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Preface

Water is essential for many aspects of human life, including agriculture, industry and power

generation. One of the major impacts of global warming is likely to affect hydrology and

water resources, as climate change can alter the balance between the different components of the

hydrological cycle. However, despite the developments in recent decades, research on the impact

of climate change on hydrology and water resources necessitates improvement. The mechanisms

underlying atmospheric circulation and the hydrological cycle, as well as the internal relationships

between them, are not fully understood, and the effects of climate change on the hydrologic cycle

are associated with significant uncertainty in both climate projections and hydrologic modeling

approaches.
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Article

Extreme Rainfall Indices in Southern Levant and Related
Large-Scale Atmospheric Circulation Patterns: A Spatial and
Temporal Analysis
Ala A. M. Salameh * , Matilde García-Valdecasas Ojeda , María Jesús Esteban-Parra , Yolanda Castro-Díez
and Sonia R. Gámiz-Fortis

Departamento de Física Aplicada, Universidad de Granada, E18071 Granada, Spain
* Correspondence: alasalman84@correo.ugr.es

Abstract: This study aims to provide a comprehensive spatio-temporal analysis of the annual and
seasonal extreme rainfall indices over the southern Levant from 1970 to 2020. For this, temporal and
spatial trends of 15 climate extreme indices based on daily precipitation at 66 stations distributed
across Israel and Palestine territories were annually and seasonally analyzed through the nonpara-
metric Mann–Kendall test and the Sen’s slope estimator. The annual averages for frequency-based
extreme indices exhibited decreasing trends, significantly for the Consecutive Dry Days. In contrast,
the percentiles- and intensity-based extreme indices showed increasing trends, significant for ex-
tremely wet days, Max 1- and 3-day precipitation amount indices. The study area had expanding
periods of extreme dry spells for spring and correspondingly shortening extreme wet spells for spring,
winter and the combined winter–spring. Moreover, most of spring indices showed negative trends.
Conversely, most winter indices displayed positive trends. Regarding the influence of large-scale
circulation patterns, the North Sea Caspian pattern, the Western Mediterranean Oscillation, and
ENSO were the primary regulators of the winter, spring, and autumn extreme indices, respectively.
These findings contribute to a better understanding of extreme rainfall variability in the Levant region
and could be utilized in the management of water resources, drought monitoring, and flood control.

Keywords: extreme rainfall indices; Levant region; trend analysis; teleconnection indices

1. Introduction

Changes in extreme rainfall events must be assessed since they have extensive implica-
tions for human and environmental systems such as society, ecosystem, agriculture, water
resources, and economic development [1–4]. Global warming has the potential to increase
the frequency and intensity of extreme rainfall, where a warmer atmosphere with more
water vapor creates a more active hydrological cycle [5–8]. Furthermore, small changes
in mean precipitation due to global warming can cause significant changes in extreme
precipitation [9,10]. On global and regional scales, many studies predict that under global
warming, a greater increase is expected in extreme rainfall events as compared to the
mean values [11–14]. In this context, numerous studies have reported increasing trends
in extreme rainfall events in Saudi Arabia [15], Greece [16], India [17], the Mediterranean
basin [18,19], and globally [20–22]. On the other hand, decreasing trends in extreme rainfall
events were documented in many regions such as Turkey [23], Western Australia [24],
northeast Bangladesh [25], Mongolia [26], and Ghana [27].

In the second half of the twentieth century, the Mediterranean region experienced
a decrease in precipitation [28]. This trend is expected to continue, with total annual
precipitation decreasing by up to 20% by 2050 [29]. In Turkey, Cyprus, Lebanon and
Israel, the number of rainy days may decrease by 5–15 days at the mid-century and
by 10–20 days per year at the end-of-century [30]. Additionally, in the framework of
several paleo-hydrological and longer-term millennial-scale studies suggested a drying
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of regional climate that coincides with the decline of the Roman and Byzantine Empires
in the Levant region [31–33]. The east Mediterranean area, including the Levant region,
is considered one of the most vulnerable regions to climate change [11,34–36]. Climate
variability in the Levant is accompanied by several environmental and developmental
stresses such as frequent droughts, water shortages, population growth, political conflicts,
weak infrastructure, and low adaptation capacity [37–40].

A literature review for the Levant indicates most climate studies have focused on long-
and mid-term averages, with the majority of studies implemented in small geographical
domains with a limited number of stations [41–45]. There have not been many studies on
extreme temperature or precipitation indices, mostly because there are not much accessible
daily data for the area. However, [46] examined the annual changes in extreme temperature
and precipitation indices over Israel during 1950–2017. The authors observed a decline
in the total amount of precipitation as well as a rise in the intensity of rainy days. They
displayed a spatial coherence despite the fact that none of the regional patterns in the
precipitation indices were statistically significant. [47,48] analyzed the changes of several
extreme indices in the Middle East and Arab regions, but their studies included less than
ten stations from the Levant region. The findings indicated that trends in precipitation
indices, including the number of days with precipitation, the average precipitation intensity,
and maximum daily precipitation events, are weak in general and do not show spatial
coherence. Extreme temperature indices over Israel and Palestine, at annual and seasonal
scales, using data of 28 stations from 1987–2017 were examined by [49]. They also examined
their relationships with the large-scale atmospheric circulation patterns, but the study did
not analyze any extreme rainfall indices.

Investigating the influence of the large-scale atmospheric circulation patterns on the
extreme rainfall indices is vital to establish the basis for understanding the causes of rainfall
variability and the causal mechanisms of these indices. For the Levant, most studies
analyzed the influence of the large-scale circulation patterns on the mean precipitation
values in Israel [50–53]. However, [54] looked at teleconnections regarding different rainfall
daily intensities, including heavy precipitation.

Due to the fact that extreme indices have been found to be highly correlated with
meteorological and hydrological disasters such as droughts, floods, and landslides [55,56],
the necessity to investigate the variability of extreme rainfall indices in a region like
the Levant is imperative. Until now, the extreme precipitation indices have not been
analyzed at a seasonal scale in the southern Levant, where the study of precipitation
changes using only the annual time scale may mask some considerable variations between
seasons [57]. Moreover, the impact of the large-scale atmospheric circulation patterns on the
extreme rainfall has not been investigated in southern Levant. Therefore, understanding
the spatio-temporal variability of extreme precipitation and its related large-scale climate
teleconnections mechanism in such a vulnerable region is essential to comprehend the
extreme events response to global warming and finding better procedures to deal with
water resources management.

The main objectives of this study are: (1) to provide a comprehensive spatio-temporal
variability and trends analysis for the annual and seasonal extreme rainfall indices over the
whole area of Israel and Palestine during the period 1970–2020; and (2) to investigate the
relationships between the extreme rainfall indices in the southern Levant and the main large-
scale atmospheric circulation patterns in the Northern Atlantic and Mediterranean Basin.

2. Materials and Methods
2.1. Study Area

The study area covers Israel and Palestine, which are located on the eastern edge of
the Mediterranean Sea, roughly between 34◦15′ E and 35◦40′ E and 29◦30′ N and 33◦15′ N
(Figure 1). It also conforms the western section of the southern Levant, with an area of
about 27,000 km2, and an elevation ranging from 392 m below sea level to 1208 m above
sea level. According to the Köppen climate classification, the northern and central parts of
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the region have a Mediterranean climate (type Csa), while the southern and southeastern
parts have semiarid (type BSh) and arid (type BWh) climates. The rainy season lasts from
September to May, with 67% of annual precipitation falling in winter (December–February),
16% in spring (March–May), and 17% in autumn (September–November).
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Figure 1. Study area location and the spatial distribution of the stations used in this study. Names of
stations are mentioned in Table S2 (Supplementary Material).

2.2. Data and Quality Control

Observed daily precipitation data of an initial set of 75 stations distributed over Israel
and Palestine were obtained from the Israel and Palestine Meteorological Departments
(https://ims.data.gov.il, accessed on 1 May 2021 and http://www.pmd.ps/, accessed
on 1 May 2021), respectively. Each station with a minimum record duration of 51 years
(1970–2020), except for the Elqana and Karmel stations from the West Bank (Table S1),
covered the period 1982–2020. Time series were subjected to a rigorous data quality control
process to identify systematic errors (e.g., negative values or typing errors), missing data,
and outliers [47,58].

A total of 66 stations with very few missing data (<0.42%) were considered in the anal-
yses (Figure 1, Table S2). These missing days were handled using the spatial interpolation
method based on nearby stations (distance < 8 km and correlation > 0.90) [49,59]. The soft-
ware package RClimDex V1.3 allows for the detection of outliers on a daily timescale, with
a range of thresholds for flagging unreliable data. The outliers were visually evaluated and
compared with other nearby stations. In addition, the homogeneity for the selected daily
time series was tested to avoid any false trends caused by any anthropogenic effects. The R-
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based ‘RHtests_dlyPrcp,V4′ software, based on the transPMFred algorithm [60], was used
to detect multiple change points in the series, and adjust them using the ‘quantile-matching’
algorithm [61]. This technique is commonly used to detect change points in daily rainfall
time series [62–64]. Finally, a total of 15 break points were detected in 15 out of 66 stations
used in this study (Table S1 in Supplementary Material). Additional information about
stations, including names, coordinates, and the period of record, as well as the missing
values, is listed in the supplementary materials (Table S2 in Supplementary Material).

2.3. Methods
2.3.1. Indices of Extreme Precipitation

A total of 15 extreme precipitation indices were chosen based on 27 temperature
and precipitation indices established by the Expert Team on Climate Change Detection
Monitoring and Indices (ETCCDI) [12,65] and recommended by the World Meteorological
Organization-Commission for Climatology (WMO-CCI). Table 1 contains a brief description
of these indices, along with their acronyms. These indices were selected based on previous
studies in the study area and Arab region [46–48,66], in order to evaluate the characteristics
of extreme precipitation events, such as intensity, duration, and frequency. Following [20], a
classification of extreme precipitation indices into five categories was used, with threshold
indices (e.g., R1mm, R10mm, R20mm, and R50mm), absolute indices (e.g., Rx1day, Rx3day,
and Rx5day), extreme percentiles (e.g., R95P and R99P), duration indices (CDD and CWD),
and other indices (PRCPTOT, SDII, R95Ptot, and R99Ptot).

Table 1. Description of extreme precipitation indices used in this study.

No. Index Indicator Name Definition Unit

1 PRCPTOT Annual total wet day precipitation Annual total precipitation from days ≥1 mm mm
2 R1mm Number of wet days Annual count of days when precipitation ≥1 mm Days
3 R10mm Number of heavy precipitation days Annual count of days when precipitation ≥10 mm Days
4 R20mm Number of very heavy precipitation days Annual count of days when precipitation ≥20 mm Days
5 R50mm Number of days above 50 mm Annual count of days when precipitation ≥50 mm Days

6 R95P Very wet days Annual total precipitation when daily precipitation
amount >95th percentile mm

7 R99P Extremely wet days Annual total precipitation when daily precipitation
amount >99th percentile mm

8 R95Ptot Contribution from very wet days 100*R95P/PRCPTOT %
9 R99Ptot Contribution from extremely wet days 100*R99P/PRCPTOT %
10 RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm
11 RX3day Max 3-day precipitation amount Monthly maximum consecutive 3-day precipitation mm
12 RX5day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm

13 SDII Simple daily intensity index Annual total precipitation divided by the number of
wet days (defined as precipitation ≥1 mm) in the year mm/day

14 CWD Consecutive wet days Maximum number of consecutive days when
precipitation ≥1 mm Days

15 CWD-DJF Consecutive wet days in winter Maximum number of consecutive days when
precipitation ≥1 mm, between December to February Days

16 CWD-MAM Consecutive wet days in spring Maximum number of consecutive days when
precipitation ≥1 mm, between March to May Days

17 CWD-
DJFMAM Consecutive wet days in winter and spring Maximum number of consecutive days when

precipitation ≥1 mm between December to March Days

18 CDD Consecutive dry days Maximum number of consecutive days when
precipitation <1 mm Days

19 CDD-DJF Consecutive dry days in winter Maximum number of consecutive days when
precipitation <1 mm, between December to February Days

20 CDD-MAM Consecutive dry days in spring Maximum number of consecutive days when
precipitation <1 mm, between March to May Days

21 CDD-DJFMAM Consecutive dry days in winter and spring Maximum number of consecutive days when
precipitation <1 mm between December to March Days

The software package RClimDex v1.0 [67] developed by the Climate Research Branch
of the Meteorological Service of Canada was used to calculate the extreme indices. The
software and documentation are available at http://etccdi.pacificclimate.org, accessed on
1 August 2021. Such software performs the calculations using daily data and provides
monthly and annual data for the indices. All indices were computed at annual time scale
and at seasonal scale for PRCPTOT, R1mm, R10mm, R20mm, RX1day, RX3day, RX5day,
and SDII indices. Additional index calculations such as consecutive dry days (CDD)
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and consecutive wet days (CWD) were performed for the wet months (e.g., CDD/CWD-
DJF, CDD/CWD-MAM, and CDD/CWD-DJFMAM). Days from December to the end of
February (DJF) were considered for winter, March to May (MAM) for spring and from
September to November (SON) for autumn.

2.3.2. Trend Detection

The annual and seasonal trends of the various indices for each station were calculated
for the period 1970–2020. The analysis was performed using the robust nonparametric
Mann–Kendall test [68,69] with Sen’s slope estimator [70], since it is a distribution-free
test and less sensitive to outliers [71]. The Man–Kendall test has been widely used to
assess the monotonic trend in extreme precipitation events and climatological time series
globally and regionally [20,72–74]. All the time series were pre-whitened in order to correct
the Mann–Kendall test for serial autocorrelation [71,75]. The statistical significance of the
trends was assessed at 0.01 and 0.05 levels. This trend analysis was conducted using the R
package “modifiedmk” [76].

2.3.3. Teleconnection Indices

Additionally, the monthly values of seven teleconnection indices, the North Atlantic
Oscillation (NAO), the East Atlantic (EA) pattern, the EA/Western Russia (EA/WR) pattern,
the Mediterranean Oscillation (MO), the Western Mediterranean Oscillation (WEMO), the
North Sea-Caspian (NCP) pattern and El Niño-Southern Oscillation (ENSO), for the period
1970–2020 were collected from the Climate Prediction Center of the National Oceanic and
Atmospheric Administration (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.
shtml, accessed on 1 September 2021), from the Climatic Research Unit of the University
of Norwich (https://crudata.uea.ac.uk/cru/data/moi/, accessed on 1 September 2021)
for MO and NCP, and from the Group of climatology of the University of Barcelona (http:
//www.ub.edu/gc/en/2016/06/08/wemo/, accessed on 1 September 2021) for WEMO.
These monthly values were averaged to obtain seasonal and annual values. Afterward,
their influence on the extreme precipitation indices was examined by using the Pearson
correlation, as in other studies [77,78] based on detrended series for each station. The
statistical significance of the correlations was assessed at the 5% level.

3. Results
3.1. Annual Trends of Extreme Precipitation Indices

Table 2 shows an overall view of the annual trend analysis through the total number
of stations with increasing or decreasing trends, as well as the trends of the averaged
time series over the study area from 1970 to 2020. The temporal behavior of some indices
that exhibited significant increasing or decreasing trends is shown in Figure S1 in the
Supplementary Material. More than 62% of the stations showed decreasing trends in
the PRCPTOT, R1mm, R10mm, and CDD indices (Table 2). In contrast, the R95P, R95Ptot,
RX1day, RX3day, RX5day, SDII, and CWD indices increased in more than 72% of the stations.
For all extreme indices, the frequency of significant decreasing or increasing trends was
less 16 stations, and between 38–86% of the stations did not exhibit trends in the R20mm,
R50mm, R99P, and R99Ptot indices. The results showed significant increasing trends in the
R99P (4.4 mm/decade), R99Ptot (0.78%/decade), RX1day (1.7 mm/decade), and RX3day
(2.1 mm/decade) indices (Table 2, Figure S1a–d). On the other hand, a significant decreasing
trend was observed for the CDD index (−2.7 day/decade) (Table 2, Figure S1c).
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Table 2. Number of stations that showed increasing or decreasing trend along with the trend values
for the annual extreme indices averaged over the study area, during the period 1970–2020. The
number in brackets represents the counts of stations with statistically significant trends at the 95%
confidence level. Asterisks indicate significance level: ** = (p < 0.05).

No. Index Total (+) Trends (Sig.) Total (−) Trends (Sig.) No Trend Trend for Averaged Time Series

1 PRCPTOT 25 (0) 41 (1) 0 −2.9 (mm/decade)
2 R1mm 3 (0) 63 (11) 0 −1.1 (days/decade)
3 R10mm 15 (0) 51 (3) 2 −0.2 (days/decade)
4 R20mm 5 (0) 27 (2) 27 0.0 (days/decade)
5 R50mm 17 (0) 3 (0) 46 0.07 (days/decade)
6 R95P 48 (4) 14 (0) 4 5.3 (mm/decade)
7 R99P 9 (9) 0 (0) 57 4.4 ** (mm/decade)
8 R95Ptot 52 (2) 10 (0) 4 0.8 (%/decade)
9 R99Ptot 9 (6) 0 (0) 57 0.78 ** (%/decade)

10 RX1day 51 (3) 15 (0) 0 1.7 ** (mm/decade)
11 RX3day 48 (6) 18 (0) 0 2.1 ** (mm/decade)
12 RX5day 48 (1) 18 (0) 0 1.2 (mm/decade)
13 SDII 50 (4) 16 (0) 0 0.19 (mm/decade)
14 CWD 48 (0) 18 (0) 25 0.04 (days/decade)
15 CDD 9 (0) 57 (16) 0 −2.7 ** (days/decade)

Regarding the spatial distribution of the annual trends (Figure 2), the significant de-
creasing trends cover the west bank (with an average of −2.3 days/decade) and some
northeastern locations of the study area for the R1mm index (Figure 2a). Significant increas-
ing trends are observed in the northern regions for some intensity extreme indices, R99p,
R99Ptot, and RX3day by averages of 2.1 mm/decade, 1.9%/decade, and 6.5 mm/decade,
respectively (Figure 2b–d). For the CDD index (Figure 2e), a regional significant decreasing
trend is grouped in the northern sites of the study area (with an average value around
−6.5 days/decade) and the southern coastal locations (with value of −9.2 days/decade
in average).
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Figure 2. Spatial distribution of trends for the number of wet days (R1mm in days/decade), extremely
wet days (R99P in mm/decade), contribution from extremely wet days (R99Ptot in %/decade), max 3-
day precipitation amount (RX3day in mm/decade), and consecutive dry days (CDD in days/decade)
indices exhibiting notably significant decreasing (yellow triangles) or increasing (blue triangles)
trends at the 95% confidence level.
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3.2. Seasonal Trends of the Extreme Precipitation Indices

In this section, the seasonal trends for the PRCPTOT, R1mm, R10mm, R20mm, RX1day,
RX3day, RX5day, SDII, CWD and CDD indices were calculated for each station and for the
entire study area on the basis of the averaged time series (Table 3). Figures 3–5 show the
spatial distribution of the trends of some winter, spring, and autumn indices.

Table 3. Number of stations that showed increasing or decreasing trends along with the trend values
for the averaged time series, 1970–2020. The number in brackets represents the counts of stations
with statistically significant trends at the 95% confidence level. Asterisks indicate significance level:
* = (p < 0.1), ** = (p < 0.05).

Index Season Tot. (+) Trends (Sig.) Tot. (−) Trends (Sig.) No Trend Trend for Averaged
Time Series

PRCPTOT
Winter 48 (0) 18 (0) 0 8.8 mm/decade
Spring 2 (0) 64 (18) 0 −5.8 mm/decade

Autumn 12 (0) 54 (0) 0 −1.9 mm/decade

R1mm
Winter 6 (0) 60 (3) 0 −0.6 days/decade
Spring 7 (0) 59 (8) 0 −0.3 days/decade

Autumn 20 (0) 37 (0) 9 −0.08 days/decade

R10mm
Winter 27 (0) 33 (0) 6 −0.05 days/decade
Spring 4 (0) 62 (7) 0 −0.02 days/decade

Autumn 12 (0) 28 (0) 26 0

R20mm
Winter 46 (0) 9 (0) 11 0.1 days/decade
Spring 0 (0) 22 (5) 44 −0.09 days/decade

Autumn 3 (0) 25 (4) 38 0.04 days/decade

RX1day
Winter 53 (6) 13 (0) 0 2.2 * mm/decade
Spring 2 (0) 64 (21) 0 −2.1 * mm/decade

Autumn 6 (0) 60 (9) 0 −1.8 mm/decade

RX3day
Winter 52 (7) 14 (0) 0 3.3 mm/decade
Spring 1 (0) 65 (20) 0 −3.6 * mm/decade

Autumn 7 (0) 59 (8) 0 −2.5 mm/decade

RX5day
Winter 46 (2) 20 (0) 0 1.7 mm/decade
Spring 2 (0) 64 (15) 0 −3.7 mm/decade

Autumn 11 (0) 55 (3) 0 −2.4 mm/decade

SDII
Winter 55 (11) 11 (0) 0 0.25 mm/decade
Spring 6 (0) 60 (19) 0 −0.52 * mm/decade

Autumn 3 (0) 63 (19) 0 −0.75 * mm/decade

CDD
Winter 22 (0) 44 (0) 0 −0.03 days/decade
Spring 59 (21) 5 (0) 0 1.5 ** days/decade
Winter-
spring 59 (20) 7 (0) 0 1.7 * days/decade

CWD
Winter 15 (0) 25 (0) 26 −0.05 days/decade
Spring 3 (0) 53 (16) 10 −0.2 days/decade
Winter-
spring 22 (0) 21 (0) 23 −0.01 days/decade

3.2.1. Winter Trends

Significant trends in the averaged time series were not found for all extreme indices,
except for the RX1day index with an averaged value of 2.2 mm/decade (Table 3). The
spatial distribution of some winter indices trends is shown in Figure 3. Overall, the extreme
winter indices do not seem to change very quickly locally, as very few significant trends
were observed (<11 stations) for all indices (Table 3).

The highest increasing trends for the PRCPTOT index were observed in the north-
ern and northwestern locations by an average of 19.1 mm/decade, although they were
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not-significant (not shown). A percent of 91% of stations exhibited decreasing trends
for the number of wet days index (Table 3), with significant values between −1.5 and
−2.1 days/decade for some stations (Figure 3a). Additionally, these large declining trends
in R1mm along with the increasing trends in the PRCPTOT index are reflected in the rising
trends for the SDII index, as is mainly observed in the northern regions of the study area
(Figure 3b). In this regard, eleven northern locations showed significant rising trends in the
SDII index with an averaged value of 0.71 mm/decade.
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According to Figure 3c,d regarding the RX1day and RX3day indices, the central and
northern regions vastly showed increasing trends, but only significant values were obtained for
some northern locations with an averaged values around 4.7 and 8.1 mm/decade, respectively.

3.2.2. Spring Trends

Compared with other seasons, all spring extreme indices showed very rapid changes
(Table 3, Figure 4). The results indicate that, in average for the whole area, the trends
for the indices RX1day, RX3day, and SDII decreased significantly by −2.1, −3.6, and
−0.52 mm/decade, respectively (Table 3). On the contrary, the CDD-MAM and CDD-
DJFMAM indices showed significantly increasing trends of 1.5 and 1.7 days/decade, re-
spectively (Table 3).

For the PRCPTOT index, a percentage of 97% of the stations (64 stations) showed a
decreasing trend, with 28% (18 stations) showing a significant trend at the level of 0.05
(Table 3). Locally, a coherent and intense pattern of significantly decreasing trends can be
seen (Figure 4a). The northern stations, Jerusalem Governorate, and the central region of
the coastal areas had the highest values (around −8.9 mm/decade).
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For the R1mm index, 89% of the stations (Table 3) showed decreasing trends, and 14%
(8 stations) of them reported significant trends. The R1mm index had a lower trend than the
PRCPTOT for the most studied stations. It is also worth noting that the significant trends
affected stations in the West Bank with an average of −0.89 days/decade. With respect to
the SDII (Figure 4c), 91% of the stations showed decreasing trends, and 32% (19 stations)
of them showed significant trends (Table 3). Although the R1mm index decreased at
most sites, the SDII index also decreased due to the large decreases in the PRCPTOT
index. Most stations that had a significant decreasing trend in the PRCPTOT index also
showed a significant decreasing trend in the SDII index. The highest significant decreasing
trends (with value from −0.9 to −1.1 mm/decade) were observed at ten locations in the
northern regions.

For RX1day, RX3day, and RX5day indices, more than 94% (>62 stations) of the total
stations showed decreasing trends, with significant trends for 33%, 31%, and 23% of the
stations, respectively (Table 3, Figure 4e,g). The significant declining trends for these indices
are concentrated in northern locations, the Jerusalem governorate, and east to the Gaza
strip with an average value of −5.2 mm/decade for the RX3day and RX5day indices, and
−2.9 mm/decade for the RX1day.

The CDD index in spring showed rising trends in 89% (59 stations) of the total stations,
with significant trends in 36% (21 stations) of them (Figure 4g and Table 3). Very similar
results were obtained for the CCD index for the combined winter and spring seasons, which
also showed increasing trends in 88% (58 stations) of the stations, with significant trends
in 20% (20 stations) of them (Figure 4h and Table 3). The significant increasing trends for
CDD-MAM and CDD-DJFMAM (Figure 4g,h) covered many stations in the north of the
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study area and around the Gaza strip, with relatively higher values for the CDD-DJFMAM
index (2.5 day/decade) than the CDD-MAM (2.1 day/decade).

The broad increasing trends for CDD-MAM index have led to the broad decreasing
trends in CWD-MAM index (Table 3, Figure 4i). For this latter, 80% of stations had declining
trends, with significant trends in 30% of stations (Table 3). These significant decreasing
trends covered the central locations in the study area and many locations in the southern
part of the coastal area, reaching an average value of −1.5 day/decade.

3.2.3. Autumn Trends

The results for the autumn trends indicated no significant decreasing or increasing
trends observed for any of the indices, except for the SDII index, which had a significant
decreasing trend of −0.75 mm/decade (Table 3). Furthermore, the frequency-based indices
(R1mm, R10mm, and R20mm) did not reflect any remarkable changes in the area under
investigation in 1970–2020. However, the PRCPTOT, RX1day, RX3day, and RX5day indices
showed declining trends of −1.9, −1.8, −2.5, and −2.4 mm/decade, respectively. In
terms of stations, 82%, 56%, 42%, and 38% of the stations showed declining trends in the
PRCPTOT, R1mm, R10mm, and R20mm indices, respectively, with no notably significant
trends. On the other hand, the intensity extreme indices RX1day, RX3day, RX5day, and
SDII showed decreasing trends for more than 83% of the total stations, with 9, 8, 3, and
19 stations, respectively, showing significant decreasing trends.

The spatial distribution of trends for some indices is shown in Figure 5. Significant
declining trends were found for the SDII index (Figure 5a) in the central area extended
from 31.5◦ N to 32◦ N latitudes and in the northeastern locations of the study area with
average values of −1.2 and −1 mm/decade, respectively. Spatial distributions of RX1day
and RX3day indices can be observed in Figure 5b,c, with significant decreasing trends for
many sites around the Jerusalem district with an average of −4.0 mm/decade.
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3.3. Extreme Rainfall Indices and Teleconnection Patterns

In this section, the relationships between 15 extreme rainfall indices and seven large-
scale circulation patterns (WEMO, EA/WR, NAO, EA, MO, NCP, and ENSO) were investi-
gated to determine whether a particular circulation pattern could have some influence on
the occurrence of precipitation extremes over the study area. Tables 4 and 5 summarize
the number of stations with significant correlations between the extreme precipitation
indices and the teleconnection indices at annual and seasonal time scales. Figure 6 shows
the spatial distribution of the correlation coefficients for the most important relationships
found between the circulation patterns and the extreme rainfall indices at an annual scale,
while Figures 7–9 are for a seasonal scale.

3.3.1. Annual Scale

According to Table 4, large-scale circulation patterns had a more significant impact
on the frequency-based indices than the intensity- and percentiles-based indices. For the
intensity- and percentile-based indices, some influence was obtained for less than 30% of
the stations and mainly related to the WEMO index. The results also revealed the MO
index was the main driver for the R1mm, R10mm, R20mm, PRCPTOT, and R99Ptot indices.
At the 95% confidence level, the threshold |r| > 0.27 for the Pearson correlation between
extreme indices and teleconnection patterns results are significant.

Table 4. Number of stations with significant positive or negative correlations between extreme
precipitation and teleconnection indices at an annual scale. Only significant results at the 95%
confidence level are shown.

Index
WEMO EAWR NAO EA MO NCP ENSO

+ − + − + − + − + − + − + −
PRCPTOT 3 0 0 2 10 0 0 0 39 0 3 0 0 33

R1mm 0 0 26 0 8 0 0 0 43 0 31 0 0 39
R10mm 3 0 5 0 6 0 2 0 40 0 6 0 0 28
R20mm 15 0 5 0 8 0 1 0 28 0 2 0 0 8
R50mm 14 0 2 0 2 3 0 0 3 0 4 0 0 8

R95P 19 0 1 0 1 0 1 1 3 0 2 0 0 1
R95Ptot 10 1 0 0 0 8 2 1 2 2 2 0 0 0

R99P 11 1 0 0 0 8 2 1 2 0 2 0 0 0
R99Ptot 2 0 5 0 0 8 0 0 1 12 5 0 0 0
RX1day 9 0 1 0 0 2 2 1 3 2 2 0 0 3
RX3day 6 5 2 0 6 5 1 0 0 2 0 0 0 1
RX5day 2 0 2 0 2 2 1 0 2 1 0 0 0 0

SDII 15 0 0 0 1 3 1 0 1 0 0 0 0 0
CDD 0 0 1 14 1 6 9 0 3 0 8 0 0 5
CWD 2 0 8 0 0 0 3 0 5 0 31 0 0 28

In detail, the index MO showed the highest frequency of significant correlation for
the indices PRCPTOT, R1mm, R10mm, and R20mm with 59%, 65%, 61%, and 42% of the
stations, respectively (Table 4). Its effect is concentrated between 31.4◦ N and 33.2◦ N, with
correlation coefficients ranging from 0.27 to 0.38 for the indices PRCPTOT, R1mm, and
R20mm (Figure 6a,b,d), and from 0.27 to 0.53 for the index R10mm (Figure 6c). The MO
pattern was also the main driver for the R99Ptot index (Table 4, Figure 6e) with 20% of
the stations correlating negatively with it (values between −0.27 and −0.38) and spatially
covering some northern sites.
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nection indices (MOI, NCP, EAWR, WEMOI, and ENSO) and the extreme precipitation indices
(PRCPTOT, R1mm, R10mm, R20mm, R99Ptot, CWD, CDD, R95P, R95Ptot, R99P, RX1 day, and SDII),
at annual scale.

In addition, the ENSO pattern was the second most important pattern affecting the
PRCPTOT, CWD, R1mm, and R10mm indices (Table 4). A percentage of 50%, 42%, 59%,
and 42% of the stations showed significant negative correlations, with values from −0.27 to
−0.54, spatially speaking (Figure 6n–q).

For the CWD index, the NCP index was the main controller, showing a significant
positive correlation with 47% of the stations (Table 4). Its effect extended over all stations
at the northern boundaries of the West Bank (with correlation coefficients between 0.27
and 0.54), the northernmost locations, and the central and southern locations of the coastal
area (Figure 6f). In addition, 47% of the stations showed remarkable positive significant
correlations with the NCP for the R1mm index (Figure 6r). The EAWR pattern had a
significant effect at 23% and 39% of the stations, respectively, with negative and positive
significant correlations on the CDD and R1mm indices (Table 4). Spatially (Figure 6g,s), the
EAWR effect mainly covered some central locations.

The WEMO index had a dominant significant influence on six extreme indices (R50mm,
R95P, R95Ptot, R99P, RX1day, and SDII), with 21%, 29%, 17%, 18%, 14% and 23% of the sta-
tions showing a significant positive correlation with it (Table 4). The geographical domain
of the WEMO effect was primarily concentrated at some locations in the Jerusalem district
and north-eastern locations in the Gaza Strip for all six indices (Figure 6h–m). Finally, the
EA and NAO indices are poorly correlated with the annual extreme precipitation indices.
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3.3.2. Seasonal Scale

Table 5 summarizes the number of stations with significant correlations between the ex-
treme precipitation indices and the teleconnection patterns at a seasonal scale. Figures 7–9
show the spatial distribution of significant Pearson correlation coefficients between the
teleconnection indices and the extreme precipitation indices for winter, spring, and autumn,
respectively. Based on the frequency of significant correlations, the results indicated no
single dominant pattern on the seasonal precipitation extremes, as different patterns gener-
ally influence different seasons. In this context, the NCP pattern appeared as the dominant
pattern on winter extreme precipitation indices, with the MO and EA/WR indices also
showing a considerable frequency of significant correlations. On the other hand, the ENSO
and WEMO indices showed high frequencies of significant correlations in autumn and
spring, respectively.

Table 5. Number of stations with significant positive or negative correlations between extreme
precipitation and teleconnection indices, at a seasonal scale. Only significant results at the 95%
confidence level are shown.

Index Season
WEMO EA/WR NAO EA MO NCP ENSO

+ − + − + − + − + − + − + −

PRCPTOT
Winter 0 0 20 0 0 0 0 0 43 0 51 0 0 2
Spring 0 37 0 0 0 1 0 0 5 0 8 0 0 1

Autumn 0 20 4 0 9 0 0 0 2 0 0 0 0 48

R1mm
Winter 0 7 41 0 0 0 0 0 53 0 58 0 0 1
Spring 0 57 0 0 3 0 0 2 3 0 27 0 0 5

Autumn 0 35 7 0 14 0 0 0 6 0 0 0 0 56

R10mm
Winter 0 0 30 0 1 0 1 0 58 0 55 0 0 5
Spring 0 37 1 1 0 1 0 0 9 1 9 1 0 1

Autumn 0 26 5 0 6 0 1 0 4 0 0 0 0 33

R20mm
Winter 0 0 6 0 2 0 0 0 32 0 30 0 0 6
Spring 0 4 0 4 0 0 1 0 4 0 2 0 2 4

Autumn 0 15 3 0 2 0 1 0 2 0 0 0 0 20

RX1day
Winter 1 2 3 1 1 2 1 0 2 1 4 0 0 5
Spring 1 9 1 1 0 1 2 1 2 0 0 0 2 2

Autumn 0 8 4 0 3 1 0 1 1 0 0 0 0 15
+ − + − + − + − + − + − + −

RX3day
Winter 0 3 7 0 0 9 2 0 6 0 15 0 0 7
Spring 0 8 0 0 0 0 0 1 4 0 3 0 0 2

Autumn 0 9 0 0 13 0 0 0 0 0 1 0 0 19

RX5day
Winter 0 2 7 0 3 5 1 0 9 0 20 0 0 3
Spring 0 16 0 0 0 0 0 0 1 0 16 0 0 1

Autumn 0 5 0 0 28 0 0 0 0 0 1 0 0 38

SDII
Winter 0 0 0 0 0 1 3 0 1 0 1 0 0 4
Spring 0 0 0 1 1 0 3 0 2 0 1 0 1 1

Autumn 0 2 1 0 0 0 0 2 1 0 0 0 0 5

CDD
Winter 0 1 0 2 0 32 1 0 0 14 0 15 0 1
Spring 7 0 1 3 0 12 12 0 1 0 0 9 1 3

CWD
Winter 0 1 50 0 0 0 1 0 1 0 48 0 1 25
Spring 0 37 0 0 2 0 0 10 4 0 33 0 0 2

As shown in Table 5, the NCP index had a greater impact on seven winter extreme
rainfall indices (PRCPTOT, R1mm, R10mm, R20mm, RX3day, RX5day, and CWD). It signif-
icantly correlated with them at 77, 88, 83, 45, 23, 30, and 73% of the stations, respectively.
Figure 7a shows the spatial distribution of these significant correlation coefficients in win-
ter, with the highest correlations (values between 0.54–0.69) for the R1mm index in the
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southern parts of the coastal area and around the Gaza Strip. Its effect was extensive for
the PRCPTOT, R1mm, R10mm, R20mm, and CWD indices.

Water 2022, 14, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 7. Spatial distribution of significant Pearson correlation coefficients between the teleconnec-
tion indices (NCP, MOI and EAWR) and the extreme precipitation indices (PRCPTOT, R1mm, 
R10mm, R20mm, RX3 day, RX5 day, and CWD), in winter. 
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The results also showed that the MO and EA/WR indices had remarkable effects
on four winter extreme precipitation indices (Figure 7b,c). The winter indices PRCPTOT,
R1mm, R10mm, and R20mm are positively correlated with the MO index at 65, 80, 88, and
48% of the total stations, respectively. For the R20mm index, MO covered more sites in
the southern coastal region with a high band of significant correlations (values between
0.38–0.54) than the NCP index (Figure 7b). The EA/WR index (Figure 7c) showed a lower
frequency of significant correlations for the PRCPTOT, R1mm, and R10mm indices, with
30, 62, and 45% of the stations affected, respectively, compared to the NCP and MO indices.
In contrast, it showed a very high frequency of significant correlations with the CWD index
for 76% of the total stations, with a spatial pattern similar to NCP.

The WEMO index was found to be the most influential pattern on six spring extreme
precipitation indices (PRCPTOT, R1mm, R10mm, RX1day, RX5day, and CWD) with 56,
86, 56, 14, 24, and 56% of the total stations (Table 5), respectively, affected. The highest
significant correlations (with values between −0.38 to −0.54) were with the R1mm index
for most stations and with the PRCPTOT index at some central and northeast locations
(Figure 8a). The WEMO-RX5day significant correlations are, however, concentrated in the
coastal and northeastern locations. In addition to the WEMO index’s effect, the NCP index
exerted a certain positive influence on the R1mm, RX5day, and CWD indices, but with a
lower frequency and magnitude (Figure 8b). As shown in Figure 8c, the effect of the EA
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index on the CDD index occurred only in spring at 13% of the stations, with significant
correlations in the range of 0.27 to 0.38. The NAO pattern also had some negative impact on
13% of stations for the CDD index and was spatially distributed in the northern locations
(Figure 8c).
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indices (WEMOI, NCP, NAO, and EA) and the extreme precipitation indices (PRCPTOT, R1mm,
R10mm, RX1 day, RX5 day, CWD, and CDD), in spring.

For autumn, the results listed in Table 5 show that the ENSO pattern is the main
regulator for seven extreme precipitation indices (PRCPTOT, R1mm, R10mm, R20mm,
RX1day, RX3day, and RX5day). For these indices, 73, 58, 50, 30, 23, 29, and 58% of the
total stations showed significant negative correlations. In addition, the indices PRCPTOT,
R1mm, R10mm, and R20mm correlated negatively with the WEMO for 30, 53, 39, and
23% of the stations, respectively. The NAO pattern also showed some positive effects on
the RX3day and RX5day indices at 20 and 42% of the stations, respectively, located in
the central regions (Figure 9c). Figure 9 show the spatial distribution of the correlation
values between these three circulation patterns and extreme precipitation indices. Most
stations in the northern, coastal, and West Bank areas were significantly affected by the
ENSO pattern, especially for the PRPTOT, R1mm, R10mm, and RX5day indices (Figure 9a).
Other indices (R20mm, RX1day, and RX3day) showed spatially, almost isolated, patterns
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for the significant correlations, except for stations in the Jerusalem Governorate. The ENSO
pattern affected more stations in all regions than the WEMO index.
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indices (ENSO, WEMOI, and NAO) and the extreme precipitation indices (PRCPTOT, R1mm, R10mm,
R20mm, RX1 day, RX3 day, and RX5 day), in autumn.

4. Discussion

Results from this study show that the study area may be subjected to drought episodes
in the future due to the vast decreasing trends in annual, spring, and autumn indices,
mainly for the PRCPTOT, R1mm, R10mm, and R20mm indices, with more than 62% of the
stations showing decreasing trends. This result is in agreement with other studies showing
that the Eastern Mediterranean and the Middle East region are likely to be impacted by
frequent and intense drought events [30,79–81]. A decreasing precipitation trend and a
reduction in the annual number of precipitation days for the Mediterranean and Middle
East regions have been also documented [16,18,45,82–84].

The trend analysis at annual scale showed that the study area tends to have more
intense rainy days, where the R1mm index had a notably decreasing trend and the PRCP-
TOT did not change much. This is also demonstrated by the increasing trends in all the
heavy precipitation indices, with significant increases for R99p, R95ptot, RX1Day, and
RX3Day. In [46], the authors showed the frequency-based extreme indices were affected
by decreasing trends, whereas the percentiles- and intensity-based extreme indices were
generally affected by increasing trends in Israel. However, they found a decreasing trend

16



Water 2022, 14, 3799

in the RX5Day during 1950–2017 while our study showed an increasing trend, which can
be attributed to the different base periods, especially since they also found a positive trend
in the RX5Day during 1988–2017. In [85], the authors found that extreme rainfall had been
more intense, but less frequent over Jeddah, Saudi Arabia during 1979–2018.

The increase in the intensity of extreme rainfall events is a major impact of global
warming [86,87]. In addition, the increase in heavy rainfall in spite of the decrease in the
totals is associated with fewer rainy days and the increase in the frequency and persistence
of sub-tropical anticyclones, particularly over the Mediterranean [18]. Decreasing trends
in rainfall in the study area may be regarded as a manifestation of the increased influence
of the subtropical high over the Mediterranean Basin. Such an evolution is implied by an
expansion of the Hadley cell, attributed to the global warming [45,88].

At a global scale, [21] found the SDII, RX5day, R10mm, R20mm, and CDD indices
are decreasing. However, SDII and RX5day indices are increasing over the study area.
Similarly, CWD increases globally and in the study area [21]. The cause of the significant
decreasing annual CDD may be connected to summer rainy days or rainy days during
September/October when afterwards the dry season continues, sometimes until the end of
November. Regarding spatial trends, the West Bank stations exhibited significant decreasing
trends for the R1mm index, as well as the northern locations and several southern coastal
locations for the CDD index.

Seasonally, the winter PRCPTOT, RX1day, RX3day, RX5day, and SDII indices showed
increasing trends, significant for the northwestern locations in the SDII index due to the
PRCPTOT increasing and the R1mm decreasing. It is also significant for several northern
locations in the RX1day and RX3day indices. These increasing trends indicate the possibility
of flooding in these areas; in particular, they affect many sites with an annual precipitation
maximum of more than 1000 mm.

Most extreme indices showed decreasing trends in spring and autumn (more than 80%
of the total stations); with central and northern locations, showing significant decreases in
the spring RX1day, RX3day, and SDII indices. In addition, the central locations of the study
area show significant decreasing trends in the autumn SDII, RX1day, and RX3day indices.
Spring and autumn, according to these findings, are the seasons that contribute the most in
those locations where annual declines in the PRCPTOT, RX1day, RX3day, RX5day, R1mm,
R10mm, R20mm, and CDD indices are found; while winter is the season that contributes
the most to annual increases in these indices in other sites. The authors of [45,89] also found
that the declining trend in annual precipitation in Israel and the Mediterranean region is
mainly due to the spring season.

The study area had longer periods of extreme dry spells (CDD) in spring and cor-
respondingly shorter extreme wet spells (CWD) for winter, spring, and the combined
winter–spring. The significant increase in the CDD for the winter–spring was caused by
the spring and not by the winter, when most of the total precipitation occurred. In addition,
this study found a negative non-significant trend for CDD index during winter, which
means that there were no prolonged dry periods in the winter (DJF). The Mediterranean
region has also witnessed significant increasing trends in the CDD spring index [89–91],
that could affect crop growth and availability of water for irrigation in these areas. This
trend was also documented in the southern Levant during the rainy season [45,92].

Regarding the influence of large-scale circulation patterns on extreme precipitations,
the NCP, WEMO, and ENSO patterns seem to be the main regulators for the extreme rainfall
indices in winter, spring, and autumn, respectively. The MO and EA/WR indices had a
remarkable impact on four winter extreme rainfall indices, with the highest correlation
values on the R10mm for the MO index, and on the R1mm for EA/WR. In this regard, no
works in the literature establishes a direct link between the extreme precipitation indices
and large-scale circulation patterns in Israel and Palestine. Most studies analyzed the
influence of the large-scale circulation pattern on the mean values. However, it is important
to note that some of these studies confirm some of the results obtained in this study.
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Many studies have found that the NCP, MO, and EA/WR indices have a positive
effect on winter precipitation in Israel, East Mediterranean and Europe [50,93–97]. The
negative phase of the NCP refers to an increased counterclockwise anomaly around the
western center of the NCP, i.e., the north of the Caspian Sea, and an increased clockwise
anomaly circulation around the eastern pole. These anomalies imply increased westerly
anomaly circulation towards central Europe and an increased easterly anomaly circulation
towards Georgia, and eastern Turkey, which leads to an increase in southwesterly anomaly
circulation towered the Balkans, western Turkey, and the Middle East, causing above
normal temperatures and below normal rainfall in these regions. The opposite occurs in the
positive phase of the NCP index [49]. The authors of [92] found that precipitation in Israel
during the positive phase of the NCP is far greater than precipitation during the negative
phase of the NCP, and that the influence of the NCP on the precipitation regime in Israel
increases from the northern parts of the country to the south. The authors of [94] analyzed
the relationship between the MO index and winter precipitation in southern Levant (Israel
and Palestine) for the period 1960–1993, finding that winter precipitation is significantly
associated with positive MO phases.

For the WEMO index, the positive phase corresponds to an anticyclone over the
Azores enclosing the southwestern Iberian quadrant and low pressures in the Liguria
Gulf, while its negative phase coincides with the Central European anticyclone located
north of the Italian peninsula and a low-pressure center in the framework of the Iberian
southwest [98]. The Levant rainfall in the negative phase is favored by maritime surface
flow where the negative phase is associated with flows from the Mediterranean [98]. The
relationship between the WEMO index and the rain regime in the Levant had never been
detected before and more investigation is needed. On the other hand, Ref. [99] found that
El Niño is associated with an increased rainfall over the north of Israel after 1970s due to
the changes in the jet stream position, because if the jet stream shifts equatorward (during
El Niño events) or poleward (during La Niña events) by a few degrees, significant changes
in precipitation amounts can occur.

Note that the study of driving mechanism of extreme precipitation is highly complex
due to many factors affecting regional precipitation variability such as regional environment
characteristics or human activities must be taken into account [100]. However, although
the analysis of the relationships between the atmospheric circulation patterns and the
extreme rainfall indices presents limitations, it constitutes the starting point for the search
of more complex relationships of a non-linear nature. In this sense, further research could
involve a comprehensive physical mechanism analysis following the methodology applied
for other regions [101,102] that consider the application of more sophisticated statistical
techniques capable of analyzing the joint variability, using variables such as the sea surface
temperature (SST) or the sea level pressure (SLP) in addition to extreme rainfall indices,
could help in the search of potential predictors for the precipitation in this region.

5. Conclusions

This study presents a comprehensive annual and seasonal analysis of trends and
variability for a set of 15 extreme precipitation indices using homogeneous and quality-
controlled daily records for 66 stations distributed in Israel and Palestine, for the period
1970–2020. In addition, the relationships between these extreme indices and some large-
scale circulation patterns covering the Atlantic Ocean and the Mediterranean Sea were
examined at the annual and seasonal scales.

The main findings of this work can be summarized as follows:

- Substantial decreasing trends were found for extreme rainfall indices at an annual
scale, and for spring and autumn seasons, mainly for the PRCPTOT, R1mm, R10mm,
and R20mm indices.

- At an annual scale, southern Levant tends to have more intense rainy days, showing
increased trends for all the heavy precipitation indices.
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- Seasonally, winter PRCPTOT, RX1day, RX3day, RX5day, and SDII indices showed
increasing trends, significant for SDII index in the northwestern locations in the area,
related with the PRCPTOT increasing and the R1mm decreasing.

- In spring and autumn, most extreme indices showed decreasing trends, these being
the seasons mostly contributing to the annual declines in the PRCPTOT, RX1day,
RX3day, RX5day, R1mm, R10mm, R20mm, and CDD indices.

- Southern Levant had experienced longer periods of extreme dry spells (CDD) in
spring and consistently shorter extreme wet spells (CWD) for winter, spring, and the
combined winter–spring season.

- The NCP, WEMO, and ENSO atmospheric circulation patterns are the main regulators
for the extreme rainfall indices in winter, spring, and autumn, respectively.

Overall, the results obtained from this study serve as a strong warning in the southern
Levant because the trends detected toward drier conditions and more intense rainy days,
will increases the risk of flooding, food security, emigration, life loss, and property damages
in a region, which is already suffering from several developmental stresses such as poor
infrastructure, rapid population growth, and scarcity of water resources. In this sense, the
findings obtained in this work are very important and constitutes the baseline for decision
makers on the findings of potential solutions and for implementing efficient mitigation and
adaptation strategies in the Levant.
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//www.mdpi.com/article/10.3390/w14233799/s1, Table S1. List of stations where change points in
daily rainfall were detected. Table S2. The final list of the meteorological stations used in this study.
Figure S1. Temporal evolution for some averaged extreme rainfall indices over all stations, period
1970–2020. Red line is indicating a LOWESS smoothing.
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Abstract: Climate change affects the hydrological cycle of river basins and strongly impacts water
resource availability. The mechanistic hydrological model PROMET was driven with an ensemble
of EURO-CORDEX regional climate model projections under the emission scenarios RCP2.6 and
RCP8.5 to analyze changes in temperature, precipitation, soil water content, plant water stress,
snow water equivalent (SWE) and runoff dynamics in the Danube River Basin (DRB) in the near
(2031–2060) and far future (2071–2100) compared to the historical reference (1971–2000). Climate
change impacts remain moderate for RCP2.6 and become severe for RCP8.5, exhibiting strong year-
round warming trends in the far future with wetter winters in the Upper Danube and drier summers
in the Lower Danube, leading to decreasing summer soil water contents, increasing plant water stress
and decreasing SWE. Discharge seasonality of the Danube River shifts toward increasing winter
runoff and decreasing summer runoff, while the risk of high flows increases along the entire Danube
mainstream and the risk of low flows increases along the Lower Danube River. Our results reveal
increasing climate change-induced discrepancies between water surplus and demand in space and
time, likely leading to intensified upstream–downstream and inter-sectoral water competition in the
DRB under climate change.

Keywords: climate change; hydrology; water resources; precipitation; runoff; soil moisture; regional
climate model; hydrological model; Danube; PROMET

1. Introduction

River basins are complex hydrological systems, in which hydrological processes are
highly interconnected and highly susceptible to climate change. The recently published
Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC)
stated that the global surface temperature has already increased by +1.09 ◦C (+0.95 ◦C to
+1.20 ◦C) in 2011–2020 compared to 1850–1900 [1]. This recent development is already quite
rapidly reducing the remaining scope for further greenhouse gas emissions in light of the
Paris Agreement targets of limiting the global surface temperature increase to well below
+2 ◦C and preferably below +1.5 ◦C above pre-industrial levels [2].

A global average temperature increase is not equivalent to a uniform temperature
increase across the globe, but rather to a heterogeneous spatial distribution with hot and
cold spots of temperature increase [3–5]. For the Danube River Basin (DRB), for example,
the results from the IPCC AR6 suggested that a global average temperature increase of
+2 ◦C compared to the pre-industrial level would translate into a median temperature
increase of +2.7 ◦C on spatial average across the basin [6,7].

Large and densely inhabited transboundary watersheds, such as the DRB, are espe-
cially susceptible to climate change, which directly and indirectly affects water resource
availability [8]. With the International Commission for the Protection of the Danube River
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(ICPDR) founded in 1998, the DRB has a long tradition of transboundary water manage-
ment with the main goal of achieving sustainable water resource management in line
with the EU Water Framework Directive (WFD). Moreover, the ICPDR has developed and
pursues a climate change adaptation strategy [9] based on recent results in climate change
impact research.

Based on an extensive review of numerous climate change case studies in the DRB [10],
the ICPDR anticipates an increase in the mean annual temperature of 4.0 ◦C to 5.0 ◦C
until 2100 in the DRB, under the Representative Concentration Pathway (RCP) emission
scenario RCP8.5 [9]. Moreover, the ICPDR identified overarching spatial and seasonal
precipitation trends, according to which wet regions tend to become wetter, dry regions
tend to become drier and precipitation seasonality tends to shift toward wetter winters and
drier summers [9].

In the literature, few hydrological climate change impact modelling studies exist which
consider the whole DRB. They have mostly relied on general circulation models (GCMs) of
coarser resolution rather than regional climate models (RCMs), or on GCM-RCM combina-
tions of former generations. Stagl and Hattermann [11] investigated river discharge in the
DRB by using the process-based watershed model SWIM [12] driven with ENSEMBLES
GCM-RCM combinations under SRES (Special Report on Emissions Scenarios) [13] based
on the Coupled Model Intercomparison Project Phase 3 (CMIP3) [14]. Subsequently, Stagl
and Hattermann [15] investigated discharge in the DRB by driving SWIM with a GCM
ensemble of CMIP5 [16] under different RCPs. Here, coarse-resolution GCMs were directly
used as the meteorological driver instead of high-resolution RCMs. However, hydrological
climate change impact assessment requires higher-resolution meteorological drivers such
as RCMs, since GCMs cannot resolve circulation patterns down to the finer scales on
which hydrological processes occur [17]. Bisselink et al. [18] investigated water scarcity
in the DRB by using the process-based hydrological model LISFLOOD [19,20] driven by
a EURO-CORDEX [21] GCM-RCM ensemble under a 2 ◦C global mean temperature in-
crease according to the RCP8.5 scenario. The analyzed future periods were not uniformly
selected for the entire ensemble, but were centered on the year of exceeding 2 ◦C global
mean temperature for each single GCM [18].

To the best of our knowledge, a systematic and comparative hydrological modelling
study using the (to date) latest-generation high-resolution EURO-CORDEX [21] GCM-RCM
simulations under different RCPs and uniformly selected future periods for the entire
ensemble—enabling to directly compare the development of different components of the
water cycle (e.g., precipitation, soil and snow water, discharge) in a near and far future time
frame—is not yet available for the whole DRB.

We present a hydrological climate change impact modelling study for the DRB, using
the process-based hydrological model PROMET [22], which interlinks dynamic vegetation
and hydrological modelling and was chosen due to its strong physical basis and predictive
power. Probst and Mauser [23] successfully applied PROMET in the DRB, driven with
meteorological reanalysis data to analyze the influence of different climatologies used for
bias correction on the quality of the simulated spatial discharge. They fully validated
the PROMET model in the DRB using the observed daily discharge at major sub-basin
gauges [23].

In this study, we evaluated future projections of temperature and of different com-
ponents of the hydrological cycle, namely precipitation, soil water content, snow water
equivalent, the resulting river runoff dynamics as well as plant water stress as a water-
related vegetation variable and their respective interdependencies in the DRB. These
variables are of direct relevance for water resource availability, and they address the dy-
namic response of vegetation development to climate change in the DRB. For this, we
analyzed simulations of the PROMET hydrological model (30” spatial resolution) driven
by a selected high-resolution GCM-RCM ensemble of the (to date) most recent and most
high-resolution regional climate change projections for Europe from the EURO-CORDEX
initiative [21]. Within EURO-CORDEX, GCM simulations from the CMIP5 initiative were
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dynamically regionalized by RCMs. For each variable, we compared the results of the
ensemble mean of the GCM-RCM-driven simulations for the historical period (1971–2000)
with the results of the ensemble means of the GCM-RCM-driven simulations under the
two emission scenarios RCP2.6 and RCP8.5 for both the near future (2031–2060) and the
far future (2071–2100). By comparing RCP2.6 and RCP8.5, we highlighted the differences
between two very different future projections for the DRB: (i) a scenario aiming to keep
global warming likely below 2 ◦C above pre-industrial levels (RCP2.6); (ii) a high-end
scenario with very high greenhouse gas emissions (RCP8.5) [24].

2. Materials and Methods
2.1. The Danube River Basin

The DRB is the second largest river basin in Europe, covering an area of ~817,000 km2 [25].
From its source in the Black Forest to its mouth in the Black Sea, the Danube’s river length
amounts to 2857 km [26]. The DRB is a complex watershed, featuring heterogeneous
natural characteristics in terms of topography and climate, which strongly influences basin-
wide hydrology. The watershed comprises snow-and ice-covered high mountain ranges,
forest-covered low mountain ranges, sparsely vegetated karst regions, plateaus with river
valleys and wide agricultural plains [26] (Figure 1).
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mid subtropical climate (Cfa) around the Dinarides and the semi-arid steppe climate (BSk) 

Figure 1. Map of the Danube River Basin with its river network, major gauges and the subdivision
into Upper, Middle and Lower Danube. Major sub-basins (gauges in parentheses): Upper Danube
(Achleiten), Middle Danube (Bezdan and Iron Gate), Drava (Dravaszabolcs), Sava (Sremska Mitro-
vica), Mures (Nagylak), Tisza (Senta), Siret (Lungoci) and the Lower Danube (Ceatal Izmail). Major
gauges along the Danube main course: Achleiten, Bezdan, Iron Gate, Ceatal Izmail. Data sources:
Farr et al. [27], Lehner et al. [28], Global Runoff Data Centre (GRDC) [29], International Commission
for the Protection of the Danube River (ICPDR) [30] and Esri [31].

The DRB is located in a transition zone between three Köppen–Geiger climate types.
It mainly lies in the humid continental climate (Dfb, Dfa) zone, with influences of the
humid subtropical climate (Cfa) around the Dinarides and the semi-arid steppe climate
(BSk) at the Danube delta [32]. Since the DRB closely borders the oceanic climate (Cfb) at
the very western Upper Danube and the Mediterranean climate (Csa, Csb) in the southern
DRB [32], influences of these two climate zones are found along the peripheries of the
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basin [33]. The current complex interference of the different climate zones in the DRB
roughly results in a gradient of decreasing mean annual precipitation and increasing mean
annual temperature from the north-west to the south-east.

The DRB is divided into three parts: the Upper Danube, extending from the Danube’s
source to the Devín Gate in the Little Carpathians near the Austrian–Slovakian border [25]
(in some sources, the Upper Danube extends down to gauge Achleiten [34]), the subsequent
Middle Danube, extending to the Iron Gate at the Serbian–Romanian border and the
following Lower Danube, extending down to the mouth in the Black Sea [25]. Hence, the
DRB comprises sub-basins with the full range of hydrological characteristics from mountain
to lowland watersheds. In Table 1, we show the main morphological and hydrographic
characteristics of the Upper, Middle and Lower Danube.

Table 1. Main morphological and hydrographic characteristics of the Upper, Middle and Lower
Danube (data sources: Schiller et al. [26], Regionale Zusammenarbeit der Donauländer (RZD) [35],
Farr et al. [27] and Global Runoff Data Centre (GRDC) [29]).

Characteristics Upper Danube Middle Danube Lower Danube

Major geomorphological units (not
exhaustive)

Swabian/Franconian Alb,
Bavarian Forest,

Bohemian–Moravian Highland,
Alpine Foreland, Northern

Calcareous and Central Alps

Carpathians, Carnic Alps,
Karawanks, Julian Alps,

Dinarides, Pannonian Basin,
Transylvanian Plateau

Carpathians, Balkans,
Romanian/Bulgarian Plain,

Dobrogea Hills,
Moldavian Plateau

Terrain height range [m a.s.l.] 303–3676 35–3449 −2–2683
Sub region area [km2] 76,653 576,232 807,000
Major tributary rivers
(>20,000 km2 basin area)

Inn Morava, Drava, Tisza, Sava,
Velika Morava, Olt, Siret, Prut

Outlet gauge Achleiten Iron Gate/Orsova Ceatal Izmail
- Altitude [m a.s.l.] 287.7 44.0 0.6
- Distance from estuary [km] 2223 955 72
- MQ [m3/s] (1971–2000) *,** 1417 5430 6401

- MNQ [m3/s] (1971–2000) *,** 659 2075 3045

- MHQ [m3/s] (1971–2000) *,** 3821 10,636 11,104

Notes: * MQ: mean flow; MNQ: mean low flow; MHQ: mean high flow. ** Orsova: MQ, MNQ, MHQ are calculated
for 1971–1990, due to end of records in 1990.

2.2. The Mechanistic Hydrological Model PROMET

The mechanistic hydrological model PROMET (Processes of Radiation, Mass and
Energy Transfer) is a physically-based land surface process model developed by Mauser
and Bach [22], interlinking dynamic vegetation and hydrological modelling. It simulates
spatially distributed fluxes of water, carbon and energy on hourly time steps while strictly
adhering to the law of conservation of mass and energy in space and time [22]. A detailed
description of the model theory can be found in Mauser and Bach [22], Hank et al. [36],
Mauser et al. [37] and Zabel et al. [38]. PROMET is structured in modules (e.g., meteorol-
ogy, land surface, vegetation, soil, groundwater, runoff formation and routing), with the
individual modules steadily exchanging information.

The dynamic vegetation module follows the approaches of Farquhar et al. [39],
Chen et al. [40] and Ball et al. [41] to simulate the net primary production and canopy
conductivity. Stomatal conductance of the canopy is primarily regulated by water supply,
which is determined from the water content in the rooted soil zone [36]. According to the
approach of Jarvis and Morison [42], the inhibition of the stomatal conductance is calculated
from the soil suction in the rooted zone [36]. In PROMET, this inhibition can be interpreted
as a plant-specific water stress variable, given as a percentage reduction of potential tran-
spiration. It ranges from 0% to 100% inhibition of transpiration and primary production.
A water stress value of 0% thereby stands for completely absent water stress, meaning
that the plant’s stomata are fully open. In this case, the actual transpiration equals the
potential transpiration. In contrast, a water stress value of 100% stands for the maximum
water stress, meaning that the plant’s stomata remain fully closed. The dynamic process
description in the vegetation module allows for a full consideration of the alterations in
plant growth resulting from a changing climate.
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The routing module, transferring water through the basin’s channel network, follows
the approach of Cunge [43] and Todini [44]. Due to PROMET’s strong physical basis
and predictive power, a classical calibration of the PROMET parameters to fit observed
discharge is not appropriate [22,23]. Instead, literature sources and measurements are used
for the parametrization of the initial values within PROMET, maintaining the model’s
physical consistency [22].

PROMET is driven with hourly time series of spatially distributed meteorological
variables, which are downscaled and disaggregated within the PROMET meteorology
module in space and time (30” and 1 h in this study) according to Marke et al. [45].
Simultaneously, temperature and precipitation are linearly (and spatially distributed) bias-
corrected using long-term climatologies as a reference [23].

The fully validated PROMET model setup of Probst and Mauser [23] (30” spatial
resolution) served as the basis for this study. Here, topographical information was taken
from the SRTM (Shuttle Radar Topography Mission) digital elevation model [27], soil
property data were derived from the Harmonized World Soil Database (HWSD) [46]
and watershed topography information was taken from the HydroSHEDS database [28].
For land use information, we used the first existing consolidated land use map for the
DRB of Probst and Mauser [23] including the spatial distribution of agricultural crops,
which is based on a mosaic of the CORINE Land Cover 2012 [47] and the ESA CCI Land
Cover 2015 [48] augmented by cultivation statistics [49]. The described input datasets are
harmonized datasets covering the entire DRB, which allows for a physically consistent
and uniform parametrization of the PROMET input parameters for soil, vegetation and
hydrology all over the DRB. This comprehensive parametrization had successfully been
validated within the DRB [23]. All gridded input data come with a spatial resolution of
30” (~0.00833333◦).

2.3. Regional Climate Models as Meteorological Drivers
2.3.1. Selection of Appropriate Climate Models

In this study, we drove PROMET with EUR-11 GCM-RCM simulations from the
ensemble for Europe within the World Climate Research Program Coordinated Regional
Downscaling Experiment (EURO-CORDEX) [21]. From the EURO-CORDEX simulations,
we selected an appropriate ensemble of different combinations of RCMs driven by GCMs.

For this, we consulted the literature, such as the ensemble audit from the Bavarian
State Office for Environment authored by Zier et al. [50], in which the EURO-CORDEX
ensemble was checked for plausibility concerning circulation patterns and climate processes
within the hydrological region of Bavaria (which covers the entire Upper Danube basin).
Zier et al. [50] assessed a set of four indicators for temperature and precipitation to identify
possible biases or shifts between the GCM-RCM simulation results and the KliRef2014
temperature and precipitation reference climatologies, which were created by the authors
based on interpolated observations. The indicators assessed by Zier et al. [50] were (i) the
deviation of the mean annual values (“quantity indicator”); (ii) the deviation of the mean
monthly values (“quantity indicator with seasonality reference”); (iii) the deviation of the
seasonality of the mean monthly values (“seasonality indicator”); (iv) the deviation of the
spatial distribution of the mean annual values (“pattern indicator”) from the climatologies.
Zier et al. [50] rated models as implausible, particularly when a spatial offset of precipitation
due to drift effects or insufficient and inverse annual dynamics had been encountered. The
authors considered it unlikely that these biases can be reliably removed by bias correction,
which makes the respective models inappropriate for hydrological impact modelling in
Bavarian watersheds and downstream [50]. GCM-RCM simulations with a uniform bias
were considered appropriate, since this indicates that the climatic processes are represented
correctly in the climate model, but merely with an incorrect order of magnitude that can be
compensated with a bias correction [50].

Furthermore, the selected GCM-RCM ensemble had to meet a set of technical require-
ments. These were (i) 0.11◦ spatial resolution (EUR-11); (ii) at least 3 h temporal resolution;
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(iii) availability of the “historical”, “RCP2.6” and “RCP8.5” experiments; (iv) availability of
the required PROMET meteorological input variables (total cloud cover [%], wind speed
(10 m height) [m/s], air temperature (2 m height) [K], dew point temperature (2 m height)
[K], surface pressure [Pa], total precipitation [mm], downward surface solar radiation
[W/m2] and downward surface thermal radiation [W/m2]).

Based on these considerations, we selected three suitable EURO-CORDEX GCM-RCM
combinations for this study:

• RACMO22Ev1 (RCM) driven with ICHEC-EC-EARTH (r12) (GCM) (denoted as
ICHEC-RACMO in this study);

• RCA4v1 (RCM) driven with ICHEC-EC-EARTH (r12) (GCM) (denoted as ICHEC-
RCA4 in this study);

• RCA4v1a (RCM) driven with MPI-M-MPI-ESM-LR (r1) (GCM) (denoted as MPI-RCA4
in this study).

These three GCM-RCM combinations have also been considered plausible and without
serious biases in other study regions within the DRB, e.g., in the Alps [51] or in the
Pannonian Basin [52]. Moreover, the RCMs involved have been found to be amongst the
better-performing in the Carpathian region [53].

For each of the three GCM-RCM combinations, we used the historical experi-
ment for the reference period (1971–2000) (the time frame was selected due to EURO-
CORDEX data availability) as well as the RCP2.6 and RCP8.5 experiments for both
the near future (2031–2060) and the far future (2071–2100) as drivers for the PROMET
hydrological simulations.

2.3.2. Bias Correction of Climate Model Simulations

Climate model simulations typically exhibit systematic biases in climate variables [54],
which introduce additional uncertainties to future climate projections. Hence, we applied
a spatially distributed linear bias correction of temperature and precipitation based on
reference climatologies to the downscaled (30” spatial resolution) and disaggregated (1 h
temporal resolution) climate model forcing data. As reference climatologies, we used the
compiled climatologies (30” spatial resolution) from Probst and Mauser [23], which had al-
ready been used for the generation of the historical ERA5-GPW forcing dataset [23] and had
been successfully validated within the PROMET setup for the DRB in the mentioned study.
The compiled climatologies are: (i) the global WorldClim 2 temperature climatology [55]
for the bias correction of temperature; (ii) a mosaic of the global WorldClim 2 precipitation
climatology [55] and the Alpine precipitation climatologies GLOWA (Globaler Wandel;
engl. Global Change) [56] and PRISM (Parameter-elevation Regression on Independent
Slope Model) [57] for the bias correction of precipitation. These climatologies are based on
interpolated observations, whereby the two Alpine precipitation climatologies, GLOWA
and PRISM, are derived from a particularly high-resolution station density [23]. The other
meteorological variables apart from temperature and precipitation were not bias-corrected.

The hindcast in Figure 2 shows the performance of the bias correction. Here, we show
the long-term mean monthly temperature and precipitation (1980–2000) on spatial average
over the DRB and the resulting long-term mean monthly discharge (1980–2000) at the
outlet gauge Ceatal Izmail. The simulations driven by the three bias-corrected GCM-RCM
ensemble members (ICHEC-RACMO, ICHEC-RCA4 and MPI-RCA4) were compared with
the simulation driven by the ERA5-GPW forcing dataset of Probst and Mauser [23]. As can
be seen, the correspondence between ERA5-GPW long-term temperature and precipitation
seasonalities with their counterparts from the bias-corrected GCM-RCM simulations is
very high. The same holds true for discharge: the long-term discharge seasonalities of
the simulations driven by the bias-corrected GCM-RCM ensemble members are in good
agreement to the long-term discharge seasonality of the ERA5-GPW-driven simulation.
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Figure 2. Hindcast of long-term mean monthly temperature [◦C] (a) and precipitation [mm]
(b) (1980–2000) on spatial average over the Danube River Basin as well as long-term mean monthly
discharge [m3/s] (c) at outlet gauge Ceatal Izmail (1980–2000). The simulations driven by the
bias-corrected GCM-RCM ensemble members ICHEC-RACMO, ICHEC-RCA4 and MPI-RCA4 were
compared with the ERA5-GPW-driven simulation of Probst and Mauser [23].

3. Results
3.1. Temperature and Precipitation
3.1.1. Basin-Wide and Regional Trends

The interplay between temperature and precipitation is one of the main determinants
of the hydrological cycle in a watershed. Climate change-induced alterations in temperature
and precipitation are major drivers for changes in the hydrological cycle and water resource
availability in both space and time. In Figure 3, we show the development of the mean
annual temperature and precipitation on spatial average over the whole DRB as a result of
the following simulations: the simulation driven with the historical ERA5-GPW forcing
dataset [23], the historical GCM-RCM-driven simulations (ensemble mean) and the GCM-
RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the near and
far future.
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SON * +1.3 +1.1 +1.0 +1.1 +1.4% −1.6% +1.1% −0.7%
RCP2.6 (2071–2100)   
Annual +1.2 +1.2 +1.3 +1.2 +5.5% +7.1% +8.6% +7.2%
DJF +1.3 +1.4 +1.5 +1.4 +16.7% +12.9% +11.8% +13.2%
MAM +1.2 +1.4 +1.6 +1.4 +5.4% +8.6% +4.7% +7.3%
JJA +1.1 +1.0 +1.0 +1.0 −0.1% +3.3% +7.8% +3.8%
SON +1.1 +0.9 +0.9 +0.9 +5.3% +6.6% +12.5% +7.6%

Figure 3. Mean annual temperature [◦C] (a) and precipitation [mm] (b) according to the historical
ERA5-GPW-driven simulation (1980–2000) [23] (green) and to the historical GCM-RCM-driven
simulations (ensemble mean; 1971–2000) (black) as well as according to the GCM-RCM-driven
simulations (ensemble mean) under RCP2.6 (blue) and RCP8.5 (red) for the near future (2031–2060)
and the far future (2071–2100) on spatial average over the whole Danube River Basin. Lines: ensemble
mean; shadings: standard deviation of the ensemble.
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In Table 2, we additionally show the changes in the long-term mean annual and
seasonal temperature and precipitation on spatial average for the Upper, Middle and Lower
Danube as well as for the Danube overall according to the GCM-RCM-driven simulations
(ensemble mean) under RCP2.6 and RCP8.5 for the near and far future compared to the
historical GCM-RCM-driven simulations (ensemble mean).

Table 2. Changes in the long-term mean annual and seasonal temperature [◦C] and precipitation
[%] on spatial average for the Upper, Middle and Lower Danube as well as for the Danube overall
according to the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the
near future (2031–2060) and the far future (2071–2100) compared to the historical GCM-RCM-driven
simulations (ensemble mean, 1971–2000).

Temperature [◦C] Precipitation [%]

Emission Scenario Upper
Danube

Middle
Danube

Lower
Danube

Danube
Overall

Upper
Danube

Middle
Danube

Lower
Danube

Danube
Overall

RCP2.6 (2031–2060)
Annual +1.3 +1.2 +1.3 +1.2 +4.6% +3.7% +6.5% +4.5%
DJF * +1.5 +1.4 +1.6 +1.5 +13.4% +11.7% +15.0% +12.6%
MAM * +1.2 +1.2 +1.4 +1.3 +6.4% +7.2% +5.6% +6.7%
JJA * +1.2 +1.1 +1.1 +1.1 +1.1% +0.6% +6.6% +2.1%
SON * +1.3 +1.1 +1.0 +1.1 +1.4% −1.6% +1.1% −0.7%

RCP2.6 (2071–2100)
Annual +1.2 +1.2 +1.3 +1.2 +5.5% +7.1% +8.6% +7.2%
DJF +1.3 +1.4 +1.5 +1.4 +16.7% +12.9% +11.8% +13.2%
MAM +1.2 +1.4 +1.6 +1.4 +5.4% +8.6% +4.7% +7.3%
JJA +1.1 +1.0 +1.0 +1.0 −0.1% +3.3% +7.8% +3.8%
SON +1.1 +0.9 +0.9 +0.9 +5.3% +6.6% +12.5% +7.6%

RCP8.5 (2031–2060)
Annual +2.1 +2.2 +2.3 +2.2 +7.1% +5.1% +2.8% +4.9%
DJF +2.6 +2.5 +2.5 +2.5 +26.6% +13.3% +16.9% +15.9%
MAM +1.9 +2.2 +2.4 +2.2 +5.5% +8.6% +8.2% +8.1%
JJA +2.0 +2.1 +2.3 +2.2 +0.2% −1.9% −6.5% −2.6%
SON +2.0 +2.0 +2.0 +2.0 +3.8% +4.7% +1.0% +3.8%

RCP8.5 (2071–2100)
Annual +4.2 +4.2 +4.4 +4.3 +9.8% +7.0% +0.4% +5.9%
DJF +4.6 +4.7 +4.8 +4.7 +23.8% +27.3% +19.8% +25.3%
MAM +3.8 +3.9 +4.3 +4.0 +16.2% +12.0% +3.9% +10.7%
JJA +4.3 +4.4 +4.8 +4.5 −2.4% −7.4% −12.6% −7.9%
SON +4.1 +3.8 +3.9 +3.9 +11.1% +6.0% +2.9% +6.1%

Notes: * DJF: December, January, February; MAM: March, April, May; JJA: June, July, August; SON: September,
October, November.

While Figure 3 shows that the historical mean annual temperature and precipitation
developments from the ERA5-GPW-driven simulation and from the historical GCM-RCM-
driven simulations are in good agreement, the future developments under RCP2.6 and
RCP8.5 reveal very different trends. In particular, basin-wide temperatures differ signifi-
cantly between RCP2.6 and RCP8.5. While temperature rise remains on a relatively low
and constant level under RCP2.6 (+1.2 ◦C on long-term basin-wide average for both the
near and far future compared to the historical period; Table 2), the RCP8.5 temperature
rise features a significant increasing trend especially for the far future (+2.2 ◦C and +4.3 ◦C
on long-term basin-wide average for the near and far future compared to the historical
period; Table 2), culminating in a temperature rise of +5.1 ◦C by 2100. Concerning annual
precipitation, we identified no such clear trends as for temperature. For both RCP2.6 and
RCP8.5, a slight increase in annual precipitation can be observed (RCP2.6: +4.5% and +7.2%
on long-term basin-wide average for the near and far future compared to the historical
period; RCP8.5: +4.9% and +5.9% on long-term basin-wide average for the near and far
future compared to the historical period; Table 2). In addition to the long-term average
increase in precipitation, strong variability is visible in Figure 3.

In Figure 4, we show regional differences in temperature and precipitation. Here, we
show boxplots of annual temperature and precipitation change for the Upper, Middle and
Lower Danube according to the simulations driven by the three individual GCM-RCM
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ensemble members under RCP2.6 and RCP8.5 for the near and far future compared to the
historical reference.

Water 2023, 15, 8 10 of 34 
 

 

 
Figure 4. Boxplots of the annual temperature change [°C] (a–c) and the annual precipitation change 
[%] (d–f) on spatial average for the Upper, Middle and Lower Danube according to the simulations 
driven by the three individual GCM-RCM ensemble members under RCP2.6 and RCP8.5 for the 
near future (2031–2060) and the far future (2071–2100) compared to the long-term mean of the GCM-
RCM-driven simulations for the historical period (1971–2000). The boxplots show yearly simulation 
results of the three individual GCM-RCM ensemble members. Whiskers: 1.5-fold interquartile 
range; black dots: minimum and maximum values. 

According to Figure 4, the future temperature development uniformly points to an 
increase in median temperature for both emission scenarios, both future periods, and for 
all three Danube sub regions. Especially the RCP8.5 median temperature increase (far fu-
ture) points to high values of +4.2 °C to +4.5 °C across the sub regions. While for RCP2.6 
(near and far future) and RCP8.5 (near future), single colder years still occur in which 
annual temperature is lower than the long-term mean annual temperature of the historical 
period, no single colder year occurs for RCP8.5 (far future). The future precipitation de-
velopment points to a slight to negligible increase in median annual precipitation for both 
emission scenarios and both future periods in all sub regions, with a range that extends 
from +0.2% (RCP8.5 far future, Lower Danube) to +11.0% (RCP2.6 far future, Lower Dan-
ube). In the Lower Danube, median annual precipitation under RCP8.5 remains nearly 
unchanged for both the near and far future. At the same time, the variability of the annual 
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Figure 4. Boxplots of the annual temperature change [◦C] (a–c) and the annual precipitation change
[%] (d–f) on spatial average for the Upper, Middle and Lower Danube according to the simulations
driven by the three individual GCM-RCM ensemble members under RCP2.6 and RCP8.5 for the near
future (2031–2060) and the far future (2071–2100) compared to the long-term mean of the GCM-RCM-
driven simulations for the historical period (1971–2000). The boxplots show yearly simulation results
of the three individual GCM-RCM ensemble members. Whiskers: 1.5-fold interquartile range; black
dots: minimum and maximum values.

According to Figure 4, the future temperature development uniformly points to
an increase in median temperature for both emission scenarios, both future periods, and
for all three Danube sub regions. Especially the RCP8.5 median temperature increase (far
future) points to high values of +4.2 ◦C to +4.5 ◦C across the sub regions. While for RCP2.6
(near and far future) and RCP8.5 (near future), single colder years still occur in which annual
temperature is lower than the long-term mean annual temperature of the historical period,
no single colder year occurs for RCP8.5 (far future). The future precipitation development
points to a slight to negligible increase in median annual precipitation for both emission
scenarios and both future periods in all sub regions, with a range that extends from +0.2%
(RCP8.5 far future, Lower Danube) to +11.0% (RCP2.6 far future, Lower Danube). In the
Lower Danube, median annual precipitation under RCP8.5 remains nearly unchanged for
both the near and far future. At the same time, the variability of the annual precipitation is
especially large for the Lower Danube compared to the Upper and Middle Danube.

3.1.2. Changes in Seasonality

To thoroughly assess the impacts of climate change, it is also necessary to take a closer
look at possible seasonal changes. In Figure 5, we show seasonality plots of the long-term
mean monthly developments of temperature and precipitation on spatial average for the
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Upper, Middle and Lower Danube. Here, we compared the ensemble mean results from
the historical GCM-RCM-driven simulations and the GCM-RCM-driven simulations under
RCP2.6 and RCP8.5 for the near and far future.
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Figure 5. Long-term mean monthly developments of temperature [◦C] (a–c) and precipitation
[mm] (d–f) according to the historical GCM-RCM-driven simulations (ensemble mean, 1971–2000)
and the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the near
future (2031–2060) and the far future (2071–2100) on spatial average for the Upper, Middle and
Lower Danube.

Figure 5 shows that the future temperature increases more or less evenly throughout
the year in the Upper, Middle and Lower Danube without shifts in seasonality. In all sub
regions, however, a greater warming trend occurs in the winter season than during the rest
of the year in all scenarios (e.g., RCP8.5, near future: +2.5 ◦C to +2.6 ◦C in the winter season
versus +1.9 ◦C to +2.4 ◦C during the other seasons) (Table 2). Especially the warming trend
according to RCP8.5 (far future) is stronger in the winter season (+4.6 ◦C to +4.8 ◦C) and
the summer season (+4.3 ◦C to +4.8 ◦C) in all sub regions than during the other seasons
(+3.8 ◦C to +4.3 ◦C) (Table 2).

For precipitation, the plots reveal more distinct shifts in seasonality: for the Upper
Danube, the increase in the mean annual precipitation under RCP2.6 and RCP8.5 (near
and far future; Figure 5 and Table 2) is mainly attributable to an above-average increase
in the winter and spring season. For RCP8.5 (far future), for example, the long-term
mean seasonal precipitation is projected to change by +23.8% and +16.2% in the winter
and spring season, versus −2.4% and +11.1% in the summer and autumn season in the
Upper Danube. In addition, a shift of peak precipitation in the Upper Danube from July
to June is projected in both RCP2.6 and RCP8.5 (near and far future), which is associated
with a shift of the summer precipitation regime forward by one month. For the Lower
Danube, there is an increase in precipitation visible in the summer season for RCP2.6 (+6.6%
and +7.8% for the near and far future), but a moderate to strong decrease throughout
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summer (May–September) for RCP8.5 (e.g., −6.5% and −12.6% in the summer season for
the near and far future). For the winter season, the simulations point to an increase in
precipitation in the Lower Danube for all scenarios and all future periods, ranging from
+11.8% (RCP2.6 far future) to +19.8% (RCP8.5 far future). For the Middle Danube, the major
trends from the Upper Danube (especially the increase in winter precipitation) and the
Lower Danube (especially the decrease in summer precipitation) blend, particularly under
RCP8.5 (far future).

3.1.3. Changes in Spatial Patterns

Given the natural heterogeneity of the DRB, it is expected that climate change effects
will also be spatially distributed in a very heterogeneous manner. In Figures 6 and 7, we
show maps of the long-term mean seasonal temperature and precipitation (ensemble mean)
in the DRB according to the historical GCM-RCM-driven simulations as well as the mean
seasonal (absolute or relative) changes (ensemble mean) according to the GCM-RCM-driven
simulations under RCP2.6 and RCP8.5 for the near and far future.
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Figure 7. Maps of the long-term mean seasonal precipitation [mm] for the historical GCM-RCM-
driven simulations (ensemble mean, 1971–2000) as well as the long-term mean seasonal precipitation
change [%] according to the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and
RCP8.5 for the near future (2031–2060) and the far future (2071–2100) in the Danube River Basin.

Figure 6 shows a relatively uniform spatial distribution of the mean seasonal tempera-
ture rise under RCP2.6 and RCP8.5 for both the near and far future. Especially for RCP8.5
(far future), however, the spatial patterns hint at a relatively stronger temperature increase
in the mountains (e.g., +6 ◦C up to +8 ◦C during the winter season) compared to the basin
overall (e.g., +4.7 ◦C on spatial average during the winter season). The historical simula-
tions show that the highest long-term mean temperatures in the summer season occur in
the basins of the Middle and Lower Danube (e.g., the Romanian Plain with an average
summer temperature of >22 ◦C). For RCP8.5 (far future), a particular hot spot of summer
temperature rise of +5 ◦C and beyond lies in the Lower Danube, additionally amplifying
hot summer temperatures.

Figure 7 shows a gradient of decreasing mean seasonal precipitation, roughly from the
north-west to the south-east of the DRB. The change maps show different spatial hot spots
of precipitation increase or decrease depending on the scenario. For RCP2.6 (near and far
future), precipitation increases in almost every season nearly throughout the basin, ranging
from −1% (RCP2.6 near future, autumn season) to +14% (RCP2.6 far future, winter season)
on spatial average. For RCP8.5 (near and far future), precipitation generally increases in the
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winter season and decreases in the summer season in large parts of the basin, ranging from
−9% (RCP8.5 far future, summer season) to +26% (RCP8.5 far future, winter season) on
spatial average. For RCP8.5 (near future), a tendency of increasing winter precipitation in
the Upper Danube basin, across the northern Carpathian ridge and in the Moldovan Plain
of +20% up to +40% and decreasing summer precipitation in the southern Lower Danube
basin of −20% down to −26% is visible. For RCP8.5 (far future), the winter precipitation
increase extends almost over the entire DRB (with hot spots of up to +57%) and the summer
precipitation decrease intensifies and extends over large southern parts of the Middle and
Lower Danube basin with −20% down to −36%, additionally amplifying drier summers in
this region.

3.2. Soil Water Content, Plant Water Stress and Snow Water Equivalent
3.2.1. Changes in Seasonality

In Figure 8, we show seasonality plots of the long-term mean monthly developments
of available soil water content in the rooted zone, plant water stress and snow water
equivalent (SWE) on spatial average for the Upper, Middle and Lower Danube. The
developments result from the historical GCM-RCM-driven simulations (ensemble mean)
and the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the
near and far future.
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Figure 8. Long-term mean monthly developments of soil water content in the rooted zone [mm]
(a–c), plant water stress [% reduction of potential transpiration] (d–f) and snow water equivalent
[mm] (g–i) according to the historical GCM-RCM-driven simulations (ensemble mean, 1971–2000)
and the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the near
future (2031–2060) and the far future (2071–2100) on spatial average over the Upper, Middle and
Lower Danube.
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Figure 8 shows that the long-term mean monthly soil water content decreases in
late summer and early autumn in both the Upper and Middle Danube for all scenarios
and particularly strong for RCP8.5 (far future), with the most severe percentage soil water
reduction occurring in September. For RCP8.5 (far future), for example, soil water reduction
in September amounts to −28 mm (−10.2%) in the Upper Danube and −25 mm (−9.6%)
in the Middle Danube. In the Lower Danube, soil water decreases more or less uniformly
throughout the year with a likewise considerable reduction for RCP8.5 (far future) and the
comparatively strongest percentage reduction in July with −30 mm (−9.4%) for RCP8.5
(far future).

The depleting soil water storages directly translate into rising water stress experi-
enced by vegetation (especially agricultural crops, grasslands and forests) in the DRB. Our
simulations show that the long-term mean monthly plant water stress intensifies in the
Upper, Middle and Lower Danube, especially during the summer and autumn months
of diminished soil water toward the end of the period of maximum forest transpiration
and toward the end of the vegetation period of dominant agricultural summer crops such
as maize, sunflower, soybean, potatoes and sugar beet. The historical simulations show
the maximum monthly plant water stress values in late summer for all the sub regions,
resulting in 3% for the Upper Danube in September, 13% for the Middle Danube in August
and 14% for the Lower Danube in August. For RCP8.5 (far future), plant water stress
intensifies to maximum values of 9% for the Upper Danube, 22% for the Middle Danube
and 22% for the Lower Danube in the same months.

Furthermore, the simulations show a reduction in the long-term mean monthly SWE,
which indicates that the amount of water stored in snow decreases for all scenarios and
especially for RCP8.5 (far future). In the winter season (DJF), simulated future SWE
decreases all over the DRB, with SWE reductions of −14.7 mm (−80%) in the Upper Danube,
−5.9 mm (−85%) in the Middle Danube and −3.2 mm (−78%) in the Lower Danube on
spatial average for RCP8.5 (far future). Summer snow cover in the high mountain ranges
of the Alps in the Upper Danube vanishes almost completely for RCP8.5 (far future).

3.2.2. Changes in Spatial Patterns

In Figures 9–11, we show maps of the long-term mean seasonal soil water content
in the rooted zone, plant water stress and SWE in the DRB according to the historical
GCM-RCM-driven simulations (ensemble mean) as well as the mean seasonal values or
changes according to the GCM-RCM-driven simulations (ensemble mean) under RCP2.6
and RCP8.5 for the near and far future.

Figure 9 reveals that almost all scenarios and future periods (except for RCP2.6 far
future in the winter and spring season) show negative changes in soil water on spatial
average for the four seasons. For RCP2.6 (near and far future), the seasonal soil water
change ranges between −8 mm (RCP2.6, near future) in the autumn season and +2 mm
(RCP2.6, far future) in the winter season. Here, the change maps only show local alterations
of soil water, with a concentration of refilling soil water storages around the Pannonian
Basin in winter and spring and depleting soil water storages in some forested areas of
Transylvania in summer and autumn. For RCP8.5 (near and far future), the seasonal soil
water change ranges between −3 mm (RCP8.5, near future) in the winter and spring season
and −22 mm (RCP8.5, far future) in the summer season. For RCP8.5, hot spots of more
significant changes can be encountered, in which the soil water particularly increases
in the Pannonian Basin during winter and spring and decreases in the forested areas of
Transylvania, the Carpathian foothills and the southern Dinarides during summer and
autumn (near and far future).
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under RCP2.6 and RCP8.5 for the near future (2031–2060) and the far future (2071–2100) in the Dan-
ube River Basin. 

Figure 9. Maps of the long-term mean seasonal soil water content in the rooted zone [mm] for
the historical GCM-RCM-driven simulations (ensemble mean, 1971–2000) as well as the long-term
mean seasonal soil water change [mm] according to the GCM-RCM-driven simulations (ensemble
mean) under RCP2.6 and RCP8.5 for the near future (2031–2060) and the far future (2071–2100) in the
Danube River Basin.

Figure 10 shows that the patterns of increasing plant water stress follow the patterns
of depleting soil water storages. Long-term mean seasonal plant water stress is largely
restricted to the summer and autumn season. In the historical simulations, the mean plant
water stress amounts to 7.1% on spatial average during both summer and autumn. During
summer, the extensive croplands in the lowlands of the Middle and Lower Danube are
especially affected by water stress values of >25%, which can be interpreted as serious
water shortages reducing agricultural yields. During autumn, hot spots of the plant water
stress shift to areas of deciduous forests, with values of >30%. For all scenarios and future
periods, summer and autumn water stress intensifies on spatial average. Especially for
RCP8.5 (far future), the maps point to a more widespread and more intense plant water
stress of 13.8% during summer and 11.0% during autumn on spatial average. Distinct hot
spots occur in the Pannonian Basin, the Romanian Plain (water stress values of >40% for
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agricultural crops in the summer season) and around the Carpathian foothills (water stress
values of >50% for deciduous forests in the autumn season).
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Figure 10. Maps of the long-term mean seasonal plant water stress [% reduction of potential transpi-
ration] for the historical GCM-RCM-driven simulations (ensemble mean, 1971–2000) as well as for
the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the near future
(2031–2060) and the far future (2071–2100) in the Danube River Basin.

Figure 11 shows that the long-term mean seasonal SWE concentrates in the mountain
regions during winter and spring. For the historical period, the long-term mean SWE in
the winter season amounts to 7.35 mm on spatial average, with SWE values of >100 mm in
the Alpine mountain ranges. The change maps reveal significant reductions in the seasonal
SWE for all scenarios all over the DRB. The strongest reduction is again projected for
RCP8.5 (far future), for which the SWE decreases considerably in the Alps, Carpathians and
Dinarides during autumn (from 0.89 mm to 0.08 mm), winter (from 7.35 mm to 1.28 mm)
and spring (from 3.62 mm to 0.83 mm), and almost completely vanishes during summer
(from 0.65 mm to 0.05 mm).
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Figure 11. Maps of the long-term mean seasonal snow water equivalent (SWE) [mm] for the historical
GCM-RCM-driven simulations (ensemble mean, 1971–2000) as well as for the GCM-RCM-driven
simulations (ensemble mean) under RCP2.6 and RCP8.5 for the near future (2031–2060) and the far
future (2071–2100) in the Danube River Basin.

3.3. Discharge
3.3.1. Annual and Seasonal Trends in Danube Sub-Basins

The future projections of the temperature and the components of the hydrological
cycle, such as precipitation, soil water and snow water, hold direct consequences for the
runoff dynamics in the DRB. In Table 3, we show the changes in the long-term mean annual
and seasonal mean discharge (MQ) in the entire DRB and its major sub-basins (Figure 1)
according to the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5
for the near and far future compared to the historical simulations (ensemble mean).

Table 3 shows that the trends of the future MQ changes (increasing or decreasing) gen-
erally follow the precipitation development, although some time lag is visible. Surprisingly,
despite the decreasing soil water content in the root zone and the increasing plant water
stress, the long-term mean annual MQ increases for all scenarios and all future periods at
the Danube outlet gauge in Ceatal Izmail (+2.8% and +10.7% for RCP2.6 in the near and far
future; +3.1% and +5.2% for RCP8.5 in the near and far future). For RCP2.6 (near future), the
MQ tends to increase in winter and spring, and to decrease in summer and autumn across
a majority of sub-basins. Interestingly, for RCP2.6 (far future), in contrast, the MQ increases
in all seasons for almost all sub-basins. For RCP8.5 (near and far future), Table 3 hints at
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a clear dichotomy: on the one hand, the MQ increases for all seasons in the Upper Danube,
Middle Danube (Bezdan) and Drava basin (e.g., +22.5% and +26.4% for winter MQ in the
Upper Danube for RCP8.5 in the near and far future). On the other hand, the MQ increases
for the winter and spring season (+0.5% to +19.1%) and decreases in the summer and
autumn season (−1.5% to −17.1%) in the downstream sub-basins (Sava, Mures, Tisza, Siret
and the Lower Danube). Hereby, the reduction in the seasonal MQ according to RCP8.5 is
more severe for the Sava, Tisza and Lower Danube basin for the far future. Concerning the
annual MQ, the increase in the winter and spring MQ over-compensates for the decrease
in the summer and autumn MQ in most sub-basins. At the Danube outlet, the winter and
spring surplus outweighs the summer and autumn deficit for all scenarios.

Table 3. Changes in the long-term mean annual and seasonal mean discharge (MQ) [%] in the
Danube River Basin and its major sub-basins (at respective gauges in parentheses) according to
the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the near future
(2031–2060) and the far future (2071–2100) compared to the historical GCM-RCM-driven simulations
(ensemble mean, 1971–2000).

Emission Scenario
Upper

Danube
(Achleiten)

Middle
Danube

(Bezdan)

Drava
(Dravasza-

bolcs)

Sava
(Sremska

Mitrovica)
Mures

(Nagylak)
Tisza

(Senta)
Siret

(Lungoci)

Lower
Danube
(Ceatal
Izmail)

RCP2.6 (2031–2060)
Annual +4.6% +4.8% +6.4% −0.9% −0.8% −4.0% +4.4% +2.8%
DJF * +9.2% +7.8% +11.6% +2.1% −1.8% −8.3% +16.3% +3.4%
MAM * +4.6% +5.5% +7.4% +0.6% +5.0% +2.5% +9.5% +4.4%
JJA * +5.9% +7.9% +8.9% −0.3% −2.8% −2.5% −0.8% +5.1%
SON * −1.8% −3.1% −1.9% −8.0% −3.3% −9.3% +0.5% −3.1%

RCP2.6 (2071–2100)
Annual +6.9% +9.5% +12.7% +9.6% +7.4% +5.6% +20.0% +10.7%
DJF +20.4% +20.2% +16.6% +13.5% +14.7% +7.8% +37.6% +16.9%
MAM +3.0% +6.8% +10.7% +8.0% +7.1% +8.1% +11.6% +8.8%
JJA +3.8% +7.8% +13.0% +8.5% −0.2% +3.5% +16.0% +9.5%
SON +0.6% +2.8% +10.9% +7.4% +14.9% +3.3% +23.9% +7.4%

RCP8.5 (2031–2060)
Annual +7.2% +8.1% +9.0% −2.0% −3.9% +0.1% −4.3% +3.1%
DJF +22.5% +21.1% +17.3% +3.1% +9.8% +5.7% +11.5% +12.1%
MAM +4.4% +6.2% +6.1% +0.5% +7.2% +5.4% +13.0% +6.0%
JJA +2.8% +4.7% +5.9% −7.1% −13.5% −2.7% −16.5% −1.5%
SON −0.2% +0.0% +8.1% −6.7% −14.1% −9.2% −10.6% −4.4%

RCP8.5 (2071–2100)
Annual +10.5% +11.5% +9.4% −0.2% +0.6% +4.5% −5.2% +5.2%
DJF +26.4% +27.7% +33.3% +14.7% +13.2% +13.1% +9.5% +19.1%
MAM +9.2% +10.0% +8.5% +7.4% +17.3% +18.3% +13.0% +11.8%
JJA +3.3% +6.2% +0.8% −16.7% −11.1% −3.5% −14.7% −2.9%
SON +4.1% +2.0% +0.6% −11.9% −11.5% −10.8% −17.1% −7.2%

Notes: * DJF: December, January, February; MAM: March, April, May; JJA: June, July, August; SON: September,
October, November.

In Figure 12, we show seasonality plots of the long-term mean monthly developments
of discharge for the Upper Danube (gauge Achleiten), Middle Danube (gauge Iron Gate)
and Lower Danube (gauge Ceatal Izmail). The developments result from the historical
GCM-RCM-driven simulations (ensemble mean) and the GCM-RCM-driven simulations
(ensemble mean) under RCP2.6 and RCP8.5 for the near and far future.

The changes in the future discharge regimes are a direct response to the changes in
the precipitation regimes. In the Upper Danube, the increase in winter precipitation, the
slight decrease in summer precipitation (especially for RCP8.5, far future) and the forward
shift of the precipitation peak directly translates into corresponding changes in seasonal
discharge regimes at gauge Achleiten. Here, the long-term mean monthly MQ at gauge
Achleiten increases by +26.4% on average in the winter season and decreases by −7.1%
during August and September (RCP8.5, far future). The same tendencies can be observed
for the Middle Danube (gauge Iron Gate) and Lower Danube (gauge Ceatal Izmail), where
especially the strong decrease in summer precipitation (RCP8.5, far future) translates into
a decrease in the summer discharge. Here, the long-term mean monthly MQ increases by
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+21.9% at gauge Iron Gate and +19.1% at gauge Ceatal Izmail in the winter season and
decreases by −12.1% at gauge Iron Gate and −11.3% at gauge Ceatal Izmail during August
and September. However, the decrease in summer discharge blends with the discharge
changes of the Upper Danube (especially with the increase in winter discharge) that are
transferred to downstream reaches.
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(ensemble mean) under RCP2.6 and RCP8.5 for the near future (2031–2060) and the far future
(2071–2100) for the Upper Danube at gauge Achleiten, the Middle Danube at gauge Iron Gate and
the Lower Danube at gauge Ceatal Izmail.

3.3.2. Changes in Spatial Patterns

In terms of discharge, smaller tributary rivers in drier regions are expected to be
particularly affected by climate change. In Figure 13, we show maps of the changes in the
long-term mean seasonal MQ in the DRB according to the GCM-RCM-driven simulations
(ensemble mean) under RCP2.6 and RCP8.5 for the near and far future compared to the
historical GCM-RCM-driven simulations (ensemble mean).

Figure 13 shows that the changes in the long-term mean seasonal MQ under different
scenarios and future periods are very heterogeneously distributed across the DRB. On
basin-wide average, the range of seasonal MQ change varies between −8% (RCP8.5, far
future, summer season) and +19% (RCP8.5, far future, winter season). An interesting
finding for the MQ changes under RCP2.6 is that negative MQ changes occur much more
frequently for the near future than for the far future. Shortages in water resource availability
in rivers under the RCP2.6 scenario are more frequently projected in the near future and are
compensated by higher precipitation in the far future. For RCP2.6 (near future), the mean
seasonal MQ change ranges from −3% (autumn) to +5% (winter) on basin-wide average.
Here, local hot spots of runoff reductions are especially found in the Pannonian Basin and
the Tisza basin in winter, summer and autumn. Cold spots (regions with runoff increase)
are particularly found in the Alps in the winter season and the Danube delta region in
autumn and winter. For RCP2.6 (far future), the mean seasonal MQ change ranges from
+8% (summer) to +18% (winter) on basin-wide average. Here, cold spots of an increasing
MQ predominate the map, especially in the Pannonian Basin (all year), the Upper Danube
(winter season) and the Danube delta region with the Romanian and Moldovan Plain
(autumn and winter).

For the RCP8.5 scenario though, significantly greater reductions in the MQ occur
throughout the basin. For RCP8.5 (near future), the mean seasonal MQ change ranges from
−5% (summer and autumn) to +12% (winter) on basin-wide average. Here, widespread
hot spots of an MQ decrease can be found in the entire Lower Danube and the Sava basin
in summer and autumn. Simultaneously, winter precipitation and thus, MQ is increasing
in the Upper Danube, especially in the Alpine region. For RCP8.5 (far future), the mean
seasonal MQ change ranges from −8% (summer) to +19% (winter) on basin-wide average.
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Here, severe decreases in the MQ (changes of up to −50%) can be observed for smaller
tributary rivers scattered almost all over the basin in summer and autumn. Around the
Carpathian Mountains, the MQ decreases all over the year. Likewise, winter precipitation
and thus, MQ increases in the Upper Danube (especially in the Alps) and the Pannonian
Basin, and spring precipitation and thus, MQ increases in the Pannonian Basin.
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Figure 13. Maps of the long-term mean seasonal MQ change [%] in the Danube River Basin according
to the GCM-RCM-driven simulations (ensemble mean) under RCP2.6 and RCP8.5 for the near future
(2031–2060) and the far future (2071–2100) compared to the historical GCM-RCM-driven simulations
(ensemble mean, 1971–2000).

3.3.3. Changes in the Risk of High and Low Flows

To thoroughly analyze the impacts of climate change on runoff dynamics, it is also
necessary to take a closer look on the development of high and low flows. In Figure 14, we
show flow duration curves for the Upper Danube (gauge Achleiten), the Middle Danube
(gauges Bezdan and Iron Gate) and the Lower Danube (gauge Ceatal Izmail) (sub panels
a–d). The flow duration curves show the average number of days in a year, in which
the discharge values are exceeded. The colored curves in Figure 14 refer to the ensemble
mean of the historical GCM-RCM-driven simulations as well as to the ensemble mean of
the GCM-RCM-driven simulations under RCP2.6 and RCP8.5 for the near and far future.
Figure 14 additionally zooms into the flow duration curves of the respective gauges in
two intervals: (i) the interval of the flow duration curves near the historical long-term mean
annual low flow (MNQ) values (thereby showing the number of undershoot days; sub
panels e–h); (ii) the interval of the flow duration curves near the historical long-term mean
annual high flow (MHQ) values (thereby showing the number of exceedance days; sub
panels i–l) at the respective gauges.
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mean annual high flow (MHQ) values at the respective gauges. 

According to Figure 14, the parts of the flow duration curves that lie beyond the his-
torical long-term mean annual MQ values show a distinct trend: the curves from the fu-
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Figure 14. Flow duration curves for different gauges along the main course of the Danube (gauges
Achleiten, Bezdan, Iron Gate and Ceatal Izmail) for the historical GCM-RCM-driven simulations
(ensemble mean, 1971–2000) as well as for the GCM-RCM-driven simulations (ensemble mean) under
RCP2.6 and RCP8.5 for the near future (2031–2060) and the far future (2071–2100). The graphs in
subplots (a–d) show the average number of days in a year in which the daily discharge values are
exceeded. The graphs in subplots (e–h) are zoomed-in near the historical long-term mean annual
low flow (MNQ) values and the graphs in subplots (i–l) are zoomed-in near the historical long-term
mean annual high flow (MHQ) values at the respective gauges.

According to Figure 14, the parts of the flow duration curves that lie beyond the
historical long-term mean annual MQ values show a distinct trend: the curves from the
future GCM-RCM-driven simulations generally lie above the curves from the historical
simulations. This means that on average, a selected discharge value is exceeded on more
days in a year. This points to a development, in which a greater water volume is in the river
system on an increasing number of days in a year. The zoomed-in plots near the historical
MNQ values and near the historical MHQ values at the respective gauges provide insight
into the development of low and high flows. For the Upper Danube (gauge Achleiten) and
the Middle Danube (gauge Bezdan), the historical MNQ values (631 m3/s and 1216 m3/s)
are on average not undershot in an average year according to all scenarios and future
periods (RCP2.6 and RCP8.5, near and far future). For the Middle Danube (gauge Iron
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Gate) and the Lower Danube (gauge Ceatal Izmail), the historical MNQ is on average
undershot on some days of the year according to most scenarios and future periods. For
example, the historical MNQ values at gauges Iron Gate and Ceatal Izmail (2948 m3/s
and 3689 m3/s) are undershot on 6 and 11 days (RCP8.5, far future). This means that low
flow conditions along the Middle and Lower Danube River are projected to become more
frequent in the future.

For all considered gauges of the Danube River (gauges Achleiten, Bezdan, Iron Gate
and Ceatal Izmail), the historical MHQ is on average overshot on some days of the year
according to all scenarios and future periods. For example, the historical MHQ values at the
gauges Achleiten, Bezdan, Iron Gate and Ceatal Izmail (3081 m3/s, 4611 m3/s, 10,612 m3/s
and 11,907 m3/s) are overshot on 8, 20, 11 and 11 days (RCP8.5, far future). This means
that high flow conditions all along the Danube main course are projected to become more
frequent in the future.

4. Discussion
4.1. The Big Picture
4.1.1. Trends of Temperature and Precipitation

On basin-wide average, we find a very significant and continuous warming trend
with rising mean annual temperatures for RCP8.5, which begins in the near future and
continues to strengthen in the far future (Figure 3 and Table 2). For RCP2.6, the temperature
slightly increases from the historical baseline but soon saturates at a constant level in both
the near and far future (Figure 3 and Table 2). The maps of the temperature increase under
RCP2.6 and RCP8.5 in the near and far future (Figure 6), as simulated by the GCM-RCM
ensemble, are very similar in their magnitude to the corresponding maps of Stagl and
Hattermann [15], as simulated by a GCM ensemble. However, our maps show a much
stronger spatial differentiation, especially in mountainous terrain, due to the higher spatial
resolution of the RCMs used in this study. Especially for RCP8.5 (far future), we found
a relatively stronger temperature increase in the mountains compared to the remaining
basin. These findings are in agreement with a widely recognized phenomenon of elevation-
dependent warming, according to which mountain areas are subject to (in most cases)
stronger or weaker warming trends than the surrounding lowlands [58]. This is due to
the varying responses of different land covers to climate change and to the snow-albedo
feedback, which accelerates warming where snow cover retreats, and thus exposes surfaces
of lower albedo [58].

Concerning precipitation, our results show an increase in the basin-wide, mean annual
precipitation for both RCP2.6 and RCP8.5 in the near and far future (Figure 3 and Table 2),
which may be surprising at first glance. This finding is very much in line with the results of
Bisselink et al. [59], who found a considerable increase in precipitation under RCP8.5 in
the far future over large parts of the Upper and Middle Danube, and a large uncertainty of
precipitation development in the Lower Danube, as simulated by a GCM-RCM ensemble.
In fact, we find that the variability of future annual precipitation is considerable, especially
for the Lower Danube (Figures 3 and 4). This may add some degree of uncertainty to the
precipitation projections.

Especially interesting is the future development of precipitation seasonality in the
DRB. We find a general trend of winter precipitation increase, which is most pronounced
in the Upper and Middle Danube, and a general trend of summer precipitation decrease,
which is most pronounced in the Middle and Lower Danube (Figure 5). This is in line
with the findings of Stagl and Hattermann [11] (ENSEMBLES near future) and Bisselink
et al. [59] (RCP8.5, far future), who also identified more winter rainfall and less summer
rainfall in a roughly north-western to south-eastern gradient in their future simulations
in the DRB. Our findings are also in accordance with the key trends summarized by the
International Commission for the Protection of the Danube River (ICPDR) [9], according to
which wet regions will become wetter, dry regions will become drier and a seasonality shift
will occur toward wetter winters and drier summers. In our simulations, the increase in
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winter precipitation outweighs the decrease in summer precipitation in the annual budget
so that the mean annual precipitation on spatial average increases both basin-wide and over
each of the different sub regions, namely the Upper, Middle and Lower Danube (Table 2).

This development can be traced back to the geographical location of the DRB in the
transition zone between the humid continental climate dominated by the westerlies in
the northern part, and the Mediterranean-influenced climate in the southern part, for
each of which diverging climate change effects and impacts are predicted. According to
IPCC-AR5 and AR6, (winter) rainfall is projected to increase for the DRB’s northern part
of humid continental climate, whereas (summer) rainfall is projected to decrease in the
DRB’s southern part of Mediterranean-influenced climate, leading to more frequent and
intense summer droughts [6]. Case studies for the Mediterranean region find a very clear
warming trend with, at the same time, equivocal trends for precipitation [60–62]. Between
these two climate zones, and thus in large parts of the DRB, there is a broad transition
zone, where even the sign of future precipitation change (positive or negative) is of high
uncertainty [6].

4.1.2. Trends of Soil Water Content, Plant Water Stress and Snow Water Equivalent

Our simulation results for the soil water content are a direct consequence of the
temperature and precipitation developments in the basin and hold direct implications
for plant water stress. Although our results show an increase in the annual precipitation
for both scenarios and future periods, the soil water content tends to decrease for both
scenarios and future periods during the summer and autumn season in the Upper and
Middle Danube, and during the whole year in the Lower Danube, especially for RCP8.5
(near and far future, Figure 8). Our projected strong increase in the winter MQ for the
three gauges draining the Upper, Middle and Lower Danube (Figure 12) suggests that
soil water storage does not benefit much from the increase in (especially winter) rainfall.
In fact, much of this surplus water seems to be directly passed on to runoff formation
without effectively refilling soil water storage (Figure 9). Furthermore, multiple interacting
processes lead to the decrease in the soil water content, particularly in the late summer and
early autumn: decreasing precipitation in the Middle and Lower Danube, which goes in
line with decreasing cloud cover and increasing shortwave radiation input, the highest
temperature (which increases particularly strongly for RCP8.5, far future), and thus, the
highest saturation deficit, amplifying evapotranspiration. Collectively, these processes
cause the soil water storage to continuously be drained by vegetation during the summer.
By the late summer and early autumn, the soil water content drops to its seasonally lowest
level due to high evapotranspiration rates, which are particularly observed for agricultural
crops and forests during their most active phases in the vegetation period. Therefore,
the projected decreasing soil water contents are particularly noticeable in agricultural or
forested areas (Figure 9).

Directly related to the decreasing soil water content, we find an increasing tendency
for plant water stress in the summer and early autumn months, which becomes most
pronounced for RCP8.5 (far future) (Figures 8 and 10). During summer, agricultural crops
are particularly affected by water stress due to high (potential) transpiration rates. This
development will most likely increase the pressure on expanding irrigation of staple crops
throughout the Middle and Lower Danube, with adverse consequences on the volume of
water available for runoff. During the late summer and autumn, deciduous and coniferous
forests are affected by heavy water stress after they have drained the soil water storages
through strong transpiration over the summer. This will most likely increase the risk of
forest fires in the future.

Moreover, we find a severe basin-wide reduction in the SWE for all scenarios and
future periods, but most significantly for RCP8.5 (far future) (Figures 8 and 11). Most likely,
this is attributable to the strong increase in (winter) temperature for all scenarios, especially
for RCP8.5 (far future). Here, we find a stronger relative increase in winter temperatures
in the mountains than in the remaining basin, leading to a reduced and delayed snow
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cover formation of likely shallower snow thicknesses and covers, as well as to an earlier
and accelerated snowmelt. Consequently, the contribution of water from snowmelt might
become increasingly insignificant for the runoff dynamics in mountain watersheds and
for the water supply within the DRB, leading to a shift of river regimes from snow- to
precipitation-dominated.

4.1.3. Trends of Discharge

Our projections of precipitation are directly reflected in the projections of discharge.
Our results show a tendential increase in the mean annual MQ in the Upper Danube
and the mountain watersheds of the Middle Danube in all scenarios and a decrease in
the mean annual MQ in the lowland watersheds of the Middle and Lower Danube for
RCP2.6 (near future) and RCP8.5 (near and far future) (Table 3). Following the precipitation
trends with some time lag, we see a tendency of an increasing winter MQ (especially in
the Upper and Middle Danube) and a decreasing summer and autumn MQ (especially in
the Middle and Lower Danube) (Table 3 and Figures 12 and 13). Our results show less
severe decreases in the mean annual and seasonal MQ across the sub-basins than the results
of Stagl and Hattermann [15], who simulated stronger decreases in the MQ across the
sub-basins and seasons (except for the Upper Danube and the mountain watersheds of the
Middle Danube, where the winter MQ increases). Our more moderate MQ decreases might
be traced back to a generally wetter precipitation development, especially in winter. Our
results are more in line with the findings of Bisselink et al. [59], who showed a basin-wide
winter MQ increase for a 2 ◦C warmed-up climate and widespread uncertainties for the
development in the other seasons. However, the spatial patterns of the MQ development
in our maps for RCP2.6 and RCP8.5 in the near and far future (Figure 13) are quite similar
to the corresponding maps of Stagl and Hattermann [15] and Bisselink et al. [59].

Our findings on low flows along the Danube main course, which become less frequent
along the Upper Danube River and more frequent along the Middle and Lower Danube
River (Figure 14), are only partly in line with the general tendency of the results of Stagl and
Hattermann [15]. Instead, they projected decreasing low flow levels in the whole Danube
for RCP8.5 (far future). In contrast, Bisselink et al. [59] projected rising low flow levels in
the winter season for the whole basin, but indicated major uncertainties for the rest of the
year (RCP8.5 far future; although here, the authors included the effects of changing land
use and water demand in addition to climate change).

Our findings on more frequent high flows all along the Danube main course (Figure 14)
confirm a general conclusion in hydrological climate change impact research that extremes
are likely to become more frequent and more extreme with future climate change. However,
our results contradict the results of Stagl and Hattermann [15], who projected decreasing
high flow levels for the whole Danube for all scenarios. In contrast, Bisselink et al. [59]
projected rising high flow levels in the winter half for the whole basin, with again, major
uncertainties for the rest of the year (RCP8.5 far future).

Our results on more frequent low flows along the Middle and Lower Danube River
have direct implications on the future seasonal navigability of rivers. This is of special
interest for sectors such as the shipping industry, which are particularly susceptible to
low flows. However, the increasing winter discharges expected from our results, together
with the large installed hydropower plants, e.g., at the Iron Gate, might have the potential
to stabilize future renewable energy systems in the region by increasing hydropower
production in winter, when solar potentials are and will remain low.

4.2. Sources of Uncertainties

As models provide a simplified representation of reality, modelling studies are in-
evitably subject to uncertainties. Uncertainties in hydrological modelling studies on climate
change impacts on water resources typically arise from (amongst others) the GCMs, the
RCMs and the hydrological model itself [63]. Uncertainties due to the hydrological model
are related to the model’s structure, the parametrization and the input data used [63].
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Uncertainties due to the climate models are related to the many degrees of freedom in
the modelling of feedbacks between the atmosphere and the hydrosphere [64]. In climate
change impact studies, the influence of the sources of uncertainties varies according to the
future period considered. In the near future (roughly until the middle of the 21st century),
uncertainties due to the climate models may overweigh, whereas in the far future (roughly
until the end of the 21st century), uncertainties due to the selected RCP scenarios may
be more influential [15,63]. In general, uncertainties arising from the climate models are
viewed to override uncertainties arising from the hydrological model [64].

Strategies to reduce uncertainties arising from the hydrological model imply a proper
validation of the model, which is a prerequisite for hydrological climate change impact
modelling [63]. We used the fully validated PROMET model setup for the DRB described
in Probst and Mauser [23]. Here, we took full advantage of the physical consistency of
PROMET, which—assuming that hydrological processes will remain unchanged under
climate change—should equally predict both the present and future states of hydrologi-
cal systems [22]. Therefore, we did not calibrate the hydrological model using historical
discharges to avoid distortions of the model’s predictive power, but rather we used a com-
prehensive and proven parametrization based on measurements and values within the
literature [22,23].

Strategies to reduce climate model uncertainties imply a wise selection of appropriate
GCM-RCM drivers and their bias correction. We chose a selected ensemble of EURO-
CORDEX climate change projections, consisting of three GCM-RCM combinations, which
meet the criterion of realistic model dynamics in the mountain watersheds of Bavaria [50],
in the entire Alpine region [51], in the Carpathians [53] and in the Pannonian Basin [52].
Especially the Bavarian watersheds completely cover the Upper Danube, with a significant
part located in the Alps. We argue that it is of particular importance to represent the
hydrological processes and runoff dynamics in these mountain (head) watersheds as
correctly as feasible. However, correctly representing the atmospheric dynamics and small-
scale circulation patterns in mountains such as the Alps is challenging, and mountain
hydrology is especially sensitive to biases introduced by the meteorological inputs such as
temperature or precipitation.

Among the GCM-RCM combinations that were approved as plausible and used in this
study, no GCM-RCM combination is completely bias-free. Kotlarski et al. [54] found a cold
bias of temperature for the reanalysis-driven RCMs RCA4 and RACMO across Europe
during winter and summer (at least, winter cold biases are quite common among RCMs)
and a cold bias exceeding −3 ◦C in the winter temperature across the Alpine ridge for RCA4
and RACMO. Additionally, RCA4 typically features wet precipitation biases across Europe
during the winter season [54]. However, since these biases are comparatively small and
occur uniformly throughout the year without compromising the seasonal dynamics, this can
be compensated with a bias correction [50]. The hindcast of temperature, precipitation and
discharge in the DRB (Figure 2) demonstrates the effectiveness of the applied bias correction.

5. Conclusions

In this study, we performed a detailed hydrological climate change impact modelling
study on different components of the hydrological cycle in the DRB, for which the future
developments of temperature and precipitation are the main drivers. For this, we analyzed
the future projections of temperature and different components of the water cycle, namely
precipitation, soil water content, snow water equivalent and river discharge, as well as
plant water stress, using the mechanistic hydrological model PROMET. The PROMET
model was driven by a selected ensemble of EURO-CORDEX GCM-RCM combinations
under the emission scenarios RCP2.6 and RCP8.5 for the near future (2031–2060) and the
far future (2071–2100). The results were compared to the GCM-RCM-driven simulation
results of the historical reference period (1971–2000).

The basin-wide mean annual temperature is projected to rise considerably in the DRB
(RCP2.6: +1.2 ◦C in near and far future; RCP8.5: +2.2 ◦C and +4.3 ◦C in near and far future)
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with the Lower Danube and the mountain regions experiencing the strongest temperature
rise. The strongest seasonal temperature rise is projected in the winter and summer season.
The basin-wide mean annual precipitation is projected to slightly increase (RCP2.6: +4.5%
and +7.2% in near and far future; RCP8.5: +4.9% and +5.9% in near and far future),
although strong variability can be observed. The rise of the mean annual precipitation is
the combined effect of a temperature rise and a significant shift in precipitation seasonality
with rising winter rainfall and declining summer rainfall, with the winter surplus slightly
over-compensating for the summer loss. This seasonality shift follows a north-western to
south-eastern gradient, with the highest winter rainfall increase occurring in the Upper
Danube and the highest summer rainfall decrease occurring in the Lower Danube. For
RCP8.5, this development intensifies in comparison to RCP2.6.

However, increasing precipitation is not capable to refill the soil water storage in
winter, as much of the water goes directly into runoff. Soil water content is projected to
decrease particularly in summer and autumn, due to the combined effect of decreasing
precipitation, increasing temperature and thus, increasing saturation deficits. Therefore,
soil water storage is depleted by the amplified evapotranspiration, particularly by forests,
grasslands and crops, which increases the plant water stress risk. The role of snow water
storage for water resources in the DRB, however, is declining sharply, due to the rising
winter temperatures, especially in the mountains.

The mean annual MQ at the Danube outlet is projected to slightly rise (RCP2.6: +2.8%
and +10.7% in near and far future; RCP8.5: +3.1% and +5.2% in near and far future), but
the picture varies for different sub-basins and seasons. Generally, the winter MQ tends to
rise in the Upper Danube and the mountain watersheds of the Middle Danube (e.g., Drava,
Sava), whereas the summer and autumn MQ tends to fall in the lowland and low mountain
watersheds of the Middle Danube (e.g., Mures, Tisza) and the Lower Danube (e.g., Siret).
This holds direct consequences for the risk of low flows in the DRB, which is of special
interest along the main course of the Danube for navigability reasons. Along the Upper
and Middle Danube River (gauges Achleiten and Bezdan), low flows become less frequent
in an average year, whereas along the Middle and Lower Danube River (gauges Iron Gate
and Ceatal Izmail), low flows become more frequent in an average year. In the future,
this development is expected to hamper shipping along the Lower Danube River on more
days of the year, presumably during dry episodes in the summer and autumn seasons.
In contrast, the risk of high flows is projected to rise, as high flows become more frequent
in an average year, all along the Danube main course.

Our results show that the hydrological impacts of climate change will not follow
national borders, but are of a transboundary nature, connecting the downstream with
the upstream regions of the Danube. Hence, they are highly relevant for formulating and
updating state-of-the-art basin-wide climate change adaptation strategies for the DRB under
the leadership of a coordinating water management entity, such as the ICPDR. Climate
change trends in the DRB can indeed be broken down to a simplified tendency, according to
which temperature increases strongly, wet regions become wetter and dry regions become
drier [9]. More winter rainfall in the Upper Danube and less summer rainfall in the Middle
and Lower Danube will lead to an increasing discrepancy between the largest water surplus
and the largest water demand—which is mainly due to agriculture—in space and time.
Thus, the present water competition between upstream and downstream countries and
between different sectors is very likely to increase with intensifying water shortages.

Further research needs to be undertaken to assess the dynamics of the upstream–
downstream and inter-sectoral water competition in the present, and under climate change
scenarios, to provide important insights for future-oriented basin-wide water resource
management in the DRB.
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Abstract: The hydrological cycle should be scrutinized and investigated under recent climate change
scenarios to ensure global water management and to increase its utilization. Although the FAO
proposed the use of the Penman–Monteith (PM) equation worldwide to predict evapotranspiration
(ET), which is one of the most crucial components of the hydrological cycle, its complexity and
time-consuming nature, have led researchers to examine alternative methods. In this study, the
performances of numerous temperature-driven ET methods were examined relative to the PM using
daily climatic parameters from central stations in 11 districts of the Kahramanmaras province. Owing
to its geographical location and other influencing factors, the city has a degraded Mediterranean
climate with varying elevation gradients, while its meteorological patterns (i.e., temperature and
precipitation) deviate from those of the main Mediterranean climate. A separate evaluation was
performed via ten different statistical metrics, and spatiotemporal ET variability was reported for the
districts. This study revealed that factors such as altitude, terrain features, slope, aspect geography,
solar radiation, and climatic conditions significantly impact capturing reference values, in addition to
temperature. Moreover, an assessment was conducted in the region to evaluate the effect of modified
ET formulae on simulations. It can be drawn as a general conclusion that the Hargreaves–Samani
and modified Blaney–Criddle techniques can be utilized as alternatives to PM in estimating ET, while
the Schendel method exhibited the lowest performance throughout Kahramanmaras.

Keywords: empirical equations; evapotranspiration; modification; Penman–Monteith

1. Introduction

Evapotranspiration (ET), a term used in environmental science, hydrology, and agri-
culture to describe the process by which water is transferred from the Earth’s surface to the
atmosphere, has become one of the most complex components of the hydrological cycle as
it depends on multi-climatological parameters and their interactions [1–3]. This important
phenomenon is a component of the Earth’s water cycle, as it influences the movement
and distribution of water in the atmosphere, the availability of water resources, and the
climate. It is necessary to understand the connections between evapotranspiration and
ecosystem type in response to climate change [4,5]. In the long term, the water that is
directly available for human consumption and control is what separates evapotranspiration
from continental precipitation. Therefore, quantitative ET knowledge is necessary for quan-
titative assessments of water resources and the impacts of climate and land-use change on
these resources [6–8].

To better comprehend this complex formation and determine the amount of water
lost through ET, definitions have been made based on a variety of assumptions [9–13].
ET approaches can be divided into three categories: hydrological and water balance
methods, analytical methods based on climate variables, and empirical methods [14].
The water balance technique and basin hydrology for measuring or indirectly determining
the ET value consists of sampling soil water change and lysimeter testing. Since this is
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primarily a physically based method, its use in climate change assessment is limited to the
laboratory [15,16]. The second approach, known as the micrometeorological method, uses
a scientific understanding of the physics of evapotranspiration. Mathematical relationships
have been developed to describe these processes through two fundamental climatological
components: energy balance and mass transport [10,17–19]. The third method centers
on developing empirical relationships that are often site-specific and based on regional
climatological conditions and often used in regression analysis. These techniques are often
calibrated by correlating experimental predictions with observed data [20–22].

ET can be computed by the aerodynamic approach when energy is unlimited and by
the energy balance method when vapor movement (mass transfer) is limitless. Normally,
however, both of these factors are limiting; therefore, a combination of the two methods is
required [17]. The Penman–Monteith (PM) technique, recommended worldwide by the
Food and Agriculture Organization (FAO), is one of the most universally used energy bal-
ance and mass transfer-based methods to compute evaporation on terrestrial surfaces [14].
The equation developed by Penman [23] to calculate evaporation from an open water
surface was modified by Monteith [24] by including canopy conductance to represent the
ET rate from a vegetative surface. In the 1980s, the method was developed and presented
in detail by combining the canopy and soil evaporation [25]. Allen et al. [1] updated the
PM approach by adapting the ET values to the reference grass plant with constant albedo
and surface resistance and proposed it as the FAO-56 Penman–Monteith equation. The
PM method, recommended by the FAO for applications worldwide, has been analyzed in
various regions for decades and has yielded sufficiently accurate results [26–30].

The fact that the FAO-56 PM equation requires a large number of meteorological
data (i.e., temperature, humidity, radiation, and wind speed) makes the solution of the
equation difficult, and obtaining such data is not always possible. Although Allen et al. [1]
expressed the solvability of the equation using auxiliary formulae based on tempera-
ture data for the PM approach, many alternative empirical methods (i.e., temperature-
based, radiation-based, and a combination of them) have been investigated for use in
cases where sufficient data are not available [31–35]. For instance, Tabari et al. [34] eval-
uated the performance of thirty-one alternative empirical methods using meteorological
data obtained under humid conditions in Northern Iran and the PM method as a ref-
erence. Analysis of the data revealed that, in general, the best results were attained
with the Blaney–Criddle and Hargreaves methods compared to the PM equation; mass
transfer-based approaches underestimated ET, whereas overestimations were more domi-
nant in temperature-based and radiation-based methods. Sarlak and Bagcaci [35] evaluated
the performances of six empirical ET approaches, namely Blaney–Criddle, Jensen–Haise,
Makking, Turc, Priestley–Taylor, and Hargreaves–Samani, compared to the PM method
using daily meteorological data from five stations in Konya Closed Basin. They con-
cluded that in the absence of daily observation data, the Turc, Hargreaves–Samani, and
Priestley–Taylor techniques, which require less data, can be used as an alternative to
PM. Similarly, Song et al. [36] applied twelve different ET estimation methods relative
to the PM method recommended by the FAO in northeast China, which they divided
into eight sub-regions according to the climate and land types. In the study, temperature-
based (Blaney–Criddle, Thornthwaite, Romanenko-1, and Romanenko-2), radiation-based
(Hargreaves–Samani, Turc, Makking, and H-Makking), and combination methods (Linacre,
simplified Penman–Monteith, Valiantzas-1, and Valiantzas-2) were employed using data
over 126 stations for more than half a century. H-Makking and Valiantzas-2 approaches can
be considerable as alternative methods in agricultural areas in northern regions of China,
while Valiantzas-2, Romanenko-2, and H-Makking methods are more suitable during crop
growth periods. Although the results varied regionally and seasonally, the temperature
was the most sensitive parameter for estimating ET values. Furthermore, it is claimed that
the Turc approach constantly tends to deviate negatively whereas the Hargreaves–Samani
method produces notable biases.

54



Water 2024, 16, 507

Researchers have performed local calibrations as well as modifications of these em-
pirical methods for use in various regions under differing conditions, even though many
of the methods developed for a particular location are widely utilized worldwide. For
instance, Cobaner et al. [37] compared the reference evapotranspiration values determined
using the PM technique in the Mediterranean region with the values derived using cali-
brated Hargreaves–Samani equations, which require less data. According to this study, the
ET values produced by the Hargreaves–Samani equations calibrated with minimum and
maximum temperatures, as well as minimum and maximum humidity data, were close to
the values calculated using the PM formula. They concluded that the Hargreaves–Samani
equation calibrated with the maximum temperature is better than those calibrated with
other meteorological data. Similarly, monthly ET values were computed using the modified
Blaney–Criddle and Hargreaves–Samani equations, obtaining data from three stations
located in the semi-arid climate regions of Pakistan and compared with PM-driven ET
values [38]. Overall, it was stated in the study that both equations overestimated PM-
driven ET values, although the findings of the Hargreaves–Samani method were superior
to those of the modified Blaney–Criddle method. In another example, the effect of mod-
ified approaches on ET was investigated in Eastern Turkiye [14]. Study results showed
that the modified Hargreaves–Samani approach formed by the constant values in the
Hargreaves–Samani equation revealed better results than the Hargreaves–Samani equation
over the region, while altitude-based modified Hargreaves–Samani technique has the low-
est correlation results among the other methods in the study. Additionally, they concluded
that the modification of the Blaney–Criddle formula increased the performance relative to
the Blaney–Criddle equation.

It is necessary to conduct studies to ascertain the suitability and accuracy of empiri-
cal techniques for different regions that have emerged from investigations conducted in
local areas with soil structure as well as certain climatic and environmental characteristics.
Several empirical approaches can be used with varying degrees of success, owing to the
unique characteristics of each place and the availability of a limited number of measurable
climatic and environmental factors. Hydrological studies are significant for the effective
management of water resources in Kahramanmaras, given their considerable water poten-
tial. Unfortunately, ET measurements are not available for Turkiye, and these values vary
spatiotemporally. However, no comprehensive ET study has been conducted in the city,
and a district-based ET study was implemented for the first time in the region. Additionally,
the city has complex climate zones, varying vegetation cover, and uneven distribution of
elevation gradient.

In this study, the quantitative determination of ET, one of the most significant wa-
ter losses of the hydrological cycle, can contribute to studies in this field and will also
play an important role in various hydrological planning studies, such as agricultural
irrigation projects and basin management, to be carried out in the study area. Data-
scarce ET time series were assessed utilizing ten climatological-driven ET approaches
relative to the PM method over eleven districts of Kahramanmaras region, Turkiye. In
this study, the performances of ten empirical evapotranspiration approaches, namely
Blaney–Criddle (BC), modified Blaney–Criddle (BCM), Hamon (HM), modified Hamon
(HMM), Hargreaves–Samani (HS), Kharrufa (KH), Romanenko (RM), Schendel (SC), Thorn-
thwaite (TH), and Penman–Monteith at 0.5 m (PM0.5), were evaluated at daily and monthly
temporal resolution in Kahramanmaras province and its eleven districts and compared to
the reference PM method. In addition, the effect of modified techniques on evapotranspira-
tion estimates was investigated over the region.

2. Materials and Methods

The flow diagram used in the methodology is shown in Figure 1. In this study, ET
values were simulated using Penman–Monteith at 0.5 m (PM0.5), Blaney–Criddle (BC), mod-
ified Blaney–Criddle (BCM), Hamon (HM), modified Hamon (HMM), Hargreaves–Samani
(HS), Kharrufa (KH), Schendel (SC) methods, and the reference Penman–Monteith (PM) at
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daily temporal resolutions, whereas monthly and annual ET values were derived by taking
the averages. The Thornthwaite (TH) and Romanenko (RM) techniques were utilized to
compute monthly ET values and produce yearly ET values. Days with missing data and
ET values equal to zero were excluded from computation.
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The following statistical indices were used to assess the performance of the methods:
centered root mean square error (CRMSE), determination coefficient (DET), mean absolute
error (MAE), mean relative error (MRE), mean squared error (MSE), Nash–Sutcliffe effi-
ciency coefficient (NSCE), normalized Nash–Sutcliffe efficiency (NNSCE), percentage error
(Bias), Pearson’s correlation coefficient (PCC), and root mean square error (RMSD).

2.1. Study Area and Data Sets

Kahramanmaras is the eleventh largest city in Turkiye, with a surface area of 14,346 km2,
and is situated between 37–39 northern parallels and 36–38 eastern meridians. The
province’s northern regions are quite mountainous, with landforms mostly consisting
of mountains that are extensions of the Taurus Mountains in the southeast and the de-
pressions that separate them (Figure 2). Digital elevation model (DEM) data for the study
area were obtained from the US Geological Survey (USGS) website [39]. After adjusting
the required projections and coordinate system as well as delineating the area, the ac-
quired data were examined using the Arc-GIS program, a scalable integrated geographic
information system software developed by ESRI. Figure 2 was obtained by processing the
coordinate information of the relevant stations shown in Table 1 into the program. As can
be seen from the figure, the altitude of the study area ranges from 130 to 3075 m, and the
regions where stations S3 and S10 are located have the highest altitude, while the areas
where stations S2 and S11 are located have the lowest elevation. Although the altitude
values in the territories containing stations S4 and S9 are relatively close to one another, the
high-elevation difference between the regions where stations S1 and S3 are located can be
seen in Figure 2.
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Kahramanmaras is located at the junction of Eastern Anatolia, Southeastern Anatolia,
Central Anatolia, and geographical Mediterranean regions. The city has climate charac-
teristics closer to the “Degraded Mediterranean Climate” due to its geographical location
and the influence of other factors. Nevertheless, its temperature and precipitation patterns
deviate from those of the main Mediterranean climate. In general, summers in the province
are hot and dry, and winters are warm and rainy. The fact that the provincial territory is
located in the transition area of the Mediterranean and Southeastern Anatolia regions has
caused the climatic conditions in the city to differ. For instance, Andirin district is under
the influence of maritime climate, and the Mediterranean climate is more dominant in
the southern part of the city, while the northern part of the province experiences a more
continental climate [21,40–42].
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Table 1. Details of the weather stations that were utilized in the research.

Station
Number Station Name District Coordinates Elevation (m) Available Time

Period

S1 17255-Kahramanmaras Onikisubat 37.58 36.92 572 01.01.2000–31.12.2021
S2 17256-Kahramanmaras Airport Dulkadiroglu 37.54 36.97 525 01.01.2017–31.12.2021
S3 17866-Goksun Goksun 38.02 36.48 1344 01.01.2000–31.12.2021
S4 17868-Afsin Afsin 38.24 36.92 1230 01.01.2000–31.12.2021
S5 17870-Elbistan Elbistan 38.20 37.20 1137 01.01.2000–31.12.2021
S6 18156-Andirin Andirin 37.59 36.36 1108 01.01.2013–31.12.2021
S7 18157-Pazarcik Pazarcik 37.47 37.24 787 01.01.2013–31.12.2021
S8 18279-Caglayancerit Caglayancerit 37.75 37.37 1001 01.03.2014–31.12.2021
S9 18280-Ekinozu Ekinozu 38.05 37.1872 1246 01.03.2014–31.12.2021
S10 18281-Nurhak Nurhak 37.96 37.45 1368 01.03.2014–31.12.2021
S11 18282-Turkoglu Turkoglu 37.38 36.84 535 01.03.2014–31.12.2021

Table 1 displays the details of the stations with data sets from various time periods
that were generated using data obtained from the Turkish State Meteorological Service’s
(MGM) Meteorological Data Information Presentation and Sales System (MEVBIS). MEVBIS
system is a project designed to archive and quickly present all meteorological observation
data produced by the MGM after quality control and format conversion [43]. There are
a total of 32 meteorological stations within the Kahramanmaras city borders, and some
stations measure limited climatological data sets such as only temperature, wind speed,
precipitation, or snow. Meteorological measurements have not been made at some stations
since 1990 due to the changing city borders; some stations have a history of only a few
years, with some regions gaining district status in 2012 with Kahramanmaras becoming
a metropolitan city, and some do not have an uninterrupted continuous data set [21,44].
However, ET simulations, especially the Penman–Monteith equation, require numerous
data sets, and obtaining such data is not always possible. Within the scope of this study,
meteorological stations where the longest-term data were measured in each 11 districts
were preferred. Meteorological stations’ properties, such as their names, districts in which
they are located, coordinates, and altitudes, are given in detail in Table 1. Using the
PM simulations as a reference, the meteorological-driven ET predictions are evaluated
for a period of 22 years (2000 through 2021) over the Onikisubat, Goksun, Afsin, and
Elbistan regions; 9 years (2013 through 2021) over Andirin and Pazarcik counties; 8 years
(2014 through 2021) over Caglayancerit, Ekinozu, Nurhak, and Turkoglu districts; and
5 years (2017 through 2021) over Dulkadiroglu (Table 1). Required data sets, namely
average temperature (T, ◦C), maximum temperature (Tmax, ◦C), minimum temperature
(Tmin, ◦C), average relative humidity (RH, %), maximum relative humidity (RHmax, %),
minimum relative humidity (RHmin, %), average wind speed at 2 m height (u2, m s−1), and
sunshine duration (n, hr) for each station, were acquired from the MEVBIS module at daily
temporal resolution within the scope of this study. In this study, multi-paradigm numerical
calculation software developed by MathWorks r2006a MATLAB program was utilized in a
holistic sense with Microsoft 365 Excel program for manipulations on the obtained data
sets, preparation of required time series, ET calculations, and graphing.

2.2. Evapotranspiration Estimation Methods
2.2.1. FAO Penman–Monteith Method (PM)

This study examined the applicability of various empirical approaches in the Kahra-
manmaras, where the widely known PM method was utilized as a reference in ET quantita-
tive calculations. The method recommended by FAO for use globally is as in Equation (1)
in its revised form by adapting the ET values with the reference grass plant with a constant
albedo of 0.23, a surface resistance of 70 s m−1, and adequately irrigated at a height of
0.12 m [1,23,24]. The ETPM in the equation expresses the reference evapotranspiration in
mm d−1, and ∆ (kPa ◦C−1) denotes the slope of the vapor pressure curve at average air
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temperature and is calculated using Equations (2) and (3). In these equations, G symbolizes
the soil heat flux density (MJ m−2 d−1) and can be considered zero for daily calculations, T
is the daily average air temperature (◦C), u2 denotes the wind speed at 2 m height (m s−1),
es emblematizes the saturated vapor pressure (kPa), ea stands for actual vapor pressure
(kPa), γ represents the psychrometric constant (kPa ◦C−1), and e◦(T) indicates the saturated
vapor pressure (kPa) at air temperature T (◦C).

ETPM =
0.408∆(Rn − G) + γ 900

T+273 u2 (es − ea)

∆ + γ(1 + 0.34u2)
(1)

∆ =
4099 e◦(T)

(T + 237.3)2 (2)

e◦(T) = 0.6108 exp
(

17.27 T
T + 237.3

)
(3)

On the other hand, Rn (MJ m−2 d−1) refers to the net radiation at the crop surface
and is equal to the difference between the incoming net shortwave radiation (Rns) and the
outgoing net longwave radiation (Rnl). While Rns is also known as net solar radiation and
can be calculated using Equation (4), Rs is the part of solar radiation that is not reflected
from the surface. The value 0.23 in the equation indicates the albedo coefficient for green
grass surfaces. Rs (Solar radiation) can be derived as suggested by Hargreaves–Samani [45]
and is shown in Equation (5) when there is no measured data of solar radiation. In the
equation, Krs symbolizes the calibration coefficient and can be taken as 0.16, whereas Ra
indicates extraterrestrial radiation (MJ m−2 d−1). Tmax and Tmin are the maximum and
minimum absolute temperatures over 24 h, respectively. Net outgoing longwave radiation
Rnl, the difference between the outgoing and incoming longwave radiation, is computed
according to Equation (6).

Rns = (1− 0.23)Rs (4)

Rs = KrsRa
√

Tmax − Tmin (5)

Rnl = έ σ

(
(Tmax + 273.15)4 + (Tmin + 273.15)4

2

)
(1.35

Rs

Rso
− 0.35) (6)

where σ is the Steffan–Boltzmann constant and has a value of 4.90 × 10−9 MJ m−2 d−1 K−4.
έ represents the air humidity correction factor and is defined as in Equation (7), while
Rso expresses the clear-sky solar radiation (MJ m−2 d−1) and is calculated as shown in
Equation (8). In the following equation, E1 represents the station elevation above sea
level (m).

έ = 0.34− 0.14
√

ea (7)

Rso = Ra

(
0.75 + 2× 10−5E1

)
(8)

In Equation (9), where extraterrestrial radiation is calculated, Gsc is the solar constant
and has a value of 0.082 MJ m−2 min−1. dr is the inverse relative distance factor for
the Earth–Sun and is unitless (Equation (10)), ws indicates sunset hour angle in radians
(Equation (11)), δ refers to solar declination in radians (Equation (12)), φ symbolizes station
latitude (L) in radians (Equation (13)), and i stands for the Julian day of the year.

Ra =

(
24(60)

π

)
Gscdr[ws sin(δ) sin(φ) + cos(φ) cos(δ) sin(ws)] (9)

dr = 1 + 0.033cos
(

2π

365
i
)

(10)
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ws = cos−1 [−tan(φ) tan(δ)] (11)

δ = 0.409sin
(

2π

365
i− 1.39

)
(12)

φ =
π L
180

(13)

The psychrometric constant, γ, which is proportional to the mean atmospheric pres-
sure, can be computed using Equations (14) and (15). While β (kPa) used in the equations
indicates atmospheric pressure as a function of altitude, λ refers to the latent heat of va-
porization, and its value is 2.45 MJ kg−1. On the other hand, in cases where the u2 data
required in Equation (1) are unavailable, the wind speed data measured at various altitudes
can be converted to the wind speed at 2 m height using Equation (16). In the equation,
zw (m) denotes the height of the measurement location from the ground, while uz (m s−1)
indicates the wind speed at height zw. Lastly, the saturated (es) and actual vapor pressures
(ea), can be calculated using daily e◦(Tmin), e◦(Tmax), minimum relative humidity (RHmin),
and maximum relative humidity (RHmax) data by Equations (17) and (18), respectively.
e◦(Tmin) and e◦(Tmax) represent the saturation vapor pressure (kPa) at the daily minimum
and maximum temperatures, respectively.

γ = 0.00163
(

β

λ

)
(14)

β = 101.3
(

293− 0.0065 E1

293

)5.26
(15)

u2 = uz

(
4.87

ln(67.8zw − 5.42)

)
(16)

es =
e◦(Tmax)− e◦(Tmin)

2
(17)

ea =
e◦(Tmax)

RHmin
100 − e◦(Tmin)

RHmax
100

2
(18)

To calculate ETPM in cases where the measured climatic parameters are insufficient or
missing in the Penman–Monteith method (Equation (1)), which requires various climatic
parameters, Hargreaves–Samani [45] and Allen et al. [1] proposed auxiliary equations from
Equations (2)–(18) in the FAO Irrigation and Drainage Paper 56. Alternative approaches
are being investigated because PM-driven ET and all of these supplementary equations are
laborious and time-consuming.

2.2.2. FAO Penman–Monteith 0.5 m Method (PM0.5)

In the standardized reference evapotranspiration method report prepared by the Envi-
ronmental and Water Resources Institute of the American Society of Civil Engineers [46],
the standardized PM0.5 method was recommended for ETPM0.5 in mm d−1, which will
occur on a tall plant-covered surface with a height of approximately 50 cm, as given in
Equation (19).

ETPM0.5 =
0.408∆(Rn − G) + γ 1600

T+273 u2 (es − ea)

∆ + γ(1 + 0.38u2)
(19)

2.2.3. Blaney–Criddle Method (BC)

The BC equation, developed by Blaney and Morin [47] for use in evapotranspiration
estimations, was modified by Blaney and Criddle, revised in 1950, and presented as
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Equation (20) [48,49]. The symbol ETBC denotes Blaney–Criddle-driven ET values in
mm d−1 in the equation that uses the daily average air temperature parameter, whereas
the symbol p can be used to define the mean daily percentage of annual daylight hours,
which varies based on latitude. In the given equation, the seasonal crop coefficient, k, was
considered to be 0.85.

ETBC = k p (0.457 T + 8.13) (20)

2.2.4. Modified Blaney–Criddle Method (BCM)

Climatic conditions would also affect ET, according to Doorenbos and Pruitt’s [31]
study, in addition to the crop coefficient in the original Blaney–Criddle equation.
Equation (21) was generated by including the adjustment variables a and b, which con-
sidered humidity, sunshine duration, and daytime wind speed. Here, ETBCM stands for
evapotranspiration values obtained using the modified Blaney–Criddle technique. Variable
a, which can be computed using Equation (22), is a function of RHmin, n (actual sunshine
duration), and N (maximum possible sunshine duration), while the b value varies depend-
ing on the daily average daytime wind speed (U) (m s−1), in addition to RHmin and n/N
ratio (Equation (23)). In cases where daytime wind speed data are unavailable, 1.33 times
the average wind speed can be considered for the u value. For the coefficients e0, e1, e2, e3,
e4, and e5 employed in Equation (23), the values of 0.81917, −0.0040922, 1.0705, 0.065649,
−0.0059684, and −0.0005967 were used, respectively [1,31,50,51].

ETBCM = a + b [ p(0.457 T + 8.13)] (21)

a = 0.0043 RHmin −
n
N
− 1.41 (22)

b = e0 + e1RHmin + e2

( n
N

)
+ e3U + e4RHmin

( n
N

)
+ e5RHminU (23)

2.2.5. Hamon Method (HM)

The method for predicting evapotranspiration on a daily scale suggested by Hamon [52]
is given in Equation (24), and ETHM symbolizes Hamon-driven ET estimations. The
constant C in the equation has a value of 0.0055 and was converted from inches to mm and
utilized as 0.1397 in the computations. While D, which indicates the 12 h possible sunshine
duration (N/12), is estimated as in Equation (25), Pt is the saturated water vapor density at
the daily average temperature and can be calculated using Equation (26).

ETHM = C D2 Pt (24)

D =
ws

12× 24π
(25)

Pt = 4.95 exp(0.062 T) (26)

2.2.6. Modified Hamon Method (HMM)

The approach proposed by Hamon [53] is given by Equation (27). ETHMM symbol
denotes values obtained from modified Hamon-based evapotranspiration simulations. The
constant H in the equation, which was converted from inches to millimeters and used
as 0.1651 in the calculations, had a value of 0.0065. Equation (28) was used to obtain
the Pt values using the modified Hamon technique. After the daily evapotranspiration
estimations were determined using the Hamon and modified Hamon techniques, in this
study, a local calibration coefficient of 1.2 was set based on the suggestions of previous
studies [54–56].

ETHMM = H D Pt (27)
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Pt =
e0(T)

T + 273.3
(28)

2.2.7. Hargreaves–Samani Method (HS)

The technique was developed using 8-year daily lysimeter data representing 8–15 cm
grass clipping evapotranspiration in California by Hargreaves [57] and was modified by
Hargreaves and Samani [58] (Equation (29)). ETHS denotes evapotranspiration predictions
based on the Hargreaves–Samani approach, and the coefficient λ−1 (0.408) was used to
convert evapotranspiration values into mm d−1.

ETHS =
1
λ

0.0023Ra
√

Tmax − Tmin(T + 17.8) (29)

2.2.8. Kharrufa Method (KH)

The nonlinear equation based on the relationship between temperature and the average
daily percentage of annual daylight hours in the year (p) proposed by Kharrufa [59] is
given by Equation (30). The symbol ETKH in the equation represents Kharrufa-driven daily
evapotranspiration predictions.

ETKH = 0.34 p T1.3 (30)

2.2.9. Schendel Method (SC)

While the Schendel [60] method, which uses daily average temperature and relative
humidity climatic data, is determined as shown in Equation (31), ETSC symbolizes the
evapotranspiration values obtained according to the Schendel technique.

ETSC = 16
(

T
RH

)
(31)

2.2.10. Romenenko Method (RM)

According to Equation (32) developed by Romanenko [61], the ETRM values were
derived monthly using temperature (Tmth, ◦C) and relative humidity (RHmth, %) monthly
average climatic data.

ETRM = 0.0018 (Tmth + 25)2(100− RHmth) (32)

2.2.11. Thornthwaite Method (TH)

Thornthwaite [13] defined “potential evapotranspiration” and proposed an equation
in his study on climate classification, emphasizing the significance of evapotranspiration
value for climate classification (Equation (33)). In Equation (33), derived from the relation-
ship between monthly average temperature and evapotranspiration (ETTH), the ij symbol
denotes the monthly temperature index (Equation (34)); the letter I symbolizes the annual
temperature index, which is the sum of monthly temperature indices; the coefficient α is
determined by the annual temperature index (Equation (35)).

ETTH = 1.6
(

10Tmth
I

)α

(33)

ij =
(

Tmth
5

)1.514
(34)

α = 6.751× 10−7 × I3 − 7.711× 10−5 × I2 + 1.791× 10−2 × I + 0.4924 (35)

62



Water 2024, 16, 507

2.3. Statistical Metrics

Eleven distinct evapotranspiration techniques were applied to derive ET estima-
tions for eleven different stations in Kahramanmaras. The performance of eight of these
methods—which are computed on a daily time scale—was evaluated using numerous
statistical performance assessment indicators compared to the reference PM technique.
Performance evaluation indices were computed based on ET values in a daily timeframe to
obtain more precise results.

Statistical metrics are widely used to assess model performance in hydrological anal-
yses and applications [62–65]. BC, BCM, HM, HMM, HS, KH, PM0.5, and SC-driven ET
performances were evaluated using CRMSE, PCC, DET, MAE, MRE, MSE, NSCE, NNSCE,
Bias, and RMSD statistical indices at a daily temporal resolution. The random error between
the simulations and the reference values to the mean reference value was assessed using
CRMSE. It can be calculated using Equation (36), and its values vary from 0 to +∞. A
lower CRMSE indicates better consistency, whereas a value of zero signifies no random
error between the time series [65,66]. PCC is the covariance of the two variables divided
by the product of their standard deviations and can be calculated using Equation (37). It
measures the strength and direction of the linear relationship between two variables. If
PCC is close to 1 (−1), it suggests a strong positive (negative) correlation, while converging
to 0 indicates no systematic linear relationship between the estimations and references.
However, it is important to note that a zero correlation does not necessarily imply the
absence of any relationship between the variables; it simply means that there is no linear
relationship [67]. DET quantifies the model’s goodness of fit and can be expressed as shown
in Equation (38). It is a statistical metric that determines the proportion of the variance
in the dependent variable that is explained by the independent variables in a regression
model. Its value ranges from 0 to 1; convergence to 1 indicates that the simulation explains
a greater proportion of the variability in the dependent variable [68]. The absolute value
of the variation between the simulated ET magnitude and PM was defined as the MAE
and calculated using Equation (39). The MAE values vary between 0 and +∞, with a value
of 0 denoting perfect predictions. The MRE was utilized to evaluate the average relative
difference between the estimated ET values relative to PM (Equation (40)). It is particularly
useful for evaluating the accuracy of predictions in simulations in terms of over/under esti-
mations and varies from −∞ to +∞ [64,69]. The MSE was preferred to measure the average
squared difference between the estimated ET relative to the PM simulation. Equation (41)
can be used to obtain this accuracy metric, and its values range from 0 to +∞. A zero MSE
implies that the alternative ET methods perfectly match PM-driven ET values. MAE treats
all errors equally, unlike MSE, which squares the errors and may assign more weight to
large errors [63,70,71]. The NSCE is a widely used metric for assessing the performance of
hydrological applications and can be expressed as shown in Equation (42). NSCE ranges
from −∞ to 1, with higher values indicating better model performance and 1 being the
ideal simulation [72]. The NNSCE error metric can be obtained by dividing the NSCE
by a normalization factor to ensure that it remains between 0 and 1 (Equation (43)). The
normalizing process makes the NSCE more interpretable, and the NNSCE is less affected
by the scale of the data and is confined to a consistent range. The average tendency of
the ET simulations to be larger or smaller than the reference ET can be measured by Bias
(Equation (44)), and its values vary from−∞ (underestimation) to +∞ (overestimation) [73].
RMSD describes the difference between model simulations and reference ET in the units of
the variable. Its values, which range from 0 to +∞, close to zero imply a perfect fit, while
increases indicate an increment in the error in ET predictions [62,64].

As for the terms used in the statistical metrics formulae between Equations (36) and (45),
NT indicates the total number of data, ETr,ti denotes the evapotranspiration values obtained
based on the PM reference method at tith day, ETp,ti symbolizes the evapotranspiration
estimates obtained according to the alternative estimation method at tith day, while ETp and
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ETr express the mean evapotranspiration values of the prediction and reference methods,
respectively.

CRMSE (%) =
100
ETr

√
∑
(
ETp,ti − ETr,ti −

(
ETp − ETr

))2

NT
(36)

PCC (−) = ∑
(
ETr,ti − ETr

)(
ETp,ti − ETp

)
√

∑
(
ETr,ti − ETr

)2(ETp,ti − ETp
)2

(37)

DET = PCC2 (38)

MAE (mm d−1) =
∑
∣∣ETp,ti − ETr,ti
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NT

(39)
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∑ ETr,ti
(40)
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)2 (42)

NNSCE (−) = 1
2− NSCE

(43)
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(
ETp,ti − ETr,ti

)

∑ ETr,ti
(44)

RMSD (mm d−1) =

√
∑
(
ETp,ti − ETr,ti

)2

NT
(45)

3. Results

The daily ET values for each station were estimated using the PM, PM0.5, BC, BCM, HM,
HMM, HS, KH, and SC techniques, resulting in the box plot shown in Figure 3. A box plot
visualizes the five-number summary of the dataset: the minimum, first quartile, median,
third quartile, and maximum. The box plot was produced using the fourth-generation
programming language MATLAB. Alternative methods are shown on the horizontal axis
of the box plot in Figure 3, whereas evapotranspiration values in mm d−1 predicted using
these approaches are displayed logarithmically on the vertical axis. As shown in the
figure, days with missing data and negative ET values were not evaluated, while the
extreme ET values and estimates between these values produced by each approach were
presented with values from 0.001 to 100 mm d−1. As can be seen from the figure, PM-driven
simulations were overestimated by the PM0.5-based approach over all districts, but the HM
method, which displays a symmetrical box plot distribution, consistently underestimates
the references in the study area. The positive results of the modifications to the BC method
are shown in the graph. For example, the BCM approach yielded more effective outcomes
than the BC method, which gave ET values within a narrow range when compared to the
reference method over the region. Additionally, at numerous stations, the results acquired
by the HMM technique were comparable to those obtained by the reference ETPM values,
with higher performance than the HM approach, revealing the importance of modifications
made to the HM equation.
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The ET values obtained were clustered in the range of 1 to 6 mm d−1 (between the
lower and upper quartiles) at Kahramanmaras station (S1), where 22 years of comprehen-
sive data are available, which means that half of all ET values are in this range, considering
the PM technique used as reference. The PM0.5 approach results reveal that it slightly
overestimates the ET values with respect to the reference PM method. The BC-driven ET
values, shown in black, were aggregated in a narrower range at the S1 station relative to
the reference method. The BC method simulated the minimum (maximum) ET values
with overestimation (underestimation). It can be seen that the methods that give results
close to the reference method at the S1 station are the HMM and HS approaches, although
there are slight differences in the values of the whiskers. It is clear from the box plot of the
HM approach with the best performance, shown in blue, that its quarters are distributed
uniformly, and there is no skewness in the data to the PM technique. The upper outlier and
interquartile range of the ET simulations produced by the BCM and KH methods—which
are represented in gray and orange, respectively—produced similar findings to those of the
reference method, but they had a longer minimum outlier owing to the underestimation of
the small ET values. Overestimation is dominant in the maxima of SC-based ET predictions,
whereas the opposite is true for smaller values less than one.
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Additionally, the reference ET values for the S2 station, which had the least amount
of accessible climatic data, were concentrated between 2 and 9.5 mm d−1. The BCM and
SC techniques yield ET values within a similar range; nevertheless, the values obtained
by both methods simulate the minimal ET values with strong underestimation. It can be
seen that while the PM0.5 approach produces ET values with a comparable distribution to
the reference method, as in the S1 station, it continually produces a slight overestimation.
The findings can be made more accurate by multiplying the values by the calibration
coefficients to minimize this bias. The BC-based ET values generated for the Dulkadiroglu
district were clustered in a narrower range, similar to the results at the S1 station. Although
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different distributions are attained in the HM, HMM, HS, and KH approaches, where the
maximum ET values are estimated to be close to each other, it has been observed that the
underestimations are predominant compared with the PM reference method.

Moreover, as can be seen in the box plot of the S3 station, it can be seen that the HS
method, shown in green, produces results substantially closer to the reference approach,
although it slightly underestimates the minimum outlier. Although the ET values generated
by the SC approach remained in the interquartile range compared to the reference method,
the absolute values of the extreme ETs were higher. When the PM0.5 technique was
examined in terms of distribution, it was observed that it was quite similar to the reference
method, although it tended to yield slightly higher ET values compared to the reference
method. The convergence of the BC-driven ET time series in the first and third quartiles
clearly shows a concentration in a narrower range, similar to those from other stations. It
has been noted that the BC, BCM, and KH approaches underestimated the minimum values
for quartiles smaller than 0.05 at the S3 station. However, the BCM and KH approaches
performed well in the interquartile range and higher whisker values. Although the HM
and HMM methods capture ET values with very small variations in a negative way from
the reference values, their distributions are similar to those in the PM.

In addition, when looking at the box plot of stations S4 and S5, the extreme ETs
were close to one another, and the ET values computed using the reference technique
were concentrated in a similar range. It was observed that the ET values acquired by
the HS and KH techniques at both stations were concentrated in a similar range and
captured the majority of the reference values, although the ET values smaller than the lower
quartile were predicted with underestimation. Although the extreme ET values in whiskers
simulated with the HM and HMM techniques were close to the reference values, it was
observed that both stations estimated ET values with a slight constant underestimation in
the interquartile range compared to the reference values. The BCM and SC methods produce
overestimation (underestimation) ET values in the upper (lower) whisker compared to the
reference method at both stations, while PM0.5-driven ET simulations overestimated ET
values in all quartiles.

Additionally, ETPM values, varying between 1.8 and 4 mm d−1 for the interquartile
range, were clustered in a narrower range relative to other stations, and they were captured
using the HMM, HS, and SC approaches at the S6 station. While the PM0.5 and BC methods
produce higher ET values for values between the 25th and 75th percentiles with respect
to the PM technique, ETBC values are concentrated in a narrower range. Although it
was discovered that the ETHM results were close to the reference for extreme values,
these estimations clustered with underestimation until the median. Although BCM-based
ET estimates produce values close to the PM, it has been monitored that this method
underestimates ET values smaller than the 25th percentile. As can be seen from the figure,
the box plot produced by the KH approach has a wider spread with a higher standard
deviation, and ETKH values are simulated with a significant degree of bias in comparison
to the reference method.

In the box plot of stations S7 and S8, where ETPM values are close to each other, it
is seen that the ETBC simulations are similar to the other stations with the clustered in
a narrower range. The ET values estimated by these two approaches are close to one
another, and their maximum (minimum) values are simulated less (more) than those of the
reference method. The PM0.5 model overestimated the reference ET values with a slight
difference, similar to the previous six stations. In the Pazarcik and Caglayancerit districts,
the formula that yielded the closest results to the reference method was the HS approach.
The BCM, KH, and SC approaches, which simulated the minimum ET values up to the
first quartiles with a high deviation compared to the reference method, captured the ETPM
values at both stations for the values interquartile range. It can also be seen from Figure 3
that the evapotranspiration values obtained via the HM and HMM techniques had a more
symmetrical distribution, even though the ET values at both stations underestimated the
reference values.
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At the S9 station, the interquartile range of reference ET values varies between
1.8 and 6 mm d−1, and the best performance was acquired with the ETHS formula. In the
Ekinozu district, although the BCM, KH, and SC approaches underestimated the minimum
ET values in the lower whisker with high deviation compared with the reference method,
ETPM values were captured between the 25th and 75th percentiles. Underestimation is
dominant in HM and HMM-driven predictions, and BC-driven simulations are concen-
trated in a narrower range with a small standard deviation, whereas KH-based values are
spread over a wider range with a high standard deviation. In addition, while the ETBC
values are in a narrower range with a small standard deviation in Nurhak and Turkoglu,
the PM0.5 technique tends to overestimate evapotranspiration time series compared to the
reference method, as in the other stations in general.

When the box plot of the S10 station was examined, while ETKH and ETSC values
had high variance compared to ETPM, both methods underestimated evapotranspiration
smaller than the median value, and strong overestimation was dominant in ETSC values
greater than the median. The BCM approach revealed the most accurate results relative
to the reference method at the S10 station (except for the lower whisker), while the best
performance was obtained with HS at the S11 station, with insignificant underestimations
in the upper whisker. Another result obtained from the figure is that HS, HM, and HMM-
based estimates in the Nurhak district have a symmetric distribution and simulate ET
values slightly less than the reference values. In the Turkoglu district, ET values in the
interquartile range were captured by the BCM, HM, HMM, and KH approaches in addition
to the ETHS formula. The graph also shows that the values in the lower than 25th percentile
are underestimated by the BCM, KH, and SC techniques.

To investigate the impact of slope on evapotranspiration, its map was prepared using
the DEM model via the Arc-GIS program, as seen in Figure 4a. When the slopes of Nurhak
and Turkoglu were compared, it was observed that the slope of the district where the S10
station was located was steeper than S11. On the other hand, while low ET values were
detected in Nurhak (1368 m) at high altitudes, a positive effect of the slope on ET was
observed. Similarly, while the S8 station in Caglayancerit (1001 m) is expected to have
lower ET values than the S7 station in Pazarcik (787 m) because of the significant altitude
differences, it is believed that the higher slope of Caglayancerit contributes to an increase
in ET. In addition, the altitude of the S5 station in Elbistan is 1137 m, and Nurhak ET values
are higher than those of S5 and S7 despite the higher altitude. Although the district has a
high altitude, its steep slope is predicted to have a directly proportional effect on ET.
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While examining the effect of the slope on ET, an aspect geography map over the
study area given in Figure 4b was prepared to take into account the direction in which the
slope was formed and the angle of receiving sunlight to make more accurate evaluations.
To further support and elucidate the aspect map assessments and identify any subtle
variations on a station basis, the solar radiation map shown in Figure 4c was generated.
The data connected to the prepared map via Arc-GIS were obtained from the internet portal
developed by Solargis and financed by the Energy Sector Management Assistance Program
(ESMAP) [74]. Larger ETPM values are found in S4, located in Afsin, even though the slopes
of the S4 and S5 stations are close to one another when Figures 3 and 4a are examined
together. However, it becomes clear from the aspect map in Figure 4b that Afsin has more
southern slopes and that these slopes have a positive impact on ET.

Additionally, examining the solar radiation maps of the two stations in Figure 4c, it
can be concluded that Elbistan has significantly stronger solar radiation than Afsin; on the
other hand, a slight discrepancy occurred in ET values of these stations due to the positive
effect of solar radiation on ET. Upon analyzing the aspect (Figure 4b) and solar radiation
(Figure 4c) maps of the districts containing the S2 (525 m) and S11 (535 m) stations with
similar altitudes (Figure 2) and slopes (Figure 4a), it was observed that Dulkadiroglu had
larger ETPM values (Figure 3) than Turkoglu because of the dominance of the southern
slopes and high solar radiation. Moreover, when the slopes in Figure 4a of S1 (572 m) and
S2 stations with similar heights were examined, it was revealed that the S1 station had a
greater slope but exhibited lower ET values. This is because Dulkadiroglu has stronger
solar radiation and more southern slopes, as shown in Figure 4b,c, and these two factors
have a linear effect on ET.

When the ET values of the S8 (1001 m) and S9 (1246 m) stations, which have close
slopes, were compared (Figures 2 and 4a), higher ETs were reached in Caglayancerit
because of their lower altitudes (Figure 3). It is also estimated that this may have been
triggered because Caglayancerit has more southern slopes (Figure 4b) and higher solar
radiation (Figure 4c) than Ekinozu. As another example, as can be seen in Figure 3, ET
values in a similar range for S10 (1368 m) and S11 (535 m) stations (Figure 2), which
have a high-altitude difference, reveal the importance of the slope (Figure 4a) and the
abundance of southern slopes (Figure 4b) in evapotranspiration estimations. On the other
hand, even though S5 (1137 m) and S6 (1108 m), whose station altitudes are close to one
another, show no discernible differences in their aspect maps (Figure 4b), it is obvious that
Andirin has a steeper slope (Figure 4a) and less solar radiation than Elbistan (Figure 4c).
Thus, although Elbistan has a flatter land structure, high solar radiation resulted in larger
evapotranspiration values in S5.

For the monthly variation analysis of alternative ET methods across Kahramanmaras in
a general manner, Thornthwaite and Romanenko methods were added, and the combined
ET values of all stations are presented with the scatter plot in Figure 5. The X- and Y-axes of
the graph represent the monthly evapotranspiration values in mm d−1 for the reference PM
and alternative approaches, respectively. In addition, the calculated monthly correlation
value and linear trend line with its formula between the reference PM and other methods
are displayed in the plots.
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As can be seen from the scatter plot shown in Figure 5, the PM0.5 method has a
strong positive correlation with the reference PM method with a PCC value of 0.99, while
it estimates high ET values on a monthly basis more so than the references. While the
BC-driven simulation revealed a correlation of 0.95, it overestimated (underestimated) low
(high) ETPM values. This discrepancy became wider for values greater than 6 mm d−1. On
the other hand, a significant improvement is observed in the BCM technique compared
to the original method, and it estimates the reference values slightly higher with a strong
correlation (0.98). Additionally, the scatter plots of the HM and HMM methods reveal
similar results, with a correlation of 0.94 in both methods. Unlike other methods, the two
equations, which include water vapor density, tend to underestimate ETPM values.

The HS approach has a PCC value of 0.96, indicating a strong positive relationship
with the PM method, whereas it underestimates the maximum extremes in ET estimations
relative to the reference values. As can be seen in the box plot in Figure 3, although
KH estimated the minimum ET values lower than the references, it is observed that the
trend line in the scatter plot in Figure 5, obtained with monthly values with high standard
deviation, produces similar results compared to the reference method with 0.94 correlation
and yields an approximate slope of 1:1. As can be seen from Figure 5, the RM and SC
methods show the highest variance and have correlation values of 0.89 and 0.88, respectively.
In general, overestimation is dominant in the RM and SC formulae, and the SC method
performs the poorest due to the significantly higher inconsistency in the maximum ET
values. The results show that the monthly average temperature-driven ETTH simulation
underestimates the reference ETPM values, while it has a lower standard deviation in its
distribution compared to the other monthly methods, RM, and a strong PCC value of 0.93.

Figure 6a was obtained to evaluate the CRMSE index of eight different ET estimation
methods, which vary between 10.63 and 91.69%, at 11 stations in Kahramanmaras. The
BCM-based simulations at the S2 station produced the lowest CRMSE of 10.63% among all
values, whereas the HS technique at stations S1, S3, S4, S5, and S9 reached the lowest value.
The best results in terms of CRMSE performance are seen to be the KH method, with values
of 19.73% and 19.16% at stations S7 and S8, respectively. Moreover, the PM0.5, BCM, and
HM methods produced lower CRMSE values than the other methods at stations S6, S10,
and S11, respectively. It was also noted that the SC technique, which ranged from 34.94 to
91.69%, showed the worst performance compared with other approaches at all stations.
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Examining Figure 6b, which demonstrates the variation of the determination coeffi-
cient, reveals that the PM0.5 approach is the most consistent with the reference method,
having the highest DET values (0.94–1) at all stations. On the other hand, the obtained
results detect that the SC technique has the lowest DET values ranging from 0.61 to 0.82.
The highest DET values, after PM0.5 simulations, were produced with the BC method at
the S1 station; the HS method at stations S3, S4, and S5; and the BCM method at the other
seven stations.

Additionally, the distribution of the MAE index values, which had the same unit
(mm d−1) as evapotranspiration, is shown in Figure 6c. Even though the BCM has the
lowest MAE values at S2, S8, and S10, the HS technique is the most successful approach
since it shows the least absolute difference at the other eight stations. Although the methods
with the highest MAE differ depending on the station, the SC technique has the worst MAE
performance at the six stations.

When the results were evaluated according to the MRE index, one of the indices
frequently used in performance assessments, BCM showed the best overall result (Figure 6d).
The HMM method has the highest accuracy, with an MRE value of 0.0 at station S1, whereas
negative MRE values indicate an underestimation tendency at other stations. In general, the
PM0.5 and SC (HM and KH) techniques with positive (negative) MRE values overestimated
(underestimated) ET compared to the reference method.

The MSE error metric results for the eleven stations are presented in Figure 6e. While
the lowest performance is achieved with SC, surprisingly, the PM0.5 values are the highest
MSEs after SC. Upon examining the results per station, it is seen that the BCM approach at
stations S2, S8, and S10; the KH method at station S7; and the HS technique at the other
seven stations have the least error with MSE values closest to zero.
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In Figure 6f, the NSCE statistical index is used to evaluate the predictive accuracy of
evapotranspiration algorithms. As can be seen from the graph, NSCE values indicated
performance higher than 0.5 across stations and methods except for the SC technique, while
negative NSCE values were captured for SC methods (except S2 and S3). While the BCM
method exhibited the best performance at stations S2, S7, S8, and S10, this method reached
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the highest NSCE value at station S2 with a value of 0.98. The HS method produced the
closest result to the reference values for the other seven stations.

NNSCE is an extension of NSCE and is used as a benchmark metric, allowing for easier
comparison and interpretation (Figure 6g). NNSCE performed furthest from the reference
method were HM in S3, PM0.5 in S2, and the SC method in the other nine stations. At
stations S2, S7, S8, and S10, the BCM method yields accurate results by giving the NNSCE
value closest to one, and the KH method converges to 0.9 at station S7. As can be observed
from the NNSCE index, the HS technique worked well for the remaining seven stations.

It is observed from Figure 6h that while the BCM, PM0.5, and SC methods, overall,
take positive Bias values, indicating a tendency to overestimate, underestimation is more
dominant in KH, HM, and HMM approaches with general negative Bias values. Another
noteworthy point when the results are examined in terms of the Bias error metric is that the
BCM and KH methods have performances closest to zero at the majority of the stations.

The PCC results are given in Figure 6i, and it can be seen that the strongest positive
correlation is the PM0.5 method, ranging between 0.97 and 1.00, while the lowest is the SC
technique, varying between 0.78 and 0.91.

Figure 6j displays the variation in the RMSD metric at 11 stations, which has the
same unit as evapotranspiration as the MAE performance assessment index. As can be
seen from the figure, while the BCM method performed better than the other empirical
formulae with RMSD values closest to zero at stations S2, S8, and S10, the KH approach
showed a successful performance at station S7. The figure indicates that for the other seven
stations, the HS method produced RMSD values with a discrepancy of only a maximum
of 1 mm d−1. The HS (SC) method achieved the best (worst) performance among all the
methods at station S3 (S10) with an RMSD value of 0.49 (4.80) mm d−1.

4. Discussion

As can be seen from the box plot in four equal quartiles, information was obtained
regarding the extremes of ET values, the range in which they were clustered, and their
distribution. The BCM, KH, and SC-based ET simulations underestimated minimum
values smaller than the 25th percentile relative to the ETPM. Saud et al. [75] analyzed the
spatiotemporal variation of several methods over Al-Anbar province, western Iraq. They
found that the Kharrufa equation tended to underestimate ET values, similar to the above-
mentioned finding. On the other hand, the SC method tends to predict maximum extreme
ET values larger than the third quartile than the reference method. The performance
of the PM0.5 approach was higher for the minimum ET values, which were especially
smaller than the lower quartile. However, it produces more ET values, albeit with a slight
difference, at larger ET values compared with the reference technique. Additionally, the
ETBC values were clustered in a narrower range than the reference ET values with smaller
standard deviations. It was concluded that the BCM method produced more successful
results than the BC method, showing values close to those of the PM method for values
greater than the lower quartile. As a matter of fact, in this sense, the positive effect of the
modifications on the BC-based ET equation was observed, as in the previous studies [14,76].
It is also understood that the ET values obtained with the HM and HMM approaches
have a more symmetrical distribution; however, the HM method underestimates ETPM at
all stations, whereas the modified HM method achieves more successful results than the
original HM method. The results of these two modified equations support the importance
of adjustment in the original formulae [77–79]. For example, Proutsos et al. [19] evaluated
127 ET approaches in Mediterranean urban green sites and concluded that the adjusted
models performed more accurate ET simulations overall compared to the original equations.
Compared to other techniques, the HS method produces results that are closest to the
reference ETPM when examining the box plot of the method at all stations.

The graphs and maps were analyzed to see how altitude, slope, aspect geography, and
solar radiation affected the evapotranspiration values. The results showed that evapotran-
spiration varies proportionally with the impact of altitude on Kahramanmaras. The results
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support the findings of Lin et al. [80] regarding ET correlation with topography in the Xiliao
River Plain, while the outcomes are different from those reported by Ablikim et al. [81],
in which ET values rise with the increment in altitude in the Urumqi River Basin. For
instance, the reason for the high ET values in S2, which has the lowest altitude of 525 m,
is thought to be the adverse effect of altitude on ET. The observation of lower ET values
at the S3 station, which has a higher elevation (1344 m) than the S2 station, shows that
the same effect occurs. The fact that the S9 station, at an altitude of 1246 m, had lower ET
values relative to the S8 station at an altitude of 1001 m supports this effect. As S7 (787 m)
exhibited smaller ET values than S2 and S11, which have altitudes of 535 m, it is another
example that elevation has an adverse effect on ET. While station S1 (572 m) had smaller
ET values relative to the S2 station, indicating the impact of altitude, a larger discrepancy
in ET values was observed in response to the minor elevation differences. On the other
hand, despite the high-altitude variation between stations S1 and S3 (572 m/1344 m), the
difference between the ET values of both stations was lower. Similar results were observed
at stations between S10 (1368 m) and S11 (535 m) and between S7 (787 m) and S8 (1001 m).
These results reveal that the inverse proportion of altitude on ET may vary depending on
altitude and that factors other than elevation may also be effective for ET. For this aim,
considering previous studies showing that distributions of slope and aspect may have
an effect on evapotranspiration, slope, aspect geography, and solar radiation maps, these
were also investigated by correlating with ET [82–84]. A strong correlation with ET has
been observed on the southern slopes, and solar radiation is another factor controlling
ET. Among all the stations, for example, S6, which has a narrow ET distribution with a
minor standard deviation and stands out with its low ET values compared to other stations,
appears to have the lowest solar radiation. As another example, it is recognized that the S2
station at the lowest altitude exhibits the highest ET values as a result of all these factors,
such as the fact that it has a more southern slope compared to other stations and intense
solar radiation, in addition to its steeper slope.

Additionally, within the scope of this study, the combined performances of all methods
across the city were examined on a monthly basis using a scatter plot. For instance, the
Schendel approach produced ET values at some stations that were similar to the reference
method, as can be seen from the box plot; on the other hand, the method yielded the lowest
performance of all the alternative methods over the entire city when the monthly based
scatter plot was examined. Both the BC and TH techniques underestimated ETPM reference
values, while an overestimation tendency was observed for the PM0.5 method, although
the highest correlation was achieved with it. As stated in the methodology section, the
modified Blaney–Criddle approach applies parameters computed using the minimum
relative humidity, ratio of actual sunshine to the maximum possible sunshine duration, and
daytime wind speed instead of the seasonal crop coefficient used in the original method.
This resulted in a significant improvement in the evapotranspiration estimations, as seen
from the scatter plot. In the Hamon methods, which tend to underestimate ET, the modified
version produced better ET values than the original equation. This graph reveals the
importance of modification analysis more clearly and supports the results of previous
studies [14,76–78]. Another important result obtained from the scatter plot is that the
KH method, which tends to predict lower daily ET minimum extremes, showed a high
performance in monthly simulations across the city. Additionally, the HS method produced
the best result by providing a high correlation, although it underestimated the maximum
extreme values.

The performances of the ET approaches on a daily scale were computed and graphed
using ten various statistical criteria to enhance the evaluation of the methods to be more
detailed and sensitive for each station. As can be seen from the NSCE results, a value higher
than 0.5 demonstrates that alternative approaches (except SC) can sufficiently replicate
the variability of the ETPM. Conversely, negative NSCE values indicate that for SC-driven
simulations at the stations, the mean of the ETPM values is a better predictor than the SC
empirical method. The main difference for NNCSE lies in the normalization of the NSCE
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value, which helps NNSCE to be less sensitive to the variability in the reference data and
allows for better comparison across other empirical approaches, regardless of its variance.
The highest NSCE and NNSCE values were obtained with BCM-driven simulations in S2,
S8, and S10, whereas the best results were yielded with ETHS estimations in S7, and it is
the HS method at the other seven stations. The obtained findings were observed more
clearly in the NNSCE graph. It is essential to note that while the NSCE is a crucial error
metric for measuring predictive accuracy, it has some limitations. For instance, it gives
equal weight to both overestimation and underestimation errors, which might not always
reflect the true importance of such errors in the direction of discrepancy. In comparison to
ETPM, in general, the underestimation is more dominant in Hargreaves–Samani, Kharrufa,
and both Hamon equations with negative MRE values, whereas the BCM, PM0.5, and SC
techniques overestimated the reference values with positive MRE indices. These results
are seen more clearly in the Bias metric. Additionally, overall, HS, BCM, and KH-driven
simulations yielded the best MSE, CRMSE, and RMSD results, while the PM0.5 (SC) method
had the highest (lowest) value at all stations according to the DET metric. All approaches,
excluding SC, have strong positive correlations greater than the PCC value of 0.9 at all
stations except for S6. The BC (HS) technique exhibits the highest PCC values in S1 (S3, S4,
and S5) after the PM0.5 approach, while the BCM method, in S2 and the six stations between
S6 and S11, is secondary in terms of PCC performance.

However, this study has some limitations; for instance, in addition to the aforemen-
tioned factors, ET may also be affected by elements such as vegetation cover, soil map,
land use, and land cover belonging to the relevant study area, and they were not evaluated
within the scope of this study. Despite these limitations, the results of this study can help
future studies mitigate the effects of drought and the prejudice of hydrological modeling
results over the study area. Furthermore, the findings motivate future studies to analyze
how well alternative empirical approaches are performed in other areas with features
comparable to the analyzed region.

5. Conclusions

Empirical approaches for calculating ET values hold a significant place in the litera-
ture because of their advantages, such as simplicity of use when utilizing meteorological
data and obtaining results in a short time. Evapotranspiration may be quantitatively
assessed using a variety of techniques. Numerous studies have been conducted to find
the most straightforward and accurate method that can be applied in various study re-
gions, and these have been updated in response to evolving circumstances. In this study,
evapotranspiration simulations carried out various techniques such as Penman–Monteith,
Penman–Monteith at 0.5 m, Blaney–Criddle, modified Blaney–Criddle, Hamon, modi-
fied Hamon, Hargreaves–Samani, Kharrufa, Schendel, Romanenko, and Thornthwaite
using daily meteorological data from stations in 11 districts of Kahramanmaras province.
In evaluating the alternative methods at daily and monthly temporal resolutions, the
Penman–Monteith method, recommended by the Food and Agriculture Organization for
use worldwide, was considered as a reference.

A box plot was generated using ET values derived from daily scale estimations
utilizing the PM, PM0.5, BC, BCM, HM, HMM, HS, and KH, along with SC methods,
and assessments were conducted on a station basis. The HM method, which shows a
symmetrical box plot distribution, underestimated the ETPM over the region, while the
PM0.5 method overestimated the reference ETPM values at all stations. In contrast to the
BC method, which produced ET values in a narrow range compared with the reference
method in the 11 districts, the BCM method produced more successful results. The HMM
method, which has a symmetrical box plot distribution, produced results close to those of
the reference method at some of the stations, indicating that the modification of the HM
method was positively reflected. Additionally, underestimation is dominant in minimum
whisker ET values obtained from BCM, KH, and SC-driven simulations. In the Onikisubat
district, the HM, HMM, and HS methods yielded the highest performances among the
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other methods. Although the BCM, KH, and SC techniques underestimated the minimum
extremes, they generally overestimated ET values compared to the reference method.
In Dulkadiroglu, where the highest ET values were produced among all stations, the
approaches that gave the closest results to the reference method for the interquartile
range were the BCM, KH, and SC. In the Goksun district, BCM, HS, KH, and SC-based
ET simulations captured ETPM variations greater than the 25th percentile, whereas they
predicted the minimum ET values to be lower. It was concluded that the HS and KH
approaches, which underestimated the minimum outliers, provided the closest results
to the reference method in the districts of Afsin and Elbistan, where similar ET values
were achieved. For Andirin, where ET fluctuations were in the lowest range among all
stations, the HS and SC methods produced the most accurate results for ETPM values in
the interquartile range. The HS method, which slightly underestimated the reference ET
values, exhibited the highest accuracy in Pazarcik, Caglayancerit, and Ekinozu districts. In
Nurhak, the BCM method was the most successful, slightly underestimating the minimum
ETPM outliers, while the second-highest performance belonged to the HS simulations with
underestimation relative to the reference method. Finally, in the Turkoglu district, the HMM
and HS methods produced results similar to those of the reference method.

To evaluate the statistical performance of the methods on a daily scale, the central
square mean error, determination coefficient, mean absolute error, mean relative error,
mean squared error, Nash–Sutcliffe efficiency coefficient, normalized NSCE, percentage
error, Pearson’s correlation coefficient, and root mean square error metrics were applied.
According to the CRMSE index, the HS method had the lowest values in Onikisubat,
Goksun, Afsin, Elbistan, and Ekinozu, whereas the BCM approach achieved the highest
performance in Dulkadiroglu and Nurhak. Additionally, KH resulted in the smallest
CRMSE in Pazarcik and Caglayancerit, whereas PM0.5 and HM were the best in Andirin
and Turkoglu, respectively. The PM0.5 approach performed well at all stations based on
the DET and PCC metrics because of its similarity with the reference method, although
SC-based simulations produced the lowest values. After the PM0.5-driven performance, the
methods showing the highest correlations are the HS method at Onikisubat, Goksun, Afsin,
and Elbistan, similar to the CRMSE metric, whereas the BCM approach has the highest at
other stations. Moreover, the most successful results were obtained via the BCM approach
in Dulkadiroglu, Caglayancerit, as well as Nurhak, and the HS method yielded MAE values
less than 0.5 mm d−1 at other stations, while the SC and PM0.5 formulae produced strong
discrepancy in terms of MAE. An underestimation tendency is observed in the HM, HMM,
and KH methods with negative MRE and Bias indices, while the PM0.5 and SC methods
overestimated the ETPM values. Additionally, the BCM and HS techniques are generally
the ones that are closest to zero, while the methods with the least error vary based on the
stations in terms of MRE and Bias metrics. MSE and MRE produced comparable outcomes,
and SC-based ET simulations performed the poorest in terms of both statistical indices. The
RMSD values more clearly displayed inconsistencies and corroborated those derived from
the MSE index. Additionally, the lowest performances were obtained with SC and PM0.5
formulae, while other methods generally received NSCE values greater than 0.7 and BCM,
HS as well as KH-driven ET predictions exhibited the best NSCE values. The negative
NSCE values in the SC-driven simulations indicated that the model did not capture the
variability and patterns present in the reference value. This finding typically means that
SC predictions perform poorly and might be less accurate than simply using the mean of
the ETPM data as a prediction. NNSCE performances support these results and reveal the
variation in accuracy/discrepancy on a station basis more clearly.

In this study, the monthly averages of ET values generated by the TH and RM
techniques—which can compute ET on a monthly scale—as well as the daily ET val-
ues produced by other methods, were utilized to build a scatter plot. An overestimation
tendency is observed for the PM0.5 approach, with the strongest correlation value of 0.99
for the reference among the alternative methodologies. The approach that generates the ET
value at a height of 50 cm is likely to have been overestimated as a result of the standardized
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as a result of coefficient modifications in the original PM equation. The ETBC values were
clustered, ranging from 1.82 to 6.15 mm d−1, and the BC model overestimated low ET val-
ues, whereas it underestimated high ET values relative to ETPM values. On the other hand,
the modified BC version used the “a” and “b” coefficients computed depending on various
climatic parameters (i.e., relative humidity, wind speed, and sunshine duration) instead
of the “k” seasonal crop coefficient in the formula and yielded significant improvement
in the results. After this adjustment, it was concluded that the BCM approach, which has
the second highest correlation with a PCC value of 0.98, can be used as an alternative to
the PM method over many districts in the region. Although the HM and HMM techniques
involving water vapor density underestimated the ETPM values with an identical PCC
(0.94), unlike other alternative methods, the modified version produced better results than
the original Hamon formula. Furthermore, even though the 1.2 local calibration coefficient
improved the results in the equations of both techniques, it is anticipated that regional
and seasonal modifications to the included coefficient will improve the accuracy of the ET
estimations. In addition, the HS approach produced ET values that were similar to the
reference method throughout Kahramanmaraş, demonstrating a successful performance
with a low bias between ETPM and ETHS and a high correlation of 0.96 PCC. The KH
technique, in which the linear trend line is close to that of the PM method with a PCC value
of 0.94, produced accurate ETPM at some stations, although it had higher noise in overall
ET estimates. Moreover, the TH method, which underestimates ET values compared to
the reference method, showed a high correlation with a PCC value of 0.93. Among all
alternative empirical approaches, SC and RM methods generated the highest deviation in
the simulations relative to the ETPM values and smallest PCC values of 0.88 and 0.89, re-
spectively. Additionally, both methods tended to overestimate the evapotranspiration time
series compared with the reference method. Examining the equations for both methods
revealed that ET values were derived only from the average temperature and relative hu-
midity data. However, the majority of other alternative formulae are functions of sunshine
duration in addition to the aforementioned parameters, and coefficients derived depending
on sunshine duration are also enhanced in the correlation.

Within the scope of this study, where the impact of terrain characteristics and altitude
on ET was also assessed, a slope, aspect geography, and solar radiation map of the study
area were prepared. It was concluded that altitude has an adverse effect on ET, although
the evaluation of altitude alone might not be comprehensive except in rare circumstances.
Upon evaluating the aspect, slope, and solar radiation maps in this manner on a station
basis, it was observed that the slope positively impacted ET. While the southern slopes
of the slope are another factor that increases ET, it has been detected that interconnected
solar radiation raises ET. Along with these elements in terrain characteristics, examining
the effects of land use and vegetation on ET can motivate future studies.

In light of all examinations and evaluations, it can be concluded that the BCM and
HS approaches can be utilized as alternatives to the PM method in estimating evapotran-
spiration values over Kahramanmaras province. Additionally, the KH technique, which
only employs temperature data, can be listed as an alternative for accurately capturing ETs.
While the worst results in the region were obtained with SC-driven ET simulations, the
PM0.5 method consistently overestimated the ETPM values despite having a high correlation.
Investigating the effectiveness of the alternative empirical methodologies assessed in this
study in other locations with features comparable to the region is another matter that can
attract attention. The obtained ET results will play a significant role in the planning of areas
for agriculture and forestry, in determining the usable water potential of dams, in the accu-
rate estimation of water losses in rainfall-runoff simulations, and in hydrometeorological
applications such as forecasting drought or flood predictions.

Author Contributions: A.U.: material preparation, data collection, analysis, and manuscript writing.
M.O.D.: collecting meteorological data, evaluating analysis, interpretation of the findings, manuscript
writing, supervising, editing, and submission. All authors have read and agreed to the published
version of the manuscript.

76



Water 2024, 16, 507

Funding: This research received no external funding.

Data Availability Statement: The data of this study are available from the authors upon request.

Acknowledgments: The authors want to thank Kahramanmaras Sutcu Imam University and the
Turkish State Meteorological Service for their support and data collection.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO

Irrigation and Drainage Paper 56; Food and Agriculture Organization of the UN: Rome, Italy, 1998. Available online: http:
//www.climasouth.eu/sites/default/files/FAO%2056.pdf (accessed on 23 June 2023).

2. Srdic, S.; Srdevic, Z.; Stricevic, R.; Cerekovic, N.; Benka, P.; Rudan, N.; Rajic, M.; Todorovic, M. Assessment of Empirical Methods
for Estimating Reference Evapotranspiration in Different Climatic Zones of Bosnia and Herzegovina. Water 2023, 15, 3065.
[CrossRef]

3. Su, Q.; Dai, C.; Zhang, Q.; Zhou, Y. Analysis of Potential Evapotranspiration in Heilongjiang Province. Sustainability 2023, 15, 15374.
[CrossRef]

4. Yang, H.; Luo, P.; Wang, J.; Mou, C.; Mo, L.; Wang, Z.; Fu, Y.; Lin, H.; Yang, Y.; Bhatta, L.D. Ecosystem Evapotranspiration as a
Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China. PLoS ONE 2015, 10, e0134795. [CrossRef]

5. Yue, P.; Zhang, Q.; Ren, X.; Yang, Z.; Li, H.; Yang, Y. Environmental and biophysical effects of evapotranspiration in semiarid
grassland and maize cropland ecosystems over the summer monsoon transition zone of China. Agric. Water Manag. 2022,
264, 107462. [CrossRef]

6. Dingman, S.L. Physical Hydrology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; 646p.
7. Liu, W.; Zhang, B.; Han, S. Quantitative Analysis of the Impact of Meteorological Factors on Reference Evapotranspiration

Changes in Beijing, 1958–2017. Water 2020, 12, 2263. [CrossRef]
8. Qiu, L.; Wu, Y.; Shi, Z.; Chen, Y.; Zhao, F. Quantifying the Responses of Evapotranspiration and Its Components to Vegetation

Restoration and Climate Change on the Loess Plateau of China. Remote Sens. 2021, 13, 2358. [CrossRef]
9. Penman, H.L. Evaporation: An introductory survey. Neth. J. Agric. Sci. 1956, 4, 9–29. [CrossRef]
10. Yates, D.; Strzepek, Z. Potential Evapotranspiration Methods and their Impact on the Assessment of River Basin Runoff Under Climate

Change; IIASA Working Paper; IIASA: Laxenburg, Austria, 1994; pp. 46–94. Available online: https://pure.iiasa.ac.at/id/eprint/
4163/1/WP-94-046.pdf (accessed on 16 June 2023).

11. Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales
of Observation. Sensors 2008, 8, 70–117. [CrossRef]

12. McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan
evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [CrossRef]

13. Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [CrossRef]
14. Uzunlar, A.; Oz, A.; Dis, M.O. The Effect of Modified Approaches on Evapotranspiration Estimates: Case Study over Van.

Cukurova UMFD 2022, 37, 973–988. [CrossRef]
15. Meissner, R.; Rupp, H.; Haselow, L. Chapter 7—Use of lysimeters for monitoring soil water balance parameters and nutrient

leaching. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 171–205. [CrossRef]
16. Brown, S.; Wagner-Riddle, C.; Debruyn, Z.; Jordan, S.; Berg, A.; Ambadan, J.T.; Congreves, K.A.; Machado, P.V.F. Assessing

variability of soil water balance components measured at a new lysimeter facility dedicated to the study of soil ecosystem services.
J. Hydrol. 2021, 603 Pt C, 127037. [CrossRef]

17. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw Hill: Singapore, 1988; 572p.
18. López-Olivari, R.; Fuentes, S.; Poblete-Echeverría, C.; Quintulen-Ancapi, V.; Medina, L. Site-Specific Evaluation of Canopy

Resistance Models for Estimating Evapotranspiration over a Drip-Irrigated Potato Crop in Southern Chile under Water-Limited
Conditions. Water 2022, 14, 2041. [CrossRef]

19. Proutsos, N.; Tigkas, D.; Tsevreni, I.; Alexandris, S.G.; Solomou, A.D.; Bourletsikas, A.; Stefanidis, S.; Nwokolo, S.C. A Thorough
Evaluation of 127 Potential Evapotranspiration Models in Two Mediterranean Urban Green Sites. Remote Sens. 2023, 15, 3680.
[CrossRef]

20. Ashour, M.A.; Abdel Nasser, M.S.; Abu-Zaid, T.S. Field Study to Evaluate Water Loss in the Irrigation Canals of Middle Egypt:
A Case Study of the Al Maanna Canal and Its Branches, Assiut Governorate. Limnol. Rev. 2023, 23, 70–92. [CrossRef]

21. Dis, M.O. A New Approach for Completing Missing Data Series in Pan Evaporation Using Multi-Meteorologic Phenomena.
Sustainability 2023, 15, 15542. [CrossRef]

22. Gourgouletis, N.; Gkavrou, M.; Baltas, E. Comparison of Empirical Eto Relationships with ERA5-Land and In Situ Data in Greece.
Geographies 2023, 3, 499–521. [CrossRef]

23. Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. Math. Phys. Eng. Sci. P Roy Soc. A-Math. Phys.
1948, 193, 120–145. [CrossRef]

24. Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234.

77



Water 2024, 16, 507

25. Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Quart. I. R. Met. Soc. 1985, 111,
839–855. [CrossRef]

26. Calder, I.R. Transpiration observations from a spruce forest and comparisons with predictions from an evaporation model.
J. Hydrol. 1978, 38, 33–47. [CrossRef]

27. Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; ASCE: New York, NY, USA,
1990; 332p.

28. Lemeur, R.; Zhang, L. Evaluation of three evapotranspiration models in terms of their applicability for an arid region. J. Hydrol.
1990, 114, 395–411. [CrossRef]

29. Althoff, D.; Santos, R.A.d.; Bazame, H.C.; Cunha, F.F.d.; Filgueiras, R. Improvement of Hargreaves–Samani Reference Evapotran-
spiration Estimates with Local Calibration. Water 2019, 11, 2272. [CrossRef]

30. Lin, E.; Qiu, R.; Chen, M.; Xie, H.; Khurshid, B.; Ma, X.; Quzhen, S.; Zheng, S.; Cui, Y.; Luo, Y. Assessing forecasting performance
of daily reference evapotranspiration: A comparative analysis of updated temperature penman-monteith and penman-monteith
forecast models. J. Hydrol. 2023, 626, 130317. [CrossRef]

31. Doorenbos, J.; Pruitt, W.O. Crop Water Requirements, FAO Irrigation and Drainage Paper 24; Food and Agriculture Organization of
the United Nations, Viale delle Terme di Caracalla: Rome, Italy, 1977; 144p. Available online: https://www.fao.org/3/s8376e/s8
376e.pdf (accessed on 23 January 2023).

32. Brouwer, C.; Heibloem, H. Irrigation Water Management: Irrigation Water Needs, Irrigation Water Management Training Manual
No. 3; Land and Water Development Division FAO Via delle Terme di Caracalla: Rome, Italy, 1986. Available online: https:
//www.fao.org/3/S2022E/s2022e00.htm (accessed on 23 January 2023).

33. Singh, V.; Xu, C. Evaluation and generalization of 13 mass-transfer equations for determining free water Evaporation. Hydrol.
Process. 1997, 11, 311–323. [CrossRef]

34. Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions.
Irrig. Sci. 2011, 31, 107–117. [CrossRef]

35. Sarlak, N.; Bagcaci, S.C. The Assessment of Empirical Potential Evapotranspiration Methods: A Case Study of Konya Closed
Basin. Teknik Dergi 2020, 565, 9755–9772. [CrossRef]

36. Song, X.; Lu, F.; Xiao, W.; Zhu, K.; Zhou, Y.; Xie, Z. Performance of 12 reference ET estimation method compared with the
Penman-Monteith method and the potential influences in northeast China. Meteorol. Appl. 2018, 26, 83–96. [CrossRef]

37. Cobaner, M.; Citakoglu, H.; Haktanir, T.; Yelkara, F. Determination of optimum Hargreaves-Samani equation for Mediterranean
region. DUMF 2016, 7, 181–190.

38. Hafeez, M.; Chatha, Z.A.; Khan, A.A.; Gulshan, A.B.; Basit, A.; Tahira, F. Comparative Analysis of Reference Evapotranspiration
by Hargreaves and Blaney-Criddle Equations in Semi-Arid Climatic Conditions. Curr. Res. Agric. Sci. 2020, 7, 525–557. [CrossRef]

39. USGS Geographic Information Systems, Digital Elevation Model Data Website. Available online: https://earthexplorer.usgs.gov/
(accessed on 3 May 2023).

40. Sarigul, O.; Turoglu, H. Flashflood and Flood Geographical Analysis and Foresight in Kahramanmaraş City. J. Geogr. 2020, 40,
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Abstract: Under the influence of climate change and human activities, the ecohydrological processes
in the Three Gorges Reservoir Area (TGRA) present new evolution characteristics at different tem-
poral and spatial scales. Research on the evolution and driving mechanism of key ecohydrological
element in the TGRA under the changing environment has important theoretical and practical val-
ues for correctly understanding the ecohydrological situation in the reservoir area and guiding the
coordinated development of water and soil resources. In this study, the LPJ (Lund–Potsdam–Jena)
model was used to simulate and analyze the spatiotemporal variations in evapotranspiration (AET)
from 1981 to 2020. Sen’s slope and sensitivity analysis methods were used to quantify individual
contributions of climate and human factors to changes in AET in different periods. The results
indicate the following: (1) The simulation accuracy of the LPJ model for AET in the TGRA was high,
with a certainty coefficient (R2), Nash efficiency coefficient (NSE), and mean relative error (MRE) of
0.89, 0.76, and 4.32%, respectively. (2) The multiyear average AET was 650.71 mm and increased at a
rate of 21.63 mm/10a from 1981 to 2020. The annual distribution of AET showed a unimodal seasonal
variation trend. The peak value occurred in July, reaching 113.02 mm, and the valley value occurred
in January and December, less than 13 mm. (3) AET increased by 5.60% and 6.28% before and after
impoundment, respectively. The contribution rate of human activities increased significantly from
−3.75% before impoundment to 26.95% after impoundment, and the contribution ratios of climate
change were 89.39% and 73.09%, respectively, during these two periods. From 1981 to 2020, AET
increased by 5.28%, in which the contribution ratios of climate and human factors were 89.39% and
10.61%, respectively.

Keywords: actual evapotranspiration (AET); LPJ model; climate change; driving mechanism; the
Three Gorges Reservoir Area (TGRA)

1. Introduction

Actual evapotranspiration (AET), which is defined as the synthesis process of evapora-
tion and transpiration, plays a key role in surface energy balance by linking the hydrological
cycle, carbon budget, and energy transfer [1–3]. As a crucial component of energy bal-
ance and the water–carbon cycle under global climate change [4], AET is widely used in
water resource management, irrigation planning, ecological projects, and other practices
of agricultural production [5–7]. From a background of continuous global warming and
increasing human disturbance, the influence of climatic and human factors on regional
hydrological processes continues to deepen [8], and the water cycle process has shown
new characteristics. Accurate measurement and estimation of AET, as well as quantitative
differentiation of the influence of climate and human factors on the change in AET, are
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very important for the sustainable relationship of regional water resources and ecological
environment protection [9,10].

The acquisition of AET has always been an important and difficult point in ecohy-
drological research [11–13]. The AET, which is composed of canopy transpiration (EP),
vegetation interception (EI), and bare soil evaporation (ES), is not only influenced by climate
change but also closely related to vegetation, and it is greatly influenced by the underlying
surface and vegetation dynamics [14]. Therefore, it is necessary to consider the growth pro-
cess of vegetation in AET simulation [7,15]. Dynamic Global Vegetation Models (DGVMs)
express land surface biophysics, terrestrial carbon cycle, and global vegetation dynamics
through an independent and naturally continuous model framework [16]; these models
integrate a wide range of biophysical, vegetation physiological, and ecological processes,
and they can simulate land surface physical processes, vegetation canopy physiology, vege-
tation phenology, vegetation dynamics and competition, carbon and nitrogen cycle, and
other processes, which are suitable for research at different temporal and spatial scales [17].
Common DGVMs include CLM (Community Land Model), VIC (Variable Infiltration Ca-
pacity), IBIS (Integrated Biosphere Simulator), and LPJ (Lund–Potsdam–Jena) models [18].
CLM, VIC, and IBIS are highly complex and difficult DGVMs, which have high require-
ments for model users and hardware equipment and are suitable for large-scale and global
simulations. The LPJ [19] model was jointly researched and developed by Lund University,
Potsdam Climate Research Centre, and Max Planck Institute for Biogeochemistry, Jena. As a
moderately complex DGVM, the framework and principles of the early version are derived
from the BIOME model [16,17]. The vegetation dynamic process of the model is based on
natural vegetation, and the establishment and death of natural vegetation depend on a
set of plant functional environmental limiting factors based on the 20-year mobile climate
extreme [20]. LPJ explicitly considers key attributes, such as physiological adaptability,
phenological characteristics, morphological attributes, resource utilization ability, distur-
bance response, and photosynthetic efficiency of different plant species, and it determines
the distribution and composition of vegetation by population statistics. Subsequently,
through continuous development and improvement, fire interference [21] was introduced,
and the calculation scheme was improved [22]. Recently, the LPJ model has made great
progress in ecosystem research and has been widely used in simulations of vegetation
productivity, evapotranspiration, and the hydrological cycle [23–26]. While meeting the
needs of ecohydrological simulation on the small and medium scales, it can also ensure
high simulation accuracy and computing efficiency, obtaining good applicability in small-
and medium-scale research [27,28].

As the world’s largest hydroelectric power station, the construction of the Three
Gorges Project greatly promoted the economic and social development around the TGRA
and played an important role in flood control, shipping, power generation, and other
aspects [29,30]. However, as a special human activity, the construction of the project,
including dam construction, migration engineering, power generation, and reservoir dis-
patching, has caused severe disturbance to the underlying surface [31], causing changes in
land coverage types, which, in turn, changed the surface albedo [32,33] and affected the
energy balance [34]. In addition, the impact of a warming climate on the hydrological cycle
processes is increasingly aggravated [35]; water resources, water ecology, and water envi-
ronment in the reservoir area are also facing severe pressure [36,37]. Under the influence
of climate change and human activities, the ecohydrological processes in the TGRA have
been marked by the strong interference of “natural and artificial” [38,39]. It is necessary
and urgent to study the evolution and driving mechanism of key ecohydrological elements
in the TGRA under a changing environment [40].

The Three Gorges Dam site was determined in 1984, and a construction plan was
approved in 1992. Following this, the dam entered the construction phase. The water
level of the Three Gorges Project reached 135 m in 2003 and 175 m in 2009. After 2010, the
Three Gorges Project was officially put into operation, and we entered the Three Gorges
era. In the past 40 years, the TGRA has experienced four different periods of development,

82



Water 2023, 15, 4105

including the stage before the project (1981–1992), the early stage of the project (1993–2002),
the later construction and completion stages (2003–2010), and the formal operational stage
(2011–2020). There are evident differences in trends in climate change and the disturbance
to the underlying surface in different periods, especially between before (1981–2002) and
after (2003–2010) impoundment. The impounding of the reservoir caused the water level
to rise, and a large number of farmland and residential settlements on both sides of the
river were flooded; the underlying surface was thus strongly disturbed. In addition, the
increase in the water surface area produced a certain climate effect, and the climatic factors
and ecohydrological factors had significant changes after impounding.

Therefore, this paper takes AET as the key ecohydrological element and attempts to
estimate the AET over the TGRA based on the LPJ model with multisource remote sensing
data from 1981 to 2020 and to quantify individual contributions of climate and human
factors to the variations in AET before and after impoundment. The results of this study
can provide a scientific basis and data support for the effective evaluation of ecosystem
service functions and provide a decision-making basis for a correct understanding of the
ecohydrological condition of the reservoir area and for guiding future spatial coordinated
development for the TGRA.

2. Material and Methodology
2.1. Study Area

The TGRA refers to the catchment area between the dam site and the backwater end
of the reservoir, which was created after the completion of the Three Gorges Dam and the
successful impoundment of the reservoir area. This region is situated in the lower sec-
tion of the upper reaches of the Yangtze River, within 105◦50′–111◦40′ E, 28◦31′–31◦44′ N
(Figure 1), covering a total area of 59,326 km2, with a main channel length of 660 km. The
TGRA mainly includes Chongqing Municipality, Hubei Province, part of Linshui County,
Dazhu County and Luxian County in Sichuan Province, and Xishui County and Tongzi
County in Guizhou Province. This area spans the south foot of the Daba Mountains to
the north and extends to the north edge of the Yunnan-Guizhou Plateau to the south. The
TGRA is located at the intersection of the Daba Mountain fold belt, East Sichuan fold belt
and Sichuan, Hubei, Hunan, and Guizhou uplift belt, thereby crisscrossing areas containing
mountains, hills, basins, and valleys. The region is mainly composed of mountains along
the northeast and south margins of the Yangtze River and hills in the Midwest [41]. The
elevation of the TGRA ranges from 54 to 3099 m, with an average elevation of 773 m
(Figure 1). According to the area proportion of different elevation intervals, the area with
elevation between 100–500 m, 500–1000 m, and 1000–2000 m accounted for 37%, 35%, and
26%, respectively. Less than 2% of the area has an elevation of more than 2000 m. The
TGRA is subject to a subtropical monsoon climate, with an average annual temperature
(T) of 16.84 ◦C. The rainfall in the reservoir area is abundant, but the temporal distribution
is uneven. The annual average precipitation (P) in the TGRA is 1186 mm, dominated by
summer P (the total P from June to September accounts for about 54% of the annual P).
There are four distinct seasons in the TGRA, characterized by warm winters, early springs,
hot summers, and rainy autumns [42].

2.2. LPJ Model
2.2.1. Model Description

Based on physiological, morphological, phenological, and disturbance response at-
tributes and a few bioclimatic limiting factors, the LPJ model defines 10 Plant Functional
Types (PFTs) for photosynthesis simulation, including 8 kinds of tree and 2 kinds of herb
vegetation. Under the influences of the strong control of East Asian monsoon and the trans-
formation of Qinghai-Tibet Plateau on the westerly flow, a unique natural environment
has been formed. Depending on field investigation and reference to relevant informa-
tion [20,43], Zhao et al. [28] added two PFTs of temperate desert shrub and cold herb and
defined their physiological parameters of leaf longevity. Huang [44] defined the distribu-
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tion ratio of roots between the upper and lower soil layers. Finally, 12 PFTs, including
9 kinds of tree and 3 kinds of herb vegetation, were defined. The parameter values of
relevant PFTs and their ecological environmental limiting factors are shown in Table 1.
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Table 1. Eco-hydrologically relevant PFT parameter values.

PFT (Unit) Tc_min Tc_max GDD5_min Tw_min Tw_max Leaflong Rootdist

Tropical rainforest 12 - - - - 0.5 0.7/0.3
Tropical broadleaved

evergreen tree 12 - - - - 2 0.85/0.15

Temperate needleleaved
evergreen tree −2 22 900 - - 2 0.6/0.4

Temperate broadleaved
evergreen tree 0 14 1500 - - 1 0.7/0.3

Temperate broadleaved
deciduous tree −17 0 1500 - - 0.5 0.65/0.35

Northern needleleaved
evergreen tree 0 −25 550 23 - 0.5 0.9/0.1

Northern needleleaved
deciduous tree - −2 350 23 43 2 0.9/0.1

Northern broadleaved
deciduous tree - −15 350 23 - 0.5 0.9/0.1

Temperate desert scrub - −5 350 23 - 1 0.9/0.1
Tropical herb 15 - - 12 - 1 0.9/0.1

Temperate herb ·- −8 - - - 1 0.9/0.1
Cold herb - −12 - - - 1 0.9/0.1

Note: Tc_min, minimum average temperature in the coldest month (◦C); Tc_max, maximum average temperature in
the coldest month (◦C); GDD5_min, minimum annual accumulated temperature above 5 ◦C required for vegetation
settlement and growth (◦C); Tw_min, minimum average temperature in the hottest month (◦C); Tw_max, maximum
average temperature in the hottest month (◦C); leaflong, leaf longevity(a); rootdist, distribution ratio of roots
between the upper and lower soil layers.
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The simulation of AET by LPJ is mainly divided into three parts, namely, EP, EI, and
ES. The water balance simulation in the LPJ model mainly adopts the water tank model.
The soil is divided into two layers. The water balance formulas of the upper and lower
layers (soil thickness is 0.5 m and 1.0 m, respectively) are as follows:

∆W1 = P− ES− EI− β1 × EP− R1 − Perc1 (1)

∆W2 = Perc1 − β2 × EP− R2 − Perc2 (2)

where ∆W1 and ∆W2 are the changes in water content in the upper and lower soil layers
(mm/d); β1 and β2 are the proportion of water consumed by roots for vegetation transpi-
ration from the upper and lower soil layers; R1 and R2 are the surface and underground
runoff (mm/d), respectively; Perc1 and Perc2 are the infiltration quantity (mm/d) of the
upper and lower soil layers, respectively; P is precipitation (mm/d). The model does not
consider the lateral water exchange and the convergence path between the grids.

EI is calculated using the following formula:

EI = Eq × α× fwet (3)

where fwet is the daytime canopy wetness ratio of each vegetation functional type. The
remaining canopy 1 − fwet is used to calculate vegetation transpiration. Eq and α are
the equilibrium evaporation rate and Priestley–Taylor coefficient, respectively. Eq and α,
involved in the calculation, are calculated from the Priestley–Taylor formula:

Eq =
4
4+ Y

(Rn − G) (4)

α =
LE
Eq

=
LE

[4/(4+ Y)](Rn − G)
(5)

where Rn is the net radiation (MJ/m2/d); G is the soil heat flux (MJ/m2/d); LE is the latent
heat flux (MJ/m2/d); 4 is the slope of the saturated water vapor pressure–temperature
relation curve (Claussius–Clapeyron relation—kPa/◦C); and Y is the wet and dry table
constant, which is equal to 66.5× 10−6 kPa/◦C.

EP is the minimum value of water demand (D) and water supply (S) of vegetation
under the condition of adequate water supply, and the formula is as follows:

EP = Min[S, D]× fv (6)

S = Emax ×Wr (7)

D = Eq × αmax × (1− fwet)/
(
1 + gm/gpot

)
(8)

where Emax is maximum transpiration rate of each vegetation functional type, and the value
ranges from 5 to 7 mm/d; Wr is soil moisture content that can be utilized by vegetation
roots; αmax is the maximum Priestley–Taylor coefficient, which is equal to 1.391 in LPJ
model; gm is the conversion conductance, which is equal to 3.26 mm /s in the LPJ model;
gpot is the canopy latent conductance (mm/s); and f v is the vegetation coverage.

ES occurs only in the surface 20 cm soil layer of bare land (1 − f v), and the formula is:

ES = Eq × α×Wr20 × (1− fv) (9)

where Wr20 is the water content in the surface 20 cm soil layer. All the above factors were
calculated based on vegetation functional types.
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2.2.2. Model Input

The LPJ model was run for the period 1981–2020, preceded by a 1000-year spin-up
period to reach an initial equilibrium with respect to ecosystem and soil structure [24].
In this study, we used climate data from 1981 to 2020 to drive the LPJ model 25 times to
reach equilibrium. Taking the equilibrium state as the initial state, the ecohydrological
process in the TGRA during the study period was simulated. The simulations were driven
by gridded monthly fields (0.1◦ resolution) of T, P, number of wet days, cloud cover, and
soil texture. Non-gridded model inputs include annual CO2 concentrations. Furthermore,
various parameters are assigned to the different PFTs (Table 1). The source, website, spatial
and temporal resolution, and time scale of all input datasets are shown in Table 2.

Table 2. Attributes of the input data.

Data Type Source Website Resolution Time Scale

Monthly
temperature (T)

China meteorological
forcing dataset [45]

https://data.tpdc.ac.cn/zh-
hans/data/8028b944-daaa-45

11-8769-965612652c49/
(accessed on 1 January 2023)

0.1◦/3 h January
1981~December 2018

Monthly
precipitation (P)

China meteorological
forcing dataset [45]

https://data.tpdc.ac.cn/zh-
hans/data/8028b944-daaa-45

11-8769-965612652c49/
(accessed on 1 January 2023)

0.1◦/3 h January
1981~December 2018

Monthly cloud
cover CRU TS Version 4.07

https://crudata.uea.ac.uk/
cru/data/hrg/cru_ts_4.07
/cruts.2304141047.v4.07/

(accessed on 1 January 2023)

0.5◦ January
1981~December 2020

Monthly wet days CRU TS Version 4.07

https://crudata.uea.ac.uk/
cru/data/hrg/cru_ts_4.07
/cruts.2304141047.v4.07/

(accessed on 1 January 2023)

0.5◦ January
1981~December 2020

Soil texture
Geographic data

platform of Peking
university

https://geodata.pku.edu.cn
(accessed on 1 January 2023) 1:106 2009

Annual CO2 Earth’s CO2
https://www.co2.earth

(accessed on 1 January 2023)
Northern Hemi-

sphere/Annually 1981~2020

Monthly T and monthly P are provided by National Tibetan Plateau Data Center.
In this study, we extracted the T and P data in the TGRA and synthesized the 3 h data
into a monthly scale. Finally, we obtained the monthly average T and P from January
1981 to December 2018. The average error is less than 5% by comparing the synthesized
data and the measured data from meteorological stations, indicating that the synthesized
data are reliable and can be used for model spin-up and simulation. The P and T data
from January 2019 to December 2020 were extended via the interpolation of station data.
Monthly cloud cover and monthly wet days were derived from the CRU4.07 data set. We
collected monthly cloud cover and monthly wet days in the TGRA from January 1981 to
December 2020. The soil data were mainly used to simulate the infiltration in precipitation
process, soil moisture content, and the process of absorbing nutrients and minerals in the
roots of vegetation, and they objectively reflect the distribution of the surface in the study
area. The spatial distribution data of soil type in China adopted in this paper is supported
by the Geographic Data Sharing Infrastructure, College of Urban and Environmental
Science, Peking University. All these data were resampled to 0.1◦ for model-driven use.
CO2 concentration data are derived from the Earth’s CO2 Network, which updates CO2
concentrations on a daily basis and provides annual, monthly, and daily data on Global,
Northern, and Southern Hemisphere scales for the past 2000 years. In this paper, the annual
CO2 concentration in the Northern Hemisphere from 1981 to 2020 was captured to drive
the model.
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2.2.3. Accuracy Validation

MODIS AET products (https://modis.gsfc.nasa.gov; accessed on 1 January 2023) were
used to verify the simulation results. MODIS AET is an 8-day composite product with
a spatial resolution of 500 m, and the timescale is from 2001 to 2020. The validation of
AET simulations was conducted from 2001 to 2020. The quality of AET simulations was
determined via the certainty coefficient (R2), Nash efficiency coefficient (NSE), and mean
relative error (MRE). The calculation formula is as follows:

R2 =

(
n
∑

i=1
(Oi −Oavg)(Qi −Qavg)

)2

n
∑

i=1

(
Oi −Oavg

)2 n
∑

i=1

(
Qi −Qavg

)2
(10)

NSE = 1−

n
∑

i=1
(Oi −Qi)

2

n
∑

i=1

(
Oi −Oavg

)2
(11)

MRE =
1
n∑n

i=1

∣∣∣∣
(Qi −Oi)

Oavg

∣∣∣∣ (12)

where Qi is the monthly average AET simulated by the LPJ model, Oi is the MODIS AET
results for model verification, Qavg is the total monthly average AET in the simulation
period (all months), Oavg is the total monthly average MODIS AET results for model
verification (all months), and n is the total number of months in the simulation period. The
closer R2 and NSE are to 1, and the closer MRE is to 0, the higher the simulation accuracy is.

2.3. Analysis Methods
2.3.1. Change Characteristics Analysis

Sen’s slope [46] and the Mann–Kendall (M-K) test method [47–49] are relatively ma-
ture statistical methods in the field of geosciences and have been applied to analyze the
trends, mutations, and magnitudes of hydrological and meteorological factors in basins. In
this study, the analysis of the change characteristics for each element adopted the above
two methods.

2.3.2. Driving Mechanism of AET

The sensitivity coefficient (SC) calculation method proposed by Beven [50] and the
method by Zhao et al. [51] were used to discuss the driving mechanism of AET and quantify
the contribution rate of driving factors to the change in AET; the formula is as follows:

Sevi = lim
4vi→0

(
4AET

AET

/4Vi
Vi

) =
∂AET

∂Vi
· Vi

AET
(13)

Gvi =
4Vi

Vi
· Sevi (14)

where Sevi is the SC of the ith meteorological factor (Vi). Gvi is the contribution rate of the
ith meteorological factor (Vi) to the change in AET. The SC of a meteorological element is
positive or negative, indicating that AET increases or decreases as the element increases.

3. Results
3.1. Validation of AET Simulation Results

In this study, seasonal statistics and analysis were conducted from March to May for
spring, June to August for summer, September to November for autumn, and December
to February for winter. From Table 3, in terms of seasonal simulation results, spring has
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the best effect, followed by autumn and winter, and summer has the biggest error. In
spring, R2, NSE, and MRE were 0.83, 0.72, and 6.39%, respectively, indicating that the LPJ
model could accurately simulate the AET characteristics in the TGRA. Both R2 and NSE
in autumn were higher than those in spring, indicating that the description of the change
characteristics in AET in autumn was better than that in spring, and MRE was higher than
that in spring, indicating that the characterization of AET in autumn was inferior to that in
spring. The overall simulation accuracy in winter was slightly worse than that in spring
and autumn, and it was the worst in summer, with R2, NSE, and MRE percentages of 0.76,
0.63, and 17.68%, respectively. For the annual simulation results, R2 and NSE were 0.89
and 0.76, respectively, indicating a high degree of fitting between simulated and measured
AET sequences. The MRE was 4.32%, indicating a small error between the simulated and
measured values of AET. From the scatterplot of measured and simulated AET (Figure 2),
scatter points are basically distributed around the trend line, and the slope of the trend
line is less than 1, indicating that the simulated AET was slightly lower than the measured
AET. In general, the LPJ model had good performance in simulating the AET, which can
accurately represent the actual trend characteristics of AET in the TGRA.

Table 3. Precision evaluation of seasonal and annual AET simulation results in the TGRA.

Evaluation Index Spring Summer Autumn Winter Annual Average

R2 0.83 0.76 0.86 0.75 0.89
NSE 0.72 0.63 0.74 0.67 0.76
MRE 6.39% 17.68% 7.49% 9.59% 4.32%Water 2023, 15, x FOR PEER REVIEW 9 of 22 
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Figure 2. Scatter plot of the simulated and measured AET in the TGRA.

3.2. Spatial and Temporal Characteristics of Variations in AET

From the perspective of the interannual variation trend, the AET showed a fluctuating
upward trend (Figure 3a), with a multiyear average value of 651.43 mm. The highest and
lowest values were 739.77 mm and 583.04 mm, respectively. After 2002, it was significantly
higher than before. The annual distribution of AET showed a unimodal seasonal variation
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trend (Figure 3b). The peak value occurred in July, reaching 113.02 mm, whereas the
valley value occurred in January and December, less than 13 mm. In addition to a slight
decreasing trend in May, AET showed an increasing trend in other months, among which
Sen’s slope statistics in January to April and July to September passed the significance
test. AET increased the fastest in July at a speed of 6.64 mm/10a, and the overall change
was evident.
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As shown in Figure 4, the spatial distribution of monthly AET showed significant
seasonal differences. In spring and summer from March to August, the spatial distribution
of AET showed significant characteristics of high in the west and low in the east. The value
of monthly AET in summer was higher than other seasons, reflecting the characteristics of
increased soil evaporation and vegetation transpiration level under adequate water and
heat conditions, which led to good vegetation growth in summer. The spatial distribution
of autumn AET from September to November showed similar characteristics of high in the
head and the west and lower in the end and the east of the reservoir. In November, the AET
clearly decreased, reflecting the characteristics of vegetation fading and evapotranspiration
decreasing in late autumn and early winter. The spatial pattern of AET from December to
February was similar and reached the lowest level of the whole year, reflecting the charac-
teristics of the low AET level caused by vegetation decay and insufficient hydrothermal
conditions in winter.

The multiyear average AET in the TGRA ranged from 492.59 to 719.45 mm (Figure 5a),
and the average for the whole area was 645.96 mm. AET exhibited nonsignificant spatial
differentiation and showed a decreasing trend from the east and west to the center. As
shown in Figure 5b, from 1981 to 2020, the annual change rate of AET in the TGRA ranged
from 6.56 to 53.16 mm/10a, and the spatial statistical mean value was 21.63 mm/10a. The
changes in AET in the end of tail areas and part of the northern belly areas were significant,
and the increased amplitude in other regions was small.
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3.3. Analysis of Driving Mechanism for AET in the TGRA
3.3.1. Correlation Analysis

Correlation analysis [52] was conducted between AET and climate factors to identify
the key climate factors affecting AET. The results showed a significant linear correlation
between AET and P, T, and net radiation (Rs) in the TGRA, with correlation coefficients
of 0.74, 0.96, and 0.91, respectively (Table 4). In order to improve the fitting accuracy, the
principle of the maximum correlation coefficient was adopted. After many simulations, it
was found that the correlation coefficients of exponential regression between AET and P, T,
and Rs were relatively higher than linear regression, with correlation coefficients of 0.78,
0.97, and 0.94, respectively (Table 4).

Table 4. Linear and exponential correlation coefficients between AET and P, T, and Rs.

Fitting Relation P T Rs

Linear correlation 0.74 0.96 0.91
Exponential correlation 0.78 0.97 0.94

Figure 6 shows the exponential regression relationships between AET and P, T, and
Rs in the TGRA. In comparison, the regression relation between AET and T was the best,
followed by Rs and the lowest of P, with an adjusted R2 of 0.95, 0.88, and 0.61, respectively.
It showed that AET in the TGRA was mainly affected by the temperature and radiation
term, which is consistent with the conclusion of Yan et al. [53].
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Figure 6. Exponential regression relations and adjusted R2 of AET and P, T, and Rs in the TGRA
(p ≤ 0.01).

3.3.2. Change Characteristics of Key Climatic Factors

The interannual variation characteristics (Figure 7a,c,e) and M-K test (Figure 7b,d,f)
of P, T, and Rs in the TGRA from 1981 to 2020 are shown in Figure 7. Table 5 shows the
statistical variation results of each factor based on Sen’s slope tests. In the past 40 years,
the P has fluctuated significantly (Figure 7a) and increased slightly at a change rate of
11.86 mm/10a (Table 5). There were several abrupt transition points in P, which occurred
in 1981, 1983, 2015, and 2018 during the statistical period (Figure 7b). Since 1981, the T has
been steadily increasing at a rate of 0.31 ◦C/10a (Table 5), and an abrupt transition point
occurred in 2000 (Figure 7d). From 1981 to 2020, the mean value of Rs was 2297.31 MJ/m2

(Figure 7e) and decreased at a rate of 2.75 MJ/m2/10a (Table 5). The abrupt transition
points in Rs occurred in 2001, 2003, and 2018 (Figure 7f). In general, there were certain
fluctuations in climate change in the TGRA, but the whole trend was relatively stable.
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Figure 7. Interannual variations (a,c,e) and M-K test (b,d,f) of the variation trends in P, T, and Rs
during 1981 to 2020 in the TGRA.

Table 5. Sen’s slope test for amplitude of the variation in P, T, and Rs in the TGRA (/10a).

P (mm) T (◦C) Rs (MJ/m2)

Sen’s slope 11.86 * 0.31 ** −2.75
Note: * The values are significant at p ≤ 0.05; ** the values are significant at p ≤ 0.01 (the same below).

3.3.3. Sensitivity Analysis

Combined with the abrupt change time of T (Figure 7d: 2001) and Rs (Figure 7f:
2001 and 2003), which has a large-degree influence on AET, and the change trend in AET
(Figure 3a), there is a significant difference between the two periods before and after
impoundment for the Three Gorges Project. Therefore, the statistical period (1981–2020) for
the driving mechanism of AET was divided into two stages of before (BI: 1981–2002) and
after impoundment (AI: 2003–2020).
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Table 6 shows the amplitudes of the SCs calculated according to Equation (13) for the
P, T, and Rs of the TGRA. The SC of AET to P increased at a rate of 0.07/10a, 0.15/10a, and
0.01/10a during BI, AI, and the whole study period, respectively. The statistical results
did not pass the significance test. The SC of AET to T changed by 0.09/10a and −0.03/10a
in BI and AI, respectively. The influence of T on AET increased before impoundment and
began to weaken after impoundment. During the whole study period, the SC for T showed
a weak increasing trend with a change rate of 0.03/10a. The SC of AET to Rs showed a
decreasing trend in BI, AI, and the whole study period. From 2003 to 2020, the decrease
trend was significant, with a change rate of −0.08/10a, indicating that the influence of Rs
on AET clearly weakened during AI.

Table 6. Sen’s slope tests for the amplitudes of the SCs for P, T, and Rs in the TGRA (/10a).

Time Interval P T Rs

1981–2002 0.07 0.09 * −0.03 *
2003–2020 0.15 −0.03 −0.08 *
1981–2020 0.01 0.03 * −0.10 **

Figure 8 shows the spatial distributions of the annual average SCs of AET to each
climate factor in different periods. From 1981 to 2002, the SC for P ranged from 0.75 to
6.21, with a spatial averaged value of 1.07. Except for a few areas in the southern edge of
the TGRA reaching a higher value, the SC for P distribution in other areas was even. The
averaged SC for T was 1.76, and the spatial distribution was high in the west and low in the
east. The averaged SC for Rs was 3.09. The spatial distribution showed a characteristic of
‘high in the middle and low at both end’. During 2003–2020, the spatial difference of the SC
for P was significant, with maximum and minimum values of 0.51 and 8.45, respectively,
and the mean value was 1.12, slightly increased compared with that before 2002. The SC for
P was higher in east belly areas and head areas of the reservoir and evenly distributed at a
lower level in other areas. The SC for T increased compared with that before 2002, with a
mean value of 1.84. The spatial distribution of the SC for Rs was basically the same as that
in BI, and the value of SC decreased slightly, with a spatial mean value of 2.84. During the
whole study period, the SCs of AET to P, T, and Rs were 1.09, 1.80, and 2.99, respectively.
The spatial distributions were generally consistent with that in AI. The SC for Rs was the
highest, followed by T, and P was the lowest, which indicates that the change in Rs per
unit quantity leads to the largest degree of change in AET, whereas P was the least. It also
indicates that the temperature and radiation term was the dominant climatic factor leading
to the change in AET in the TGRA.

3.3.4. Contribution of Driving Factors to the Change in AET

The contribution rates of meteorological factors to the change in AET in different statis-
tical periods in the TGRA were calculated according to the sensitivity analysis results and
Equation (14), and the results are shown in Table 7. From 1981 to 2002, the changes in P, T,
and Rs could cause the change rates of AET to be 5.54%, 0.24%, and 0.03%, respectively. The
influences of the three factors on AET were all positive driving, in which the P contributed
the most to the change in AET, followed by T, and the contribution of Rs was the smallest.
During 2003 to 2020, the contribution of P and T to the change in AET decreased to a certain
extent compared with that before 2002, whereas Rs had a certain inhibitory effect on the
increase in AET, which was mainly related to the significant decrease trend in Rs during
this period. From the perspective of the whole study period, P and T had a great influence
on the change in AET. In general, the increases in P and T were the main reasons for the
increase in the AET of the TGRA, and the decrease in Rs weakened the increased tendency.
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Table 7. Contribution of P, T, and Rs to AET changes in different statistical periods (%).

Time Interval P T Rs

1981–2002 5.54 0.24 0.03
2003–2020 4.46 0.17 −0.04
1981–2020 4.59 0.19 −0.06

The change rates of AET in BI, AI, and the whole study period were calculated, and
the contribution of human activities to the change in AET was obtained by subtracting the
change rate caused by climate factors from the total change rate of AET. As shown in Table 8,
during 1981–2002, the AET changed by 5.60%, the change rate caused by climate factors
was 5.81%, accounting for 103.75%, and the contribution of human activities was −0.21%,
accounting for −3.75%, indicating that the effect of human activities on AET during this
period was negative driving. In BI, human activities caused a certain degree of disturbance
to the underlying surface and vegetation destruction, which inhibited the increase in AET.
From 2003 to 2020, the AET changed by 6.28%, in which climate factors and human activities
contributed 4.59% and 1.69%, with contribution rates of 73.09% and 26.91%, respectively;
the contribution rate of human activities increased significantly. During the whole study
period, the change rate of AET was 5.28%, the contributions of climate change and human
activities were 4.72% and 0.56%, respectively, and the contribution ratios were 89.39% and
10.61%, respectively, indicating that in the nearly 40 years from BI to AI, human activities
contributed 10.61% to the increase in AET, and the climate factor was the dominant factor
on the increase in AET.
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Table 8. Contribution of climate change and human activities to AET changes in different statistical
periods (%).

Time Interval
AET Climate Change Human Activity

Total Change Rate/% Contribution/% Rate/% Contribution/% Rate/%

1981–2002 5.60 5.81 103.75 −0.21 −3.75
2003–2020 6.28 4.59 73.09 1.69 26.91
1981–2020 5.28 4.72 89.39 0.56 10.61

4. Discussion
4.1. Reliability of the Simulated AET

The validation of AET simulated by the LPJ was mainly based on MODIS AET prod-
ucts from 2001 to 2020. In order to further explore the reliability of this study, we compared
other scholars’ research results about AET in the TGRA and its surrounding areas. The
specific comparison results are shown in Table 9. Wang et al. [54] used CLM4.5, which
belongs to a kind of DGVM-simulated AET of the TGRA, from 1993 to 2013. The results
showed that the multiyear average AET was 606 mm. In our study, the multiyear average
AET during the same time scale was 655.11 mm, which is close to the CLM4.5-simulated
AET, with a relative error of 7.50%. Cui et al. [55] also used the CLM4.5 to estimate the AET
in the TGRA from 1990 to 2015 and obtained a multiyear average AET of 590.75 mm, which
had a relative error of 9.17% with this paper. Cao et al. [56] estimated the regional AET in
the middle and lower reaches of the Yangtze River by using the principle of water balance
and remote-sensed data from 1992 to 2015 and found that the multiyear average AET was
728.70 mm, which was more than our result by 10.57%. Considering that the middle and
lower reaches of the Yangtze River contain a part of the TGRA, we think the results are
reliable for comparison to a certain extent.

According to the above comparisons, it is concluded that the results of AET in this
study match well with previous studies in different research periods and locations around
the TGRA. Therefore, we are convinced that the simulation of AET in this study is reliable
and credible.

Table 9. The comparison of the LPJ simulated values of AET with previous studies.

Research Study Area and Period Methods Their Values
(mm)

This Study’s
Values (mm)

Relative Error
(%)

Wang et al. [54] TGRA/1993–2013 CLM4.5 606.00 655.11 7.50
Cui et al. [55] TGRA/1990–2015 CLM4.5 590.75 650.41 9.17

Cao et al. [55] middle and lower reaches of
Yangtze River/1992–2015

water balance and
remote sensed data 728.70 651.70 10.57

4.2. Distribution and Variations in AET Components

In the LPJ model, AET consists of EP, EI, and ES. An analysis of the variation charac-
teristics in these three parts is helpful to understand the variation in AET. Figure 9 shows
the spatial distribution and variation amplitude of the three parts in the TGRA. The spa-
tial statistical mean values of EP, EI, and ES were 459.33 mm, 78.57 mm, and 108.06 mm,
respectively. Among them, EP accounted for the largest proportion of AET, with 71.11%,
indicating that the AET was mainly from canopy transpiration. EP ranged from 317.86 to
515.07 mm. Under the background of increasing T and P, which provided a hydrothermal
condition, vegetation growth showed a benign trend, and EP increased accordingly. EI
accounted for the smallest proportion of AET with 12.16%. The annual averaged EI ranged
from 20.59 to 92.21 mm and showed a decreasing trend in most regions, especially in urban
areas, where the urban expansion was the main reason for the decrease in EI. ES ranged
from 48.51 to 128.36 mm, accounting for 16.72% of AET. Except for a few areas at the end of
the reservoir, ES increased in most areas of the TGRA. As for the reservoir impoundment,
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the water level and water surface area increased; the water supply was sufficient to fully
meet the potential evapotranspiration demand. Therefore, ES increased significantly in
water bodies and surrounding areas. In general, the AET increased during the study period,
and its components presented different spatial and variation characteristics.
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4.3. Limitations and Future Improvements

Although the LPJ model had a good performance in simulating the AET over the
TGRA, it is still necessary to discuss the limitations of the modeling results. Firstly, the
spatial resolution of the atmospheric forcing data is 0.1 degrees, which leads to the spatial
distribution of AET not being accurately described. Secondly, the parameters in the LPJ
model are numerous and difficult to obtain, and the ecological physiological parameters in
the model mainly refer to the previous research results; we used just 2009 soil texture data in
the LPJ model, which created uncertainty in the simulation of AET. Finally, human activities
drive AET, mainly in two ways. The first is to directly affect the dynamic process of the
hydrologic cycle by changing the land use types [54], and the second is to make a certain
climate effect due to the disturbance to the underlying surface. This climate effect feeds
back into climate change, which, in turn, affects the hydrologic cycle [57–59]. The change in
the contribution rate of human activities on AET variation indicates that human activities
drove AET mainly through the first and second ways before and after impoundment. In
fact, the process of producing climate effects by human activities throughout the whole
study period and the contribution of climate factors on AET change partially include human
effects. Therefore, localization parameters need to be acquired through field detection or
experimental observation, and a more accurate input dataset and different ages of soil
data for different simulation periods are needed to carry out future research. Based on the
higher-resolution simulation results and setting different simulation scenarios, separating
the part of the effect produced by human factors from climate change would also be the
focus of future research.

5. Conclusions

In this study, we simulated the AET from 1981 to 2020 in the TGRA by using the LPJ
model, and we quantified the individual contributions of climate and human factors to
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changes in AET in different periods using Sen’s slope and sensitivity analysis methods.
The results of this study demonstrate the following:

(1) The simulation accuracy of the LPJ model for AET in the TGRA was the best in
spring and autumn, followed by winter, and the worst in summer. In general, the overall
accuracy was high, which can accurately represent the trend characteristics of AET in
the TGRA.

(2) During 1981–2020, the AET showed a fluctuating upward trend, with a multiyear
average value and increase rate of 645.96 mm and 21.63 mm/10a. The annual distribution
of AET showed a unimodal seasonal variation trend, with a peak value in July of 113.02 mm
and the valley value in January and December at less than 13 mm. The spatial distribution
of AET was even. The changes in AET in the end of tail areas and part of the northern belly
areas were significant, whereas the increased amplitude in other regions was small.

(3) Correlation analysis showed that the key climate factors affecting AET changes in
the TGRA were mainly P, T, and Rs. The SC of AET to Rs was the highest at 2.99, followed
by T of 1.80, and P was the lowest at 1.09, which means that the change in Rs per unit
quantity leads to the largest degree of change in AET, whereas P was the least. It also
indicates that the temperature and radiation term was the dominant climatic factor, leading
to the change in the AET in the TGRA.

(4) From 1981 to 2002, the change rate in the AET was 5.60%; the change rates caused
by climate factors and human activities were 5.81% and −0.21%, accounting for 103.75%
and −3.75%, respectively. From 2003 to 2020, the AET changed by 6.28%, in which climate
and human factors contributed 73.09% and 26.91%, respectively. From the whole study
period, the change rate of AET was 5.28%, and the contribution ratios of climate and human
factors were 89.39% and 10.61%, respectively. Overall, human activities and climate change,
which hold a dominant position, jointly promoted the increase in AET in the TGRA.
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Abstract: Understanding how drought propagates from meteorological to agricultural drought
requires further research into the combined effects of soil moisture, evapotranspiration, and precipi-
tation, especially through the analysis of long-term data. To this end, the present study examined
a multi-year reanalysis dataset (ERA5-Land) that included numerous drought events across the
Iberian Peninsula, with a specific emphasis on the 2005 episode. Through this analysis, the mech-
anisms underlying the transition from meteorological to agricultural drought and its features for
the selected region were investigated. To identify drought episodes, various non-parametric stan-
dardized drought indices were utilized. For meteorological droughts, the Standardized Precipitation-
Evapotranspiration Index (SPEI) was employed, while the Standardized Soil Moisture Index (SSI),
Multivariate Standardized Drought Index (MSDI), and Standard Precipitation, Evapotranspiration
and Soil Moisture Index (SPESMI) were utilized for agricultural droughts, while their ability to iden-
tify relative vegetation stress in areas affected by severe droughts was investigated using the Fraction
of Absorbed Photosynthetically Active Radiation (FAPAR) Anomaly provided by the Copernicus
European Drought Observatory (EDO). A statistical approach based on run theory was employed
to analyze several characteristics of drought propagation, such as response time scale, propagation
probability, and lag time at monthly, seasonal, and six-month time scales. The retrieved response
time scale was fast, about 1–2 months, and the probability of occurrence increased with the severity
of the originating meteorological drought. The duration of agricultural drought was shorter than
that of meteorological drought, with a delayed onset but the same term. The results obtained by
multi-variate indices showed a more rapid propagation process and a tendency to identify more
severe events than uni-variate indices. In general terms, agricultural indices were found to be effective
in assessing vegetation stress in the Iberian Peninsula. A newly developed combined agricultural
drought index was found to balance the characteristics of the other adopted indices and may be
useful for future studies.

Keywords: drought propagation; agricultural drought; meteorological drought; Iberian Peninsula;
non-parametric drought index

1. Introduction

Droughts are complex and spatially heterogeneous phenomena, with high variability
of conditions between adjacent locations, making it easy to find an area subject to drought
while neighbouring regions feature normal or even wet conditions. These spatial character-
istics are mainly detectable in climatic transition areas where atmospheric influences are
heterogeneous. The Iberian Peninsula (IP) is a notable example of such an area (Figure 1),
a Mediterranean region located between temperate and subtropical climates, and is subject
to diversified atmospheric patterns that cause a large variability of precipitation [1–3], that
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has presented recurrent droughts and a significant tendency towards more arid conditions
in the last decades [4]. Drought is a multi-scalar phenomenon, as the effects of precipita-
tion deficits occur across different systems and at various time scales. This is described
by [5] and is due to the involvement of mechanisms at multiple scales. The drought signal
is propagated through a water and energy cycle that involves a multitude of processes.
The first transition in the propagation of drought generally occurs from meteorological
to agricultural drought, which is driven by the response of soil moisture or crop yield to
various meteorological variables such as precipitation and evapotranspiration. The com-
bined effect of water shortage due to a lack of precipitation and the enhanced atmospheric
evaporative demand can lead to a significant depletion of soil moisture, which in turn can
trigger agricultural drought events.
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Figure 1. Location of the Iberian Peninsula within the Mediterranean sector. It includes the continental
areas of Spain, Portugal, and Andorra.

The propagation from meteorological drought to agricultural drought is an under-
studied area, requiring further investigation to understand its complex characteristics.
According to a recent review by [6], the co-occurrence of multiple driving factors in drought
generation is a critical aspect that requires further attention. Currently, most studies
only take into account soil moisture [7] or soil water deficit [8] and agricultural reservoir
levels [9], and the combined contribution of soil moisture, evapotranspiration, and pre-
cipitation to agricultural droughts is not yet fully understood. Accordingly, as suggested
in previous studies, the development and application of new multi-variate indices [10]
could be helpful in shedding light on the complex relationships between meteorological
and agricultural drought. Additionally, for the analysis of propagation from meteorolog-
ical to agricultural drought, it is appropriate to employ high resolution and long-term
data, as highlighted by [11], in particular concerning soil moisture, which can be obtained
through three major sources: in-situ observations, remote sensing, and hydrological models.
The majority of studies based on in-situ observations involve measuring soil moisture levels
at different depths across the globe using various soil moisture networks, but this approach
has limitations as the observations are relatively short [12] and unevenly distributed [13],
or may be unavailable in some isolated areas. Remote sensing products have been pre-
ferred in some studies [14] since they provide better spatial coverage, but they appeared
insufficient because they only cover a few centimeters of soil, while soil moisture from
hydrological simulations has been found to be possibly affected by discrepancies compared
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to in-situ data [15]. Therefore, more studies that combine and evaluate different datasets
are needed. Note that variations in vegetation health and/or cover may be due not only
to rainfall or soil moisture deficits, but also to other stress factors, such as plant diseases.
In this sense, indicators of vegetation stress and information on the deficit of precipitation
and soil moisture must be considered together.

Given the existing research gaps, this study aimed to contribute to our understanding
of agricultural drought over the IP, whose land cover is composed by a large extension of
cropland along with other vegetation systems such as tree cover and grassland, specifically
in relation to its propagation from meteorological droughts. To achieve this, a long-term
dataset containing several drought events was analyzed, providing a comprehensive charac-
terization of both meteorological and agricultural droughts. Various standardized drought
indices were used, ranging from uni-variate to multi-variate indices that considered differ-
ent physical quantities. In addition, a new combined index was proposed to account for the
different factors that contribute to drought propagation. Overall, this study significantly
advances our knowledge of meteorological and agricultural drought and their propagation
process by leveraging a comprehensive set of tools, including meteorological, agricultural,
multivariate, and combined drought indices. It offers a comprehensive perspective on
the complex dynamics of drought, providing valuable insights for future research and
informing effective drought management strategies.

2. Materials and Methods
2.1. Dataset

With the development of data assimilation technology, reanalysis data have become
more representative of observed conditions and less limited than in-situ and remote sensing
data. Reanalysis data offer global coverage, long time series, no gaps in space and time,
and contain subsurface data, making them ideal for assessing agricultural drought. Several
reanalysis datasets have been developed, and this study was conducted by employing
the state-of-the-art reanalysis dataset for land applications, ERA5-Land [16], provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF) and included in
the Copernicus Climate Change Service (C3S) of the European Commission. The ERA5-
Land dataset was chosen as recommended in [17] due to its demonstrated relatively high
accuracy compared to other remote sensing and reanalysis datasets [18] and hydrological
models [19]. ERA5-Land offers a detailed record of hourly land surface evolution from
several decades ago to the present, providing a vast array of key variables that represent the
water and energy cycles. This dataset was chosen due to its superior ability to characterize
the water cycle compared to ERA5 [20]. The original spatial resolution of the ERA5-Land
dataset is 9 km on a reduced Gaussian grid, but C3S provides re-gridded data on a regular
latitude-longitude grid of 0.1◦ × 0.1◦, which corresponds to approximately 11 km at mid-
latitudes. This study focused on the IP, covering a 72-year period from 1950 to 2021, using
monthly-mean averages pre-calculated by C3S since sub-monthly fields were not necessary
for our analysis.

To better explain the variables used in this study, we employed three key variables
that are essential for computing drought indices:

• Total Precipitation [m]—This variable represents the total amount of rain and snow
that has fallen on the Earth’s surface between the beginning of the forecast time and
the end of the forecast step. The units of precipitation are measured in depth in meters,
which represents the extent of water that would be spread uniformly over the grid box;

• Soil Moisture [m3m−3]—This variable represents the volume of water in different soil
layers defined by the ECMWF Integrated Forecasting System. Specifically, for this
study, we considered the first two ERA5-Land layers, which range from 0 to 28 cm
in depth. Although the depth required for the most adequate representation of soil
moisture content for agricultural droughts is still under exploration [21,22], we chose
to follow the indication of [23], which suggests removing the lower layers to better
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represent the soil moisture conditions due to ancillary sources such as local rainfall or
irrigation, so only the first two ERA5-Land layers were used (0–28 cm);

• Potential Evapotranspiration [m]—This variable is usually considered to be the
amount of evaporation, under existing atmospheric conditions, from a surface of
water having the temperature of the lowest layer of the atmosphere. The ECMWF
Integrated Forecasting System computes it for an agricultural surface assuming it
is well-irrigated, presuming that it does not significantly impact the atmospheric
conditions in the region, such as humidity or cloud formation. This simplification
allows for a standardized approach to estimating potential evaporation in agricultural
contexts, which can introduce some uncertainties. In this respect, we compared the
potential evapotranspiration derived from ERA5-Land with that calculated using the
Penman-Monteith [24] equation, which takes into account various meteorological vari-
ables and thus eliminates the assumption of zero atmospheric impact, and we found
that there were no significant differences in the results between the two methods.

2.2. Drought Indices

To identify meteorological droughts, we used the Standardized Precipitation and
Evapotranspiration Index (SPEI) [10], which is based on the water balance of precipitation
minus evapotranspiration and was chosen because it has been shown to be suitable for
drought detection in Spain [3]. To capture agricultural droughts, we adopted several stan-
dardized indices to analyze the different outcomes generated by their distinct formulations.
The first agricultural drought index was the Standardized Soil Moisture Index (SSI) [25],
which was chosen for its simplicity and well documented capability to detect agricultural
drought events [26], besides its reliability at a global scale for studying the propagation
from meteorological drought detected by SPEI [13]. In addition, we adopted two indices to
evaluate composite drought anomalies (agricultural and meteorological). We computed
a multivariate index, the Multivariate Standardized Drought Index (MSDI) [27], which is
based on the joint probability of precipitation and soil moisture, considering the effect of
different variables in the characterization of agricultural droughts. We also included the
Standard Precipitation, Evapotranspiration and Soil Moisture Index (SPESMI), a newly
developed index that entirely accounts for the different variables involved in agricultural
drought generation, introduced by [28] and formulated depending on both precipitation
minus evapotranspiration balance and soil moisture. All indices used in this study were
calculated using the non-parametric approach suggested by [25]. This method removes as-
sumptions about the distribution of the variables and avoids the computationally expensive
fitting of parametric distributions.

For example, MSDI was computed by treating precipitation and soil moisture at a se-
lected time scale (e.g., 3 months) as random variables X and Y, respectively, and considering
their joint distribution,

P(X ≤ x, Y ≤ y) = p. (1)

The empirical joint probability p was estimated with the Gringorten plotting position
formula [29] as in [25],

P(xk, yk) =
mk − 0.44
n + 0.12

, (2)

where n was the number of the total input data and mk was the number of occurrences of
the pair (xi, yi) with xi ≤ xk and yi ≤ yk for i = 1, 2, . . . , n. Similarly, for univariate indices
such as SSI the empirical marginal probability was calculated by using the univariate form
of the Gringorten plotting position formula,

P(xi) =
i− 0.44
n + 0.12

, (3)

where n was again the number of total input data and i was the rank of the observed values
from the smallest. After obtaining the joint or marginal probability p shown in Equation (1),
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to compute the drought index, it was only needed to retrieve the inverse of the standard
normal distribution function φ as in [25], namely,

MSDI = φ−1(P). (4)

By applying this methodology, we were able to calculate all the drought indices
using the same approach, simply by modifying the variables used in the calculations.
For example, in SPESMI, the joint probability p of precipitation minus evapotranspiration
and soil moisture was calculated (see Table 1 for all the details).

Table 1. Characteristics of the standardized drought indices constructed with the non-parametric
technique. P stands for Precipitation, SM for Soil Moisture, and E for Evapotranspiration.

Drought Index Structure Variables Type of Drought

SPEI Multivariate P–E Meteorological
SSI Univariate SM Agricultural

MSDI Multivariate P, SM Agro-Meteorological
SPESMI Multivariate P–E, SM Agro-Meteorological

This not only made the calculations more straightforward but also ensured that the
analysis was consistent across all the different indices. We used time scales of 1-, 3-,
and 6-months to capture the immediate to seasonal/semi-annual impacts of precipitation,
evapotranspiration, and soil moisture on drought characterization. To classify the drought
categories, we followed the system described in [30] for the IP. Extreme drought was
defined as indices with values below −2, severe drought as values between −2 and −1.5,
and drought as values below −1 but above −1.5. Normal/wet conditions were associated
with index values above 0, while dry conditions were indicated by an index value of −0.5.
See Table 2 for a summary of the categories.

Table 2. Drought categories for the uni-variate and the multi-variate standardized drought indices.

Drought Index Value Drought Category Conditions

Index ≤ −2 −2 Extreme Drought
−2 < Index ≤ −1.5 −1.5 Severe Drought
−1.5 < Index ≤ −1 −1 (Moderate) Drought
−1 < Index ≤ 0 −0.5 Dry

Index > 0 1 Normal/wet

Besides the described uni-variate and multi-variate indices, owing to the complex
nature of drought events, another new index was proposed. In order to avoid relying on the
information provided by a single index only, which might omit important characteristics
of drought phenomena, a Combined Agricultural Drought Index (COMB) was developed
adapting the Combined Drought Indicator described by [31]. In detail, COMB was based
on the composition of the three agricultural drought indices SSI, MSDI, and SPESMI, and it
was structured to favor the predominance of drought conditions over the other possible
classes, namely when more than one indicator showed values below −1. To construct
COMB, the drought categories reported for individual drought indices were taken into
account, following the approach proposed by [32]. The index was not a simple average
of the three indices, but rather a value was assigned to it based on the combination of
drought categories. The severe drought condition (−1.5) was a refinement with respect
to [32], to provide information with higher detail and consistency with [30]. When the three
indices belonged to different categories, the arithmetic average was calculated and COMB
was assigned to the resulting category. The focus of the combined index is on identifying
drought conditions, while normal and wet conditions are only important for detecting the
end of drought events. Please refer to Table 3 for details on the COMB classification.
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Table 3. Methodology for the calculation of Combined Agricultural Drought Index (COMB).

Drought Indices Values (SSI, MSDI, SPESMI) COMB Conditions

2 + indices ∈ (−∞,−2] −2 Extreme Drought
2 + indices ∈ (−2,−1.5] −1.5 Severe Drought
2 + indices ∈ (−1.5,−1] −1 (Moderate) Drought

2 + indices ∈ (−1, 0] −0.5 Dry
2 + indices ∈ (0,+∞) 1 Normal/wet

2.3. Methods of Analysis

In this study, we investigated various aspects of drought phenomena, with a primary
focus on the propagation from meteorological to agricultural drought. To this end, we
employed different approaches to capture the distinct behaviors of the drought indices used.
The first part of our analysis involved characterizing the two types of drought separately,
with particular attention paid to agricultural drought events. We began by qualitatively
examining the temporal evolution of the different drought indices at the three time scales,
spanning the entire time window of the dataset (1950–2021). This involved observing the
trends over the years and identifying possible similarities or differences between SPEI and
the agricultural indices, as well as among the agricultural indices themselves.

In addition to characterizing meteorological and agricultural drought separately, we
compared the agricultural drought indices to observations of vegetation health. To do
so, we employed the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)
Anomaly [33], which has been demonstrated to be effective in monitoring and assessing
agricultural drought impacts [34]. Specifically, we used the FAPAR Anomaly indicator
provided by the Copernicus European Drought Observatory EDO [35], which is com-
puted as deviations from the long-term mean of biophysical FAPAR derived from surface
reflectances measured by the MODIS-Terra satellite over a 21-year period (2001–2021).
The EDO FAPAR anomalies are available at a spatial resolution of 1 km and are calculated
for 10-day intervals. To compare these data to the monthly drought indices obtained
from the ERA5-Land dataset, we calculated them on an 11 km grid and computed the
mean for every 30-day period. Furthermore, following the recommendation of [36], a re-
standardization step was performed on the monthly-averaged FAPAR anomalies obtained.
This involved computing a new index, Fs, used to better compare and analyze the data and
described by

Fs =
Fi − F

σ
, (5)

where for each specific year, Fi represents the monthly averaged FAPAR anomaly for month
i, while the mean and standard deviation of the monthly averaged FAPAR anomaly across
all months i during the entire time period from 2001 to 2021 are represented by F and σ,
respectively.

The aim of the analysis using FAPAR anomalies was to assess the ability of agricultural
indices to identify vegetation stress in areas affected by severe droughts. The analysis was
based on verification metrics adapted from [37]. To compare the performance of the drought
indices SSI, MSDI, SPESMI, and COMB with FAPAR anomalies, we used the following
verification metrics: Probability Of Detection (POD), False Alarm Ratio (FAR), Critical
Success Index (CSI), and Effect Of Drought (EOD). The drought categories presented in
Tables 2 and 3 were considered, and the metrics were formulated as follows:

POD = H/(H + M)
FAR = F/(H + F)

CSI = H/(H + M + F)
EOD = (H + HN)/(M + F + H + HN),

where H (Hit) denoted the number of grids where the agricultural drought index showed
categories −1, −1.5, or −2 and the FAPAR anomaly showed values belonging to the
same range of categories; M (Miss) designated the number of grids where the FAPAR

105



Water 2023, 15, 2032

anomaly was subjected to categories −1, −1.5, or −2 and the agricultural drought index
was subjected to categories higher than −1; F (false alarm) stood for the number of grids
where the FAPAR anomaly belonged to categories higher than −1, but the agricultural
drought index indicated categories −1, −1.5, or−2; HN (Hit Null) expressed the amount of
grids where the drought indices and FAPAR anomaly revealed categories 0.5 or 1. The total
quantity of grids considered was given by the sum of H, M, F, and HN , and the values
of all four verification metrics ranged between 0 and 1, with a perfect fit characterized by
POD = 1, FAR = 0, CSI = 1, and EOD = 1.

The subsequent step involved examining the relationship between the characteristics
of droughts identified using different indices. To extract drought characteristics, we utilized
the widely used run theory [38] to identify drought events. According to this method,
a drought event begins when a drought index falls below a fixed threshold and continues
until the index values remain continuously below that threshold (negative run), ending
only when the index exceeds the threshold level (positive run). For this study, a threshold
value of −1 was adopted for drought indices, as is customary. However, special attention
was given to severe and extreme drought events, which are generally the most significant
in terms of impacts and consequences.

After identifying the drought events, the next step involved calculating the average
values of the agricultural drought indices on each gridpoint over the entire study period
for the identified drought events. This was carried out to examine the relationship between
the different types of indices and the properties of droughts. Specifically,

- Percentage: spatial fraction of IP affected by severe/extreme droughts;
- Duration: number of months with drought index values below the −1.5 threshold;
- Frequency: number of drought events per year;
- Severity: lowest value of the drought index during the drought periods;
- Intensity: ratio of drought severity to the drought duration;
- Magnitude: sum of absolute values of the drought index during the drought period.

After examining the characteristics of agricultural drought events using various in-
dices, the second part of this study focused on analyzing the propagation of drought
from meteorological to agricultural domains. To do this, the response time scale (RT) was
calculated, following the approach of [39]. The RT reflects the time it takes for the accu-
mulated deficit in meteorological drought to correspond to agricultural drought, and it is
based on a correlation analysis between agricultural and meteorological drought indices at
different time scales. Specifically, for each location, the Pearson correlation was calculated
between the time series of SSI, MSDI, SPESMI, and COMB at a 1-month time scale and
SPEI at time scales of 1-, 2-, 3-, . . . , and 48-months. The response time scale for a given
agricultural drought index was then determined as the time scale of SPEI with the highest
correlation coefficient with the index values. This analysis covered the entire time period of
the ERA5-Land dataset.

To analyze specific parameters of drought propagation, this study focused on a signifi-
cant case study, the 2005 drought event in the IP, which had severe impacts on the entire
European continent, reducing cereal yields by 10% [40]. This event is well documented
and reported in various databases, including the European Drought Observatory and
Emergency Events Database EM-DAT [41], making it a suitable reference for the analysis.
The period including the 2005 drought was empirically investigated by examining the se-
quential spatial extent of drought coverage according to different drought indices at various
time scales [42]. This approach allowed for the observation of spatial drought propagation
across different systems over the IP, and some locations were selected for further analysis
involving the lag time (LT) between the onset of meteorological and agricultural droughts.
According to [43], the lag time for two different types of drought event was expressed as

LT = TM − TA, (6)
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where TM and TA represented the initial time (in months) of meteorological and agricultural
drought, respectively. Therefore, LT was used to characterize drought propagation by
measuring the difference in onset timing between the two drought episodes.

3. Results
3.1. Characterization of Agricultural Drought over the IP

The analysis began with a qualitative inspection of the indices computed over the time
period from 1950 to 2021. Figure 2 displays the temporal evolution of the meteorological
index (SPEI) and agricultural drought (AD) indices (MSDI, SPESMI, SSI, and COMB) at
1-, 3-, and 6-month time scales, which allowed for the distinction of the main features of
meteorological and agricultural drought events. The evolution of the indices appeared
smoother for larger time scales than for the 1-month time scale, and there was a slight trend
towards increased dryness in the last two decades for both SPEI and AD indices, extending
the assessment of droughts from meteorological to agricultural droughts. The analysis of
Figure 2 revealed that the frequency and severity of meteorological drought episodes have
increased since the 1990s, and the recurrence of severe droughts has notably developed
in the last ten years. While the similarities of the indices suggested a good correlation
between the contributions of precipitation deficit, water balance, and soil moisture, some
differences emerged among the AD indices. SSI reached the highest values, while the two
multi-variate indices reported the lowest values, with COMB being a compromise between
the two types of indices. The multi-variate indices, which include the effect of precipitation,
seemed to better reproduce the variations of SPEI, suggesting only a limited impact of soil
moisture in their computation.

Figure 3 presents the skill score metric indices for the four AD indices at different time
scales (1-, 3-, and 6-month) in comparison to FAPAR anomalies. The metrics include H
(hit) and M (miss), which represent the ability of the AD indices to detect drought-affected
areas where there were also dry vegetation conditions identified by FAPAR anomalies.
A high value of POD = (H + M)/M > 0.8 indicates that the AD indices were successful
in identifying gridpoints dominated by agricultural droughts characterized by stressed
land vegetation, especially for semi-annual droughts (6-month time scale) detected through
MSDI and SPESMI. On the other hand, F (false alarm) represents the number of grids
where SSI, MSDI, SPESMI, or COMB detected drought conditions but with disagreement
compared to the FAPAR anomalies. The non-zero results for FAR = F/(H + F) indicate
that there were some areas with dehydrated plants that could not be accurately monitored
by AD indices, with almost negligible variations among the time scales and indices. The
values of CSI = H/(H + M + F) suggest that the regions classified with a desiccated
flora by FAPAR anomalies were not only those where the AD indices identified drought
conditions, while the opposite was, almost everywhere, true. The ratio of drought-affected
areas detected by AD indices corresponding to high vegetation stress with respect to
the total zones of high vegetation stress recognized by FAPAR anomalies was approx-
imately 0.5, with slightly increasing CSI for semi-annual droughts. This suggests that
FAPAR could monitor arid areas which could not be successfully captured by SSI, MSDI,
SPESMI, or COMB, maybe due to the fact that FAPAR anomalies reveal variations in
the vegetation health which can derive not only from rainfall or soil moisture deficits,
but also from other stress factors such as plant diseases. Considering HN (hit null) as the
amount of gridpoints that were free of droughts and with healthy foliage, the values of
EOD = (H + HN)/(M + F + H + HN) lower than 1 implied some areas in mixed con-
ditions, namely affected by drought, which had no relevant impacts on vegetation or
unhealthy vegetated regions caused by factors other than droughts. In conclusion, SSI,
MSDI, SPESMI, and COMB were efficient in assessing the vegetation stress of IP during
drought events, but they were not sufficient to distinguish all the areas identified by FAPAR
anomalies, whose stress could be due to different factors other than drought occurrence.
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(a) (b)

(c)

Figure 2. Temporal evolution of Iberian Peninsula averaged SPEI and agricultural drought (AD)
indices (SSI, COMB, MSDI and SPESMI) at 1-month (a), 3-month (b) and 6-month (c) time scales for
the entire period considered. The linear trend is also represented for each index. The orange dashed
line indicates the −1.5 threshold for severe drought events.
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To investigate the diverse responses of the AD indices in the IP region during the stud-
ied period, various drought characteristics were analyzed. Firstly, the average percentage
of the IP region affected by drought events was computed. The results are illustrated in
Figure 4, which displays the percentage of the IP region experiencing severe to extreme
droughts (i.e., AD indices ≤ −1.5) at 1-, 3-, and 6-month time scales. One key finding
was the marked disparity between SSI and other indices, especially the two multi-variate
indices. Specifically, while MSDI and SPESMI revealed more than 75% of the IP region
suffering from droughts, SSI only covered less than 40%. The integration of precipitation
(or water balance) and soil moisture deficits generated drought events in a wider area
of the IP region compared to the case of soil moisture deficit alone, with a difference of
approximately 40% for each time scale, a logical consequence of the MSDI’s capability to
detect both meteorological and agricultural events. COMB exhibited a percentage value of
around 60%, a trade-off between uni-variate and multi-variate indices. The variations in
the values of the same AD index depending on the time scale were small, and the highest
percentage was generally observed for 1-month droughts.
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Figure 3. Skill score metrics regarding FAPAR anomalies for AD indices at the 1-, 3-, 6-month
time scales.

Figure 4. Percentage of the IP affected on average by severe/extreme droughts according to agricul-
tural indices at the 1-, 3-, 6-month time scales.
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To gain further insights into the agricultural droughts identified by the AD indices
at different time scales, we investigated several other characteristics. One of these is the
frequency of severe/extreme droughts per year, which is closely related to their duration,
as well as their severity, which is typically used to assess the significance of drought events.
Figure 5 displays these two characteristics for each index and time scale. The frequency of
severe/extreme drought events per year (Figure 5a,c,e for 1-, 3- and 6-month time scales,
respectively) confirmed that multi-variate indices were more sensitive than uni-variate
ones in detecting drought events in a larger area. Specifically, SSI identified less than one
drought event per year, on average, across all the IP at the 1-month time scale, while SPESMI
and MSDI detected multiple drought episodes in several areas, with values ranging from
around 1 event/year to 1.2 events/year on average. This is in agreement with the fact that
precipitation, evapotranspiration, and soil moisture variables are vital factors to adequately
represent agricultural drought conditions [28] and, especially in large areas with different
climate characteristics, their combination by using multi-variate indices could better detect
the occurrence of drought events. The patterns of COMB showed a balance between SSI
and MSDI/SPESMI. The north-west and the Pyrenees were the most affected zones for all
indices, indicating that both soil moisture and precipitation/water balance deficits were
recurrent. Similar patterns were found at 3- and 6-month time scales, although the frequency
values were naturally lower due to the longer duration of the considered events. The
average drought severity showed a more complex behavior among the AD indices. SSI
exhibited a large area of non-severe droughts (severity smaller than 1.5) at the 1-month time
scale (Figure 5b), while COMB, SPESMI, and MSDI showed gradually increasing regions
affected by severe drought conditions. However, the distribution of severity values differed
among the indices. For instance, a small fraction of the centre-east of the IP was one of the
most affected zones according to SSI but was not equivalently accounted for by the other
indices, especially by MSDI, which retrieved its lowest severity values in the same area. This
suggested a balance between the contribution of water balance variables in multi-variate
indices, which could significantly impact the effect of soil moisture. Severity also showed a
wider range of values for longer time scales. Bi-annual deficits in water balance and soil
moisture resulted in large areas affected by severe droughts, with peaks close to extreme
droughts in certain regions. On the other hand, even if the 6-month scale showed severity
values similar to shorter time scales on average, severity appeared more pronounced or not
depending on the region and the index. For example, in the south of Portugal, COMB-6,
MSDI-6, and especially SPESMI described a higher severity than at 1- and 3-month time
scales. Other areas, such as the mountain region in the southern part of the IP and the
northern peninsular zone, reported the opposite behavior, revealing lower severity values
at longer time scales.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Patterns of the average characteristics of drought events on the Iberian Peninsula according
to 1-, 3- and 6-month time scales for the different AD indices: frequency of severe/extreme droughts
per year (a,c,e), and absolute value of drought severity (b,d,f).

3.2. Propagation from Meteorological to Agricultural Drought

This study investigated the response time scale (RT) as a key parameter in drought
propagation, which represents the accumulated precipitation deficiency in the antecedent
RT months that causes agricultural drought. A shorter RT indicates a faster response to
meteorological drought. Figure 6a shows the maximum Pearson correlation between 1-month
agricultural drought indices and SPEI computed from 1- to 48-month time scales for the
entire 72-year period over the IP. Figure 6b indicates the corresponding RT in months for
each gridpoint.

The analysis revealed a high correlation between agricultural and meteorological
droughts at small time scales, consistent with previous studies [44]. The RT for SSI
was 2 months for most of the IP, except for the Pyrenees where RT was 1 month and
3–4 months in some isolated regions, particularly in the southern coastal areas. MSDI,
SPESMI, and COMB had an RT of 1 month, indicating that the contribution of other vari-
ables accelerated the response compared to soil moisture alone. In particular, SPESMI,
which includes evapotranspiration, presented the highest correlation with meteorological
droughts detected by SPEI, which is also based on water balance.

For a detailed analysis of the propagation from meteorological to agricultural drought,
we focused on the 2005 drought episode in the IP region. To investigate the spatial evolution
of the drought phenomenon, we analyzed the monthly patterns of drought index values
during the reference period from October 2004 to December 2005. Specifically, we examined
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the variations of the AD indices at the 1-month time scale and compared them to the
progression of the SPEI at 1-month and 3-month time scales to understand the propagation
from the current month and from the seasonal meteorological water balance deficit to
the development of agricultural drought. Figure 7 illustrates the temporal evolution of
the meteorological drought identified by the SPEI at 1- and 3-month time scales from
October 2004 to December 2005 over the entire IP region.

(a) (b)

Figure 6. (a) Maximum Pearson correlation retrieved between the SPEI at the 1-, 2-,. . . , 48-month time
scales and the 1-month time scale AD indices. (b) Corresponding RT in months for each gridpoint.

As shown in Figure 7a, the SPEI calculated at monthly intervals indicated a moderate
drought condition in December 2004 over the majority of the IP. February 2005 was identi-
fied as the driest month, with a significant area experiencing extreme drought conditions.
This pattern was followed by two wetter months, after which the severe/extreme drought
episode reoccurred in May 2005, initially affecting only the south and eastern coasts of
the IP. This condition lasted until the end of summer 2005 (September), with a modified
pattern, which was more concentrated in the centre and northern IP. This event had severe
impacts on Spain and Portugal, as reported by the European Drought Observatory, with a
relaxation during the winter of 2005. The evolution of seasonal meteorological drought,
shown in Figure 7b, was similar to the SPEI at monthly intervals, with the initial peak in
February 2005. However, the SPEI-3 patterns were more continuous, essentially reporting
prolonged drought conditions over the reference period, with a delayed conclusion (ex-
treme drought conditions were observed even in October 2005). The driest region was the
southern IP at the beginning, with varying features extending to the central and northern IP.

To examine the progression of agricultural drought during the meteorological drought
episodes, the spatial patterns of the four different agricultural drought indices at monthly
time scale were analyzed. Figure 8 illustrates the spatial distribution of these indices across
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the IP during the reference period (October 2004–December 2005). All four AD indices
captured the onset of agricultural drought in February 2005. However, there were some
differences in their assessment of the drought conditions leading up to that point. While
COMB, MSDI, and SPESMI indicated moderately dry conditions over the IP even from
December 2004 except for the eastern coastal region, SSI showed normal or wet patterns
during that period, suggesting that the incorporation of variables other than soil moisture
may have allowed for a more accurate detection of drought impacts. Furthermore, SSI
generally indicated less severe drought conditions than the other indices, and its patterns
were less uniform and homogeneous compared to MSDI and SPESMI, particularly during
the initial month of the drought event.

(a) (b)

Figure 7. Temporal evolution of meteorological drought pattern over the IP according to SPEI at
(a) 1- and (b) 3-month time scales, from October 2004 to December 2005.

MSDI and SPESMI showed a high degree of similarity in their behaviors, indicating
that the inclusion of evapotranspiration had only a marginal impact on the results. COMB
exhibited features that were balanced between the other three indices, but its similarity
to the two multivariate indices appeared to have a greater influence on its performance
than SSI. Overall, the patterns of agricultural drought identified by the AD indices were
consistent with those identified by SPEI, particularly SPEI-3, which presented a higher
spatial correlation with seasonal meteorological drought than with monthly water balance
deficits. However, the severity values of the four AD indices were generally higher than
those of SPEI-1 and SPEI-3, indicating that the agricultural drought impacts were more
severe and extensive than the meteorological drought.

To understand the propagation of drought from meteorological to agricultural systems,
Figures 7 and 8 were useful in providing a qualitative overview of the spatial details of
the 2005 drought evolution. However, to derive more quantitative information, a further
investigation was conducted. Drawing inspiration from [13], we analyzed the probability
of drought propagation from meteorological to agricultural systems under different levels
of severity. Specifically, the fraction of the IP experiencing agricultural drought conditioned
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on the occurrence of meteorological drought was calculated for each month between
October 2004 and December 2005. This fraction was defined as the propagation probability
(PP) and was computed separately for the four AD indices at the 1-month time scale,
distinguishing between three severity thresholds, namely moderate, severe, and extreme
drought. To provide a comprehensive understanding of the results, Figure 9 represents
the temporal evolution of PP for each AD index. The panels in each row exhibit the PP
values of agricultural droughts with gradually increasing severity from left to right, while
the different colors refer to the severity threshold of meteorological drought, based on
SPEI-1. For instance, the red line in the first panel of row one shows the time evolution of
PP for the occurrence of moderate agricultural drought (based on SSI-1) conditioned on
the occurrence of severe meteorological drought (based on SPEI-1).

(a) (b)

(c) (d)

Figure 8. Temporal evolution of drought pattern over the IP according to the four AD indices:
(a) COMB, (b) SSI, (c) MSDI, and (d) SPESMI at 1-month time scale from October 2004 to Decem-
ber 2005.
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Figure 9. Propagation probability (PP) from meteorological drought detected with SPEI-1 to agri-
cultural drought of different severity levels according to 1-month time scale AD indices. The col-
ors distinguish the severity of generating meteorological drought (blue for SPEI-1 ≤ −1, red for
SPEI-1 ≤ −1.5, green for SPEI-1 ≤ −2).

The results of the analysis showed that all four AD indices displayed a significant
increase in propagation probability (PP) as the severity levels of meteorological drought
increased from moderate to extreme, with PP values approaching 1, indicating that the
likelihood of agricultural drought was higher under drier meteorological conditions. For in-
stance, in the first row of Figure 9, SSI indicated that areas affected by extreme meteorologi-
cal drought from February 2005 were highly susceptible to various levels of agricultural
drought, with the highest PP values observed for moderate severity propagation. MSDI
and SPESMI consistently showed nearly constant PP = 1 values in the left panels, implying
that these two multi-variate indices were highly sensitive to moderate agricultural drought
propagation and less prone to severe and extreme propagation. On the other hand, SSI
generally displayed lower PP values for all three severity levels compared to the multi-
variate indices, while COMB demonstrated a balance between the two typologies of indices.
Except for the deflection observed in March and April 2005, where the meteorological
drought did not propagate in all the affected regions, all indices showed overall high PP
values during the identified drought event, with PP > 0.5 for moderate SPEI-1 severity and
PP > 0.75 for severe/extreme SPEI-1 severity. Although the PP values of MSDI, SPESMI,
and COMB remained above 0.5 during this period, SSI demonstrated a more significant
reduction, with PP < 0.25.
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To investigate the propagation of drought from seasonal meteorological drought, we
applied the same procedure as before. Figure 10 presents the behavior of PP for agricultural
drought conditioned on SPEI-3 values.

Figure 10. Propagation probability PP from meteorological drought detected with SPEI-3 to agri-
cultural drought of different severity levels according to 1-month time scale AD indices. The col-
ors distinguish the severity of generating meteorological drought (blue for SPEI-3 ≤ −1, red for
SPEI-3 ≤ −1.5, green for SPEI-3 ≤ −2).

Similar to the analysis with monthly droughts, we observed a significant increase in
PP as the severity levels of meteorological drought enhanced from moderate to extreme.
The maximum PP values were found for moderate agricultural droughts, indicating that the
propagation to more severe droughts was less likely to occur. Compared to the outcomes
reported in Figure 9, the propagation from seasonal meteorological droughts revealed
a more homogeneous behavior among the AD indices, with common features in the
maxima/minima of PP and the evolution of the PP signal. Similar to the previous case,
the lowest value of PP was reached in March–April 2005, suggesting that, during this period,
the meteorological drought was present but did not propagate into agricultural drought.
Additionally, the panel regarding severe and extreme agricultural drought displayed
smaller PP values than the SPEI-1 example, indicating that seasonal drought was, in general,
less efficient in propagation compared to drought caused by monthly water balance deficits.

To further investigate the 2005 drought event, two areas of the Iberian Peninsula that
showed significant variations during the event were selected: the centre and the south.
In order to monitor changes in drought indices and evaluate the lag time (LT), one city
was chosen to represent each region. Following the approach of [45], Madrid was chosen
as the representative location for the IP centre and Granada was selected for the IP South.
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Figure 11 shows the 3-month time scale drought indices for these cities from January 2004
to January 2006. The seasonal drought was considered, as it is characterized by smoother
and slower variations than the 1-month drought and provides more significant information
for the calculation of LT.

(a) (b)

Figure 11. Local temporal evolution of different drought indices at 3-month time scale in Madrid
(a) and Granada (b) from January 2004 to January 2006.

To calculate the LT, we compared the onset times of drought as measured by SPEI and
the AD indices. In Madrid, the multivariate indices showed LT ∼ 0, indicating that they
captured agricultural drought onset at the same time as SPEI. However, SSI had a lag time
of about 2 months, since agricultural drought in that city began in February 2005, while me-
teorological drought began in December 2004. Compared to SPEI, the AD indices showed
low variability, and changes in meteorological drought conditions did not necessarily result
in modifications of agricultural droughts. The propagation of meteorological drought
evolution had prolonged and almost constant effects on agricultural drought, especially ac-
cording to COMB. The situation in Granada was slightly different. Meteorological drought
onset preceded that in Madrid by 2 months (October 2004) and was simultaneous for all
AD indices, resulting in LT ∼ 0. However, MSDI showed the onset of agricultural drought
even 1 month before SPEI, indicating that the detected event was not solely associated with
drought propagation. Although the onset lag time between meteorological and agricultural
droughts was approximately zero, we noted that the duration of the two phenomena was
not equivalent. While SPEI indicated dry meteorological conditions without the presence
of drought in August 2005, SSI and COMB estimated the end of agricultural drought in
October 2005, and MSDI and SPESMI required even more time.

4. Discussion

This study examined various types and temporal aspects of drought, with a specific
focus on the transition from meteorological to agricultural drought, which marks the
initial phase of drought propagation. In the first phase of the study, the aim was to
characterize drought events across the IP over various time scales, including monthly,
seasonal, and six-month periods, for the entire duration of the study period (1950–2021).
The findings indicated a slight trend towards increased aridity during the last two decades.
This was supported by both the SPEI, which aligns with the results obtained by [46] using
parametric indices to identify meteorological droughts, as well as the AD indices. When
comparing the values of the FAPAR anomaly, the AD indices were found to be effective
in assessing vegetation stress during drought events in the IP. However, they were not
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always able to accurately detect all the dehydrated areas identified by FAPAR anomalies.
In terms of the average characteristics of agricultural drought events, the SSI captured a
noticeably smaller area affected by severe/extreme droughts (40%) compared to other AD
indices (75%). The frequency of severe/extreme drought events per year also revealed
that multi-variate AD indices were more sensitive than SSI, albeit with lower severity.
Additionally, when considering long time scales, the severity of drought events showed
a wider range of values than on the monthly time scale, ranging from the most to the
least severe values. In the second phase of the study, we analyzed the mechanisms of
propagation from meteorological to agricultural drought. The response time scale (RT)
for the AD indices was calculated obtaining small values, consistent with findings from
other studies [44]. Specifically, the results showed that the SSI had an RT of 2 months in
most parts of the IP, while the MSDI, the SPESMI, and the COMB had an RT of 1 month,
suggesting that the contribution of water balance accelerated the response compared to soil
moisture alone. We analyzed the 2005 drought episode to study the temporal and spatial
features of drought propagation in detail. The time evolution of seasonal agricultural
drought, as revealed by the SSI, had a 2-month delayed onset compared to other AD indices
(February 2005 vs. December 2004), while the end of the drought was almost coincident
(October 2005). Furthermore, the severity values obtained by SSI were lower than those
obtained by other AD indices. The agricultural drought patterns determined by the AD
indices were consistent with those identified by SPEI, particularly showing a higher spatial
correlation with seasonal rather than monthly meteorological drought. We evaluated
the propagation probability (PP) from monthly meteorological drought and found that
PP values were high during the identified drought event period. Monthly agricultural
drought was also found to be more likely to occur when meteorological conditions were
increasingly dry. However, smaller PP values were obtained from seasonal meteorological
to monthly agricultural drought, indicating a reduced propagation efficiency compared
to meteorological drought caused by monthly water balance deficits. The computation of
lag time (LT) for SSI revealed different outcomes depending on the location, with values
ranging from LT ∼ 0 to LT ∼ 2 months, while the multi-variate indices consistently showed
LT ∼ 0, regardless of the location. These values close to 0 suggested interest for a future
analysis concerning sub-monthly features of LT.

There are currently several issues for analyzing drought propagation, such as the
difficulty of comparing studies that use different indices and approaches, and the challenge
of isolating single factors for analysis. Future studies on agricultural drought propaga-
tion should address these challenges by integrating techniques beyond statistical analysis
based on run theory, such as extending the probabilistic approach of [47]. Considering the
phenomenon of global warming, it is important to conduct studies that account for non-
stationary conditions in future changing environments. In this regard, future work could
expand upon the investigation by including the newly developed COMB index and incor-
porating an ensemble analysis with other meteorological and agricultural drought indices
from existing literature. Additionally, future studies could explore the lead time between
meteorological drought onset and agricultural drought onset, considering location and
crop type. This would contribute to a more comprehensive understanding of agricultural
drought propagation and enhance drought monitoring and early warning systems.

5. Conclusions

In conclusion, this study provided valuable information on the propagation of drought
phenomena from meteorological to agricultural droughts on the IP. The investigation
utilized a long record of data and distinct standardized indices, considering variables
beyond just soil moisture such as precipitation and evapotranspiration. Some relevant
outcomes were retrieved, in particular:

• Results showed a slight trend towards increased dryness over the last two decades
and identified multi-variate AD indices as more effective in identifying severe drought
events compared to the uni-variate SSI index.
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• The severity values of the four AD indices were generally higher than those of SPEI-1
and SPEI-3, indicating that the agricultural drought impacts were more severe and
extensive than the meteorological drought.

• This study introduced a novel combined agricultural drought index that balances the
characteristics of other adopted indices and could be a valuable resource for future
investigations.

• The response time scale was calculated for the AD indices and small values were ob-
tained, also suggesting that the contribution of water balance accelerated the response
compared to the effect of soil moisture alone.

• The analysis of the 2005 episode revealed a 2-month delayed onset compared to other
AD indices in the analysis of seasonal agricultural drought, with a higher probability
of propagation depending on the severity of the originating meteorological drought.
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Abstract: The presence of weather and water whiplash in Mediterranean regions of the world is
analyzed using historical streamflow records from 1926 to 2023, depending on the region. Streamflow
from the United States (California), Italy, Australia, Chile, and South Africa is analyzed using publicly
available databases. Water whiplash—or the rapid shift of wet and dry periods—are compared. Wet
and dry periods are defined based on annual deviations from the historical record average, and
whiplash occurs when there is an abrupt change that overcomes an accommodated deficit or surplus.
Of all the stations, there are more dry years (56%) than wet years (44%) in these regions, along with
similarities in the variances and shifts in extremes (i.e., whiplash). On average, 35% of the years were
defined as water whiplash years in all countries, with the highest levels in the US (California), where
42–53% of the years were whiplash years. The influence of the El Niño–Southern Oscillation (ENSO)
influences Chile and South Africa strongest during the first quarter of the year. This study found that
smaller extreme wet periods and larger and less extreme dry periods are prevalent in Mediterranean
regions. This has implications for water management as adaptation to climate change is considered.

Keywords: streamflow; climate; extremes; ENSO; flood; drought; hydrology

1. Introduction

Extreme, unpredictable climate events can have adverse impacts on water security,
society, and natural ecological systems. Extreme events are predicted to change in cer-
tain climate change hotspots of the world, including California in the United States [1,2].
Of interest in the present study is how Mediterranean regions will change, as they are
characterized by having mild winters with variable precipitation periods, and hot, dry
summers [3,4]. This climate region exists at equal distances from the equator, ranging
between 30◦ North or South and 45◦ North or South. Furthermore, Mediterranean climate
zones fall on the continent’s western side. The five Mediterranean regions around the world
are in California, the Mediterranean Basin in Europe, Western Australia, Chile, and the
Cape of South Africa [3]. Furthermore, these regions are identified in the Koppen–Geiger
Climate Classification world map [4], have cool, damp winters and hot dry summers, and
are highly desirable due to their ideal weather conditions. These regions host agricultural
hotspots, dense populations, and diverse species, making it important to understand their
climate patterns.

A study of California precipitation found that dry to wet events are 25% to 100% more
frequent in California under future climate projections [2]. A global study of Mediterranean
precipitation found a decrease in the frequency of daily precipitation events, combined with
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increased amounts in rare extreme events, resulting in more year-to-year variability [5].
The Mediterranean basin (identified as the region around the Mediterranean Sea) has
been noted as a climate change hotspot, and recent research has shown a strong coupling
between temperature and precipitation, with tendencies for warm-dry anomalies in the
summer and cold-wet anomalies in the winter [6]. This drying over Mediterranean regions
has also been shown in climate change projections (e.g., [7–9]). The impact of hydrological
intensification (or whiplash) was investigated for different regions of the world, and it was
found that large areas of intensification occurred in areas with large reservoir systems in
place, thus allowing for adaption [10].

Previous studies have been limited to extreme precipitation shifts for the regions
noted above [1,2,5]. The work presented here augments past studies by focusing on
water supply, as represented by streamflow, with an aim to understand weather (water)
whiplash phenomena in Mediterranean regions. Weather whiplash is defined as sudden
changes in weather conditions from one extreme to another, such as drought to heavy
precipitation or flooding [1,5,11]. The study presented here is motivated by California’s
switch from having the worst drought on record in 2022 to seeing one of the wettest
years in 2023, relieving the state of drought. Furthermore, the Emilia Romagna region of
Northern Italy has experienced a steady increase in the intensity of rainfall events [12]. The
frequency and intensity of destructive, heavy rainfall events are expected to increase in
this region [13]. The study here compares all global Mediterranean regions based on the
historical streamflow record and whether the whiplash phenomenon is present in other
Mediterranean climate zones.

A further aim in this study is to evaluate the impact of the El Niño–Southern Oscillation
(ENSO) on streamflow in Mediterranean regions. ENSO has been shown to have global
impacts (e.g., [14–19]). These global studies have shown that three of the five Mediterranean
regions investigated in this study are drier during El Niño years. The investigation of
streamflow in this study will provide a broader perspective on integrated water impacts in
these regions. It is important to note that other modes of large-scale climate variability may
have a more significant impact on certain Mediterranean regions. For instance, European
precipitation has been connected to North Atlantic Oscillation (NAO), the Artic Oscillation
(AO), the North Sea Caspian Pattern (NCP), and two indices of Mediterranean Oscillation
(MOI2, WeMOI) [20]. A study of North Africa did not find a significant ENSO effect for
North Africa (a Mediterranean region) [21].

2. Materials and Methods
2.1. Data

Figure 1 and Table 1 present all the streamflow stations used in this study. This includes
four stations in each of the countries of Italy, South Africa, United States (California),
Australia, and Chile.
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Figure 1. Map of global Mediterranean regions studied and associated streamflow stations. The 
different colors represent the different regions evaluated in this study.  

Table 1. List of streamflow stations with characteristics for all locations shown in Figure 1. 

Station Name ID Location Year 
Measured 

Start Year End Year Latitude Longitude Units 

Sacramento Delta at 
Sacramento River 

US1 a California, 
USA 

Water Year 1951 2023 40.94 −122.42 KAF 

Happy Isles Bridge 
near Yosemite at 

Merced River 
US2 a 

California, 
USA Water Year 1951 2023 37.73 −119.56 KAF 

Mill Creek Near Los 
Molinos at Mill River 

US3 a California, 
USA 

Water Year 1951 2023 40.05 −122.02 KAF 

Deer Creek Near Vina 
at Deer River 

US4 a California, 
USA 

Water Year 1951 2023 40.01 −121.95 KAF 

Spondigna at Adige 
River 

IT1 b Italy Calendar Year 1980 2018 46.63 10.60 mm 

Sava Near Catez at 
Sava River IT2 b Slovenia Calendar Year 1926 2020 45.89 15.60 MCM 

Montecastello at Fiume 
Tanaro River IT3 c Italy Calendar Year 1936 2008 44.94 8.68 m3/s 

Farigliano at Fiume 
Tanaro River IT4 c Italy Calendar Year 1942 2008 44.51 7.90 m3/s 

Yarragil Brook, Yarragil 
Formation at Murray 

River 
AU1 d Australia Calendar Year 1952 2022 −32.80 116.12 ML 

Donnelly Near 
Strickland at Donnelly 

River 
AU2 d Australia Calendar Year 1952 2022 −34.33 115.77 ML 

Big Brook Near O’Neil 
Rd ay Murray River 

AU3 d Australia Calendar Year 1983 2022 −32.53 116.04 ML 

Wungong Brook near 
Vardi Rd at Swan River 

AU4 d Australia Calendar Year 1981 2022 −32.10 15.98 ML 

Figure 1. Map of global Mediterranean regions studied and associated streamflow stations. The
different colors represent the different regions evaluated in this study.
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Table 1. List of streamflow stations with characteristics for all locations shown in Figure 1.

Station Name ID Location Year
Measured Start Year End Year Latitude Longitude Units

Sacramento Delta at
Sacramento River US1 a California,

USA Water Year 1951 2023 40.94 −122.42 KAF

Happy Isles Bridge
near Yosemite at

Merced River
US2 a California,

USA Water Year 1951 2023 37.73 −119.56 KAF

Mill Creek Near Los
Molinos at Mill River US3 a California,

USA Water Year 1951 2023 40.05 −122.02 KAF

Deer Creek Near Vina
at Deer River US4 a California,

USA Water Year 1951 2023 40.01 −121.95 KAF

Spondigna at Adige
River IT1 b Italy Calendar

Year 1980 2018 46.63 10.60 mm

Sava Near Catez at
Sava River IT2 b Slovenia Calendar

Year 1926 2020 45.89 15.60 MCM

Montecastello at
Fiume Tanaro River IT3 c Italy Calendar

Year 1936 2008 44.94 8.68 m3/s

Farigliano at Fiume
Tanaro River IT4 c Italy Calendar

Year 1942 2008 44.51 7.90 m3/s

Yarragil Brook,
Yarragil Formation at

Murray River
AU1 d Australia Calendar

Year 1952 2022 −32.80 116.12 ML

Donnelly Near
Strickland at Donnelly

River
AU2 d Australia Calendar

Year 1952 2022 −34.33 115.77 ML

Big Brook Near O’Neil
Rd ay Murray River AU3 d Australia Calendar

Year 1983 2022 −32.53 116.04 ML

Wungong Brook near
Vardi Rd at Swan

River
AU4 d Australia Calendar

Year 1981 2022 −32.10 15.98 ML

Chacabuquito at
Aconcagua River CH1 c Chile Calendar

Year 1956 2019 −32.85 −70.51 m3/s

Algarrobal at Elqui
River CH2 c Chile Calendar

Year 1980 2019 −29.99 −70.58 m3/s

Desembocadura at
Biobio River CH3 c Chile Calendar

Year 1969 2019 −36.83 −73.07 m3/s

San Lorezo at
Diguillin River CH4 c Chile Calendar

Year 1960 2019 −36.92 −71.57 m3/s

Dassjes Klip at
Duiwenhoksrivier SA1 c South

Africa
Calendar

Year 1968 2022 −34.25 20.99 m3/s

Grootrivierspoort at
Grootrivier SA2 c South

Africa
Calendar

Year 1965 2022 −33.71 24.61 m3/s

Hagedisberg Outspan
at Kleinrivier SA3 c South

Africa
Calendar

year 1964 2021 −34.40 19.59 m3/s

Melkboom at
Doringrivier SA4 c South

Africa
Calendar

Year 1928 2022 −31.86 18.68 m3/s

Notes: a Data obtained from the United States Geological Survey. b Data obtained from [18]. c Data obtained from
Global Runoff Data Center. d Data obtained from Hydrologic Reference Stations.
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2.1.1. Chile, South Africa and Italy (Global Runoff Data Center)

The streamflow data for Chile (CH1-4), South Africa (SA1-4) and Italy (IT3 and IT4)
were obtained from the Global Runoff Data Centre’s (GRDC) data portal [22]. This data por-
tal provides historical mean daily and monthly river discharge data for over 10,000 stations
globally. From the data portal, four stations from along the Southern and the Western
regions of South Africa, four stations throughout Chile, and two stations in Northeastern
Italy were selected to conduct this study. The retrieved data were monthly mean dis-
charges (m3/s), which were used to calculate the annual mean data (m3/s) for each of the
ten stations.

2.1.2. United States (California) (USGS)

For stations US 1 through 4 (Table 1), mean annual streamflow data were collected
from the U.S. Geological Survey (USGS) NWISWeb Data retrieval [23] for the water years
of 1951–2022, which are measured from October to the following September (defined as
a water year). The four stations are located in the north central part of California in the
United States. The data retrieved from the USGS are in cubic feet per second (ft3/s), and
were converted into kilo-acre feet (KAF) to conduct the study. The 2023 data were based
on a forecast of the water year volume (made on 1 April 2023) provided by the National
Oceanic and Atmospheric Administration’s (NOAA) California Nevada River Forecast
Center [24].

2.1.3. Italy

For station IT1 (Table 1), annual modeled streamflow data were acquired from previous
research [25–27]. For station IT2 (Table 1), streamflow data were obtained from the Catez
gauge, located on the Sava River in Slovenia near the Croatian border. Although this
station is not in Italy, the gauge is a critical measurement of streamflow in the European
Mediterranean basin [28]. Annual data are given in MCM (million cubic meter). Past
studies (e.g., [28]) have shown that the data are sufficient for studies evaluating climate
impacts on water resources of the water basins. In addition, direct observations of rivers
are provided for two stations [IT3 and IT4].

2.1.4. Australia (Hydrologic Reference Stations)

For stations in Australia, data were retrieved from the Hydrologic Reference Stations
(HRS) catchments by the Australian Government Bureau of Meteorology [29]. For this study,
annual streamflow (ML/year) was derived from the HRS, which provided high quality
daily streamflow data and corresponding statistics for 467 stations [30]. Four stations were
selected in Southwestern Australia, near Perth which is part of the Mediterranean region
of Australia.

2.2. Analysis of Whiplash—Wet and Dry Periods

For the study shown here, wet and dry periods were identified in the records based on
yearly deviations from the long-term average of the historical record. Wet years are positive
departures (y) from the long-term average of the historical record (x), and dry years are
negative departures (y) where:

yi = xi − x (1)

A wet (or dry period) is calculated by summing up consecutive dry or wet years
where:

∑n
i=1 yi = Aj (2)

A dry or wet period continues until the accumulated (A) deficit or surplus condition
is switched by a single year (y), with a higher opposite sign of deficit or surplus. This
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sudden shift in state is referred to as “whiplash” (W), since an accumulated state is abruptly
changed in one year where:

W � is negative when yi >
∣∣Aj
∣∣

is positive when |yi| > Aj
(3)

To compare stations with different magnitudes, an indicator ratio (IR) of accumulated
deficit or surplus to the long-term mean is calculated.

IRi =
Aj

X
(4)

Indicator values that shift from negative to positive or positive to negative in two
consecutive years reflect whiplash years.

2.3. Testing of Differences in Populations

The testing of different populations for this study used the F-test. For instance,
tests were conducted between countries to evaluate similarities or differences. The F-
test evaluates the variance in two populations. This was carried out for differences (or
similarities) between countries. Results are displayed and discussed in Section 3.

The sample populations of wet (surplus) and dry (deficit) periods for each country
are also presented as box and whisker plots, where the middle of the box represents the
median, the top and bottom represent the 75th and 25th percentiles of the population, and
the top and bottom of the whisker represent the 90th and 10th percentiles of the population
(see Section 3.1.1). In addition, box plots are used to represent the proportion of years that
are whiplash years (see Section 3.1.2).

2.4. Analysis of ENSO Impacts

Streamflow data are tested with four different Oceanic Niño Index (ONI) values, a measure
of the El Niño-Southern Oscillation [31]. JFM, AMJ, JAS, and OND are used as representations
for the year. Correlation between flow and each ONI index are tested for each station.

3. Results
3.1. Weather Whiplash Results

The analyses to test the similarities of Mediterranean regions/countries to weather
whiplash are shown in Tables 2 and 3, Figures 2–5. These results are shown for the historical
period of records that vary depending on the region (see Table 1).

Table 2. Frequency of wet and dry periods per station represented by the count of wet and dry years and
percentage compared to the total number of years. Values in parentheses are results of analysis using a
common period of record (1983–2018). N/A represents analysis that was not available for these stations. *
are stations where the common period of record has unequal number of wet and dry years.

Station ID Total Wet Years Percentage Total Dry Years Percentage

US1 * 36 (13) 49% (36%) 37 (23) 51% (64%)

US2 * 32 (14) 44% (39%) 41 (22) 56% (61%)

US3 * 34 (14) 47% (39%) 39 (22) 53% (61%)

US4 * 35 (14) 48% (39%) 38 (22) 52% (61%)

IT1 19 (18) 49% (50%) 20 (18) 51% (50%)

IT2 * 35 (5) 37% (14%) 60 (31) 63% (86%)

IT3 31(N/A) 43% (N/A) 42 (N/A) 58% (N/A)

IT4 33 (N/A) 50% (N/A) 33 (N/A) 50% (N/A)

AU1 * 20 (3) 29% (8%) 49 (33) 71% (92%)
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Table 2. Cont.

Station ID Total Wet Years Percentage Total Dry Years Percentage

AU2 * 31 (10) 45% (28%) 38 (26) 55% (72%)

AU3 * 14 (13) 37% (36%) 24 (23) 63% (64%)

AU4 18 (18) 47% (50%) 20 (18) 53% (50%)

CH1 33 (19) 52% (53%) 31 (17) 48% (47%)

CH2 15 (15) 38% (42%) 25 (21) 63% (58%)

CH3 25 (19) 49% (50%) 26 (18) 51% (50%)

CH4 31 (18) 52% (50%) 29 (18) 48% (50%)

SA1 25 (19) 45% (53%) 30 (17) 55% (47%)

SA2 * 14 (8) 24% (22%) 44 (28) 76% (36%)

SA3 * 31 (23) 53% (64%) 27 (13) 47% (36%)

SA4 38 (17) 40% (47%) 57 (19) 60% (53%)
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Figure 5. Time series of anomaly (blue and red) and ratio (black) values. Blue areas represent surplus
periods and red areas represent deficit periods. One station’s plot that is representative of all four
stations in the area is chosen per region: (a) Merced River in California, USA (US2); (b) Sava River in
Slovenia (IT2); (c) Donnelly River in Australia (AU2); (d) Biobio River in Chile (CH3); (e) Kleinrivier
in South Africa (SA3).

Table 3. F-test results comparing each pair of regions with wet period length, dry period length, and
indicator ratio. Statistically significant values (at 1% and 5% level) are indicated as regions that are
similar in terms of wet and dry periods.

Region US-IT US-AU US-CH US-SA IT-AU IT-CH IT-SA AU-CH AU-SA CH-SA

Wet Period
Length <0.01 <0.01 <0.01 <0.05 <0.01

Dry Period
Length <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01

Indicator Ratio <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01
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3.1.1. Wet and Dry Periods

The occurrence of wet and dry periods is noted in Table 2 and Figure 2. In Table 2, two
analyses are presented using the entire period of record for all the stations, and another
analysis using a common period (1983–2018) for 18 of the 20 stations. Using the entire length
of record for all stations, the majority of the stations (14 of 20) have an equal likelihood of
wet and dry years (i.e., the number of dry and wet years are about the same). A couple
stations have a significantly higher percentage of dry years (over 70%), namely Murray
River (AU1) in Australia and Grootriver (SA2) in South Africa. Six stations had at least
60% of years drier than average, with a majority (4/6) of those being in Australia and
South Africa. It is noteworthy that none of the stations had a larger portion of years that
were wetter than drier, representing a general drying of these regions. Finally, the overall
average percentage of dry years (56%) is greater than that of wet years (44%). Using a
common period in the record, only 8 of the 18 stations had an equal likelihood of wet and
dry years, with nine (9) of the stations indicating a larger number of dry years.

Figure 2 presents boxplots for wet and dry period lengths using the entire record. The
periods are relatively the same length for wet periods (Figure 2a); however, there is a larger
variation for the dry periods (Figure 2b) in each region. F-tests were conducted for both
wet and dry periods between each pair of regions. Values less than 0.05 indicate that the
probability that two regions are different is low (Table 3). Therefore, highlighted values
mean that the regions tested are statistically similar. In both the wet and dry periods, the
United States (California) is statistically similar with each region. Furthermore, the F-test
analysis shows that Australia is similar to each region for the dry periods only.

3.1.2. Whiplash Results

The rapid change from dry to wet or wet to dry states (whiplash) is evaluated in
Figure 3 and Table 3. Figure 3 provides a compilation of all the indicator values expressed
as an indicator ratio described in Section 2.2. A positive indicator ratio is a rapid transition
from dry to wet state, and a negative indicator ratio is a rapid transition from wet to dry
state. There are higher whiplash events from dry to wet, as shown by the larger positive
values in Figure 3. Comparing this result to Figure 2, it is concluded that there are shorter
intense wet periods and longer and less intense dry periods. Variability is highest in the
United States (California), Australia, and South Africa. Results from Table 3 display that
most countries have similar ratio values, with exceptions for the United States (California)
and Chile.

Figure 4 presents the proportion of whiplash years that occur in each country for
all stations. The US (California) locations have the highest proportion of years that are
whiplash years—between 42 and 53% of years. Australia has the largest variability, from
10 to 45%. Italy, Chile, and South Africa are similar, and have about 35% of their years as
whiplash years.

3.1.3. Regional Analysis

The regional analysis of wet and dry periods and associated whiplash events is shown
in Figure 5. Three of the five regions show drying in the latter half of the record (Sava
(Figure 5b), Donnelly (Figure 5c), Biobio (Figure 5d)). In California (Merced River, US2);
the early part of the record (1951 to 1986) had wet and dry periods that were short and
mild. In 1987, the dry period became longer, and wet and dry periods became more intense
and more frequent. In Italy (Sava River, IT2), 1926–1980 were predominantly wet years,
with a switch in 1980 to dry years. In Australia (Donnelly River, AU2), 1953–2000 were
predominantly wet years, with a switch in 2000 to dry years, similar to Italy. In Chile,
(Biobio River, CH3) dry periods became longer in recent years after 2000. Finally, in South
Africa (Kleinrivier, SA3) the data shows that wet and dry periods became more intense
later in the record, similar to California (Merced River).
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3.2. ENSO Impacts

Table 4 provides a summary of the impact of ENSO on all the regions and rivers of
this study. Table 4 displays correlation coefficients for each test. Values are highlighted,
with a significance of p = 0.10 and p = 0.05. While ENSO has been shown to have global
impacts [32], the areas impacted in this study are fairly limited. Most notable were the
stations in Chile, with all four stations showing significance at both 95% and 90% confidence
levels. South Africa and United States (California) had some significance, with two and one
station(s), respectively, displaying statistical significance. Stations in Italy and Australia
did not show statistical significance under either level. The selected season does have
an impact on whether ENSO influences streamflow. For instance, the ONI values in JFM
were significant in five stations, compared to the other seasons having two significant
stations each.

Table 4. Correlation coefficients between streamflow and the respective ONI value for each station.
Values that are statistically significant at a 10% level (p < 0.1) are designated with a * symbol. Values
that are significant at the 5% level (p < 0.05) are highlighted in grey. Four ONI values were used to
represent the year in three-month-long periods (JFM, AMJ, JAS, OND).

Station ID Flow and JFM Flow and AMJ Flow and JAS Flow and OND

US1 0.20 * 0.17 −0.11 −0.14

US2 0.15 0.19 −0.05 −0.07

US3 0.11 0.14 −0.04 −0.05

US4 0.10 0.15 −0.04 −0.05

IT1 −0.06 0.05 0.05 0.07

IT2 0.03 0.12 0.13 0.17

IT3 −0.12 0.01 0.16 0.21

IT4 −0.04 0.10 0.14 0.15

AU1 −0.05 −0.18 −0.13 −0.18

AU2 −0.06 −0.18 −0.14 −0.18

AU3 −0.12 −0.15 −0.18 −0.16

AU4 0.09 0.03 −0.05 −0.10
CH1 0.26 0.20 0.17 0.07
CH2 0.31 0.14 0.03 −0.10
CH3 −0.13 0.27 * 0.46 0.46
CH4 −0.12 0.20 0.27 0.30
SA1 −0.26 * −0.19 0.03 0.06
SA2 −0.34 −0.33 −0.14 −0.17
SA3 −0.15 0.00 0.07 0.06

SA4 −0.15 −0.06 0.02 0.00

4. Discussion

In this study, historical streamflow data were used to evaluate the presence of water
whiplash in Mediterranean regions of the world. Most regions indicated a general drying
in terms of the number of years that were dry as opposed to wet. Additionally, many of the
regions had longer dry periods than wet periods in terms of number of years. For instance,
up to 53% of the years in the US (California) were defined as whiplash years (Figure 4).
Previous work has shown California not drying to the same level as other Mediterranean
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regions [5]. On average for other regions, approximately 35% of the years were water
whiplash (Figure 4).

For all regions, there are shorter intense wet periods and longer and less intense dry
periods—switching back and forth between conditions of long, dry periods where the soil
is dry, and intense, wet periods where soils saturate and produce excess runoff. This intense
flooding and rapid shifting between extremes may have adverse impacts on ecosystems
and surrounding communities.

In the face of the abrupt shifts due to weather whiplash, developing nations and
poorer regions disproportionately experience the impacts of these events. For instance,
regions of Chile and South Africa do not have the same means to adapt as other countries
such as the United States, Italy, and Australia. These vulnerable regions are usually not
equipped in resources and infrastructure, causing greater inequality due to the compiling
of damage from multiple whiplash events [33].

5. Conclusions

The results of this research are consistent with previous work that have identified
various Mediterranean regions in the world where weather whiplash in precipitation is
persistent in future data. The work presented here focuses on the impacts on water, and
has implications for management of resources. Comparative analyses of the durations,
conditions, and frequencies of wet and dry periods offer insights into the similarities and
disparities among these regions. The results underscore a historical trend wherein wet
years were more prevalent until the 1980–2000s, after which dry periods increased in fre-
quency and intensity. This research contributes to the evolving field of hydroclimatology in
Mediterranean regions, emphasizing the critical role of understanding streamflow patterns
in shaping future water supply dynamics. The implications of this study extend to water re-
sources management, emphasizing the need for proactive measures to address the complex
challenges posed by climate-induced hydrological variability in Mediterranean regions.
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Abstract: Climate change causes the river basin water cycle disorders, and rainfall characteristics
frequently result in flood disasters. This study aims to simulate and assess the response behavior
of basin floods under the influence of rainfall characteristics and land use changes in the Hulu
River basin using a 2D hydrological and hydraulic GAST (GPU Accelerated Surface Water Flow and
Transport Model). The peak flow rate and water depth during floods were examined by simulating
the evolution process of basin floods and related hydraulic elements under the independent effects
of various rainfall characteristics or land use and further simulating the response results of basin
floods under the combined effects of rainfall characteristics and land use. The seven scenarios were
set to quantify the degree of influence that land use and rainfall characteristics have on the basin
flood process based on examining changes in land use and rainfall characteristics in the research area.
The results from different rainfall characteristics scenarios depicted that as the rainfall return period is
shorter, the peak flow rate is higher, and the peak flow rate is lower as the return period is prolonged.
Under different rainfall characteristics, the peak flow rate in scenario R8 is 41.30%, 40.00%, and 34.51%
higher than the uniform distribution of rainfall, while water depth is decreased by 0.55%, increased
by 4.96% and 2.92% as compared to the uniform distribution of rainfall. While under different land
use scenarios, it is observed that the change in land use has increased 2.7% in cultivated land and
1.1% in woodland. In addition, the interactive effect of different rainfall characteristics and land use it
can be seen that the scenario with the greatest reduction in flood risk due to rainfall characteristics
and land use is RL2-4, representing a 12.55% decrease in peak flow and a 37.69% decrease in peak
water depth. In this scenario, the rainfall is heavier in the southeast and northwest regions and
lighter in the northeast and southwest regions. The land use type is characterized by reforestation
and the return of cultivated land to forests. The changes in rainfall distribution and the increase in
grassland contribute to the decrease in flood threat. Future research in the erodible parts of the Hulu
River basin, planning for water resources, and soil and water conservation can all benefit from the
study’s conclusions.

Keywords: rainfall; land use; Hulu River Basin; hydrology; GAST model; flood simulation

1. Introduction

Life requires access to water resources and has enormous socioeconomic significance
in various industries, including agriculture, manufacturing, trade, food production, and hy-
dropower generation [1,2]. It is well acknowledged that human activity and climate change
significantly impact the hydrological cycle and the spatiotemporal patterns of rainfall [3].
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According to [4], streamflow in most rivers has been steadily declining over the past few
decades, leading to serious water shortages and ecological and environmental instability.
Climate change and human activity typically work together to impact river streamflow
changes [5]. One of the most dependable ways to assess changes in water resources is to
combine climate prediction data from general circulation models (GCMs) with hydrological
models [6]. Many hydrological modeling studies have been conducted since the end of
the 1950s to assess the effects of changes in land use on the rainfall–runoff regime and
the magnitude and frequency of floods [7]. Study [8] examines how changes in upstream
land use affect downstream flood patterns using the HEC-1 model. Study [9] indicates that
changes in land use significantly impact the magnitude of flood peaks and runoff volume.
The authors of [10] use the hydrological SWAT model to evaluate how changes in land
use affect a mesoscale catchment’s annual water balance and temporal runoff dynamics.
The authors of [11] analyzed the Impact of Land-Use Changes on Flood Exposure. The im-
pact of urban sprawl on eco-environmental quality in China, using the Spatial Durbin
model and panel data from 2003 to 2018, highlighting significant regional variations and
the predominant influence of land use sprawl [12]. Various scholars have used multiple
GCMs to evaluate how climate change affects streamflow, thus confirming its role. For
example, in the Kashafrud River Basin (KRB) in Iran [13], streamflow has shown increasing
trends under various scenarios. In the Kelantan River Basin, precipitation, temperature and
streamflow have been predicted to increase from 2015 to 2044 and from 2045 to 2074 [14].
Currently, the Coupled Model Inter-Comparison Project, which is conducting global climate
research, has reached its sixth phase, providing more comprehensive evaluations of future
global climate [15]. A combined weighting approach and the super-efficiency Slack-Based
Measure (SBM) model to assess urban–rural integration and land-use efficiency in China,
revealing a low overall level and a trend towards improved coordination over the decade
from 2010 to 2019 [16].

In China, including in the Yellow River Basin [17], Biliu River Basin [18], and Luan
River Basin [19], future streamflow is expected to show downward trends at varying de-
grees. The two main elements influencing flood formation are the climate and the state
of the underlying surface. The impact of precipitation and intensity on the production of
runoff is a major factor in how climate change will affect the runoff process. Numerous
studies have shown that precipitation impacts how runoff changes in a watershed. A rise
in the amount of rainfall causes an increase in runoff if the underlying surface remains the
same [20,21]. However, the alteration of confluence and runoff generation circumstances
brought on by variations within the subsurface conditions are the primary variables influ-
encing the environmental changes that lead to flood formation. Human activity impacts
these changes, including clearing forest vegetation, building hydraulic infrastructure on
rivers, extensive irrigation and drainage, water and soil conservation measures, modifi-
cations to land-use patterns, and urbanization and industrialization [22,23]. The critical
issue of optimal city size to enhance Resource and Environment Intensity (REI) in China,
analyzing the spatial–temporal impact of city size on REI within the Yangtze River Eco-
nomic Belt through spatial models and panel data from 2004 to 2019. The literature review
likely examines previous findings on urban expansion, resource efficiency, and spatial
governance, setting the stage for this study’s unique contribution to understanding the
nuanced relationship between city size and REI [24].

As a result of agricultural practices, humans have gradually altered the earth’s surface
in important ways. More than 50% of the earth’s surface has recently changed, with
estimates placing agriculture on nearly one-third of the planet’s surface [25]. The conversion
of the naturally occurring agricultural land ratio to other land is still in progress [26].
Land use managers and decision-makers can better understand the connections between
human and natural activity by looking at the patterns in change detection, which has
drawn the attention of researchers and administrators of land use due to these significant
changes [27]. The government competition and behavior within the open economic context
of China’s Huaihe River ecological economic belt, utilizing data from 2004 to 2016 to
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explore the determinants of land prices across various uses, revealing population density
as a pivotal factor and the differentiated impact of policies due to price distortions in
industrial land [28].

The upper Wei River, the main tributary of the Yellow River in China’s Loess Plateau,
has a significant offshoot known as the Hulu River. SWC measurements are a significant
human endeavor that impacts the hydrology of the Yellow River Basin in China. From 1950
to 2009, streamflow change in the watershed decreased [29]. After the 1970s, extensive
SWC methods were implemented to minimize runoff and manage soil erosion. Similarly,
Wei River Catchment SWC techniques can effectively limit soil and water losses [30,31].
The frequency and destructiveness of floods make them a common occurrence in nature [32],
affecting various places differently [33]. Following the 1980s, Yellow River water yield was a
discernible decline [34]. The reason for this sudden fall has been a major topic of discussion
in academics. According to [35], changes in land use may have a significant impact on
how runoff is generated and how much water is stored. The authors of [36] pointed out
that the Yellow River basin’s extensive vegetation restoration was the primary cause of the
decrease in water yield. However, [37] discovered that climate change was responsible
for more than 50% of the decline in runoff in the Yellow River’s middle reaches. It is still
unclear how the significant increase in vegetation coverage brought on by land use changes
and different rainfall characteristics will impact the runoff process, even though numerous
studies have examined the causes of the water and sediment changes in the middle reaches
of the Yellow River from the perspectives of climate and land use. More investigation is
required, particularly to ascertain whether it influences both catastrophic rainfall floods
and common water floods. Climate and land use can both affect water output in the basin,
but in areas where land use has significantly improved, the impact of land use change
on water yield is more significant [38]. Studies on surface runoff have been conducted
by numerous academics. These studies have examined how variations in surface runoff
affect soil erosion and how surface runoff [39,40] soil nutrients, rainfall, land use, and land
cover distribution are affected [41,42]. The SCS-CN runoff model is somewhat influenced
by rainfall intensity and spatial scale [43], and this model has also been studied for the
urban and watershed levels. For example, [44] discovered that in a study of impermeable
surfaces and surface runoff in Xuzhou City, the reaction of urban surface runoff is more
evident when the intensity of rainfall is low. The authors of [45] assessed the simulation’s
accuracy using waterlogging locations and discovered that a rainfall intensity of 200 mm/d
produced the most accurate surface runoff simulation. The landscape pattern evolution’s
impact on runoff can be examined by examining the association between landscape index
and runoff change. Processing is commonly carried out using ArcGIS, ENVI, and Fragstats
software. Alterations in land use and rainfall have been found to have an impact on surface
runoff fluctuations in other research [46]. Furthermore, related research has demonstrated
that runoff is more impacted by the evolution of landscape patterns than by rainfall [47].
The primary focus of relevant domestic and international research on surface runoff and
land use and landscape pattern is on the watershed and urban scale [48]. Surface runoff
response becomes increasingly evident when urban impermeable surface grows, and
precipitation decreases [44].

Since mid-June 1998, the Yangtze River Basin has been experiencing continuous
heavy rains and torrential rains, leading to widespread flooding throughout the basin.
The peak flow at the Datong hydrological station reached 82,300 m3/s, inflicting direct
economic losses of CNY 166 billion and affecting 223 million people. In the same year, the
Songhua River Basin was also affected by climate change, with increased rainfall leading
to an unprecedented flood event in the basin. In 2010, Gansu Province experienced a
major flood disaster, resulting in 1434 fatalities; 14.76 million people were affected by
the Yangtze River Basin floods in 2016, which also resulted in losses to the economy of
CNY 31.14 billion. In 2020, multiple strong rainfall events occurred in southern China,
with 198 rivers experiencing floods exceeding warning levels and direct economic losses
reaching CNY 86.16 billion. Therefore, the Hulu River Basin is used for this study. Observed
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rainfall data from 13 September 2019, 0:00 to 14 September 2019, 16:00 is used and the total
rainfall duration is 40 h. Land use data with a resolution of 30 m for the years between 1985
and 2020 is being used. This study analyzes change patterns in rainfall characteristics and
land use of the Hulu River catchment, China, based on the GAST model (GPU Accelerated
Surface Water Flow and Transport Model).

2. Materials and Methods
2.1. Study Area

One of the major tributaries of the Wei River and the Hulu River rises on the southern
slopes of Moon Mountain near the boundary between Xiji County and Haiyuan County
in the Ningxia Hui Autonomous Region (Figure 1). The watershed is situated between
34◦30′ and 36◦30′ N and 105◦05′ to 106◦30′ E, and its height ranges from 1141 to 1908 m.
According to [49], it crosses both the Ningxia Hui Autonomous Region and Gansu Province
before emptying into the Wei River close to Tianshui City in Gansu Province. The research
region has an east-west gradient with a higher north elevation and a lower south eleva-
tion. The riverbed resembles a gourd because it is meandering and has a wide range of
widths [15]. The Hulu River’s main channel is 301 km long, and its entire basin is around
10,700 km2. With an annual sediment transfer as high as 7270 × 104 tons, the basin is
characterized by significant vegetation destruction, loose soil, frequent heavy rainfall, and
severe soil erosion. The Hulu River Basin’s water resources are dispersed unevenly and
show noticeable inter-annual changes. A total of 265.4 million m3 of runoff are produced
annually on average [49].

1 
 

 

Figure 1. DEM of the study area.

2.2. GAST Model

The GPU Accelerated Surface Water Flow and Transport Model (GAST) simulates
basin flood response under various rainfall and land use scenarios using a numerical
model that integrates hydrological and hydrodynamic processes. Its great accuracy, quick
efficiency, and strong stability make it a good model for complicated networks. Urban
waterlogging, sediment transport, and basin flood dynamics are among the processes it can
accurately replicate. It can simulate these processes at a fine scale and use GPU-accelerated
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parallel computing technology, which greatly increases the model’s computational perfor-
mance and offers several benefits [50].

2.2.1. Model Governing Equations

The GAST model utilizes the two-dimensional shallow water equations (SWEs) as the
governing equations for surface runoff calculations. The conservation form of the vector
equation (neglecting viscous terms of motion, turbulent viscous terms, wind stress, and
Coriolis force) is shown in Equations (1)–(3) [51].
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where t is the time, x and y are the Cartesian coordinates, and q is the flow variable vector
made up of h, qx, and qy, which indicate water depth and unit-width discharges in the x
and y directions, respectively; u and v are defined as depth-averaged velocities in the x and
y directions, and it is evident that qx = uh and qy = vh; f and g are the flux vectors in the
x and y directions; S is the source vector that only takes into account the slope source Sb
and the friction source Sf; in this case, zb is the bed elevation and Cf is the bed roughness
coefficient that is derived from the Manning coefficient n and h in the form of gn2/h1/3.

2.2.2. Numerical Methods of the Model

The two-dimensional hydrodynamic model GAST employs the Godunov finite volume
method to solve the two-dimensional shallow water equations. Riemann’s approximate HLLC
solver is used to calculate the mass flux and momentum flux at the cell interfaces [52]. The static
water reconstruction method is used to handle negative water depths at dry–wet bound-
aries [53]. The bottom slope flux method is utilized to solve the variation in water depth [54].
An improved splitting-point implicit method is used for the frictional resistance source term to
enhance computational stability [55]. A second-order explicit Runge–Kutta method is employed
for time integration to ensure second-order accuracy [56]. The MUSCL scheme effectively ad-
dresses computational instabilities and non-conservation of mass and momentum caused
by non-physical phenomena. Due to the large-scale study area and complex watershed in
this study, GPU acceleration and parallel computing techniques are introduced, significantly
enhancing the model’s computational efficiency to improve its computational speed further.

2.3. Model Setup and Validation
2.3.1. Input Data

The primary input data for the GAST model are the digital elevation model (DEM),
land use, soil, and meteorological data. River network features, topographic slope length,
and other basin parameters are obtained using a digital elevation model (DEM). In this
study, the China Meteorological Data Centre was used to compile rainfall data from the
Hulu River Basin’s five meteorological stations, Huajialing, Tianshui, Kongtong, Guyuan,
and Xiji. Observed rainfall data from 13 September 2019, 0:00 to 14 September 2019, 16:00
are used for model calibration and validation. The rainfall duration is 40 h, as shown in
Figure 2. The time interval between data points is 30 min, and the simulation time is set to
40 h. Land use information from various historical eras was acquired from the Resource
and Environmental Science and Data Centre of the Chinese Academy of Sciences. Data
were collected with a resolution of 30 m for the years 1985–2020. Digital elevation model
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(DEM), land use information from various time periods, soil information, and precipitation
information are among the fundamental data used in this study. The Geospatial Data Cloud
(http://www.gscloud.cn/, accessed on 22 June 2023) provided the DEM data with a grid
resolution of 30 m for download.
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Figure 2. Measured rainfall from 13 September 2019 at 0:00 to 14 September 2019 at 16:00.

The soil information was taken from the global Harmonized World Soil Database
(HWSD), which was created by the Food and Agriculture Organization (FAO) and the In-
ternational Institute for Applied Systems Analysis (IIASA). With a crop to the research area,
the soil data are presented at a resolution of 1000 m. An analysis of the Hulu River Basin
soil map was performed using the Harmonized World Soil Database (HWSD). The main
soil types in the Hulu River Basin are saturated immature soil, unsaturated immature
soil, calcareous accumulative black soil, moderately developed highly active leached soil,
moderately developed black soil, moderately developed grey soil, moderately developed
immature soil, calcareous impacted soil, calcareous immature soil, and sticky chestnut
calcareous soil. In the basin, the predominant types of vegetation are cultivated land and
grassland, with some woodland, bushes, unused land, water bodies, and impermeable re-
gions also present [57]. The Horton infiltration model is used for the infiltration component
of the model. In addition, the infiltration and Manning values for each land use type in the
watershed are determined based on various references [58–61].

The commonly used infiltration equation, proposed by Horton in 1939, is as follows:

f = fc + ( fo − fc)e−kt (4)

In this equation, the infiltration capacity at time t (h) is denoted by f, the starting value
of infiltration capacity is represented by f0, the final or equilibrium infiltration capacity is
represented by fc, and the rate of decline of infiltration capacity (1/h) is determined by an
exponent k.

Horton used empirical methods to construct his equation, but it could also be theoreti-
cally determined if it were assumed that the decrease in infiltration capacity resulted from
an exhaustion process [62].

2.3.2. Model Validation

This study utilizes measured rainfall and streamflow data from the Hulu River Basin
to validate the accuracy and reasonability of the constructed GPU-accelerated Surface Water
Flow and Associated Transport (GAST) model. The reliability of the model is assessed
based on Nash–Sutcliffe Efficiency (NSE) and coefficient of determination (R2) for the flow
at the watershed outlet cross-section. The downstream outlet of the Hulu River Basin in
the GAST model is set as an open boundary, while the rest are set as closed boundaries.
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The model is validated using rainfall measured data from the Qin’an hydrological station
from 13 September 2019 at 0:00 to 14 September 2019 at 16:00, spanning 40 h. The accuracy
of the model is evaluated based on the root-mean-square error (RMSE) (Table 1) and relative
error between the simulated values and measured values of the flow process at the Qin’an
hydrological station.

Table 1. Comparison between measured and simulated values.

Time Measured Flow/(m3·s−1) Time Simulated Flow/(m3·s−1) Relative Error

13 September
6:03:00 38.9 13 September

6:00:00 39.15 0.64%

13 September
8:00:00 35.5 13 September

8:00:00 38.23 7.68%

13 September
14:39:00 85.8 13 September

14:30:00 78.39 8.64%

14 September
5:54:00 131 14 September

6:00:00 135.68 3.57%

14 September
6:18:00 133 14 September

6:30:00 133.99 0.75%

14 September
8:00:00 92.5 14 September

8:00:00 95.58 3.33%

2.3.3. Root Mean Square Error (RMSE)

RMSE =

√
1
n∑n

i=1(Qsim,i −Qobs,i)
2 (5)

In this equation: Qsim,i—simulated value, Qobs,i—observed value, and n—number of
measurements. When the root-mean-square error (RMSE) is closer to 0, it indicates that the
simulated values are in complete agreement with the observed values.

2.3.4. Relative Error

δ =
4
L
× 100% (6)

In the equations: δ—relative error, usually expressed as a percentage,4—difference
between simulated and measured values, and L—measured value.

According to the calculations based on the simulation results, the root-mean-square
error (RMSE) between the simulated and observed values is 3.98. The relative errors are
0.64%, 7.68%, 8.64%, 3.57%, 0.75%, and 3.33%, respectively. The RMSE is close to 0, and the
relative errors are all less than 10%, indicating that the model has a small error between the
simulated and observed values and exhibits high accuracy. Therefore, the model can be
used to simulate and analyze the impact of rainfall characteristics and land use changes
on flood events in the Hulu River Basin. Additionally, the average absolute value of the
relative error is 0.0410, and the average absolute error is 3.1911.

2.4. Simulation of River Flooding under Different Rainfall Characteristics Scenarios

Different rainfall return periods have different impacts on basin floods, and the spatial
distribution of rainfall, whether uniform or uneven, also significantly influences basin
floods. Therefore, studying the impact of different rainfall spatial distributions on basin
floods under different return periods can provide a theoretical basis for disaster prevention,
mitigation, and relief work.

Scenario Setup

During the simulation period, the land use data in the Hulu River Basin are assumed
to be the current land use while keeping the infiltration and other parameters constant to
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exclude the influence of other factors on the flood evolution process in the basin. The rainfall
is designed using the Chicago rainfall type and the Gansu Tianshui rainfall formula.
Short-duration intense rainfall with a rainfall duration of 120 min and return periods of
5 years, 10 years, and 50 years, respectively, is generated with a rain peak coefficient of 0.5.
The rainfall formula is as follows:

i =
1734.0278× (1 + 1.473× LgP)

167× (t + 15.3599)0.8867 (7)

In equations: i = rainfall intensity (mm/h), P = rainfall return period (years), and
t—rainfall duration (minutes).

Two different scenarios are set for the spatial distribution of rainfall under different re-
turn periods. Based on the analysis of rainfall distribution and storm intensity distribution,
it is known that the rainfall in the Hulu River Basin gradually decreases from southeast to
northwest, with higher storm intensity in the southeast and northwest regions and lower
intensity in the northeast and southwest regions. Therefore, two different rainfall spatial
distribution scenarios are constructed. Additionally, three scenarios are created with the
storm center located in the upstream, middle reaches and downstream regions. The specific
settings for the rainfall characteristics scenarios are shown in Table 2.

Table 2. Scenario setting of different rainfall characteristics.

Scenario Scenario Description

Scenario R1 Uniform spatial distribution of 5-year return period rainfall
Scenario R2 Uniform spatial distribution of 10-year return period rainfall
Scenario R3 Uniform spatial distribution of 50-year return period rainfall
Scenario R4 Rainfall gradually decreasing from southeast to northwest

Scenario R5 Relatively high rainfall in southeast and northwest regions, while relatively
low rainfall in northeast and southwest regions

Scenario R6 Set upstream rainfall center
Scenario R7 Set middle reaches rainfall center
Scenario R8 Set downstream rainfall center

2.5. Simulation of River Floods Occurance under Different Land Use Scenarios

Different land use types significantly impact the flood evolution process by altering
the underlying surface hydrological characteristics, leading to a series of water resource
issues such as increased flood disasters, severe soil erosion, and declining groundwater levels.
In addition, changes in land use also have certain impacts on the ecological environment and
economic conditions, such as implementing policies such as converting cultivated land to
forests and grasslands in areas prone to soil erosion. Therefore, studying the impact of land use
changes on watershed floods is important for disaster prevention and mitigation and provides
technical support for watershed water resource planning. This section uses a two-dimensional
hydrodynamic model to simulate and analyze the impact of land use changes in the Hulu
River basin on the flood evolution process, peak flow, and peak water depths.

Scenario Setup

Since 1999, multiple water conservation measures have been implemented in the Hulu
River basin. Therefore, a scenario of generalized water conservation measures (such as
constructing sediment detention dams and terracing projects) is constructed. Seven land
use scenarios are established, including the current land use scenario, three historical land
use scenarios, two integrated land use scenarios, and the generalized water conservation
measures scenario. The response of watershed floods under different land use scenarios is
simulated and analyzed. The data for the four integrated land use scenarios are shown in
Figure 3, and the specific scenario settings are shown in Table 3. To exclude the influence of
rainfall on watershed floods, it is assumed that the rainfall conditions remain unchanged.
The rainfall design adopts the Chicago rainfall pattern, and the Gansu Tianshui heavy rain
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formula (Equation (7)) is used to generate rainfall with a duration of 120 min and a rainfall
coefficient of 0.5. The return periods are 5, 10, and 50 years, and the rainfall is assumed to
be spatially uniformly distributed.
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Table 3. Set up different land use scenarios.

Scenarios Scenario Description

Scenario L1 1985 Annual land use data
Scenario L2 2000 Annual land use data
Scenario L3 2010 Annual land use data
Scenario L4 2020 Annual land use data
Scenario L5 2020 Conversion of farmland to forest
Scenario L6 2020 Conversion of farmland to grassland
Scenario L7 Generalize various water conservation measures such as check dams

2.6. Simulation of River Floods under the Combined Influence of Rainfall Characteristics and
Land Use

We integrate two influencing factors to simulate the impact of the combined changes
in rainfall characteristics and land use on watershed floods. We explore the patterns and
characteristics of changes in peak flow and peak water depth.

Scenario Setup

Based on the analysis in the previous section, it was found that the impact of the
rainfall center on watershed floods is similar in the upstream and middle reaches of the
watershed. Therefore, in this section, besides other scenarios of rainfall characteristics, only
the scenario with the rainfall center upstream of the watershed was selected for simulation.
The specific scenario settings are shown in Table 4.

Table 4. Scenario setting under the combined action of rainfall characteristics and land use.

Scenario
Scenario Description

Rainfall Variation Land Use Change

Scenario RL1-1 50-year return period rainfall gradually decreases from
southeast to northwest 1985

Scenario RL1-2 50-year return period rainfall gradually decreases from
southeast to northwest 2000

Scenario RL1-3 50-year return period rainfall gradually decreases from
southeast to northwest 2010

Scenario RL1-4 50-year return period rainfall gradually decreases from
southeast to northwest farmland to forest

Scenario RL1-5 50-year return period rainfall gradually decreases from
southeast to northwest farmland to grassland

Scenario RL1-6 50-year return period rainfall gradually decreases from
southeast to northwest soil and water conservation measures

Scenario RL2-1
50-year return period rainfall: The southeast and northwest
regions have higher rainfall, while the northeast and southwest
regions have smaller rainfall

1985

Scenario RL2-2
50-year return period rainfall: The southeast and northwest
regions have higher rainfall, while the northeast and southwest
regions have smaller rainfall

2000

Scenario RL2-3
50-year return period rainfall: The southeast and northwest
regions have higher rainfall, while the northeast and southwest
regions have smaller rainfall

2010

Scenario RL2-4
50-year return period rainfall: The southeast and northwest
regions have higher rainfall, while the northeast and southwest
regions have smaller rainfall

farmland to forest

Scenario RL2-5
50-year return period rainfall: The southeast and northwest
regions have higher rainfall, while the northeast and southwest
regions have smaller rainfall

Resume farmland to grassland

Scenario RL2-6
50-year return period rainfall: The southeast and northwest
regions have higher rainfall, while the northeast and southwest
regions have smaller rainfall

Soil and water conservation measures
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Table 4. Cont.

Scenario
Scenario Description

Rainfall Variation Land Use Change

Scenario RL3-1 50-year return period rainfall center is upstream 1985
Scenario RL3-2 Set upstream 50-year rainfall center 2000
Scenario RL3-3 Set upstream 50-year rainfall center 2010
Scenario RL3-4 Set upstream 50-year rainfall center farmland to forest
Scenario RL3-5 Set upstream 50-year rainfall center farmland to grassland
Scenario RL3-6 Set upstream 50-year rainfall center soil and water conservation measures

Scenario RL4-1 Set downstream 50-year rainfall center 1985
Scenario RL4-2 Set downstream 50-year rainfall center 2000
Scenario RL4-3 Set downstream 50-year rainfall center 2010
Scenario RL4-4 Set downstream 50-year rainfall center farmland to forest
Scenario RL4-5 Set downstream 50-year rainfall center farmland to grassland
Scenario RL4-6 Set downstream 50-year rainfall center soil and water conservation measures

3. Results

Rainfall and land use are intricately interconnected, influencing each other in several
significant ways. The changes that occur in land use, such as urbanization or deforestation,
can alter the natural water cycle, impacting both the intensity and rainfall distribution. Con-
versely, rainfall patterns influence land use decisions, especially in agriculture, where the
amount and timing of precipitation often dictate the choice of crops and farming practices.
This dynamic relationship highlights the importance of considering both environmental
planning and resource management factors.

3.1. Simulation of River Flooding under Different Rainfall Characteristics Scenarios

Rainfall return periods of 5, 10, and 50 years with uniform spatial distribution of
rainfall. The flood evolution process under different return periods with a uniform spatial
rainfall distribution was simulated. The hydrograph, peak flow, and peak water depth
at the outlet section of the basin under different return periods with a uniform spatial
distribution of rainfall are shown in Figure 4 and Table 5.

Figure 4 shows that the flow at the outlet section of the basin rapidly increases with
time, reaching its peak between 5400 s and 7200 s, and then slowly decreases to a stable
level. Both scenario R1 and scenario R2 exhibit a flow value close to the peak flow, which
can occur either before or after the peak flow. Scenario R3, on the other hand, does not
show a flow value close to the peak flow. Instead, it experiences a sudden drop after the
peak flow, followed by a subsequent rise and a slow decline to stability. The peak flow
in scenario R1 is 1332.90 m3/s, occurring at 7200 s, with a peak water depth of 5.42 m at
9000 s. In scenario R2, the peak flow is 1445.33 m3/s, occurring at 5400 s, with a peak water
depth of 5.44 m at 9000 s. Scenario R3 has a peak flow of 2003.04 m3/s, occurring at 5400 s,
with a peak water depth of 8.57 m at 9000 s. It can be observed that both the peak flow
and peak water depth increase with the increase in the return period. However, when the
return periods are relatively close, such as 5 years and 10 years, the increase in peak flow
and peak water depth is not significant. Furthermore, as the return period increases, the
timing of the peak flow advances. There will be changes in future precipitation due to
global warming and the intensification of the water cycle process [63,64].
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Table 5. Peak discharge and peak water depth under different spatial distributions of rainfall.

Peak Flow
Rate/(m3·s−1)

Time of Peak
Flow/(s)

Peak Water
Depth/(m)

Time of Peak Water
Depth Occurrence/(s)

Scenario R1 1332.90 7200 5.42 9000
Scenario R2 1445.33 5400 5.44 9000
Scenario R3 2003.04 5400 8.57 9000

The spatial distribution of rainfall is uneven, with a return period of 5, 10, and 50 years.
Simulate the flood evolution process under different return periods of uneven rainfall.
The flow hydrograph, peak flow, and peak water depth of the watershed outlet section
under different return periods of uneven rainfall are shown in Figure 5 and Table 6. Sce-
nario R4 and Scenario R8 have significant differences in the discharge hydrograph of the
watershed outlet section at different return periods, while Scenario R5, Scenario R6, and
Scenario R7 have little difference in the discharge hydrograph of the outlet section at dif-
ferent return periods. The peak flow rates of scenarios R4, R5, R6, and R7 with different
return periods all appeared at 5400 s and then gradually decreased with time. The peak
flow of scenario R8 with different return periods occurs between 5400 s and 7200 s and then
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slowly decreases to a stable state. The outlet section discharge hydrograph of scenario R6
and scenario R7 is not very different; that is, when the rainfall center is in the upstream and
midstream, the impact on the basin flood is relatively close. Scenario R8 is quite different
from scenarios R6 and R7, which indicates that when the rainfall center is downstream, the
impact on the basin flood is different from that in the middle and upstream.
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Figure 5. The flow process line of the basin outlet section is under different uneven rainfall distributions.
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Table 6. Peak flow and peak water depth under different rainfall scenarios.

Return Period/
Scenario

Scenario R4 Scenario R5 Scenario R6 Scenario R7 Scenario R8

Flow
(m3·s1)

Water
Depth (m)

Flow
(m3·s1)

Water
Depth (m)

Flow
(m3·s1)

Water
Depth (m)

Flow
(m3·s1)

Water
Depth (m)

Flow
(m3·s1)

Water
Depth (m)

5 years return period 1836.19 5.38 1825.59 5.61 1813.82 5.60 1813.73 5.60 1883.34 5.39
10 years return period 1954.21 5.41 1894.72 5.39 1883.36 5.39 1883.31 5.39 2023.48 5.71
50 years return period 2277.76 7.39 1947.12 5.40 2023.07 5.86 2023.22 5.86 2694.34 8.82

Scenario R4 has a peak flow rate of 1836.19 m3/s, 1954.21 m3/s, and 2277.76 m3/s
during the 5, 10, and 50-year return periods, respectively, which is 37.76%, 35.21%, and
13.72% higher than the uniform distribution of rainfall during the same return period.
The peak water depths are 5.38 m, 5.41 m, and 7.39 m, respectively, 0.74%, 0.55%, and
13.77% less than the uniform rainfall distribution. Scenario R5 has a peak flow rate of
1825.59 m3/s, 1894.72 m3/s, and 1949.12 m3/s under three different return periods, re-
spectively. Compared with the same return period, the rainfall distribution uniformly
increased by 36.96%, 31.09%, and decreased by 2.69%. The peak water depths were 5.61 m,
5.39 m, and 5.40 m, respectively, which increased by 3.51%, decreased by 0.92%, and 36.99%
compared to the uniform distribution of rainfall. Scenario R6 has a peak flow rate of
1813.82 m3/s, 1883.36 m3/s, and 2023.07 m3/s during the 5, 10, and 50-year return periods,
respectively, which is 36.08%, 30.31%, and 1.00% higher than the uniform distribution of
rainfall during the same return period; The peak water depths were 5.60 m, 5.39 m, and
5.86 m, respectively, which increased by 3.32%, decreased by 0.92%, and 31.62% compared
to the uniform distribution of rainfall.

Scenario R7 has a peak flow rate of 1813.73 m3/s, 1883.31 m3/s, and 2023.22 m3/s
during the 5, 10, and 50-year return periods, respectively, which is 36.07%, 30.30%, and
1.01% higher than the uniform distribution of rainfall during the same return period.
The peak water depths were 5.60 m, 5.39 m, and 5.86 m, respectively, which increased by
3.32%, decreased by 0.92%, and 31.62% compared to the uniform distribution of rainfall.
Scenario R8 has a peak flow rate of 1883.34 m3/s, 2023.48 m3/s, and 2694.34 m3/s during
the 5, 10, and 50-year return periods, respectively, which is 41.30%, 40.00%, and 34.51%
higher than the uniform distribution of rainfall during the same return period. The peak
water depths were 5.39 m, 5.71 m, and 8.82 m, respectively, which decreased by 0.55%,
increased by 4.96%, and 2.92% compared to the uniform distribution of rainfall.

Figure 5 shows that the peak flow values and peak water depths for the 5-year and
10-year return periods are relatively close across different scenarios, while there is a sig-
nificant difference between the 10-year and 50-year return periods. It is quite different
from the peak water depth. It is further explained that when the difference between return
periods is larger, the difference between peak flow rate and peak water depth is larger.
The peak flow and peak water depth under the above four scenarios with uneven rainfall
spatial distribution are quite different from those under uniform rainfall spatial distribution.
The largest difference is scenario R8, and the one closest to the uniform rainfall scenario is
scenario R7. It can be seen that when the return period is small, the change rate of peak
flow is larger, and when the return period is larger, the change rate of peak flow is smaller.
It can be seen that when the return period reaches a certain level, such as the 100-year
return period, the peak discharge at the outlet section of the basin is relatively close under
the scenarios of uneven rainfall distribution and uniform rainfall distribution.

The simulated peak flows of Scenario R4, Scenario R5, Scenario R6, and Scenario R7
under the 5-year return period are relatively close, indicating that when the return period
is small, the heavy rain center is in the southeast, southeast, and northwest, the upper
reaches of the basin and the middle reaches of the basin. The degree of flood impact in
the Hulu River Basin is relatively similar. The peak flows simulated by scenario R8 are
significantly different from those of other scenarios in all return periods, indicating that
when the center of heavy rain is in the lower reaches of the basin, the impact on floods in
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the basin is stronger. At this time, special attention should be paid to the safety of the rivers
downstream of the basin, and disaster prevention and reduction measures should be taken.

3.2. Simulation of River Flooding under Different Land Use Scenarios

The historical inversion method is used to simulate the four historical land use scenar-
ios, and the changes in the simulation results between two adjacent periods are considered
as the degree of land use impact on floods. The peak flow and peak water depth for differ-
ent return periods under each scenario are shown in Tables 7 and 8, respectively. The flood
hydrographs at the watershed outlet for different land use scenarios are shown in Figure 6.

Table 7 shows that compared to Scenario L1, Scenario L2 shows an increase in peak
flow of 20.26%, 14.68%, and 17.14% for the 5, 10, and 50-year return periods, respectively.
The peak water depth increases by 0.37%, 9.07%, and 3.80%, respectively. Compared to
Scenario L2, Scenario L3 shows an increase in peak flow of 4.92%, 4.72%, and 1.86%, and
an increase in peak water depth of 1.66%, 6.62%, and 2.63% for the 5, 10, and 50-year return
periods, respectively. Compared to Scenario L3, Scenario L4 shows a decrease in peak flow
of 25.75%, 26.18%, and 21.39%, and a decrease in peak water depth of 1.45%, 13.38%, and
4.57% for the 5, 10, and 50-year return periods, respectively. It can be observed that there
is a significant variation in peak flow between two adjacent land use scenarios, while the
variation in peak water depth is less than 15%. This indicates that the changes in land use
between two adjacent periods have a greater impact on peak flow and a relatively smaller
impact on peak water depth.

Table 7. Historical land use scenarios peak discharge and peak water depth.

Return Period/
Scenario

Scenario L1 Scenario L2 Scenario L3 Scenario L4

Flow
(m3·s−1)

Water
Depth (m)

Flow
(m3·s−1)

Water
Depth (m)

Flow
(m3·s−1)

Water
Depth (m)

Flow
(m3·s−1)

Water
Depth (m)

5 years return period 1422.8 5.39 1711.02 5.41 1795.2 5.50 1332.9 5.42
10 years return period 1630.3 5.40 1869.7 5.89 1958.04 6.28 1445.33 5.44
50 years return period 2135.57 8.43 2501.61 8.75 2548.2 8.98 2003.04 8.57

In Scenario L1 compared to Scenario L4, the peak flow increased by 6.74%, 12.80%,
and 6.62% for different return periods, while the peak water depth decreased by 0.55%,
0.74%, and 1.63% for the 5, 10, and 50-year return periods, respectively. In Scenario L2
compared to Scenario L4, the peak flow increased by 28.37%, 29.36%, and 24.89% for
different return periods, and the peak water depth decreased by 0.18% for the 5-year return
period but increased by 8.27% and 2.10% for the 10 and 50-year return periods, respectively.
In Scenario L3 compared to Scenario L4, the peak flow increased by 34.68%, 35.47%, and
27.22% for the 5, 10, and 50-year return periods, respectively, and the peak water depth
increased by 1.48%, 15.44%, and 4.78% for the corresponding return periods. Thus, it can be
observed that during the period from 1985 to 2020 [65,66], the changes in land use resulted
in an increasing trend followed by a decreasing trend in both peak flow and peak water
depth in the watershed.

Table 8. Peak discharge and peak water depth in comprehensive land use scenarios.

Return Period/
Scenario

Scenario L5 Scenario L6 Scenario L7

Flow
(m3·s−1)

Water Depth
(m)

Flow
(m3·s−1)

Water Depth
(m)

Flow
(m3·s−1)

Water Depth
(m)

5-year return period 568.63 4.79 720.86 4.93 897.96 5.26
10-year return period 589.79 4.80 755.52 4.97 1035.85 5.30
50-year return period 803.09 4.98 912.13 5.10 1426.29 5.53
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Figure 6. Flow process line of watershed outlet section under different land use scenarios.

The flood evolution process was simulated and analyzed for three land use scenarios,
including two integrated land use scenarios and one scenario considering generalized
water conservation measures, compared to the current land use scenario (Scenario L4).
The simulation results and the changes compared to the current land use scenario are
shown in Table 8. From the table, it can be seen that the peak flow differs significantly
among the two integrated land use scenarios and the scenario with generalized water
conservation measures for different return periods, while the variation in peak water depth
is relatively small. Compared to Scenario L4, the peak flow decreased by 57.34%, 45.92%,
and 32.63% for the 5-year return period in Scenarios L5, L6, and L7, respectively. Similarly,
for the 10-year and 50-year return periods, the peak flow decreased by 59.19%, 47.73%,
28.33%, and 59.91%, 54.46%, and 28.79%, respectively. The corresponding reductions in
peak water depth were 11.62%, 9.04%, and 2.95% for the 5-year return period, 11.76%,
8.64%, and 2.57% for the 10-year return period, and 41.89%, 40.49%, and 35.47% for the
50-year return period.

Furthermore, according to Figure 6, the peak flow in Scenarios L5, L6, and L7 occurs
later than in Scenario L4, approximately between 3600 s and 7200 s. This indicates that
not only do the peak flow and peak water depth decrease significantly for different return
periods, but they also occur later. It suggests that the measures of returning farmland to
forest and grassland have a pronounced inhibitory effect on both peak flow and peak water
depth. The water conservation measures also contribute to a delay in peak flow and peak
water depth. This is because the implementation of water conservation measures retains
most of the runoff locally, leading to a decreasing trend in peak flow and peak water depth
at the outlet section of the watershed.
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The main land use types in the Hulu River Basin are cultivated land and grassland,
supplemented by woodland, shrubs, water bodies, unused land, and impermeable areas.
Cultivated land has the highest proportion in all four periods, exceeding 60% and being
the largest land use type. Grassland has the second largest proportion, also exceeding
20%. In these four periods, the proportion of arable land shows a trend of first increasing
and then decreasing, accounting for 60.09%, 75.62%, 72.94%, and 62.66% of the total area,
respectively. The proportion of grassland shows a trend of decreasing first and then increas-
ing, accounting for 38.02%, 22.30%, 24.78%, and 34.10%, respectively. The proportion of
woodland gradually increases, accounting for 1.71%, 1.89%, 2.04%, and 2.81%, respectively.
The proportion of shrubs shows a slight increase, accounting for 0.009%, 0.006%, 0.005%,
and 0.017% of the total area. The proportion of water bodies and unused land initially de-
creases and then increases, while the proportion of impermeable areas gradually increases.
Between 1985 and 2020, except for a 3.92% decrease in grassland area, the area of cultivated
land, woodland, shrubs, water bodies, unused land, and impermeable areas all increased.
The increase in proportion is 2.57%, 1.10%, 0.01%, 0.05%, 0.01%, and 0.18%, respectively.
In short, the Hulu River Basin has been mainly characterized by cultivated land and grass-
land, with increasing proportions of woodland and shrubs. Water bodies, unused land,
and impermeable areas have also shown changes in their proportions (Table 9).

Table 9. The land use change occurred in the study area during the period 1985–2020.

Type/Area
1985 2000 2010 2020

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion%

Cultivated land 6415.3 60.09 8073.5 75.62 7787.25 72.94 6689.71 62.66
Woodland 182.3 1.71 201.3 1.89 217.64 2.04 299.99 2.81

shrubs 0.9 0.009 0.7 0.01 0.55 0.01 1.81 0.02
Grassland 4058.9 38.02 2380.8 22.30 2645.55 24.78 3640.56 34.10

Water 7.9 0.07 5.6 0.050 6.96 0.07 13.04 0.12
Unused land 1.5 0.014 0.5 0.005 0.63 0.01 2.13 0.02
Impermeable 9.04 0.08 13.33 0.13 17.1 0.16 28.44 0.27

3.3. Simulating the Interacting Effects of Rainfall and Land Use Characteristics on River Flooding

By taking the peak flow and peak water depth obtained from the simulation of the
50-year return period uniform rainfall and land use scenario as the baseline and comparing
and analyzing the simulation results under different comprehensive scenarios, we can
determine the degree of impact of the combined changes in rainfall characteristics and land
use on floods. The simulation results for scenarios RL1-1 to RL1-6 are shown in Table 10,
and the outflow hydrographs are shown in Figure 7a. The peak flow occurs at 5400 s for all
scenarios. In scenario RL1-1, the peak flow is 2313.54 m3/s, and the peak water depth is
7.47 m, representing a 15.50% increase in peak flow and a 12.84% decrease in peak water
depth compared to the baseline period. In scenario RL1-2, the peak flow is 2377.32 m3/s,
representing an 18.69% increase, and the peak water depth is 8.17 m, representing a 4.67%
decrease. In scenario RL1-3, the peak flow is 2424.66 m3/s, and the peak water depth is
8.36 m, representing a 21.05% increase in peak flow and a 2.45% decrease in peak water
depth compared to the baseline period. In scenario RL1-4, the peak flow is 1902.56 m3/s,
and the peak water depth is 5.39 m, representing a 5.02% decrease in peak flow and a
37.11% decrease in peak water depth compared to the baseline period. In scenario RL1-5,
the peak flow is 2002.31 m3/s, and the peak water depth is 5.42 m, representing a 0.04%
decrease in peak flow and a 36.76% decrease in peak water depth compared to the baseline
period. In scenario RL1-6, the peak flow is 2277.76 m3/s, and the peak water depth is
7.39 m, representing a 13.72% increase in peak flow and a 13.77% decrease in peak water
depth compared to the baseline period.
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Table 10. Scenarios RL1-1 to RL1-6 peak flow rate and peak water depth.

Scenario Peak Flow Rate/(m3·s−1) Peak Water Depth/(m)

Base period 2003.04 8.57
RL1-1 2313.54 7.47
RL1-2 2377.32 8.17
RL1-3 2424.66 8.36
RL1-4 1902.56 5.39
RL1-5 2002.31 5.42
RL1-6 2277.76 7.39

Water 2024, 16, x FOR PEER REVIEW 21 of 26 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Flow process line of basin outlet section under different comprehensive scenarios. (a) 
Scenario RL1 ; (b) Scenario RL2; (c) Scenario RL3; (d) Scenario RL4 figure. 

The variations between scenarios RL1-1, RL2-1, RL3-1, and RL4-1, RL1-2, RL2-2, RL3-
2, and RL4-2, RL1-3, RL2-3, RL3-3, and RL4-3, RL1-4, RL2-4, RL3-4, and RL4-4, RL1-5, RL2-
5, RL3-5, and RL4-5, RL1-6, RL2-6, RL3-6, and RL4-6 represent the influence of changes in 
rainfall characteristics on peak flow and peak water depth. The range of variation in peak 
flow is 3.14% to 39.85%, 4.91% to 43.37%, 4.60% to 46.27%, 2.56% to 23.09%, 1.70% to 
28.12%, and 3.90% to 38.38%, respectively. The range of variation in peak water depth is 
8.86% to 62.55%, 7.96% to 63.03%, 7.66% to 62.16%, 0.00% to 10.67%, 0.37% to 28.65%, and 
5.74% to 63.33%, respectively. When the land use scenario is afforestation and grassland 
restoration, the impact of changes in rainfall characteristics on watershed flooding is rela-
tively small, while in the other land use scenarios, the impact is more significant. There-
fore, except for the land use scenario of afforestation and grassland restoration in the en-
tire region, rainfall characteristics have a greater impact on watershed flooding than land 
use changes. 

In short, it is stated that the most unfavorable scenario for the Hulu River Basin in 
terms of rainfall characteristics and land use is scenario RL4-3, with a peak flow rate of 
2974.82 m3/s and a peak water depth of 9.00 m. In this scenario, the rainfall distribution is 
concentrated in the downstream area, and the land use corresponds to the land use in 
2010. The basin is threatened by severe floods not only due to changes in rainfall distribu-
tion but also because of the reduction in grassland and forest land and the increase in 
cultivated land. 

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000

Fl
ow

 (m
3 .s

−1
)

Time (s)

Scenario RL1-1
Scenario RL1-2
Scenario RL1-3
Scenario RL1-4
Scenario RL1-5
Scenario RL1-6

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000

Fl
ow

 (m
3 .s

−1
)

Time (s)

Scenario RL2-1
Scenario RL2-2
Scenario RL2-3
Scenario RL2-4
Scenario RL2-5
Scenario RL2-6

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000

Fl
ow

 (m
3 .s

−1
)

Time (s)

Scenario RL3-1
Scenario RL3-2
Scenario RL3-3
Scenario RL3-4
Scenario RL3-5
Scenario RL3-6

0

500

1000

1500

2000

2500

3000

3500

0 10000 20000 30000 40000

Fl
ow

 (m
3 .s

−1
)

Time (s)

Scenario RL4-1
Scenario RL4-2
Scenario RL4-3
Scenario RL4-4
Scenario RL4-5
Scenario RL4-6

Figure 7. Flow process line of basin outlet section under different comprehensive scenarios. (a) Scenario
RL1; (b) Scenario RL2; (c) Scenario RL3; (d) Scenario RL4 figure.

The simulation results for scenarios RL2-1 to RL2-6 are shown in Table 11, and the
outflow hydrographs are shown in Figure 7b. The peak flow occurs at 5400 s for all
scenarios. In scenario RL2-1, the peak flow is 1989.97 m3/s, and the peak water depth is
5.42 m, representing a 0.65% decrease in peak flow and a 36.76% decrease in peak water
depth compared to the baseline period. In scenario RL2-2, the peak flow is 1990.56 m3/s,
representing a 0.62% decrease, and the peak water depth is 5.41 m, representing a 36.87%
decrease. In scenario RL2-3, the peak flow is 2033.76 m3/s, and the peak water depth is
5.55 m, representing a 1.53% increase in peak flow and a 35.24% decrease in peak water
depth compared to the baseline period. In scenario RL2-4, the peak flow is 1751.75 m3/s,
and the peak water depth is 5.34 m, representing a 12.55% decrease in peak flow and
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a 37.69% decrease in peak water depth compared to the baseline period. In scenario
RL2-5, the peak flow is 1786.75 m3/s, and the peak water depth is 5.34 m, representing
a 10.80% decrease in peak flow and a 37.69% decrease in peak water depth. In scenario
RL2-6, the peak flow is 1947.12 m3/s, and the peak water depth is 5.40 m, representing a
2.79% decrease in peak flow and a 36.99% decrease in peak water depth compared to the
baseline period.

Table 11. Scenarios RL2-1 to RL2-6 peak flow rate and peak water depth.

Scenario Peak Flow Rate/(m3·s−1) Peak Water Depth/(m)

Base period 2003.04 8.57
RL2-1 1989.97 5.42
RL2-2 1990.56 5.41
RL2-3 2033.76 5.55
RL2-4 1751.75 5.34
RL2-5 1786.75 5.34
RL2-6 1947.12 5.40

The simulation results for scenarios RL3-1 to RL3-6 are shown in Table 12, and the
outflow hydrographs are shown in Figure 7c. The peak flow occurs between 3600 s
and 5400 s for all scenarios. In scenario RL3-1, the peak flow is 2052.46 m3/s, and the
peak water depth is 5.90 m, representing a 2.47% increase in peak flow and a 31.16%
decrease in peak water depth compared to the baseline period. In scenario RL3-2, the peak
flow is 2088.33 m3/s, representing a 4.26% increase, and the peak water depth is 6.21 m,
representing a 27.54% decrease. In scenario RL3-3, the peak flow is 2127.37 m3/s, and
the peak water depth is 6.49 m, representing a 6.21% increase in peak flow and a 24.27%
decrease in peak water depth compared to the baseline period. In scenario RL3-4, the peak
flow is 1796.61 m3/s, and the peak water depth is 5.34 m, representing a 10.31% decrease
in peak flow and a 37.69% decrease in peak water depth compared to the baseline period.
In scenario RL3-5, the peak flow is 1817.12 m3/s, and the peak water depth is 5.36 m,
representing a 9.28% decrease in peak flow and a 37.46% decrease in peak water depth.
In scenario RL3-6, the peak flow is 2023.07 m3/s, and the peak water depth is 5.71 m,
representing a 1.00% increase in peak flow and a 33.37% decrease in peak water depth
compared to the baseline period.

Table 12. Scenarios RL3-1 to RL3-6 peak flow rate and peak water depth.

Scenario Peak Flow Rate/(m3·s−1) Peak Water Depth/(m)

Base period 2003.04 8.57
RL3-1 2052.46 5.90
RL3-2 2088.33 6.21
RL3-3 2127.37 6.49
RL3-4 1796.61 5.34
RL3-5 1817.12 5.36
RL3-6 2023.07 5.71

The simulation results for scenarios RL4-1 to RL4-6 are shown in Table 13, and the
discharge hydrograph at the outlet cross-section is shown in Figure 7d. The peak flow
occurs between 5400 s and 7200 s. In scenario RL4-1, the peak flow is 2783.00 m3/s, and the
peak water depth is 8.81 m. Compared to the baseline period, the peak flow has increased
by 38.94%, and the peak water depth has increased by 2.80%. In scenario RL4-2, the peak
flow is 2853.87 m3/s, an increase of 42.48% compared to the baseline period, and the peak
water depth is 8.82 m, which is an increase of 2.92%. In scenario RL4-3, the peak flow
is 2974.82 m3/s, and the peak water depth is 9.0 m. These values represent an increase
of 48.52% and 5.02%, respectively, compared to the baseline period. In scenario RL4-4,
the peak flow is 2156.24 m3/s, and the peak water depth is 5.91 m. The peak flow has

154



Water 2024, 16, 239

increased by 7.65%, while the peak water depth has decreased by 31.04% compared to
the baseline period. In scenario RL4-5, the peak flow is 2289.18 m3/s, and the peak water
depth is 6.87 m. The peak flow has increased by 14.29%, while the peak water depth has
decreased by 19.84% compared to the baseline period. In scenario RL4-6, the peak flow is
2694.34 m3/s, and the peak water depth is 8.82 m. The peak flow has increased by 34.51%,
and the peak water depth has increased by 2.92% compared to the baseline period.

Table 13. Scenarios RL4-1 to RL4-6 peak traffic and peak water depth.

Scenario Peak Flow Rate/(m3·s−1) Peak Water Depth/(m)

Base period 2003.04 8.57
RL4-1 2783.00 8.81
RL4-2 2853.87 8.82
RL4-3 2974.82 9.00
RL4-4 2156.24 5.91
RL4-5 2289.18 6.87
RL4-6 2694.34 8.82

The variations between scenarios RL1-1 to RL1-6, RL2-1 to RL2-6, RL3-1 to RL3-6,
and RL4-1 to RL4-6 represent the influence of land use changes on watershed flooding.
The range of variation in peak flow is 1.55% to 21.53%, 0.03% to 13.87%, 1.14% to 15.55%,
and 2.55% to 27.52%, respectively. The range of variation in peak water depth is 0.56%
to 37.11%, 0.00% to 3.78%, 0.37% to 17.72%, and 0.00% to 49.24%, respectively. When the
rainfall gradually decreases from southeast to northwest, and the rainfall center is located
downstream, the impact of land use changes on watershed flooding is significant, while in
the other two land use scenarios, the impact is relatively small.

The variations between scenarios RL1-1, RL2-1, RL3-1, and RL4-1, RL1-2, RL2-2, RL3-2,
and RL4-2, RL1-3, RL2-3, RL3-3, and RL4-3, RL1-4, RL2-4, RL3-4, and RL4-4, RL1-5, RL2-5,
RL3-5, and RL4-5, RL1-6, RL2-6, RL3-6, and RL4-6 represent the influence of changes in
rainfall characteristics on peak flow and peak water depth. The range of variation in peak
flow is 3.14% to 39.85%, 4.91% to 43.37%, 4.60% to 46.27%, 2.56% to 23.09%, 1.70% to 28.12%,
and 3.90% to 38.38%, respectively. The range of variation in peak water depth is 8.86% to
62.55%, 7.96% to 63.03%, 7.66% to 62.16%, 0.00% to 10.67%, 0.37% to 28.65%, and 5.74% to
63.33%, respectively. When the land use scenario is afforestation and grassland restoration,
the impact of changes in rainfall characteristics on watershed flooding is relatively small,
while in the other land use scenarios, the impact is more significant. Therefore, except for
the land use scenario of afforestation and grassland restoration in the entire region, rainfall
characteristics have a greater impact on watershed flooding than land use changes.

In short, it is stated that the most unfavorable scenario for the Hulu River Basin in
terms of rainfall characteristics and land use is scenario RL4-3, with a peak flow rate of
2974.82 m3/s and a peak water depth of 9.00 m. In this scenario, the rainfall distribution
is concentrated in the downstream area, and the land use corresponds to the land use
in 2010. The basin is threatened by severe floods not only due to changes in rainfall
distribution but also because of the reduction in grassland and forest land and the increase
in cultivated land.

On the other hand, the scenario with the greatest reduction in flood risk due to
rainfall characteristics and land use is RL2-4, with a peak flow rate of 1751.75 m3/s and
a peak water depth of 5.34 m. In this scenario, the rainfall is heavier in the southeast and
northwest regions and lighter in the northeast and southwest regions. The land use type is
characterized by reforestation and the return of cultivated land to forests. The changes in
rainfall distribution and the increase in grassland contribute to the decrease in flood threat.

4. Discussion

The GAST model was found to be suitable for investigating the Impacts Assessment
of Rainfall Characteristics and Land use Patterns on Runoff accumulation in the Hulu River
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Basin, China. Overall, the GAST model performance classification for the watershed was
very good [67]. The GAST model results revealed that rainfall and land use had an effect
on the hydrologic process of the Hulu River basin. The observed changes in hydrological
processes were attributed to rainfall and land use changes for this study.

4.1. Flood Evolution under Different Rainfall Characteristics Scenarios

With uniform rainfall distribution, an increase in the return period leads to higher
peak flow rates and peak water depths, and the occurrence time of peak flow advances.
When the difference in return periods is small, such as 5 and 10-year return periods, the
increase in peak flow rates and peak water depths is not significant. However, when the
rainfall distribution is non-uniform, there is a considerable difference in peak flow rates
and peak water depths compared to the scenario with uniform rainfall distribution. As the
return period increases, the impact of non-uniform rainfall distribution on peak flow rates
decreases. Among the scenarios, scenario R8 has the greatest impact on basin floods. Under
a 5-year return period, the peak flow rate increases by 41.30%, and the peak water depth
decreases by 0.55%. Under a 10-year return period, the peak flow rate increases by 40.00%,
and the peak water depth increases by 4.96%. Under a 50-year return period, the peak flow
rate increases by 34.51%, and the peak water depth increases by 2.92%. The scenario that is
closest to the uniform rainfall scenario is R7, with a 36.07% increase in peak flow rate and a
3.22% increase in peak water depth under a 5-year return period, a 30.30% increase in peak
flow rate and a 0.92% decrease in peak water depth under a10-year return period, and a
1.01% increase in peak flow rate and a 33.37% decrease in peak water depth under 50-year
return period.

4.2. Flood Evolution Process under Different Land Use Scenarios

Different land use scenarios result in varying responses in peak flow rates and peak
water depths. From 1985 to 2020, the changes in land use led to an initial increase and
subsequent decrease in peak flow rates and peak water depths in the Hulu River Basin.
Compared to the current land use in 2020, all three historical land use scenarios resulted
in increased peak flow rates, while the peak water depths showed variations. Scenario
L1 leads to a decrease in peak water depth compared to the current land use scenario.
In scenario L2, the peak water depth is smaller under a 5-year return period, while it
increases under 10-year and 50-year return periods compared to the current scenario.
Scenario L3 results in increased peak water depths compared to the current land use
scenario. The integrated land use scenarios and generalized water conservation measures
lead to significant differences in peak flow rates compared to the current land use scenario.
Across different return periods, there is a significant decrease in peak flow rates, and the
occurrence time is delayed. The magnitude of the impacts on peak flow rates and peak
water depths is as follows: L5 > L6 > L7.

4.3. Flood Evolution under the Combined Influence of Different Rainfall Characteristics and Land Use

The combined effect of rainfall characteristics and land use has the greatest impact
on basin floods in scenario RL4-3, where the rainfall center is located downstream, and
the land use corresponds to the 2010 land use type. The resulting peak flow rate and peak
water depth are 2974.82 m3/s and 9.00 m, respectively. The range of the impacts of land
use changes on basin floods is between 0.04% and 48.52%, while the range of changes in
peak flow rates and peak water depths due to rainfall characteristics is between 0.00% and
63.33%. Under the combined effect of rainfall characteristics and land use changes, the
range of changes in peak flow rates and peak water depths is between 0.04% and 48.52%.
In general, except for the scenarios with region-wide reforestation and grassland restoration
land use, the impact of rainfall characteristic changes on basin floods is greater than the
impact of land use changes.
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5. Conclusions

In this study, a two-dimensional hydrodynamic GAST model (GPU Accelerated Sur-
face Water Flow and Transport Model) is set up to simulate the flood processes in the Hulu
River Basin under different rainfall characteristics and land use scenarios. The impacts of
various rainfall and land use scenarios on peak flow rates, peak water depths, and flood
propagation processes were analyzed and quantified. In the Hulu River Basin, rainfall
distribution and land use significantly affect peak flow and water depth. Uniform rainfall
increases peak flow and depth, especially during longer return periods, while uneven
rainfall lessens this impact. Concentrated rainfall poses the greatest flood risk in down-
stream areas, necessitating early emergency response and disaster plans. Land use changes
from 1985 to 2020 influenced these patterns, with peak flow initially increasing and then
decreasing. Shifting land use towards forestry and grassland and implementing soil and
water conservation measures showed a notable decrease in runoff. Future efforts should
focus on rainfall prediction and land use policy implementation to mitigate flood risks
effectively.

The GAST model developed can predict the river basin’s future streamflow conditions.
It can guarantee the sustainable use of water resources and provide a theoretical foundation
for the planning and management of the total amount of simulated streamflow of water
resources in large river basins and regions.

6. Policy Implications

Based on the context provided by the hydrodynamic model GAST and its accuracy as-
sessment through RMSE. It can be used for flood forecasting and management. The model’s
outputs could inform infrastructure development policies, such as where to build flood
defenses or how to design them to withstand predicted flow rates. Policies related to
environmental protection might be impacted if the flow simulations suggest changes in
water patterns that could affect ecosystems. The research may have implications for urban
planning policies. Flood prediction could affect agricultural areas and may lead to changes
in agricultural policies, such as crop insurance schemes or water management practices.
In summary, the policy implications of a hydrodynamic model simulation study are vast
and can influence a wide range of policy areas, from local urban planning to broader
environmental and risk management strategies.
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Abstract: This study delved into the analysis of hourly observed as well as future precipitation data
in the towns of Willoughby and Buffalo on the Lake Erie Coast to examine the variations in IDF
relationships over the 21st century. Several regional climate models (RCMs) and general circulation
models (GCMs) from the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 were used.
The study evaluated three RCMs with historical and Representative Concentration Pathway (RCP)
8.5 scenarios for each CMIP5 and three GCMs with historical and Shared Socioeconomic Pathways
(SSPs) (126, 245, 370, and 585) scenarios for each CMIP6. The results suggested that the town of
Willoughby would experience an increase of 9–46%, whereas Buffalo would experience an upsurge
of 6–140% in the hourly precipitation intensity under the worst-case scenarios of RCP8.5 for CMIP5
and SSP585 for CMIP6. This increase is expected to occur in both the near (2020–2059) and far future
(2060–2099), with a return period as low as 2 years and as high as 100 years when compared to the
baseline period (1980–2019). The analysis indicated an increased range of 9–39% in the near future
and 20–55% in the far future for Willoughby, while the Buffalo region may experience an increase of
2–95% in the near future and 3–192% in the far future as compared to the baseline period. In contrast
to CMIP6 SSP585 models, CMIP5 RCP8.5 models predicted rainfall with an intensity value that is
up to 28% higher in the town of Willoughby, while the reverse was true for the Buffalo region. The
findings of this study are expected to be helpful for the design of water resource infrastructures.

Keywords: general circulation models (GCM); coupled model inter-comparison project (CMIP);
Gumbel extreme value type I distribution; extreme rainfall; rainfall intensity; IDF curves

1. Introduction

Climate change implies long-term shifts in precipitation and temperature patterns
due to anthropogenic influences by generating greenhouse gas emissions such as carbon
dioxide and methane gases [1,2]. Future intensification of extreme precipitation events due
to greenhouse gas emissions will result in an increase in the frequency and length of rainfall
events worldwide [2]. Several studies have reported a significant rise in both total annual
precipitation and the frequency of extreme events [3–6]. More specifically, shorter-duration
precipitation events are expected to increase significantly across the world [7,8]. For
example, the frequency of hourly extreme precipitation events [9] is expected to advance
up to 400% in North America [10]. Furthermore, the interaction of higher maximum
precipitation rates (15–40% increase) and the expansion of areas affected by heavy rainfall
leads to a substantial 80% rise in the overall precipitation volume [10]. Similar trends can
also be observed in the United States [11–13]. The Intergovernmental Panel on Climate
Change [2] also projects that over the 21st century, heavy precipitation will occur in this
area more frequently and with greater intensity.

Future high-intensity rainfalls triggered by climate change will have a more detri-
mental effect on urban stormwater systems [14,15]. The duration and rainfall intensity are
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linked to the frequency of the rainfall and such rainfall characteristics can be represented
by a curve called the intensity–duration–frequency (IDF) curve. The IDF curve can be
mathematically represented in terms of return period, intensity, and rainfall duration The
development of the IDF curve was initiated in the nineteenth century and has been widely
used across the world.

Since the IDF curves, are frequently utilized to design water infrastructures, it is
essential to gain a comprehensive understanding of the alterations in extreme precipitation
and subsequently revise the IDF curves in the future [16–18]. The IDF curve has been
extensively used across the world for the design of hydraulic structures including urban
drainage, culverts, road bridges, and storm sewer systems [19–22].

The pressing need to reexamine the IDF curve arises from potential changes in intense
rainfall exacerbated by climate change [23]. Some studies suggest that proactively anticipat-
ing design modifications for hydraulic structures would decrease the risk of future issues
and uncertainties, resulting in successful and versatile project outcomes [24,25]. Many
scientists and professionals have advocated for better knowledge of the possible change
in the severity, frequency, and volume of intense rainfall due to climate change [26–30].
This understanding is necessary since the existing drainage systems and hydraulic infras-
tructures are built to handle historical rainfall time series data on the assumption that
past extremes can be used to describe future extremes. This presumption is incorrect
given the shifting frequency and amount of intense rainfall triggered by changing climatic
variable [31,32]. With these changes, historic IDF curves cannot be used to accurately rep-
resent future climatic conditions. Therefore, a changing climate may result in an increase
in demand that water management infrastructure built to previous IDF norms may not
be able to accommodate [28]. Climate models that integrate greenhouse gas emissions
have become increasingly accessible and within reach to foresee future changes in the IDF
curve [14,33,34].

To date, the climate models are the primary and most effective tools for past and future
climate simulations [35]. However, the prediction of the future climate is location-specific
and varies depending on the type of general circulation models (GCMs) and the scenario
chosen. For example, according to Coupled Model Intercomparison Project (CMIP) Phase
5 projections, the distribution of temperature and precipitation indices in the northeastern
US will undergo significant changes between 2041 and 2070 [36]. Ragno et al. [37] found
that densely populated places may experience up to 20% more intense and twice as frequent
extreme precipitation events. Cheng and Aghakouchak [38] found that the assumption of
extreme precipitation in a stationary climate may lead to an underestimation of extreme
precipitation of up to 60%. Coelho et al. [39] conducted a study using CMIP6 projections to
assess the impact of changing extreme precipitation on flood engineering designs across
the US. By 2100, the northern region is predicted to experience an increase of 10–40% and
the southern region, 20–80%. The study showed a meridional dipole-like pattern in the
geographical distribution of precipitation changes, with an increase of 10–30% over the US.
The results from the CMIP6 models in Tucson, Arizona, show the likely threat of future
extreme events being disregarded in stationary-based design frameworks which could
pose a significant risk to both safety and the economy by more than 300% [33]

Limited studies have been conducted using predicted precipitation from CMIP6
models in the US, and no future IDF curve has been developed in the Lake Erie Basin
using CMIP5 and CMIP6 climate models. As the precipitation pattern of the Lake Erie
basin is complex due to lake-enhanced precipitation and rainfall after the snowfall, the
future IDF curve due to climate change impacts is crucial in the Lake Erie basin to safely
design urban drainage infrastructure and other hydraulic structures. Since climate change
effects are region-specific, site-specific evaluations are required to boost local resilience
to future extreme precipitation events. As a result, the clear differences in the future IDF
curve compared to the existing IDF curve developed based on the historical observed
data are needed in order to incorporate such information into urban drainage systems to
design climate-resilient infrastructures to mitigate the possible hazardous impact of climate
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change on infrastructure. Therefore, the objective of this paper is twofold: (i) to derive
the future IDF curve for the town of Willoughby (HUC-12) and the Buffalo region using
both CMIP5 and CMIP6 models, and (ii) to compare and evaluate the differences in the
projected precipitation IDF curves between the two sets of models. The purpose of this
paper is to give a thorough understanding of the vulnerabilities associated with future
changes in precipitation patterns on the Lake Erie coast.

2. Theoretical Description
2.1. CMIP5 Data Set

Multiple Representative Concentration Pathways (RCPs) experiments have been used
with the North American Coordinated Regional Climate Downscaling Experiment (NA-
CORDEX) and CMIP5 model data to build various meteorological information at the
regional scale [40]. The major benefit of NA-CORDEX is that it uses general circulation
models (GCMs) to drive simulations of various regional climate models (RCMs) at higher
resolutions (e.g., 50 × 50 km) [41]. Such information is critical for accurately modeling the
climate of regions with a complicated topography and small-scale events. The limitations
of GCMs, i.e., coarser resolution (100 × 100 km), are often resolved by regional climate
model-based projections [42]), further substantiating the assertion that RCMs are frequently
used to address the shortcomings of GCMs. Using the western US as an example, [43]
demonstrated how the RCM reflects the actual spatial variability in precipitation and
snowfall using regional climate simulations at 40 km spatial resolution for the period
(2040–2060).

In places with a complicated topography where small-scale phenomena are critical
for accurately representing the region’s climate, NA-CORDEX’s use of GCMs to drive
the simulations of several RCMs is a major advantage. The NA-CORDEX has provided
simulated precipitation data for two periods, including historical (1980–2005) and future
(2006–2099), for CMIP5.

2.2. CMIP6 Data Set

The CMIP6 models provide multi-model climate forecasts based on alternative scenar-
ios that are influenced by a new set of emissions-shared socioeconomic pathways (SSPs) and
land use scenarios that are directly related to societal concerns about adaptation, mitigation,
or the consequences of climate change [44]. By standardizing socioeconomic and technical
assumptions across models, this new paradigm closed crucial gaps in CMIP5’s intermediate
forcing levels and allowed for a more thorough examination of various pathways. The
World Climate Research Program (WRCP) has provided simulated precipitation data for
two periods, including historical (1980–2014) and future (2015–2099) for CMIP6.

NA-CORDEX and WCRP both have the goal of improving our understanding of the
Earth’s climate and its potential future changes [45–48]. While NA-CORDEX focuses on
producing high-resolution climate projections specifically for North America, WCRP is
broader in its focus, coordinating and conducting research on the fundamental science of
the Earth’s climate system and its interactions with the environment globally [48,49].

In addition to retaining the CMIP5 emission trajectories RCP2.6, RCP4.5, RCP6.0, and
RCP8.5, the CMIP6 data also contain three new emission paths: RCP1.9, RCP3.4, and
RCP7.0. As a result, the new scenarios combine SSP1, SSP2, SSP3, SSP4, and SSP5 of
five socioeconomic paths with various levels of emissions to form seven future SSP-RCP
scenarios, which include SSP1-1.9 (a very low range of scenarios) to SSP5-8.5 (a combination
of high societal vulnerability and a high forcing level). The combination of RCPs and shared
Socioeconomic Pathways (SSPs) is expected to make future scenarios more realistic.

It is expected that CMIP6 simulations can reproduce historical climate variables,
represent smaller biases in sea surface temperature, and be more skillful in capturing the
precipitation pattern. The climate model simulations from CMIP6 seem to be more reliable
than the earlier CMIP5 in various aspects. Different scientists have reported the limitations
of CMIP5, especially in various scenarios and GCM output, due to the large reduction in
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atmospheric aerosol emissions for RCP scenarios [50]. Since more realistic results can be
expected at various locations, especially for extreme precipitation, the application of the
latest CMIP6 climate data is more crucial for storm sewer drainage systems. In addition,
the multimodal median of CMIP6 (CMIP6-MMM) is expected to perform better than the
individual model. Therefore, several models were used for IDF curve development.

2.3. Bias Correction

Before any form of analysis, it is crucial to retrieve the data from climate models such
as RCMs and GCMs for a specific location based on latitude and longitude. Since it is not
unusual for climate models to produce frequently skewed results, it is necessary to adjust
the climate data for bias. This bias correction is essential and recommended in several
studies [51–53] to ensure that the bias-corrected data used in hydrological modeling and
decision-making processes are accurate and reliable, leading to appropriate results [54–56].
In a study conducted by [57], Standardized Reconstruction (Z) and the Quantile Mapping
Method (Q) demonstrated superior simulation skills compared to alternative methods,
including Mean Bias-remove (U), Multiplicative Shift (M), Regression (R), and Principal
Component Regression (PCR). The Quantile Mapping Method, widely adopted in diverse
investigations [58], has emerged as a globally acclaimed choice. Its extensive use is at-
tributed to its proven ability to enhance the precision and consistency of statistical studies,
making it the method of choice in this context. Quantile mapping is a technique used
to reconcile climate model data with historical observations by transforming the model’s
data distribution to match the observational data distribution, thereby reducing biases and
increasing accuracy in climate predictions [59–65]. The efficiency of this technique has
been tested and found to be effective in improving the accuracy for hydrological modeling
and decision-making [66–68]. Quantile mapping, which is a well-known approach for bias
correction, has been used in generating downscaled GCM data sets for both the United
States and global land regions [69]. The approach aims to closely mimic both the statistical
distributions of the observed variable and the climatic variable [69,70].

2.4. Intensity Duration Frequency (IDF) Curves

In the 1940s, Gumbel developed the Gumbel distribution, also known as the extreme-
value Type I distribution [71]. Since the Gumbel distribution is generally used for the
distribution of the maximum of a sample, it is one of the extreme distributions.

The Gumbel theory of distribution is the preferred choice for analyzing intense rainfall
events due to its simplicity [72,73] for analyzing extreme events. The Gumbel method has
been found to be one of the most credible approaches for hydraulic design, particularly
when dealing with high-intensity events due to its focus on extreme occurrences. Several
past studies have shown that Gumbel’s distribution may reliably anticipate flood magni-
tudes, enhancing the safety of the design [74–77]. Similarly, ISFRAM (2015) [78] suggests
the use of the Gumbel method in practical applications due to its improved accuracy results
compared to the Log-Pearson Type III distribution. Nonetheless, the Gumbel distribution
was found to be the best fit for the Kelantan River Basin, outperforming the Log-Pearson
Type III and normal distributions [79]. It has been observed that the application of Gum-
bel distribution improves the efficient design and utilization of infrastructure facilities,
resulting in improved public safety and cost savings [76].

The following equation [20] calculates the maximum precipitation PT (in mm) for each
duration with a specified return period T (in years).

PT = Pavg + KS (1)

where Pavg is the average of the maximum precipitation corresponding to a given duration,
as stated by:

Pavg =
1
n ∑n

i=0Pi (2)
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where “Pi” is the specific extreme value of rainfall and “n” is the number of events or years
of data available.

K is the Gumbel frequency factor as given by:

K = −
√

6
π
∗
(

0.5772 + ln
(

ln
(

T
T − 1

)))
(3)

and S is the standard deviation, which is computed using Equation (4):

S =

[
1

n− 1 ∑n
i=0
(

Pi − Pavg
)2

]1/2
(4)

where S is the standard deviation. The frequency factor (K), when multiplied by the
standard deviation, provides the deviation of a specific rainfall event (for a certain period
T) from the average. The rainfall intensity (i) in mm/h can then be calculated using this
factor and the standard deviation, as follows:

It =
PT
Td

(5)

where Td is the duration in hours.
While the Gumbel distribution has been popularly used, it has some drawbacks as

it is characterized by constant skewness because of its non-tailed distribution. While
the modeling using the Gumbel distribution is widely used due to its simplicity, the
consideration of independent variables such as the probability of selecting one variable vs
selecting another independent variable must be considered carefully [80].

3. Materials and Methods
3.1. Study Area

The Lake Erie region, encompassing the towns of Willoughby in Lake County, Ohio,
and Buffalo in Erie County, New York, presents a dynamic climate characterized by distinct
seasonal variations and notable precipitation patterns (Figure 1). This geographical area,
located in the United States, is situated along the eastern edge of the Great Lakes. The
region’s climatic conditions and precipitation trends have been the focus of investigation,
revealing important insights into changing weather dynamics.

Willoughby is nestled within Lake County, Ohio, and boasts geographical coordinates
of 41◦38′45′′ N latitude and 81◦24′35′′ W longitude. Covering an area of 26.78 km2, with
26.55 km2 of land and 0.23 km2 of water, the town showcases a blend of natural and
aquatic surroundings. The climate of Willoughby exhibits a clear division between its
hot, muggy summers and cold, snowy winters. During the warm season, average daily
high temperatures soar above 23 ◦C, peaking at around 28 ◦C, while lows hover around
20 ◦C. In contrast, the cold season sees average daily highs of 7 ◦C with lows plunging
to −5 ◦C, and the high temperatures barely reaching 2 ◦C. Rainfall is a consistent feature
throughout the year, with September holding the record for the wettest month, experiencing
an average of 78mm of rain. In contrast, February marks the driest period with an average
of 29 mm of rain. This climatic data, meticulously recorded from 2015 to 2023, provides a
comprehensive understanding of Willoughby’s distinctive weather patterns. The region
has witnessed an increase in temperature and rainfall intensity, coupled with a rising trend
in extreme weather events, as documented in historical climate data [81].

Similarly, Buffalo, situated in Erie County, New York, is another integral part of the
Lake Erie region (Figure 1). The city is positioned at 42◦53′11′′ N latitude and 78◦52′41′′ W
longitude, encompassing an expansive area of 26.78 km2. Buffalo’s climate exhibits a
distinct contrast between its warm, partly cloudy summers and its freezing, snowy, windy,
and mostly cloudy winters. The warm season witnesses average daily high temperatures
exceeding 21 ◦C, peaking at approximately 26 ◦C, while daily lows stay above 18 ◦C. In
the cold season, average daily high temperatures barely reach 5◦C, with lows plummeting
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to −6 ◦C and highs only reaching −0 ◦C. Like Willoughby, Buffalo experiences consistent
rainfall throughout the year. September stands as the wettest month, with an average of
72 mm of rain, while February represents the driest month, recording an average of 19 mm
of rain. The meticulously recorded climate patterns from 2015 to 2023 provide an in-depth
understanding of Buffalo’s unique meteorological characteristics (Weather Spark).
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Erie Coast.

3.2. Climate Model Data

Past observed precipitation as well as RCM and GCM output data for different models
from CMIP5 and CMIP6, respectively, are included in the precipitation data used with
historical data and future data under various scenarios. For the town of Willoughby, the
historical observations were collected from the Hopkins International Airport station in
Cleveland, Ohio, which is 50 km away from the study site.

Similarly, for Buffalo, the observed historical precipitation data were obtained from
Buffalo Niagara International Airport. The 1 h precipitation data from the station were
utilized to prepare the observed historical data. This station was selected because it provides
long records of continuous data sets without any significant interruption.

The historical period from 1980–2019 was considered the baseline period and referred
to as Time Span-1 (TS-1), whereas the future period was divided into two time spans
2020–2059 as the near future (TS-2), and 2060–2099 as the far future (TS-3). This was
intended because the most recent data were available for the period of 1980–2019 and
separating the future period into smaller time frames would allow for a more detailed
analysis of potential changes in precipitation patterns with equal time for the near future
and distant future, providing a more comprehensive and holistic view of the potential
changes in precipitation patterns over time.

For this study, three RCMs with model-generated historical data and RCP8.5 scenarios
for each CMIP5 were selected from https://na-cordex.org/, accessed on 1 January 2022.
Similarly, for CMIP5, three GCMs with historical and four SSP scenarios, namely, SSP126,
SSP245, SSP370, and SSP585, were chosen to examine the potential increase in future
precipitation. The projected simulations of precipitation in the future were obtained from
three climate models contributing to CMIP6: https://esgf-node.llnl.gov/search/cmip6/,
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accessed on 1 January 2022. Together, the four CMIP6 scenarios and RCP8.5 from CMIP5
provide historical background and future predictions for the study, with the former serving
as a historical baseline for the worst-case climatic scenario and the latter as an attempt to
give insights into possible future orientations. The fundamental information for the three
selected CMIP5 and CMIP6 models is reported in Table 1.

Table 1. Description of the climate models and climate change scenarios used in the study.

CMIP5

Source Source ID GCM Scenario Grid Frequency Resolution

NA-CORDEX WRF

GFDL-ESM2M

hist, RCP8.5 NAM-22 1 h 0.44◦ × 0.44◦HadGEM2-ES

MPI-ESM-LR

CMIP6

Source Source ID Experiment ID Variant Label Frequency Resolution

WRCP

MIROC6
hist, ssp126, ssp245,

ssp370, ssp585

r1i1p1f1

1 h

1.4◦ × 1.4◦

CNRM-CM6-1-HR r1i1p1f2 0.5◦ × 0.5◦

CNRM-ESM2-1 r1i1p1f2 1.4◦ × 1.4◦

The ability of the climate models to contribute hourly data was a primary factor in their
selection for this study. In addition, these models have already been widely adopted in the
research community, ensuring comparability and consistency with the existing literature
and increasing the credibility and reliability of the research. Furthermore, a more noted
comprehension of the potential effects of climate change on precipitation patterns was
made possible by including both historical and different future scenarios. Such climate
scenarios help us understand how precipitation responds to changes in greenhouse gas
emissions, which is useful for planning responses to climate change.

3.3. Bias Correction of Raw Data

In this study, the climate data from the climate model were corrected against the
observed daily data using the quantile mapping bias-correction approach, also known as
probability mapping or distribution mapping.

In this study, the Climate Data Bias Corrector (CDBC) tool developed by Gupta et al.
2019 [82] was used to complete the bias correction. The effectiveness of the tool and its
efficacy for bias corrections have been demonstrated in various studies [83–87].

3.4. Development of the IDF Curve

After the raw climate model data were bias-corrected, the next step was to develop
an IDF curve using the Gumbel Extreme Distribution method. For this, the raw data
were analyzed to determine the maximum precipitation intensity for each year from 1980
to 2099 for different rainfall durations (1 h, 2 h, 6 h, 12 h, and 24 h) at various return
periods including 2, 5, 10, 25, 50, and 100 years. For each return period, the intensity
of the precipitation for each duration was calculated using the average of the maximum
precipitation and the standard deviation corresponding to the time frame. In addition, the
Gumbel frequency factor, or K-factor, was used to calculate the probability of the occurrence
of an event of a given magnitude.

Finally, the IDF curves were developed by plotting the intensity of precipitation against
the duration of the rainfall for each return period using the Multi-Model Ensemble (MME)
mean method.
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4. Results and Discussion

Since the major objective of this study was to develop IDF curves for both CMIP5
and CMIP6 models and evaluate the differences between them, simulated precipitation
data for historical and future periods were used. The data were adjusted to reduce biases
using the quantile mapping approach, and the results of the bias correction process are
presented in terms of the mean and standard deviation. The comparison of the average
and variability (standard deviation) in both the CMIP5 and CMIP6 models, both before
and after bias correction for the towns of Willoughby and Buffalo, has been presented in
Tables 2 and 3, respectively.

Table 2. Bias in terms of mean and standard deviation (st. dev.) before and after bias correction for
CMIP5 and CMIP6 models for the baseline period (TS-1: 1980–2019) for the town of Willoughby.

Statistics
CMIP5 Models

Observed GFDL-ESM2M HadGEM2-ES MPI-ESM-LR

Before After Before After Before After

Average (mm) 2.67 4.04 2.6 3.06 2.68 3.56 2.51

St. Dev. (mm) 6.62 7.24 6.78 7.11 6.58 6.79 6.39

CMIP6 Models

Statistics Observed GFDL-ESM2M HadGEM2-ES MPI-ESM-LR

Before After Before After Before After

Average (mm) 2.67 3.04 2.69 3.36 2.65 3.30 2.68

St. Dev. (mm) 6.62 6.06 6.77 6.60 6.71 6.13 6.77

Table 3. Bias in terms of mean and standard deviation (st. dev.) before and after bias correction for
CMIP5 and CMIP6 models for the baseline period (TS-1: 1980–2019) for Buffalo.

Statistics
CMIP5 Models

Observed GFDL-ESM2M HadGEM2-ES MPI-ESM-LR

Before After Before After Before After

Average (mm) 1.97 3.65 1.93 3.84 2.17 4.01 2.35

St. Dev. (mm) 5.40 7.06 5.66 7.64 6.52 8.05 7.23

CMIP6 Models

Statistics Observed GFDL-ESM2M HadGEM2-ES MPI-ESM-LR

Before After Before After Before After

Average (mm) 1.97 3.16 1.43 3.27 1.44 3.10 1.44

St. Dev. (mm) 5.40 6.29 4.90 6.11 4.93 6.24 4.87

4.1. CMIP5

A comprehensive analysis of the IDF curves, assembling three CMIP5 models for
the RCP8.5 scenario, provides a visual and mathematical representation of the changes
in IDF. The IDF curve for the historical baseline period and the near future is presented
in Figure 2. The analysis has revealed a considerable rise in rainfall intensity in the near
future compared to the historical baseline period, with a projection of 9–39% for various
durations and return periods for the town of Willoughby while the results from Buffalo
demonstrated an elevation projecting an increase of 4% to 27% across various durations
and return periods. It is important to note that the percentage increase was not linear,
rather large variations were detected for longer durations and higher return periods. The
non-linear nature of the increase in rainfall intensity implies that extreme rainfall events
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are projected to become even more intense in the near future. The analysis of the trend
of precipitation indicated that the increasing pattern observed in the near future could be
expected to further increase in the far future, as shown in Figure 3. Precipitation is expected
to become more intense and increase by 20–55% compared to the historical baseline period
for the town of Willoughby. However, such projections for the Buffalo region were relatively
more and indicated a potential surge in precipitation intensity by 38% to 84% relative to
the baseline historical period. Instances of extreme rainfall, both in shorter and longer
return periods, have surged in both frequency and intensity. This tendency raises concerns
about the likelihood of more frequent flash floods and stormwater flooding in the future.
To further illustrate this point, Figure 4 presents a graphical comparison of the percentage
change in intensity between different time frames. The study revealed that until the final
years of the century, hourly precipitation with a 100-year return period would increase by
almost 24% and 53% for the town of Willoughby and Buffalo region, respectively. Hourly
precipitation intensity could be expected to follow a predictable trend, increasing by 16%
in the near future and by a much larger percentage (29%) in the far future for the town
of Willoughby while Buffalo exhibited a 17% elevation in the near future and a notably
larger increment of 38% in the far future. These divergent tendencies highlight the value
of looking across multiple time periods when analyzing climate projections for the future,
which provide important clues that help us piece together how precipitation patterns may
shift over time. This increasing trend of precipitation in the Lake Erie region that we found
in our study is consistent with the findings of previous research [88,89] on the Great Lakes
region using CMIP5 models. Notably, the same models were used in the former studies,
which suggests the consistency and reliability of our findings.
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Figure 2. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the near future from 2020 to
2059 (TS-2) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP5 RCP8.5
models for (a) the town of Willoughby (left panel), and (b) the city of Buffalo (right panel).
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Figure 3. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the far-future period from
2060 to 2099 (TS-3) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP5
RCP8.5 models for (a) the town of Willoughby (left panel), and (b) the city of Buffalo (right panel).
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Figure 4. The left and right figures of the upper panel (a) represent the town of Willoughby, whereas
the left and right figures of the lower panel (b) represent the city of Buffalo. The left graph of the
upper panel shows the comparison of the percentage change in the rainfall intensity between the
baseline period from 1980 to 2019 (TS-1) vs. the near future from 2020 to 2059 (TS-2), whereas the
right panel shows the baseline period from 1980 to 2019 (TS-1) vs. the far future period from 2060 to
2099 (TS-3) for the town of Willoughby for different return periods and rainfall durations of CMIP5
RCP8.5. The exact interpretation is true for the city of Buffalo in the lower panel.
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4.2. CMIP6

In this study, the most recent climate model, CMIP6, agreed with the earlier versions of
the model, i.e., CMIP5, in predicting an increase in precipitation. The findings indicated that
even with the lowest SSP scenario (SSP126), there would be an increase in rainfall intensity in
the near future, with a range of 3–19% for the town of Willoughby and 4% to 54% for Buffalo
(Figure 5). It is interesting to note that the magnitude of the increase in the intensity of rainfall
could be expected to vary across different durations and return periods. For the town of
Willoughby, the two-year return period for a six-hour rainfall showed the lowest percentage
increase in intensity. On the other hand, the return period of 100 years for rainfall lasting
2 h showed the largest percentage increase in intensity. However, for the Buffalo region, the
smallest increase could be expected for a 24 h rainfall with a 2-year return period, whereas the
largest increment could be expected for a 100-year return period for a 2-h duration rainfall.
This trend persists in the far future (Figure 6), with the most pronounced increase as high as
56% anticipated for the 1-h duration of a 100-year return period.
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Figure 5. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the near future from 2020 to
2059 (TS-2) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP126
models for (a) the town of Willoughby (left panel), (b) city of Buffalo (right panel).
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Figure 6. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the far future from 2060 to
2099 (TS-3) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP126
models for (a) the town of Willoughby (left panel), and (b) city of Buffalo (right panel).

171



Water 2023, 15, 4063

The precipitation intensity for the near future can be expected to rise primarily for
shorter durations (Figure 7). Similarly, this trend can be expected for the far future (Figure 8)
suggesting a significant future increase in precipitation intensity for both the town of
Willoughby and Buffalo, especially for shorter durations. It is interesting to report that
a shorter duration of precipitation could be expected significantly in the Buffalo region
compared to Willoughby. Comparing the near-future and historical baseline, this study
indicated that precipitation intensity might double in the near future and triple in the far
future for various durations and return periods. This disparity in trends emphasizes the
significance of evaluating various time segments when analyzing future climate projections,
enabling a deeper understanding of the evolving patterns of precipitation.

Water 2023, 15, x FOR PEER REVIEW 13 of 23 
 

 

  
(a) (b) 

Figure 7. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the near future from 2020 
to 2059 (TS-2:) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 
SSP245 models for (a) the town of Willougby (left panel), (b) city of Buffalo (right panel). 

  
(a) (b) 

Figure 8. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 2060–2099) 
considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP245 models 
for (a) the town of Willoughby and (b) city of Buffalo. 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

R
ai

nf
al

l I
nt

en
sit

y 
(m

m
/h

r)

Rainfall Duration (hrs)

T= 2 Yrs (TS-1)
T= 2 Yrs (TS-2)
T= 5 Yrs (TS-1)
T= 5 Yrs (TS-2)
T= 10 Yrs (TS-1)
T= 10 Yrs (TS-2)
T= 25 Yrs (TS-1)
T= 25 Yrs (TS-2)
T= 50 Yrs (TS-1)
T= 50 Yrs (TS-2)
T= 100 Yrs (TS-1)
T= 100 Yrs (TS-2)

0

20

40

60

80

100

120

0 10 20

R
ai

nf
al

l I
nt

en
sit

y 
(m

m
/h

r)

Rainfall Duration (hrs)

T= 2 Yrs (TS-1)
T= 2 Yrs (TS-2)
T= 5 Yrs (TS-1)
T= 5 Yrs (TS-2)
T= 10 Yrs (TS-1)
T= 10 Yrs (TS-2)
T= 25 Yrs (TS-1)
T= 25 Yrs (TS-2)
T= 50 Yrs (TS-1)
T= 50 Yrs (TS-2)
T= 100 Yrs (TS-1)
T= 100 Yrs (TS-2)

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

R
ai

nf
al

l I
nt

en
sit

y 
(m

m
/h

r)

Rainfall Duration (hrs)

T= 2 Yrs (TS-1)
T= 2 Yrs (TS-3)
T= 5 Yrs (TS-1)
T= 5 Yrs (TS-3)
T= 10 Yrs (TS-1)
T= 10 Yrs (TS-3)
T= 25 Yrs (TS-1)
T= 25 Yrs (TS-3)
T= 50 Yrs (TS-1)
T= 50 Yrs (TS-3)
T= 100 Yrs (TS-1)
T= 100 Yrs (TS-3)

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25

R
ai

nf
al

l I
nt

en
sit

y 
(m

m
/h

r)

Rainfall Duration (hrs)

T= 2 Yrs (TS-1)
T= 2 Yrs (TS-3)
T= 5 Yrs (TS-1)
T= 5 Yrs (TS-3)
T= 10 Yrs (TS-1)
T= 10 Yrs (TS-3)
T= 25 Yrs (TS-1)
T= 25 Yrs (TS-3)
T= 50 Yrs (TS-1)
T= 50 Yrs (TS-3)
T= 100 Yrs (TS-1)
T= 100 Yrs (TS-3)

Figure 7. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the near future from 2020 to
2059 (TS-2:) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP245
models for (a) the town of Willougby (left panel), (b) city of Buffalo (right panel).
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Figure 8. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 2060–2099)
considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP245 models for
(a) the town of Willoughby and (b) city of Buffalo.

Likewise, the SSP370 scenario predicted intriguing insights about the future of pre-
cipitation intensity. In particular, hourly precipitation with a return period of two years
is predicted to increase in intensity, with the lowest observed increase of 5% (Figure 9).
The most significant increase in intensity, however, is expected for the 2-h duration of
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precipitation with a 100-year return period, which is projected to increase by 22% for the
town of Willoughby. However, for the Buffalo region, it is projected to rise significantly
to as high as 55% for a 1-h duration for a 2-year return period in the near future and by
94% for a 100-year return period in the far future. Comparisons of IDF curves for SSP370
near-future and far-future further underscore these trends (Figure 10).
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Figure 9. IDF curves for the baseline period (TS-1: 1980–2019) vs. the near future (TS-2: 2020–2059)
considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP370 models for
(a) the town of Willoughby (left panel) and (b) city of Buffalo (right panel).
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Figure 10. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 2060–2099)
considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP370 models for
(a) the town of Willoughby (left panel) and (b) city of Buffalo (right panel). In the same manner, the
SSP585 scenario under the CMIP6 model demonstrated an increase in precipitation intensity, with
a projected range of 6–57% (Figure 11) and 19–140% (Figure 12) for the near-future and far-future,
respectively, for various durations and return periods for both the town of Willoughby and the Buffalo
region. The results showed that in the most catastrophic scenario (SSP585), hourly precipitation with
a 100-year return period would rise by an average of approximately 24% in the future in the town of
Willoughby and by around 80% in the Buffalo region (Figure 13).
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Figure 11. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the near future from 2020 to
2059 (TS-2) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP585
models for (a) the town of Willoughby (left panel) and (b) city of Buffalo (right panel).
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Figure 12. IDF curves for the baseline period from 1980 to 2019 (TS-1) vs. the far future from 2060 to
2099 (TS-3) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three CMIP6 SSP585
models for (a) the town of Willoughby (left panel), (b) city of Buffalo (right panel).
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2020 to 2059 (TS-2), on the left, and the baseline period from 1980 to 2019 (TS-1) vs. the far future 
from 2080 to 2099 (TS-3), on the right, for different return periods and rainfall duration of CMIP6 
SSP585 in the upper panel for the town of Willoughby (a). The exact similar comparison is presented 
in the lower panel (b) for the city of Buffalo. 
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precipitation patterns. 
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across different durations and return periods. Similarly, Figure 15 shows the plots of the 
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Figure 13. The upper panel (a) represents the town of Willoughby and the lower panel (b) represents
the City of Buffalo. The upper panel shows the graphical comparison showing the rainfall intensity
percentage change between the baseline period from 1980 to 2019 (TS-1) vs. the near future from 2020
to 2059 (TS-2), on the left, and the baseline period from 1980 to 2019 (TS-1) vs. the far future from
2080 to 2099 (TS-3), on the right, for different return periods and rainfall duration of CMIP6 SSP585
in the upper panel for the town of Willoughby (a). The exact similar comparison is presented in the
lower panel (b) for the city of Buffalo.

Earlier research in the Great Lakes region [90] found that CMIP6 models’ representa-
tions of precipitation would vary widely and contrast with those observed in real-world
data sets. Nonetheless, the MIROC6 model used in this study agreed with the similar
trend in increased precipitation presented by Minallah and Steiner, 2021 [91], indicating
the reliability of the findings and validating the predictive ability of the model for future
precipitation patterns.

4.3. CMIP5 vs. CMIP6: A Comparison

The comparison of the near future for both CMIP5 RCP8.5 and CMIP6 SSP585 has
been presented in Figure 14. The study revealed that the increase in rainfall intensity for
various duration hours and return periods for CMIP5 RCP8.5 and CMIP6 SSP585 was
projected to be within the range of 9–39% and 20–55% for the near future and the far future,
respectively, for the town of Willoughby, whereas much a higher range from 4% to 57% for
near future, and 19% to 140% for far future could be expected in the Buffalo region across
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different durations and return periods. Similarly, Figure 15 shows the plots of the far future
for both CMIPs, suggesting a significant increase in precipitation in Lake Erie in the future.
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Figure 14. IDF curves for the near future period from 2020 to 2059 (TS-2:) considering a 2, 5, 10, 25,
50, and 100-year return period ensembling three CMIP5 RCP8.5 vs. CMIP6 SSP585 models for (a) the
town of Willoughby (left panel), and (b) city of Buffalo (right panel).
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Figure 15. IDF curves for the far future period from 2060 to 2099 (TS-3) considering a 2, 5, 10, 25, 50,
and 100-year return period ensembling three CMIP5 RCP8.5 vs. CMIP6 SSP585 models for (a) the
town of Willoughby (left panel), and (b) city of Buffalo (right panel).

The CMIP6 models were assessed under various scenarios, including ssp126, ssp245,
ssp370, and ssp585, revealing an increase in precipitation intensity from 2–22% for the near
future and 6–40% for the far future across various rainfall durations and return periods
for the town of Willoughby, whereas an increase in precipitation intensity from 2% to 95%
for the near future and 3% to 192% for the far future was detected in the Buffalo region.
Even though both CMIPs indicate an increase in precipitation intensity, the CMIP5 RCP8.5
stands out with a higher rainfall intensity than the CMIP6 SSP585, with an intensity range
that exceeds the CMIP6 SSP585 by 28% across varying durations and return periods for
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the town of Willoughby. Interestingly, in the Buffalo region, the findings highlight the
intriguing revelation that CMIP6 projects a more substantial increase in intensity for longer
durations and higher return periods, a departure from CMIP5’s trend. Notably, CMIP6 SSP
scenarios emphasize significant changes, particularly for the future towards the century’s
end. Furthermore, the contrast between CMIP5 predictions for Willoughby and Buffalo,
and CMIP6’s higher prediction in Buffalo, underscores the complex regional variability.

During the analysis of meteorological data in this study, it was found that the intensity
of precipitation would increase with longer return periods. The hourly precipitation is
expected to see an increase in the upper range of extreme values in the future, specifically
for the 95th percentile. This means that the most severe precipitation events that happen
only 5% of the time are likely to become more intense, with a projected increase in the 95th
percentile range of 5% to 24%, and the average hourly rainfall in the near future and far
future is expected to increase by 7–28% by both CMIPs, which is a signal that communities
need to prepare for the impacts of extreme weather events and invest in measures to build
more resilient communities in the face of a changing climate. The results show that extreme
weather events will become more intense, requiring sustainable development to mitigate
urban flooding.

In Buffalo, the research foresees increased intensity of precipitation for extended return
periods. The 95th percentile range, symbolizing severe rainfall events, is expected to triple
in intensity by the century’s close, reflecting the escalating severity of extreme weather
occurrences. There was a discrepancy between the study’s findings and the historical data
reported by the National Oceanic and Atmospheric Administration (NOAA). One possible
explanation for the discrepancies found in the data is that lakes were either simplified or
left out entirely from the climate models used to examine potential future climate changes.
The credibility of the CMIP5 models’ projections was called into question by a previous
study by [91], which found that most of them did not accurately capture the impact of
the Great Lakes on the regional climate. Inaccurately simulating regional climate patterns
requires a thorough understanding of the interaction between lakes, the atmosphere, and
the land. This highlights the need for additional research on the accuracy of sub-daily data
and casts doubt on the applicability of the models used.

However, it is essential to acknowledge the limitations of this study, such as the fact
that it is based on the rainfall estimates of a single location and may not be representative
of every location of the Lake Erie basin. Further studies could be accomplished to explore
the limitations and make improvements, such as potential uncertainties in the models, data,
and bias correction methods. Regardless, the results of this study provide valuable insights
for urban planners, engineers, and decision-makers in developing sustainable flood control
measures to mitigate the limitations. Additionally, there is a chance that the bias correction
methods adopted in this study, data, and models will all have uncertainties that will affect
the results. Further studies may explore these limitations and improve upon them.

5. Conclusions

This study aimed to develop and compare the IDF curves for future climate scenarios
using data from two different climate phases, CMIP5 and CMIP6, in the Lake Erie basin to
evaluate the impact of climate change on rainfall intensity. Since IDF curves are essential
tools in designing effective drainage systems for any engineering project, simulated precip-
itation data from historical and future periods were used to develop the IDF curves and
make comparisons. The data were adjusted to reduce biases using the quantile mapping
approach, and the bias-corrected climate data were used to develop the IDF curves using
the Gumbel Extreme Distribution Type I method.

The results for the town of Willoughby indicated a rise in precipitation intensity in
the future, ranging from 9 to 55% across different rainfall durations and return periods for
CMIP5 RCP8.5 and CMIP6 SSP585. The analysis of CMIP6 climate scenarios predicted a
significant average increase of 27% in the intensity of hourly precipitation for the recurrence
interval of 100 years in the future. Specifically, the SSP585 scenario projected an increase of
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9–26% in the near future and 21–47% in the far future, while the RCP8.5 scenario predicted
an increase of 11% to 24%, respectively. Even under the moderate climate change scenario
of SSP126, it can be expected to have an increase (averaging 6%) in hourly precipitation
intensity with a 2-year return period.

Similarly, the results from Buffalo indicated a rise in precipitation intensity in the
future, ranging from 3 to 140% across different rainfall durations and return periods for
CMIP5 RCP8.5 and CMIP6 SSP585. The analysis of CMIP6 climate scenarios predicts a
significant average increase of 99% in the intensity of hourly precipitation for the recurrence
interval of 100 years in the future. Specifically, the SSP585 scenario projects an increase of 6
to 57% in the near future and 19 to 140% in the far future, while the RCP8.5 scenario predicts
increases of 4% to 27% in the near future and 27% to 85% across varying rainfall duration
and return periods, respectively. Even under the moderate climate change scenario of
SSP126, it can be expected to have an increase (averaging 50%) in hourly precipitation
intensity with a 2-year return period.

The reliance on a limited number of models and scenarios may not account for the
entire range of uncertainty in future scenarios. By using a variety of models and scenarios,
it is possible to ensure a thorough representation of climate projections, which successfully
addresses issues with the overestimation or underestimation of climate consequences. This
approach reduces biases promoting particular climatic outcomes, improving the study’s
generalizability across different contexts and periods. In this context, further research is
needed to understand the combined effects of these uncertainties with other sources of
variability, such as land use change and natural internal weather variability. The large
uncertainty is the output of the GCMs, and the RCMs also highlight the need for uncertainty
analysis and probability-based IDF curves. Furthermore, the process of bias correction
in a climate model is not immune to uncertainties. Climate scientists generally agree
that extreme precipitation is intensifying; nevertheless, the phenomenon is complex and
depends on a number of elements, including scale dependencies, physical considerations,
regional variances, and confidence levels. To get accurate and trustworthy results for
climate adaptation and infrastructure development, these aspects must be carefully taken
into account during bias-correction processes. Future forecasts of climatic variables may
be subjected to uncertainty after being corrected for bias in climate models, even when
based on a single reference period. Hence, future climate results may vary depending
on the reference period selected. These uncertainties impact research outcomes as they
attempt to rectify inaccuracies in the data. The assumptions made during the correction
process significantly influence the results and the manner in which data are rectified. Flaws
in past data can lead to inaccuracies in future climate forecasts. Uncertainties arise when
adjustments are made to data geographically or over different time spans. Different model
responses to bias correction can leave behind residual errors. Additionally, in a changing
environment, maintaining consistent climatic conditions becomes challenging, complicating
future projections. Future research could explore various methods for responding to all
these unknowns, such as using the professional analysis of climatologists or utilizing more
robust statistical methods or machine learning algorithms. Therefore, in order to improve
the current IDF curves in water infrastructure design, it is recommended that many time
periods be taken into account in order to accommodate both immediate and long-term
demands. In order to achieve dependable IDF curves, it is imperative to emphasize the
implementation of strong statistical approaches in the processing of climatic data and bias
correction. Furthermore, there is a need for a hybrid approach that makes use of many
reference periods due to the complex nature of the interrelationships between climatic
variables. To sum up, the study emphasizes the importance of updating the existing
IDF curves that guide the design of water management infrastructure to account for the
effects of climate change. It makes a substantial contribution to our understanding of how
climate change impacts water management by providing information on shifting patterns
of rainfall that are essential for developing adaptive infrastructure. The integration of
many climate models and scenarios facilitates the development of adaptable infrastructure
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that can account for a range of potential outcomes. Concentrating on particular regions
highlights the significance of customized planning for a range of climate impacts, and
addressing uncertainties highlights the necessity of flexible infrastructure to handle a range
of future possibilities, guaranteeing long-term climate preparedness.
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Abstract: The management of water resources depends heavily on hydrological prediction, and
advances in machine learning (ML) present prospects for improving predictive modelling capabilities.
This study investigates the use of a variety of widely used machine learning algorithms, such as
CatBoost, ElasticNet, k-Nearest Neighbors (KNN), Lasso, Light Gradient Boosting Machine Regressor
(LGBM), Linear Regression (LR), Multilayer Perceptron (MLP), Random Forest (RF), Ridge, Stochastic
Gradient Descent (SGD), and the Extreme Gradient Boosting Regression Model (XGBoost), to predict
the river inflow of the Garudeshwar watershed, a key element in planning for flood control and
water supply. The substantial engineering feature used in the study, which incorporates temporal
lag and contextual data based on Indian seasons, leads it distinctiveness. The study concludes that
the CatBoost method demonstrated remarkable performance across various metrics, including Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2) values, for both training
and testing datasets. This was accomplished by an in-depth investigation and model comparison.
In contrast to CatBoost, XGBoost and LGBM demonstrated a higher percentage of data points with
prediction errors exceeding 35% for moderate inflow numbers above 10,000. CatBoost established
itself as a reliable method for hydrological time-series modelling, easily managing both categorical
and continuous variables, and thereby greatly enhancing prediction accuracy. The results of this
study highlight the value and promise of widely used machine learning algorithms in hydrology and
offer valuable insights for academics and industry professionals.

Keywords: hydrological forecasting; machine learning; streamflow prediction; CatBoost; XGBoost;
river inflow prediction

1. Introduction

Accurate prediction of daily river inflow is essential for effective water resource
management [1]. Inflow predictions play a crucial role in decision-making for water man-
agers and policymakers, influencing water allocation, reservoir operations, flood control
measures, and drought mitigation strategies [2]. Accurate predictions enable optimized
utilization of water resources by providing insights into availability and distribution. Reser-
voir operations rely on accurate inflow predictions to make informed decisions on water
release and storage, considering downstream demands, flood control, and ecological fac-
tors [3,4]. During drought periods, precise inflow predictions help in proactive water
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supply management by implementing conservation measures, water use constraints, and
exploring alternative sources [5]. Accurate inflow predictions support the development of
robust drought management plans, ensuring sustainable water provision for communities
and ecosystems. The use of accurate inflow predictions aids in mitigating risks, optimizing
water storage, and facilitating efficient water resource management practices [6,7].

For estimating streamflow, a variety of techniques have been developed, many of
which are physically based models that rely on experimental and statistical analysis [8].
Physically based streamflow forecasting models are based on certain hydrological hy-
potheses and require a large quantity of hydrological data for calibration [9]. The physical
processes involved in the water cycle, such as interactions between rainfall and runoff and
river routing, are described by these models. However, the accessibility and dependability
of hydrological data could restrict the implementation of these models. Physically based
models require accurate hydrological data as inputs, such as rainfall volume, intensity,
and dispersion [10]. However, obtaining such data can be difficult, particularly in areas
with weak monitoring infrastructure, costly data collection, or convoluted logistics. The
calibration and validation processes of these models are hampered by the absence of precise
and comprehensive hydrological data, which reduces the forecasting accuracy [11].

The advantage of physically based models is that they faithfully represent the hydro-
logical system and the underlying physical processes. These models reveal information
on the mechanics of runoff production and flow dynamics, making them helpful tools
for understanding the behavior of watersheds [12]. They are particularly useful when a
thorough understanding of the physical processes is necessary, like when analyzing how
variations in land use or climatic conditions impact streamflow [13]. However, adopting
physically based models has a number of disadvantages. In addition to the already noted
data constraints, these models frequently need complicated parameterization, which can
be difficult and imprecise. The calibration procedure entails changing model parameters
to suit observed data, and the precision of the calibration is strongly influenced by the
caliber and representativeness of the available data [14]. Unfortunately, this procedure is
costly, involves a lot of work, takes a long time, and requires sample collection. As a result,
scientists are becoming more and more interested in enhancing cutting-edge data-driven
models for predicting streamflow. These models provide a viable alternative, since they
need fewer data and are affordable.

Data-driven models have certain benefits over physically based models. Without using
explicit physical equations, these models may discover patterns and connections directly
from the available data [15]. Since they can handle a variety of input variables and capture
nonlinear interactions, data-driven models are frequently more versatile and flexible [16].
Additionally, they have benefits for streamflow forecasting in data-scarce places, since they
can make reasonably accurate forecasts even with limited hydrological data [17]. Data-
driven models do, however, have certain drawbacks. They lack the ability to represent
the underlying physical processes explicitly, which may limit their interpretability and
generalizability in certain cases [18]. Data-driven models are also sensitive to the quality
and representativeness of the training data. Biases or outliers in the data can significantly
affect the model’s performance, and it may be challenging to identify and address these
issues without a good understanding of the underlying hydrological processes [19,20].

Streamflow predictions may be divided into short-term and long-term predictions,
depending on the time period [21]. For flood control systems, hourly and daily forecasting,
often known as short-term or real-time forecasting, is very valuable [22]. In the case of
a flood, these projections allow for prompt action and decision making. Authorities can
decide on evacuation, emergency response, and resource allocation in accordance with
projections that are provided on an hourly or daily basis [23]. Real-time predictions assist
in keeping an eye on flood-prone areas and sending out early warnings, therefore reducing
the loss of life and property [24]. Long-term forecasting, however, covers the weekly,
monthly, and yearly timescales [25]. It helps in managing irrigation systems, operating
reservoirs, and producing electricity [26]. These projections are essential for controlling
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irrigation systems, maximizing the use of water for agriculture, and preserving ecological
harmony. Furthermore, precise long-term projections aid in the planning of hydropower
generation, permitting the best use of water resources for the development of renewable
energy [27]. Streamflow forecasting has significantly advanced with the introduction
of data-driven models. These models evaluate historical streamflow data and uncover
patterns and correlations using computational methods like machine learning (ML) and
artificial intelligence (AI) [28].

The potential for improving the precision and dependability of daily river inflow
projections is enormous. With the aid of these methods, it is possible to evaluate sizable
amounts of historical data, spot trends, and build intricate connections between meteoro-
logical factors, hydrological parameters, and river inflows [29]. ML models may learn and
generalize from the patterns by being trained on previous data, which enables these models
to produce precise forecasts for upcoming inflow circumstances [30]. The management
of water resources will directly benefit from increasing the daily river inflow projections’
accuracy with ML. The ability to make educated decisions that assure the best possible
use of water resources, reduce the effects of floods and droughts, and promote sustainable
development is a key capability of water managers and policymakers. By utilizing ML
approaches, it can improve the accuracy of inflow predictions and contribute to better
and more efficient methods of managing water resources, which will eventually be ad-
vantageous to society, the environment, and the economy [31]. Artificial neural networks
(ANNs), support vector machines (SVMs), Random Forests (RFs), gradient boosting ma-
chines (GBMs), deep learning (DL) [32], long short-term memory (LSTM) [33], Gaussian
processes (GPs), and physics-informed ML [34,35] are a few ML techniques utilized in
streamflow forecasting. To accurately anticipate streamflow, these techniques take into
account temporal dependencies, manage nonlinear patterns, and capture complicated
linkages. They provide a variety of methods for better water resource management and
impact reduction from floods.

1.1. Literature Review
1.1.1. Traditional Methods for River Inflow Prediction

For predicting river inflows, traditional methods have been applied in the area of
hydrology. Statistical or empirical models based on historical data and certain hydrolog-
ical factors are frequently used in these strategies [36]. Even while these conventional
approaches have proved useful for understanding river inflow patterns and guiding water
resource management decisions, they may have shortcomings in terms of capturing com-
plicated non-linear interactions and managing huge datasets with a variety of influencing
elements [37]. The autoregressive integrated moving average (ARIMA) model is a typical
classical approach [38]. The temporal patterns and trends in data on river inflows may be
captured using ARIMA models, which are often used in time series analysis [39]. They take
into account the moving average (MA) component for accounting for the impact of prior
prediction errors, the integrated (I) component for addressing non-stationary factors, and
the auto-regressive (AR) component for modeling the dependency on previous inflow val-
ues. For predicting river inflow, physical based models like the Soil and Water Assessment
Tool (SWAT) are frequently used in hydrology [40]. These models use elements including
rainfall, land cover, soil properties, and terrain to mimic the hydrological processes, based
on physical principles [41]. SWAT and similar models estimate river inflows by using
mathematical equations to simulate the movement of water through the terrain.

Traditional approaches may have problems capturing non-linear relationships and
managing large, complex datasets, even though they have been effective for hydrological
forecasting. Since they typically rely on assumptions and simplifications of the underlying
mechanics, their accuracy may occasionally be constrained [42]. Additionally, traditional
methods with high labor and computational costs are less suitable for real-time forecasting
applications. To manage these restrictions, researchers have adopted ML techniques, which
provide more adaptability and flexibility in collecting complex patterns and processing
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enormous datasets. By automatically discovering patterns and correlations from data, ML
techniques like ANN, SVM, and RF have shown promise in enhancing the accuracy and
resilience of river inflow estimates.

1.1.2. Machine Learning Approaches for River Inflow Prediction

In recent years, there has been a lot of interest in the ability of ML algorithms to
manage enormous datasets and capture intricate relationships in hydrological systems.
These methods provide a data-driven approach to hydrological modeling, allowing for
the creation of prediction models that are more precise [43,44]. Different ML techniques,
including ANN, SVM, and decision trees, have been used in the context of river flow
prediction to improve forecasting abilities [45,46]. Popular ML models for hydrological
modeling include ANNs. ANNs are capable of capturing non-linear correlations between
the goal variable of the river flow and the input variables of precipitation, temperature, and
soil moisture [47]. They can generalize from prior data patterns to produce forecasts for
upcoming timespans. Another ML method for predicting river flow is SVM. Finding the
ideal decision boundary that divides several classes or forecasts river flow values based on
input data is the goal of SVM algorithms. SVM models are efficient at capturing complicated
correlations in hydrological processes and can handle high-dimensional data [48–50].

River flow prediction has also used decision trees and their ensemble approaches,
including Random Forests (RFs). These algorithms create decision trees based on past
data and employ them to anticipate future events. In order to increase forecast resilience
and accuracy, RF merges numerous decision trees. It has been applied to streamflow
forecasting to better capture interactions between different hydrological factors [51,52].
In streamflow forecasting, gradient boosting machines (GBMs) like the extreme gradient
boosting regression model (XGBoost) [53] and LGBM [54] have grown in popularity. They
focus on samples with large prediction errors and repeatedly incorporate weak models
to produce a strong predictive model. GBMs are renowned for their capacity to handle
missing data and complicated connections.

A special kind of recurrent neural network (RNN) called long short-term memory
(LSTM) is made for sequential data. For short-term forecasting applications in particular,
LSTMs have proved effective in capturing temporal relationships in streamflow data and
producing precise forecasts [55,56]. Probabilistic models known as Gaussian processes
(GPs) are capable of capturing errors in forecasts of streamflow. They have been applied to
streamflow forecasting to offer not just point predictions but also prediction intervals that
show the forecasts’ level of uncertainty [57]. Hybrid models mix several machine learning
(ML) methods or incorporate ML with physical models [58]. For instance, data assimilation
methods may be applied to merge physically based models with ML methods to increase
prediction accuracy or incorporate actual streamflow data into ML models. To enhance
model performance, [59] created hybrid particle swarm optimization (PSO) and the group
method of data handling for short-term prediction of daily streamflow, [60] developed
ML-based grey wolf optimization for the short-term prediction of streamflows, [61] used
hybrid LSTM-PSO for the streamflow forecast, [62] combined different ML methods for
daily streamflow simulation, and [63] used an LSTM-based DL model for streamflow
forecasting using Kalman filtering.

For predicting river flow, ML techniques provide a number of benefits. They have the
ability to manage non-linear relationships and adjust to shifting hydrological circumstances.
A more thorough investigation of the hydrological processes is possible because of ML
models’ ability to handle huge datasets with many impacting elements. Additionally,
ML methods may combine several data sources, such as meteorological data, remote
sensing data, and historical streamflow records, to increase forecast accuracy. But it is
crucial to remember that ML models have their limits as well. For efficient model building,
they need a large volume of high-quality training data. To make sure the models reflect
pertinent hydrological processes, care must be taken in the selection of acceptable input
variables and feature engineering. Additionally, if the training dataset is too short or the
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model complexity is not adequately managed, ML models may experience overfitting. A
variety of machine learning methods, such as CatBoost, ElasticNet, k-Nearest Neighbors
(KNN), Lasso, light gradient-boosting machine regressor (LGBM), Linear Regression (LR),
multilayer perceptron (MLP), Random Forest (RF), Ridge, stochastic gradient descent (SGD),
and the extreme gradient-boosting regression model (XGBoost), have been used to create
models for predicting river inflow in the article. The most efficient method for forecasting
river inflow has been determined after the compared results of their investigations into the
efficacy of each methodology.

This research makes several contributions that highlight its novelty:

a. Comparative Evaluation: the study provides a comprehensive comparative evalua-
tion of multiple machine learning models for predicting river inflow. While previous
studies have explored individual models, this research systematically compares the
performance of CatBoost, ElasticNet, KNN, Lasso, LGBM, Linear Regression, MLP,
Random Forest, Ridge, SGD, and XGBoost. Such a comprehensive comparative
analysis is novel in the context of river inflow prediction.

b. Time Series Analysis: the study specifically focuses on time series analysis for river
inflow prediction. Time series data present unique challenges, due to temporal depen-
dencies. By applying different machine learning techniques to this specific domain,
the research contributes to the advancement of time series prediction methodologies
in the context of water resource management.

c. Application to River Inflow Prediction: while machine learning models have been ap-
plied in various domains, their application to river inflow prediction is of significant
importance for water resource management. Predicting river inflow accurately is
crucial for making informed decisions regarding water allocation, flood management,
and hydropower generation.

d. Performance Evaluation on Multiple Datasets: the study evaluates the performance of
the models on multiple datasets, including training, validation, and testing data. This
comprehensive evaluation provides a robust assessment of the models’ performance
and their ability to generalize to unseen data, contributing to the understanding of
their efficacy in real-world scenarios.

1.2. Objectives of the Study

The primary objective is to develop models for predicting river inflow using the dif-
ferent machine learning methods mentioned, including CatBoost, ElasticNet, k-Nearest
Neighbors (KNN), Lasso, light gradient-boosting machine regressor (LGBM), Linear Re-
gression (LR), multilayer perceptron (MLP), Random Forest (RF), Ridge, stochastic gradient
descent (SGD), and the extreme gradient-boosting regression model (XGBoost). The models
attempt to forecast river inflow based on relevant input characteristics.

2. Methodology and Methods

The steps involved in developing and analyzing a machine learning (ML) model
for predicting daily river inflow are outlined. Several important parts of the procedure
are included. First, data from credible sources are used to compile historical data on
daily river inflow. To guarantee data quality, the obtained data go through preprocessing,
which includes cleaning and addressing missing values. Then, using feature engineering
approaches, pertinent characteristics are extracted, including seasonal and temporal trends.
A piece of the dataset is used to construct and train the models, while a different subset
is used to validate their performance and evaluate their correctness. Common evaluation
metrics, such as mean squared error (MSE), mean absolute error (MAE), root mean squared
error (RMSE), root mean square percentage error (RMSPE) and R-squared (R2), are used to
quantify the model’s performance.

To learn more about the model’s predictive skills and the importance of various
characteristics in predicting river input, the generated data are carefully studied. The
model’s implications for managing water resources are examined, along with suggestions
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for more study and possible practical application. By following this methodology, the study
aims to contribute to the development of a robust and accurate model for daily river inflow
prediction, which can provide valuable insights for effective water resource management
and decision-making processes. Figure 1 shows the flowchart of the methodology of
the study.
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2.1. CatBoostRegressor Algorithm

CatBoostRegressor is an ML technique that predicts continuous values using gradient-
boosted decision trees. It is a relatively new algorithm [64]. CatBoostRegressor is known
for its efficiency, precision, and capacity for handling categorical characteristics. In order
for the CatBoostRegressor algorithm to function, a set of weak decision trees must first
be built. A powerful model is then built by combining these trees. Gradient boosting is
the method used to join the trees. Gradient boosting works by adding additional trees to
the model that fix the mistakes created by the earlier trees. To predict continuous values,
CatBoostRegressor applies the following formula, as shown in Equation (1):

y = f (x) = ∑n
i=1 αi hi(x) (1)

where the output function f (x) is a linear combination of the basis functions hi(x), and
coefficients αi define the weight of each basis function in the linear combination; y is the
predicted value, x is the input features.

The gradient descent method is used to calculate the model coefficients. The loss
function must be minimized in the CatBoost. The difference between the values that were
predicted and the actual values is measured by the loss function. A number of regres-
sion problems may be solved with the potent ML method CatBoost. It works especially
effectively for issues involving categorical characteristics.

2.2. k-Nearest Neighbors

The KNN algorithm is a non-parametric regression method used for predicting the
target variable based on the average of the target values of its k nearest neighbors [65]. Here
are the key steps:

1. Prepare the training data with input features and target values.
2. Determine the value of k, the number of nearest neighbors to consider.
3. Calculate the distance between the new data point and the training data points.
4. Select the k nearest neighbors, based on the distances.
5. Calculate the target values’ average among the k closest neighbors. Use the average

value as the new data point’s estimated goal value.

188



Water 2023, 15, 2572

In Equation (2), the target variable prediction formula is shown, where (ŷ) is the
predicted target value, k is the number of nearest neighbors, and ∑ yi is the sum of the
target values of the k nearest neighbors.

ŷ =
1
k ∑ yi (2)

The k-Neighbors Regressor technique is useful for detecting local patterns, managing
non-linear connections, and making the fewest assumptions possible regarding the distribu-
tion of the data. However, it can be computationally demanding, sensitive to the selection
of k and distance metric, and may call for feature scaling or regularization methods.

2.3. Light Gradient-Boosting Machine Regressor (LGBM)

The effectiveness and adaptability of the LGBM gradient-boosting method are well rec-
ognized. It provides a number of features and enhancements to optimize the performance
of gradient boosting on big datasets [66]. In the data preparation stage of the method, the
training data are divided into input characteristics and target values for regression. Target
values and metric characteristics are recommended. The learning rate, number of trees,
maximum depth, and feature fraction are then initialized. The LGBM model’s behavior
is governed by these variables, which can be changed to enhance performance. Making a
series of decision trees is part of the model creation and training process. A gradient-based
optimization approach that minimizes the loss function is used to construct each tree. The
ensemble of trees is iteratively expanded, and the predictions of the model are modified
in accordance with the gradients of the loss function. After the model has been trained,
additional data points may be predicted by using it. The LGBM method uses a weighted
sum to aggregate the forecasts from each tree in the ensemble. During the training phase,
the weights are chosen depending on the gradients of the loss function. In LGBM, the target
variable may be predicted using the following formula:

ŷ = ∑ αi hi(x) (3)

where αi indicates the weight given to the ith tree, ŷ predicts the target value, and hi(x) the
prediction of the ith tree for the input characteristics x. The LGBM can capture complex non-
linear correlations between characteristics and the target variable, is quite effective, and can
handle enormous datasets. The loss function is optimized via gradient-based optimization,
which creates an ensemble of trees that collectively provide precise predictions.

2.4. Linear Regression (LR)

LR method that deals with a set of records having X and Y values. These values are
utilized to learn a function that can predict Y for an unknown X. In regression, the aim is
to find the value of Y, given that XY is continuous. Here, Y is referred to as the criterion
variable, and X is called the predictor variable. Different types of functions or models can
be employed for regression, wherein a linear function is the simplest one [67]. In this case,
X can be a single or multiple features that represent the problem.

Y = C1 + C2 × X (4)

where, X = input training data, Y = predicted value of Y for a given X, C1 = intercept, and
C2 = coefficient of X. Once the optimal values of C1 and C2 are determined, the best fit line
can be obtained.

2.5. Multilayer Perceptron

The Multilayer Perceptron (MLP) is a sort of artificial neural network that is made up
of several layers of linked nodes, or neurons [68]. Since it is a feed-forward neural network,
data goes from the input layer to the hidden layers and finally to the output layer. Each
neuron in the MLP conducts a weighted sum of its inputs, applies an activation function to
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the sum, and then transmits the outcome to the neurons in the next layer. The following is
a description of the MLP:

(a) Assign random weights to the connections between the neurons as part of the initial-
ization process.

(b) The input layer: Take in input data and send them to the top-most hidden layer.
(c) Hidden layers: Each hidden layer neuron computes the weighted sum of its inputs

using the current weights and then applies an activation function (such as a sigmoid)
to the sum.

(d) Output layer: The neurons in the output layer compute the same activation function
and weighted sum as the neurons in the hidden layers.

(e) The MLP’s final output is derived from the neurons in the output layer.

During the training phase, the MLP’s weights are modified using optimization meth-
ods like gradient descent. A loss function that calculates the difference between the output
that was expected and the output that was actually produced must be minimized. In
order to produce predictions or categorize data based on fresh input, the MLP must first
understand the underlying patterns and relationships in the data.

2.6. Random Forest

Random Forest (RF) is a highly accurate and versatile regression model widely used
in ML. It belongs to the ensemble learning category, where multiple decision trees are built
during the training phase. Each tree predicts the mean value of the target variable [69]. The
steps involved in the Random Forest algorithm are as follows:

1. Random Subset Selection: a random subset of data points is chosen from the training
set. This subset typically contains a fraction of the total data points, denoted by ‘p’.

2. Construction of a Decision Tree: using the subset of data points that was chosen, a
decision tree is built. This procedure is repeated using various subsets of the data for
a total of ‘N’ trees.

3. Prediction Aggregation: each of the ‘N’ decision trees predicts the value of the target
variable for a new data point. The outcomes of all the predictions from the trees are
averaged to provide the final forecast.

When using environmental input factors to forecast rainfall data, Random Forest is
highly effective. The technique uses the combined predictive capability of the trees to
decide the resultant class by creating a large number of decision trees during training. It is
known for its effectiveness in handling large datasets and can produce reliable results even
when dealing with missing data.

2.7. Lasso

Lasso, also known as L1 regularization, is a linear regression model that adds a penalty
term based on the L1 norm of the coefficients [70]. It is used to encourage sparsity in the
coefficient values, effectively performing feature selection by driving some coefficients to
exactly zero. The formula for Lasso regression can be represented as follows:

y = β0 + β1x1 + β2x2 + . . . + βpxp (5)

In addition to the mean squared error (MSE) factor, the objective function of Lasso
regression also contains a regularization term:

Lasso Objective Function = MSE + α× L1 Norm (6)

where y stands for the dependent variable, and the independent variables (input charac-
teristics) are represented by x1, x2, . . . , and xp. The independent variables’ coefficients
(parameters) are β0, β1, β2, . . . , βp. The L1 regularization’s strength is determined by the
regularization parameter, which is α. It chooses the appropriate ratio between punishing
the size of the coefficients (L1 norm) and fitting the training data (MSE term).
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The objective function’s L1 norm term is calculated as the sum of the absolute values
of the coefficients.

L1 Norm =
∣∣β1
∣∣+
∣∣β2
∣∣+ . . .+

∣∣βp
∣∣ (7)

Lasso regression searches for the best values of the coefficients to minimize the MSE
term while maintaining the L1 norm term as minimal as possible by minimizing the goal
function. Thus, certain coefficients may be reduced to absolute zero, thus removing the
related characteristics from the model. Because of this characteristic, Lasso regression may
be used to handle high-dimensional datasets and feature selection.

2.8. Ridge

Ridge regression is an ML method frequently applied to regression analysis in the
context of supervised learning. Regression analysis frequently uses Ridge regression,
commonly referred to as Tikhonov regularization, to address the multicollinearity and
overfitting issues [71]. It is an extension of ordinary least squares (OLS) regression that
modifies the loss function by including a punishment component. The Ridge regression
formula is as follows:

minimize = ||Y− Xβ||2 + λ||β||2 (8)

Here, the target variable is denoted by Y, the predictor variables are denoted by X,
the coefficients are denoted by β, the regularization parameter is denoted by λ controlling
how much shrinkage is done to the coefficients, and the Euclidean norm is denoted by ||β||.
Ridge regression seeks to reduce the sum of squared discrepancies between predicted and
observed values (Y− X), while also penalizing the size of the coefficients (||β||2).

2.9. ElasticNet

ElasticNet is a linear regression model that combines the L1 (Lasso) and L2 (Ridge) reg-
ularization techniques [72]. It is designed to overcome some limitations of each individual
method by introducing a penalty term that includes both L1 and L2 norms.

The formula for ElasticNet regression can be represented as follows:

y = β0 + β1x1 + β2x2 + . . . + βpxp (9)

The objective function of ElasticNet includes two regularization terms, one for L1 regu-
larization and another for L2 regularization, along with the mean squared error (MSE) term:

ElasticNet Objective Function = MSE + α ∗ [λ1 ∗ L1 Norm + λ2 ∗ L2 Norm] (10)

where y represents the dependent variable (the target variable we want to predict). x1,
x2, . . . , xp represent the independent variables (input features). β0, β1, β2, . . . , βp are
the coefficients (parameters) of the independent variables. α is the mixing parameter
that controls the balance between L1 and L2 regularization. It is between 0 and 1. Ridge
regression is represented by a value of α = 0, Lasso regression is represented by a value of
α = 1, and values in between represent a mixture of both. The regularization parameters λ1
and λ2 regulate the potency of L1 regularization and L2 regularization, respectively.

2.10. Stochastic Gradient Descent (SGD) Regressor

For regression challenges, ML algorithms like the Stochastic Gradient Descent (SGD)
Regressor are utilized. It is a modification of the common Gradient Descent technique and
is especially helpful in cases involving online and massively multi-user learning [73]. A
randomly chosen subset of training data (mini-batches) is used to iteratively update the
model’s parameters via the SGD Regressor. It is computationally effective and appropriate
for big datasets, since it calculates the gradients of the loss function with respect to the
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model’s parameters using just the samples in the mini-batch. The SGD Regressor’s update
formula for the model’s parameters is the same as the normal SGD’s:

θ_new = θ_old− α ∗ ∇J(θ_old; xi, yi) (11)

Here, the parameters of the model are represented by their current values (θ_old),
their updated values (θ_new), the learning rate (α), the gradient of the loss function J with
respect to the parameters evaluated at the current parameter values (J(θ_old; xi, yi)), and
one training example (xi, yi). To achieve optimal convergence and performance, it is crucial
to carefully choose the learning rate and mini-batch size. Additionally, the performance and
stability of the algorithm may be enhanced by using strategies like learning rate schedules,
momentum, and regularization. The SGD Regressor works well when faced with massive
data volumes, high-dimensional feature spaces, and a steady stream of new data.

2.11. Extreme Gradient-Boosting Regression Model (XGBoost)

XGBoost is a regression model, a potent ensemble learning technique which uses
gradient boosting and decision trees to make precise predictions. The XGBoost approach
delivers a variety of performance-improving improvements while sharing a similar struc-
ture with other gradient-boosting regressors [74]. The XGBoost algorithm is described in
the sections below:

1. Choosing the XGBoost model’s parameters, such as the learning rate, the number of
trees, the maximum depth, and the feature fraction, is the step-one process. These
variables can be altered to improve performance and regulate how the model behaves.

2. Create the model and train it: the XGBoost model is produced by the construction
of several decision trees. A gradient-based optimization technique that minimizes
the loss function is used to build each tree. The ensemble of trees is continuously
expanded throughout the training phase, and predictions are updated in line with
gradients in the loss function.

3. After model training, the model may be used to make predictions about fresh data
points. The XGBoost method incorporates the predictions from each tree in the en-
semble to obtain the final regression prediction. The particular method for combining
the predictions is determined by the loss function that is used.

3. Model Training and Validation

Model training and validation are crucial steps in the machine learning process. In
these stages, a dataset is modelled for training, and the model’s effectiveness is assessed on
a separate dataset for validation. The goal is to develop a model that accurately predicts the
future and generalizes well to new inputs. The model training and validation procedure is
summarized as follows:

1. Data Split: a training set, a validation set, and a test set are each provided as separate
datasets. The model is trained using the training set. The validation set is used to
fine-tune the model and assess model performance throughout training, whereas the
test set is used to measure the trained model’s final performance on unseen data.

2. Model Selection: select the most effective model architecture or machine learning
technique for the particular job. The kind of data, the task (classification, regression,
etc.), and the resources available are all factors in the model selection process.

3. Model Training: develop the selected model using the training dataset. During the
training phase, the model parameters are frequently repeatedly improved in order
to minimize a chosen loss or error function. In order to do this, training data are fed
into the model, predictions are generated and compared to actual values, and model
parameters are updated, depending on computed errors. This procedure continues
until a convergence requirement is satisfied, after a certain number of epochs.

4. Model Evaluation: using the validation dataset, evaluate how well the trained model
performed. The validation data is used to generate predictions, which are then
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compared to the actual results. There are several assessment measures employed,
including mean squared error (MSE), mean absolute error (MAE), root mean square
error (RMSE), root mean square percent error (RMSPE), and R-squared (R2) [75].

MSE = (1/n) ∗∑ [(yi − ŷi)
2 ] (12)

MAE = (1/n)∗∑
∣∣yi − ŷi

∣∣ (13)

RMSE =
√
(MSE) = √ [(1/n) ∗∑ [(yi − ŷi)

2 ] ] (14)

RMSPE =
√
[(1/n) ∗∑ [((yi − ŷi)/yi)

2 ] ] (15)

R2 = 1− (∑ [(yi − ŷi)
2 ]/ ∑ [(yi − y)2 ] ) (16)

where the overall number of data points is n. The dependent variable’s actual (observed)
value for the ith data point is represented by yi. The predicted value of the dependent
variable for the ith data point is represented by ŷi. Σ stands for the total sum, or the sum of
the squared differences for each data point. The dependent variable’s mean is represented
by the symbol y.

5. Iterative Refinement: to enhance performance, modify the model architecture or data
preparation stages based on the evaluation findings. Until a suitable performance is
attained, this iterative procedure is continued.

6. Final Assessment: after the model has been adjusted, its performance is evaluated
using the test dataset, which simulates unseen data. This offers a neutral assessment
of how well the model performs in realistic situations.

To guarantee accurate and trustworthy model training and assessment, it is crucial
to remember that correct data preparation, including managing missing values, feature
scaling, and controlling class imbalance, should be carried out during the training and
validation process. These processes may be efficiently used to train, validate, and assess
machine learning models, in order to create reliable and accurate prediction models.

4. Study Area, Data Collection and Preprocessing
4.1. Study Area

One of the largest rivers in central India, the Narmada River, passes through the states
of Gujarat, Maharashtra, and Madhya Pradesh. The significance of it for ecology, history,
and culture is widely known. Hindus adore the river’s waters and a variety of flora and
animals call it home. In the Narmada River basin, the Garudeshwar gauging station is an
important study location. The gauging station serves as a monitoring station for identifying
and analyzing the river’s different hydrological properties. It is located close to the Gujarat
town of Garudeshwar. The primary duty of the Garudeshwar gauging station is to gauge
and track the water levels and flow rates of the Narmada River. The gauging station
is equipped with instruments that gather data on a variety of elements, such as water
level, discharge, and velocity. The research region around a gauging station is frequently
defined by the gauging station’s measurement range of impact. This might alter, based on
the objectives of the research specifically or the requirements of the water management
authority. The research region may extend both upstream and downstream of the gauging
station in order to completely comprehend the hydrological characteristics and dynamics
of the river. Researchers, hydrologists, and managers of water resources routinely evaluate
water availability, look into flood patterns, and make informed judgments regarding water
distribution and management using the data collected from the gauging station and the
study region. An overview of watershed areas and their placement on a map of India is
shown in Figure 2.
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Figure 2. Shows the Garudeshwar watershed area.

4.2. Data Collection

Daily river inflow measurements in cubic meters per second were gathered from a
river gauge station and utilized as the dataset for this investigation. The data, which span
the years 1980 to 2019, were gathered from India’s Water Resources Information System
(WRIS) for the time series analysis. A thorough record of the river’s inflow across time is
provided by the dataset, allowing for examination of flow fluctuations and trends. Table 1
shows the descriptive statistics of the data.

Table 1. Descriptive statistics of data.

Flow

Mean 784.8985221
Standard Error 18.28637548

Median 184.0000428
Mode 23.19005239

Standard Deviation 2210.307722
Sample Variance 4,885,460.225

Kurtosis 128.7110287
Skewness 8.786730848

Range 60,640.72647
Minimum 1.270052203
Maximum 60,641.99652

4.3. Techniques for Preprocessing Data

Several preprocessing procedures can be used for the dataset from the Garudeshwar
gauging station in order to guarantee the correctness and dependability of the data. To
resolve errors, outliers, and missing numbers, the data must first be cleaned. This procedure
comprises validation, cross-checking with trustworthy sources, and using statistical tech-
niques and subject-matter expertise to spot and fix flaws and inconsistencies. Depending
on their relevance, outliers can either be corrected or removed. The dataset’s integrity
can be preserved by imputing missing values using techniques like mean imputation or
interpolation. To improve the models’ ability to anticipate outcomes, feature engineering
approaches can be used. This entails generating fresh features from preexisting variables. In
the context of predicting river inflow, temporal characteristics can be derived from the date
variable to identify trends in the data. Lagged features, which represent past inflow values,
will also be generated to capture the influence of historical data on future predictions. The
first seven days of 1980 (from 1 January to 7 January) are not taken into account to create
lagged characteristics, so data here is available from 8 January 1980 to 31 December 2019.
Also, no outliers and all peak data points have been taken into account, since there is no
elimination of any data points.
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An augmented Dickey–Fuller (ADF) statistic is used to check the stationarity or non-
stationarity of the data. The ADF statistic is a test statistic used in time series analysis
to determine the presence of a unit root in the data. The unit root refers to the presence
of a stochastic trend that can cause non-stationarity in the series. If the series is found
to be stationary, it implies that there is no significant linear trend present. In the given
scenario, the ADF statistic has a value of−13.045793. This indicates a highly negative value,
suggesting strong evidence against the presence of a unit root in the data. The p-value
associated with the ADF statistic is reported as zero, which further supports the rejection of
the null hypothesis of a unit root. To assess the significance level of the ADF statistic, critical
values are considered. The critical values at 1%, 5%, and 10% significance levels are −3.431,
−2.862, and−2.567, respectively. Since the ADF statistic value of−13.045793 is much lower
(in absolute terms) than these critical values, it can conclude that the data is statistically
significant and the result of the ADF statistic is shown in Figure 3. Therefore, based on the
ADF statistic and its associated p-value, we can infer that the data under consideration are
stationary. Stationary data implies that the statistical properties of the series, such as mean,
variance, and autocorrelation, remain constant over time. This is an important characteristic
for many time series analysis techniques and modeling approaches. It is significant to note
that, depending on the location and features of the area under examination, the stationarity
of river flow series might change. River flow series do occasionally display stationary
qualities, despite the fact that seasonal patterns, trends, and other variables frequently
cause river flow series to behave in a non-stationary manner. The particular location under
consideration in this study may have unique characteristics that contribute to the observed
stationarity. The stationarity of river flow series can be influenced by elements including the
hydrological parameters of the river basin, climatic circumstances, land use patterns, and
water management techniques. Furthermore, it is worth mentioning that even if the river
flow series is stationary, it does not imply that the series is entirely predictable or that it
lacks variability. The presence of other forms of variability, such as short-term fluctuations
or irregular patterns, can still exist within a stationary series.
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The original time series, trend, seasonality, and residual time series are displayed
in Figure 4. With regard to the combined influences of trend, seasonality, and random
fluctuations, the original data offer a thorough assessment of the real observations. The
long-term, regular movement or direction of the river flow is represented by the trend
flow component. It shows if the flow is increasing or decreasing over time. It can observe
the general behavior of the river flow and spot any enduring alterations by focusing on
the trend. In this instance, the trend flow indicates a declining pattern in the data of
the river flow. This information is helpful in determining the general trend and making
future plans for the management of water resources. Seasonality describes recurring,
predictable fluctuations that take place at predetermined times. Seasonality in the context
of river flow refers to regular patterns or fluctuations that take place over the course
of a year. By examining the seasonality component, it locates any recurring patterns in
the river flow data. In this case, the seasonality component varies by up to 4000 m3/s,
demonstrating that the river flow displays significant patterns and changes throughout the
year. Understanding seasonality can aid in forecasting future flow patterns and preparing
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for the demands placed on water resources throughout particular seasons. The residuals
are the variations between the values that were seen and those that were anticipated by
the trend and seasonality components. They stand for the arbitrary and unpredictable
variations in river flow that neither trends nor seasonality can account for. Any remaining
anomalies or out-of-the-ordinary events in the data can be understood by analyzing the
residuals. The residuals allow us to determine the trend and seasonality components’
goodness of fit as well as any other variables affecting the river flow.
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4.3.1. Creating Lagged Features

When working with time series data, the idea of “lagged features” is very pertinent. A
value from a previous time period is a lagged characteristic from a time series. A lagged
characteristic may be the river input from today, yesterday, or even a week ago if we are
forecasting river inflow for tomorrow. These are known, correspondingly, as lag-1, lag-2,
and lag-7 characteristics. Lagged features can be used to capture the temporal relationships
present in the data. In other words, they offer a method of providing the model with
information about previous values, which may be useful for forecasting future values.
The lag order, which refers to the number of lagged data to include, is often established
empirically, frequently by employing methods like autocorrelation plots or depending on
domain knowledge. For this study, lagged features are implemented according to domain
knowledge; daily data of a week are taken to predict next-day data.

4.3.2. Date Feature Engineering

The development of date features was a crucial preprocessing step in this work. In
order to do this, more pertinent information must be extracted from the timestamp data.
The study’s date characteristics included the weekday, the month, the Indian month, and
the Indian season. These elements were included because they may have a large impact on
river input. For instance, because of weather patterns, some months or seasons may see
higher or lesser influx. Depending on the timestamp’s data format, different processes can
be used to create various properties. Before these properties can be retrieved, the timestamp
may need to be transformed from a string format into a datetime object. Once the features
are finished, they may be used as any other model input.

196



Water 2023, 15, 2572

4.3.3. One-Hot Encoding

One-hot encoding is the last preprocessing step. Categorical variables are handled
using this technique. The categorical data must be translated into a format that can be
used by these methods, since many machine learning algorithms cannot deal directly
with categorical data. One-hot encoding is a typical method. Each distinct category of
a categorical variable is represented as a binary vector in one-hot encoding. One-hot
encoding would produce seven new features (one for each day of the week) if, for instance,
the feature “day of the week” had seven categories (Monday, Tuesday, . . . , Sunday). If
Monday were the day of the week, “Monday” would have a value of 1, while all other
days would have a value of 0. If the day was Tuesday, the “Tuesday” feature would be set
to 1, and all other day features would be set to 0, and so on. One-hot encoding completely
eliminates any ordinal link between categories (i.e., it prevents the model from assuming
that “Monday” is less than “Tuesday” just because we encode Monday as 1 and Tuesday
as 2). This is advantageous when there is no ordinal link between the categories, as there is
when talking about the days of the week, months, or seasons.

5. Model Preparation

In this investigation, the data were divided into training, validation, and test sets
using a time series split. The temporal order of the observations is crucial in time series
data; therefore, this approach of data splitting is very appropriate. The data are separated
into time periods in a time series split. The earliest observations make up the training set,
the sequence observations make up the validation set, and the latest observations make up
the test set. This makes sure that each piece of data accurately depicts the chronological
order of the actual occurrences. It is crucial to keep in mind that time series splits preserve
the temporal dependencies and autocorrelation inherent in time series data, unlike random
splits, which forbid the inclusion of any future data in the training set. On the basis of the
patterns found in the historical data, the models were trained on the training set to predict
the target variable. The models were then tested on the validation set, which contained
data that were not utilized during training but temporally followed the training period.
This stage allowed us to retain the data’s chronological integrity while monitoring the
models’ performance on previously unknown data and making any required adjustments.
The test set, which represented the most current data in the series, was used to evaluate
the models. This provided a fair assessment of the models’ performance on brand-new,
previously unobserved data, and an estimate of how well the models would perform when
making predictions about upcoming real-world data. To retain the temporal structure of
the data while assessing the predictive performance of our models by using a time series
split, guaranteed that the models had the capacity to provide accurate future projections.

6. Results and Discussion

The prediction models in this research were meticulously evaluated, offering insightful
information. Several machine learning models, including CatBoost, ElasticNet, KNN, Lasso,
LGBM, Linear Regression, MLP, Random Forest, Ridge, SGD, and XGBoost, were assessed
for their ability to predict river inflow. A range of error metrics and R-squared values were
used to evaluate their performance.

6.1. Performance Metrics of Training Data

The performance indicators for several models based on training data are shown
in Table 2. Each model is assessed using the metrics of MAE, MSE, RMSE, RMSPE, and
R2. These metrics evaluate each model’s performance on the training data. Higher R2

values indicate a better fit of the model to the data, while lower MAE, MSE, RMSE, and
RMSPE values denote superior performance. A comparison of the models in Table 2 reveals
that CatBoost, XGBoost, and RF demonstrate improved prediction accuracy and model
fit on the training data, due to their lower MAE, MSE, RMSE, RMSPE values and high R2.
ElasticNet, KNN, Lasso, LR, MLP, Ridge, and SGD perform less effectively on the training
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data, having lower R2 and higher MAE, MSE, RMSE, RMSPE values. LGBM also performs
well, exhibiting relatively low values across all the criteria. Models with the lowest errors
(MAE, MSE, RMSE, RMSPE), highest R2, and best performance on the training data are
CatBoost, XGBoost, and RF. These models fit the training data well, and have excellent
predictive capabilities. It is crucial to note that a model’s performance on training data
might not necessarily generalize to new data. Therefore, further assessment of the models’
overall performance using validation and test data is necessary to select the most suitable
model for prediction tasks.

Table 2. Performance metrics for various models on the training data.

Sr No. Model MAE_Train MSE_Train RMSE_Train RMSPE_Train R2_Train

1 CatBoost 124.89 131,672.45 362.87 150.28 0.98
2 ElasticNet 414.90 2,304,350.42 1518.01 853.11 0.61
3 KNN 320.95 1,773,732.98 1331.82 310.48 0.70
4 Lasso 327.18 1,923,781.45 1387.00 568.25 0.67
5 LGBM 215.89 863,329.16 929.16 256.82 0.85
6 LR 434.94 1,979,323.29 1406.88 1005.55 0.67
7 MLP 298.63 1,599,712.13 1264.80 276.29 0.73
8 RF 117.58 332,086.13 576.27 295.72 0.94
9 Ridge 330.27 1,923,316.06 1386.84 584.78 0.68

10 SGD 366.52 1,973,385.04 1404.77 980.74 0.67
11 XGBoost 75.04 38,693.90 196.71 142.99 0.99

Bold value shows the better solution.

6.2. Performance Metrics of Validation Data

The performance characteristics of several models on the validation data are displayed
in Table 3. For each model, the metrics are MAE, MSE, RMSE, RMSPE, and R2. After
reviewing the performance of the models using validation data, the following conclusions
can be drawn: LGBM, Lasso, MLP, and Ridge perform better on the validation data as a
result of having comparatively lower values for MAE, MSE, RMSE, RMSPE, and higher
R2. CatBoost, ElasticNet, LR, RF, SGD, and XGBoost also exhibit acceptable performance,
with moderate metric values. KNN performs poorly on the validation data, with higher
values for MAE, MSE, RMSE, RMSPE, and lower R2. LGBM, Lasso, MLP, and Ridge
outperform the other models on the validation data. Their continuously decreased errors
(MAE, MSE, RMSE, and RMSPE) and improved R2 on the validation set indicate increased
model fit and prediction accuracy. However, it is crucial to consider the possibility that
model performance on the validation data may not generalize to new data. Therefore,
additional testing on other datasets, such as a different test set, is required.

Table 3. Performance metrics for various models on the validation data.

Sr No. Model MAE_Val MSE_Val RMSE_Val RMSPE_Val R2_Val

1 CatBoost 261.90 1,430,686.30 1196.11 346.56 0.65
2 ElasticNet 385.08 1,555,769.49 1247.30 778.53 0.61
3 KNN 329.22 1,960,894.83 1400.32 446.31 0.51
4 Lasso 293.32 1,156,911.27 1075.60 538.62 0.71
5 LGBM 243.10 1,181,938.31 1087.17 287.91 0.71
6 LR 393.23 1,194,250.83 1092.82 992.99 0.70
7 MLP 249.45 1,069,732.66 1034.28 307.27 0.73
8 RF 259.75 1,386,585.60 1177.53 368.38 0.66
9 Ridge 296.56 1,157,972.15 1076.09 579.68 0.71

10 SGD 345.98 1,183,130.23 1087.72 908.38 0.71
11 XGBoost 264.54 1,349,874.60 1161.84 419.95 0.67

Bold value shows the better solution.
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6.3. Performance Metrics of Testing Data

The performance metrics of several models on the testing data are shown in Table 4.
For each model, the metrics are MAE, MSE, RMSE, RMSPE, and R2. The following findings
may be drawn from examining how well the models performed on the testing data: with
lower MAE, MSE, RMSE, and RMSPE values and greater R2, LGBM, CatBoost, and MLP
demonstrate improved performance on the test data. In addition to ElasticNet, Lasso, RF,
Ridge, XGBoost, and others exhibit acceptable performance, with modest values for the
metrics. The MAE, MSE, RMSE, RMSPE, and lower R2 values for KNN, LR, and SGD are
comparatively greater, indicating poor performance on the testing data. LGBM, CatBoost,
and MLP perform better on the testing data when compared to the other models. They
routinely achieve reduced errors (MAE, MSE, RMSE, RMSPE), greater R2, and better model
fit on the testing set, all of which indicate enhanced prediction accuracy.

Table 4. Performance metrics for various models on the testing data.

Sr No. Model MAE_Test MSE_Test RMSE_Test RMSPE_Test R2_Test

1 CatBoost 108.24 135,853.97 368.58 327.13 0.66
2 ElasticNet 267.84 195,282.23 441.91 1308.04 0.52
3 KNN 163.42 257,940.28 507.88 1067.24 0.36
4 Lasso 183.20 141,977.14 376.80 959.14 0.65
5 LGBM 105.68 115,456.65 339.79 332.76 0.71
6 LR 292.27 209,780.42 458.02 1424.00 0.48
7 MLP 131.03 123,120.76 350.89 466.30 0.69
8 RF 123.84 152,710.94 390.78 831.76 0.62
9 Ridge 187.82 146,634.81 382.93 996.15 0.64

10 SGD 252.24 195,665.92 442.34 1451.56 0.51
11 XGBoost 129.03 171,242.26 413.81 1102.39 0.58

Bold value shows the better solution.

6.4. Comparison of the Models

A comparison of the performance metrics across the three datasets (training, validation,
and testing) was conducted to identify the best-performing model. The performance
measures from each of the Tables 2–4 were observed.

a. Training Data: XGBoost has the highest R2 and the lowest MAE, MSE, RMSE, and
RMSPE values, indicating the best performance on the training data. The time series
prediction for XGBoost is shown in Figure 5, where predicted streamflow inflows
are depicted alongside the actual data. The fundamental patterns and fluctuations in
streamflow across the dataset are largely captured by the XGBoost model, as can be
seen in this figure.

b. Validation Data: the LGBM model has the highest R2 and the lowest MAE, MSE,
RMSE, and RMSPE values, demonstrating the best performance on the validation
data. The time series prediction for LGBM against the actual data is shown in Figure 6.

c. Testing Data: LGBM has the highest R2 and the lowest MAE, MSE, and RMSE values,
showing the best performance on the testing data.

The study’s findings provide strong evidence regarding the performance of different
models on various datasets, with noticeable differences potentially attributable to overfit-
ting or underfitting. In particular, the results suggest that XGBoost may have overfit the
training dataset, resulting in less impressive performance on the test dataset, despite its
excellent performance on the training data. Conversely, LGBM performed better on both
the validation and testing datasets, suggesting its ability to generalize well to unseen data,
although it showed poorer performance on the training set.
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Among all, the CatBoost model demonstrated reliable generalization ability, show-
cased by its robust performance on the training and testing datasets. This suggests that
CatBoost is capable of producing accurate predictions even for novel and untested data,
as illustrated in Figure 7. However, based on these results, it remains challenging to
definitively determine which model performed best in this study.
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For clearer understanding, scatter plots (shown in Figures 8–10) were generated to
illustrate the correlation between the predicted and actual streamflow inflow for XGBoost,
LGBM, and CatBoost. An examination of these figures reveals that most data points indicate
an error of less than 10% for larger inflow values and less than 20% for moderate inflow
levels. In contrast, both XGBoost and LGBM show a higher percentage of data points with
errors exceeding 35% for moderate inflow levels above 10,000. Similarly, for CatBoost,
inflow levels below 6000 exhibit a larger error rate, of about 35%. It is crucial to note that
these lower inflow levels were not the primary focus of this investigation.
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Additionally, as demonstrated in Figure 8, XGBoost not only exhibits evidence of
overfitting to the training data but also generates inaccurate predictions for higher inflow
values in the test data. This raises questions about the accuracy of XGBoost’s predictive
capabilities under certain circumstances. However, as illustrated in Figure 9, LGBM
struggles to accurately predict key factors related to higher inflow levels.

Taking all these factors into account, it can be confidently stated that the CatBoost
model outperforms both XGBoost and LGBM in terms of robustness and reliability for
inflow predictions. CatBoost is a particularly suitable choice for applications requiring
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accurate prediction of inflow quantities under specific circumstances. In summary, CatBoost
emerges as the most reliable model and a viable option for predicting inflow.

6.5. Limitations of the Study

While the study has provided a comprehensive analysis of various machine learning
models for river inflow prediction and identified the most reliable model, it is indeed
essential to address the limitations of the study.

(a) One limitation of our research is the reliance on a specific dataset from the Garudesh-
war gauging station. The generalizability of the findings may be limited to this
particular location, and may not directly apply to other river systems. Future stud-
ies should consider incorporating data from multiple gauging stations or rivers to
validate the performance of the models across different regions.

(b) Another limitation is the time frame of the dataset used in the study, which spans
from 1980 to 2019. Although this provides a substantial historical perspective, it may
not capture recent changes or evolving patterns in river inflow. Incorporating more
up-to-date data would enhance the accuracy and relevance of the predictions.

(c) Additionally, the study focused primarily on machine learning models and did not
consider other factors that could influence river inflow, such as climate change, land
use changes, or anthropogenic activities. Incorporating these factors into the model-
ing process may provide a more comprehensive understanding of the dynamics of
river inflow.

(d) Lastly, the performance of the models may be influenced by the quality and complete-
ness of the data. Data quality issues, such as measurement errors, could impact the
accuracy of the predictions. It is crucial for future research to address data preprocess-
ing and quality control techniques to mitigate such limitations.

7. Conclusions

To effectively manage water resources, this study compared the efficacy of several
machine learning models for predicting river inflow. Models including CatBoost, ElasticNet,
KNN, Lasso, LGBM, LR, MLP, RF, Ridge, SGD, and XGBoost were all investigated. CatBoost
consistently outperformed other models across all three datasets, displaying remarkable
performance across various metrics. It achieved impressive R2 values on both the training
and validation data, demonstrating a strong fit to the data and accurately capturing the
variation in the target variable. Additionally, it performed well on the testing data, with
relatively low MAE and RMSE values. LGBM also performed well across all three datasets,
achieving competitive results for MAE, MSE, RMSE, and R2 on both the testing and
validation data, and demonstrated reasonable MAE and RMSE on the testing data. LGBM,
renowned for its effective gradient-boosting implementation and its ability to handle large
datasets and capture intricate correlations, showcased these strengths in this study. Results
from XGBoost were encouraging, especially when applied to the training and validation
data. It achieved the lowest MAE, MSE, RMSE, and RMSPE values on the training set,
demonstrating an excellent fit. It also displayed reasonably low MAE and RMSE on the
validation data, indicating strong generalization. However, it performed somewhat worse
than CatBoost and LGBM in terms of R2 scores on the testing data. Based on careful
investigation and comparison from error plots, CatBoost was determined to have the
best performance among the models. CatBoost performed optimally on the test data,
demonstrating its ability to make accurate predictions on new, unseen data. Future studies
should explore ensemble approaches, which combine the strengths of multiple models to
enhance prediction accuracy. Incorporating domain knowledge and additional pertinent
factors may also improve the performance of the models. To maintain the efficacy of these
models in hydrological forecasting, continuous updating of the models with fresh data will
be necessary.
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Abstract: Hydropower is the largest source of renewable energy in the world and currently dominates
flexible electricity production capacity. However, climate variations remain major challenges for
efficient production planning, especially the annual forecasting of periodically variable inflows
and their effects on electricity generation. This study presents a model that assesses the impact of
forecast quality on the efficiency of hydropower operations. The model uses ensemble forecasting
and stepwise linear optimisation combined with receding horizon control to simulate runoff and the
operation of a cascading hydropower system. In the first application, the model framework is applied
to the Dalälven River basin in Sweden. The efficiency of hydropower operations is found to depend
significantly on the linkage between the representative biannual hydrologic regime and the regime
actually realised in a future scenario. The forecasting error decreases when considering periodic
hydroclimate fluctuations, such as the dry–wet year variability evident in the runoff in the Dalälven
River, which ultimately increases production efficiency by approximately 2% (at its largest), as is
shown in scenarios 1 and 2. The corresponding potential hydropower production is found to vary by
80 GWh/year. The reduction in forecasting error when considering biennial periodicity corresponds
to a production efficiency improvement of about 0.33% (or 13.2 GWh/year).

Keywords: ensemble forecasting; biennial periodic climate; hydropower optimisation; hydropower
management; production efficiency; forecasting error

1. Introduction

Hydropower is the largest renewable source of electricity by power capacity and the
second largest by annual energy production. Hence, it has great potential for remediating
the transition towards a future renewable electric production system, particularly due to the
regulatory role played by the energy storage capacity of hydropower reservoirs. However,
the planning and management of hydropower regulations remain complex, as these depend
not only on matching the electricity demand to the availability of other renewables but also
on the management of significant climate variations. Climate variation affects precipitation
and temperature patterns and thus stream flows, which, in turn, reduces the reliability of
hydropower planning and generation [1–5]. Studies have shown that climate change will
alter the temporal and spatial distribution of water resources worldwide [6–8], and there
are strong indications of significant periodicity in historical hydrologic records. The authors
of [9–11] showed that hydropower availability in Scandinavia varies over a spectrum of
periods, with robust periodicity identified at approximately 0.5, 2, and 8–11 year intervals,
respectively. The authors of [12] found that 18 selected drainage basins worldwide have
periodic water availability variations, with periodic waves ranging from 2.1 to 2.5 years.
In [13], river discharge time series of Colombian streamflow were examined, and Fourier
analysis showed a spectral peak at a periodicity of 2.17 years. Furthermore, statistically
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significant periodicity was found in a time series in the 5–7 and 2–3 year bands when
performing a spectral analysis of precipitation in the US [14]. The authors of [15] used the
maximum entropy method and Fourier spectral analysis to show temperature and precip-
itation periodicities of approximately 2–3 years for Siberia and East Asia. Consequently,
there are strong indications that biennial periodicity exists among short- and long-term pe-
riodicities in many basins worldwide [9–15]. The two year period indicates a predominant
pattern of sequential dry and wet years, but this pattern is not necessarily recognised in
long-term forecasting and hydropower production management. Thus, an important ques-
tion is how the forecasting of hydroclimatic variations with biennial periodicity impacts
hydropower production operational planning. The dry and wet periods will have basic
control over the availability of water, hence the potential electricity production during such
periods; however, forecasting these conditions can have an important secondary effect on
production efficiency, which is the topic of the present study. For example, statistically
better knowledge of whether the coming year will be relatively wet or dry will likely
lead to better decisions in operational planning and less water spillage. To investigate the
relative importance of forecast skills [16] for the planning of hydropower operations, a
model framework that can simulate and assess this operational process is needed, including
hydrologic forecasting, decision optimisation, and the estimation of production efficiency
in an independent future hydrologic scenario.

Previous research has developed model frameworks for studying the impacts of cli-
mate variations on hydropower; however, it has not sufficiently acknowledged a model
framework that can assess the importance of forecasting periodic hydroclimatic fluctu-
ations for hydropower planning and generation. The authors of [7] developed a global
hydrological–electricity modelling framework that focused on the physical impacts of water
constraints on current power plant capacities. General circulation models (GCMs) and the
variable infiltration capacity model were implemented to generate water availability [17–19].
However, none of these studies used stochastic forecasting, such as historic ensemble fore-
casting, nor separated the forecast from the applied future scenario. The basic ideas behind
stochastic forecasting are that nature is difficult to physically predict because of both
aleatory and epistemic uncertainties, but historically unbiased samples are also likely to
apply well (as forecasts) to the future [20,21]. These samples provide data points, such as a
set of experimental outcomes that satisfy a range of statistical measures appearing during
the sample period; hence, they can represent various properties of climate periodicity, that
are also likely to be representative of near-future scenarios [22]. The authors of [23,24]
applied ensemble forecasting in their research but focused on hydrologic predictions rather
than its implications for hydropower production. Thus, a model framework for assessing
and analysing the importance of forecasting hydroclimatic periodicities for the efficiency of
hydropower planning and generation is generally missing.

In this study, we attempt to bridge the aforementioned knowledge gap by develop-
ing a model framework that can assess (simulate) the importance of forecasting periodic
hydroclimate fluctuations for the efficiency of hydropower planning and generation. The in-
novations of this study comprise the following aspects: (a) the model framework facilitates
the investigation of the impact of forecasting periodic climate on hydropower operations;
(b) we introduce an ensemble forecasting method based on the classification of dry and
wet 12 month periods in historical records; and (c) the assessment model is implemented
in a MATLAB environment, including stochastic forecasting, and applied to a cascade
hydropower system. The forecast and management are focused on the long-term (seasonal)
time horizon, thus neglecting some of the complexities of production management that oc-
cur on a time scale of up to a few days or slightly longer. This study examines the Dalälven
River basin, which exhibits a typical biennial fluctuation in water availability (as well as
other periodicities). This means that the study investigates how the dry and wet years in
the river basin affect the management efficiency of hydropower. The main contributions
are: (a) a model framework that differentiates stochastically between runoff forecasts and
simulated real runoff scenarios, enabling the analysis of the importance of the forecast
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approach for managing hydropower production in light of the uncertainties in climate
variability; (b) an ensemble forecasting method that recognises the hydroclimatic biennial
periodicity present in the Dalälven River basin; and (c) an application of the simulation
framework to a cascade hydropower system with typical biennial climatic fluctuations.
Hydropower production optimisation is based on linear programming combined with a
receding horizon approach, which converts the nonlinearity in the hydropower production
problem to a stepwise linear problem via a system update step. Section 2 provides details
on the model’s development.

2. Model Framework
2.1. Assessment Model

The overall purpose of the proposed model is to simulate the management efficiency
of hydropower generation resulting from the uncertainty of water availability forecasts
that reflect the long-term periodicity observed in hydroclimatic time series. The model
addresses the fundamental question of the extent to which improvements in forecasting
ability lead to better hydropower operational planning and higher hydropower genera-
tion. Therefore, this approach distinguishes forecasted runoff availability from real runoff
availability and quantifies the efficiency of operational planning as a function of forecast
error and forecast biennial scenarios. In this context, runoff availability is defined as all
water added to the system, for example, by precipitation or snowmelt, i.e., water generated
through runoff processes, while there is also water available for production because of
its storage within the river basin in streams, lakes, and reservoirs. In wet years, water
availability is particularly high, leading to high hydropower production, but the model
should evaluate the importance of forecast quality for production efficiency by optimising
reservoir operations and maximising turbine discharge. Consequently, the simulation
process consists of two main submodules: (1) the optimisation of hydropower planning
and generation under a several month future forecast horizon, and (2) the updating of
model variables (i.e., actual runoff and reservoir level) after a much shorter updating time
step while considering the real periodic runoff scenario (Figure 1). In this study, both the
generation of the forecasted runoff time series and that of the real runoff time series were
based on the sampling of historical data (simulated runoff time series from the Sweden-
Hydrological Predictions for the Environment (S-HYPE) model, provided by the Swedish
Meteorological and Hydrological Institute). The principles of the ensemble forecasting
approach are described in Section 2.1. Furthermore, the optimisation of production oper-
ations considers the forecasted future runoff for J future states along a time horizon TH ,
the water conservation of the river basin, and power production (called the optimisation
model in Figure 1). The optimal production decisions are applied to the duration of an
updating period, tu, based on several stochastic runoff forecasts covering a future horizon,
TH , where q, s, and h represent the turbine discharge, spillage, and water head, respectively.
To provide a decision process that is statistically representative, the optimisation is carried
out N times for each stochastic runoff forecast. Subsequently, the average values of these
N optimal decisions of production and spillage discharges are applied as decided values
for an updating time step, tu. The river basin water availability status is then updated in
the system updating module, including updating the real runoff and water head (step 3
in Figure 1). The updated water head is used to set the initial conditions of the reservoir
levels for the upcoming optimisation horizon based on the immediate past. The updating
aims to ensure that the effects of forecasting errors do not accumulate over time and thus
represent the actual operational planning process over a more extended period.
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To simplify the optimisation problem and speed up the calculation, we converted the
nonlinear statement of power production (see Section 2.2) into a stepwise linear statement
by assuming that the water head in the reservoirs are constant during each updating time
step, which is acceptable when tu is sufficiently short. The updating of the water head in the
reservoirs after one updating time step tu ensures that an essential long-term component
of nonlinearity is accounted for—the dependence of power production on reservoir levels
and the fall height. Linear optimisation is significantly less computationally demanding
than nonlinear optimisation. Using a receding horizon approach, after the simulation of
each updating time step k, the simulation moves on to the next updating period along
the timeline until K updating steps have been executed in total, which forms the entire
simulation period, Tsim = K × tu. Consequently, the optimisation problem is solved using
linear optimisation programming combined with receding horizon control. After finishing
one realisation of the entire simulation period, Tsim, the forecasting error and production
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efficiency are estimated for the entire assessment simulation. The definitions of forecasting
error and production efficiency are given in Section 2.3.

2.2. Ensemble Forecasting with Biennial Periodicity

Ensemble forecasting uses a set of possible runoff time series selected from historical
data and applies these as runoff forecasts for the future. The forecasted runoff abstracted
from such an ensemble time series aims to represent hydroclimatic fluctuations and is there-
fore divided into periodic segments and classified in terms of particularly wet or dry periods.
Dry and wet years generally follow biennial periodicity in Scandinavia [10], but the spec-
trum of periodicities of hydrologic processes makes it difficult to match the forecast class to
the current climate type. However, many studies have shown important cross-correlations
with related teleconnections expressed by different climate indices [10,12,15,25,26] that can,
in principle, be used as predictors for the current hydrologic regime. The authors of [12]
discussed the links between El Niño–La Niña events and biannual discharge fluctuations at
the basin scale, as well as global climate indices such as the Southern Oscillation Index, the
North Atlantic Oscillation Index, and the Pacific Decadal Oscillation Index. In particular,
the authors of [11] used coherence spectra to define the strength of correlation over a range
of periods between the two latter climate indices and the overall energy level of the runoff
system. Hence, by including the biennial periodicity of the forecasts with the corresponding
present climate type, the suggested model investigates how improvements in the forecasted
runoff with biennial periodicity can enhance the management of the cascade hydropower
system. The goal here is to ensemble runoff data representing the previously identified
hydroclimatic fluctuations in runoff, especially the biennial (two year) periodicity, and
incorporate such information in a production management system linking forecast class to
the current hydrologic regime.

Previous studies using spectral analysis have indicated a biennial periodicity in
runoff [10,11], which suggests, for example, that there could be dry and wet years. Such
biennial periodicity should be possible to identify directly in runoff time series by assessing
the daily average using a different start month and then classifying segments of runoff
time series into the categories of odd and even years. One question is the degree to which
the start month of the yearly segment division affects the clarity and strength of the dry
and wet year periodicities. We investigated the significance of the start month by succes-
sively shifting it by one month and using one year-long time-series segments to calculate
12 month discharge statistics. The results show that hydropower production management
in December is more sensitive to recognising biennial periodicity. Detailed results can be
found in Section 4.2.

Consequently, we suggest that the classification of ensemble members should be
conducted in two primary yearly runoff time series from either wet or dry ensemble
members that can represent biennial runoff periodicity. As the time horizon of the forecast,
TH, is shorter than the classified segments, there is a possibility of varying the start month.
The time series for each subwatershed was abstracted from the 1961–2011 time series, and
yearly time series were kept as a statistical repository for stochastic sampling. Each sampled
yearly time series starts in December. The random samples of the forecasts and real runoff
scenarios were taken from this statistical repository (see step 1 in Figure 1).

2.3. Optimisation Model for Cascade Hydropower Stations

A model based on the stepwise linear optimisation approach for the operation of
cascade hydropower stations in a river network was developed in MATLAB 2018b. The
model simulates the planning of hydropower generation in a cascade of reservoirs with the
aim of maximising electricity production, thus minimising water spillage and maintaining
the highest possible water head in the reservoirs. The objective function F represents the
energy production plus the water energy in reservoirs for future production. The objective
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function is stated as energy maximisation based on both produced and stored quantities
without considering economic value:

Fn,k =
J

∑
j=1

NP
∑

i=1
Pi,j,n,k∆t +

M
∑

i=1
Es,i,J,n,k −

M
∑

i=1
Es,i,1,n,k

=
J

∑
j=1

NP
∑

i=1
ρgηi (̃hi,k − hi)qi,j,n,k ∆t

+
M
∑

i=1
ρgAi (̃hi,k − hi)

(
hdi,J,n,k − hi

)

−
M
∑

i=1
ρgAi (̃hi,k − hi)

(
hdi,1,n,k − hi

)
,

(1)

where the dependent variables of the optimisation are hydraulic head h(m) and turbine
discharge q (m3/s). P (W) is the power from hydropower stations; Es (J) and A (m2) are the
energy stored and the surface water area of each reservoir, respectively; ρ (kg/m3) is the
density of water; g (m/s2) is the acceleration because of gravity; and η is the generation
efficiency of a hydropower plant, which is assumed to be constant over time. The hydraulic
head of the stations, h̃ (m), is assumed to be constant in the optimisation problem but
is updated after each decision in the updating time step tu. Furthermore, h (m) is the
minimum water level in each reservoir, the so-called dead water level, which cannot be
used for regulation purposes. In the calculation of the energy of stored water, the routine
subtracts the minimum water level from the actual water level and considers the remaining
water non-usable. The potential production of water stored in a reservoir depends on the
downstream fall height hd (m), including the waterfall height at all downstream stations
to the sea. The indices j, n, and k are used to represent different indexes of time steps and
forecasts in the programming; j is the index of the numerical time step; J is the total number
of j, i.e., J = TH/∆t ; ∆t(days) is the time length of one numerical time step, which is
used to represent the flow dynamics; n is the index of the stochastic forecasts that are N in
total; and i is the index of each of the multiple hydropower stations. M is the total number
of stations, including reservoirs and hydropower plants, and NP is the total number of
hydropower stations.

The objective function in Equation (1) contains two parts: the production of energy
at each individual station and the change in the stored water energy in relation to the
period from time step 1 to the end of time step J. The optimisation constraints include
the conservation of water that dynamically flows in the river basin between hydropower
stations and the limitations (bounds) of the variables. Flow dynamics reflect the flow
between hydropower stations through spills and turbine discharges, runoff from connected
watersheds, and changes in water storage in reservoirs. The water travel time, i.e., the lag
time between reservoirs, is neglected in this model. The stations are connected by a river
network, and water discharged from upstream stations travels to the nearest downstream
station; i.e., this can be used to produce electricity at several stations along the network of
hydropower stations. Here, the following constraints are recognised:

Maximise F;
Subject to:

Vi,j,n,k = Vi,j−1,n,k +
(

qr,i,j,n,k + qup,i,j,n,k + sup,i,j,n,k − qi,j,n,k − si,j,n,k

)
∆t, (2)

Vi,j,n,k = Aihi,j,n,k, (3)

hi ≤ hi,j,n,k ≤ hi, (4)

0 ≤ qi,j,n,k ≤ qi, (5)
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si ≤ si,j,n,k ≤ si, (6)

where V (m3) is the water storage in the multireservoir system, the inflow qr (m3/s) is the
runoff water from the subcatchment that connects directly as the inflow to one reservoir,
and qup (m3/s) and sup (m3/s) are turbine discharges and water spillages, respectively, that
come from the nearest upstream connected stations, which means that water released at
one station is retained at the next reservoir regardless of the transport time along the river.
The water spillage discharge is s (m3/s). Water conservation (Equation (2)) indicates that
the inflow to a specific reservoir comes from natural runoff as a result of precipitation and
snowmelt and outflow from connected upstream multireservoirs. Note that the runoff qr
is implemented both in forecasting step 1 as part of the above optimisation problem and
in updating step 2 (Figure 1), in which we use the notations qr f for the forecasted runoff
and qra for the actual runoff applied in the management scenario. In the simulation routine
(step 1 in Figure 1), the runoff discharge in Equation (2) is qr f , while in the updating routine
(step 2 in Figure 1), the runoff discharge is qra.

Equations (4)–(6) describe the physical limitations of the operation of a hydropower
system. One limitation is that the reservoir water head must not exceed the maximum
reservoir level for safety reasons or drop below the dead water level for environmental
reasons. Hence, Equation (4) describes the lower and upper boundaries of the water head,
denoted h (m) and h (m), respectively. In addition, hydroturbines have an upper limit on
spinning, which implies that a maximum discharge is allowed, denoted as q (m3/s). To
sustain the downstream water demand and meet environmental requirements to some
extent, a lower limitation of spillage discharge s (m3/s) and an upper limitation s (m3/s)
are given.

The mathematical optimisation problem above, in Equations (1)–(6), is a nonlinear
optimisation problem because the objective function in Equation (1) is an equation with the
product of the variables h and q, which are coupled through the water volume conservation
equation (Equation (2)). However, the variation in the water head in a reservoir over a
short period is generally sufficiently small to justify the reservoir water head being set as a
constant. Hence, to enhance computational efficiency and reduce the complexity of this
problem, Equation (1) is linearised by keeping the reservoir levels constant during every
updating time step tu. The model subsequently updates the reservoir head h̃ (m) after every
updating time step tu, thus recognising nonlinearity as an explicit numerical approximation.
Updating after each time step tu keeps the operational decisions of production and spillage
discharges combined with the water runoff input of the real scenario.

2.4. Performance Indicators

This section presents the definition of performance indicators expressing the error of
forecasting and the efficiency of hydropower production in comparison to the maximum
potential. A proposed criterion to evaluate the accuracy of forecasted runoff is the mean
absolute scaled error (MASE), first proposed by Hyndman and Koehler (2006) [27]. It never
gives undefined or infinite values and is suitable for intermittent demand series, such as
when there are periods of zero data in a forecast [28]. The MASE (unitless) defined for the
simulation period Tsim can be expressed as:

Error =
1
K
∗ ∑K

k=1




1
N∗M·J ∑N

n=1 ∑M
i=1 ∑J

j=1

∣∣∣qra,i,j − qr f ,i,j,n,k

∣∣∣
1

M·(J−1) ∑M
i=1 ∑J

j=2

∣∣∣qra,i,j − qra,i,(j−1)

∣∣∣


 . (7)

Furthermore, the efficiency of production management in the entire watershed de-
pends on the decisions regarding turbine and spillage discharges resulting from the applica-
tion of forecasted runoff in the optimisation procedure for the entire Tsim period. Therefore,
to estimate the dependency between the forecasting error and production efficiency, we
introduced a production efficiency factor (ηd), which represents the energy production
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efficiency for all hydropower stations in the watershed. The potential production efficiency
factor is formulated as potential production divided by the difference in potential runoff
energy and potential storage energy:

ηd = mean
(

Epd
Erd − ∆Esd

)
=

1
M ∗ Tsim/∆t

∗
ρg∆t ∑M

i=1 ∑Tsim/∆t
j=1 h̃di,j q̃i,j

ρg∆t ∗ ∑M
i=1 hdmax,i ∑Tsim/∆t

j=1

(
q̃i,j + s̃i,j

) , (8)

where Epd (J) is the simulated downstream production of energy for all stations for the
entire simulation period, Erd (J) is the downstream potential runoff energy, Esd (J) is the
downstream potential storage energy, hd is the downstream height, which is the water
level from the station to the sea, and hdmax (m) is the maximum of the downstream height if
there are no regulations of the reservoir levels. h̃di,j and q̃i,j, s̃i,j are the decisions from the
simulation model based on the simulation period of Tsim. The potential energy production
in the above expression consists of both potential downstream production from runoff and
energy stored in reservoirs. The potential downstream production indicates the estimated
production generated at each station and the potential production from stations along the
water path towards the sea. Energy stored in the water reservoir can be seen as the initial
value of the scenario and can be used in production, which is the reason for the definition
given by Equation (8). This study elucidates the relationship between forecasting error and
production efficiency.

3. Case Study

The case study involves 36 hydropower plants and 13 reservoirs in the Dalälven River
basin, located in central Sweden, stretching from the Scandinavian mountains in the west to
the effluence at the Baltic Sea (see Figure 2). The hydropower system in Dalälven produces
4 TWh of energy with a capacity of 970 MW. Lake Siljan and Trängsletsjön are the main
reservoirs, and the Trängslet dam that connects with Trängsletsjön is the highest earth-filled
dam in Sweden [29].
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Figure 2. The Dalälven River basin with hydropower stations marked with red dots.

The historical runoff data in the Dalälven River basin were derived from model
simulations using the S-HYPE model, which is the continuously developed version of the
HYPE model. S-HYPE is a semi-distributed catchment model that simulates water flow and
substances from precipitation through different storage compartments and fluxes to the
sea [30]. The historical data in this study start on 1 January 1961 and end on 31 December
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2011, spanning a total of 51 years distributed among 64 subwatersheds located in the
Dalälven River basin.

4. Results
4.1. Assessment of the Effects of Forecast Error on Production Efficiency in the Dalälven
River Basin

The model framework developed here can be used to assess the importance of runoff
forecasting for hydropower production (Figure 1), especially when separating the model
procedure into three parts: (a) ensemble forecasting recognising historic runoff statistics,
(b) optimisation of production management and independent system updating, and (c) as-
sessment of importance by calculating performance indicators. As a demonstration of this
model framework, we applied it to 36 cascade hydropower plants and 13 reservoirs in the
Dalälven River basin, as described in Section 2.2. In this analysis, forecasts were randomly
drawn from historic records classified with a strict biennial period, hence reflecting a wet
and dry year classification (Figure 3); each classification had 25 years of data. To represent
the uncertainty of the forecasts, the simulated real runoff was drawn independently from
one of the two statistical classes. As a test of the assessment model framework, we designed
three scenarios for this example application. In scenario 1, both the forecasted and real
runoff were both from classification 1 (wet years); scenario 1 is a wet-to-wet scenario. In
scenario 2, the forecasted runoff was from classification 2 (dry years), and the real runoff
was from classification 1; scenario 2 is a dry-to-wet scenario. In scenario 3, which is a
control scenario, the forecasted runoff was from both dry and wet years using the entire
data record, and the real runoff was from classification 1; scenario 3 is a neutral-to-wet
scenario. Consequently, the optimisation time horizon was 90 days, and the receding
horizon control was 90 days, which meant that we needed samples of discrete time series
covering 180 days. The parameters applied in this example application are listed in Table 1.

Table 1. List of parameters.

Parameter Definition Parameter Value in the Example Application

TH
Time horizon of optimisation: the duration of the forecasted

time series placed into one optimisation procedure. TH = 90 (days)

Tsim
Period of simulation: the maximum shift in time of the horizon

in the receding horizon approach; Tsim = K × tu. Tsim = 90 (days)

tu

Updating period: the time during which the decided turbine
discharges are applied, whereafter the reservoir levels are

updated and new decisions are taken; tu = Tsim/K.
tu = 2 (days)

∆t Numerical time step used to represent the watershed dynamics
and to move between the states used in the optimization. ∆t = 0.5 (days)

j j = 1 : J. Index for the numerical time step for water dynamics;
J = TH/∆t. J = 180

i i = 1 : M Index for the reservoirs. M = 49

n
n = 1 : N. Index for the repetition number of one updating
period simulation with different stochastic runoff forecasts,

which was used to make the average decision.
N = 10

k
k = 1 : K. Index for the simulation time step in order to

progress over the simulation period Tsim. The number of
updating time steps is K = Tsim/tu.

K = 45
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Figure 3. Ensemble classifications for runoff forecasting in wet years (odd years) and dry years
(even years).

In part b, the hydropower operational model calculates the optimal decisions regarding
turbine discharge and spillage discharge based on the forecasted runoff for a three month
horizon (TH). However, the optimal decisions were applied only under the updating
period tu, which was taken as two days in this application. Within each updating period
tu, the optimisation was repeated N times with forecasts randomly drawn from the same
biennial ensemble classification according to the defined scenario, and the mean value
of the N optimal decisions in the tu period provided the final decisions on hydropower
operation. After each tu period calculation, the reservoir levels were updated using a real
runoff scenario, as shown in Figure 1. Only one time series of real runoff was used in this
assessment model. After updating, the simulation proceeded to simulate the management
of the next updating period, where the procedure comprises Tsim/tu steps, which cover
three months in this application.

Part c is the assessment of the importance and calculation of the two performance indica-
tors, which were estimated for the entire simulation period Tsim using Equations (7) and (8).
The forecast error used in this study adopts the mean absolute scaled error to examine
forecast accuracy. Based on the simulation structure of the assessment model, the error
calculation contains M stations, TH/∆t time steps along the time horizon, N repetitions in
each update period, and K progression steps to cover the entire simulation period. Hence,
the forecast error is a mean value over all K progression time steps and M stations. One
realisation was completed using a K progression step simulation covering the entire Tsim
period. In addition, 100 Monte Carlo runs of the realisation of the entire assessment of Tsim
were applied to reduce uncertainty.

As can be seen in Figure 4, there is a tendency for the production efficiency factor
ηd to decrease with an increase in the forecast error. The production efficiency factor
represents the potential hydropower production in the entire watershed compared to
the theoretical maximum production during the same period. ηd was found to vary for
the hydropower system in the Dalälven River basin, ranging from 78.5% to 80.5% in
scenarios 1 and 2, depending on the three month forecast error. This range of variation
depends on the forecast error and could appear to be small but can, in principle, represent a
substantial economic value for the management of the hydropower production system. For
example, if the periodic nature of water runoff in forecasting can be improved by the entire
forecasting error range (2.65–2.35 = 0.4) considering the best and the worst possible cases
of scenarios 1 and 2, the production efficiency varies by 2%. It can be expected that the
yearly energy production of the Dalälven River basin would be enhanced by 80 GWh/year
(4 TWh/year × 2% = 80 GWh/year), based on the current production of approximately
4 TWh/year. The reduction in forecasting error from scenario 2 (with forecasts representing
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a dry year under wet year conditions) to scenario 1 (with forecasts representing a wet year
under wet year conditions) corresponds to a production efficiency improvement of about
0.33% (or 13.2 GWh/year), which is obtained by calculating the difference between the
mean production efficiency factors of scenarios 1 and 2.
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Figure 4. Comparison of scenario 1 (forecasts of wet years) and scenario 2 (forecasts of dry years),
with both scenarios using simulated real runoff from a wet year.

The blue and red lines in Figure 4 present the linear regressions of scenarios 1 and 2
that are bounded by the scenario intervals. The regression lines indicate that scenario 1
has a higher production efficiency and lower forecast error than scenario 2. Production
is more efficient for scenario 1 than scenario 2 when the forecasting error is smaller than
2.5, but the opposite prevails when the forecasting error is larger than 2.5. The range of
the forecast error is relatively similar in scenario 1, but the ranges of production efficiency
factors are larger in scenario 1 than in scenario 2. Figure 5 shows all three scenarios and
their forecasting error boundaries. The error range of scenario 3 is obviously larger than
those of scenarios 1 and 2, and it roughly matches the non-overlapping parts of scenarios 1
and 2. As a control scenario, scenario 3 does not have any periodic treatment on forecasting,
so it can provide a neutral solution that should comprise the solutions from scenarios 1
and 2. Figure 5 shows this.

4.2. Start-Month Impact on the Biennial Periodicity

Figure 6 shows the daily mean runoff (m3/s) of 64 subcatchments from the Dalälven
River basin. Runoff data were deduced for every set of odd (blue dots) and even (red
dots) years using different start months from January to December in the time series that
covers daily data from 1961 to 2011. The green line is the average daily runoff of the
64 subcatchments over 51 years. The graph clearly shows that the biennial classification
results in differences in the daily mean runoff from the Dalälven River basin, but the pattern
depends on the start month of the segments. Note that the odd–even classification used in
this figure denotes the year of the start month, but the yearly data selected for a start month
later than January cover both odd and even years. The two curves, odd year (blue line)
and even year (black line), in Figure 6 highlight an interchange of the implication of odd
and even for the dry–wet year characteristic. At the crossing of the curves in Figure 6, both
odd and even years are statistically equally wet, whereas the difference becomes larger
when the curves are farther apart. The vertical bars show a 95% confidence interval using
a t-distribution and indicate somewhat weak significance in the differences between the
curves, which can be explained by the prevalence of other periodic climatic phenomena
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and some degree of randomness. Nevertheless, the results show the systematic biennial
hydrological periodicity of the annual mean runoff in the Dalälven River basin, which
varies with the start month of the selection and is most vital with a December start month.
This circumstance implies that the long-term forecasts used in hydropower production
management in December are more sensitive to recognising biennial periodicity compared
with planning conducted in a summer month. Compared with the mean runoff of all years
(green line), odd years present a higher mean daily runoff than the average, while even
years show a relatively low mean daily runoff regardless of the start month.
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5. Conclusions and Discussions

This study developed a model framework that assesses the importance of forecasting
periodic hydroclimate runoff fluctuations for hydropower planning and generation. Based
on 51 years of historical records, the ensemble classification of runoff was shown to possess
biennial periodicity, with a strength that was dependent on the start month of the year.
This emphasises the importance of focusing on the annual seasonal variation in sub-arctic
regions in addition to examining long-term climatic modes of variability. While the model
approach is not limited by the selected forecasting method, the historical data sampling
representing the complex statistical nature of runoff allows for an evaluation of the effect of
periodic errors in runoff forecasts on production efficiency. Forecasting, in combination with
the stepwise linear simulation framework, is essential for understanding the implications
of periodicity in hydroclimatic variations for the proper operational planning of reservoir
storage in cascade hydropower systems. It was found that the forecast errors for the
Dalälven River were associated with three month future horizons based on historical data
in the range of 3–4% when comparing scenarios 1 and 2, and recognising the biennial
periodicity in Dalälven can enhance production efficiency by 1–2%. This may seem small,
but it represents substantial economic value in terms of annual production compared
to what could be expected from, for example, refurbishing the rock tunnel systems and
penstocks of all 36 hydropower stations in the Dalälven River basin, which could also
lead to efficiency improvements in the order of a few percent. The main result diagrams
(Figure 4) show production efficiency versus forecast errors for two scenarios combining
wet year forecasts with wet year scenarios (scenario 1) and dry year forecasts with wet year
scenarios (scenario 2). The results indicate that the ensemble classification from which the
forecasted runoff is selected plays an important role in enhancing production efficiency.
Ignoring the biennial periodicity or the failure to associate future hydrology with a dry or
wet year may cause an increase in the forecasting error, thereby decreasing the production
efficiency. As a control scenario, scenario 3 verified the results of scenarios 1 and 2 by
matching the non-overlapping parts of scenarios 1 and 2 (Figure 5).

The hydropower potential depends on the availability of water in a given stream, and
the runoff pattern thus governs the energy generation capacity. This study shows that
categorising historical runoff time series from the Dalälven River basin into dry and wet
years is statistically possible if the yearly separation is conducted in the appropriate month,
generally in mid-winter, but this pattern was found to be much less pronounced when
using a mid-summer month. The difference in the annual mean discharge over the 51 year
period was in the order of 5% if the separation of wet and dry years started in December.
This difference would also be a measure of the possible relative forecast error that can
arise in the mean runoff value if the biennial periodicity in water availability as a result of
climate fluctuations is neglected.

While this study did not cover techniques for forecasting near-future climatic regimes,
it is well known that both GCMs combined with hydrologic downscaling, as well as the
statistical assessment of suitable climate indices, are powerful tools to predict current and
near-future climate regimes and expected precipitation patterns. Such tools can provide
an indication of whether a future year will be dry or wet, but they have lower accuracy
when representing short-term fluctuations of importance for the regulatory behaviour in
hydropower operations, which is why historical ensemble forecasts can provide essential
statistical information in the management process. This assessment model framework
can be used to assess the impact of biennial periodicity and can be applied to various
periodicities by selecting different periodic ensembles. It could be future research. Some
assumptions, like the constant water head and stable reservoir area in the optimisation
model, can be improved in future work.
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Assessing how biennial hydroclimate fluctuations can be accounted for in the manage-
ment of hydropower generation and operational planning is essential. The model-based
methodology developed in this study can be used to assess the impacts of such fluctuations
on hydropower generation and enhance the management of hydropower operations in
order to assist the hydropower operator with better planning of water and energy resources.
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Abstract: Climate change has influenced the discharge regime of rivers during the past decades. This
study aims to reveal climate-induced interannual trends of average annual discharge and discharge
maxima in a Mediterranean river from 1981 to 2017. To this aim, the Pinios river basin was selected
as the study area because it is one of the most productive agricultural areas of Greece. Due to a lack
of sufficient measurements, simulated daily discharges for three upstream sub-basins were used. The
discharge trend analysis was based on a multi-faceted approach using Mann-Kendall tests, Quantile-
Kendall plots, and generalized additive models (GAMs) for fitting non-linear interannual trends. The
methodological approach proposed can be applied anywhere to investigate climate change effects.
The results indicated that the average annual discharge in the three upstream sub-basins decreased in
the 1980s, reaching a minimum in the early 1990s, and then increased from the middle 1990s to 2017,
reaching approximately the discharge levels of the early 1980s. A more in-depth analysis unraveled
that the discharge maxima in September were characterized by statistically significant increasing
interannual trends for two of the three sub-basins. These two sub-basins are anthropogenically low
affected, thus highlighting the clear impact of climate change that may have critical socioeconomic
implications in the Pinios basin.

Keywords: climate change; hydrological extremes; GAM; non-linear trends; Quantile-Kendall;
Pinios river

1. Introduction

Anthropogenic climate change has influenced mean and extreme river flow [1], while it
has increased flood risk [2], thus having severe implications worldwide. The Mediterranean
region has been characterized as a climate change “hot spot” [3] because its climate is
especially responsive to global changes. Climate change has strong effects on temperature,
precipitation, and other parameters which determine the local climate. The climatic effects
are very intense and complex in the Mediterranean countries such as Greece, characterized
by large variabilities in the landscape, orography, and land use [4–6]. According to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) published
in 2021 [7], the average precipitation over land on a global scale has likely increased since
1950. However, the Mediterranean region seems to suffer from an increase in droughts. A
previous study corroborates this finding as it concluded that the annual discharge volume
of rivers in the Mediterranean region had presented declining trends for a period from
1950 to 2013 [8]. Moreover, another study showed declining trends of flooding in the
Mediterranean region from 1960 to 2010 [9]. Furthermore, climate change influences the
alternation of seasons by increasing the disparity between wet and dry ones [10–12]. This is
another factor that may impact water availability and river discharge. It is noteworthy that
several studies have shown that the water resources will probably continue the decreasing
trend in the future, causing amplification of droughts and aridity [13–16].
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In Greece, the most recent significant dry period characterized by decreased precipi-
tation and, thus, increased drought in several areas lasted from the late 1980s to the early
1990s [4,17–19]. The drought during this period influenced not only Greece but also other
Mediterranean countries [20–22], having severe implications for the whole Mediterranean
region with an economic cost that was estimated to exceed 2.1 billion Euros [23]. Pinios
river, which is one of the most productive agricultural areas of Greece and located in
central-northern Greece, also suffered from this severe drought which lasted from 1988
to 1993 in this area. It is important to note that especially the drought during 1989–1990
was characterized by an average return period of 88 years for the Pinios river basin [24].
Despite the fact that studies focusing on various Greek rivers [25] and Pinios river [26]
have reported climatic variabilities of discharge and drought periods, they did not show
significant linear trends during the past decades, at least until 2002 [26] and 2010 [25].

Except for the increasing drought, one of the most significant issues regarding climate
change is the change in precipitation extremes [7,27], that under favorable conditions, may
trigger catastrophic flash floods in Mediterranean countries [28–32]. There are studies
that report the intensification of short-term precipitation extremes induced by anthro-
pogenic climate impacts [33]. Greece has been affected by several extreme precipitation
events and floods during the last decades, affecting Thessaly and Pinios river, among
other regions, especially during autumn [34–36]. It is noteworthy that the number of flood
occurrences in Pinios river presented a rising trend during the period 1990–2010 [36]. Precip-
itation extremes during autumn in Greece have sometimes been related to Mediterranean
tropical-like cyclones (“medicanes”), although they are generally rare phenomena, with
approximately three medicanes in the whole Mediterranean per 2 years [37]. For example,
Numa medicane in November 2017 had indirect effects on the flash flood of Mandra town,
causing 24 fatalities [29,30,32]. Zorbas medicane in September 2018 brought torrential rain-
fall, causing three deaths and severe damage in several Greek areas [38]. Ianos medicane
in September 2020 was the most intense medicane ever recorded in the Mediterranean,
causing four fatalities and extensive damage in many regions, including Karditsa city and
Mouzaki town located in the southwestern parts of the Pinios river basin [35]. An overall
assessment of the flash flood in Karditsa city showed that the exceedance probability of the
Ianos-induced flood ranged from 1:400 years in the low-lying catchments to 1:1000 years in
the upstream mountainous catchments.

Therefore, there is the assumption that discharge maxima in Pinios river have increased
during the last decades, especially in autumn. These maxima sometimes imply severe
hydrometeorological phenomena and floods associated with high socioeconomic impacts.
Multi-year analyses, also including a period after 2010 that is critical in terms of climate
change effects, are needed to reveal significant trends in discharge maxima if they exist.
However, Pinios river has not been covered by sufficient monitoring during the last decades,
thus making long-term studies difficult and uncertain. The Institute of Marine Biological
Resources and Inland Waters (IMBRIW) of the Hellenic Centre for Marine Research (HCMR)
has developed a monitoring network in the river basin during the last few years, but this
cannot facilitate long-term studies yet. The lack of sufficient measurements poses the
necessity of alternative research efforts exploiting other sources of data. In this context,
modeled discharge data from one of the most reliable and famous hydrological models,
namely E-HYPE, were used in this study due to the lack of continuous, long-term, and
reliable discharge measurements during the last decades.

In this framework, the scope of this study is to address two scientific questions, using
the Pinios river basin as the study area and employing the E-HYPE discharges. The first
scientific question is how climate change has influenced monthly discharge maxima over
the years? The second one is what is the amplitude of interannual variabilities of average
annual discharge? The trend analysis was performed using Mann-Kendall tests, Quantile-
Kendall plots, and generalized additive models (GAMs) for fitting non-linear interannual
trends. It is important to note here that the methodological approach adopted in this
study may have a wider application in other areas and scales. Moreover, this basin is
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influenced by both climate variabilities and multiple anthropogenic pressures. Hence, we
considered two upstream and partially mountainous sub-basins of Pinios to exclude the
potential effects of direct anthropogenic pressures and one similar sub-basin that, however,
is partially covered by some agricultural areas to investigate possible trend sensitivity by
comparing with the two other sub-basins.

The article is structured as follows: Section 2 presents the study area and data used
and also described the methodology used to analyze the data. Section 3 presents the results
from addressing the scientific questions and objectives. Section 4 presents the discussion,
and finally, Section 5 concludes the work.

2. Materials and Methods
2.1. Study Area

Pinios river basin is located in the administrative region of Thessaly in central-northern
Greece. The most populated cities in the area are Larissa, Karditsa, Trikala, and Tirnavos.
Pinios was selected because it is one of the most productive areas of Greece, mainly
regarding the agricultural sector. The total area of the basin is about 11,000 km2 and is
mainly occupied by agricultural land (51% of the total basin area) and secondarily by
vegetated areas (45%) [39]. It is noteworthy that the agricultural sector of the Pinios river
basin represents 14% of the gross value added of the agricultural industry of Greece [40].
Pinios basin can be subdivided into two separate endorheic hydrographic networks, in
the western (Karditsa plain) and the eastern (Larisa plain) basins, respectively, separated
by an internal low-lying hill area [41,42]. The hydrographic network of the Pinios basin
is complex and can be characterized as dendritic [32]. The climate of the Pinios basin in
the western part is typical Mediterranean, with cold winters and moderate precipitation
rate, followed by relatively hot and dry summers, while the eastern and northern parts
of the basin have a cold semi-arid climate, with warm to hot, dry summers and cold
winters [43]. The average annual precipitation at the Pinios basin is about 700 mm, with
large spatial variabilities [4], ranging from 450 mm in the central area to 1850 mm in the
western-mountainous part of the basin [44].

Pinios is affected by both interannual climate variabilities and multiple anthropogenic
pressures [45], including irrigation processes, bridges, technical works, industries, build-
ings, pollution, etc. Therefore, in the context of this study, we selected three partially
mountainous sub-basins upstream of the river to study the net effects of climate change
on discharge for the 37-year period. In this way, we reduced the direct anthropogenic
effects in our analysis, which are intense mainly in the lowland areas of the basin and
could have variable effects on our results for each year of the 37-year period, thus hiding
climatic effects. Two of the investigated sub-basins are located in the western part of the
Pinios basin and one in the eastern one. More specifically, the 9729462 (Pinios upstream)
sub-basin is located at the north-western part of Karditsa plain, the 9728383 (Titarisios
tributary) sub-basin is located at the northern part of the Larisa plain, and the 9728538
(Mega Rema tributary) sub-basin is located at the southwestern part of Karditsa plain
(Figure 1). The names of the sub-basins (i.e., 9729462, 9728383, and 9728538) used in this
study were based on the encoding used in the European Hydrological Predictions for
the Environment (E-HYPE) model data. E-HYPE data were used in this study and are
described in the next subsection. In particular, the names 9729462, 9728383, and 9728538
refer to the outflow sub-basins as defined in the E-HYPE model data, but we considered
these names for the entire sub-basins under study. For the convenience of readers, the
9729462, 9728383, and 9728538 sub-basins are referred to in the text, also using the code
names PINUP, TITAR, and MREMA, respectively. The main characteristics of the three
sub-basins, including area, surface waterbody, altitude [46], and land cover [39], are shown
in Table 1. It is worthwhile noting that the MREMA sub-basin was selected to slightly differ
from the other two sub-basins having similarities with low-lying areas of Pinios to explore
probable implying effects induced by its lower altitude and increased agriculture (Table 1).
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Table 1. Main characteristics of the sub-basins studied.

ID Area
(km2)

Surface
Waterbody

Altitude (m) Land Cover

Minimum Maximum Average Artificial
Surfaces

Agricultural
Areas

Forest and
Seminatural

Areas
Other

9729462
(PINUP) 1205.9 Pinios P12 105 2167 775 1% 27% 71% 1%

9728383
(TITAR) 1439.0 Titarisios

P2 137 2804 703 1% 40% 60% 0%

9728538
(MREMA) 586.8 Mega

Rema 1 80 1484 279 4% 67% 29% 0%

2.2. European Hydrological Predictions for the Environment (E-HYPE) Model Data

For the purpose of the present study, we employed time series of daily discharge
values for a 37-year period from 1 January 1981 to 31 December 2017 for the three selected
sub-basins. The study area is characterized by a lack of a dense, continuous, long-term,
and consistent network of hydrological stations, and thus, the use of long-term modeled
discharge time series is considered suitable for the climatic investigations of this study. In
this context, the discharge data were obtained from the results of the E-HYPE pan-European
hydrological model [47,48] for the outflow of the sub-basins (i.e., 9729462, 9728383, and
9728538). E-HYPE is a model application of the HYPE (i.e., Hydrological Predictions for the
Environment) model for the entire European continent, whereby hydrological flows and
nutrient processes are calculated daily for each class within a sub-basin level [49]. HYPE
model is a semi-distributed catchment model, which simulates the flow of water and sub-
stances beginning from precipitation through various storage compartments and fluxes to
the sea, i.e., snow accumulation and melting, evapotranspiration, soil moisture, streamflow
generation, and routing through rivers and lakes [47]. We note here that the groundwater
accounts for contribution from the upper soil layers (1.5 m) and not deep aquifers. HYPE
has been used in several applications related to climate change and hydrological extremes
in various areas worldwide, presenting very good performance [50–53]. For this reason, the
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results of the HYPE model application focusing on Europe (i.e., E-HYPE) were selected to
be employed in the present study. Moreover, E-HYPE uses the HydroGFD meteorological
forcing dataset [54], while also irrigation [55,56] and crop water demand [57] are taken into
consideration. Information regarding land use characteristics was retrieved from CORINE
Land Cover 2000 [58].

2.3. Model Evaluation Methodology

Prior to the local model evaluation, we note that hydrological modeling based on
the E-HYPE setup has the potential to encompass all European river basins, considering
cross-regional and international boundaries, and to represent a number of different hydro-
climatic conditions. Although the model was spatiotemporally calibrated and evaluated,
and parameter identification has considered both in-situ data and earth observations, it is
apparent that various river systems are still ungauged [59]. However, the usability of multi-
basin modeling lies in the hypothesis that a good performance in space (different stations)
and time (different periods) relates to the model’s potential to predict the hydrological
response at interior ungauged basins [60,61]. This is linked to the parameter regionalization
to ungauged regions, which is acceptable if the model performs adequately in the gauged
locations over the entire model domain [62].

The overall performance of E-HYPE is reasonably acceptable. For the 115 (538) dis-
charge stations used in model calibration (validation), the median Nash-Sutcliffe Efficiency
(NSE; Equation A5) is 0.54 (0.53), and the relative volume error is −1.6% (−1.3%). This
indicates that the E-HYPE performance is consistent, and model outputs can be explored
(yet with caution) even in ungauged regions. More details can be found in [48].

In Greece, most of the measured discharge data are not released to the public domain
at high resolution due to a lack of coordinated water resources management, confidentiality,
and/or business cases, which consequently limits the potential to assess the hydrological
model performance at the local scale. The E-HYPE hydrological model monthly results of
the older version 2.1 have been evaluated only against discharge measurements of large
rivers in Greece [25]. Therefore, it was considered useful to evaluate the model’s results
against available monthly averaged discharge measurements in the three sub-basins before
further analysis. The evaluation mainly aimed to show a comparison between the model
and measurements in terms of monthly hydrological variabilities and not to demonstrate
short-term (e.g., daily) discharge comparison because such detailed measurements were not
available. The behavior and the performance of the model were examined with efficiency
criteria, which are defined as a quantitative measure of performance, goodness of fit, or
likelihood [63,64].

The criteria used to investigate the model reliability were the following: Pearson’s
Correlation Coefficient (R), Percent Bias (PBIAS), Root Mean Square Error (RMSE), Ratio
of the Root Mean Square Error to the Standard Deviation of observed data (RSR) and
NSE [65]. The equations of performance criteria can be found in Appendix A (Equations
(A1)–(A5)). R = 1 or −1 means the existence of a perfect positive or negative linear corre-
lation. PBIAS (%) shows if the simulated data are larger or smaller than the observations
with a perfect value equal to 0, while positive/negative values indicate model underestima-
tion/overestimation. RMSE is higher than 0, and low RMSE values indicate good model
performance. RSR is the ratio between the RMSE and the standard deviation of the obser-
vations, thus including the benefits of error index statistics and a scaling/normalization
factor. RSR ranges from 0 (perfect value), which implies zero RMSE or residual variation,
to a high positive value. NSE values range between −∞ and 1, and a value of NSE equal to
1 is considered the perfect value. It should be noted that the RMSE and NSE are sensitive
to extreme values (outliers) and timing errors in the predictions [63]. Based on the well-
established model evaluation criteria proposed, model simulation can be considered to be
satisfactory if NSE > 0.50, RSR < 0.70, and PBIAS ± 25% for discharge [65].

The main characteristics of the monitoring stations used for the evaluation of the
simulated discharge are presented in Table 2. All data series used for the evaluation were

226



Water 2023, 15, 1022

retrieved from the Ministry of Environment and Energy of Greece, while the quality control,
as well as the data screening and processing operations, have been conducted under past
projects (Table 2). The data have been statistically elaborated and are the most long-term and
reliable measurements available in this region. The observed data were based on discharge
measurements taken by humans, and thus, they imply increased uncertainties, especially in
medium-high flows. The measured datasets used for the model-measurement comparisons
consist of monthly measurements in locations near the outflow of the sub-basins under
study (Figure 1).

Table 2. The main characteristics of the monitoring stations of the Ministry of Environment and
Energy of Greece used for the evaluation.

Sub-Basins Evaluation Stations

ID Area (km2)
Surface

Waterbody Name Latitude
(o)

Longitude
(o)

Upstream
Area (km2) Period Reference

9729462
(PINUP) 1205.9 Pinios P12 Sarakinas 39.6690 21.6330 1058.5 1981–2001 [66]

9728383
(TITAR) 1439.0 Titarisios

P2 Mylogoustas 39.7544 22.0987 1416.7 1981–1993 [67]

9728538
(MREMA) 586.8 Mega Rema

1 Marathea 39.5136 22.005 571.9 1981–1990 [68]

2.4. Analysis of Non-Linear Trends Using Generalized Additive Models

GAMs were employed to fit the interannual trends of discharges of the three studied
sub-basins. GAMs have been used widely for time series analysis of environmental data
because they can model non-linear trends and deal with the irregular spacing of samples in
time [69–71]. The components of a time series are represented as smooth functions, which
are non-linear representations of the covariates, composed by the sum of K simpler basis
functions [69]. A general form of a generalized additive model is:

g(Y) = β + f1(x1) + f2(x2) + . . . + fn(xn) (1)

where Y is the expected response value, β is the model intercept, and f 1, f 2, and fn are
smooth functions of the predictors x1, x2, xn [72].

Here we used as a response value the monthly discharge, and as predictors, we defined
the “trend” (time step of the series) and the intra-annual variation (named here “month”).
For the “trend” smooth term, we used the cubic regression smoothing spline with k = 3,
while for “month”, we used the cyclic cubic spline with k = 12. We also created separate
models for each month using as a predictor the time step (“trend”). Finally, for each model,
we plotted the first derivative over time to visually assess how the rate of change of the
discharges changes across time and to identify whether and when the rate of change shifts
from negative to positive values and vice versa.

2.5. Methods for Discharge Maxima Analysis

It is important to study interannual changes in the maximum discharges that are
usually related to climate change effects while also implying higher vulnerability for more
frequent and intense floods under favorable conditions. The use of average annual values
in temporal analyses of discharge usually hides the source and amplitude of variabilities.
In this context, we explored interannual changes in daily discharge statistics of each
sub-basin for every month of the year, considering the 37-year period from 1981 to 2017.
Two hydrological parameters (indices) were calculated for every month, which is the
maximum daily (1-day) discharge and the maximum 7-day average discharge of each
month [73,74]. These indices were selected to describe aspects of the high flows. The use
of such indices is important to provide a clear picture of interannual changes in high flow
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patterns and how these changes may impact various sectors. For instance, changes in high
flows may have implications on the flood risk assessment that is critical for society, the
economy, and ecosystems. Regarding the maximum 1-day discharges, simply the highest
daily average discharges for every month were calculated. The maximum 7-day average
discharge values were computed by examining each consecutive day of each month and
calculating the maximum of the average values for the last 7 days up to and including
each given day. Additionally, special focus was given to a selected continuous period from
July to October, when the lowest flows usually occur in our study area. Except for the
abovementioned hydrometeorological indices, the maximum 30-day average discharge
values [73,74] were also calculated for this 4-month period following a similar methodology
as in 7-day ones but considering the previous 30 days up to and including each given
day. The R-package Exploration and Graphics for RivEr Trends (EGRET) was used for the
calculation and analysis of long-term changes in discharge [75,76].

Afterward, to further investigate the strength of the statistical evidence of the high
discharges, we used the Mann-Kendall trend test [77,78]. The strength of the evidence is
characterized by the likelihood that the direction of the estimated trend is correct, computed
from the Mann-Kendall test p-values as [1 − (p/2)]. Moreover, we used Quantile-Kendall
plots [79] to investigate and describe discharge trends over the period of 37 years at the
three sub-basins. The Quantile-Kendall plots were created using daily discharge records
and were used to evaluate discharge trends across the range of discharge values in certain
months (September and October) of the year. These plots are designed to give an overall
impression of the nature of the discharge (streamflow) trend over some period/month of
record over the entire flow duration curve. Here we describe the analysis in months. For
each year, the daily discharge values of the month we are looking at are sorted from smallest
to largest. These values are assigned a rank (k) where k = 1, 2, . . . 30 (or 31, depending
on the month), with 1 being the smallest and 30 (or 31) being the largest discharge value.
For the full-time series of 37 years, all rank 1 discharges are evaluated as a time series of
37 years in length, and the results of that analysis are summarized by a slope and by a
two-sided significance level (or p-value). The graphic shows the trend slope for each of the
ranks, and color coding is used to indicate the likelihood that the estimated trend direction
(upwards or downwards) is correct. The results are arrayed on the plot with low discharges
to the left, median discharge in the middle, and high discharges to the right.

3. Results
3.1. Evaluation of E-HYPE Data Using Measurements

Table 3 presents the statistical characteristics and the efficiency criteria considered
for the evaluation of monthly discharges simulated by the hydrological model E-HYPE
using measured discharges. Based on the results, in all cases, the correlation coefficient
R can be characterized as high, based on previously proposed criteria for correlation
interpretation [80], indicating sufficient performance for the model. The NSE was in all
cases positive, and in sub-basins PINUP and MREMA, near 0.50, which is considered
indicative of satisfactory model performance. Additionally, RSR was lower than 0.70 in
all cases, and PBIAS was 22% in the case of the PINUP sub-basin. Overall, the model
performance at PINUP and MREMA sub-basins can be considered satisfactory (Table 3,
Figure A1). The performance in sub-basin TITAR is acceptable, although it is characterized
by low NSE and quite a negative PBIAS that could be partially attributed to the increased
altitude gradient of this sub-basin (Table 1).
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Table 3. Statistical characteristics and efficiency criteria for the evaluation of monthly discharges
simulated by the hydrological model E-HYPE using measured discharges.

Sub-Basin 9729462
(PINUP)

9728383
(TITAR)

9728538
(MREMA)

Station Sarakina Mylogoustas Marathea

Number of measurements N 249 153 101

Pearson’s correlation coefficient R 0.723 0.718 0.723

Root Mean Square Error RMSE 12.26 7.78 3.93

Nash-Sutcliffe Efficiency NSE 0.49 0.11 0.49

Percent bias PBIAS 22% −49% 5%

Ratio of the root mean square
error to the standard deviation RSR 0.04 0.05 0.04

3.2. Interannual Distribution of Average Annual and Seasonal Discharge

After the statistical evaluation of the model data, we constructed time series of average
annual and seasonal discharge from 1981 to 2017 for the three sub-basins (PINUP, TITAR,
and MREMA) (Figure 2). Then, we estimated annual and seasonal maximum, minimum,
and average discharge values in the three sub-basins for the 37-year period from 1981 to
2017 (Figure 2).

In more detail, Figure 2a–c presents time series of average annual discharge for the
three sub-basins. To facilitate the interpretation of temporal variabilities of discharge, the
respective time series of total annual precipitation is also illustrated. The results of this first
analysis show that the average annual discharge in the three sub-basins is characterized
by high temporal variabilities over the years. This indicates that the upstream Pinios
river basin is strongly affected by large-scale temporal variabilities in precipitation that
determine water runoff and discharge. Indeed, the Pinios basin is included in the wider
region of Greece and the southern Balkans, which is characterized by large interannual
and interdecadal variabilities in precipitation during the last decades, as noted by previous
studies [4,19,22,81]. The interannual and interdecadal variabilities in precipitation are
mostly determined by the large-scale variabilities of the atmospheric circulation bringing
precipitation systems to the area and, thus, influencing the alteration between dry and wet
periods [20,21,82–84].

The 37-year average discharges in the three sub-basins (PINUP, TITAR, and MREMA)
are 11, 9.4, and 4 m3 s−1, respectively (Figure 2a–c). The discharge differences among the
sub-basins are mostly attributed to the respective differences in their total area, altitude
distribution, and location (Figure 1 and Table 1) that impact the precipitation amount
received [4,26,44] and, thus, the discharge. The PINUP sub-basin has the largest average
discharge because its western part is well located in the Pindus mountain range, which
receives the most precipitation in Greece compared with other areas [85].

The average seasonal discharges in the three sub-basins (PINUP, TITAR, and MREMA)
present high seasonality, as shown in Figure 2d–o. They are characterized by high variabili-
ties between the seasons, presenting maxima in winter (December, January, and February—
DJF), smaller values in spring (March, April, and May—MAM), even smaller values in
autumn (September, October, and November—SON) and minima in summer (June, July,
and August—JJA). For example, the maximum average discharge in the PINUP sub-basin
for winter was estimated to be 40.7 m3 s−1 in 1998 (Figure 2d). However, the minimum one
for summer reached about 0.1 m3 s−1 in 1990 (Figure 2j). Similar seasonal variabilities are
demonstrated for all the sub-basins, mainly driven by the respective precipitation variabili-
ties (Figure 2d–o). It is noteworthy that overall, 1990 and 1992 can be characterized as the
driest years of the 37-year period studied (Figure 2). This is explained by the large-scale
decrease in precipitation (depicted in Figure 2) and drought that influenced this period not
only Pinios basin [23,24] but also in the eastern Mediterranean region [17,18,20].
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Figure 2. (a–c) Time series of average annual discharge (m3 s−1) in the PINUP, TITAR, and MREMA
sub-basins from 1981 to 2017; (d–f) Similar to (a–c) but on a seasonal basis considering winter
(December, January, and February—DJF); (g–i) Similarly for spring (March, April and May—MAM),
(j–l) for summer (June, July, and August—JJA) and (m–o) for autumn (September, October, and
November—SON). Triangles and inverted triangles depict maxima and minima, respectively, while
red lines represent 37-year averages. Total annual and seasonal precipitation (mm) is also depicted
for the three sub-basins, respectively, using the inverted y-axes on the right.

3.3. Generalized Additive Model Results

This sub-section presents a fit of the interannual trends of discharges of the three
studied sub-basins using GAMs. Statistically significant non-linear trends of the monthly
discharges were found for the sub-basins PINUP and TITAR (Table 4). In both sub-basins,
discharge appears to decline from approximately 12 m3 s−1 in 1981 to below 10 and
8 m3 s−1, respectively, in 1997, and then it increases to 14 m3 s−1 and a little above 12 m3 s−1

in 2017 (Figure 3a,c). This pattern is also shown in Figure 3b,d, where the negative rates of
change for sub-basins PINUP and TITAR decrease until 1997 and then rise until 2017. On the
other hand, although there are no statistically significant trends in the MREMA sub-basin
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(Figure 3e,f), a declining linear trend is presented, probably due to its relatively increased
agriculture (Table 1) that implies irrigation effects, thus complicating the investigation of
pure climatic trends. When examining the trends separately for each month, significant
interannual trends were noted only for September for sub-basins PINUP and TITAR,
following the same pattern as described previously (Table 4, Figure 4), although it is
obvious that the discharges were relatively low in 1981 (around 1 m3 s−1 for both sub-
basins). It is noteworthy that sub-basin TITAR showed a sharp increase in the discharge,
compared to the sub-basin PINUP, reaching 8 m3 s−1 in 2017 with a large rate of change.
Therefore, September was wetter in the 2000s and 2010s compared to the 1980s and 1990s.
This increasing interannual trend in the discharge of September is an interesting finding
because the rivers in Greece are in their driest condition in September.

3.4. Interannual Increasing Trends of Discharge Maxima

Maximum analyses were conducted for every month of the year as well as for the
selected period from July to October, aiming at untangling the interannual effects on
discharge maxima. Only the statistically significant results with over 95% confidence
level and some additional interesting results are presented here (Figures 5 and 6). The
graphical depiction of the history of high discharge statistics provided in Figures 5 and 6
is an indication of the interannual changes in the magnitude of discharge events in the
sub-basins PINUP, TITAR, and MREMA.

Results from the 4-month (July to October) analysis for the three sub-basins are pre-
sented side by side to facilitate the comparison (Figure 5). Increasing trends (represented
by slopes) reaching 2.4% per year are apparent for the TITAR and PINUP sub-basins
(Figure 5a–d). However, the trends are statistically significant in the 95% confidence level
(p-value < 0.05) for both maximum 7-day and 30-day average discharges only for the TITAR
sub-basin (Figure 5c,d). On the other hand, there is no significant trend (p-value > 0.1) at
the sub-basin MREMA for both hydrological parameters (Figure 5e,f).

Based on the above results, further analysis was made to investigate changes in high
flows employing a more detailed temporal resolution in the calculation of hydrological
indices for each month. The analysis for maximum 1-day and 7-day average discharges
resulted in statistically significant (p-value < 0.05) interannual trends only for September,
while the results for October are interesting despite the fact that they are not statistically
significant (Figures 6, A2 and A3). Therefore, the results only for these two months are
presented in this sub-section. Figures 6, A2 and A3 consist of two hydrological variables
(maximum 1-day and 7-day average discharges) describing discharge history relative to
high flows that provide valuable information regarding long-term discharge modifications
of the studied sub-basins throughout September and October.

Table 4. Results of GAMs used as response variables for the monthly discharge and the discharge
of September.

Response Variable Sub-Basin ID Adj. R2 Trend Sig. p Value Month Sig. p Value

Monthly discharge

9729462 (PINUP) 0.564 0.019 ≤0.001

9728383 (TITAR) 0.433 0.002 ≤0.001

9728538 (MREMA) 0.441 NS ≤0.001

September’s discharge

9729462 (PINUP) 0.299 0.002 NA

9728383 (TITAR) 0.384 ≤0.001 NA

9728538 (MREMA) 0.099 NS NA
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Figure 5. The left column shows trends of maximum 7-day average discharges in the (a) PINUP,
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the period 1981–2017 from July to October. A Thiel-Sen slope and a two-sided p-value for the
Mann-Kendall trend test are also presented in the graphs.
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Figure 6. Trends of maximum 1-day and 7-day average discharges in the TITAR sub-basin during the
period 1981–2017 for (a,c) September as well as (b,d) October, respectively. A Thiel-Sen slope and a
two-sided p-value for the Mann-Kendall trend test are also presented in the graphs.

One of the most substantial results of this study is that positive statistically significant
trends of 10% per year in the slope of the maximum 1-day and 7-day average discharge
were estimated for September in the TITAR sub-basin (Figure 6a,c). The PINUP sub-
basin is characterized by smaller positive significant trends of 4.6% and 4.3% per year,
respectively (Figure A2a,c). Given this information, it is reasonable to assume that the
trend in discharge across September’s discharge distribution is positive and of substantial
magnitude, particularly for the upper extremes of the discharge distribution. This result
indicates that an interannual increasing trend in September’s precipitation maxima hides
behind the corresponding increase of discharge maxima since the sub-basins were selected
to be upstream and anthropogenically low affected. Positive trends in September are critical
because this month is one of the driest months in Pinios river, and thus, the estimated
interannual increase in discharge maxima has significant implications. Regarding October,
increasing trends are shown, but they are not statistically significant (Figure 6b,d and
Figure A2b,d). Nevertheless, it should be noted that the highest maximum discharge value
(188 m3 s−1) among the three sub-basins occurred in TITAR sub-basin in October 2014
(Figure 6b).

As far as the sub-basin MREMA is concerned, there are no significant trends for
the examined hydrological indices in both September and October (Figure A3a–d). This
may be attributed to the fact that in contrast to the other two sub-basins, PINUP and
TITAR, the MREMA sub-basin is not characterized by high altitudes (Table 1) that favor
precipitation. In addition, MREMA also includes a considerable agricultural area that
impacts the simulated discharges through the introduction of parameterized irrigation
demands in the model. These two factors have direct and indirect effects on the discharge
regime, and thus, they cause inhomogeneities in the prevailing climatic trends of discharge
in the upstream region of the Pinios river basin.

The magnitude of the trends across the range from low to high flows is demonstrated
in Quantile-Kendall plots for the three sub-basins for September and October (Figure 7). The
overall variability of September’s discharge in all sub-basins has generally been increasing
over time. Trends near the medians of the discharge distributions tend to be smaller positive
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values than the trends at the higher discharges for September, while the opposite occurs
in October. For the highest flow days of September, across the probability distribution,
the changes are statistically significant, especially for the sub-basins PINUP (Figure 7a,b)
and TITAR (Figure 7c,d), whereas the upper quartile of the daily discharge distribution
shows very likely to highly likely positive trends, typically above the range of 4% per year.
Between the median and the 99th percentile of the distribution, discharges show a decline,
least substantial (nevertheless, the trends are classified as likely downwards), for October.
Trends in the range of low flows of the discharge distributions tend to be smaller positive
values than the trends at the higher discharges with no significant increasing trends, except
the PINUP sub-basin in October.
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Figure 7. Quantile-Kendall plots showing 1981–2017 trends in simulated discharge for September
(left column) and October (right column) in the (a,b) PINUP, (c,d) TITAR, as well as (e,f) MREMA
sub-basins. The plots show the magnitude of the trends across the range from low to high flows (left
side to right side, respectively) for each sub-basin, based on daily discharge data of (a,c,e) September
and (b,d,f) October. The color represents the p-value for the Mann-Kendall test. Red indicates a trend
that is significant at 0.05 level (95% confidence). Black indicates an attained significance between 0.05
and 0.1 (95% and 90% confidence). Grey dots indicate trends that are not significant at the 0.1 level
(90% confidence).
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4. Discussion
4.1. Climate Change Effects on Discharge Maxima in Early Autumn

Climate change should be considered as a main driver of change in the temporal
distribution of water availability, affecting the magnitude and frequency of both precipi-
tation and discharge maxima. The results of the present study highlighted an important
aspect of rapid climate change during the last four decades regarding water resources by
reporting significantly increasing trends in early-autumn discharge maxima in the TITAR
and PINUP sub-basins during the period 1981–2017. Our study agrees, especially regarding
September, with a previous study [36] mentioning that the total annual number of flood
occurrences in Pinios presented an increasing trend from 1990 to 2010. Our findings also
corroborate the latest knowledge of the scientific community, such as that presented in the
IPCC Sixth Assessment Report [7], showcasing the triggering role of climate change on
extreme hydrometeorological events that are frequently associated with discharge extremes.
The substantial increasing trends in discharge maxima presented here are strongly depen-
dent on climate change effects on the water cycle that bridges rivers with climate-related
increases in precipitation maxima [7]. Several studies have shown that heavy precipitation
events are influenced by various climate change-induced atmospheric parameters such
as temperature, due point temperature, moisture, and wind but also sea parameters such
as sea surface temperature and sea surface roughness [38,86–88]. Albeit there are large
uncertainties in climate change effects on precipitation, it is important to note that atmo-
spheric moisture is considered the most significant factor for the increase in short-duration
precipitation extreme events. This is attributed to the fact that climate change strongly
affects atmospheric moisture content with an increase of 7% per 1 ◦C of air temperature
increase [89].

Our findings indicate that modeled discharge data can facilitate the scope of this study,
as they are generally in good agreement with measurements. More specifically, average
seasonal discharges in the three sub-basins (PINUP, TITAR, and MREMA) present high sea-
sonality, whereas statistically significant non-linear trends of the monthly discharges were
found for the sub-basins PINUP and TITAR. Based on the above results, further analysis was
made to investigate changes in high flows employing a more detailed temporal resolution.
One of the most substantial results of this study is that in comparison with other months,
September has positive statistically significant interannual trends for the TITAR and PINUP
sub-basins. September’s increase in discharge maxima could imply a climate-induced
increase in precipitation maxima in the Pinios river basin, as the two abovementioned
sub-basins were selected to be upstream, partially mountainous, and anthropogenically
low impacted. Moreover, given the fact that global warming enhances evapotranspiration,
thus reducing water on the ground, the role of precipitation in increasing September’s
discharge maxima is critical. It is well-known that heavy precipitation events are largely
dependent on energy and moisture content in the atmosphere. For example, high moisture
amounts favoring such precipitation events in the Pinios basin and generally in Greece, are
usually originated from the Aegean and Ionian Seas [32,34,38]. A warmer Mediterranean
Sea during the last decades could positively contribute to the formation of high-energy
and high-moisture atmospheric systems such as “medicanes”. Ianos medicane, which
occurred in September 2020, is a typical example of the abovementioned processes. Ianos
formed in September when the Mediterranean Sea was still warm enough. However, the
atmosphere began to cool down by southward movements of relatively colder air masses
from northern-central Europe. This enhancement in the sea-air temperature contrast is a
significant factor, and it hides behind the formation of Ianos. Thus, Ianos brought vast
amounts of energy and moisture from the sea that triggered heavy rainfall that caused
flash floods in southwestern parts of the Pinios river basin [35,90]. An interpretation of our
findings reveals a connection between such phenomena, which could be more frequent in a
warmer future climate, and, thus, more research in their hydrometeorological aspects and
implications is needed, additionally considering potential climate change effects [91]. In
this context, co-analyses between discharge, precipitation, and evapotranspiration during
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the last decades as well as in-depth analyses of extreme precipitation events in the Pinios
basin driving to flash floods (e.g., that caused by the Ianos medicane in 2020), are interesting
proposals for future research.

4.2. Necessity for Untangling Climate Effects and Direct Anthropogenic Pressures

This study focused on the unraveling of interannual variabilities and trends of annual
average discharge and discharge maxima during the period from 1981 to 2017, avoiding
parts of the Pinios river basin that are characterized by increased agricultural activity.
However, the Pinios river basin is one of the most productive areas of the country regarding
the agricultural sector, also including multiple anthropogenic pressures [45] such as big
cities (e.g., Larissa city with more than 140,000 residents), irrigation processes, bridges,
technical works, industries, buildings, pollution, etc. Thus, the results of the present
study regarding the upstream of the river may deviate from low-lying areas. For example,
the analyses showed an increase in an annual average discharge after the middle 1990s
in the upstream sub-basins. However, this increase could be eliminated in lowlands if
considering a probable increase in irrigation, removing water from the river and transferring
it to the fields, or changes in land use. These factors are significant because agriculture
had an increasing trend, especially in the 1990s in the Pinios basin, also presenting land
use changes. Additionally, the increase in temperature since the 1990s, especially during
summer, could have impacts on the increasing irrigation demands [25]. E-HYPE has
sufficiently considered irrigation [55,56] and crop water demand [57]. Nevertheless, the
combination of the abovementioned factors poses the necessity to dynamically consider the
changes in irrigation and land use in low-lying sub-basins as well as the installation of small
dams if the aim is to investigate the effects of both climate change and direct anthropogenic
pressures on discharge. Such an effort presupposes a lot of detailed spatiotemporally
distributed information about factors such as irrigation, land use, and dams, which is very
difficult to find and introduce every year in the estimation of the hydrological cycle by the
hydrological model. It is nevertheless a suggestion for future work in the Pinios river basin
aiming for a more holistic approach to the issue of simulated long-term discharge trends in
the whole river.

5. Conclusions

The scope of the present study was to investigate variabilities and significant interan-
nual trends in the annual average discharge of three upstream sub-basins of the Pinios river
while also unraveling significant trends in discharge maxima by examining each month. To
this aim, daily discharges from the E-HYPE model from 1981 to 2017 were used. The most
critical conclusions of this study are summarized below:

• The analysis of data revealed noteworthy findings for the upstream Pinios river. The
average annual discharge in the three sub-basins decreased in the 1980s, reaching a
minimum in the early 1990s when extensive droughts influenced not only Pinios river
but also several areas of the Mediterranean region. Afterward, the average annual
discharge gradually increased from the middle 1990s to 2017, reaching approximately
the discharge levels of the early 1980s.

• The interannual and interdecadal discharge variabilities presented in this study were
characterized by high amplitudes. These variabilities were induced by large-scale
climatic forcings that largely determined the water resources of the Pinios river basin.

• The most striking finding of this study is that significantly increasing interannual
trends in discharge maxima were identified for September, which is one of the driest
months in the Pinios river basin. The performed discharge history analyses indicated
the presence of large positive (10% and approximately 4.5% per year for TITAR and
PINUP sub-basins, respectively) statistically significant (p-value < 0.05) interannual
trends in maximum 1-day and 7-day average discharges for September.

• The increases in high flows were also much more substantial than those near the
median flows for September, as evidenced by Quantile-Kendall plots. Significant
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increasing trends up to 2.4 per year for the TITAR sub-basin were also resulted by
analyzing maximum 7-day and 30-day average discharges considering the period
from July to October.

The findings of this study regarding the interannual trends of both the annual average
discharge and discharge maxima can be exploited by the scientific community to conduct
climate studies as well as interdisciplinary projects. The implications of large variabilities
in discharge over the years are related to multi-year wet and dry periods that influence the
society, economy, and ecosystems of the Pinios basin. The increase of discharge maxima in
early autumn, when the rivers in Greece are in their driest condition, is a clear signal of
climate change that must be seriously considered in the future. The increase in maxima
may potentially determine suitable hydrological conditions for the increased probability
of floods during late summer and especially early autumn periods. This study presents a
paradigm for probable discharge variabilities in the future, and thus, decision-makers and
civil protection may consider the results when they make basin management strategies as
well as climate change adaptation and mitigation plans.
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Appendix A

Statistical criteria of the E-HYPE model performance by comparing observed (o) and
modeled (m) data of a sample size (n):

Pearson’s correlation coefficient (R).

R =
∑n

i=1(mi − m)(oi − o)√
∑n

i=1(mi − m)2
√

∑n
i=1(oi − o)2

(A1)

Percent bias (PBIAS).

PBIAS = 100 × ∑n
i=1(oi − mi)

∑n
i=1 oi

(A2)

Root mean square error (RMSE).

RMSE =

√
∑n

i=1(oi − mi)
2

n
(A3)
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Ratio of the RMSE to the Standard Deviation of observations (RSR).

RSR =

√
∑n

i=1(oi − mi)
2

√
∑n

i=1(oi − o)2
(A4)

Nash-Sutcliffe efficiency (NSE).

NSE = 1 − ∑n
i=1(oi − mi)

2

∑n
i=1(oi − o)2 (A5)
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Figure A1. Simulated and measured discharge (m3 s−1) values and correlations of (a,b) PINUP—

Sarakinas bridge, (c,d) TITAR—Mylogoustas bridge, and (e,f) MREMA—Marathea station. 
Figure A1. Simulated and measured discharge (m3 s−1) values and correlations of (a,b) PINUP—
Sarakinas bridge, (c,d) TITAR—Mylogoustas bridge, and (e,f) MREMA—Marathea station.
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Abstract: Land use/land cover (LULC) and climate change are the two major environmental factors
that affect water resource planning and management at different scales. This study aims to investigate
the effects of LULC and climate change patterns for a better understanding of the hydrological
processes of the Birr River watershed. To examine the effects of LULC and climate change patterns
on hydrology, three periods of climate data (1986–1996, 1997–2007 and 2008–2018) and three sets of
LULC maps (1986, 2001 and 2018) were established. The changes in hydrological flow caused by
climate and LULC changes were estimated using the soil and water assessment tool (SWAT) and
indicator of hydrological alteration (IHA) method. Results showed that the SWAT model performed
well during the calibration and validation period at monthly timestep, with R2 and NSE values of
(0.83 and 0.81) and (0.80 and 0.71), respectively. The LULC change increased surface runoff while
decreasing baseflow, water yield, and evapotranspiration. This was due to increased agriculture and
settlements, and a reduction in bushland, forest, and grassland. Climate change increased surface
runoff and water yield while decreasing baseflow and evapotranspiration during 1996–2006. The
combined effect of LULC and climate reveals increased surface runoff and a decreased trend of
evapotranspiration, whereas baseflow and water yield showed inconsistency. In addition, the IHA
found no statistically significant increasing trend for one-day, three-days, seven-day, and thirty-day
minimum and maximum daily streamflow in the Birr River watershed. These findings will be useful
to authorities, water engineers, and managers concerned with hydrology, LULC, and climate.

Keywords: Birr River watershed; climate change; land use/land cover; streamflow; SWAT

1. Introduction

Lan use/land cover (LULC) and climate change are the two major environmental
components that had a significant effect on the hydrological process and socioeconomic
activities, which directly affects water resource management and development [1–5]. The
patterns of LULC and climate change are dynamic, with the effects of natural phenomena
and anthropogenic activities primarily governing their prevalent processes [6,7]. Various an-
thropogenic activities of LULC changes, such as rapid urbanization, agricultural expansion,
deforestation, industrialization, and other human activities can have a significant effect on
streamflow, surface runoff, groundwater flow, water yield, and evapotranspiration of a
watershed [8–10]. Climate change also has a wide range of effects on the hydrological cycle
in a variety of ways, including changes in peak flow and volume [11–14]. Moreover, both
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the quantity and quality of water are constantly deteriorating as a result of mining activities
and the conversion of forests into agricultural areas. Mining increases land degradation
and soil erosion, whereas deforestation increases surface runoff and decreases baseflow
on agricultural and urbanization fields [15] As a result, LULC and climate change had
a detrimental effect on long-term water resource management, and development [16,17].
Hence, to effectively manage the available water resource for various uses, the watershed’s
water should be adequately quantified and estimated.

Analyzing and quantifying the impact of LULC and climate change on the hydro-
logical flows of a watershed is a challenge because of the complex relationship between
landscape, LULC, climate, and hydrology [6]. Thus, understanding these impacts at a
watershed scale is essential for land use planners, policymakers, stakeholders, and water
planners and managers. Studies of LULC and climate change patterns, and implications
can also pave the way for the development and implementation of appropriate land man-
agement strategies [18,19]. Local and regional knowledge is especially important in the
Birr watershed, which contains many small rivers and streams that supply water to the Birr
River [20]. Several studies have been conducted to better understand the separate impact
of LULC or climate change on hydrological flow in a watershed [19,21–23]. However, it is
critical to recognize the cumulative effect of these LULC and climate change factors. [24–26].
The integrated and individual effects of climate and land cover change influence the hy-
drological processes of a watershed [27–29]. Although, the magnitude of the change varies
among watersheds depending on the watershed’s characteristics such as vegetation cover,
climate condition, land cover, and topography. Therefore, studying the effects of changes
in climate and land cover drivers on hydrological response has become a major research
topic in recent decades [30]. Many scholars studied LULC and climate change effects on
hydrological processes all over the world [24,31–36], however, it is complicated to quantify
the hydrological process [37]. Some researchers recently also concluded that the effects of
LULC and climate change on streamflow varied over several regions as a result of the dif-
ference in soil type, terrain, human activities, and climate conditions [1,38–40]. For instance,
Kuma et al. and Chen et al. [28,29] reported that climate change has a greater impact on
hydrologic response than land cover change. On the other hand, land cover changes are
more sensitive to hydrologic responses than climate change [5,7,41]. Patel and Verma [42]
stated that changes in LULC contribute to an increase in streamflow and a decrease in
evapotranspiration, primarily as a result of increased urbanization and decreased water
bodies and forest cover. Thus, it is important to consider the effect of both climate and
land cover changes on hydrological processes. This study used soil and water assessment
tools (SWAT) and indicators of hydrological alteration (IHA) to investigate how changes
in hydrological processes within the Birr River watershed. Because of the limited data,
there are fewer studies in which SWAT has been applied in the Birr River watershed. IHA
is used to estimate the magnitude of changes in hydrological flow fluctuation caused by
climate and anthropogenic changes Additionally, this study raised concerns about resource
degradation, particularly the loss of vegetation and its transformation in other land LULC
types. The transformation of land use is the result of human-induced systems, which are
primarily disrupting watershed streamflow regimes.

Many types of research have been conducted to investigate the effect of climate and
LULC change on hydrological flows using a hydrological model due to the enormous
economic and social importance of these climate and LULC changes [25,43–48]. Regional
and local studies have been conducted using the SWAT model to investigate the response
of hydrological variables to LULC and climate change in a watershed [49–55]. The SWAT
model is a physically-based semi-distributed hydrological model that is used worldwide.
It is user-friendly and freely available, and it estimates surface runoff using a modified Soil
Conservation Service Curve Number (SCS–CN) technique. The model has been used to
monitor and control, changes in LULC and climate changes in the Birr River watershed.

The Birr River watershed mainly experienced rapid LULC and climate change, high
population growth, and decreased surface water availability, due to high agricultural
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water demand [56]. Most local people in the watershed depend on rainfed agriculture and
small-scale irrigation schemes for their livelihoods, which have been severely impacted
by LULC and climate change. Land degradation from soil erosion, deforestation, and
uncontrolled hillside farming is a serious problem in the watershed [20]. The study area has
high deforestation and steep slopes employed by farmland for crop production, resulting
in severe land degradation. Vegetations are becoming scarce as a result of increased
cultivation, settlements, and land degradation. Thus, quantifying the individual and
integrated effects of land use and climate change on various hydrological processes on
a local scale (watershed level) and identifying the relative contribution of these changes
is the novelty of the study. The study provides more information on the integrated and
individual effects of land use and climate change drivers for a better understanding of
the hydrological processes in the Birr River watershed. Furthermore, the study would
have the highest impact and be useful in developing policies and strategies for sustainable
land and water resource management practices in the study area. Therefore, the main goal
of this study was (i) to determine the impact of integrated climate and LULC change on
hydrological processes (surface runoff, baseflow, water yield, and evapotranspiration) over
32 years (1986–2018) (ii) to analyze the relative contribution of individual climate and LULC
cover change on hydrological processes (iii) to model and understand the availability of
streamflow in the Birr River watershed for the effect of climate and land use changes using
the IHA.

2. Materials and Method
2.1. Study Area

Birr River watershed is situated in the northwestern highlands of Ethiopia. Geographi-
cally, the watershed is located between the longitude of 37◦10′ and 38◦50′ E and the latitude
of 10◦30′ and 11◦10′ N (Figure 1). The watershed is characterized by rough topography
and a wide range of elevations ranging from 1691 to 4084 m above sea level. The total
drainage area of the watershed is 3062 km2. Many small tributary streams contribute to
high discharge to the Birr River watershed during the summer season and are distinguished
by substantial spatial and seasonal variability in rainfall. Based on the rainfall patterns,
there are three distinct seasons: the main rainy season, which runs from June to September,
the minor rainy season, which runs from February to Ma, and the dry season, which runs
from October to February [57,58]. The estimated mean annual rainfall for the watershed
is 1389 mm based on 32 years of recorded data (1986–2018) obtained from nearby repre-
sentative meteorological stations, (Figure 2). The northwestern region of the watershed
has an estimated annual rainfall was 1391 mm, while the southwestern tip near the mouth
of the basin was 1026 mm. The estimated maximum temperature also ranges between
23 and 30 ◦C, while the lowest temperature varied between 8 to 12 ◦C, with an average
temperature of 18 ◦C (Figure 2). Figure 2 depicts the average maximum and minimum
temperatures, as well as rainfall, in the Birr River watershed. The estimated gauged area
of the Birr River watershed covers 1500 km2 (Figure 1). The watershed is significant on
local and national magnitude. It includes a high irrigation potential, a high value of cash
crops, livestock production as well as tourism, because of the existence of an impressive
landscape, and a unique source of biological diversity [20,57].

2.2. Data Collection and Quality Control
2.2.1. Spatial Data

A spatial dataset of digital elevation model (DEM), soil, and LULC was employed to
simulate the SWAT hydrological model. DEM data is required to define watershed and
sub-watershed boundaries, as well as the delineation of the hydrological response unit, and
slope reclassification. DEM data with the 30-m spatial resolution was obtained from the
Shuttle Radar Topographic Mission (SRTM) USGS website http://earthexplorer.usgs.gov/
(accessed on 1 August 2022) [59]. The soil and LULC map along with the watershed and sub-
watersheds delineated from DEM was used to determine the hydrological parameters and
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the Hydrological Response Units (HRUs). The soil map was collected from the Ethiopian
Ministry of Water, Irrigation, and Energy (MoWIE). There are six major soil types found in
the Birr River watershed, which include Haplic Alisols, Eutric Fluvisols, Haplic Luvisols,
Eutrc Leptosols, Haplic Nitisols, and Eutric Vertisols (Figure 3). Among all soil types
Haplic Alisols is most dominated soil types, which covers about 816 km2 (59.78%) followed
by Eutric Fluvisols 236 km2 (17.29%), Eutrc Leptosols 125km2 (9.16%), Haplic Luvisols
96km2 (7.03%), Haplic Nitisols 65km2 (4.76%), and Eutric Vertisols 5km2 (0.37%). The
Birr River watershed’s detailed soil physical and chemical property parameters, such as
soil texture, bulk density, available water content, hydraulic conductivity, soil depth, and
organic carbon content, were derived from the world’s digital soil map [60].
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Figure 2. Monthly maximum temperature (Tmax), minimum temperature (Tmin), mean temperature
(Tmean), and mean rainfall in the Birr River watershed (1986–2018).
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Figure 3. Major soil types in the study Birr River watershed.

Landsat imagery from the years 1986, 2001, and 2018 was employed to determine how
LULC was changing over time. These satellite images were downloaded from the USGS
website https://earthexplorer.usgs.gov/ (accessed on 1 August 2022). Table 1 summarizes
the sensors, path/raw, spatial resolution, and acquisition dates that were used in the study
area. Each Landsat image was georeferenced to World Geodetic System 1984 (WGS84)
Universal Transverse Mercator (UTM) zone 37 N. Image preprocessing such as band
composite, layer stacking, mosaic, sub-setting, noise, and haze correction was performed.
Then based on the prevalent land covers, the spectral responses of features on Landsat
images, extensive field observation, and a literature review, the Birr River watershed was
divided into five LULC classes or types that were generated namely; agricultural, bushland,
forest, grassland, and settlement (Table 2). The maximum likelihood classification method
was used to process the image classification using the ERDAS imagine 2015 software
(version 15.0). Then, the SWAT model includes these five LULC classes (agricultural, forest,
grassland, shrub/bushland, and settlements), with the LULC maps beginning in 1986, 2001,
and 2018.

Table 1. Satellite data acquisition in the study area.

Source Sensors Path/Row Spatial Resolution Acquisition Date

Earthexplorer.usgs.gov
(accessed on 1 August 2022)

Landsat TM 169/053 30 m × 30 m January 1986
Landsat TM 169/053 30 m × 30 m January 2001
Landsat OLI/TIRS 169/053 30 m × 30 m February 2018
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Table 2. General description of LULC classes.

LULC Classes Description of LULC Classes

Agricultural land Enclosed with permanent crops, following land, and irrigated cultivation
Bushlands Covered with small to medium-sized perennial woody or natural vegetation
Forest land Trees taller than 5 m and covering more than 0.5 hectares of land
Grasslands Terrestrial vegetation dominated by grass, suitable for grazing by livestock
Settlements Built-up areas and roads, the establishment of a person in a new region

Accuracy Assessment of the Classified LULC Types

Accuracy assessment is an important step for LULC classification. It compares the
classified image to another data source that is considered to be accurate or ground truth
data. The ground truth should be chosen in such a way that it appears in both the Landsat
image and the google earth map. The overall accuracy demonstrates the ability of the
classifier to preview the classes. It was calculated by dividing the total number of correctly
classified pixels (diagonal) by the total number of reference pixels. The recommended one
should be between 85–95% [61]. For accuracy evaluations, the Kappa coefficient (K), which
represents the agreement between the classified image and the reference or ground truth,
was used. The Kappa coefficient is calculated using Equation (1).

Kappa Coe f f icient (K) =
(Total sample× Total corectely classi f ied sample)−∑(Column total ∗ Row total)

(Total sample)2 −∑(Column total − Row total)
∗ 100 (1)

Kappa coefficient statistics criteria agreements are as follows: poor when Kappa < 0.4,
good when 0.4 < kappa < 0.7, and excellent when k > 0.75 [62].

2.2.2. Temporal Data

Climatological data is the main requirement of the SWAT hydrological model. Daily
climate data (rainfall, maximum and minimum temperature data, relative humidity, sun-
shine hours, and wind speed) were obtained from the Ethiopian National Meteorological
Agency (NMA). These climate data were used between 1986 and 2018 at eight meteo-
rological stations (Adet, Dembecha, Dengayber, Feresebet, Finoteselam, Qaurit, Sekela,
and Yechereka). SWAT weather generator was used to simulate relative humidity, solar
radiation, and wind speed data from the Adet station [63]. The weather generator was
also used to fill the missing rainfall, and temperature data. The double mass curve method
was also used to assess the consistency of data elements [64]. The daily evapotranspiration
was estimated using the Penman-Monteith method, which is the only accepted method
of calculating evaporation [65,66]. The consistent hydrological streamflow data were also
collected from MoWIE. The missing and its homogeneity test were investigated using
indicators of hydrological alterations (IHA), which employed long-term daily streamflow
data [67].

2.3. The SWAT Model

SWAT predicts the effect of human activities on the quality and quantity of hydrolog-
ical processes at different scales [26,43,68–70]. It is a physically-based, semi-distributed,
computationally efficient, robust, process-based hydrological model, that was created to esti-
mate the long-term effect of land use management practices on water, sediment, and agricul-
tural chemical yields [65,68,71]. SWAT also simulates the water balance components of sur-
face runoff, groundwater flow, lateral flow, total water yield, and evapotranspiration [68,72].
The water balance equation is given (Equation (2)).

SWt = SWO + ∑
(

Rday − SURQ− Ea −Wseep − GWQ
)

(2)
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where SWt is the final soil water content (mm), SWO is the initial soil water content (mm), t
is time in days, Rday is the amount of precipitation (mm), SURQ is the amount of surface
runoff (mm), Ea is the amount of evapotranspiration (mm), Wseep is the amount of water en-
tering the vadose zone from the soil profile (mm), and GWQ is the amount of groundwater
flow (mm).

ArcSWAT 2012.10.4.21 was used with ArcGIS 10.4.1 to delineate watershed bound-
aries and stream networks. The model simulates a watershed by separating it into sub-
watersheds, which are then subdivided into hydrologic response units (HRUs), which have
smaller units and specific land use, soil, and slope combinations [69,71].

2.4. Calbiration and Validation

A two-year warm-up period was used to simulate the Birr River watershed [73].
The sequential uncertainty fitting version 2 (SUFI-2) algorithm was used to achieve an
acceptable satisfactory agreement between simulated and observed streamflow data. SWAT
model parameters were calibrated using monthly observed streamflow data from the Birr
River gauging stations between 1994–2001. The validation process of a model was used to
examine simulation consistency and validated using monthly streamflow data from 2002
to 2005 period.

2.5. Model Performance Evaluation

SWAT model simulation was evaluated using monthly timescale streamflow data from
the Birr River gauging station because daily timescale simulations may not clearly show the
effects of LULC and climate change. Various statistics can be used to calculate the degree
of agreement between observed and simulated data [74–77]. The model was evaluated
using the coefficient of determination (R2), Nash Sutcliffe Efficiency (NSE), and percent of
bias (PBIAS) as described (Equations (3)–(5)). R2 is the correlation between observed and
simulated streamflow data, and it ranges from 0 to 1. R2 > 0.5 is regarded as acceptable,
as is the model’s ability to predict observed values reliability [78,79]. NSE calculates the
relative magnitude of the residual variance in comparison to the measured data variance,
and how well the observed versus simulated data plot fits [80]. NSE value ranges from −∞
to 1. As the NSE is closer to 1, the more accurate the model is. NSE = 1, a perfect match
between the observed and simulated streamflow data. NSE = 0, showed that the model
predictions are as accurate as the mean of the observed data. −∞ < NSE < 0, indicates that
the observed mean is a better predictor than the model. The PBIAS compares the average
tendency of the simulated to the observed data [81]. The best value of BPIAS is 0. The
positive value of PBIAS indicates an underestimation and the negative value indicates an
overestimation of the model [81]. The statistical indices were estimated using the equations
listed below.

R2 =


 ∑n

i=1
(
Oi −O

)(
Si − S

)
√

∑n
i=1
(
Oi −O

)2
√

∑n
i=1
(
Si − S

)2


 (3)

NSE =
∑n

i=1
(
Oi −O

)2 −∑n
i=1(Si −Oi)

2

∑n
i=1
(
Oi −O

)2 (4)

PBIAS =

[
(Oi − Si) ∗ 100

∑n
i=1(Oi)

]
(5)

where the total number of observations, Oi is the ith observed value, O is the mean observed
value, Si is the ith model simulated value, and S is the mean model simulated value.

2.6. Simulation of LULC and Climate Change Impacts

A fixing-changing method was used to assess the effect of LULC and climate change
on the hydrological process [7,25,82–84]. Climate data from 1986 to 2018 were divided
into three time periods (1986–2000, 2001–2010, and 2011–2018) for the LULC map of 1986,
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2001, and 2018. Based on these climate data and a set of LULC maps, nine scenarios were
established (Table 3). If the LULC map and climate data are from the same period, it is
referred to as a baseline scenario, and if they are from different periods, it is referred to as
an assumed scenario [6]. For instance, in scenario 1, the LULC map from 1986 and climate
data from 1986–2000 was used, and this is known as the baseline scenario. The LULC map
from 2001 and climate data from 1986–2000 were used in scenario 2, which is also known
as an assumed scenario. These scenarios would provide more detailed information about
the effects of LULC and climate change on the Birr River watershed.

Table 3. Different simulation scenarios for evaluating the effect of LULC and climate change on
hydrological processes from 1986 to 2018.

Scenarios Considered LULC map Climate Data Remarks

S1 1986 1986–1996 Bassline
S2 2001 1986–1996 Assumed
S3 2018 1986–1996 Assumed
S4 1986 1997–2007 Assumed
S5 2001 1997–2007 Baseline
S6 2018 1997–2007 Assumed
S7 1986 2008–2018 Assumed
S8 2001 2008–2018 Assumed
S9 2018 2008–2018 Baseline

The difference in the hydrological process obtained from scenarios S2 and S1 represents
the separated effect of LULC from 1986 to 2001. The main goal of this evaluation is to
determine whether LULC change is a driver for changes in hydrological processes in the
Birr River watershed or not while keeping the DEM and soil data constant [6,25,83,84].
The difference between S4 and S1, on the other hand, would indicate the effect of climate
change between 1986–2010. Furthermore, the difference between S5 and S1 (baseline
scenarios) represents the combined effect of LULC and climate change between 1986 and
2010. Equations (6)–(8) provided the percentage changes resulting from the contributions
of LULC, climate, and combined LULC and climate change on the hydrological flows [6].

∆HLULC =( S2−S1
S1 )×100 (6)

∆HClimate =( S4−S1
S1 )×100 (7)

∆HCombined =( S5−S1
S1 )×100 (8)

where ∆H is a change in percentages for the effect of LULC, climate, and combined on
hydrological processes, and S1, S2, S4, and S5 are scenarios considered. For other periods,
between 1986 to 2018 and 2010 to 2018 a similar analogy is used to analyze the effect of
LULC and climate changes.

2.7. Indicator of Hydrological Alteration Method

The indicator of hydrological alteration (IHA) method is used to estimate the mag-
nitude of changes in hydrological flow fluctuation caused by climate and anthropogenic
changes. The IHA is a software program that was created in the 1990s by the US Nature
Conservancy to process hydrological records [85]. The IHA parameters of one day, three
days, seven days, thirty days, and ninety days were investigated for the minimum and
maximum magnitudes and durations of streamflow conditions. The parameters were
evaluated and compared using a p-value of 5% significance. Modeling water resources
with IHA provides useful information and identification of hydrological regimes in the
watershed that is influenced by climate and anthropogenic factors in the watershed [86].
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3. Results
3.1. Land Use Land Cover Change Detections

There are five major land use classes identified in the study area: agricultural land,
bushland, forest, grassland, and settlements. Agriculture covered the largest area in the
watershed than the other LULC types in all three years (1986, 2001, and 2018), whereas
forests and settlements covered less area [87]. This indicates agriculture is critical to the
socioeconomic development of the study watershed. Table 4 depicts the LULC classifica-
tion in the watershed over 32 years (1986, 2001, and 2018). Agricultural land increased
from 56.39–70.19% between (1986–2018) because increased population density leads to
an increase in cultivated area and settlements. This finding is in agreement with another
finding [30,88].

Table 4. The proportional area coverage in kilometer squares (km2) and percentage (%) of LULC
classes in the Birr River watershed.

LULC Classes
LULC Area in Kilometer Squares (km2) and Percentage (%)

1986 2001 2018
km2 % km2 % km2 %

Agriculture 773.04 56.39 849.90 61.99 962.34 70.19
Bushland 358.91 26.18 326.35 23.80 264.64 19.30

Forest 67.69 4.94 24.23 1.77 26.39 1.92
Grassland 161.38 11.77 154.26 11.25 98.22 7.16

Settlements 9.96 0.73 16.25 1.19 19.40 1.42

Accuracy Assessment of Classified LULC

According to the results of three classified LULCs, the overall accuracy of the maps
from 1986, 2001, and 2018 was 90.69%, 91.01%, and 92.22%, respectively. The classification
performed in this study produces an overall accuracy that meets the minimum accuracy
level of 85 defined by Anderson et al. [61]. The Kappa coefficients for the 1986, 2001, and
2018 maps were also 0.84, 0.86, and 0.89, respectively. Therefore, the classification used in
this study has an almost perfect agreement for the years 1986, 2001, and 2018 (Tables 5–7).

Table 5. Accuracy assessment of LULC map classification, 1986.

Land Use Classes Agriculture Bushland Forest Grassland Settlement Row Total Users Accuracy

Agriculture 27 0 0 0 0 27 100%
Bushland 1 22 0 2 0 25 88%
Forest 1 0 9 0 0 10 85%
Grassland 2 1 0 17 0 20 90%
Settlement 1 0 0 0 3 4 75%
Column total 32 23 9 20 3 86
Producers accuracy 84% 95% 100% 90% 100%
Overall classification accuracy = 90.69% Kappa Coefficient = 0.87

Table 6. Accuracy assessment of LULC map classification, 2001.

Land Use Classes Agriculture Bushland Forest Grassland Settlement Row Total Users Accuracy

Agriculture 25 3 1 1 0 30 83.33%
Bushland 1 23 0 1 0 25 92%
Forest 0 0 10 0 0 10 100%
Grassland 1 0 0 19 0 20 95%
Settlement 0 0 0 0 4 4 100%
Column total 27 26 11 21 4 89
Producers accuracy 92% 88% 90% 90% 100%
Overall classification accuracy = 91.01% Kappa Coefficient = 0.88
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Table 7. Accuracy assessment of LULC map classification, 2018.

Land Use Classes Agriculture Bushland Forest Grassland Settlement Row Total Users Accuracy

Agriculture 28 1 0 1 0 30 93%
Bushland 2 22 1 0 0 25 88%
Forest 0 0 10 0 0 10 100%
Grassland 1 1 0 18 0 20 90%
Settlement 0 0 0 0 5 5 100%
Column total 31 26 12 19 5 90
Producers accuracy 90% 85% 83% 95% 100%
Overall classification accuracy = 92.22% Kappa Coefficient = 0.89

The extent and rate of LULC change patterns from 1986 to 2018 are also presented in
(Table 8). The result showed that agricultural land and settlements increased by 24.49%,
and 54.78%, respectively, whereas bushland, forest, and grasslands had a decreasing trend.
The rate of change in agricultural land and settlements was also raised by 0.77% and 2.96%,
respectively. Bushland, forest, and grasslands had also dropped by −0.82%), −1.91%, and
−1.22% respectively. Similarly, Ewunetu et al. [89] showed the highest gain in agricultural
land was obtained from grassland and bushland in the North Gojjam sub-basin from 1986
to 2017.

Table 8. Rate of LULC changes between 1986 and 2018.

LULC Classes
1986 2018 Change in 1986 and 2018 Rate of Changes

km2 km2 km2 % km2/year %

Agricultural land 773.04 962.34 189.3 24.49 5.92 0.77
Bushland 358.91 264.64 −94.27 −26.27 −2.95 −0.82

Forest 67.69 26.39 −41.30 −61.01 −1.29 −1.91
Grassland 161.38 98.22 −63.16 −39.14 −1.97 −1.22

Settlements 9.96 19.40 9.44 54.78 0.31 2.96

3.2. SWAT Model Calibration and Validation

The SWAT model had been calibrated using the monthly observed streamflow covering
from 1994 to 2001 over the Birr River watershed. Streamflow data from the previous years
was used for the warm-up period from 1992 to 1993. SWAT-CUP automatic calibration with
the sequential uncertainty fitting version 2 (SUFI-2) algorithm at the Birr River gauging
station from 1994 to 2001 was used. Before beginning to calibrate and validate the SWAT
model, the model’s developer and users provided detailed readings and observations,
which aided in determining the calibration and validation parameters that needed to be
adjusted. The parameters such as SCS runoff curve number for moisture conditions II (CN2),
soil evaporation compensation factor (ESCO), The threshold water level shallow aquifer
baseflow (GWQMN), maximum canopy index (Canmx), an available water capacity of the
soil layer (SOL_AWS), and soil depth (SOL_Z) were employed for the model calibration.
The model was calibrated by varying the parameter range values between the lower
and upper limits. These SWAT parameters, range values, fitted values, and parameter
descriptions used in the SWAT model simulation are shown in (Table 9).

Figures 4 and 5 depict the comparison and relationship between the simulated and
observed monthly streamflow at the Jiga gauging station. To calibrate the SWAT model,
climate data from 1997 to 2007 were used, as well as the 2001 LULC map. The peak value
of the simulated streamflow closely matches those of the observed one, but at different
magnitudes (Figure 4). According to the simulation results, the SWAT model demonstrated
that monthly streamflow has a better agreement in the Birr River watershed. The SWAT
model calibration and validation confirmed that it could be used to assess the effects of
LULC and climate change on water balance components. Figure 5 shows that for the lower
values of observed streamflow, the simulated streamflow values are distributed uniformly
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along a one-to-one line. However, at higher discharge values, the model simulation values
showed slight underestimation.

Table 9. The parameter values used to simulate the SWAT model.

Parameters Range Value Fitted Value Parameter Description

CN2 −50 to 50 23.33 SCS curve number for moisture conditions II
ESCO 0 to 1 0.23 Soil evaporation compensation factor

GWQMN 0 to 5000 166.66 The threshold depth of water in the shallow aquifer required for
return flow occurs (mm)

Canmax 0 to 10 7.66 Maximum canopy index
SOL_AWS −50 to 50 13.33 Available water capacity of the soil layer (mm mm−1)
SOL_Z −50 to 50 9.99 Depth from the soil surface to the bottom of the layer (mm)
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Figure 5. Scatter plot between observed and simulated streamflow for model calibration period
(1994–2001).

For further investigation of the calibrated SWAT model, the simulated and observed
monthly streamflow at Jiga gauging stations validation period was also compared as shown
in (Figures 6 and 7). The Birr River watershed gauging site has a good agreement between
simulated and observed monthly streamflow.
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(2002–2005).

The statistical parameters of R2, NSE, and PBIAS all indicate a satisfactory relationship
between observed and simulated streamflow (Table 10). It has been observed that for the
period 1994–2001, the model performed well in terms of R2 and NSE, which were found to
be 0.83 and 0.80, respectively during calibration. For the model validation period the R2

and NSE were also found to be 0.81 and 0.71, respectively. The model performed better
during the calibration period than during the validation period, which could be attributed
to the poor quality of streamflow data recorded during the validation period. Furthermore,
a lack of consistent hydroclimate and spatial data (LULC and soil data), may result in a
slight discrepancy in the model simulation, however, the graphical interpretation of the
simulated and observed monthly streamflow hydrographs, as well as the performance of
the statistical indices, meet the criteria suggested by Moriasi et al. [90]. As a result, the
SWAT model results showed that the overall prediction of monthly streamflow during the
calibration and validation period was satisfactory and acceptable for further investigation.
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Table 10. Statistical analysis of the observed and simulated monthly streamflow during calibration
(1997–2007) and validation (2008–2013).

Period Statistical Parameters Value

Calibrations
R2 0.83

NSE 0.80
PBIAS −15.23

Validations
R2 0.81

NSE 0.71
PBIAS −14.45

3.3. The Effects of LULC and Climate Change on Hydrological Flows

To assess the effect of LULC and climate change on hydrological flows, different land
use scenarios are compared with various climatic settings. The SWAT model simulated
various hydrological water balance components, namely, streamflow, surface runoff, base-
flow, water yield, and evapotranspiration under various LULC and climatic conditions
(Tables 11–13).

Table 11. Average monthly hydrological components for the effect of various land use types with
fixed climate data.

Scenarios LULC Climate Surface Runoff (mm) Baseflow (mm) Water Yield (mm) Evapotranspiration (mm)

S1 1986 1986–1996 8.26 32.76 50.33 48.83
S2 2001 1986–1996 8.65 31.01 50.30 48.78
S3 2018 1986–1996 9.14 30.55 49.45 48.75

Table 12. Average monthly hydrological components for the effect of various land use types with
fixed climate data.

Scenarios LULC Climate Surface Runoff (mm) Baseflow (mm) Water Yield (mm) Evapotranspiration (mm)

S4 1986 1997–2007 15.15 39.02 65.03 44.27
S5 2001 1997–2007 15.70 37.55 64.54 43.12
S6 2018 1997–2007 16.09 35.85 63.07 42.14

Table 13. Average monthly hydrological components for the effect of various land use types with
fixed climate data.

Scenarios LULC Climate Surface Runoff (mm) Baseflow (mm) Water Yield (mm) Evapotranspiration (mm)

S7 1986 2008–2018 16.89 37.96 65.62 44.98
S8 2001 2008–2018 17.00 36.63 64.23 43.62
S9 2018 2008–2018 17.80 34.54 63.36 42.30

3.3.1. Effects of LULC Change on Hydrological Flows

Table 11 depicts the three land use scenarios evaluated (S1, S2, and S3) from 1986
to 1996, illustrating the predominant influence of LULC changes with constant climatic
circumstances. Similarly, Table 12 shows the different scenarios considered in (S4, S5, and
S6), which is the sole effect of land use change with constant climatic settings between
1997–2007, as well as Table 13 depicts the various scenarios considered in (S7, S8, and
S9), which is the sole effect of land uses change with constant climatic settings between
2008–2018. Surface runoff increased by 0.39 mm (4.72%), and 0.88 mm (10.65%) in 2001
and 2018, respectively, when compared to the baseline scenario in S1 with S2 and S3,
whereas baseflow decreased by −1.75 mm (−5.34%), and −2.21 mm (−6.75%). In different
assumed scenarios considered from S4 to S9, similar results of increased surface runoff and
decreased baseflow patterns were observed. However, the magnitudes of surface runoff
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and baseflow have differed (Tables 12 and 13). The changes in LULC play a significant role
in runoff variations, particularly in tropical areas [1]. Baker and Miller [91] reported that
the dramatic changes in LULC have resulted in increased surface runoff and decreased
groundwater recharge. Similarly, water yield and evapotranspiration decreased in all
considered assumed scenarios between S1–S9 during the study period (1986–2018).

Agricultural land increased from 56.39% in 1986 to 70.19% in 2018, while settlements
increased from 0.73% in 1986 to 1.42% in 2018, in the study watershed. On the other
hand, bushland, forest, and grassland decreased from 26.18%, 4.94%, and 11.77% in 1986
to 19.30%, 1.92%, and 7.16% in 2018 respectively. The reduction of baseflow increases
surface runoff and results in more frequent and severe flooding [92,93]. As a result, changes
in LULC may be the reason for increasing surface runoff and decreasing baseflow and
evapotranspiration. These findings imply the separate effect of LULC change in the Birr
River watershed between the assumed scenarios.

3.3.2. Effects of Climate Change on Hydrological Flows

The SWAT model was used to assess and address the effects of climate change
(i.e., precipitation and temperature) on hydrological flows in the Birr River watershed. The
comparisons were carried out using scenarios S1, S4, and S7, in which the constant LULC
map of 1986 was compared to the various climatic settings from 1986–1996, 1997–2007,
and 2008–2018 (Tables 11–13). The results reveal that surface runoff increased by 6.89 mm
from S1 to S4, whereas in S4 to S7 surface runoff also increased by 0.9 mm although the
magnitude is different. Furthermore, baseflow increased by 6.26 mm from S1 to S4, but
decreased by −1.06 mm from S4 to S7. The variation between S1, S4, and S7 scenarios
noticeably indicates separate climate variability has a distinct effect on the study River
watershed. Repeated trials on (S2, S5, S8), and (S3, S6, S9) scenarios revealed an increase
and decrease in the magnitude of surface runoff and baseflow patterns. These study find-
ings revealed that the impact of climate change is much greater than the impact of LULC
change on surface runoff in the Birr River watershed. This study was in agreement with
the previous finding [1,7,25,94]. Furthermore, water yield increased from S1–S7, whereas
evapotranspiration decreased from S1 to S4 and increased from S4 to S7 for the individual
effect of climate change. Evapotranspiration is more sensitive to LULC than to climate
change [5].

3.3.3. Integrated Effects of LULC and Climate Change on Hydrological Flows

To better understand the hydrological flow of the Birr River watershed, baseline
scenarios with the combined effect of LULC and climate change were presented. To
determine the relative contribution of the combined effect for climate and LULC, climate
data from 1986–1996 were selected with the LULC map of 1986 (S1), climate data from
1997–2007 were selected with the LULC map of 2001 (S5), and climate data from 2008–2018
were selected with LULC map of 2018 (S9) (Tables 11–13). The results show that surface
runoff increased by 9.54 mm from S1 to S9, baseflow increased by 1.78 mm, water yield
increased by 13.03 mm, and evapotranspiration decreased by 3.85 mm. It has been also
observed that from S5 to S9, surface runoff increased by 2.65 mm, baseflow decreased by
4.48 mm, water yield decreased by 1.67 mm, and evapotranspiration increased by 2.84 mm.
This indicates that the combined effects of LULC and climate change have a significant
impact on the changing pattern of hydrological components in the Birr River watershed.
The combined effect of climate and LULC, however, did not clearly show a one-dimensional
pattern from S1–S9. Overall, the combined effect of LULC and climate change increases
surface runoff in the Birr River watershed, but the magnitude of baseflow, water yield, and
evapotranspiration varies from 1986 to 2018. The relative contribution of the combined
effects of climate and LULC changes to the hydrological flow is not consistent in the study
area. Previous studies have also reported similar findings [88,95,96].
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3.4. Indicator of Hydrological Alteration

The IHA findings for one-day, three-day, seven-day, and thirty-day minimum and
maximum daily streamflow in the Birr River watershed revealed no statistically significant
increasing trend (Table 14). To assess the trend results, the Z value and computed two tailed
probability (P) were compared at 5% confidence level. A small amount of positive increasing
patterns were shown in both minimum and maximum daily streamflow, however, after
ninety days the minimum and maximum streamflow showed a statistically significant
positive increasing pattern. Streamflow regimes in the watershed were also investigated
using rise and fall rate parameters. The result showed that there was no statistically
significant trend. The rising rate was positive, while the falling rates showed negative
streamflow patterns in the Birr River watershed.

Table 14. Results in Indicators of hydrological alteration parameters.

IHA
Parameters

1-Day
min

3-Day
min

7-Day
min

30-Day
min

90-Day
min

1-Day
max

3-Day
max

7-Day
max

30-Day
max

90-Day
max

Rise
Rate

Fall
Rate

p value 0.35 0.31 0.07 0.01 0.00 0.48 0.35 0.14 0.29 0.03 0.01 0.00
Z value 0.93 1.02 1.79 0.82 2.21 0.70 0.94 1.48 1.06 2.20 0.78 −1.78

Note: min = minimum, and max = maximum.

4. Discussion

The SWAT model was found to be suitable for investigating the impact of climate
and LULC change on hydrologic processes in the Birr River watershed. Overall, the
SWAT model performance classification for the watershed was very good [90]. As the
SWAT model results revealed that LULC and climate changes had effect on the hydrologic
process (i.e., streamflow, surface runoff, baseflow, water yield, and ET) of the Birr River
watershed. The observed changes in hydrological processes were attributed to LULC
and climate change for this study. Substantial changes in LULC have been observed in
the Birr River watershed over the last 32 years. Agriculture and settlement, for example,
increased between 1986–2018, while bushland, forest, and grassland decreased (Table 8).
The changes in LULC were mainly driven by anthropogenic activities (population pressure).
For example, the population size of Quarit district (including urbanization), which is
entirely within the Birr watershed is 114,771 in 2007, and this population number increased
to 142,675 in 2022 with a 1.4% annual population change [97]. Natural vegetation is
being converted into agricultural areas in the watershed. This could increase surface
runoff and reduce baseflow, resulting increase in land degradation, soil erosion, and
shortage of water resources. These findings were in line with previous scholars [30,88,95,98]
For example, Wedajo et al. [30] indicated the transformation of natural vegetation into
agricultural land in the Dhidhessa River basin. These could be increased surface runoff
and decreased baseflow. Similarly, Gashaw et al. [88] reported that during 1985–2015,
there was a continuous expansion of cultivated land and settlements, and a withdrawal of
forest, shrubland, and grassland. Similarly, malede et al. [87], Demeke and Andualem [99],
and Andualem et al. [100] indicated there is a significant land use change in the highlands
of Ethiopia.

Individual LULC changes in the Birr River watershed also showed a positive increase
in surface runoff while decreasing baseflow, however, the amount of increment is small
(Tables 11–13). From 1997–2007 and 2008–2018, surface runoff increased by 3.63% and
4.71%, while baseflow changes by −3.77% and −9.34%, respectively (Figure 8a,b). The
primary cause of the growth in surface runoff and decline in baseflow is agricultural
land and small-extent settlement expansion, which reduces the water infiltration rate in
the watershed. Thus, surface runoff increases and reduces baseflow characteristics in
the study Birr River watershed. Between 1986 and 2018, the area of agricultural land
and settlements increased by 24.49% and 54.78%, respectively, resulting in more surface
runoff and reduced baseflow (Table 8). Agriculture and settlement areas increased to
9.4% and 43.15%, respectively, during 1986–2001, resulting in increased surface runoff.
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Agriculture and settlement areas also further increased to 13.23% and 19.38%, respectively,
during 2001–2018, which showed increased surface runoff and reduced baseflow. This
result is consistent with previous studies by [6,7,75,91,101]. Agricultural and settlement
areas increase impervious areas, which reduces soil infiltrations. Flooding becomes more
frequent and severe as baseflow decreases and surface runoff increases [92,93,102]. The
increase in surface runoff and decrease in baseflow is also attributed to due to a reduction
in water bodies, forests, and bushlands.
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Water yield and evapotranspiration (ET) revealed a decreased trend due to the ef-
fect of LULC change. During 19,997–2007 and 2008–2018, ET decreased by −2.61% and
−3.03%, whereas water yield decreased by −0.75% and −1.35%, respectively (Figure 8d).
The decrease in evapotranspiration and water yield is primarily caused by a reduction
in bushland, forest cover, and shrublands. Between 1986–2018, bushland, forest cover,
and grasslands decreased by −26.27%, −61.01%. and −3914%, respectively (Table 8).
Liu et al. [103] reported that for all cover types, forest area contributes the greatest propor-
tion of total evapotranspiration.

The spatiotemporal change in rainfall and temperature (climate change) was observed
in the last three decades over the Birr River watershed [17,87]. This climate change in-
creased surface runoff by 83.41% and 10.63% during 1997–2007, and 2008–2018, respectively,
whereas baseflow increased by 19.11% from 1997–2007 and decrease by −3.65% during
the 2008–2018 period (Figure 8). Climate change also resulted in a decrease in ET during
1997–2007, and it increases in 2008–2018. Individual climate change has a greater impact on
surface runoff than individual LULC change over the Birr River watershed. The rising trend
of rainfall and temperature causes more surface runoff [17,104]. Furthermore, increased
rainfall in the Didessa River basin during the analysis study period have been contributed
to increasing surface runoff [30].

Surface runoff was found to be more sensitive to the integrated effects of LULC and
climate change than to the individual effects of LULC and climate change. Surface runoff
increased by 90.07% from 1997–2007, and 13.38% from 2008–2018 (Figure 8a). Surface runoff
increased significantly from 1997 to 2007, compared to 2008–2018. The decrease in surface
runoff from 2008–2018 could be attributed to the Ethiopian government’s planned afforesta-
tion and reforestation package program, which began in 2010 [105]. The cumulative impact
of climate and LULC change on baseflow also showed a 14.62% increase from 1997–2007 but
it decreased by −8.02 from 2008–2018. The combined effect of LULC and climate change
on ET indicated a small decrease in ET in the period between 2008–2018 as compared
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to a decrease from 1997–2007, ET decreased by −1.9%. In general, proper implementa-
tion of integrated watershed management such as soil and water conversion practices,
afforestation, and reforestation could play important roles in mitigating the impact of
the hydrological process in the Birr River watershed [30]. According to Wedajo et al. [30]
integrated watershed management reduced surface runoff by reducing peak runoff and
increasing infiltration. Conservation measures also improve soil fertility, healthy vegetation
growth, improved agricultural yield, increased water resource availability and combating
climate change and watershed degradation in the Birr River watershed.

In addition to the SWAT model, the IHA is appropriate for evaluating the variations
of daily streamflow due to climate and anthropogenic effects. The IHA model found
to be there is no statistically significant increasing trend in the Birr River watershed for
one-day, three-days, seven-day, and thirty-day minimum and maximum daily streamflow.
However, all showed a positive small increment pattern in both minimum and maximum
streamflow. In contrast, after ninety days, the minimum and maximum streamflow showed
a statistically significant positive increasing pattern. Moreover, the streamflow regimes in
the watershed were also investigated using the rise and fall rate parameters. There was no
statistically significant trend observed in either the rise or fall rates; however, the rising rate
was positive, whereas the falling rate was negative streamflow patterns in the Birr River
watershed. These findings were consistent with those previously studied by [86,106]. For
example, Gebremicael et al. [86], stated that the daily streamflow rising rate has remained
constant, while the falling rate has significantly increased. Moreover, the one-day and
seven-day maximum flows remain unchanged at Embamadre station. The one day and
seven-day maximum flows did not change significantly could be the attributed to the
homogenization of the low flow and peak flow hydrographs following the construction of
the hydropower dam.

According to the integrated SWAT and IHA modeling, the Birr River watershed
revealed a small amount of streamflow. However, the demand for water resources is
increasing for different purposes such as irrigation, and water supply. Therefore, studying
the important hydrological processes (streamflow, surface runoff, baseflow, water yield,
and evapotranspiration) is serious for precise water resource planning, management, and
development of this scarce water resource in the watershed.

5. Conclusions

An integrated study that quantifies the combined and separate effects of climate and
land use change on the hydrological flow is ideal and necessary for effective water resource
planning and management. Most previous studies concentrated on the separate effects of
LULC and climate change on hydrological responses. This study analyzed the separate and
combined effects of LULC and climate change over the Birr River watershed during the last
32 years using the SWAT hydrological model. In the Birr River watershed, it is important
to investigate and identify the combined and separate effects of LULC and climate change
on the hydrology at the watershed level (local) as well as the relative contribution of their
changes. The SWAT model, which is GIS-enabled, was used to investigate the impact
of LULC and climate change on hydrological flows in the Birr River watershed. The
calibration results for the SWAT model indicate that it is a reliable and effective model for
analyzing the hydrological process in the Birr River watershed with the effects of LULC
and climate change.

The study results indicate that the sole effect of LULC change on surface runoff
increased by 3.64% and 4.71%, during 1997–2007, and 2008–2018, respectively, whereas
baseflow, water yield, and evapotranspiration decreased by −3.77%, and −9.34%; −0.75%
and −1.35%; −2.61%, and −3.03% during the same period. Increased agricultural and
settlement expansion was attributed to the increase in surface runoff. The decreasing
trend in evapotranspiration can also be attributed to the reduction of bushland, forest, and
grassland, while increasing agriculture and settlements. A decrease in baseflow and water
yield, on the other hand, could be due to decreased groundwater recharge as a result of

262



Water 2023, 15, 166

the transformations of vegetation cover to agricultural land. Streamflow increases during
the wet season but declines during the dry season, affecting agricultural activities and
water availability in the watershed. Individual climate change has a much greater relative
contribution to surface runoff in the Birr River watershed than LULC change. Surface
runoff and water yield showed positive values for the effect of climate change, whereas
baseflow and evapotranspiration were revealed as uneven patterns. Surface runoff, base-
flow, and water yield were more affected by climate change than LULC changes. In the Birr
River watershed, the cumulative effect of climate and LULC change on hydrological flow
is greater than the individual effect of climate and LULC change. The magnitude of surface
runoff showed much-increased while decreasing evapotranspiration. Moreover, climate
and LULC change caused an increase in baseflow and water yield between 1997–2007, and
a decrease between 2008–2018. Overall, the results of the hydrological response to the
effect of LULC and climate change showed a negative effect on the availability of water
resources for agricultural production and others. Therefore, to reduce the impact of envi-
ronmental changes on the hydrological processes of the Birr River watershed, appropriate
integrated watershed management strategies, such as soil and water conservation practices,
afforestation, and climate change strategies, must be implemented.
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Abstract: Nature-based solutions (NBSs) always provide optimal opportunities for researchers and
policymakers to develop sustainable and long-term solutions for mitigating the impacts of flooding.
Computing the hydrological process in hilly areas is complex compared to plain areas. This study
used a laboratory-scaled hillslope model to study rainfall-runoff responses considering the natural
hillslope conditions prevailing in hill torrents creating flash floods. The objective of this study was
to estimate the impact of nature-based solutions on time-to-peak for flash flooding events on hilly
terrains under different scenarios. Many factors decide the peak of runoff generation due to rainfall,
like land use conditions, e.g., soil porosity, vegetation cover, rainfall intensity, and terrain slope. To
reduce these complexities, the model was designed with thermopore sheets made of impermeable
material. A hillslope model using NBS was designed to evaluate flood hydrograph attenuation to
minimize the peak discharge (Qp) and increase time-to-peak (Tp) under varying rainfall, land cover,
and drainage channel slope conditions. A rainfall simulator was used to analyze the formation of
hydrographs for different conditions, e.g., from barren to vegetation under three different slopes
(S0, S1, S2) and three rainfall intensities (P1, P2, P3). Vegetation conditions used were no vegetation,
rigid vegetation, flexible vegetation, and the combination of both rigid and flexible vegetation. The
purpose of using all these conditions was to determine their mitigation effects on flash flooding. This
experimental analysis shows that the most suitable case to attenuate a flood hydrograph was the
mixed vegetation condition, which can reduce the peak discharge by 27% to 39% under different
channel slopes. The mixed vegetation condition showed an increase of 49% in time-to-peak (Tp)
compared to the no vegetation condition. Additionally, under P1 rainfall and a bed slope of 0◦,
it reduced the peak discharge by up to 35% in the simulated flood and effectively minimized its
potentially destructive impacts.

Keywords: nature-based solutions; time-to-peak; efficiency; complex; flexible vegetation; rigid vegetation

1. Introduction

Nature-based solutions (NBSs) are widely adopted to minimize climate change im-
pacts and enhance resilience in areas of meteorological risk to society, such as flooding and
sustainable development [1,2]. In the area surrounding D.G. Khan, a total of 13 hill tor-
rents, Kaura, SoriJanubi, Mithawan, Sanghar, Pitok, Vehova, SakhiSarwar, Kaha, Sorilund,
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Chadhar, SoriShumali, Zangi, and Vidor, serve as conduits for floodwater from nearby
catchments [3]. These torrents enter the Indus River from the right bank of the Chashma
River, the D.G. Khan canal, and the Kachhi canal, originating from the Koh-e-Suleman
Range. In 2021, a research-based study was conducted to recommend risk management
solutions for the Koh-e-Suleiman hilly areas to protect the nearby community, reduce
damage to infrastructure, and minimize damage to already standing crops in the event of a
channel breach. Climate change has increased the flood frequency and magnitude with
concentrated rainfall contributing to floods in river catchments. Flash flooding is difficult
to predict in countries like Pakistan, which has varied topography, with steep slopes in
hilly areas, and is severely impacted by climate change [4]. When heavy monsoon rainfall
take place in the Koh e Suleman hills (D.G. Khan), the surface runoff from different hilly
terrains starts flowing toward the connected plain areas in the form of stormwater, causing
damage to standing crops and nearby populations. The flooding generated from these hill
torrents, like the Mithwan hill torrents, Kaura hill torrents, Vehova, and Sakhi Sarwar in
D.G. Khan, has high peaks within a very short time [5]. In the rainy season, due to intense
rainfall, water flows from the hill torrents towards the lower plain areas. This heavy rainfall
is the main cause of flash flooding in these areas every year [6].

The discharge at the outflow region highly depends on various factors, including the
topography of the catchment area, total catchment area, and rainfall intensity and duration.
Flash floods are amongst the most dangerous types of floods, occurring suddenly and not
allowing for enough response time, resulting in the enormous loss of human lives, standing
crops, and livestock [7–9]. People usually have less time to respond to these types of flash
floods, resulting in an enormous loss of human lives, standing crops, and livestock. Many
hilly areas in Pakistan are hill torrents. Among these, the hill torrents in Southern Punjab
and Baluchistan have steep slopes, and barren mountainous regions are responsible for
flash floods. Pakistan’s constrained resources have contributed minimally to flash flood
routing and management research [10].

There is a critical need for a floodwater management plan to mitigate the impacts of
hill torrents, particularly during the monsoon season. Such a plan may involve structures
capable of withstanding large water quantities and reducing the impact of hill torrents.
While various models have quantified runoff from ungauged catchments, there has been a
limited focus on developing mitigation strategies for flash floods [11]. Developing rainfall-
runoff relations from green surfaces can also be used to calibrate traditional infiltration
models in urban drainage engineering [12,13].

More knowledge about the potential application of nature-based solutions is needed
to help engineers and practitioners to cope with flash floods. One of the main concerns
is the protection of the nearby population, homes, and other assets from flash flooding
in the rainy season. This research focuses on peak discharge, the time required to reach
peak discharge, how the peak discharge can be decreased, and how the time to reach peak
discharge can be increased.

Rainfall-runoff relation can be developed using physical, empirical, and conceptual
models [14]. Based on the existing data, the empirical model can be applied to develop the
relationship between rainfall and runoff. However, artificial neural networks [15] or fuzzy
logic have been used by researchers as a conceptual modeling technique [16]. Moreover,
rainfall simulators have been used by many researchers to generate runoff in a study area,
which were further used to predict erosion along roads [17,18]. They have also been used to
develop a relationship between sediment yield and runoff under variable rainfall intensities
in a vineyard plantation in Spain [19]. Hence, researchers have indicated that a rainfall
simulator could be a useful tool for representing natural rainfall conditions [20]. The
runoff volume and peak discharge estimation are important measurements for designing
hydraulic structures [21]. Various models can be used to simulate the rainfall-runoff
relationship, resulting in input data used for the design of the structures. Among these
models, synthetic hydrographs have been used to quantify runoff responses generated from
hill torrents with a dense canopy [22,23]. In the current study, rainfall-runoff responses
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are analyzed by using a rainfall simulator at a laboratory scale. This study simulates
natural conditions in hill torrents that are susceptible to flash floods using a lab-scaled
hilly model. The complexity of computing hydrological processes in hilly terrains is
addressed, in contrast to conventional studies in plain areas designed using a laboratory
model, which uses impermeable thermopore sheets to reduce complexity and incorporates
nature-based solutions. By considering a few variables, including land cover, rainfall
intensity, and drainage channel slope, this study assesses flood hydrograph attenuation and
offers insightful information about the mitigating effects of various vegetation conditions,
similar to those used by [24–26]. Runoff was measured from the hilly model without
any vegetation, and the results were compared with flexible vegetation (grass bed), rigid
vegetation (tree branches), and mixed vegetation (a combination of both rigid and flexible).
The role of vegetation is to create resistance on the surface flow path. Rigid vegetation,
being less dense, is only a direct obstruction against rainfall impact on the land’s surface,
providing limited resistance. In contrast, flexible vegetation has shown more resistance, as
surface runoff is continuously facing resistance in its path [27]. The combination of both
rigid and flexible vegetation results in a collaborative resistance against surface runoff,
making this mixed approach the most efficient.

2. Materials and Methods

In this study, a rainfall simulator FM-1849-45 by Infinit Technologies, Rosedale, MD,
USA (https://infinit-technologies.com accessed on 11 November 2023) was utilized at
the University of Engineering & Technology Taxila, Pakistan’s water resources labora-
tory. It is a key tool for generating and measuring rainfall patterns and their impact on
different hydrological processes. The equipment includes networks of pipes, 11 rainfall
sprinklers, a discharge measuring weir, and control valves, as shown in (Figure 1a) with
their components. These components were utilized to simulate different rainfall intensities
at three different channel slopes of 0◦, 1◦, and 2◦ and to measure the corresponding runoff
responses in the model.

The designed rigid vegetation model for the experimental analysis used in the rainfall
simulator apparatus is shown in Figure 1b, representing the hilly area model with trees
on a sloped surface. The dimensions of the catchment area of the rainfall simulator were
1 m (W) × 2 m (L) × 0.12 m (H). The hill model used in the experiment was constructed
from polystyrene sheets with a length of 1.85 m and a width of 1 m. The width of inclined
region A4 or A2 of the model represented by light blue arrows was 0.26 m, while the
width of the rectangular channel A3 between the two inclined hilly areas A2 and A4 was
0.23 m. The model’s remaining 0.25 m width (A1 and A5) was flat, as depicted in Figure 1c.
The model’s dimensions on each channel side are symmetrical, with areas A1 = A5
and A2 = A4.

After placing the model without vegetation (NV) (Figure 2a), the rainfall sprinkles
were started, keeping uniform rainfall throughout the catchment area. The rigid vegetation
(RV), i.e., tree branches, was placed on the polystyrene model (Figure 2b) to examine the
effect of rigid vegetation on the runoff generation. The tree model was placed in a staggered
arrangement, having two lanes on each side of A2 and A4. The average height of each
tree was 25 cm. To represent flexible vegetation (FV) like grass and bushes, an artificial
9 mm tall grass carpet was used, as shown in Figure 2c. Finally, the combined effect of
both flexible and rigid vegetation (MV) was observed by placing both RV and FV types of
vegetation, as shown in Figure 2d. During the experimental work, there were three rainfall
intensities, i.e., P1 = 0.3 cm/min, P2 = 0.4 cm/min, and P3 = 0.5 cm/min, used to examine
the effect of rainfall intensity on hydrograph size and shape.
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Figure 1. Photo of the rainfall simulator with featured elements—front view (a), scheme of a rigid 
vegetation model design (b), layout of the model topography—top view (c). 

After placing the model without vegetation (NV) (Figure 2a), the rainfall sprinkles 
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tion (RV), i.e., tree branches, was placed on the polystyrene model (Figure 2b) to examine 
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effect of both flexible and rigid vegetation (MV) was observed by placing both RV and FV 
types of vegetation, as shown in Figure 2d. During the experimental work, there were 
three rainfall intensities, i.e., P1 = 0.3 cm/min, P2 = 0.4 cm/min, and P3 = 0.5 cm/min, used 
to examine the effect of rainfall intensity on hydrograph size and shape. 

The runoff was measured using the weir installed on the downstream side of the 
rainfall simulator. The time-to-peak discharge (Tp) was calculated indirectly from the in-
crementally measured outflow data—for each unit liter, outflow time was measured with 
a stopwatch. The peak discharge (Qp) was measured by developing the hydrograph for 
each case. For each case, the rainfall simulator was run for 5 min and then switched off. 
After stopping the rainfall, the outflow continued through the catchment, producing dif-
ferent outflow hydrographs for each case, depending upon the land use conditions, the 

Figure 1. Photo of the rainfall simulator with featured elements—front view (a), scheme of a rigid
vegetation model design (b), layout of the model topography—top view (c).

The runoff was measured using the weir installed on the downstream side of the
rainfall simulator. The time-to-peak discharge (Tp) was calculated indirectly from the
incrementally measured outflow data—for each unit liter, outflow time was measured
with a stopwatch. The peak discharge (Qp) was measured by developing the hydrograph
for each case. For each case, the rainfall simulator was run for 5 min and then switched
off. After stopping the rainfall, the outflow continued through the catchment, producing
different outflow hydrographs for each case, depending upon the land use conditions, the
rainfall intensity, and the channel slope. The outflow hydrograph was simplified into three
main components—rising limb, peak, and falling limb, as shown in Figure 3—and all the
cases used in the experiments are presented in Table 1.
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Table 1. The experimental matrix of conditions for the rainfall simulations.

Simulation No. Vegetation Cover Rainfall Intensity [cm/min] Drainage Channel
Slope

Total Number of
SimulationsP1 P2 P3

1

NV

0.3 0.4 0.5 0◦ 3

2 0.3 0.4 0.5 1◦ 3

3 0.3 0.4 0.5 2◦ 3

4

RV

0.3 0.4 0.5 0◦ 3

5 0.3 0.4 0.5 1◦ 3

6 0.3 0.4 0.5 2◦ 3

7

FV

0.3 0.4 0.5 0◦ 3

8 0.3 0.4 0.5 1◦ 3

9 0.3 0.4 0.5 2◦ 3

10

MV

0.3 0.4 0.5 0◦ 3

11 0.3 0.4 0.5 1◦ 3

12 0.3 0.4 0.5 2◦ 3

Peak discharge for each experimental case was measured directly from the respective
hydrograph, and similarly, the time-to-peak was also calculated from the corresponding
hydrograph peak, as shown in Figure 3. The relative reduction of peak discharges for rigid
vegetation (RV), flexible vegetation (FV), and mixed vegetation (MV) are measured by
comparing them with the benchmark values of barren (NV) conditions. For the percentage
relative peak discharge reduction, the following equation was used:

Qp(i),red =
Qp(i) − Qp(i,NV)

Qp(i,NV)
[%], (1)

For the percentage relative time-to-peak reduction, the following equation was used:

Tp(i),red =
Tp(i) − Tp(i,NV)

Tp(i,NV)
[%], (2)

where i represents the type of vegetation to which the relative time-to-peak or the rela-
tive peak discharge is being calculated, and i,NV represents baseline condition for each
respective case.

3. Results
3.1. Peak Discharge

It was observed that for different vegetation conditions, i.e., NV, RV, FV, and MV
with rainfall intensities of P1, P2, and P3, a similar runoff pattern emerged for all bed
slopes. Initially, the peak discharge was highest for the no vegetation condition, gradually
declining for the case of rigid vegetation and further for the case of flexible vegetation, as
given in Table 2. The mixed vegetation condition consistently exhibited the lowest peak
discharge across these scenarios. The absolute Qp values were highest for the steepest
channel slope and smallest for the flat channel bed (Figures 4–6), as expected.
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Table 2. Peak discharge observed at the system outlet for all experiments.

Channel
Slope

Rainfall Intensity
[cm/min]

Qp(NV)
[L/min]

Qp(RV)
[L/min]

Qp(FV)
[L/min]

Qp(MV)
[L/min]

0◦

0.3 62 53 45 41

0.4 71 59 50 44

0.5 80 65 54 49

1◦

0.3 71 59 50 43

0.4 77 71 67 56

0.5 83 77 73 61

2◦

0.3 71 63 47 44

0.4 83 77 67 56

0.5 91 83 77 67
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Figure 5. Outflow hydrographs for channel slope of 1° for: no vegetation condition (a), rigid vege-
tation condition (b), flexible vegetation condition (c), and mixed vegetation condition (d). 
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Figure 5. Outflow hydrographs for channel slope of 1◦ for: no vegetation condition (a), rigid
vegetation condition (b), flexible vegetation condition (c), and mixed vegetation condition (d).
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Figure 5. Outflow hydrographs for channel slope of 1° for: no vegetation condition (a), rigid vege-
tation condition (b), flexible vegetation condition (c), and mixed vegetation condition (d). 
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Figure 6. Outflow hydrographs for channel slope of 2◦ for: no vegetation condition (a), rigid
vegetation condition (b), flexible vegetation condition (c), and mixed vegetation condition (d).
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3.2. Relative Peak Discharge

It was found that for all the vegetation conditions used at the 0◦ slope, the rainfall
intensity from P1 to P2 and P3 increases the percentage relative peak discharge reduction
compared to the respective no vegetation condition [28]. When slopes of 1◦ and 2◦ were
provided to the drainage channel, this trend changed. At the 1◦ and 2◦ channel slopes,
the percentage relative peak discharge was highest for P1, and it decreased as rainfall
intensity increased to P2 and P3 compared to the respective no vegetation conditions. The
difference in Qp attenuation for the same vegetation type was negligible under different
rainfall intensities at the 0◦ slope. When the channel slope increased to 1◦ and 2◦, Qp
attenuation decreased with the increase in rainfall intensity, with notable differences for
different experiments. This analysis shows that both the channel slope and vegetative
cover contribute to Qp attenuation, but vegetation is the main parameter which has a
significant influence. The most efficient vegetation type found was mixed vegetation,
which offered significant improvements over RV and FV [29]. Moreover, the experimental
analysis showed that flexible vegetation significantly decreased the peaks compared to
rigid vegetation, as shown in Figure 7, Table 3.
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Figure 7. Change in relative peak discharge in response to variation of rainfall intensities for RV, FV,
and MV: channel slope 0◦ (a), channel slope 1◦ (b), and channel slope 2◦ (c).

Table 3. Reduction in peak discharge of the hydrograph at the system outlet, expressed as percentage
relative peak discharge.

Channel Slope Rainfall Intensity
[cm/min]

Qp,red(RV)
[%]

Qp,red(FV)
[%]

Qp,red(MV)
[%]

0◦
0.3 15 27 34

0.4 18 30 38

0.5 19 33 39

1◦
0.3 18 30 39

0.4 8 13 27

0.5 8 12 27

2◦
0.3 12 34 38

0.4 8 20 33

0.5 8 15 27

3.3. Time-to-Peak

Time-to-peak discharge is the key factor in defining the time for the community to
respond to a flood [30,31]. The Tp for all experiments decreased with the increase in
the rainfall intensity, emphasizing the fact that the rainfall duration was shorter than the
catchment concentration time (Tables 4 and 5). Similar to the Qp analysis, the Tp increased
from RV, over FV to MV, revealing that MV contributes the most to both the decrease in Qp
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and increase in Tp, which when combined, reduced the flood risk. The MV case at slope 0◦

under rainfall intensity P3 showed the maximum resistance to the flow, followed by the FV
and RV cases.

Table 4. Time-to-peak for different land cover conditions.

Channel
Slope

Rainfall Intensity
[cm/min]

Tp(NV)
[s]

Tp(RV)
[s]

Tp(FV)
[s]

Tp(MV)
[s]

0◦
0.3 337 411 452 501

0.4 277 330 416 452

0.5 249 283 396 450

1◦
0.3 304 341 367 412

0.4 266 286 312 367

0.5 245 277 291 363

2◦
0.3 300 310 375 376

0.4 273 280 320 330

0.5 245 247 297 303

Table 5. Relative increase in time-to-peak for different land cover conditions in comparison to no
vegetation condition.

Channel Slope Rainfall Intensity
[cm/min]

Tp,red(RV)
[%]

Tp,red(FV)
[%]

Tp,red(MV)
[%]

0◦
0.3 22 34 49

0.4 19 50 63

0.5 14 59 81

1◦
0.3 18 21 36

0.4 8 17 38

0.5 13 19 48

2◦
0.3 3 25 25

0.4 3 17 21

0.5 1 21 24

It was found that the time-to-peak (Tp) increased as the vegetation condition changed
from barren to rigid, from rigid to flexible, and from flexible to mixed vegetation conditions.
The impact of slope and rainfall intensity followed the same trend as the Tp duration. As
we increased the slope from 0◦ to 1◦ and 2◦ and increased the rainfall intensity from P1 to
P2 and P3, the time-to-peak (Tp) duration decreased with all other conditions remaining
the same (Tables 4 and 5). The experimental analysis for Tp showed that the slope and
rainfall intensity both had an inverse relation with Tp (Tables 4 and 5). It was analyzed that
Tp follows a distinct pattern, where the MV condition consistently produces the longest
Tp, followed by the FV condition, which exhibits a shorter duration. Moreover, the rigid
vegetation condition, although more structured than the mixed and flexible vegetations,
also demonstrated a relatively shorter Tp when compared with the mixed and flexible
vegetation conditions. An increase in the channel slope resulted in a decrease in Tp, but
the presence of the vegetation still significantly reduced the Tp. When the channel slope
was the steepest, the difference between the MV and FV cases became negligible for all
rainfall intensities. The results also show that the maximum relative percentage of the
Tp reduction was achieved for the mixed vegetation and 0◦slope (81% under P3 rainfall)
(Figures 8 and 9). The minimum relative percentage of the Tp (1%) was observed in the
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case of the rigid vegetation condition at a 2◦ slope under P3 rainfall, showing that the effect
of rigid vegetation is severely limited.
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4. Discussion
4.1. Comparison of the Findings to the Literature

Hilly areas subject to flash flooding produced by hill torrents were the focus of this [32]
study, which concentrated on applying nature-based solutions to reduce the impact of flash
floods. A laboratory-scale hill slope model was developed to examine the rainfall-runoff
responses and evaluate the efficiency of various NBS configurations in lowering the peak
discharge and increasing the time-to-peak [33]. The rigid vegetation used in this study
showed a resistance in the range of 8 to 15% to reduce flood peaks due to rainfall. Flexible
and a combination of both rigid and flexible vegetations reduced the flood peaks from
12 to 33% and 27 to 39%, respectively. There are numerous instances of governments
using tree planting as a flood control measure throughout the world. To lessen flooding,
the municipal authorities of Pickering, North Yorkshire, England, planted trees as part of
the project “Slowing the Flow.” According to a scheme analysis, the measures decreased
peak river flow by 15–20%. The program was launched in 2009 following the town’s four
significant floods in a ten-year period, with the 2007 floods resulting in damage estimated
at around £7 million.

Similar findings were reported in the laboratory-based study by Chouksey et al. [25],
who also used a rainfall simulator over an experimental hillslope plot to investigate hydro-
logical modeling, providing a better understanding of the effectiveness of nature-based
solutions in mitigating flash flood impacts. The current findings follow the same trends as
the field-based study by Flores et al. [26], who compared three daily rainfall-runoff hydro-
logical models using four evapotranspiration models in four small, forested watersheds
with different land covers in South-Central Chile. This demonstrates that the presented
insights can directly find application in real-world situations.
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Flexible vegetation throughout the catchment retained some amount of rainfall water
and also effectively resisted surface runoff to reach the catchment outlet. This vegetation
effectively increased the time to flow from the catchment to the outlet and decreased the
flood peak by delaying the process.

The current experimental design utilized thermopore sheets made of impermeable
material, which enables controlled simulations of various NBS conditions. These design
considerations simplified the experimental setup and reduced the model complexity but
may also have impacted its representativeness compared to real-life scenarios. Future
studies may explore more realistic soil types and vegetation characteristics for the hillslope
model to offer a more accurate assessment of the effectiveness of nature-based solutions.
Also, the use of a laboratory-scaled hillslope model may not fully capture the complexities
of real-world hillslope conditions. The conversion of scientific discoveries into useful
applications is facilitated using laboratory-sized models that enable controlled experiments
that can be replicated and scaled up to real-world situations [34]. For such cases, the
potential impact of human activities, such as land use changes and urbanization on flash
flooding in hilly terrains, can be better assessed to inform the development of more effective
strategies for flash flood resilience.

This study’s results emphasize the significant effect of vegetation and ground slope
in reducing flash flooding impacts. The mixed vegetation condition with a channel slope
of 0◦ was found to be the most effective for minimizing severe flash flooding, as was the
case in other studies [35,36]. This study offers important insights into developing long-
term solutions by demonstrating the efficiency of NBS in flood mitigation, particularly
in mountainous regions. The peak discharge was simultaneously minimized, while the
maximum Tp under P3 rainfall was produced. Compared to previous NBS cases, the
mixed vegetation condition reduced the peak discharge up to 39% and increased the Tp
by 81%. Practitioners should consider integrating nature-based solutions, such as mixed
vegetation, into land use planning and development strategies for hilly terrains. This can
help to reduce the risk of flash flooding and improve community resilience by increasing
the Tp and reducing peak discharge, according to the findings herein. This could include
providing financial incentives for landowners to adopt mixed vegetation or other nature-
based solutions as well as incorporating these strategies into broader flood risk management
plans and policies. Raising awareness about the benefits of nature-based solutions for flash
flood mitigation and engaging local communities in their implementation can also help
sustain their success.

4.2. Future Research Direction

The results of the conducted research show that mixed vegetation conditions with a 0◦

bed slope are particularly effective for increasing the Tp and lowering the Qp. This study
offers important new information for applying improved flood management practices and
aims to provide the groundwork for future investigations and NBS applications to lessen
the negative effects of flash flooding and improve community resilience [13,35], building
upon the already known benefits of nature-based solutions in reducing the impacts of
floods in hilly areas subject to flash flooding [32,37]. Future research could focus on
improving the laboratory-scale hillslope model to use better field conditions. This might
involve incorporating more realistic soil types, vegetation characteristics, and hydrological
processes to enhance the model’s accuracy and applicability to real-world scenarios. Further,
additional land use and climate change conditions can be explored in future studies.
These, for example, could investigate the effectiveness of different land use conditions and
vegetation types in mitigating flash flooding in hilly terrains. This could help identify the
most effective nature-based solutions for specific regions and inform the development of
targeted strategies for flash flood resilience. Future research could examine the performance
of nature-based solutions, including to what extent vegetation is useful, under various
climate change scenarios, such as increased rainfall intensity or more frequent extreme
weather events. This would provide valuable insights into the long-term effectiveness of
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these solutions and help in the form of adaptation strategies for flash flood resilience in a
changing climate.

5. Conclusions

Decreasing the peak discharge and increasing the time-to-peak can reduce the impact
of flash floods by providing the community with more time to respond. Laboratory models
can be used to evaluate the sustainability and long-term viability of nature-based solutions
for flood mitigation in real conditions, providing information about land cover density
and type and different rainfall patterns that might occur due to climate change. The
experimental results of this study show that the mixed vegetation condition is the best
one to reduce the peak discharge and increase the time-to-peak under different rainfall
intensities and channel bed slopes. It was also observed that flexible vegetation contributed
much more than rigid vegetation to increasing the time-to-peak and mitigating the flood
peak:

• The peak discharge of a hydrograph was positively correlated with rainfall intensity
and the channel bed slope. An increase in either of these factors led to a higher peak
of the hydrograph and vice versa.

• The hydrograph formation for the no vegetation condition exhibited the maximum
peak discharge, while the mixed vegetation condition, comprising both flexible and
rigid vegetation, showed the minimum peak discharge.

• Flexible vegetation showed greater resistance to runoff than rigid vegetation.
• The order of resistance to flow for time-to-peak discharge increased from rigid to

flexible and was the highest for the mixed vegetation condition.
• The time-to-peak discharge of the hydrograph was negatively correlated with rainfall

intensity and channel bed slope.
• The mixed vegetation condition with the lowest bed slope and maximum rainfall

intensity of P3 reduced the peak discharges by 39% and increased the time-to-peak by
81%. The same mixed vegetation condition reduced the peak discharge by almost 27%
and increased the time-to-peak discharge by 24% under the same rainfall condition
with the maximum channel slope.
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