 + 4 · 3x2 + 5 · 4x3 + . . . .

Setting x = q we have

2

p3
= 2 · 1 + 3 · 2q + 4 · 3q2 + 5 · 4q3 + . . . =

∞∑
k=2

k(k − 1)qk−2.

Then
2

p3
=

∞∑
k=1

k(k − 1)qk−2,

because the first term of this series is zero. Multiplying by pq,

2q

p2
=

∞∑
k=1

k(k − 1)qk−1p =
∞∑
k=1

k(k − 1)P(T = k).

By the formula for the expectation of a function of a random variable, Theo-
rem 14.11 (which is the generalization of Theorem 10.8 to the countable-range
case),

∞∑
k=1

k(k − 1)P(T = k) = E [T (T − s)] .

Thus we have shown that

2q

p2
= E [T (T − 1)] = E

[
T 2
]
− E [T ] = E

[
T 2
]
− 1

p
.

Thus

E
[
T 2
]
=

2q

p2
+

1

p
.

By equation (16.2),

Var (T ) =
2q

p2
+

1

p
− 1

p2
=

2q + p− 1

p2
=
q + q + p− 1

p2
=

q

p2
. (16.7)
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Exercise 16.5 (Variance of an exponential waiting time). Let T be
the exponential waiting time (Definition 15.1). Find Var (T ).

[Solution]

Exercise 16.6 (Shifting preserves variance). Prove that for any real
number c,

Var (X + c) = Var (X) . (16.8)

[Solution]

For every nonnegative integer n, by linearity we have

E [(cX)n] = cnE [X] , E [|cX|n] = |c|nE [|X|] . (16.9)

Exercise 16.7 (Scaling the variance). Show that

Var (cX) = |c|2Var (X) . (16.10)

[Solution]

Which is more a meaningful measure of deviation: E [ |X − µ| ] or the
variance, E [(X − µ)2]?

Either one can be larger than the other. Which is more significant in
a practical situation may depend on whether you consider that a few large
deviations should be regarded as more important than a large number of
smaller deviations.

We will see later that Var (X) is the most useful measure of deviation
for theoretical purposes.

Example 16.9 (A case where E [X2] = (E [ |X| ])2). Figure 16.1 and 16.2
show examples of random variables X, Y on Ω = [0, 1]. The probability on
Ω is assumed to be uniform.

You can check that E [ |X| ] = E [ |Y | ], E [X2] = (E [ |X| ])2, and E [Y 2] >
(E [ |Y | ])2.
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X is such that equality holds in equation (16.3). Notice that |X| is
constant. Using equation (16.2) and Remark 16.4 you can show that this is
not a coincidence.

0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0 X

Ω

Figure 16.1: Unusual case: square of centered absolute first moment equals
the variance.

Exercise 16.8. Prove that

Var (X)−Var (|X|) = (E [ |X| ])2 − (E [X])2. (16.11)

[Solution]

We showed long ago, in equation (10.31), that

|E [X] | ≤ E [ |X| ] .

Using this fact and equation (16.11) gives us another inequality:

Var (|X|) ≤ Var (X) . (16.12)
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0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0 Y

Ω

(a) Y

Figure 16.2: Typical case: square of centered absolute first moment less than
variance.

Exercise 16.9 (A minimum property for the variance). Let X be any
random variable such that E [X2] exists, and let c be any real number. Let
µ = E [X]. After writing X − c as (X − µ) + (µ− c), show that

E
[
(X − c)2

]
= Var (X) + (µ− c)2. (16.13)

Notice that equation (16.13) tells us that the mean square deviation of X
from c is smallest when c = µ. If you must describe the distribution of X by
a single number, this suggests that µ is the best choice.

[Solution]

Exercise 16.10. Let X1 and X2 be independent random variables with the
same distribution. Suppose that E [X2

i ] exists. Prove that

E
[
(X1 −X2)

2] = 2Var (Xi) . (16.14)

[Solution]
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16.3 The Chebyshev Inequality

We can use the Markov inequality (Lemma 12.12) to estimate the probability
that a random variable deviates from its mean, as follows.

Lemma 16.10 (Chebyshev’s Inequality). Let X be a random variable
such that the mean and variance of X exist. Then for any real number a > 0,

P (|X − E [X]| ≥ a) ≤ Var (X)

a2
. (16.15)

Proof. Let Y be the square of the deviation from the mean, i.e. Y =
(X − E [X])2. Then Var (X) = E [Y ]. By the Markov inequality,

a2P
(
Y ≥ a2

)
≤ E [Y ] .

Since {Y ≥ a2} = {(X − E [X])2 ≥ a2} = {|X − E [X]| ≥ a} and E [Y ] =
Var (X), this gives equation (16.15).

Remark 16.11 (Chebyshev and the search for Charlie). Now that
we have stated the Chebyshev inequality, we can see that Exercise 12.6 is a
typical application of that inequality.

Recall that in the solution to Exercise 12.6, we applied the Markov in-
equality to obtain an estimate for P(|Sn| ≥ 500).

This is the same as estimating P(S2
n ≥ 250000), and using the Markov

inequality we had:

P(|Sn| ≥ 500) = P(S2
n ≥ 250000) ≤ E [S2

n]

250000
. (16.16)

Let µ = E [Sn]. In this problem E [Sn] = 0, so Var (Sn) = E [S2
n], and

P(|Sn| ≥ 500) = P(|Sn − µ| ≥ 500).

Thus equation (16.16) is exactly the estimate given by the Chebyshev in-
equality:

P(|Sn − µ| ≥ 500) ≤ Var (Sn)

250000
.
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With the usual notation of µ for E [X] and σ for the standard deviation
of X, σ2 is the variance of X. One often writes Chebyshev’s inequality as

P (|X − µ| ≥ a) ≤ σ2

a2
. (16.17)

Equation (16.17) suggests that it might be useful to measure deviation
from the mean in units of the standard deviation σ. Thus we can rephrase
the Chebyshev inequality as:

P (|X − µ| ≥ cσ) ≤ 1

c2
. (16.18)

Note that the estimate in this equation does not depend on the value of σ.

Exercise 16.11. Let W be a random variable such that P(W = 3) = 1/18,
P(W = −3) = 1/18, and P(W = 0) = 8/9. Find the mean and standard
deviation of W . Find the probability that W deviates from its mean by at
least three standard deviations.

Note that for this particular random variable, the probability you found
is not very small.

Compare your answer with the estimate obtained using the Chebyshev
inequality.

Now repeat these steps for the probability thatW deviates from its mean
by at least 3.1 standard deviations

[Solution]

Exercise 16.12. Let Y be a random variable on [−2, 2] defined by Y (t) = t.
With P equal to the uniform distribution on [−2, 2], find the mean, variance
and standard deviation of Y .

Also find the probability that Y deviates from its mean by at least three
standard deviations.

[Solution]
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16.4 Covariance of two real-valued random

variables

We observed in Section 16.1 that calculating the moments of a random vari-
able can help us to understand its distribution. When dealing with two
random variables X, Y , we can of course calculate the means, moments and
centered moments of X and Y separately. But it is also useful to have quan-
tities which tell us about the relation between X and Y . One such quantity
is E [XY ]. For example, if E [XY ] ̸= E [X]E [Y ] we at least know that X
and Y are not independent.

We can learn more by calculating the mean of the product of the centered
random variables, which is referred to as the covariance of X, Y .

Definition 16.12 (Covariance of two random variables). For any ran-
dom variables X, Y , the covariance of X, Y is denoted by Cov (X, Y ), and
is defined by

Cov (X, Y ) = E [(X − E [X]) (Y − E [Y ])] , (16.19)

provided that the expected values exist.
As usual, if E [X] = µ and E [Y ] = ν, we can write

Cov (X, Y ) = E [(X − µ) (Y − ν)] , (16.20)

Remark 16.13 (Existence of Cov (X, Y )). The comparison principle can
be used to show that Cov (X, Y ) exists if E [X], E [Y ] and E [XY ] exist.

By Lemma 16.28, E [XY ] exists if E [X2] exists and E [Y 2] exists.
Assuming E [X] and E [Y ] exist, E [X2] exists if and only if E [ (X − µ)2 ]

exists. Thus Cov (X, Y ) exists if Var (X) exists and Var (Y ) exist.

Since

Cov (X, Y ) = E [(X − µ) (Y − ν)] = E [(X (Y − ν)]− µE [Y − ν] ,

and E [Y − ν] = 0, we have

Cov (X, Y ) = E [X (Y − ν)] . (16.21)
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Similarly
Cov (X, Y ) = E [(X − µ)Y ] . (16.22)

Thus it is only necessary to center one of the two random variables when
calculating the covariance.

From the definition of covariance,

Cov (X,X) = Var (X) . (16.23)

Much as in Exercise 16.6, shifting random variables by constants has no
effect on covariance:

Cov (X − a, Y − b) = Cov (X, Y ) . (16.24)

Writing variance as mean square minus square mean is often useful. Co-
variance has a similar property.

Exercise 16.13 (Mean product minus product mean). Generalize Ex-
ercise 16.2, by proving that

Cov (X, Y ) = E [XY ]− E [X]E [Y ] . (16.25)

[Solution]

Lemma 16.14 (Expanding the variance of a sum). Let X and Y be
any random variables such that E [X] ,E [Y ] exist. IfVar (X) ,Var (Y ) exist,
then Var (X + Y ) exists. Furthermore Cov (X, Y ) exists, and

Var (X + Y ) = Var (X) + 2Cov (X, Y ) +Var (Y ) . (16.26)

Thus 2Cov (X, Y ) is the “cross term” in the expansion of Var (X + Y ).

Proof. We have already discussed existence.
The algebra is routine:

Var (X + Y ) = E
[
(X + Y − (µ+ ν) )2

]
= E

[
( (X − µ) + (Y − ν) )2

]
= E

[
(X − µ)2

]
+ 2E [ (X − µ)(Y − ν) ] + E

[
(Y − ν)2

]
= Var (X) + 2E [ (X − µ)(Y − ν) ] +Var (Y )

= Var (X) + 2Cov (X, Y ) +Var (Y ) (16.27)
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The random variables X, Y in equation (16.26) could be independent. In
that case the next lemma says that their covariance is zero.

Lemma 16.15 (Independence implies zero covariance). Let X, Y be
any independent random variables such that E [X] exists and E [Y ] exists.
Then Cov (X, Y ) exists, and Cov (X, Y ) = 0.

Proof. By additivity, E [X − µ] exists and E [Y − ν] exists, and these expec-
tations are zero.

By Lemma 12.7, X − µ and Y − ν are independent.
By Theorem 12.8, E [ (X − µ)(Y − ν) ] exists, and E [ (X − µ)(Y − ν) ] =

E [X − µ]E [Y − ν] = 0 · 0 = 0.
And by definition Cov (X, Y ) = E [ (X − µ)(Y − ν) ].

Corollary 16.16 (Additivity of variance for independent). Let X and
Y be independent random variables whose variances exist. Then the variance
of X + Y exists, and Var (X + Y ) = Var (X) +Var (Y ).

Proof. Apply Lemma 16.15 to equation (16.26).

The next lemma extends Lemma 16.14, with the same proof.

Lemma 16.17 (Expanding the variance of a sum of n random vari-
ables). Let X1, . . . , Xn be real-valued random variables. Assume that the
mean µi of each Xi exists, and the variance Var (Xi) of each Xi exists. Let
Sn = X1 + . . .+Xn.

Then Var (Sn) exists, and

Var (Sn) =
n∑

i=1

n∑
j=1

Cov (Xi, Xj) . (16.28)

Of course Cov (Xi, Xi) = Var (Xi) for each i (equation (16.23)).
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If it happens thatX1, . . . , Xn is an independent sequence, thenCov (Xi, Xj) =
0 for all i ̸= j, and

Var (Sn) = Var (X1) + . . .+Var (Xn) . (16.29)

Exercise 16.14. Write out the proof of Lemma 16.17.
[Solution]

Exercise 16.15 (Variance of a binomial random variable revisited).
Use equation (16.29) to prove equation (16.6) in an efficient manner.

As in section 10.5.1, start by writing Sn = X1 + . . .+Xn.
Your goal is to show that

Var (Sn) = n(1− p)p. (16.30)

[Solution]

Remark 16.18 (Random walk again). Section 12.6 introduced random
walk. In simple symmetric random walk, the “walker” takes independent
steps Xi, where P(Xi = 1) = 1/2 = P(Xi = −1). In this case E [Xi] = 0
and E [X2

i ] = E [1] = 1. From the definition, Var (Xi) = 1.
As in equation (12.14), let

Sn = X1 + ...+Xn for each n = 1, 2, ....

Then E [Sn] = 0, so from the definition E [S2
n] = Var (S2

n).
Applying equation (16.29),

Var (Sn) = Var (X1) + . . .+Var (Xn) = 1 + . . .+ 1 = n.

Thus we have proved Lemma 12.11. Of course this is not a new proof. We
have taken the idea of Lemma 12.11 and generalized it to obtain a powerful
tool, stated in equation (16.29).
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Life would be simpler if the converse to Corollary 16.16 were true. How-
ever, it ain’t.

Example 16.19. Consider tossing a fair coin twice, and then rolling a fair
die.

Let G = 1 if the first toss gives success, and G = −1 otherwise.
Let H = 1 if the second toss gives success, and H = −1 otherwise.
Let K be the result of rolling the fair die, so P(K = i) = 1/6 for i =

1, . . . , 6.
It is clear physically that G,H,K is an independent sequence of random

variables.
Notice that

P(GK = 6) = P(G = 1)P(K = 6) =
1

12
.

Similarly

P(HK = 1) = P(H = 1)P(K = 6) =
1

12
.

However,
P(HK = 1 |GK = 6) = 0,

since the result of the roll of the die cannot be both equal to 6 and equal to
1.

Thus GK and HK are not independent.
On the other hand, E [GK] = E [G]E [K] = 0, andE [HK] = E [H]E [K] =

0, so

Cov (GK,HK) = E
[
GHK2

]
= E [GH]E

[
K2
]
= E [G]E [H]E

[
H2
]
= 0.

Although covariance zero does not imply independence, we often think
of covariance as a rough measure of the degree of dependence between two
random variables.

Here’s some terminology.

Definition 16.20 (Uncorrelated random variables). If Cov (X, Y ) ex-
ists and Cov (X, Y ) = 0 then X, Y are said to be uncorrelated.
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The word “uncorrelated” is also used in ordinary language, with a less
precise meaning. As usual, one must judge what is meant from the context.

Exercise 16.16. Let X and Y be mean zero random variables such that
|X| = |Y | = 1 everywhere. Suppose that Cov (X, Y ) < 0. Show that

P(X = Y ) < P(X ̸= Y ).

[Solution]

16.5 The Weak Law of Large Numbers

We mentioned earlier that the frequency interpretation of probability does
not tell us how many repetitions of an experiment are likely to be needed in
order to reliably estimate a probability value using an average value. More
generally, the frequency interpretation of expected value (Fact 10.1) has the
same deficiency. Theorem 16.21 in this section allows us to make these fre-
quency statements a little more precise.

LetX be a mathematical random variable which represents some property
of an experiment. Let X1, . . . , Xn be independent random variables with the
same distribution asX, and let Sn = X1+. . .+Xn. Then Sn/n represents the
average measured value for the property in n repetitions of the experiment.
We would like to know whether E [X] is a reliable estimate for the average
measured value of the property. In other words, how likely is it that Sn/n
deviates significantly from E [X]?

The next theorem attempts to answer this question, with “significantly”
interpreted as “by more than ε” and “likely” expressed as a probability.

Theorem 16.21 (The Weak Law of Large Numbers). Let X1, . . . , Xn

be independent random variables on some sample space, such that each Xi

has the same mean µ and the same standard deviation σ. Let Sn = X1 +
. . .+Xn. Then

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε

)
≤ σ2

nε2
. (16.31)
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Proof. For each i, Var (Xi) = σ2.
By equation equation (16.29), Var (Sn) = nσ2.
Thus Var (Sn/n) = (1/n2)Var (Sn) = σ2/n (using equation (16.10)).
Chebyshev’s inequality (equation (16.15)) then gives equation (16.31).

When using equation (16.31), it is important to remember that in σ is
the standard deviation of each Xi, not the standard deviation of the random
variable Sn/n.

The variance and standard deviation of Sn are given by

Var (Sn) = nσ2,
√

Var (Sn) =
√
nσ, (16.32)

so

Var

(
Sn

n

)
=
σ2

n
,

√
Var

(
Sn

n

)
=

σ√
n
. (16.33)

The Weak Law of Large Numbers is important theoretically, since it re-
moves some of the vagueness from the frequency interpretation of expected
value. For practical purposes, one usually finds that the bound for the prob-
ability of error which is given in equation (16.31) is not very precise, i.e. the
actual probability is considerably smaller.

We mentioned earlier that there is another mathematical law of large
numbers, called the Strong Law of Large Numbers. From the name one
might hope that the Strong Law would give a better estimate. Unfortunately,
although the Strong Law is indeed stronger for theoretical purposes, it does
nothing to improve the probability estimate. We will need another approach,
such as the Central Limit Theorem ([10]), which is studied in Chapter 18.

16.6 Covariance is bilinear

If you wish to calculate the covariance of random variables which are given
as algebraic expressions in terms of other random variables, you can always
use the definition of covariance in terms of products. However, it may be
simpler to use the algebraic properties of covariance directly.

The general concept of a linear operation was defined in Definition 10.12.
An operation is linear if one can take sums “through” the operation, and one
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can also take multiplication by a constant through the operation. Now we
introduce the general concept of a bilinear operation.

Definition 16.22 (Bilinear operations). A bilinear operation is an oper-
ation on two elements x and y which depends linearly on x when y is fixed,
and depends linearly on y when x is fixed.

Covariance is defined in terms of expectations of products, and it is bilin-
ear in the sense of Definition 16.22. That is, Cov (X, Y ) is a linear function
of X when Y is held fixed, and Cov (X, Y ) is a linear function of Y when X
is held fixed. We state this formally in the next lemma.

Lemma 16.23 (Covariance is a bilinear function). Covariance is bilin-
ear, so that for any random variables X, Y, Z, and any numbers c1, c2,

Cov (c1X + c2Y, Z) = c1Cov (X,Z) + c2Cov (Y, Z) , and

Cov (Z, c1X + c2Y ) = c1Cov (Z,X) + c2Cov (Z, Y ) .
(16.34)

Of course the second equality in equation (16.34) is redundant, since
covariance is clearly a symmetric operation:

Cov (X, Y ) = Cov (Y,X) (16.35)

Exercise 16.17. Prove the first equality in equation (16.34).
[Solution]

Multiplication of two numbers is a simple example of a bilinear operation.
The “bilinear” property in this case is just another way of describing the
distributive law. Our familiarity with the algebra of numbers makes it easy
for us to use the bilinear property for other operations, such as covariance of
random variables, or the dot product of vectors.
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Example 16.24. The algebra needed to derive equation (16.28) was given in
the solution to Exercise 16.14. If we want to make use of the bilinear property
of covariance in the same proof, we would write the same manipulations a
bit differently.

Var (Sn) = Cov (Sn, Sn) = Cov

(
n∑

i=1

Xi,

n∑
j=1

Xj

)
.

Then, using bilinearity as much as possible, again we arrive at equation
(16.28):

Var (Sn) =
n∑

i=1

n∑
j=1

Cov (Xi, Xj) .

Using bilinearity is bit shorter, but not dramatically so. Still, you will likely
find that de-cluttering equations helps to clarify your work.

Exercise 16.18. Let X, Y, Z be independent random variables, such that
Var (X) = 1, Var (Y ) = 2 and Var (Z) = 3.

Calculate Cov (5X − Y + Z,X + 3Y − Z).
[Solution]

16.7 Variance of a hypergeometric random

variable

Let LN,K,n be the random variable defined in Definition 9.10, so that LN,K,n

has a hypergeometric distribution with parameters N,K, n.
The experiment consists of randomly selecting n objects for a set S of N

objects, where a certain target set T of K objects has been specified. LN,K,n

is the number of selected objects which lie in the target set T .
We have already dealt with E [LN,K,n] in Section 10.5.2, using Method 1

of that section.
We found that

E [LN,K,n] = n
K

N
.
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16.7. Variance of a hypergeometric random variable

Consider the case that n = 1 in this equation. Since E [LN,K,1] is either zero
or one, K

N
is also the probability that when a single element is randomly

selected, it will lie in the target set T . Let us denote this probability by p.
We will say it is the success probability when choosing a single element.

In the present example we wish to calculate Var (LN,K,n) for all n. The
properties of the covariance function will allow us to do that fairly efficiently.

For each member σ of S, let Xσ be equal to 1 if σ is in the selected subset
of n elements, and Xσ = 0 otherwise. By symmetry, E [Xσ] is the same for all
σ and Var (Xσ) is the same for all σ. Let E [Xσ] = µ and let Var (Xσ) = v.
Of course Cov (Xσ, Xσ) = Var (Xσ) = v.

Let
Z =

∑
σ∈S

Xσ.

From the description of the experiment, Z is constant and Z = n. Hence
E [Z] = n (and Var (Z) = 0).

It follows that E [Z] = Nµ, so Nµ = n, so

µ =
n

N
. (16.36)

Since the possible values of Xσ are 0 and 1, we see that P (Xσ = 1) = µ
for each σ.

Since Z is constant, Var (Z) = 0, i.e. Cov (Z,Z) = 0:

Cov

(∑
σ∈S

Xσ,
∑
τ∈S

Xτ

)
= 0.

Expanding using bilinearity, this gives∑
σ,τ∈S

Cov (Xσ, Xτ ) = 0.

Grouping like terms,∑
σ∈S

Cov (Xσ, Xσ) +
∑

σ,τ∈S, σ ̸=τ

Cov (Xσ, Xτ ) = 0. (16.37)

Since E [Xσ] = µ, we know that P(Xσ = 1) = µ, so

v = Var (Xσ) = E
[
X2

σ

]
− (E [Xσ])

2 = µ− µ2 = µ(1− µ),
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as usual. Thus ∑
σ∈S

Cov (Xσ, Xσ) = Nµ(1− µ).

By symmetry, Cov (Xσ, Xτ ) is the same for any σ, τ with σ ̸= τ . Call this
number c. There are N(N−1) choices for σ, τ with σ ̸= τ (N ways to choose
σ, and then, for that σ, N − 1 ways to choose τ). Hence we have∑

σ,τ∈S, σ ̸=τ

Cov (Xσ, Xτ ) = N(N − 1)c.

Substituting in equation (16.37),

Nµ(1− µ) +N(N − 1)c = 0,

and so

c = −µ(1− µ)

N − 1
. (16.38)

From the definitions,

LN,K,n =
∑
σ∈T

Xσ.

Since Var (LN,K,n) = Cov (LN,K,n, LN,K,n), by expanding and grouping like
terms we have

Var (LN,K,n) =
∑
σ∈T

Cov (Xσ, Xσ) +
∑

σ,τ∈T,τ ̸=σ

Cov (Xσ, Xτ ) .

Thus

Var (LN,K,n) = Kµ(1−µ)−K(K − 1)µ(1− µ)

N − 1
= Kµ(1−µ)

(
1− K − 1

N − 1

)
= K

n(N − n)

N2

(
N −K

N − 1

)
=
K

N

N −K

N
n

(
N − n

N − 1

)
= np(1−p)

(
N − n

N − 1

)
,

so we have obtained the following formula.

The variance of a hypergeometric random variable:

Var (LN,K,n) = np(1− p)

(
N − n

N − 1

)
(16.39)
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Remark 16.25 (Smaller variance than Sn).
For n > 1, clearly (N − n)/(N − 1) < 1. Thus equation (16.39) shows

that for n > 1,
Var (LN,K,n) < np(1− p). (16.40)

Notice that np(1− p) = Var (Sn), where Sn is the number of successes in
n coin-tosses, when the coin has success probability p, Thus equation (16.40)
says that Var (LN,K,n) < Var (Sn). This gives an answer to the question
posed at the end of the solution for Exercise 8.9, which asks why the graph
of the hypergeometric distribution should look narrower than the graph of
corresponding binomial distribution.

16.8 Estimates for moments

In this section we discuss existence of moments, a topic that was raised
Example 16.1. This leads to consideration of inequalities, an important topic
in its own right.

Lemma 16.26 (Existence of lower moments). If E [Xn] exists then
E
[
Xk
]
exists for all k ≤ n.

Proof. Here’s a handy fact: for any nonnegative integer k ≤ n,

|x|k ≤ 1 + |x|n , (16.41)

for all x.
To check equation (16.41), consider two cases: |x| ≤ 1 and |x| > 1. In

the first case, |x|k ≤ 1, In the second case, |x|k ≤ |x|n.
Since |X|k ≤ 1 + |X|n, the statement of the lemma follows by the com-

parison principle for expected values (part (iv) of Theorem 14.9).

Lemma 16.27 (Moments of a sum). Let n be a positive integer. If
E [|X|n] exists and E [ |Y |n ] exists, then E [ |X + Y |n ] exists.
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Proof. Claim: for any numbers x, y, and any positive integer n,

|x+ y|n ≤ 2n |x|n + 2n |y| . (16.42)

To justify the claim, remember the triangle inequality (Appendix B): for
any numbers x, y,

|x+ y| ≤ |x|+ |y| . (16.43)

So equation (16.42) certainly holds for n = 1. In fact, equation (16.42) is
a cruder inequality than equation (16.43), isn’t it? But hey, we ain’t bein’
paid to be fancy here. We just need to get an upper bound for |x+ y|n.

Anyway, for general n we have

|x+ y|n ≤ (|x|+ |y|)n .

Now consider the case that |x| ≤ |y|. In this case, |x|+ |y| ≤ 2 |y|, and so

|x+ y|n ≤ (2 |y|)n = 2n |y|n ,

so equation (16.42) holds.

The other possible case is that |y| < |x|, and of course a similar argument
works there too.

This proves the claim.

By equation (16.42),

|X + Y |n ≤ 2n |X|n + 2n |X|n .

The expected value of 2n |X|n + 2n |X|n exists, by additivity (Theo-
rem 14.9).

And then the comparison principle (part (iv) of Theorem 14.9) says that
the expected value of |X + Y |n exists.

Lemma 16.27 dealt with existence of moments when we add random vari-
ables. Lemma 16.28 will help us deal with expected values of products.

Before going on to consider that lemma, please be sure to work through
the next exercise. It provides us with a pleasing inequality that is often
useful.
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Exercise 16.19 (Inequality for a product). Let x, y be real numbers.
Show that

2xy ≤ x2 + y2. (16.44)

You can begin by noting that (x− y)2 ≥ 0 is always true.
As long as you are showing that equation (16.44) holds, you might as well

also show:
(x+ y)2 ≤ 2x2 + 2y2. (16.45)

[Solution]

Since the inequality in equation (16.44) holds for all x and y, we can of
course replace x by |X| and y by |Y | in this equality, and obtain:

2 |X Y | ≤ X2 + Y 2. (16.46)

By linearity, E
[
1
2
(X2 + Y 2)

]
exists. Hence by the the comparison prin-

ciple, E [|X Y |] exists.
Using monotonicity, E [|X Y |] ≤ E

[
1
2
(X2 + Y 2)

]
.

Linearity then gives

2E [|X Y |] ≤ E
[
X2
]
+ E

[
Y 2
]
. (16.47)

Sjnce E [|X Y |] exists, by the definition of expected value we know that
E [X Y ] exists. By monotonicity, E [X Y ] ≤ E [|X Y |].

We have proved the following.

Lemma 16.28 (Existence of the expectation of a product). If E [X2]
exists and E [Y 2] exists, then E [XY ] and E [|X Y |] exist, and

2E [XY ] ≤ 2E [|X Y |] ≤ E
[
X2
]
+ E

[
Y 2
]
. (16.48)

Exercise 16.20 (First moment exists if second does). Show that if
E [X2] exists then E [X] exists. Do this in two ways : using Lemma 16.26
and using Lemma 16.28.

[Solution]
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Inequalities play a crucial role in advanced mathematics, and they are also
fun. Appendix N deals with the Schwarz inequality, which is often useful.

16.9 Solutions for Chapter 16

Solution (Exercise 16.1).

(i) By equation (15.4),

E [X] =

∫ 1

0

1

t
dt = lim

a↘0

∫ 1

a

1

t
dt = lim

a↘0
log(t)

∣∣∣∣1
a

= lim
a↘0

(log 1− log a) = ∞.

Thus E [X2] does not exist.
(Remember that in our work, log means logarithm to the base e.)

(ii)

E [X] =

∫ 1

0

1√
t
dt = lim

a↘0

∫ 1

a

1√
t
dt = lim

a↘0
2
√
t

∣∣∣∣1
a

= lim
a↘0

2
(√

1−
√
a
)
= 2.

E
[
X2
]
=

∫ 1

0

1

t
dt = lim

a↘0

∫ 1

a

1

t
dt = lim

a↘0
log t

∣∣∣∣1
a

= lim
a↘0

− log a = ∞.

Thus E [X2] does not exist.

(iii) For any positive integer k,

E
[
Xk
]
=

∞∑
n=1

nk c

n5
=

∞∑
n=1

c

n5−k
.

By the integral test, this series converges if and only if∫ ∞

1

1

x5−k
dx exists.

Also ∫ ∞

1

1

x5−k
dx = lim

b→∞

∫ b

1

1

x5−k
dx.
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For k < 4,

lim
b→∞

∫ b

1

1

x5−k
dx = lim

b→∞
− 1

4− k

(
1

x4−k

) ∣∣∣∣b
1

= lim
b→∞

1

4− k

(
1− 1

b4−k

)
=

1

4− k
.

Thus E
[
Xk
]
exists for k < 4.

When k = 4,

lim
b→∞

∫ b

1

1

x5−k
dx = lim

b→∞
log(x)

∣∣∣∣b
1

= lim
b→∞

(log(b)− 0) = ∞.

Thus E [X4] does not exist.

Solution (Exercise 16.2).

Var (X) = E
[
(X − µ)2

]
= E

[
X2 − 2µX + µ2

]
= E

[
X2
]
− 2µE [X] + µ2

= E
[
X2
]
− 2µ2 + µ2 = E

[
X2
]
− µ2.

Solution (Exercise 16.3).

E [X] = E [7] = 7.

Var (X) = E
[
(X − 7)2

]
= E

[
(7− 7)2

]
= 0.

Solution (Exercise 16.4).

E [X] =

∫ 5

0

x
1

5
dx =

1

5

x2

2

∣∣∣∣5
0

=
1

5

1

2

(
52 − 0

)
=

5

2
.

Thus, as expected, the mean of the coordinate function is the midpoint.

E
[
X2
]
=

∫ 5

0

x2
1

5
dx =

1

5

x3

3

∣∣∣∣5
0

=
1

5

1

3

(
53 − 0

)
=

25

3
.

By equation (16.2),

Var (X) =
25

3
− 25

4
=

25

12
.

Now we generalize. Let X have a uniform distribution on [s, t]. An easy
calculation shows that E [X] is the midpoint, i.e. µ = (s+ t)/2.
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Also

Var (X) = E
[
(X − µ)2

]
=

∫ t

s

(u− µ)2
1

t− s
du =

1

t− s

1

3
(u− µ)3

∣∣∣∣t
s

=
1

t− s

1

3

(
(t− µ)3 − (s− µ)3

)
.

Of course t− µ = (t− s)/2 and s− µ = −(t− s)/2. Thus

Var (X) =
1

t− s

2

3

(t− s)3

8
=

(t− s)2

12
. (16.49)

Solution (Exercise 16.5). Let T have an exponential distribution with
parameter λ.

By equation (15.9),

E [T ] =
1

λ
.

By the solution to Exercise 15.5,

E
[
T 2
]
=

2

λ2
.

Hence by equation (16.2),

Var (T ) =
1

λ2
. (16.50)

Solution (Exercise 16.6). Let µ = E [X].

E [X − c] = E [X]− E [c] = µ− c.

Var (X − c) = E
[
((X − c)− (µ− c))2

]
= E

[
(X − µ)2

]
= Var (X) .

Solution (Exercise 16.7). Let µ = E [X].
By linearity,

E [cX] = cµ,

and so

Var (cX) = E
[
(cX − cµ)2

]
= E

[
c2(X − µ)2

]
= c2E

[
(X − µ)2

]
= c2Var (X) .
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Solution (Exercise 16.8). By equation (16.2),

Var (X) = E
[
X2
]
− (E [X] )2 ,

Var ( |X| ) = E
[
|X|2

]
− (E [ |X| ] )2 = E

[
X2
]
− (E [ |X| ] )2 .

Subtracting these equations gives equation (16.11).

Solution (Exercise 16.9).

E
[
(X − c)2

]
= E

[
((X − µ) + (µ− c))2

]
= E

[
(X − µ)2 + 2(X − µ)(µ− c) + (µ− c)2

]
.

Since E [ 2(X − µ)(µ− c) ] = 2(µ− c)E [X − µ ] = 0,

E
[
(X − c)2

]
= E

[
(X − µ)2

]
+ (µ− c)2 = Var (X) + (µ− c)2.

Solution (Exercise 16.10). Let E [Xi] = µ. Using Theorem 12.8,

E
[
(X1 −X2)

2] = E
[
X2

1 − 2X1X2 +X2
2

]
= E

[
X2

1

]
− 2E [X1]E [X2] + E

[
X2

2

]
= 2

(
E
[
X2

i

]
− µ2

)
.

Apply equation (16.2).

Solution (Exercise 16.11).

E [W ] =
1

18
3 +

1

18
(−3) +

2

18
0 = 0.

Var (W ) = E
[
W 2
]
=

1

18
9 +

1

18
9 = 1.

Thus the standard deviation σ for this random variable is one.
The probability thatW deviates from its mean by at least three standard

deviations is

P(|W | ≥ 3σ) = P(|W | ≥ 3) = P(W = 3) +P(W = −3) =
1

9
.

Using equation (16.18), the Chebyshev estimate is

P(|W | ≥ 3σ) ≤ 1

9
.

A perfect estimate!
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The probability that W deviates from its mean by at least 3.1 standard
deviations is

P(|W | ≥ 3.1σ) = P(|W | ≥ 3.1) = 0.

Using equation (16.18), the Chebyshev estimate is

P(|W | ≥ 3.1σ) ≤ 1

9.61
.

Not so good.

Solution (Exercise 16.12). The mean of uniform distribution on an in-
terval is the midpoint, so µ = E [Y ] = 0.

By equation (16.49), the variance of a uniform distribution on an interval
is one-twelfth of the square of the length, so Var (Y ) = 16/12 = 4/3, and
the standard deviation of Y is σ = 2/

√
3.

Notice that 3σ = 2
√
3 > 2.

Thus
P(|Y − µ| ≥ 3σ) = 0.

Solution (Exercise 16.13).

E [ (X − µ)(Y − ν) ] = E [XY ]− µE [Y ]− νE [X] + µν

= E [XY ]− µν − µν + µν = E [XY ]− µν.

Solution (Exercise 16.14).

Proof.

Var

(
n∑

i=1

Xi

)
= E

( n∑
i=1

Xi −
n∑

i=1

µi

)2


= E

( n∑
i=1

(
Xi − µi

))2


Using the distributive law as much as possible,(
n∑

i=1

(
Xi − µi

))2

=
n∑

i=1

n∑
j=1

(
Xi − µi

)(
Xj − µj

)
.
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Hence

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

E
[(
Xi − µi

)(
Xj − µj

)]
=

n∑
i=1

n∑
j=1

Cov (Xi, Xj)

Solution (Exercise 16.15). By equation (16.29),

Var (Sn) = Var (X1) + . . .+Var (Xn) .

By equation (16.5),
Var (Sn) = np(1− p),

in agreement with equation (16.6).

Solution (Exercise 16.16). Since E [X] = E [Y ] = 0 and XY = ±1,

Cov (X, Y ) = E [XY ] = P(XY = 1)−P(XY = −1).

Since X = ±1 and Y = ±1,

{XY = 1} = {X = Y } and {XY = −1} = {X ̸= Y } .

Thus Cov (X, Y ) < 0 tells us that

P(X = Y )−P(X ̸= Y ) < 0.

Solution (Exercise 16.17). We must prove that Cov (c1X + c2Y, Z) =
c1Cov (X,Z) + c2Cov (Y, Z).

Let γ = E [Z]. To save some writing we can use equation (16.21). By
equation (16.21),

Cov (c1X + c2Y, Z) = E [(c1X + c2Y ) (Z − γ)]

= E [c1X (Z − γ) + c2Y (Z − γ)]

= E [c1X (Z − γ)] + E [c2Y (Z − γ)]

= c1E [X (Z − γ)] + c2E [Y (Z − γ)]

= c1Cov (X,Z) + c2Cov (Y, Z) .
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Solution (Exercise 16.18).

Cov (5X − Y + Z,X + 3Y − Z)

= 5Cov (X,X + 3Y − Z)−Cov (Y,X + 3Y − Z)+Cov (Z,X + 3Y − Z) .

By independence, Cov (X, Y ) = 0, Cov (X,Z) = 0, Cov (Y, Z) = 0. Thus

Cov (X,X + 3Y − Z) = Cov (X,X) + 0 + 0 = 1,

Cov (Y,X + 3Y − Z) = 3Cov (Y, Y ) = 6,

and
Cov (Z,X + 3Y − Z) = −Cov (Z,Z) = −3.

Hence
Cov (5X − Y + Z,X + 3Y − Z) = 5− 6− 3 = −4.

Solution (Exercise 16.19). Since (x− y)2 ≥ 0, x2 − 2xy + y2 ≥ 0. Rear-
ranging gives

2xy ≤ x2 + y2.

Also

(x+ y)2 = x2 + y2 + 2xy ≤ x2 + y2 + x2 + y2 = 2x2 + 2y2.

Solution (Exercise 16.20).

First method This is just the statement of Lemma 16.26 with n = 2.

Second method By assumption, E [X2] exists.
Since 1 is a bounded random variable (it’s even finite-range), E [1] exists.
By Lemma 16.28, with Y replaced by 1, E [X] exists.
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Chapter 17

Poisson random variables

Poisson random variables are used in many applications, and have a surpris-
ingly elegant theory.

17.1 A limit for powers

The definition and physical interpretation for a Poisson random variable is
given in the next section. The following calculus fact will be useful.

lim
t→0

(
1 + t

)1/t

= e. (17.1)

The limit in equation (17.1) describes what happens as t approaches 0 but
is not equal to zero. Since 1 + t > 0 when t is close to 0, the expression(
1 + t

)1/t
in the limit makes sense.

To prove equation (17.1), we can use L’Hôpital’s Formula:

lim
t→0

log

((
1 + t

)1/t)
= lim

t→0

1

t
log
(
1 + t

)
= lim

t→0

log
(
1 + t

)
t

= lim
t→0

1
1+t

1
= 1.

Here’s a handy variation on equation (17.1). We will apply this lemma
in the next section.
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Lemma 17.1 (Exponential limit for powers). Suppose that an → ∞,
and bnan → z for some number z. (z can be any real number.) Then

lim
n→∞

(
1 + bn

)an
= ez. (17.2)

Proof. There are two cases.

Case 1 Suppose that z ̸= 0.
Then for large n, anbn is nonzero, so bn is nonzero. Also, since anbn → z,

bn = (anbn)/an → 0.
By equation (17.1), (

1 + bn
)1/bn → e.

Then, since anbn → z, we have(
1 + bn

)an
=
( (

1 + bn
)1/bn )anbn → ez.

This finishes the proof for the case that z ̸= 0.

Case 2 When z = 0, it is possible that bn = 0 holds for infinitely many
values of n. That means that throwing around expressions like 1/bn, as we
did in Case 1, is rather obnoxious.

But we can fix that by breaking up the sequence bn into two subsequences.
Let bnk

be the subsequence consisting of all elements bn which are nonzero.
If there is an infinite subsequence bnk

, we handle that just as in Case 1:(
1 + bnk

)1/bnk → e,

by equation (17.1), and(
1 + bnk

)ank =
( (

1 + bnk

)1/bnk

)ank
bnk → ez.

That takes care of the subsequence bnk
. The rest of the sequence bn is just a

sequence of zeroes. For the elements bn in that subsequence,(
1 + bn

)an
= 1an = 1 → 1 = ez.

So equation (17.2) holds for the whole sequence.

In Appendix G), a different proof of Lemma 17.1 is given, using inequal-
ities for the exponential function.
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17.2 The frantic flipper and the Poisson ap-

proximation

In many experimental situations, an observer records the arrival of a message.
For example, the “message” could be an event recorded by a Geiger counter,
or a telephone call to a sales office, or a request to a computer server. A
natural random variable in this situation is the number N of messages that
arrive during a given time interval. In the present chapter we will derive a
formula for the distribution of this random variable.

Physically, we are thinking of a situation in which there are many inde-
pendent sources which randomly send a message to the observer. Although
there are many sources, we assume that each source emits messages at a low
rate, so the total number of arriving messages is not unbearably large.

In the case of particle emissions recorded by a Geiger counter, the particle
emissions are caused by decay of atoms in a sample of radioactive material.
Each atom has only a small chance of decaying during a given time interval,
but there are many atoms in the sample. In the case of telephone calls to a
sales office, there are many potential customers in the population, but for any
particular potential customer, there is only a small chance that the customer
will be motivated enough to call. And so on.

In order to have get an definite formula, we will consider a very familiar
situation: tossing a coin. Imagine that each source of the message is tossing
a coin to decide whether or not to send a message. The coin has a very
low success probability, but there are many sources, and they are all tossing
coins. We will use this picture in our derivation, but change it slightly.

Instead of many tossers, imagine that we have a single coin tosser, who
tosses very rapidly, and sends a message every time the coin toss brings
success. That seems easier to think about, and should result in the same
type of formula.

Suppose the coin is tossed n times, where n is large. If the coin were fair,
the tosser would almost certainly have an enormous number of successes, and
the number of messages would be hopelessly large.

However, the coin has a very small success probability p.

We are interested in finding the distribution of the random variable N
which records the number of successes.

Of course, everything depends on how large n is, and how small p is.
Suppose these numbers are such that np is approximately equal to a number
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λ which is of “ordinary” size. In this case we may be able to give an estimate
for the probability distribution of the successes which the tosser will obtain.

Our estimate will apply when n is large, so let’s analyze the situation by
finding a limit as n→ ∞.

Lemma 17.2 (The Poisson approximation to the binomial). Consider
a sequence of experiments. These experiments are not repetitions of the same
experiment. Instead, in experiment n, the tosser records the result of n tosses,
using a coin with success probability pn.

Assume that
lim
n→∞

npn = λ, (17.3)

for some number λ.
Let the random variable Sn be the total number of heads obtained during

the experiment with n tosses. Then:

lim
n→∞

P(Sn = k) =
λk

k!
e−λ. (17.4)

As usual, 0! = 1 in this formula. To include the special case λ = 0 in the
formula, we also use the standard convention that 00 = 1.

Proof. Let us think first about the result when no heads are obtained: k = 0.
During experiment n, the probability of failure on a toss is (1 − pn). And
Sn = 0 means all n tosses in experiment n gave failure. Using independence,
P (Sn = 0) = (1− pn)

n. Thus

lim
n→∞

P (Sn = 0) = lim
n→∞

(1− pn)
n = e−λ, (17.5)

using Lemma 17.1. Note that equation (17.5) agrees with equation (17.4).
From now on we consider k > 0.
Using the binomial distribution,

lim
n→∞

P(Sn = k) = lim
n→∞

(
n

k

)
pkn (1− pn)

n−k . (17.6)

Here k is a fixed positive integer, while pn is approaching zero in such a way
that npn → λ.
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We’ll look first at one part of the expression in the limit. Note that(
n

k

)
pkn =

1

k!
n(n−1) . . . (n−k+1)pkn =

1

k!

(
1− 1

n

)
. . .

(
1− k − 1

n

)
(npn)

k .

Remember that k is fixed as we let n → ∞. Each factor 1− i
n
converges to

one, so

lim
n→∞

(
n

k

)
pkn =

λk

k!
. (17.7)

Now let’s get back to evaluating the rest of the expression in equa-
tion (17.6), i.e finding limn→∞ (1− pn)

n−k. Notice that

lim
n→∞

pn(n− k) = lim
n→∞

pnn− lim
n→∞

pnk = λ− 0 = λ.

By Lemma 17.1, with bn = pn and an = n− k,

(1− pn)
n−k → e−λ. (17.8)

Combining our facts, we have shown that equation (17.4) holds.

Exercise 17.1. Prove that those probability limits in equation (17.4), for
k = 0, 1, . . ., add up to 1. That is, prove that

∞∑
k=0

λk

k!
e−λ = 1. (17.9)

You can use the power series expansion of the exponential, namely

ex =
∞∑
k=0

xk

k!
. (17.10)

(Notice that we use the convention 00 = 1 in this power series, when evalu-
ating e0.)

[Solution]
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Exercise 17.2. Suppose that you wish to verify the power series expansion
for ex stated in equation (17.10).

First step: you can use a test for convergence of a series, for example the
ratio test. Use that to prove that the series

∞∑
k=0

λk

k!
(17.11)

is convergent, for every λ.
Second step: remember from calculus that a convergent power series can

be differentiated term by term in the interior of its interval of convergence.
Let f(λ) be sum of the series in equation (17.11). Differentiate that series

with respect to λ, and show that f ′(λ) = f(λ).
Third step: Find the derivative of f(λ)e−λ.
Fourth step: After finding f(0), finish the proof of equation (17.10).
[Solution]

Definition 17.3 (Poisson random variables). Let λ be a nonnegative
real number.

Let N be any random variable such that for all nonnegative integers k,

P(N = k) =
λk

k!
e−λ. (17.12)

We say that N has a Poisson distribution with parameter λ, and we also say
that N is a Poisson random variable with parameter λ.

(Equation (17.9) shows that the this definition makes sense.)

The Poisson distribution is interesting in its own right, and also gives us
a reliable approximation for the binomial distribution when equation (17.4)
is applicable.

Exercise 17.3 (Expected value of a Poisson random variable). Let
N be a Poisson random variable with parameter λ. Prove that

E [N ] = λ. (17.13)
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[Solution]

Exercise 17.4 (Convergence of expectations). Let Sn be the number
of successes in n tosses of a coin with success probability pn. Assume that
limn→∞ npn = λ.

Let N be a Poisson random variable with parameter λ. Prove that

lim
n→∞

E [Sn] = E [N ] . (17.14)

[Solution]

Equation (17.14) complements equation (17.4), and strengthens our con-
fidence that the Poisson distribution is a reliable approximation to the bino-
mial distribution.

Example 17.4 (Bounding ex for x ≥ 0). Suppose that x ≥ 0. We will
show that

ex ≤ 1 + x+
1

2
x2ex. (17.15)

A good approach is to use calculus. One can also use a power series.

Method 1 Let f(x) = ex, g(x) = 1 + x+ 1
2
x2ex.

Then f ′(x) = ex = f ′′(x).
g′(x) = 1 + xex + 1

2
x2ex, so g′′(x) = ex + xex + xex + 1

2
x2ex.

Thus f(0) = 1 = g(0), f ′(0) = 1 = g′(0), and f ′′(x) ≤ g′′(x) for all
nonnegative x. Then for any x ≥ 0,

f ′(x) = 1 +

∫ x

0

f ′′(t) dt ≤ 1 +

∫ x

0

g′′(t) dt = g′(x).

Hence for any x ≥ 0,

f(x) = 1 +

∫ x

0

f ′(t) dt ≤ 1 +

∫ x

0

g′(t) dt = g(x).

The idea of comparing the effect of the accelerations of two cars, when
they start off with equal position and velocity, gives a good picture for this
argument.
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Method 2

ex =
∞∑
k=0

xk

k!
= 1 + x+

∞∑
k=2

xk

k!
= 1 + x+

∞∑
j=0

x2
xj

(j + 2)!
.

Notice that (j + 2)! = (j + 1)(j + 2)(j!) ≥ 2(j!). Hence

ex ≤ 1 + x+
∞∑
j=0

x2
xj

2(j!)
= 1 + x+

1

2
x2

∞∑
j=0

xj

j!
= 1 + x+

1

2
x2ex.

Exercise 17.5 (More than one Poisson success). Let N be a Poisson
random variable with parameter λ. Prove that

P(N > 1) ≤ 1

2
λ2. (17.16)

Note that P(N > 1) = 1 − P(N ≤ 1). One might try setting x = λ in
equation (17.15).

[Solution]

If we think of N as the number of successes, Equation (17.16) tells us
that when λ is small, the chance of more than one Poisson success is small,
even in comparison to the small chance of one Poisson success.

Let’s compare Exercise 17.5 to coin tossing.

Exercise 17.6 (More than one coin toss success). Let W be the num-
ber of successes in m independent Bernoulli trials, each trial having success
probability p. Use subadditivity to justify the following bound:

P(W ) > 1) ≤ m (m− 1) p2

2
. (17.17)

Suggestion: for any indices i < j, let Aij be the event that both trial i and
trial j give success. Note that {W > 1} is equal to the union of all such
events.

[Solution]

In Exercise 17.6, if we assume that mp ≈ λ we see that equation (17.17)
is consistent with equation (17.16).
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Physical settings and Poisson arrivals

We derived the Poisson distribution by thinking about the number of suc-
cesses using a low-probability coin which is tossed very rapidly during a
given time interval. So we might refer to N as (approximately) the number
of successes.

But we mentioned at the beginning of Section 17.2 that there are many
physical situations in which Poisson random variables arise. In the telephone
call example, N is the number of telephone calls that arrive in an office during
a fixed time interval. The office might be an office for telephone sales, or
perhaps a help center. In the computer server example, N is the number of
requests that arrive at a computer server which is connected to a computer
network.

With these settings in mind, a Poisson random variable is often referred
to as “the number of Poisson arrivals”.

An impressive list of other examples for the Poisson distribution is given
in Chapter VI of Feller’s text [2]. The author mentions that the Poisson
distribution does not just apply to random arrival times, but also applies to
random points in the plane or in space, so that “ Stars in space, raisins in
cake, weed seeds among grass seeds, flaws in materials, animal litters in fields
are distributed in accordance with the Poisson law”.

17.3 Poisson approximations on all time in-

tervals

To describe the Poisson approximation for a family of time intervals, we again
imagine a sequence of experiments. We will speak about the experiments
as coin-tossing, but the mathematical formulas apply to any of the other
physical situations just mentioned.

As before, in experiment n a coin with success probability pn is tossed
many times. But we now imagine that the tosses are performed during a
time interval named I. And for any subinterval J of that time interval, we
will keep track of the number of successes during that time interval.

Let |J | denote the length of J . (We’ve used a different notation for length
in the past, but |J | is convenient here.)

The rate of tossing is assumed to be large, and it is assumed to be constant
during the time interval I. For any finite subinterval J of I, when the rate of
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tossing is sufficiently large, the number of tosses during J will be proportional
to the length of J .

Let ℓn(J) be the number of tosses of the coin during J . Thus ℓn(I) is
the total number of tosses during the whole time interval I. In our previous
discussion the total number of tosses in experiment n was equal to n.

Just as before, we assume that the probabilities pn are such that the total
number of tosses times pn converges to a limit. So we assume that ℓn(I)pn
converges to a limit. Let’s call the limit L. In our earlier discussion we
called the limit λ, but now let’s use λ to denote L/ |I|. Thus λ represents an
average rate of success per unit time for the whole experiment.

By definition,

λ = lim
n→∞

ℓn(I)pn
|I|

. (17.18)

Since the number of tosses during any subinterval J is assumed to be
proportional to the length of the interval, it should be approximately true
that ℓn(J)/ |J | = n/ |I|. Thus we also have

λ = lim
n→∞

ℓn(J)pn
|J |

. (17.19)

We can express equation (17.19) in words by saying that λ is the limiting
success rate per unit time during the time of the experiment. The whole
analysis of Section 17.2 applies to the tosses during any time subinterval J .
In the earlier analysis we had npn → λ. Now we have

ℓn(J)pn → λ |J | . (17.20)

Why is that? Well,

ℓn(J)pn =

(
ℓn(J)pn

|J |

)
|J | → λ |J | .

Since equation (17.20) holds, and since ℓn(J) is the number of tosses of the
coin during J , the following definition is appropriate.

Definition 17.5. Let N(J) be a Poisson random variable with parameter
λ |J |. Thus

P(N(J) = k) =
(λ |J |)k

k!
e−λ|J |. (17.21)
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Our earlier discussion of the Poisson approximation now applies for each
time interval J . When the coin is tossed rapidly, we expect that P(N(J) = k)
is a good approximation to the probability that k successes are obtained
during time interval J .

Since we sometimes say that a Poisson random variable counts “arrivals”,
we might say here that λ is the arrival rate per unit time.

In our mathematical model of this situation we picture all the Poisson
random variables N(J) as being defined on the same sample space. We can’t
define such a sample space with mathematical rigor in the present book, but
it is perfectly possible, and makes sense physically.

For example, N([0, 1)) + N([1, 2]) represents the number of Poisson ar-
rivals during the time interval [0, 2]. N([0, 2]) represents the same physical
random quantity, so N([0, 2]) = N([0, 1)) + N([1, 2]) should hold. And it
does hold, in the right mathematical model.

The next lemma states an important property of Poisson random vari-
ables.

Lemma 17.6 (The sum of independent Poisson random variables is
Poisson). Let N1, N2 be independent Poisson random variables with param-
eters λ1, λ2 respectively. Then N1 + N2 is a Poisson random variable with
parameter λ1 + λ2.

To motivate this lemma, think about disjoint time intervals J1, J2 whose
union is an interval. Physically,

N(J1) +N(J2) = N(J1 ∪ J2), (17.22)

since we are just adding up arrivals.

Coin tosses during different time intervals have no influence on each other,
so the random variables N(J1) and N(J2) should be independent.

Thus we expect that the statement of the lemma applies when N1 =
N(J1) and N2 = N(J2), for any intervals J1, J2.

That argument makes the lemma seem plausible. The actual proof is a
short computation.
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Proof. For any k = 0, 1, . . . we have

P (N1 +N2 = k) =
k∑

i=0

P ({N1 = i} ∩ {N2 = k − i})

=
k∑

i=0

P (N1 = i)P (N2 = k − i) =
k∑

i=0

λi1
i!
e−λ1

λk−i
2

(k − i)!
e−λ2

=
k∑

i=0

1

k!

(
k

i

)
λi1λ

k−i
2 e−(λ1+λ2) =

(λ1 + λ2)
k

k!
e−(λ1+λ2). (17.23)

Exercise 17.7. Justify the last two equalities in equation (17.23).
[Solution]

Exercise 17.8. By additivity, E [N1 +N2] = E [N1]+E [N2] must hold when-
ever the expected values exist. Check that this is true using for the random
variables N1, N2 in Lemma 17.6, using equation (17.13).

[Solution]

Exercise 17.9 (The variance of a Poisson random variable). Let N
be a Poisson random variable with parameter λ. Show that

Var (N) = λ. (17.24)

It may be helpful to calculate E [N(N − 1)] first.
[Solution]

Let N1, N2 be independent Poisson random variables with parameters
λ1, λ2 respectively. By Lemma 17.6, N1+N2 is Poisson with parameter λ1+
λ2. Thus equation (17.24) shows that Var (N1 +N2) = Var (N1)+Var (N2),
which of course is consistent with equation (16.29).
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17.4 Waiting for a Poisson arrival

Back to the help center!
Suppose you are sitting at a desk in a help center, stoically waiting by

your telephone for the first call of the day to arrive. Let τ be the random
variable which represents how long you must wait. In the case of radiation
events recorded by a Geiger counter, a similar random variable represents
the time until the first event. We would like to know the distribution of τ .

For example, given a particular time t, what is P(τ > t)? We can answer
this question surprisingly easily, by thinking about N([0, t]). The event that
τ > t is exactly the event that N([0, t]) = 0. Since N([0, t]) is a Poisson
random variable with parameter λt,

P(τ > t) = P(N([0, t]) = 0) = e−λt. (17.25)

The tail of a distribution characterizes the distribution, so equation (17.25)
tells us that τ has an exponential distribution (recall equation 15.2).

Now let’s compare equation (17.25) with coin-tossing.
Consider a sequence of experiments. In experiment n a coin with success

probability pn is tossed again and again during a long time interval I.
As in Section 17.3, we assume that there are ℓn(J) tosses during a time

interval J . For each J , for large n we have by equation (17.19) that

λ ≈ ℓn(J)pn
|J |

,

and so

|J | ≈ ℓn(J)pn
λ

.

Thus we convert from tosses to times by the following approximate formula:

time ≈ number of tosses × pn
λ

. (17.26)

LetW (n) denote the number of tosses required to obtain the first success.
That is, W (n) is the smallest positive integer k such that toss k produces a
success. Then the distribution of W (n) is the geometric distribution (Defi-
nition 13.3). Thus the distribution of W (n) is given by equation the formula
in equation (13.12):

P(W (n) > k) = (1− pn)
k.
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Let T (n) be the time until the first success. Then

P(T (n) > t) ≈ P

(
W (n)pn

λ
> t

)
= P

(
Wn >

λt

pn

)
≈ (1− pn)

λt
pn .

By Lemma 17.2,

P(T (n) > t) ≈ e−λt. (17.27)

Since P(τ > t) = e−λt, this is consistent with the Poisson approximation.

17.5 Solutions for Chapter 17

Solution (Exercise 17.1). Just set x = λ in equation (17.10). Then
multiply both sides by e−λ.

Solution (Exercise 17.2).

Step 1 Ye Olde Ratio Test:

lim
n→∞

λk+1

(k+1)!
e−λ

λk

k!
e−λ

= lim
n→∞

λ

k + 1
= 0 < 1.

So the series converges.

Step 2

f ′(λ) =
d

dλ

∞∑
k=0

λk

k!
=

d

dλ

∞∑
k=1

λk

k!
=

∞∑
k=1

k
λk−1

k!

=
∞∑
k=1

λk−1

(k − 1)!
=

∞∑
j=0

λj

j!
= f(λ).

Step 3 (
f(λ)e−λ

)′
= f ′(λ)e−λ − f(λ)e−λ = 0.

By the Mean Value Theorem of Calculus, the expression f(λ)e−λ is constant,
so f(λ)e−λ = f(0).

Step 4 f(0) = 1.
Since f(λ)e−λ = 1, f(λ) = eλ.
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Solution (Exercise 17.3).

E [N ] =
∞∑
k=0

k
λk

k!
e−λ =

∞∑
k=1

k
λk

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ

=
∞∑
k=1

λ
λk−1

(k − 1)!
e−λ = λ

(
∞∑
j=0

λj

j!
e−λ

)
= λ.

Solution (Exercise 17.4). Let Sn be the number of heads obtained in
experiment n. Then

E [Sn] = npn → λ = E [N ] .

Solution (Exercise 17.5). By equation (17.12),

P(N ≤ 1) = P(N = 0) +P(N = 1) = e−λ + λe−λ = e−λ(1 + λ). (17.28)

By equation (17.15) in Example 17.4,

eλ ≤ 1 + λ+
1

2
λ2eλ.

Thus

1 + λ ≥ eλ − 1

2
λ2eλ.

Applying this inequality to equation (17.28),

P(N ≤ 1) ≥ e−λ

(
eλ − 1

2
λ2eλ

)
= 1− 1

2
λ2.

Thus

P(N > 1) = 1−P(N ≤ 1) ≤ 1

2
λ2.

Solution (Exercise 17.6). To say that {W > 1} occurs is the same as
saying that there are at least two tosses, say toss i and toss j, with i < j,
such that both of those tosses give success. Thus {W > 1} occurs when at
least one of the events Aij occurs. That is why

{W > 1} =
⋃
i<j

Aij.
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By sub-additivity (Theorem 2.25),

P(W > 1) ≤
∑
i<j

P(Aij).

For each i ̸= j, P(Aij) = p2.
The number of pairs i, j such that i < j is exactly the same as the

number of subsets of {1, . . . ,m} containing two elements. Thus there are
Cm

2 = m(m− 1)/2 such subsets, by Lemma 8.1.
Hence

P(W > 1) ≤ m(m− 1)

2
p2,

verifying equation (17.17).

Solution (Exercise 17.7). The second last equality holds by the definition
of
(
k
i

)
:

λi1
i!
e−λ1

λk−i
2

(k − i)!
e−λ2 =

1

i!(k − i)!
λi1λ

k−i
2 e−λ1e−λ2

=
1

i!(k − i)!
λi1λ

k−i
2 e−(λ1+λ2)

=
1

k!

k!

i!(k − i)!
λi1λ

k−i
2 e−(λ1+λ2)

=
1

k!

(
k

i

)
λi1λ

k−i
2 e−(λ1+λ2).

The final equality holds by the binomial theorem (equation (8.5)):

k∑
i=0

(
k

i

)
λi1λ

k−i
2 = (λ1 + λ2)

k.

Solution (Exercise 17.8). By equation (17.13), E [N1] = λ1, E [N2] = λ2,
and, since N1+N2 is Poisson with parameter λ1+λ2, E [N1 +N2] = λ1+λ2.

Solution (Exercise 17.9). By Theorem 14.11,

E [N(N − 1)] =
∞∑
k=0

k(k − 1)
λk

k!
e−λ =

∞∑
k=2

k(k − 1)
λk

k!
e−λ

= λ2
∞∑
k=2

λk−2

(k − 2)!
e−λ = λ2

∞∑
j=0

λj

j!
e−λ = λ2.
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Thus E [N2 −N ] = λ2, and so E [N2] = λ2 + E [N ] = λ2 + λ.
Hence Var (N) = E [N2]− (E [N ])2 = λ2 + λ− λ2 = λ.
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Chapter 18

Normal random variables and
the Central Limit Theorem

18.1 Sums of independent random variables

Let Sn be the number of heads obtained in n tosses of a coin, where the
probability of a head on any toss is p. Then Sn has a binomial distribution
with parameters n, p (see Example 9.9).

We can calculate P(Sn = k) using equation (9.3), but this formula
doesn’t seem to give us a sense of the main features of the distribution,
especially when n is large. We do obtain some insight by calculating E [Sn]
and Var (Sn), but that is only a start. In the present chapter we will go
much farther in understanding the distributions of random variables which
are similar to Sn.

In the experiment of tossing a coin repeatedly, let Xi = 1 if toss i results
in a head, and let Xi = 0 otherwise. Then Sn = X1 + . . . + Xn. The fact
that Sn can be written as a sum of independent random variables is the key
to understanding its distribution.

We saw this already in the calculation of the mean and variance of Sn.
Writing Sn as a sum allowed us to use additivity of expectation, showing
that E [Sn] = E [X1] + . . . + E [Xn]. Similarly, equation (16.29) shows that
Var (Sn) = Var (X1) + . . .+Var (Xn).

More generally, any time you have a random variable Sn such that Sn =
X1 + . . .+Xn, where the random variables X1, . . . , Xn form an independent
sequence, it will be true that E [Sn] = E [X1] + . . .+E [Xn] and Var (Sn) =
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Var (X1) + . . .+Var (Xn).
Notice that the mean and variance of Sn in this situation are completely

determined by the means and variances of the Xi, and do not depend in on
any other properties of the distributions of the random variables Xi.

One can say much more about the distribution of Sn in this situation.
In a very wide range of cases, when Sn is the sum of independent random
variables X1, . . . , Xn, and n is large, the distribution of Sn is approximately
described by a simple analytical formula, and the formula does not depend on
the details of the distributions of the random variablesXi. This is the content
of the Central Limit Theorem (see Theorem 18.17 and Example 18.20).

To express the Central Limit Theorem, we will introduce a new proba-
bility distribution, called the normal distribution. This distribution has a
smooth probability density, whose graph has a characteristic shape, some-
times called a “bell-shaped curve” (see Figure 18.7).

The Central Limit Theorem is a mathematical result, but it is consistent
with experiment. Many physical random variables have distributions which
are approximately normal. Because the normal distribution plays such an
important role, we will develop its properties carefully.

18.2 Plotting the binomial distribution

For coin-tossing, the random variable Sn = X1 + . . . + Xn has a binomial
distribution. The binomial distribution is a very special case, but we can
motivate the Central Limit Theorem by plotting the values of this distribu-
tion.

In the present section we will take p = 1/2, so Sn represents the number
of heads in n tosses of a fair coin.

In Figures 18.1, 18.2 and 18.3, we take a straightforward approach and
graph all values for the probability mass function of Sn, when n = 100,
n = 1000 and n = 10000.

There are n + 1 points in the range of Sn, namely 0, 1, . . . , n. In these
figures we are plotting the points (k, P (Sn = k)), for all k in the range of
Sn.

When the points are close together, they may appear to form a continuous
curve, but that is just a limitation of the picture.

The three graphs, for n = 100, n = 1000, n = 10000 don’t look very
similar, although in each case there is a single maximum at the center of the
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20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 18.1: P(Sn = k) versus k for n = 100.
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Figure 18.2: P(Sn = k) versus k for n = 1000.
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Figure 18.3: P(Sn = k) versus k for n = 10000.

graph, which occurs at the mean value of Sn.
Notice that in each case the only significant probability values are found

relatively near the mean value of Sn. It interesting that the interval in which
the probability is concentrated is so small, relative to the whole range of Sn.
This is especially true as n gets large.

Because the probability is so concentrated, it is hard to see details in the
graphs when n is large. We have to do something about that problem.

For convenience, let us use the name In to refer to the interval where
significant probability values are found in the binomial distribution. We
might refer to that region verbally as the part of the graph where the “main
values” of the distribution are located.

In is not a precisely defined interval but we can see roughly where it is,
by looking at each graph. Let |In| denote the number of points in In, As n
increases, |In| increases along with n, but it evidently increases more slowly
than n.

The smallness of |In| relative to the size of range of Sn makes the graph
of the probability mass function appear more and more sharply peaked, as
n increases.

On the other hand, since the number of points in In is growing larger, we
are not surprised that the maximum value for P(Sn = k) becomes smaller,
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35 40 45 50 55 60 65
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 18.4: Main values of P(Sn = k) for n = 100.
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Figure 18.5: Main values of P(Sn = k) for n = 1000.

389



Chapter 18. Normal random variables and the Central Limit Theorem
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Figure 18.6: Main values of P(Sn = k) for n = 10000.

since the total probability is shared among more points.
It is hard to see the precise shapes of the graphs in Figures 18.1, 18.2

and 18.3, since the interesting part of the graph is being squeezed into a
narrower and narrower spike as n gets large. In order to see more clearly
what is going on, we need to focus our attention on the central region In.

To focus on In let’s choose a precise definition of In. We’ll define a little
bit of terminology, just for this discussion.

Terminology 18.1 (The “main part” of the distribution). Suppose
that we consider a small probability value δ, say δ = .001.

For each n, let ℓ(n) be such that P (Sn < ℓ(n)) is approximately equal to
δ. Since δ is small, the values of Sn are unlikely to be further to the left than
ℓ(n).

Similarly, let u(n) be such that P (Sn > u(n)) is approximately equal to
δ. So the values of Sn are unlikely to be further to the right than u(n).

In our discussion we will refer to the part of the range of Sn which lies
within [ℓ(n), u(n)] as the “main part” of the range.

From the definitions, [ℓ(n), u(n)] is an interval that contains 1 − 2δ of
the probability for this distribution. If δ = .001 then this interval contains
99.8% of the probability for this distribution. So the term “main part” seems
justified.
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The values of ℓ(n) and u(n) will of course change if we choose some other
value for the small probability δ. In our discussion we will stick to using
δ = .001.

Using a computer, we find that [ℓ(n), u(n)] is [35, 65] when n = 100,
[451, 549] when n = 1000, and [4845, 5155] when n = 10000. The number of
points in [ℓ(n), u(n)] is 31 when n = 100, 99 when n = 1000, and 311 when
n = 10000.

Figures 18.4, 18.5 and 18.6, show the graphs of the probability mass
functions only for k in [ℓ(n), u(n)] and n = 100, n = 1000 and n = 10000.
So we are zooming in on the interval [ℓ(n), u(n)]. This is where the action
is, for these distributions.

Restricting our attention to k in [ℓ(n), u(n)] has made it possible to
see the shape of the graph of the probability mass function much more
clearly. It is striking how similar in shape these three graphs are now, for
n = 100, 1000, 10000.

Figure 18.6 looks like the graph of a continuous curve, but of course it is
still obtained by plotting a finite number of points. In the next section we will
introduce a continuous function which has the shape shown in Figure 18.6.

18.3 A function with the right shape

We will derive some properties of the function e−x2
, whose graph is shown in

Figure 18.7. The shape is similar to Figure 18.6. The Central Limit Theorem
will show that this resemblance is not an accident.

Lemma 18.2 (An important integral). The function e−x2
is integrable

on R, and ∫ ∞

−∞
e−x2

dx =
√
π. (18.1)

Proof. The usual way to finding
∫∞
−∞ e−x2

dx would be to evaluate

lim
a→∞

∫ a

−a

e−x2

dx.
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Figure 18.7: the graph of f(x) = e−x2
, a “bell-shaped curve”.

Unfortunately, we can’t even start this procedure. The function e−x2
does

not have an antiderivative in terms of the calculus functions that we know
and love. So we cannot calculate∫ a

−a

e−x2

dx.

To even show that
∫∞
−∞ f(x) dx exists we will have to use a comparison prin-

ciple. If we can find a nonnegative function g such that
∫∞
−∞ g(x) dx exists,

and if e−x2 ≤ g(x) for all x, then
∫∞
−∞ e−x2

dx exists.
In the present situation, the reader can easily check that for any x,

x2 ≥ |x| − 1.

(Consider the case |x| ≤ 1 and the case |x| > 1 separately.)
Since−(|x|−1) ≥ −x2, and since the exponential function is an increasing

function,
e1−|x| ≥ e−x2

holds for all x. And we can certainly use ordinary calculus methods to
show that

∫∞
−∞ e1−|x| dx exists. (Using symmetry, this integral is the same as

2
∫∞
0
e1−|x| dx = 2e

∫∞
0
e−x dx, etc.)
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Hence, by the comparison principle for integrals, we know that
∫∞
−∞ e−x2

dx
exists.

But we want to know the value of this integral, not just that it exists. To
evaluate the integral, we use a trick!

First, we move the problem to R2, by noticing the following convenient
fact.∫ ∫

R2

e−(s2+t2) ds dt =

∫ ∞

−∞

∫ ∞

−∞
e−(s2+t2) ds dt =

∫ ∞

−∞

∫ ∞

−∞
e−s2e−t2 ds dt

=

(∫ ∞

−∞
e−s2 ds

)(∫ ∞

−∞
e−t2 dt

)
=

(∫ ∞

−∞
e−s2 ds

)2

.

We can use polar coordinates to evaluate the integral over R2.∫ ∫
R2

e−(s2+t2) ds dt =

∫ 2π

0

∫ ∞

0

e−r2r dr dθ = 2π

∫ ∞

0

e−r2r dr.

Now we have an integral for which calculus methods work.∫ ∞

0

e−r22r dr = lim
b→∞

∫ b

0

e−r22r dr = lim
b→∞

−e−r2
∣∣∣∣b
0

= lim
b→∞

(
1− e−b2

)
= 1.

(18.2)
Thus (∫ ∞

−∞
e−s2 ds

)2

= π.

Exercise 18.1 (A random variable whose distribution density has
the right shape). Equation (18.1) tells us that∫ ∞

−∞

1√
π
e−y2 dy = 1,

so 1√
π
e−y2 is a probability density.

Let Y be a random variable whose distribution has probability density
1√
π
e−y2 .
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(i) By equation (15.6) (the formula for the expected value of a function of
a random variable),

E
[
Y 2
]
=

∫ ∞

−∞
y2

1√
π
e−y2 dy, (18.3)

provided that the integral on the right exists.

Show that E [Y 2] exists and

E
[
Y 2
]
= 1/2. (18.4)

(Integration by parts is useful here.)

(ii) Show that

E [Y ] = 0. (18.5)

(iii) Show that

E [ |Y | ] = 1√
π
. (18.6)

[Solution]

The density 1√
π
e−y2 used in Exercise 18.1 is an example of a normal

density.

Definition 18.3 (Normal densities and distributions). Let κ,m be real
numbers with κ ̸= 0. Let g be the probability density given by

g(x) =
1√
κ2π

e−
(x−m)2

κ2 . (18.7)

Then g is said to be a normal probability density.
Any distribution with a normal density is referred to as a normal distri-

bution, and any random variable with a normal distribution is said to be a
normal random variable.
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Incidentally, the word “normal” in this definition is a special usage. One
should not draw the conclusion that there is something wrong with a random
variable if it is not a normal random variable.

Normal densities are also referred to as Gaussian densities (in honor of
the mathematician Carl Friedrich Gauss).

Let Y be a random variable like the one in Exercise 18.1, meaning that
the distribution of Y has probability density 1√

π
e−y2 . Exercise 18.2 will show

that a probability density g for the distribution of κY +m is given by equation
(18.7).

The most common way of writing a normal density is actually the one
given below in equation (18.13), which differs slightly from equation (18.7).
It is useful to be able to recognize normal densities which are written in
various forms (see Lemma 18.13).

18.4 Simple transformations of distributions

Before discussing properties of normal distributions, we need to discuss trans-
formations of distributions. This will give some motivation for the definition
of a normal density, and is relevant for another reason: in applications we
often have to transform one normal distribution into another.

In Exercise 18.1 of Section 18.3 we introduced a random variable Y whose
distribution has a probability density 1√

π
e−y2 . We said that the shape of the

graph of this density resembles the shape of the distribution of a binomial
random variable Sn.

Of course, we haven’t defined exactly what is meant by “shape”. But in
this section we note some transformations which preserve the kind of shape
we are interested in.

You’ve likely seen such transformations when sketching graphs of func-
tions in calculus. For example, after you’ve seen the graph of y = x2, you
can easily draw a rough sketch of the graph of y = 57x2, without plotting
any points.

Just to have some terminology, we will speak of shifting a graph (moving
the graph horizontally or vertically), scaling a graph (stretching the graph
horizontally or vertically), and reflecting a graph (vertically or horizontally).

These transformations are carried out in the following ways.

• The graph of a function f is moved to the right by m to obtain the
graph of f(x−m). (If m is negative this actually means that the graph
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is moved to the left.) We refer to this movement as shifting the graph.
(The graph could be moved up by b to obtain the graph of f(x)+b, but
we won’t have occasion to do this for graphs of probability densities.)

• The graph of a function f is stretched horizontally by κ > 0 to obtain
the graph of f(x/κ). And when κ < 0 the graph of f is stretched by
|κ| and reflected horizontally to obtain the graph of f(x/κ).

• The graph of a function f is stretched vertically by κ > 0 to obtain the
graph of κf(x). And of course when κ < 0 the graph of f is stretched
vertically by |κ| and reflected vertically to obtain the graph of κf(x).

Remark 18.4 (Stretching factors). The graph of f(x/100) is 100 times
wider than the graph of f(x). Can you see why?

The reason is that everything happens 100 times more slowly when the
function is f(x/100). Consider moving from x to x+∆. This causes a change
f(x+∆)− f(x) in the value of f . When the function is f(x/100), you will
need to move from 100x to 100x + 100∆ to obtain the same change in the
value of the function. So you have to move 100 times as far to cause the
same change.

When f is a probability density, the function (1/ |κ|)f( (x − m)/κ) is
again a probability density, as you will show in Exercise 18.2.

Exercise 18.2 (Scaling and shifting probability densities). Let X be
a random variable whose distribution has a probability density f . Using
Definition 3.4 and Remark 9.12, check the following.

(i) Let m be any real number. Let W = X +m.

Show that f(w−m) is a probability density for the distribution of W .

(ii) Let κ be any nonzero real number. Let V = κX.

Show that (1/ |κ|)f(v/κ) is a probability density for the distribution of
V .
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(iii) Let κ,m be any real numbers with κ ̸= 0. Let U = κX +m.

Show that (1/ |κ|)f( (u−m)/κ ) is a probability density for the distri-
bution of U .

[Solution]

When f is a probability density, we can sometimes understand the prop-
erties of f more clearly by considering a transformed version of f , such as
(1/ |κ|)f( (x−m)/κ), for suitable values of m and κ.

Lemma 18.5 (General normal by shifting and scaling). Let Y be the
random variable defined in Exercise 18.1, so that a density for the distribution
of Y is the function f defined by

f(y) =
1√
π
e−y2 .

Let W be a random variable whose distribution has density g, where g is
given by equation (18.7) in the definition of a normal density, so that

g(x) =
1√
κ2π

e−
(x−m)2

κ2 .

Then

g(x) =
1

|κ|
1√
π
e−
(
x−m
κ

)2
, (18.8)

and W and κY +m have the same distribution.

Proof. Equation (18.8) is clearly equivalent to equation (18.7).
Equation (18.8) and Exercise 18.2 tell us that g is a density for the dis-

tribution of κY +m.
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Lemma 18.6 (Variance and mean for a scaled and shifted density).
Let f be the density of the distribution of a random variable Y . Suppose
that E [Y ] and Var (Y ) exist.

Let κ,m be numbers with κ ̸= 0. Let h be the function defined by

h(x) =
1

|κ|
f

(
1

κ
(x−m)

)
. (18.9)

Let W be a random variable whose distribution has density h.
Then W and κY +m have the same distribution, and

Var (W ) = κ2Var (Y ) , E [W ] = κE [Y ] +m. (18.10)

Proof. Lemma 18.2 says that W and κY +m have the same distribution.
Lemma 18.6 tells us that

Var (κY +m) = κ2Var (Y ) ,

and by linearity we have

E [κY +m] = κE [Y ] +m.

Corollary 18.7 (Variance and mean for a normal density). Let W be
a random variable whose distribution has density g, where g is defined by

g(x) =
1

|κ|
1√
π
e−
(
x−m
κ

)2
=

1√
κ2π

e−
(x−m)2

κ2 . (18.11)

Then

Var (W ) =
κ2

2
, E [W ] = m. (18.12)

Proof. Let Y be the random variable defined in Exercise 18.1.
By Lemma 18.5, W and κY +m have the same distribution.
We showed in Exercise 18.1 that E [Y 2] = 1/2 and E [Y ] = 0. Thus

Var (Y ) = 1/2.
The conclusion follows from equation (18.10).
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Remark 18.8 (Any scaled and shifted normal is normal!). Lemma 18.5
shows that a random variable X is a normal random variable if and only if
for some real numbers κ,m with κ ̸= 0, we have X = κY +m, where Y is
the random variable defined in Exercise 18.1.

When X = κY +m, suppose we now form a new random variable W =
τX + v, where τ, v are real numbers and τ ̸= 0.

Note that

W = τ(κY +m ) + v = τκY + (τm+ v).

Hence W is also normal.

18.5 Properties of normal densities

Because any normal density involves a function similar to e−x2
, and such func-

tion do not have elementary antiderivatives, one might suspect that compu-
tations with normal densities must be hard. But the calculations performed
in this section are easy, even though dealing with e−x2

is inherently messier
than dealing with e−x.

We have deliberately written several different-looking formulas for normal
densities, because normal densities may be encountered in such forms. But
there is a “best” way to write any normal density, as follows.

Lemma 18.9 (Mean and variance: the best form of a normal den-
sity). Suppose that the distribution of X has a normal probability density g.
Then g can be written as

g(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (18.13)

where
Var (X) = σ2, E [X] = µ. (18.14)

Any normal density is completely determined by its mean and variance.
If W is a normal random variable such that Var (W ) = tVar (X) and

E [W ] =
√
tE [X] + v, then

W and
√
tX + v have identical distributions. (18.15)
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Proof. By Corollary 18.7, with κ2 = 2σ, we have E [X] = µ and

Var (X) =
2σ2

2
= σ2.

These facts give equation (18.14).
Equation (18.14) determines σ in terms of Var (X) and µ in terms of

E [X]. So to show that X and
√
tX + v have identical distributions, it is

sufficient to check that these two random variables have the same variance
and the same mean.

It follows from Remark 18.8 that all normal random variables can be
obtained from any one normal random variable by scaling and shifting. So
there is no reason to think of the distribution of any normal random vari-
able as being special! However, we will pick one normal distribution to be
“standard”.

Definition 18.10 (The standard normal). Let Z be a random variable
with probability density η given by

η(z) =
1√
2π
e−

1
2
z2 . (18.16)

The mean and variance of Z are particularly simple: E [Z] = 0, Var (Z) = 1.
For this reason, Z is given a special title, and is said to be a standard normal
random variable. The density η is called the standard normal density.

The graphs of all normal densities have a similar shape. For what it’s
worth, a graph of the standard normal density is shown in Figure 18.8.

Notice that all derivatives of η exist, so the smooth appearance of the
graph in Figure 18.8 is not an illusion.

Exercise 18.3 (Standardizing a random variable). Let X be a random
variable, with Var (X) = σ2 and E [X] = µ.
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Figure 18.8: The standard normal density η.

Let

Z =
X − µ

σ
. (18.17)

Check that Var (Z) = 1 and E [Z] = 0.
Thus whenever X is normal, (X − µ)/σ is standard normal!
[Solution]

Of course, whenever equation (18.17) holds, we have

X = σZ + µ, (18.18)

which can be convenient.

Example 18.11 (Scaled probabilities for normal deviations). Let X
be any normal random variable, with mean µ and variance σ2. Then X and
σZ + µ have the same distribution. Hence for any interval [a, b],

P(X − µ ∈ [a, b]) = P(σZ + µ ∈ [a, b]) (18.19)

= P(a ≤ σZ + µ ≤ b)

= P

(
Z ∈

[a− µ

σ
,
b− µ

σ

])
.
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In particular, for any c > 0, taking a = µ− cσ and b = µ+ cσ, we have

P(|X − µ| > cσ) = P(|Z| > c). (18.20)

Thus for any σ, we can conveniently calculate the probability of a deviation
by X from its mean by measuring the size of the deviation of X from its
mean in units of σ.

For example,

P(|X − µ| > σ) ≈ 0.31731050786291415,

P(|X − µ| > 2σ) ≈ 0.04550026389635839,

P(|X − µ| > 3σ) ≈ 0.0026997960632601866.

(18.21)

Thus a deviation by one standard deviation is not uncommon, while a
deviation by three standard deviations is rare.

Example 18.12. Let Z be standard normal. We will derive the following
facts.

(i)

E [|Z|] = 2√
2π
, (18.22)

(ii) For each nonnegative integer n, if E [|Z|n] exists, then E
[
|Z|n+2] exists,

and
E
[
|Z|n+2] = (n+ 1)E [|Z|n] . (18.23)

(Since E
[
|Z|0

]
= E [1] = 1, equation (18.23) tells us again that the

variance of a standard normal random variable is equal to 1.)

(iii) E [|Z|n] exists for each nonnegative integer n.

Proof of (i) Let Y be the random variable defined in Exercise 18.1. By
that exercise, Var (Y ) = 1/2, E [Y ] = 0, E [ |Y | ] exists and E [ |Y | ] = 1√

π
.

By Exercise 18.3,
√
2Y is a standard normal random variable. Hence

E [ |Z| ] =
√
2√
π
.

Proof of (ii) For any nonnegative integer n, assume that E [|Z|n] exists.
We will show that E

[
|Z|n+2] exists, and equation (18.23) holds.
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Note that

E [|Z|n] = 1√
2π

∫ ∞

−∞
|t|n e−t2/2 dt = 2

1√
2π

∫ ∞

0

tne−t2/2 dt.

Similarly

E
[
|Z|n+2] = 1√

2π

∫ ∞

−∞
|t|n+2 e−t2/2 dt = 2

1√
2π

∫ ∞

0

tn+2e−t2/2 dt,

in the sense that the expected value exists if the integral exists, and they are
equal.

For any b > 0, using integration by parts we have

1√
2π

∫ b

0

tn+2e−t2/2 dt = − 1√
2π
tn+1e−t2/2

∣∣∣∣b
0

+
n+ 1√

2π

∫ b

0

tne−t2/2 dt

= − 1√
2π
bn+1e−b2/2 + (n+ 1)

1√
2π

∫ b

0

tne−t2/2 dt. (18.24)

By L’Hôpital’s rule, limb→∞ bn+1e−b2/2 = 0. Also,

lim
b→∞

∫ b

0

tne−t2/2 dt =

∫ ∞

0

tne−t2/2 dt.

Letting b→ ∞ in equation (18.24),

lim
b→∞

1√
2π

∫ b

0

tn+2e−t2/2 dt = (n+ 1)
1√
2π

∫ ∞

0

tne−t2/2 dt,

which gives equation (18.23).

Proof of (iii) Since E
[
|Z|0

]
= E [1] = 1 exists, using equation (18.23)

repeatedly shows that E [ |Z|n ] exists for every even nonnegative integer n.

SinceE [ |Z| ] =
√
2√
π
, using equation (18.23) repeatedly shows thatE [ |Z|n ]

exists for every odd nonnegative integer n.

Exercise 18.4. Let Z be standard normal. Show that for any odd positive
integer, E [Zn] = 0.

[Solution]
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Exercise 18.5 (Testing Chebyshev with a normal random variable).
Let X be a normal random variable with mean µ and standard deviation σ.

(i) Find the probability density for the random variable Z defined by

Z =
X − µ

σ
.

(ii) Show that for any c ≥ 1,

P (|X − µ| ≥ cσ) ≤ 2√
2π
e−

c2

2 . (18.25)

(Hint: you can convert equation (18.25) into an inequality involving an
integral of the density of Z, namely

P(|Z| ≥ c) = 2P(Z ≥ c) = 2

∫ ∞

c

η(z) dz = 2

∫ ∞

c

1√
2π
e−

z2

2 dz.

(18.26)

Then notice that for z ≥ 1,

e−
1
2
z2 ≤ ze−

1
2
z2 . (18.27)

This trivial fact can be used to get something that we know how to
integrate.)

(iii) Show that equation (18.25) gives a much sharper inequality than Cheby-
shev (equation (16.18)), for large c.

[Solution]

Lemma 18.13 (Equivalent forms of normal densities). The following
statements are equivalent.

(i) g is a normal density, i.e. for some κ,m with κ ̸= 0,

g(x) =
1√
κ2π

e−
(x−m)2

κ2 . (18.28)
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(ii) g is a probability density such that

g(x) = de−(k2x2+k1x+k0), (18.29)

where k2, k1, k0, d are constants and k2 > 0.

Equations (18.28) and (18.29) hold for the same probability density g when:

k2 =
1
κ2 ,

k1 = −2m
κ2

(18.30)

and also

d =
1√
κ2π

ek0−
m2

κ2 . (18.31)

Proof. Equation (18.28) to Equation (18.29):
Suppose that g given by equation (18.28).

Expanding the square in the exponent, we can rewrite (x−m)2

κ2 as

k2x
2 + k1x+ k0,

where equation (18.30) holds and also

k0 =
m2

κ2
. (18.32)

Thus equation (18.29) holds with d = 1√
κ2π

, and equation (18.31) holds.

Equation (18.29) to Equation (18.28):
If g is given by equation (18.29), we will obtain an equation for g which

is similar to equation (18.28), by “completing the square”. (Readers have
likely seen such manipulations before. Appendix H recalls that procedure.)

Let

κ = 1√
k2

and let

m = −κ
2k1
2

= − k1
2k2

,
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Then expanding (x−m)2 shows that

(x−m)2

κ2
= k2x

2+k1x+
m2

κ2
= k2x

2+k1x+
k21
4k2

= k2x
2+k1x+k0+

(
k21
4k2

− k0

)
.

Hence

de−(k2x
2+k1x+k0)e

−
k21
4k2

+k0 = de−
(x−m)2

κ2 ,

and so

de−(k2x
2+k1x+k0) = de

k21
4k2

−k0e−
(x−m)2

κ2 . (18.33)

Since g is a density, ∫
de−(k2x

2+k1x+k0) dx = 1.

Since 1√
κ2π

e−
(x−m)2

κ2 is a density,∫
1√
κ2π

e−
(x−m)2

κ2 = 1, i.e.

∫
e−

(x−m)2

κ2 =
√
κ2π.

Thus integrating equation (18.33) shows that equation (18.31) holds. Since

de
k21
4k2

−k0 =
1√
κ2π

,

equation (18.33) shows that g satisfies equation (18.28).

Example 18.14 (Identifying densities using the variable parts). Let

h be a probability density given by h(x) = de−(ax
2+bx+c), for some constants

d, a, b, c.

Let h1 be probability density given by h1(x) = d1e
−(a1x2+b1x+c1), for some

constants d1, a1, b1, 1.
Suppose that a1 = a and b1 = b. We will show that then

d1e
−c1 = de−c, and so h1 = h. (18.34)

Indeed, since
∫
h = 1 =

∫
h1,∫

de−ce−(ax
2+bx) =

∫
d1e

−c1e−(a1x
2+b1x).
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That is,

de−c1

∫
e−(ax

2+bx) = d1e
−c1

∫
e−(a1x

2+b1x),

and the two integrals in this equation are identical, so equation (18.34) holds.

Remark 18.15 (Absorbing a constant). Suppose that a probability den-
sity h is written as:

h(x) = de−(ax
2+bx+c), (18.35)

where d, a, b, c. are constants. As we have noticed, we can write

g(x) = re−(ax2+bx),

where the r = de−c. In this situation one sometimes says that we have
absorbed the constant c into the constant r.

18.6 The Central Limit Theorem

Suppose that a random variable Sn is equal to the sum of n independent
random variables, where n is a large number. The Central Limit Theorem
says that under the right circumstances, a normal distribution can be used as
a good approximation to the distribution of Sn. This type of approximation
is suggested by the plots we made of various binomial distributions, in Sec-
tion 18.2. The actual statement of the Central Limit Theorem makes a giant
leap in generality from those binomial examples. We’ll state this theorem
carefully and then show more examples.

First we need a simple definition.

Definition 18.16 (Identically distributed random variables).
Let X1, . . . , Xn be random variables defined for some probability model.

If all the random variables Xi have the same distribution, we say that the
random variables in the sequence are identically distributed.

A sequence of random variables which is both independent and identically
distributed is said to be an IID sequence of random variables.
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The random variables Xi in Section 18.1, which give the results of a
sequence of coin tosses, are a typical example of an IID sequence.

The idea of the Central Limit Theorem is sometime expressed by saying
that any physical random variable whose value is the sum of “many small
independent effects” should have a distribution which is similar to a normal
distribution.

A mathematical special case of “many independent effects” is an IID
sequence X1, . . . , Xn. We assume that E [Xi] and Var (Xi) exist. The basic
form of the Central Limit Theorem says that for such a sequence, if n is large
enough then the random variable Sn = X1+. . .+Xn has a distribution which
is similar to a normal distribution. That is, if n is large enough, and if Wn

is a normal random variable with the same mean and the same variance
as Sn, then for every interval J we have

P (Sn ∈ J) ≈ P (Wn ∈ J) . (18.36)

The formal statement is as follows.

Theorem 18.17 (The Central Limit Theorem). Let X1, . . . , Xn be an
IID sequence of random variables. Let Sn = X1 + . . .+Xn.

Suppose that each Xi has mean µ and has variance σ2 > 0. By additiv-
ity of expectation, the mean of Sn is nµ, and equation (16.29) shows that
Var (Sn) = nσ2.

Let Wn be a normal random variable such that the mean and variance of
Wn are the same as the mean and variance of Sn.

For any ε > 0, there exists n0, such that for all n ≥ n0,

| P (Sn ∈ J)−P (Wn ∈ J) | < ε, (18.37)

for all intervals J (including both finite intervals J and infinite intervals J).

A proof will not be given for the Central Limit Theorem. Figure 18.9
suggests why it might be true.

The Central Limit Theorem is sometimes referred to briefly as the CLT.
It should be mentioned that the CLT can be expressed in various ways,
and readers may find different-looking statements in other books. We’ll also
restate the theorem later ourselves, in Theorem 18.27.
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460 480 500 520 540

0.000

0.005

0.010

0.015

0.020

0.025
binom pmf
normal pdf

Figure 18.9: Comparing the binomial distribution (p = .5, n = 1000) with
the normal density having the same mean and variance (mean = np, variance
= np(1− p)).

Remark 18.18 (Approximation, but no rate of convergence). We
know how to compute numerical probabilities using normal densities, so The-
orem 18.17 shows us how to compute an approximation for P(Sn ∈ J) which
is close to within an error bound of ε, for every interval J .

The approximation holds for every interval J for the same n, if n is large
enough. But the statement of this theorem does not tell us how large n must
be.

So, despite its formality, equation (18.37) is not more specific than equa-
tion (18.36).

From the standpoint of applications, we tend to expect such limitations.
General mathematical theorems tell us what sort of behavior to look for, but
precise error estimates may not be easy to come by.

One theoretical estimate is given by the Berry–Esseen Theorem, which
says that (under slightly more restrictive conditions than Theorem 18.17)
there exists a constant C such that if Wn is normal and has the same mean
and variance as Sn, then

|P(Wn ∈ J)−P(Sn ∈ J)| ≤ C√
n

for every interval J . But we won’t take time to present such results.
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Remark 18.19 (Do we need identically distributed random vari-
ables in the CLT?). In Theorem 18.17 it is assumed that the random
variables X1, X2, . . . all have the same distribution. This is convenient as a
simple mathematical assumption, but it is not necessary.

Remember that it was suggested earlier that any physical random vari-
able whose value is the sum of many small independent effects should have
a distribution which is similar to a normal distribution. In a real-world situ-
ation, it doesn’t seem natural that many independent effects would all have
the same probability distribution.

There are more general forms of Theorem 18.17, in which the random
variables X1, X2, . . . are independent but do not all have the same distribu-
tion. In this situation one must impose an extra mathematical condition to
obtain the result of the Central Limit Theorem. Very roughly, the idea is
that the sum for Sn should be made up of terms which are comparable in
size.

We won’t pursue this topic mathematically, but such theorems make us
more confident that the approximation described in the Central Limit The-
orem is valid in many situations.

Example 18.20 (A basic approximation example). Let X1, . . . , X10000

be a sequence of independent random variables.
Suppose that the distribution of each Xi has a probability density f ,

where f(x) = cx2 on the interval [−1, 2], and f is zero everywhere on the
complement of [−1, 2].

The constant c is of course determined by the fact that
∫
f = 1.

Let n = 10000. Our goal in this example to find the approximate value
of P(Sn < 12600).

The Central Limit Theorem suggests a way to do this, by means of a
normal random variable Wn with the same mean and variance as Sn.

So we need to find the mean and variance of Sn.
Since

∫
f = 1,

1 =

∫ 2

−1

cx2 dx =
cx3

3

∣∣∣∣2
−1

=
8c

3
+
c

3
= 3c.
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Thus c = 1/3.
Then

E [Xi] =

∫ 2

−1

xcx2 dx =
cx4

4

∣∣∣∣2
−1

=
16c

4
− c

4
=

15c

4
=

5

4
.

Also

E
[
X2

i

]
=

∫ 2

−1

x2cx2 dx =
cx5

5

∣∣∣∣2
−1

=
32c

5
+
c

5
=

33c

5
=

11

5
.

Thus

Var (Xi) =
11

5
−
(
5

4

)2

=
11

5
− 25

16
=

176− 125

80
=

51

80
.

Thus, for any n, Var (Sn) = 51n/80, while E [Sn] = 5n/4.
Now we are ready to use the Central Limit Theorem.
For any n, let Wn have a normal distribution, with Var (Wn) = 51n/80

and E [Wn] = 5n/4.
Because of the Central Limit Theorem, we know that as n becomes large,

the distributions of Wn and Sn become similar.
In particular, when n is large, P(Wn < a) and P(Sn < a) are close, for

all a.
We will try to use this approximation when n = 10000, and hope that

P(Sn < 12600) ≈ P(Wn < 12600).

We can calculate P(Wn < 12600) using a computer program.
Some programs have a predefined function for this purpose, but we won’t

assume that we have such a program. Instead, we’ll work with the normal
density and then ask a computer to perform a routine numerical integration.

Let h be a probability density for the distribution ofWn, with n = 10000.
Then

P(Wn < 12600) =

∫ 12600

−∞
h.

What is the formula for h?
Let m = E [Wn] = E [Sn] = 12500, and let v = Var (Wn) = Var (Sn) =

10000 · (51/80) = 125 · 51. By Lemma 18.13, a valid density h is given by

h(u) =
1√
v

1√
2π
e−(u−m)2(/2v).
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Using a computer program to perform the numerical integration, we find∫ 12600

−∞
h =

∫ 12600

−∞

1√
125 · 51

1√
2π
e−(u−12500)2/(2·125·51) du = 0.8947967735713137.

So that’s our approximation:

P(Sn < 12600) ≈ 0.8947967735713137. (18.38)

See Figure 18.10. P(Wn < 12600) is the area of the shaded region under the
graph. Note that this picture is heavily scaled. If we used the same scale on
the vertical and horizontal axes, then the graph would be extremely low in
comparison to its width!

See Remark 18.30 for further discussion of scaling normal densities.

12300 12400 12500 12600 12700
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Figure 18.10: Graph of the density of Wn, showing P(Wn < 12600)

Checking the answer

How accurate is the approximation in equation (18.38)? We are not going to
discuss theoretical upper bounds for the error. But we’re going to carry out
a numerical check.
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Using a computer, we will simulate the independent sequence X1, . . . , Xn,
with n = 10000, getting a sequence of values v1, . . . , vn. The sum v1+ . . .+vn
is a sample value for Sn.

Call this sample value sn. If sn < 12600, we will say that the event
{Sn < 12600} occurred in the simulation.

We’ll ask the computer to perform that whole procedure 1000000 times!
The fraction of the those times that {Sn < 12600} occurs will be an esti-

mate for P(Sn < 12600), based on the frequency interpretation of probability.
We can compare this estimate with the one given in equation (18.38).
Doing these simulations sounds like a lot of work. But the work is done

by the computer, not us. It does take some time.
Incidentally, Section I.4 discusses an interesting transformation that makes

the task easier for the computer.
In any case this simulation procedure is slower than using the Central

Limit Theorem. There seems to be a trade-off. We have to think harder
about concepts in order to use the Central Limit Theorem, but there is less
computational work.

Doing the simulation 1000000 times, and calculating the frequency, gives
the following estimate:

P(Sn < 12600) ≈ 0.894881.

Is that better or worse than the estimate in equation (18.38)? Your author
doesn’t know. But at least the two estimates seem consistent.

We have focused here on a numerical example as a way of understanding
the statement of the Central Limit Theorem. But it should be noted that the
Central Limit Theorem is not just a tool for obtaining approximations. It
also helps us to understand the general behavior of sums of random variables.
In modern probability theory that is likely the most important application
of this theorem.

Exercise 18.6. Let X1, . . . , X10000 be a sequence of independent random
variables. For each i, P(X = −1) = 2

3
, P(X = 2) = 1

6
, P(X = 5) = 1

6
.

Find a reasonable approximation to the value of P(S10000 < 5200).
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Your final answer can be in the form of the integral of an explicitly given
function.

[Solution]

A slightly different formulation of the Central Limit Theorem will be given
in Theorem 18.27. Before that theorem is stated, the next section introduces
some convenient terminology for describing probability distributions on the
real line.

18.7 Cumulative distribution functions

Definition 18.21 ( The cumulative distribution function of a ran-
dom variable). Let X be a random variable. The cumulative distribution
function FX for X is the function on the real line defined by

FX(a) = P(X ≤ a). (18.39)

Often we refer to a cumulative distribution function simply as a “distri-
bution function”, or use the acronym CDF.

Recall that the tail of the distribution of X is defined as P(X > t),
considered as a function of t (Definition 14.12). Thus the tail function is
equal to 1− FX , and contains exactly the same information as FX .

Example 18.22.
Let X be the random variable whose distribution is uniform on [a, b] and

zero on the rest of the real line.
For any t, FX(t) = P(X ≤ t). Thus

FX(t) =


0 if t < a,
t−a
b−a

if a ≤ t ≤ b,

1 if t > b.

Figure 18.11 shows the graph of FX for the case a = 2, b = 7.
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1 2 3 4 5 6 7 8

0.5

0.0

0.5

1.0

Figure 18.11: CDF for X when the distribution of X is uniform on [2, 7]

Example 18.23.
Let Z be a standard normal random variable. Then

FZ(t) =

∫ t

−∞

1√
2π
e−

z2

2 dz.

FZ increases over the whole real line, with limt→−∞ FZ(t) = 0 and limt→∞ FZ(t) =
1. See Figure 18.12.

Suppose that (in the days before computers) you wanted prepare a to
table listing the CDF of a random variable X. You can’t list the value of
FX(a) for every real number a, but at least you could list a representative set
of values, so that users could find approximations to what they need. That’s
the way mathematical tables work.

But could you prepare a table which approximately listed the whole distri-
bution of X, in the same way? Your list would have to show the approximate
value of P(X ∈ S) for every subset S of R. This seems hopelessly difficult.

Even preparing a table listing P(X ∈ (a, b]) for all intervals (a, b] seems
unbearable. However, the next exercise shows that you can at least avoid
that task.
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Figure 18.12: CDF for the standard normal

Exercise 18.7 (Interval probabilities from the CDF). Show that the
following statement follows from the definition of a CDF.

Let X be a random variable. For any points a, b in R with a ≤ b,

P(a < X ≤ b) = FX(b)− FX(a). (18.40)

[Solution]

It is interesting that the CDF of a random variable determines the whole
distribution. That is stated in the next lemma, but the hard part of the
proof is omitted.

Lemma 18.24 (Interval probabilities characterize distributions).
The following statements are equivalent.
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18.7. Cumulative distribution functions

(i) X and Y have the same probability distribution.

(ii) P(X ∈ (a, b]) = P(Y ∈ (a, b]) for intervals (a, b].

(iii) FX = FY .

Proof. As usual, we write =⇒ to mean “implies”.

(i) =⇒ (ii) and (i) =⇒ (iii) This is immediate from the definition of
the distribution.

(ii) =⇒ (i) This part of the proof is omitted! The ideas are not deep but
require technicalities from real analysis.

(iii) =⇒ (ii) This follows from equation (18.40).

We can use cumulative distribution functions to express the Central Limit
Theorem in a convenient form. One more definition will also be helpful for
that particular purpose.

Definition 18.25. For any random variable X, define the function GX on
R by

GX(a) = P(X < a). (18.41)

Since {X ≤ a} = {X < a} ∪ {X = a}, we see by additivity that

FX(a) = GX(a) +P(X = a).

So the GX notation is not really needed, it’s just convenient here.
If it happens that there is a density f for the distribution of X, then

GX(a) =

∫ a

−∞
f = FX(a),

so FX and GX are the same function in this case.
For general distributions, it is not hard to show that we always have

GX(a) = FX(a) at any point a where FX is continuous.
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The notation in Definition 18.25 is not standard, but it’s convenient for
discussing the CLT, because FX and GX together allow us to describe prob-
abilities P(X ∈ J) briefly, for any finite or infinite interval J . The following
lists all the cases, probably in excessive detail.

P(X ∈ (a, b]) = FX(b)− FX(a),

P(X ∈ [a, b)) = GX(b)−GX(a),

P(X ∈ (a, b)) = GX(b)− FX(a),

P(X ∈ [a, b]) = FX(b)−GX(a),

P(X ∈ (−∞, b]) = FX(b),

P(X ∈ (−∞, b)) = GX(b),

P(X ∈ (a,∞)) = 1− FX(a),

P(X ∈ [a,∞)) = 1−GX(a).

(18.42)

All the equalities in equation (18.42) are easy consequences of the definitions,
just as in the proof of equation (18.40).

Appendix I has more information about CDF’s and their applications.

18.8 Rephrasing the CLT

Sometimes people prefer to think about a standard normal random variable,
rather than a general normal random variable. In the days before computers,
when books of mathematical tables were common, it was almost essential
to convert a probability calculation for a normal random variable into a
probability calculation for a standard normal distribution. Though no longer
needed for computation, this type of conversion can still clarify our thinking,
as we will see in Theorem 18.27.

Remark 18.26 (Standardizing random variables and events). Let X
be a random variable with mean µ and standard deviation σ.

Let

Z =
X − µ

σ
, i.e. X = σZ + µ.

By Exercise 18.3, Z has mean zero and variance one. We will refer to Z as
the standardized version of X.
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It is easy to transform an event such as {a ≤ X ≤ b} into a similar event
for Z:

{a ≤ X ≤ b} =

{
a− µ

σ
≤ X − µ

σ
≤ b− µ

σ

}
. (18.43)

Thus

P(a ≤ X ≤ b) = P

(
a− µ

σ
≤ X − µ

σ
≤ b− µ

σ

)
(18.44)

And if X happens to be normal, then by Remark 18.8 we know that Z
is also normal. Thus by standardizing we can convert any normal random
variable into a standard normal random variable. And we can convert any
probability calculation for X into a probability calculation for Z. Sometimes
that is useful.

Our first version of the Central Limit Theorem was Theorem 18.17. Here’s
a version of the Central Limit Theorem with a standardization step built
in. This theorem is stated using cumulative distribution functions. Using
cumulative distribution functions lets one talk about functions rather than
intervals, which may be convenient, but we could easily avoid CDF termi-
nology.

Theorem 18.27 (The Central Limit Theorem with built-in stan-
dardizing). Let X1, . . . , Xn be an IID sequence of random variables. Let
Sn = X1 + . . .+Xn.

Suppose that each Xi has mean µ and variance σ2 > 0. Then the mean
of Sn is nµ, and variance of Sn is nσ2.

Let Z be a standard normal random variable.
Then for any sequence an of real numbers,

FSn(an)− FZ

(
an − nµ√

nσ

)
→ 0 and GSn(an)−GZ

(
an − nµ√

nσ

)
→ 0. (18.45)

We use the notations of Definitions 18.21 and 18.25 in equation (18.45).
Of course FZ and GZ are the same function, since

P

(
Z <

a− nµ√
nσ

)
=

1√
2π

∫ a−nµ√
nσ

−∞
e−

z2

2 dz = P

(
Z ≤ a− nµ√

nσ

)
,
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Remark 18.28 (Sequences versus ε statements). In the statement of
Theorem 18.27, equation 18.45 is asserted to hold for any sequence an.

Readers who are familiar with convergence arguments can easily show
that this assertion is equivalent to saying that for any ε > 0, there exists
some n0 such that for all n ≥ n0, for every real number a,∣∣∣∣FSn(a)− FZ

(
a− nµ√

nσ

)∣∣∣∣ < ε,

∣∣∣∣GSn(a)−GZ

(
a− nµ√

nσ

)∣∣∣∣ < ε. (18.46)

Which formulation is preferable is a matter of taste, but talking about se-
quences an seems more convenient for our applications.

Proving that the two forms of the CLT are equivalent

We didn’t prove Theorem 18.17, but it’s not hard to see that Theorem 18.27
and Theorem 18.17 are equivalent.

To show that, let Wn =
√
nσZ + nµ. Then Wn is normal and has the

same mean and variance as Sn, and, just as in equation (18.44),

P

(
Z ≤ a− nµ√

nσ

)
= P

(
Wn ≤ a

)
, and P

(
Z <

a− nµ√
nσ

)
= P

(
Wn < a

)
.

Note that

FSn(a) = P(Sn ≤ a) and FZ

(
a− nµ√

nσ

)
= P

(
Z ≤ a− nµ√

nσ

)
= P(Wn ≤ a).

Similarly

GSn(a) = P(Sn < a) and GZ

(
a− nµ√

nσ

)
= P

(
Z <

a− nµ√
nσ

)
= P

(
Wn < a

)
.

It follows that equation (18.46) just states two special cases of equation
(18.37)!

On the other hand, if equation (18.46) holds for some error ε then, using
equation (18.42), it’s not hard to show that the inequality in equation (18.37)
holds for every interval J with ε replaced by 2ε.
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So the two versions of the Central Limit Theorem imply each other.
□

Since Theorem 18.27 is equivalent to Theorem 18.17, one might wonder
if there is any benefit in having two versions of the same result.

A minor benefit is that statements of the Central Limit Theorem in other
textbooks may be more similar to Theorem 18.27 than to Theorem 18.17.
More significantly, readers might consider which version of the Central Limit
Theorem can be applied more easily in the following exercise.

Exercise 18.8. In the setting of Theorem 18.27, suppose that the random
variables Xi have mean zero and variance σ2. Let an be a sequence of points
of R. Find limn→∞P(Sn ≤ an) in each of the following cases.

(i) an → 0.

(ii) an → 5.

(iii) an = 2
√
n. Your answer in this part should be left as an integral.

(iv) Let an be as in part (iii), and let bn = 5an. Find

lim
n→∞

P(Sn ∈ [an, bn]).

[Solution]

Example 18.29. In the setting of Theorem 18.27, let an and bn any se-
quences of numbers. We would like to know whether

P(Sn ≤ an) ≈ P(Sn ≤ bn)

when n is large.
In other words, we would like to know whether or not

lim
n→∞

(
P(Sn ≤ an)−P(Sn ≤ bn)

)
= 0. (18.47)
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Using CDF notation, our question is whether or not

lim
n→∞

(
FSn(an)− FSn(bn)

)
= 0. (18.48)

Let

un =
an − nµ√

nσ
, vn =

bn − nµ√
nσ

.

By equation (18.45),

FSn(an)− FZ(un) → 0 and FSn(bn)− FZ(vn) → 0.

Hence
FSn(an) = FZ(un) + stuff,

where stuff → 0. Similarly

FSn(bn) = FZ(vn) + stuff,

where stuff → 0. Thus

FSn(an)− FSn(bn) = FZ(un)− FZ(vn) + stuff,

where stuff → 0.
It follows that FSn(an)−FSn(bn) → 0 if and only if FZ(un)−FZ(vn) → 0.

That is, equation (18.48) is equivalent to the statement that

lim
n→∞

(
FZ(un)− FZ(vn)

)
= 0. (18.49)

To see the conditions under which equation (18.49) will hold, we can
contemplate the graph of FZ , shown in Figure 18.12.

If un → −∞ and vn → −∞, then clearly equation (18.49) holds, since
FZ(un) → 0 and FZ(vn) → 0. The same is true if un → ∞ and vn → ∞,
since then FZ(un) → 1 and FZ(vn) → 1.

Otherwise, the graph of FZ strongly suggests that equation (18.49) holds
when (and only when) un − vn → 0. This condition is often something that
can be checked.

For example, suppose that bn = an+10000000n1/4, so that bn− an → ∞.
It might not be clear whether equation (18.47) holds. However, it is easy to
see that un − vn → 0, and so equation (18.47) does indeed hold.
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Exercise 18.9. In Example 18.29, we claimed that equation (18.49) holds
when un − vn → 0. This claim is supported by the graph of the CDF. To
justify the claim, show that for any u ≤ v,

FZ(v)− FZ(u) =

∫ v

u

1√
2π
e−

z2

2 dz ≤ 1√
2π

(v − u).

[Solution]

Exercise 18.10 (Expressing the Central Limit Theorem as a stan-
dardized limit). In the setting of Theorem 18.17 or Theorem 18.27, prove
that for any real number a,

lim
n→∞

P

(
Sn − nµ√

nσ
≤ a

)
= P(Z ≤ a), (18.50)

where Z is standard normal.

(Sometimes the Central Limit Theorem is expressed as equation (18.50).
This form is indeed equivalent to Theorem 18.17 and Theorem 18.27, but
seems less convenient for some applications.)

[Solution]

Remark 18.30 (Natural scaling). Equation (18.50) seems natural if we
are trying to picture the distribution of Sn, as n→ ∞.

For example, by replacing Sn by the centered random variable Sn−nµ, we
are trying ensure that the distribution stays in the picture. By subtracting
the mean we keep the distribution from drifting off to ∞ or −∞ as n→ ∞.

However, the distribution of Sn−nµ still gets wider and wider as n grows,
so it is still escaping from our view. To prevent this spreading we standardize
Sn − nµ, i.e. we divide by

√
nσ, before stating the limit in equation (18.50).
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18.9 Checking the Central Limit Theorem for

another binomial distribution

Recall that we started our discussion of the Central Limit Theorem by noting
the shape of the graphs in Figures 18.4, 18.5 and 18.6. These graphs are
only a tiny example, since they only deal with binomials for which p = .5.
Theorem 18.17 of course applies to every binomial distribution, and to an
enormous zoo of other distributions.

Although we won’t do much testing of the Central Limit Theorem, we
can at least try another binomial distribution. Let’s graph some binomial
distributions for p = .99. This value of p favors success in an extreme way,
so it certainly changes the shape of the binomial distributions. The Central
Limit Theorem asserts that, with proper scaling, the binomial distributions
will still become approximately normal as n grows large.

Recall the interval [ℓ(n), u(n)] defined in Terminology 18.1, which contains
most of the probability in the distribution. With p = .99, we compute that
µ = 99 and [ℓ(n), u(n)] = [95, 100] when n = 100, µ = 990 and [ℓ(n), u(n)] =
[979, 998] when n = 1000, µ = 9900 and [ℓ(n), u(n)] = [9868, 9929] when
n = 10000.

Graphs showing the main parts of the binomial distribution, for p = .99
and n = 100, 1000, 10000, are given in Figures 18.13, 18.14 and 18.15.

Things look bad when n = 100! However, we can see that the shape of
the graph seems to be somewhat similar to the shape of a normal density
when n = 1000, and is more similar when n = 10000, in rough agreement
with the Central Limit Theorem.
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Figure 18.13: Main values of P(Sn = k) for n = 100, p = .99.
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Figure 18.14: Main values of P(Sn = k) for n = 1000, p = .99
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Figure 18.15: Main values of P(Sn = k) for n = 10000, p = .99
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18.10. Sums of independent normals

18.10 Sums of independent normals

This section assumes knowledge of the convolution operation for functions,
defined in Section J.5.

Definition 18.31 (The mean zero normal densities). In equation (18.16)
we defined the density η, the standard normal density with mean zero and
variance one.

For any t > 0, define ηt by

ηt(x) =
1√
t
η( x√

t
) =

1√
2πt

e−
x2

2t . (18.51)

By Corollary 18.7, ηt is a density for a random variable with mean zero and
variance t.

Of course, η1 = η.

Lemma 18.32. Let Za be a random variable with mean zero and variance
a, and let Zb be a random variable with mean zero and variance b. Suppose
that Za and Zb are independent.

Then Za + Zb is normal, with mean zero and variance a+ b. Also

ηa ∗ ηb = ηa+b. (18.52)

Here ηa ∗ ηb is the convolution of the functions ηa, ηb.

Proof. As noted in Definition 18.31, ηa is a density for Za and ηb is a density
for Zb.

Therefore ηa ∗ ηb is a density for Za + Zb, by Section J.5.
We will perform a calculation to show that ηa ∗ ηb is a normal density.

This will show that Za + Zb is normal, and the rest will follow.
By equation (J.13),

ηa ∗ ηb(z) =
∫ ∞

−∞

1√
2πa

e−
t2

2a
1√
2πb

e−
(z−t)2

2b dt.
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Thus

ηa ∗ ηb(z) =
1√
2πa

1√
2πb

∫ ∞

−∞
e−

t2

2a
−
(z−t)2

2b dt (18.53)

=
1√
2πa

1√
2πb

∫ ∞

−∞
e−v dt,

where

v =
t2

2a
+

(z − t)2

2b
=
t2

2a
+

1

2b

(
z2 − 2zt+ t2

)
. (18.54)

Thus

v = t2
(

1

2a
+

1

2b

)
− z

b
t+ stuff,

where the “stuff” does not involve t, and is a quadratic polynomial in z.
After completing the square for the variable t, we see that

v = α1(t− α2z)
2 + stuff,

where α1, α2 are constants, α1 > 0 and the “stuff” does not involve t, and is
a quadratic polynomial in z. Thus∫

e−v dt = e− stuff

∫
e−α1(t−α2z)2 dt.

Letting s = t− α2z, we can see that∫
e−α1(t−α2z)2 dt =

∫
e−α1s2 ds = α3,

where α3 is some constant which does not depend on z.
So we know that

ηa ∗ ηb = de−k2z2−k1z−k0 ,

for some constants k2, k1, k0, d. We also know that the convolution of proba-
bility densities is again a probability density, by Section J.5. And so d cannot
be zero, since the integral of a density must be equal to one.

If k2 were not a positive number,
∫∞
−∞ de−k2z2−k1z−k0 dz could not exist.

But it does, and so we conclude that k2 > 0.
By Lemma 18.13, de−k2z2−k1z−k0 is a normal density, i.e. ηa∗ηb is a normal

density.
Hence Za + Zb is a normal random variable.
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Since Za and Zb are mean zero random variables, Za +Zb has mean zero.
Also, by Corollary 16.16, Var (Za + Zb) = Var (Za) +Var (Zb) = a + b.

Since we know that the mean and the variance of Za + Zb match the mean
and variance of ηa+b, we know that the distribution of Za + Zb has density
ηa+b.

Lemma 18.32 implies:

Theorem 18.33 (A sum of independent normals is normal). Let X
and Y be normal random variables. If X and Y are independent then X+Y
is normal.

Proof. Lemma 18.32 takes care of the mean zero case.
Thus X − E [X] + Y − E [Y ] is normal.
The random variable X + Y is obtained from X −E [X] + Y −E [Y ] by

shifting (adding E [X]+E [Y ]). Since a shifted normal distribution is normal,
X + Y is normal.

Why should we have expected that Theorem 18.33 holds?

Much as in the case of the Poisson distribution (Lemma 17.6), our picture of
the normal distribution as an approximation to a sum of independent random
variables suggests that X + Y must be normal, even without a proof. One
can use the following argument.

We can think of X as statistically similar to a sum of many small inde-
pendent random variables U1, . . . , Un.

Similarly we can think of Y as statistically similar to a sum of small
independent random variables V1, . . . , Vm.

We can imagine that the whole sequence U1, . . . , Un, V1, . . . , Vm is indepen-
dent. This is because we can think of measuring values of X for repetitions
of an experiment, and measuring values for Y for repetitions of a completely
different experiment. The physical motivation for the Central Limit Theo-
rem tells us that the distribution of U1 + . . .+ Un + V1 + . . .+ Vm should be
approximately a normal distribution. Thus the statistics for X + Y should
be that of a normal distribution.
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18.11 Solutions for Chapter 18

Solution (Exercise 18.1).

(i)

E
[
Y 2
]
=

∫ ∞

−∞
y2

1√
π
e−y2 dy =

2√
π

∫ ∞

0

y2e−y2 dy,

provided that the integral exists. We show the integral exists and evaluate
it at the same time:∫ ∞

0

y2e−y2 dy = lim
b→∞

∫ b

0

y2e−y2 dy =
1

2
lim
b→∞

∫ b

0

y · 2ye−y2 dy

= lim
b→∞

1

2

(
−ye−y2

∣∣∣∣b
0

+

∫ b

0

e−y2 dy

)

= 0 +
1

2

∫ ∞

0

e−y2 dy =
1

4

∫ ∞

−∞
e−y2 dy =

√
π

4
.

We used integration by parts to obtain the second line of the equation.
Combining our facts, Var (Y ) = 2√

π

√
π
4

= 1/2.

(ii) By equation (15.6),

E [Y ] =

∫ ∞

−∞
y

1√
π
e−y2 dy =

∫ 0

−∞
y

1√
π
e−y2 dy +

∫ ∞

0

y
1√
π
e−y2 dy.

A trivial change of variable shows that∫ 0

−∞
y

1√
π
e−y2 dy = −

∫ ∞

0

y
1√
π
e−y2 dy,

so equation (18.5) holds.

(iii)
By equation (15.6),

E [|Y |] =
∫ ∞

−∞
|y| 1√

π
e−y2 dy =

1√
π

∫ ∞

0

2ye−y2 dy =
1√
π

lim
b→∞

∫ b

0

2ye−y2 dy

= lim
b→∞

1√
π

(
−e−y2

∣∣∣∣b
0

)
= lim

b→∞

1√
π

(
1− e−b2

)
=

1√
π
.
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Solution (Exercise 18.2).

(i) For an interval [a, b],

P(W ∈ [a, b]) = P(X +m ∈ [a, b]) = P(a ≤ X +m ≤ b)

= P(a−m ≤ X ≤ b−m) = P(X ∈ [a−m, b−m])

=

∫ b−m

a−m

f(x) dx =

∫ b

a

f(w −m) du.

By Remark 9.12, f(w−m) is a probability density for the distribution of W .

(ii) Suppose that c > 0. For an interval [a, b],

P(V ∈ [a, b]) = P(cX ∈ [a, b]) = P(a ≤ cX ≤ b)

= P

(
a

c
≤ X ≤ b

c

)
= P

(
X ∈

[
a

c
,
b

c

])
=

∫ b/c

a/c

f(x) dx =
1

c

∫ b

a

f(v/c) dv.

By Remark 9.12, (1/c)f(cv) is a probability density for the distribution of
V .

Suppose that c < 0. Then |c| = −c. For an interval [a, b],

P(V ∈ [a, b]) = P(cX ∈ [a, b]) = P(a ≤ cX ≤ b)

= P

(
b

c
≤ X ≤ a

c

)
= P

(
X ∈

[
b

c
,
a

c

])
=

∫ a/c

b/c

f(x) dx =
1

c

∫ a

b

f(v/c) dv =
1

|c|

∫ b

a

f(v/c) dv.

By Remark 9.12, (1/ |c|)f(v/c) is a probability density for the distribution
of V .

(iii) Let g(v) = (1/ |c|)f(v/c).
By part (ii), g is a probability density for the distribution of cX.
Then by part (iii), g(u −m) is a probability density for the distribution

of cX +m.
And g(u−m) = (1/ |c|)f( (u−m)/c ).
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Solution (Exercise 18.3).

Var

(
X − µ

σ

)
=

1

σ2
Var (X − µ) =

1

σ2
Var (X) =

1

σ2
σ2 = 1.

E

[
X − µ

σ

]
=

1

σ
E [X − µ] =

1

σ
(µ− µ) = 0.

Solution (Exercise 18.4). Let X be standard normal and let n be an odd
nonnegative integer. We must show that E [Xn] = 0.

By equation (15.6),

E [Xn] =

∫ ∞

−∞
xn

1√
π
e−x2

dx =

∫ 0

−∞
xn

1√
π
e−x2

dx+

∫ ∞

0

xn
1√
π
e−x2

dx

A trivial change of variable shows that∫ 0

−∞
xn

1√
π
e−x2

dx = −
∫ ∞

0

xn
1√
π
e−x2

dx,

so E [Xn] = 0.

Solution (Exercise 18.5).

(i) By Exercise 18.3, Z is standard normal. Hence a density for the distri-
bution of Z is η, where

η(z) =
1√
2π
e−

z2

2 .

(ii)

P(|X − µ| ≥ cσ) = P

(∣∣∣∣X − µ

σ

∣∣∣∣ ≥ c

)
= P(|Z| ≥ c).

Since e−
z2

2 ≤ ze−
z2

2 , equation (18.26) implies that

P(|Z| ≥ c) ≤ 2

∫ ∞

c

1√
2π
ze−

z2

2 dz =

√
2√
π
(−1)e−

z2

2

∣∣∣∣∞
c

=

√
2√
π
e−

c2

2 .

(iii) Equation(16.18) says that

P (|X − µ| ≥ cσ) ≤ 1

c2
.
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So we are asking which is a better bound when c is large:

1

c2
or

√
2√
π
e−

c2

2 ?

As c→ ∞,
√
2√
π
e−

c2

2

1
c2

→ 0,

(and does so very rapidly), so
√
2√
π
e−

c2

2 is a much sharper bound when c is
large.

Solution (Exercise 18.6).

E [Xi] = −2

3
+

2

6
+

5

6
=

1

22
.

E
[
X2

i

]
=

2

3
+

4

6
+

25

6
=

33

6
=

11

2
.

Var (Xi) =
11

2
−
(
1

2

)2

=
21

4
.

Each Xi has standard deviation σ given by

σ =

√
21

2
.

We will try to find an approximation for each Sn.
By additivity, E [Sn] =

n
2
.

By equation (16.29), Var (Sn) =
21n
4
.

LetWn have a normal distribution, withVar (Wn) =
21n
4

and E [Wn] =
n
2
.

Because of the Central Limit Theorem, we know that for large n we have

P(Sn < 5200) ≈ P(Wn < 5200).

We hope that n = 10000 will give a reasonable approximation.
Let h be the probability density for the distribution of Wn, with n =

10000. Then

P(Wn < 5200) =

∫ 5200

−∞
h. (18.55)
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Chapter 18. Normal random variables and the Central Limit Theorem

To finish the problem, we need to know the formula for h.
Let m = E [Wn] = E [Sn] = 5000, and let v = Var (Wn) = Var (Sn) =

2500 · 21. By Lemma 18.13,

h(u) =
1√
v

1√
2π
e−(u−m)2/2v.

This completes the solution. To obtain the actual numerical value of
P(Wn < 5200) one can use a computer program to perform the numerical
integration. This gives∫ 5200

−∞
h =

∫ 5200

−∞

1√
2500 · 21

1√
2π
e−(u−5000)2/(2·2500·21) du = 0.8086334555573861

Solution (Exercise 18.7). Since

{X ≤ a} ∪ {a < X ≤ b} = {X ≤ b} ,

and the union is disjoint,

P(X ≤ a) +P(a < X ≤ b) = P(X ≤ b).

Equation (18.40) follows.

Solution (Exercise 18.8). Note that P(Sn ≤ an) = FSn(an). By Theo-
rem 18.27,

lim
n→∞

(
FSn(an)− FZ

(
an − nµ√

nσ

))
= 0.

In this problem µ = 0, so

lim
n→∞

(
FSn(an)− FZ

(
an√
nσ

))
= 0. (18.56)

Also, since

FZ(a) =
1

2π

∫ a

−∞
e−

z2

2 dz,

FZ is a continuous function.

(i) When an → 0, an√
nσ

→ 0. Hence

FZ

(
an√
nσ

)
→ FZ(0) =

1

2
.
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18.11. Solutions for Chapter 18

Thus

FSn(an) →
1

2
.

(ii) When an → 5, an√
nσ

→ 0. Thus as in part (i),

FSn(an) →
1

2
.

(iii) When an = 2
√
n, an√

nσ
= 2

σ
. Hence

FSn(an) → FZ

(
2

σ

)
=

1√
2π

∫ 2
σ

−∞
e−

z2

2 dz.

(iv) The same argument used in part (iii) shows that

FSn(bn) → FZ

(
10

σ

)
=

1√
2π

∫ 10
σ

−∞
e−

z2

2 dz.

Similarly

GSn(an) → GZ

(
2

σ

)
=

1√
2π

∫ 2
σ

−∞
e−

z2

2 dz.

Thus

P(FSn ∈ [an, bn] = FSn(bn)−GSn(an) → FZ

(
10

σ

)
−GZ

(
2

σ

)
=

1√
2π

∫ 10
σ

2
σ

e−
z2

2 dz.

Solution (Exercise 18.9).

FZ(v)− FZ(u) = P(Z ≤ v)−P(Z ≤ u)

=

∫ v

−∞

1

2π
e−

z2

2 dv −
∫ u

−∞

1

2π
e−

z2

2 dv =

∫ v

u

1

2π
e−

z2

2 dv.

Since e−
z2

2 ≤ 1, ∫ v

u

1

2π
e−

z2

2 dv ≤
∫ v

u

1

2π
1 dv =

1√
2π

(v − u)
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Solution (Exercise 18.10). Define

an =
√
nσa+ nµ.

By equation (18.45) (which was an immediate consequence of Theo-
rem 18.27),

P(Sn ≤ an)− FZ

(
an − nµ√

nσ

)
→ 0.

But for each n,
an − nµ√

nσ
= a.

Thus
P(Sn ≤ an) → FZ(a).
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APPENDICES

These appendices contain additional details about topics discussed earlier.
Appendices I, J, K, L and N also introduce subjects that are not covered in
this book, but which readers may encounter later.
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Appendix A

Some practice with averages

Averages occur throughout probability theory. This section reviews the gen-
eral concepts (Definition A.1, Definition A.2) and gives some exercises to
illustrate the properties of averages. Readers might benefit by sampling the
exercises and testing the statements against their own intuitions.

Definition A.1 (Linear combinations). Suppose that numbers v1, . . . , vn
and a1, . . . , an are given. The expression

a1v1 + . . .+ anvn (A.1)

is said to be a linear combination of v1, . . . , vn, using coefficients a1, . . . , an.

In this section, we consider the special case in which the coefficients
a1, . . . , an in equation (A.1) are nonnegative. Nonnegative coefficients will
be referred to here as weights.

Definition A.2 (Weighted sums and averages). Let v1, . . . , vn be num-
bers which we will call the values, and let w1, . . . , wn be nonnegative numbers
which we will call the weights. The “weighted sum” of the values vi, using
the weights wi, is

n∑
i=1

wivi. (A.2)

When the numbers wi add up to one, we say that the weights are normalized,
and in this case the weighted sum in equation (A.2) is called the “weighted
average” of the values vi.
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Chapter A. Some practice with averages

Any average is also called a mean. A weighted average in which all the
weights are equal is called the arithmetic mean. Since the weights must add
to one, in this case each weight wi must be equal to 1/n, where n is the
number of weights. Thus the arithmetic mean can be calculated by dividing
the sum of the values by the number of values. This is what is usually meant
by the word “average” in ordinary speech!

For brevity, we sometimes use an overline to denote an average value.
Thus given some values v1, . . . , vn and weights w1, . . . , wn, the weighted av-
erage of v1, . . . , vn might be denoted by v̄.

By definition, weighted averages always use normalized weights, but it will
be convenient to extend the terminology about weighted averages slightly.

Suppose we are given weights w1, . . . , wn which are not normalized. Let
W = w1+ . . .+wn. Then w1/W, . . . , wn/W are normalized weights which are
proportional to w1, . . . , wn. To save words, if we are given values v1, . . . , vn
and unnormalized weights w1, . . . , wn, we will say that

v̄ =
w1

W
v1 + . . .+

wn

W
vn (A.3)

is “the weighted average with weights w1, . . . , wn”.
Thus, in a problem, if a weighted average is requested, and the given

weights are not normalized, it is understood that the weights should be nor-
malized before calculating the average.

Exercise A.1. A sequence x = (x1, . . . , x5) of values and a sequence w =
(w1, . . . , w5) of weights is given, such that x1 =

1
2
, x2 =

2
3
, x3 = 1 , x4 =

1
4
,

x5 =
1
2
and w1 =

1
3
, w2 =

3
2
, w3 = 3 , w4 = 2 , w5 = 2 . Find the weighted

average of the values in the sequence x.
[Solution]

Example A.3 (Mean value equals center of mass). Anyone who has
seen a center of mass calculation in a physics course has encountered a
weighted average.

Suppose we have seven point masses on a line. The position coordinates
of the masses are v1 = −1.0, v2 = −.4, v3 = .1, v4 = 1.5, v5 = 2.2, v6 = 3.2,
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v7 = 3.7, while the weights of the masses are w1 = 1, w2 = 3, w3 = 3, w4 = 2,
w5 = 1, w6 = 1, w7 = 3.

The sum of weights is W = 14, and the center of mass coordinate is
defined to be the usual weighted average v̄, which is given by

v̄ =
w1

W
v1 +

w2

W
v2 +

w3

W
v3 +

w4

W
v4 +

w5

W
v5 +

w6

W
v6 +

w7

W
v7 =

17.6

14
≈ 1.25714.

(A.4)
See Figure A.1. We can think that each weight wi is attached to a rigid

bar at vi. If the bar is free to turn about a pivot located at v̄, it will balance,
and remain stationary.

WhenX is a random variable with values v1, . . . , v7, and wi = P(X = xi),
then W = w1 + . . .+ w7 = 1. Then equation (A.4) says that

v̄ = w1v1 + . . . w7v7,

and this sum is E [X], by definition. In the same way, for any finite-range
random variable X, E [X] is equal to the center of mass of the distribu-
tion of X, provided that we represent the distribution by putting a lump of
probability mass equal to P(X = xi) at each point xi.

Exercise A.2 (Average of a constant). Let v1, . . . , vn be values, such
that each vi is equal to the same number c. Let w1, . . . , wn be any sequence
of weights. Show that the weighted average v1, . . . , vn is equal to c.

This exercise is not hard, but it is a useful observation.
[Solution]

Another simple but useful property of averages is the following.

Lemma A.4 (Scaling and bounds for averages). If all the values in a
sequence are multiplied by the same number c, then any weighted average is
also multiplied by c.

Any weighed average of a sequence of values always lies between the
smallest value and the largest value. That is, if v1, . . . , vn are the values and
w1, . . . , wn are the weights, then

min (v1, . . . , vn) ≤ v̄ ≤ max (v1, . . . , vn) . (A.5)
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w1

v1

w2

v2

w3

v3

w4

v4

w5

v5

w6

v6

w7

v7

v̄

Figure A.1: v̄ is the center of mass for the seven masses

Proof. Let W = w1 + . . .+wn. The first fact in the statement of the lemma
just says that

1

W

n∑
i=1

wic vi = c
1

W

n∑
i=1

wivi.

To derive the second fact, letm = min (v1, . . . , vn) and letM = max (v1, . . . , vn).
Then

v̄ =
1

W

n∑
i=1

wivi ≤
1

W

n∑
i=1

wiM =
1

W
WM =M.

Similarly v̄ ≥ m.

If it happens that all the values v1, . . . , vn are equal to the same number c,
then the maximum and minimum of the sequence are both equal to c. Thus
Lemma A.4 implies the result of Exercise A.2.
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Exercise A.3 (Replacing values in a weighted sum by a constant).
Let v1, . . . , vn be real numbers and let w1, . . . , wn be weights. Let

M = w1v1 + . . .+ wnvn,

and let
v̄ =

w1

W
v1 + . . .+

wn

W
vn,

where W is the sum of the weights.
Show that

M = w1v̄ + . . .+ wnv̄. (A.6)

Using the terminology of weighted sums and averages, this exercise tells us
another useful fact:

“The value of a weighted sum is unchanged if all the values are replaced
by their weighted average.”

Note carefully that equation (A.6) holds even if the weights w1, . . . , wn

are not normalized, but the weighted average v̄ is of course always calculated
using normalized weights obtained from w1, . . . , wn.

[Solution]

Exercise A.4 (Replacing some of the values by the average of those
values). Let v1, . . . , vm+n be real numbers and let w1, . . . , wm+n be weights.
Let s be the weighted sum of v1, . . . , vm+n, using the weights w1, . . . , wm+n.

Let z be the weighted average of v1, . . . , vm, using the weights w1, . . . , wm.
Note carefully that the definition of z does not involve any of the values other
than v1, . . . , vm.

Let xi = z for i = 1, . . . ,m, xi = vi for i = m+ 1, . . . ,m+ n.
Prove that the weighted sum of x1, . . . , xm+n is equal to s.
[Solution]

Exercise A.5 (Replacing some values by the wrong average). In the
setting of Exercise A.3, where we are given values v1, . . . , vn and weights
w1, . . . , wn, again let the weighted average be v̄. Suppose we replace v1 by v̄
but leave v2, . . . , vn unchanged. Show by an example that the value of the
weighted sum may change as a result of this substitution.
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Chapter A. Some practice with averages

[Solution]

Exercise A.6 (Averaging pooled data). This problem contains some im-
portant techniques if you have to work with averages.

A sequence v of data has length 4700. Denote the arithmetic mean of v
by v̄.

Let

x = v1, . . . , v1500,

y = v1500+1, . . . , v3000,

z = v3000+1, . . . , v4700.

We might refer to x,y, z as “blocks of data”.
Denote the arithmetic means of x, y, and z by x̄, ȳ and z̄ respectively.
Suppose you are given x̄, ȳ and z̄.
Derive a formula for v̄ in terms of x̄, ȳ and z̄.
One sometimes says that the data sequence v is obtained by “pooling”

the data in sequences x, y and z. The answer to this problem says that the
“pooled average” of the data can be calculated as a weighted average of the
averages of the three blocks of data x,y, z.

This illustrates a small theorem, which you are finding in this exercise.
It comes with a slogan:

“The average of the averages is the average.”

[Solution]

Exercise A.7 (A weighted average for pooled data). Consider the
same data sequences v,x,y, z studied in Exercise A.6. The rule given in
that exercise generalizes to weighted averages, as you will now show.

In the present situation suppose that you wish to find the weighted average
of v, using weights w1, . . . , w4700. You are not told the weights wi, but you
are told numbers r, s, t, where r = w1 + . . . w1500, s = w1500+1 + . . . + w3000,
and t = w3000+1 + . . .+ w4700.

Using the weights wi, let v̄ be the weighted average of v, and let x̄, ȳ and
z̄ be the weighted averages of x, y, and z, respectively.

444



Find a formula for v̄ in terms of x̄, ȳ, z̄, r̄, s̄, t̄. As always, justify your
answer.

[Solution]

Exercise A.8 (Weighted sum of a sum of sequences). Let w1, . . . , wn

be a sequence of weights. Let x1, . . . , xn be a sequence of values, and let
y1, . . . , yn be a sequence of values.

Let s be the weighted sum of x1, . . . , xn, using the weights w1, . . . , wn.
Let t be the weighted sum of y1, . . . , yn, using the same weights w1, . . . , wn.

Prove that the weighted sum of x1 + y1, . . . , xn + yn, using those weights
w1, . . . , wn, is equal to s+ t.

Of course, since a weighted average is simply a weighted sum using nor-
malized weights, you have also shown the following. If x̄ is the weighted
average of the xi and ȳ is the weighted average of the yi, then the weighted
average of the numbers xi + yi is equal to x̄+ ȳ.

One might write this rule as x+ y = x̄+ ȳ.
And one might say: “The average of a sum is the sum of the averages.”
[Solution]

Remark A.5 (A danger when comparing averages). Here’s an example
of a problem. We’ll phrase it in terms of batting averages in baseball, but it
can come up in other situations, for example in testing medical procedures.

A baseball player’s batting average, over a given time period, is defined
as the fraction of the times at bat which actually result in a hit.

Suppose you are comparing two players, named A and B. You don’t know
the details of their records, but you feel, quite reasonably, that their batting
averages will give you a good idea of their abilities as hitters.

But suppose you don’t learn their batting averages over the entire season,
but instead you are given their averages over the first half of the season, and
then separately are given their averages over the second half of the season.

Suppose that player A has a better batting average than B over the first
half of the season, and also has a better average than B over the second half
of the season.

Can we conclude that A has a better average than B over the whole
season? One might jump to that conclusion after reading Exercise A.6, which
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gives a formula for combining averages from different sets of data. However,
in this case, there is an important extra piece of information: different players
may have different numbers of times at bat.

Suppose, for example, that neither player A nor player B did particularly
well during the first half of the season, and both had very similar records, with
A slightly better. And suppose that player A had a great batting average
during the second half of the season, but had very few times at bat during
that period. In the second half of the season, player B had a batting average
that was very good, and had a large number of times at bat.

When combining the averages for these players, player B’s very good
average during the second half of the season will correctly receive much more
weight than player A’s great average. As a result, player B may have the
best overall average.

A.1 Solutions for Appendix A

Solution (Exercise A.1). Let

w = w1 + w2 + w3 + w4 + w5.

Then

x̄ = (x1 · w1 + x2 · w2 + x3 · w3 + x4 · w4 + x5 · w5)/w ≈ 0.641509433962264.

Solution (Exercise A.2). Let

w = w1 + . . .+ wn.

Then

v̄ =
w1 v1 + . . .+ wn vn

w
=
w1 c+ . . .+ wn c

w
=
w c

w
= c.

Solution (Exercise A.3). By definition,

v̄ =
w1

W
v1 + . . .+

wn

W
vn =

1

W
(w1v1 + . . .+ wnvn) =

M

W
,

Thus Wv̄ =M .
Hence

w1v̄ + . . .+ wnv̄ = (w1 + . . .+ wn) v̄ = Wv̄ =M.
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Solution (Exercise A.4). Let K = w1 + . . .+ wm. Then

z =
w1

K
v1 + . . .+

wm

K
vm,

so Kz = w1v1 + . . .+ wmvm.
Then

w1x1+. . .+wm+nxm+n = (w1z + . . .+ wmz)+(wm+1vm+1 + . . .+ wm+nvm+n)

= Kz + (wm+1vm+1 + . . .+ wm+nvm+n)

= (w1v1 + . . .+ wmvm) + (wm+1vm+1 + . . .+ wm+nvm+n) .

Solution (Exercise A.5). Let w1 = w2 = 1/2, and let v1 = 1, v2 = −1.
Then v̄ = 0 and w1v1 + w2v2 = 0.
Replacing v1 by v̄, the weighted sum becomes

w1 0 + w2v2 = −1

2
.

Solution (Exercise A.6).

x̄ =
v1 + . . .+ v1500

1500
.

ȳ =
v1501 + . . .+ v3000

1500
.

z̄ =
v3001 + . . .+ v4700

1700
.

Then

v̄ =
v1 + . . .+ v4700

4700
=

1500x̄+ 1500ȳ + 1700z̄

4700
=

1500

4700
x̄+

1500

4700
ȳ +

1700

4700
z̄

Solution (Exercise A.7). By definition,

x̄ =
w1v1 + . . .+ w1500v1500

r
.

ȳ =
w1501v1501 + . . .+ w1501v3000

s
.

z̄ =
w3001v3001 + . . .+ w4700v4700

t
.
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Hence
w1v1 + . . .+ w1500v1500 = rx̄,

w1501v1501 + . . .+ w1501v3000 = sȳ,

w3001v3001 + . . .+ w4700v4700 = tz̄.

Then

v̄ =
w1v1 + . . .+ w4700v4700

w1 + . . .+ w4700

=
(w1v1 + . . . w1500v1500) + (w1501v1501 + . . .+ w3000v3000) + (w3001v3001 + . . .+ w4700v4700)

r + s+ t

=
rx̄+ sȳ + tz̄

r + s+ t
=

r

r + s+ t
x̄+

s

r + s+ t
ȳ +

t

r + s+ t
z̄.

Solution (Exercise A.8).

s =
n∑

i=1

wixi,

t =
n∑

i=1

wiyi.

Adding these equations,

s+ t =
n∑

i=1

wixi +
n∑

i=1

wiyi =
n∑

i=1

wi (xi + yi) .
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Appendix B

The triangle inequality

Proving the triangle inequality The triangle inequality says that for
any numbers x, y,

|x+ y| ≤ |x|+ |y| . (B.1)

Proof. By definition |x| = x if x ≥ 0, and |x| = −x if x < 0. Thus either
|x+ y| = x+ y or |x+ y| = −x− y.

The definition of |x| tells us that

x ≤ |x| and − x ≤ |x| . (B.2)

Adding the inequalities x ≤ |x| and y ≤ |y| gives x+ y ≤ |x|+ |y|.
Adding the inequalities −x ≤ |x| and −y ≤ |y| gives −x− y ≤ |x|+ |y|.
Since |x+ y| = x+ y or |x+ y| = −x− y, in every possible case we have

|x+ y| ≤ |x|+ |y|.

Equation (B.1) deals with a sum, but the triangle inequality also applies
to differences:

|x− y| = |x+ (−y)| ≤ |x|+ |−y| = |x|+ |y| . (B.3)

Why is the triangle inequality called “the triangle inequality”? See Fig-
ure B.1. This picture shows that the length of any side of a triangle is less
than or equal to the sum of the lengths of the other two sides. In vector
language: ∥ #»a +

#»

b∥ ≤ ∥ #»a∥+ ∥ #»

b∥.
It’s interesting that the triangle inequality works for vectors, not just

numbers. The proof in that case is more complicated.
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Chapter B. The triangle inequality

→
a

→
b

→
a +
→
b

Figure B.1: The sum of two geometric vectors.

Exercise B.1. For readers who would like more practice with absolute val-
ues.

In equation (B.1), replace x by z −w and replace y by w. Use the result
to show that

|z| − |w| ≤ |z − w| .
Do this again, with the roles of z, w reversed.

Then obtain:
| |z| − |w| | ≤ |z − w| . (B.4)

This inequality is sometimes useful. If you think about z−w as a change in
some quantity, this inequality says: “The change in the absolute value is no
larger than the absolute value of the change.”

You would expect that to be true, but it’s nice to have a guarantee.
[Solution]

As usual, once we have the triangle inequality for the sum of two numbers,
we can get a similar inequality for any sum of numbers:

|x1 + . . .+ xk| ≤ |x1|+ . . .+ |xk| . (B.5)

To establish equation (B.5), one can use the Old Induction Trick (Exer-
cise 2.23). Another approach is to reorder the terms, in order to separate
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B.1. Solutions for Appendix B

the positive and negative numbers in the sum. So write x1 + . . . + xk as
y1 + . . . + ym − (z1 + . . .+ zn), where all the numbers y1, . . . , ym, z1, . . . , zn
are nonnegative. Then use the triangle inequality for the sum of two num-
bers:

y1 + . . .+ ym − (z1 + . . .+ zn) ≤ |y1 + . . .+ ym|+ |z1 + . . .+ zn| .

And since now we have nonnegative numbers, |y1 + . . .+ ym| = y1+ . . .+ym,
|z1 + . . .+ zn| = z1 + . . .+ zn.

B.1 Solutions for Appendix B

Solution (Exercise B.1). The requested substitution produces:

|(z − w) + w| ≤ |z − w|+ |w| .

Thus
|z| ≤ |z − w|+ |w| ,

and so
|z| − |w| ≤ |z − w| .

Exchanging z and w gives

|w| − |z| ≤ |z − w| .

And one of the numbers |z| − |w|, |w| − |z| is equal to | |z| − |w| |, so we have
obtained equation (B.4).

If you like, you can also check directly that equation (B.4) always holds,
as follows.

It is easy to see that equality holds in equation (B.4) if either of z and w
is zero, or if both have the same sign.

Suppose that z > 0, w < 0. Then z − w = z + |w| = |z| + |w|, while
| |z| − |w| | = ± (|z| − |w|). Then

|z − w| − | |z| − |w| | = 2 |w| or 2 |z| .

Thus equation (B.4) holds. A similar argument works if z < 0, w > 0.
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Appendix C

Defining Z with a given
distribution density on the real
line

Suppose that we are given a probability density function h on R. We would
like to construct a random variable Z whose distribution is given by h. And
we would prefer to make Z as simple a possible.

Here’s how to do that.
Let Ω = R and let the probability distribution P on Ω be given by the

density function h. Define the function Z on R by

Z(u) = u. (C.1)

We claim that Z is an example of a random variable with probability
density h.

To check that, note that from the definition of Z,

{Z ∈ S} = {u : Z(u) ∈ S} = {u : u ∈ S} = S. (C.2)

Thus P(Z ∈ S) = P(S). Since P is given by h,

P(Z ∈ S) =

∫
S

h.

By Definition 9.11, h is a density for the distribution of Z, as desired.
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Appendix D

The expected value of φ(X)
using the density of the
distribution of X

Our goal here is to derive equation (15.6) from equation (15.4).
Since you don’t know the sample space that X is defined on, go ahead and

define your own sample space Ω. Let it be the real line, with probabilities
given by the density function h. Then define a new random variable Z on
the real line, given by Z(t) = t.

Appendix C tells us that X and Z have exactly the same distribution.
Now suppose that φ is any function on the real line.
We claim that the distribution of φ(Z) is exactly the same as the distri-

bution of φ(X)!
To show that, let S be a subset of R. We have to show that the probability

of the event {φ(X) ∈ S}, on the sample space of X, is exactly the same as
the probability of the event {φ(Z) ∈ S}, on the sample space of Z.

So let T = {u : φ(u) ∈ S}. Both S and T are subsets of the real line.
From the definitions,

{φ(X) ∈ S} = {X ∈ T} .

Also from the definitions,

{φ(Z) ∈ S} = {Z ∈ T} .

Since X and Z have the same distribution, the probability of the event
{X ∈ T} is exactly equal to the probability of the event {Z ∈ T}.
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Chapter D. A density formula for the expected value of a function of X

But then the probability of the event {φ(X) ∈ S} is exactly equal to the
probability of the event {φ(Z) ∈ S}, as claimed.

We have shown that the distribution of φ(Z) is exactly the same as the
distribution of φ(X).

And we know how to find E [φ(Z)]. By equation (15.4) (with X in that
equation replaced by φ(Z) on both sides, and f replaced by h), we have

E [φ(Z)] =

∫
φ(Z)h =

∫ ∞

−∞
φ(t)h(t) dt.

Remember that by part (ii) of Theorem 15.2, the expected value of a
random variable is determined by its distribution, so φ(X) and φ(Z) have
the same expected value,

Thus we have obtained equation (15.6).
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Appendix E

Practice using densities

There are no new ideas in this appendix, just some practice to get a feeling
for the way densities work.

Example E.1 (Probability of missing the central region - density
case). Someone is throwing darts at a target represented by a disc of radius 5,
centered at the origin of R2. See Figure 3.4.

The point of impact (x, y) is random, but the thrower is trying hard to
hit a point near the center of the target. Thus the probability density for the
distribution of impact points is not uniform: it is described by a probability
density f on the target which is large near the center.

In fact, we will use a model with f defined by:

f((x, y)) =
c√

x2 + y2
=
c

r
,

where r is the distance of the point (x, y) from the center of the target.

Let A be the set of points (x, y) in the target such that
√
x2 + y2 > 2.

A represents the physical event that the dart lands more than two units of
distance from the center. In Figure 3.4, A is the shaded ring.

We will use equation (15.3) to find P(A). Fortunately, in this example
we can calculate integrals using polar coordinates.

The first step is to find c.

1 =

∫
f =

∫ 2π

0

∫ 5

0

c

r
r dr dθ = 10π.
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Chapter E. Practice using densities

Hence c = 1
10π

. Thus

P(A) =

∫
A

f =

∫ 2π

0

∫ 5

2

1

10π

1

r
r dr dθ =

1

10π
(2π · 3) = 3

5
.

Exercise E.1. In the dart-throwing experiment, let h(x, y) be the probability
density for the random location where the dart lands. If A is a region of the
target board, then the probability of hitting A is given by

P(A) =

∫
A

h. (E.1)

In calculus notation,

P(A) =

∫ ∫
A

h(x, y) dx dy.

Consider the situation when the target region T is a circular disc with
radius one centered at the origin, and assume that the thrower has a ten-
dency to throw toward the right. More precisely, assume that h(x, y) on T
is proportional to 2 + x.

(i) Find the exact formula for h(x, y).

(ii) Find the probability that the dart lands in the right half of the target.
That is, if A = {(x, y) : (x, y) ∈ T, x ≥ 0}, find P(A).

[Solution]

Exercise E.2. In this problem we have a square target.
Let Ω be the rectangle consisting of all points x, y such that 0 ≤ x ≤ 1

and 0 ≤ y ≤ 3.
Let h be a probability density on Ω given by

h(x, y) = c x sin(x y), (E.2)

where c is an appropriate constant.
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Let P be the distribution on Ω with probability density h.
Consider choosing a random point in Ω using this distribution. Let A be

the event that the chosen point (x, y) is such that y < 1.
Find P(A).
[Solution]

Exercise E.3. Consider the probability model with sample space [0, π/4]
and probability density f(t) =

√
2 cos t.

Let X be the random variable on [0, π/4] defined by X(t) = sin t. Find
E [X].

[Solution]

Remark E.2 (Are unbounded densities ok?). By definition, any non-
negative function f with

∫
f = 1 is a probability density. So a probability

density f is not necessarily a bounded function. Theorem 15.2 does tell us
that E [X] is always defined if X is a bounded random variable. But what
about

∫
Xf? Does that integral always exist when X is bounded? Suffi-

ciently paranoid people (like us) might worry: if f is unbounded, could that
spoil

∫
Xf , and contradict equation (15.4)?

Fortunately not, because of the Comparison Principle for integrals. Since∫
f is defined,

∫
cf is also defined for any constant c. And if X is a bounded

random variable, by definition this means that for some value of c we have
|X| ≤ c. But that implies that |Xf | ≤ cf . And so the comparison principle
for integrals guarantees that

∫
Xf exists.

Exercise E.4. Let Ω = [0, 4].
Let f be the probability density on the interval [0, 4], such that f(t) =

c/
√
t. (An unbounded density)
Let P be the probability set-function on [0, 4] with probability density f .
Let X be the random variable on [0, 4] defined by X(t) = t−1/4.
Find c, and then find E [X].
[Solution]
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Exercise E.5 (Finding the expected value of the first coordinate).
Consider the setting of Exercise E.1.

The sample space Ω is the unit disc T . Let X be the mathematical
random variable defined on T by the equation

X( (x, y) ) = x.

The physical interpretation of X is that it represents the x-coordinate of
the spot where a dart strikes the target.

By assumption, a density for the probability function P on T is given by
h, where

h(x, y) = c(2 + x)

for an appropriate value of c. From the solution to Exercise E.1, we know
that c = 1/(2π).

Find E [X].

[Solution]

Exercise E.6. Let Ω be the disc with radius 5 centered at the origin. Let

H be the function on Ω defined by H((x, y)) = er = e
√

x2+y2 .

(i) Consider the probability model with sample space Ω and uniform prob-
ability distribution P on Ω. Find E [H].

(ii) Consider the probability model with sample space Ω and probability
distribution P as in Example E.1, so that P has a density given by
1

10πr
. Find E [H].

[Solution]
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E.1 Solutions for Chapter E

Solution (Exercise E.1).

(i) We are told that h(x, y) = c(2+ x) for some proportionality constant c.
We know that h must have integral equal to one, since it is a probability

density. Hence ∫ ∫
T

c(2 + x) dy dx = 1.

We note that ∫ ∫
T

dy dx = π,

since this integral is the area of the unit circle.
Also ∫ ∫

T

x dy dx = 0

by symmetry! Applying these facts gives 2cπ + 0 = 1, so c = 1/(2π), and
h(x, y) = 1

2π
(2 + x).

(ii) Using the formula for h, and equation (E.1),

P(A) =
1

2π

∫ ∫
A

(2 + x) dy dx.

Since A is the right half of the unit circle,∫ ∫
A

2 dy dx = π.

Also∫ ∫
A

x dy dx =

∫ 1

0

∫ √
1−x2

−
√
1−x2

x dy dx =

∫ 1

0

2x
√
1− x2 dx = −1

3

(
1− x2

)3/2 ∣∣∣∣1
0

=
2

3
.

Hence

P(A) =
1

2π

(
π +

2

3

)
.
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Solution (Exercise E.2). Since
∫
Ω
h = 1,

1 =

∫ 1

0

∫ 3

0

c x sin(x y) dy dx =

∫ 1

0

c

(
− cos(x y)

∣∣∣∣3
0

)
dx = c

∫ 1

0

(1− cos(3x)) dx

= c

(
1−

(
1

3
sin(3x)

∣∣∣∣1
0

))
= c

(
1− sin(3)

3

)
.

Thus

c =
1

1− sin(3)
3

.

P(A) =

∫ 1

0

∫ 1

0

c x sin(x y) dy dx =

∫ 1

0

c

(
− cos(x y)

∣∣∣∣1
0

)
dx = c

∫ 1

0

(1− cos(x)) dx

= c

(
1− sin(x)

∣∣∣∣1
0

)
= c (1− sin(1)) =

1− sin(1)

1− sin(3)
3

.

Solution (Exercise E.3). By equation (15.4),

E [X] =

∫
Xf =

∫ π/4

0

(sin t)(
√
2 cos t) dt =

1√
2
sin2 t

∣∣∣∣π/4
0

=
1√
2
sin(π/4)2−0

=
1√
2

(
1√
2

)2

=
1

2
√
2
.

Solution (Exercise E.4).

1 =

∫ 4

0

c√
x
dx = 2c

√
x

∣∣∣∣4
0

= 2c (2− 0) = 4c,

so c = 1/4.
By equation (15.4),

E [X] =

∫ 4

0

t−1/41

4

1√
t
dt =

1

4

∫ 4

0

t−3/4 dt =
1

4
4t1/4

∣∣∣∣4
0

= 41/4 − 0 =
√
2.

Solution (Exercise E.5). By equation (15.4),
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E [X] =
1

2π

∫ ∫
T

X( (x, y) )(2+x) dy dx =
1

2π

∫ 1

−1

(∫ √
1−x2

−
√
1−x2

X( (x, y) )(2 + x) dy

)
dx

=
1

2π

∫ 1

−1

(∫ √
1−x2

−
√
1−x2

x (2 + x) dy

)
dx =

1

2π

∫ 1

−1

x

(∫ √
1−x2

−
√
1−x2

(2 + x) dy

)
dx.

Hence

E [X] =
1

2π

∫ 1

−1

2x(2 + x)
√
1− x2 dx.

Nowadays one can use a computer algebra system to evaluate the integral.
However, a reasonable manual evaluation is the following.

By symmetry,∫ 1

−1

x
√
1− x2 dx = 0 and

∫ 1

−1

x2
√
1− x2 dx = 2

∫ 1

0

x2
√
1− x2 dx.

Thus

E [X] =
2

π

∫ 1

0

x2
√
1− x2 dx.

Let x = sin θ. Then dx = cos θ dθ. When θ = 0, x = 0. When θ = π/2,
x = 1. Hence

E [X] =
2

π

∫ π/2

0

sin2 θ cos2 θ dθ =
1

2π

∫ π/2

0

sin2 2θ dθ.

Letting θ = 1
2
φ, dθ = 1

2
dφ, gives

E [X] =
1

2π

∫ π

0

(
sin2 φ

) 1
2
dφ =

1

4π

∫ π

0

sin2 φdφ,

The fastest way to evaluate this definite integral is to note that sin2+cos2 =
1, and sin2 and cos2 have equal integrals over the interval [0, π]. Hence∫ π

0
sin2 = (1/2)π, and so

E [X] =
1

4π

1

2
π =

1

8
.
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Solution (Exercise E.6).

(i) By equation (15.4),

E [H] =

∫ 2π

0

∫ 5

0

er
1

25π
r dr dθ =

2

25

∫ 5

0

er r dr

=
2

25
(rer − er)

∣∣∣∣5
0

=
2

25

(
5e5 − e5 + 1

)
=

2

25

(
4e5 + 1

)
.

We use integration by parts to calculate the integral.

(ii) By equation (15.4),

E [H] =

∫ 2π

0

∫ 5

0

er
1

10π

1

r
r dr dθ =

1

5

∫ 5

0

er dr dθ =
1

5
er
∣∣∣∣5
0

=
1

5

(
e5 − 1

)
.
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Appendix F

Nonnegative random variables
with zero expectation

Let Y be a nonnegative random variable such that E [Y ] = 0. We’ll give an
argument to show that P(Y > 0) = 0.

If Y has finite range, a direct proof is not hard, based on definition of ex-
pected values for finite-range random variables. But there is an easy proof for
general random variables. We start by using the Markov inequality (equation
(12.17) of Lemma 12.12, with α = 1/n):

1

n
P

(
Y >

1

n

)
≤ E [Y ]

for every positive integer n. Since E [Y ] = 0, this inequality tells us that

P

(
Y >

1

n

)
= 0 (F.1)

for every positive integer n.

Since 1/n can be made as small as we like by taking large values of n,
equation (F.1) says that, for example, P(Y > .0000000000001) = 0, and so
on, for any number of decimal places! Surely that is enough to guarantee
that P(Y > 0) = 0. Isn’t it?

Well, we’re being fussy here, but if you want to be completely rigorous,
a little more discussion is still needed, as follows.
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Notice that {Y > 0} is the union of the following sets:

{Y > 1} ,
{
1 ≥ Y >

1

2

}
,

{
1

2
≥ Y >

1

3

}
,

{
1

3
≥ Y >

1

4

}
, . . .

Remember that we always assume that we have countable additivity for our
models (Section 14.3). Thus

P(Y > 0) = P(Y > 1)+P

(
1 ≥ Y >

1

2

)
+P

(
1

2
≥ Y >

1

3

)
+P

(
1

3
≥ Y >

1

4

)
+. . . ,

and that sum is indeed zero.
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Appendix G

Inequalities for log and
exponential

As usual in mathematics, log x will denote the logarithm of x using base e.

Lemma G.1 (Basic inequalities for log and exponential).

log(1 + x) ≤ x for every x ∈ (−1,∞), (G.1)

and
1 + x ≤ ex for every x ∈ (−∞,∞). (G.2)

Proof. We’ll start by deriving equation (G.1).
Let

f(x) = x− log(1 + x).

We need to show that f(x) ≥ 0 for all x ∈ (−1,∞).
Note that f(0) = 0. Also,

f ′(x) = 1− 1

1 + x
.

Clearly,
1 + x > 1 for x > 0; 1 + x < 1 for − 1 < x < 0.

Hence
f ′(x) > 0 for x > 0; f ′(x) < 0 for − 1 < x < 0.
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Since f is decreasing on (−1, 0) and increasing on (0,∞), the minimum of f
on (−1,∞) occurs at x = 0, and so the minimum value of f on (−1,∞) is
f(0) = 0.

Thus for x ∈ (−1,∞) we have f(x) ≥ 0, i.e.

x− log(1 + x) ≥ 0, i.e. x ≥ log(1 + x).

This proves equation (G.1).
The exponential function is an increasing function. Hence if we take

exponential of both sides of an inequality we get another true inequality.
Taking the exponential of both sides of equation (G.1) gives the inequality
in equation (G.2), for x > −1. Since ex > 0 is always true, the inequality in
equation (G.2) also holds for x ≤ −1.

See Figure G.1 for the picture of the inequality in equation (G.1), and
Figure G.2 for the inequality in equation (G.2).

1 2 3 4 5

1

1

2

3

4

5

y= x

y= log(1 + x)

Figure G.1: x is above log(1 + x). The curves are tangent at x = 0.

The function log(1 + x) grows slowly, so it seems natural that we have a
simple upper bound for log(1 + x). Similarly it seems natural that we have
a simple lower bound for ex. But one sometimes needs inequalities in the
other direction. There is probably no “neatest” way to state these. Here’s
one example of a bound in the other direction.
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2 1 1 2

2

4

6

8

10

12

y= 1 + x

y= ex

Figure G.2: 1 + x is below ex. The curves are tangent at x = 0.

Lemma G.2 (Reversed bounds). For any real number x with −1
2
< x,

x− x2 ≤ log(1 + x), (G.3)

and

ex−x2 ≤ 1 + x. (G.4)

See Figure G.3 for a picture of the inequality in equation (G.3).

Note that equations (G.3) and (G.4) are uninteresting when x is large.

Proof. Since the exponential is an increasing function, the inequality in equa-
tion (G.4) is equivalent to equation (G.3), so we only need to prove that
inequality.

Define f on (−1
2
,∞) by

f(x) = log(1 + x)− x+ x2.

We’ll be finished as soon as we prove that f(x) ≥ 0 for any real number x
with −1

2
< x.
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So let’s find the minimum value of f(x) on this interval, and see if it’s
greater than or equal to zero.

We have

f ′(x) =
1

1 + x
− 1 + 2x =

1− 1− x+ 2x+ 2x2

1 + x
=
x+ 2x2

1 + x
=
x(1 + 2x)

1 + x
.

Clearly f ′(x) > 0 for x ∈ (0,∞). Thus for x > 0 we have f(x) > f(0) = 0.
Also, f ′(x) has the same sign as x(1 + 2x) for x < 0. Since 1 + 2x > 0

for x > −1
2
, we have x(1 + 2x) < 0 for −1

2
< x < 0. Thus f ′(x) < 0 for

−1
2
< x < 0.
Hence the minimum value of f on (−1

2
,∞) is f(0), and f(0) = 0.

-0.8 -0.6 -0.4 -0.2 0.2 0.4

-1.5

-1

-0.5

0.5 y= log(1 + x)

y= x− x2

Figure G.3: A lower bound for log(1 + x) .

G.1 Proving equation (17.1) again

Proof. Since an → ∞,

lim
n→∞

bn = lim
n→∞

(anbn)

(
1

an

)
= z · 0 = 0.
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Hence b2nan = bn · bnan → 0 · z = 0.
For n large enough that bn > −1, we can use equation (G.4) and equa-

tion (G.2), giving: (
ebn−b2n

)an
≤ (1 + bn)

an ≤
(
ebn
)an

,

i.e.
ebnan−b2nan ≤ (1 + bn)

an ≤ ebnan .

Since bnan → z and b2nan → 0,

lim
n→∞

ebnan−b2nan = ez and also lim
n→∞

ebnan = ez.

Thus (1 + bn)
an is trapped between two quantities that both converge to ez,

and so we also have
lim
n→∞

(1 + bn)
an = ez.
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Appendix H

Completing the square

This appendix is for those who have not previously used the procedure of
completing the square.

Let q(x) = ax2 + bx + c, with a nonzero. We will prove that q can be
written as a(x + r)2 + stuff for some number r, where stuff is a constant
expression.

We begin by writing

q = a
(
x2 + (b/a)x+ (c/a)

)
.

If we have x2 + (b/a)x + (c/a) in the form we want, then mutiplying by a
should be no problem. So from now on let’s just work on x2+(b/a)x+(c/a).

We would like r to be such that

x2 +
b

a
x+

c

a
= (x+ r)2 + stuff,

where stuff is a constant expression.
Then

stuff = x2 +
b

a
x+

c

a
− (x+ r)2

= x2 +
b

a
x+

c

a
−
(
x2 + 2rx+ r2

)
=
b

a
x− 2rx+

c

a
− r2. (H.1)

To ensure that stuff is constant, we need b/a = 2r, i.e. r = b/(2a).
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Chapter H. Completing the square

Since the variable terms cancel out in equation (H.1), we have

stuff =
c

a
− r2 =

c

a
−
(
b

2a

)2

.

Hence

x2 +
b

a
x+

c

a
=

(
x+

b

2a

)2

+
c

a
−
(
b

2a

)2

. (H.2)

What have we achieved by rewriting the expression x2 + b
a
x + c

a
in this

way? Well, now it is in the form blob2 + constant stuff, where blob is just
x+b/(2a). We can manipulate blob in just the same way that we manipulated
x, so we have reduced the complexity of the expression.

Exercise H.1 (Completing the square to solve quadratics). The usual
“quadratic formula” for solving a quadratic equation is derived by completing
the square.

Illustrate this approach by solving the equation x2+x−1 = 0, by complet-
ing the square for the given quadratic polynomial. Do not use the quadratic
formula.

[Solution]

H.1 Solutions for Appendix H

Solution (Exercise H.1). We want to solve x2 + x− 1 = 0.
”Completing the square” for this polynomial means writing

x2 + x− 1 = (x+ r)2 + stuff,

where stuff is a constant expression.
We don’t have to remember any formulas here. Just notice that

stuff = x2+x−1− (x+r)2 = x2+x−1−
(
x2+2rx+r2

)
= x−2rx−1−r2.

(H.3)
To ensue that stuff is constant expression, we need to have 2rx = x, i.e.
r = 1/2. Then equation (H.3) says that

stuff = −1− r2 = −1− 1

4
= −5

4
.
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Thus completing the square gives us:

x2 + x− 1 =

(
x+

1

2

)2

− 5

4
.

Solving x2 + x− 1 = 0 means solving(
x+

1

2

)2

− 5

4
= 0,

i.e. (
x+

1

2

)2

=
5

4
,

i.e.

x+
1

2
= ±

√
5

2
,

so

x = −1

2
±

√
5

2
.
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Appendix I

Distributions and cumulative
distribution functions

I.1 Cumulative distribution functions

The definition of the cumulative distribution function (CDF) for a random
variable is given in Definition 18.21. In this Appendix we continue the dis-
cussion of CDF’s that was begun in Section 18.7.

Exercise I.1 (The simplest CDF). LetX be the constant random variable
defined by X(ω) = c for all ω. Sketch the graph of FX .

[Solution]

Exercise I.2 (Monotonicity). Using the Definition 18.21, please check that
every distribution function is monotone increasing.

[Solution]

Exercise I.3. Let X be a random variable such that c ≤ X ≤ d always
holds.

Show that FX(t) = 0 for all t < c, and FX(t) = 1 for all t ≥ d.
[Solution]
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Chapter I. Distributions and cumulative distribution functions

Include the whole domain for a CDF When you are requested to find
the formula for a CDF, please state the formula for all points on the real line.
This may be unnecessary in many obvious cases, as exercise (I.3) illustrates,
but it is a good practice.

Remark I.1 (Useful limits for CDFs). There are many probabilities
which can be expressed in terms of FX . We’ll just mention two limits:

lim
a→−∞

FX(a) = 0, lim
b→∞

FX(b) = 1. (I.1)

By Exercise I.3, equation (I.1) is obvious when X is bounded.

Example I.2. In the case of a simple random variable with finite range, the
cumulative distribution function is likely more complicated than it’s worth.
But the CDF is still defined. To practice with the definition, we’ll consider
two examples.

(i) Consider the random variableX described in Example 9.2. Take p = 3/5,
so that P(X = 1) = 3/5 and P(X = 0) = 2/5.

Figure I.1 shows the graph of FX .
The definition of FX implies that FX(t) = 2/5 for all t with 0 ≤ t < 1,

while FX(t) = 0 for t < 0 and FX(t) = 1 for t ≥ 1. The graph shows this.

(ii) Consider tossing a fair coin 4 times. Let X be the number of heads
which are obtained.

Figure I.2 shows the graph of FX .
Since the possible values of T are 0, 1, 2, 3, 4, when k ≤ t < k+1, we have

P(X ≤ t) = P(X ≤ k). Thus the definition of FX implies that when

k ≤ t < k + 1,

FX(t) = P(T ≤ k) = P(T = 0) + . . . + P(T = k). The graph shows this,
with

P(T = i) =

(
4

i

)(
1

2

)4

.

In the present appendix we will mainly use CDFs for random variables
whose distributions have probability densities.
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I.1. Cumulative distribution functions

1 1 2 3

0.5

0.5

1.0

1.5

Figure I.1: CDF for result of one coin toss, p = 3/5.

Example I.3.
Let sample space for the probability model be the interval [0, 4], with

uniform distribution P. See Figure I.3. Let X(t) = t3.
For 0 ≤ t ≤ 64, FX(t) = (1/4) ∗ length(

[
0, t1/3

]
) = t1/3/4. By Exer-

cise I.3, for every t < 0 we have FX(t) = 0 and for every t > 64 we have
FX(t) = 1. See Figure I.4.

Exercise I.4. Consider the probability model with sample space [0, π/2] and
probability density f(u) = sinu. Let X be the random variable on [0, π/2]
defined by X(u) = eu. Find the CDF of X.

[Solution]

The next exercise deals with a situation where it takes more work to find
the CDF of the random variable. But it’s doable.

Exercise I.5 (A non-monotonic random variable). Consider the prob-
ability model with sample space Ω equal to the interval [0, 3] and uniform
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1 1 2 3 4 5

0.5

0.5

1.0

Figure I.2: CDF for result of four fair coin tosses

distribution. Define X on [0, 3] by X(t) = (1− t)2. See Figure I.5. Find the
CDF for X.

Since this random variable is not a monotonic function on its domain, a
little extra care is needed in determining {X ≤ t}.

[Solution]
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0.5 1 1.5 2 2.5 3 3.5 4

10

20

30

40

50

60

Figure I.3: X(t) = t3 on the sample space [0, 4].
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20 20 40 60 80

0.5

0.5

1.0

Figure I.4: FX(t) = 1/4 t1/3
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I.1. Cumulative distribution functions

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure I.5: X(t) = (1− t)2 on the sample space [0, 3].
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Chapter I. Distributions and cumulative distribution functions

I.2 Finding a density from the CDF of a dis-

tribution

Lemma I.4 (Differentiating a CDF). Let X be a random variable whose
distribution has density f .

For every real number a,

FX(a) =

∫ a

−∞
f(t) dt. (I.2)

At any point a where f is continuous,

F ′
X(a) = f(a). (I.3)

Proof. Let A = {X ≤ a}. By definition, P(A) =
∫
A
f . This is equation (I.2).

The first statement of the Fundamental Theorem of Calculus tells us
that when the integrand of an integral is continuous at the upper limit of
integration, we can differentiate the integral with respect to its upper limit,
and the result of the differentiation is the value of the integrand at the upper
limit. Here the integrand is f and the upper limit of integration is a. This
gives equation (I.3).

Lemma I.4 shows that if there exists a continuous density f for the dis-
tribution of X, then f = F ′

X . This is useful, but often we encounter random
variables whose ranges have a few “bad” points, where F ′

X cannot be contin-
uous. So a careful person needs a more general statement, such as the one
which is given below by Lemma I.5.

Lemma I.5 (Density from CDF derivative). Let X be a random vari-
able.

Suppose that FX is a continuous function.
Suppose also F ′

X(t) exists and is continuous at all points of R, except
possibly at finitely many points s1, . . . , sn.

Then F ′
X is a density for the distribution of X.
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I.2. Finding a density from the CDF of a distribution

Proof. Since FX is monotonic increasing, at any point a where F ′
X(a) exists it

must be true that F ′
X(a) ≥ 0 (since the derivative is the limit of the difference

quotients).
Consider an interval [u, v] which does not contain any bad points. The

second statement of the Fundamental Theorem of Calculus tells us that∫ v

u

F ′
X(t) dt = FX(v)− FX(u).

Note that 0 ≤ FX(u) ≤ FX(v) ≤ 1.
For an interval [u, v] which does not contain any bad points, if v increases

to a bad point sj, then
∫ v

u
F ′
X(t) dt increases to a limit. The calculus definition

of an improper integral says that

lim
v↗sj

∫ v

u

F ′
X(t) dt =

∫ sj

u

F ′
X(t) dt,

and by the continuity of FX we also have

lim
v↗sj

FX(v)− FX(u) = FX(sj)− FX(u).

Thus ∫ sj

u

F ′
X(t) dt = FX(sj)− FX(u).

If there is a bad point sj−1 adjacent to sj on the left, we can let u decrease
to sj−1. A similar argument to the one just given shows that∫ sj

sj−1

F ′
X(t) dt = FX(sj)− FX(sj−1).

Based on these arguments, we can now say that if [u, v] is any interval such
that the interior contains no bad points, we have∫ v

u

F ′
X = FX(v) = FX(u).

Next, think about an interval [u, v] such that (u, v) contains exactly one bad
point sk. By what has already been said, we know that∫ sk

u

F ′
X = FX(sk)− FX(u)
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and ∫ v

sk

F ′
X = FX(v)− FX(sk).

Adding these two equation, we see that for any interval [u, v] whose interior
contains at most one bad point,∫ v

u

F ′
X = FX(v)− FX(u).

Repeating this argument a finite number of times shows that for any interval
[u, v], ∫ v

u

F ′
X = FX(v)− FX(u).

Thus by Definition 3.4, F ′
X is a density for the distribution of X.

This completes the proof. But readers may recall that we extended the
definition of a density later, in Definition 15.5. In that definition, a density
f for the distribution of X is required to satisfy

P(X ∈ A) =

∫
A

f (I.4)

for every event A, not just for intervals A. Do we need to check this?
Fortunately, that requirement is automatically satisfied if equation (I.4)

holds for all intervals A (see Remark 15.6). Thus no further work is required,
and we conclude that F ′

X is a density for the distribution of X, in the general
sense of Definition 15.5.

Here’s a typical application of Lemma I.5.

Exercise I.6. Let X be the random variable in Exercise I.5.
Use the CDF of X to find a probability density for the distribution of X.
[Solution]

Exercise I.7. In the setting of Exercise E.3, find a probability density for
the distribution of X.

[Solution]
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I.3. Change of variable

Exercise I.8 (Checking that the distribution determines the ex-
pected value). In Exercise E.3, you found E [X]. In Exercise I.7 you found
the distribution of X, so you can find E [X] by a different calculation. Check
that you obtain the same answer.

[Solution]

I.3 Change of variable

Let X be a random variable whose distribution has a density f on the real
line.

Let φ be a continuous and strictly increasing function on an interval J of
the real line, and suppose that J contains the range of X.

Does the distribution of φ(X) necessarily have a density? And if a density
exists, how do we find it?

The connection between the density and the distribution is of course based
on integrating the density. For that reason, to give general answers to these
questions we might want to use the theory of integration which is developed
in advanced analysis courses. But we can already get useful information from
calculus.

Assume that f is continuous, except possibly at a finite number of bad
points. Then, at all non-bad points, Lemma I.4 tells us that F ′

X(a) exists
and

F ′
X(a) = f(a).

Suppose we know that φ′ exists and is continuous and nonzero at every
point of J , except possibly at a finite number of bad points. We’ll give a few
examples to illustrate an approach based on Lemma I.5 and the chain rule.

(i) Suppose that φ(x) = ex. Then

Fφ(X)(a) = FeX (a) = P(eX ≤ a)

The exponential function is always positive, so for a ≤ 0, FeX (a) = 0.
The exponential function is an increasing one-to-one function.
Suppose that a > 0.
For any real number x, if x ≤ log a then ex ≤ elog a = a.
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The logarithm function is an increasing function on its domain. (Of
course, it has to be an increasing function, since it is the inverse of an in-
creasing function, but we can take its derivative to check.)

For any real number x, if ex ≤ a then log ex ≤ log a, i.e. x ≤ log a.
We have shown that for a > 0 we have{

eX ≤ a
}
= {X ≤ log a} .

Hence
FeX (a) = P(X ≤ log a) = FX(log a).

Thus if F ′
X(log a) exists, by the chain rule we have

F ′
eX (a) = F ′

X(log a)
1

a
=

{
0 if a < 0,
1
a
f(log a) if a > 0.

We note 0 may be a bad point for F ′
eX . There are at most finitely many other

bad points. Thus Lemma I.5 says that F ′
eX is a density for the distribution

of X, and we have the formula for this density.

(ii) Let φ(x) = x + x3. Then φ is continuous. Since φ′(x) = 1 + 3x2, we
see that φ′ exists is positive and continuous everywhere. Thus φ is strictly
increasing, and in particular φ is one-to-one.

Also limx→∞ φ(x) = ∞ and limx→−∞ φ(x) = −∞. Thus the range of φ
is the whole real line.

Let θ denote the inverse function φ−1.
Since φ is increasing, x ≤ θ(a) implies φ(x) ≤ φ(θ(a)) = a. Since θ is

increasing, φ(x) ≤ a implies θ(φ(x)) ≤ θ(a), i.e. x ≤ θ(a).
We have shown that for a > 0 we have

{φ(X) ≤ a} = {X ≤ θ(a)} .

Hence
Fφ(X)(a) = P(X ≤ θ(a)) = FX(θ(a)). (I.5)

The algebraic expression for θ does not seem neat, but since φ′ is never
zero, a calculus theorem says that θ′ exists at every point. Also, since φ ◦
θ(y) = y, the chain rule says that

(φ′ ◦ θ) θ′ = 1.
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I.4. Converting a distribution to a uniform

That is,

θ′ =
1

φ′ ◦ θ
.

So we can find θ′ if we need it.
Using equation (I.5), if θ(a) is not a bad point for FX , then by the chain

rule F ′
φ(X)(a) exists, and

F ′
φ(X)(a) = F ′

X(θ(a))θ
′(a) = f(θ(a))θ′(a).

Thus Lemma I.5 says f(θ(a))θ′(a) is a density for the distribution of φ(X).

(iii) The map x 7→ x3 is one-to-one and onto R. It is an increasing function,
and so preserves order. Thus

FX3(a) = P(X3 ≤ a) = P(X ≤ a1/3) = FX(a
1/3).

For a ̸= 0, if a1/3 is not a bad point for FX then F ′
X3(a) exists and

F ′
X3(a) = F ′

X(a
1/3)

1

3
a−2/3.

Thus Lemma I.5 says f(a1/3)1
3
a−2/3 is a density for the distribution of X3.

I.4 Converting a distribution to a uniform

Suppose that we are interested in the distribution of Sn = X1 + . . . + Xn

for an independent sequence of random variables Xi, where each Xi has the
distribution described in Example 18.20. Thus the distribution of each Xi

is given by the probability density f , where f(x) = (1/3)x2 on the interval
[−1, 2], and f is zero on the rest of the real line.

We want to simulate X1, . . . , Xn on a computer, in order to check the
results we obtained in Example 18.20.

Simulating X1, . . . , Xn means running a computer program which pro-
duces a sequence of values v1, . . . , vn that are statistically similar to a typical
sequence of values obtained from X1, . . . , Xn.

As usual, we won’t discuss how to write such a computer program, but
we will take note of the fact that it seems to be easier for the computer to
simulate a random sequence Y1, . . . , Yn where each Yi has a uniform distribu-
tion. So to simplify the program we would like to express X1, . . . , Xn using
a uniform sequence Y1, . . . , Yn.
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This section shows how to do that.
We’ll start by finding the CDF of eachXi, FXi

. Since FXi
(t) = P(Xi ≤ t),

for t ∈ [−1, 2] we compute:

FXi
(t) =

∫ t

−∞
f(z) dz =

∫ t

−1

1

3
z2 dz =

(
1

9

)3∣∣∣∣t
−1

=
1

9
(t3 + 1).

Of course FXi
(t) = 0 if t < −1 and FXi

(t) = 1 if t > 2, but we will concentrate
our attention on [−1, 2].

Let F denote the restriction of FXi
to [−1, 2].

It is easy to check that F is continuous and strictly increasing, and maps
[−1, 2] onto [0, 1] in a one-to-one fashion.

Let φ denote the inverse of F . The map φ is defined on [0, 1].
Finding a formula for φ is not hard. Just solve u = (1/9)(t3 + 1) for t.

We find that φ(u) = (9u− 1)1/3, for u ∈ [0, 1].

Consider [0, 1] as a sample space with uniform distribution. Let Y be a
random variable on [0, 1] defined by Y (u) = u. We are going to show that
φ(Y ) has the same distribution as Xi!

To do that, we will show that Fφ(Y ) = FXi
, and apply Lemma 18.24.

As a first step, notice that for any number b ∈ [0, 1],

P(Y ≤ b) = length([0, b]) = b. (I.6)

Let a ∈ [−1, 2]. We claim that:

P(φ(Y ) ≤ a) = P(Y ≤ F (a)). (I.7)

Indeed, since F is an increasing function, φ(Y ) ≤ a holds if and only if
F (φ(Y )) ≤ F (a), i.e. if and only if Y ≤ F (a). Thus equation (I.7) holds.

But Y has a uniform distribution on [0, 1], soP(Y ≤ F (a)) = length([0, F (a)]) =
F (a).

We conclude that for a ∈ [−1, 2],

P(φ(Y ) ≤ a) = F (a).

That is, for a ∈ [−1, 2],

Fφ(Y )(a) = F (a) = FXi
(a).
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We need to check this equation for other values of a.
Since φ maps into [−1, 2], if a > 2 it is always true that φ(Y ) ≤ a, and

for a < −1 it is never true that φ(Y ) ≤ a.
Hence Fφ(Y )(a) = 0 for a < −1 and Fφ(Y )(a) = 1 for a > 2.
We’ve checked that Fφ(X)(a) = FXi

(a) in all possible cases for a, so

Fφ(X) = FXi
.

By Lemma 18.24, φ(Y ) and Xi have identical distributions.
It follows that for an independent sequence Y1, . . . , Yn, where each Yi has

the same distribution as Y , the sequence φ(Y1), . . . , φ(Yn) will have the same
statistical properties as X1, . . . , Xn.

And this tells us that to simulate X1, . . . , Xn on a computer, just simulate
Y1, . . . , Yn, and apply the function φ to each value in the output.

Incidentally, this trick works for any random variable X which is such
that we can find the inverse of FX .

I.5 Solutions for Chapter I

Solution (Exercise I.1). For t < c, clearly {ω : X(ω) ≤ t} is empty, so
P(X ≤ t) = 0, i.e FX(t) = 0.

For t ≥ c, clearly {ω : X(ω) ≤ t} = Ω, so P(X ≤ c) = 1.
See Figure I.6.

1 1 2 3 4 5 60.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4

c

Figure I.6: CDF for a constant random variable equal to c.

Solution (Exercise I.2). Suppose that a ≤ b. Then X ≤ a =⇒ X ≤ b,
so {X ≤ a} ⊂ {X ≤ b}. Hence P(X ≤ a) ≤ P(X ≤ b).
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Solution (Exercise I.3). For any t < c, {X ≤ t} is the empty set. Hence
P(X ≤ t) = 0, i.e. FX(t) = 0.

For any t ≥ d, {X ≤ t} = Ω. Hence P(X ≤ t) = 1, i.e. FX(t) = 1.

Solution (Exercise I.4). It is easy to check that∫ π/2

0

sin t dt = 1,

so that f really is a probability density. So the problem makes sense.
The range of X is [1, eπ/2].
For t ∈ [1, eπ/2], {X ≤ t} = {x : 1 ≤ ex ≤ t} = [0, log t]. Thus for t ∈

[1, eπ/2],

FX(t) =

∫ log t

0

sinu du = − cosu

∣∣∣∣log t
0

= 1− cos(log t).

By Exercise I.3, for every t < 1 we have FX(t) = 0 and for every t > eπ/2

we have FX(t) = 1.

Solution (Exercise I.5). It is helpful to refer to Figure I.5 while solving
this problem.

We notice that X is decreasing on [0, 1] and increasing on [1, 3].
The range of X is the interval [0, 4].
By Exercise I.3, we know that FX(t) = 0 for t < 0 and FX(t) = 1 for

t ≥ 4.
For u ∈ [0, 1], the values of X lie in [0, 1]. For u ∈ [1, 2], the values of X

also lie in [0, 1]. For u ∈ [2, 3], the values of X lie in [1, 4].
The solutions of (u− 1)2 = t are u = 1−

√
t, u = 1 +

√
t.

For t ≤ 1,

{u : X(u) ≤ t} =
{
u : (u− 1)2 ≤ t

}
=
{
u : 1−

√
t ≤ u ≤ 1 +

√
t
}
.

Thus for t ≤ 1,

P(X ≤ t) =
1

3

(
2
√
t
)
.

For t > 1,

{u : X(u) ≤ t} =
{
u : u ≤ 1 +

√
t
}
.
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1 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Figure I.7: CDF for X(t) = (1− t)2 on the sample space [0, 3].

Thus for t > 1,

P(X ≤ t) =
1

3

(
1 +

√
t
)
.

The graph of FX is shown in Figure I.7.

Solution (Exercise I.6). By Exercise I.5,

F (t) =


0 if t < 0,
1
3

(
2
√
t
)

if 0 ≤ t ≤ 1,
1
3

(
1 +

√
t
)

if 1 < t ≤ 4,

1 if t > 4.

Then

F ′(t) =


0 if t < 0,
1
3

1√
t

if 0 < t < 1,
1
6

1√
t

if 1 < t < 4,

0 if t > 4.

Note that F ′(t) exists for all t except t = 0, 1, 4, and F ′ is continuous at
every point except 0, 1, 4.
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By Lemma I.5, F ′ is a density for the distribution of X.
The graph of F ′ is shown in Figure I.8.

1 2 3 4 5

0.5

0.5

1.0

Figure I.8: distribution density for X(t) = (1− t)2 on the sample space [0, 3].

Solution (Exercise I.7). The function X is increasing on [0, π/4], and has
range [0, 1/

√
2]. Thus for t ∈ [0, 1/

√
2],

FX(t) = P(X ≤ t) = P({u : u ∈ [0, π/4], sinu ≤ t})
= {u : 0 ≤ u ≤ π/4, u ≤ arcsin t} .

Hence

FX(t) = {u : 0 ≤ u ≤ arcsin t} = P([0, arcsin t]).

By assumption, P is given by the density
√
2 cosu, so

FX(t) =

∫ arcsin t

0

√
2 cosu du =

√
2 sinu

∣∣∣∣arcsin t

0

=
√
2 t.

And of course, by good old Exercise I.3, we know that FX(t) = 0 for t < 0
and FX(t) = 1 for t ≥ 1/

√
2.
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Thus

F ′
X(t) =


0 if t < 0,√
2 if 0 ≤ t ≤ 1/

√
2,

0 if t > 1/
√
t.

By Lemma I.5, the distribution for X has density F ′
X .

Solution (Exercise I.8). In Exercise I.7 we found that the distribution of
X is uniform on [0, 1/

√
2].

This distribution has a probability density g given by

g(t) =

{√
2 if 0 ≤ t ≤ 1/

√
2,

0 otherwise.

By equation (15.6),

E [X] =

∫
tg(t) dt =

∫ 1/
√
2

0

t
√
2 dt =

t2√
2

∣∣∣∣1/
√
2

0

=
1

2
√
2
.

This agrees with the result of Exercise E.3.

495



Chapter I. Distributions and cumulative distribution functions

496



Appendix J

Joint distributions and
densities

J.1 Random vectors and joint distributions

Suppose that two physical random variables, X and Y , are associated with
some experiment. In a probability model for this experiment there will be
two corresponding mathematical random variables, which we will also call X
and Y .

Suppose that we know the probability distribution of X. If someone asks
us a probability question about the behavior of X, we are ready to answer
that question. Similarly, we can answer any probability question about Y if
we know the probability distribution of Y .

Now suppose that we need the answer to a more complicated question,
involving the behavior of both X and Y . For example, suppose we need
to find P(X < Y ). To find that probability we are going have to know
something about the relationship between X and Y .

Thinking about two or more variables at once can be complicated. One
sees that already when studying calculus. To deal with the complexity it is
helpful to use some systematic terminology, as in the next definition.

Definition J.1 (Cartesian products). Let C and D be any sets. The set
of all pairs (x, y), where x ∈ C and y ∈ D, is called the Cartesian product
of C and D, and is denoted by C ×D.

We can picture the Cartesian product of two intervals, [a, b] × [c, d], as
the rectangle whose sides are [a, b] and [c, d]. See Figure J.1.
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1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

4

(3, 1.5)

[2, 5]× [1, 3]

Figure J.1: (3, 1.5) is a point in [2, 5]× [1, 3].

Readers who are not familiar with Cartesian product terminology should
note the next example.

Example J.2. The statement

a ≤ x ≤ b and c ≤ y ≤ d

is exactly equivalent to the statement

(x, y) ∈ [a, b]× [c, d].

Thus
{(x, y) : a ≤ x ≤ b and c ≤ y ≤ d} = [a, b]× [c, d].

Incidentally, notice that from the definition of Cartesian product, R2 =
R× R, which fits our notation for R2.

The general definition of a random variable (Definition 9.1), states that
the physical meaning of a random variable for an experiment is a quantity
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J.1. Random vectors and joint distributions

whose value depends on the outcome of the experiment, and a mathematical
random variable is a map from a sample space to an appropriate set of values.
Up to this point we have concentrated on real-valued random variables, but
it is often convenient to use vector-valued random variables.

Definition J.3 (Random vectors taking values in R2). Suppose that
real-valued random variables X, Y are defined on the same sample space. Let
F be the map from the sample space to R2, defined by F (ω) = (X(ω), Y (ω))
for each sample point ω. Then F is an R2-valued random variable.

We refer to F as a random vector. We tend to denote a random vector
by one of the usual letters we employ for random variables. So we might say
we have the random vector Z defined by Z = (X, Y ).

Actually one often refers to the random vector using sequence notation
to list the vector, so that one just says (X, Y ) rather than Z.

Just as in the case of real-valued random variables, we write the set
{ω : (X(ω), Y (ω)) ∈ S} more briefly as {(X, Y ) ∈ S}.

By Example J.2, for any random vector (X, Y ) taking values in R2, and
any intervals [a, b] and [c, d],

{a ≤ X ≤ b} ∩ {c ≤ Y ≤ d} = {(X, Y ) ∈ [a, b]× [c, d]} . (J.1)

More generally, for any subsets A,B of the real line,

{X ∈ A} ∩ {Y ∈ B} = {(X, Y ) ∈ A×B} . (J.2)

Of course we can re-express equation (J.2) as:

{X ∈ A and Y ∈ B} = {(X, Y ) ∈ A×B} . (J.3)

Definition J.4 (Distribution of a random vector). Let Z = (X, Y ) be
a random vector. The probability distribution of Z is the rule that specifies
P(Z ∈ S), for every subset S of R2.

The probability distribution of Z is thus a probability set-function Q,
defined for subsets S of R2 as

Q(S) = P(Z ∈ S). (J.4)
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Chapter J. Joint distributions and densities

This definition is essentially the same as the definition of the distribution
of a real-valued random variable, given in Definition 9.7. A slightly different
terminology is often used:

Definition J.5 (Joint distribution terminology). For any real-valued
random variables X and Y , defined mathematically on the sample space Ω
of a probability model, the “joint probability distribution” of X and Y is
another name for the distribution of the random vector (X, Y ).

The use of the word “joint” for the distribution of the vectors is com-
mon. It emphasizes the fact that one is dealing with two real-valued random
variables at the same time.

It can be shown that for a real-valued random variableX, the distribution
of X is uniquely determined, once we know the value of P(a ≤ X ≤ b) for all
intervals [a, b]. Similarly, it can be shown that the distribution of a random
vector Z = (X, Y ) is uniquely determined, once we know P(Z ∈ R) for all
rectangles R. We state this fact next.

Lemma J.6 (Characterizing a distribution on R2). Let Z,W be random
vectors taking values in R2, such that P(Z ∈ R ) = P(W ∈ R ) for every
rectangle R.

Then Z and W have the same distribution.

The proof is not hard but requires technicalities, and is omitted.

Exercise J.1. Let X and Y be random variables for some probability model.
Show:

P(X ∈ A) = P((X, Y ) ∈ A× R) and P(Y ∈ B) = P((X, Y ) ∈ R×B).
(J.5)

[Solution]

Equation (J.5) tells us that whenever we know the joint distribution of
X and Y , we certainly know the distributions for X and Y separately.
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J.2. Marginal distributions

J.2 Marginal distributions

Definition J.7 (Marginal distributions). The separate distributions for
X and Y are referred to as the marginal distributions associated with the
joint distribution of X, Y .

The adjective “marginal” is presumably used because the word “margin”
can mean “edge”, and the values of the distributions of X and Y can be
conveniently collected at the edges of a two-dimensional table of probabilities
of the form P( (X, Y ) = (xi, yj) ),

Suppose that the range of X consists of the distinct values x1, . . . , xk, and
the range of Y consists of the distinct values y1, . . . , yℓ. Then the range of
(X, Y ) must be included in the set of points (xi, yj), although not every pair
(xi, yj) need be an actual value of (X, Y ).

If we know the distribution of (X, Y ), then we know P( (X, Y ) = (x, y) )
for every (x, y) ∈ R2. In particular we know P( (X, Y ) = (xi, yj) ) for every
i, j.

Since Y always has some value,

{X = xi} =
ℓ⋃

j=1

{X = xi and Y = yj} .

Thus

P(X = xi) =
ℓ∑

j=1

P(X = xi and Y = yj). (J.6)

Similarly

P(Y = yj) =
k∑

i=1

P(X = xi and Y = yj). (J.7)

In the finite range case, equations (J.6) and (J.7) show that it is easy to
calculate the marginal distribution if you know the joint distribution.

For general random variables, Exercise J.1 tells us that

P(X ∈ S) = P((X, Y ) ∈ S × R), P(Y ∈ T ) = P((X, Y ) ∈ R× T ), (J.8)

even though this does not necessarily give us a convenient formula.

501



Chapter J. Joint distributions and densities

Exercise J.2. Let X and Y be random variables such that P(X = 1) =
P(Y = 1) = 1/2 and P(X = 2) = P(Y = 2) = 1/2.

A possible joint distribution p forX, Y is given by four numbers: p11, p12, p21, p22,
where p11 = P(X = 1, Y = 1), p12 = P(X = 1, Y = 2), p21 = P(X = 2, Y =
1), p22 = P(X = 2, Y = 2). These numbers must be such that X and Y
have the correct marginal distributions.

(i) Find three different possible joint distributions for X, Y : a, b and c.
Distribution a should be such that X and Y are independent.

Display any distribution p as follows:

p Y

X
p11 p12
p21 p22

(ii) Let p and q be possible joint distributions for X, Y . Let t be a number
in [0, 1]. Prove that tp+(1− t)q is also a possible joint distribution for X, Y .

[Solution]

J.3 Joint and marginal densities

Equation (15.3) gives the general definition for the density of a probability
distribution, on any space.

Definition 9.11 says that a function f is a probability density for the
distribution of a real-valued random variable X if P(X ∈ S) =

∫
S
f for

subsets S of the real line.
Now we consider a random vector (X, Y ).

Definition J.8 (Density for a joint distribution). Let X and Y be real-
valued random variables for some probability model. Suppose that there
exists a probability density function h on R2, such that

P ((X, Y ) ∈ S) =

∫
S

h(x, y) dy dx (J.9)

for subsets S of R2.
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This equation uses the modern notation for integration over a set, given
Definition 3.6. We could also write equation (J.9) in calculus notation as

P ((X, Y ) ∈ S) =

∫ ∫
S

h(x, y) dy dx. (J.10)

When equation (J.9) holds for all S, we say that h is a probability density
for the distribution of the random vector (X, Y ), and we write this briefly as
(X, Y ) ∼ h.

We also say that h is a probability density for the joint distribution of X
and Y .

Just as in the case of the real line, if it happens that all the values of
(X, Y ) lie in some subset T of R2, then the density h can be assumed to be
zero at all points in the complement of T .

Lemma J.6 can be used to justify the next fact.

Lemma J.9 (Characterizing a distribution density on R2). Let X, Y
be real-valued random variables, and let h be a probability density function
on R2, such that

P( (X, Y ) ∈ R ) =

∫
R

h

for every rectangle R.
Then

P( (X, Y ) ∈ S ) =

∫
S

h

for all sets S, so h is a density for the probability distribution of (X, Y ).

Lemma J.10 (Marginal density formula from joint density). Let X
and Y be real-valued random variables whose distribution has a joint prob-
ability density h defined on R2. Then the distribution of X has a density f
on R and the distribution of Y has a density g on R, given by

f(x) =

∫ ∞

−∞
h(x, y) dy,

g(y) =

∫ ∞

−∞
h(x, y) dx.

(J.11)
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We can express equation (J.11) by saying that we obtain the probability
density for one coordinate of (X, Y ) by integrating out the variable corre-
sponding to the other coordinate.

Proof. Let A be any interval of R. By equation (J.5),

P(X ∈ A) = P((X, Y ) ∈ A× R) =
∫ ∫
A×R

h(x, y) dy dx

=

∫
A

(∫ ∞

−∞
h(x, y) dy

)
dx =

∫
A

f(x) dx,

where f is defined as in equation (J.11).
Since

P(X ∈ A) =

∫
A

f(x) dx,

for every interval A, f is a density for the distribution of X.
The proof for Y is similar.

Exercise J.3. In the setting of Exercise E.1 find the density f for the dis-
tribution of X.

[Solution]

J.4 Joint density for independent random vari-

ables

Suppose that real-valued random variables X, Y are independent, and we
know the probability distribution of X and the probability distribution of Y .
Can we find the joint distribution for X, Y ?

When X and Y have finite or countable range, the answer is easy:

P(X = xi and Y = yj) = P(X = xi)P(Y = yj) (J.12)
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random variables

by independence. For a subset S of R2, we can find P( (X, Y ) ∈ S ) by
adding up P(X = xi and Y = yj) for all (xi, yj) ∈ S.

The other easy case is the situation in which the distribution of each ran-
dom variable has its own density. That’s the subject of the present section.
We don’t assume ahead of time that there is a density for the joint distribu-
tion of X, Y , but it turns out that there is one, and the formula is similar to
equation (J.12).

Lemma J.11 (Density when X, Y are independent). Let X, Y be real-
valued random variables which are independent.

Suppose that f is a density for the distribution of X and g is a density
for the distribution of Y . Let h(x, y) = f(x)g(y). Then h is a density for the
distribution of (X, Y ).

Proof. Let J1 and J2 be intervals. Then

P( (X, Y ) ∈ J1 × J2 ) = P(X ∈ J1)P(X ∈ J2) =

(∫
J1

f

)(∫
J2

g

)
=

∫ ∫
J1×J2

f(x)g(y) dx dy =

∫
J1×J2

h.

We have shown that for every rectangle R,

P( (X, Y ) ∈ R ) =

∫
R

h.

By Lemma J.9, h is a density for the distribution of (X, Y ).

J.5 Convolutions: finding the density for the

sum of two independent random variables

Let X, Y be independent real-valued random variables whose distributions
are given by densities f, g, respectively. Then a joint density h for (X, Y ) is
given by h(x, y) = f(x)g(y).

Our goal in this section is to find a density for the distribution of X +Y .
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Let A be an interval of the real line. Let B = {(x, y) : x+ y ∈ A}.

P(X + Y ∈ A) = P((X, Y ) ∈ B).

It is easy to check from the definitions that 1B( (x, y) ) = 1A(x+ y).

P((X, Y ) ∈ B)

∫
B

f(x)g(y) dy dx =

∫
1B( (x, y) )f(x)g(y) dy dx

=

∫ ∞

−∞

∫ ∞

−∞
1A(x+ y)f(x)g(y) dy dx.

For fixed x, change the variable in the inner integral from y to t − x. Then
x+ y = t, and dy = dt, and the double integral becomes∫ ∞

−∞

∫ ∞

−∞
1A(t)f(x)g(t− x) dt dx =

∫ ∞

−∞

∫ ∞

−∞
1A(t)f(x)g(t− x) dx dt

=

∫ ∞

−∞
1A(t)ψ(t) dt,

where 1A is the indicator function for A (Definition 11.1) and

ψ(t) =

∫ ∞

−∞
f(x)g(t− x) dx. (J.13)

The function denoted by ψ in equation (J.13) is known as the convolution
of f and g, and is denoted by f ∗ g.

We have shown that for any interval A of the real line,

P(X + Y ∈ A) =

∫
A

f ∗ g(t) dt.

Thus by Definition 3.4, f ∗ g is a density for the distribution of X + Y .
Finding this density was our goal, so we are finished.

J.6 Solutions for Appendix J

Solution (Exercise J.1). For a real-valued random variable Y , to say that
Y ∈ R places no restriction on the value of Y .

Thus when discussing real-valued random variables, the statements “X ∈
A and Y ∈ R” and “X ∈ A” provide the same information.

In set language,

{X ∈ A and Y ∈ R} = {X ∈ A} .
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Solution (Exercise J.2).

(i) The independent case always works, and that will be our choice for a.

a Y

X
1
4

1
4

1
4

1
4

If we move probability mass vertically in a representation like the one
for a, it has no effect on the marginal distribution of Y . The movement
does affect the marginal distribution of X, but, since the distribution of X is
obtained by summing rows, it doesn’t matter in which column the movement
takes place.

So let’s obtain b from a by moving mass 1/8 upward in column one, and
compensating by moving mass 1/8 downward in column two.

b Y

X
3
8

1
8

1
8

3
8

We’ll obtain a different distribution c from a by moving mass 1/8 down-
ward in column one, and compensating by moving mass 1/8 upward in col-
umn two.

c Y

X
1
8

3
8

3
8

1
8

(ii) Let r = tp+ (1− t)q.

rij = tpij + (1− t)qij.

Then the marginal distribution for X using r is given by

P(X = i) = ri1 + ri2 = tpi1 + (1− t)qi1 + tpi2 + (1− t)qi2

= t (pi1 + pi2) + (1− t) (qi1 + qi2) = t
1

2
+ (1− t)

1

2
=

1

2
.

A similar computation works for the marginal distribution for Y using r.

Solution (Exercise J.3). We obtain the formula for f using equation (J.11).
Thus

f(x) =

∫ √
1−x2

−
√
1−x2

1

2π
(2 + x) dy =

1

π
(2 + x)

√
1− x2.
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Appendix K

More about joint distributions

K.1 Checking independence using joint dis-

tributions

A model often makes significant use of more than one random variable. It is
important to be able to tell when the random variables are independent.

The definition of independence for random variablesX, Y (Definition 12.2)
says that real-valued random variables X, Y are independent if for any sub-
sets S and T of R, {X ∈ S} and {Y ∈ T} are independent, i.e.

P({X ∈ S} ∩ {Y ∈ T}) = P({X ∈ S})P({Y ∈ T}).

In other words, X, Y are independent if for all S, T ,

P( (X, Y ) ∈ S × T ) = P(X ∈ S)P(Y ∈ T ). (K.1)

This equation makes it clear that independence for random variables is a
property of the joint distribution of the random variables.

Example K.1 (A non-independence example). In the setting of Exer-
cise E.1 we can prove that the random variables X and Y are not indepen-
dent.

It seems obvious physically that X and Y cannot be independent, since
information about the value of X can give you information about the value
of Y . For example, knowing that X is near one tells you that Y is near zero,
and knowing the exact value of X tells you that Y takes one of at most two
possible values.

509



Chapter K. More about joint distributions

For an argument using the mathematical definition, let A = (1/
√
2, 1) =

B. Then A×B is a rectangle entirely outside the unit circle.
Since P(X2 + Y 2 ≤ 1) = 1, P(A×B) = 0.
We know that { (X, Y ) ∈ A×B} = {X ∈ A and Y ∈ B}, so P(X ∈

A and Y ∈ B) = 0. But both X and Y have densities that are posi-
tive everywhere on (−1, 1) so by integrating these densities we know that
P(X ∈ A) > 0 and P(Y ∈ B) > 0.

Thus P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B) is false. Hence
{X ∈ A} and {Y ∈ B} are not independent, and so X and Y are not inde-
pendent.

Lemma 12.3 tells us how to check efficiently for independence when the
ranges of X and Y are finite. Now we will derive a somewhat similar criterion
for independence when the distributions of X and Y are given by densities.

What we want to do now is turn Lemma J.11 around, and prove a converse
statement. Given a density h(x, y) for the random vector (X, Y ), the idea is
that X, Y will be independent if we can factor h into a product of a function
of x times a function of y.

If we can factor h in this way, say h(x, y) = f(x)g(y), then the factors
f, g will give us the marginal densities for X and Y . But a tiny bit of extra
work is necessary, because it may not be true that

∫
f = 1 and

∫
g = 1. For

example, we could always multiply f by a million and divide g by a million,
and obtain another perfectly correct factorization.

So what is actually true is that the factors f(x) and g(y) will be the
marginal densities, after we normalize them, i.e. after we multiply each
factor by an appropriate constant to ensure that its integral is equal to one.
The next lemma explains all this.

Lemma K.2 (Density criterion for independence). Let X, Y be real-
valued random variables in some probability model. Suppose that h is a
density for the distribution of (X, Y ), and and let f and g be nonnegative
functions on R, such that h(x, y) = f(x)g(y) for all x, y.

Then X and Y are independent random variables. Furthermore, for some
constants c1 and c2, c1f is a probability density for the distribution of X and
c2g is a probability density for the distribution of Y .
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Proof. By Lemma J.10, a probability density for the distribution of X is
given by ∫ ∞

−∞
f(x)g(y) dy = c1f(x), (K.2)

where

c1 =

∫ ∞

−∞
g(y) dy. (K.3)

Similarly a probability density for the distribution of Y is given by∫ ∞

−∞
f(x)g(y) dx = c2g(y), (K.4)

where

c2 =

∫ ∞

−∞
f(x) dx. (K.5)

We note that

1 =

∫ ∞

−∞

∫ ∞

−∞
h(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞
f(x)g(y) dx dy(∫ ∞

−∞
f(x) dx

)(∫ ∞

−∞
g(y) dy

)
= c1c2. (K.6)

Let J1, J2 be intervals of the real line. Using the definitions,

P({X1 ∈ J1} ∩ {X2 ∈ J2}) = P( (X1, X2) ∈ J1 × J2 ) =

∫ ∫
J1×J2

h(x, y) dx dy

=

∫ ∫
J1×J2

c1f(x)c2g(y) dx dy =

∫
J1

∫
J2

f(x)g(y) dx dy

=

(∫
J1

f(x) dx

)(∫
J2

g(y) dy

)
= P(X1 ∈ J1)P(X2 ∈ J2).

Thus the events {X1 ∈ J1} and {X2 ∈ J2} are independent events. Since
this is true for all intervals J1, J2, Lemma 12.4 shows X1, X2 are independent
random variables.
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When we want to prove that independence does not hold, it may be
convenient to check densities at a single point.

Since independence is defined in terms of probabilities, not densities, we
will first have to make a connection between the value of a density at one
point and a probability. Continuity lets us do that.

Lemma K.3 (Density criterion for non-independence). Let X, Y be
real-valued random variables for some probability model, such that the joint
distribution for X, Y has a density h.

Let f and g be densities for the distributions of X and Y respectively.
Suppose for some (a, b) that f is continuous at a, that g is continuous at

b, and that h is continuous at (a, b). Suppose also that h(a, b) ̸= f(a)g(b).
Then X and Y are not independent.

Proof. Assume that X and Y are independent. We will obtain a contradic-
tion.

By Lemma J.11, f(x)g(y) is a density for the distribution of (X, Y ).
Thus f(x)g(y) and h(x, y) are both densities for the same distribution,

and they differ at a point (a, b) where both of these densities are continuous.
That can’t happen! For example, suppose f(a)g(b) > h(a, b). Let ε =
f(a)g(b)− h(a, b) > 0.

By continuity there is a disc D around (a, b) such that

f(x)g(y) > h(x, y) +
ε

2

holds everywhere on D. But then

P( (X, Y ) ∈ D ) =

∫
D

f(x)g(y) dx dy >

∫
D

h(x, y) dx dy +
ε

2
area(D)

= P( (X, Y ) ∈ D ) +
ε

2
area(D).

That is a contradiction!

Note that Lemma K.3 gives us a convenient way to come to the conclusion
found in Example K.1.
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K.2. Conditional densities

Remark K.4 (Existence of independent random variables). In math-
ematical arguments it can be useful to know that given probability densities
f and g, there aways exist independent mathematical random variables X
and Y such that f is a density for the distribution of X and g is a density
for the distribution of Y . This point seems physically obvious (just do two
separate experiments), so you may not want to worry about it. But a purely
mathematical argument is easy too.

To show this, let Ω be R2 , and let P be the probability distribution with
density h(x, y) = f(x)g(y).

Let X( (x, y) ) = x and let Y ( (x, y) ) = y. Using definitions one can
show that h is a probability density for the distribution of the random vector
Z = (X, Y ).

By Lemma K.2, X, Y are independent, f is a density for the distribution
of X and g is a density for the distribution of Y .

K.2 Conditional densities

Let X and Y be random variables with a joint density h on R2. Since a
probability density is a machine that produces probabilities when we inte-
grate, we can calculate conditional probabilities involving X and Y using the
standard definitions. For example, for any subsets A and B of R,

P(X ∈ A |Y ∈ B) =
P({X ∈ A} ∩ {Y ∈ B})

P(Y ∈ B)
=

P( (X, Y ) ∈ A×B)

P(Y ∈ B)

=

∫ ∫
A×B

h(x, y) dx dy∫ ∫
R×B

h(x, y) dx dy
. (K.7)

See Figure K.1.
Using equation (K.7) to find conditional probabilities may require some

computational work, but it does not require new ideas. However, it can
at times be useful to assign a meaning to P(X ∈ A |Y = b), for some
b ∈ R, even when P(Y = b) = 0. This situation is obviously not covered by
Definition 4.2, since it would involve division by zero in equation (4.1). A
correct definition is given below in Definition K.5.
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Chapter K. More about joint distributions

A

B A×B

Figure K.1: Integrate h over A× B to get P(X ∈ A and Y ∈ B). Integrate
h over the horizontal strip R×B to get P(Y ∈ B).

One can just accept that as a definition, and then see how such a condi-
tional probability is used, in Theorem K.6. But before giving the statement
of Definition K.5 it may be of interest to readers to motivate this definition
by considering a limit of conditional probabilities, as in equation K.8.

Motivating Definition K.5

Physically, we can think that P(X ∈ A |Y = b) expresses the probability
that X ∈ A when given that Y has a value that is “close” to b, so that P(X ∈
A |Y = b) actually means P(X ∈ A |Y ≈ b), at least in situations where
P(Y ≈ b) > 0. But the event {Y ≈ b} is not precisely defined. Does it mean
{b− .0001 < Y < b+ .0001}, or does it mean {b− .0000001 < Y < b+ .0000001}?

We have to ask this, because P(b− .0001 < Y < b+ .0001) may be many
times greater than P(b − .0000001 < Y < b + .0000001). We have to check
mathematically that there is not a problem.

Let’s look at the case that the distribution of (X, Y ) has a continuous joint
density h(x, y). We wish to define a suitable value for P(X ∈ A |Y = b). In
this situation let B be a small subinterval of R, say with length 2δ, such that
b ∈ B. See Figure K.2.
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b
}

2δ

A

B A× [b− δ, b+ δ]

Figure K.2: Integrate h over A× B to get P(X ∈ A and Y ∈ B). Integrate
h over the horizontal strip R×B to get P(Y ∈ B).

We think of P(X ∈ A |Y = b) as being such that

P(X ∈ A |Y = b) ≈ P(X ∈ A |Y ∈ B). (K.8)

To make sense of equation (K.8), this approximation should be valid for any
small interval B around b!

We have chosen B = [b− δ, b+ δ]. Then

P(X ∈ A |Y ∈ B) =
P(X ∈ A and Y ∈ B)

P(Y ∈ B)

=

∫
A

∫ b+δ

b−δ
h(x, t) dt dx∫∞

−∞

∫ b+δ

b−δ
h(x, t) dt dx

. (K.9)

Suppose A is bounded. The continuity of h implies that if δ is small enough,
for all x ∈ A we have

h(x, t) ≈ h(x, b) for all t ∈ [b− δ, b+ δ].
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Chapter K. More about joint distributions

Applying this approximation to equation (K.9) gives

P(X ∈ A |Y ∈ B) ≈
∫
A
h(x, b)2δ dx∫∞

−∞ h(x, b)2δ dx
=

∫
A
h(x, b) dx∫∞

−∞ h(x, b) dx
.

Equation (J.11) tells us that
∫∞
−∞ h(x, b) dx = g(b), where g is the density

of Y . So

P(X ∈ A |Y ∈ B) ≈
∫
A

h(x, b)

g(b)
dx. (K.10)

Notice that because the length 2δ has been cancelled out in equation (K.10),
the approximate value we obtained for P(X ∈ A |Y ∈ B) does not depend
on the choice of B. It will be a good approximation if h is continuous and B
is a small interval containing b.

Based on equation (K.10), here is the precise definition of a conditional
probability given the exact value of a random variable, when the random
variable has a density.

Definition K.5 (Conditional probability given exact value). Let X, Y
be random variables for some probability model. Let h be a density for the
joint distribution of X, Y . Let g be a density for the distribution of Y . For
any value b ∈ R such that g(b) > 0, and any subset A of R, a version of the
conditional probability that X ∈ A given Y = b is:

P(X ∈ A |Y = b) =

∫
A

h(x, b)

g(b)
dx. (K.11)

If g(y) = 0, for convenience we will define P(X ∈ A |Y = y) to be zero.
Setting P(X ∈ A |Y = b) = 0 when g(b) = 0 has no physical meaning. We
are making that definition here simply to ensure that P(X ∈ A |Y = b) is
always defined mathematically.

We speak of P(X ∈ A |Y = b) as a version of the conditional probability
since it depends on the choice of the values for h(x, b) and g(b), and those
values (at a few points) can depend on the choice of the density h.

Remember that equation (K.5) is a new definition, not something we can
derive from our previous definitions. Equation (K.10) suggests that P(X ∈
A |Y = b) ought to be a useful concept, since it is often approximately equal
to the probability that X ∈ A when Y is close to b.
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The interpretation given by equation (K.10) was shown under a continuity
assumption. However, the following theorem uses P(X ∈ A |Y = b) in
an expression that always has a physical meaning, without any assumption
about continuity.

Theorem K.6 (Total probability using exact cases). Let X, Y be ran-
dom variables for some probability model. Let h be a density for the joint
distribution of X, Y . Let g be a density for the distribution of Y .

Let A be a subset of R, and let P(X ∈ A |Y = y) be defined for all y as
in Definition K.5, using h and g. Then for any subset B of R,

P( (X, Y ) ∈ A×B) =

∫
B

P(X ∈ A |Y = y)g(y) dy. (K.12)

Proof.∫
B

P(X ∈ A |Y = y)g(y) dy =

∫
B

(∫
A

h(x, y)

g(y)
dx

)
g(y) dy

=

∫
A×B

h(x, y) dx dy = P( (X, Y ) ∈ A×B).

In the proof of Theorem K.6, notice how the arbitrary value we gave to
P(X ∈ A |Y = y) when g(y) = 0 only occurs in a place where it doesn’t
matter!

The statement of Theorem K.6 relates P(X ∈ A |Y = y) to a probability
which is physically observable in principle, namely P( (X, Y ) ∈ A×B). We
might say that our definition of P(X ∈ A |Y = y) is valid precisely because
it produces the correct value for P( (X, Y ) ∈ A×B).

Remark K.7 (Total probability). Theorem K.6 and Theorem 4.6 both
express the law of total probability, in different situations. Equation (K.12)
is the “continuous” version of equation (4.18). The role of the event C in
equation (4.18) is similar to the role of {X ∈ A} in equation (K.12), while
the role of D in equation (4.18) is similar to the role of {Y ∈ B}. The sum
over the events Di is replaced by the integral over the “infinitesimal events”
{Y = y}.
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Chapter K. More about joint distributions

Equations (K.10) and (K.10) suggest one more definition.

Definition K.8 (Conditional density). Let X, Y be random variables for
some probability model, and let h be a density for the joint distribution of
X, Y . Let g be a density for the distribution of Y . For any value y ∈ R with
g(y) > 0, let the conditional density fX(x |Y = y) for X given Y = y be
defined by

fX(x |Y = y) =
h(x, y)

g(y)
. (K.13)

For convenience, if g(y) = 0 let fX(x |Y = y) be defined to be zero.

We may write fX(x |Y = y) more briefly as f(x |Y = y), when the
random variable X is known from the context.

We have thought of a density as something that you integrate to obtain a
probability. Our definition of the conditional density is consistent with this
view, since by equation (K.10),

P(X ∈ A |Y = y) =

∫
A

f(x |Y = y) dx. (K.14)

Recall that any function h which produces the correct values for P( (X, Y ) ∈
S ) is an allowable density for the joint distribution. Thus there are many
correct choices for h, and hence also for g. Is this a problem?

Not really. Notice that although our definition of f(x |Y = y) depends
on the choice of the densities h and g, Theorem K.6 shows that if we use
f(x |Y = y) to calculate an observable probability, the result will not depend
on the choice of h and g. So the non-uniqueness of h is not a problem, as
long as we stick to calculating observable probabilities.

K.3 Changing variables

Sometimes the analysis of a problem become much simpler if we define new
variables, and re-express the problem in terms of the new variables. Of
course, when we do that, we have to convert expressions using the old vari-
ables into equivalent expressions using the new variables. And the conversion
must be done correctly!
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You may encounter probability calculations which involve a two-dimensional
change of variables. Just to give a sense of how that works, in this section
we will briefly consider a typical case.

Suppose that X, Y are real-valued random variables, such that the range
of the random vector (X, Y ) is contained in some subset U of R2. Let h is a
probability density for the distribution of the random vector (X, Y ).

Let φ : U → R2 be a map which is defined on U and has values in R2.
Assume that φ is one-to-one. If (x, y) ∈ U and φ(x, y) = (u, v), we can think
of (u, v) as new coordinates for the point (x, y).

Let (U, V ) = φ(X, Y ). If φ is one-to-one, then we can write X, Y in terms
of U, V . So we can express everything involving X and Y in terms of U, V .
Doing that may require a probability density k for the distribution of (U, V ).
How do we find k?

Assume that φ is one-to-one and onto, has derivatives, and so on. Make
it as nice as you like. We just want to get the idea of how to find k from h.

Let S be a subset of R2. The density k must be such that

P(φ(X, Y ) ∈ S) =

∫
S

k. (K.15)

Let T be the set defined by

T = { (x, y) : φ(x, y) ∈ S} .

Then saying that φ(X, Y ) ∈ S is the same as saying that (X, Y ) ∈ T . That
is,

{φ(X, Y ) ∈ S} = { (X, Y ) ∈ T } .

Hence

P(φ(X, Y ) ∈ S) = P( (X, Y ) ∈ T ) =

∫
T

h. (K.16)

Comparing equation (K.15) with equation (K.16), we see that we need k to
be such that ∫

S

k =

∫
T

h.

This involves an old calculus topic: changing variables in an integral in the
plane.

It’s easier to think about functions than sets in this situation, so let’s use
indicators (Definition 11.1) to write everything in terms of functions. We
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Chapter K. More about joint distributions

want to have ∫
k1S =

∫
h1T . (K.17)

Assume that the inverse map φ−1 exists. Call it θ. The definition of T
says that φ(x, y) ∈ S is equivalent to (x, y) ∈ T , so θ(u, v) ∈ T is equivalent
to (u, v) ∈ S and so

1S = 1T ◦ θ.

Thus we want k to be such that∫
k1T ◦ θ =

∫
h1T . (K.18)

The calculus formula for changing variables in a two-dimensional integral
says that for any integrand f ,∫ ∫

f =

∫ ∫
(f ◦ θ) |J | , (K.19)

where J denotes the Jacobian determinant of the map θ.
If θ(u, v) =

(
θ1(u, v), θ2(u, v)

)
, then the Jacobian determinant J is defined

by

J = det

([
∂
∂u
θ1

∂
∂v
θ1

∂
∂u
θ2

∂
∂v
θ2

])
. (K.20)

In equation (K.19), the factor |J | plays the role that |θ′| would play in one
dimension.

Applying equation (K.19) with f = h1T gives us the following general
equation: ∫

h1T =

∫
(h ◦ θ)(1T ◦ θ) |J | , (K.21)

After comparing equation (K.21) with equation (K.18), we see that equation
(K.18) will hold if

k = (h ◦ θ) |J | . (K.22)

This is the change-of-variable formula that gives a density for the distribution
of φ(X, Y ).

Sometimes there may be a few points where the change-of-coordinates
map φ is undefined, or the inverse is not differentiable. (We’re looking at you,
polar coordinates.) Usually we can just work with φ on the rest of its domain,
and still integrate the function in equation (K.22) to get probabilities.
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Appendix L

Convolutions of functions on
the integers

The formula for the convolution of two functions on the real line was given in
equation (J.13). The convolution operation for two functions on the integers
has a formula which is similar, but simpler. We can gain some insights by
exploring its properties.

L.1 The general definition of convolutions of

functions on the integers

Let X be an integer-valued random variable.
Then P(X = x) = 0 if x is not an integer. Let f be the function on the

integers defined by f(n) = P(X = n).
From the definition, f is simply the probability mass function for the

distribution of X (Definition 9.8), with its domain restricted to the integers.
As in equation (14.11), f has all the information contained in the distri-

bution of X.
We can picture a function f on the integers as a doubly infinite sequence

of values:

. . . , f(−3), f(−2), f(−1), f(0), f(1), f(2), f(3), . . . .

For brevity, we will sometimes refer to any function on the integers as a
sequence function. Then the function f defined by f(n) = P(X = n) will be
called the sequence function for the distribution of X.
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Chapter L. Convolutions of functions on the integers

One of the goals of this section is to find P(X + Y = n) in terms of f
and g.

Lemma L.1 (The sequence function for a sum of independent ran-
dom variables). Suppose that X and Y are independent integer-valued
random variables, whose distributions have sequence functions f and g, re-
spectively. Then:

P(X +Y = n) =
∞∑

k=−∞

P(X = k)P(Y = n− k) =
∞∑

k=−∞

f(k)g(n− k). (L.1)

Proof. Notice that the events {X = k}, −∞ < k <∞, cover all possibilities.
Hence

{X + Y = n} =
∞⋃

k=−∞

{X + Y = n and X = k} .

The events in this union are obviously disjoint, since X(ω) only has one value
for each ω. By countable additivity,

P(X + Y = n) =
∞∑

k=−∞

P(X + Y = n and X = k).

Logically the statement X+Y = n and X = k is equivalent to the statement
X = k and Y = n− k. Hence

P(X + Y = n) =
∞∑

k=−∞

P(X = k and Y = n− k).

Since X, Y are independent, P(X = k and Y = n − k) = P(X = k)P(Y =
n− k), and equation (L.1) follows.

We would like to understand the general properties of sums like the ones
in equation (L.1). The next lemma tackles some analysis connected with
that goal.
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Lemma L.2 (The convolution sum). Let α and β be functions defined
on the integers, such that

∞∑
n=−∞

|α(n)| converges and
∞∑

n=−∞

|β(n)| converges. (L.2)

Then
∑∞

k=−∞ |α(k)β(n− k)| converges for each n.
Furthermore, the double series:

∞∑
n=−∞

(
∞∑

k=−∞

|α(k)β(n− k)|

)
(L.3)

is convergent.

Proof. Replacing α by |α| and β by |β| does not change the value of any of
the series sums in equations (L.2) and (L.3). So without loss of generality
we can assume that the sequences α, β are nonnegative.

Since
∑∞

k=−∞ β(k) converges, β(k) → 0 as k → ±∞. Hence β(k) is
bounded, i.e. there is some constant c such that β(k) ≤ c for all k.

Hence α(k)β(n− k) ≤ cα(k) for all k. Since
∑∞

k=−∞ cα(k) converges, we
know that

∑∞
k=−∞ α(k)β(n− k) converges also, by the comparison test.

We also know that a series of nonnegative terms can be rearranged freely
without altering its sum. This is also true for a doubly-indexed series. Hence

∞∑
k=−∞

∞∑
j=−∞

α(k)β(j) =

( ∑
k=−∞

α(k)

)(
∞∑

j=−∞

β(j)

)
,

showing that this double series converges.
Also

∞∑
k=−∞

∞∑
j=−∞

α(k)β(j) =
∞∑

k=−∞

(
∞∑

j=−∞

α(k)β(j)

)
.

Let j = n− k in the inner summation, for each k. This gives

∞∑
k=−∞

(
∞∑

n=−∞

α(k)β(n− k)

)
.

This shows that the double series in equation (L.3) converges.
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Definition L.3 (The convolution operation for sequence functions).
Let α and β be functions defined on the integers. These functions need not
be associated with probability distributions.

Suppose that α and β are such that

∞∑
n=−∞

|α(n)| converges and
∞∑

n=−∞

|β(n)| converges.

Define a function ψ on the integers by

ψ(n) =
∞∑

k=−∞

α(k)β(n− k). (L.4)

Then ψ is referred to as the convolution of the sequence functions α and β,
and is denoted by α ∗ β.

We defined the ∗ operation for general sequence functions. We can guess
some of the properties of the ∗ operation by looking at sequence functions
for distributions.

With that goal in mind, letX, Y, Z be independent integer-valued random
variables, whose distributions have sequence functions α, β, γ respectively.
Thus α(n) = P(X = n), β(n) = P(Y = n), and γ(n) = P(Z = n).

By equation (L.1), α∗β(n) = P(X+Y = n) and β∗α(n) = P(Y +X = n).
This shows that

α ∗ β = β ∗ α. (L.5)

Similarly, (α ∗ β) ∗ γ(n) = P((X + Y ) + Z = n), and α ∗ (β ∗ γ)(n) =
P(X + (Y + Z) = n). This shows that

(α ∗ β) ∗ γ = α ∗ (β ∗ γ). (L.6)

Equations (L.5) and (L.6) make us confident that statements (i) and (ii)
of the following lemma hold.

Lemma L.4 (Commutative, associative and distributive proper-
ties).

(i) The convolution operation on general sequence functions is commuta-
tive, i.e. equation (L.5) holds for sequence functions α, β whenever∑∞

n=−∞ |α(n)| and
∑∞

n=−∞ |β(n)| converge.
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(ii) The convolution operation on general sequence functions is associa-
tive, i.e. equation (L.6) holds for sequence functions α, β, γ whenever∑∞

n=−∞ |α(n)|,
∑∞

n=−∞ |β(n)|, and
∑∞

n=−∞ |γ(n)| converge.

(iii) The distributive law holds for convolution of general sequence functions:
for any sequence functions α, β, γ, whenever

∑∞
n=−∞ |α(n)|,

∑∞
n=−∞ |β(n)|,

and
∑∞

n=−∞ |γ(n)| converge,

α ∗ (β + γ) = α ∗ β + α ∗ γ.

In fact, the convolution operation is bilinear (Definition 16.22):

α ∗ (c1β + c2γ) = c1α ∗ β + c2α ∗ γ, (L.7)

(c1α + c2β) ∗ γ = c1α ∗ γ + c2β ∗ γ. (L.8)

Of course since equation (L.7) holds for all α, β, γ, and convolution is
commutative, equation (L.8) is redundant here.

The proof is much like what we’ve already seen, and is omitted.

Lemma L.4 can be summarized briefly by saying that we can manipulate
expressions involving convolution in much the same way that we manipulate
expressions involving multiplication.

L.2 The δa function on the integers

For any integer a, let δa denote the sequence function defined by

δa(n) =

{
1 if n = a,

0 otherwise.
(L.9)

Readers should be aware that the same δa notation is used for other
mathematical objects, especially for the “Dirac delta function” located at
the point a. The sequence function δa defined here is not the same as the
Dirac delta function, but it has some similarities, so using the same notation
seems appropriate.

Notice that the sequence function δa is the sequence function for the dis-
tribution of a constant random variable, namely the random variable which
is equal to a everywhere.
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Exercise L.1 (Convolution with the sequence function δa). Prove that
for any sequence function f ,

δa ∗ f(n) = f(n− a). (L.10)

[Solution]

Equation (L.10) says that convolving f with δa shifts the values of f to
the right by a.

As applications of Exercise L.1, we see that

δ0 ∗ f = f (L.11)

for any sequence function f , and also

δa ∗ δb = δa+b. (L.12)

Let’s try out these ideas on the binomial distribution with parameters
n, p.

Let X1, . . . , Xn be independent random variables, with P(Xi = 1) = p
and P(Xi = 0) = 1− p for all i. Let Sn = X1 + · · ·+Xn.

The distribution of Sn is known to be binomial with parameters n, p, but
suppose we are unaware of that, and wish to find the distribution of Sn.

One can start by noting that the sequence function fi for the distribution
of Xi is very simple: fi(1) = p, fi(0) = 1− p, and fi(n) = 0 for all other n.

In other words,
fi = pδ1 + (1− p)δ0. (L.13)

Using equation (L.1) and the associative property of convolution, we know
that the sequence function g for Sn is given by

g = f1 ∗ . . . ∗ fn = (pδ1 + (1− p)δ0)
∗n , (L.14)

where we use the notation (pδ1 + (1− p)δ0)
∗n to indicate the convolution of

n identical factors.
Because the algebra of convolution is so similar to the algebra of multi-

plication, we can expand the convolution product in equation (L.14) using
the binomial theorem. This gives

g =
n∑

k=0

(
n

k

)
pk(1− p)n−kδ∗k1 ∗ δ∗n−k

0 .
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Using equation (L.12),

g =
n∑

k=0

(
n

k

)
pk(1− p)n−k δk. (L.15)

Evaluating the right side of this equation at the point j shows at once that

g(j) =

{(
n
j

)
pj(1− p)n−j for j = 1, . . . , n,

0 otherwise.

Thus g is the sequence function for the binomial distribution with parameters
n, p.

We could also reverse this argument. Suppose we wish to study the
binomial distribution without thinking about experiments. Now start with
the assumption that g is the sequence function for the binomial distribution
with parameters n, p.

The formula for the binomial distribution equation tells us that equation
(L.15) holds. The binomial theorem then shows that equation (L.14) also
holds.

L.3 Solutions for Appendix L

Solution (Exercise L.1). By definition,

δa ∗ f(n) =
∞∑

k=−∞

δa(k)f(n− k).

By the definition of δa, the only surviving term in the sum on the right is
the term with k = a. Since δa(a) = 1, the result is f(n− a).
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Appendix M

Expected values for general
models

M.1 Defining general expected values

The first step in defining E [X] is to approximate X using a random variable
Y that we already understand very well. We know how to find E [Y ], and
that will give us an approximation for the value of E [X].

Here’s how the first step works for the case of bounded random variables.

Fact M.1 (Approximation of bounded random variables with finite
range random variables). For any bounded random variable X on a sam-
ple space, and any ε > 0, there exists a finite range random variable Yε that
approximates X with error at most ε. That is:

Yε(ω)− ε ≤ X(ω) ≤ Yε(ω) + ε for all ω. (M.1)

Our experience in calculus makes Fact M.1 plausible. A formal proof
of Fact M.1 is given in Section M.3 for those who are interested. But the
main theoretical point to remember is that the approximations described in
Fact M.1 are always available.
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Remark M.2. By subtracting Yε throughout equation (M.1), we see that
equation (M.1) is equivalent to

−ε ≤ X(ω)− Yε(ω) ≤ ε for all ω. (M.2)

Equation (M.1) is equivalent to the statement that |X(ω)− Yε(ω)| ≤ ε for
all ω.

We haven’t given a mathematical definition for E [X] yet. To get an idea
what the definition should be, assume for a moment that we have already
defined E [X]. Let’s take expectations throughout equation (M.1), and see
what happens.

Using monotonicity,

E [Yε − ε] ≤ E [X] ≤ E [Yε + ε] .

Using linearity,

E [Yε]− E [ε] ≤ E [X] ≤ E [Yε] + E [ε] .

Using equation (10.4),

E [Yε]− ε ≤ E [X] ≤ E [Yε] + ε. (M.3)

Equation (M.3) shows that we can find an approximation to the value of
E [X], even if we don’t have a formula to calculate E [X] directly. And the
approximation to the value can be made to any degree of accuracy ε.

Of course, we have not yet defined E [X] in general. So for a general
random variable X, it may seem that in equation (M.3) we are trying to
approximate something that doesn’t exist! But the random variableX exists,
and that means that the approximation functions Yε for different values of
ε must be close to each other (see Remark M.3). As a consequence, the
numbers E [Yε] are close to each other, and the closeness is better and better
as ε gets smaller. Standard arguments from advanced calculus then show
that there must be a single well-defined number E [X] such that equation
(M.3) holds for every ε > 0. And that number is our definition of E [X].

That’s a theoretical definition for E [X], of course. For practical purposes
it is unlikely to be a good way to efficiently compute E [X]. But computation
is a separate problem. Right now we can just be happy in knowing that E [X]
is well-defined, so there really is something that deserves to be calculated.
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M.1. Defining general expected values

Exercise M.1. Show that equation (M.1) is equivalent to

X − ε ≤ Yε ≤ X + ε. (M.4)

[Solution]

Remark M.3. Consider two approximations using ε = α and ε = β. That
is, suppose Yα is such that

Yα(ω)− α ≤ X(ω) ≤ Yα(ω) + α for all ω, (M.5)

and
Yβ(ω)− β ≤ X(ω) ≤ Yβ(ω) + β for all ω. (M.6)

This implies that

Yβ(ω)− (β + α) ≤ Yα(ω) ≤ Yβ(ω) + (β + α) for all ω, (M.7)

and so the expected values are close:

E [Yβ]− (β + α) ≤ E [Yα] ≤ E [Yβ] + (β + α). (M.8)

Taking α and β smaller and smaller, we have better and better agreement
between the approximations.

Exercise M.2. Prove equation (M.7).

When X is an unbounded random variable, we define E [X] similarly, ex-
cept that now we must approximate E [X] using an infinite series, as follows.

Fact M.4 (Approximation by random variables with countable range).
For any random variable X on a sample space, and any ε > 0, there exists a
random variable Yε with countable range, such that

Yε(ω)− ε ≤ X(ω) ≤ Yε(ω) + ε everywhere. (M.9)
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When X is unbounded, the approximation Yε will also be unbounded.
But assuming that E [Yε] exists, we have the same approximation for E [X]
as before, given in equation (M.3). This leads to a similar definition for
general expected values. Of course now E [Yε] may be the sum of an infinite
series. Whether or not E [Yε] exists depends on the size of |Yε|.

Note that equation (M.4) continues to hold in this general case, and it
shows that the size of Yε as a function on the sample space is essentially the
same as the size of X. So if E [Yε] exists using Yε for one value of ε, then
E [Yε] for every value of ε. It just depends on the size of |X| as a function
on the sample space.

Since the four key properties hold for countable range random variables
(Theorem 14.9), one can show that these properties remain true for expec-
tations of general random variables. This was asserted in Theorem 15.2.

Remark M.5 (Justifying Remark 15.3). Suppose that a bounded ran-
dom variable X is intended to model a measured value in an experiment, and
X does not have finite range. This suggests that we think that X represents
a continuous physical quantity, or at least that there are a large number
of possible values for the measurement, perhaps located throughout some
interval.

Let Y be a finite range approximation for X, with an error at most ε.
Does Y represent a physical random variable?

It is shown in Lemma M.10 of Section M.1 that the value of the approx-
imation Y constructed in that lemma is determined by the value of X. So if
X represents a physically measured quantity, then Y does also.

Assume that ε is smaller than the experimental error that we expect in
our measurements. Then Y and X actually represent the same physical mea-
surement. The difference between X and Y is just a matter of mathematical
convenience!

And so E [X] and E [Y ] share the same frequency interpretation, justify-
ing Remark 15.3.

For a general random variable, the distribution is not mentioned explicitly
in the definition of expected value, but it lurks just below the surface, since
for a random variable Y with finite or countable range, E [Y ] is defined in
terms of the distribution of Y (Definition 10.2 and Definition 14.6). And we
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define E [X] by approximating X with such random variables Y . For the
random variables constructed in Lemma M.10, it is not hard to show that
the the distribution of Y is determined by the distribution of X. Thus E [Y ]
is determined by the distribution of X. E [Y ] approximates E [X], so E [X]
is determined too. We record this fact next.

Fact M.6 (Expectation determined by distribution). Let X be a ran-
dom variable for some probability model and let Z be a random variable for
some probability model. The model for Z need not be the same as the model
for X.

Suppose that the distribution of X is the same as the distribution of Z.
Then X and Z have the same expected value.

Recall the notation of Definition 9.7. For random variables X and Y
which have the same distribution, we can write X ∼ Y .

With this notation, we can state Fact M.6 as

X ∼ Z =⇒ E [X] = E [Z] . (M.10)

This fact was also asserted in Theorem 15.2.

Since the distribution of X determines E [X], we may at times speak of
E [X] as the “mean of the distribution of X”.

M.2 Expected value as an integral

The general definition of expected value that was sketched in Section M.1
may not give us an efficient method of calculation. But for models that have
a probability density, the machinery of integration is available.

Theorem M.7 (Expected values for models with densities). Con-
sider a model in which the probability P(A) of an event A is given by equa-
tion (15.3).

For any random variable X on Ω, the expected value E [X] is given by

E [X] =

∫
Ω

Xf. (M.11)
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Chapter M. Expected values for general models

This equation holds in the sense that if either side of the equation is defined,
then both sides are defined and they are equal.

Equation (M.11) was already stated in equation (15.4).

Example M.8 (The finite range case). Let’s check equation (M.11) when
X is a finite-range random variable.

Let x1, . . . , xn be the distinct numbers in the range of X. Let Ai =
{X = xi}. By definition,

E [X] = x1P(A1) + . . .+ xnP(An).

By the definition of a probability density,

P(Ai) =

∫
Ai

f.

By equation (11.15),

X = x11A1 + . . .+ xn1An .

Hence ∫
Xf =

∫
(x11A1f + . . .+ xn1An) f

= x1

∫
1A1f + . . .+ xn

∫
1Anf

= x1

∫
A1f + . . .+ xn

∫
Anf

= x1P(A1) + . . .+ xnP(An).

This shows that equation (M.11) holds.

Example M.8 shows that equation (M.11) holds when X has finite range.
When X is any bounded random variable, we can approximate X as closely
as we like using a finite range random variable Y . Equation (M.11) holds
with X replaced by Y . And when two random variables are close, so are
their expected values and so are their integrals. So equation (M.11) holding
for all Y easily implies equation (M.11) for all unbounded X.

The argument when X is unbounded is simiiar.
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M.3. Approximation of random variables

M.3 Approximation of random variables

This section gives a precise recipe for approximating general random variables
by random variables with finite or countable range.

Definition M.9 (Uniform approximations). Let X and Y be functions
on some set Ω (X and Y may be random variables but the definition applies
to any functions.) If c is a number such that |X − Y | ≤ c at every point
of Ω, we will say that Y approximates X uniformly on Ω to within c. The
number c measure the closeness of the approximation.

Lemma M.10 (Simple approximations exist). For any real-valued ran-
dom variable X and any given ε > 0, there exists a random variable Y with
countable range that approximates X to within ε, meaning that |X − Y | ≤ ε
holds everywhere on the sample space.

The approximating random variable Y can be chosen such that X ≤
Y holds everywhere, and it can also be chosen such that Y ≤ X holds
everywhere.

The value of Y is determined by the value of X.
If X is bounded the approximating random variable Y can be chosen to

have finite range.

Proof. Let X be any real-valued random variable and let ε > 0 be a given.
For each integer k, let Ak = {(k − 1)ε < X ≤ kε}, and define the random
variable Y by Y (ω) = kε for ω ∈ Ak. See Figure M.1.

Notice that ω is a member of Ak if and only if the value of X lies in the
interval ( (k− 1)ε, kε ]. Thus the value of Y is determined by the value of X.

Since the range of Y is contained in the set {kε : k an integer}, Y has a
countable range.

By construction, (k − 1)ε < X ≤ kε = Y on Ak. Thus Y − ε < X ≤ Y
holds everywhere.

If X is bounded, then c ≤ X ≤ d holds for some number c, d. Then Ak

will only be nonempty if kε ≥ c and (k − 1)ε < d. That is, Ak will only be
nonempty if

c

ε
≤ k <

d

ε
+ 1.

This shows that Y will have a finite range if X is bounded.
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Chapter M. Expected values for general models

It should be noted that we could easily have made different choices in
defining the approximation Y in the proof of Lemma M.10. For example, we
could have defined Y by Y (ω) = (k − 1)ε for ω ∈ Ak. In that case we would
have had Y < X ≤ Y + ε everywhere.

Ω

Ak ω

X(ω)

kε

(k− 1)ε

Figure M.1: Ak = {(k − 1) ε < X ≤ k ε}.

Example M.11 (Approximating a continuous random variable). Con-
sider a probability model with sample space Ω equal to the interval [0, 3]. We
can take P to be the uniform probability distribution on [0, 3], just to have
a definite probability in mind, but this does not affect the construction of an
approximation to a random variable.

Suppose that for some reason we want to study the random variable X
on Ω, defined by X(ω) = (1− ω)2. See Figure M.2.

Suppose ε = .5. As in the proof of Lemma M.10, we will divide the
possible values for X into intervals ((n− 1)ε, nε], and {Y = i ε} is the set of
all ω such that (n− 1)ε < X ≤ nε.
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Figure M.2: The dashed graph shows X(ω) = (1− ω)2 on the sample space
[0, 3]. ε = .5. The graph of the random variable Y is shown in green.

The function Y defined in the proof of Lemma M.10 is the piecewise-
constant function shown in green in Figure M.2. Notice thatX ≤ Y holds ev-
erywhere, in accordance with the first construction for Y given in LemmaM.10.

In Figure M.2, notice that the events {Y = i ε}, i = 0, 1, . . . , 8 are of
different sizes. Also, {Y = .5} and {Y = 1} are each equal to the union of
two disjoint intervals, while {Y = 0} is a one-point set. In general, the sets
An in the proof of Lemma M.10 could be much more complicated than that.
The probability of each An is always defined, however, and that is what
matters for defining expected value.

It may be instructive to compare the approximation in Example M.11
with usual calculus-style approximation by step functions. The calculus ap-
proximation to a function uses step-functions which are constructed by parti-
tioning the domain of the function into subintervals. In contrast to that, the
construction in Example M.11 partitions the range of the function into subin-
tervals, rather than the domain. A graph of the calculus-style approximation
is given in Figure M.3.
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Figure M.3: X(t) = (1 − t)2 on the sample space [0, 3]. A typical step-
function approximation Y in calculus is shown in green.

M.4 Solutions for Chapter M

Solution (Exercise M.1). The second inequality in equation (M.4) is
equivalent to the first inequality in equation (M.9).

The first inequality in equation (M.4) is equivalent to the second inequal-
ity in equation (M.9).

Solution (Exercise M.2). Equation (M.4) with ε. = α tells us that

Yα ≤ X + α.

Equation (M.6) tells us that

X ≤ Yβ + β.

Combining these inequalities,

Yα ≤ Yβ + (β + α).

A similar argument shows that

Yα ≥ Yβ − (β + α).
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Appendix N

The Schwarz inequality

We have seen various inequalities for expected values, including the Markov
Inequality (Lemma 12.12) and the Chebyshev Inequality (Lemma 16.10).
Here we study another useful inequality, the Schwarz inequality, in the con-
text of random variables.

Although we will call this inequality the Schwarz inequality, readers should
always keep in mind that names are not a reliable guide to priority. A math-
ematical fact is not always named after the person who first discovered it.
The names “Cauchy-Schwarz” and “Cauchy-Bunyakovsky-Schwarz” are also
used for this inequality. Perhaps Schwarz benefits by having a short name,
and Cauchy has too many other famous results.

N.1 The Schwarz inequality for random vari-

ables

The Schwarz inequality applies to inner products of vectors as well as to ran-
dom variables. Here we will only discuss random variables, but the methods
work in general.

Lemma N.1 (The Schwarz inequality for expected values). Let X
and Y be real-valued random variables on some sample space. Suppose that
E [X2] and E [Y 2] are defined. Then E [XY ] is defined, and

|E [XY ]| ≤
√
E [X2]

√
E [Y 2]. (N.1)
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Chapter N. The Schwarz inequality

Proof. By equation (16.44), |XY | ≤ 1
2
(X2 + Y 2). Hence the comparison

principle for expected values (Fact 14.8) tells us that E [XY ] exists.
To prove the inequality in equation (N.1) we start with a very simple

fact: if a random variable is nonnegative, then its expected value has to be
nonnegative also.

Hence for any real number t,

E
[
(X − tY )2

]
≥ 0. (N.2)

That is,
E
[
X2
]
− 2tE [XY ] + t2E

[
Y 2
]
≥ 0. (N.3)

If E [Y 2] = 0 then our inequality says that

E
[
X2
]
≥ 2tE [XY ]

for every t. Since we are allowed to take both positive and negative values
for t, this inequality could not possibly hold for all t unless E [XY ] = 0. So
when E [Y 2] = 0 it must be true that E [XY ] = 0.

And whenever E [XY ] = 0, equation (N.1) obviously holds!
So we have proved equation (N.1) for the case that E [Y 2] = 0.
From now on we assume that E [Y 2] > 0. One might think that this

will be a harder case. But simply substituting t = E [XY ] /E [Y 2] into
equation (N.3) gives an inequality which is equivalent to equation (N.1).

How did we think of substituting t = E [XY ] /E [Y 2] to obtain Schwarz?
We can motivate using this value for t by noting that it makes the in-
equality in equation (N.3) work as hard as possible! In other words, t =
E [XY ] /E [Y 2] is the choice of t that minimizes E [X]−2tE [XY ]+ t2E [Y 2].
You can check that using calculus, or by completing the square.

But we don’t need to know that t = E [XY ] /E [Y 2] is the choice of t that
minimizes E [X]−2tE [XY ]+t2E [Y 2]. We could just make a wild guess, and
somehow decide to substitute this particular number for t, as an experiment.

After all, we are allowed to substitute any value for t in equation (N.2),
and it’s not our fault if we have psychic powers.

Exercise N.1. By choosing a suitable random variable Y , use the Schwarz
inequality to prove that |E [X] | ≤

√
E [X2].

This fact was already established in equation (16.3) using equation (16.2).
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[Solution]

Remark N.2. Notice that the right side of equation (N.1) is something that
can be calculated using X and Y separately. The left side requires looking
at X and Y together.

The version of the Schwarz inequality for geometrical vectors says that∣∣∣ #»a • #»

b
∣∣∣ ≤ ∥ #»a

#»

b∥, (N.4)

where #»a • #»

b is the inner product of the geometrical vectors #»a ,
#»

b , and
∥ #»a∥, ∥ #»

b∥ are their lengths.

If we accept that #»a • #»

b is equal to ∥ #»a∥ ∥ #»

b∥ cos θ, where θ is the angle
between the vectors, then the Schwarz inequality in this case simply says.
that |cos θ| ≤ 1.

Remark N.3 (The equality condition for Schwarz in the random
variable case). We derived equation (N.1) by substituting a value for t into
equation (N.3). That equation is simply the expanded form of equation (N.2).
Thus the Schwarz inequality becomes an equality whenever equality holds in
equation (N.2). And equality holds in equation (N.1) exactly when there is
some t such that

E
[
(X − tY )2

]
= 0. (N.5)

So that is the equality condition.

As noted in Appendix F, a nonnegative random variable has expectation
zero if and only if the random variable is equal to zero with probability one.
Thus the equality condition holds exactly when there is some t such that

P(X ̸= tY ) = 0. (N.6)

Thus equality holds when for some t, X is essentially equal to tY .
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Chapter N. The Schwarz inequality

N.2 Solutions for Chapter N

Solution (Exercise N.1). In the Schwarz inequality, let Y = 1. Then
Schwarz says that

|E [X · 1] | ≤
√

E [X2]
√

E [12] =
√

E [X2],

as claimed.
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µ, 335
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A
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finite is countable, 301
finite range random variables, 207
fluctuations, 35
formula of Bayes, 123
four key properties of expectation,

320
fraction of a population, 329
frantic flipper, 369
frequency, 19
frequency interpretation of

expected value, 236
frequency interpretation of

probability, 21
function on the integers, 521

gaps, 83
Gaussian density, 395
Geiger counter, 369
general random variables, 247
geometric distribution, 293
geometric series, 291, 295
Grandma, 124

happy Sam, 155
heads or tails, 18
help center, 375, 379
hobbits, 68
hypergeometric distribution,

194–196, 241
hypergeometric distribution of a

random variable, 213
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hypergeometric distribution,
expected value, 241

hypergeometric distribution,
variance of, 354

identically distributed random
variables, 407

if and only if, 255
IID sequences of random

variables, 407
impatience, 53
implies, 61, 72, 255
inclusion, 71, 127
inclusive sense of “or”, 70
independence, 53, 54
independence for two events, 140
independence simplification, 149
independent of, 140
independent physical events, 139
independent sequence of random

variables, 278
indicator function, 240, 255
indifference, principle of , 52
induction, 68
inequality of Markov, 283
infinite sample space, 83
inner product, 541
insufficient reason, principle of, 52
integral over a set, 91, 322
integrating out a variable, 504
integrating over sets, 259
interpretation, 42
interpretation of E [X], 321
interpretation of a model, 46
intersection, 47, 69
interval, 85

jelly beans, 28

joint distribution of random
variables, 500

large numbers law, 236
law of total probability, 118, 136
law of large numbers, 236, 351
lifetime, 327
limiting success rate, 376
linear combination, 439
linear operation, 238, 352
list of set elements, 68
logarithms to the base e, 467

main part of a distribution, 390
main values of the distribution,

388
many jelly beans, 28
marginal distributions, 501
Markov Inequality, 283
mass density, 93
mass function, 49
mathematical terminology, 41
mathematically equivalent, 147
mean of a random variable, 226,

308
mean of the distribution, 533
mean square deviation, 335
mean zero, 226
measurable set, 221
member of a set, 71
memoryless property, 327
mental concept, 41
mental conceptions of

experiments, 46
messy data, 33
midpoint, 361
model, 41, 45
moment of a random variable, 333
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moments of a distribution, 335
monotone increasing CDF, 477
monotone increasing property for

probability, 61
monotone operation, 61
monotonicity of expectations, 245
Monty Hall, 157
most representative value, 343
multiplicative property, 140, 277
multiplied-through form, 111
mutually exclusive, 47, 72
mutually exclusive properties, 48

no point favored, 86
nodes, 127
non-unique densities, 101
nononstant density, 102
normal density, 394
normal distribution, 386, 394
normal probability density, 394
normal random variable, 394
normalization of probability, 48
normalized weights, 439
normalizing a function, 510
number of elements, 47, 72

of interest, sets, 221
old induction trick, 68
one-point interval, 85
or, in English, 70
order of cards, 57
order of summation, 307
ordinary speech, 440
outcome, 39
outcome of the experiment, 18
overline for average, 440

pairwise independence, 175
parameter p, 293

Pascal’s triangle, 188
payoff, 225
permutation, 184
pervasive random behavior, 35
philosophize, 221
physical experience many tosses,

176
picturing the distribution of Sn,

423
playing cards, 44
points, 68
Poisson arrivals, 375
Poisson distribution, 372
Poisson random variable, 372
pooled average, 444
population, 329
posterior probability, 123
prior probability, 123
priority, 539
probabilities are additive, 24, 48
probability, 20
probability density, 90, 322, 323
probability distribution, 29, 45
probability distribution of X, 211
probability language, 20
probability mass function, 49, 307
probability mass function for a

distribution, 212
probability model, 45
probability set-function, 45
proper subset, 71
property language, 69
property of an outcome, 21

random events, 15
random fluctuations, 35
random lump of butter, 321
random order, 57
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random sampling, 28
random variable, 205, 498
random vector, 205, 499
random walk, 280
rate for an exponential

distribution, 329
real-valued random variables, 205
rearrangement property, 306
rectangle, 497
recursive formula for binomial

coefficients, 187
reflecting, 395
reflection in the origin, 244
reflection symmetry, 244
repeated coin tosses, 167
replacement when sampling, 144
rolling a die, 26, 42
root of a tree, 127

Sam happy, 155
Sam’s witness, 156
sample points, 41
sample space, 41
sample space model, 45
sampling with replacement, 144
scaling, 395
scaling property, 230, 239
schematic, 71
Schwarz inequality, 539
self-contained, 121
self-contained problem, 265, 269
self-contained problems, 265
sequence function, 521
sequence versus set, 69
set, 69
set complement, 70
set difference, 47, 70
set language, 69

set membership, 71
set of sets, 69
set-function, 45
set-function terminology versus

distribution terminology,
45, 46

sets which are of interest, 221
sharper estimate, 287
shifting, 395
shuffling, 44
shuffling a deck, 57
similar experiments, 21
simplification using independence,

149
simulating an experiment, 33
simulating random results, 30, 489
size of a set, 47, 72
standard Cauchy distribution, 325
standard convention, 184, 370
standard deviation, 335
standard normal, 400
standardizing, 401, 418
statistical data, 30
statistical independence, 140
statistical properties, 30
stealing words, 41
Strong Law of Large Numbers,

237, 352
subadditivity, 67, 258
subadditivity for indicators, 258
subjective probability, 17
subsequence, 183
subset, 71, 184
subsets of size k, 185
success, 42, 167
success rate, 376
success record, 167
success, when tossing a coin, 125
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summation, 307
summing over possible values,

210, 307
survival function, 329
symmetric operation, 353
symmetry, 52, 161
symmetry for selection, 63
symmetry under reflection, 244

tail, 379
tail integral formula, 313
tail of a distribution, 326, 379
tail probabiities, 414
tail probabilities, 312
telescoping sum, 304
terminology, 41, 45
the Principle of Indifference, 52
the Principle of Insufficient

reason, 52
theorem of Bayes, 123
tossing a coin, 18, 209
total probability, 118, 123
total probability using densities,

517
tree diagram, 127
tree of possibilities, 126
trial, 21, 165
tricks, 241
two-step experiment, 144

uncorrelated, 350

uncountable set, 301
uniform approximation, 535
uniform distributions, 62, 86, 122
uniform probability distribution,

96
union, 47, 69
union distributes, 72
union over possible values, 210

valid, 207
valid interpretations, 46
variance, 335
variance of a distribution, 335
variance, existence fact, 336
vector-valued random variable,

205
Venn diagrams, 71

waiting time, 292, 327
Weak Law of Large Numbers, 237,

351
weighted average, 227, 439
weighted sum, 439
weights, 439
width of a distribution, 333
witness to Sam, 156
worst case error, 137

yardstick, 83

zooming in, 391
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