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CHAPTER 1

Introduction to Cloud Native Data
Infrastructure: Persistence, Streaming, and

Batch Analytics

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 1st chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

Do you work at solving data problems and find yourself faced with the need for mod‐
ernization? Is your cloud native application limited to the use of microservices and
service mesh? If you deploy applications on Kubernetes without including data, you
haven’t fully embraced cloud native. Every element of your application should
embody the cloud native principles of scale, elasticity, self-healing, and observability,
including how you handle data. Engineers that work with data are primarily con‐
cerned with stateful services, and this will be our focus: increasing your skills to man‐
age data in Kubernetes. By reading this book, our goal is to enrich your journey to
cloud native data. If you are just starting with cloud native applications, then there is
no better time to include every aspect of the stack. This convergence is the future of
how we will consume cloud resources.
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So what is this future we are creating together?

For too long, data has been something that has lived outside of Kubernetes, creating a
lot of extra effort and complexity. We will get into valid reasons for this, but now is
the time to combine the entire stack to build applications faster at the needed scale.
Based on current technology, this is very much possible. We’ve moved away from the
past of deploying individual servers and towards the future where we will be able to
deploy entire virtual data centers. Development cycles that once took months and
years can now be managed in days and weeks. Open source components can now be
combined into a single deployment on Kubernetes that is portable from your laptop
to the largest cloud provider.

The open source contribution isn’t a tiny part of this either. Kubernetes and the
projects we talk about in this book are under the Apache License 2.0. unless otherwise
noted, and for a good reason. If we build infrastructure that can run anywhere, we
need a license model that gives us the freedom of choice. Open source is both free-as-
in-beer and free-as-in-freedom, and both count when building cloud native applica‐
tions on Kubernetes. Open source has been the fuel of many revolutions in
infrastructure, and this is no exception.

That’s what we are building: the near future reality of fully realized Kubernetes appli‐
cations. The final component is the most important, and that is you. As a reader of
this book, you are one of the people that will create this future. Creating is what we do
as engineers. We continuously re-invent the way we deploy complicated infrastruc‐
ture to respond to the increased demand. When the first electronic database system
was put online in 1960 for American Airlines, there was a small army of engineers
who made sure it stayed online and worked around the clock. Progress took us from
mainframes to minicomputers, to microcomputers, and eventually to the fleet man‐
agement we do today. Now, that same progression is continuing into cloud native and
Kubernetes.

This chapter will examine the components of cloud native applications, the challenges
of running stateful workloads, and the essential areas covered in this book. To get
started, let’s turn to the building blocks that make up data infrastructure.

Infrastructure Types
In the past twenty years, the approach to infrastructure has slowly forked into two
areas that reflect how we deploy distributed applications, as shown in Figure 1-1.
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Figure 1-1. Stateless vs. Stateful Services

Stateless services
These are services that maintain information only for the immediate life cycle of
the active request—for example, a service for sending formatted shopping cart
information to a mobile client. A typical example is an application server that
performs the business logic for the shopping cart. However, the information
about the shopping cart contents resides external to these services. They only
need to be online for a short duration from request to response. The infrastruc‐
ture used to provide the service can easily grow and shrink with little impact on
the overall application, scaling compute and network resources on-demand when
needed. Since we are not storing critical data in the individual service, they can
be created and destroyed quickly with little coordination. Stateless services are a
crucial architecture element in distributed systems.

Stateful services
These services need to maintain information from one request to the next. Disks
and memory store data for use across multiple requests. An example is a database
or file system. Scaling stateful services is much more complex since the informa‐
tion typically requires replication for high availability. This creates the need for
consistency and mechanisms to keep data in sync between replicas. These serv‐
ices usually have different scaling methods, both vertical and horizontal. As a
result, they require different sets of operational tasks than stateless services.

Infrastructure Types | 11



1 From What is Kubernetes (https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/)

In addition to how information is stored, we’ve also seen a shift towards developing
systems that embrace automated infrastructure deployment. These recent advances
include:

• Physical servers have given way to virtual machines that are easy to deploy and
maintain

• Virtual machines have been greatly simplified and focused on specific applica‐
tions to what we now call containers.

• Containers have allowed infrastructure engineers to package an application’s
operating system requirements into a single executable.

The use of containers has undoubtedly increased the consistency of deployments,
which has made it easier to deploy and run infrastructure in bulk. Few systems
emerged to orchestrate the explosion of containers like Kubernetes which is evident
in the incredible growth. This speaks to how well it solves the problem.

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services that facilitates both declarative con!guration and automation. It
has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are
widely available. 1

Kubernetes was originally designed for stateless workloads, and that is what it has tra‐
ditionally done best. Kubernetes has developed a reputation as a “platform for build‐
ing platforms” in a cloud-native way. However, there’s a reasonable argument that a
complete cloud-native solution has to take data into account. That’s the goal of this
book: exploring how we make it possible to build cloud-native data solutions on
Kubernetes. But first, let’s unpack what that term means.

What is Cloud Native Data?
Let’s begin defining the aspects of cloud native data that can help us with a final defi‐
nition. First, let’s start with the definition of cloud native from the Cloud Native
Computing Foundation (CNCF):

Cloud native technologies empower organizations to build and run scalable applications
in modern, dynamic environments such as public, private, and hybrid clouds. Contain‐
ers, service meshes, microservices, immutable infrastructure, and declarative APIs exem‐
plify this approach.
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2 From CNCF git repository (https://github.com/cncf/toc/blob/main/DEFINITION.md)

"ese techniques enable loosely coupled systems that are resilient, manageable, and
observable. Combined with robust automation, they allow engineers to make high-
impact changes frequently and predictably with minimal toil. 2

Note that this definition describes a goal state, desirable characteristics, and examples
of technologies that embody both. Based on this formal definition, we can synthesize
the qualities that make a cloud native application differentiated from other types of
deployments in terms of how it handles data. Let’s take a closer look at these qualities.

Scalability
If a service can produce a unit of work for a unit of resources, then adding more
resources should increase the amount of work a service can perform. Scalability
is how we describe the service’s ability to apply additional resources to produce
additional work. Ideally, services should scale infinitely given an infinite amount
of resources of compute, network and storage. For data this means scale without
the need for downtime. Legacy systems required a maintenance period while
adding new resources which all services had to be shutdown. With the needs of
cloud native applications, downtime is no longer acceptable.

Elasticity
Where scale is adding resources to meet demand, elastic infrastructure is the
ability to free those resources when no longer needed. The difference between
scalability and elasticity is highlighted in Figure 1-2. Elasticity can also be called
on-demand infrastructure. In a constrained environment such as a private data
center, this is critical for sharing limited resources. For cloud infrastructure that
charges for every resource used, this is a way to prevent paying for running serv‐
ices you don’t need. When it comes to managing data, this means that we need
capabilities to reclaim storage space and optimize our use, such as moving older
data to less expensive storage tiers.

Self-healing
Bad things happen and when they do, how will your infrastructure respond? Self-
healing infrastructure will re-route traffic, re-allocate resources, and maintain
service levels. With larger and more complex distributed applications being
deployed, this is an increasingly important attribute of a cloud-native application.
This is what keeps you from getting that 3 AM wake-up call. For data, this means
we need capabilities to detect issues with data such as missing data and data qual‐
ity.

Observability
If something fails and you aren’t monitoring it, did it happen? Unfortunately the
answer is not only yes, but that can be an even worse scenario. Distributed appli‐
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cations are highly dynamic and visibility into every service is critical for main‐
taining service levels. Interdependencies can create complex failure scenarios
which is why observability is a key part of building cloud native applications. In
data systems the volumes that are commonplace need efficient ways of monitor‐
ing the flow and state of infrastructure. In most cases, early warning for issues
can help operators avoid costly downtime.

Figure 1-2. Comparing Scalability and Elasticity

With all of the previous definitions in place, let’s try a definition that expresses these
properties.

Cloud Native Data
Cloud Native Data approaches empower organizations that have adopted the cloud
native application methodology to incorporate data holistically rather than employ
the legacy of people, process, technology, so that data can scale up and down elasti‐
cally, and promote observability and self-healing.

This is exemplified by containerized data, declarative data, data APIs, data-meshes,
and cloud-native data infrastructure (that is, databases, streaming, and analytics tech‐
nologies that are themselves architected as cloud-native applications).

In order for data infrastructure to keep parity with the rest of our application, we
need to incorporate each piece. This includes automation of scale, elasticity and self
healing, APIs are needed to decouple services and increase developer velocity, and
also the ability to observe the entire stack of your application to make critical deci‐
sions. Taken as a whole, your application and data infrastructure should appear as
one unit.
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More Infrastructure, More Problems
Whether your infrastructure is in a cloud, on-premises, or both (commonly referred
to as hybrid), you could spend a lot of time doing manual configuration. Typing
things into an editor and doing incredibly detailed configuration work requires deep
knowledge of each technology. Over the past twenty years, there have been significant
advances in the DevOps community to code and how we deploy our infrastructure.
This is a critical step in the evolution of modern infrastructure. DevOps has kept us
ahead of the scale required, but just barely. Arguably, the same amount of knowledge
is needed to fully script a single database server deployment. It’s just that now we can
do it a million times over if needed with templates and scripts. What has been lacking
is a connectedness between the components and a holistic view of the entire applica‐
tion stack. Foreshadowing: this is a problem that needs to be solved.

Like any good engineering problem, let’s break it down into manageable parts. The
first is resource management. Regardless of the many ways we have developed to
work at scale, fundamentally, we are trying to manage three things as efficiently as
possible: compute, network and storage, as shown in Figure 1-3. These are the critical
resources that every application needs and the fuel that’s burned during growth. Not
surprisingly, these are also the resources that carry the monetary component to a run‐
ning application. We get rewarded when we use the resources wisely and pay a literal
high price if we don’t. Anywhere you run your application, these are the most primi‐
tive units. When on-prem, everything is bought and owned. When using the cloud,
we’re renting.

Figure 1-3. Fundamental resources of cloud applications: compute, network, and storage

The second part of this problem is the issue of an entire stack acting as a single entity.
DevOps has already given us many tools to manage individual components, but the
connective tissue between them provides the potential for incredible efficiency. Simi‐
lar to how applications are packaged for the desktop but working at data center scales.
That potential has launched an entire community around cloud native applications.
These applications are very similar to what we have always deployed. The difference
is that modern cloud applications aren’t a single process with business logic. They are
a complex coordination of many containerized processes that need to communicate

More Infrastructure, More Problems | 15



securely and reliably. Storage has to match the current needs of the application but
remains aware of how it contributes to the stability of the application. When we think
of deploying stateless applications without data managed in the same control plane, it
sounds incomplete because it is. Breaking up your application components into dif‐
ferent control planes creates more complexity and is counter to the ideals of cloud
native.

Kubernetes Leading the Way
As mentioned before, DevOps automation has kept us on the leading edge of meeting
scale needs. Containers created the need for much better orchestration, and the
answer has been Kubernetes. For operators, describing a complete application stack
in a deployment file makes a reproducible and portable infrastructure. This is because
Kubernetes has gone far beyond simply the deployment management that has been
popular in the DevOps tool bag. The Kubernetes control plane applies the deploy‐
ment requirement across the underlying compute, network, and storage to manage
the entire application infrastructure lifecycle. The desired state of your application is
maintained even when the underlying hardware changes. Instead of deploying virtual
machines, we are now deploying virtual data centers as a complete definition as
shown in Figure 1-4.

Figure 1-4. Moving from virtual servers to virtual data centers

The rise in popularity of Kubernetes has eclipsed all other container orchestration
tools used in DevOps. It has overtaken every other way we deploy infrastructure, and
it will be even more so in the future. There’s no sign of it slowing down. However, the
bulk of early adoption was primarily in stateless services.

Managing data infrastructure at a large scale was a problem well before the move to
containers and Kubernetes. Stateful services like databases took a different track par‐
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allel to the Kubernetes adoption curve. Many recommended that Kubernetes was the
wrong way to run stateful services based on an architecture that favored ephemeral
workloads. That worked until it didn’t and is now driving the needed changes in
Kubernetes to converge the application stack.

So what are the challenges of stateful services? Why has it been hard to deploy data
infrastructure with Kubernetes? Let’s consider each component of our infrastructure.

Managing Compute on Kubernetes
In data infrastructure, counting on Moore’s law has made upgrading a regular event.
If you aren’t familiar, Moore’s law predicted that computing capacity doubles every 18
months. If your requirements double every 18 months, you can keep up by replacing
hardware. Eventually, raw compute power started leveling out. Vendors started
adding more processors and cores to keep up with Moore’s law, leading to single
server resource sharing with virtual machines and containers. Enabling us to tap into
the vast pools of computing power left stranded in islands of physical servers. Kuber‐
netes expanded the scope of compute resource management by considering the total
datacenter as one large resource pool across multiple physical devices.

Sharing compute resources with other services has been somewhat taboo in the data
world. Data workloads are typically resource intensive, and the potential of one ser‐
vice impacting another (known as the noisy neighbor problem) has led to policies of
keeping them isolated from other workloads. This one-size fits all approach elimi‐
nates the possibility for more significant benefits. First is the assumption that all data
service resource requirements are the same. Apache Pulsar™ brokers can have far
fewer requirements than an Apache Spark™ worker, and neither are similar to a siza‐
ble MySQL instance used for OLAP reporting. Second, the ability to decouple your
underlying hardware from running applications gives operators a lot of undervalued
flexibility. Cloud native applications that need scale, elasticity, and self-healing need
what Kubernetes can deliver. Data is no exception.

Managing Network on Kubernetes
Building a distributed application, by nature, requires a reliable and secure network.
Cloud native applications increase the complexity of adding and subtracting services
making dynamic network configuration a new requirement. Kubernetes manages all
of this inside of your virtual data center automatically. When new services come
online, it’s like a virtual network team springs to action. IP addresses are assigned,
routes are created, DNS entries are added, then the virtual security team ensures fire‐
wall rules are in place, and when asked, TLS certificates provide end-to-end encryp‐
tion.

Data infrastructure tends to be far less dynamic than something like microservices. A
fixed IP with a hostname has been the norm for databases. Analytic systems like
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Apache Flink™ are dynamic in processing but have fixed hardware addressing assign‐
ments. Quality of service is typically at the top of the requirements list and, as a
result, the desire for dedicated hardware and dedicated networks has turned adminis‐
trators off of Kubernetes.

The advantage of data infrastructure running in Kubernetes is less about the past
requirements and more about what’s needed for the future. Scaling resources dynami‐
cally can create a waterfall of dependencies. Automation is the only way to maintain
clean and efficient networks, which are the lifeblood of distributed stateless systems.
The future of cloud native applications will only include more components and new
challenges such as where applications run. We can add regulatory compliance and
data sovereignty to previous concerns about latency and throughput. The declarative
nature of Kubernetes networks make it a perfect fit for data infrastructure.

Managing Storage on Kubernetes
Any service that provides persistence or analytics over large volumes of data will need
the right kind of storage device. Early versions of Kubernetes considered storage a
basic commodity part of the stack and assumed that most workloads were ephemeral.
For data, this was a huge mismatch. If your Postgres data files get deleted every time a
container is moved, that just doesn’t work. Additionally, implementing the underlying
block storage can be a broad spectrum. From high performance NVMe disks to old
5400 RPM spinning disks. You may not know what you’ll get. Thankfully this was an
essential focus of Kubernetes over the past few years and has been significantly
improved.

With the addition of features like Storage Classes, it is possible to address specific
requirements for performance or capacity or both. With automation, we can avoid
the point when you don’t have enough of either. Avoiding surprises is the domain of
capacity management—both initializing the needed capacity and growing when
required. When you run out of capacity in your storage, everything grinds to a halt.

Coupling the distributed nature of Kubernetes with data storage opens up more pos‐
sibilities for self healing. Automated backups and snapshots keep you ready for
potential data loss scenarios. Placing compute and storage together to minimize
hardware failure risks and automatic recovery to the desired state when the inevitable
failure occurs. All of which makes the data storage aspects of Kubernetes much more
attractive.

Cloud native data components
Now that we have defined the resources consumed in cloud native applications let’s
clarify the types of data infrastructure that powers them. Instead of a comprehensive
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list of every possible product, we’ll break them down into larger buckets with similar
characteristics.

Persistence
This is probably assumed when we talk about data infrastructure. Systems that
store data and provide access by some method of a query. Relational databases
like MySQL and Postgres. NoSQL systems like Cassandra and MongoDB. In the
world of Kubernetes these have been the strongest, last holdouts due to the strict‐
est resource requirements. This has been for good reasons too. Databases are
usually critical to a running application and central to every other part of the sys‐
tem.

Streaming
The most basic function of streaming is facilitating the high-speed movement of
data from one point to another. Streaming systems provide a variety of delivery
semantics based on a use case. In some cases, data can be delivered to many cli‐
ents or when strict controls are needed, delivered only once. A further enhance‐
ment of streaming is the addition of processing. Altering or enhancing data while
in mid-transport. The need for faster insights into data has propelled streaming
analytics into mission critical status catching up with persistence systems for
importance. Examples of steaming systems that move data are Apache Flink™ and
Apache Kafka™, whereas processing system examples are Apache Flink™ and
Apache Storm™.

Batch Analytics
One of the first big data problems. Analyzing large sets of data to gain insights or
re-purpose into new data. Apache Hadoop™ was the first large scale system for
batch analytics that set the expectations around using large volumes of compute
and storage, coordinated in a way to produce a final result. Typically, these are
issued as jobs distributed throughout the cluster which is something that is found
in Apache Spark™. The concern with costs can be much more prevalent in these
systems due to the sheer volume of resources needed. Orchestration systems help
mitigate the costs by intelligent allocation.

Looking forward
There is a very compelling future with cloud native data, both with what we have
available today and what we can have in the future. The path we take between those
two points is up to us: the community of people responsible for data infrastructure.
Just as we have always done, we see a new challenge and take it on. There is plenty for
everyone to do here, but the result could be pretty amazing and raise the bar, yet
again.
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A call for databases to modernize on Kubernetes
With Rick Vasquez, Senior Director, Strategic Initiatives, Western Digital

Kubernetes is the catalyst for this current macro trend of change. Data infrastructure
has to run the same as the rest of the application infrastructure. In a conference talk,
Rick Vasquez, a leader in data infrastructure for years, wrote an open letter to the
database community on the need for change. Here is a summary of that talk:

This is something for anyone working with databases in the 2020s. Kubernetes is
leading the charge in building cloud native and distributed systems. Data systems
aren’t leveraging the full capacity and feature set possible if they were better integrated
with Kubernetes. I’m a convert from the “you should never run a database in a con‐
tainer” way of thinking. Now I think we should be pushing everybody to have the
main deployment in Kubernetes. My background has always been on scale enterprise
use cases. I don’t see this as a passing fad, I’m looking at the applicability to global
scale for some of the largest companies in the world.

One line of thinking we need to overcome is treating Kubernetes like an operating
system that enables other applications to run on it. That’s the wrong way to look at
running data workloads. If your system runs in a container, then of course it will
work on Kubernetes, right? No! It will react to how the control plane deploys and
runs your application, and it may or may not be what you want. What if data systems
were more tightly integrated with Kubernetes and could offload functions to be han‐
dled by the Kubernetes control plane? Service discovery, load balancing, storage
orchestration, automated rollouts, and rollbacks, automated bin packing, self-healing,
secret and config management are all powerful things that allow for you to have a
consistent developer and SRE experience. The name of the game with Kubernetes is
driving consistency. You can use Kubernetes to become globally consistent across all
your deployments and do them the same way over and over. But that needs to include
database systems. Imagine if you have Postgres, MongoDB, MySQL, or Cassandra and
it was built natively on Kubernetes. What would you do?

Having the access to use different storage tiers, either local or remote disk. All of it is
declarative in some configuration objects. I want to configure that in and with the
database. If I’m using MySQL, I want logs to be on the local disk, because I don’t want
any bottlenecks. I want certain tables to be on a slower disk that may be over the net‐
work. And, I want the last seven days of data to be in hot, local NVMe disk. Using
every single bit of capacity that you have with replicas actually doing things like off‐
loading reads or multiple write nodes, and one big aggregate for analytics. All of those
things should be possible with a Kubernetes based deployment with a cloud native
database.

Databases don’t reason about or have an opinion about how big they are. If you make
it bigger, it just needs more resources. You can set up auto-scaling to get you bigger or
horizontal scaling. What happens whenever you want to use the true elasticity that’s
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3 SRE definition from Wikipedia (https://en.wikipedia.org/wiki/Site_reliability_engineering)

given to you by Kubernetes? It’s not just the scale up and out. It’s the scale back and
down! Why don’t databases just do that? That is so important to maximize the value
that you’re getting out of a Kubernetes based deployment or more broadly, a cloud
native based deployment. We have a lot of work to do but the future is worth it.

This talk was specifically about databases, but we can extrapolate his call to action for
our data infrastructure running on Kubernetes. Unlike deploying a data application
on physical servers, introducing the Kubernetes control plane requires a conversation
with the services it runs.

Getting ready for the revolution
As engineers that create and run data infrastructure, we have to be ready for the
changes coming. Both in how we operate and the mindset we have about the role of
data infrastructure. The following sections are meant to describe what you can do to
be ready for the future of cloud native data running in Kubernetes.

Adopt an SRE mindset
The role of Site Reliability Engineer (SRE) has grown with the adoption of cloud
native methodologies. If we intend our infrastructure to converge, we as data infra‐
structure engineers must learn new skills and adopt new practices.

Site reliability engineering is a set of principles and practices that incorporates aspects
of software engineering and applies them to infrastructure and operations problems.
The main goals are to create scalable and highly reliable software systems. Site relia‐
bility engineering is closely related to DevOps, a set of practices that combine soft‐
ware development and IT operations, and SRE has also been described as a specific
implementation of DevOps.3

Deploying data infrastructure has been primarily concerned with the specific compo‐
nents deployed - the “what.” For example, you may find yourself focused on deploy‐
ing MySQL at scale or using Apache Spark to analyze large volumes of data. Adopting
an SRE mindset means going beyond what you are deploying and putting a greater
focus on the how. How will all of the pieces work together to meet the goals of the
application? A holistic view of a deployment considers how each piece will interact,
the required access including security, and the observability of every aspect to ensure
meeting service levels.

If your current primary or secondary role is Database Administrator, there is no bet‐
ter time to make the transition. The trend on LinkedIn shows a year-over-year
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decrease in the DBA role and a massive increase for SREs. Engineers that have
learned the skills required to run critical database infrastructure have an essential
baseline that translates into what’s needed to manage cloud native data. These
include:

• Availability
• Latency
• Change Management
• Emergency response
• Capacity Management

New skills need to be added to this list to become better adapted to the more signifi‐
cant responsibility of the entire application. These are skills you may already have,
but they include:

CI/CD pipelines
Embrace the big picture of taking code from repository to production. There’s
nothing that accelerates application development more in an organization. Con‐
tinuous Integration (CI) builds new code into the application stack and auto‐
mates all testing to ensure quality. Continuous Deployment (CD) takes the fully
tested and certified builds and automatically deploys them into production. Used
in combination (Pipeline), organizations can drastically increase developer veloc‐
ity and productivity.

Observability
Monitoring is something anyone with experience in infrastructure is familiar
with. In the “what” part of DevOps you know services are healthy and have the
information needed to diagnose problems. Observability expands monitoring
into the “how” of your application by considering everything as a whole. For
example, tracing the source of latency in a highly distributed application by giv‐
ing insight into every hop data takes.

Knowing the code
When things go bad in a large distributed application it’s not always a process
failure. In many cases, it could be a bug in the code or subtle implementation
detail. Being responsible for the entire health of the application, you will need to
understand the code that is executing in the provided environment. Properly
implemented observability will help you find problems and that includes the
software instrumentation. SREs and development teams need to have clear and
regular communication and code is common ground.

22 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

www.dbooks.org

https://www.dbooks.org/


4 https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Embrace Distributed Computing
Deploying your applications in Kubernetes means embracing all of what distributed
computing offers. When you are accustomed to single system thinking, it can be a
hard transition. Mainly in the shift in thinking around expectations and understand‐
ing where problems crop up. For example, with every process contained in a single
system, latency will be close to zero. It’s not what you have to manage. CPU and
memory resources are the primary concern there. In the 1990s, Sun Microsystems
was leading in the growing field of distributed computing and published this list of
common fallacies:

8 Fallacies of Distributed Computing4

• The network is reliable;
• Latency is zero;
• Bandwidth is infinite;
• The network is secure;
• Topology doesn’t change;
• There is one administrator;
• Transport cost is zero;
• The network is homogeneous.

These items most likely have an interesting story behind them where somebody
assumed one of these fallacies and found themselves very disappointed. The result
wasn’t what they expected and endless hours were lost trying to figure out the wrong
problem.

Embracing distributed methodologies is worth the effort in the long run. It is how we
build large scale applications and will be for a very long time. The challenge is worth
the reward, and for those of us who do this daily, it can be a lot of fun too! Kubernetes
applications will test each of these fallacies given its default distributed nature. When
you plan your deployment, consider things such as the cost of transport from one
place to another or latency implications. They will save you a lot of wasted time and
re-design.

Principles of Cloud Native Data Infrastructure
As engineering professionals, we seek standards and best-practices to build upon. To
make data the most “cloud native” it can be, we need to embrace everything Kuber‐
netes offers. A truly cloud native approach means adopting key elements of the
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Kubernetes design paradigm and building from there. An entire cloud native applica‐
tion that includes data must be one that can run effectively on Kubernetes. Let’s
explore a few Kubernetes design principles that point the way.

Principle 1: Leverage compute, network, and storage as commodity APIs
One of the keys to the success of cloud computing is the commoditization of com‐
pute, networking, and storage as resources we can provision via simple APIs. Con‐
sider this sampling of AWS services.

• Compute: we allocate virtual machines through EC2 and Autoscaling Groups
(ASGs)

• Network: we manage traffic using Elastic Load Balancers (ELB), Route 53, and
VPC peering

• Storage: we persist data using options such as the Simple Storage Service (S3) for
long-term object storage, or Elastic Block Storage (EBS) volumes for our com‐
pute instances.

Kubernetes offers its own APIs to provide similar services for a world of container‐
ized applications:

• Compute: pods, Deployments, and ReplicaSets manage the scheduling and life
cycle of containers on computing hardware

• Network: Services and Ingress expose a container’s networked interfaces
• Storage: PersistentVolumes and StatefulSets enable flexible association of con‐

tainers to storage

Kubernetes resources promote the portability of applications across Kubernetes dis‐
tributions and service providers. What does this mean for databases? They are simply
applications that leverage compute, networking, and storage resources to provide the
services of data persistence and retrieval:

• Compute: a database needs sufficient processing power to process incoming data
and queries. Each database node is deployed as a pod and grouped in Stateful‐
Sets, enabling Kubernetes to manage scaling out and scaling in.

• Network: a database needs to expose interfaces for data and control. We can use
Kubernetes Services and Ingress Controllers to expose these interfaces.

• Storage: a database uses persistent volumes of a specified storage class to store
and retrieve data.

Thinking of databases in terms of their compute, network, and storage needs removes
much of the complexity involved in deployment on Kubernetes.
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Principle 2: Separate the control and data planes
Kubernetes promotes the separation of control and data planes. The Kubernetes API
server is the front door of the control plane, providing the interface used by the data
plane to request computing resources, while the control plane manages the details of
mapping those requests onto an underlying IaaS platform.

We can apply this same pattern to databases. For example, a database data plane con‐
sists of ports exposed for clients, and for distributed databases, ports used for com‐
munication between database nodes. The control plane includes interfaces provided
by the database for administration and metrics collection and tooling that performs
operational maintenance tasks. Much of this capability can and should be imple‐
mented via the Kubernetes operator pattern. Operators define custom resources
(CRDs) and provide control loops that observe the state of those resources and take
actions to move them toward the desired state, helping extend Kubernetes with
domain-specific logic.

Principle 3: Make observability easy
The three pillars of observable systems are logging, metrics, and tracing. Kubernetes
provides a great starting point by exposing the logs of each container to third-party
log aggregation solutions. There are multiple solutions available for metrics, tracing,
and visualization, and we’ll explore several of them in this book.

Principle 4: Make the default con!guration secure
Kubernetes networking is secure by default: ports must be explicitly exposed in order
to be accessed externally to a pod. This sets a valuable precedent for database deploy‐
ment, forcing us to think carefully about how each control plane and data plane inter‐
face will be exposed and which interfaces should be exposed via a Kubernetes Service.
Kubernetes also provides facilities for secret management which can be used for shar‐
ing encryption keys and configuring administrative accounts.

Principle 5: Prefer declarative con!guration
In the Kubernetes declarative approach, you specify the desired state of resources,
and controllers manipulate the underlying infrastructure in order to achieve that
state. Operators for data infrastructure can manage the details of how to scale up
intelligently, for example, deciding how to reallocate shards or partitions when scal‐
ing out additional nodes or selecting which nodes to remove to scale down elastically.

The next generation of operators should enable us to specify rules for stored data size,
number of transactions per second, or both. Perhaps we’ll be able to specify maxi‐
mum and minimum cluster sizes, and when to move less frequently used data to
object storage. This will allow for more automation and efficiency in our data infra‐
structure.
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Summary
At this point, we hope you are ready for the exciting journey in the pages ahead. The
move to cloud native applications must include data, and to do this, we will leverage
Kuberentes to include stateless and stateful services. This chapter covered cloud
native data infrastructure that can scale elastically and resist any downtime due to
system failures and how to build these systems. We as engineers must embrace the
principles of cloud native infrastructure and in some cases, learn new skills. Congrat‐
ulations, you have begun a fantastic journey into the future of building cloud native
applications. Turn the page, and let’s go!
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CHAPTER 2

Managing Data Storage on Kubernetes

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

“"ere is no such thing as a stateless architecture. All applications store state somewhere”
—- Alex Chircop, CEO, StorageOS

In the previous chapter, we painted a picture of a possible near future with powerful,
stateful, data-intensive applications running on Kubernetes. To get there, we’re going
to need data infrastructure for persistence, streaming, and analytics, and to build out
this infrastructure, we’ll need to leverage the primitives that Kubernetes provides to
help manage the three commodities of cloud computing: compute, network, and
storage. In the next several chapters we begin to look at these primitives, starting with
storage, in order to see how they can be combined to create the data infrastructure we
need.

To echo the point raised by Alex Chircop in the quote above, all applications must
store their state somewhere, which is why we’ll focus in this chapter on the basic
abstractions Kubernetes provides for interacting with storage. We’ll also look at the
emerging innovations being offered by storage vendors and open source projects that
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are creating storage infrastructure for Kubernetes that itself embodies cloud-native
principles.

Let’s start our exploration with a look at managing persistence in containerized appli‐
cations in general and use that as a jumping off point for our investigation into data
storage on Kubernetes.

Docker, Containers, and State
The problem of managing state in distributed, cloud-native applications is not unique
to Kubernetes. A quick search will show that stateful workloads have been an area of
concern on other container orchestration platforms such as Mesos and Docker
Swarm. Part of this has to do with the nature of container orchestration, and part is
driven by the nature of containers themselves.

First, let’s consider containers. One of the key value propositions of containers is their
ephemeral nature. Containers are designed to be disposable and replaceable, so they
need to start quickly and use as few resources for overhead processing as possible. For
this reason, most container images are built from base images containing stream‐
lined, Linux-based, open-source operating systems such as Ubuntu, that boot quickly
and incorporate only essential libraries for the contained application or microservice.
As the name implies, containers are designed to be self-contained, incorporating all
their dependencies in immutable images, while their configuration and data is exter‐
nalized. These properties make containers portable so that we can run them any‐
where a compatible container runtime is available.

As shown in Figure 2-1, containers require less overhead than traditional virtual
machines, which run a guest operating system per virtual machine, with a hypervisor
layer to implement system calls onto the underlying host operating system.
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Figure 2-1. Comparing containerization to virtualization

Although containers have made applications more portable, it’s proven a bigger chal‐
lenge to make their data portable. We’ll examine the idea of portable data sets in
Chapter 12. Since a container itself is ephemeral, any data that is to survive beyond
the life of the container must by definition reside externally. The key feature for a
container technology is to provide mechanisms to link to persistent storage, and the
key feature for a container orchestration technology is the ability to schedule contain‐
ers in such a way that they can access persistent storage efficiently.

Managing State in Docker
Let’s take a look at the most popular container technology, Docker, to see how con‐
tainers can store data. The key storage concept in Docker is the volume. From the
perspective of a Docker container, a volume is a directory that can support read-only
or read-write access. Docker supports the mounting of multiple different data stores
as volumes. We’ll introduce several options so we can later note their equivalents in
Kubernetes.

Bind mounts
The simplest approach for creating a volume is to bind a directory in the container to
a directory on the host system. This is called a bind mount, as shown in Figure 2-2.
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Figure 2-2. Using Docker Bind Mounts to access the host !lesystem

When starting a container within Docker, you specify a bind mount with the --
volume or -v option and the local filesystem path and container path to use. For
example, you could start an instance of the Nginx web server, and map a local project
folder from your development machine into the container. This is a command you
can test out in your own environment if you have Docker installed:

docker run -it --rm -d --name web -p 8080:80 -v ~/site-content:/usr/share/nginx/
html nginx 

This exposes the webserver on port 8080 on your local host. If the local path direc‐
tory does not already exist, the Docker runtime will create it. Docker allows you to
create bind mounts with read-only or read-write permissions. Because the volume is
represented as a directory, the application running in the container can put anything
that can be represented as a file into the volume - even a database.

Bind mounts are quite useful for development work. However, using bind mounts is
not suitable for a production environment since this leads to a container being
dependent on a file being present in a specific host. This might be fine for a single
machine deployment, but production deployments tend to be spread across multiple
hosts. Another concern is the potential security hole that is presented by opening up
access from the container to the host filesystem. For these reasons, we need another
approach for production deployments.

Volumes
The preferred option within Docker is to use volumes. Docker volumes are created
and managed by Docker under a specific directory on the host filesystem. The
Docker volume create command is used to create a volume. For example, you might
create a volume called site-content to store files for a website:
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docker volume create site-content

If no name is specified, Docker assigns a random name. After creation, the resulting
volume is available to mount in a container using the form -v VOLUME-
NAME:CONTAINER-PATH. For example, you might use a volume like the one just
created to allow an Nginx container to read the content, while allowing another con‐
tainer to edit the content, using the ro option:

docker run -it --rm -d --name web -v site-content:/usr/share/nginx/html:ro nginx 

Docker Volume mount syntax
Docker also supports a --mount syntax which allows you to specify
the source and target folders more explicitly. This notation is con‐
sidered more modern, but it is also more verbose. The syntax
shown above is still valid and is the more commonly used syntax.

As implied above, a Docker volume can be mounted in more than one container at
once, as shown in Figure 2-3.

Figure 2-3. Creating Docker Volumes to share data between containers on the host

The advantage of using Docker volumes is that Docker manages the filesystem access
for containers, which makes it much simpler to enforce capacity and security restric‐
tions on containers.

Tmpfs Mounts
Docker supports two types of mounts that are specific to the operating system used
by the host system: tmpfs (or “temporary filesystem”) and named pipes. Named pipes
are available on Docker for Windows, but since they are typically not used in K8s, we
won’t give much consideration to them here.
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Tmpfs mounts are available when running Docker on Linux. A tmpfs mount exists
only in memory for the lifespan of the container, so the contents are never present on
disk, as shown in Figure 2-4. Tmpfs mounts are useful for applications that are writ‐
ten to persist a relatively small amount of data, especially sensitive data that you don’t
want written to the host filesystem. Because the data is stored in memory, there is a
side benefit of faster access.

Figure 2-4. Creating a temporary volume using Docker tmpfs

To create a tmpfs mount, you use the docker run --tmpfs option. For example, you
could use a command like this to specify a tmpfs volume to store Nginx logs for a
webserver processing sensitive data:

docker run -it --rm -d --name web —-tmpfs /var/log/nginx nginx 

The --mount option may also be used for more control over configurable options.

Volume Drivers
The Docker Engine has an extensible architecture which allows you to add custom‐
ized behavior via plugins for capabilities including networking, storage, and authori‐
zation. Third-party storage plugins are available for multiple open-source and
commercial providers, including the public clouds and various networked file sys‐
tems. Taking advantage of these involves installing the plugin with Docker engine
and then specifying the associated volume driver when starting Docker containers
using that storage, as shown in Figure 2-5.
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Figure 2-5. Using Docker Volume Drivers to access networked storage

For more information on working with the various types of volumes supported in
Docker, see the Docker Storage documentation, as well as the documentation for the
docker run command.

File, Block, and Object Storage
In our modern era of cloud architectures, the three main formats in which storage is
traditionally provided to applications are files, blocks, and objects. Each of these store
and provide access to data in different ways.

File storage represents data as a hierarchy of folders, each of which can contain files.
The file is the basic unit of access for both storage and retrieval. The root directory
that is to be accessed by a container is mounted into the container filesystem such that
it looks like any other directory. Each of the public clouds provides their own file
storage, for example Google Cloud Filestore, or Amazon Elastic Filestore. Gluster is
an open-source distributed file system. Many of these systems are compatible with the
Network File System (NFS), a distributed file system protocol invented at Sun Micro‐
systems dating back to 1984 that is still in common use.

Block storage organizes data in chunks and allocates those chunks across a set of
managed volumes. When you provide data to a block storage system, it divides it up
into chunks of varying sizes and distributes those chunks in order to use the underly‐
ing volumes the most efficiently. When you query a block storage system, it retrieves
the chunks from their various locations and provides the data back to you. This flexi‐
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bility makes block storage a great solution when you have a heterogeneous set of stor‐
age devices available. Block storage doesn’t provide a lot of metadata handling, which
can place more burden on the application.

Object storage organizes data in units known as objects. Each object is referenced by a
unique identifier or “key”, and can support rich metadata tagging that enables search‐
ing. Objects are organized in buckets. This flat, non-hierarchical organization makes
object storage easy to scale. Amazon’s Simple Storage Service (S3) is the canonical
example of object storage and most object storage products will claim compatibility
with the S3 API.

If you’re tasked with building or selecting data infrastructure, you’ll want to under‐
stand the strengths and weaknesses of each of these patterns.

Kubernetes Resources for Data Storage
Now that you understand basic concepts of container and cloud storage, let’s see what
Kubernetes brings to the table. In this section, we’ll introduce some of the key Kuber‐
netes concepts or “resources” in the API for attaching storage to containerized appli‐
cations. Even if you are already somewhat familiar with these resources, you’ll want
to stay tuned, as we’ll take a special focus on how each one relates to stateful data.

Pods and Volumes
One of the first Kubernetes resources new users encounter is the pod. The pod is the
basic unit of deployment of a Kubernetes workload. A pod provides an environment
for running containers, and the Kubernetes control plane is responsible for deploying
pods to Kubernetes worker nodes. The Kubelet is a component of the Kubernetes
control plane that runs on each worker node. It is responsible for running pods on a
node, as well as monitoring the health of these pods and the containers inside them.
These elements are summarized in Figure 2-6.

While a pod can contain multiple containers, the best practice is for a pod to contain
a single application container, along with optional additional helper containers, as
shown in the figure. These helper containers might include init containers that run
prior to the main application container in order to perform configuration tasks, or
sidecar containers that run alongside the main application container to provide helper
services such as observability or management. In future chapters we’ll demonstrate
how data infrastructure deployments can take advantage of these architectural pat‐
terns.
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Figure 2-6. Using Volumes in Kubernetes Pods

Now let’s consider how persistence is supported within this pod architecture. As with
Docker, the “on disk” data in a container is lost when a container crashes. The kubelet
is responsible for restarting the container, but this new container is really a replace‐
ment for the original container - it will have a distinct identity, and start with a com‐
pletely new state.

In Kubernetes, the term volume is used to represent access to storage within a pod. By
using a volume, the container has the ability to persist data that will outlive the con‐
tainer (and potentially the pod as well, as we’ll see shortly). A volume may be accessed
by multiple containers in a pod. Each container has its own volumeMount within the
pod that specifies the directory to which it should be mounted, allowing the mount
point to differ between containers.

There are multiple cases where you might want to share data between multiple con‐
tainers in a pod:

• An init container creates a custom configuration file for the particular environ‐
ment that the application container mounts in order to obtain configuration val‐
ues.

• The application pod writes logs, and a sidecar pod reads those logs to identify
alert conditions that are reported to an external monitoring tool.

However, you’ll likely want to avoid situations in which multiple containers are writ‐
ing to the same volume, because you’ll have to ensure the multiple writers don’t con‐
flict - Kubernetes does not do that for you.
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Preparing to run sample code
The examples in this chapter (and the rest of the book) assume you
have access to a running Kubernetes cluster. For the examples in
this chapter, a development cluster on your local machine such as
Kind, K3s, or Docker Desktop should be sufficient. The source
code used in this section is located at Kubernetes Storage Examples.

Using a volume in a pod requires two steps: defining the volume, and mounting the
volume in each container that needs access. Let’s look at a sample YAML configura‐
tion that defines a pod with a single application container, the Nginx web server, and
a single volume (source code):

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-app
    image: nginx
    volumeMounts:
    - name: web-data
      mountPath: /app/config
  volumes:
  - name: web-data

Notice the two parts of the configuration: the volume is defined under spec.volumes,
and the usage of the volumes is defined under spec.containers.volumeMounts. First,
the name of the volume is referenced under the volumeMounts, and the directory
where it is to be mounted is specified by the mountPath. When declaring a pod speci‐
fication, volumes and volume mounts go together. For your configuration to be valid,
a volume must be declared before being referenced, and a volume must be used by at
least one container in the pod.

You may have also noticed that the volume only has a name. You haven’t specified any
additional information. What do you think this will do? You could try this out for
yourself by using the example source code file nginx-pod.yaml or cutting and pasting
the configuration above to a file with that name, and executing the kubectl command
against a configured Kubernetes cluster:

kubectl apply -f nginx-pod.yaml

You can get more information about the pod that was created using the kubectl get
pod command, for example:

kubectl get pod my-pod -o yaml | grep -A 5 "  volumes:"

And the results might look something like this:
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  volumes:
  - emptyDir: {}
    name: web-data
  - name: default-token-2fp89
    secret:
      defaultMode: 420

As you can see, Kubernetes supplied some additional information when creating the
requested volume, defaulting it to a type of emptyDir. Other default attributes may
differ depending on what Kubernetes engine you are using and we won’t discuss them
further here.

There are several different types of volumes that can be mounted in a container, let’s
have a look.

Ephemeral volumes
You’ll remember tmpfs volumes from our discussion of Docker volumes above,
which provide temporary storage for the lifespan of a single container. Kubernetes
provides the concept of an ephemeral volumes, which is similar, but at the scope of a
pod. The emptyDir introduced in the example above is a type of ephemeral volume.

Ephemeral volumes can be useful for data infrastructure or other applications that
want to create a cache for fast access. Although they do not persist beyond the life‐
span of a pod, they can still exhibit some of the typical properties of other volumes
for longer-term persistence, such as the ability to snapshot. Ephemeral volumes are
slightly easier to set up than PersistentVolumes because they are declared entirely
inline in the pod definition without reference to other Kubernetes resources. As you
will see below, creating and using PersistentVolumes is a bit more involved.

Other ephemeral storage providers
Some of the in-tree and CSI storage drivers we’ll discuss below that
provide PersistentVolumes also provide an ephemeral volume
option. You’ll want to check the documentation of the specific pro‐
vider in order to see what options are available.

Con!guration volumes
Kubernetes provides several constructs for injecting configuration data into a pod as a
volume. These volume types are also considered ephemeral in the sense that they do
not provide a mechanism for allowing applications to persist their own data.

These volume types are relevant to our exploration in this book since they provide a
useful means of configuring applications and data infrastructure running on Kuber‐
netes. We’ll describe each of them briefly:
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Con!gMap Volumes
A ConfigMap is a Kubernetes resource that is used to store configuration values
external to an application as a set of name-value pairs. For example, an applica‐
tion might require connection details for an underlying database such as an IP
address and port number. Defining these in a ConfigMap is a good way to exter‐
nalize this information from the application. The resulting configuration data
can be mounted into the application as a volume, where it will appear as a direc‐
tory. Each configuration value is represented as a file, where the filename is the
key, and the contents of the file contain the value. See the Kubernetes documen‐
tation for more information on mounting ConfigMaps as volumes.

Secret Volumes
A Secret is similar to a ConfigMap, only it is intended for securing access to sen‐
sitive data that requires protection. For example, you might want to create a
secret containing database access credentials such as a username and password.
Configuring and accessing Secrets is similar to using ConfigMap, with the addi‐
tional benefit that Kubernetes helps decrypt the secret upon access within the
pod. See the Kubernetes documentation for more information on mounting
Secrets as volumes.

Downward API Volumes
The Kubernetes Downward API exposes metadata about pods and containers,
either as environment variables or as volumes. This is the same metadata that is
used by kubectl and other clients.

The available pod metadata includes the pod’s name, ID, namespace, labels, and
annotations. The containerized application might wish to use the pod information for
logging and metrics reporting, or to determine database or table names.

The available container metadata includes the requested and maximum amounts of
resources such as CPU, memory, and ephemeral storage. The containerized applica‐
tion might wish to use this information in order to throttle its own resource usage.
See the Kubernetes documentation for an example of injecting pod information as a
volume.

Hostpath volumes
A hostPath volume mounts a file or directory into a pod from the Kubernetes worker
node where it is running. This is analogous to the bind mount concept in Docker dis‐
cussed above. Using a hostPath volume has one advantage over an emptyDir volume:
the data will survive the restart of a pod.

However, there are some disadvantages to using hostPath volumes. First, in order for
a replacement pod to access the data of the original pod, it will need to be restarted
on the same worker node. While Kubernetes does give you the ability to control
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which node a pod is placed on using affinity, this tends to constrain the Kubernetes
scheduler from optimal placement of pods, and if the node goes down for some rea‐
son, the data in the hostPath volume is lost. Second, similar to Docker bind mounts,
there is a security concern with hostPath volumes in terms of allowing access to the
local filesystem. For these reasons, hostPath volumes are only recommended for
development deployments.

Cloud Volumes
It is possible to create Kubernetes volumes that reference storage locations beyond
just the worker node where a pod is running, as shown in Figure 2-7. These can be
grouped into volume types that are provided by named cloud providers, and those
that attempt to provide a more generic interface.

Figure 2-7. Kubernetes pods directly mounting cloud provider storage

These include the following:

• The awsElasticBlockStore volume type is used to mount volumes on Amazon
Web Services (AWS) Elastic Block Store (EBS). Many databases use block storage
as their underlying storage layer.

• The gcePersistentDisk volume type is used to mount Google Compute Engine
(GCE) persistent disks (PD), another example of block storage.

• Two types of volumes are supported for Microsoft Azure: azureDisk for Azure
Disk Volumes, and azureFile for Azure File Volumes
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• For OpenStack deployments, the cinder volume type can be used to access Open‐
Stack Cinder volumes

Usage of these types typically requires configuration on the cloud provider, and
access from Kubernetes clusters is typically confined to storage in the same cloud
region and account. Check your cloud provider’s documentation for additional
details.

Additional Volume Providers
There are a number of additional volume providers that vary in the types of storage
provided. Here are a few examples:

• The fibreChannel volume type can be used for SAN solutions implementing the
FibreChannel protocol.

• The gluster volume type is used to access file storage using the Gluster dis‐
tributed file system referenced above

• An iscsi volume mounts an existing iSCSI (SCSI over IP) volume into your Pod.
• An nfs volume allows an existing NFS (Network File System) share to be moun‐

ted into a Pod

We’ll examine more volume providers below that implement the Container Attached
Storage pattern.

Table 2-1 provides a comparison of Docker and Kubernetes storage concepts we’ve
covered so far.

Table 2-1. Comparing Docker and Kubernetes storage options
Type of Storage Docker Kubernetes
Access to persistent storage from various providers Volume (accessed via

Volume drivers)
Volume (accessed via in-tree or CSI
drivers)

Access to host !lesystem (not recommended for
production)

Bind mount Hostpath volume

Temporary storage available while container (or pod) is
running

tmpfs emptyDir and other ephemeral
volumes

Con!guration and environment data (read-only) (no direct equivalent) Con!gMap, Secret, Downward API

How do you choose a Kubernetes storage solution?
Given the number of storage options available, it can certainly be an intimidating task
to try to determine what kind of storage you should use for your application. Along
with determining whether you need file, block, or object storage, you’ll want to con‐
sider your latency and throughput requirements, as well as your expected storage vol‐
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ume. For example, If your read latency requirements are aggressive, you’ll most likely
need a storage solution that keeps data in the same data center where it is accessed.

Next, you’ll want to consider any existing commitments or resources you have. Per‐
haps your organization has a mandate or bias toward using services from a preferred
cloud provider. The cloud providers will frequently provide cost incentives for using
their services, but you’ll want to trade this against the risk of lock-in to a specific ser‐
vice. Alternatively, you might have an investment in a storage solution in an on-
premises data center that you need to leverage.

Overall, cost tends to be the overriding factor in choosing storage solutions, especially
over the long term. Make sure your modeling includes not only the cost of the physi‐
cal storage and any managed services, but also the operational cost involved in man‐
aging your chosen solution.

In this section, we’ve discussed how to use volumes to provide storage that can be
shared by multiple containers within the same pod. While this is sufficient for some
use cases, there are some needs this doesn’t address. A volume does not provide the
ability to share storage resources between pods. The definition of a particular storage
location is tied to the definition of the pod. Managing storage for individual pods
doesn’t scale well as the number of pods deployed in your Kubernetes cluster increa‐
ses.

Thankfully, Kubernetes provides additional primitives that help simplify the process
of provisioning and mounting storage volumes for both individual pods and groups
of related pods. We’ll investigate these concepts in the next several sections.

PersistentVolumes
The key innovation the Kubernetes developers have introduced for managing storage
is the persistent volume subsystem. This subsystem consists of three additional Kuber‐
netes resources that work together: PersistentVolumes, PersistentVolumeClaims, and
StorageClasses. This allows you to separate the definition and lifecycle of storage
from how it is used by pods, as shown in Figure 2-8:

• Cluster administrators define PersistentVolumes, either explicitly or by creating a
StorageClass that can dynamically provision new PersistentVolumes.

• Application developers create PersistentVolumeClaims that describe the storage
resource needs of their applications, and these PersistentVolumeClaims can be
referenced as part of volume definitions in pods.

• The Kubernetes control plane manages the binding of PersistentVolumeClaims
to PersistentVolumes.
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Figure 2-8. PersistentVolumes, PersistentVolumeClaims, and StorageClasses

Let’s look first at the PersistentVolume resource (often abbreviated PV), which
defines access to storage at a specific location. PersistentVolumes are typically defined
by cluster administrators for use by application developers. Each PV can represent
storage of the same types discussed in the previous section, such as storage offered by
cloud providers, networked storage, or storage directly on the worker node, as shown
in Figure 2-9. Since they are tied to specific storage locations, PersistentVolumes are
not portable between Kubernetes clusters.

Figure 2-9. Types of Kubernetes PersistentVolumes

Local PersistentVolumes
The figure also introduces a PersistentVolume type called local, which represents
storage mounted directly on a Kubernetes worker node such as a disk or partition.
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Like hostPath volumes, a local volume may also represent a directory. A key differ‐
ence between local and hostPath volumes is that when a pod using a local volume is
restarted, the Kubernetes scheduler ensures the pod is rescheduled on the same node
so that it can be attached to the same persistent state. For this reason, local volumes
are frequently used as the backing store for data infrastructure that manages its own
replication, as we’ll see in Chapter 4.

The syntax for defining a PersistentVolume will look familiar, as it is similar to defin‐
ing a volume within a pod. For example, here is a YAML configuration file that
defines a local PersistentVolume (source code):

apiVersion: v1
kind: PersistentVolume
metadata:
  name: my-volume
spec:
  capacity:
    storage: 3Gi
  accessModes:
    - ReadWriteOnce
  local:
    path: /app/data
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
          - node1

As you can see, this code defines a local volume named my-volume on the worker
node node1, 3 GB in size, with an access mode of ReadWriteOnce. The following
access modes are supported for PersistentVolumes:

• ReadWriteOnce access allows the volume to be mounted for both reading and
writing by a single node at a time, although multiple pods running on that node
may access the volume

• ReadOnlyMany access means the volume can be mounted by multiple nodes
simultaneously for reading only

• ReadWriteMany access allows the volume to be mounted for both reading and
writing by many nodes at the same time
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Choosing a volume access mode
The right access mode for a given volume will be driven by the type
of workload. For example, many distributed databases will be con‐
figured with dedicated storage per pod, making ReadWriteOnce a
good choice.

Besides capacity and access mode, other attributes for PersistentVolumes include:

• The volumeMode, which defaults to Filesystem but may be overridden to Block.
• The reclaimPolicy defines what happens when a pod releases its claim on this

PersistentVolume. The legal values are Retain, Recycle, and Delete.
• A PersistentVolume can have a nodeAffinity which designates which worker

node or nodes can access this volume. This is optional for most types, but
required for the local volume type.

• The class attribute binds this PV to a particular StorageClass, which is a concept
we’ll introduce below.

• Some PersistentVolume types expose mountOptions that are specific to that type.

Differences in volume options
Options differ between different volume types. For example, not
every access mode or reclaim policy is accessible for every Persis‐
tentVolume type, so consult the documentation on your chosen
type for more details.

You use the kubectl describe persistentvolume command (or kubectl describe pv for
short) to see the status of the PersistentVolume:

$ kubectl describe pv my-volume
Name:              my-volume
Labels:            <none>
Annotations:       <none>
Finalizers:        [kubernetes.io/pv-protection]
StorageClass:
Status:            Available
Claim:
Reclaim Policy:    Retain
Access Modes:      RWO
VolumeMode:        Filesystem
Capacity:          3Gi
Node Affinity:
  Required Terms:
    Term 0:        kubernetes.io/hostname in [node1]
Message:
Source:
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    Type:  LocalVolume (a persistent volume backed by local storage on a node)
    Path:  /app/data
Events:    <none>

The PersistentVolume has a status of Available when first created. A PersistentVo‐
lume can have multiple different status values:

• Available means the PersistentVolume is free, and not yet bound to a claim.
• Bound means the PersistentVolume is bound to a PersistentVolumeClaim, which

is listed elsewhere in the describe output
• Released means that an existing claim on the PersistentVolume has been deleted,

but the resource has not yet been reclaimed, so the resource is not yet Available
• Failed means the volume has failed its automatic reclamation

Now that you’ve learned how storage resources are defined in Kubernetes, the next
step is to learn how to use that storage in your applications.

PersistentVolumeClaims
As discussed above, Kubernetes separates the definition of storage from its usage.
Often these tasks are performed by different roles: cluster administrators define stor‐
age, while application developers use the storage. PersistentVolumes are typically
defined by the administrators and reference storage locations which are specific to
that cluster. Developers can then specify the storage needs of their applications using
PersistentVolumeClaims (PVCs) that Kubernetes uses to associate pods with a Persis‐
tentVolume that meets the specified criteria. As shown in Figure 2-10, a PersistentVo‐
lumeClaim is used to reference the various volume types we’ve introduced previously,
including local PersistentVolumes, or external storage provided by cloud or net‐
worked storage vendors.
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Figure 2-10. Accessing PersistentVolumes using PersistentVolumeClaims

Here’s what the process looks like from an application developer perspective. First,
you’ll create a PVC representing your desired storage criteria. For example, here’s a
claim that requests 1GB of storage with exclusive read/write access (source code):

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-claim
spec:
  storageClassName: ""
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi

One interesting thing you may have noticed about this claim is that the storageClass‐
Name is set to an empty string. We’ll explain the significance of this when we discuss
StorageClasses below. You can reference the claim in the definition of a pod like this
(source code):

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:

46 | Chapter 2: Managing Data Storage on Kubernetes

www.dbooks.org

https://github.com/data-on-k8s-book/examples/blob/main/ch2-storage/my-claim.yaml
https://github.com/data-on-k8s-book/examples/blob/main/ch2-storage/my-pod.yaml
https://www.dbooks.org/


  - name: nginx
    image: nginx
    volumeMounts:
    - mountPath: "/app/data"
      name: my-volume
  volumes:
  - name: my-volume
    persistentVolumeClaim:
      claimName: my-claim 

As you can see, the PersistentVolume is represented within the pod as a volume. The
volume is given a name and a reference to the claim. This is considered to be a vol‐
ume of the persistentVolumeClaim type. As with other volumes, the volume is moun‐
ted into a container at a specific mount point, in this case into the main application
Nginx container at the path /app/data.

A PVC also has a state, which you can see if you retrieve the status:
$ kubectl describe pvc my-claim
Name:          my-claim
Namespace:     default
StorageClass:
Status:        Bound
Volume:        my-volume
Labels:        <none>
Annotations:   pv.kubernetes.io/bind-completed: yes
               pv.kubernetes.io/bound-by-controller: yes
Finalizers:    [kubernetes.io/pvc-protection]
Capacity:      3Gi
Access Modes:  RWO
VolumeMode:    Filesystem
Mounted By:    <none>
Events:        <none>

A PVC has one of two Status values: Bound, meaning it is bound to a volume (as is
the case above), or Pending, meaning that it has not yet been bound to a volume.
Typically a status of Pending means that no PV matching the claim exists.

Here’s what’s happening behind the scenes. Kubernetes uses the PVCs referenced as
volumes in a pod and takes those into account when scheduling the pod. Kubernetes
identifies PersistentVolumes that match properties associated with the claim and
binds the smallest available module to the claim. The properties might include a label,
or node affinity, as we saw above for local volumes.

When starting up a pod, the Kubernetes control plane makes sure the PersistentVo‐
lumes are mounted to the worker node. Then each requested storage volume is
mounted into the pod at the specified mount point.
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StorageClasses
The example shown above demonstrates how Kubernetes can bind PVCs to Persis‐
tentVolumes that already exist. This model in which PersistentVolumes are explicitly
created in the Kubernetes cluster is known as static provisioning. The Kubernetes Per‐
sistent Volume Subsystem also supports dynamic provisioning of volumes using Stora‐
geClasses (often abbreviated SC). The StorageClass is responsible for provisioning
(and deprovisioning) PersistentVolumes according to the needs of applications run‐
ning in the cluster, as shown in Figure 2-11.

Figure 2-11. StorageClasses support dynamic provisioning of volumes

Depending on the Kubernetes cluster you are using, it is likely that there is already at
least one StorageClass available. You can verify this using the command kubectl get
sc. If you’re running a simple Kubernetes distribution on your local machine and
don’t see any StorageClasses, you can install an open source local storage provider
from Rancher with the following command:

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-
provisioner/master/deploy/local-path-storage.yaml

This storage provider comes pre-installed in K3s, a desktop distribution also pro‐
vided by Rancher. If you take a look at the YAML configuration referenced in that
statement, you’ll see the following definition of a StorageClass (source code):

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: local-path
provisioner: rancher.io/local-path
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Delete
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As you can see from the definition, a StorageClass is defined by a few key attributes:

• The provisioner interfaces with an underlying storage provider such as a public
cloud or storage system in order to allocate the actual storage. The provisioner
can either be one of the Kubernetes built-in provisioners (referred to as “in-tree”
because they are part of the Kubernetes source code), or a provisioner that con‐
forms to the Container Storage Interface (CSI), which we’ll examine below.

• The reclaimPolicy describes whether storage is reclaimed when the PersistentVo‐
lume is deleted. The default is Delete, but can be overridden to Retain, in which
case the storage administrator would be responsible for managing the future state
of that storage with the storage provider.

• The volumeBindingMode controls when the storage is provisioned and bound. If
the value is Immediate, a PersistentVolume is immediately provisioned as soon as
a PersistentVolumeClaim referencing the StorageClass as created, and the claim
is bound to the PersistentVolume, regardless of whether the claim is referenced
in a pod. Many storage plugins also support a second mode known as WaitFor‐
FirstConsumer, in which case no PersistentVolume is not provisioned until a pod
is created that references the claim. This behavior is considered preferable since it
gives the Kubernetes scheduler more flexibility.

• Although it is not shown in the example above, there is also an optional allowVo‐
lumeExpansion flag. This indicates whether the StorageClass supports the ability
for volumes to be expanded. If true, the volume can be expanded by increasing
the size of the storage.request field of the PersistentVolumeClaim. This value
defaults to false.

• Some StorageClasses also define parameters, specific configuration options for
the storage provider that are passed to the provisioner. Common options include
filesystem type, encryption settings, and throughput in terms of IOPS. Check the
documentation for the storage provider for more details.

Limits on dynamic provisioning
Local PVs cannot be dynamically provisioned by a StorageClass, so
you must create them manually yourself.

Application developers can reference a specific StorageClass when creating a PVC by
adding a storageClass property to the definition. For example, here is a YAML config‐
uration for a PVC referencing the local-path StorageClass (source code):

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
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  name: my-local-path-claim
spec:
  storageClassName: local-path
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi

If no storageClass is specified in the claim, then the default StorageClass is used. The
default StorageClass can be set by the cluster administrator. As we showed above in
the Persistent Volumes section, you can opt out of using StorageClasses by using the
empty string, which indicates that you are using statically provisioned storage.

StorageClasses provide a useful abstraction that cluster administrators and applica‐
tion developers can use as a contract: administrators define the StorageClasses, and
developers reference the StorageClasses by name. The details of the underlying Stora‐
geClass implementation can differ across Kubernetes platform providers, promoting
portability of applications.

This flexibility allows administrators to create StorageClasses representing a variety of
different storage options, for example, to distinguish between different quality of ser‐
vice guarantees in terms of throughput or latency. This concept is known as “profiles”
in other storage systems. See How Developers are Driving the Future of Kubernetes
Storage (sidebar) for more ideas on how StorageClasses can be leveraged in innova‐
tive ways.

Kubernetes Storage Architecture
In the preceding sections we’ve discussed the various storage resources that Kuber‐
netes supports via its API. In the remainder of the chapter, we’ll take a look at how
these solutions are constructed, as they can give us some valuable insights on how to
construct cloud-native data solutions.

Defining Cloud-native storage
Most of the storage technologies we discuss in this chapter are cap‐
tured as part of the “cloud-native storage” solutions listed in Cloud
Native Computing Foundation (CNCF) landscape. The CNCF
Storage Whitepaper is a helpful resource which defines key terms
and concepts for cloud native storage. Both of these resources are
updated regularly.

Flexvolume
Originally, the Kubernetes codebase contained multiple “in-tree” storage plugins, that
is, included in the same GitHub repo as the rest of the Kubernetes code. The advan‐
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tage of this was that it helped standardize the code for connecting to different storage
platforms, but there were a couple of disadvantages as well. First, many Kubernetes
developers had limited expertise across the broad set of included storage providers.
More significantly, the ability to upgrade storage plugins was tied to the Kubernetes
release cycle, meaning that if you needed a fix or enhancement for a storage plugin,
you’d have to wait until it was accepted into a Kubernetes release. This slowed the
maturation of storage technology for K8s, and as a result, adoption slowed as well.

The Kubernetes community created the Flexvolume specification to allow develop‐
ment of plugins that could be developed independently, that is, out of the Kubernetes
source code tree, without being tied to the Kubernetes release cycle. Around the same
time, storage plugin standards were emerging for other container orchestration sys‐
tems, and developers from these communities began to question the wisdom of
developing multiple standards to solve the same basic problem.

Future Flexvolume support
While new feature development has paused on Flexvolume, many
deployments still rely on these plugins, and there are no active
plans to deprecate the feature as of the Kubernetes 1.21 release.

Container Storage Interface (CSI)
The Container Storage Interface (CSI) initiative was established as an industry stan‐
dard for storage for containerized applications. CSI is an open standard used to
define plugins that will work across container orchestration systems including Kuber‐
netes, Mesos, and Cloud Foundry. As Saad Ali, Google engineer and chair of the
Kubernetes Storage Special Interest Group (SIG), noted in The New Stack article The
State of State in Kubernetes: “The Container Storage Interface allows Kubernetes to
interact directly with an arbitrary storage system.”

The CSI specification is available on GitHub. Support for the CSI in Kubernetes
began with the 1.x release and it went GA in the 1.13 release. Kubernetes continues to
track updates to the CSI specification.

Once a CSI implementation is deployed on a Kubernetes cluster, its capabilities are
accessed through the standard Kubernetes storage resources such as PVCs, PVs, and
SCs. On the backend, each CSI implementation must provide two plugins: a node
plugin and a controller plugin. The CSI specification defines required interfaces for
these plugins using gRPC but does not specify exactly how the plugins are to be
deployed.

Let’s briefly look at the role of each of these services, also depicted in Figure 2-12:

• The controller plugin supports operations on volumes such as create, delete, list‐
ing, publishing/unpublishing, tracking and expanding volume capacity. It also
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tracks volume status including what nodes each volume is attached to. The con‐
troller plugin is also responsible for taking and managing snapshots, and using
snapshots to clone a volume. The controller plugin can run on any node - it is a
standard Kubernetes controller.

• The node plugin runs on each Kubernetes worker node where provisioned vol‐
umes will be attached. The node plugin is responsible for local storage, as well as
mounting and unmounting volumes onto the node. The Kubernetes control
plane directs the plugin to mount a volume prior to any pods being scheduled on
the node that require the volume.

Figure 2-12. Container Storage Interface mapped to Kubernetes

Additional CSI resources:
The CSI documentation site provides guidance for developers and
storage providers who are interested in developing CSI-compliant
drivers. The site also provides a very useful list of CSI-compliant
drivers. This list is generally more up to date than one provided on
the Kubernetes documentation site.
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CSI Migration
The Kubernetes community has been very conscious of preserving forward and back‐
ward compatibility between versions, and the transition from in-tree storage plugins
to the CSI is no exception. Features in Kubernetes are typically introduced as Alpha
features, and progress to Beta, before being released as General Availability (GA). The
introduction of a new API such as the CSI presents a more complex challenge because
it involves the introduction of a new API as well as the deprecation of older APIs.

The CSI migration approach was introduced in order to promote a coherent experi‐
ence for users of storage plugins. The implementation of each corresponding in-tree
plugin is changed to a facade when an equivalent CSI-compliant driver becomes
available. Calls on the in-tree plugin are delegated to the underlying CSI-compliant
driver. The migration capability is itself a feature that can be enabled on a Kubernetes
cluster.

This allows a staged adoption process that can be used as existing clusters are updated
to newer Kubernetes versions. Each application can be updated independently to use
CSI-compliant drivers instead of in-tree drivers. This approach to maturing and
replacing APIs is a helpful pattern for promoting stability of the overall platform and
providing administrators control over their migration to the new API.

Container Attached Storage
While the CSI is an important step forward in standardizing storage management
across container orchestrators, it does not provide implementation guidance on how
or where the storage software runs. Some CSI implementations are basically thin
wrappers around legacy storage management software running outside of the Kuber‐
netes cluster. While there are certainly benefits to this reuse of existing storage assets,
many developers have expressed a desire for storage management solutions that run
entirely in Kubernetes alongside their applications.

Container Attached Storage is a design pattern which provides a more cloud-native
approach to managing storage. The logic to manage storage operations such as
attaching volumes to applications is itself composed of microservices running in con‐
tainers. This allows the storage layer to have the same properties as other applications
deployed on Kubernetes and reduces the number of different management interfaces
administrators have to keep track of. The storage layer becomes just another Kuber‐
netes application.

As Evan Powell noted in his article on the CNCF Blog, Container Attached Storage: A
primer, “Container Attached Storage reflects a broader trend of solutions that rein‐
vent particular categories or create new ones – by being built on Kubernetes and
microservices and that deliver capabilities to Kubernetes based microservice environ‐
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ments. For example, new projects for security, DNS, networking, network policy
management, messaging, tracing, logging and more have emerged in the cloud-native
ecosystem.”

There are several examples of projects and products that embody the CAS approach
to storage. Let’s examine a few of the open-source options.

OpenEBS
OpenEBS is a project created by MayaData and donated to the CNCF, where it
became a sandbox project in 2019. The name is a play on Amazon’s Elastic Block
Store, and OpenEBS is an attempt to provide an open source equivalent to this
popular managed service. OpenEBS provides storage engines for managing both
local and NVMe PersistentVolumes.

OpenEBS provides a great example of a CSI-compliant implementation deployed
onto Kubernetes, as shown in Figure 2-13. The control plane includes the Open‐
EBS provisioner, which implements the CSI controller interface, and the Open‐
EBS API server, which provides a configuration interface for clients and interacts
with the rest of the Kubernetes control plane.

The Open EBS data plane consists of the Node Disk Manager (NDM) as well as
dedicated pods for each PersistentVolume. The NDM runs on each Kubernetes
worker where storage will be accessed. It implements the CSI node interface and
provides the helpful functionality of automatically detecting block storage devi‐
ces attached to a worker node.

Figure 2-13. OpenEBS Architecture
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OpenEBS creates multiple pods for each volume. A controller pod is created as
the primary replica, and additional replica pods are created on other Kubernetes
worker nodes for high availability. Each pod includes sidecars that expose inter‐
faces for metrics collection and management, which allows the control plane to
monitor and manage the data plane.

Longhorn
Longhorn is an open-source, distributed block storage system for Kubernetes. It
was originally developed by Rancher, and became a CNCF sandbox project in
2019. Longhorn focuses on providing an alternative to cloud-vendor storage and
expensive external storage arrays. Longhorn supports providing incremental
backups to NFS or AWS S3 compatible storage, and live replication to a separate
Kubernetes cluster for disaster recovery.

Longhorn uses a similar architecture to that shown for OpenEBS; according to
the documentation, “Longhorn creates a dedicated storage controller for each
block device volume and synchronously replicates the volume across multiple
replicas stored on multiple nodes. The storage controller and replicas are them‐
selves orchestrated using Kubernetes.” Longhorn also provides an integrated user
interface to simplify operations.

Rook and Ceph
According to its website, “Rook is an open source cloud-native storage orchestra‐
tor, providing the platform, framework, and support for a diverse set of storage
solutions to natively integrate with cloud-native environments.” Rook was origi‐
nally created as a containerized version of Ceph that could be deployed in Kuber‐
netes. Ceph is an open-source distributed storage framework that provides block,
file, and object storage. Rook was the first storage project accepted by the CNCF
and is now considered a CNCF Graduated project.

Rook is a truly Kubernetes-native implementation in the sense that it makes use
of Kubernetes custom resources (CRDs) and custom controllers called operators.
Rook provides operators for Ceph, Apache Cassandra, and Network File System
(NFS). We’ll learn more about custom resources and operators in Chapter 4.

There are also commercial solutions for Kubernetes that embody the CAS pattern.
These include MayaData (creators of OpenEBS), Portworx by PureStorage, Robin.io,
and StorageOS. These companies provide both raw storage in block and file formats,
as well as integrations for simplified deployments of additional data infrastructure
such as databases and streaming solutions.

Container Object Storage Interface (COSI)
The CSI provides support for file and block storage, but object storage APIs require
different semantics and don’t quite fit the CSI paradigm of mounting volumes. In Fall
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2020, a group of companies led by MinIO began work on a new API for object stor‐
age in container orchestration platforms: the Container Object Storage Interface
(COSI). COSI provides a Kubernetes API more suited to provisioning and accessing
object storage, defining a bucket custom resource and including operations to create
buckets and manage access to buckets. The design of the COSI control plane and data
plane is modeled after the CSI. COSI is an emerging standard with a great start and
potential for wide adoption in the Kubernetes community and potentially beyond.

How Developers are Driving the Future of Kubernetes Storage
With Kiran Mova, co-founder and CTO of MayaData, member of Kubernetes Storage
Special Interest Group (SIG)

Many organizations are just starting their containerization journey. Kubernetes is the
shiny object, and everybody wants to run everything in Kubernetes. But not all teams
are ready for Kubernetes, much less managing stateful workloads on Kubernetes.

Application developers are the ones driving the push for stateful workloads on Kuber‐
netes. These developers get started with cloud resources that are available to them,
even a single node Kubernetes cluster, and assume they’re ready to run that in pro‐
duction. Developers are “Kuberneticizing” their in-house applications, and the
demands on storage are quite different from what the platform teams that support
them are used to.

Microservices and Kubernetes have changed the way storage volumes are provi‐
sioned. Platform teams are used to thinking about data in terms of provisioning vol‐
umes with the required throughput or capacity. In the old way, the platform team
would meet with the application team, estimate the size of the data, do a month of
planning, provision a 2-3 TB volume, and mount it into the VMs or bare metal
servers and that would provide enough storage capacity for the next year.

With Kubernetes, provisioning has become much easier and ad-hoc. You can run
things in a very cost effective and agile way by adopting Kubernetes. But many plat‐
form teams are still working to catch up. Some teams are simply focused on provi‐
sioning storage correctly, while others are beginning to focus on “day 2” operations,
such as automated provisioning, expanding volumes, or disconnecting and destroy‐
ing volumes.

Platform teams don’t yet have a foolproof way to run stateful workloads in Kuber‐
netes, so they often offload persistence to public cloud providers. The public clouds
make a strong case for their managed services, claiming they have everything that
you’ll need to run a storage system, but once you start using managed services for
state, you can become dependent on those cloud providers and get stuck.

Meanwhile, there are innovations in storage technology happening in parallel:
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• The landscape is shifting back and forth between hyperconverged and disaggre‐
gated. This re-architecture is happening at all the layers of the stack, and it’s not
just the software, it includes processes and the people who consume the data.

• Hardware trends are driving toward low-latency solutions including NVMe and
DPDK/SPDK, and changes to the Linux kernel like io_uring to take advantage of
faster hardware.

• Container attached storage will help us manage storage more effectively. For
example, being able to reclaim storage space when workloads shrink. This can be
a difficult problem with data distributed across multiple nodes. We’ll need better
logic for relocating data onto existing nodes.

Technologies that bring more automation for compliance and operations are coming
into the picture as well.

With all these innovations, it can be a bit overwhelming to understand the big picture
and determine how to leverage this technology for maximum benefit. Platform SREs
need to learn about Kubernetes, declarative deployments, GitOps principles, new vol‐
ume types, and even database concepts like eventual consistency.

We envision a future in which application developers will specify their Kubernetes
storage needs in terms of the required quality of service, such as I/O operations per
second (IOPS) and throughput. Developers should be able to specify different storage
needs for their workloads in more human-relatable terms. For example, platform
teams could define StorageClasses for “fast storage” vs “slow storage”, or perhaps
“metadata storage” vs “data storage”. These StorageClasses will make different cost/
performance tradeoffs and provide specific service level agreements (SLAs). We may
even see some standard definitions start to emerge for these new StorageClasses.

Ideally, application teams should not be picking into what storage solutions are
chosen. The only thing an application developer should be concerned with is specify‐
ing PersistentVolumeClaims for their application, with the StorageClasses they need.
The other details of managing storage should be hidden, although of course the stor‐
age subsystem will report errors including status and logs via the standard Kubernetes
mechanisms. This capability will make things a lot simpler for application developers,
whether they’re deploying a database, or some other stateful workload.

These innovations will guide us to a more optimal place with storage on Kubernetes.
Today we’re in a place where deploying infrastructure is easy. Let’s work together to
get to a place where deploying the right infrastructure is easy.

As you can see, storage on Kubernetes is an area in which there is a lot of innovation,
including multiple open source projects and commercial vendors competing to pro‐
vide the most usable, cost effective, and performant solutions. The Cloud-Native
Storage section of the CNCF Landscape provides a helpful listing of storage providers
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and related tools, including the technologies referenced in this chapter and many
more.

Summary
In this chapter, we’ve explored how persistence is managed in container systems like
Docker, and container orchestration systems like Kubernetes. You’ve learned about
the various Kubernetes resources that can be used to manage stateful workloads,
including Volumes, PersistentVolumes, PersistentVolumeClaims, StorageClasses.
We’ve seen how the Container Storage Interface and Container Attached Storage pat‐
tern point the way toward more cloud-native approaches to managing storage. Now
you’re ready to learn how to use these building blocks and design principles to man‐
age stateful workloads including databases, streaming data, and more.
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CHAPTER 3

Databases on Kubernetes the Hard way

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 3rd chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

As we discussed in Chapter 1, Kubernetes was designed for stateless workloads. A
corollary to this is that stateless workloads are what Kubernetes does best. Because of
this, some have argued that you shouldn’t try to run stateful workloads on Kuber‐
netes, and you may hear various recommendations about what you should do
instead: “use a managed service”, or “leave data in legacy databases in your on-
premises data center”, or perhaps even “run your databases in the cloud, but in tradi‐
tional VMs instead of containers”.

While these recommendations are still viable options, one of our main goals in this
book is to demonstrate that running data infrastructure in Kubernetes has become
not only a viable option, but a preferred option. In his article, A Case for Databases
on Kubernetes from a Former Skeptic, Chris Bradford describes his journey from
being skeptical of running any stateful workload in Kubernetes, to grudging accept‐
ance of running data infrastructure on Kubernetes for development and test work‐
loads, to enthusiastic evangelism around deploying databases on K8s in production.
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This journey is typical of many in the Data on Kubernetes community. By the middle
of 2020, Boris Kurktchiev was able to cite a growing consensus that managing stateful
workloads on Kubernetes had reached a point of viability, and even maturity, in his
article 3 Reasons to Bring Stateful Applications to Kubernetes.

How did this change come about? Over the past several years, the Kubernetes com‐
munity has shifted focus toward adding features that support the ability to manage
state in a cloud-native way on Kubernetes. The storage elements represent a big part
of this shift we introduced in the previous chapter, including the Kubernetes Persis‐
tentVolume subsystem and the adoption of the Container Storage Interface. In this
chapter, we’ll complete this part of the story by looking at Kubernetes resources for
building stateful applications on top of this storage foundation. We’ll focus in particu‐
lar on a specific type of stateful application: data infrastructure.

The Hard Way
The phrase “doing it the hard way” has come to be associated with avoiding the easy
option in favor of putting in the detailed work required to accomplish a result that
will have lasting significance. Throughout history, pioneers of all persuasions are well
known for taking pride in having made the sacrifice of blood, sweat, and tears that
make life just that little bit more bearable for the generations that follow. These elders
are often heard to lament when their proteges fail to comprehend the depth of what
they had to go through.

In the tech world it’s no different. While new innovations such as APIs and “no code”
environments have massive potential to grow a new crop of developers worldwide, it
is still the case that a deeper understanding of the underlying technology is required
in order to manage highly available and secure systems at worldwide scale. It’s when
things go wrong that this detailed knowledge proves its worth. This is why many of us
who are software developers and never touch a physical server in our day jobs gain so
much from building our own PC by wiring chips and boards by hand. It’s also one of
the hidden benefits of serving as informal IT consultants for our friends and family.

For the Kubernetes community, of course, “the hard way” has an even more specific
connotation. Google engineer Kelsey Hightower’s Kubernetes the Hard Way has
become a sort of rite of passage for those who want a deeper understanding of the
elements that make up a Kubernetes cluster. This popular tutorial walks you through
downloading, installing, and configuring each of the components that make up the
Kubernetes control plane. The result is a working Kubernetes cluster, which, although
not suitable for deploying a production workload, is certainly functional enough for
development and learning. The appeal of the approach is that all of the instructions
are typed by hand instead of downloading a bunch of scripts that do everything for
you, so that you understand what is happening at each step.
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In this chapter, we’ll emulate this approach and walk you through deploying some
example data infrastructure the hard way ourselves. Along the way, we’ll get more
hands-on experience with the storage resources you learned about in Chapter 2, and
we’ll introduce additional Kubernetes resource types for managing compute and net‐
work to complete the “Compute, Network, Storage” triad we introduced in Chapter 1.
Are you ready to get your hands dirty? Let’s go!

Examples are Not Production-Grade
The examples we present in this chapter are primarily for introduc‐
ing new elements of the Kubernetes API and are not intended to
represent deployments we’d recommend running in production.
We’ll make sure to highlight where there are gaps so that we can
demonstrate how to fill them in upcoming chapters.

Prerequisites for running data infrastructure on
Kubernetes
To follow along with the examples in this chapter, you’ll want to have a Kubernetes
cluster to work on. If you’ve never tried it before, perhaps you’ll want to build a clus‐
ter using the Kubernetes the Hard Way instructions, and then use that same cluster to
add data infrastructure the hard way as well. You could also use a simple desktop K8s
as well, since we won’t be using a large amount of resources. If you’re using a shared
cluster, you might want to install these examples in their own namespace to isolate
them from the work of others.

kubectl config set-context --current --namespace=<insert-namespace-name-here>

You’ll also need to make sure you have a StorageClass in your cluster. If you’re start‐
ing from a cluster built the hard way, you won’t have one. You may want to follow the
instructions in the section StorageClasses for installing a simple StorageClass and
provisioner that expose local storage (source code).

You’ll want to use a StorageClass that supports a volumeBindingMode of WaitFor‐
FirstConsumer. This gives Kubernetes the flexibility to defer provisioning storage
until we need it. This behavior is generally preferred for production deployments, so
you might as well start getting in the habit.

Running MySQL on Kubernetes
First, let’s start with a super simple example. MySQL is one of the most widely used
relational databases due to its reliability and usability. For this example we’ll build on
the MySQL tutorial in the official Kubernetes documentation, with a couple of twists.
You can find the source code used in this section at Deploying MySQL Example -
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Data on Kubernetes the Hard Way. The tutorial includes two Kubernetes deploy‐
ments: one to run MySQL pod, and another to run a sample client, in this case
Wordpress. This configuration is shown in Figure 3-1.

Figure 3-1. Sample Kubernetes Deployment of MySQL

In this example, we see that there is a PersistentVolumeClaim for each pod. For the
purposes of this example, we’ll assume these claims are satisfied by a single volume
provided by the default StorageClass. You’ll also notice that each pod is shown as part
of a ReplicaSet and that there is a service exposed for the MySQL database. Let’s take a
pause and introduce these concepts.

ReplicaSets
Production application deployments on Kubernetes do not typically deploy individ‐
ual pods, because an individual pod could easily be lost when the node disappears.
Instead, pods are typically deployed in the context of a Kubernetes resource that
manages their lifecycle. ReplicaSet is one of these resources, and the other is Stateful‐
Set, which we’ll look at later in the chapter.

The purpose of a ReplicaSet (RS) is to ensure that a specified number of replicas of a
given pod are kept running at any given time. As pods are destroyed, others are cre‐
ated to replace them in order to satisfy the desired number of replicas. A ReplicaSet is
defined by a pod template, a number of replicas, and a selector. The pod template
defines a specification for pods that will be managed by the ReplicaSet, similar to

62 | Chapter 3: Databases on Kubernetes the Hard way

www.dbooks.org

https://github.com/data-on-k8s-book/examples/tree/main/ch3-mysql
https://www.dbooks.org/


what we saw for individual pods created in the examples in Chapter 2. The number of
replicas can be 0 or more. The selector identifies pods that are part of the ReplicaSet.

Let’s look at a portion of an example definition of a ReplicaSet for the Wordpress
application shown in Figure 3-1:

apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: wordpress-mysql
  labels:
    app: wordpress
spec:
  replicas: 1
  selector:
    matchLabels:
      app: wordpress
      tier: mysql
  template:
    metadata:
      labels:
        app: wordpress
        tier: mysql
    spec:
      containers:
      - image: mysql:8.0
        name: mysql
        ...

A ReplicaSet is responsible for creating or deleting pods in order to meet the specified
number of replicas. You can scale the size of a RS up or down by changing this value.
The pod template is used when creating new pods. Pods that are managed by a Repli‐
caSet contain a reference to the RS in their metadata.ownerReferences field. A Repli‐
caSet can actually take responsibility for managing a pod that it did not create if the
selector matches and the pod does not reference another owner. This behavior of a
ReplicaSet is known as acquiring a pod.

You might be wondering why we didn’t provide a full definition of a ReplicaSet above.
As it turns out, most application developers do not end up using ReplicaSets directly,
because Kubernetes provides another resource type that manages ReplicaSets declara‐
tively: Deployments.
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Define ReplicaSet selectors carefully
If you do create ReplicaSets directly, make sure that the selector
you use is unique and does not match any bare pods that you do
not intend to be acquired. It is possible that pods that do not match
the pod template can be acquired if the selectors match.
For more information about managing the lifecycle of ReplicaSets
and the pods they manage, see the Kubernetes documentation.

Deployments
A Kubernetes Deployment is a resource which builds on top of ReplicaSets with addi‐
tional features for lifecycle management, including the ability to rollout new versions
and rollback to previous versions. As shown in Figure 3-2, creating a Deployment
results in the creation of a ReplicaSet as well.

Figure 3-2. Deployments and ReplicaSets

This figure highlights that ReplicaSets (and therefore the Deployments that manage
them) operate on cloned replicas of pods, meaning that the definitions of the pods are
the same, even down to the level of PersistentVolumeClaims. The definition of a Rep‐
licaSet references a single PVC that is provided to it, and there is no mechanism pro‐
vided to clone the PVC definition for additional pods. For this reason, Deployments
and ReplicaSets are not a good choice if your intent is that each pod have access to its
own dedicated storage.

Deployments are a good choice if your application pods do not need access to stor‐
age, or if your intent is that they access the same piece of storage. However, the cases
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where this would be desirable are pretty rare, since you likely don’t want a situation in
which you could have multiple simultaneous writers to the same storage.

Let’s create an example Deployment. First, create a secret that will represent the data‐
base password (substitute in whatever string you want for the password):

kubectl create secret generic mysql-root-password --from-literal=password=<your 
password> 

Next, create a PVC that represents the storage that the database can use (source code).
A single PVC is sufficient in this case since you are creating a single node. This
should work as long as you have an appropriate storage class as referenced earlier.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mysql-pv-claim
  labels:
    app: wordpress
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi

Next, create a Deployment with a pod template spec that runs MySQL (source code).
Note that it includes a reference to the PVC you just created as well as the Secret con‐
taining the root password for the database.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: wordpress-mysql
  labels:
    app: wordpress
spec:
  selector:
    matchLabels:
      app: wordpress
      tier: mysql
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: wordpress
        tier: mysql
    spec:
      containers:
      - image: mysql:8.0
        name: mysql
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        env:
        - name: MYSQL_ROOT_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-root-password
              key: password
        ports:
        - containerPort: 3306
          name: mysql
        volumeMounts:
        - name: mysql-persistent-storage
          mountPath: /var/lib/mysql
      volumes:
      - name: mysql-persistent-storage
        persistentVolumeClaim:
          claimName: mysql-pv-claim

There are a couple of interesting things to note about this Deployment’s specification.

• First, note that the Deployment has a Recreate strategy. This refers to how the
Deployment handles the replacement of pods when the pod template is updated,
and we’ll discuss this shortly.

• Next, note under the pod template that the password is passed to the pod as an
environment variable extracted from via the secret you created above. Overriding
the default password is an important aspect of securing any database deployment.

• Note also that a single port is exposed on the MySQL image for database access,
since this is a relatively simple example. In other samples in this book we’ll see
cases of pods that expose additional ports for administrative operations, metrics
collection, and more. The fact that access is disabled by default is a great feature
of Kubernetes.

• The MySQL image mounts a volume for its persistent storage using the PVC
defined above.

• Finally, note that the number of replicas was not provided in the specification.
This means that the default value of 1 will be used.

After applying the configuration above, try using a command like kubectl get deploy‐
ments,rs,pods to check and see the items that Kubernetes created for you. You’ll
notice a single ReplicaSet named after the deployment that includes a random string,
for example: wordpress-mysql-655c8d9c54. The pod’s name references the name of
the ReplicaSet, adding some additional random characters, for example: wordpress-
mysql-655c8d9c54-tgswd. These names provide a quick way to identify the relation‐
ships between these resources.

Here are a few of the actions that a Deployment takes to manage the lifecycle of Rep‐
licaSets. In keeping with Kubernetes’ emphasis on declarative operations, most of
these are triggered by updating the specification of the Deployment:
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Initial rollout
When you create a Deployment, Kubernetes uses the specification you provide to
create a ReplicaSet. The process of creating this ReplicaSet and its pods is known
as a rollout. A rollout is also performed as part of a rolling update, as described
below.

Scaling up or down
When you update a Deployment to change the number of replicas, the underly‐
ing ReplicaSet is scaled up or down accordingly.

Rolling update
When you update the Deployment’s pod template, for example by specifying a
different container image for the pod, Kubernetes creates a new ReplicaSet based
on the new pod template. The way that Kubernetes manages the transition
between the old and new ReplicaSets is described by the Deployment’s spec.strat‐
egy property, which defaults to a value called RollingUpdate. In a rolling update,
the new ReplicaSet is slowly scaled up by creating pods conforming to the new
template, as the number of pods in the existing ReplicaSet is scaled down. During
this transition, the Deployment enforces a maximum and minimum number of
pods, expressed as percentages, as set by the spec.strategy.rollingupdate.max‐
Surge and maxUnavailable properties. Each of these values default to 25%.

Recreate update
The other strategy option for use when you update the pod template is Recreate.
This is the option that was set in the Deployment above. With this option, the
existing ReplicaSet is terminated immediately before the new ReplicaSet is cre‐
ated. This strategy is useful for development environments since it completes the
update more quickly, whereas RollingUpdate is more suitable for production
environments since it emphasizes high availability. This is also useful for data
migration.

Rollback update
It is possible that in creating or updating a Deployment you could introduce an
error, for example by updating a container image in a pod with a version that
contains a bug. In this case the pods managed by the Deployment might not even
initialize fully. You can detect these types of errors using commands such as
kubectl rollout status. Kubernetes provides a series of operations for managing
the history of rollouts of a Deployment. You can access these via kubectl com‐
mands such as kubectl rollout history, which provides a numbered history of
rollouts for a deployment, and kubectl rollout undo, which reverts a Deployment
to the previous rollout. You can also undo to a specific rollout version with the --
to-version option. Because kubectl supports rollouts for other resource types
we’ll cover below (StatefulSets and DaemonSets), you’ll need to include the
resource type and name when using these commands, for example:

Running MySQL on Kubernetes | 67



kubectl rollout history deployment/wordpress-mysql

Which produces output such as:
deployment.apps/wordpress-mysql
REVISION  CHANGE-CAUSE
1         <none>

As you can see, Kubernetes Deployments provide some sophisticated behaviors for
managing the lifecycle of a set of cloned pods. You can test out these lifecycle opera‐
tions (other than rollback) by changing the Deployment’s YAML specification and re-
applying it. Try scaling the number of replicas to 2 and back again, or using a
different MySQL image. After updating the Deployment, you can use a command like
kubectl describe deployment wordpress-mysql to observe the events that Kubernetes
initiates to bring your Deployment to your desired state.

There are other options available for Deployments which we don’t have space to go
into here, for example, how to specify what Kubernetes does if you attempt an update
that fails. For a more in-depth explanation of the behavior of Deployments, see the
Kubernetes documentation.

Services
In the steps above, you’ve created a PVC to specify the storage needs of the database,
a Secret to provide administrator credentials, and a Deployment to manage the lifecy‐
cle of a single MySQL pod. Now that you have a running database, you’ll want to
make it accessible to applications. In our scheme of compute, network, and storage
that we introduced in Chapter 1, this is the networking part.

Kubernetes Services are the primitive that we need to use to expose access to our
database as a network service. A Service provides an abstraction for a group of pods
running behind it. In the case of a single MySQL node as in this example, you might
wonder why we’d bother creating this abstraction. One key feature that a Service sup‐
ports is to provide a consistently named endpoint that doesn’t change. You don’t want
to be in a situation of having to update your clients whenever the database pod is
restarted and gets a new IP address. You can create a Service for accessing MySQL
using a YAML configuration like this (source code):

apiVersion: v1
kind: Service
metadata:
  name: wordpress-mysql
  labels:
    app: wordpress
spec:
  ports:
    - port: 3306
  selector:
    app: wordpress
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    tier: mysql
  clusterIP: None

Here are a couple of things to note about this configuration:

• First, this configuration specifies a port that is exposed on the Service: 3306. In
defining a service there are actually two ports involved: the port exposed to cli‐
ents of the Service, and the targetPort exposed by the underlying pods that the
Service is fronting. Since you haven’t specified a targetPort, it defaults to the port
value.

• Second, the selector defines what pods the Service will direct traffic to. In this
configuration, there will only be a single MySQL pod managed by the Deploy‐
ment, and that’s just fine.

• Finally, if you have worked with Kubernetes Services before, you may note that
there is no serviceType defined for this service, which means that it is of the
default type, known as ClusterIP. Furthermore, since the clusterIP property is set
to None, this is what is known as a headless service, that is, a service where the
service’s DNS name is mapped directly to the IP addresses of the selected pods.

Kubernetes supports several types of services to address different use cases, which are
shown in Figure 3-3. We’ll introduce them briefly here in order to highlight their
applicability to data infrastructure:

ClusterIP Service
This type of Service is exposed on an cluster-internal IP address. ClusterIP Serv‐
ices are the type used most often for data infrastructure such as databases in
Kubernetes, especially headless services, since this infrastructure is typically
deployed in Kubernetes alongside the application which uses it.

NodePort Service
A NodePort Service is exposed externally to the cluster on the IP address of each
worker node. A ClusterIP service is also created internally, to which the Node‐
Port routes traffic. You can allow Kubernetes to select what external port is used
from a range of ports (30000-32767 by default), or specify the one you desire
using the NodePort property. NodePort services are most suitable for develop‐
ment environments, when you need to debug what is happening on a specific
instance of a data infrastructure application.

LoadBalancer
LoadBalancer services represent a request from the Kubernetes runtime to set up
an external load balancer provided by the underlying cloud provider. For exam‐
ple, on Amazon’s Elastic Kubernetes Service (EKS), requesting a LoadBalancer
service causes an instance of an Elastic Load Balancer (ELB) to be created. Usage
of LoadBalancers in front of multi-node data infrastructure deployments is typi‐
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cally not required, as these data technologies often have their own approaches for
distributing load. For example, Apache Cassandra drivers are aware of the topol‐
ogy of a Cassandra cluster and provide load balancing features to client applica‐
tions, eliminating the need for a load balancer.

ExternalName Service
An ExternalName Service is typically used to represent access to a service that is
outside your cluster, for example a database that is running externally to Kuber‐
netes. An ExternalName service does not have a selector as it is not mapping to
any pods. Instead, it maps the Service name to a CNAME record. For example, if
you create a my-external-database service with an externalName of data‐
base.mydomain.com, references in your application pods to my-external-
database will be mapped to database.mydomain.com.

Figure 3-3. Kubernetes Service Types

Note also the inclusion of Ingress in the figure. While Kubernetes Ingress is not a
type of Service, it is related. An Ingress is used to provide access to Kubernetes
services from outside the cluster, typically via HTTP. Multiple Ingress implemen‐
tations are available, including Nginx, Traefik, Ambassador (based on Envoy)
and others. Ingress implementations typically provide features including SSL ter‐
mination and load balancing, even across multiple different Kubernetes Services.
As with LoadBalancer Services, Ingresses are more typically used at the applica‐
tion tier.

70 | Chapter 3: Databases on Kubernetes the Hard way

www.dbooks.org

https://www.dbooks.org/


Accessing MySQL
Now that you have deployed the database, you’re ready to deploy an application that
uses it - the Wordpress server.

First, the server will need its own PVC. This helps illustrate that there are cases of
applications which leverage storage directly, perhaps for storing files, and applications
that use data infrastructure, and applications that do both. You can make a small
request since this is just for demonstration purposes (source code):

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: wp-pv-claim
  labels:
    app: wordpress
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi

Next, create a Deployment for a single Wordpress node (source code):
apiVersion: apps/v1
kind: Deployment
metadata:
  name: wordpress
  labels:
    app: wordpress
spec:
  selector:
    matchLabels:
      app: wordpress
      tier: frontend
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: wordpress
        tier: frontend
    spec:
      containers:
      - image: wordpress:4.8-apache
        name: wordpress
        env:
        - name: WORDPRESS_DB_HOST
          value: wordpress-mysql
        - name: WORDPRESS_DB_PASSWORD
          valueFrom:
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            secretKeyRef:
              name: mysql-root-password
              key: password
        ports:
        - containerPort: 80
          name: wordpress
        volumeMounts:
        - name: wordpress-persistent-storage
          mountPath: /var/www/html
      volumes:
      - name: wordpress-persistent-storage
        persistentVolumeClaim:
          claimName: wp-pv-claim

Notice that the database host and password for accessing MySQL are passed to Word‐
press as environment variables. The value of the host is the name of the service you
created for MySQL above. This is all that is needed for the database connection to be
routed to your MySQL instance. The value for the password is extracted from the
secret, similar to the configuration of the MySQL deployment above.

You’ll also notice that Wordpress exposes an HTTP interface at port 80, so let’s create
a service to expose the Wordpress server (source code):

apiVersion: v1
kind: Service
metadata:
  name: wordpress
  labels:
    app: wordpress
spec:
  ports:
    - port: 80
  selector:
    app: wordpress
    tier: frontend
  type: LoadBalancer

Note that the service is of type LoadBalancer, which should make it fairly simple to
access from your local machine. Execute the command kubectl get services to get the
load balancer’s IP address, then you can open the Wordpress instance in your
browser with the URL http://<ip>. Try logging in and creating some pages.
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Accessing Services from Kubernetes distributions
The exact details of accessing services will depend on the Kuber‐
netes distribution you are using and whether you’re deploying apps
in production, or just testing something quickly like we’re doing
here. If you’re using a desktop Kubernetes distribution, you may
wish to use a NodePort service instead of LoadBalancer for simplic‐
ity. You can also consult the documentation for specific instruc‐
tions on accessing services, such as those provided for Minikube or
K3d.

When you’re done experimenting with your Wordpress instance, you can clean up
the resources specified in the configuration files you’ve used in the local directory
using the command, including the data stored in your PersistentVolumeClaim:

kubectl delete -k ./

At this point, you might be feeling like this was relatively easy, despite our claims of
doing things “the hard way”. And in a sense, you’d be right. So far, we’ve deployed a
single node of a simple database with sane defaults that we didn’t have to spend much
time configuring. Creating a single node is of course fine if your application is only
going to store a small amount of data. Is that all there is to deploying databases on
Kubernetes? Of course not! Now that we’ve introduced a few of the basic Kubernetes
resources via this simple database deployment, it’s time to step up the complexity a
bit. Let’s get down to business!

Running Apache Cassandra on Kubernetes
In this section we’ll look at running a multi-node database on Kubernetes using
Apache Cassandra. Cassandra is a NoSQL database first developed at Facebook that
became a top-level project of the Apache Software Foundation in 2010. Cassandra is
an operational database that provides a tabular data model, and its Cassandra Query
Language (CQL) is similar to SQL.

Cassandra is a database designed for the cloud, as it scales horizontally by adding
nodes, where each node is a peer. This decentralized design has been proven to have
near-linear scalability. Cassandra supports high availability by storing multiple copies
of data or replicas, including logic to distribute those replicas across multiple datacen‐
ters and cloud regions. Cassandra is built on similar principles to Kubernetes in that
it is designed to detect failures and continue operating while the system can recover
to its intended state in the background. All of these features make Cassandra an
excellent fit for deploying on Kubernetes.

In order to discuss how this deployment works, it’s helpful to understand Cassandra’s
approach to distributing data from two different perspectives: physical and logical.
Borrowing some of the visuals from Cassandra: The Definitive Guide, you can see
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these perspectives in Figure 3-4. From a physical perspective, Cassandra nodes (not
to be confused with Kubernetes worker nodes) are organized using concepts called
racks and datacenters. While the terms betray Cassandra’s origins when on-premise
data centers were the dominant way software was deployed in the mid 2000s, they can
be flexibly applied. In cloud deployments, racks often represent an availability zone,
while datacenters represent a cloud region. However these are represented, the
important part is that they represent physically separate failure domains. Cassandra
uses awareness of this topology to make sure that it stores replicas in multiple physi‐
cal locations to maximize availability of your data in the event of failures, whether
those failures are a single machine, a rack of servers, an availability zone, or an entire
region.

Figure 3-4. Physical and Logical Views of Cassandra’s Distributed Architecture

The logical view helps us understand how Cassandra determines what data will be
placed on each node. Each row of data in Cassandra is identified by a primary key,
which consists of one or more partition key columns which are used to allocate data
across nodes, as well as optional clustering columns, which can be used to organize
multiple rows of data within a partition for efficient access. Each write in Cassandra
(and most reads) reference a specific partition by providing the partition key values,
which Cassandra hashes together to produce a value known as a token, which is a
value between −263 and 263−1. Cassandra assigns each of its nodes responsibility for
one or more token ranges (shown as a single range per node labeled with letters A-H
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in Figure 3-4 for simplicity). The physical topology is taken into account in the
assignment of token ranges in order to ensure copies of your data are distributed
across racks and datacenters.

Now we’re ready to consider how Cassandra maps onto Kubernetes. It’s important to
consider two implications of Cassandra’s architecture:

Statefulness
Each Cassandra node has state that it is responsible for maintaining. Cassandra
has mechanisms for replacing a node by streaming data from other replicas to a
new node, which means that a configuration in which nodes use local ephemeral
storage is possible, at the cost of longer startup time. However, it’s more common
to configure each Cassandra node to use persistent storage. In either case, each
Cassandra node needs to have its own unique PersistentVolumeClaim.

Identity
Although each Cassandra node is the same in terms of its code, configuration,
and functionality in a fully peer-to-peer architecture, the nodes are different in
terms of their actual role. Each node has an identity in terms of where it fits in
the topology of data centers and racks, and its assigned token ranges.

These requirements for identity and an association with a specific PersistentVolume‐
Claim present some challenges for Deployments and ReplicaSets that they weren’t
designed to handle. Starting early in Kubernetes’ existence, there was an awareness
that another mechanism was needed to manage stateful workloads like Cassandra.

StatefulSets
Kubernetes began providing a resource to manage stateful workloads with the alpha
release of PetSets in the 1.3 release. This capability has matured over time and is now
known as StatefulSets (see: Are Your Stateful Workloads Pets or Cattle? below). A
StatefulSet has some similarities to a ReplicaSet in that it is responsible for managing
the lifecycle of a set of pods, but the way in which it goes about this management has
some significant differences. In order to address the needs of stateful applications,
like those of Cassandra like those listed above, StatefulSets demonstrate the following
key properties:

Stable identity for pods
First, StatefulSets provide a stable name and network identity for pods. Each pod
is assigned a name based on the name of the StatefulSet, plus an ordinal number.
For example, a StatefulSet called cassandra would have pods named cassandra-0,
cassandra-1, cassandra-2, and so on, as shown in Figure 3-5. These are stable
names, so if a pod is lost for some reason and needs replacing, the replacement
will have the same name, even if it is started on a different worker node. Each
pod’s name is set as its hostname, so if you create a headless service, you can

Running Apache Cassandra on Kubernetes | 75



actually address individual pods as needed, for example:
cassandra-1.cqlservice.default.svc.cluster.local. The figure also includes a seed
service, which we’ll discuss later in Accessing Cassandra.

Figure 3-5. Sample Deployment of Cassandra on Kubernetes with StatefulSets

Ordered lifecycle management
StatefulSets provide predictable behaviors for managing the lifecycle of pods.
When scaling up the number of pods in a StatefulSet, new pods are added
according to the next available number, unlike ReplicaSets where pod name suf‐
fixes are based on UUIDs. For example, expanding the StatefulSet in Figure 3-5
would cause the creation of pods such as cassandra-4 and cassandra-5. Scaling
down has the reverse behavior, as the pods with the highest ordinal numbers are
deleted first. This predictability simplifies management, for example by making it
obvious which nodes should be backed up before reducing cluster size.

Persistent disks
Unlike ReplicaSets, which create a single PersistentVolumeClaim shared across
all of their pods, StatefulSets create a PVC associated with each pod. If a pod in a
StatefulSet is replaced, the replacement pod is bound to the PVC which has the
state it is replacing. Replacement could occur because of a pod failing or the
scheduler choosing to run a pod on another node in order to balance the load.
For a database like Cassandra, this enables quick recovery when a Cassandra
node is lost, as the replacement node can recover its state immediately from the
associated PersistentVolume rather than needing to have data streamed from
other replicas.
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Managing data replication
When planning your application deployment, make sure you con‐
sider whether data is being replicated at the data tier or the storage
tier. A distributed database like Cassandra manages replication
itself, storing copies of your data on multiple nodes according to
the replication factor you request, typically 3 per Cassandra data‐
center. The storage provider you select may also offer replication. If
the Kubernetes volume for each Cassandra pod has 3 replicas, you
could end up storing 9 copies of your data. While this certainly
promotes high data survivability, this might cost more than you
intend.

Are Your Stateful Workloads Pets or Cattle?
PetSet might seem like an odd name for a Kubernetes resource, and has since been
replaced, but it provides some interesting insights into the thought process of the
Kubernetes community in supporting stateful workloads. The name PetSets is a refer‐
ence to a discussion that has been active in the DevOps world since at least 2012. The
original concept has been attributed to Bill Baker, formerly of Microsoft.

The basic idea is that there are two ways of handling servers: to treat them as pets that
require care, feeding, and nurture, or to treat them as cattle, to which you don’t
develop an attachment or provide a lot of individual attention. If you’re logging into a
server regularly to perform maintenance activities, you’re treating it as a pet.

The implication is that the life of the operations engineer can be greatly improved by
being able to treat more and more elements as cattle than as pets. With the move to
modern cloud-native architectures, this concept has extended from servers, to virtual
machines and containers, and even to individual microservices. It’s also helped pro‐
mote the use of architectural approaches for high availability and surviving the loss of
individual components that have made technologies like Kubernetes and Cassandra
successful.

As you can see, the naming of a Kubernetes resource “PetSets” carried a lot of freight
and perhaps even a bit of skepticism to running stateful workloads on Kubernetes at
all. In the end, however, PetSets helped take the care and feeding out of managing
state on Kubernetes, and the name change to StatefulSets was very appropriate. Taken
together, capabilities like StatefulSets, the PersistentVolume subsystem introduced in
Chapter 2, and operators (coming in Chapter 4) are bringing a level of automation
that promises a day in the near future when we will manage data on Kubernetes like
cattle.
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De!ning StatefulSets
Now that you’ve learned a bit about StatefulSets, let’s examine how they can be used
to run Cassandra. You’ll configure a simple 3-node cluster the “hard way” using a
Kubernetes StatefulSet to represent a single Cassandra datacenter containing a single
rack. The source code used in this section is located at Deploying Cassandra Example
- Data on Kubernetes the Hard Way. This approximates the configuration shown in
Figure 3-5.

To set up a Cassandra cluster in Kubernetes, you’ll first need a headless service. This
service represents the “CQL Service” shown in Figure 3-5, providing an endpoint that
clients can use to obtain addresses of all the Cassandra nodes in the StatefulSet
(source code):

apiVersion: v1
kind: Service
metadata:
  labels:
    app: cassandra
  name: cassandra
spec:
  clusterIP: None
  ports:
  - port: 9042
  selector:
    app: cassandra

You’ll reference this service in the definition of a StatefulSet which will manage your
Cassandra nodes (source code). Rather than applying this configuration immediately,
you may want to wait until after we do some quick explanations below. The configu‐
ration looks like this:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: cassandra
  labels:
    app: cassandra
spec:
  serviceName: cassandra
  replicas: 3
  podManagementPolicy: OrderedReady
  updateStrategy: 
    type: RollingUpdate
  selector:
    matchLabels:
      app: cassandra
  template:
    metadata:
      labels:
        app: cassandra
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    spec:
      containers:
      - name: cassandra
        image: cassandra
        ports:
        - containerPort: 7000
          name: intra-node
        - containerPort: 7001
          name: tls-intra-node
        - containerPort: 7199
          name: jmx
        - containerPort: 9042
          name: cql
        lifecycle:
          preStop:
            exec:
              command: 
              - /bin/sh
              - -c
              - nodetool drain
        env:
          - name: CASSANDRA_CLUSTER_NAME
            value: "cluster1"
          - name: CASSANDRA_DC
            value: "dc1"
          - name: CASSANDRA_RACK
            value: "rack1"
          - name: CASSANDRA_SEEDS
            value: "cassandra-0.cassandra.default.svc.cluster.local"
        volumeMounts:
        - name: cassandra-data
          mountPath: /var/lib/cassandra
  volumeClaimTemplates:
  - metadata:
      name: cassandra-data
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: standard
      resources:
        requests:
          storage: 1Gi

This is the most complex configuration we’ve looked at together so far, so let’s sim‐
plify it by looking at one portion at a time.

StatefulSet metadata
We’ve named and labeled this StatefulSet cassandra, and that same string will be
used as the selector for pods belonging to the StatefulSet.

Running Apache Cassandra on Kubernetes | 79



Exposing StatefulSet pods via a Service
The spec of the StatefulSet starts with a reference to the headless service you cre‐
ated above. While serviceName is not a required field according to the Kuber‐
netes specification, some Kubernetes distributions and tools such as Helm expect
it to be populated and will generate warnings or errors if you fail to provide a
value.

Number of replicas
The replicas field identifies the number of pods that should be available in this
StatefulSet. The value provided of 3 reflects the smallest Cassandra cluster that
one might see in an actual production deployment, and most deployments are
significantly larger, which is when Cassandra’s ability to deliver high performance
and availability at scale really begin to shine through.

Lifecycle management options
The podManagementPolicy and updateStrategy describe how Kubernetes should
manage the rollout of pods when the cluster is scaling up or down, and how
updates to the pods in the StatefulSet should be managed, respectively. We’ll
examine the significance of these values in Managing the lifecycle of a StatefulSet.

Pod speci!cation
The next section of the StatefulSet specification is the template used to create
each pod that is managed by the StatefulSet. The template has several subsec‐
tions. First, under metadata, each pod includes a label cassandra that identifies it
as being part of the set.

This template includes a single item in the containers field, a specification for a Cas‐
sandra container. The image field selects the latest version of the official Cassandra
Docker image, which at the time of writing is Cassandra 4.0. This is where we diverge
with the Kubernetes StatefulSet tutorial referenced above, which uses a custom Cas‐
sandra 3.11 image created specifically for that tutorial. Because the image we’ve
chosen to use here is an official Docker image, you do not need to include registry or
account information to reference it, and the name cassandra by itself is sufficient to
identify the image that will be used.

Each pod will expose ports for various interfaces: a cql port for client use, intra-node
and tls-intra-node ports for communication between nodes in the Cassandra cluster,
and a jmx port for management via the Java Management Extensions (JMX).

The pod specification also includes instructions that help Kubernetes manage pod
lifecycles, including a livenessProbe and a preStop command. We’ll learn how each of
these are used below.

According to its documentation, the image we’re using has been constructed to pro‐
vide two different ways to customize Cassandra’s configuration, which is stored in the
cassandra.yaml file within the image. One way is to override the entire contents of the
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cassandra.yaml with a file that you provide. The second is to make use of environ‐
ment variables that the image exposes to override a subset of Cassandra configuration
options that are used most frequently. Setting these values in the env field causes the
corresponding settings in the cassandra.yaml file to be updated:

• CASSANDRA_CLUSTER_NAME is used to distinguish which nodes belong to a
cluster. Should a Cassandra node come into contact with nodes that don’t match
its cluster name, it will ignore them.

• CASSANDRA_DC and CASSANDRA_RACK identify the datacenter and rack
that each node will be a part of. This serves to highlight one interesting wrinkle
of the way that StatefulSets expose a pod specification. Since the template is
applied to each pod and container, there is no way to vary the configured data‐
center and rack names between Cassandra pods. For this reason, it is typical to
deploy Cassandra on Kubernetes using a StatefulSet per rack.

• CASSANDRA_SEEDS define well known locations of nodes in a Cassandra clus‐
ter that new nodes can use to bootstrap themselves into the cluster. The best
practice is to specify multiple seeds in case one of them happens to be down or
offline when a new node is joining. However, for this initial example, it’s enough
to specify the initial Cassandra replica as a seed via the DNS name
cassandra-0.cassandra.default.svc.cluster.local. We’ll look at a more robust way of
specifying seeds in Chapter 4 using a service, as implied by the “Seed Service”
shown in Figure 3-5.

The last item in the container specification is a volumeMount which requests that a
PersistentVolume be mounted at the /var/lib/cassandra directory, which is where the
Cassandra image is configured to store its data files. Since each pod will need it’s own
PersistentVolumeClaim, the name cassandra-data is a reference to a PersistentVolu‐
meClaim template which is defined below.

Volume claim templates
The final piece of the StatefulSet specification is the volumeClaimTemplates. The
specification must include a template definition for each name referenced in one of
the container specifications above. In this case, the cassandra-data template refer‐
ences the standard storage class we’ve been using in these examples. Kubernetes will
use this template to create a PersistentVolumeClaim of the requested size of 1GB
whenever it spins up a new pod within this StatefulSet.

StatefulSet lifecycle management
Now that we’ve had a chance to discuss the components of a StatefulSet specification,
you can go ahead and apply the source:

kubectl apply -f cassandra-statefulset.yaml
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As this gets applied, you can execute the following to watch as the StatefulSet spins up
Cassandra pods:

kubectl get pods -w 

Let’s describe some of the behavior you can observe from the output of this com‐
mand. First, you’ll see a single pod cassandra-0. Once that pod has progressed to
Ready status, then you’ll see the cassandra-1 pod, followed by cassandra-2 after
cassandra-1 is ready. This behavior is specified by the selection of podManagement‐
Policy for the StatefulSet. Let’s explore the available options and some of the other
settings that help define how pods in a StatefulSet are managed.

Pod Management Policies
The podManagementPolicy determines the timing of addition or removal of
pods from a StatefulSet. The OrderedReady policy applied in our Cassandra
example is the default. When this policy is in place and pods are added, whether
on initial creation or scaling up, Kubernetes expands the StatefulSet one pod at a
time. As each pod is added, Kubernetes waits until the pod reports a status of
Ready before adding subsequent pods. If the pod specification contains a readi‐
nessProbe, Kubernetes executes the provided command iteratively to determine
when the pod is ready to receive traffic. When the probe completes successfully
(i.e. with a zero return code), it moves on to creating the next pod. For Cassan‐
dra, readiness is typically measured by the availability of the CQL port (9042),
which means the node is able to respond to CQL queries.

Similarly, when a StatefulSet is removed or scaled down, pods are removed one at
a time. As a pod is being removed, any provided preStop commands for its con‐
tainers are executed to give them a chance to shutdown gracefully. In our current
example, the nodetool drain command is executed to help the Cassandra node
exit the cluster cleanly, assigning responsibilities for its token range(s) to other
nodes. as Kubernetes waits until a pod has been completely terminated before
removing the next pod. The command specified in the livenessProbe is used to
determine when the pod is alive, and when it no longer completes without error,
Kubernetes can proceed to removing the next pod. See the Kubernetes documen‐
tation for more information on configuring readiness and liveness probes.

The other pod management policy is Parallel. When this policy is in effect,
Kubernetes launches or terminates multiple pods at the same time in order to
scale up or down. This has the effect of bringing your StatefulSet to the desired
number of replicas more quickly, but it may also result in some stateful work‐
loads taking longer to stabilize. For example, a database like Cassandra shuffles
data between nodes when the cluster size changes in order to balance the load,
and will tend to stabilize more quickly when nodes are added or removed one at
a time.

82 | Chapter 3: Databases on Kubernetes the Hard way

www.dbooks.org

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://www.dbooks.org/


With either policy, Kubernetes manages pods according to the ordinal numbers,
always adding pods with the next unused ordinal numbers when scaling up, and
deleting the pods with the highest ordinal numbers when scaling down.

Update Strategies
The updateStrategy describes how pods in the StatefulSet will be updated if a
change is made in the pod template specification, such as changing a container
image. The default strategy is RollingUpdate, as selected in this example. With
the other option, OnDelete, you must manually delete pods in order for the new
pod template to be applied.

In a rolling update, Kubernetes will delete and recreate each pod in the Stateful‐
Set, starting with the pod with the largest ordinal number and working toward
the smallest. Pods are updated one at a time, and you can specify a number of
pods called a partition in order to perform a phased rollout or canary. Note that
if you discover a bad pod configuration during a rollout, you’ll need to update
the pod template specification to a known good state and then manually delete
any pods that were created using the bad specification. Since these pods will not
ever reach a Ready state, Kubernetes will not decide they are ready to replace
with the good configuration.

Note that Kubernetes offers similar lifecycle management options for Deployments,
ReplicaSets and DaemonSets including revision history.

More sophisticated lifecycle management for StatefulSets
One interesting set of opinions on additional lifecycle options for
StatefulSets comes from OpenKruise, a CNCF Sandbox project,
which provides an Advanced StatefulSet. The Advanced StatefulSet
adds capabilities including:

• Parallel updates with a maximum number of unavailable pods
• Rolling updates with an alternate order for replacement, based

on a provided prioritization policy
• Updating pods “in-place” by restarting their containers

according to an updated pod template specification

This Kubernetes resource is also named StatefulSet to facilitate its
use with minimal impact to your existing configurations. You just
need to change the apiVersion: from apps/v1 to apps.kruise.io/
v1beta1.

We recommend getting more hands-on experience with managing StatefulSets in
order to reinforce your knowledge. For example, you can monitor the creation of Per‐
sistentVolumeClaims as a StatefulSet scales up. Another thing to try: delete a Stateful‐
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Set and recreate it, verifying that the new pods recover previously stored data from
the original StatefulSet. For more ideas, you may find these guided tutorials helpful:
StatefulSet Basics from the Kubernetes documentation, and StatefulSet: Run and Scale
Stateful Applications Easily in Kubernetes from the Kubernetes blog.

StatefulSets are extremely useful for managing stateful workloads on Kubernetes, and
that’s not even counting some capabilities we didn’t address, such as affinity and anti-
affinity, managing resource requests for memory and CPU, and availability con‐
straints such as PodDisruptionBudgets. On the other hand, there are capabilities you
might desire that StatefulSets don’t provide, such as backup/restore of persistent vol‐
umes, or secure provisioning of access credentials. We’ll discuss how to leverage or
build these capabilities on top of Kubernetes in Chapter 4 and beyond.

StatefulSets: Past, Present, and Future
With Maciej Szulik, Red Hat engineer and Kubernetes SIG Apps member

The Kubernetes Special Interest Group for Applications (SIG Apps) is responsible for
development of the controllers that help manage application workloads on Kuber‐
netes. This includes the batch workloads like Jobs and CronJobs, other stateless work‐
loads like Deployments and Replica Sets, and of course StatefulSets for stateful
workloads.

The StatefulSet controller has a slightly different way of working from these other
controllers. When you’re thinking about Deployments, or Jobs, the controller just has
to manage Pods. You don’t have to worry about the underlying data, because that’s
either handled by persistent volumes, or are ok with just throwing each pod’s data
away when you destroy and recreate it. However, that behavior is not acceptable when
you’re trying to run a database, or any kind of workload that requires the state to be
persisted between the runs. This results in significant additional complexity in the
StatefulSet controller. The main challenge in writing and maturing Kubernetes con‐
trollers has been handling edge cases. StatefulSets are similar in this regard, but it’s
even more urgent for StatefulSets to handle the failure cases correctly, so that we don’t
lose data.

We’ve encountered some interesting use cases for StatefulSets and cases where users
would like to change boundaries that have been set in the core implementation. For
example, we’ve had pull requests submitted to change the way StatefulSets handle
pods during an update. In the original implementation, the StatefulSet controllers
update pods one at a time, and if something breaks during the rollout, the entire roll‐
out is paused, and the StatefulSet requires manual intervention to make sure that data
is not corrupted or lost. Some users would like the StatefulSet controller to ignore
issues where a pod is stuck in a pending state, or cannot run, and just restart these
pods. However, the thing to remember with StatefulSets is that protecting the under‐
lying data is the most important priority. We could end up making the suggested
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change in order to allow faster updates in parallel for development environments
where data protection is less of a concern, but require opting in with a feature flag.

Another frequently requested feature is the ability to auto-delete the PersistentVolu‐
meClaims of a StatefulSets when the StatefulSet is deleted. The original behavior is to
preserve the PVCs, again as a data protection mechanism, but there is a Kubernetes
Enhancement Proposal (KEP) for auto-deletion that was included as an Alpha feature
for the Kubernetes 1.23 release.

Even though there are some significant differences in the way StatefulSets manage
pods versus other controllers, we are working to make the behaviors more similar
across the different controllers as much as possible. One example is the addition of a
minReadySeconds setting in the pod template, which allows you to say, I’d like this
application to be unavailable for a little bit of extra time before sending traffic to it.
This is helpful for some stateful workloads that need a bit more time to initialize
themselves, for example to warm up caches, and brings StatefulSets in line with other
controllers.

Another example is the work that is in progress to unify status reporting across all of
the application controllers. Currently, if you’re building any kind of higher level
orchestration or management tools, you need to have different behavior to handle the
status of StatefulSets, Deployments, DaemonSets, and so on, because each of them
was written by a different author. Each author had a different requirement for what
should be in the status, how the resource should express information about whether
it’s available, or whether it’s in a rolling update, or it’s unavailable, or whatever is hap‐
pening with it. DaemonSets are especially different in how they report status.

There is also a feature in progress that allows you to set a maxUnavailable number of
pods for a StatefulSet. This number would be applied during the initial rollout of a
StatefulSet and allow the number of replicas to be scaled up more quickly. This is
another feature that brings StatefulSets into greater alignment with how the other
controllers work. If you want to understand the work that is in progress from the SIG
Apps team, the best way is to look at Kubernetes open issues that are labeled sig/apps.

It can be difficult to build StatefulSets as a capability that will meet the needs of all
stateful workloads; we’ve tried to build them in such a way as to handle the most com‐
mon requirements in a consistent way. We could obviously add support for more and
more edge cases, but this tends to make the functionality significantly more compli‐
cated for users to grasp. There will always be users who are dissatisfied because their
use case is not covered, and there’s always a balance of how much we can put in
without affecting both functionality and performance.

In most cases where users need more specific behaviors, for example to handle edge
cases, it’s because they’re trying to manage a complex application like Postgres or Cas‐
sandra. That’s where there’s a great argument for creating your own controllers and
even operators to deal with those specific cases. Even though it might sound super
scary, it’s really not that difficult to write your own controller. You can start reasona‐
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bly quickly and get a basic controller up and running in a couple of days using some
simple examples including the sample controller, which is part of the Kubernetes
code base and maintained by the project. The O’Reilly book Programming Kuber‐
netes also has a chapter on writing controllers. Don’t just assume you’re stuck with the
behavior that comes out of the box. Kubernetes is meant to be open and extensible,
whether it’s networking, controllers, CSI, plugins, and more. If you need to customize
Kubernetes, you should go for it!

Accessing Cassandra
Once you have applied the configurations listed above, you can use Cassandra’s CQL
shell cqlsh to execute CQL commands. If you happen to be a Cassandra user and have
a copy of cqlsh installed on your local machine, you could access Cassandra as a cli‐
ent application would, using the CQL Service associated with the StatefulSet. How‐
ever, since each Cassandra node contains cqlsh as well, this gives us a chance to
demonstrate a different way to interact with infrastructure in Kubernetes, by connect‐
ing directly to an individual pod in a StatefulSet:

kubectl exec -it cassandra-0 -- cqlsh 

This should bring up the cqlsh prompt and you can then explore the contents of Cas‐
sandra’s built in tables using DESCRIBE KEYSPACES and then USE to select a partic‐
ular keyspace and run DESCRIBE TABLES. There are many Cassandra tutorials
available online that can guide you through more examples of creating your own
tables, inserting and querying data, and more. When you’re done experimenting with
cqlsh, you can type exit to exit the shell.

Removing a StatefulSet is the same as any other Kubernetes resource - you can delete
it by name, for example:

kubectl delete sts cassandra

You could also delete the StatefulSet referencing the file used to create it:
kubectl delete -f cassandra-statefulset.yaml

When you delete a StatefulSet with a policy of Retain as in this example, the Persis‐
tentVolumeClaims it creates are not deleted. If you recreate the StatefulSet, it will
bind to the same PVCs and reuse the existing data. When you no longer need the
claims, you’ll need to delete them manually. The final cleanup from this exercise
you’ll want to perform is to delete the CQL Service:

kubectl delete service cassandra
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What about DaemonSets?
If you’re familiar with the resources Kubernetes offers for managing workloads, you
may have noticed that we haven’t yet mentioned DaemonSets. DaemonSets allow you
to request that a pod be run on each worker node in a Kubernetes cluster, as shown in
Figure 3-6. Instead of specifying a number of replicas, a DaemonSet scales up or
down as worker nodes are added or removed from the cluster. By default, a Daemon‐
Set will run your pod on each worker node, but you can use taints and tolerations to
override this behavior, for example, limiting some worker nodes. DaemonSets sup‐
port rolling updates in a similar way to StatefulSets.

Figure 3-6. Daemon Sets run a single pod on selected worker nodes

On the surface, DaemonSets might sound useful for running databases or other data
infrastructure, but this does not seem to be a widespread practice. Instead, Daemon‐
Sets are most frequently used for functionality related to worker nodes and their rela‐
tionship to the underlying Kubernetes provider. For example, many of the Container
Storage Interface (CSI) implementations that we saw in Chapter 2 use DaemonSets to
run a storage driver on each worker node. Another common usage is to run pods that
perform monitoring tasks on worker nodes, such as log and metrics collectors.
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Summary
In this chapter we’ve learned how to deploy both single node and multi-node dis‐
tributed databases on Kubernetes with hands-on examples. Along the way you’ve
gained familiarity with Kubernetes resources such as Deployments, ReplicaSets,
StatefulSets, and DaemonSets, and learned about the best use cases for each:

• Use Deployments/ReplicaSets to manage stateless workloads or simple stateful
workloads like single-node databases or caches that can rely on ephemeral stor‐
age

• Use StatefulSets to manage stateful workloads that involve multiple nodes and
require association with specific storage locations

• Use DaemonSets to manage workloads that leverage specific worker node func‐
tionality

You’ve also learned the limits of what each of these resources can provide. Now that
you’ve gained experience in deploying stateful workloads on Kubernetes, the next
step is to learn how to automate the so-called “day 2” operations involved in keeping
this data infrastructure running.
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CHAPTER 4

Automating Database Deployment on
Kubernetes with Helm

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 4th chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

In the previous chapter, you learned how to deploy both single node and multi-node
databases on Kubernetes by hand, creating one element at a time. We took the “hard
way” route on purpose to help maximize your understanding of how to leverage
Kubernetes primitives in order to set up the compute, network and storage resources
that a database requires. Of course, this doesn’t represent the experience of running
databases in production on Kubernetes, for a couple of reasons.

First, teams typically don’t deploy databases by hand, one yaml file at a time. That can
get pretty tedious. And even combining the configurations into a single file could
start to get pretty complicated, especially for more sophisticated deployments. Con‐
sider the increase in the amount of configuration required in Chapter 3 for Cassandra
as a multi-node database compared with the single-node MySQL deployment. This
won’t scale for large enterprises.
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Second, while deploying a database is great, what about keeping it running over time?
You need your data infrastructure to remain reliable and performant over the long
haul, and data infrastructure is known for requiring a lot of care and feeding. Put
another way, the task of running a system is often divided into “day 1” - the joyous
day when you deploy an application to production, and “day 2” - which represents
every day after the first, where you need to operate and evolve your application while
maintaining high availability.

In this chapter, we’ll look at tools that help standardize the deployment of databases
and other applications, reducing the amount of configuration code you have to write.
We’ll also start to address data infrastructure operations in these next two chapters
and carry that theme throughout the remainder of the book.

Deploying Applications with Helm charts
First, let’s take a look at a tool that helps you manage the complexity of managing
configurations: Helm. Helm is a package manager for Kubernetes which is open
source and a CNCF graduated project. The concept of a package manager is a com‐
mon one across multiple programming languages, such as pip for Python, the Node
Package Manager (NPM) for JavaScript, and Ruby’s Gems feature. There are also
package managers for specific operating systems, such as Apt for Linux, or Home‐
brew for MacOS. As shown in Figure 4-1, the essential elements of a package man‐
ager system are the packages, the registries where the packages are stored, and the
package manager application (or “client”) which helps the chart developers register
chart and allows chart users to locate, install, and update packages on their local sys‐
tems.

Figure 4-1. Helm, a Package Manager for Kubernetes

Helm extends the package management concept to Kubernetes, with some interesting
differences. If you’ve worked with one of the package managers listed above, you’ll be
familiar with the idea that a package consists of a binary (executable code) as well as
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metadata describing the binary, such as it’s functionality, API, and installation
instructions. In Helm, the packages are called charts. Charts provide a description for
how to build a Kubernetes application piece by piece using the Kubernetes resources
for compute, networking, and storage introduced in previous chapters, such as Pods,
Services, and PersistentVolumeClaims. For compute workloads, the descriptions
point to container images that reside in public or private container registries.

Helm allows charts to reference other charts as dependencies, which provides a great
way to compose applications by creating assemblies of charts. For example, you could
define an application such as the Wordpress / MySQL example from the previous
chapter by defining a chart for your Wordpress deployment that referenced a chart
defining a MySQL deployment that you wish to reuse. Or, you might even find a
Helm chart that defines an entire Wordpress application including the database.

Kubernetes environment prerequisites
The examples in this chapter assume you have access to a Kuber‐
netes cluster with a couple of characteristics:

• The cluster should have at least 3 worker nodes, in order to
demonstrate mechanisms Kubernetes provides to allow you to
request pods to be spread across a cluster. You can create a
simple cluster on your desktop using an open source distribu‐
tion called Kind. See the Kind quick start guide for instruc‐
tions on installing Kind and creating a multi-node cluster. The
code for this example also contains a configuration file you
may find useful to create a simple three-node Kind cluster.

• You will also need a StorageClass that supports dynamic provi‐
sioning. You may wish to follow the instructions in the Stora‐
geClasses [PROD: Add link to StorageClasses in Chapter 2.]
classes section for installing a simple StorageClass and provi‐
sioner that expose local storage.

Using Helm to deploy MySQL
To make things a bit more concrete, let’s use Helm to deploy the databases you
worked with in Chapter 3. First, if it’s not already on your system, you’ll need to
install Helm using the documentation on the Helm website. Next, add the Bitnami
Helm repository:

helm repo add bitnami https://charts.bitnami.com/bitnami

The Bitnami Helm repository contains a variety of Helm charts to help you deploy
infrastructure such as databases, analytics engines, and log management systems, as
well as applications including e-commerce, customer relationship management
(CRM), and you guessed it: Wordpress. You can find the source code for the charts in
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the Bitnami Charts repository on GitHub. The README for this repo provides help‐
ful instructions for using the charts in various Kubernetes distributions.

Now, let’s use the Helm chart provided in the bitnami repository to deploy MySQL.
In Helm’s terminology, each deployment is known as a release. The simplest possible
release that you could create using this chart would look something like this:

# don’t execute me yet!
helm install mysql bitnami/mysql

If you execute this command, it will create a release called mysql using the Bitnami
MySQL Helm chart with its default settings. As a result you’d have a single MySQL
node. Since you’ve already deployed a single node of MySQL manually in Chapter 3,
let’s do something a bit more interesting this time and create a MySQL cluster. To do
this you’ll create a values.yaml file with contents like this (or reuse the sample pro‐
vided in the source code):

architecture: replication
secondary:
  replicaCount: 2

The settings in this values.yaml file let Helm know that you want to use options in the
Bitnami MySQL Helm chart to deploy MySQL in a replicated architecture in which
there is a primary node and two secondary nodes.

MySQL Helm chart configuration options
If you examine the default values.yaml file provided with the Bit‐
nami MySQL Helm chart, you’ll see that there are quite a few
options available beyond the simple selections shown here. The
configurable values include the following:

• Images to pull and their locations
• The Kubernetes StorageClass that will be used to generate Per‐

sistentVolumes
• Security credentials for user and administrator accounts
• MySQL configuration settings for primary and secondary rep‐

licas
• Number of secondary replicas to create
• Details of liveness, readiness probes
• Affinity and anti-affinity settings
• Managing high availability of the database using pod disrup‐

tion budgets

Many of these concepts you’ll be familiar with already, and others like affinity and
pod disruption budgets will be covered later in the book.
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Once you’ve created the values.yaml file, you can start the cluster using this com‐
mand:

helm install mysql bitnami/mysql -f values.yaml

After running the command you’ll see the status of the install from Helm, plus
instructions that are provided with the chart under NOTES:

NAME: mysql
LAST DEPLOYED: Thu Oct 21 20:39:19 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
…

We’ve omitted the notes here since they are a bit lengthy. They describe suggested
commands for monitoring the status as MySQL initializes, how clients and adminis‐
trators can connect to the database, how to upgrade the database, and more.

Use Namespaces to help isolate resources
Since we did not specify a namespace, the Helm release has been
installed in the default Kubernetes namespace (unless you’ve sepa‐
rately configured a namespace in your Kubeconfig). If you want to
install a Helm release in its own namespace in order to work with
its resources more effectively, you could run something like the fol‐
lowing:

helm install mysql bitnami/mysql --namespace mysql --
create-namespace

This creates a namespace called mysql and installs the mysql
release inside of it.

In order to obtain information about the Helm releases you’ve created, use the helm
list command, which produces output such as this (formatted for readability):

helm list
NAME   NAMESPACE  REVISION  UPDATED    
mysql  default    1         2021-10-21 20:39:19
STATUS    CHART        APP VERSION
deployed  mysql-8.8.8  8.0.26

If you haven’t installed the release in its own namespace, it’s still simple to see the
compute resources that Helm has created on your behalf by running kubectl get all,
because they have all been labeled with the name of your release. It may take several
minutes for all the resources to initialize, but when complete it will look something
like this:
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kubectl get all
NAME                    READY   STATUS    RESTARTS   AGE
pod/mysql-primary-0     1/1     Running   0          3h40m
pod/mysql-secondary-0   1/1     Running   0          3h40m
pod/mysql-secondary-1   1/1     Running   0          3h38m
NAME                               TYPE        CLUSTER-IP      EXTERNAL-IP   
PORT(S)    AGE
service/mysql-primary              ClusterIP   10.96.107.156   <none>        
3306/TCP   3h40m
service/mysql-primary-headless     ClusterIP   None            <none>        
3306/TCP   3h40m
service/mysql-secondary            ClusterIP   10.96.250.52    <none>        
3306/TCP   3h40m
service/mysql-secondary-headless   ClusterIP   None            <none>        
3306/TCP   3h40m
NAME                               READY   AGE
statefulset.apps/mysql-primary     1/1     3h40m
statefulset.apps/mysql-secondary   2/2     3h40m

As you can see, Helm has created two StatefulSets, one for primary replicas and one
for secondary replicas. The mysql-primary StatefulSet is managing a single MySQL
pod containing a primary replica, while the mysql-secondary StatefulSet is managing
two MySQL pods containing secondary replicas. See if you can determine which
Kubernetes worker node each MySQL replica is running on using the kubectl
describe pod command.

From the output above, you’ll also notice two Services created for each StatefulSet,
one a headless service and another that has a dedicated IP address. Since kubectl get
all only tells you about compute resources and services, you might also be wondering
about the storage resources. To check on these, run the kubectl get pv command.
Assuming you have a StorageClass installed that supports dynamic provisioning, you
should see PersistentVolumes that are bound to PersistentVolumeClaims named data-
mysql-primary-0, data-mysql-secondary-0, and data-mysql-secondary-1.

In addition to the resources we’ve discussed above, installing the chart has also resul‐
ted in the creation of a few additional resources which we’ll explore below.

Namespaces and Kubernetes Resource Scope
If you have chosen to install your Helm release in a namespace,
you’ll need to specify the namespace on most of your kubectl get
commands in order to see the created resources. The exception is
kubectl get pv, because PersistentVolumes are one of the Kuber‐
netes resources that are not namespaced, that is, they can be used
by pods in any namespace. To learn more about which Kubernetes
resources in your cluster are namespaced and which are not, run
the command kubectl api-resources.
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How Helm Works
Did you wonder what happened when you executed the helm install command with a
provided values file? To understand what’s going on, let’s take a look at the contents of
a Helm chart, as shown in Figure 4-2. As we discuss these contents, it will also be
helpful to look at the source code of the MySQL Helm chart you just installed.

Figure 4-2. Customizing a Helm release using a values.yaml !le

Looking at the contents of a Helm chart, you’ll notice the following:

• A README file explaining how to use the chart. These instructions are provided
along with the chart in registries.

• A Chart.yaml file containing metadata about the chart such as its name, pub‐
lisher, version, keywords, and any dependencies on other charts. These proper‐
ties are useful when searching Helm registries to find charts.

• A values.yaml file listing out the configurable values supported by the chart and
their default values. These files typically contain a good amount of comments
that explain the available options. For the Bitnami MySQL Helm chart, there are
a lot of available options, as we noted above.

• A templates directory containing Go templates that define the chart. The tem‐
plates include a Notes.txt file which is used to generate the output you saw above
after executing the helm install command, and one or more yaml files that
describe a pattern for a Kubernetes resource. These yaml files may be organized
in subdirectories, for example, the template that defines a StatefulSet for MySQL
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primary replicas. Finally, there is a _helpers.tpl file that describes how to use the
templates. Some of the templates may be used multiple times, or not at all,
depending on the selected configuration values.

When you execute the helm install command, the Helm client makes sure it has an
up-to-date copy of the chart you’ve named by checking with the source repository.
Then it uses the template to generate yaml configuration code, overriding default val‐
ues from the chart’s values.yaml file with any values you’ve provided. It then uses the
kubectl command to apply this configuration to your currently configured Kuber‐
netes cluster.

If you’d like to see the configuration that a Helm chart will produce before applying it,
there’s a handy template command you can use. It supports the same syntax as the
install command:

helm template mysql bitnami/mysql -f values.yaml

Running this command will produce quite a bit of output, so you may want to redi‐
rect it to a file (append “> values-template.yaml” to the command) so you can take a
longer look. Alternatively, you can look at the copy we have saved in the source code
repository.

You’ll notice that there are several different types of resources created, as summarized
in Figure 4-3. Many of the resources shown have been discussed above, including the
StatefulSets for managing the primary and secondary replicas, each with its own ser‐
vice (the chart also creates headless services which are not shown in the figure). Each
pod has its own PersistentVolumeClaim which is mapped to a unique Persistent Vol‐
ume.

Figure 4-3 also includes resource types we haven’t discussed previously. Notice first
that each StatefulSet has an associated ConfigMap that is used to provide a common
set of configuration settings to its pods. Next, notice that there is a Secret named
mysql, which stores passwords needed for accessing various interfaces exposed by the
database nodes. Finally, there is a ServiceAccount resource, which is applied to every
pod created by this Helm release.
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Figure 4-3. Deploying MySQL using the Bitnami Helm Chart

Let’s focus on some interesting aspects of this deployment, including the usage of
Labels, ServiceAccounts, Secrets, and ConfigMaps.

Labels
If you look through the output from the helm template, you’ll notice that the
resources have a common set of labels:

  labels:
    app.kubernetes.io/name: mysql
    helm.sh/chart: mysql-8.8.8
    app.kubernetes.io/instance: mysql
    app.kubernetes.io/managed-by: Helm

These labels help identify the resources as being part of the mysql application and
indicate that they are managed by Helm using a specific chart version. The labels are
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useful for selecting resources, which is often useful in defining configurations for
other resources.

ServiceAccounts
Kubernetes clusters make a distinction between human users and applications for
access control purposes. A ServiceAccount is a Kubernetes resource that represents
an application and what it is allowed to access. For example, a ServiceAccount may be
given access to some portions of the Kubernetes API, or access to one or more secrets
containing privileged information such as login credentials. This latter capability is
used in your Helm installation of MySQL to share credentials between pods.

Every pod that is created in Kubernetes has a ServiceAccount assigned to it. If you do
not specify one then the default ServiceAccount is used. Installing the MySQL Helm
chart creates a ServiceAccount called mysql. You can see the specification for this
resource in the generated template:

apiVersion: v1
kind: ServiceAccount
metadata:
  name: mysql
  namespace: default
  labels: ...
  annotations:
secrets:
  - name: mysql

As you can see, this ServiceAccount has access to a secret called mysql which we’ll
discuss shortly. A ServiceAccount can also have an additional type of secret known as
an imagePullSecret. These secrets are used when an application needs to use images
from a private registry.

By default a ServiceAccount does not have any access to the Kubernetes API. To give
this ServiceAccount access it needs, the MySQL Helm chart creates a Role specifying
the Kubernetes resources and operations, and a RoleBinding to associate the Service‐
Account to the Role. We’ll discuss ServiceAccounts and role-based access in Chapter
5.

Secrets
As you learned in Chapter 2, a Secret provides secure access to information you need
to keep private. Your mysql Helm release contains a Secret called mysql containing
login credentials for the MySQL instances themselves:

apiVersion: v1
kind: Secret
metadata:
  name: mysql
  namespace: default
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  labels: ...
type: Opaque
data:
  mysql-root-password: "VzhyNEhIcmdTTQ=="
  mysql-password: "R2ZtNkFHNDhpOQ=="
  mysql-replication-password: "bDBiTWVzVmVORA=="

The three different passwords represent different types of access: the mysql-root-
password provides administrative access to the MySQL node, while the mysql-
replication-password is used for nodes to communicate for the purposes of data
replication between nodes. The mysql-password is used by client applications to
access the database to write and read data.

Con!gMaps
The Bitnami MySQL Helm chart creates Kubernetes ConfigMap resources to repre‐
sent the configuration settings used for pods that run the MySQL primary and secon‐
dary replica nodes. ConfigMaps store configuration data as key-value pairs. For
example, the ConfigMap created by the Helm chart for the primary replicas looks like
this:

apiVersion: v1
kind: ConfigMap
metadata:
  name: mysql-primary
  namespace: default
  labels: ...
data:
  my.cnf: |-
    
    [mysqld]
    default_authentication_plugin=mysql_native_password

...

In this case, the key is the name my.cnf, which represents a filename, and the value is
a multi-line set of configuration settings which represent the contents of a configura‐
tion file (which we’ve abbreviated here). Next, look at the definition of the StatefulSet
for the primary replicas. Notice how the contents of the ConfigMap are mounted as a
read-only file inside each template, according to the pod specification for the Stateful‐
Set (again, we’ve omitted some detail to focus on key areas):

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: mysql-primary
  namespace: default
  labels: ...
spec:
  replicas: 1
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  selector:
    matchLabels: ...
  serviceName: mysql-primary
  template:
    metadata:
      annotations: ...
      labels: ...
    spec:
      ...      
      serviceAccountName: mysql
      containers:
        - name: mysql
          image: docker.io/bitnami/mysql:8.0.26-debian-10-r60
          volumeMounts:
            - name: data
              mountPath: /bitnami/mysql
            - name: config
              mountPath: /opt/bitnami/mysql/conf/my.cnf
              subPath: my.cnf
      volumes:
        - name: config
          configMap:
            name: mysql-primary

Mounting the ConfigMap as a volume in a container results in the creation of a read-
only file in the mount directory which is named according to the key and has the
value as its content. For our example, mounting the ConfigMap in the pod’s mysql
container results in the creation of the file /opt/bitnami/mysql/conf/my.cnf.

This is just one of several ways that ConfigMaps can be used in Kubernetes applica‐
tions:

• As described in the Kubernetes documentation, you could choose to store config‐
uration data in more granular key-value pairs, which also makes it easier to
access individual values in your application

• You can also reference individual key-value pairs as environment variables you
pass to a container

• Finally, applications can access ConfigMap contents via the Kubernetes API
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More configuration options
Now that you have a Helm release with a working MySQL cluster,
you can point an application to it, such as Wordpress. Why not try
seeing if you can adapt the Wordpress deployment from Chapter 3
to point to the MySQL cluster you’ve created here.
For further learning, you could also compare your resulting config‐
uration with that produced by the Bitnami Wordpress Helm Chart,
which uses MariaDB instead of MySQL but is otherwise quite simi‐
lar.

Updating Helm Charts
If you’re running a Helm release in a production environment, chances are you’re
going to need to maintain it over time. There are several reasons why you might want
to update a Helm release:

• A new version of a chart is available
• A new version of an image used by your application is available
• You want to change the selected options

To check for a new version of a chart, execute the helm repo update command. Run‐
ning this command with no options looks for updates in all of the chart repositories
you have configured for your helm client:

helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "bitnami" chart repository
Update Complete. �Happy Helming!�

Next, you’ll want to make any desired updates to your configured values. If you’re
upgrading to a new version of a chart, make sure to check the release notes and docu‐
mentation of the configurable values. It’s a good idea to test out an upgrade before
applying it. The --dry-run option allows you to do this, producing similar values to
the helm template command:

helm upgrade mysql bitnami/mysql -f values.yaml --dry-run

Using an overlay configuration file
One useful option you could use for the upgrade is to specify val‐
ues you wish to override in a new configuration file, and apply both
the new and old, something like this:

helm upgrade mysql bitnami/mysql -f values.yaml -f new-
values.yaml
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Note that configuration files are applied in the order they appear on the command
line, so if you use this approach, make sure your overridden values file appears after
your original values file.

Once you’ve applied the upgrade, Helm sets about it’s work, only updating resources
in the release that are affected by your configuration changes. If you’ve specified
changes to the pod template for a StatefulSet, the pods will be restarted according to
the update policy specified for the StatefulSet, as we discussed in Managing the lifecy‐
cle of a StatefulSet.

Uninstalling Helm charts
When you are finished using your Helm release, you can uninstall it by name like
this:

helm uninstall mysql

Note that Helm does not remove any of the PersistentVolumeClaims or PersistentVo‐
lumes that were created for this Helm chart, following the behavior of StatefulSets
discussed in Chapter 3.

Additional Deployment Tools: Kustomize and Ska"old
In addition to Helm, other tools in the Kubernetes ecosystem are available to help you
manage the configuration and deployment of applications, such as Kustomize and
Skaffold.

Kustomize is a configuration management tool for Kubernetes. Unlike a package
manager, Kustomize does not provide a registry; instead its focus is helping you man‐
age Kubernetes configuration yaml files for different environments. Kustomize uses a
template based approach in which you create snippets of configuration code called
overlays which are intended to override sections of a base yaml file. These overlays
are typically intended for different environments such as development, test, and pro‐
duction, or for isolating configurations specific to different Kubernetes providers,
with a similar effect to a Helm values.yaml file. The sections to be overridden are
identified by selectors such as Kubernetes labels or annotations. You provide a kus‐
tomization.yaml file to describe the mapping of templates to their selectors. Kustom‐
ize works best when the yaml file you want to customize is well structured and makes
use of labels or annotations.

Skaffold is a tool that automates application deployment in your development envi‐
ronment. You can execute Skaffold imperatively from the command line, or as a dae‐
mon that watches for code changes to build artifacts such as container images. When
it detects a relevant change, the daemon automatically performs actions according to
the workflow you define in a skaffold.yaml file. The workflow can include actions
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such as building and tagging images, updating Helm charts or regular Kubernetes
configuration files, and deploying your app using kubectl, helm, or Kustomize.

Using Helm to deploy Apache Cassandra
Now let’s switch gears and look at deploying Apache Cassandra using Helm. In this
section, you’ll use another chart provided by Bitnami, so there’s no need to add
another repository. You can find the implementation of this chart on GitHub. Helm
provides a quick way to see the metadata about this chart:

helm show chart bitnami/cassandra

After reviewing the metadata, you’ll also want to learn about the configurable values.
You can examine the values.yaml file in the GitHub repo, or use another option on
the show command:

helm show values bitnami/cassandra 

The list of options for this chart is shorter than the list for the MySQL chart, because
Cassandra doesn’t have the concept of primary and secondary replicas. However,
you’ll certainly see similar options for images, storage classes, security, liveness and
readiness probes, and so on. There are also configuration options that are unique to
Cassandra, such as those having to do with JVM settings and seed nodes (as discussed
in Chapter 3).

One interesting feature of this chart is the ability to export metrics from Cassandra
nodes. If you set metrics.enabled=true, the chart will inject a sidecar container into
each Cassandra pod that exposes a port which can be scraped by Prometheus. Other
values under metrics configure what metrics are exported, the collection frequency,
and more. While we won’t use this feature here, metrics reporting is a key part of
managing data infrastructure we’ll cover in Chapter 6.

For a simple three-node Cassandra configuration, you could set the replica count to
three and set other configuration values to their defaults. However, since you’re only
overriding a single configuration value, this is a good time to take advantage of
Helm’s support for setting values on the command line, instead of providing a val‐
ues.yaml file:

helm install cassandra bitnami/cassandra --set replicaCount=3

As discussed above, you can use the helm template command to check the configura‐
tion before installing it, or look at the file we’ve saved on GitHub. However, since
you’ve already created the release, you can also use this command:

helm get manifest cassandra

Looking through the resources in the yaml, you’ll see a similar set of infrastructure
has been established, as shown in Figure 4-4:
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Figure 4-4. Deploying Apache Cassandra using the Bitnami Helm Chart

The configuration includes:

• A ServiceAccount referencing a Secret, which contains the password for the cas‐
sandra administrator account.

• A single StatefulSet, with a headless Service used to reference its Pods. The Pods
are spread evenly across the available Kubernetes worker nodes, which we’ll dis‐
cuss momentarily under Affinity and Anti-Affinity. The Service exposes Cassan‐
dra ports used for intra-node communication (7000, with 7001 used for secure
communication via TLS), administration via JMX (7199), and client access via
CQL (9042).

This configuration represents a very simple Cassandra topology, with all three nodes
in a single datacenter and rack. This simple topology reflects one of the limitations of
this chart - it does not provide the ability to create a Cassandra cluster consisting of
multiple datacenters and racks. To create a more complex deployment, you’d have to
install multiple Helm releases, using the same clusterName (in this case you’re using
the default name cassandra), but a different datacenter and rack per deployment.
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You’d also need to obtain the IP address of a couple of nodes in the first datacenter to
use as additionalSeeds when configuring the releases for the other racks.

A#nity and Anti-A#nity
As shown in Figure 4-4, the Cassandra nodes are spread evenly across the worker
nodes in your cluster. To verify this in your own Cassandra release, you could run
something like the following:

kubectl describe pods | grep "^Name:" -A 3
Name:         cassandra-0
Namespace:    default
Priority:     0
Node:         kind-worker/172.20.0.7
--
Name:         cassandra-1
Namespace:    default
Priority:     0
Node:         kind-worker2/172.20.0.6
--
Name:           cassandra-2
Namespace:      default
Priority:       0
Node:           kind-worker3/172.20.0.5

As you can see in this output, each Cassandra node is running on a different worker
node. If your Kubernetes cluster has at least 3 worker nodes and no other workloads,
you’ll likely observe similar behavior. While it is true that this even allocation could
happen naturally in a cluster that has an even load across worker nodes, this is proba‐
bly not the case in your production environment. However, in order to promote max‐
imum availability of your data, we want to try to honor the intent of Cassandra’s
architecture to run nodes on different machines in order to promote high availability.

In order to help guarantee this isolation, the Bitnami Helm chart makes use of Kuber‐
netes’s affinity capabilities, specifically anti-affinity. If you examine the generated con‐
figuration for the cassandra StatefulSet, you’ll see the following:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: cassandra
  namespace: default
  labels: ...
spec:
  ...
  template:
    metadata:
      labels: ...
    spec:
      ...
      affinity:

Deploying Applications with Helm charts | 105



        podAffinity:
          
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
            - podAffinityTerm:
                labelSelector:
                  matchLabels:
                    app.kubernetes.io/name: cassandra
                    app.kubernetes.io/instance: cassandra
                namespaces:
                  - "default"
                topologyKey: kubernetes.io/hostname
              weight: 1
        nodeAffinity:

As shown here, the pod template specification lists three possible types of affinity,
with only the podAntiAffinity being defined. What do these concepts mean?

Pod A#nity
Pod affinity refers to the preference that a Pod is scheduled onto a node where
another specific Pod is running. For example, pod affinity could be used to co-
locate a web server with its cache.

Pod Anti-A#nity
Pod anti-affinity is the opposite of Pod affinity; that is, a preference that a pod
not be scheduled on a node where another identified Pod is running. This is the
constraint used in this example, as we’ll discuss shortly.

Node A#nity
Node affinity is a preference that a Pod be run on a node with specific character‐
istics.

Each of these types of affinity can be expressed as either hard or soft constraints,
known as

requiredDuringSchedulingIgnoredDuringExecution and preferredDuringSchedulin‐
gIgnoredDuringExecution. The first constraint specifies rules that must be met before
a Pod is scheduled on a node, while the second specifies a preference that the schedu‐
ler will attempt to meet, but may relax if necessary in order to schedule the Pod. The
IgnoredDuringExcecution reference in these names implies that the constraints only
apply when the Pods are first scheduled. In the future, new RequiredDuringExecu‐
tion options will be added called requiredDuringSchedulingRequiredDuringExecu‐
tion and requiredDuringSchedulingRequiredDuringExecution. These will ask
Kubernetes to evict pods (that is, move them to another node) that no longer meet
the criteria, for example by a change in their labels.

Looking at the example above, the Pod template specification for the Cassandra State‐
fulSet specifies an anti-affinity rule using the labels that are applied to each Cassandra
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pod. The net effect of this is that Kubernetes will try to spread the Pods across the
available worker nodes.

More Kubernetes scheduling constraints
Kubernetes supports additional mechanisms for providing hints to
its scheduler about Pod placement. One of the simplest is NodeSe‐
lectors, which is very similar to node affinity, but with a less
expressive syntax that can match on one or more labels using AND
logic. Since you may or may not have the required privileges to
attach labels to worker nodes in your cluster, pod affinity is often a
better option. Taints and tolerations are another mechanism that
can be used to configure worker nodes to repel specific pods from
being scheduled on those nodes.
In general, you want to be careful to understand all of the con‐
straints you’re putting on the Kubernetes scheduler from various
workloads so as not to overly constrain its ability to place Pods. See
the Kubernetes documentation for more information on schedul‐
ing constraints. We’ll also look at how Kubernetes allows you to
plug in different schedulers in Chapter 9.

Those are the highlights of looking at the Bitnami Helm chart for Cassandra. To clean
things up, uninstall the Cassandra release:

helm uninstall cassandra

If you don’t want to work with Bitnami Helm charts any longer, you can also remove
the repository from your Helm client:

helm repo remove bitnami

Helm Limitations
While Helm is a powerful tool for deploying complex applications to Kubernetes
clusters, it has some limitations, especially when it comes to managing the operations
of those applications. To get a good picture of the challenges involved, we spoke to a
practitioner who has built assemblies of Helm charts to manage a complex database
deployment. This discussion begins to introduce concepts like Kubernetes Custom
Resource Definitions (CRDs) and the operator pattern, both of which we’ll cover in
depth in Chapter 5.

Pushing Helm to the limit
With John Sanda, Software Engineer, DataStax

K8ssandra is a distribution of Apache Cassandra® on Kubernetes built from multiple
open source components, including a Cassandra operator (cass-operator), and opera‐
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tional tools for managing anti-entropy repair (Reaper) and backups (Medusa).
K8ssandra also includes the Prometheus-Grafana stack for metrics collection and
reporting.

From the start, we used Helm to help manage the installation and configuration of
these components. Helm enabled us to quickly bootstrap the project and attract
developers in the Cassandra community who didn’t necessarily have much Kuber‐
netes expertise and experience. Many of these folks found it easy to grasp a package
management tool and installer like Helm.

As the project grew, we began to run into some limitations with Helm. While it was
pretty straightforward to get the installation of K8ssandra clusters working correctly,
we encountered more issues when it came to upgrading and managing clusters.

Writing complex logic
Helm has good support for control flow, with loops and if statements. However,
when you start getting multiple levels deep, it’s harder to read and reason
through the code, and indentation becomes an issue. In particular, we found that
peer-reviewing changes to Helm charts became quite difficult.

Reuse and extensibility
Helm variables are limited to the scope of the template where you declare them,
which meant we had to recreate the same variables in multiple templates. This
prevented us from keeping our code DRY, which we found to be a source of
defects.

Similarly, Helm has a big library of helper template functions, but that library
doesn’t cover every use case, and there is no interface to define your own func‐
tions. You can define your own custom templates, which allow for a lot of reuse,
but those are not a replacement for functions.

Project structure and inheritance
We also ran into difficulties as we tried to implement an umbrella chart design
pattern, which is a best practice for Helm. We were able to create a top-level
K8ssandra Helm chart with sub-charts for Cassandra and Prometheus but ran
into problems with variable scoping when attempting to create additional sub-
charts. Our intent was to define authentication settings in the top-level chart and
push them down to sub-charts, but this functionality is not supported by the
Helm inheritance model.

Custom resource management
Helm can create Kubernetes custom resources, but it doesn’t manage them. This
was a deliberate design choice that the Helm developers made for Helm 3.
Because the definition of a custom resource is cluster-wide, it can get confusing if
multiple Helm installs are trying to work off of different versions of a CRD. This
presented us with some difficulties in managing updates to resources like a Cas‐
sandra datacenter within Helm. The workaround was to implement custom
Kubernetes jobs labeled as pre-upgrade hooks that Helm would execute on an
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upgrade. At some point, writing these jobs began to feel like we were writing an
operator.

Multi-cluster deployments
While we’ve been able to work around these Helm challenges in many cases, the
next major feature on our roadmap was implementing Cassandra clusters that
spanned multiple Kubernetes clusters. We realized that even without the intrica‐
cies of the network configuration, this was going to be a step beyond what we
could implement effectively using Helm.

In the end, we realized that we were trying to make Helm do too much. It’s easy to get
into a situation where you learn how to use the hammer and everything looks like a
nail, but what you really need is a screwdriver. However, we don’t see Helm and oper‐
ators as mutually exclusive. These are complementary approaches and we need to use
each one in terms of its strengths. We continue to use Helm to perform basic installa‐
tion actions including installing operators and setting up the administrator service
account used by Cassandra and other components; these are the sort of actions that
package managers like Helm do best.

Note: this section was adapted from the post We Pushed Helm to the Limit, then Built
a Kubernetes Operator.

Summary
In this chapter, you’ve learned how a package management tool like Helm can help
you to manage the deployment of applications on Kubernetes, including your data‐
base infrastructure. Along the way you’ve also learned how to use some additional
Kubernetes resources like ServiceAccounts, Secrets, and ConfigMaps. Now it’s time to
round out our discussion of running databases on Kubernetes. In the next chapter,
we’ll take a deeper dive into managing database operations on Kubernetes using the
operator pattern.
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CHAPTER 5

Automating Database Management on
Kubernetes with Operators

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 5th chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

In this chapter we’ll continue our exploration of running databases on Kubernetes,
but shift our focus from installation to operations. It’s not enough just to know how
the elements of a database application map onto the primitives provided by Kuber‐
netes for an initial deployment. You also need to know how to maintain that infra‐
structure over time in order to support your business-critical applications. In this
chapter, we’ll take a look at the Kubernetes approach to operations so that you can
keep databases running effectively.

Operations for databases and other data infrastructure consist of a common list of
“day 2” tasks such as:

• scaling capacity up and down, including reallocating workload across resized
clusters
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• monitoring database health and replacing failed (or failing) instances
• performing routine maintenance tasks, such as repair operations in Apache Cas‐

sandra
• updating and patching software
• maintaining secure access keys and other credentials which may expire over time
• performing backups, and using backups to restore data in disaster recovery sce‐

narios

While the details of how these tasks are performed may vary between technologies,
the common concern is how we can use automation to reduce the workload on
human operators and enable us to operate infrastructure at larger and larger scales.
How can we incorporate the knowledge that human operators have built up around
these tasks? While traditional cloud operations have used scripting tools that run
externally to your cloud infrastructure, a more cloud-native approach is to have this
database control logic running directly within your Kubernetes clusters. The question
we’ll explore in this chapter is: what is the Kubernetes-friendly way to represent this
control logic?

Extending the Kubernetes Control Plane
The good news is that the designers of Kubernetes aren’t surprised at all by this ques‐
tion. In fact, the Kubernetes control plane and API are designed to be extensible. Kel‐
sey Hightower and others have referred to Kubernetes as “A platform for building
platforms.”

Kubernetes provides multiple extension points, primarily related to its control plane.
Figure 5-1 includes the Kubernetes core components such as the API Server, Schedu‐
ler, Kubelet and kubectl, along with indications of the extension points they support.
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Figure 5-1. Kubernetes Control Plane and Extension Points

Now let’s examine the details of extending the Kubernetes control plane, starting with
components on your local client and those within the Kubernetes cluster. Many of
these extension points are relevant to databases and data infrastructure.

Extending Kubernetes Clients
The kubectl command line tool is the primary interface for many users for interact‐
ing with Kubernetes. You can extend kubectl with plugins that you download and
make available on your system’s PATH, or use Krew, a package manager for kubectl
plugins which maintains a list of plugins. Plugins perform tasks such as bulk actions
across multiple resources or even multiple clusters, or assessing the state of a cluster
and making security or cost recommendations. More particularly to our focus in this
chapter, several plugins are available to manage operators and custom resources.

Extending Kubernetes Control Plane Components
The core of the Kubernetes control plane consists of several control plane compo‐
nents including the API Server, Scheduler, Controller Manager, Cloud Controller
Manager, and etcd. While these components can be run on any node within a Kuber‐

Extending the Kubernetes Control Plane | 113

https://kubernetes.io/docs/tasks/extend-kubectl/kubectl-plugins/
https://krew.dev/
https://krew.sigs.k8s.io/plugins/
https://github.com/emreodabas/kubectl-plugins#kubectl-bulk
https://github.com/u2takey/kubectl-clusters
https://github.com/sysdiglabs/kube-psp-advisor
https://github.com/kubecost/kubectl-cost
https://kubernetes.io/docs/concepts/overview/components/#control-plane-components
https://kubernetes.io/docs/concepts/overview/components/#control-plane-components


netes cluster, they are typically assigned to a dedicated node which does not run any
user application pods.

API Server
The API Server is the primary interface for external and internal clients of a
Kubernetes cluster. It exposes RESTful interfaces via an HTTP API. The API
Server performs a coordination role, routing requests from clients to other com‐
ponents to implement imperative and declarative instructions. The API Server
supports two types of extensions: custom resources and API aggregation. Cus‐
tom resource definitions (CRDs) allow you to add new types of resources, and
are managed through kubectl without further extension. API aggregation allows
you to extend the Kubernetes API with additional REST endpoints, which the
API Server will delegate to a separate API server provided as a plugin. Custom
resources are the more commonly used extension mechanism and will be a major
focus throughout the remainder of the book.

Scheduler
The Scheduler determines the assignment of pods to worker nodes, considering
factors including the load on each worker node, as well as affinity rules, taints
and tolerations (as discussed previously in Chapter 4. The Scheduler can be
extended with plugins that override default behavior at multiple points in its
decision making process. For example, a scheduling plugin could filter out nodes
for a specific type of pod, or set the relative priority of nodes by assigning a score.
Binding plugins can customize the logic that prepares a node for running a
scheduled pod, such as mounting a network volume the pod needs. Data infra‐
structure such as Apache Spark that relies on running a lot of short-lived tasks
may benefit from this ability to exercise more fine-grained control over schedul‐
ing decisions, as we’ll discuss in Chapter 9.

etcd
Etcd is a distributed key-value store used by the API Server to persist informa‐
tion about the cluster’s configuration and status. As resources are added,
removed and updated, the API server updates the metadata in etcd accordingly,
so that if the API Server crashes or needs to be restarted, it can easily recover its
state. As a strongly consistent data store that supports high availability, etcd is
frequently used by other data infrastructure that runs on Kubernetes, as we’ll see
frequently throughout the book.

Controller Manager and Cloud Controller Manager
The Controller Manager and Cloud Controller Manager incorporate multiple
control loops called controllers. These managers contain multiple logically sepa‐
rate controllers compiled into a single executable to simplify Kubernetes’ ability
to manage itself. The Controller Manager includes controllers which manage
built in resource types such as Pods and StatefulSets, and more. The Cloud Con‐
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troller Manager includes controllers that differ between Kubernetes providers to
enable the management of platform-specific resources such as load balancers or
virtual machines.

Extending Kubernetes Worker Node Components
There are also elements of the Kubernetes control plane that run on every node in the
cluster. These worker node components include the Kubelet, Kube-Proxy, and con‐
tainer runtime.

Kubelet
The Kubelet manages the pods running on a node assigned by the Scheduler,
including the containers that run within a pod. The Kubelet restarts containers
when needed, provides access to container logs, and more.

Compute, Network, and Storage Plugins
The Kubelet can be extended with plugins that take advantage of unique com‐
pute, networking, and storage capabilities provided by the underlying environ‐
ment on which it is running. Compute plugins include container runtimes, and
device plugins which expose specialized hardware capabilities such as GPU or
FPGA. Network plugins, including those that comply with the Container Net‐
work Interface (CNI), can provide features beyond Kubernetes built-in network‐
ing, such as bandwidth management or network policy management. We’ve
previously discussed storage plugins in Chapter 2, including those that conform
to the Container Storage Interface (CSI).

Kube-proxy
The kube-proxy maintains network routing for the pods running on a worker
node so that they can communicate with other pods running inside your Kuber‐
netes cluster, or clients and services running outside of the cluster. Kube-proxy is
part of the implementation of Kubernetes Services, providing the mapping of vir‐
tual IPs to individual pods on a worker node.

Container runtime
The Kubelet uses the container runtime to execute containers on the worker’s
operating system. Supported container runtimes for Linux include containerd
and CRI-O. Docker runtime support was deprecated in Kubernetes 1.20 and
removed entirely in 1.24.

Custom controllers and operators
These controllers are responsible for managing applications installed on a Kuber‐
netes cluster using custom resources. Although these controllers are extensions
to the Kubernetes control plane, they can run on any worker node.
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The Operator Pattern
With this context, we’re ready to examine one of the most common patterns for
extending Kubernetes: the operator pattern. The operator pattern combines custom
resources with controllers that operate on those resources. Let’s examine each of these
concepts in more detail in order to see how they apply to data infrastructure, and
then you’ll be ready to dig into an example operator for MySQL.

Controllers
The concept of a controller originates from the domain of electronics and electrical
engineering, in which a controller is a device that operates in a continuous loop. On
each iteration through the loop, the device receives an input signal, compares that
with a set point value, and generates an output signal intended to produce a change in
the environment that can be detected in future inputs. A simple example of this is a
thermostat, which powers up your air conditioner or heater when the temperature in
a space is too high or low.

A Kubernetes controller implements a similar control loop, consisting of the follow‐
ing steps:

1. Reading the current state of resources
2. Making changes to the state of resources
3. Updating the status of resources
4. Repeat

These steps are embodied both by Kubernetes built-in controllers that run in the
Controller Manager and Cloud Controller Manager, as well as custom controllers that
are provided to run applications on top of Kubernetes. Let’s look at some examples of
what these steps might entail for controllers that manage data infrastructure.

Reading the current state of resources
A controller tracks the state of one or more resource types, including built-in
resources like Pods, PersistentVolumes, and Services, as well as custom resources
we’ll discuss below. Controllers are driven asynchronously, that is, by notification
from the API Server. The API Server sends watch events to controllers to notify
them of changes in state for resource types for which they have registered inter‐
est, such as the creation or deletion of a resource, or an event occurring on the
resource.

For data infrastructure these changes could include a change in the number of
requested replicas for a cluster, or a notification that a pod containing a database
replica has died. Because there could be many such updates occurring in a large
cluster, controllers frequently make use of caching.
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Making changes to the state of resources
This is the core business logic of a controller - comparing the state of resources to
their desired state and executing actions to change the state to the desired state.
In the Kubernetes API, the current state is captured in .status fields of resources,
and the desired state is expressed in terms of the .spec field. The changes could
include invocations of the Kubernetes API to modify other resources, adminis‐
trative actions on the application being managed, or even interactions outside of
the Kubernetes cluster.

For example, consider a controller managing a distributed database with multiple
replicas. When the database controller receives a notification that the desired
number of replicas has increased, the controller could scale an underlying
Deployment or StatefulSet that it is using to manage replicas. Later, when receiv‐
ing a notification that a pod has been created to host a new replica, the controller
could initiate an action on one or more replicas in order to rebalance the work‐
load across those replicas.

Updating the status of resources
In the final step of the control loop, the controller updates the .status fields of the
resource using the API server, which in turn updates that state in etcd. You’ve
viewed the status of resources like Pods and Persistent Volumes in previous chap‐
ters using the kubectl get and kubectl describe commands. For example, the sta‐
tus of a Pod includes its overall state (Pending, Running, Succeeded, Failed, etc.),
the most recent time at which various conditions were noted (PodScheduled,
ContainersReady, Initialized, Ready), as well as the state of each of its containers
(Waiting, Running, Terminated). Custom resources can define their own status
fields as well. For example a custom resource representing a cluster might have
status values reflecting the overall availability of the cluster and its current topol‐
ogy.

Events
A controller can also produce Events via the Kubernetes API for consumption by
human operators or other applications. These are distinct from the watcher events
described above that the Kubernetes API uses to notify controllers of changes, which
are not exposed to other clients. If you’ve ever misconfigured a Pod specification and
observed a CrashLoopBackOff status, you may have encountered Events. Using the
kubectl describe pod command you can observe Events such as a container being
started, failing, and a backoff period followed by the container restarting. Events
expire from the API server in an hour, but common Kubernetes monitoring tools
provide capabilities to track them. Controllers can also create events for custom
resources.
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Writing a custom controller
While you may not ever need to write your own controller, it’s
helpful to be familiar with the concepts involved. The book Pro‐
gramming Kubernetes by Michael Hausenblas and Stefan Schiman‐
ski is a great resource for those who are interested in digging
deeper.
The controller-runtime project provides a common set of libraries
to help aid the process of writing controllers, including registering
for notifications from the API Server, caching resource status,
implementing reconciliation loops, and more. Controller-runtime
libraries are implemented in the Go programming language, so it’s
no surprise that most controllers are implemented in Go.
Go was first developed at Google beginning in 2007 and used there
in many cloud-native applications including Borg, the predecessor
to Kubernetes, and of course Kubernetes itself. Go is a strongly
typed, compiled language (as opposed to interpreted languages like
Java and JavaScript) with a high value on usability and developer
productivity (in reaction to the higher learning curve of C/C++).

Custom Resources
As we’ve discussed above, controllers can operate on built-in Kubernetes resources as
well as custom resources. We’ve briefly mentioned this concept above, but let’s take
this opportunity to define what custom resources are and how they extend the Kuber‐
netes API.

Fundamentally, a custom resource is a piece of configuration data that Kubernetes
recognizes as part of its API. While a custom resource is similar to a ConfigMap, it
has a structure similar to built-in resources: metadata, specification, and status. The
specific attributes of a particular custom resource type are defined in a Custom
Resource De!nition, or CRD. A CRD is itself a Kubernetes resource that is used to
describe a custom resource.

In this book, we’ve been discussing how Kubernetes enables you to move beyond
managing virtual machines and containers to managing virtual data centers. Custom
resources provide the flexibility that helps make this a practical reality. Instead of
being limited to the resources that Kubernetes provides off the shelf, you can create
additional abstractions to extend Kubernetes for your own purposes. This is a critical
component in a fast-moving ecosystem.

Let’s see what you can learn about custom resources from the command line. Use the
kubectl api-resources command to get a listing of all of the resources defined in your
cluster:
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$ kubectl api-resources
NAME               SHORTNAMES  APIVERSION  NAMESPACED  KIND
bindings                       v1          true        Binding
componentstatuses  cs          v1          false       ComponentStatus
configmaps         cm          v1          true        ConfigMap
...

As you look through the output, you’ll see many resource types introduced in previ‐
ous chapters, along with their short names: StorageClass (sc), PersistentVolumes (pv),
Pods (po), StatefulSets (sts), and so on. The API versions provide some clues as to the
origins of each resource type. For example, resources with version v1 are core Kuber‐
netes resources. Other versions such as apps/v1, networking.k8s.io/v1, or stor‐
age.k8s.io/v1 indicate resources that are defined by various Kubernetes Special
Interest Groups (SIGs).

Depending on the configuration of the Kubernetes cluster you are using, you may
have some custom resources defined already. If any are present, they will appear in
the output of the kubectl api-resources command. They’ll stand out by their API ver‐
sion, which will typically include a path other than k8s.io.

Since a CRD is itself a Kubernetes resource, you can also use the command kubectl
get crd to list custom resources installed in your Kubernetes cluster. For example,
after installing the Vitess operator referenced in the section below, you would see sev‐
eral CRDs:

$ kubectl get crd
NAME                                   CREATED AT
etcdlockservers.planetscale.com        2021-11-21T22:06:04Z
vitessbackups.planetscale.com          2021-11-21T22:06:04Z
vitessbackupstorages.planetscale.com   2021-11-21T22:06:04Z
vitesscells.planetscale.com            2021-11-21T22:06:04Z
vitessclusters.planetscale.com         2021-11-21T22:06:04Z
vitesskeyspaces.planetscale.com        2021-11-21T22:06:04Z
vitessshards.planetscale.com           2021-11-21T22:06:04Z

We’ll introduce the usage of these custom resources later on, but for now let’s focus
on the mechanics of a specific CRD to see how it extends Kubernetes. You use the
kubectl describe crd or kubectl get crd commands to see the definition of a CRD. For
example, to get yaml-formatted description for the vitesskeyspace custom resource,
you could run:

$  kubectl get crd vitesskeyspaces.planetscale.com -o yaml
...
Looking at the original yaml configuration for this CRD, you’ll see something 
like this:

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  annotations:
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    controller-gen.kubebuilder.io/version: v0.3.0
  creationTimestamp: null
  name: vitesskeyspaces.planetscale.com
spec:
  group: planetscale.com
  names:
    kind: VitessKeyspace
    listKind: VitessKeyspaceList
    plural: vitesskeyspaces
    shortNames:
    - vtk
    singular: vitesskeyspace
  scope: Namespaced
  subresources:
    status: {}
  validation:
    openAPIV3Schema:
      properties:
        ...

From this part of the definition, you can see the declaration of the custom resource’s
name or Kind and shortName. The scope designation of Namespaced means that
custom resources of this type are confined to a single namespace.

The longest part of the definition is the validation section, which we’ve omitted here
because of its considerable size. Kubernetes supports the definition of attributes
within custom resource types, as well as the ability to define legal values for these
types using the OpenAPI v3 schema which is used to document RESTful APIs, which
in turn uses JSON schema to describe rules used to validate JSON objects. Validation
rules ensure that when you create or update custom resources, the definitions of the
objects are valid and can be understood by the Kubernetes control plane. The valida‐
tion rules are used to generate the documentation you use as you define instances of
these custom resources in your application.

Once a CRD has been installed in your Kubernetes cluster, you can then create and
interact with the resources using kubectl. For example, the command kubectl get
vitesskeyspaces will return a list of Vitess keyspaces. You create an instance of a Vitess
keyspace by providing a compliant yaml definition to the kubectl apply command.

Operators
Now that you’ve learned about custom controllers and custom resources, let’s tie
these threads back together. An operator is a combination of custom resources and
custom controllers that maintain the state of those resources and manage an applica‐
tion (or operand) in Kubernetes.

As we’ll see in examples throughout the rest of the book, this simple definition can
cover a pretty wide range of implementations. The recommended pattern is to pro‐
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vide a custom controller for each custom resource, but beyond that the details may
vary. A simple operator might consist of a single resource and controller, while a
more complex operator might have multiple resources and controllers. Those multi‐
ple controllers might run in the same process space or be broken out into separate
pods.

Controllers vs. operators
While technically operators and controllers are distinct concepts in
Kubernetes, the terms are frequently used interchangeably. It’s
common to refer to a deployed controller or collection of control‐
lers as “the operator”, and you’ll see this usage reflected both in this
book and the community in general.

To unpack this pattern and see how the different elements of an operator and the
Kubernetes control plane work together, let’s consider the interactions of a notional
operator, the DbCluster operator, as shown in Figure 5-2.

Figure 5-2. Interaction between Kubernetes controllers and operators

After an administrator installs the DbCluster Operator and db-cluster custom
resource in the cluster, users can then create instances of the db-cluster resource
using kubectl (1), which registers the resource with the API Server (2), which in turns
stores the state in etcd (3) to ensure high availability (other interactions with etcd are
omitted from this sequence for brevity).
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The DbCluster controller (part of the operator) is notified of the new db-cluster
resource (4) and creates additional Kubernetes resources using the API Server (5),
which could include StatefulSets, Services, PersistentVolumes, PersistentVolume‐
Claims, and more, as we’ve seen in previous examples of deploying databases on
Kubernetes.

Focusing on the StatefulSet path, the StatefulSet Controller running as part of the
Kubernetes Controller Manager is notified of a new StatefulSet (6) and creates new
Pod resources (7). The API Server asks the Scheduler to assign each Pod to a worker
node (8) and communicates with the Kubelet on the chosen worker nodes (9) to start
each of the required Pods (10).

As you see, creating a db-cluster resource sets off a chain of interactions as various
controllers are notified of changes to Kubernetes resources and initiate changes to
bring the state of the cluster in line with the desired state. The sequence of interac‐
tions appears complex from a user perspective, but the design demonstrates strong
encapsulation: the responsibilities of each controller are well-bounded and independ‐
ent of other controllers. This separation of concerns is what makes the Kubernetes
control plane so extensible.

Managing MySQL in Kubernetes using the Vitess Operator
Now that you understand how operators, custom controllers and custom resources
work, it’s time to get some hands-on experience with an operator for the database
we’ve been using as our primary relational database example: MySQL. MySQL exam‐
ples in previous chapters were confined to simple deployments of a single primary
replica and a couple of secondary replicas. While this could provide a sufficient
amount of storage for many cloud applications, managing a larger cluster can quickly
become quite complex, whether it runs on bare-metal servers or as a containerized
application in Kubernetes.

Vitess Overview
Vitess is an open source project started at YouTube in 2010. Before the company was
acquired by Google, YouTube was running on MySQL, and as they scaled up they
reached a point of daily outages. Vitess was created as a layer to abstract application
access to databases by making multiple instances appear to be a single database, rout‐
ing application requests to the appropriate instances using a sharding approach.
Before we explore deploying Vitess on Kubernetes, let’s take some time to explore its
architecture. We’ll start with the high level concepts shown in Figure 5-3: cells, key‐
spaces, shards, and primary and replica tablets.
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Figure 5-3. Vitess cluster topology - cells, keyspaces, and shards

At a high level, a Vitess cluster consists of multiple MySQL instances called tablets
which may be spread across multiple data centers or cells. Each MySQL instance takes
on a role as either a primary or replica, and may be dedicated to a specific slice of a
database known as a shard. Let’s consider the implications of each of these concepts
for reading and writing data in Vitess.

Cell
A typical production deployment of Vitess is spread across multiple failure
domains in order to provide high availability. Vitess refers to each of these failure
domains as a cell. The recommended topology is a cell per data center or cloud
provider zone. While writes and replication involve communication across cell
boundaries, Vitess reads are confined to the local cell to optimize performance.

Keyspace
A Vitess keyspace is a logical database consisting of one or more tables. Each key‐
space in a cluster can be sharded or unsharded. An unsharded keyspace has a pri‐
mary cell where a MySQL instance designated as the primary will reside, while
other cells will contain replicas. In the unsharded keyspace shown on the left side
of Figure 5-3, writes from client applications are routed to the primary and repli‐
cated to the replica nodes in the background. Reads can be served from the pri‐
mary or replica nodes.

Shard
The real power of Vitess comes from its ability to scale by spreading the contents
of a keyspace across multiple replicated MySQL databases known as shards, while
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providing the abstraction of a single database to client applications. The client on
the right side of Figure 5-3 is not aware of how data is sharded. On writes, Vitess
determines what shards are involved, and routes the data to the appropriate pri‐
mary instances. On reads, Vitess gathers data from primary or replica nodes in
the local cell.

The sharding rules for a keyspace are specified in a VSchema, an object which
contains the sharding key (known in Vitess as the KeyspaceID) used for each
table. To provide maximum flexibility over how data is sharded, Vitess allows you
to specify which columns in a table are used to calculate the KeyspaceID, as well
as the algorithm (or VIndex) used to make the calculation. Tables can also have
secondary VIndexes to support more efficient queries across multiple Keyspa‐
ceIDs.

In order to understand how Vitess manages shards and how it routes queries to the
various MySQL instances, you’ll want to get to know the components of a Vitess clus‐
ter shown in Figure 5-4, including VTGate, VTTablet, and the Topology Service.

Figure 5-4. Vitess architecture including VTGate, VTTablets, Topology Service

Let’s walk through each of these components to learn what they do and how they
interact.
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VTGate
A Vitess gateway or VTGate is a proxy server that provides the SQL binary end‐
point used by client applications, making the Vitess cluster appear as a single
database. Vitess clients generally connect to a VTGate running in the same cell
(data center). The VTGate parses each incoming read or write query and uses its
knowledge of the VSchema and cluster topology to create a query execution plan.
The VTGate executes queries for each shard, assembles the result set, and returns
it to the client. The VTGate can detect and limit queries that will impact memory
or CPU utilization, providing high reliability and helping to ensure consistent
performance. Although VTGate instances do cache cluster metadata, they are
stateless, so you can increase the reliability and scalability of your cluster by run‐
ning multiple VTGate instances per cell.

VTTablet
A Vitess tablet or VTTablet is an agent that runs on the same compute instance
as a single MySQL database, managing access to it and monitoring its health.
Each VTTablet takes on a specific role in the cluster, such as the primary for a
shard, or one of its replicas. There are two types of replica, those that can be pro‐
moted to replace a primary, and those that cannot. The latter are typically used to
provide additional capacity for read-intensive use cases such as analytics. The
VTTablet exposes a gRPC interface which the VTGate uses to send queries and
control commands, which the VTTablet then turns into SQL commands on the
MySQL instance. VTTablets maintain a pool of long lived connections to the
MySQL node, leading to improved throughput, reduced latency and reduced
memory pressure.

Topology Service
Vitess requires a strongly consistent data store to maintain a small amount of
metadata describing the cluster topology, including the definition of keyspaces
and their VSchema, what VTTablets exist for each shard, and which VTTablet is
the primary. Vitess uses a pluggable interface called the topology service, with
three implementations provided by the project: etcd (the default), ZooKeeper,
and Consul. VTGates and VTTablets interface with the Topology Service in the
background in order to maintain awareness of the topology, and do not interact
with the Topology Service on the query path to avoid performance impact. For
multi-cell deployments, Vitess incorporates both cell-local Topology Services,
and a global Topology Service with instances in multiple cells that maintains
knowledge of the entire cluster. This design provides high availability of topology
information across the cluster.

Vtctld and Vtctlclient
The Vitess control daemon vtctld and its client vtctlclient provide the control
plane used to configure and manage Vitess clusters. (There is also a command-
line version called vtctl that combines the client and server as a single executable,
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but it is not frequently used in cloud deployments for security reasons.) Vtctld is
deployed one or more of the cells in the cluster, while vtctlclient is deployed on
the client machine of the user administering the cluster. Vtctld uses a declarative
approach similar to Kubernetes to perform its work: it updates the cluster meta‐
data in the Topology Service, and the VTGates and VTTablets pick up changes
and respond accordingly.

Now that you understand the Vitess architecture and basic concepts, let’s discuss how
they are mapped into a Kubernetes environment. This is an important consideration
for any application, but especially for a complex piece of data infrastructure like Vit‐
ess.

PlanetScale Vitess Operator
Over time, Vitess has evolved in a couple of key aspects: first, it can now run addi‐
tional MySQL-compatible database engines such as Percona. Second, and more
important for our investigations, PlanetScale has packaged Vitess as a containerized
application that can be deployed to Kubernetes.

Evolving options for running Vitess in Kubernetes
The state of the art for running Vitess in Kubernetes has evolved
over time. While Vitess once included a Helm chart, this was dep‐
recated in the 7.0 release in mid 2020. The Vitess project also hos‐
ted an operator which was deprecated around the same time. Both
of these options were retired in favor of the PlanetScale operator
we examine in this section.

Let’s see how easy it is to deploy a multi-node MySQL cluster using the PlanetScale
Vitess Operator. Since the Vitess project has adopted the PlanetScale operator as its
officially supported operator, you can reference the getting started guide in the Vitess
project documentation. We’ll walk through a portion of this guide here in order to get
an understanding of the operator’s contents and how it works.

Examples require Kubernetes clusters with more resources
The examples in previous chapters have not required a large
amount of compute resources, and we encouraged you to run them
on local distributions such as Kind or K3s. Starting with this chap‐
ter, the examples become more complex and may require more
resources than you have available on your desktop or laptop. For
these cases we will provide references to documentation or scripts
for creating Kubernetes clusters with sufficient resources.
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Installing the Vitess Operator
You can find the source code used in this section at Vitess Operator Example. The
files are copied for convenience from their original source in the Vitess GitHub repo.
First, install the operator using the provided configuration file.

kubectl apply -f https://raw.githubusercontent.com/vitessio/vitess/main/exam-
ples/operator/operator.yaml
customresourcedefinition.apiextensions.k8s.io/
  etcdlockservers.planetscale.com created
...

As you’ll see in the output of the kubectl apply command, this configuration creates
several CRDs, as well as a deployment managing a single instance of the operator.
Figure 5-5 shows many of the elements you’ve just installed, in order to highlight a
few interesting details which will not be obvious at first glance:

• The operator contains a controller corresponding to each CRD. If you’re interes‐
ted in seeing what this looks like in the operator source code in Go, compare the
controller implementations with the custom resource specifications that are used
to generate the CRD configurations introduced in Custom Resources. See more
about building operators below.

• The figure depicts a hierarchy of CRDs representing their relationships and
intended usage, as described in the operator’s API reference. To use the Vitess
operator, you define a VitessCluster resource which contains the definitions of
VitessCells and VitessKeyspaces. VitessKeyspaces, in turn, contain definitions of
VitessShards. While you can view the status of each VitessCell, VitessKeyspace,
and VitessShard independently, you must update them in the context of the par‐
ent VitessCluster resource.

• Currently the Vitess operator only supports etcd as the Topology Service imple‐
mentation. The EtcdLockserver CRD is used to configure these etcd clusters.
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Figure 5-5. Vitess Operator and Custom Resource De!nitions

Roles and RoleBindings.    As shown toward the bottom of Figure 5-5, installing the
operator caused the creation of a ServiceAccount, along with two new resources we
have not discussed previously: a Role and a RoleBinding. These additional resources
allow the ServiceAccount to access specific resources on the Kubernetes API. First,
examine the configuration of the vitess-operator Role from the file that you used to
install the operator (you can search for “kind: Role” to locate the pertinent code):

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: vitess-operator
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - services
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  - endpoints
  - persistentvolumeclaims
  - events
  - configmaps
  - secrets
  verbs:
  - '*'
...

This first portion of the Role definition identifies resources that are part of the core
Kubernetes distribution, which may be designated by passing the empty string as the
apiGroup instead of k8s.io. The verbs correspond to operations the Kubernetes API
provides on resources, including get, list, watch, create, update, patch, and delete.
This Role is given access to all operations using the wildcard *. If you follow the URL
above and examine more of the code, you’ll also see how the Role is also given access
to other resources, including Deployments and ReplicaSets, and resources in the
apiGroup planetscale.com.

The RoleBinding associates the ServiceAccount with the Role:
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: vitess-operator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: vitess-operator
subjects:
- kind: ServiceAccount
  name: vitess-operator

Least privilege for operators
As a creator or consumer of operators, exercise care in which per‐
missions are granted to operators, and be conscious of the implica‐
tions for what an operator is allowed to do.

PriorityClasses.    There is another detail not depicted in Figure 5-4: installing the oper‐
ator created two PriorityClass resources. PriorityClasses provide input to the Kuber‐
netes scheduler to indicate the relative priority of Pods. The priority is an integer
value, where higher values indicate higher priority. Whenever a Pod resource is cre‐
ated and is ready to be assigned to a worker node, the Scheduler takes the Pod’s prior‐
ity into account as part of its decisions. When multiple Pods are awaiting scheduling,
higher priority Pods are assigned before lower priority Pods. When a cluster’s nodes
are running low on compute resources, lower priority Pods may be stopped or evicted
in order to make room for higher priority Pods, a process known as preemption.
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A PriorityClass is a convenient way to set a priority value referenced by multiple Pods
or other workload resources such as Deployments and StatefulSets. The Vitess opera‐
tor creates two PriorityClasses: vitess-operator-control-plane defines a higher priority
used for the operator and vtctld Deployments, while the vitess class is used for the
data plane components such as the VTGate and VTTablet Deployments.

Kubernetes scheduling complexity
Kubernetes provides multiple constraints that influence Pod sched‐
uling, including prioritization and preemption, affinity and anti-
affinity, and scheduler extensions. The interaction of these
constraints may not be predictable, especially in large clusters
shared across multiple teams. As resources in a cluster become
scarce, pods can be preempted or fail to be scheduled in ways you
don’t expect. It’s a best practice to maintain awareness of the vari‐
ous scheduling needs and constraints across the workloads in your
cluster to avoid surprises.

Creating a Vitess Cluster
Now let’s create a VitessCluster and put the operator to work. The code sample con‐
tains a configuration file defining a very simple cluster named example, with a Vitess‐
Cell zone1, keyspace commerce, and single shard, which the operator gives the name
x-x.

kubectl apply -f 101_initial_cluster.yaml
vitesscluster.planetscale.com/example created
secret/example-cluster-config created

The output of the command indicates a couple of items that are created directly, but
there is more going on behind the scenes, as the operator detects the creation of the
VitessCluster and begins provisioning other resources, as summarized in Figure 5-6.
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Figure 5-6. Resources managed by the VitessCluster example

By comparing the configuration script with Figure 5-6, you can make several obser‐
vations about this simple VitessCluster. First, the top level configuration allows you to
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specify the name of the cluster and the container images that will be used for the vari‐
ous components:

apiVersion: planetscale.com/v2
kind: VitessCluster
metadata:
  name: example
spec:
  images:
    vtctld: vitess/lite:v12.0.0
    ...

Next, the VitessCluster configuration provides a definition of the VitessCell zone1.
The values provided for gateway specify a single VTGate instance to be allocated for
this cell, with specific compute resource limits.

  cells:
  - name: zone1
    gateway:
      authentication:
        static:
          secret:
            name: example-cluster-config
            key: users.json
      replicas: 1
      resources:
        ...

The Vitess Operator uses this information to create a VTGate Deployment prefixed
with example-zone1-vtgate containing a single replica, and a Service that provides
access. The access credentials for the VTGate instance are provided in the example-
cluster-config Secret. This Secret is used to secure other configuration values, as
you’ll see below.

The next section of the VitessCluster configuration specifies the creation of a single
vtctld instance (aka “dashboard”) with permission to control zone1. The Vitess Oper‐
ator uses this information to create a Deployment to manage the dashboard using the
specified resource limits, and a Service to provide access to the VTGate.

  vitessDashboard:
    cells:
    - zone1
    extraFlags:
      security_policy: read-only
    replicas: 1
    resources:
      ...

The VitessCluster also defines the commerce keyspace, which contains a single shard
(essentially, an unsharded keyspace). This single shard has a pool of two VTTablets in
the cell zone1, each of which will be allocated 10GB of storage.
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  keyspaces:
  - name: commerce
    turndownPolicy: Immediate
    partitionings:
    - equal:
        parts: 1
        shardTemplate:
          databaseInitScriptSecret:
            name: example-cluster-config
            key: init_db.sql
          replication:
            enforceSemiSync: false
          tabletPools:
          - cell: zone1
            type: replica
            replicas: 2
            vttablet:
              ...
            mysqld:
              ...
            dataVolumeClaimTemplate:
              accessModes: ["ReadWriteOnce"]
              resources:
                requests:
                  storage: 10Gi

As shown in Figure 5-6, the Vitess operator manages a Pod for each VTTablet and
creates a Service to manage access across the tablets. The operator does not use a
StatefulSet because the VTTablets have distinct roles with one as the primary and the
other as a replica. Each VTTablet Pod contains multiple containers, including the
vttablet sidecar which configures and controls the mysql container. The vttablet side‐
car initializes the mysql instance using a script contained in the example-cluster-
config Secret.

While this configuration doesn’t specifically include details about etcd, the Vitess
Operator uses its default settings to create a 3-node etcd cluster to serve as the Topol‐
ogy Service for the VitessCluster. Because of the shortcomings of the StatefulSets, the
operator manages each pod and PersistentVolumeClaim individually. This points to
the possibility for future improvements as Kubernetes and the operator mature; per‐
haps the Kubernetes API server can one day serve the role of the Topology Service in
the Vitess architecture.
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Note: Visualizing larger Kubernetes applications
While its a good exercise to use the kubectl get and kubectl
describe commands to explore all of the resources that were cre‐
ated when you installed the operator and created a cluster, you may
find it easier to use a tool such as Lens, which offers a friendly
graphical interface that allows you to click through the resources
more quickly, or K9s, which provides a command line interface.

At this point, you have a VitessCluster with all of its infrastructure provisioned in
Kubernetes. The next steps are to create the database schema and configure your
applications to access the cluster using the VTGate Service. You can follow the steps
in the blog post Vitess Operator for Kubernetes, which also describes other use cases
for managing a Vitess installation on Kubernetes, including schema migration,
backup, and restore.

The backup/restore capabilities leverage VitessBackupStorage and VitessBackup
CRDs which you may have noticed during installation. VitessBackupStorage
resources represent locations where backups can be stored. After you configure the
backup section of a VitessCluster and point to a backup location, the operator creates
VitessBackup resources as a record of each backup it performs. When you add addi‐
tional replicas to a VitessCluster, the operator initializes their data by performing a
restore from the most recent backup.

Resharding is another interesting use case, which you might need to perform when a
cluster becomes unbalanced and one or more shards run out of capacity more quickly
than others. You’ll need to modify the VSchema using vtctlclient, and then update the
VitessCluster resource with additional VitessShards so that the operator provisions
the required infrastructure. This highlights the division of responsibility: the Vitess
operator manages Kubernetes resources, while the Vitess control daemon (vtctld)
provides more application-specific behavior.

What We Learned Building the Vitess Operator
With Deepthi Sigireddi, Software Engineer, PlanetScale

Vitess can be described simply as a scaling infrastructure for MySQL. Vitess started at
YouTube in 2010 when the team was struggling with daily outages with MySQL. A
few people got together and decided that rather than fighting fires every day, they
would solve their problem from the ground up. Initially, Vitess was very customized
to YouTube’s environment. Applications were segmented into groups to run against
one database or another, with a layer in between to route queries to the right backing
database. Over time, the internal architecture became more complex but simpler
from the application’s point of view. Vitess started with custom sharding which
required the application to know which database to query against. Now the applica‐
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tion doesn’t need to know whether there are 10 MySQL databases or 100, or 1000. As
far as the application layer is concerned, it looks like a single database.

The move toward Kubernetes started when YouTube was acquired by Google. The
mandate to use Google infrastructure included adapting Vitess to run on Borg, the
precursor to Kubernetes. With Borg, the applications had to be tolerant to being
restarted anytime, but that wasn’t something supported by MySQL. If Borg doesn’t
want a Vitess component running on a machine, that component is rescheduled to
run on some other machine. The team built tolerations for this type of automation as
features in Vitess, and that’s how Vitess became cloud native. All this sounds familiar
to us now because that’s how Kubernetes operates. When the team at YouTube deci‐
ded to make Vitess run on Kubernetes, they were able to do the work without a lot of
changes.

Before Vitess was donated to the Cloud Native Computing Foundation (CNCF) in
January of 2018, there was already a project called Metacontroller, which predated the
Operator SDK. This was used to get Vitess working on Kubernetes, independent of
Google’s infrastructure. It seemed intuitive that you would want to run Vitess using
an operator, since there was already a community-contributed Helm chart and we
saw the movement in the community toward operators.

There was an early community effort by an individual Vitess contributor to write a
Kubernetes operator, but it was a pretty complex undertaking to take on alone and so
it didn’t go far. Other Vitess users such as HubSpot have built their own custom oper‐
ators which are private since they are quite specific to their own deployments. Planet‐
Scale started building a Kubernetes operator for Vitess to run as a cloud service and
once it matured, we released 90% of that code as an open source Vitess operator.

In order to write an operator for an application, you need to understand both Kuber‐
netes and the application really well. Kubernetes moves fast, with new releases every 4
months. Many features that were in alpha when we first started building our operator
are now a part of Kubernetes. Meanwhile, MySQL continues to evolve and add new
query constructs. Recently in MySQL 8.0, there was a lot of new syntax added and
maintaining an operator requires keeping up with those changes.

To run a service in Kubernetes, you have to know the important lifecycle events and
how those disrupt availability. Vitess achieves automatic failure detection and failover
through a mixture of approaches. If your primary MySQL node is running with a per‐
sistent volume that goes down, Kubernetes will restart it with a downtime of 20 or 30
seconds. This is pretty fast, but maybe more than what some applications can tolerate.
We are building into Vitess the ability to detect and failover much faster than a
Kubernetes hot restart. Vitess will detect that the primary has gone down and will fail
over to a replica that has kept up with the primary within 5 or 10 seconds. This will
greatly improve reliability.

Another area of improvement we are focused on is speeding up startup and shut‐
down. Network constraints like TCP/IP timeouts limit how quickly you can detect

Managing MySQL in Kubernetes using the Vitess Operator | 135

https://github.com/metacontroller/metacontroller


failure, but MySQL startup and shutdown are not yet at the point of hitting that lower
bound. The first operator we built at PlanetScale took 10 or 20 minutes to bring up a
cluster. This was partly due to inefficiencies in the Operator SDK, and partly because
we had written a single controller with a gigantic reconcile loop. We rewrote the oper‐
ator to use a newer version of the Operator SDK and to have a separate controller for
each resource. This made our startup and shutdown times 20 times faster, which was
a hard requirement for providing a cloud service. Clients expect those operations to
take 10 or 15 seconds, not two or three minutes.

We also need more primitives from Kubernetes in order to continue to mature data‐
base operators. While Kubernetes provides Deployments, ReplicaSets and Stateful‐
Sets, it doesn’t yet support the concept of primary and replicas as MySQL needs.
Imagine if you could configure Kubernetes to designate a primary, and specify an
action to perform if the primary is restarted. A lot of the error handling code
included in Vitess would actually not be required. While Kubernetes has a leader elec‐
tion module, there’s no clear way to leverage this for an operator that already has the
concept of primaries and replicas. This leads to more duplicated code.

One final area of improvement is data locality. Application developers are looking for
more control over where their data is stored, and easy ways to ingest or load data.
Every organization that provides a database solution on Kubernetes should consider
providing it as a service to make it easier for developers to consume. Today if a devel‐
oper is running an application in AWS and a particular data service is not available
there, they have to consider using another cloud or building the capability them‐
selves. It should be really easy to create and populate a data source for an application
no matter where you run it.

Infrastructure provisioning is getting easier and easier, and long may that trend con‐
tinue. Even so, there is a lot more work to do. Those of us who get paid to work on
open source are very fortunate because there are many developers who aren’t com‐
pensated for their open-source contributions. Let’s continue to champion the benefits
of working on open source software in our organizations so we can continue to grow
as a community.

A Growing Ecosystem of Operators
The operator pattern has become quite popular in the Kubernetes community, aided
in part by the development of the Operator Framework, an ecosystem for creating
and distributing operators. In this section we’ll examine the Operator Framework and
related open source projects.

Choosing Operators
While we’ve focused in this chapter on Vitess as an example database operator, opera‐
tors are clearly relevant to all of the elements of your data stack. In all aspects of cloud
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native data, we see a growing number of maturing, open-source operators to use in
your deployments, and we’ll be looking at additional operators as we examine how to
run different types of data infrastructure on Kubernetes in upcoming chapters.

You should consider multiple aspects in choosing an operator - what are its features?
How much does it automate? How well supported is it? Is it proprietary or open
source? The Operator Framework provides a great resource, the Operator Hub, you
should consider as your first stop when looking for an operator. Operator Hub is a
well-organized list of various operators that cover every aspect of cloud native soft‐
ware. It does rely on maintainers to submit their operators for listing, which means
that many existing operators may not be listed.

The Operator Framework also contains the Operator Lifecycle Manager, an operator
for installing and managing other operators in your cluster. You can curate your own
custom catalog of operators that are permitted in your environment, or use catalogs
provided by others. For example, Operator Hub can itself be treated as a catalog.

Part of the curation the Operator Hub provides is rating the capability of each opera‐
tor according to the Operator Capability Model. The levels in this capability model
are summarized in Table 5-1, with additional commentary we’ve added to highlight
considerations for database operators. The examples are not prescriptive but indicate
the type of capabilities expected at each level.

Capability
Level

Characteristics Database Operator Examples Tools

Level 1 - Basic
Install

Installation and
con!guration of
Kubernetes and
workloads

The operator uses custom resources to provide a central point of
con!guration for a database cluster.

The operator deploys the database by creating resources such as
Deployments, ServiceAccounts, RoleBindings,
PersistentVolumeClaims and Secrets, and helps initialize the
database schema.

Helm,
Ansible,
Go

Level 2 -
Seamless
Upgrades

Upgrade of the
managed workload and
operator

The operator can update an existing database to a newer version
without data loss (or hopefully, downtime). 

The operator can be replaced with a newer version of itself.
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Level 3 - Full
Lifecycle

Ability to create backups
and restore from
backups, ability to
failover or replace
portions of a clustered
application, ability to
scale the application

The operator provides a way to create a consistent backup across
multiple data nodes and the ability to use those backups to restore
or replace failed database nodes.

The operator can respond to a con!guration change to add or
remove database nodes or perhaps even data centers.

Ansible,
Go

Level 4 - Deep
Insights

Providing capabilities
including alerting,
monitoring, events, or
metering

The operator monitors metrics and logging output by the database
software and uses this information to implement health and
readiness checks. 

The operator pushes metrics and alerts to other infrastructure.
Level 5 - Auto-
pilot

Providing capabilities
including auto-scaling,
auto-healing, auto-
tuning

The operator auto-scales the number of database nodes in the
cluster up or down to meet performance requirements. The operator
might also dynamically resize PVs or change the storage class used
for various database nodes.

The operator automatically performs database maintenance such as
rebuilding indexes to improve slow response times. 

The operator detects abnormal workload patterns and takes action
such as resharding to balance workloads.

Table 5-1: Operator Capability Levels applied to databases
These levels are useful both for evaluating operators you might want to use, and for
providing targets for operator developers to aim for. They also provide an opinion‐
ated view on what Helm-based operators can accomplish, limiting them to Level 2.
For full lifecycle management and automation, more direct involvement with the
Kubernetes control plane is needed. For a Level 5 operator, the goal is a complete
hands-off deployment.

Let’s take a quick look at a few of the available operators for popular open-source
databases:

DataStax Kubernetes Operator for Apache Cassandra
In 2021, several companies in the Cassandra community who had developed
their own operators came together in support of an operator built by DataStax,
known primarily by its nickname: Cass Operator. Cass Operator was inspired by
the best features of the community operators and DataStax experience running
Astra, a Cassandra-based DBaaS. The operator has been donated to the K8ssan‐
dra project, where it is part of a larger ecosystem for deploying Cassandra on
Kubernetes. We’ll take a deeper look at K8ssandra and Cass Operator in Chapter
7 [PROD: Add link to Chapter 7.].
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PostgreSQL Operators
There are several operators available for PostgreSQL, which is not surprising
given that it is the second most popular open source database after MySQL. Two
of the most popular operators are the Zalando Postgres Operator, and PGO
(which also stands for Postgres Operator) from CrunchyData. Read the blog
Comparing Kubernetes operators for PostgreSQL for a helpful comparison of
these and other operators.

MongoDB Kubernetes Operator
MongoDB is the most popular document database, beloved by developers for its
ease of use. The MongoDB Community Operator provides basic support for cre‐
ating and managing MongoDB Replica Sets, scaling up and down, and upgrades.
This operator is available on GitHub but not yet listed on Operator Hub, possibly
because MongoDB also offers a separate operator for its enterprise version.

Redis Operator
Redis is an in-memory key-value store that has a broad set of use cases. Applica‐
tion developers typically use Redis as an adjunct to other data infrastructure
when ultra-low latency is required. It excels at things such as caching, counting
and shared data structures. The Redis Operator covers the basic install and
upgrade but also manages harder operations such as cluster failover and recov‐
ery.

As you can see, operators are available for many popular open source databases,
although it’s unfortunate that some vendors have tended to think of Kubernetes oper‐
ators primarily as a feature differentiator for paid enterprise versions.

Building Operators
While there is broad consensus in the Kubernetes community that you should use
operators for distributed data infrastructure whenever possible, there are a variety of
opinions about who exactly should be building operators. If you don’t happen to
work for a data infrastructure vendor, this can be a challenging question. The article
“When to Use, and When to Avoid, the Operator Pattern” provides some excellent
questions to consider, which we’ll summarize here:

• What is the scale of the deployment? If you’re only deploying a single instance of
the database application, building and maintaining an operator might not be cost
effective.

• Do you have the expertise in the database? The best operators tend to be built by
companies that are running databases at scale in production, including vendors
that are providing DBaaS solutions.

• Do you need higher levels of application awareness and automation, or would
deployment with a Helm chart and standard Kubernetes resources be sufficient?

A Growing Ecosystem of Operators | 139

https://operatorhub.io/operator/postgres-operator
https://operatorhub.io/operator/postgresql
https://blog.flant.com/comparing-kubernetes-operators-for-postgresql/
https://github.com/mongodb/mongodb-kubernetes-operator
https://operatorhub.io/operator/redis-operator
https://thenewstack.io/kubernetes-when-to-use-and-when-to-avoid-the-operator-pattern/


• Are you trying to make the operator manage resources that are external to
Kubernetes? Consider a solution that runs closer to the resources being managed
with an API you can access from your Kubernetes application.

• Have you considered security implications? Since operators are extensions of the
Kubernetes control plane, you’ll want to carefully manage what resources your
operator can access.

If you decide to write an operator, there are several great tools and resources avail‐
able:

OperatorSDK
The Operator Framework includes Operator SDK, a software development kit
containing tools to build, test, and package operators. Operator SDK uses tem‐
plates to auto-generate new operator projects and provides APIs and abstractions
to simplify common aspects of building operators, especially interactions with
the Kubernetes API. The SDK supports the creation of operators using Go, Ansi‐
ble or Helm.

Kubebuilder
Kubebuilder is a toolkit for building operators managed by the Kubernetes API
Machinery SIG. Similar to Operator SDK, Kubebuilder provides tools for project
generation, testing, and publishing controllers and operators. Both Kubebuilder
and OperatorSDK are built on The Kubernetes controller-runtime, a set of Go
libraries for building controllers. The blog post Kubebuilder vs Operator SDK
provides a concise summary of the differences between these toolkits.

Kudo
The Kubernetes Universal Declarative Operator, or Kudo for short, takes a
declarative approach. Kudo is an operator that allows you to create operators
declaratively using yaml files. This is an attractive approach for some developers
as it eliminates the need to write Go. The blog post How to deploy your first app
with Kudo operator on K8S provides a helpful introduction to using Kudo and
discusses some of the pros and cons of the declarative approach.

Finally, the O’Reilly books Kubernetes Operators and Programming Kubernetes are
great resources for understanding the operator ecosystem and getting into the details
of writing operators and controllers in Go.

Can one operator rule them all?

With Umair Mu$i, Product Manager, Pure Storage
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As discussed in this chapter, the number of Kubernetes operators for databases has
been continuously growing. Database developers want their databases to run on
Kubernetes, so to their credit, projects like Vitess are stepping up and developing
operators to make it easy for others. This initiative is great, but one potential draw‐
back of this approach is that everyone is building operators their own way and solving
similar problems with different implementations. As a result, there is no uniformity
between operators for stateful workloads.

The question those who are developing operators have to reckon with is how special‐
ized to expect end-users to be. Because of the popularity of cloud-native, microservice
architectures, application developers now expect polyglot persistence: to run a rela‐
tional database in addition to a graph database or a key-value store. This forces clus‐
ter administrators to provide different types of databases while maintaining the
operational simplicity of a single platform.

No Kubernetes admin wants to maintain 10 or 15 different operators on their cluster.
The point of Kubernetes is the ease of operations when deploying applications, moni‐
toring them on day two, and making lifecycle management simpler. As soon as you
have the maintenance overhead of managing multiple operator lifecycles, you’ve
already lost. Multiply that 10 or 15 times over, and you are completely at odds with
the value Kubernetes provides. The only way out of this situation is to reduce the
number of operators. Could there be a single operator for all our databases or stateful
workloads? Let’s explore.

The operator pattern is simply a design pattern for running stateful workloads in
Kubernetes, just as the Model View Controller framework is a pattern for user-facing
applications. Various web frameworks such as Angular, Vue and React use the MVC
pattern, but they all implement the pattern in different ways, and your code will vary
based on the implementation you use. This is a familiar experience for developers
using operators today. Each operator solves the problem of running a stateful work‐
load in Kubernetes in a unique way, and it requires specialization to become profi‐
cient with each operator. The irony is that if you’re running Cassandra, Redis, or
Postgres, a lot of the problems being addressed are very much the same: cluster mem‐
bership, failure detection, backup and restore, and more.

Could we actually build “one operator to rule them all”? This might be possible, but
perhaps what we need is not literally one single operator, but a collection of higher-
level interfaces that operators should adhere to, so they work with multiple data ser‐
vice types. This would enable administrators to choose an operator based on factors
other than the vendor or project that created it. What if you could use an operator
that would manage your Cassandra, ElasticSearch, and Kafka clusters? This is what
we need to reduce the burden on operations teams and fully realize the benefits of
managing stateful workloads on Kubernetes.

We need to build another layer of abstraction on top of the operator pattern. As a
community, we can develop a common set of custom resources, and each controller
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can manage them in their own way. For example, we might define a TopologyAwareS‐
tatefulSet as a new CRD, or a ClusterMembership CRD that describes how a node
joins a cluster. Instead of ElasticSearch developers and Cassandra developers creating
separate definitions of a server group or topology, we could all agree that a distributed
database has a concept of topology, agree on a CRD, and controllers can implement
the specified behavior as needed.

The ideal end-state is a world with multiple implementations that adhere to a com‐
mon standard. Kubernetes itself has a specification and each Kubernetes distribution
has to provide certain APIs to be considered a valid distribution. Users can choose
which operators to use in the same way, knowing that they can expect a baseline stan‐
dard while applying other criteria.

Kubernetes still shows signs that it was born of a stateless world but there’s an exciting
future for stateful workloads on Kubernetes. We are very much in that “Crossing the
Chasm” moment and still just hitting the inflection point with stateful workloads.
With more advanced operators, we’ll no longer be working in silos, solving the same
problems over and over again. Then we can use our collective talents and skills to
solve bigger and higher level problems.

As you can see, the state of the art in Kubernetes operators is continuing to mature.
Whether the goal is to build a unified operator or just to make it easier to build
database-specific operators, it’s clear that great progress can be made as multiple com‐
munities begin to collaborate on common CRDs to address problems like cluster
membership, topology awareness, and leader election.

Summary
In this chapter, you’ve learned about several ways of extending the Kubernetes control
plane, especially operators and custom resources. The operator pattern provides the
critical breakthrough that enables us to simplify database operations in Kubernetes
through automation. While you should definitely be using operators to run dis‐
tributed databases in Kubernetes, think carefully before starting to write your own
operator. If building an operator is the right course for you, there are plenty of
resources and frameworks to help you along the way. There are certainly ways in
which Kubernetes itself could improve to make writing operators easier, as you’ve
learned from the experts we spoke to in this chapter.

While we’ve spent the past couple of chapters focusing primarily on running data‐
bases on Kubernetes, let’s expand our focus to consider how those databases interact
with other infrastructure.
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CHAPTER 6

Integrating Data Infrastructure in a
Kubernetes Stack

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 6th chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

In this book we are illuminating a future of modern, cloud native applications that
run on Kubernetes. Up to this point of the book, we’ve noted that historically, data has
been one of the hardest parts of making this a reality. In previous chapters, we’ve
introduced the primitives Kubernetes provides for managing compute, network, and
storage resources, and considered how databases can be deployed on Kubernetes
using these resources. We’ve also examined the automation of infrastructure using
controllers and the operator pattern.

Now it’s time to expand our focus to consider how data infrastructure fits in your
overall application architecture in Kubernetes. In this chapter we’ll explore how to
assemble the building blocks discussed in previous chapters into integrated data
infrastructure stacks that are easy to deploy and tailor to the unique needs of each
application. These stacks represent a step toward the vision of the virtual data center
we introduced in Chapter 1. To learn the considerations involved in building and
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using these larger assemblies, let’s take an in-depth look at K8ssandra, an open-source
project that provides an integrated data stack based on Apache Cassandra.

K8ssandra: Production-ready Cassandra on Kubernetes
To set the context, let’s consider some of the practical challenges of moving applica‐
tion workloads into Kubernetes. As organizations have begun to migrate existing
applications to Kubernetes and create new cloud native applications in Kubernetes,
modernizing the data tier is a step that is often deferred. Whatever the causes of these
delays - a belief that Kubernetes is not ready for stateful workloads, a lack of develop‐
ment resources, or other factors - the result has been mismatched architectures in
which applications are running in Kubernetes with databases and other data infra‐
structure running externally. This leads to a division of focus for developers and SREs
that can limit productivity. It’s also common to see distinct toolsets for monitoring
applications and database infrastructure, which increases cloud computing costs.

This adoption challenge became evident in the Cassandra community. Despite the
growing collaboration and consensus around building a single Cassandra operator as
discussed in Chapter 5, developers were still confronted with some key questions
about how the database and operator would fit in the larger application context:

• How can we have an integrated view of the health of our entire stack, including
both applications and data?

• How can we tailor the automation of installation, upgrades, and other opera‐
tional tasks in a Kubernetes-native way that fits the way we manage our data cen‐
ters?

To help address these questions, John Sanda and a team of engineers at DataStax
launched an open-source project called K8ssandra with the goal of providing a
production-ready deployment of Cassandra that embodies best practices for running
Cassandra in Kubernetes. K8ssandra provides custom resources that help manage
tasks including cluster deployment, upgrades, scaling up and down, data backup and
restore, and more. You can read more about the motivations for the project in the
article Why K8ssandra?

K8ssandra Architecture
K8ssandra is deployed in units known as clusters, which is similar terminology to
that used by Kubernetes and Cassandra. A K8ssandra cluster includes a Cassandra
cluster along with additional components depicted in Figure 6-1 to provide a full data
management ecosystem. Let’s consider these in roughly clockwise order starting from
the top center.
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• Cass Operator is a Kubernetes operator first introduced in Chapter 5. It manages
the lifecycle of Cassandra nodes on Kubernetes, including provisioning new
nodes and storage, and scaling up and down.

• Cassandra Reaper manages the details of repairing Cassandra nodes in order to
maintain high data consistency.

• Cassandra Medusa provides backup and restore for data stored in Cassandra
• Prometheus and Grafana are used for the collection and visualization of metrics
• Stargate is a data gateway that provides API access to client applications as an

alternative to CQL.
• K8ssandra Operator orchestrates all of the other components, including multi-

cluster support for managing Cassandra clusters that span multiple Kubernetes
clusters.

Figure 6-1. K8ssandra Architecture

In the following sections, we’ll take a look at each component of the K8ssandra
project to understand the role that it plays within the architecture and its relationship
to other components.

Installing the K8ssandra Operator
Let’s dive in with some hands-on experience of installing K8ssandra. To get a basic
installation of K8ssandra running that fully demonstrates the power of the operator,
you’ll need a Kubernetes cluster with several worker nodes. To make the deployment
simpler, the K8ssandra team has provided scripts to automate the process of creating
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Kubernetes clusters and then deploying the operator to these clusters. These scripts
use Kind clusters for simplicity, so you’ll want to make sure you have this installed
before starting. Instructions for installing on various clouds are also available on the
K8ssandra website.

K8ssandra 2.0 Release Status
This chapter focuses on the K8ssandra 2.0 release, including the
K8ssandra Operator. At the time of writing, K8ssandra 2.0 is still in
Beta status. The instructions we provide here are based on an
installation guide in the K8ssandra Operator repository. As
K8ssandra 2.0 moves toward a full general availability (GA) release,
the instructions on the Getting Started section of the K8ssandra
website will be updated to reference the new version.

First, start by cloning the K8ssandra operator repository from GitHub:
git clone https://github.com/k8ssandra/k8ssandra-operator.git

Next, you’ll want to use the provided Makefile to create a Kubernetes cluster and
deploy the K8ssandra Operator into it. (This assumes you have make installed)

cd k8ssandra-operator
make single-up

If you examine the Makefile, you’ll notice the operator is installed using Kustomize,
which we discussed in Chapter 4. The target you just executed creates a Kind cluster
with four worker nodes and changes your current context to point to that cluster, as
you can see by running the following:

% kubectl config current-context
kind-k8ssandra-0
% kubectl get nodes
NAME                        STATUS   ROLES                  AGE     VERSION
k8ssandra-0-control-plane   Ready    control-plane,master   6m45s   v1.22.4
k8ssandra-0-worker          Ready    <none>                 6m13s   v1.22.4
k8ssandra-0-worker2         Ready    <none>                 6m13s   v1.22.4
k8ssandra-0-worker3         Ready    <none>                 6m13s   v1.22.4
k8ssandra-0-worker4         Ready    <none>                 6m13s   v1.22.4

Now examine the list of CustomResourceDefinitions (CRDs) that have been created
as follows:

% kubectl get crd
NAME                                          CREATED AT
cassandrabackups.medusa.k8ssandra.io          2022-02-05T17:31:35Z
cassandradatacenters.cassandra.datastax.com   2022-02-05T17:31:35Z
cassandrarestores.medusa.k8ssandra.io         2022-02-05T17:31:35Z
cassandratasks.control.k8ssandra.io           2022-02-05T17:31:36Z
certificaterequests.cert-manager.io           2022-02-05T17:31:16Z
certificates.cert-manager.io                  2022-02-05T17:31:16Z
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challenges.acme.cert-manager.io               2022-02-05T17:31:16Z
clientconfigs.config.k8ssandra.io             2022-02-05T17:31:36Z
clusterissuers.cert-manager.io                2022-02-05T17:31:17Z
issuers.cert-manager.io                       2022-02-05T17:31:17Z
k8ssandraclusters.k8ssandra.io                2022-02-05T17:31:36Z
orders.acme.cert-manager.io                   2022-02-05T17:31:17Z
reapers.reaper.k8ssandra.io                   2022-02-05T17:31:36Z
replicatedsecrets.replication.k8ssandra.io    2022-02-05T17:31:36Z
stargates.stargate.k8ssandra.io               2022-02-05T17:31:36Z

As you can see, there are several CRDs associated with the Cert Manager and K8ssan‐
dra. There is also the cassandradatacenter CRD used by Cass Operator. The K8ssan‐
dra and Cass Operator CRDs are all namespaced, which you can verify using the
kubectl api-resources command, meaning that resources created according to these
definitions are assigned to a specific namespace. That command will also show you
the acceptable abbreviations for each resource type, for example k8c for k8ssan‐
dracluster.

Next, you can examine the contents that have been installed within the Kind cluster.
If you list the namespaces using kubectl get ns, you’ll note two new namespaces: cert-
manager and k8ssandra-operator. As you may suspect, K8ssandra is using the same
Cert Manager project as Pulsar, as described in Chapter 8. Let’s examine the contents
of the k8ssandra-operator namespace, which are summarized in Figure 6-2 along
with related K8ssandra CRDs. If you examine the workloads, you’ll notice that two
Deployments have been created, one for the K8ssandra Operator, and one for Cass
Operator.
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Figure 6-2. K8ssandra Operator Architecture

If you examine the K8ssandra Operator source code, you’ll see that it actually con‐
tains multiple controllers, while the Cass Operator consists of a single controller. This
packaging reflects the fact that Cass Operator is an independent project which can be
used by itself without having to adopt the entire K8ssandra framework, otherwise it
could have been included as a controller within the K8ssandra Operator. Table 7-1
describes the mapping of these various controllers to the key resources with which
they interact.

Operator Controller Key Custom Resources
K8ssandra Operator K8ssandra Controller K8ssandraCluster, CassandraDataCenter

Medusa Controller CassandraBackup, CassandraRestore
Reaper Controller Reaper
Replication Controller ClientCon!g, ReplicatedSecret
Stargate Controller Stargate

Cass Operator Cass Operator Controller Manager CassandraDataCenter
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Table 7-1: Mapping K8ssandra CRDs to Controllers

We’ll introduce each K8ssandra and Cass Operator CRD in more detail in the sec‐
tions below.

Creating a K8ssandraCluster
Once you’ve installed the K8ssandra Operator, the next step is to create a K8ssan‐
draCluster. The source code used in this section is available at Vitess Operator Exam‐
ple, based on samples available in the K8ssandra Operator GitHub repo. First, have a
look at the k8ssandra-cluster.yaml file:

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
  name: demo
spec:
  cassandra:
    cluster: demo
    serverVersion: "4.0.1"
    datacenters:
      - metadata:
          name: dc1
        size: 3
        storageConfig:
          cassandraDataVolumeClaimSpec:
            storageClassName: standard
            accessModes:
              - ReadWriteOnce
            resources:
              requests:
                storage: 1Gi
        config:
          jvmOptions:
            heapSize: 512M
        stargate:
          size: 1
          heapSize: 256M

This code specifies a K8ssandraCluster resource consisting of a single datacenter dc1
running three nodes of Cassandra 4.0.1, where the Pod specification for each Cassan‐
dra node requests 1GB of storage using a PersistentVolumeClaim that references the
standard StorageClass. This configuration also includes a single Stargate node to pro‐
vide API access to the Cassandra cluster. This is a minimal configuration that accepts
the chart defaults for most of the other components. Create the demo K8ssandraClus‐
ter in the k8ssandra-operator namespace with the command:

% kubectl apply -f k8ssandra-cluster.yaml -n k8ssandra-operator
k8ssandracluster.k8ssandra.io/demo created
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Once the command completes, you can check on the installation of the K8ssan‐
draCluster using commands such as kubectl get k8ssandraclusters (or kubectl get k8c
for short). Figure 6-3 depicts some of the key compute, network, and storage
resources that the operator built on your behalf when you created the demo K8ssan‐
draCluster.

Figure 6-3. A simple K8ssandraCluster

Here are some key items to note:

• A single StatefulSet has been created to represent the Cassandra datacenter dc1,
with three pods containing the replicas you specified. As you’ll learn in Manag‐
ing Cassandra in Kubernetes with Cass Operator, K8ssandra actually uses a Cas‐
sandraDatacenter CRD to manage this StatefulSet via the Cass Operator.

• While the figure shows a single Service demo-dc1-service exposing access to the
Cassandra cluster as a single endpoint, this is a simplification. You will actually
find there are multiple Services configured to provide access for various clients.

• There is a Deployment managing a single Stargate Pod, as well as Services that
provide client endpoints to the various API services provided by Stargate. This is
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another simplification, and we’ll explore this part of configuration in more detail
in Stargate.

• Similar to examples of infrastructure we’ve shown in previous chapters, the
K8ssandra Operator also creates additional supporting security resources such as
ServiceAccounts, Roles, and RoleBindings.

Once you have a K8ssandraCluster created, you can point client applications at the
Cassandra interfaces and Stargate APIs, and perform cluster maintenance operations.
You can remove a K8ssandraCluster just by deleting its resource, but you won’t want
to do that yet as we have a lot more to explore! We’ll describe several of these interac‐
tions as we examine each of the K8ssandra components in more detail. Along the
way, we’ll make sure to note some of the interesting design choices made by contribu‐
tors to K8ssandra and related projects in terms of how they use Kubernetes resources
and how they adapt data infrastructure that predates Kubernetes into the Kubernetes
way of doing things.

StackGres: An integrated Kubernetes stack for Postgres
The K8ssandra project is not the only instance of an integrated data
stack that runs on Kubernetes. Another example can be found in
StackGres, a project managed by OnGres. StackGres uses Patroni
to support clustered, highly available Postgres deployments and
adds automated backup functionality. StackGres supports integra‐
tion with Prometheus and Grafana for metrics aggregation and vis‐
ualization, along with an optional Envoy proxy for getting more
fine grained metrics at the protocol level. StackGres is composed of
open-source components and uses the AGPLv3 license for its com‐
munity edition.

Managing Cassandra in Kubernetes with Cass Operator
Cass Operator is the shorthand name for the DataStax Kubernetes Operator for
Apache Cassandra. Cass Operator is an open source project available on GitHub that
was brought under the umbrella of the K8ssandra project in 2021, replacing its previ‐
ous home under the DataStax GitHub organization.

Cass Operator is a key part of K8ssandra, since a Cassandra cluster is the basic data
infrastructure around which all the other infrastructure elements and tools are added.
However, Cass Operator was developed before K8ssandra and will continue to exist
as a separately deployable project. This is helpful since not every capability of Cass
Operator is exposed via K8ssandra, especially more advanced Cassandra configura‐
tion options. Cass Operator is listed as its own project in Operator Hub and can be
installed via Kustomize.

Managing Cassandra in Kubernetes with Cass Operator | 151

https://stackgres.io/
https://github.com/zalando/patroni
https://www.gnu.org/licenses/agpl-3.0.en.html
https://github.com/k8ssandra/cass-operator
https://github.com/datastax/cass-operator
https://operatorhub.io/operator/cass-operator-community


Cass Operator provides a mapping of Cassandra’s topology concepts including clus‐
ters, datacenters, racks, and nodes onto Kubernetes resources. The key construct is
the CassandraDataCenter CRD, which represents a datacenter within the topology of
a Cassandra cluster. (Reference Chapter 3 if you need a refresher on Cassandra topol‐
ogy.)

When you created a K8ssandraCluster resource in the previous section, the K8ssan‐
dra Operator created a single CassandraDatacenter resource, which would have
looked something like this:

apiVersion: cassandra.datastax.com/v1beta1
kind: CassandraDatacenter
metadata:
  name: dc1
spec:
  clusterName: demo
  serverType: cassandra
  serverVersion: 4.0.1
  size: 3
  racks:
  - name: default

Since you didn’t specify a rack in the K8ssandraCluster definition, K8ssandra inter‐
prets this as a single rack named default. By creating the CassandraDatacenter,
K8ssandra Operator is delegating the operation of the Cassandra nodes in this data‐
center to Cass Operator.

Cass Operator and Multiple Datacenters
You may be wondering why Cass Operator does not define a CRD
representing a Cassandra cluster. From the perspective of the Cass
Operator, the concept of the Cassandra cluster is basically just a
piece of metadata - the CassandraDataCenter’s clusterName -
rather than an actual resource. This reflects the convention that
Cassandra clusters used in production systems are typically
deployed across multiple physical data centers, which is beyond the
scope of a Kubernetes cluster.

While you can certainly create multiple CassandraDatacenters and link them together
using the same clusterName, they must be in the same Kuberneters cluster for Cass
Operator to be able to manage them. It’s also recommended to use a separate name‐
space to install a dedicated instance of Cass Operator to manage each cluster. You’ll
see how K8ssandra supports the ability to create Cassandra clusters that span multi‐
ple physical datacenters (and Kubernetes clusters) in Multi-cluster topologies.

When Cass Operator is notified by the API Server of the creation of the Cassandra‐
Datacenter resource, it creates resources used to implement the datacenter, including
a StatefulSet to manage the nodes in each rack, as well as various Services and
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security-related resources. The StatefulSet will start the requested number of Pods in
parallel. This brings up a situation in which Cass Operator provides logic to adapt
between how Cassandra and Kubernetes operate.

If you have worked with Cassandra previously, you may be aware that the best prac‐
tice for adding nodes to a cluster is to do so one one at a time, to simplify the process
of a node joining the cluster. This process, called bootstrapping, includes the step of
negotiating which data the node will be responsible for, and may include streaming
data from other nodes to the new node. However, since the StatefulSet is not aware of
these constraints, how can adding multiple nodes to a new or existing cluster one at a
time be accomplished?

The answer lies in the composition of the Pod specification that Cass Operator passes
to the StatefulSet, which is then used to create each Cassandra node, as shown in Fig‐
ure 6-4.

Figure 6-4. Cass Operator Interactions with Cassandra Pods

Cass Operator deploys a custom image of Cassandra in each Cassandra Pod that it
manages. The Pod specification includes at least two containers: an init container
called server-config-init and a Cassandra container called cassandra.

As an init container, server-config-init is started before the cassandra container. It’s
responsible for generating the cassandra.yaml configuration file based on the selected
configuration options for the CassandraDataCenter. You can specify additional con‐
figuration values using the config section of the CassandraDataCenter resource, as
described in the K8ssandra documentation.
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Additional sidecar containers in Cassandra Pods
As you’ll learn in the sections below, the Cassandra pod may have
additional sidecar containers when deployed in a K8ssandraClus‐
ter, depending on which of the additional K8ssandra components
you have enabled. For right now, though, we are focusing on the
most basic installation.

The cassandra container actually contains two separate processes: the daemon that
runs the Cassandra instance and a Management API. This goes somewhat against the
traditional best practice of running a single process per container, but there is a good
reason for this exception.

Cassandra’s management interface is exposed via the Java Management Extensions
(JMX). While this was a legitimate design choice for a Java-based application like
Cassandra when the project was just starting out, JMX has fallen out of favor due to
its complexity and security issues. While there has been some progress toward an
alternate management interface for Cassandra, the work is not yet complete, so the
developers of Cass Operator decided to integrate another open source project, the
Management API for Apache Cassandra.

The Management API project provides a RESTful API that translates HTTP-based
invocations into calls on Cassandra’s legacy JMX interface. By running the Manage‐
ment API inside the Cassandra container, we avoid having to expose the JMX port
outside of the Cassandra containers. This is an instance of a pattern frequently used
in cloud native architectures to adapt custom protocols into HTTP-based interfaces,
for which there is much better support for routing and security in ingress controllers.

Cass Operator discovers and connects to the Management API on each Cassandra
Pod in order to perform management operations that are not related to Kubernetes.
When adding new nodes, this involves the simple action of using the Management
API to verify that the node is up and running successfully and updating the Cassan‐
draDatacenter’s status accordingly. This sequence is described in more detail in the
K8ssandra documentation.

Customizing the Cassandra image used by Cass Operator
The Management API project provides images for recent Cassan‐
dra versions in the 3.x and 4.x series which are available on Docker
Hub. While it is possible to override the Cassandra image that Cass
Operator uses with one of your own, Cass Operator does require
that the Management API is available on each Cassandra Pod. If
you need to build your own custom image including the Manage‐
ment API, you could use the Dockerfiles and supporting scripts
from the GitHub repository as a starting point.
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While this section focused largely on the startup and scaling of Cassandra clusters
described above, Cass Operator provides several features for deploying and managing
Cassandra clusters:

• Topology management - Cass Operator uses Kubernetes affinity principles to
manage the placement of Cassandra nodes (Pods) across Kubernetes worker
nodes to maximize availability of your data.

• Scaling down - just as nodes are added one at a time to scale up, Cass Operator
manages scaling down one node at a time.

• Replacing nodes - If a Cassandra node is lost because it crashes or the worker
node on which it is running goes down, Cass Operator relies on the StatefulSet to
replace the node and bind the new node to the appropriate PersistentVolume‐
Claim.

• Upgrading images - Cass Operator also leverages the capabilities of StatefulSet to
perform rolling upgrades of the images used by the Cassandra Pods

• Managing seed nodes - Cass Operator creates Kubernetes Services to expose the
seed nodes in each datacenter according to Cassandra’s recommended conven‐
tions of one seed node per rack, for a minimum of three per datacenter.

You can read more about these and other features in the Cass Operator documenta‐
tion.

Enabling Developer Productivity with Stargate APIs
Our focus so far in this book has been primarily on deployment of data infrastructure
such as databases in Kubernetes, more than how that infrastructure is used in cloud-
native applications. The usage of Stargate in K8ssandra gives us a good opportunity
to have that discussion.

In many organizations, there is an ongoing conversation about the pros and cons of
direct application access to databases versus abstracting the details of database inter‐
actions. This debate occurs especially frequently in larger organizations in which
there is a division of responsibility between application development teams and
teams that manage platforms including data infrastructure. However, it can also be
observed in organizations that employ modern practices including DevOps and
microservice architectures, where each microservice may have a different data store
behind it.

The idea of providing abstractions over direct database access has taken many forms
over the years. Even in the days of monolithic client-server applications, it was com‐
mon to use stored procedures or isolate data access and complex query logic behind
object-relational mapping tools such as Hibernate, or to use patterns like data access
objects (DAOs).
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More recently, as the software industry has moved toward service oriented architec‐
ture (SOA) and microservices, similar patterns for abstracting data access have
appeared. As described in the article Data Services for the Masses, many teams have
found themselves creating a layer of microservices in their architecture dedicated to
data access, providing create, read, update, and delete (CRUD) operations on specific
data types or entities. These services abstract the details of interacting with a specific
database backend, and if well executed and maintained, can help increase developer
productivity and facilitate migration to a different database when needed.

The Stargate project was born out of the realization that a number of teams were
building very similar abstraction layers to provide data access via APIs. The goal of
the Stargate project is to provide an open source data API gateway - a common set of
APIs for data access to help eliminate the need for teams to develop and maintain
their own custom API layers. While the initial implementation of Stargate is based on
Cassandra, the goal of the project is to support multiple database backends, and even
other types of data infrastructure such as caches and streaming.

With Cassandra used as the backend data store, the Stargate architecture can be
described as having three layers, as shown in Figure 6-5. The API layer is the outer‐
most layer, consisting of services that implement various APIs on top of the underly‐
ing Cassandra cluster. Available APIs include a REST API, a Document API that
provides access to JSON documents over HTTP, a GraphQL API, and a gRPC API.
The routing layer (or coordination layer) consists of a set of nodes that act as Cassan‐
dra nodes, but only perform routing of queries, not data storage. The storage layer
consists of a traditional Cassandra cluster, which can currently be Cassandra 3.11,
Cassandra 4.0, or DataStax Enterprise 6.8.

Figure 6-5. Stargate Conceptual Architecture with Cassandra
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One of the key benefits of this architecture is that it recognizes the separation of con‐
cerns for managing usage of compute and storage resources and provides the ability
to scale this usage independently based on the needs of client applications:

• The number of storage nodes can be scaled up or down to provide the storage
capacity required by the application.

• The number of coordinator nodes and API instances can be scaled up or down to
match the application’s read and write load and optimize throughput.

• APIs that are not used by the application can be scaled to zero (disabled) to
reduce resource consumption.

K8ssandra supports the provision of Stargate on top of an underlying Cassandra clus‐
ter via the Stargate CRD. The CassandraDataCenter deployed by Cass Operator
serves as the storage layer, and the Stargate CRD specifies the configuration of the
routing and API layers. An example configuration is shown in Figure 6-6.

Figure 6-6. Stargate Deployment on Kubernetes

The installation includes a Deployment to manage the coordinator nodes, and a Ser‐
vice to provide access to the Bridge API, a private gRPC interface exposed on the
coordinator nodes that can be used to create new API implementations. See the Star‐
gate v2 Design for more details on the Bridge API. There is also a Deployment for
each of the APIs that is enabled in the installation, along with a Service to provide
access to client applications.
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As you can see, the Stargate project provides a promising framework for extending
your data infrastructure with developer-friendly APIs that can scale along with the
underlying database.

Uni!ed Monitoring Infrastructure with Prometheus and Grafana
Now that we’ve considered the addition of infrastructure that makes life easier for
application developers, let’s look at some of the more operations-focused aspects of
integrating data infrastructure in a Kubernetes stack. We’ll start with monitoring.

Observability is a key attribute of any application deployed on Kubernetes, since it
has implications for your awareness of its availability, performance and cost. Your
goal should be to have an integrated view across both your application and the infra‐
structure it depends on. Observability is often described as consisting of three types
of data: metrics, logs, and tracing. Kubernetes itself provides capabilities for logging
as well as associating events with resources, and you’ve already learned above how the
Cass Operator facilitates the collection of logs from Cassandra nodes.

In this section, we’ll focus on how K8ssandra incorporates the Prometheus/Grafana
stack which provides metrics. Prometheus is a popular open source monitoring plat‐
form. It supports a variety of interfaces for collecting data from applications and serv‐
ices and stores them in a time series database which can be queried efficiently using
the Prometheus Query Language (PromQL). It also includes an AlertManager which
generates alerts and other notifications based on metric thresholds.

While previous releases of K8ssandra in the 1.X series incorporated the Prometheus
stack as part of a K8ssandra, K8ssandra 2.X provides the capability to integrate with
an existing Prometheus installation.

One easy way to install the Prometheus Operator is to use kube-prometheus, a repos‐
itory provided as part of the Prometheus Operator project. Kube-prometheus is
intended as a comprehensive monitoring stack for Kubernetes including the control
plane and applications. You can clone this repository and use the library of manifests
(yaml files) that it contains to install an integrated stack of components shown in Fig‐
ure 6-7.
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Figure 6-7. Components of the Kube-Prometheus Stack

These components include the following:

• Prometheus Operator - the operator, which is set apart in the figure, manages the
other components.

• Prometheus - the metrics database is run in a high-availability configuration
managed via a StatefulSet. Prometheus stores data using a time series database
with a backing Persistent Volume.

• Node Exporter - the Node Exporter runs on each Kubernetes worker node,
allowing Prometheus to pull operating system metrics via HTTP.

• Client Library - applications can embed a Prometheus client library, which allows
Prometheus to pull metrics via HTTP.

• Alert Manager - The Prometheus Alert Manager can be configured to generate
alerts based on thresholds for specific metrics for delivery via email or third-
party tools such as PagerDuty. The kube-prometheus stack comes with built-in
alerts for the Kubernetes cluster, and application-specific alerts can also be added.

• Grafana - this is deployed to provide charts that are used to display metrics to
human operators. Grafana uses PromQL to access metrics from Prometheus, and
this interface is available to other clients as well.

While not shown in the figure, the stack also includes the Prometheus Adapter for
Kubernetes Metrics APIs, an optional component which exposes metrics collected by
Prometheus to the Kubernetes control plane so that they can be used to auto-scale
applications.
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Connecting K8ssandra with Prometheus can be accomplished in a few quick steps.
The instructions in the K8ssandra documentation walk you through installing the
Prometheus Operator using kube-prometheus if you do not have it already. Since
kube-prometheus installs Prometheus Operator in its own namespace, you’ll want to
make sure the operator has permissions to manage resources in other namespaces.

In order to integrate K8ssandra with Prometheus, you set attributes on your K8ssan‐
draCluster resource to enable monitoring on Cassandra and Stargate nodes. For
example, you could do something like the following to enable monitoring for nodes
in all datacenters in the cluster:

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
  name: demo
spec:
  cassandra:
    datacenters:
      ...
    telemetry: 
      prometheus:
        enabled: true
  stargate:
    telemetry: 
      prometheus:
        enabled: true

It’s also possible to selectively enable monitoring on individual datacenters, as
described in the documentation.

Let’s take a look at how the integration works. First, let’s consider how the Cassandra
nodes expose metrics. As discussed above in the Cass Operator section, Cassandra
exposes management capabilities via JMX, and this includes metrics reporting. The
Metrics Collector for Apache Cassandra (MCAC) is an open source project that
exposes metrics so that they can be accessed by Prometheus or other backends that
use the Prometheus protocol via HTTP. K8ssandra and Cass Operator use a Cassan‐
dra Docker image that includes MCAC as well as the Management API as additional
processes that run in the Cassandra container. This configuration is shown on the left
side of Figure 6-8.
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Figure 6-8. Monitoring Cassandra with Kube-Prometheus Stack

The right side of Figure 6-8 shows how Prometheus and Grafana are configured to
consume and expose the Cassandra metrics. The K8ssandra Operator creates Service‐
Monitor resources for each CassandraDatacenter for which monitoring has been
enabled. The ServiceMonitor is a CRD defined by Prometheus Operator which con‐
tains configuration details describing how to collect metrics from a set of Pods,
including the following:

• A selector that references the name of a label which identifies the Pods
• Connection information such as the scheme (protocol), port, and path to use to

gather metrics from each Pod
• The interval at which metrics should be pulled
• Optional metricRelabelings, which are instructions that indicate any desired

renaming of metrics, or even indicate metrics that should be dropped and not
ingested by Prometheus.
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K8ssandra creates separate ServiceMonitor instances for Cassandra and Stargate
nodes, since the metrics exposed are slightly different. To observe the ServiceMoni‐
tors deployed in your cluster, you can execute a command such as kubectl get service‐
monitors -n monitoring.

Prometheus provides access to its metrics to Grafana and other tools via a PromQL
endpoint exposed as a Kubernetes service. The kube-prometheus installation config‐
ures an instance of Grafana to connect to Prometheus using an instance of the Gra‐
fana DataSource CRD. Grafana accepts dashboards defined using yaml files, which
you can provide as ConfigMaps. See the K8ssandra documentation for guidance on
loading dashboard definitions that display Cassandra and Stargate metrics. You may
also wish to create dashboards that display your application metrics alongside the
data tier metrics provided by K8ssandra for an integrated view of application perfor‐
mance.

As you can see, kube-prometheus provides a comprehensive and extensible monitor‐
ing stack for Kubernetes clusters, much as K8ssandra provides a stack for data man‐
agement. The integration of K8ssandra with kube-prometheus is a great example of
how you can assemble integrated stacks of Kubernetes resources to form even more
powerful applications.

Performing Repairs with Cassandra-Reaper
As a NoSQL database, Cassandra emphasizes high performance (especially for writes)
and high availability by default. If you’re familiar with the CAP theorem, you’ll
understand that this means that sometimes Cassandra will temporarily sacrifice con‐
sistency of data across nodes in order to deliver this high performance and high avail‐
ability at scale, an approach known as eventual consistency. Cassandra does provide
the ability to tune the amount of consistency to your needs via options for specifying
replication strategies and the consistency level required per query. Users and admin‐
istrators should be aware of these options and their behavior in order to use Cassan‐
dra effectively.

Cassandra has multiple built-in “anti-entropy” mechanisms such as hinted handoff
and repair that help maintain consistency of data between nodes over time. Repair is
a background process by which a node compares a portion of the data it owns with
the latest contents of other nodes that are also responsible for that data. While these
checks can be somewhat optimized through the use of checksums, repair can still be a
performance intensive process and is best performed when a cluster is under reduced
or off-peak load. Combined with the fact that there are a number of different options
available including full and incremental repairs, executing repairs has traditionally
been a process that requires some tailoring for each cluster. It also has tended to be a
manual process that was unfortunately frequently neglected by some Cassandra clus‐
ter administrators.
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More detail on repairs in Cassandra
For a deeper treatment of repair, see Cassandra: The Definitive
Guide, where repair concepts and the available options are
described in Chapters 6 and 12, respectively.

Cassandra Reaper was created to take the difficulty out of executing repairs on Cas‐
sandra clusters and optimize repair performance to minimize the impact of running
repairs on heavily used clusters. Reaper was created by Spotify and enhanced by The
Last Pickle, who currently manage the project on GitHub. Reaper exposes a RESTful
API for configuring repair schedules for one or more Cassandra clusters, and also
provides a command line tool and web interface which guides administrators
through the process of creating schedules.

K8ssandra provides the option to incorporate an instance of Cassandra Reaper as
part of a K8ssandraCluster. The K8ssandra Operator includes a Reaper Controller
that is responsible for managing the local Cassandra Reaper manager process through
its associated Reaper CRD. By default, enabling Reaper in a K8ssandraCluster will
cause an instance of Reaper to be installed in each Kubernetes cluster represented in
the installation, but you can also use a single instance of Reaper to manage repairs
across multiple datacenters, or even across multiple Cassandra clusters, provided they
are accessible via the network.

How important is it to be Kubernetes-native?
K8ssandra’s usage of Reaper is an example of the tradeoffs involved in building more
complex stacks of data infrastructure. For example, a more Kubernetes-native design
for the Reaper Manager might involve factoring out each repair task into a Kuber‐
netes CronJob that could be scheduled alongside the associated CassandraDatacenter,
thus making more use of Kubernetes built-in resources. For now the K8ssandra
project has made the choice to integrate Reaper as-is.

We saw another example of this “wrap vs. rewrite” type of decision in Chapter 5,
where the Vitess Operator reuses the Vitess control daemon vtctld and its vtctlclient
as-is. In both of these examples, the project developers have made pragmatic choices
to do initial deployments that do “just enough” to port existing infrastructure to run
in Kubernetes, while leaving room for more Kubernetes-native approaches in the
future. In Chapter 7 we’ll examine what it looks like to start with a Kubernetes-native
approach from scratch on new infrastructure projects.

Backing up and Restoring Data with Cassandra Medusa
Managing backups is an important part of maintaining high availability and disaster
recovery planning for any system that stores data. Cassandra supports both full and

Managing Cassandra in Kubernetes with Cass Operator | 163

https://learning.oreilly.com/library/view/cassandra-the-definitive/9781492097136/
https://learning.oreilly.com/library/view/cassandra-the-definitive/9781492097136/
http://cassandra-reaper.io/
https://github.com/thelastpickle/cassandra-reaper


differential backups by creating hard links to the SSTable files it uses for data persis‐
tence. Cassandra itself does not take responsibility for copying the SSTable files to
backup storage. Instead, this is left to the user. Similarly, recovering from backup
involves copying the SSTable files to the Cassandra node where the data is to be reloa‐
ded, then Cassandra can be pointed to the local files to restore their contents.

Cassandra’s backup and restore operations are traditionally executed on individual
nodes using nodetool, a command line tool that leverages Cassandra’s JMX interface.
Cassandra Medusa is an open source command line tool created by Spotify and The
Last Pickle that executes nodetool commands to perform backups, including syn‐
chronization of backups across multiple nodes. Medusa supports Amazon S3, Ama‐
zon S3, Google Cloud Storage (GCS), Azure Storage, and S3 compatible such as
MinIO, Ceph Object Gateway, and can be extended to support other storage provid‐
ers via the Apache Libcloud project.

Medusa can restore either individual nodes to support fast replacement of a downed
node, or entire clusters in a disaster recovery scenario. Restoring to a cluster can
either be to the original cluster or to a new cluster. Medusa is able to restore data to a
cluster with a different size or topology than the original cluster, which has tradition‐
ally been a challenge to figure out manually.

K8ssandra has incorporated Medusa in order to provide backup and restore capabili‐
ties for Cassandra clusters running in Kubernetes. To configure the use of Medusa in
a K8ssandraCluster, you’ll want to configure the medusa properties:

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
  name: demo
spec:
  cassandra:
    ...
  medusa:
    storageProperties:
      storageProvider: google_storage
      storageSecretRef:
        name: medusa-bucket-key
      bucketName: k8ssandra-medusa
      prefix: test
      ...

The options shown here include the storage provider, the bucket to use for backups,
an optional prefix to add to directory names used to organize backup files, and the
name of a Kubernetes Secret containing login credentials for the bucket. See the doc‐
umentation for details on the contents of the Secret. Other available options include
enabling SSL on the bucket connection, and setting the policies for purging old back‐
ups such as a maximum age or number of backups.
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Creating a backup
Once the K8ssandraCluster has been started, you can create backups using the Cas‐
sandraBackup CRD. For example, you could initiate a backup of the CassandraData‐
center dc1 using a command like this:

cat <<EOF | kubectl apply -f -n k8ssandra-operator -
apiVersion: medusa.k8ssandra.io/v1alpha1
kind: CassandraBackup
metadata:
  name: medusa-backup1
spec:
  cassandraDatacenter: dc1
  name: medusa-backup1
EOF

The steps in processing of this resource are shown in Figure 6-9. (1) When you apply
the resource definition, (2) kubectl registers the resource with the API Server, (3)
which notifies the Medusa Controller running as part of the K8ssandra Operator. (4)
Medusa Controller contacts a sidecar container which K8ssandra has injected into the
Cassandra Pod because you chose to enable Medusa on the K8ssandraCluster. (5) The
Medusa sidecar container uses nodetool commands to a backup on the Cassandra
node via JMX (the JMX interface is only exposed within the Pod). (6) Cassandra per‐
forms a backup, marking the SSTable files on the PersistentVolume that mark the cur‐
rent snapshot. (7) The Medusa sidecar copies the snapshot files from the PV to the
bucket. Steps 4-7 are repeated for each Cassandra Pod in the CassandraDatacenter.

Figure 6-9. Performing a Datacenter backup using Medusa

You can monitor the progress of the backup by checking the status of the resource:
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kubectl get cassandrabackup/medusa-backup1 -n k8ssandra-operator -o yaml
kind: CassandraBackup
metadata:
    name: medusa-backup1
spec:
  backupType: differential
  cassandraDatacenter: dc1
  name: medusa-backup1
status:
  ...
  ...
  finishTime: "2022-02-26T09:21:38Z"
  finished:
  - demo-dc1-default-sts-0
  - demo-dc1-default-sts-1
  - demo-dc1-default-sts-2
  startTime: "2022-02-26T09:21:35Z"

You’ll know the backup is complete when the finishTime attribute is populated. The
Pods that have been backed up are listed under the finished attribute.

Restoring from backup
The process of restoring data from a backup is similar. To restore an entire datacenter
from backed up data, you could create a CassandraRestore resource like this:

cat <<EOF | kubectl apply -f -n k8ssandra-operator -
apiVersion: medusa.k8ssandra.io/v1alpha1
kind: CassandraRestore
metadata:
  name: restore-backup1
spec:
  cassandraDatacenter: 
    name: dc1
    clusterName: demo
  backup: medusa-backup1
  inPlace: true
  shutdown: true
EOF

When the Medusa Controller is notified of the new resource, it locates the Cassandra‐
Datacenter and updates the Pod spec template within the StatefulSet that is managing
the Cassandra Pods. The updates consist of adding a new init container called
medusa-restore and setting environment variables that medusa-restore will use to
locate the data files that are to be restored. The update to the Pod spec template
causes the StatefulSet controller to perform a rolling update of the Cassandra Pods in
the StatefulSet. As each Pod restarts, medusa-restore copies the files from object stor‐
age onto the PersistentVolume for the node and then the Cassandra container starts
as usual. You can monitor the progress of the restore by checking the status of the
CassandraRestore resource.

166 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

www.dbooks.org

https://www.dbooks.org/


A common language for data recovery?
It is interesting to note the similarities and differences between the
ways backup and restore operations are supported by the K8ssan‐
dra Operator we’ve discussed in this chapter and the Vitess Opera‐
tor discussed in Chapter 5.
In K8ssandra, the CassandraBackup and CassandraRestore
resources function in a manner similar to Kubernetes Jobs - they
represent a task that you would like to have performed as well as
the results of the task. In contrast, the VitessBackup resource repre‐
sents a record of a backup that the Vitess Operator has performed
based on the configuration of a VitessCluster resource. There is no
equivalent resource to the CassandraRestore operator in Vitess.
Although there are significant differences between K8ssandra and
Vitess in the approach to managing backups, they both represent
each backup task as a resource. Perhaps this common ground could
be the starting point toward the development of common resource
definitions for backup and restore operations, helping fulfill the
vision introduced in Chapter 5.

Similar to the behavior of Cassandra Reaper, a single instance of Medusa can be con‐
figured to manage backup and restore operations across multiple datacenters or Cas‐
sandra clusters. See the K8ssandra documentation for more details on performing
backup and restore operations with Medusa.

Deploying Multi-cluster applications in Kubernetes
One of the main selling points of a distributed database like Cassandra is its ability to
support deployments across multiple data centers. Many users take advantage of this
in order to promote high availability across geographically distributed datacenters, to
provide lower latency reads and writes for applications and their users.

However, Kubernetes itself was not originally designed to support applications that
span multiple Kubernetes clusters. This has traditionally meant that creating such
multi-region applications leaves a lot of work to development teams. This work takes
two main forms: creating the network infrastructure to connect the Kubernetes clus‐
ters, and coordinating interactions between resources in those clusters.

Let’s examine these requirements and the implications for an application like Cassan‐
dra:

Multi-cluster networking requirements
From a networking perspective, the key is to have secure, reliable networking
between datacenters. If you’re using a single cloud provider for your application,
this may be relatively simple to achieve using virtual private cloud (VPC) capabil‐
ities offered by the major cloud vendors.
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If you’re using multiple clouds, you’ll need a third-party solution. For the most
part, Cassandra requires routable IPs between its nodes and does not rely on
name resolution, but it is helpful to have domain name resolution (DNS) in place
as well to simplify the process of managing Cassandra’s seed nodes.

The blog Deploy a Multi-Data Center Cassandra Cluster in Kubernetes describes
an example configuration in Google Cloud Platform (GCP) using the CloudDNS
service, while Multi-Region Cassandra on EKS with K8ssandra and Kubefed
describes a similar configuration on Amazon’s Elastic Kubernetes Service (EKS).

Multi-cluster resource coordination requirements
Managing an application that spans multiple Kubernetes clusters means that
there are distinct resources in each cluster which have no relationship to
resources in other clusters that the Kubernetes control plane is aware of. In order
to manage the lifecycle of an application including deployment, upgrade, scaling
up and down, and teardown, you need to coordinate resources across multiple
datacenters.

The Kubernetes Cluster Federation project (KubeFed for short) provides one
approach to providing a set of APIs for managing resources across clusters that
can be leveraged to build multi-cluster applications. This includes mechanisms
that represent Kubernetes clusters themselves as resources. While KubeFed is still
in beta, the K8ssandra Operator uses a similar design approach for managing
resources across clusters. We’ll examine this in more detail in Kubernetes Cluster
Federation.

In order to achieve a multi-cluster Kubernetes deployment of Cassandra, you’ll need
to establish networking between datacenters according to your specific situation.
Given that foundation, the K8ssandra Operator provides the facilities to manage the
lifecycle of resources across the Kubernetes clusters. For a simple example of deploy‐
ing a multi-region K8ssandraCluster, use the instructions found in the K8ssandra
documentation, again using the Makefile:

make multi-up

This builds two Kind clusters, deploys the K8ssandra Operator in each of them, and
creates a multi-cluster K8ssandraCluster. One advantage of using Kind for a simple
demonstration is that Docker provides the networking between clusters. We’ll walk
through some of the key steps in this process in order to describe how the K8ssandra
Operator accomplishes this work.

The K8ssandra Operator supports two modes of installation - control plane (the
default) and data plane. For a multi-cluster deployment, one Kubernetes cluster must
be designated as the control plane cluster, and the others as data plane clusters. The
control plane cluster can optionally include a CassandraDatacenter, as in the configu‐
ration shown in Figure 6-10.
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Figure 6-10. K8ssandra Multi-cluster Architecture

When installed in control plane mode, the K8ssandra Operator uses two additional
CRDs to manage multi-cluster deployments: ReplicatedSecret and ClientConfig. You
can see evidence of the ClientConfig in the K8ssandraCluster configuration that was
used, which looks something like the following:

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
  name: demo
spec:
  cassandra:
    serverVersion: "4.0.1"
    ...
    networking:
      hostNetwork: true    
    datacenters:
      - metadata:
          name: dc1
        size: 3
        stargate:
          size: 1
      - metadata:
          name: dc2
        k8sContext: kind-k8ssandra-1
        size: 3
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        stargate:
          size: 1

This configuration specifies a K8ssandraCluster demo consisting of two Cassandra‐
Datacenters, dc1 and dc2. Each datacenter has its own configuration so that you can
select a different number of Cassandra and Stargate nodes, or different resource allo‐
cations for the Pods. In the demo configuration, dc1 is running in the control plane
cluster kind-k8ssandra-0, and dc2 is running in the data plane cluster kind-
k8ssandra-1.

Notice the line in the configuration that says k8sContext: kind-k8ssandra-1. This is a
reference to a ClientConfig resource that was created by the make command. A Cli‐
entConfig is a resource that represents the information needed to connect to the API
server of another cluster, similar to the way kubectl stores information about different
clusters on your local machine. The ClientConfig resource references a Secret that is
used to store access credentials securely. The K8ssandra Operator repo includes a
convenience script that can be used to create ClientConfig resources for Kubernetes
clusters.

When you create a K8ssandraCluster in the control plane cluster, it uses the Client‐
Configs to connect to each remote Kubernetes cluster in order to create the specified
resources. For the configuration shown above, this includes CassandraDatacenter and
Stargate resources, but can also include other resources such as Medusa, Prometheus
ServiceMonitor.

The ReplicatedSecret is another resource involved in sharing access credentials. The
control plane K8ssandra Operator uses this resource to keep track of Secrets that it
creates in each remote cluster. These secrets are used by the various K8ssandra com‐
ponents in order to communicate securely with each other, for example the default
Cassandra administrator credentials. The K8ssandra Operator creates and manages
ReplicatedSecret resources itself, you don’t need to interact with them.

The K8ssandraCluster, ClientConfig, and ReplicatedSecret resources only exist in the
control plane cluster, and when the K8ssandra Operator is deployed in data plane
mode, it does not even run the controllers associated with those resource types.

More detail on the K8ssandra Operator
This is a quick summary of a complex design for a multi-cluster
operator. For more details on the approach, see the K8ssandra
Operator architecture overview and John Sanda’s presentation at
the Data on Kubernetes community meetup.

Now let’s consider a more general approach to building multi-cluster applications
that we can compare and contrast with K8ssandra’s approach.
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Kubernetes Cluster Federation
With Irfan Ur Rehman, Senior Engineer, Turbonomic (an IBM company)

KubeFed is a project for building multi-cluster applications, managed by the Kuber‐
netes Multi Cluster SIG. The project was initially called Federation, but was renamed
to Kubernetes Cluster Federation (or KubeFed for short), in order to disambiguate it
from usage of the term federation in other projects outside of Kubernetes.

KubeFed defines federation as joining a set of clusters into a pool, which then pro‐
vides a unified API to the user to distribute applications into those clusters. To use
Kubefed, you create federated resources in a base cluster. A federated resource con‐
tains templates for Kubernetes built-in or custom resources. KubeFed acts as a
resource reconciler, using the templates you provide to push resources to the member
clusters.

You might want the templates to be applied in slightly different ways in each member
cluster, so KubeFed supports concepts called placements and overrides. A placement
is a definition of where applications and their resources are deployed. For example,
you could use a placement to push resources in cluster one, but not cluster two, or to
indicate you want more replicas in one cluster than another cluster. Overrides allow
you to provide different values for resource attributes for a specific cluster.

KubeFed also provides resources to support higher order things you might want to
do. The ReplicaScheduler is a resource that manages Deployments and ReplicaSets.
This allows you to deploy your application by specifying the total number of replicas
desired across clusters, without worrying about which clusters they go to. You can do
something similar for StatefulSets.

Cluster federation, placements, and overrides are three key concepts defined by Kube‐
fed, along with others defined on the concepts page. These terms have gained wide
popularity and are used across other projects as well. For example, ArgoCD is a
GitOps toolset for Kubernetes which employs similar concepts such as placement
rules and overrides.

There are other multi-cluster projects in the Kubernetes ecosystem which have simi‐
lar goals but differ in implementation and scope:

KArmada is a project sponsored by Huawei which is similar to KubeFed but takes a
different API approach. KArmada reuses existing Kubernetes resources but extends
them with additional attributes in order to provide the appearance of a single Kuber‐
netes cluster.

Crossplane is a CNCF incubating project which aims to provide a single API surface
for you to distribute resources and consume services from multiple clouds. Cross‐
plane uses the same declarative approach as Kubernetes but goes beyond just Kuber‐
netes resources, allowing you to incorporate offerings from the major cloud providers
such as database as a service (DBaaS) or network as a service (NaaS).
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Open Cluster Management is a project sponsored by Redhat which provides an eco‐
system of components for working across multiple Kubernetes clusters.

Each of these projects take a similar approach at a high level but have their own opin‐
ionated APIs and nuances which might be more suitable to different users.

KubeFed and these similar projects are primarily concerned with resource replication.
In order to have multi-cluster applications, you also need networking solutions,
which can get a little more complex. One approach is to create cross cluster network
overlays using open source projects like Submariner or Cilium.

Even with the network in place, you still have the problem of discovering applications
and resources across clusters and connecting them securely. The Multi-Cluster API is
a proposal in the Kubernetes Multi-cluster SIG for providing this discovery. It is
based on a concept called endpoint slices which allow a cluster to discover services
from another cluster. An alpha implementation is available.

Although KubeFed is still in Beta status, it is in a mature state and some organizations
are already using it in production. The core functionality of reconciling resources
across clusters is something that just works. The main item in the KubeFed roadmap
is a general availability release, which should lead to further adoption.

Adoption can be a chicken and egg problem, because organizations often prefer to
back established projects. Throughout its history, Kubefed has had support from Red‐
Hat/IBM, Huawei, D2IQ and others, and backing by larger organizations is important
for driving adoption by the larger community.

It is challenging to come up with a single standard. There is a lack of incentive for
major cloud providers to contribute to these efforts vs. supporting tooling centered
on their own platforms, so it is up to us in the open source community to invest in
this area.

As you can see, there is a lot of potential for growth in the area of Kubernetes federa‐
tion and the ability to manage resources across Kubernetes cluster boundaries. For
example, as a database whose primary superpower is running across multiple data
centers, Cassandra seems like a great match for a multi-cluster solution like KubeFed.

The K8ssandra Operator and KubeFed have taken similar architectural approaches,
where custom “federated” resources provide templates used to define resources in
other clusters. This commonality points to the possibility for future collaboration
across these projects and others based on similar design principles. Perhaps in the
future, CRDs like K8ssandra’s ClientConfig and ReplicatedSecret can be replaced by
equivalent functionality provided by Kubefed.
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Summary
In this chapter you’ve learned how data infrastructure can be composed with other
infrastructure to build reusable stacks on Kubernetes. Using the K8ssandra project as
an example, you’ve learned about aspects including integrating data infrastructure
with API gateways and monitoring solutions to provide more full-featured solutions.

You’ve also learned some of the opportunities and challenges with adapting existing
technologies onto Kubernetes and creating multi-cluster data infrastructure deploy‐
ments. In the next chapter we’ll explore how to design new cloud-native data infra‐
structure that takes advantage of everything that Kubernetes provides without
requiring adaptation and discover what new possibilities that opens up.
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CHAPTER 7

The Kubernetes Native Database

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 7th chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

The software industry is flush with terms that define major trends in a single word or
short phrase. You can see one of them in the title of this book: cloud native. Another
example is microservice”, a major architectural paradigm that touches much of the
technology we’re discussing here. More recently, terms like Kubernetes native and ser‐
verless have emerged.

While succinct and catchy, distilling a complex topic or trend down to a single sound
bite leaves room for ambiguity, or at least for reasonable questions like, “What does
this actually mean”? To further muddy the waters, terms such as these are frequently
used in the context of marketing products as a way to gain leverage or differentiate
against other competitive offerings. Whether the content you’re consuming makes an
overt statement or it’s just the subtext, you may have wondered whether a given tech‐
nology must be better to run on Kubernetes than other offerings because it’s labeled
“Kubernetes native”.
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Of course, for these terms to be useful to us in evaluating and picking the right tech‐
nologies for our applications, the real task is to unpack what they really mean, as we
did with the term cloud native data in Chapter 1. In this chapter, we’ll look at what it
means for data technology to be Kubernetes native and see if we can arrive at a defini‐
tion that we can agree on. To do this, we’ll examine a couple of projects that claim
these terms and derive the common principles: TiDB and Astra DB. Are you ready?
Let’s dive in!

Why a Kubernetes native approach is needed
First, let’s discuss why the idea of a Kubernetes native database came up in the first
place. Up to this point in the book, we’ve focused on deployment of existing databases
on Kubernetes including MySQL and Cassandra. These are mature databases that
were around before Kubernetes existed and have proven themselves over time. They
have large install bases and user communities, and because of this investment you can
see why there’s a large incentive to run these databases in Kubernetes environments,
and why there has been such interest in creating operators to automate them.

At the same time, you’ve probably noticed some of the awkwardness in adapting
these databases to run on Kubernetes. While it is pretty straightforward to point a
database to Kubernetes-based storage just by changing a mount path, tighter integra‐
tion with Kubernetes to manage databases that consist of multiple nodes can be a bit
more involved. This can range from relatively simple tasks like deploying a legacy
management UI in a Pod and exposing access to the HTTP port, to the more complex
deployment of sidecars that we saw in Chapter 6 to provide APIs for management
and metrics collection.

The recognition of this complexity has led some innovators to develop new databases
that are designed to be cloud native or Kubernetes native from day one. It’s a well
known axiom in the database industry that it takes 5-10 years for a new database
engine to reach a point of maturity. Because of this, cloud native databases tend not to
be completely new implementations, but rather refactoring of existing databases into
microservices that can be scaled independently, while maintaining compatibility with
existing APIs that developers are accustomed to. Thus, the trend of decomposing the
monolith has arrived at the data tier. The emerging generation of databases will be
based on new architectures in order to truly maximize the benefits of the cloud.

In order to help us assess these new databases and their architectures, recall the cloud
native data principles introduced in Chapter 1. We’ll repeat the principles briefly here
and add a few questions we might ask about any data technology running on Kuber‐
netes:
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Principle 1: Leverage compute, network, and storage as commodity APIs
How does the database use Kubernetes compute resources (Pods, Deployments,
StatefulSets), network resources (Services and Ingress), and storage resources
(PersistentVolumes, PersistentVolumeClaims, StorageClasses)?

Principle 2: Separate the control and data planes
Is the database deployed and managed by an operator? What custom resources
does it define? Are there other workloads in the control plane besides the opera‐
tor?

Principle 3: Make observability easy
How do the various services in the architecture expose metrics and logs to sup‐
port collection by the Kubernetes control plane and third party extensions?

Principle 4: Make the default con!guration secure
Do the database and associated operator make use of Kubernetes Secrets to share
credentials, and use Roles, RoleBindings to manage access by role? Do services
minimize the number of exposed points and require secure access to them?

Principle 5: Prefer declarative con!guration
Extending principle 2, can the database be managed entirely by creating, updat‐
ing or deleting Helm charts and Kubernetes resources (whether built-in or cus‐
tom resources), or are other tools required?

In the sections that follow, we’ll explore the answers to these questions for specific
data technologies and see what else we can learn about what it means to be Kuber‐
netes native.

What’s the difference between cloud native and Kubernetes native?
These are two similar sounding terms that are often used inter‐
changeably, but do they have distinct meaning? We think so. After
all, on the one hand, it’s possible to run technology on Kubernetes
in a way that does not embody cloud native principles. On the
other hand, it’s possible to take a cloud native approach in deploy‐
ing to other environments besides Kubernetes. For some quick def‐
initions, let’s think of cloud native as implying a microservice
approach with independently scalable services, and Kubernetes
native as an application of cloud native principles while using as
many Kubernetes resources and APIs as possible. We’ll provide a
checklist at the end of this chapter that will help solidify these defi‐
nitions.

With this background, let’s look at some examples of databases that embody cloud
native principles.
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Hybrid data access at scale with TiDB
The databases that have received most of our focus in this book so far represent two
major trends in database architecture that trace their lineage back for decades or
more. MySQL is a relational database that provides its own flavor of the Standard
Query Language (SQL), based on rules developed by Edgar Codd dating back to the
1970s.

In the early 2000s, companies building web scale applications began to push the lim‐
its of what could be accomplished with the relational databases of the day. As data‐
base sizes began growing beyond what could feasibly be managed on a single
instance, techniques like sharding were used to scale across multiple instances. These
were frequently expensive, difficult to operate, and not always reliable.

In response to this need, Cassandra and other so called “NoSQL” databases emerged
in a period of intense innovation and experimentation. These databases provide lin‐
ear scalability through adding additional nodes. They offer different data models, or
ways of representing data: for example, key-value stores such as Redis, document
databases such as MongoDB, graph databases such as Neo4J, and others. NoSQL
databases tended to provide weaker consistency guarantees and omit support for
more complex behaviors like transactions and joins in order to achieve high perfor‐
mance and availability at scale, a tradeoff documented by Eric Brewer in his CAP
Theorem.

Because of the continued developer demand for traditional relational semantics such
as strong consistency, transactions, and joins, multiple teams began to revive the idea
of supporting these capabilities in distributed databases starting around 2012. These
so-called “NewSQL” databases were based on more efficient and performant consen‐
sus algorithms. Two key papers helped drive the emergence of the NewSQL move‐
ment. First, the Calvin paper introduced a global consensus protocol which
represented a more reliable and performant approach for guaranteeing strong consis‐
tency, later adopted by FaunaDB and other databases. Second, Google’s Spanner
paper introduced a design for a distributed relational database using sharding and a
new consensus algorithm that leveraged the improved ability of cloud infrastructure
to provide time synchronization across data centers. Besides Google Spanner, this
approach was implemented by databases including CockroachDB and YugaByteDB.
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More on consistency and consensus
While we don’t have space in this book to dive deeply into the
tradeoffs between various consensus algorithms and how they are
used to provide various data consistency guarantees, an under‐
standing of these concepts is helpful in choosing the right data
infrastructure for your cloud applications. If you’re interested in
learning more in this area, Martin Kleppmann’s Desigining Data
Intensive Applications (O’Reilly) is a great source, especially Chap‐
ter 9, Consistency and Consensus.

TiDB (where Ti stands for “Titanium”) represents a continuation of the NewSQL
trend in the cloud native space. TiDB is an open source, MySQL-compatible database
that was initially developed and primarily supported by PingCAP, Inc.

TiDB Architecture
A key characteristic of TiDB which distinguishes it from other databases we’ve exam‐
ined so far in this book is its ability to support transactional and analytic workloads.
This approach, known as Hybrid Transactional and Analytical Processing (HTAP),
supports both types of queries without a separate extract, transform, and load (ETL)
process. As shown in Figure 7-1, TiDB does this by providing two different database
engines under the hood: TiKV and TiFlash. This approach was inspired by Google’s
F1 project, a layer built on top of Spanner.
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Figure 7-1. TiDB Architecture

One key aspect that gives TiDB a cloud native architecture is the packaging of com‐
pute and storage operations into separate components, each of which are composed
of independently scalable services organized in clusters. Let’s examine the roles of
each of these components.

TiDB
Each TiDB instance is a stateless service that exposes a MySQL endpoint to client
applications. TiDB parses incoming SQL requests and uses metadata from the
Placement Driver to create an execution plan containing queries to make on spe‐
cific TiKV and TiFlash nodes in the storage cluster. TiDB executes these queries,
assembles the results, and returns to the client application. The TiDB cluster is
typically deployed with a proxy in front of it to provide load balancing.

TiKV
The storage cluster consists of a mixture of TiKV and TiFlash nodes. First, let’s
examine TiKV. TiKV is an open source, distributed key-value database that uses
RocksDB as its backing storage engine. TiKV exposes a custom Distributed SQL
API that the TiDB nodes use to execute queries to store and retrieve data and
manage distributed transactions. TiKV stores multiple replicas of your data, typi‐
cally at least three, to support high availability and automatic failover. TiKV is a
CNCF Graduated project which can be used independently from TiDB, as we’ll
discuss below.
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TiFlash
The storage cluster also includes TiFlash nodes, to which data is replicated from
TiKV nodes as it is written. TiFlash is a columnar database based on the open
source Clickhouse analytic database, which means that it organizes data storage
in columns rather than rows. Columnar databases can provide a significant per‐
formance advantage for analytic queries requiring the extraction of the same col‐
umn across multiple rows.

TiSpark
TiSpark is a library built for Apache Spark to support complex analytic (OLAP)
queries. TiSpark integrates with the Spark Driver and Spark Executors, providing
the capability to ingest data from TiFlash instances using the Distributed SQL
API. We’ll examine the Spark architecture and the details of deploying Spark on
Kubernetes in Chapter 9.

Placement Driver (PD)
The Placement Driver manages the metadata for a TiDB installation. Placement
Driver instances are deployed in a cluster of at least three nodes. TiDB uses a
range based sharding mechanism where the keys in each table are divided into
ranges called regions. The Placement Driver is responsible for determining the
ranges of data that are assigned to each region, and the TiKV nodes that will store
the data for each region. It monitors the amount of data in each region and splits
regions that become too large in order to facilitate scaling up, and merging
smaller regions in order to scale down.

Because the TiDB architecture consists of well defined interfaces between the differ‐
ent components, it is an extensible architecture in which different pieces can be plug‐
ged in. For example, TiKB provides a distributed key-value storage solution that can
be reused in other applications. The TiPrometheus project is an example, providing a
Prometheus-compliant compute layer on top of TiKB. For another example, you
could provide an alternate implementation of TiKB that implements the Distributed
SQL API on top of a different storage engine.
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Pluggable storage engines
In this chapter so far we’ve made several mentions of “storage
engines” or “database engines.” This term refers to the part of the
database that manages the storage and retrieval of data on persis‐
tent media. In distributed databases, a distinction is often made
between the storage engine and the proxy layer which sits on top of
it to manage data replication between nodes. Chapter 3, Storage
and Retrieval from Desigining Data Intensive Applications
(O’Reilly) includes discussion of different storage engine types such
as the B-Trees used in most relational databases and the Log-
Structured Merge Tree (LSM Tree) used in Apache Cassandra and
other NoSQL databases.

One interesting aspect of TiDB is the way in which it reuses existing technology.
We’ve seen examples of this above in the usage of components including RocksDB
and Spark. TiDB also makes use of algorithms developed by other organizations.
Here are a couple of examples:

Ra$ Consensus Protocol
At the TiKB layer, the Raft consensus protocol is used to manage consistency
between replicas. Raft is similar to the Paxos algorithm used by Cassandra in
terms of its behavior, but is designed to be much simpler to learn and use. TiKB
uses a separate Raft group for each region, where a group typically consists of a
leader and two or more replicas. If a leader node is lost, an election is run to
select a new leader, and a new replica can be added to ensure the desired number
of replicas. In addition, the TiFlash nodes are configured as a special type of rep‐
lica called learner replicas. Data is replicated to learner replicas from the TiKB
nodes, but they cannot be selected as a leader. You can read more about how
TiDB uses Raft for high availability and other related topics on the PingCap Blog.

Percolator transaction management
At the TiDB layer, distributed transactions are supported using an implementa‐
tion of the Percolator algorithm with optimizations specific to the TiDB project.
Percolator was originally developed at Google for supporting incremental
updates to search indexes.

One of the arguments we’re making in this chapter is that part of what it means for
data infrastructure to be cloud native is to compose existing APIs, services and algo‐
rithms wherever possible, and TiDB is a great example of this.

Deploying TiDB in Kubernetes
While TiDB can be deployed in a variety of ways including bare metal and VMs, the
TiDB team has invested a large effort in tooling and documentation to make TiDB a
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truly Kubernetes native database. The TiDB Operator manages TiDB clusters in
Kubernetes, including deployment, upgrade, scaling, backup and resorts, and more.

The operator documentation provides quick start guides for desktop Kubernetes dis‐
tributions such as Kind, Minikube, as well as GKE. These instructions guide you
through steps including installing CRDs and the TiDB operator using Helm, and a
simple TiDB cluster including monitoring services. We’ll use the quick start instruc‐
tions as a vehicle to talk about what makes TiDB a Kubernetes native database.

Installing the TiDB CustomResourceDe!nitions.    After making sure you have a Kubernetes
cluster that meets the defined prerequisites such as having a default StorageClass, the
first step in deploying TiDB using the operator is installing the CRDs used by the
operator. This is done using an instruction such as the following (note the actual
operator version number v1.3.2 may vary):

kubectl create -f https://raw.githubusercontent.com/pingcap/tidb-operator/
v1.3.2/manifests/crd.yaml

This results in the creation of several CRDs which you can observe by running the
command kubectl get crd as we have done in previous chapters. We’ll quickly discuss
the purpose of each resource since several of them hint at additional features of inter‐
est:

• The TidbCluster is the primary resource that describes the desired configuration
of a TiDB cluster. We’ll look at an example below.

• The TidbMonitor resource is used to deploy a Prometheus-based monitoring
stack to observe one or more TidbClusters. As we have seen with other projects,
Prometheus (or at least its API) has become a de-facto standard for metrics col‐
lection for databases and other infrastructure deployed on Kubernetes.

• The Backup and Restore resources represent the actions of performing a backup
or restoring from a backup. This is similar to other operators we’ve examined
previously from the Vitess and K8ssandra projects. The TiDB operator also pro‐
vides a BackupSchedule resource that can be used to configure regular backups.

• The TidbInitializer is an optional resource that you can create to perform initiali‐
zation tasks on a TidbCluster including setting administrator credentials and exe‐
cuting SQL statements for schema creation or initial data loading.

• The TidbClusterAutoScaler is another optional resource which can be used to
configure auto scaling behavior of a TidbCluster. The number of TiKV or TIDB
nodes in a TidbCluster can be configured to scale up or down between minimum
and maximum limits based on CPU utilization. The addition of scaling rules
based on other metrics is on the project roadmap. As we discussed in Chapter 5,
autoscaling is considered a feature of an operator at Level 5 or “Autopilot”, the
highest maturity level.
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• The TidbNGMonitoring is an optional resource that configures a TidbCluster to
enable continuous profiling down to the system call level. The resulting profiling
data and flame graph visualizations can be observed using the TiDB Dashboard,
which is deployed separately. This is typically used by project engineers looking
to optimize the database, but application and platform developers may find this
useful as well.

• The DMCluster resource is used to deploy an instance of the TiDB Data Migra‐
tion (DM) platform that supports migration of MySQL and MariaDB database
instances into a TidbCluster. It can also be configured to migrate from an existing
TiDB installation outside of Kubernetes to a TidbCluster. The ability to deploy
data migration services alongside a destination TidbCluster in Kubernetes man‐
aged by the same operator is a great example of what it means to develop data
ecosystems in Kubernetes, a pattern that we hope to see more of in the future.

For the remainder of this section we’ll focus on the TidbCluster and TidbMonitoring
resources.

Installing the TiDB Operator
After installing the CRDs, the next step is to install the TiDB Operator using Helm.
You’ll need to add the Helm repository first before installing the TiDB Operator in its
own namespace:

helm repo add pingcap https://charts.pingcap.org/
helm install –create-namespace --namespace tidb-admin tidb-operator pingcap/
tidb-operator --version v1.3.2 

You can watch the resulting pods come online using kubectl get pods and referencing
the tidb-admin namespace. Figure 7-2 provides a summary of the elements that
you’ve installed up to this point. This includes Deployments to manage the TiDB
Operator (labeled as tidb-controller-manager) and the TiDB Scheduler.
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Figure 7-2. Installing the TiDB Operator and CRDs

The TiDB Scheduler is an optional extension to the Kubernetes built-in scheduler.
While it is deployed by default as part of the TiDB Operator, it can be disabled.
Assuming the TiDB Scheduler is not disabled, using it for a specific TidbCluster still
requires opting in by setting the schedulerName property to tidb-scheduler. If this
property is set, the TiDB Operator will assign the TiDB Scheduler as the scheduler
that Kubernetes will use when creating TiKV, and PD Pods.

TiDB Operator Helm Chart options
This installation omits usage of a values.yaml file, but you can see
the available options by running following command:

helm show values pingcap/tidb-operator

This includes the option to disable the TiDB Scheduler.

The TiDB Scheduler extends the Kubernetes built-in scheduler to add custom sched‐
uling rules for Pods that are part of a TidbCluster, helping to achieve high availability
of the database while spreading the load evenly across the available worker nodes in
the Kubernetes cluster. While for many types of infrastructure, the existing mecha‐
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nisms Kubernetes offers for influencing the default scheduler such as affinity rules,
taints and tolerations are sufficient, TiDB provides a useful example of when and how
to implement custom scheduling logic. We’ll look at Kubernetes scheduler extensions
in more detail in Chapter 9.

Creating a TidbCluster
Once the TiDB Operator has been installed, you’re ready to create a TidbCluster
resource. While there are many example configurations available in the TiDB Opera‐
tor GitHub repository, let’s use the one referenced in the quick start guide:

kubectl create namespace tidb-cluster
kubectl -n tidb-cluster apply -f https://raw.githubusercontent.com/pingcap/tidb-
operator/master/examples/basic/tidb-cluster.yaml
 
While the TidbCluster is being created, you can reference the contents of this 
file, which look something like this (with comments and some details removed):
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
  name: basic
spec:
  version: v5.4.0
  ...
  pd:
    baseImage: pingcap/pd
    maxFailoverCount: 0
    replicas: 1
    requests:
      storage: "1Gi"
    config: {}
  tikv:
    baseImage: pingcap/tikv
    maxFailoverCount: 0
    evictLeaderTimeout: 1m
    replicas: 1
    requests:
      storage: "1Gi"
    config:
      ...
  tidb:
    baseImage: pingcap/tidb
    maxFailoverCount: 0
    replicas: 1
    service:
      type: ClusterIP
    config: {}

Notice that this results in the creation of a TidbCluster named basic in the tidb-
cluster namespace, with one replica each of TiDB, TiKV and PD, using the standard
PingCap images for each. Additional options are used to specify the minimum
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amount of compute and storage resources required to achieve a functioning cluster.
There are no TiFlash nodes included in this simple configuration.

TidbCluster API
The full list of options for a TidbCluster can be found as part of the
API available in the GitHub repository. This same page includes
options for the other CRDs used by the TiDB Operator. As you
explore the options for these CRDs, you’ll see evidence of the com‐
mon practice of allowing many of the options that will be used to
specify underlying resources to be overridden, for example, the Pod
specification that will be set on a Deployment.

We encourage you to take the opportunity to use kubectl or your favorite visualiza‐
tion tool to explore the resources that are created as part of the TidbCluster, a sum‐
mary of which is provided in Figure 7-3.
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Figure 7-3. A Basic TidbCluster

As you can see in the figure, the TiDB Operator creates StatefulSets to manage the
TiDB, TiKV and Placement Driver instances, allocating a PVC for each instance. As
an input/output intensive application, the default configuration is to use local Persis‐
tentVolumes as the backing store.

In addition, a Deployment is created to run a Discovery Service which the various
components use to learn of each other’s location. The Discovery Service performs a
similar role to that of etcd in other data technologies we’ve examined in the book. The
TiDB Operator also configures services for each StatefulSet and Deployment that
facilitate communication within the TiDB cluster as well as exposing capabilities to
external clients.
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The TiDB Operator also supports the deployment of a Prometheus monitoring stack
that can manage one or more TiDB clusters. You can add monitoring to the cluster
created previously using the following command:

kubectl -n tidb-cluster apply -f https://raw.githubusercontent.com/pingcap/tidb-
operator/master/examples/basic/tidb-monitor.yaml 

While this is deploying, let’s examine the contents of the tidb-monitor.yaml configu‐
ration file:

apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
  name: basic
spec:
  replicas: 1
  clusters:
  - name: basic
  prometheus:
    baseImage: prom/prometheus
    version: v2.27.1
  grafana:
    baseImage: grafana/grafana
    version: 7.5.11
  initializer:
    baseImage: pingcap/tidb-monitor-initializer
    version: v5.4.0
  reloader:
    baseImage: pingcap/tidb-monitor-reloader
    version: v1.0.1
  prometheusReloader:
    baseImage: quay.io/prometheus-operator/prometheus-config-reloader
    version: v0.49.0
  imagePullPolicy: IfNotPresent

As you can see, the TidbMonitor resource can point to one or more TidbClusters.
This TidbMonitor is configured to manage the cluster named basic you created
above. The TidbMonitor resource also allows you to specify the versions of Prome‐
theus, Grafana and additional tools that are used to initialize and update the monitor‐
ing stack. If you examine the contents of the tidb-cluster namespace, you’ll see
additional workloads that have been created to manage these elements.

TiDB uses the Prometheus stack in a similar way to the K8ssandra project we dis‐
cussed in Chapter 6. In both of these projects, the Prometheus stack is supported as
an optional extension to provide a monitoring capability you can use with very little
customization. The configurations and provided visualizations focus on the key met‐
rics that drive awareness of database health. Even if you are already managing your
own monitoring infrastructure or using a third party SaaS solution, the configura‐
tions and charts can give you a head start on incorporating database monitoring into
the rest of your observability approach.
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A roadmap for cloud-native databases on Kubernetes
With Dongxu (Ed) Huang, Co-founder & CTO, PingCAP

TiDB was created out of the experience of maintaining a storage system for a large
internet company who ran an Android App Store. The distributed MySQL sharding
cluster we were using was innovative at the time but also too hard to maintain. With
manual sharding, you cannot do cross shard joins, or transactions. It’s really painful
for the application developer. The Google Spanner and F1 papers provided the inspi‐
ration for future databases like TiDB with scalability and high availability, consistency,
full featured SQL and global transaction support. From the application developers
perspective, it should feel like going back to the old days of single node development,
but now with horizontal scalability.

The problem statement was straightforward. We wanted to provide scalable OLTP
queries with reduced migration cost and an easy to use MySQL interface. At that
time, there was no open source implementation of Spanner, so we started to build
TiKV and donated it to the CNCF. As more and more users started running OLAP
queries on top of their real time data in TiDB, we expanded our OLAP capability to
create a hybrid approach called HTAP. The TiFlash engine that supports OLAP quer‐
ies has recently been open sourced as well.

The TiDB architecture does have some cloud-native aspects from its original design,
especially since it has a shared nothing architecture. However, from another point of
view, it is not very cloud native. There is a higher standard to be called a cloud native
database. A cloud native database should make maximum use of the infrastructure
your cloud vendor provides, for example, a storage engine that leverages S3, or uses a
cloud’s serverless features. By this standard, the only cloud native database is Snow‐
flake. The approach that customers need is this: pay for only what you use. If you
have to buy it by the node, it’s not serverless.

It’s more accurate to refer to TiDB as a Kubernetes native database. When we saw the
first etcd operator released in 2016, we were inspired to create our own operator. At
that time, Kubernetes was not as mature as it is today. We didn’t have CRDs, just third
party resources. We had to build our own scheduler to make sure we could handle
failover correctly. The hardest part was handling local storage. Kubernetes was not
designed from the database engineer’s point of view. At Google, they didn’t focus on
providing access to local disk for databases, since most of their systems were built on
top of columnar stores. They didn’t care about local state, but as a database engineer
you have to be very careful with your use of local disk. Since there was no local stor‐
age API in Kubernetes when we started, we wrote our own controller to manage local
disks. We put a lot of resources into this effort. It was very complicated and might
have been the wrong decision.

Today things are a lot better. Kubernetes networking, StatefulSets and CRDs are
mature and good enough for application developers and database engineers to use. At
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PingCAP we use Kubernetes to run our managed service on public clouds. We have a
lot of users and it’s very stable. We can work with it.

In the future of cloud native architectures, storage and compute will be separated
more and more clearly over time. In the past, you would never have built a database
on top of remote storage. But now it might be time to give up doing persistence on
local disks. We’re working on a new storage engine for TiDB built on top of shared
storage.

One area where Kubernetes needs to improve is support for multi-tenancy. Today,
building a multi-tenant application in Kubernetes is really hard. Namespaces are not
enough of an abstraction to support multi-tenancy. Similar to control groups
(cgroups) for Linux, Kubernetes needs a virtualized cluster or some other multi-
tenancy mechanism within the cluster. There is a Kubernetes SIG which is looking
into multi-tenancy, and the work on virtual clusters (VClusters) is really promising.

A second area where Kubernetes could improve is better support for hypervisors.
When you have large clusters, you don’t want to have virtualization on top of hard‐
ware and then run Kubernetes on top of that. The Kubernetes community could be
more ambitious and put more resources toward embracing hypervisors such as Cloud
Hypervisor.

For its part, the database world really needs to be more focused on Kubernetes.
DevOps and application engineers are the mainstream Kubernetes community, but
the database folks are outside of that. Most database operators are not written by
experienced DBAs. Once you get beyond deploying the database, tuning a database is
a hard job, you have a lot of maintenance to do. Once you put a database in Kuber‐
netes pods, tuning it requires going inside the pods. For the DBA or DevOps engi‐
neer, that’s the most tricky part. As a user, you should always prefer an operator
provided by the database vendor. If you’re a database vendor, you need to help the
user by making it easier to tune in the Kubernetes environment, not just deployment
or upgrades. The real world is not like running a demo.

As you can see, TiDB is a database with a flexible, extensible architecture that has
been designed with cloud native principles in mind. It also has a strong bias toward
being able to deploy and manage a database effectively in Kubernetes and has pro‐
vided us with some valuable insights on what it means to be Kubernetes native. Con‐
sult the TiDB documentation for more information on features such as deploying to
multiple Kubernetes clusters.

Serverless Cassandra with DataStax Astra DB
Since the advent of cloud computing in the early 2000s, public cloud providers and
infrastructure vendors have made continual advances in commoditizing various lay‐
ers of our architectural stacks as service offerings. This trend began with offering
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compute, network and storage as Infrastructure as a Service (IaaS) and proceeded into
other trends including Platform as a Service (PaaS), So$ware as a Service (SaaS), and
Functions as a Service (FaaS), sometimes conflated with the term serverless.
Most pertinent to our investigation here is the emergence of managed data infrastruc‐
ture offerings known as Database as a Service (DBaaS). This category includes:

• Traditional databases offered as a managed cloud service, such as Amazon Rela‐
tional Database Service (RDS) and PlanetScale

• Cloud databases like Google BigTable, Amazon Dynamo, and Snowflake that are
available only as cloud offerings

• Managed NoSQL or NewSQL databases that are also available as open source
projects, for example MongoDB Atlas, DataStax Astra DB, TiDB, and Cockroach
DB

Over the past several years, many of the vendors behind these DBaaS services have
begun migrating onto Kubernetes in order to automate operations, manage compute
resources more efficiently, and make their solutions portable across clouds. DataStax
was one of several vendors that began offering Cassandra as a Service. These typically
used an architecture based on running traditional Cassandra clusters in a cloud envi‐
ronment, with various “glue code” to integrate aspects like networking, monitoring,
and management that didn’t quite fit target deployment environments like Kuber‐
netes and public cloud IaaS. These include techniques like using sidecars to collect
metrics and logs, or deploying Cassandra nodes using StatefulSets to manage scaling
up and down in an orderly fashion.

Even with these workarounds for running in Kubernetes, Cassandra’s monolithic
architecture doesn’t readily promote the separation of compute and storage, which
can lead to some awkwardness when scaling. You scale up a Cassandra cluster by
adding additional nodes, where each node has the following capabilities:

• Coordination - receiving read and write requests and forwarding them to other
nodes as needed to achieve the requested number of replicas (also known as con‐
sistency level).

• Writing and Reading - writing data to in-memory cache (memtables) and persis‐
tent storage (SSTables), and reading it back as needed

• Compaction and Repair - since Cassandra is a LSM-tree database, it does not
update data files once they are written to persistent storage. Compaction and
repair are tasks that run in the background as separate threads. Compaction
helps Cassandra stay performant by consolidating SSTables written at different
times, ignoring obsolete and deleted values. Repair is the process of comparing
stored values across nodes to ensure consistency.
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Each node in a Cassandra cluster implements all of these capabilities and consumes
equivalent compute and storage resources. This makes it difficult to scale compute
and storage independently and can lead to situations where a cluster is overprovi‐
sioned in compute or storage resources.

In 2021, DataStax published a paper entitled DataStax Astra DB: Designing a Server‐
less Cloud-Native Database-as-a-Service that describes a different approach. Astra
DB is a version of Cassandra that has been refactored into microservices in order to
allow more fine grained scalability and to take advantage of the benefits of Kuber‐
netes. In fact, Astra DB is not only Kubernetes native, it is essentially a Kubernetes-
only database. Figure 7-4 shows the Astra DB architecture at a high level, broken into
a control plane, data plane, and supporting infrastructure.

Figure 7-4. Astra DB Architecture

Let’s take a quick overview of the layers in this architecture:

Astra DB Control Plane
The control plane is responsible for provisioning Kubernetes clusters in various
cloud provider regions. It also provisions Astra DB clusters within those Kuber‐
netes clusters and provides the APIs that allow clients to create and manage data‐
bases, either through the Astra DB web application, or programmatically through
the DevOps API. The blog post How We Built the DataStax Astra DB Control
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Plane describes the architecture of the control plane and how it was migrated to
be Kubernetes native.

Astra DB Data Plane
The data plane is where the actual Astra DB databases run. The data plane con‐
sists of multiple microservices which together provide the capabilities that would
have been a part of a single monolithic Cassandra node. Each database is
deployed in a Kubernetes cluster in a dedicated namespace and may be shared
across multiple tenants, as described in more detail below.

Astra DB Infrastructure
Each Kubernetes cluster also contains a set of infrastructure components that are
shared across the Astra DB databases in that cluster, including Etcd, Prometheus,
and Grafana. Etcd is used to store metadata including the assignment of tenants
to databases and database schema for each tenant. It also stores information
about the cluster topology, replacing the role of gossip in the traditional Cassan‐
dra architecture. Prometheus and Grafana are deployed in a similar way as
described in other architectures in this book.

Now let’s dig more into a few of the microservices in the data plane:

Astra DB Operator
The Astra DB Operator manages the Kubernetes resources required for each
database instance as described by a DBInstallation custom resource, as shown in
Figure 7-5 below.

Coordination Service
The Coordination Service is responsible for handling application queries includ‐
ing reads, writes, and schema management, Each Coordination Service is an
instance of Stargate that exposes endpoints for CQL and other APIs, with an
Astra DB-specific plugin that enables it to route requests intelligently to Data
Service instances to actually store and retrieve data. Factoring this compute-
intensive routing functionality into its own microservice enables it to be scaled
up or down based on query traffic, independent of the volume of data being
managed.

Data Service
Each Data Service instance is responsible for managing a subset of the data for
each assigned tenant based on its position in the Cassandra token ring. The Data
Service takes a tiered approach to data storage, maintaining in-memory data
structures such as memtables, using local disk for caching, commit logs and
indexes, and object storage for longer term persistence of SSTables. The usage of
object storage is one of the key differentiators of Astra DB from other databases
we’ve examined so far, and we’ll examine other benefits of this approach through‐
out this section.
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Compaction Service
The Compaction Service is responsible for performing maintenance tasks includ‐
ing compaction and repair on SSTables in object storage. Compaction and repair
are compute-intensive tasks that experienced Cassandra operators have histori‐
cally scheduled for off-peak hours in order to limit their impact on cluster per‐
formance. In Astra DB, these tasks can be performed at any time the need arises
without impacting query performance. The work is handled by a pool of Com‐
paction Service instances which can scale up or down independently to generate
repaired, compacted SSTables which are immediately accessible to Data Services.

Iam Service
All incoming application requests are routed through the Identity and Access
Management (IAM) Service, which uses a standard set of roles and permissions
defined in the control plane. While Cassandra has long had a pluggable architec‐
ture for authentication and authorization, factoring this out into its own micro‐
service allows for more flexibility and support for additional providers such as
Okta.

The data plane includes additional services which have been omitted from Figure 7-4
for simplicity, including a Commitlog Replayer Service for recovery of failed Data
Service instances, and an Autoscaling Service which uses analytics and machine
learning to recommend to the operator when to scale the number of instances of each
service up or down.

Figure 7-5 shows what a typical DBInstallation looks like in terms of Kubernetes
resources, . Let’s walk through a few typical interactions focusing on individual
instances of key services to demonstrate how each resource plays its part.

• A Kubernetes ingress is configured for each cluster to manage incoming requests
from client applications (1) and route requests to Coordinator Services by tenant
using a Kubernetes Service (2).

• The Coordinator Service (3) is a stateless service managed by a Deployment
which delegates authentication and authorization checks on each call to the Iam
Service (4).

• Authorized requests are then routed to one or more Data Services based on the
tenant, again using a Kubernetes Service (5).

• Data Services (6) are managed using StatefulSets, which are used to assign each
instance to a local PersistentVolume used for managing intermediate data files
such as the commit log, which is populated immediately on writes. When possi‐
ble, reads are served directly from in-memory data structures.

• As is typical for Cassandra and other LSM tree storage engines, the Data Service
occasionally writes SSTable files out to a persistent store (7). For Astra DB, that
persistent store is an externally object store managed by the cloud provider for
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high availability. A separate object storage bucket is used per tenant to ensure
data privacy.

• The Compaction Service can perform compaction and repair on SSTables in the
object store asynchronously (8), with no impact to write and read queries.

Figure 7-5. Astra DB Cluster in Kubernetes

Astra DB also supports multi-region database clusters, which by definition span mul‐
tiple Kubernetes clusters. Coordinator and Data Services are deployed across data‐
centers (cloud regions) and racks (availability zones) using an approach similar to
that described for K8ssandra in Chapter 6.

Astra DB’s microservice architecture allows it to make more optimal use of compute
and storage resources and isolate compute-intensive operations, leading to overall
cost savings to operate Cassandra clusters in the cloud. These cost savings are exten‐
ded by the addition of multi-tenant features that allow each cluster to be shared
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across multiple tenants. The Astra DB whitepaper describes a technique called shu%e
sharding which is used to match each tenant to a subset of the available Coordinator
and Data Services, effectively creating a separate Cassandra token ring per tenant. As
the population of tenants in an Astra DB instance change, this topology can be easily
updated to rebalance load without downtime, and larger tenants can be configured to
use their own dedicated databases (DBInstallations). This approach helps minimize
cost while meeting service level agreements (SLAs) for performance and availability.

What is a serverless database?
With Jake Luciani, Engineering Leader, DataStax

Cassandra has always been considered a cloud native database, but it’s not Kubernetes
native. The K8ssandra project represents a first step in the direction of making Cas‐
sandra more Kubernetes native. It’s a systematic way to run Cassandra on Kubernetes
in a more traditional cloud native way, but it represents more of a “lift and shift”
approach. The Astra DB approach is more like throwing all of our bags on the Kuber‐
netes bus. It’s a version of Cassandra that you can’t run without Kubernetes.

We realized early on in the process of building Astra DB that we had to make some
modifications to Cassandra’s architecture to make it work in an even more cloud
native way. The cost of running stateful systems in the cloud can get very expensive if
you do it the wrong way. If you focus on optimizing for cost, you’ll actually end up
with the most cloud native solution, because the services that are cheap in the clouds
are the ones that have become the most commoditized. They’re also the most hard‐
ened parts of the system. By standing on the shoulders of proven cloud technologies
like object storage and etcd, you’ll end up with a more reliable solution.

We often refer to Astra DB as a serverless database, which came from the original
inspiration for the project: “How do we make Cassandra more serverless?” Serverless
is really just a term that describes techniques engineers use in the cloud to make
applications more scalable and more stateless. The first breakthrough was separating
compute from storage. Storing SSTables as immutable data on the object store allows
us to scale our IOPS the same way we scale our processing engine. You can remove
any component and it doesn’t matter to the system. In the same way you can scale up
lambda serverless functions, it’s the same idea with your database.

The topology is completely ephemeral, just like Cassandra; it can change on the fly.
Cassandra has traditionally used a gossip type protocol to coordinate topology and
replicate state across nodes in an eventually consistent way. But since Cassandra was
first built, systems like etcd have come along that do a great job of maintaining meta‐
data about schema and topology in a transactional way. Etcd is a stateful service in its
own right, but we really only use it as a way to transition from one state to the next.
The object store is ultimately the source of truth for the entire system. You can lose an
entire Kubernetes cluster with all of the databases running on it, rebuild the cluster,
wipe the disks, and bring the whole system back. This is a great feeling when you go
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to sleep at night. Currently we have to run our own etcd inside of Kubernetes, even
though Kubernetes runs its own etcd cluster. It would be great if we could utilize that
infrastructure that’s already running. Instead we’ve had to build up our own etcd
expertise to make sure we know how to run it.

We use StatefulSets to manage the Cassandra nodes in each availability zone. Stateful‐
Sets provide the exact behavior we need in terms of scaling up and down in a fixed
order. Even though typically only use local ephemeral disks and the local path provi‐
sioner, we’re not precluded from using a PVC with persistent storage if we needed to,
it would just be more expensive. In order to perform upgrades, we create an entire
StatefulSet with new Cassandra nodes. Once all of the nodes have joined, we can
delete the old StatefulSet. We treat the StatefulSets as immutable infrastructure,
throwing them away and starting over.

One big problem with data on Kubernetes is the rough edges in working with
attached disks. Many databases need to stripe disks before using them. On Kuber‐
netes, this means mounting volumes as raw disks and then striping them during pod
startup. To scale the available IOPS, you have to attach more raw disks and stripe
them as well. We avoided this problem in Astra DB by going all in on object storage
and local ephemeral disks. The ephemeral disks are just a cache of what’s in the object
storage, but they give us the IOPS we need. Cassandra uses a Log-Structured Merge
tree (LSM tree) style of storage engine, similar to RocksDB. This provides a great
opportunity for a cloud native separation of disk and storage, because the data files
are immutable. We never need to perform in-place updates of data on disk, which
works out well because object storage doesn’t allow that anyway. Compaction can run
as a separate process and scale on its own right, which keeps the reads fast.

Another challenge with Kubernetes is choosing the right VM types and figuring out
how to map pods to them efficiently. Unfortunately, the Kubernetes APIs are really
decoupled from the underlying cloud provider capabilities. You have to do a lot of
math in your head in order to set up quotas and node groups, and we haven’t even
gotten to disks. There’s a massive market opportunity out there for someone who can
solve this problem.

When you’re running a SaaS, the way you lower prices and keep margins is by being
as efficient as possible. For us this means multi-tenancy and the ability to shift
resources between tenants based on usage. We use a giant shared pool of pods and
resources, which gives us the ability to move users and their data to different parts of
the fleet. This allows us to provide a usage based pricing model for developers who
just want to use it and go, and it empowers them to build some really cool applica‐
tions.

Zooming back out, Kubernetes did a great job with stateless services from the begin‐
ning, but stateful workloads are harder. People in Kubernetes want to solve this with
changes to Kubernetes, and people who build infrastructure, want to solve this in the
infrastructure. We’ll get there eventually through a combination of the two. In the
meantime we’re circumventing the issue by using the immutable systems that work
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well on Kubernetes and moving the state out into object storage. This is the way open
source technology works. People try things and make progress. Adopting a new
architecture can be a big risk, but once you do, the payoff can be huge.

In this section we’ve focused on the architecture Astra DB uses to provide a multi-
tenant, serverless Cassandra that embodies both cloud native and Kubernetes native
principles. This continues the tradition of the Amazon Dynamo and Google BigTable
papers in generating public discussion around novel database architectures. In addi‐
tion, several open source projects mentioned in this book including Cass-Operator,
K8ssandra, and Stargate trace their origins to Astra DB. There is a lot of innovation
going on in areas such as the core database, control plane, change data capture,
streaming integration, data migration and more, so look for more open source contri‐
butions and architecture proposals from this team in the future.

What to look for in a Kubernetes Native Database
After everything you’ve learned in the past few chapters about what it takes to deploy
and manage various databases on Kubernetes, we are in a great position to define
what you should look for in a Kubernetes native database.

Basic requirements
Following our cloud native data principles, we’ll outline a few areas that should be
considered basic requirements.

Maximum leverage of Kubernetes APIs
The database should be as tightly integrated with Kubernetes APIs as possible, for
example, using PersistentVolumes for both local and remote storage, using Serv‐
ices for routing rather than maintaining lists of IPs of other nodes, and so on.
Kubernetes extension points described in Chapter 5 should be used to supple‐
ment built-in Kubernetes functionality.

There may be areas where the existing Kubernetes APIs don’t provide the exact
behavior required for a given database or other application, as demonstrated by
the creation of alternate StatefulSet implementations by the Vitess and TiDB
projects. In these cases, every effort should be made to donate improvements
back to the Kubernetes project.

Automated, declarative management via operators
Databases should be deployed and managed on Kubernetes using operators and
custom resources. Operators should serve as the primary control plane elements
for managing databases. While it is arguably helpful to have command line tools
or kubectl extensions that allow database administrators to intervene manually to
optimize database performance and fix issues, these are ultimately functions that
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should be performed by an operator as it achieves the higher levels of maturity
discussed in Chapter 5.

The goal should be that all required changes to a database can be accomplished
by updating the desired state in a custom resource and letting the operator han‐
dle the rest. We’ll be in a great place when we can configure a database in terms
of service-level objectives such as latency, throughput, availability, and cost per
unit. Operators can determine how many database nodes are needed, what com‐
pute and storage tiers to use, when to perform backups, and so on.

Observable through standard APIs
We’re beginning to see common expectations for observability for data infra‐
structure on Kubernetes in terms of the familiar triad of metrics, logs, and trac‐
ing. The Prometheus-Grafana stack is somewhat of a de-facto standard for
metrics collection and visualization, with exposure of metrics from database
services using the Prometheus format a minimum criteria. Projects providing
Prometheus integration should be flexible enough to provide their own dedicated
stack, or push metrics to an existing installation shared with other applications.

Logs from all database application containers should be pushed to stdout (using
sidecars if necessary) so they can be collected by log aggregation services. While
it may take longer to see adoption for tracing, the ability to follow individual cli‐
ent requests through application calls down into the database tier through APIs
such as Open Tracing will be an extremely powerful debugging tool for future
cloud native applications.

Secure by default
The Kubernetes project itself provides a great example of what it means to be
secure by default, for example by only exposing access to ports on Pods and con‐
tainers when specifically enabled, and by providing primitives like Secrets that
we can use to protect access to login credentials or sensitive configuration data.

Databases and other infrastructure need to make use of these tools and adopt
industry standards and best practices for zero trust, including changing default
administrator credentials, limiting exposure of application and management
APIs. Exposed APIs should prefer encrypted protocols such as HTTPS. Data
stored in PersistentVolumes should be encrypted, whether this encryption is per‐
formed by the application, the database, or the StorageClass provider. Audit logs
should be provided as part of application logging, especially with respect to
actions that configure user access.

As you can see, basic requirements and more advanced expectations for what it
means to be Kubernetes native have begun to solidify. But what comes next?
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The Future of Kubernetes Native
We’re starting to see common patterns within projects deploying databases on Kuber‐
netes that could point to where things are headed in the future. These are admittedly
a bit more fuzzy, but let’s try to bring a couple of them into focus.

Scalability through Multi-dimensional Architectures
You may have noticed the repetition of several terms throughout the past few chap‐
ters such as multi-cluster, multi-tenancy, microservices, and serverless. A common
thread uniting these terms is that they represent architectural approaches to scalabil‐
ity, as shown in Figure 7-5.

Figure 7-6. Architectural approaches for scaling in multiple dimensions

Consider how each of these approaches provides an independent axis for scalability.
The visualization in Figure 7-5 depicts the impact of your application as a three
dimensional surface that grows as you scale along each axis.

• Microservice architectures break the various functions of a database into inde‐
pendently scalable services. The serverless approach builds on this, encouraging
the isolation of persistent state to a limited number of stateful services or even
external services as much as possible. Kubernetes storage APIs in the Persistent
Volume subsystem make it possible to leverage both local and networked storage
options. These trends allow a true separation of compute and storage and scale
these resources independently.

• Multi-cluster refers to the ability to scale an application across multiple Kuber‐
netes clusters. Along with related terms like multi-region and multi-datacenter,
this implies expanding the geographic footprint of the capabilities provided. This
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distribution of capability has positive implications for meeting users where they
are with minimum latency, as well as disaster recovery. As we discussed in Chap‐
ter 6, Kubernetes has historically not been as strong in its support for cross-
cluster networking and service discovery. It will be interesting to track how
databases and other applications take advantage of expected advances in Kuber‐
netes federation in the coming years.

• Multi-tenancy is the ability to share infrastructure between multiple users in
order to achieve the most efficient use of resources. As the public cloud providers
have demonstrated in their IaaS offerings, a multi-tenant approach can be very
effective at providing users a low-cost, low-risk access to infrastructure for inno‐
vative new projects, and then providing additional resources as these applications
grow. There is great potential value in adopting a a multi-tenant approach for
data infrastructure as well, so long as security guarantees are properly met and
there is a seamless transition path to dedicated infrastructure for high-volume
users before they become “noisy neighbors”.

While you may not have immediate need for all three of these axes of scalability for
applications or data infrastructure you’re building, consider how growing in each of
them can enhance the overall value you’re offering the world.

Community-focused innovation through open source and cloud services
Another pattern you may have noticed in our narrative is the continual innovation
loop between open source database projects and DBaaS offerings. PingCap took the
open source MySQL and Clickhouse databases, created a database service leveraging
Kubernetes to help it manage the databases at scale, and then released open source
projects including TiDB and TiFlash. DataStax took open source Cassandra, factored
it into microservices, added an API layer and deployed it on Kubernetes for its Astra
DB, and has created multiple open source projects including Cass-Operator, K8ssan‐
dra, and Stargate. In the spirit of Dynamo, BigTable, Calvin and other papers, these
companies have open sourced their architectures as well.

This innovation loop mirrors that of the larger Kubernetes community, in which the
major cloud providers and storage vendors have helped drive the maturation of the
core Kubernetes control plane and Persistent Volume subsystem, respectively. It’s
interesting to observe that the highest momentum and fastest cycle time occurs
within innovation loops that center around cloud services, rather than around the
classic open core model focused on enterprise versions of open source projects.

As a software vendor, providing a cloud service allows you to iterate and evaluate new
architectures and features more quickly. Flowing these innovations back to open
source allows you to grow adoption by supporting a flexible consumption model.
Both “run it yourself ” and “rent it from us” become legitimate deployment options
for your customers, with the ability to flex between approaches for different use cases.
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Customers gain confidence in the overall maturity and security of your technology,
knowing that the open source version they can inspect and contribute to is largely the
same as what you are running in your DBaaS.

A final side effect of these innovation trends is an implicit pull toward proven archi‐
tectures and components. Consider these examples:

• Etcd is used as a metadata store across multiple projects we’ve examined in this
book, including Vitess and Astra DB.

• TiDB leverages the architecture of F1, implemented the Raft consensus protocol,
and extended the Clickhouse columnar store.

• Astra DB leverages both the Persistent Volume subsystem and S3-compliant
object storage.

Instead of inventing new technologies to solve problems like metadata management
and distributed transactions, these projects are investing their innovation in new fea‐
tures, developer experience and the scalability axes we’ve examined in this chapter.

Summary
In this chapter we’ve taken a deep look at TiDB and Astra DB in order to search out
what makes them Kubernetes native. What was the point of this exercise? Our hope is
that this analysis provides a deeper understanding to help consumers ask more
insightful questions about the data infrastructure they are consuming, and to help
those building data infrastructure and ecosystems to create technology that meets
those expectations. We believe that data infrastructure that is not only cloud native
but Kubernetes native will lead to the best outcomes for everyone in terms of perfor‐
mance, availability, and cost.
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CHAPTER 8

Streaming Data on Kubernetes

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 8th chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

When you think about data infrastructure, persistence is the first thing that comes to
mind for many—storing the state of running applications. Accordingly, our focus up
to this point has been on databases and storage. It’s now time to consider the other
aspects of the cloud native data stack.

For those of you managing data pipelines, streaming may be your starting point, with
other parts of your data infrastructure being of secondary concern. Regardless of
your starting place, data movement is a vitally important part of the overall data
stack. In this chapter, we’ll examine how to use streaming technologies in Kubernetes
to share data securely and reliably in your cloud native applications.

Introduction to Streaming
In Chapter 1, we defined streaming as the function of moving data from one point to
another and, in some cases, processing data in transit. The history of streaming is
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almost as long as persistence. As data was pooling in various isolated stores, it became
evident that moving data reliably was just as important as the reliability of storing
data. In those days, it was called messaging. Data was transferred slowly but deliber‐
ately, which resembled something closer to postal mail. Messaging infrastructure put
data in a place where it could be read asynchronously, in order, with delivery guaran‐
tees. This met a critical need when using more than one computer and is one of the
foundations of distributed computing.

Modern application requirements have evolved from what was known as messaging
into today’s definition of streaming. Typically this means managing large volumes of
data that require more immediate processing, which we call “near real-time.” Order‐
ing and delivery guarantees become a critically important feature in the distributed
applications deployed in Kubernetes and in many cases, are a key enabler of the scale
required. How can adding more infrastructure complexity help scale? By providing
an orderly way to manage the flow from the creation of data to where it can be used
and stored. There is a lot of software and terminology around streaming that can
confuse first-time users. As with any complex topic, decomposing the parts can be
helpful as we build understanding. There are three areas to evaluate when choosing a
streaming system for your use case:

• Types of delivery
• Delivery guarantees
• Feature scope for streaming

Let’s take a closer look at each of these areas.

Types of delivery
To use streaming in your application, you will need to understand the delivery meth‐
ods available to you from the long choice list of streaming systems. You will need to
understand your application requirements to efficiently plan how data flows from
producer to consumer. For example, “Does my consumer need exclusive access?” The
answer will drive which system fits the requirements. Figure 8-1 shows two of the
most common choices in streaming systems: Point to point and publish/subscribe.
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Figure 8-1. Delivery Types

Point to point
In this data flow, data created by the producer is passed through the broker and
then to a single consumer in a one-to-one relationship. This is primarily used as
a way to de-couple direct connections from producer to consumer. It serves as an
excellent feature for resilience as consumers can be removed and added with no
data loss. At the same time, the broker maintains the order and last message read,
addressable by the consumer using an offset.

Publish / Subscribe (pub/sub)
In this delivery method, the broker serves as a distribution hub for a single pro‐
ducer and one or more consumers in a one-to-many relationship. Consumers
subscribe to a topic and receive notifications for any new messages created by the
producer—a critical component for reactive or event-driven architectures.

Delivery Guarantees
In conjunction with the delivery types, the broker maintains delivery guarantees from
producer to consumer per message type in an agreement called a contract. The typical
delivery types are shown in Figure 8-2: at-most-once, at-least-once, and exactly once.
The diagram shows the important relationship between when the producer sends a
message and the expectation of how the consumer receives the message.
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Figure 8-2. Delivery Guarantees

At-most-once
The lowest guarantee allows data created by the producer to be skipped by the
consumer. For example, this might be used when a consumer only needs to react
to the most current information. If a consumer is taken offline for any period, the
correct action once back online is to pick up processing on the latest data and
ignore anything previously delivered. The critical downside to understand is that
data loss is possible by design.

At-least-once
This guarantee is the opposite side of at-most-once. Data created by the producer
is guaranteed to be picked up by a consumer. The added aspect allows for re-
delivery any number of times after the first. For example, this might be used with
a unique key such as a date stamp or ID number that is considered idempotent
on the consumer side that multiple processing won’t impact. The consumer will
always see data delivered by the producer but could see it numerous times. Your
application will need to account for this possibility.

Exactly-once
The strictest of the three guarantees, this means that data created by a producer
will only be delivered one time to a producer. Example: Exact transactions such
as money movement where subtractions or additions must be delivered and pro‐
cessed one time to avoid problems. This guarantee puts a more significant bur‐
den on the broker to maintain, so you will need to adjust the resources allocated
to the broker and your expected throughput.
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You should exercise care in selecting delivery guarantees for each type of message.
Delivery guarantees are ones to carefully evaluate as they can have unexpected down‐
stream effects on the consumer if not wholly understood. Questions like “Can my
application handle duplicate messages?” need a good answer. “Maybe” is not good
enough.

Feature scope
Many streaming technologies are available, some of which have been around for quite
a few years. On the surface, the technologies may appear similar, but they each solve a
different problem due to new requirements. The majority are open source projects, so
each found a community of like-minded individuals who join in and advance the
project. Similar to how many different persistent data stores fit under the large
umbrella of “database”, the combination and difference of features can vary signifi‐
cantly under the heading of data streaming.

Feature scope is likely the most important selection criteria when evaluating which
streaming technology to use. Still, you should also challenge yourself to add the suita‐
bility for Kubernetes as a criteria and consider whether more complex features are
worth the added resource cost. Fortunately, the price for getting your decision wrong
the first time is relatively low. Streaming data systems tend to be some of the easiest to
migrate due to their ephemeral nature. The deeper into your feature stack the stream‐
ing technology goes, the harder it is to move. The scope of streaming features can be
broken into the two large buckets shown in Figure 8-3.

Figure 8-3. Streaming Types

Message broker
The simplest form of streaming technology that facilitates the moving of data
from one point to another with one or more of the delivery methods and guaran‐
tees listed above. It’s easy to discount this feature’s simplistic appearance, but it’s
the backbone of modern cloud native applications. It’s like saying FedEx is just a
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package delivery company, but imagine what would happen to the world econ‐
omy if it stopped for even one day? Example OSS message brokers include
Apache Kafka, Apache Pulsar, RabbitMQ, and Apache ActiveMQ.

Stream analytics
In some cases, the best or only time to analyze data is while it is moving. Waiting
for data to persist and then begin the analysis could be far too late, and the
insight’s value is almost useless. Consider fraud detection. The only opportunity
to stop the fraudulent activity is when it’s happening, waiting for a report to run
the next day just doesn’t work. Example OSS stream analytics systems include
Apache Spark, Apache Flink, Apache Storm, Apache Kafka Streams, and Apache
Pulsar.

The Role of Streaming in Kubernetes
Now that we have covered the basic terminology, how does streaming fit into a cloud
native application running on Kubernetes? Database applications follow the pattern
of create, read, update and delete (CRUD). For a developer, the database provides a
single location for data. The addition of streaming assumes some sort of motion in
the data from one place to another. Data may be short-lived if used to create new
data. Some data may be transformed in transit, and some may eventually be persisted.
Streaming assumes a distributed architecture, and the way to scale a streaming sys‐
tem is to manage its resource allocation of compute, network, and storage. This is
landing right into the sweet spot of cloud native architecture. In the case of stream-
driven applications in Kubernetes, you’re managing the reliable flow of data in an
environment that can change over time. Allocate what you need when you need it.

Streaming and Data Engineering
Data Engineering is a relatively new discipline so we want to be
sure to define it as this is a fast-growing field. This is especially
applicable to the practice of data streaming. Data Engineers are
concerned with the efficient movement of data in complex envi‐
ronments. The two T’s are important in this case: Transport and
Transformation. The role of the Data Scientist is to derive meaning
and insights from data. In contrast, the Data Engineer is building
the pipeline that collects data from various locations, organizes it,
and in most cases, persists to something like a data lake. Data Engi‐
neers work with Application Developers and Data Scientists to
make sure application requirements are met in the increasingly dis‐
tributed nature of data.

The most critical aspect of your speed and agility is how well your tools work
together. When developers dream up new applications, how fast can that idea turn
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into a production deployment? Deploying and managing separate infrastructure
(streaming, persistence, microservices) for one application is burdensome and prone
to error. When asking why you would want to add streaming into your cloud native
stack, you should consider the cost of not integrating your entire stack in terms of
technical debt. Creating custom ways of moving data puts a huge burden on applica‐
tion and infrastructure teams. Data streaming tools are built for a specific purpose,
with large communities of users and vendors to aid in your success.

 

Cloud native streaming is game-changing but remember the
fundamentals

With Jesse Anderson, Managing Director, Big Data Institute

What makes streaming a good fit for Kubernetes? If you think about which compo‐
nent in your system is the most dynamic, it’s probably streaming. Your database won’t
have as much need to scale up and down in the course of a day. The typical demand
curve in a 24 hour period is going to require more scaling for streaming, especially
the processing. If you’re moving to Kubernetes from virtual machines, you will be
tempted to copy your exact environment into pods and forget about it. By doing this,
you are missing the primary value of cloud native for streaming workloads. In my
experience, teams pre-provisioning for expected loads typically end up wasting over
50% of resources by over-provisioning. The best way to manage cost is to add
resources when needed and release them when you are finished. The real measure‐
ment of success is when end users have no idea that infrastructure is coming and
going. They get a smooth experience and a consistent service level. On the other
hand, artificially constraining your streaming capacity due to costs can reduce
response times and degrade service levels. In the worst case, a situation where the
real-time processing window falls behind without any way to catch up.

The challenge in deploying streaming workloads in Kubernetes is one of matching
system architectures to balance provisioning and service levels. If the technology
wasn’t designed with the idea of dynamic workload matching it could take a lot of
effort to force it to do something it wasn’t designed to accomplish. Kafka is a highly
scalable distributed system, but the idea of scaling down wasn’t part of the initial
design. A Kafka cluster is designed to maintain the declared operational state. If ten
brokers have been deployed and one is lost, Kafka tries to return to the state of ten
brokers. While this is a critically important feature for resiliency, it takes a different
approach to achieve elasticity. Pulsar is an example of a streaming system that has
been designed with cloud native thinking to handle dynamic workloads from day
one. Flink is a stream processing system designed with the same considerations. Used
in combination, a deployment will consume compute and storage at different times
and in different volumes. That is a closer match to the Kubernetes architecture.
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Storage has been an area of rapid change for the Kubernetes project but one that you
should avoid making assumptions about in your streaming deployments. When the
data you are streaming needs to be persisted, where is it going? A great resilience
question to ask is “What happens if I mistakenly delete my Kubernetes cluster?” I
have worked with teams deploying streaming on Kubernetes who were unknowingly
using ephemeral storage by mistake. You have to make sure you are thinking about
the durability of your storage from the earliest stages of your move to Kubernetes.
Streaming requires a higher level of operational excellence. Having five nines of
uptime or better isn’t optional. In contrast to a batch system where downtime isn’t a
high impact, you can just rerun the job if there is a failure. With streaming, if you are
down, you’ve potentially lost data. Having an operational outage due to losing a State‐
fulSet can be a big deal.

The final thing to consider is your disaster recovery plan. Do not assume that cloud
native deployments eliminate potentially devastating failures. You can mitigate many
of them but in my experience, some amount of failure is inevitable which is why plan‐
ning is so important. At a minimum, be ready for the various failures that can happen
with infrastructure, such as loss of a Pod, a StatefulSet, or an entire Kubernetes clus‐
ter. The most common and impactful failures are due to human error, like purpose‐
fully deleting data thinking you are working in a QA environment, or getting a
configuration wrong. It happens to everyone, and we just need to plan for it.

For Data Engineers and site reliability engineers (SREs), your planning and imple‐
mentation of streaming in Kubernetes can greatly impact your organization. Cloud
native data should allow for more agility and speed while squeezing out all the effi‐
ciency you can get. As a reader of this book, you are already on your way to thinking
differently about your infrastructure. Taking some advice from Jesse Anderson, there
are two areas you should be focusing on as you begin your journey into streaming
data on Kubernetes.

Resource Allocation
Are you planning for peaks as well as the valleys? As you’ll recall from Chapter 1,
elasticity is one of the more challenging aspects of cloud native data to get right.
Scaling up is a commonly solved problem in large-scale systems, but scaling
down can potentially result in data loss, especially with streaming systems. Traffic
to resources needs to be redirected before they are decommissioned, and any
data they are managing locally will need to be accounted for in other parts of the
system. The risk involved with elasticity is what keeps it from being widely used
and the result is a lot of unused capacity. Commit yourself to the idea that
resources should never be idle and build streaming systems that use what they
need and no more.
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Disaster Recovery Planning
Moving data efficiently is an important problem to solve but just as important is
how to manage inevitable failure. Without understanding your data flows and
durability requirements, you can’t just rely on Kubernetes to handle recovery.
Disaster recovery is about more than backing up data. How are Pods scheduled
so that physical server failure has a reduced impact? Can you benefit from geo‐
graphic redundancy? Are you clear on where data is persisted and understand
the durability of those storage systems? And finally, do you have a clear plan to
restore systems after a failure? In all cases, writing down the procedure is the first
step, but testing those procedures is the difference between success and failure.

We’ve covered the what and why of streaming data on Kubernetes, and it’s time we
start looking at the how with a particular focus on cloud native deployments. We’ll
give a quick overview of how to install these technologies on Kubernetes and high‐
light some important details to aid your planning. Since you’ve already learned how
to use many of the Kubernetes resources we’ll need in previous chapters, we’ll speed
up the pace a bit. Let’s get started on the first cloud native streaming technology.

Streaming on Kubernetes with Apache Pulsar™
Apache Pulsar™ is an exciting project to watch for cloud native streaming applica‐
tions. Streaming software was mostly built in an era before Kubernetes and cloud
native architectures. Pulsar was originally developed at Yahoo! which is no stranger to
high scale cloud native workloads. Donated to the Apache Software Foundation, it
was accepted as a top level project in 2018. There are additional projects, like Apache
Kafka or RabbitMQ, that may suit your application’s needs, but they will require more
planning and well-written operators to function at the level of efficiency of Pulsar. In
terms of the streaming definitions we covered previously, Pulsar supports the follow‐
ing characteristics:

• Types of delivery: one-to-one and pub/sub
• Delivery guarantees: at-least-once, at-most-once, exactly-once
• Feature scope for streaming: Message broker, analytics (through functions)

So what makes Pulsar a good fit for Kubernetes?

We use Kubernetes to create virtual data centers to efficiently use compute, network,
and storage. Pulsar was designed from the beginning with a separation of compute
and storage resource types linked by the network, similar to a microservices architec‐
ture. These resources can even span multiple Kubernetes clusters or physical data
centers, as shown in Figure 8-4. Deployment options give operators the flexibility to
install and scale a running Pulsar cluster based on use case and workload. It was also
designed with multi-tenancy in mind, making a big efficiency difference in large
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deployments. Instead of installing a separate Pulsar instance per application, many
applications (tenants) can use one Pulsar instance with guardrails to prevent resource
contention. Finally, built-in storage tiering creates automated alternatives for storage
persistence as data ages, and lower cost storage can be utilized.

Pulsar’s highest level of abstraction is an instance that consists of one or more clus‐
ters. We call the local logical administration domain a cluster and deploy in a Kuber‐
netes cluster and where we’ll concentrate our attention. Clusters can share meta-data
and configuration, allowing producers and consumers to see a single system regard‐
less of location. Each cluster is made of several parts acting in concert that primarily
consume either compute or storage. We’ll walk through these next.

Figure 8-4. Apache Pulsar™ Architecture

Broker (Compute)
Producers and consumers pass messages via the broker, a stateless cluster com‐
ponent. This means it is purely a compute scaling unit and can be dynamically
allocated based on the number of tenants and connections. Brokers maintain an
HTTP endpoint used for client communication which presents a few options for
network traffic in a Kubernetes deployment. When multiple clusters are used, the
brokers support replication between clusters in the instance. Brokers can run in a
memory-only configuration, or with bookies when message durability is
required.
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Apache Bookkeeper™ (Storage)
The Bookkeeper project provides infrastructure for managing distributed write-
ahead logs. In Pulsar, the individual instances used are called bookies. The storage
unit is called a ledger; each topic can have one or more ledgers. Multiple bookie
instances provide load-balancing and failure protection. They also offer storage
tiering functionality, allowing operators to offer a mix of fast and long-term stor‐
age options based on use case. When brokers interact with bookies, they read and
write to a topic ledger, an append-only data structure. Bookies provide a single
reference to the ledger but manage the replication and load balancing behind the
primary interface. In a Kubernetes environment, knowing where data is stored is
critical for maintaining resilience.

Apache Zookeeper™ (Compute)
Zookeeper is a stand-alone project used in many distributed systems for coordi‐
nation, leader election, and metadata management. Pulsar uses Zookeeper for
service coordination, similar to how Etcd is used in a Kubernetes cluster, storing
important metadata such as tenants, topics, and cluster configuration state so
that the brokers can remain stateless. Bookies use Zookeeper for ledger metadata
and coordination between multiple storage nodes.

Proxy (Network)
The proxy is a solution for dynamic environments like Kubernetes. Instead of
exposing every broker to HTTP traffic, the proxy serves as a gateway and creates
an ingress route to the Pulsar cluster. As brokers are added and removed, the
proxy uses service discovery to keep the connections flowing to and from the
cluster. When using Pulsar in Kubernetes, the proxy service IP should be the sin‐
gle access for your applications to a running Pulsar cluster.

Functions (Compute)
Since Pulsar Functions operate independently and consume their own compute
resources, we chose not to include them in Figure 8-4. However, they’re worth
mentioning in this context because Pulsar Functions work in conjunction with
the message broker. When deployed, they take data from a topic, alter it with
user code, and return it to a different topic. The component added to a Pulsar
cluster is the worker, which accepts function runtimes on an ad-hoc basis. Oper‐
ators can deploy Functions as a part of a larger cluster or as a stand-alone for
more fine-grained resource management.

Preparing Your Environment
When preparing to do your first installation, you need to make some choices. Since
every user will have unique needs, we recommend you check the official documenta‐
tion for the most complete and up-to-date information on installing Pulsar in Kuber‐
netes before reading this section. The examples within this section will take a closer
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look at the choices available and how they pertain to different cloud native applica‐
tion use cases to help inform your decision-making.

To begin, create a local clone directory of the Pulsar Helm chart repository:
git clone https://github.com/apache/pulsar-helm-chart

This subproject of Pulsar is well documented with several helpful examples to follow.
When using Helm to deploy Pulsar, you will need a values.yaml file that contains all
of the options to customize your deployment. You can include as many parameters as
you want to change. The Pulsar Helm chart has a complete set of defaults for a typical
cluster that might work for you, but you will want to tune the values for your specific
environment. The examples directory has various deployment scenarios. If you
choose the default installation as described in the TBD file, you’ll have a set of
resources like that shown in Figure 8-5. As you can see, the installation wraps the
proxy and brokers in Deployments and presents a unified service endpoint for appli‐
cations.

Figure 8-5. - A Simple Pulsar Installation on Kubernetes

Affinity is a mechanism built into Kubernetes to create rules for which pods can and
cannot be co-located on the same physical node (if needed, refer back to the more in-
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depth discussion in Chapter 4). Pulsar, being a distributed system, has deployment
requirements for maximum resilience. An example is brokers. When multiple brok‐
ers are deployed, each pod should run on a different physical node in case of failure.
If all broker pods were grouped on the same node and the node went down, the Pul‐
sar cluster would be unavailable. Kubernetes would still recover the runtime state and
restart the pods. However, there would be downtime as they came back online. The
easiest thing is not allowing pods of the same type to group together onto the same
nodes. When enabled, anti-affinity will keep this from happening. If you are running
on a single node system such as a desktop, disabling it will allow your cluster to start
without blocking based on affinity.
affinity:
  anti_affinity: true

Fine-grained control over Pulsar component replica counts lets you tailor your
deployment based on the use case. Each replica pod consumes resources and should
be considered in the application’s lifecycle. For example, starting with a low number
of brokers and bookkeeper pods can manage some level of traffic. Still, more replicas
can be added and configuration updated via Helm as traffic increases.
zookeeper:
  replicaCount: 1
bookkeeper:
  replicaCount: 1
broker:
  replicaCount: 1
proxy:
  replicaCount: 1

You now have a foundational understanding of how to move data to and from appli‐
cations and outside of your Kubernetes cluster reliably. Pulsar is a great fit for cloud
native application deployments because it can scale compute and storage independ‐
ently. The declarative nature of deployments makes it easy for data engineers and
SREs to deploy easily with consistency. Now that we have the means for data commu‐
nication let’s take it a step further with the right kind of network security.

Securing Communications by Default with Cert-manager
An unfortunate reality we face at the end of product development is what gets left to
complete: security or documentation. Unfortunately, Kubernetes doesn’t have much
in the way of building documentation, but when it comes to security, there has been
some great progress on starting earlier without compromise!

As you can see, installing Pulsar has created a lot of infrastructure and communica‐
tion between the elements. High traffic volume is a typical situation. When we build
out virtual data centers in Kubernetes, it will create a lot of internode and external
network traffic. All traffic should be encrypted with Transport Layer Security (TLS)
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and Secure Socket Layer (SSL) using x.509 certificates. The most important part of
this system is the Certificate Authority (CA). In a Public Key Infrastructure (PKI)
arrangement acts as a trusted third party that digitally signs certificates used to create
a chain of trust between two entities. Going through the procedure to have a certifi‐
cate issued by CA historically has been a manual and arduous process, which
unfortunately has led to a lack of secure communications in cloud-based applications.

Cert-manager is a tool that uses the Automated Certificate Management Environ‐
ment (ACME) protocol to add certificate management seamlessly to your Kubernetes
infrastructure. We should always use TLS to secure the data moving from one service
to another for our streaming application. The cert-manager project is arguably one of
the most critical pieces of your Kubernetes infrastructure that you will eventually for‐
get about. That’s the hallmark of a project that fits the moniker of “it just works.”

What is ACME?
When working with x.509 certificates, you’ll frequently see refer‐
ences to the Automated Certificate Management Environment
(ACME). ACME allows for automated deployment of certificates
between user infrastructure and certificate authorities. It was
designed by the Internet Security Research Group when they were
building their free certificate authority, Let’s Encrypt. It would be
putting it lightly to say this fantastic free service has been a game-
changer for cloud native infrastructure.

Adding TLS to your Pulsar deployment has been made incredibly easy with just a few
configuration steps. Before installing Pulsar, you’ll need to set up the Cert-manager
service inside the target Kubernetes cluster. First, add the Cert-manager repo to your
local Helm installation.
helm repo add jetstack https://charts.jetstack.io

The installation process takes a few parameters, which you should make sure to use.
First is declaring a separate namespace to keep the Cert-manager neatly organized in
your virtual datacenter. The second is installing the Custom Resource Description
(CRD) assets. This combination allows you to create services that automate your cer‐
tificate management.
helm install \
  cert-manager jetstack/cert-manager \
  --namespace cert-manager \
  --create-namespace \
  --set installCRDs=true

After the Cert-manager is installed, you’ll then need to configure the certificate issuer
that will be called when new certificates are needed. There are many different options
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based on the environment you are operating in, and these are covered quite exten‐
sively in the documentation. One of the custom resources created when installing
cert-manager is Issuer. The most basic Issuer is the selfsigned-issuer that can create a
certificate with a user-supplied private key. You can create a basic Issuer by applying
the following yaml configuration.
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
  name: selfsigned-issuer
  namespace: cert-manager
spec:
  selfSigned: {}
---
apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
  name: selfsigned-cluster-issuer
spec:
  selfSigned: {}

When installing Pulsar with Helm, you can secure inter-service communication with
a few lines of yaml configuration. You can pick which services are secured by setting
the TLS enabled to true or false for each service in the yaml that defines your Pulsar
cluster. The examples provided by the project are quite large so for brevity, we’ll look
at some key highlighted areas.
tls:
  # settings for generating certs for proxy
  proxy:
    enabled: true
    cert_name: tls-proxy
  # settings for generating certs for broker
  broker:
    enabled: true
    cert_name: tls-broker
  # settings for generating certs for bookies
  bookie:
    enabled: false
    cert_name: tls-bookie
  # settings for generating certs for zookeeper
  zookeeper:
    enabled: false
    cert_name: tls-zookeeper

Or you can secure the entire cluster with just one command.
tls:
  enabled: true
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Later in your configuration file, you can use self signing certificates to create TLS
connections between components.
# issue selfsigning certs
certs:
  internal_issuer:
    enabled: true
    type: selfsigning

If you have been involved in securing infrastructure communication any time in the
past, you know the toil in working through all the steps and applying TLS. Inside a
Kubernetes virtual data center, you no longer have an excuse to leave network com‐
munication unencrypted. With a few lines of configuration, everything is secured and
maintained.

 

Sidebar: Cert-manager: Making security easy so you’ll use it
With Josh van Leeuwen, So$ware Engineer, Jetstack

Cert-manager is a project born of necessity as our cloud native world grows. Previ‐
ously, you might have a bunch of virtual machines or bare metal running somewhere,
running in a ringed fence. You could get away with sticking an SSL certificate in the
front gateway and moving on. All of that has changed now with the thousands or
even hundreds of thousands of machines that need to be secured in our cloud native
systems. With all of these small containers running microservices continually coming
and going, automation is the only way to manage the volume of changes. There is no
way a human can do that alone. Of course, this opens a new challenge of reliable
automation—one which Kubernetes has taken head-on.

Soon after the ACME protocol was created, custom resources and CRDs became a
feature in Kubernetes. Cert-manager is a project that joins those two concepts, pro‐
viding a declarative way to represent what an X.509 certificate should look like inside
a Kubernetes deployment. ACME happened at just the right time for the Kubernetes
ingress use case, and the first use case for Cert-manager was for ACME SSL certifi‐
cates. However, it quickly became apparent that this would not be the only secure net‐
working problem that needed solving in Kubernetes. Those growing numbers of
machines all need to talk to each other, and they all need some kind of security in
place, which is generally done with Transport Level Security (TLS). TLS certificates
require the concept of an issuer, and Cert-manager was expanded to allow for differ‐
ent types of issuers to automate the complete lifecycle further of those certificates.

Because it emerged so early in the Kubernetes project, Cert-manager has become the
de-facto X.509 provider and certificate manager. With this comes a responsibility to
make securing communications in Kubernetes easy. Security is only as good as it is
easy. If security is challenging to implement, then it’s practically useless. Many people
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don’t like GNU Privacy Guard(GPG), for these reasons; not because it’s necessarily
flawed security-wise, but because it’s challenging to use. Cert-manager should con‐
tinue to see wide adoption in cloud native applications. It makes everything secure by
default, with little intervention or minimal knowledge of how RSA or TLS works. It’s
a project which is easy to use and solves people’s problems by default.

One thing that has made Cert-manager easy for end-users is having a well-defined
API to describe their application requirements in a simple way. It is a way of abstract‐
ing the more complicated questions, such as what does it mean to have a certificate
signed or an issuer? These APIs provide the guardrails to make sure you do the right
thing as much as possible. There are still some things that require planning and
thoughtfulness, such as not reusing private key passwords, which is allowed but dis‐
couraged.

Guardrails and standardization are topics that need to become more prevalent in
other parts of Kubernetes. The declarative nature and extensibility of Kubernetes are
powerful tools, but with great power comes great responsibility. Different people
within an organization can make extension points in a Kubernetes cluster. With a sin‐
gle command, you can have an endpoint exposed on the internet without even realiz‐
ing it. There is no single pane of glass available to security professionals for those
extensions. Nor are there guardrails to prevent unexpected behaviors. Without proper
guardrails in place, it’s too easy to self-own quite badly. As Kubernetes matures, we’ll
need more ways to avoid unhappy accidents.

The Cert-manager project is in an excellent state, being vendor-neutral and mature in
its current form. If you search the project changelog for the word “feature,” you’ll see
a decrease in occurrence in each successive release. This means we have a core API
that is useful and stable, which is an excellent place to be for a core security-based
project. The bulk of changes happening in the project are focused on taking advan‐
tage of this stable core API to add new issuers. This stability ensures the project stays
up-to-date with the latest requirements without a disruptive breaking change.

As for the future, the Cert-manager project will continue to work with the Kubernetes
community to continue the path of “default secure” and make security so easy that it’s
used universally. There are still some challenges to overcome, like how secrets are
stored and how to manage trust chains, and the momentum of Kubernetes practically
assures that those are problems that will be solved shortly. If these are interesting
problems, I urge you to get involved in one of the many ways security professionals
can impact the future of Kubernetes.

Cert-manager should be one of the first things you install in a new Kubernetes clus‐
ter. The combination of project maturity and simplicity makes security the easy first
thing to add to your project instead of the last. This is true not only for Pulsar but for
every service you deploy in Kubernetes that requires network communication.
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Using Helm to Deploy Apache Pulsar™
Now that we have covered how to design a Pulsar cluster to maximize resources, you
can use Helm to carry out the deployment into Kubernetes. First, add the Pulsar
Helm repository.
helm repo add apache https://pulsar.apache.org/charts

One of the special requirements for a Helm install of Pulsar is preparing Kubernetes.
In the git repository you cloned earlier, there is a script that will run through all the
preparations, such as creating the destination namespace. The more complicated
setup is the roles with associated keys and tokens. These are important for inter-
service communication inside the Pulsar cluster. From the docs you can invoke the
prep script using this example.
./scripts/pulsar/prepare_helm_release.sh -n <k8s-namespace> -k <helm-release-name>

Once the Kubernetes cluster has been prepared for Pulsar, the final installation can be
run. At this point, you should have a yaml configuration file with the settings you
need for your Pulsar use case as we described earlier. The helm install command will
take that config file and direct Kubernetes to meet the desired state you have speci‐
fied. When creating a new cluster, use the initalize=true to create the base metadata
configuration in Zookeeper.
helm install \
    --values <config yaml file> \
    --set initialize=true \
    --namespace <namespace from prepare script> \
    <pulsar cluster name> apache/pulsar

In a typical production deployment, you should expect the setup time to take 10
minutes or more. There are a lot of dependencies to walk through as Zookeeper,
Bookies, Brokers, and finally, Proxies are brought online and in order.

Stream Analytics with Apache Flink™
Now, let’s look at a different type of streaming project that is quickly gaining popular‐
ity in cloud native deployments: Apache Flink™. Flink is a system primarily designed
to focus on stream analytics at an incredible scale. As we discussed at the beginning
of the chapter, streaming systems come in many different flavors, and this is a perfect
example. Flink has its competencies that overlap very little with other systems, in fact,
it’s widespread to see Pulsar and Flink deployed together to complement each other’s
strengths in a cloud native application.

As a streaming system, the following are available in Flink:

• Type of delivery: one-to-one
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• Delivery guarantee: exactly-once
• Feature scope for streaming: analytics

The two main components of the Flink architecture are shown in Figure 8-6: the Job
Manager and Task Manager.

Figure 8-6. Apache Flink Architecture

JobManager
This is the control plane for any running Flink application code deployed. They
consume CPU resources but only to maintain job control, no actual processing is
done on the JobManager. In High Availability (HA) mode, which is exclusive to
Flink running on Kubernetes, multiple standby JobManagers will be provisioned
but remain idle until the primary is no longer available.

TaskManager
Where the work gets done on a running Flink job. The JobManger uses Task‐
Managers to satisfy the chain of tasks needed in the application. A chain is the
order of operation. In some cases, these operations can be run in parallel, and
some need to be run in series. The TaskManger will only run one discrete task
and pass it on. Resource management can be controlled through the number of
TaskManagers in a cluster and execution slots per TaskManager. The current
guidance says that you should allocate one CPU to each TaskManager or slot.

The Flink project is designed for managing stateful computations, which should
cause you to immediately think of storage requirements. Every transaction in Flink is
guaranteed to be strongly consistent with no single point of failure. These are features
when you are trying to build the kind of highly scalable systems that Flink was
designed to accomplish. There are two different types of streaming: bounded and
unbounded.
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Unbounded streaming
These streaming systems react to new data whenever the data arrives. There is no
endpoint where you can stop and analyze the data gathered. Every data received
is independent. The use cases for this can be alerting on values or counting when
exactness is essential. Reactive processing can be very resource-efficient.

Bounded streaming
This is also known as batch processing in other systems but is a specific case
within Flink. Bounded windows can be marked by time or specific values. In the
case of time windows, they can also slide forward, giving the ability to do rolling
updates on values. Resource considerations should be given based on the data
window size to be processed. The limit of the boundary size is constrained
mainly by memory.

One of the foundational tenets of Flink is a strong focus on operations. At the scale
required for cloud native applications, easy to use and deploy can be the difference
between using it or not. This includes core support for continuous deployment work‐
loads in Kubernetes and feature parity with cloud native applications in the areas of
reliability and observability:

Continuous Deployment
The core unit of work for Flink is called a job. Jobs are Java or Scala programs
that define how the data is read, analyzed, and output. Jobs are chained together
and compiled into a jar file to create a Flink application. Flink provides a Docker
image that encapsulates the application in a form that makes deployment on
Kubernetes an easy task and facilitates continuous deployment.

Reliability
Flink also has built-in support for savepoints, which makes updates easier by
pausing and resuming jobs before and after system updates. Savepoints can also
be used for fast recovery if a processing pod fails mid-job. Tighter integration
with Kubernetes allows Flink to self-heal on failure by restoring pods and restart‐
ing jobs with savepoints.

Observability
Cluster metrics are instrumented to output in Prometheus format. Operations
teams can keep track of lifecycle events inside the Flink cluster with time-based
details. Application developers can expose custom metrics using the Flink Metric
System for further integrated observability.

Flink provides a way for data teams to participate in the overall cloud native stack
while giving operators everything needed to manage the entire deployment. Applica‐
tion developers building microservices can share a CI/CD pipeline with developers
building the stream analytics of data generated from the application. As changes
occur in any part of the stack, they can be integration tested entirely and deployed as
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a single unit. Teams can move faster with more confidence knowing there aren’t dis‐
connected requirements that may show up in production. This sort of outcome is a
solid argument to employ cloud native methodologies in your entire stack so time to
see how this is done.

Deploying Apache Flink™ on Kubernetes
When deploying a Flink cluster into a running Kubernetes cluster there are a few
things to consider. The Flink project has gone the route of offering what they call
“Kubernetes Native” which programmatically installs the required Flink components
without kubectl or Helm. These choices may change in the future. There are already
side-projects in the Flink ecosystem that bring a more typical experience Kubernetes
operators might expect with operators and Helm charts. For now, we will discuss the
official method endorsed by the project.

Figure 8-7. Deploying Flink on Kubernetes

As shown in Figure 8-7, a running Flink cluster has two main components we’ll
deploy in pods: the Job Manager and Task Manager. These are the basic units, but
choosing which deployment mode is the critical consideration for your use case. They
dictate how compute and network resources are utilized. Another thing of note is
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how to deploy on Kubernetes. As mentioned before, there are no official project
operators or Helm charts. The Flink distribution contains command-line tools that
will deploy into a running Kubernetes cluster based on the mode for your application.
Figure 8-8 shows the modes available for deploying Flink clusters in Kubernetes:
Application Mode and Session Mode. Flink also supports a third mode called Per-Job
mode, but this is not available for Kubernetes deployments, which leaves us with
Application Mode and Session Mode.

Figure 8-8. Apache Flink™ Modes

The selection of either Application Mode or Session Mode comes down to resource
management inside your Kubernetes cluster, so let’s look at both to make an informed
decision.

Application Mode isolates each Flink application into its own cluster. As a reminder, a
Flink application jar can consist of multiple jobs chained together. The startup cost of
the cluster can be minimized with a single application initialization and job graph.
Once deployed, resources are consumed for client traffic and execution of the jobs in
the application. Network traffic is much more efficient since there is only one Job‐
Manager, and client traffic can be multiplexed.
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To start in Application Mode, you invoke the flink command line with the target of
kubernetes-application. You will need the name of the running Kubernetes cluster
accessible via kubectl. The application to be run is contained in a docker image and
the path to the jar file supplied in the command line. Once started, the Flink cluster is
created, application code is initialized, and will then be ready for client connections.

$ ./bin/flink run-application \
    --target kubernetes-application \
    -Dkubernetes.cluster-id=<kubernetes cluster name> \
    -Dkubernetes.container.image=<custom docker image name> \
    local:///opt/flink/usrlib/my-flink-job.jar

Session Mode changes resource management by creating a single Flink cluster that
can accept any number of applications on an ad-hoc basis. Instead of having multiple
independent clusters running and consuming resources, you may find it more effi‐
cient to have a single cluster that can grow and shrink when new applications are sub‐
mitted. The downside for operators is that you now have a single cluster that will take
several applications with it if it fails. Kubernetes will restart the downed pods, but you
will have a recovery time to manage as resources are re-allocated. To start in Session
Mode, use the kubernetes-session shell file and give it the name of your running
Kubernetes cluster. The default is for the command to execute and detach from the
cluster. To re-attach or remain in an interactive mode with the running cluster use the
execution.attached=true switch.

$ ./bin/kubernetes-session.sh \
    -Dkubernetes.cluster-id=<kubernetes cluster name> \
    -Dexecution.attached=true

This was a quick fly-by of a massive topic, but hopefully, it inspires you to look fur‐
ther. One resource we recommend is Stream Processing with Apache Flink (O’Reilly).
Adding Flink to your application isn’t just about choosing a platform to perform
stream processing. In cloud native applications, we should be thinking holistically
about the entire application stack we are attempting to deploy in Kubernetes. Flink
uses containers as encapsulation lends itself to working with other development
workflows.

Summary
In this chapter, we have branched out from persistence-oriented data infrastructure
into the world of streaming. We defined what streaming is, how to navigate all the
terminology, and how it fits into Kubernetes. From there, we took a deeper look into
Apache Pulsar and learned how to deploy it into your Kubernetes cluster according to
your environment and application needs. As a part of deploying streaming, we took a
side trip into default secure communications with Cert-manager to see how it works
and how to create self-managed encrypted communication. Finally, we looked at
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Kubernetes deployments of Apache Flink, which is used primarily for high scale
stream analytics.

As you saw in this chapter with Pulsar and Cert-manager, it’s frequently the case that
running cloud-native data infrastructure on Kubernetes involves the composition of
multiple components as part of an integrated stack. We’ll discuss more examples of
this in the next chapter and beyond.

228 | Chapter 8: Streaming Data on Kubernetes

www.dbooks.org

https://www.dbooks.org/


CHAPTER 9

Data Analytics on Kubernetes

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 9th chapter of the final book. The GitHub repo is https://github.com/
data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

“Progress in technology is when we have the ability to be more lazy.”
—Dr. Lurian Chirica

In the early 2000s, Google captivated the internet with a declared public goal: “to
organize the world’s information and make it universally accessible and useful.” This
was an ambitious goal that and accomplishing it would, to paraphrase, take “com‐
puter sciencing” the bits out of it. Given the increasing rate of data creation, Google
needed to invent (and re-invent) ways of managing data volumes no one had ever
considered. An entirely new community, culture, and industry were born around
analyzing data called analytics, or what was eventually labeled “Big Data.” Today ana‐
lytics is a full-fledged member of almost every application stack and not just relegated
to a “Google” problem. Now it’s an everyone problem that can no longer be an art
form restricted to a small club of people that know how to make it work. Organiza‐
tions need reliable and fast ways to deploy applications, including analytics, and
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because you are reading this book, you already know why: we need to do more with
less.

The laziness Dr. Chirica was talking about in a tongue-in-cheek way in the quote that
opened this chapter describes an ideal future. Instead of having a hundred-person
team working night and day to analyze a petabyte of data, what if you could reduce
that to one person and a few minutes? The cloud native way of running data infra‐
structure is a path we should all work towards to achieve that kind of glorious lazi‐
ness.

We’ve already looked at several aspects of moving stateful workloads onto Kuber‐
netes, including storage, databases, and streaming. In this chapter it’s time to look at
analytics to complete the picture. As a bit of a preview, Figure 9-1 shows how Data
Analytics fits as the final part of our roadmap of managing the complete data stack
using Kubernetes.

Figure 9-1. "e Cloud Native Virtual Datacenter

In this architecture, there are no more external network requirements bridging to
resources in or out of the Kubernetes cluster, just a single, virtual data center that
serves our bespoke needs for cloud native applications. The large blocks represent the
macro components of data infrastructure we discussed in Chapter 1, with the addi‐
tion of user application code, deployed in microservices.

Introduction to Analytics
Analytic workloads and the accompanying infrastructure operations are much differ‐
ent from other workloads. Analytics isn’t just another containerized system to orches‐
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trate. The typical stateful applications like databases we have examined in previous
chapters have many similar characteristics but tend to stay static or predictably slow-
growing once deployed. However, there is one aspect of analytic workloads that
strikes fear in many administrators: volume. While persistent data stores like data‐
bases can consume gigabytes to terabytes of storage, analytic volumes can easily soar
into petabytes, creating an entirely new class of problems to solve. They don’t call it
“Big Data” for nothing.

The Oxford Dictionary defines analytics as “the systematic computational analysis of
data or statistics.” Wikipedia adds “It is used for the discovery, interpretation, and
communication of meaningful patterns in data.” Combine those definitions with large
volumes of data and what sort of outcome should we expect for cloud native applica‐
tions? Let’s break down the different types of analytics workflows and methodologies:

Batch Analytics
In computer science, a batch is a series of instructions applied to data with little
or no user interaction. The idea of running batch jobs is as old as general-
purpose computing. In distributed systems such as Apache Hadoop or Apache
Spark, each individual job consists of a program that can operate on smaller bits
of data in parallel and in stages or pipelines. The smaller results are combined
into a single, final result at the end of a job. An example of this is MapReduce
discussed later in the book. In most cases, statistical analysis is done, such as
count, average, and percentile measurement. Batch analytics is the focus of this
chapter.

Stream Analytics
As discussed in Chapter 8, stream analytics is about what is happening, whereas
batch analytics is about what happened. Many of the same APIs and developer
methodologies are used in both stream analytics and batch analytics. This can be
confusing and lead people to believe that they are the same thing when in fact
they have very different use cases and implementations. A good example is fraud
detection. The time frames for detecting and stopping fraud can be measured in
milliseconds to seconds which fits the stream analytics use case. Batch analytics
would be used to find fraud patterns over larger time periods.

Arti!cial Intelligence / Machine Learning (AI/ML)
While artificial intelligence and machine learning can be considered a subset of
batch analytics, they are such specialized fields that they deserve a special call-
out. AI and ML are often mentioned together; however, they have two different
output goals. Artificial Intelligence attempts to emulate human cognition in deci‐
sion making. Machine Learning uses algorithms to derive meaning from pools of
data, sometimes in ways that aren’t readily obvious. Both approaches require the
application of computing resources across volumes of data. This topic will be dis‐
cussed in greater detail in Chapter 10.
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Deploying Analytic Workloads in Kubernetes
The original focus of Kubernetes was on scaling and orchestrating stateless applica‐
tions. As you’re learning in this book, Kubernetes is evolving to support stateful
applications. The promise of moving more and more workloads into virtual datacen‐
ters has been highly motivating, and the world of analytics can take advantage of the
progress made in stateless and stateful workloads. However, Kubernetes has some
unique challenges in managing analytic workloads and many are still a work in pro‐
gress. What more is required to complete the data picture and make analytic work‐
loads on par with other parts of the stack like microservices and databases? Here are a
few of the key considerations we’ll examine in this chapter:

Orderly Execution
An essential aspect of analytic workloads is the order of operations required to
analyze large volumes of data. This involves far more than just making sure Pods
are started with the proper storage and networking resources. It also includes a
mapping of the application with the orderly execution run in each Pod. The
Kubernetes component primarily responsible for this task is kube-scheduler (See
Chapter 5), but the controllers for Jobs and CronJobs are involved as well. This is
a particular area of attention for the Kubernetes communities focusing on analyt‐
ics, which we will further cover in the chapter.

Storage Management
Analytic workloads use ephemeral and persistent storage in different jobs that
process data. The real trouble occurs when it comes to identifying and selecting
the right storage per job. Many analytic workloads require ephemeral storage for
short periods and more efficient (cheaper) persistent storage for long terms. As
you learned in Chapter 2, Kubernetes storage has greatly increased maturity.
Analytics projects that run on Kubernetes need to take advantage of the work
already done with stateful workloads and continue to partner with the Kuber‐
netes community for future enhancements in areas like storage classes and differ‐
ent access patterns.

E#cient use of resources
There is an old saying that “everything counts in large amounts,” and nothing
makes that more evident than analytics. A job may require 1000 pods for 10
minutes, but what if it needs 10000? A challenging problem for the Kubernetes
control plane. Another job might require terabytes of swap disk space that is only
needed for the duration of a job. In a cloud native world, jobs should be able to
quickly allocate the resources they need and release the resources when finished.
Making these operations as efficient as possible saves time and more importantly,
money. The fast and bursty nature of analytics has created some challenges for
the Kubernetes API server and scheduler to keep up with all the Jobs that need to
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be run. Several of those challenges are already being addressed, as discussed later
in the chapter, and some are still a work in progress.

Those are the challenges, but none of them are show-stoppers that will get in the way
of our dream of a complete cloud native stack deployed as a single virtual data center
in Kubernetes.

Sidebar: Analytics on Kubernetes is the next frontier
With Holden Karau, Open Source Engineer, Apache Spark PMC

Running analytic workloads has been the boss-level challenge for infrastructure engi‐
neers from day one. There is the challenge of massive volumes of needed resources,
which in many cases are the most significant part of your infrastructure. Then, coor‐
dination is required to use all those resources efficiently, and this is where frame‐
works like Spark come into play. Projects like Yarn from Hadoop and then Mesos
were developed to help with the container management game. Today infrastructure
engineers everywhere are very happy with migrating the best aspects of those systems
to Kubernetes.

Let’s consider a few examples. Running multiple Spark tenants in Kubernetes provides
better isolation between your workloads which is really important if you don’t trust
each workload to the same degree. Historically, the support for Python dependencies
inside Spark jobs has been poor, but deploying on Kubernetes makes it possible to use
leading edge Python libraries for machine learning and GPU usage. SREs can spend
more time optimizing resources rather than chasing down obscure errors typical with
large distributed systems.

Ultimately, we are still in the early days of learning how to run our analytic workloads
in Kubernetes most effectively. The difficulty curve starts getting much steeper as data
volumes increase. Once you start going over the tens or hundreds of terabytes, you
will find yourself on the leading edge of Spark operations in Kubernetes. This is prob‐
ably not a big surprise because that tends to be how infrastructure engineering works.
The upper limit scale problems with Kubernetes are rooted in the early use cases it
was designed for. The dynamic and elastic nature of Kubernetes works well for the
use cases for which it was first designed, but it gets overwhelmed at the levels
required to run Spark applications. This is not impossible to solve, and there are a few
critical areas the Spark and Kubernetes communities are working to improve.

Kubernetes SREs love the idea of elastic workloads, but in Spark, that’s been much
more painful than it needs to be. Regular execution of a Spark job can cause a rapid
increase in Pods while the job is processing, and then those resources are released
when the job is complete. Scaling up is, unfortunately, much easier than scaling down.
Spark can now make use of externalized resource allocation that opens the possibility
for better solutions. Open source projects such as Apache YuniKorn and Volcano are
already working on resource allocation solutions inside of Kubernetes, which the exe‐
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cution allocator and shuffle service can leverage to align more closely to the way
Kubernetes works. Taken together, these efforts provide a significant path forward for
more efficient resource usage in a dynamic Spark environment.

Resource-intensive applications like Spark can benefit from having more insight from
the underlying systems to balance jobs as they are run. Today, Kubernetes and Spark
do not share as much information as they need for the best outcomes, and you should
adjust your expectations accordingly. A specific example is the way Kubernetes
approaches storage quota enforcement, which can work against Spark in some cases.
Ephemeral storage is a key part of Spark execution, but Kubernetes provides no
system-level APIs that Spark could use to check the utilization against the storage
quota, which can cause job failures. Previous applications that have been deployed on
Kubernetes haven’t needed this level of insight. Spark creates a compelling case for
significant changes to expose additional system level APIs in Kubernetes, which will
make it possible to build much more reliable analytic workloads.

If you are interested in solving these problems, these solutions will happen in open
source projects. You can get involved today and help us move forward by participat‐
ing in the larger community. Apache Spark has room for improvement and so does
Kubernetes, but the future direction is clear. Kubernetes is where cloud native analyt‐
ics will happen, and Spark will continue to evolve. There will be a lot of interesting
work in this area for the next several years at least, and it’s a pretty exciting commu‐
nity to be a part of.

Engineers can be their own worst enemies. Often when we go to solve one problem, it
creates a few more that need to be solved. We can count this as progress, however,
when it comes to managing data. Every step up we take, despite the challenges, allows
for new solutions that were never available before. It’s staggering to think of how
much is possible with just a small number of people where not too long ago, it took
massive teams to accomplish anything close to the analytics required today. See the
quote about laziness at the beginning of the chapter. There is still work to be done
and next, we will look at what tools are available for analyzing data in Kubernetes.

Introduction to Apache Spark™
Google changed the world of data analytics with the MapReduce algorithm simply by
describing it to the world in an academic paper. Not long after the MapReduce paper
got engineers talking, an open source implementation was created, the now-famous
Apache Hadoop™. A massive ecosystem was built up around Hadoop with tooling
and complementary projects such as Hadoop Distributed File System (HDFS). Grow‐
ing pains from this fast-moving project opened the door for the next generation of
tools that built on the lessons learned with Hadoop. One project that grew in popu‐
larity as an alternative to Hadoop was Apache Spark™. Spark addressed reliability and
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processing efficiency problems by introducing the Resilient Distributed Dataset
(RDD) API and Directed Acyclic Graphs (DAG).

The RDD was a significant improvement over the forced linear processing patterns of
MapReduce. This involved a lot of reading from disk, processing, and then writing
back to disk only to be redone over and over. This put a burden on developers to rea‐
son through how data was processed. RDDs shifted the responsibility away from
developers as an API that created a unified view of all data while abstracting the
actual processing details. Those processing details were created in a workflow to per‐
form each task expressed in a DAG. The DAG is nothing more than an optimized
path that describes data and operations to be completed in an orderly fashion until
the final result is produced. RDDs were eventually replaced with the DataSet and
DataFrame APIs, which further enhanced developer productivity over large volumes
of data.

Spark’s operational complexity is greatly reduced compared to Hadoop, which notori‐
ously tipped the scale with the infrastructure required even for basic jobs. Spark is an
excellent example of one of the benefits of being a next-generation implementation
with great hindsight. Much effort was put into simplifying Spark’s architecture, lever‐
aging distributed systems concepts. The result is the three familiar components you
should be familiar with in a Spark Cluster shown in Figure 9-2.

Figure 9-2. Components of a Spark Cluster

Let’s review the responsibilities of each of these components:
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Cluster Manager
The Cluster Manager is the central hub for activity in the Spark cluster where
new jobs are submitted for processing. The Cluster Manager also acquires the
resources needed to complete the task submitted. Different versions of the Clus‐
ter Manager are primarily based on how resources are managed (Standalone,
YARN, Mesos, and Kubernetes). The Cluster Manager is critical for deploying
your Spark application using Kubernetes.

Worker Node
When Spark jobs run, they are broken into manageable pieces by the Custer
Manager and handed to the Worker Nodes to perform the processing. They serve
as the local manager for hardware resources as a single point of contact. Worker
Nodes invoke and manage Spark Executors.

Spark Executor
Each application sent to a Worker Node will get its own Spark Executor. Each
Executor is a stand-alone JVM process that operates independently and commu‐
nicates back with the Worker Node. The tasks for the application are broken into
threads that consume the compute resources allocated.

These are the traditional components of Spark as designed early in the project. What
we’ll see is that the need of deploying a cloud native version of Spark forced some
architectural evolution. The fundamentals are the same, but the execution framework
has adapted to take advantage of what Kubernetes provides and eliminate duplication
in orchestration overhead. In the next section, we’ll take a look at what those changes
are and how to work with Spark in Kubernetes.

Deploying Apache Spark™ in Kubernetes
As of Apache Spark version 2.3, Kubernetes is one of the supported modes in the
Cluster Manager. It would be easy to understate what that has meant for Spark as a
cloud native analytics tool. Starting with Spark 3.1, Kubernetes mode is considered
production-ready, continually adding steady improvements. When the Spark project
looked at what it takes to run a clustered analytics system inside a cluster orchestra‐
tion platform, there were a lot of overlaps that became obvious. Kubernetes already
had the mechanisms in place for the lifecycle management of containers and the
dynamic provisioning and de-provisioning of compute elements, so Spark lets Kuber‐
netes take care of this work. The redundant parts were removed, and Spark is closer
to how Kubernetes works as a result. The spark-submit command-line tool was
extended to interface with Kubernetes clusters using the Kubernetes API, maintaining
a familiar toolchain for developers and data engineers. These unique aspects of a
Spark deployment in Kubernetes are shown in Figure 9-3.

236 | Chapter 9: Data Analytics on Kubernetes

www.dbooks.org

https://www.dbooks.org/


Figure 9-3. Spark on Kubernetes

Let’s highlight a few of the differences:

Spark Driver
The dedicated Cluster Manager of a standalone Spark cluster is replaced with
native Kubernetes cluster management and the Spark Driver for Spark-specific
management. The Spark Driver Pod is created when the Kubernetes API server
receives a job from the spark-submit tool. It invokes the Spark Executor Pods to
satisfy the job requirements. It is also responsible for cleaning up Executor Pods
after the job, making it a crucial part of elastic workloads.

Spark Executor
Like a stand-alone Spark cluster, Executors are where the work gets done and
where the most compute resources are consumed. Invoked from the Spark
Driver, they take job instructions passed by spark-submit with details such as
CPU and memory limits, storage information, and security credentials. The con‐
tainers used in Executor Pods are pre-created by the user.

Custom Executor Container
Before a job is sent for processing using spark-submit, users must build a custom
container image tailored to meet the application requirements. The Spark distri‐
bution download contains a Dockerfile that can be customized and used in con‐
junction with the docker-image-tool.sh script to build and upload the container
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required when submitting a Spark job in Kubernetes. The custom container has
everything it needs to work within a Kubernetes environment like a Spark Execu‐
tor based on the Spark distribution version required.

The workflow for preparing and running Spark jobs when using Kubernetes and
defaults can be relatively simple, only requiring a couple of steps. This is especially
true if you are already familiar with and running Spark in production. You will need a
running Kubernetes cluster and a download of Apache Spark in a local file path along
with your Spark application source code.

Build your custom container
An executor container encapsulates your application and the runtime needed to act as
an Executor Pod. The build script takes an argument for the source code repository
and a tag assignment for the output image when pushed to your Docker registry.
$ ./bin/docker-image-tool.sh -r <repo> -t <tag> build

The output will be a Docker image with a jar file containing your application code.
You will then need to push this image to your Docker registry.
$ ./bin/docker-image-tool.sh -r <repo> -t <tag> push

Docker image tags
Be mindful that your tag name is labeled and versioned correctly.
Re-using the same tag name in production could have some unin‐
tended consequences, as some of us have learned from experience.

Submit and run your application
Once the Docker image is pushed to the repo, you use spark-submit to start the pro‐
cess of running the Spark application inside Kubernetes. This is the same spark-
submit used for other modes, so many of the same arguments are used. This
corresponds to Step 1 in Figure 9-3.
$ ./bin/spark-submit \
    --master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
    --deploy-mode cluster \
    --name <application-name> \
    --class <fully-qualified-class-name> \
    --conf spark.executor.instances=<instance-number> \
    --conf spark.kubernetes.container.image=<spark-image> \
    local:///path/to/application.jar

There are quite a few things happening here but the most important is in the --master
parameter. To indicate this is for Kubernetes, the URL in the argument must start
with a k8s:// and point to the API server in the default Kubernetes cluster specified in

238 | Chapter 9: Data Analytics on Kubernetes

www.dbooks.org

https://www.dbooks.org/


your local .kubeconfig file. The <spark-image> is the Docker image you created in
Step 1 and the application path refers to your application stored inside the image.

Next is Step 2, where spark-submit interacts with the Kubernetes cluster to schedule
the Spark Driver Pod (Steps 3 and 4). The Spark Driver parses the job parameters and
works with the Kubernetes Scheduler to set up Spark Executor pods (Steps 5, 6, and
7) to run the application code contained in the customer container image. The appli‐
cation will run to completion, and eventually, the Pod used will be terminated, and
resources returned to the Kubernetes cluster in a process called garbage collection.

This is just an overview of how Spark natively works with Kubernetes. Please refer to
the official documentation to go much further in-depth. There are many ways to cus‐
tomize the arguments and parameters to best fit your specific needs.

Security considerations when running Spark in Kubernetes
It should be clearly stated that security is not enabled by default
when using Spark in Kubernetes. The first line of defense is authen‐
tication. Production Spark applications should use the built-in
authentication in Spark to ensure the users and processes accessing
your application are the ones you intended.
When creating a container for your application, the Spark docu‐
mentation highly recommends changing the USER directive to an
unprivileged UID and GID to mitigate against privilege escalation
attacks. This can also be accomplished with a SecurityContext
inside of the Pod Template file provided as a parameter to spark-
submit.
Storage access should also be restricted with the Spark Driver and
Spark Executor. Specifically, you should limit the paths that can be
accessed by the running application to eliminate any accidental
access in the event of a vulnerability. These can be set inside a Pod
Security Policy, which the Spark Documentation recommends.

For optimal security of your Spark applications, use the security primitives Kuber‐
netes provides and customize the defaults for your environment. The best security is
the one you don’t have to think about. If you are an SRE, this is one of the best things
you can do for your developers and data engineers. Default secure!

Kubernetes Operator for Apache Spark
If Spark can run in Kubernetes via spark-submit, why do we need an operator? As
you learned in previous chapters, Kubernetes operators give you more flexibility in
managing applications and a more cloud native experience overall. Using spark-
submit to run your Spark applications requires your production systems to be set up

Kubernetes Operator for Apache Spark | 239

https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html


with a local installation of Spark, including all dependencies. The Spark on Kuber‐
netes Operator allows SREs and developers to manage park applications declaratively
using Kubernetes tools such as Helm and kubectl. It also allows better observability
on running jobs and exporting metrics to external systems like Prometheus. Finally,
using the operator provides an experience much closer to running other applications
in Kubernetes.

The first step is to install the operator into your Kubernetes cluster using Helm.
$ helm repo add spark-operator \
  https://googlecloudplatform.github.io/spark-on-k8s-operator
$ helm install my-release spark-operator/spark-operator \
  --namespace spark-operator --create-namespace

Once completed, you will have a SparkApplication controller running and looking for
SparkApplication objects. This is the first big departure from spark-submit. Instead
of a long list of command line arguments, you use the SparkApplication CRD to
define the Spark job in a YAML file. Let’s look at a config file from the official docu‐
mentation.
apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
  name: spark-pi
  namespace: default
spec:
  type: Scala
  mode: cluster
  image: "gcr.io/spark-operator/spark:v3.1.1"
  imagePullPolicy: Always
  mainClass: org.apache.spark.examples.SparkPi
  mainApplicationFile: "local:///opt/spark/examples/jars/spark-
examples_2.12-3.1.1.jar"
  sparkVersion: "3.1.1"
  restartPolicy:
    type: Never
  volumes:
    - name: "test-volume"
      hostPath:
        path: "/tmp"
        type: Directory
  driver:
    cores: 1
    coreLimit: "1200m"
    memory: "512m"
    labels:
      version: 3.1.1
    serviceAccount: spark
    volumeMounts:
      - name: "test-volume"
        mountPath: "/tmp"
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  executor:
    cores: 1
    instances: 1
    memory: "512m"
    labels:
      version: 3.1.1
    volumeMounts:
      - name: "test-volume"
        mountPath: "/tmp"

The spec: section is similar to the parameters you passed in spark-submit with
details about your application. The most important is the location of the container
image. This example uses a default Spark container with the spark-examples jar file
pre-installed. You will need to use the docker-image-tool.sh to build the image for
your application as described in an earlier section, and modify the mainClass and
mainApplicationFile as appropriate for your application.

Two other notable fields under spec: are driver: and executor:. These provide the
specifications for the Spark Driver Pods and Spark Executor Pods that the Spark
Operator will deploy. For driver: only one core is required but cpu and memory allo‐
cations need to be enough to maintain the number of executors you require. The
number is set in the executor: section under instances:.

Minding your resources
For resource management, the requests you make under driver:
and spec: need to be carefully considered for resource manage‐
ment. The number of instances plus their allocated CPU and mem‐
ory could use up resources quickly. Jobs can hang indefinitely while
waiting for resources to free up, which may never happen.

Now that your configuration yaml is ready, it’s time to put it into action. For a walk-
through, refer to Figure 9-4.
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Figure 9-4. Spark on Kubernetes Operator

First, use ‘kubectl apply -f <!lename>’ (Step 1) to apply the SparkApplication into
your running Kubernetes cluster (Step 2). The Spark Operator listens for new appli‐
cations (Step 3) and when a new config object is applied, the Submission Runner con‐
troller begins the tasks of building out the required pods. From here the actions taken
in the Kubernetes cluster are the same as if you used spark-submit, with all of the
parameters being supplied in this case via the SparkApplication YAML. The Submis‐
sion Runner starts the Spark Driver Pod (Step 4) which in turn directs the Spark
Executor Pods (Step 5), which runs the application code to completion. The Pod
Monitor included in the Spark Operator exports Spark metrics to observability tools
such as Prometheus.

The Spark Operator fills in the gaps between the way spark-submit works versus how
SREs and developers typically deploy applications into Kubernetes. This was a long
answer to the question posed at the beginning of this section. We need an operator to
make using Spark more cloud native, and, therefore, more manageable in the long
run. The cloud native way of doing things includes taking a declarative approach to
managing resources and making those resources observable.
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Alternative Schedulers for Kubernetes
As you learned in Chapter 5, the Kubernetes Scheduler has a basic but essential job:
take requests for resources and assign the compute, network and storage to satisfy the
requirements. Let’s look at the default approach for this action as shown in
Figure 9-5.

Figure 9-5. Typical Kubernetes Scheduling

A typical scheduling effort begins when you create a deployment.yaml file describing
the resources required (Step 1), including which Pod resources are needed and how
many. When the YAML file is submitted (Step 2) to the kubernetes cluster API server
using kubectl apply -f <deployment.yaml>, the Pod resources are created with the
supplied parameters and are ready for assignment to a Node. Nodes have the needed
pool of resources, and it’s the job of the kube-scheduler to be the matchmaker
between Nodes and Pods. The Scheduler performs state matching whenever a new
Pod resource is created (Step 3), and checks if the Pod has an assigned Node. If not, it
makes the calculations needed to find an available Node. The Scheduler examines the
requirements for the Pod, scores the available Nodes using an internal set of rules and
selects a Node to run the Pod (Step 4). This is where the real work of container
orchestration in Kubernetes gets done.

However, we have a problem with analytic workloads: the default Kubernetes schedu‐
ler was not designed for batch workloads. The design is just too basic to work the way
that’s needed for analytics. As mentioned by Holden Karau in the previous sidebar,
Kubernetes was built for the needs of stateless workloads. These are long-running
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processes that may expand or contract over time but tend to remain relatively static.
Analytic applications such as Spark are different, requiring the scheduling of poten‐
tially thousands of short-lived jobs.

Thankfully, the developers of Kubernetes anticipated expanded requirements for
future scheduling needs and made it possible for users to specify their scheduler in a
configuration, bypassing the default scheduling approach.

The strong desire to manage the entire application stack with a common control
plane has been an innovation driver. As we’ve shown above in Deploying Apache
Spark™ in Kubernetes, Spark has been moving closer to Kubernetes. In this section,
we’ll look at how some teams have been bringing Kubernetes closer to Spark by build‐
ing more appropriate schedulers. Two open source projects are leading the way in
this effort: Volcano and Apache YuniKorn™. These schedulers share similar guiding
principles that make them more appropriate for batch workloads by providing alter‐
native features.

Multi-tenant Resource Management
The default Kubernetes Scheduler allocates Pods as requested until no more
available resources match pod requirements. Both YuniKorn and Volcano.sh pro‐
vide a wide variety of resourcing modes to match your application needs better,
especially in multi-tenant environments. Fairness in resource management pre‐
vents one analytic job from starving out other jobs for required resources. As
these jobs are scheduled, the entire resource pool is considered to balance utiliza‐
tion based on priority and throughput.

Gang scheduling adds another layer of intelligence. If a submitted job needs a cer‐
tain amount of resources, it doesn’t make sense to start the job if every Pod can’t
be started. The default scheduler will start Pods until the cluster runs out of
resources, potentially stranding jobs as they wait for more Pods to come online.
Gang scheduling implements an all or nothing approach, as jobs will only start
when all resources needed are available for the complete job.

Job Queue Management
Smarter queue management can also lead to better resource management. If one
job needs few resources and can be run while larger jobs are being run, the
scheduler can fit the job in and, therefore, increase the Kubernetes cluster’s over‐
all throughput. In some cases, users need control over what jobs have priority
and which can preempt or pause other running jobs as they are submitted.
Queues can be reordered or reprioritized after jobs are submitted. Observability
tooling provides queue insights that help determine total cluster health and
resource usage.

If you are considering a production deployment of analytic workloads, you should
avoid using the default scheduler, kube-scheduler. It wasn’t designed for what you
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need in this case. Starting with a better scheduler lets you future-proof your Kuber‐
netes experience. Let’s examine some highlights of each scheduler.

Apache YuniKorn™
The YuniKorn project was built by engineers from Cloudera out of the operational
frustration of working with analytic workloads in Spark. In the spirit of using Open
Source to solve problems as a community, YuniKorn was donated to the Apache Soft‐
ware Foundation and accepted as an incubating project in 2020. The name comes
directly from the two systems it supports, Yarn and Kubernetes. (Y uni-!ed K. Yuni‐
Korn. Get it?) It addresses the specific resource management and user control needs
of analytic workloads from a Spark cluster administration point of view. YuniKorn
also added support for TensorFlow and Flink jobs with the same level of resource
control. No doubt, born of the same operation frustrations found in Spark.

YuniKorn is installed in Kubernetes using Helm. The goal of YuniKorn is to trans‐
form your Kubernetes Cluster into a place that is friendly to the resource require‐
ments of batch jobs. A key part of that transformation is replacing the default kube-
scheduler. To demonstrate how, let’s use Figure 9-6 to walk through the components.

Figure 9-6. YuniKorn Architecture

YuniKorn is meant to be a drop-in scheduler replacement with minimal changes to
your existing Spark workflow, so we will start there. When new resource requests
(Step 1) are sent to the Kubernetes API server via spark-submit (Step 2), the default
kube-scheduler (Step 3) is typically used to match Pods and Nodes. When YuniKorn
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is deployed in your cluster, an admissions-controller Pod is created. The job of the
admissions-controller is to listen for new resource requests (Step 4) and make a small
change, adding schedulerName: yunikorn to the resource request. If you need more
fine-grained control, you can disable the admissions-controller and enable YuniKorn
on a per-job basis by manually adding the following line to the SparkApplication
YAML.
spec: 
schedulerName: yunikorn

All scheduling needs will now be handled by the YuniKorn Scheduler (Step 5). Yuni‐
Korn is built to run with multiple orchestration engines and provides an API transla‐
tion layer called Kubernetes Shim to manage communication between Kubernetes
and the YuniKorn Core (Step 6). YuniKorn Core extends the basic filter and score
algorithm available in the default kube-scheduler by adding options appropriate for
batch workloads such as Spark. These options range from simple resource-based
queues to more advanced hierarchical queue management which allows for queues
and resource pools to map to organizational structures. Hierarchical pooling can be
helpful for those with a massive analytics footprint across many parts of a large enter‐
prise and is critical for multi-tenant environments when running in a single Kuber‐
netes cluster.

YuniKorn Core is configured using the queues.yaml file which contains all the details
of how to YuniKorn will schedule Pods to Nodes which include:

Partitions
One or more named configuration sections for different application require‐
ments.

Queues
Fine grained control over resources in a hierarchical arrangement to provide
resource guarantees in a multi-tenant environment.

Node Sort Policy
How Nodes are selected by available resources. Choices are FairnessPolicy and
BinPackingPolicy.

Placement Rules
Description and filters for Pod placement based on user or group membership.

Limits
Definitions for fine grained resource limits on partitions or queues

New jobs are processed by YuniKorn Core by matching details and assigning the right
queue. At this point the scheduler can make a decision to assign Pods to Nodes which
are then brought online (Step 7).
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YuniKorn also ships with an observability web-based tool called Scheduler UI that
provides insights into job and queue status. It can be used to monitor scheduler
health and provide better insights to troubleshoot any Job issues.

Volcano
Volcano was developed as a general-purpose scheduler for running High Perfor‐
mance Computing (HPC) workloads in Kubernetes. Volcano supports a variety of
workloads, including Spark, Flink, PyTorch TensorFlow, and specialized systems such
as KubeGene for genome sequencing. Engineers built Volcano at Huawei, Tencent,
and Baidu, to name a few of the long list of contributors. Donated to the Cloud
Native Computing Foundation, it was accepted as a Sandbox project in 2020.

Volcano is installed using Helm and creates CRDs for Jobs and Queues, making the
configuration a core part of your Kubernetes cluster as compared with YuniKorn,
which is more of a bypass. This is a reflection of the general-purpose nature of Vol‐
cano. When installed, the Volcano Scheduler is available for any process needing
advanced scheduling and queuing. Let’s use Figure 9-7 to walk through how it works.

Figure 9-7. Volcano Architecture

To use Volcano with your batch jobs, you will need to explicitly add the scheduler
configuration to your Job YAML file (1). If you are using Volcano for Spark, it is rec‐
ommended by the Volcano project to use the Spark Operator for Kubernetes and add
one field to your SparkApplication YAML:
spec: 
batchScheduler: "volcano"
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You can then use kubectl apply -f as normal to submit your Job (2). Without specify‐
ing the Volcano Scheduler, Kubernetes will match Pods and Nodes with the default
kube-scheduler (3).

A Helm installation of Volcano will install the CRDs for Job, Queue, and PodGroup
and create a new Pod called Volcano Admission. Volcano Admission (4) attaches to
the API server and validates Volcano-specific CRD entries and Jobs asking for the
Volcano Scheduler.

Job
A Volcano-specific job with extended configuration for high performance com‐
puting.

Queue
A collection of PodGroups to be managed as a First In, First Out (FIFO) resource
group. Configuration dictates the behavior of the queue for different situations.

PodGroup
A collection of Pods related to their purpose. Examples would be groups for
Spark and TensorFlow with different properties for each.

When selected as the scheduler for a job (5), the Volcano Scheduler will take the
CRDs and start to work (6). Incoming Jobs marked to use Volcano as the scheduler
are matched with a PodGroup and Queue. Based on this assignment a final Node
placement is made for each Pod (7).

The cluster specific configuration for the Volcano Scheduler core is stored in a Con‐
figMap named volcano-scheduler-configmap. This config file contains two main sec‐
tions: actions and plugins. Actions are an ordered list of each step in the Node
selection for each Job: enqueue, allocate, preempt, reclaim, and backfill. Each step is
optional and can be re-ordered to match the type of work that needs to be performed.

Plugins are the algorithms used to match Pods with Nodes. Each has a different use
case and purpose and can be combined as an ensemble:

Gang
this plugin looks for higher priority tasks in the Queue and performs pre-
emption and eviction if needed to free up resources for them.

Binpack
a classic algorithm to find the best fit for using every resource available by mixing
different size resource requests in the most efficient manner.

Conformance
ignores any task in the namespace kube-system for eviction decisions.
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Dominant Resource Fairness (DRF)
an algorithm to address issues of fairness across multiple resource types to ensure
all Jobs have equal throughput.

Proportion
a multi-tenant algorithm to allocate dedicated portions of cluster allocation for
running Jobs.

Task-topology
uses affinity to put network-intensive Jobs physically closer together for more
efficient network use.

NodeOrder
takes multiple user-defined dimensions to score every available Node before
selection.

Predicates
looks for certain predicates in Nodes for selection. Currently only supports
GPUSharing predicate.

Priority
chooses task priority based on user-supplied configuration in priorityClassName,
createTime, and id.

Service Level Agreement (SLA)
uses the parameter JobWaitingTime to allow individual Jobs the control over pri‐
ority based on when they are needed.

Time Division Multiplexing (TDM)
when Nodes are both used for Kubernetes and Yarn, TDM will Schedule Pods
that share resources in this arrangement.

Numa-aware
Provides CPU resource topology-aware scheduling for Pods.

Outside of the Kubernetes installation, Volcano also ships with a command-line tool
called vcctl. Managing Volcano can be done solely through the use of kubectl. How‐
ever, vcctl presents an interface for operators more familiar with job control systems.

As you can see from the list of features offered by YuniKorn and Volcano, having
choices is a beautiful thing. Regardless of which project you choose, you’ll have a bet‐
ter experience running analytic workloads in Kubernetes with one of these alternate
schedulers.
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Analytic Engines for Kubernetes
Spark is certainly a powerful tool that solves many use cases in analytics. Having just
a single choice can be restrictive once that tool no longer works the way you do.
When Google developed MapReduce, the real need was in data transformation, such
as taking a pool of data and creating a count of the things in it. This is still a relevant
problem given the volumes of data we create, which has been for some time. Even
before MapReduce, massively parallel processing (MPP) was a popular approach for
data analysis. These “supercomputers” consisted of rows and rows of individual com‐
puters presented as a single processing grid for researchers in fields such as physics
and meteorology to run massive calculations that would take far too long on a single
computer.

A similar computing need arises when tackling the machine learning and AI tasks in
analytics: many processes need to analyze a large volume of data. Libraries such as
TensorFlow require analytic tools beyond data transformation. With Kubernetes, data
scientists and engineers can now create virtual datacenters quickly with commodity
compute, network and storage to rival some of the supercomputers of the past. This
combination of technologies brings a completely new and exciting future for develop‐
ers building ML and AI based applications based on a self-service usage model
without waiting for time on the very expensive supercomputer (yes, this was a thing).

Sidebar: The evolution of analytics for developers in a cloud native
world

With Dean Wampler, Product Engineering Director for Accelerated Discovery, IBM
Research

There has been speculation that streaming and batch analytics will somehow con‐
verge into a single, universal approach for every project or product. I believe with
Kubernetes that vision becomes less ideal as developers determine what they need to
be successful and it’s all about choosing the best tool for the job. In fact, there are
likely going to be more choices available for analyzing data that fit different use cases
in and outside of Kubernetes. Developers and data engineers will need a variety of
tools to overcome limitations and tradeoffs.

Let’s suppose you have bought into the idea that you could do everything with
streams. What does that actually mean in practice and where are the limitations? Sup‐
pose I wanted to know exactly how many items of all SKUs I sold in every store seg‐
mented into hour buckets. The challenge with that calculation is some uncertainty in
knowing when all the data is delivered for each hour bucket. You can’t start the job
exactly on the hour because there might be data still in flight. Worst case, some data
may be significantly delayed due to network partitions or other outages. Now it’s up
to the developers to build in the sophistication for provisional results, which might be
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calculated as quickly as possible, and then integrate corrections when late data arrives.
With more diversity in data tooling, they can better solve the problem. For this exam‐
ple, maybe they would use Apache Flink for dashboards with some percentage of
accuracy about what’s happening immediately. Data that is captured later would be
used in an overnight Apache Spark job to do the final accounting and produce the
canonical results per-hourly bucket. You could argue this is a much more reasonable
level of sophistication based on using the simplest, correct tool for each job, composa‐
ble using Kubernetes.

At larger data scales, organizations still like using Spark for big analytics tasks. How‐
ever, there is a growing trend where data scientists and data engineers are starting to
recognize it’s reasonable to have data in a database, rather than a data lake as a matter
of choosing the right tool for the job. Some teams will use something like Cassandra
because they don’t want the complexity of keeping track of HDFS and Parquet files,
and they want the benefits of indexing and queries. They accept a performance hit
from scanning tables versus a file. These are teams experienced in making trade-off
decisions for convenience or reliability, and sometimes even for less performance.
Kubernetes can encourage a more extensive choice of alternatives by reducing the
upfront costs of trying new things. It’s still early days for cloud native analytics, but
the leaders in this space make it work by being more agile with underlying data infra‐
structure.

A new generation of analytic tools is expanding the choices that can be made. With all
its dominance, Apache Spark is still very dependent on the Java Virtual Machine
(JVM) and that feature is becoming a trade-off consideration. Some data engineering
shops don’t want to deal with the JVM anymore, they just want to run Python, some‐
times with C-based library kernels for high performance. This has created an oppor‐
tunity for projects like Ray and Dask to cater directly to teams that want to use
Python first. Developers gravitate to tools that help them go faster with fewer trade‐
offs. However, while the JVM might be a liability in some cases, Spark has enormous
mindshare and years of continuous improvement. Keeping with the theme of choice,
it’s easy to see how Kubernetes can help create a place where Spark and Ray could be
used in the same application. Cloud native analytics could eliminate the zero-sum
game of all-in-one tools.

The analytics convergence that people have talked about will likely happen at the
interface level, giving developers a single interface with access to the appropriate tool‐
ing underneath. The right mix of services for a cloud native world. Batch offline ana‐
lytics with data warehouses augmented with online databases. Streaming analytics
that provides real-time updates to the same data used for the batch jobs. All are pro‐
vided as services deployed in Kubernetes. The most important factor is the easy access
it provides. Citizen data scientists can use Excel to explore data. Visualization tools
can connect to any underlying service with low or no code. Python is increasingly the
language of choice for data engineers and scientists building pipelines. Support for
SQL across streaming and batch analytics has remained universally popular, leverag‐
ing a data language that has been the standard for decades. Kubernetes will have to
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support this by enabling the fine-grained concurrency within a single process that
some data processing systems require while leveraging pod boundaries for big chunks
of resources. It’s a balance of trade-offs. The winner will be the developers and data
scientists who no longer have to worry about making bad tool choices, allowing them
to spend more time writing code that creates value.

Access via the right APIs and ability via the right infrastructure built on Kubernetes is
a powerful combination that the data science and Python community has been work‐
ing to make a reality. Two new projects are already making a mark: Dask and Ray. As
pointed out by Dean, Python is the preferred language for data science. Both Ray and
Dask provide a native Python interface for massively parallel processing both inside
and outside of Kubernetes.

Dask
Dask is a Python-based clustering tool for large-scale processing that abstracts away
the complicated setup steps. It can be used for anything that you can express in a
Python program but has found a real home in data science with the countless libra‐
ries available. Scikit-Learn, NumPy, TensorFlow, Pandas are all mature data science
libraries that can be used on a laptop then scaled to a massive cluster of computers
thanks to Dask.

Dask integrates nicely with Kubernetes to provide the easy user experience that oper‐
ators and developers have come to expect with Python. The Dask storage primitives
Array, DataFrame, and Bag map to many cloud native storage choices. For example,
you could map a DataFrame to a file stored in a PersistentVolume or an object bucket
such as S3. Your storage scale is only limited to the underlying resources and your
budget. As the Python code is working with your data, Dask manages the chunking
across multiple workers seamlessly.

Deployment options include the manual Helm install we are now familiar with from
Chapter 4, as you can see in this example:
$ helm repo add dask https://helm.dask.org/
$ helm repo update
$ helm install my-dask dask/dask

Or as an alternative, you can install a Dask cluster in Kubernetes with a Jupyter Note‐
book instance for working inside the cluster.
$ helm install my-dask dask/daskhub

Once your Dask cluster is running inside Kubernetes you can connect as a client and
run your Python code across the compute nodes using the HelmCluster object. Con‐
nect using the name you gave your cluster given at the time of installation.
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from dask_kubernetes import HelmCluster
from dask.distributed import Client
# Connect to the name of the helm installation
cluster = HelmCluster(release_name="my-dask")
# specify the number of workers(pods) explicitly
cluster.scale(10)
# or dynamically scale based on current workload
cluster.adapt(minimum=1, maximum=100)
# Your Python code here

If that wasn’t easy enough, you can completely skip the Helm installation and just let
Dask do that part for you. The KubeCluster object takes an argument specifying the
pod configuration either using a make_pod_spec method or specifying a YAML con‐
figuration file. It will connect to the default Kubernetes cluster accessible via kubectl
and invoke the cluster creation inside your Kubernetes cluster as a part of the run‐
ning Python program.
from dask.distributed import Client
from dask_kubernetes import KubeCluster, make_pod_spec
pod_spec = make_pod_spec(image='daskdev/dask:latest',
                         memory_limit='4G', memory_request='4G',
                         cpu_limit=1, cpu_request=1)
cluster = KubeCluster(pod_spec)
# specify the number of workers(pods) explicitly
cluster.scale(10)
# or dynamically scale based on current workload
cluster.adapt(minimum=1, maximum=100)
# Connect Dask to the cluster
client = Client(cluster)
# Your Python code here

Developer access to Kubernetes clusters for parallel computing couldn’t get much eas‐
ier and this is the appeal new tools like Dask can provide.

Ray
In a significant difference from the arbitrary Python code in Dask, Ray takes a differ‐
ent approach to Python clustering by operating as a parallel task manager that
includes a distributed computing framework. For the end-user, Ray provides low-
level C++ libraries to run distributed code purpose-built for compute-intensive work‐
loads typical in data science. The base is Ray Core which does all the work of
distributing workloads using the concept of a task. When developers write Python
code using Ray each task is expressed as a remote function, as shown in this example
from the Ray documentation:
# By adding the `@ray.remote` decorator, a regular Python function
# becomes a Ray remote function.
@ray.remote
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def my_function():
    return 1

In this basic example you can see the difference in the approach Ray takes for distrib‐
uting work. Developers have to be explicit in what work is distributed with Ray Core
handling the compute management with the Cluster Manager.

A Ray deployment in Kubernetes is designed to leverage compute and network
resource management within dynamic workloads. The Ray Operator includes a cus‐
tom controller and CRD to deploy everything needed to attach code to a Ray cluster.
A Helm chart is provided for easy installation. However, since the chart is unavailable
in a public repository you must first download the entire Ray distribution to your
local filesystem. An extensive configuration YAML file can be modified, but to get a
simple Ray cluster working, the defaults are fine, as you can see in this example from
the documentation:
$ cd ray/deploy/charts
$ helm -n ray install example-cluster --create-namespace ./ray

This results in the creation of two types of pods installed. The Head Node handles the
communication and orchestration of running tasks in the cluster and the Worker
Node where tasks execute their code. With a Ray cluster running inside a Kubernetes
cluster, there are two ways to run a Ray job. Interactively with the Ray client or as a
Job submitted via kubectl.
The Ray client is embedded into a python program file and initializes the connection
to the Ray cluster. This requires the head service IP to be exposed either through
Ingress or local port forwarding. Along with the remote function code, an initializer
will establish the connection to the externalized Ray cluster host IP and port.
import ray
ray.init("ray://<host>:<port>")
@ray.remote
def my_function():
    return 1

Another option is to run your code inside the Kubernetes cluster and attach it to an
internal service and port. You use kubectl to submit the job to run and pass a Job
description YAML file that outlines the python program to use and pod resource
information. Here is an example Job file from the Ray documentation:
apiVersion: batch/v1
kind: Job
metadata:
  name: ray-test-job
spec:
  template:
    spec:
      restartPolicy: Never
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      containers:
        - name: ray
          image: rayproject/ray:latest
          imagePullPolicy: Always
          command: [ "/bin/bash", "-c", "--" ]
          args:
            - "wget <URL>/job_example.py &&
              python job_example.py"
          resources:
            requests:
              cpu: 100m
              memory: 512Mi

This file can then be submitted to the cluster using kubectl
$ kubectl -n ray create -f job-example.yaml

Inside the Python file submitted, we can use the DNS name of the Ray service head
and let Kubernetes ensure the network path is routed.
ray.init("ray://example-cluster-ray-head:10001")

For both external and internal modes of running Ray programs, the Head Node uti‐
lizes the Kubernetes scheduler to manage the Worker Node Pod lifecycle to complete
the submitted job. Ray provides a simple programming API for developers to utilize
large-scale cluster computing without learning Kubernetes administration. SREs can
create and manage Kubernetes clusters that can be easily used by data scientists using
their preferred Python programming language.

Summary
This wraps up the tour of data components in your cloud native application stack.
Adding analytics completes the total data picture by giving you the ability to find
insights in larger volumes of data that can complement other parts of your applica‐
tion.

Analytics is at the frontier of cloud native data innovation and for this reason “Big
Data” isn’t something you should assume fits into Kubernetes in the same way as
other data infrastructure. Two primary differences are the volumes of data involved
and the bursty nature of the workloads. There are still improvements that are needed
to make Apache Spark run more effectively on Kubernetes, especially in the areas of
job management and storage APIs. aligned better with analytics. However, the knowl‐
edge is available to help you deploy with confidence today. Projects such as Apache
YuniKorn and Volcano.sh are already leading the way in open source to give Kuber‐
netes a better foundation for analytic workloads. Emerging analytic engines such as
Dask and Ray may be a better choice for your use case, and they can be used in com‐
bination with other tools.
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While analytic workloads may not have been in your original plans for deployment in
Kubernetes, they can’t be skipped if your goal is to build the complete picture of a
virtual data center, purpose-designed to run your application.
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CHAPTER 10

Machine Learning and Other Emerging Use
Cases for Data on Kubernetes

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 10th chapter of the final book. The GitHub repo is https://
github.com/data-on-k8s-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at jleonard@oreilly.com.

In previous chapters, we have covered traditional data infrastructure, including data‐
bases, streaming platforms, and analytic engines with a Kubernetes-centered focus.
Now it’s time to start looking beyond and exploring the projects and communities
that are beginning to make cloud native their destination, especially concerning Arti‐
ficial Intelligence and Machine Learning.

Any time multiple arrows start pointing in the same direction, it’s worth paying atten‐
tion. The directional arrows in data infrastructure all point to an overall macro trend
of convergence on Kubernetes, supported by several interrelated trends:

• Common stacks are emerging for managing compute-intensive AI/ML work‐
loads, including those that leverage specific hardware such as GPUs.
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• Common data formats are helping to promote the efficient movement of data
across compute, network, and storage resources.

• Object storage is becoming a common persistence layer for data infrastructure.

In this chapter, we will look at several emerging technologies that embody these
trends, the use cases they enable, and how they contribute to helping you further
manage the precious resources of compute, network, and storage.

The Cloud Native AI/ML Stack
As discussed in Chapter 9, Analytics, Artificial Intelligence, and Machine Learning
(AI/ML) on Kubernetes is a topic worthy of more detailed examination. If you aren’t
familiar with this specialty in the world of data, it’s an exciting domain that enhances
our ability to produce real time, data-driven decisions at scale. While many of the
core algorithms have existed for decades, the nature of this work has been changing
rapidly over the past few years. Data science as a profession has traditionally been
relegated to the back office, where volumes of historical data were gleaned for insight
to find meaning and predict the future. Data scientists rarely had any direct involve‐
ment with end-user applications, and their work was disconnected from user-facing
applications.

This began to change with the emergence of the data engineer role. Data engineers
build the processing engines and pipelines to productionalize data science and break
down silos between disciplines. As is typical for emerging fields in data infrastruc‐
ture, the largest, most vocal organizations set the tempo for data engineering, and
their tools and methods have become the mainstream.

The real-time nature of data in applications can’t be left to just databases and stream‐
ing platforms. Products built by data scientists must be closer to the end-user to max‐
imize their effectiveness in applications. Many organizations have recognized this as
both a problem and an opportunity: how can we make data science another near real-
time component of application deployments? True to form, when faced with a chal‐
lenge, the community has risen to the occasion to build new projects and create new
disciplines. As a result, a new category of data infrastructure on Kubernetes is emerg‐
ing alongside the traditional categories of persistence, streaming, and analytics. This
new stack consists of tools that support the real-time serving of data specific to AI
and ML.

AI/ML De!nitions
If you are new to the field of AI/ML, you can quickly become overwhelmed by the
terminology. Before we look at a few cloud native technologies that solve different
problems in the AI stack, let’s spend some time understanding the new set of terms
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and concepts that are critical to understanding this specialty. If you are familiar with
AI/ML, you can safely skip to the next section.

First, let’s briefly overview some common terms used in AI/ML. These frequently
appear in descriptions of projects and features, and you’ll need to understand them to
select the right tools and apply them effectively.

Algorithm
The basic computational building block of Machine Learning is the algorithm.
Algorithms are expressed in code as a set of instructions to analyze data. Com‐
mon algorithms include linear regression, decision trees, K-means, and random
forest. Data Scientists spend their time working with algorithms to gain insights
from data. When the procedures and parameters are right, the final repeatable
form is output into models.

Model
Machine Learning aims to build systems that mimic how humans learn so that
they can answer questions based on provided data without explicit program‐
ming. Example questions include identifying whether two objects are similar, the
likelihood of occurrence of a particular event, or choosing the best option given
multiple candidates. The answering system for these questions is described in a
mathematical model, or model for short. A model acts as a function machine
where data that describes a question goes in, and new data that represents an
answer comes out.

Feature
Features are the portions of a more extensive data set relevant to a specific use
case. Features are used both to train models and to provide input to models in
production. For example, if you wanted to predict the weather, you might select
time, location, and temperature from a much larger data set, ignoring other data
such as air quality. Feature selection is the process of determining what data
you’ll use, which can be an iterative process. When you hear the word feature,
you can easily translate that to just data.

Training
A model consists of an algorithm plus data (features) that apply that algorithm to
a particular domain. To train a model, training data is passed through the algo‐
rithm to help refine the output to match the expected answer. This training data
contains the same features that will be used in production use, with the key dif‐
ference that the expected answer is known. Training is the most resource-
intensive phase of machine learning.

Flow
Flow is a shorthand term for workflow. An ML workflow describes the steps
required to build a working model. The flow generally includes data collection,
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pre-processing and cleaning, model training, validation, and performance test‐
ing. These are typically fully automated processes.

Vector
The classic mathematical definition of a vector is a quantity that indicates direc‐
tion and magnitude. Machine learning models are mathematical formulas that
use numerical data. Since not all source data is represented as numbers, normal‐
izing input data into vector representations is the key to using general-purpose
algorithms in machine learning. Images and text are examples of data that can be
vector encoded in the pre-processing step of the flow.

Prediction
Prediction is the step of using the created model to produce a likely answer based
on input data. For example, we might ask the expected temperature for a given
location, date, and time using a weather model. The question being answered
takes the form: “What will happen?”

Inference
Inference models look for reasons by reversing the relationship of input data vs
output data. Given an answer, what features contributed to arriving at this
answer? Another weather example: based on rainfall, what are the most associ‐
ated temperatures and barometric pressures? The question being answered is:
“How did this happen?”

Dri$
Models are trained with snapshots of data from a point in time. Drift is a condi‐
tion where the model loses accuracy due to conditions that have changed over
time or are no longer relevant based on the original training data. When drift
happens in a model, the solution is to refine the model with updated training
data.

Bias
Models are only as good as the algorithms used and how they are trained. Bias
can be introduced at several points: in the algorithm itself, sample data that con‐
tains user prejudice or faulty measurement, or exclusion of data. In any case, the
goal of machine learning is to be as accurate as possible, and bias is an accuracy
measurement. Detecting bias in data is a complex problem and is easier to
address early through good data governance and process rigor.

These are some of the key concepts that will help you understand the rest of this sec‐
tion. For a more complete introduction, consider Introduction to Machine Learning
with Python (O’Reilly) or one of the many quality online courses available from your
favorite learning platform.
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De!ning an AI/ML Stack
Given these definitions, we can describe the elements of a cloud native AI stack and
the purposes such a stack can serve. Emerging disciplines and communities have sim‐
ilar implementations with minor variations as various teams innovate to solve their
own specific needs. We can identify some common patterns by looking at organiza‐
tions that use AI/ML in production at scale and the trends around Kubernetes adop‐
tion. Figure 10-1 shows some of the typical elements found in architectures currently
in production. Without being prescriptive, we’ll use this as an example of the types of
tools in the stack and how they might fit together to serve the real-time components
of AI/ML.

Figure 10-1. Common elements of a cloud native AI/ML stack

The goal of a cloud native AI/ML stack should be to get the insights produced by
AI/ML as close to your users as possible, which means shortening the distance
between backend analytic processes and making use of their output in frontend pro‐
duction systems. Data exploration happens using algorithms provided in libraries
such as Scikit-Learn, PyTorch, Tensorflow, XGBoost. Python is the most commonly
used language with Machine Learning libraries. The systems we discussed in Chapter
9, including Apache Spark, Dask, and Ray, are used to scale up the processing
required to use Python libraries to build models. Kubeflow and similar tools allow
data engineers to create ML workflows for model generation. The workflows output a
model file to object storage, providing the bridge between the backend processes and
front-end production use.
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Models are meant to be used, and this is the role of real-time model serving tools
such as KServe, Seldon, and BentoML. These tools perform predictions on behalf of
applications using existing models from object storage and feature stores such as
Feast. Feature stores perform full lifecycle management of feature data, storing new
feature data in an online database such as Cassandra, training, and serving features to
models.

Vector similarity search engines are a new but familiar addition to the real-time serv‐
ing stack for applications. While traditional search engines such as Apache Solr pro‐
vide convenient APIs for text searching, including fuzzy matching, vector similarity
search is a more powerful algorithm, helping to answer the question “what is like the
thing I currently have?”. To do this, it uses relationships in the data instead of just the
terms in your search query. Vector similarity supports many formats, including text,
video, audio, and anything else that can be analyzed into a vector. Many open source
tools implement vector similarity search, including Milvus, Weaviate, Qdrant, Vald,
and Vearch.

Let’s examine a few of the tools that support frontend ML usage by applications in
more detail and learn how they are deployed in Kubernetes: KServe, Feast, and Mil‐
vus.

Real-time Model Serving with KServe
The “last mile” problem in AI/ML of real-time access to analytic products is one that
Kubernetes is well poised to solve. Consider the architecture of modern web applica‐
tions: HTTP servers that seem to simply serve a web page often have much more
complexity behind them. The reality is that application logic and data infrastructure
are combined to hide the complexity. Much like the HTTP server that listens for
requests and serves a web page, a model server hides the complexity of loading and
executing models. It focuses on the developer experience after the data science is
done.

KServe is a Kubernetes native model server that makes it easy to provide prediction
capabilities to applications in production environments. Let’s learn more about the
origins and functionality of KServe from one of the project founders.

Sidebar: Operationalizing Machine Learning Models with KServe
with "eo!los Papapanagiotou, Data Science Architect at Prosus

Google is well known for its contributions to the machine learning community with
projects such as TensorFlow. Based on the framework they used to run TensorFlow
internally, Google also created KubeFlow, an open source project to help data scien‐
tists and engineers use TensorFlow in production. KubeFlow contains multiple sub-
projects for different aspects of deploying machine learning workflows. One sub-
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project which addressed the externalization of models was called KubeFlow Serving
or KFServing. Initially, it was only built for TensorFlow, but new contributors joined
in and added support for other models such as PyTorch, SciKit Learn, and XGBoost.
In 2021 KFServing became an independent project from KubeFlow and was renamed
KServe.

The core function of KServe is to provide an API endpoint for deploying previously
built machine learning models in Kubernetes. Deploying each model involves multi‐
ple steps. KServe handles the fetching of the model from an object store, loading it
into memory, and determining if the model needs to use CPU or GPU. When GPU is
required, KServe manages the copying of the model from CPU memory to GPU
memory. This behavior can be specified with just a few lines of YAML, which elimi‐
nates a lot of the toil when working with Machine Learning in production environ‐
ments. For SREs, there is additional integration with KNative eventing to manage the
scale-out, and observability features like metrics and logging. These are expected
behaviors of an HTTP API and important aspects of putting machine learning mod‐
els in production.

There are many contributors to KServe, and they are all driven by a similar mission:
operationalizing machine learning to be used by as many people as possible. Data is
significant intellectual property to your organization, and data scientists are tasked to
build models that make efficient use of that data. The real treasure for an organization
is the ability to take those models and apply them to data to make predictions that can
be used in your products, which in turn creates added value for your customers.
KServe emphasizes using data in real-time over pushing it to a data lake where it
might be forgotten. For this reason, KServe does not provide a general purpose data
store, it’s simply a hosting system for models. It functions as a microservice in your
cloud native application, accepting inference requests containing a list of features.
The data returned is a prediction based on the input and it has to happen quickly, effi‐
ciently, and securely.

Bloomberg is one of the top contributors to KServe, and their use case is an excellent
example of how KServe adds value. Bloomberg News is a real-time news feed that has
a diminishing time value for its users, so articles it provides must be timely and rele‐
vant. Bloomberg uses a massive collection of Natural Language Processing (NLP)
models to score incoming news articles from a variety of sources. Each article is
labeled, classified, and provided to users through a service they call Terminal. This
processing isn’t a back office problem that can be done later, and the inferencing must
be updated dynamically. Fortunately, KServe allows the models to be updated on the
fly. This sort of problem is common in many mobile applications and SaaS products
and the ease of integration is key.

Beyond just serving models, KServe also helps manage the lifecycle of machine learn‐
ing models. One feature, called an explainer, provides further information about each
prediction. For example, it can offer insight into why a decision was made to approve
or reject a loan application. KServe does this by providing feature importance and
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highlighting features in the model that led to the loan decision outcome, such as
income level or credit history. Knowing more than just a binary yes or no decision
helps build trust in the application. For Machine Learning operations (MLOps) you
can use feature importance to detect model drift by integrating KServe with other
services to compare results with training data to see if the production model is
diverging. You can even include bias detection with AI Fairness, which is now a Linux
Foundation incubating project. These features help KServe reduce the effort involved
in MLOps.

Machine learning affects all our lives, from food delivery to entertainment. Serving
models dynamically in a Kubernetes environment is a crucial step toward integrating
machine learning and AI in more and more applications, and KServe will play a large
role in making that happen.

Figure 10-2 shows how KServe is deployed on Kubernetes. The control plane consists
of the KServe controller, which manages custom resources known as InferenceServi‐
ces. Each InferenceService instance contains two microservices, a Transformer Ser‐
vice and a Predictor Service, each consisting of a Deployment and a Service. The
KNative framework is used for request processing, treating these as serverless micro‐
services that can scale to zero when they are not being used for maximum efficiency.

Figure 10-2. Deploying KServe in Kubernetes
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The Transformer Service provides the endpoint for prediction requests from client
applications. It also implements a three-stage process: preprocessing, prediction, and
post-processing:

• Preprocessing: the Transformer Service converts the incoming data into a usable
form for the model. For example, you may have a model that predicts if a hot dog
is in a picture. The Transformer Service will convert an incoming picture to a
vector before passing it to the inference service. During preprocessing, the Trans‐
former Service also loads feature data from a feature store such as Feast.

• Prediction: the Transformer Service delegates the work of prediction to the Pre‐
dictor Service, which is responsible for loading the model from object storage
and executing it using the provided feature data.

• Post-processing: the Transformer Service receives the prediction result and per‐
forms any needed post processing to prepare the response to the client applica‐
tion.

If you are familiar with traditional web serving, you can see the helpful analog that
model serving creates. Instead of serving HTML pages, KServe covers the modern
application needs for serving AI/ML workloads. As a Kuberentes native project it fits
seamlessly into your cloud native datacenter and application stack.

Full-Lifecycle Feature Management with Feast
Lifecycle management is a common theme in any data architecture, encompassing
how data is added, updated, and deleted over time. Feature stores serve a helpful
coordination role by managing the lifecycle of features used by ML models from dis‐
covery to their use in production systems, eliminating the versioning and coordina‐
tion issues that can arise when different teams are involved. How did Feast come to
exist?

Sidebar: Bridging Machine Learning Models and Data with Feast
with Willem Pinear, Principal Engineer, Tecton

The Feast project was born from the experiences of the machine learning platform
team at GoJek. After building out the core ML tooling, we realized our data scientists
were struggling to get models into production. We needed a different kind of tooling
to enable the data scientists to help themselves. The same operational rigor we applied
to the deployment of traditional data infrastructure was also needed for ML infra‐
structure. These realizations led to the creation of what we now know as the Feast
project. After observing emerging tools from other teams, especially what the Uber
team had been doing with Michaelangelo, the idea of a feature store became a first-
class priority for us.
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To help understand what a feature store does, consider the problem space. GoJek had
hundreds of millions of users using a variety of services like ride-hailing, food deliv‐
ery, or digital payments. Each service had some element of ML which required many
steps to go from the back office data science team to production. We used tools like
Flink to help with the large-scale SQL batch transformation and stream processing
required for model creation, and systems like Redis and Cassandra to serve data, but
there were remaining problems to operationalize our ML models. What was needed
was a framework on top of those data systems unifying offline and online access, and
so the concept of the feature store emerged.

Feature stores serve as a layer to give models a consistent way to access data, effec‐
tively providing a bridge between ML models and data within your organization. In
production ML models there are two stages: the training and the online phases.
Whether the data is coming from a stream, request data, or a data warehouse, your
model can’t have different copies of data in different environments in each stage. Dur‐
ing the training phase, a feature store manages scale requirements for data processing
when computing data for model export, similar to other big data tools like Spark. In
the online phase, the feature store provides low latency real-time access to models
and in some cases, derives features in real-time, also known as on-demand features.
Feast ensures the consistency of data for both phases, and it meets both online and
offline requirements. Traditional database systems can only provide a subset of those
features. For example, Cassandra supports many of the online features, but not offline
scalability or specialized features like point-in-time correctness.

Feast began as a place to store computed features, but as we got further into the prob‐
lem, we also needed to serve those features in production against our models in a
consistent way, as an integrated part of our job flow. As the Feast project grew, Google
became a key collaborator and within a few months, we had the first working parts of
the project. The KubeFlow team at Google suggested we open source the project to
make it available to a larger community. With the support of our management, we
released a minimum viable product very quickly. So fast, in fact, we released Feast
without a lot of things needed to help new users get started, like documentation!

Despite the minimal state, it became clear that Feast met a huge need as a community
quickly formed around the project. Teams having similar issues with ML flows were
coming to the same realization that they needed an assistant or data platform for
operationalizing ML.

In the early days of the project, deploying Feast in Kubernetes included a big stack of
components. Today, Feast has evolved to be more lightweight; many of the extra com‐
ponents have been stripped away, making it more efficient and easier to manage. The
best approach to building ML platforms on Kubernetes is to make your processing
components as stateless as possible and store state externally. The registry doesn’t
even have to be in Kubernetes since it can just be a file in an object store. Feast is fre‐
quently deployed alongside Redis or Cassandra inside Kubernetes and connected
externally to data warehouses like BigQuery and Redshift. Providing external access
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to Feast is an important aspect. This is typically done using an Ingress to access the
API server directly. In other cases KServe is used as an intermediate serving layer to
provide a scalable solution when a highly used ML model is used by external services.

The future for Feast is to be more cloud native and fully integrated with Kubernetes.
There are quite a few challenges to be solved in deploying ML in Kubernetes, with the
biggest being operational maturity. It still takes quite a bit of work for engineers to
install many of the components and the day two maintenance is more demanding
than it should be. More community involvement will help grow the maturity of
machine learning as an emerging part of the Kubernetes data stack.

As Willem noted, the deployment of Feast on Kubernetes is at a basic state of matur‐
ity. As no operator or custom resources are defined, you install Feast using a Helm
chart. Figure 10-3 shows a sample installation using the example documented on the
Feast website, which consists of the Feature Server and other supporting services.

Figure 10-3. Deploying Feast in Kubernetes

Let’s examine these components and how they interact. Data Scientists identify fea‐
tures from existing data sources in a process called feature engineering and create fea‐
tures using an interface exposed by the Feature Server. The user can either provide
feature data at the time of creating the feature or can connect to various backend
services so that the data can be updated continuously. Feast can consume data pub‐
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lished to Kafka topics, or through Kubernetes jobs which pull data from an external
source such as a data warehouse. The feature data is stored in an online database such
as Redis or Cassandra so that it can be easily served to production applications. Zoo‐
keeper is used to coordinate metadata and service discovery. The Helm chart also
supports the ability to deploy Grafana for visualization of metrics. This may sound
familiar to you, because the reuse of common building blocks like Redis, Zookeeper,
and Grafana is a pattern we’ve seen used in several other examples in this book.

When model serving tools like KServe are asked to make predictions, they use the
features stored in Feast as a record of truth. Any updated training by data scientists is
done using the same feature store, eliminating the need for multiple sources of data.
The Transformation Service provides an optional capability to generate new features
on demand by performing transformations on existing feature data.

KServe and Feast are often used together to create a complete realtime model serving
stack. Feast performs the dynamic part of feature management, working with online
and offline data storage as new features arrive through streaming and data ware‐
houses. KServe handles the dynamic provisioning for the model serving by using the
serverless capabilities of KNative. This means that when not in use, KServe can scale
to zero and react when new requests arrive, saving valuable resources in your Kuber‐
netes based AI/ML stack by only using what you need.

Vector Similarity Search with Milvus
Now that we’ve looked at tools that enable you to use ML models and features in pro‐
duction systems, let’s switch gears and look at a different type of AI/ML tool - vector
similarity search (VSS). As discussed earlier in the chapter, a vector is a number
object representing direction and magnitude. VSS is an application of vector mathe‐
matics in machine learning. The K-nearest neighbor (KNN) algorithm is a way to
find how “close” two things are next to each other. There are many variations of this
algorithm but they all rely on expressing data as a vector. The data to be searched is
vectorized using a CPU intensive KNN type algorithm; typically this is more of a
backend process. VSS servers can then index the vector data for less CPU-intensive
searching and provide a query mechanism that allows end users to provide a vector
and find things that are close to it.

Milvus is one of many servers designed around the emerging field of VSS. Let’s learn
how Milvus came to exist and why it’s a great fit for Kubernetes.

Sidebar: A New Era of Search for Kubernetes Applications
with Xiaofan Luan Director of Engineering Zilliz, Milvus Maintainer

There is a growing community around the newly emerging field of VSS, most notably
in the use of libraries such as Facebook AI Similarity Search (FAISS) and Hierarchical
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Navigable Small World (HNSW). These libraries are used to take the output of com‐
putationally expensive Machine Learning algorithms and create end-user applica‐
tions. Algorithms like Convoluted Neural Networks (CNN) can take data including
images and generate vectors that are simply a list of numbers. The real value of the
analysis comes from what you do with that list of numbers.

Structured data searching has been a standard feature of traditional RDBMSs in
which all the values in columns are indexed for fast lookup. Projects like Apache
Lucene built on this, making text search a new kind of competency for unstructured
data. Users can provide all or part of the text they are searching for and get back mul‐
tiple results with varying confidence values. Lucene is the engine for higher-level sys‐
tems such as Apache Solr and ElasticSearch. Combined, they create a data server that
is used in almost every kind of application now.

Milvus was designed to fulfill a similar purpose as Solr and ElasticSearch. However,
instead of working with only text, Milvus exposes a general purpose VSS capability. It
provides a top-level operational server for users that want more than just a library
and need a system that can handle important details like durability, failure, and recov‐
ery. Milvus is a system that can be deployed and managed in Kubernetes to manage
storage and helper features like computation disaggregation. Most importantly, it pro‐
vides the Milvus API interface for application developers to use VSS in their code to
do things that aren’t possible with previous databases.

To give an example of how this works, imagine a library containing photos of meals.
Using an image analysis tool such as YOLO, the objects in the images are separated
into main dishes such as a sandwich and various side dishes like french fries. The next
step is to process each object using ResNet to extract its dimensions. The output of
ResNet is a 256-dimensional vector for each item, which is then loaded into Milvus
and assigned a unique ID. Milvus indexes the different objects so they can be accessed
via its search interface. User-facing applications can provide a picture of a hamburger
and fries and ask for similar meals based on the indexed images and the similarities.

Let’s compare this example to the experience of using a text search engine like Elastic‐
Search. To start, you would need a text description of each meal, index that descrip‐
tion using Lucene, and then you would be able to search for the words “French Fries.”
Similar to how ElasticSearch makes searching text easier, Milvus does the same thing
to enable the searching of vectorized video, audio, and even natural language text.

Milvus 1.0 was deployed as a single node for storing, indexing, and serving data. This
worked for anyone needing a simple package, but it wasn’t cloud native or Kubernetes
friendly. For the 2.0 release, we decided that Milvus needed to change into a dis‐
tributed architecture and become more cloud native, separating the compute ele‐
ments from storage. Our goal was to make Milvus scale horizontally by independent
function with an additional benefit of disaster recovery. There are four layers
deployed in a Milvus cluster. The access layer, coordinator service, worker node, and
storage nodes. Breaking up Milvus into something similar to micro-services reduces
the reliance on state to only the storage nodes. The access layer, coordinator service,
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and worker nodes are stateless, making the system much easier to scale up and down
and eliminating single points of failure. One of the essential features for the Milvus
operator in the 2.0 release was the change to object storage and away from Stateful‐
Sets. With these updates, Kubernetes is now the preferred way to deploy Milvus.

Milvus is now a graduated project under the governance of the LF AI & Data Founda‐
tion. The projects in this foundation are all looking toward a cloud native future for
data and the emergence of AI and ML as a core part of every application. The focus
for Milvus post 2.0 is performance. Applications based on AI/ML require fast respon‐
ses and search is a speed dependent operation. Code improvements are a more tradi‐
tional way of gaining performance, but in the AI/ML world, hardware plays a big part
as well. Taking advantage of GPUs or custom FPGA applications will again help
developers take advantage of AI/ML performance advances using a simple API. Over‐
all we want to provide an easy path for people building cloud native applications to go
from the leading edge to mainstream with a great experience.

As Xiaofan mentioned, Milvus supports both standalone and clustered deployments,
using the four layers described above. Both models are supported in Kubernetes via
Helm, with the clustered deployment shown in Figure 10-4.

Figure 10-4. Deploying Milvus in Kubernetes
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The Access Layer contains the Proxy Service, which uses a Kubernetes Load Balancer
to route requests from client applications. The services in the Coordination Layer
handle incoming search and index queries, routing them to the core server compo‐
nents in the Worker Layer that handle queries and manage data storage and indexing.
The Data Nodes manage persistence via files in object storage. The Message Storage
uses Apache Pulsar or Apache Kafka to store the stream of incoming data that is then
passed to Data Nodes.

As you can see, Milvus is designed to be Kubernetes native, with a horizontally scala‐
ble architecture that makes it well poised to scale up to massive data sets including
billions or even trillions of vectors.

E#cient Data Movement with Apache Arrow
Now that we have explored an AI/ML Kubernetes stack that helps you manage com‐
pute resources more efficiently, you might be wondering what can be done with net‐
work resources? The “Fallacies of distributed computing” we discussed in Chapter 1.
include two important points: the fallacies of believing that bandwidth is infinite and
that transport cost is zero. Even when compute and storage resources seem much
more finite, it’s easy to forget how easily you can run out of bandwidth. The deeper
you get into deploying your data infrastructure into Kubernetes, the more likely it is
you will find out. Early adopters of Apache Hadoop often shared that as their clusters
grew, their network switches needed to be replaced with the best that could be pur‐
chased at the time. Just consider what it takes to sort 10 terabytes of data. How about
1 petabyte? You get the idea.

Apache Arrow is a project that addresses the problem of bandwidth utilization by
providing a more efficient format. This actually isn’t an unknown approach in the
history of computer science. IBM introduced EBCDIC character encoding to create
efficiency for the preferred transport of the time: the punch card. Arrow attacks the
problem of efficiency from the ground up in order to avoid the endless upgrading to
add more resources, proving that the solution to a control problem is never “add
more power.” Let’s hear from some experts to learn how this works.

Sidebar: E#cient data movement with Apache Arrow
with Josh Patterson, CEO, Voltron, and Keith Kraus, VP of Product, Voltron

As big data technologies like Spark, Kudu, and Cassandra made it possible to move
larger amounts of data between systems, it became clear that the computational and
performance cost of serializing and de-serializing data was getting too high. Wes
McKinney and Jacques Nadeau, along with others, made a bid to address this prob‐
lem with a project called Apache Arrow. Arrow provides a standard way to represent
the layout of data so systems can share that data with fewer headaches.
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Arrow uses an in-memory columnar format; that is, data arranged in a tabular format
of rows and columns. In traditional relational databases, each record is represented as
a row with multiple columns. Arrow pivots this arrangement: data is organized in
sequentially ordered columns. This provides significant advantages when searching
and processing large amounts of data, especially because of how it aligns with modern
CPU architectures.

Arrow Flight is a subproject to bring the same efficiency we see in processing to net‐
work communications. Highly connected distributed systems consume network
resources quickly and any efficiency gains quickly make a big difference at high vol‐
umes. Flight is a Remote Procedure Call (RPC) layer that drastically reduces resource
utilization for communications between data services by eliminating serialization
costs. Arrow Flight uses gRPC for network efficiency which enables it to send data in
parallel using multiple channels. Using Arrow in all of your Kubernetes native analyt‐
ics stack reduces resource usage and therefore cost.

Arrow doesn’t just provide benefits for network utilization, it also has promise for
more efficient compute processing for AI/ML workloads. Arrow provides a fast
access pattern for data analytics and tabular data that Kubernetes applications can
take advantage of. Arrow was one of the first projects in the data analytics space to
encourage users to think carefully about the usage of memory and processing hard‐
ware, and this timing has coincided nicely with the rise of deep learning. Kubernetes
native analytics workloads powered by Arrow will help keep costs low while allowing
higher processing volumes.

In fact, Kubernetes was a key driver that moved the Arrow project forward. As the
GPU accelerated stack was being defined around 2018, Kubernetes was emerging as
an industry standard, replacing Hadoop Yarn as the leading resource management
tool for big data processing. The Kubernetes community was developing key features
more rapidly, like support for the Remote Direct Memory Access (RDMA) protocol
and topology awareness of nodes containing GPUs. Kubernetes also supported faster
SLAs for cluster operations. With modern GPUs offering 50 times faster processing
times, the job of analyzing dozens of terabytes might take 5 minutes, while scheduling
and provisioning the machines with Yarn to perform that job could take 10 minutes.
The auto-scaling abilities in Kubernetes offered the right reaction time to match these
cyclical workloads. New advanced schedulers such as Yunikorn and Volcano now
make those operations even faster and more efficient.

Finding ways to take advantage of new hardware technology is a critical part of the
battle we have to keep up with the ever-increasing volumes of data created. The trend
toward using GPUs for big data processing is already increasing, and adopting Arrow
will only make this easier. In fact, the effect on the community has already reached a
tipping point. With the momentum of GPUs adopting the Arrow format, data tools
have started adopting Arrow for compatibility, helping to cement Arrow as a data
interoperability standard. Arrow could be more than just a language-agnostic con‐
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nector, but a hardware connector. We’ve come to believe that an increasing number of
systems will become Arrow native in the near future.

The data and analytics ecosystem will continue to drive the future of Kubernetes and
Arrow. Frameworks like Dask, and Ray use Python as their underlying compute
library, with Arrow used as the format within Pandas data frames sent over the wire
between workers. Getting your tabular data efficiently over the wire is a huge benefit
and Arrow provides an easy-to-implement standard that is completely interchangea‐
ble, open, and widely adopted. It allows future tool developers to focus on the special
thing they are building and less on optimizing interconnect.

The Arrow community has become a center of gravity attracting large and innovative
projects. The data and analytics community has a pattern of rebuilding new infra‐
structure about every ten years. This time the revolution is defined not by starting
over, but refining the things that we have, biased toward optimizing the primitives.
Arrow provides a modular building block that can be used, optimized, extended, and
composed with multiple other systems. The groundwork for the next ten years of data
infrastructure can start on a sound foundation learned from the mistakes of the past
decade. Then we can focus on problems like improving Parquet, using SIMD vectori‐
zation, or building storage that could be compacted tightly and quickly. Arrow can be
a big part of these solutions because it touches so many systems. Even though its
focus on how we represent data is simple, minor improvements here can have mas‐
sive ripple effects on our cloud native future.

Using Apache Arrow enabled projects enables you to share data efficiently, reducing
your resource usage across compute, network and storage. Example usage of Arrow
with Apache Spark is shown in Figure 10-5.

Figure 10-5. Moving Data with Apache Arrow
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Parquet data files containing Arrow formatted data persisted to object storage can be
easily loaded without a de-serialization step (1). The data can then be analyzed by a
Spark application (2), including loading directly into a GPU for processing where
available. The same efficiency level is maintained when passing data between worker
nodes using Arrow Flight (3). The Arrow record batch is sent without any intermedi‐
ate memory copying or serialization, and the receiver can reconstruct the Arrow
record without memory copy or deserialization. The efficient relationship between
the remote processes eliminates two things: processing overhead for sending data and
the efficient Arrow record format that eliminates wasted bandwidth.

At the scale common in Spark applications, the effect on network latency and band‐
width can add up quickly. The network transport savings really keep your data mov‐
ing, even when volumes reach into terabytes and petabytes. Research performed by
TU Delft showed a 20 to 30 times efficiency gain using Arrow Flight to move large
volumes of data.

Versioned Object Storage with LakeFS
Object storage is becoming the standard for cloud native data persistence. It lowers
the complexity for services but also points to a different way of thinking about data
mutability. Instead of opening a file and providing random access, file storage is pre-
computed, written once and read many times. Instead of updating a data file, you
write a new one, but how do you distinguish which data files are current? For this
reason, object storage presents issues with disk space management. Since there is no
concept of managing an entire filesystem, each file is an object in a virtually infinite
resource.

Object storage APIs are fairly basic with few frills, but data teams need more than just
the basics for their use cases. LakeFS and Nessie are two projects trying to make
object storage a better fit for emerging workloads on Kubernetes. Let’s examine how
LakeFS extends the functionality of object storage for cloud native applications.

Sidebar: Data Integrity to Let You Sleep at Night
Adi Polak, VP of Developer Experience, Treeverse

In working as a full time engineer building big data infrastructure, there were many
times I had to manually change data in object storage in our production environment.
This task became even more challenging when using complex data formats, such as
Parquet. On one occasion, I needed to delete some data files to resolve a production
issue. Unfortunately, I accidentally deleted the wrong data. That meant 20 hours in
the office with a very grumpy DevOps team trying to recover the data from backup
because, of course, it was customer data. At least in this case, we were aware of the
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issue. What’s even more concerning are the silent failures that impact data products
without us even being aware.

These problems occur frequently today because our systems are too delicate. We are
biased towards action, but we’re human and therefore have a tendency to make mis‐
takes. The result is that bad things happen to good data.

How does LakeFS help with situations like the one described above? The simplest way
to describe LakeFS is that it enables Git-like capabilities for object storage. It allows
engineers to perform familiar actions like branch, commit, merge and revert. This
creates new options for how you use data and enhances workflows.

For example, a typical use case for using LakeFS is Continuous Integration / Continu‐
ous Deployment (CI/CD) flows. Data engineers frequently need to reproduce some
portion of a data pipeline over different versions of the data, which requires branch‐
ing. When running on Kubernetes, multiple containers can potentially run the same
code over different versions of data. Branching data on the object store creates an iso‐
lated environment for experimentation. If there is a mistake in the branch, you can
simply revert. This provides the ability to experiment at low cost without harming the
original data, which builds trust and allows teams to move faster with safety.

Another example is trying out a new application to see how it fits into the bigger data
flow. Git semantics on data can make a massive difference in complicated scenarios
that are typically hard to test. Holden Karau has spoken in Chapter 9 about the diffi‐
culty in testing big data applications. It’s almost impossible to mimic production flows
in development or staging environments because of the variety and production data
volume. With LakeFS, you can use branching to test with multiple data versions,
duplicating the variety and volume seen in production and building confidence in
what is being built.

To integrate with your environment, lakeFS exposes an S3 compatible API endpoint
through a stateless service. However, it doesn’t actually serve as storage. LakeFS forks
data commands from your application. Loading data to lakeFS is a metadata opera‐
tion that creates your main branch in lakeFS by creating pointers to the physical data
in your S3 bucket. Any additional branch is an atomic metadata operation pointing to
the same data as main when created from it. The metadata created by lakeFS is saved
to your S3. As long as the user application is using the lakeFS API endpoint all Git
functionality is available. If users want to stop using lakeFS at any point, the original
data storage is unaltered and can be used directly by changing the endpoint address
used by your application. To roll up any changes while using LakeFS, an offboarding
script is available to synchronize any changes before taking LakeFS out of the path.
This makes it easy for users to try lakeFS and then adopt or move on without the
need to move existing data. The design of lakeFS enables seamless integrations with
other parts of your data infrastructure such as Iceberg, Hudi, or Delta Lake, providing
the added features of branch, commit, rollback, and merge.
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LakeFS addresses the lack of ACID transactions across multiple systems by providing
the ability to have versioned object storage. The consistency level guarantees pass-
through from the originating application. However, when multi-table operations are
performed on an isolated branch, the merge function across all tables is atomic, ach‐
ieving cross-table consistency.

We are at an interesting intersection point for data workloads on Kubernetes. Many
developers who have been working with distributed data workloads for years think in
terms of the Hadoop ecosystem. Now we’re actually bringing in a different type of
developer: the application developer that works with Kubernetes. There is a potential
for more friction and errors since these developers are not always aware of the infra‐
structure and how things have traditionally worked in the big data world.

Kubernetes is now being used to orchestrate the systems that process data and turn it
into products for sale. If the data is not protected, your business is at risk. Organiza‐
tions need to be able to audit, save and deliver data reliably, even if it is at a lower
SLA. LakeFS is a great fit for Kubernetes deployment because it assumes that the com‐
plexity of distributed systems and distributed data will lead to many mistakes around
data. That assumption is met with the assurance that any mistake is easily fixed and
never devastating, leading to a great night of sleep for your DevOps teams.

Using LakeFS in Kubernetes is a great fit because of its stateless design and declarative
deployment. A Helm deployment consists of configuring the LakeFS service, which
then serves as a communication gateway to and from other services.
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Figure 10-6. Deploying LakeFS in Kubernetes

Communications into the server emulate AWS S3 object storage, enabling interaction
with any data store that supports the S3 API. Incoming communication is bound as a
ClusterIP to serve HTTP traffic across one or more stateless LakeFS server Pods
managed by a Deployment.

LakeFS uses PostgreSQL to manage metadata, so users can either provide the end‐
point for a running system, as shown in Figure 10-6, or LakeFS can run an embedded
PostgreSQL server inside the LakeFS pod for its exclusive use. PostgreSQL is the state
management for the stateless LakeFS servers when deployed as a cluster.

The most important connection is to the object storage endpoints that will store the
actual data. When users persist data to LakeFS, the actual data file will pass through
to the backend object storage, and versioning metadata is stored in PostgreSQL.

The additional outbound connection is for providing orchestration with other
machine learning infrastructure. Webhooks allow for triggers on action that alert
downstream systems when something such as a commit is issued. These triggers
serve as a key ingredient to automated ML workflows and other applications.

Summary
As you can see, the pipeline of new and exciting ways to work with data in Kuber‐
netes extends well into the future. New projects are addressing the challenges of

Summary | 277



advanced data workloads according to the cloud native principles of elasticity, scala‐
bility, and self-healing.

These tools give you the ability to manage the critical resources of compute, network
and storage. You can better manage compute-intensive workloads such as AI/ML
with KServe for the delivery, Feast for model management and Milvus to operational‐
ize new search methods. Network resources are ruled by the simple laws of volume
and speed, and at the volumes of data we can create, every little bit helps. Apache
Arrow reduces this volume by creating a common reference frame across applica‐
tions. Unifying around object storage provides further efficiencies, with tools like
LakeFS making object storage easier to consume in ways that are sympathetic to
application data storage needs.

At this point, we’ve examined data infrastructure on Kubernetes from mature areas
like storage all the way out to cutting-edge projects for managing AI/ML artifacts
such as models and features. Now it’s time to take all the knowledge you’ve gained so
far and plan to put it into practice.
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