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This manuscript encompasses our published and unpublished topological results in neuroscience.
mathematical branch that assesses objects and their properties preserved through deformations, stretching and twisting,
allows the investigation of the most general brain features. In particular, the Borsuk-Ulam Theorem (BUT) states that, if
a single point projects to a higher spatial dimension, it gives rise to two antipodal points with matching description.
Physical and biological counterparts of BUT and its variants allow an inquiry of the brain activity. The opportunity to
treat the nervous system as a topological structure makes BUT a universal principle underlying neural phenomena and

brain function.

Topology, the
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TOWARDS A FOURTH SPATIAL DIMENSION OF BRAIN ACTIVITY

Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way
for “holistic” theories that improve our understanding of brain activity. From the far-flung branch of topology, a strong
concept comes into play in the understanding of brain signals, namely, continous mapping of the signals onto a
“hypersphere”: a 4D space equipped with a donut-like shape undectectable by observers living in a 3D world. Here we
show that the brain connectome may be regarded as a functional hypersphere. We evaluated the features of the
imperceptible fourth dimension based on resting-state fMRI series. In particular, we looked for simultaneous activation
of antipodal signals on the 3D cortical surface, which is the topological hallmark of the presence of a hypersphere.
Here we demonstrate that spontaneous brain activity displays the typical features which reveal the existence of a
functional hypersphere. We anticipate that this introduction to the brain hypersphere is a starting point for further
evaluation of a nervous’ fourth spatial dimension, where mental operations take place both in physiological and
pathological conditions. The suggestion here is that the brain is embedded in a hypersphere, which helps solve long-
standing mysteries concerning our psychological activities such as mind-wandering and memory retrieval or the ability
to connect past, present and future events.

An n-sphere is a n-dimensional structure that is a generalization of a circle. Specifically, an n-sphere with radius R is
set of n-tuples of points. For example, a 2-sphere is a set points on the perimeter of a circle in a 2D space, a 3-sphere
is a sets of surface points in a 3D space (a beach ball is a good example) and a 4-sphere is set of points on the surface of
what is known as a hypersphere. The prefix “hyper” refers to 4- (and higher-) dimensional analogues of 3D spheres. In
mathematical terms, a 4-sphere, also called glome or generically hypersphere, is a simply connected manifold of
constant, positive curvature, enclosed in an Euclidean 4-dimensional space called a 4-ball. The term glome comes from
the Latin “glomus”, meaning ball of string. A 4-sphere is thus the surface or boundary of a 4-dimensional ball, while a
4-dimensional ball is the interior of a 4-sphere. A glome can be built by superimposing two 3-spheres whose opposite
edges are abstractly glued together: we obtain a topological structure, the Clifford torus. A Clifford torus is a special
kind of torus (donut shape) that is a minimal surface which sits inside a glome and is equipped with intricate rotations,
called quaternionic movements (Figure 1). Such a torus has the same local geometry as an “ordinary” three-
dimensional space, but its global topology is different. The hypersphere, requiring four dimensions for its definition
just as an ordinary sphere requires three, is not detectable in the usual spatial 3-dimensions and is thus challenging to
assess. Figure 1 shows the possible ways to cope with a 3D visualization of a glome. In this paper, we hypothesize
that brain activity is shaped in guise of an hypersphere which performs 4D movements on the cortical layers, giving rise
to a functional Clifford torus where mental operations take place.

Experimental and theoretical clues allow us to conjecture that the brain activities (at least some of them) are embedded
in a torus lying on the surface of a hypersphere. The theoretical claims of brain multidimensionality are widespread (1-
3) and models charachterized by dimensionality reduction have been used in the study of human central nervous system
(4). It has been demonstrated that spontaneous activity structures of high dimensionality — termed “lag threads” - can
be found in the brain, consisting of multiple highly reproducible temporal sequences (5). Recent findings suggest that
nervous structures process information through topological as well as spatial mechanisms. For example, it is has been
hypothesized that hippocampal place cells create topological templates to represent spatial information (6). The glome
displays a double-torus shape, i.e., the trajectory followed by a particle inside the torus is closed and similar to a video
game with biplanes in aerial combat. When a biplane flies off one edge of gaming display, it does not crash but rather



Figure 1. Different ways to depict a hypersphere. To better understand the concept of a 4-sphere, the images should be
watched during their complicated movements, i.e., it is helpful to watch the videos mentioned below.

Figure 1A shows the three circumferences embedding a “normal” 3-sphere in a 3D space equipped with the “classical”
3D coordinates.

Figure 1B shows how the superimposition of another 3-sphere (which circumference is glued together with the one of
the sphere of Figure 1A) gives rise to a 3-sphere (from video https://www.youtube.com/watch?v=XFW769hgalU ).
Each apparent line segment is really two line segments, one arching upward into the third dimension and the other




arching downward. Observe how opposite sections of the rim fit together, rather than trying to visualize the whole
thing at once the way you would visualize a sphere. The four pairs of antipodal points (called 1,-1, k, -k, j,-j and i, -i)
give rise to the so-called “quaternion group”, equipped with two possible types of reciprocal 4D rotations. Some of the
quaternion rotations are depicted, as an example, by the yellow and white arrows.

Figure 1C shows how a glome can be formed by different circles arranged in 4D (right panel). The shape of the glome
is everchanging, depending on the number of circles taken into account and their trajectories (see the video at
http://nilesjohnson.net/hopf.html). The central and left panels show another way to depict a hypersphere: two spheres
glued together along their spherical boundary give rise to a Clifford torus
(https://en.wikipedia.org/wiki/Clifford torus#/media/File:Clifford-torus.gif shows a stereographic projection of a
Clifford torus performing a simple rotation through the xz plane).

Figure 1D shows the 3D Stereographic projection of the “toroidal parallels” of a glome (from
https://www.youtube.com/watch?v=0QIcSITmc0Ts see also
http://www.matematita.it/materiale/index.php?lang=en&p= cat&sc 2,745). The orange arrows illustrate the trajectories
followed by the 4D quaternionic movements of a Clifford torus when projected onto the surface of the 3D space in
which it is embedded. Note that the arrows follow the external and medial surfaces of the 3D space in a way that is
predictable. Just one of the possible directions of the quaternion movements is displayed: the flow on a Clifford torus
may occur in each of the four planes. In this case, the spheres on the left increase in diameter, forming a circle of
increasing circumference on the left surface of the 3D space. Conversely, on the opposite right side, the spheres shrink
and give rise to a circle of decreasing circumference on the right surface of the 3D space. The blue lines depict some of
the possible antipodal points predicted by the Borsuk Ulam Theorem. To give another example, J and -J are antipodal
points in Figure 1B.

it comes back from the opposite edge of the screen (7). Mathematically speaking, the display edges have been “glued”
together. The human brain exhibits similar behavior, i.e., the unique ability to connect past, present and future events in
a single, coherent picture (8,9), as if we were allowed to watch the three screens of past-present-future glued together in
a mental kaleidoscope. The same occurs during other brain functions, e.g., memory retrieval, recursivity of imagination
and mind wandering (10), in which concepts appear to be “glued” together, flowing from a state to another. The torus
is naturally visualized intrinsically, by ignoring any extrinsic properties a surface may have (it is thought that all the
movements onto a torus surface are performed just by trajectories internal to its structure). For example, take a sheet of
paper and bend it into a half-cylinder. The extrinsic geometry of the paper has obviously changed, but the paper itself
has not been deformed and its intrinsic geometry has not varied. What would you see if you lived in a closed three-
manifold? You should be able to see yourself, via the intrinsic structure provided by the glued surfaces of a
hypersphere, in an otherwise unperceivable 4D space’. In the same way, we humans perceive our thoughts intrinsically
and naturally adopt “private”, subjective standpoints.

MATERIALS AND METHODS

The movements of particles on a glome.

At first, we need to mathematically define a hypersphere (11,12). It is an n-sphere formed by points which are constant
distance from the origin in (n+1)-dimensions. A 4-sphere (also called glome) of radius r (where r may be any positive
real number) is defined as the set of points in 4D Euclidean space at distance r from some fixed center point ¢ (which
may be any point in the 4D space).

In technical terms, in our study we projected onto a 3-D surface a map of a glome equipped with Sp(1) or SU(2) Lie
groups. The 4-sphere is parallelizable as a differentiable manifold, with a principal U(1) bundle over the 3-sphere. The
only other spheres that admit the structure of a Lie group are the 0-sphere S° (real numbers with absolute value 1), the
circle St (complex numbers with absolute value 1), S%, and S.

The 4-sphere’s Lie group structure is Sp(1), which is a compact, simply connected symplectic group, equipped with

dim
with R =1(2x1+1) =3 and quaternionic 1x1 unitary matrices. Indeed, the glome S* forms a Lie group by

identification with the set of quaternions of unit norm, called versors (13). The quaternionic manifold is a cube with
each face glued to the opposite face with a one quarter clockwise turn. The name arises from the fact that its
symmetries can be modelled in the quaternions, a number system like the complex numbers but with three imaginary
quantities, instead of just one (14). For an affordable, less technical treatment of quaternions, see (15) and the
correlated, very useful video: http://blogs.scientificamerican.com/roots-of-unity/nothing-is-more-fun-than-a-hypercube-

of-monkeys/ .




In addition: Sp(1) = SO(4)/SO(3)=Spin(3)=SU(2).
Thus, Sp(1) is equivalent to - and can be identified with - the special unitary group SU(2).

The Borsuk-Ulam Theorem.

Brains equipped with a hypersphere is a counter-intuitive hypothesis, since we live in a 3D world with no immediate
perception that 4D space exists at all, e.g., if you walk along one of the curves of a 4-ball, you think are crossing a
straight trajectory, and do not recognize that your environment is embedded in higher dimensions. We need to evaluate
indirect clues of the undetectable fourth dimension, such as signs of the glome rotations on a familiar 3D surface. In
other words, rotations of a torus embedded in a 4-ball can be identified through their “cross section” movements on a
more accessible 3D surface (Figure 1D), as if you recognized an object from its shadow projected on a screen. The
presence of a glome can be detected invoking the Borsuk-Ulam Theorem (BUT), which states that every continuous
map from a hypersphere to a 3D Euclidean space must identify a pair of antipodal points (i.e., points directly opposite
each other) (Figure 1D). This leads naturally to the possibility of a region-based, instead of a point-based, geometry in
which we view collections of signals as surface shapes, where one shape maps to another antipodal one.

Continuous mappings from object spaces to feature spaces lead to various incarnations of the Borsuk-Ulam Theorem, a
remarkable finding about Euclidean n-spheres and antipodal points by K. Borsuk (16). Briefly, antipodal points are
points opposite each other on a circle or on what is known as an n-sphere (called hypersphere). There are natural ties
between Borsuk’s result for antipodes and mappings called homotopies. The early work on n-spheres and antipodal
points eventually led Borsuk to the study of retraction mappings and homotopic mappings (17-19).

The Borsuk-Ulam Theorem states that:

Every continuous map f :S" — R" must identify a pair of antipodal points.

The notation S" denotes an n-sphere, which is a generalization of the circle. That is, an n-sphere with radius R is a
set of n-tuples of points (X1---Xn) in n+1 dimensional Euclidean space that are at distance R from a central point,
with:

2-sphere S*: X12 — R? (circle perimeter),
3-sphere S?: X12 + X22 — R? (surface),

n-sphere S" : X12 + X22 + X32 +..+ an — R?. (smallest hypersphere surface)

Points are antipodal, provided the points are diametrically opposite (20). Examples are the endpoints of a line segment
or opposite points along the circumference of a circle, or poles of a sphere. An n-dimensional Euclidean vector space is

denoted by R". In terms of brain activity, a feature vector X € R" models the description of a brain signal.

To complete the picture in the application of the Borsuk-Ulam Theorem in brain signal analysis, we view the surface of
the brain as a sphere and the feature space for brain signals as finite Euclidean topological spaces. The Borsuk-Ulam

Theorem tells us that for description f (X) for a brain signal X, we can expect to find an antipodal feature vector

f (—X) that describes a brain signal on the opposite (antipodal) side of the brain. Moreover, the pair of antipodal brain
signals have matching descriptions.

Let X denote a nonempty set of points on the surface of the brain. A topological structure on X (called a brain
topological space) is a structure given by a set of subsets 7 of X , having the following properties:

(Str.1) Every union of setsin 7 isasetin T
(Str.2) Every finite intersection of setsin 7 isasetin T

The pair (X,7) is called a topological space. Usually, X by itself is called a topological space, provided X has a
topology 7 onit. Let X,Y be topological spaces. Recall that a functionormap f : X —Y onaset X toaset Y
is a subset X xY so that for each X € X there is a unique y €Y such that (X,y) e f (usually written y = f(x)).
The mapping f is defined by a rule that tells us how to find f (X) . For a good introduction to mappings, see (21).

A mapping f : X —Y is continuous, provided, when A Y is open, then the inverse f *(A) < X is also open.

For more about this, see (22). In this view of continuous mappings from the brain signal topological space X on the
surface of the brain to the brain signal feature space R", we can consider not just one brain signal feature vector



X € R", but also mappings from X to a set of brain signal feature vectors f (X ). This expanded view of brain

signals has interest, since every connected set of feature vectors f (X ) has a shape. The significance of this is that
brain signal shapes can be compared.

A consideration of f (X) (set of brain signal descriptions for a region X) instead of f (X) (description of a single brain
signal X) leads to a region-based view of brain signals. This region-based view of the brain arises naturally in terms of

a comparison of shapes produced by different mappings from X (brain object space) to the brain feature space R". An
interest in continuous mappings from object spaces to feature spaces leads into homotopy theory and the study of
shapes.

Let f,9:X —Y be continuous mappings from X to Y . The continuous map H : X x[0,1] > Y is defined by
H(x,0) = f(x), H(x1) =g(x), forevery xe X .

The mapping H is a homotopy, provided there is a continuous transformation (called a deformation) from f to g. The
continuous maps f, g are called homotopic maps, provided f (X) continuously deforms into g(X) (denoted by

f(X)— g(X)). The sets of points f (X ), g(X) are called shapes. For more about this, see (23,24).

For the mapping H : X x[0,1] — R", where H (X,0) and H(X,1) are homotopic, provided f(X) and g(X)
have the same shape. Thatis, f(X) and g(X) are homotopic, provided

||f(X)—g(X)||<||f(X)|| ,forall xe X .

It was Borsuk who first associated the geometric notion of shape and homotopies. This leads into the geometry of

shapes and shapes of space (25). A pair of connected planar subsets in Euclidean space R? have equivalent shapes,
provided the planer sets have the same number of holes (22). For example, the letters e, O, P and numerals 6, 9 belong

to the same equivalence class of single-hole shapes. In terms of brain signals, this means that the connected graph for
f (X) with, for example, an e shape, can be deformed into the 9 shape.

This suggests yet another useful application of Borsuk’s view of the transformation of shapes, one into the other, in
terms of brain signal analysis. Sets of brain signals not only will have similar descriptions, but also dynamic character.
Moveover, the deformation of one brain signal shape into another occurs when they are descriptively near (26).

Brain activity and hyperspheres.

In the last paragraphs we have developed a mathematical model of antipodal points and regions casted in a biologically
informed fashion, resulting in a framework that has the potential to be operationalized and assessed empirically. To
evaluate a hypersphere in terms of a framework for brain activity, we first need to identify potential brain signal loci
where quaternion rotations might take place. The natural candidate is the spatially embedded network of the human
connectome (27), a non-stationary, highly dynamical structure (28,29) characterized by complex topological features
and an ever-changing geometry (30) (Fig. 2A). We embedded the brain in the 3D space of a Clifford torus and looked
on cortical surfaces for antipodal points or shapes (Fig. 2B). The antipodal points evoked by BUT were viewed as
brain signals opposite each other on a glome, i.e., when a brain surface is activated, we identified the simultaneous
activation of antipodal surface signals as a proof of a perceivable “passing through” of the fourth dimension onto the
brain 3D surface. The main benefit here is that, according to the BUT dictates, for each given brain signal we can find a
counterpart in the antipodal positions on the cortical surface.

We have corroborated our brain hypersphere hypothesis with published resting-state fMRI data. We evaluated movies
or Figures from 14 available experimental studies and/or metaanalyses describing the brain spontaneous activity,
looking for the hallmarks of the hypothesized BUT.



Figure 2. The concept of hypersphere in the framework of brain functional activity.

Figure 2A shows the brain connectome (both the emispheres are depicted) embedded in the 3D space shown in Figure
1D. The position of the hypersphere displayed in Figure is just one of the countless possible: being the glome a
functional structure equipped with many rotations and trajectories, it can be placed in different points of the brain

surface.



Figure 2B. The right brain emisphere is embedded in the 3D space described in Figures 1D and 2A. The orange
arrows show the 3D projections, in case the brain was located in a 4-ball. The red-orange arrow shows the trajectory of
the main stream of the Clifford torus in this case. We displayed just the trajectory from right to left; however, also the
opposite trajectory, from left to right, and countless others, can be exploited by the torus during its movements in 4D.
The small circle labelled TO depicts one of the possible starting points, the first activated cortical zone. The
nomenclature is borrowed from Figure 1D. The blue lines predict the simultaneously activated antipodal points,
according to the dictates of the Borsuk Ulam Theorem.

Figure 2C depicts a real pattern of fMRI temporal activation. Significant meta-analytic clusters associated with mind-
wandering and related spontaneous thought processes (green clusters) juxtaposed with outlines of the default mode
network (blue) and the frontoparietal control network (modified from 29). We can correctly identify the predicted
antipodal points (blue lines). Given one point (a brain signal), there is a second point (another brain signal) at the
opposite end of a straight line segment connecting them. Other patterns ascribable to the Borsuk Ulam Theorem are
available in Supplementary materials.

Which studies did we evaluate, and why?

Spontaneous oscillations are intrinsic, low-frequency fluctuations of cerebral activity which cannot be attributed to the
experimental design or other explicit input or output (31). Among the networks exhibiting coherent fluctuations in
spontaneous activity, the “default-mode network” (DMN) is worth of mentioning, because it includes functionally and
structurally connected regions that show high metabolic activity at rest, but deactivate when specific goal-directed
behavior is needed (32). Spontaneous oscillations recapitulate the topographies of fMRI responses to a wide variety of
sensory, motor and cognitive task paradigms, providing a powerful means of delineating brain functional organization
without the need for subjects to perform tasks (33).

We favoured studies focused on intrinsic, instead of task-evoked activity, because the former is associated with mental
operations that could be attributed to the activity of a glome - “screens” are glued together and the trajectories of
particles (or thoughts!) follow the internal surface of a Clifford torus -. For example, spontaneous brain activity has
been associated with mind-wandering or day dreaming propensities (34), construction of coherent mental scenes,
autobiographical memories (35), experiences focused on the future (for a description of the terminology, see 10) and
dreaming state (36). Recent evidence also suggests overlap between the DMN and regions involved in self- and other-
related mental operations — such as affective and introspective processes (37-39). It has been hypothesized that
spontaneous functional connectivity patterns at rest might constitute a “signature of consciousness”, reflecting a stream
of ongoing cognitive processes (40). It has also been proposed that spontaneous activity is highly variable among
individuals, depending on local brain differences, somatosensory awareness, age span, race, culture and so on (41,42).
We speculate that such variabily might be correlated with those differences in Clifford torus’ structure and movements
illustrated in the main text. A brain glome has the potential to constitute a conceptual bridge, because it exhibits both
anatomical/functional (spontaneous brain activity and DMN) and psychological correlates (spontaneous, deliberate,
self-generated thoughts).

The images and movies we examined were extrapolated from the following papers:

a) Ajilore, O. et al. Constructing the resting state structural connectome. Front. Neuroinform. 7:30 (2013).

b) Andrews-Hanna, J.R. et al. The default network and self-generated thought: component processes, dynamic control, and
clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29-52 (2014).

c) Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. U. S.
A. 112, 887-892 (2015).

d) Fox, M.D., Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.
Nat. Rev. Neurosci. 8, 700-711 (2007).

e) Fox, K.C. et al. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related
spontaneous thought processes. Neuroimage 111, 611-621 (2015).

f)  Gravel, N. et al. Cortical connective field estimates from resting state fMRI activity. Front. Neurosci. 8: 339 (2014).

g) Gusnard, D.A. et al. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain
function. Proc. Natl. Acad. Sci. U. S. A. 98, 4259-4264 (2001).

h) Harrison, S.J. et al.. Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109, 217-231
(2015).

i) Karahanoglu, F.1., Van De Ville, D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially
and temporally overlapping networks. Nat. Commun. 6:7751 (2015).

j)  Liu, X. etal. Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns. Front. Syst. Neurosci.
7:101 (2013).

k) Mao, D, et al. Low-Frequency Fluctuations of the Resting Brain: High Magnitude Does Not Equal High Reliability.
PLoS One 10(6):€0128117 (2015).

) Mitra, A. et al. Lag threads organize the brain's intrinsic activity. Proc. Natl. Acad. Sci. U. S. A. 112, E2235-2244.
(2015).



m) Power, J.D. et al. Studying brain organization via spontaneous fMRI signal. Neuron. 84, 681-696 (2014).
n) Raichle, M.E. A paradigm shift in functional brain imaging. J. Neurosci. 29, 12729-12734 (2009).

RESULTS

We found that all the analyzed temporal series displayed the predicted signs. The whole fMRI sequences of brain
region activations, apart from differences depending on slight methodological distinctions among studies, exhibited a
stereotyped topographical pattern of activity, such that brain loci are activated together with their antipodal points
(Figure 2C and 3). We found highly reproducible topography and propagation through subsets of regions that are
shared across multiple trajectories: it corroborates the predictions of BUT and brain hypersphere. Brain activity is
temporally driven by a functional glome, intrinsic to the brain and (probably) embedded in the very anatomical structure
of the connectome. A 4D cap surrounds the brain, equipped with trajectories following quaternion rotations along the
nodes of the connectome.

CONCLUSIONS

Our study uncovered ample evidence of hypersphere in experimental fMRI series obtained during spontaneous activity,
raising the possibility that brain activity lies on a glome, embedded in 4D space. The reproducibility of the BUT
hallmarks suggests that this organizational feature is essential to normal brain physiology and function. Further studies
are needed to evaluate what happens when other other techniques are used, e.g., EEG and diffusion tensor imaging.
Does evoked, task-related activity exhibit the same features? Further investigations will elucidate whether, following
the stimulus onset, the multidimensional space outlined by cortical activity is invariant or reduced (2,3). Because
neighboring images of the same object are related by glide reflections translations (7), it remains to be seen what the
implications of the hypersphere would have for consciousness, perception of time and the nature of reality. Our
“deterministic” account of linear transformations needs to be contextualized, taking into account the suggestions of the
brain as an energetic, complex, nonlinear system equipped with attractors and random walks (43-45). The role of
electromagnetic currents needs to be re-evaluated, i.e., do such currents contain the message, or, as recently suggested
(46) do they serve other kinds of functions? For example, it has been proposed that features of a brain signal with
spectral peaks in preferred bands (gamma, beta and so on) provide a basis for feature vectors in a 4D euclidean space
(47). Further, the hypersphere, due to different transformations of the quaternionic group, continuously changes its
intrinsic structure. In this context, it is reasonable to speculate that each mental state corresponds to a different glome
topological space.

ACKNOWLEDGEMENTS

The Authors would like to thank Norbert Jausovec for his precious comments.



300

300

700

900

1100

1300

Figure 3. Video frames showing “lag threads” computed from real BOLD resting state rs-fMRI data in a group of 688
subjects, obtained from the Harvard-MGH Brain Genomics Superstruct Project (modified from 5). Note the widely
diffused presence of BUT hallmarks (blue lines) at different times. The times are expressed in milliseconds.
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BRAIN TISSUE TESSELLATION SHOWS ABSENCE OF CANONICAL
MICROCIRCUITS

We provide a novel, fast and cheap method for the morphological evaluation of simple 2-D images taken
fromhistological samples. This method, based on computational geometry, leads to anovel kind of “tessellation” of
every type of biological picture, in order to locate the zones equipped with very fine-grained differences in the tissue
texture, compared with the surrounding ones. As an example, we apply the technique to the evaluation of histological
images from brain sections and demonstrate that the cortical layers, rather than being a canonical assembly of
homogeneous cells asusually believed, display scattered neuronal micro-clusters equipped with higher activity than the
surrounding ones.

The current paradigms in neuroscience regard the cortex as homogenous,i.e., all areas are composed of a basic, repeated
assembly of the same canonical microcircuit (1, 2, 3, 4). However, novel data point towards an alternative hypothesis.
Some authors claim that each neocortical region represents an independent organ, dedicated to a complete and distinct
function (5, 6). This idea, first put forward by Gall and Spurzheim, is still tangible in many current mapping studies
aimed at localizing functions, commonly referred to as functional segregation specialisation. Such functional
cartography with the aid of neuroimaging techniques has been characterized as “phrenology” (7). Contrary to the
standard model, the cerebral cortex is composed not only of discrete organs or regions, but also of distinct and unique
neuronal assemblies spanning from the macromolecular to microcircuit scale. The cortex comprises extremely
heterogeneous cells, with distinct regional variations, receptor repertoire and intrinsic microcircuitry (8): this suggests
that every neuron (or group of neurons, of assemblies of neuronal/glial cells, or intra- extra-cellular ensembles)
embodies different molecular information that has an operational effect on neuronal computation (9, 10).

A morphological analysis of simple 2D images taken from stained histological samples gives insights into the micro-
anatomical structure of tissues and enables high-resolution mapping of neural circuitry. However, such procedures lack
the possibility to evaluate the neural functional states and do not allow systematic profiling of neurons based on their
connectivity. Further, the conditions of regularity and isotropy, required by standard morphometric procedures, are not
fulfilled in the central nervous system, where cells are distributed in a highly complex manner. The more we
investigate, the more we discover different roles and abilities in apparently homogenous populations of neurons (11):
the complexity and cellular heterogeneity of neuronal circuitry presents a major challenge to understanding the role of
discrete neural populations in controlling behaviour. Here we propose a modified Voronoi tessellation (Keypoint-based
Voronoi Tessellation, KVT) able to give insights into the physiological and pathological functional state of neural
tissues too.

MATERIALS AND METHODS
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1 Voronoi Tessellation Method Using Gradient Orientation-Based Generating Points

To establish a framework for the proposed approach to analysing images extracted from histological sample, we briefly
introduce a Voronoi tessellation (tiling) of images (Figure 1A) (12, 13, 14). The story starts with the selection of a set
S (a part of a histological picture) containing generating points (sites) (p in Figure 1A), so that the characteristics (e.g.,
being part of an edge or a corner, having a distinctive gradient orientation or colour brightness) of each site is different
from the characteristics of any other. In other words, the study of histological images is aided by identifying points
(pixels) in each image where the angle of the tangent (gradient orientation) to a point is different from the gradient
orientation of other pixels in the same image.  Different gradient orientations reflect differences in the texture of a
histological image. By detecting differences in the gradient orientations of the pixels in a histological image, we are
able to identify very fine-grained differences in the tissue texture. We know that every pixel in an image has a gradient
orientation (angle of a tangent to a pixel) (15). And the latter is a good choice for a generating point, since pixel
gradient orientations tend to fluctuate sufficiently to make it possible to find pixels that are not close together, and
which reflect the characteristics of widely separated histological zones. Sites chosen based on their gradient orientation
angle are a form of what are known as “keypoints”. In this study, site pixels have been chosen so that each site has
gradient orientation that is different from that of any other site.

After choosing a set of generating points p (i.e., keypoints) as sites, the next task is to cover an image with non-
overlappingconvex polygons, called “Voronoi regions”. A Voronoi region (V in Figure 1A) is a set of points in an
image that are closer to pthan to any other site in S. The collection of polygons in a Voronoi tessellation is also called a
“Voronoi mesh”. A gradient orientation-based Voronoi tessellation provides insights concerning the physiological and
pathological functional state of neural tissues. The Voronoi tessellation method has a 90-year history cogently
explained in (16) with many variations (17). Our study introduces an application of what is known as “maximal
nucleus clustering” in Voronoi mesh (18). A “nucleus cluster” is a collection of mesh polygons adjacent to a central
polygon, called the “nucleus”(N in Figure 1B). When the number of polygons adjacent to the nucleus is maximal, then
the resulting “maximal nucleus cluster”(M in Figure 1B) resides on those parts of an image having the greatest change
and greatest accumulation of neighbouring Voronoi regions in close proximity to each other, in order that each site has
a different gradient orientation.

Such tessellations of histological images provide information concerning spatial distribution, because the polygonal
areas do not vary much when the cells are regularly distributed. On the contrary, smaller and larger polygons occur
when cellular clusters (characterized by generating points with gradient orientations close to the gradient orientation
angle of a nucleus) are displayed and may be identified by simple algorithms. Voronoi tessellation has been used to
evaluate the numerical density and spatial distribution of neuronal and glial cells, because it takes into account the
topographical features typical of the CNS (19). It has been also used to investigate spatial relations between neural
mosaics in retina, in order to evaluate possible constraints or connectivity between different co-localized cellular
populations (20).
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For technical readers, Algorithm 1 gives the steps to find a maximal nucleus in a tessellated (tiled) histological image.
Briefly, after a gradient orientation-based tiling of an image, those VVoronoi polygons with the highest number of sides
are maximal nuclei of clusters formed by each maximal nucleus and its adjacent polygons (one adjacent polygon for
each edge of the nucleus).

Algorithm 1: Find Maximal Nucleus Cluster in a Voronoi tiling of a histolog-
ical image by finding a Voronol with the highest number of sides.

Input : Histological Image img.

Output: Maximal Nucleus Clusters on histological image img.
1 /* img — TiledI mg using Voronol tessellation of img. */;

2 ngon «— TiledImg:

3 /* Choose a Voronoi region ngon in TiledImg. */;
4 NoO fSides «— ngon;

5 /* Count number of sides in ngon. */;

6 TiledImg := TiledImg ~ ngon;

7 /* Remove ngon from TiledImg. */;

8 ContinueSearch := True;

9 while (TiledI'mg = @ and ContinueSearch) do

10 /* Check if ngon is a maximal nucleus in T'iledImg. */;

11 ngonNew «— T'iledImg:;

12 /* Choose a Voronoi region ngonNew in TiledImg. */;

13 TiledImg = Tiledlmg ~ ngon;

14 /* Remove ngon from Tiledlmg. */;

15 NewNoO fSides «— ngonN ew;

16 /* Count number of sides in ngon. */;

17 if (NewNoOfSices > NoO fSides) then

18 ngon = gonN ew;

19 /* Replace ngon with ngonNew, since it has more adjacent polygons.
*,r"'.

20 else

21 /* Otherwise ignore ngonNew. */;

22 if (Tiledlmg = @) then
23 ContinueSearch := False;
24 /* Discontinue search when there are no polygons left to check. */;

25 /* ngon is the nucleus of a maximal nucleus cluster. */;

2 Are there relationships between morphology and function?

It is intuitively difficult to see any way to infer the degree of “functional activity” of neurons from the inhomogeneity
of their distribution on histoslides. In this more theoretical paragraph, we evaluate the functional implications of our
framework, introducing the concept of Borsuk-UlamTheorem (BUT) and matching signals. The basic form of BUT tells
us that there exist a pair of antipodal (opposite) points on the circumference that map to a single pointin a line (21, 22,
23). The two antipodal points are indeed assessed at one level of observation, while the single point is assessed at a
lower level (24, 25). This means that, if we embed a maximal nucleus cluster in a circumference, there exist two
antipodal points with matching description (Figure 2A). Furthermore, the two opposite points can be used not just for
the description of simple topological points (26, 27), but also of more complicated features, such as functions or signals
(15, 18, 26). If we evaluate central nervous system (CNS) “activity” instead of “points”, this BUT variant (called
ReBUT) leads naturally to the possibility of a region-based, not simply point-based, brain geometry. Therefore, reBUT
provides a handy vehicle in expressing the relationship between Voronoi polygons that serve as cluster nuclei.

In the tiling of histological images, it may occur that more than onemaximal nucleus cluster can be found, all of them
equipped with the same number of sides (i.e., such maximal nucleus clusters have matching description). Thus, from
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reBUT, different maximal nucleus clusters may be embedded in the same circumference and might have matching
functional description (Figure 2B). This means that systemsphenomena (e.g., functions, or different types of activity)
could be characterized as antipodal points with matching description, in order that the functions of signal shapes can be
compared (18, 27). It might be objected that maximal nuclei polygons are not properly circular, because they display a
polygonal shape and sometimes also a concave structure, different from the circumference’s convexity required by the
basic form of BUT. However, the BUT can be generalized also to symmetries occurring on flat or concave manifolds
(18, 28). In other words, whether the system displays a concave, convex or flat shape, it does not count: we may always
find the points with matching description predicted by BUT.

In conclusion, it might be speculated that changes in morphological features could be correlated with variations in
physical functions. Thus, gradient differences in the various zones of the picture might be linked with different
functional counterparts.
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Figure 2A. The Borsuk-Ulam theorem applied to histological brain tessellation. Note that a single maximal nucleus
(N) displays two antipodal points with matching description. Figure 2B. The use of reBUT. Note that, this time, two
different maximal nuclei display matching description.
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3 Materials

We achievedKVT tessellations on histological, whole-brain coronal slices from adult Chlorocebus aethiops. We took
the brain images from the website Brain Maps.org (http://brainmaps.org/index.php). We assessed the Dataset 1D 42,
species Chlorocebusaethiops, adult, Nissl stain, embedded in gelatin, coronal plane, resolution 0.46 microns/pixel,
section thickness 40 microns (http://brainmaps.org/ajax-viewer.php?datid=42&sname=385). We performed KVT on
images at different magnifications, from 10x to 40x, and on separate or consecutive slices. Different cortical areas were
examined.

RESULTS

We found that, everywhere in the cortex, isolated small clusters of higher activity can be noticed in different layers
(Figures 3 and 4). The clusters are scattered, i.e., some micro-areas of a specific layer are more active than the
adjacent others embedded in the same layer. In most of the tessellations, more than one clusteris detectable.

We evaluated pictures taken from the following cortical areas: cingulate gyrus, area 4, area 3b, intraparietal sulcus,
lateral sulcus, superior temporal gyrus, superior temporal sulcus and inferior temporal sulcus.

We performed KVT tessellations on 25 samples at four different magnifications (4x, 10x, 20x, 40x) and we found:
Absent clusters: (1/25 samples). Note that the absence of a cluster was localized in area 3b.

One maximal cluster: (10/25 samples). This feature was more frequent in higher magnification images (20 and 40x)
Two maximal clusters: (9/25 samples). This feature was scattered all over the magnifications.

More than two maximal clusters: (5/25 samples). This feature was more frequent in smaller magnification images (4
and 10x).

The clusters were localized in all the layers from | to VI, but were more frequent in layers I1-111 (18/25 samples).
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Figure 3. Examples of Keypoint-Based Voronoidiagrams on images taken from cortical slices of Chlorocebus aethiops
at different magnifications.

Figure A. an isolated clusterof activity (shaded in grey) is visible in layer IV of the inferior temporal sulcus at low
magnification. This Voronoi diagram is characterized by one distinct nucleus and its surrounding mesh cluster.

Figure B. Two isolated clusters of activity are visible in layer 11 of the intraparietal sulcus at high magnification.
Figure C. Mesh clusters of activity on 10 superimposed, consecutive brain images from the inferior temporal sulcus at
low magnification. The black circles refer to the presence of mesh clusters at high activity in the deepest slices, the
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grey circles in the intermediate slices and the white circles in the most superficial ones. Note the presence of many
small, isolated clusters in all the brain layers.
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Figure 4A. The tessellated image contains arrows of varying size that represent the gradient orientation of the tangent
vectors for each of the different gradient orientations found. The thicker arrows indicate higher gradient magnitudes. A
maximal nucleus cluster collects together those regions containing the highest number of pixels, each with a different
gradient orientation.  So it is entirely possible that some pixels outside the maximal nucleus cluster will have different
gradient magnitudes: it tells that, although such pixels are not highly concentrated, they do reflect high gradient
magnitudes. Figure 4B presents histograms showing the number of pixels with different gradient orientations. Each
histogram spike indicates those pixels with a particular gradient magnitude, such as 0.0035 for those pixels with
gradient magnitudes slightly greater than 0.
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CONCLUSIONS

We showed that it isfeasible to detect clusters of activity in tessellated 2D images. Given any image, it is possible to
assess maximal nucleus clustersin a Voronoi tiling of histological images. The gradient orientation-based Voronoi
regions outside the greatest clustering (mesh cluster around a maximal nucleus) are descriptively different, since each
generating point has a different gradient orientation angle. In the language of proximity spaces, polygons outside the
mesh cluster are spatially far from the nucleus, since no polygon outside the mesh cluster has any points in common
with the nucleus, and descriptively far from the nucleus, since the description of the generating point for the Voronoi
region is not the same as the description of the generating points of the polygons outside the mesh cluster.

Therefore, aVoronoi region that has the highest number of adjacent polygons indicates both a part of a histological
image where there is the greatest clustering around a particular region, and the greatest “activity”. These observations
suggest that activity of the part of brain occupied by clusters is greater than the surrounding regions. Evidence comes
from the fact that in all cases there are few nucleus clusters. The highest number of adjacency polygons surrounding a
cluster nucleus indicates where there is the greatest concentration of symmetry among the regions of the brain images.
As expected, at higher magnifications, fewer clusters are found. Smaller convex polygons are more interesting, because
they belong to clusters of polygons surrounding small cluster nuclei: these clusters are important and serve as means of
identifying those parts of a cortical image with more activity.

Our results show that the cortex is not a stereotyped sequence of homogeneous neurons as previously believed, but
contains instead islands where the activity is higher than the surrounding ones. It is in touch with “phrenological”
claims, against the standard version of canonical microcircuits view of the brain. The anatomical micro-structure of the
brain is constrained towards peculiar points in each layer. Further, it is noteworthy that the activity clusters do not
involve just the Nissl-stained neurons, but also their surrounding melieu. This means that other structures apart neurons
contribute to the increase of activity found in specific brain micro-areas. The gradient differences are associated with
variations in the conformation of the otherwise apparently homogeneous neural assemblies: we hypothesize that they
could stand, due to reBUT, for still unknown functional differences among cortical microareas. In such a vein, the
recognition of the most active cortical micro-areas through a simple morphological processing technique also allows a
preliminary choice of the micro-zones to evaluate through more sophisticated techniques, such as
immunohistochemistry.

In conclusion, we provide a method of physical/biological images evaluation which is easy to perform, fast (it takes 3-8
secondsfor each KVT analysis), cheap, and able to give us information about the most “active “histological areas. We
are thus allowed to detect information from a morphological picture. In the case of histological brain tissue, our results
could be summarized with a definition: “phrenology”, a term which emphasizes the delicate and heterogeneous nature
of cortical hierarchies with deep structures and the distribution of information coding over multiple levels and
timescales (6, 29). Our study shows that 2D tessellations using algorithms that have been published (18) can be adapted
to histological pictures, in the evaluation of medical and biological images.
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PRIMARY EVIDENCE OF A DONUT-LIKE, FOURTH SPATIAL
DIMENSION IN THE BRAIN
(BOLD-independent computational entropy assesses functional tori in brain
fmri images)

We introduce a novel method for the measurement of information in fMRI neuroimages, i.e., nucleus clustering’s Rényi
entropy derived from strong proximities in feature-based Voronoi tessellations, e.g., maximal nucleus clustering
(MNC). We show how MNC is a novel, fast and inexpensive image-analysis technique, independent from the standard
blood-oxygen-level dependent signals, which facilitates the objective detection of hidden temporal patterns of
entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the
observer. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension’s
distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent
findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the
functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual
three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these
temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain.

In this paper we introduce a novel technique of fMRI images analysis, called computational proximity method, i.e.,
nucleus clustering in Voronoi tessellations (Peters and Inan, 2016a). The images are subdivided in contiguous (without
interstice or overlap) polygons, called the “Voronoi polygons”. They yield a density map, called “tessellation”, that
makes it possible to make an objective measurement of the polygon areas’ spatial distribution and helps to define
“random”, “regular” and “clustered” distributions (Duyckaerts and Godefroy, 2000; Franck and Hart, 2010;
Edelsbrunner, 2014). Tessellations have been already used in neuroscience, i.e., to investigate spatial relations and
connectivity between neural mosaics in the retina (Mozos et al., 2011) or to evaluate histological cortical sections
(Peters at al., 2016). In a Voronoi tessellation of an fMRI image, of particular interest is the presence of maximal
nucleus clusters (MNC), i.e., zones with the highest number of adjacent polygons (Peters et al., 2016). The MNC
clustering approach includes a main feature of level set methods, namely, a nucleus boundary that is embedded in a
family of nearby level sets (Saye and Sethian, 2011). MNC reveals regions of the brain, independent from blood-
oxygen-level dependent (BOLD) signals, characterized by different gradient orientation and diverse functional
dimensions.

To evaluate the power and potentialities of this novel approach, we used it in order to test the brain-hypersphere
hypothesis. Indeed, it has been recently hypothesized that brain activity is shaped in the guise of a functional
hypersphere, which performs complicated 4D movements called “quaternionic” rotations (Tozzi and Peters, 2016a).
They give rise to the so called “Clifford torus”, a closed donut-like structure where mental functions might take place.
The torus displays glued trajectories similar to a video game with spaceships in combat: when a spaceship flies off the
right edge of the screen, it does not disappear but rather comes back from the left (Weeks, 2002). The human brain
exhibits similar behaviour, i.e., the unique ability to connect far-flung events in a single, coherent picture (Atasoy et al.,
2016). During brain functions such as memory retrieval and mind-wandering, concepts flow from one state to another
and appear to be “glued” together. It has also been recently proposed that the brain, when evaluated in the proper
dimension (Kida et al., 2016), is equipped with symmetries in one dimension that disappear (said to be “hidden” or
“broken”) in just one dimension lower (Tozzi and Peters, 2016b). A symmetry break occurs when the symmetry is
present at one level of observation, but “hidden” at another level: it suggests that a 4D hypersphere could be equipped
with symmetries, of great importance in order to explain central nervous system (CNS) activities, undetectable at the
usual 3D cortical level.

Although we live in a 3D world with no immediate perception that 4D space exists at all, the brain hypersphere
rotations can be identified through their “cross section” movements on a more accessible 3D surface, as if you
recognized some object from its shadow projected on a screen. We may thus evaluate indirect clues of the undetectable
fourth dimension, such hypersphere rotations’ hallmarks or signs on a familiar 3D surface. Here we show that, in
temporal fMRI series from spontaneous brain activity, MNC discloses the typical patterns of quaternionic rotations and
hidden symmetries.
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MATERIALS AND METHODS

1 Samples. Spontaneous activity structures of high dimensionality (termed “lag threads”) can be found in the brain,
consisting of multiple highly reproducible temporal sequences (Mitra et al., 2015). We retrospectively evaluated video
frames showing “lag threads” computed from real BOLD resting state rs-fMRI data in a group of 688 subjects, obtained
from the Harvard-MGH Brain Genomics Superstruct Project. We assessed 4 sets of coronal sections (including a total
of 54 Images) from the published videos (Threads 1, 2, 3 and 4):
http://www.pnas.org/content/suppl/2015/03/24/1503960112.DCSupplemental

We favoured studies focused on intrinsic, instead of task-evoked activity, because the former is associated with mental
operations that could be attributed to the activity of a torus: “screens” are glued together and the trajectories of thoughts
follow the internal surface of a hypersphere. For example, spontaneous brain activity has been associated with day
dreaming propensities, construction of coherent mental scenes, autobiographical memories, experiences focused on the
future, dreaming state (for a description of the terminology, see (Andrews-Hanna et al., 2014). Each tessellated image
leads to the MNC mesh clustering described in the next paragraph.

2 Generating Points in Voronoi Tilings of Plane Surfaces. This section introduces nucleus clustering in Voronoi
tessellations of plane surfaces (Peters 2016; Edelsbrunner, 2006). A Voronoi tessellation is a tiling of a surface with
various shaped convex polygons. Let E be a plane surface such as the surface of an fMRI image and let S be a set of

generating points in E. Each such polygon is called a Voronoi region V (S) of a
V(s)={xeE:|x-s|<|x—q| forall g inS}.

In other words, a Voronoi region V (S) is the set of all points x on the plane surface E that are nearer to the generating

point s than to any other generating point on the surface (Figures 1A-B). In this investigation of fMRI images, each of
the generating points in a particular Voronoi tessellation has a different description.  Each description of generating
point s is defined by the gradient orientation angle of s, i.e., the angle of the tangent to the point s.
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Figure 1. 1A: surface tiling of a sample Voronoi region V (S) = & . Each ein the tiling represents a generating
point with particular features, such gradient orientation and brightness. There are no two e that have the same
description. For this reason, every Voronoi region has a slightly different shape. This tiling is derived from the fMRI
image in Figure 1B, which displays Voronoi region V (S) on a fMRI image taken from Mitra (11). Figure 1C displays
a sample maximal nucleus cluster N for a particular generating point represented by the dot e in N. In this Voronoi
tiling, the nucleus N has 10 adjacent (strongly near) polygons. Since N has the highest number of adjacent polygons, it
is maximal. This N is of particular interest, since the generating point ® in N has a gradient orientation that is different
from the gradient orientation of any other generating point in this particular tiling. In Figure 1D, the maximal nucleus
cluster N is shown in situ in the tiling of an fMRI image.
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3 Nucleus Clustering in Voronoi Tilings. A nucleus cluster in a Voronaoi tiling is a collection of polygons that are
adjacent to (share an edge with) a central VVoronoi region, called the cluster nucleus. In this work, the focus is on
maximal nucleus clusters, which highlight singular regions of fMRI images. A pair of Voronoi regions are considered
strongly near, provided the regions have an edge in common (Peters and Inan, 2016; Peters, 2016). A maximal nucleus
cluster N contains a nucleus polygon with the highest number of strongly near (adjacent) VVoronoi regions (Figures 1C-
D).

The gradient orientation angle 6 of a point (picture element) in an fMRI image is found in the following way. Let
img(x,y) be a 2D fMRI image. Then

G, - oimg ’
OX
G, - oimg ’
oy
oimg oimg
0 =tan G, tan* i = arctan i .
G, oimg oimg
OX OX

In other words, the angle @ of the generating point of mesh nucleus is the arc tangent of the ratio of the partial
derivatives of the image function at a particular point (x,y) in an fMRI image.

In sum, for each fMRI temporal frame from Mitra et al. (2015), we produced tessellated images with one or more
maximal mesh regions (i.e., a maximal region which contains the maximal number of adjacent regions). Furthermore,
we produced tessellated images showing one or more MNC. Each maximal nucleus cluster N contains a central
Voronoi region - the nucleus - surrounded by adjacent regions, i.e., Voronoi region polygons.

4 Steps to Construct a Gradient-Orientation Mesh. Here we give the steps to build Voronoi tiling, so that every

generating point has gradient orientation (GO) angle @ that is different from the GO angles of each of the other points
used in constructing the tiling on an fMRI image (see Figure 2). The focus in this form of Voronoi tiling is on
guaranteeing that each nucleus of mesh cluster is derived from a unique generating point. This is accomplished by
weeding out all image pixels with non-unique GO angles. The end result is a collection of Voronoi regions that
highlight different structures in a tessellated fMRI image. Each Voronoi region V(s) in a GO mesh is described by
feature vector that includes the GO of the generating point s.

Since each s is unique (not repeated in the Generators set in Figure 2), each nucleus mesh cluster N has a unique
description. Taking this a step further, we identify maximal nucleus clusters on a tessellated fMRI image. In effect,
each maximal N tells us something different about each region of a tiled fMRI image, since we include, in the
description of a maximal nucleus, the number adjacent regions as well as the GO of the nucleus generating point.
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Algorithm 1: Construct Gradient Orientation-Based Voronoi tiling on a Dig-
ital Image with a Set of Distinet Mesh Generators, i.e., every generator defines
a unique nerve cluster N := {V ()}, a collection of Voronoi regions

Input : Read 2D fMRI image img.

Output: Gradient orientation-based Voronoi tiling on img.

1 Pixels:= {pizel p: pcimg};
2 Generators = {s: s € Pizels);
3 Select p € Pixels;
4 Pixels = Pirels \ p;
5 /* Remove p from Pizels. */;
6 Compute gradient orientation angle 8, of p:
7 Generators := Generators u {p};
8 /* Add p to the set of mesh generators Generators. */;
9 while (Pizels # @) do
10 select pNew € Pirxels;
11 Compute OpN cws:
12 /* Next, guarantee #,n.,, is not the same as f,. */;
13 if (05 # O,New for all s in Generators) then
14 Generators = Generatorsu {pNew} ;
15 /* i.e., add pNew to the set of Generators */;
16 Select p € Pixels:
17 Pizels = Pixels \ p;
18 /* i.e., remove p from Pirels */;
19 /* pNew defines a unique nerve cluster N := V(pNew) */;
20 Compute Voronoi tiling using the set of Generators;
21 else
22 | Ignore pNew;
23 /* Continue looking for a unique mesh generator pNew */;

24 Superimpose V(Generators) on img;

Figure 2. The
steps in the method used to construct the mesh on an fMRI image shown in Figure 1D.

5 Rényi entropy as a Monotonic Function of Information for fMRI Nucleus Clusters.

The major new elements in the evaluation of fMRI images are nucleus clusters, maximal nucleus clusters, strongly near
maximal nucleus clusters, convexity structures that occur whenever max nucleus clusters intersect (Peters and Inan,
2016). We showed in the above paragraphs that in a Voronoi tessellation of an fMRI image, of particular interest is the
presence of maximal nucleus clusters (MNC), i.e., clusters with the highest number of adjacent polygons. In this
section, we now introduce a measure of the information that MNCs in fMRI images yield. We demonstrate that MNC
reveal regions of the brain with higher levels of cortical information in comparison with non-MNC cortical regions, that
uniformly yield less information.

In a series of papers, Rényi (Renyi, 1961; Renyi, 1966), introduced a measure of information of a set random events.
Let X be a set random events such as the occurrence of polygonal areas in a Voronoi tessellation and let

B >0, B #1, p(X) the probability of the occurrence of x in X.  Then Rényi entropy H , (X)) is defined by
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Hﬁ(X):ﬁlogzipﬁ(xi).

Because of the relationship between Rényi entropy of a set of events and the information represented by events, Rényi
entropy and information are interchangeable in practical applications (Rényi, 1982; Bromiley et al., 2010). In fact, it

has been shown that Rényi entropy H ﬁ(X) is @ monotonic function of the information associated with X.  This

means that Rényi entropy can be used as a measure of information for any order S > 0 (27).

Let Xync: Xoonune b€ sets of MNC polygon areas and non-MNC polygon areas in a random distribution of

1 1
tessellation polygon areas. Also, let p(X)==,p(y)=— be the probability of occurrence of
X

y
Xe Xyncr Y € X, omne- Notice that the nuclei in MNCs have the highest concentration of adjacent polygons,

compared all non-MNC polygons. Based on measurements of Rényi entropy for MNC vs. non-MNC observations, we
have confirmed that Rényi entropy of nucleus polygon clusters is consistently higher than the set of non-MNC polygons
(Figures 3 and 4). This finding indicates that MNCs yield higher information than any of the polygon areas outside the
MNCs.

— Maximal Nucleus Cluster Renyi Entropy
Renyi Entropy of the Polygons outside the MNCs

Figure 3. Rényi entropy values of maximal nucleus clusters, compared with the surrounding areas of fMRI images.
The x axis displays the values of the Beta parameter for 1.1< 8 <2.5 .
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Renyi entropy for maxmal nucleus clusters

Figure 4. Rényi entropy values vs. number polygon areas vs. 1.1< 8 <2.5 of maximal nucleus clusters in fMRI

images. MNC Nuclei surround by polygons with smaller areas have higher Rényi entropy, which tells us that smaller
MNC areas yield more cortical information than MNCs with larger areas.

In sum, Rényi entropy provides a measure of the information in maximal nucleus clusters and the surrounding zones of
fMRI images. This means that the information from areas occupied by MNCs vs. non-MNC areas can be measured and
compared. This also means that the maximal nucleus clusters are equipped with higher entropy values (and
corresponding higher information), which contrasts with measure of information in the surronding non-MNC zones.
Hence, MNCs make it possible to pinpoint the highest source of information in fMRI images.

6 Borsuk-Ulam theorem comes into play. The Borsuk-Ulam Theorem (Borsuk, 1933; Dodson and Parker, 1997)
states that:

Every continuous map f : S" — R" must identify a pair of antipodal points (on S").

That is, each pair of antipodal points on an n-sphere maps to Euclidean space R" (Beyer and Zardecki, 2004;

Matousek, 2003). Points on S" are antipodal, provided they are diametrically opposite (Weisstein, 2015; Marsaglia,
1972). For further details, see Tozzi and Peters (2016a and 2016b). The two antipodal points can be used not only for
the description of simple topological points, but also for more complicated structures (Borsuk 1969), such spatial or
temporal patterns functions, signals, movements, trajectories and symmetries (Saye and Sethian, 2011; Peters, 2016. If
we simply evaluate CNS activity instead of “spatial signals”, BUT leads naturally to the possibility of a region-based,
not simply point-based, brain geometry, with many applications (Peters, 2014). We are thus allowed to describe
nervous systems functions or shapes as antipodal points on a n-sphere (Figures 3A, 3B). It means that the activities
under assessment (in this case, the 4D torus movements) can be found in the feature space derived from the descriptions
(feature vectors) in a tessellated fMRI image.
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If we map the two antipodal points on a n-1 —sphere, we obtain a single point. The signal shapes’ functions can be
compared (Weeks, 2002; Saye and Sethian, 2011): the two antipodal points representing systems features are assessed
at one level of observation, while the single point is assessed at a lower level. Although BUT was originally described
in terms of a natural number n that expresses a structure embedded in a spatial dimension, nevertheless the n value can
stand for other types of numbers: it can be also cast as an integer, a rational or an irrational number (Tozzi and Peters,
2016b). We might regard functions or shapes as embedded in an n-sphere, where n stands for a temporal dimension
instead of a spatial dimension. This makes it possible to use the n parameter as a versatile tool for the description of
fMRI brain features (Figure 5C).
In sum, BUT and its variants say that:
a) There exist regional spatial fMRI patterns (shapes, functions, vectors) equipped with proximities, affine
connections, homologies and symmetries.
b) We are allowed to assess the spatial patterns described by the MNC in terms of signals, temporal patterns (in
our 4D case, movements and trajectories on the 3D brain), in order to achieve a real-time description of the
movements of the hypersphere.
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Figure 5. BUT and its variants applied to fMRI neuroimages. Figures A and B display respectively one and two
maximal nuclei clusters ((11), Thread 2). Antipodal points with matching description (on a spatial circumference) can
be detected in both the images. Note that the MNC do not necessarily correspond to the “traditional” BOLD activations
(shown in red) detectable in fTMRI neuroimaging studies. Figure C displays a temporal matching description between
two maximal nuclei clusters at time T0.1 and T1.3 seconds. Note that, in this Figure, the n-sphere number n refers to
the time, and not to a spatial dimension. The curved arrow depicts the time conventionally passing clockwise along the
circumference of the n-sphere.
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7 Quaternionic movements. In a previous study (Tozzia and Peters, 2016a), the presence of a hypersphere was
detected invoking BUT: we viewed the antipodal points as brain signals opposite each other on a Clifford torus, i.e., we
identified the simultaneous activation of brain antipodal signals as a proof of a perceivable “passing through” of the
fourth dimension onto the nervous 3D surface.

Here we evaluated instead, in resting-state fMRI series, a more direct hallmark of the presence of a hypersphere: the
trajectory and the temporal evolution of the signals on the 2D brain surface, in order to see whether they match the
predicted trajectories of the Clifford torus. To evaluate a hypersphere in terms of a framework for brain activity, we
first needed to identify potential brain signal loci where quaternion rotations might take place: we thus embedded the
brain in the 3D space of a Clifford torus and looked for its hallmarks or hints (Figure 6).

Not shown i Not shown

Figure 6 shows the 3D Stereographic projection of the “toroidal parallels” of a hypersphere (from
https://www.youtube.com/watch?v=QIcSITmc0Ts see also
http://www.matematita.it/materiale/index.php?lang=en&p= cat&sc 2,745). The orange arrows illustrate the trajectories
followed by the 4D quaternionic movements of a Clifford torus when projected onto the surface of the 3D space in
which it is embedded. The circled numbers describe the trajectories, starting from the conventional point 1 (the letters
u,d,r,l denote respectively the upper, down, right and left trajectories on the surface of the 3D paprallelepiped). Note
that the arrows follow the external and medial surfaces of the 3D space in a way that is predictable. Just one of the
possible directions of the quaternion movements is displayed: the flow on a Clifford torus may indeed occur in every
plane. In this Figure, the spheres on the right grow in diameter, forming a circle of increasing circumference on the
right surface of the 3D space. Conversely, on the opposite left side, the spheres shrink and give rise to a circle of
decreasing circumference on the left surface of the 3D space.

RESULTS

We found that clusters of higher activity, which are equipped with higher Rényi entropy compared with the surrounding
zones, are scattered throughout different brain areas. It means that some micro-areas of a specific anatomical zones
contain more information than the adjacent ones. In other words, the MNC approach detects zones with higher Rényi
entropy, compared with the surrounding ones. In various frames, more than one cluster is detectable. The image data
analysis shows also that the MNC activity displays the typical features of the Clifford torus’ movements, supporting the
hypothesis that a functional hypersphere occurs during resting state brain activity (Figure 7). The temporal sequence
also show the hypersphere moves on the brain, and it moves relatively slowly. At start, the trajectory follows the
median sections (see timeframes 0.1-0.3 in Figure 7), then moves towards the posterior part of the brain, where a
reflexion of four trajectories along the lateral surfaces occurs (0.4). This pattern closely matches the one predicted by
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the model illustrating the quaternionic movements on a Clifford torus. The hypersphere does not display a regular or
continuous movement, rather it proceeds forward and then backward for a short time (time 0.5 and 0.6). From 0.7, the
trajectory follows the patterns predicted by Figure 6.

The MNC activity follows a specular, repetitive temporal pattern of activation (Figures 7, 8, 9). For example, the
pictures of the first and the last time have MNC activity with matching description. The MNC activity areas are
different from those of BOLD activity (Figure 9). The results can be summarized as follows: the movements of a

hypersphere are clearly detectable, and the MNC activity clearly displays antipodal points in a temporal sequence,
independent from fMRI activation.
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Figure 7A depicts a real pattern of maximal nuclei clusters temporal activation (from Mitra et al., 2015, Thread 4).
Note that the typical trajectories of a Clifford torus are clearly displayed (see Figure 6 for comparison). If you look at
the parallelepipedal 3D projections of the 4D quaternionic movements (Figure 6), the MNC embedded in the 2D brain
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surface stand for the 4D movements INTERNAL to the parallelepiped, while the MNC lying outside of the 2D brain
surface stand for the 4D movements on the SURFACE of the parallelepiped in Figure 7B. The movements described
by maximal nucleus clusters are temporally specular. A matching description among temporal frames occurs, so that,
for example, the frame 0.2 displays the same MNC features of 1.3. It means that the hypersphere moves in a

stereotyped sequence and according a repetitive temporal sequence, following the trajectories predicted by the
quaternionic model.

(% ! y
ot el 2 ]

13 14
Figure 8. Temporal antipodal points (from Thread 2 frames). The straight lines connecting opposite points on the

temporal circumference depict “pure” antipodal points, while the curved lines depict non-antipodal points with
matching description.
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Figure 9A. This figure (from Thread 1 timeframes) illustrates another way to illustrate temporal antipodal points. The
temporal sequences are displayed clockwise, from T=0.1 to T=1.3. The Voronoi regions embedded in MNC are
depicted as circles. The white circles refer to the presence of mesh clusters at high activity in the initial times, the grey
circles in the intermediate times and the darker circles in the later times. Figure 9B. MNC activity on 13
superimposed, consecutive brain images from Thread 1 (from time TO to T13). Note that the areas of nuclei activation
are scarcely superimposed to the “classical” zones of BOLD activation (shown in red).

CONCLUSIONS

There are two state-of-the-art approaches for understanding the communication among distributed brain systems using
fMRI data. The first — dynamic causal modelling - uses models of effective connectivity, while the other - Granger
causal modelling - uses models of functional connectivity (Friston, 2009; Friston, 2010). This paper introduces a novel
method, the computational proximity, which is different: rather than being correlated with the “classical” BOLD
activity, it shows how spatial regions are correlated through their “proximity”. From the experiment done so far, we are
beginning to see different forms of brain function represented by the MNC. We showed that computational proximity
(i.e., strongly near nucleus mesh clusters) in 2D fMRI images is able to reveal hidden temporal patterns of Rényi
entropy, enabling us to detect functional information from morphological data.

Here we have shown that a morphological analysis of simple 2D images taken from fMRI video frame sequences might
give insights into the functional structure of neural processing. In a previous study, we evaluated the possible hints of a
hypersphere on simple fMRI scans during resting state brain activity (Tozzi and Peters, 2016a). We showed how, due
to the Borsuk-Ulam theorem (BUT), the fMRI activation of brain antipodal points could be a signature of 4D. The
antipodal points predicted by BUT could be evaluated not just on images taken from fMRI studies, but also on datasets
from other neurotechniques, such as, for example, EEG. In the current study we used a novel method, in order to
confirm the data of the previous work with a completely different and more sophisticated approach. Indeed, looking at
the sequences of maximal nucleus clusters and their entropy, we found experimental patterns compatible with the ones
predicted by the hypersphere model. We detected on the 3D brain “shadows” of a 4D hypersphere rotating according to
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quaternion movements: these “hints” make it possible for us the possibility to visualize both the spatial arrangement and
the movements of the corresponding Clifford torus. In other words, during spontaneous brain activity, the apparently
scattered temporal changes in MNC follow a stereotyped trajectory which can be compared with the 4D movements of
a hypersphere. Our study uncovered evidence of hypersphere during spontaneous activity, demonstrating that brain
activity lies on a 3-sphere embedded in 4D space. How can be sure that the MNC reveals the presence of a brain
hypersphere? Three cues talk in favor of this hypothesis. First, the MNC patterns in resting state fMRI closely resemble
the theoretical trajectories predicted by Clifford torus movements. Second, temporal sequences of fMRI images display
matching description, in agreement with the BUT dictates. Third, there is a difference in Rényi entropy between MNC
and the surrounding zones, these data pointing towards diverse levels of activity. The reproducibility of the
hypersphere movements suggests that this organizational feature is essential to normal brain function. Because the
Clifford torus incessantly c