

Operating Systems
and Infrastructure in
Data Science

1. Auflage

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

vd'f

vdf Hochschulverlag AG
an der ETH Zirich

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Josef Spillner

Operating Systems
and Infrastructure in
Data Science

1. Auflage

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Financial support for the publication of this book was provided
by the ZHAW University Library (HSB).

The author is affiliated with ZHAW.

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese

Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet
tiber http://dnb.dnb.de abrufbar.

This work is licensed under creative commons licence
CCBY NCSA.

©0Re

ISBN 978-3-7281-4167-5 (Printausgabe)

Download open access:
ISBN 978-3-7281-4168-2 / DOl 10.3218/4168-2

1. Auflage 2023

© vdf Hochschulverlag AG an der ETH Ziirich

www.vdf.ethz.ch
verlag@vdf.ethz.ch

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://vdf.ch/operating-systems-and-infrastructure-in-data-science.html
https://vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html
mailto:verlag@vdf.ethz.ch

Contents

1 Introduction 9
(1.1 Prerequisites 10
|1.2 Target competences and anticipated skillset| 10
1.3 Book structurel o 11
L4 Dedicationl. 11

|2 Concepts: Programming, Data Representation and DataOps 13
[2.1 Data Structures: Graphs, Streams and Units 13

2.1.1 Graphs 14
212 Streams 15
2.1.3 _Units for Data and Resourcesl 15
2.2 Data Formats 16
[2.3 Compute-Centric Processing: Pipelines and Workflows| 17
[2.4 Data-Centric Processing: Sharding and Map-Reduce| 19
[2.5 Event Processing, Handlers and Hooks| 19
[2.6 Encapsulation: Functions, Tools, Containers and Services| . . . 20
[2.7 Data Management, Engineering and Operations/. 21
[2.7.1 Data Engineering| 0. 22
[2.7.2 Data Integration| 23
273 DataOps|.o 23
[2.7.4 Reproducibility| 24
................................. 25

[3 Concepts: Operating Systems| 27
3.1 Fundamentals 27
[3.2 Current Operating Systems| 29
[3.3 Building Blocks: Executables, Processes and Resource Manage- |

................................. 30
[3.4 Isolation, Virtualisation and Containerisation| 33
[3.5 File System, Paths and File Access| 34
[3.6 Networking| 36

5

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Contents

[3.7 User Management, Authentication, Authorisation and Credentials| 38

Repetition|.

Concepts: Infrastructure|

[4.2 Networked Computers
4.3 Services and Platforms| o 0L
|4.4 Parallel and High-Performance Computing/.
4.5 Cloud Computing.
[4.5.1 Full application hosting|
[4.5.2 Partial hosting and on-demand offloading
[4.5.3 Cloud backup|.

|5

Applications and Tools|

3.2 Tocal shell ithBashl.
5.3.3 Bash variables
5.3.4 Bash commands
[5.3.5 Remote shell access with OpenSSH|
[5.3.6 Advanced shell management with Screen and TMux| . .

[5.4.1 Hardware resources exploration|
[5.4.2 Operating system exploration
15.4.3 _Time- and event-related commands/.
|5.4.4 Managing data in files and directories|
[5.4.5 Creating, viewing and editing files|
[5.4.6 Networking| 0.
[5.4.7 System administration|
[5.5 Shell programming| L0
[5.5.1 Vocabulary and interaction with scripts|
[5.5.2 Job management|o
[5.5.3 Control flow programming
5.5.4 Shell functions definition|.
[5.6 Python modules for OS interaction|
[5.6.1 Running the Python interpreter|.
[5.6.2 Modules 'os’ and ’sys’|
sli‘ﬁ,;i I&:[Qd.lllﬁ ’:illllt il’

39

41
41
43
43
45
47
48
48
49
49

51
51
53
53
54
54
55
55
57
58
62

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Contents

[5.6.4 Module 'tempfile’].o 92
[5.6.5 Module 'argparse’| 0oL 93
[5.6.6 Module 'subprocess’ oo 94
.6.7 Module ’socket’l 94
[5.7 Package management|.o 95
[5.7.1 Python package management with Pip| 96
[5.7.2 Advanced Python package management with Pipx and |
[Poetry| 97
[5.7.3 Package management for other programming languages 98
[5.7.4 System package management with APT| 100
[5.8 Container management|. 101
[5.8.1 TIntroduction to Podmanl 102
[5.8.2 Fetching and running containers| 103
[5.8.3 Building custom container images| 104
[5.9 Data management and version control 105
[5.9.1 Delta synchronisation with RSync| 105
5.9.2 Version control with Gitl 107
[5.9.3 Basicusageof Git| 107
[5.9.4 Advanced usageof Git|o 109
[5.10 Data processing tools|. oL 111
[5.10.1 Textsearchl 111
[5.10.2 Text processing| 112
[5.10.3 Numeric processingf. 113
[5.10.4 Media formatsl oL 114
[5.11 Structured data processing| 115
[5.11.1 Format-specific processing| 115
[5.11.2 Training and inference| 117
6 Middlewarel 119
[6.1 Programmatic data serving| 119
|6.1.1 Third-party module flask’|. 120
|6.1.2 Third-party module ’streamlit’| 122
|6.1.3 Third-party module ’bokeh’ 122
6.2 File system abstractions and network storage| 123
|6.2.1 Basic FUSE operations| 124
[6.2.2 Selected file systems and synchronisation| 125
6.3 Database interaction and management| 126
|6.3.1 Embedded relational databases with SQlite] 126
|6.3.2 Networked relational database systems 127
|6.3.3 Beyond relational databases 128
[6.4 Message brokers for real-time data processing| 129
[6.5 Parallel and distributed computing 130
|6.5.1 Data processing with Spark| 131

7

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Contents

6.6 Model serving| 133
[6.6.1 BentoML model serving) 133

[6.7 Data integration| oo 135
|6.7.1 Meltano data integration| 135

[6.8 Workflows and distributed scheduling] 137
|6.8.1 Airflow task and workflow specification| 137
[7_Collaboration and Governance Platforms| 141
[7.1 Scientific notebooksl oL 141
[7.1.1 Jupyter notebooks 142
[7.1.2 Working with notebooks| 142

[7.2 Code and data lifecycle management| 143
[7.2.1 Gitlab as repository management platform| 144
[7.2.2 Gitlab as delivery platform| 145

[7.3 Data catalogues and governance|. 146
[7.3.1 ODD deployment|. 146
................................. 147
8 Execution and Orchestration Platforms| 149
[8.1 Virtual machines management| 149
[8.1.1 Using OpenStack web interface and API 150

[8.2 Container management|. 152
[8.2.1 Kubernetes ecosystem| 152
8.2.2 Kubernetes installation| 153
[8.2.3 Working with Kubernetes| 154

. 1 TVICES . « v v o v e e e e e e e e e 155
................................. 155
| 1 Infrastr r 157
[9.1 Data pipeline infrastructure] 158
[9.1.1 OpenTransportData] 158
9.1.2 RenkuTabl 159
913 Zenodo 161

[9.2 Distributed applications infrastructure, 161
[9.2.1 FEted Discovery| oo 162
022 Dweell 162
................................. 163

165

Appendix (only provided for the printed book edition)
Complex Tasks and Exercises
Electronic Resources

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

https://vdf.ch/operating-systems-and-infrastructure-in-data-science.html

Chapter 1

Introduction

The advent of the Stone Age around 2.6 million years ago marked a small but
significant jump in human civilisation. In the Stone Age, humans started to
become more productive through long-lasting and re-usable stone tools, first
in the form of pebble tools and (much) later in the form of hand axes.

Fast-forward to several industrial revolutions that have defined and shaped
modern highly productive civilisations over the past centuries. From agricul-
ture over production to automated services and finally into the digital work
domain, mastering tools has become increasingly essential skills to be produc-
tive. An interesting quote, A man is only as good as his tools, is attributed to
Emmert Wolf, widely considered to have lived over a hundred years ago but
without any further trace of existence. The statement still qualifies as valid,
although with notable changes. First, while in traditional industries biological
gender differences still play a role today, in digital work such as data science
they do not. Second, individual work still remains important, but certain ef-
forts require teamwork with various flavours of collaboration and coordination.
Hence, the newer quote A tool is only as good as the team using it by Matthew
Stublefield in 2019 gives the right educational context for this book.

In data science, mastering a system environment with its tools and pro-
cesses is essential to achieve minimum productivity. Feeling alien to an envi-
ronment, using the wrong tools or combining the right tools in the wrong order
can lead not only to effectivity limitations but also yield wrong results. Hence,
in this book, besides basic computer knowledge and programming skills, stu-
dents on data science are empowered to assemble a battery of useful tools to
employ in the right situation, ranging from small, versatile command-line tools
to powerful online platforms. Compared to mastering a single programming
language and thus controlling an application logic in the small, something that
can be fitted into a few functions on the screen, this book advances the skills
to programming in the large, beyond the boundaries of individual processes or

9

Chapter 1

machines. Programming in the large means defining and orchestrating com-
plex data-centric processes involving multiple tools, platforms and resources.
The eventual goal for the reader is thus to be able to define data, model and
code that should be provisioned and monitored as services in appropriate dis-
tributed infrastructures — from hosting data and models to running software
in the cloud. As studying is only the first step towards practical application
of skills in a professional setting, this book should therefore be a good starting
point for students of data science and computer science, digital life sciences,
digital mobility and similar curricula.

1.1 Prerequisites

The reader is expected to bring basic programming skills in an imperative
language. This encompasses the definition of variables and control loops as well
as the declaration and invocation of functions, including constructor methods
to instantiate objects of predefined classes. To keep matters simple, this book
assumes knowledge of the Python programming language and occasionally
considers the Python interfaces to operating systems functionality. However,
readers with knowledge in another language can also find their way around the
explanations and exercises.

The reader also needs the ability to fully exploit the keyboard. If typ-
ing special characters beyond alphanumeric signs, such as (@) :$~, poses any
challenge, the advice is to train that before reading on.

1.2 Target competences and anticipated skillset

By ingesting the content in this book, including active participation in the
repetition parts, the reader can expect to achieve learning goals on the three
lower taxonomy levels: knowledge, understanding and application. Moreover,
the avid reader is put in the position to decompose larger problems into smaller
ones and thereby compose smaller tools into pipelines, workflows and other
relationship models to address the larger problem as a whole, either fully or in
part.

Eventually, the reader shall be brought into a position to fully control a
computer, and even a distributed computer network, and make it work towards
the processing of data. Such skills are indispensable to maintain the digital
souvereignty on a personal level and in a business context. Instead of having
to pay for data hosting and analytics services, it is certainly benefitial to at
least maintain the option to do all of this oneself, and moreover, even when
using such services, to fully understand what is happening and what could be
improved.

10

Introduction

1.3 Book structure

The book is structured into the following main parts, reflected as chapters
with either a conceptual or practical focus. First, advanced programming
concepts such as workflows with pervasive use across operating systems and
data science infrastructures are introduced along with data concepts. On a
technical-conceptual level, operating systems are then explained in greater
detail for their influence on how users operate tools and how tools access data
and interact. Next, applications and tools are introduced for use in local
and networked environments, with emphasis on their practical use to solve
smaller tasks. This chapter is followed by one on middleware as well as one
more on collaborative platforms that combine middleware and tools. More
complex data science infrastructures that combine cloud facilities with the
aforementioned tools, middleware, platforms and workflows are then explained.
Finally, non-commercial global platforms that make sense to be simply used
at least in the exploration and prototyping stage of data science projects are
described.

A glossary is not provided. Nowadays, there is no shortage of online re-
sources to dive deeper into specific terms and topics whenever necessary. And
yet, technology terminology is prone to ambiguity at times. Consider the word
key. In hardware, it refers to a plastic key on the keyboard. In security discus-
sions, it refers to a unique value or a unique sequence of bytes. In programming,
it refers to the index that is uniquely associated to a value. All three seman-
tic interpretations are present in the book in multiple occurrences. The book
takes some effort to make these distinctions clear, but terms might be used
colloquially at times, so that careful and conscious reading is recommended.

Command syntax that can be typed for execution is set in teletype font.
For technical reasons, longer commands are hardcut on the right column edge.

1.4 Dedication

Operating systems and infrastructures have developed over time with millions
of lines of code. None of that would be possible without the countless hours
invested by free and open source software developers, community activists,
researchers and skilled engineers. There are people behind the software tools
introduced in this book, and this becomes apparent when they leave us. Bram
Moolenaar, Sven Guckes and Dan Kohn are three shining examples whom the
author had the pleasure to meet and to discuss with. And they would certainly
like it if more people became proficient and self-determined on the command
line to build solutions for all data science challenges.

11

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 2

Concepts: Programming,

Data Representation and
DataOps

Programming in the large is conceptually not much different from program-
ming in the small, but the terms and technologies differ, as do the implications
of unsuitable algorithms, incorrect code or wrong administrative processes. In
this section, a few terms are briefly explained, so that the references to them
in tool and platform explanations later become clear: graphs and streams,
data pipelines, workflows, shards, event processing, microservices and several
others; and eventually, administrative concerns around the term DataOps.

2.1 Data Structures: Graphs, Streams and
Units

In programming languages, native data types encompass scalar types (bytes,
integers, floating point numbers, boolean values), vector types (lists, tuples,
strings, sets, byte arrays), associative types (dictionaries) and geospatial types
(dates, coordinates). Data represented in these types are always finite and lack
arbitrary references. In practice, more types of data exist. Two important data
structures indispensible for expressing data-driven activities are introduced
here: graphs and streams. While there are niche languages for them such
as Streams Processing Language (SPL), they are handled through libraries in
mainstream languages. Their introduction here is therefore given broadly to
understand them in every context. The section concludes with a summary
view on physical units to express larger quantities in data and resources.

13

Chapter 2

2.1.1 Graphs

Graphs consist of nodes (vertices) and edges — G = (V, E) and are often ex-
pressed with graphical notation for human users. The edges can be undirected,
unidirectional or bidirectional. As graph-processing algorithms take a prede-
fined or arbitrary starting point and then descend into the graph iteratively
or recursively, endless cycles might result from traversing the edges. The most
useful graphs are, however, constrained to be cycle-free and (single-)directed,
making them elements of the practical subclass of Directed Acyclic Graphs
(DAGs). In DAGs, each node may be a splitting node with multiple outgoing
edges or a joining node with multiple incoming edges. Moreover, both edges
and nodes might be weighted, coloured and otherwise given attributes that are
then taken into account in graph-processing applications.

Standard algorithms for graph structures encompass the calculation of the
shortest path, or the path with lowest or highest sum of weights, between two
nodes and the determination of all nodes reachable from a given node with less
than a defined number of hops. Graph rewriting is the process of optimising
a given graph structure by eliminating redundancies or introducing controlled
parallelism or encapsulated subgraphs.

An example for a graph data structure and its application in the business
data domain is the list of stations and the connectivity links between them in
General Transit Feed Specification (GTFS), a tabular open format specification
for public transport networks/!| Transitive connections with stopovers can
be trivially calculated based on the graph structure. Another example in
agriculture is given by the relationships between producers and consumers of
manure. Some farms produce a lot and have many associated consumers, with
the volume of manure expressed as edge weights, while others may self-consume
everything and thus remain isolated nodes instead of being on the graph.

Trees are subsets of graphs with only splitting and no joining nodes, i.e. for
each node there can be multiple outgoing edges but only one incoming edge.
Nested trees are therefore useful to represent arbitrarily nested hierarchies.
Sequences are in turn subsets of graphs without any splitting nodes, and often
with implied chronological order. Fig. [2.1| compares these graph structures
with representative examples.

Sequence Tree : Full DAG :

Figure 2.1: Comparison of graph structures

LGTFS example: |https://opendata.swiss/de/dataset/timetable-2023-gtfs2020

14

https://opendata.swiss/de/dataset/timetable-2023-gtfs2020

Concepts: Programming, Data Representation and DataOps

2.1.2 Streams

Streams are (potentially) endless data structures that allow for incremental
processing. Streams may be represented as characters, lists, trees or other
structures, especially those permitting partial representation, which is the case
for lists. A stream can be read or written sequentially but not at random lo-
cations. Furthermore, while already read data can be buffered to some extent,
older data may be completely lost. Hence, in simple stream processing, data
records are processed individually or in microbatches. In complex stream pro-
cessing, operators aggregate information with modest size, which can be kept
as opposed to the raw underlying data, which are transient.

2.1.3 Units for Data and Resources

The atomic unit for data is a byte, divided into 8 bits, each assuming the
value 0 or 1. Hence, a byte can represent 28 = 256 bits. This is tiny amount
of data for today’s system, hence more human-friendly prefixes have been
introduced for larger amounts of data. Due to historic development, there are
both the Systéme international d’unités (SI) prefixes known from physics on
the basis of 1000 and the prefixes based on the binary system, more accurately
on the basis of 1024. What causes additional confusion is that, in colloquial
communication, sometimes one is meant but the other is referred to.

Modern 64-bit processors can hold up data with a volume of up to 8 bytes
(64 bits) natively in their registers, corresponding to a long value and twice
the size of an integer value. Anything larger than that, especially arrays such
as strings, can only be natively represented in main memory and on disk, and
this is where the prefixed units become relevant.

On the SI scale, 10% = 1000 bytes are one kilobyte (KB), 105 = 1000000
bytes are one megabyte (MB), 10° = 1000000000 bytes are one gigabyte (GB),
and 102 = 1000000000000 bytes are one terabyte (TB). The largest consumer-
level hard disks nowadays have a capacity of few TBs, making this the largest
prefix with common practical use. On the binary scale, 1024' = 1024 bytes are
one kibibyte (KiB), 10242 = 1048576 bytes are one mebibyte (MiB), 1024% =
1073741824 bytes are one gibibyte (GiB), and 1024* = 1099511627776 bytes
are one tebibyte (TiB). As can be noticed from the numbers, the deviation
to the SI units increases with the order of magnitude with approximately
2.4%, 4.9%, 7.3% and 10.0%, which is why the distinction has become more
important over time.

Storage resources such as HDDs and SSDs on a computer are typically
measured in SI units, whereas main memory is measured on the binary scale.
Compute resources are measured by fractions of their capacity, for example, a
tenth of a CPU core (or 100 milli-CPUs), over time.

15

Chapter 2

2.2 Data Formats

Within program code, native datatypes and their compositions (for instance,
linked lists or graphs) are suitable to represent the structure and content of in-
formation. However, as soon as data need to be transferred to other programs
or to the outside world, such structures need to be serialised in appropriate
formats. The main structures for larger quantities of data are tabular and
tree/graph data. Most programming languages have their own specific serial-
isation formats, such as Pickle in Python, that promise high performance but
reduce the ability to exchange such data with software written in different lan-
guages. To increase interoperability, standardised textual representations exist
for both tabular and tree structures, whereas there are only application-specific
formats for most graph data.

Tabular data can be represent in text as CSV (Comma-Separated Values).
All rows correspond to a line of text, whereas all columns correspond to tokens
per line. These tokens are either unquoted (e.g. house) or quoted ("green
house"), and separated by a comma or by another typical separator sign (, ; |)
or a tabulator (). CSV files may have a header line with column names, but
sometimes these names are application-defined and not represented in the data.
Hence, overall CSV is a loosely defined format, leading to many interoperability
challenges but with good support for line-based stream processing.

XML (eXtensible Markup Language), JSON (JavaScript Object Notation)
and YAML (Yet Another Markup Language) are all capable of expressing
tree-structured data beyond tables. To represent the hierarchical structures,
these formats use different syntax, such as angle brackets (<>) in XML, lists
and dictionaries in JSON ([1, {}) and indentation in YAML. Several derived
formats exist and are standardised, such as JSON Patch to represent differences
between two JSON files again as JSON document. While stream processing
exists for these formats, this is not the norm for many applications. Rather, a
full file is typically deserialised into memory.

The following listing compares three out of these four structured data for-
mats: CSV, JSON and XML. Typing information is more explicit in JSON but
across all formats requires an external schema to avoid heuristic determination.

CSV: person;age JSON: [{"person": "Hans", "age": 22}]
Hans ;21 XML: <persons><person name="Hans'"><age>
Heidi ;22 22</age></person></persons>

To inform about the data format of any given document without hav-
ing to inspect it, media type specifications such as Multipurpose Internet
Mail Extensions (MIME) introduced a classification system. Accordingly, the
textual representations of tabular and tree-structured data can be expressed
as text/csv, text/xml, and (not fully consistent) application/json and
application/yaml.

16

Concepts: Programming, Data Representation and DataOps

Schemas may be defined especially for JSON and XML, unsurprisingly
called JSON Schema and XML Schema, respectively. A data schema informs
about mandatory and optional fields, their names and data types, permissible
value ranges and further constraints. For instance, the regular reporting about
COVID-19 case numbers follows a strictly defined format/|?

The concrete byte-level format of the data depends on its machine represen-
tation, which may be subject to further transformations. These include encod-
ing, compression and encryption. Encoding specifies how human-interpretable
characters map to byte sequences. In the context of internationalisation, Uni-
code has emerged as the standard vocabulary with the eight-bit Unicode Trans-
formation Format (UTF-8) being the dominant encoding. Still, a lot of data
exists with legacy encodings such as Latinl (ISO-8859-1). The compression
packs similar data segments together to save space. For structured data, typi-
cally lossless compression is used, whereas for unstructured data (large corpora
of text, images) also lossy compression schemes may be used for even higher
savings. Examples of compressed file formats include ZIP (.zip), GZip (e.g.
.tar.gz) and BZip2 (e.g. .tar.bz2), each related to custom compression
algorithms and corresponding tools (packers, unpackers), with Tar being an
intermediate format combining all files in one archive without compression. In
data science, encoding and compression are major concerns whereas encryption
is only used in specific circumstances, in particular due to the still emerging
techniques to compute over encrypted data.

2.3 Compute-Centric Processing: Pipelines and
Workflows

A pipeline is a sequential execution of instructions or programs. Pipelines can
be represented as purely sequential DAGs, with edges referring to transitions
between the individual instructions. The transitions therefore define a tempo-
ral and causal order between the instructions. The pipeline commences with
input data received by the first instruction. The output of the instruction can,
fully or partially, and optionally in conjunction with the original input, be
forwarded as input to the next instruction. The output of the last instruction
determines the result of the pipeline. Any instruction failure is either ignored
or leads to the failure of the entire pipeline.

Fig. [2.2] visualises an exemplary pipeline. Especially for pipelines con-
taining many instructions, the raised abstraction level and uniform interface
with input, output and error messages makes pipelines a suitable structure
and mechanism for data processing.

2COVID-19 schema definition: |https://data.tg.ch/api/datasets/1.0/dfs-ga-1/
attachments/variablenbeschreibung_covid19_tg_pdf/

17

https://data.tg.ch/api/datasets/1.0/dfs-ga-1/attachments/variablenbeschreibung_covid19_tg_pdf/
https://data.tg.ch/api/datasets/1.0/dfs-ga-1/attachments/variablenbeschreibung_covid19_tg_pdf/

Chapter 2

Pipeline

Input i Output

N
N

Error

Figure 2.2: Pipeline structure for sequential processing

The instructions can be represented by tools, i.e. OS-level pipelines, or by
microservices, i.e. pipelines as orchestrated service sequences. The handover of
data (i.e. the edges) can happen as streams or through agreed-upon locations
such as files. Moreover, when input and output interfaces do not fully match,
the edges can be augmented with additional transformation and conversion
nodes. Transformation typically refers to changes within one data format,
whereas conversion may refer to changes in data format. Fig. 2.3 visualises an
example of such an augmented pipeline.

Pipeline

Input Output

— (a0~

Figure 2.3: Augmented pipeline structure with transformation and conversion
nodes

When sequential execution is no longer sufficient, branching and joining can
be conducted. This leads to full workflows, essentially directed graphs with a
single start-point and a single end-point. Each node of the graph represents
one instruction. Depending on the result of each instruction, the branching
can be controlled by either selectively, conditionally and exclusively entering
one of the branches and leaving out the others or by parallel execution of all
subsequent branches.

Textual notations exist for pipelines and workflows, although they are based
on convention rather than standardisation and therefore often specific to the
runtime environment. Two activities A and B may run sequentially without
data handover, with or without activity failure causing pipeline failure, like
this: A & B and A; B. Further variants are execution with data handover (A
| Bor A > B) and execution in parallel (A && B or [A, BI).

Given that definition, pipelines represent a reduced form of workflows, and
hence runtime support for both pipelines and workflows is broadly available
from many workflow management systems, whereas basic pipeline support is
also baked into operating systems. Each pipeline or workflow can be executed
multiple times, with each instance indicating progress by a reference to the
current activity.

18

Concepts: Programming, Data Representation and DataOps

2.4 Data-Centric Processing: Sharding and
Map-Reduce

Pipelines and workflows emphasise the compute activities as first-class citizens,
with secondary specification of what happens to the data. In contrast, other
processing paradigms put data first and then specify how application logic is
applied to it.

In this context, sharding and partitioning are terms that refer to splitting
a large amount of homogeneous data records, for instance, lines in a text file
or objects serialised as JSON, in a way that the resulting shards or partitions
are equally sized or otherwise balanced. In case each shard can then be pro-
cessed independently, for example, in a counting operation, the processing can
be trivially parallelised. This speeds up the computation significantly, either
to the number of available cores on a machine or in the case of distributed
parallelisation even to all cores across a number of attached machines.

Sometimes, complete parallelisation is not possible, for example, in the
operation to find the maximum of a large list of numbers. In that case, the
algorithm is adjusted to parallelise as much as possible — for instance, finding
the local maximum in each shard — and then in a second step to find the global
maximum by working across the intermediate results from the first step.

The map-reduce programming paradigm combines both steps. First, func-
tions are applied (mapped) to individual data records within a shard, yielding
equally sized result shards, except for filter functions, which can also yield
smaller result shards. Then, the resulting shards are combined in a reduce
step. The following example shows map-reduce processing over a list of text
lines in Python, by first converting all text to uppercase, and then counting
and summing the occurrences of the letter A. It is apparent that there are no
instructions to parallelise. Whether or not each map activity runs in paral-
lel is decided by the implementation, whereas the programming can focus on
working with the data.

import functools

text = ["Heavy snow", ...]

result = map(str.upper, text)

result = map(lambda line: line.count("A"), result)
result = functools.reduce(lambda x, y: x + y, result)

print (result)

2.5 Event Processing, Handlers and Hooks

There are multiple ways to start the execution of an instruction or a complex
program. The first one is the conscious interactive invocation, for instance, by

19

Chapter 2

the data scientist during development or by the user in production. The second
way is programmatic invocation. An application may call another application
to delegate processing tasks. The third way is time-triggered execution. A
specific time pattern such as ’at the full hour’ or ’every 10 minutes’ is given
and translated into action by a time trigger system such as an implementation
of Cron®. Time triggers are predictable and can be anticipated. The fourth
way is an unpredictable event trigger. A program is to be executed whenever
something happens, such as changes in a data structure. The advantage is that,
if the event rarely occurs, there is no unnecessary invocation and therefore no
overhead cost. Within the processing logic, it is often less relevant what exactly
was the trigger compared to what context information is available, i.e. how
the trigger was parameterised.

Handlers and hooks provide the glue between source events and program
invocation. For instance, data modification can be monitored over a long
time, and whenever a modification is detected by a helper program, a specified
program is invoked. This also works over the network, where appropriate
network messages can be sent upon detection of source events, in the form of
network hooks or web hooks. Hence, these handlers perform a similar role as
transformers and converters in workflows.

The term handler is furthermore used for handling internal events in a
program. This may be an exception, an interruption or some other signal
from the environment. Operating systems provide handler support on an OS
programming level, whereas workflow management systems also translate these
to higher-level handlers to specify what should happen to a pipeline or workflow
in the event of a fault or signal.

2.6 Encapsulation: Functions, Tools,
Containers and Services

Encapsulation refers to the separation of the interface from the implementa-
tion. It is an important concept to hide implementation complexity by raising
the abstraction level. Pipelines and workflows have already been introduced as
abstraction layers and encapsulation mechanisms. This section takes a broader
look at encapsulation.

Within a program, application logic might be encapsulated as a function
with a well-defined signature, consisting of the function name, its mandatory
and optional parameters, and its return values. Beyond functions, logic can
be encapsulated as a class with multiple functions (methods) or as a module
or library potentially encompassing multiple classes. The limitation to all of

3Cron syntax: http://www.quartz-scheduler.org/documentation/quartz-2.3.0/
tutorials/crontrigger.html

20

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html

Concepts: Programming, Data Representation and DataOps

these encapsulations is that they are only accessible within the application,
demanding all programming be done with the same programming language.

It is possible to go beyond this limitation. The program itself then rep-
resents another form of encapsulation with the ability to parameterise the
execution, capture intermediate information about its activity and eventually
determine the success of the execution based on mostly self-declared informa-
tion and conventions. The level of encapsulation is stronger if idempotency
is guaranteed, such that multiple repeated invocations do not produce results
different from a single invocation. This is typically achieved through stateless-
ness, a property helpful also for the automated parallelisation. For data-centric
programs, statelessness results from read-only operations that do not modify
data, for instance, searching, whereas modifications lead to statefulness and
then only rarely combine with idempotency. For instance, updating an entry
to the current invocation time is not an idempotent operation, whereas nulling
a fixed field is.

Smaller programs with well-defined input and output interfaces are conven-
tionally called tools on the OS level. They might read data from files and over
the network, as well as on the command line and through interactive input, and
they might return results via files, network and standard output, in addition to
an execution status code or exit code. Their invocation context encompasses
explicitly given parameters in addition to configuration taken from configura-
tion files and environment variables. More complex application functionality
can be encapsulated as containers, with similar parameterisation.

Another form of encapsulation is network invocation of these programs via
a well-defined service interface, which abstracts from implementation details
such as the programming language. Such services have the advantage of being
deployable and remote-invokable across machines. Often, the services take the
form of microservices with specific forms of packaging and lifecycle manage-
ment. Either they run continuously and directly accept requests, or a proxy
takes requests on their behalf and invokes them only on demand. This lat-
ter form has become popular under the name cloud functions, conveying the
conceptual similarity to programming-in-the-small function encapsulation.

2.7 Data Management, Engineering and
Operations

Concepts such as data formats, workflows and event processing are generic
and not necessarily bound to the activities of a data scientist. In this section,
these concepts will be connected and explained from a data-centric angle. They
encompass data management, engineering and integration, machine learning,
operations (coined DataOps) and reproducibility.

21

Chapter 2

2.7.1 Data Engineering

Data processing requires two main ingredients — input data and software that
performs the processing. Building software in the form of applications and ser-
vices, but also curating the input data, often starts with a repository managed
by a version control system (VCS) to manage all ingredients and to track their
evolution. Additionally, data may be managed in a relational or non-relational
database (DB), in storage services, or in a data warehouse. To reduce the ef-
fort, when maintaining both modest amounts of schemaless or schema-flexible
data and software code, a VCS with file-based data representation is a prag-
matic choice.

A notable feature of VCS and DBs are hooks triggered whenever the reposi-
tory or database contents change. For instance, whenever a VCS-managed file
is modified, a user-defined script is executed that validates the repository’s
data files or submits the updated files to some online service. Similarly, User-
Defined Functions (UDFs) may execute within a DB upon the insertion of
records. Making use of such triggers for further processing leads to continu-
ous integration processes, with reference to data integration explained in the
next paragraph, or continuous deployment of data on a provisioning system,
collectively referred to as CI/CD.

The processing itself can then take various forms. Apart from integration
or fusion, data might be aggregated, augmented, analysed, filtered or used as
basis for decision-making. In recent years, machine learning (ML) has gained
significance, with large volumes of complete data used to train a mathemat-
ical model used for inferring characteristics of incomplete data records. For
instance, a regression test on given X/Y coordinates may infer the associated
Z coordinate by interpolating from known Z values of nearby X/Y pairs. Many
ML algorithms work on vectors or tensors and benefit from specialised hard-
ware to support concurrent vector processing. ML algorithms can be used to
predict such missing values, but also to categorise objects described by data,
and to recombine information, always based on statistics and heuristics with
an imperfect accuracy. Recombination works on large language and media
models (LLM, LMM) and is able to produce text and multimedia content
with defined characteristics, although often not perfect due to the mentioned
heuristics. Especially when generating results for human consumption, these
techniques are also referred to as Artificial Intelligence (AI).

Moreover, data engineering is concerned with the right design of data-
processing software, in particular with its non-functional runtime characteris-
tics such as scalability, performance, reliability and cost. These characteris-
tics take effect when the software is operated, especially under the DataOps
paradigm. The design also involves the decomposition of software functionality
into internal structures such as microservices and workflows and the prepara-
tion of automated deployment of the corresponding management systems.

22

Concepts: Programming, Data Representation and DataOps

2.7.2 Data Integration

Data integration refers to the ability to load and interpret data from any source
and in any format. It requires a unification of formats through transformation
and conversion. Transformation modifies structured data within one homoge-
neous format, for instance, by adding, removing or renaming fields. Conversion
refers to the change between heterogeneous formats, for instance, from JSON
to XML. Assuming there are N source formats and M target formats, this
would require the implementation of N x M converters. Instead, the conver-
sion can be conducted to and from a meta-format at the expense of slightly
slower processing due to two conversion steps. The benefit of such an ap-
proach is that at a maximum, N + M converters need to be implemented and
maintained.

2.7.3 DataOps

When one combines processing paradigms with input data in various formats
and activities in various encapsulations, including storage, transmissions and
triggers across machine boundaries, the question arises whether this sort of
programming in the large can be summarised under one term. There are
several contenders, but, for pragmatic reasons, the term DataOps is used here
to conclude the first concept chapter.

DataOps is not a rigorously well-defined term. Rather, based on the
industry-invented term DevOps and related to GitOps and MLOps, it describes
a rather wide set of activites around providing code and data as managed ser-
vices to other users or applications, primarily based on network interfaces and
microservice encapsulations, based on CI/CD. This implies attending to repos-
itory design, powerful data processing pipelines development and deployment,
integration and inference, sufficient resource allocation, fair scheduling, pro-
tection, monitoring, cleanups and troubleshooting to provide flawless services.
From the data science engineer, it requires a fundamental understanding of
concepts and tools at the operating system level but also concerning data
engineering and data science platforms and distributed infrastructure. The
engineer needs to understand the contribution of any technology to the result-
ing data product, including business-affecting terms such as technical debt and
dependency risks. Moreover, the engineer needs to be able to resolve emer-
gent, sporadically occurring unexpected problems, apart from investing time
and effort into longer-term improvements that may be requested by users of
a data-centric application. Hence, from a data product engineering perspec-
tive, it may be more cost-effective and sustainable in the long term to build
on proven portable technology stacks rather than the latest offerings, which
may not exist anymore or become less economical within few years time. For
the data scientist to be productive in the operations domain, there are also

23

Chapter 2

certain requirements on powerful zero-configuration management tools, dash-
boards and actionable advice when problems occur. These requirements are
only partially fulfilled by today’s software, even when taking the latest data
warehouse or data lake offerings into account, leading to even more emphasis
on being able to master basic tools and foundational processes in order to build
custom DataOps solutions in any business context.

2.7.4 Reproducibility

Data management requires a thorough documentation of technical and legal
aspects concerning the origin of data, any modifications performed and long-
term archiving. These processes are often subject to regulatory constraints,
for instance, related to data protection. Yet having good documentation, es-
pecially an automatically generated one, also helps identifying improvements
and regressions in data quality and data-driven implementation and process
quality. A number of terms relate to the ability to reproduce results from the
same input data. The goal is always 100% reproducibility, implying that the
results do not change when there is also no change in the input data. The
following four terms are specifically of relevance in this context:

1. Lineage. Data lineage is the process of maintaining the journey of data
from its originating sources to its ultimate destination. It refers to the
automation and exact documentation of all transformations and conver-
sions on that journey.

2. Provenance. Data provenance is the historical tracing of data from its
originating source to its final stage. Emphasis is on the source, i.e. is
the data source credible, legal, of sufficient quality and so forth.

3. Reproducibility. In general, this represents the degree of agreement of a
measurement by different individuals, locations and instruments. Specif-
ically related to data science, it specifies the equality of results of data
processing and analytics no matter what code or environment is used.

4. Repeatability. This denotes the variability of a measurement or of a
pipeline or workflow across iterations under the same conditions. Typi-
cally, measurements are conducted multiple times and evaluated statis-
tically. If the arithmetic mean average, median and spread are not far
apart, the data processing is repeatable due to producing comparable
results in repetitive iterations.

In data science practice, all four terms are important, and all require spe-
cialised tools and platforms to assist the data scientist.

24

Concepts: Programming, Data Representation and DataOps

Repetition

All repetition solutions can be found at the end of the book.

1. What relations may exist between two tasks of a workflow?
2. Why is the map function a suitable primitive for highly scalable appli-

cations?
3. A VC-funded startup offers analytics as a service. Should one consider

a subscription?

25

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 3

Concepts: Operating Systems

This section conveys background knowledge on the inner workings of a com-
puter system, with emphasis on contemporary operating systems. The inten-
tion is not to give a formal education on all aspects, but rather to provide a
practical-oriented jumping board to understanding any later interaction with
the system. Most topics are touched on only briefly and require additional
literature for full understanding. The chosen method is to touch on topics
of further necessity in this book, and to give a technological foundation to
the programming concepts presented beforehand. This section presents fun-
damentals including the boot process, current operating systems, technical
building blocks such as process and resource management, isolation concepts,
file system interaction and networking, and user management.

3.1 Fundamentals

An operating system (OS) is a complex piece of software that runs all the time
on a given hardware to manage that hardware and facilitate the concurrent ex-
ecution of multiple further software applications. Hardware can relate to inter-
active work devices such as notebooks, personal computers and mobile phones,
but also to servers, as well as embedded applicances (such as programmable
machines) and virtualised hardware. On a typical data scientist workstation,
the core computer hardware could, for instance, be a set of n processors (cen-
tral processing unit — CPU), an accelerator (graphics processing unit — GPU),
x GiB of main memory, y GiB of storage on a local SSD, a wireless network
adapter and a 10G wired network connection, along with a mainboard to tie
these components together and peripherals for human input and output. The
peripherals may encompass a monitor, keyboard and mouse, printer and scan-
ner as well as loudspeakers. In an application scenario, a hypothetic dataset

27

Chapter 3

might be first read from the SSD. The application software processes it ac-
cording to program logic as a set of instructions similarly read from the same
SSD, and the results are written to main memory. The OS must coordinate
this workflow including permissions and auxiliary program execution. Hence,
the OS performs tasks such as hardware initialisation, coordinated access to
hardware resources, memory and file management, scheduling of tasks that
are part of such workflows, permission checks and usage accounting, among
many others. In terms of complexity, operating systems of practical relevance
encompass millions of lines of source code.

Operating systems are activated by a boot process, taking over from the
hardware’s hard-wired internal initialisation routines such as Basic Input/Out-
put System (BIOS) or Unified Extensible Firmware Interface (UEFI) that are
provided with the mainboard. They then activate the peripheral hardware,
load initialisation code from the storage media such as disks, start system-
wide background processes and prepare the system for human and automated
usage. The usage is facilitated by offering local and networked interfaces to
log in and run commands, primarily in the form of textual or graphical login
screens or remote login services, again either textual or graphical. Nowadays,
the boot process in both physical and virtual machines is often complicated
by the presence of mandatory Trusted Computing Modules (TPMs).

The hardware initialisation depends on the degree of standardisation. Some
hardware models are easy to integrate from the OS perspective, whereas most
others ship with their own firmware requirements that need the firmware to be
uploaded to the hardware first. This is often the case with wireless networking
adapters, without which a network-based installation or maintenance becomes
impossible. Hardware unable to work without firmware updates is another
cause of complicated boot processes. Modern operating systems cover a broad
range of hardware but may lack firmware or driver support for exotic models
or very new models.

The entire boot process usually takes a few seconds. To avoid costly re-
boots, hardware can also be suspended or put into standby when it is not in
use, for instance, by instructing the OS to do so or by provoking that with
predefined actions such as closing the lid of a notebook. Correspondingly, hard-
ware can be woken up again either by user interaction (opening the notebook
lid, pressing a key, touching the screen) or by a network signal (wake-on-LAN).
However, most system suspensions still consume a certain amount of standby
power, which has not only the implication that more electricity needs to be
generated, but also that the suspension does not survive a longer power cut.

On a new computer without pre-installed OS on permanent storage, apart
from netboot in a prepared environment, the OS can only be loaded from re-
movable boot media such as USB drives or CD/DVD, which would then provide
an installation option. Alternatively, in case an OS is already installed, some

28

Concepts: Operating Systems

systems provide installers running as applications on other systems, which al-
lows for complementing or replacing an existing OS. For that matter, the disks
of a computer can be partitioned. An OS requires at least one such partition
for booting, containing the boot loader initialisation code in the first sector. An
OS can, however, also span across multiple partitions to increase the storage
capacity.

3.2 Current Operating Systems

The scope of operating systems has changed considerably over the decades.
Today, despite an unprecedented variety of available operating systems (to
get an idea, occasionally read up on OS-related news websites')), only very
few have practical and commercial relevance in the market and satisfactory
support for applications, especially those that integrate, process and visualise
data. Some systems like Minix are suitable only from a didactic perspective to
understand the inner structures without broadly supporting today’s hardware
and applications ecosystem. Others like the Robotic Operating System (ROS)
refer to industry-specific middleware on top of an existing OS kernel.

The three dominating contemporary operating systems for data science in-
teraction and DataOps, both vendor-neutral and vendor-specific offerings, are
those that are used on workstations. They thus define the immediate environ-
ment for the data scientist, allowing for rapid interaction between programming
in the large and verifying the results of program execution:

1. Linux?, with several different representations including flavours of GNU/
Linux (e.g. Debian, Ubuntu, CentOS), and similar open systems with
similar userland such as various Berkeley Software Distribution (BSD)
flavours;

2. Apple Mac OS X, similar to Linux, being of the Unix family of systems;
and

3. Microsoft Windows.

From a consumer perspective, these operating systems are often known
from mobile devices such as the Linux-derived Android or the OS X-derived
iOS. However, apart from mobile data acquisition and visualisation, such de-
vices, including mobile phones and smart watches, do not play a major role in
defining infrastructure for application programming and data processing.

Linux, the BSDs and Mac OS X both follow a similar technical interface
design as the original Unix systems, and are therefore also referred to as Unix-
like systems. Unix systems date back to the 1970s, and some elements of that

1OSNews: |https://www.osnews . com/
2Linux Kernel: https://kernel.org/

29

https://www.osnews.com/
https://kernel.org/

Chapter 3

era are still reflected in modern systems, including conventions on timestamps
and programming languages. Each operating system is nevertheless charac-
terised not only by the actual up-to-date OS kernel but also by the supported
subsystems such as file systems, device drivers, input modalities and finally
the supported and still growing ecosystem in terms of libraries and applica-
tions. The collaboration models facilitated by the Internet have led to large
global communities contributing to the software development from the OS
level to the applications. As the ecosystem is therefore neither static nor cen-
trally coordinated, new software is constantly being published, and existing
software might need to be updated to fix stability and security issues. Conse-
quently, concepts of trust and reputation regarding software found online are
important. To reduce the setup effort, curated distributions, package man-
agers, software stores and similar consumer interfaces to the ecosystem, along
with corresponding producer interfaces, exist and are central for an effective
usage for setting up data science infrastructures. There are OS-specific and
cross-OS (or cross-platform) applications and libraries within each ecosystem,
with further differences in the hardware architecture. Fig. [3.1| conveys typi-
cal software-architectural layers found in current operating systems, running
within a privileged OS scope and an unprivileged scope defined by the respec-
tive OS distribution and managed by the OS itself at runtime.

Middleware, Services, Applications
Libraries and Tools,
Bootloader and Initialisation

0s
S S H caope

Figure 3.1: Typical layered system architecture

os
distribution
scope

For reasons of practicality related to condensed explanation of commands,
and reflection of the high pace of the ecosystem, although the operating sys-
tems theory are presented in abstract form, concrete usage examples in most
cases assume a running Linux system. Students running different operating
systems are either able to relate the commands to equivalents on their systems
or use virtualisation or network access to get their hands on a native Linux
environment.

3.3 Building Blocks: Executables, Processes
and Resource Management

Most users know computers in terms of applications. For instance, a data
scientist may create a Jupyter notebook (detailed later) and use the Jupyter

30

Concepts: Operating Systems

application for that purpose. The visible part is the notebook shown on the
screen, with cells to input code and other cells to display results; but of interest
from an OS perspective is the underlying structure. They determine how the
Jupyter notebook got found, started and delivered to the user.

Applications within the ecosystem of an operating system are shipped in
the form of bundles or packages consisting of files and, sometimes, online ser-
vices. The central parts of any application are called executables, referring to
single files that can be executed on a CPU under the control of the operating
system. They contain processor-specific binary code in an umbrella file format
understood by the OS, such as FLF or EXFE, whose headers give information
on how to load and execute the file. The production of such executables is
the task of a compiler that takes a human-readable language, either Assembler
or a higher-level language such as C, C+-+ or Rust, and optimises the set of
instructions for the processor.

Executables can be statically or dynamically linked to essential library
code. Such libraries extend the functionality of executables with re-usable
program logic, including functions to perform basic interaction with the oper-
ating system. Based on the historic dominance of the C programming language
in operating systems, the main library is the standard C library, or 1ibc.

In the case of dynamic linking, especially for highly dynamic plugins, the
code is resolved upon execution by the OS loader. The advantage of dynamic
linking is that the code size of the executables themselves can be kept modest,
at the disadvantage of increased complexity during loading. In practice, the
executable does not run unless all library dependencies are properly resolved,
including the determined versions.

If the application is authored in a scripting language, such as Python, then,
from an OS perspective the application itself is just data, and the Python
interpreter is the actual executable. To make matters complicated, there are
multiple Python interpreters available, such as the classic cPython, iPython
and PyPy. Multiple applications can also run at the same time with coupling
between them through communication. The Jupyter notebook environment
would be one such case, which is itself developed in Python, typically executing
on cPython and running an iPython interpreter instance to execute the content
of its cells.

Before an executable can run, the OS also needs to prepare its internal
structures. It allocates a new process that refers to the binary code in the
executable but also contains management information such as process identi-
fier, parent process identifier, current working directory, priority, owner, access
privileges, resource limits and statistical information about the ongoing execu-
tion. In practice, a typical data scientist device runs around 300-500 processes
concurrently, many of them referring to invisible background activities. To give
a more reasonable example, the aforementioned execution of Python code in a

31

Chapter 3

Jupyter notebook is explained in Fig. |3.2. It highlights the uniquely separated
aspects of processes such as identifiers, owners and memory areas.

Parameter:

Invoke Invoke
cell.py

PID: x PID:y
User: U1 User: U2
Memory area: M2

7

Figure 3.2: Processes, executables and data in an operating system context

To run correctly, a process needs a certain amount of resources. This refers
primarily to CPU and main memory, but depending on the program logic may
also refer to disk space and network throughput.

By default, processes can use all virtual memory made available by the
operating system. This value often exceeds the available physical memory due
to concurrent process execution. Hence, processes may enter into situations
where no more main memory is available. When other forms of memory (e.g.
swap space) are also exhausted, the OS decides on the termination of the
offending process or another process depending on the memory management
policy. Eventually, one process must be terminated with an out-of-memory
(OOM) cause. Then, more memory becomes available again, although not
necessarily in sufficient quantity to fully accomodate the original request. Un-
less it runs into such critical situations of resource exhaustion, each process
nevertheless requires different amounts of memory over time. The amount is
hard to predict, although often similar if the process is run with comparable
parameters. One task of the operating system is to shuffle with memory pages
behind the scenes, reallocating them as needed to the active processes.

Processes can also terminate irregularly for reasons other than out-of-
memory conditions. The primary reason may be an internal programming
mistake such as division by zero or access to a file that does not exist. Pro-
gramming languages allow for capturing such mistakes as exceptions, but if
that was forgotten, the process is terminated by the operating system.

Processes run with configurable priorities. If a batch process, such as data
cleansing, runs quietly in the background and does not disturb interactive
work, it can be explicitly de-prioritised. On the other end of the spectrum
are processes that require a minimum allocation of CPU slices, for instance,
to be able to perform guaranteed real-time processing of a large and fast data
stream. Most operating systems have no support for hard real time processing
and instead work on a best-effort basis.

32

Concepts: Operating Systems

At any point in time, an OS thus runs a number of processes, from which
more processes may be spawned. Each process possesses a priority and an
associated memory allocation apart from the other mentioned characteristics.
All processes form a tree, with the initialisation process as its root. This
process is typically instantiated from a special application program that gets a
list of other processes to start at system boot and supervises them to be able
to conduct restart in the case of crashes. On modern Linux systems, this task
is performed by OpenRC or SystemD.

3.4 Isolation, Virtualisation and
Containerisation

As outlined in the programming concepts, encapsulation is an important prin-
ciple to raise the abstraction level and shift from programming in the small
to programming in the large. In operating systems, the main encapsulation
techniques relate to process-level isolation, virtualisation and containerisation.

Processes that run concurrently have a unique identifier within a single
namespace and are protected from mutual access to main memory. Only the
owner of a process, or a privileged superuser can change process metadata such
as its priority. The system may also enforce a certain fairness between users by
setting quotas that effect the number of processes that can run, the amoung
of main memory allocatable by each process, the number of open files per pro-
cess, the cumulative CPU time and similar metrics. However, in principle, the
separated processes can see each other and might volitionally or inadvertantly
share information through the file system or other less protected channels, in-
cluding non-intuitive covert channels. In order to prevent information sharing
and interference, specifically for shared user environments, different isolation
concepts beyond regular OS process isolation have emerged.

A strong level of isolation can be achieved by wvirtualisation, i.e. running
an application that represents a guest operating system including kernel and is
thus able to execute applications within itself, without visibility of its internals
to the underlying host operating system. The guest OS can be a different
version of the host OS or even an entirely different OS, for instance, when
running Windows atop Linux. In principle, virtualisation works even without
specific support in the host OS but is then often too slow. Modern OSes
thus support concepts such as para-virtualisation and hypervisors that provide
near-native execution speed in conjunction with specific CPU instructions.
Depending on the device configuration, virtualisation can even be nested, so
that complex applications can be built in a portable way. The management
of guest OSes is the responsibility of a hypervisor, which is usually built into
host OSes nowadays and apart from the runtime functionality offers ways to

33

Chapter 3

configure virtual machines (VMs) as well as manage VM images that contain
the root filesystem of the guest OS. Typical examples for native hypervisors
are KVM on Linux and HyperV on Windows. There are also third-party
hypervisors such as VirtualBox for all maintream operating systems.

A weaker but in practice often sufficient level of isolation is provided by
containerisation. In this model, the OS kernel is fully shared and the process
namespaces are decoupled selectively. For instance, a guest process may still
share the networking with the host but not the process table or the file sys-
tem. In contrast to most virtualisation approaches, containerisation is more
optimised for software development environments and thus also suitable for
running most software of relevance to data scientists. The first widely used
common cross-platform approach for containerisation was Docker, providing
management capabilities for container images and runtime aspects. Tools like
Podman make it easy to work with such container images.

Virtualisation and containerisation can be combined with networking (ex-
plained below) to achieve flexible distributed computing. In this model, each
operating environment should indicate its name, as otherwise the concurrent
work across several systems quickly becomes confusing for the user.

3.5 File System, Paths and File Access

Files are sequences of bytes — either representing human readable characters
(text files, e.g. Python scripts or structured data) or arbitrary bytes (binary
files, e.g. executables or unstructured multimedia data). The native represen-
tation of data could be modified in a file context, as outlined in the explanation
about data formats. For instance, text data might be compressed to use less
space and encrypted to be more confidential, resulting most likely in a binary-
encoded file.

For permanent access, such files are stored on storage devices (e.g. SSD)
and are written and read sequentially in both text and binary mode or with ran-
dom position access in binary mode. Alternatively, they are memory-mapped
for direct access, especially larger data files for which a sequential access might
be too much of a bottleneck. The task of the OS, more specifically of the
OS-supported file systems on any storage media, is then to organise all files,
arranging them, allocating the physical storage locations, and regulating as
well as journalising access.

File systems therefore arrange files in suitable structures, most of which
are hierarchical or tree-structured. They emerged as integral parts of oper-
ating systems, and most optimised file systems remain OS-specific (e.g. ZFS,
ext4), although many de-facto standards such as the exFAT file systems have
emerged along with portable media such as USB drives. In general, file sys-
tems require a (physical) storage medium such as a hard disk, solid-state drive

34

Concepts: Operating Systems

or the mentioned USB drives; or alternatively, a partition on that medium.
Multiple partitions can be integrated as additional file systems located as sub-
directories or drives depending on the OS type. At least one partition is marked
as bootable and contains the OS files along with the bootloader, reachable from
the medium’s master boot record. Being the central interface between humans
and data management on the OS level, file systems are designed to balance
user needs in terms of structuring data with operational concerns such as file
creation and search speed as well as resilience.

The user perspective on a file system typically encompasses a directory tree
view. Directories with arbitrarily nested subdirectories form tree structures
that, along with file contents and metadata, assist users in data management.
The top-most directory is called root directory (i.e. /) or drive (e.g. C:\),
depending on the OS. The concatenation of directories, and optionally a file,
is called a path. Paths can be absolute, starting from the top-most direc-
tory, or relative to the current working directory of a process. For instance,
/etc/passwd is an absolute file path, and .. is a relative directory path, re-
ferring to the root directory / when applied to the directory /etc. In addition
to data and executable files as well as subdirectories, and depending on the
file system and operating system, directories may also contain symbolic links
(symlinks), device files, fifos and other special files.

Standard top-level directories on Unix-like systems encompass three hier-
archies: /, /usr and /usr/local, with the semantics that larger partitions
could be mounted later in the boot process and only / must unconditionally
exist for booting and system repair activities. Under each of these hierarchies,
certain second-level directories may exist. These include bin and sbin for
unprivileged and privileged binaries, and 1ib for shared libraries and other
architecture-dependent files. Further directories only exist in the top-level
hierarchy, including etc for configuration, home for user accounts, tmp for
temporary files, opt for optionally installed large applications, root for the
super-user account, mnt for mounted filesystems, srv for services and var for
generated state information. The share directory for architecture-independent
files, effectively all data files read by applications, only exists within the /usr
and /usr/local hierarchies, presumably because the core utilities under the
root hierarchy work as executables without references to data files. These
directories are further subdivided into purpose and application Hence, a typ-
ical application would consume data from /usr/share/<app>, write tempo-
rary data into /tmp/<app>[/<user>], cache results into /var/cache/<app>,
and persist precious data into /var/lib/<app>. Some directories contain OS-
related support files and special files (boot, dev, proc, sys). These names and
conventions have evolved over time and are now largely standardised due to
the Filesystem Hierarchy Standard (FHS).

As outlined above, files are characterised by their contents, either textual
or binary, as well as their metadata. While content is always defined by the

35

Chapter 3

user or applications on the user’s behalf, some of the metadata is automatically
maintained by the file system. Typical text formats encompass unstructured
plain text in various encodings, but primarily Unicode (i.e. UTF-8) as well
as structured plain text to represent data such as CSV, XML, YAML and
JSON formats. Such files are interpreted as sequence of lines, where each
line is separated from another by an end-of-line symbol, typically either the
newline symbol (\n) and/or the character return symbol (\r). Binary files, on
the other hand, have application-specific structures that render them unfit for
human reading. Many data science tasks require working with structured data
formats and understanding their content. This implies dealing with potential
quality issues, including misformatted files that would disturb the process of
reading or parsing but also silent errors that would cause issues after the
parsing.

Files are also characterised by their metadata. These include auditable
timestamps of creation, modification and last access but also size, ownership
and access permissions. The file size may not necessarily correspond to their
content, for sparse files may be created conveying a large file size despite little
content and correspondingly small storage space requirements.

From a programming perspective, files are opened in a certain access mode,
typically for reading, (over)writing or appending. The OS checks the eligibility
of the file open request and either signals success by returning a file descriptor
or signals an error through appropriate OS-specific error codes. Typical errors
include ’file not found’ and ’permission denied’. Subsequent read and write
operations may similarly result in errors such as 'no space left on device’ or —
specifically for reading — in application-generated parser errors. At the end of
a file operation, the file is closed again and the OS-internal control structures
are released.

A trivial way to read files is to read them line by line (for text files) or
block-wise (for binary files). In order to cope with very large files and to avoid
the input/output bottleneck, modern OSes allow the virtual mapping of files
into memory, so-called mem-mapped files, on the assumption of sufficient main
memory. Any modification in main memory then results in an optimised write
access on the storage medium.

3.6 Networking

Network access across the boundaries of single computers is useful for a num-
ber of reasons. It allows fetching data from all over the world, along with
code in the context of system maintenance, to backup data remotely and to
let users collaborate on data science projects. In conjunction with file sys-
tems, networking also allows for remote file management through networked
file systems.

36

Concepts: Operating Systems

On a practical level, networking is considered to consist of four layers. On
the lowest level, a physical link between two computers is established using
either wired or wireless communication media, such that a computer becomes
reachable from another one by a network address. This link may be direct,
but it might also involve a number of intermediate machines, physically repre-
sented as a sequence of links. The physical link determines the key networking
characteristics: throughput as in data volume per time unit, latency as in
time unit that needs to pass before an arbitrarily small message has reached
the destination and stability, which in the case of wireless links is affected by
the signal quality among other factors.

On the next level atop the physical link, a packet communication is estab-
lished, dominated by the Internet Protocol (IP) for data transfers as well as
several network management protocols. Each IP packet consists of a header
and a payload of fixed maximum size, typically around 1500 bytes but in princi-
ple up to 64 kiB. The IP abstracts the underlying physical linkage away so that
the endpoint computers would always assume a single logical link in between
them. Endpoints are specified as a combination of IP address (IPv4 or IPv6)
and a 16-bit port number, with all numbers below 1024 being in the reserved
range. Services can occupy one or multiple of those ports, and clients specify
them when attempting to communicate with a service. The /etc/services
file on Unix-like systems or C:\Windows\System32\drivers\etc\services
on Windows maps relevant port numbers to human-interpretable names, in
most cases protocol acronyms, as defined by the Internet Assigned Numbers
Authority (IANA).

On top of IP, encapsulated in its payload section, data transfer with session
or stream semantics across several individual packets is the task of more spe-
cialised protocols such as the User Datagram Protocol (UDP) for low-latency
transmission, Transmission Control Protocol (TCP) for reliable transfers and
Stream Control Transmission Protocol (SCTP) with characteristics from both,
each of which again consists of headers and payloads. To secure connections,
especially TCP connections can be upgraded with Transport-Layer Security
(TLS), allowing for mutual certificate checks to verify identities and set up
encrypted transfers.

On the highest layer, application-specific protocols define the content of the
payloads and the sequence of transmissions as well as the details of addressing.
Many applications assume a client-server topology where a server listens for
packets on a specific numeric port, often chosen from a fixed assignment such as
port 80 for web applications using the Hypertext Transport Protocol (HTTP),
but in many cases with flexibility especially in the non-reserved range of ports.
A client then connects to that port, establishing on its side a sending port with
a random port number. Either side may initiate the conversation and may
terminate it. Similar to files, networking protocols might be text-based (e.g.

37

Chapter 3

HTTP, SMTP, XMPP) or binary (e.g. SSH), and data representation on the
network may be subject to modification such as compression and encryption.
In IP networks, the IP address is the native address, although memoris-
able alias names can be given. This includes the computer’s own internal
name, independent of the network configuration, as well as network-reachable
names including the computer’s own external name. Unless the configura-
tion is local, all network-reachable names can be retrieved from the Domain
Name System (DNS), which is one of the standard services supporting net-
work administration and navigation. Local configuration can reside in the
file /etc/hosts on Unix-like systems, mapping IP addresses to local host-
names per line, e.g. 192.168.0.5 mynas. On Windows, this file is called
C:\Windows\System32\drivers\etc\hosts.

From an OS perspective, sockets are used as internal memory structure to
represent active network connections from clients to servers and listening con-
nections on servers. Each port number may only be in use once per machine.
Therefore in conjunction with virtualisation and containerisation, virtual net-
works are introduced to route requests, for instance, to port 80, to different
physical ports of the respective virtual machines or containers.

Sockets together with files and named or unnamed (pipe) FIFOs permit
narrow-band inter-process communication (IPC). For sharing access to large
data volumes efficiently between local processes, shared memory areas may be
defined, whereas for communication across nodes, sockets are the only option.

An application offering functionality over a network port is typically called
a service. For managing and providing such services at scale, several ser-
vice platforms and cloud platforms have emerged, with some also offered on
a commercial basis. Similar to OSes, many different platforms are available.
Global-scale providers such as Google Cloud Platform, Microsoft Azure, Ama-
zon Web Services, IBM Cloud or Alibaba are among the well-known ones with
the richest portfolio of platform functionality, although there are also many
local providers offering at least basic services and service management over
the network.

3.7 User Management, Authentication,
Authorisation and Credentials

The concept of users, roles and identities in a complex, shared system envi-
ronment, especially in a networked environment, is an important one. Once
the identity of a user or application is known, permissions can be linked to it
and codified into the file system and other OS structures. The key question is
then who is allowed to access or modify which files under what circumstances.
On the OS level, system users are registered along with a home location in the

38

Concepts: Operating Systems

filesystem and credentials, typically in the form of passwords, and appropriate
privileges, typically in the form of being in a group that has wider access per-
missions. Specifically, super users or root users have all possible permissions,
and users are able to obtain these permissions temporarily. Hence, each OS
process has a user identification and a (short-term) effective user identifica-
tion that governs the permitted actions such as access to files and devices.
On a Unix-like system, the super user’s home directory is /root, whereas all
other users typically reside in a user-specific directory such as /home/user.
On Windows, the equivalent path is C:\Users\user.

Obtaining the permissions is called authentication, whereas making use of
the permissions for access purposes is called authorisation.

To enforce authorisation across computer boundaries over a network, cre-
dentials such as passwords, keys or tokens are registered in services and sup-
plied from clients during protocol-specific remote authentication. For increased
confidentiality and to protect against leaks, the credentials are often not stored
in plain but instead in hashed format. Moreover, they are also encrypted dur-
ing transmission, based on timestamps as part of a session-specific encryption.

Repetition

1. What happens to a process when it requests additional memory pages
but all main memory has already been used up?

2. Does containerisation provide the maximum possible isolation level
between processes?

3. What happens when a web browser is used to connect to the website
at http://my-little-website?

39

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 4

Concepts: Infrastructure

The section informs about important concepts and goals related to digital in-
frastructure in the wider senses of data science. Therefore, it covers computing
infrastructure, data infrastructure and similar forms, all of which are built atop
operating systems and made available in various appearances such as compute
clusters, online services and integrated platforms.

Similar to civil infrastructure such as roads and bridges or energy infra-
structure such as power lines and gas tanks, digital infrastructure is a necessity
with high demands on reliability, security, performance, scalability and cost ef-
fectiveness. Digital infrastructure relates to computing resources for computa-
tion, communication and storage. Sometimes, the handling of these resources
is tightly combined. For the purpose of introducing typical infrastructures, the
following types are covered here: networks and Internet, networked computers,
services and platforms, high-performance computing and cloud computing.

4.1 Networks and Internet

Access to computer networks was already explained in the networking section
of the operating systems concepts chapter from the perspective of a single sys-
tem. Here, a bird’s view on entire networks is given. Computer networks can
be represented as graphs, with each system being a node and the available
connections being edges. Not all edges need to be available or activated at
all times, and sometimes more than one connection (e.g. wired and wireless)
exists between nodes, making the nodes multi-homed due to being in different
networks with different IP addresses at the same time. Hence, even the basic
topology of a computer network is dynamic. It is also heterogeneous due to
different characteristics of the connections related to bandwidth, latency and
connection quality. Wired connections typically show predictable bandwidth

41

Chapter 4

despite relying on slightly heuristic protocols, whereas wireless connections
vary wildly. More dynamic behaviour is introduced by traffic flows, caused by
the communication between nodes. Such traffic can lead to congestions on the
network or overload of the attached systems. Unreliable connections can also
lead to a loss of data. Overall, computer networks must be assumed to be
dynamic, heterogeneous and imperfect. Fig. 4.1 summarises these character-
istics in a topology in which nodes can have different roles at the same time
due to being connected to multiple other nodes and applications concurrently.
A node may serve as peer for video storage and as client for obtaining weather

data.

Volatile }

P
Multi- *
homed Peer Client

Figure 4.1: Exemplary computer networks topology and traffic flows

Computer networks may exist within physical premises as home network,
corporate network or intranets, collectively called private networks. Access
to services on these private networks from outside is then often physically
impossible, adding an additional layer of protection on top of packet filters
and application-level firewalls. The nodes within these networks have private
IP addresses that are not routed on the public Internet. Any computer without
such protection and with a publicly reachable IP address participates in the
Internet. Virtual private networks can be used to extend the protection of
private networks across the whole Internet.

IP addresses are either of type IPv4 or IPv6. In IPv4, addresses consist of
four blocks of 8 bits, or 32 bits in total, in the form a.b.c.d, with each letter
consisting of the values 0 to 255. Subnets are formed from right to left through
a subnet mask. Hence, a.b.c.0/8 refers to all addresses possible with d being
0 to 255, and a.b.0.0/16 is a larger subnet with 64k addresses. In IPv6,
there are eight blocks of 16 bits, or 128 bits in total. The global IPv4 address
space is maintained by the Internet Assigned Numbers Authority (IANA), with
Regional Internet Registries (RIRs) further allocating and assigning addresses
to registered providers. The address space has become almost exhausted over
recent years, in parallel with more widespread support for IPv6.

42

Concepts: Infrastructure

4.2 Networked Computers

A networked computer is a node on a network reachable by others on the same
network or even globally, offering a certain number of services on one more
multiple network interfaces. Three levels of access are typically distinguished:
On the local interface (localhost), represented by the IPv4 address 127.0.0.1
and/or the IPv6 address ::1; on a local network interface with locally ad-
dressable IP address such as 192.168.x.y, 172.16.x.y or 10.x.y.z; and on
a publicly routed IP address that, unless directly associated to a computer’s
interface, is network-translated by a router or gateway.

The quality of service on networked computers depends on the hardware
resources available on that computer and on others attached to it as subordi-
nates, i.e. slaves or workers, if applicable. Services may be offered primarily as
storage and compute services. Two non-functional properties are of primary
interest for compute services: performance and scalability. The performance
indicates in which time an incoming service request or batch job is processed by
the computer. Scalability is strongly related but indicates how many parallel
requests or jobs can be processed without major regression in performance and
without having to reject requests. For storage services, the performance (i.e.
read and write access times) remains an important metric, but the capacity
for storing data is also crucial, as is the integrity and further concerns. After
all, computations can be restarted if temporarily lost (even at a cost), whereas
loss of data may be irrevocable.

Attaching a computer to a network brings up security and trust issues. Es-
pecially on the Internet, access from other locations cannot be trusted per se,
and appropriate security measures need to be taken. This refers primarily to
keeping the system up to date (patched), running only the necessary services
while shutting down others, introducing packet filtering and application-level
firewalling to throttle requests and blacklist malicious origin sites, and per-
forming offsite logging and intrusion detection to aid in post-mortem analysis.

From a data science workstation perspective, this means that complex ser-
vices like those presented in the sections on middleware and platforms should
be running only on localhost during the development phase without being ex-
posed to access from outside, and that remote backups (potentially via version
control) of at least all human-generated artefacts should be regularly con-
ducted.

4.3 Services and Platforms
Services encapsulate application logic and further functionality behind a well-
defined network interface. They are typically long-running processes exposing

and expecting a higher-layer protocol on a specified port number. By connect-

43

Chapter 4

ing to that port in a longer session or occasionally, an application becomes
loosely distributed because some of the logic is executed in another process.
Services in the wider sense encompass both programmatic and human interac-
tion. Humans as service consumers interact with websites or virtual desktops
among other human-computer interfaces, using specialised client applications
such as web browsers or desktop widgets. Programmatic interaction on the
other hand exposes Application Programming Interfaces (APIs) based on tex-
tual or binary network protocols. The interaction in terms of message contents
and message exchange patterns is then controlled on the code level, either by di-
rectly composing the messages or by leveraging programming language-specific
Software Development Kits (SDKs).

From a service consumption side, the service functionality is of primary in-
terest. Services in the field of data science may offer the definition of projects
or spaces, data storage and retrieval, data transformation and format con-
version, queries, model serving, execution of predefined or supplied code and
many other functions.

From the service provisioning side, notable configuration includes the net-
work interface to bind to, the port number and permitted authentication meth-
ods, if any. As the service listens on the port number to handle incoming
requests, it would have to interrupt the listening during the handling, leading
to poor scalability. For this reason, multiple techniques exist to parallelise
request handling. The first is the threading model, in which for each incom-
ing request from a client, the service spawns a new thread that handles the
communication with that client. This is very fast but also requires careful
programming due to all threads sharing the same address space with a low
degree of isolation. The second is the process model in which a full OS child
process is created per request. This takes a bit longer (still in the milliseconds
range though) but offers stronger isolation. The third is the proxy model, in
which the actual processing is conducted on another machine and the service
endpoint only performs input and output redirection, which saves CPU time.
Various combinations and optimisations exist such as maintaining pools of pre-
spawned threads or processes. Apart from high scalability, services can also be
outfitted with high availability in terms of multiple instances. Requests may
be redirected to one of those instances through load balancing at the client,
DNS or proxy level, or they may be redirected to standby machine in case the
primary machine is no longer available.

Services may be made discoverable with a well-defined declarative interface
description or service description. Such descriptions first define permissable
input and output messages including composite types on the interface level,
but they can also cover messaging patterns, example requests and replies,
and other aspects. Service descriptions with languages such as OpenAPI or
the RESTful API Modelling Language (RAML) are common especially in the

44

Concepts: Infrastructure

field of web services that communicate over HTTP with pairs of requests and
replies.

Service-oriented platforms encompass multiple complex multi-tenant soft-
ware services that are typically accessed by users through an overarching web
interface and connected to data processing services and backend services such
as databases or file storage. Their architecture often follows a three-tier design
with frontend, processing logic and persistence tiers, where each tier is not
necessarily monolithic but can also be composed of multiple services, includ-
ing microservice compositions. Platforms either derive users and permissions
from the underlying operating system, or define their own model with the pos-
sibility to manage users, groups, roles, permissions, authentication methods
and credentials. Many times, users can then generate credentials on their own,
such as API keys, to facilitate the binding of clients to programmatic service
interfaces.

Such platforms can be self-hosted or operated by a commercial entity. The
former requires access to computing infrastructure as well as sufficient knowl-
edge and skills of operating system administration. The latter types require
registration for accessing most functionality. Both operational models may
pose different risks from a privacy and security perspective. For proprietary
commercial platforms, additional vendor lock-in risks exist.

Online services and platforms can be differentiated not only from a technical
and operational perspective, but also on the business and legal terms of their
operational model. Often, mixed models are used. A platform may require
registration and filing a credit card, but gives a certain amount of free resources
for first-time users before requiring the users to choose from regularly priced
plans, either with fixed monthly price or with pay-per-use accounting and
billing.

4.4 Parallel and High-Performance Computing

As explained for the request handling in services, scalability can be achieved
through multi-threading or multi-processing, especially in conjunction with
multi-core hardware. In general, multiple processors (CPUs/GPUs) can con-
currently process partitioned data or perform other parallel activities. As a
result to the denser use of computing resources, the overall processing time
(wall-clock time) shrinks almost proportionally to the number of processors,
although constrained by overheads. Those are not always predictable but
are captured by a number of mathematical laws such as Amdahl’s law, the
law of Gustafson-Barsis, Sun-Ni and others leading to upper bounds for the
possible speedups through parallelisation. Programming frameworks such as
OpenMPI support the practical acceleration through parallelisation down to
the code level, for instance, by detecting loops over data structures with no

45

Chapter 4

causal dependencies between iterations. Message passing to synchronise par-
allel processes and tolerance for process failures are among the features that
make parallel programming possible for average-skilled engineers. The support
also happens at the data level with frameworks proposing suitable partition-
ing schemes so that the resource utilisation is maximised. From a cost and
sustainability perspective, one should nevertheless be aware of the increased
resource use. Slower batch processing may be an alternative to wall-clock time
reduction for some scenarios.

Parallel computing with dedicated programming frameworks is sometimes
offered as a distributed service for modest speed-ups beyond the number of
CPU cores in a single system, i.e. for two- and low three-digits numbers of
CPUs across systems. This evolves parallel computing into distributed par-
allel computing by offering capable high-level interfaces on top of the basic
crunching. These interfaces allow for job submission and automatic distribu-
tion across machines along with the already mentioned functionalities known
from parallel computing. Often, the distributed computing is then also subject
to heterogeneity effects, with some CPUs finishing faster than others or some
network links being slower than others, making predictable computing times
a challenge.

High-Performance Computing (HPC) speeds up computation even more
by massive parallelisation across a high number (hundreds or thousands) of
compute nodes within a larger system or cluster, sometimes also within a su-
percomputer. Application programs are prepared for use on these clusters by
internal parallelisation as well as primitives to synchronise the parallel activ-
ities such as independent loop iterations, often with message passing. The
compute nodes are not freely accessible, and the compute time cannot be cho-
sen freely. Instead, a compute job is defined, consisting of the program and
necessary input data, and scheduled to be executed at the next possible time,
within the allocation constraints. For instance, a user may be given a compute
time of 1 hour across 20 nodes, and the program should be designed to max-
imise this allocation, ideally keeping partial results and being able to continue
the computation in case of exceeding that allocation. A workload manager
such as Slurm is taking care of the scheduling along with monitoring and pro-
duction of execution statistics. Hence, HPC is suitable for batch processing of
computationally intensive jobs such as number crunching and statistics, and
often supported by specialised OSes such as Cray OS or Raise OS apart from
tuned vanilla Linux setups.

HPC clusters are operated commercially but also within universities and
national computing centres, covering scientific applications but also several
data science-related tasks. In addition to the compute nodes, they often pro-
vide login nodes on which users can prepare the jobs and inspect the results.
The global Top500 list informs about the peak performance achieved with HPC

46

Concepts: Infrastructure

machines every couple of months, but also in this community, sustainability
concerns have become more important with the Green500 list, PUE and energy
efficiency metrics and other indicators.

4.5 Cloud Computing

Cloud computing refers to the provisioning of applications, middleware and
data through a set of infrastructure and platform services, collectively and
colloquially called a cloud. These services are programmable and elastically
scalable, they are provided on demand and, in a commercial context, they
are metered and billed depending on the usage. The scope of the platform
services relates to the platforms mentioned in the previous section. It en-
compasses the fully managed hosting of applications as virtual machines and
containers, of data through various storage and database services along with
other middleware, of network-specific functionality (DNS, HTTP gateways), of
development services (Git, CI/CD), of large-scale data processing and machine
learning interfaces including HPC and of many other functionalities.

Private cloud computing infrastructure is self-operated atop virtualisation
and containerisation technology. Examples for these so-called cloud stacks are
OpenStack, Kubernetes and OpenShift. For reliable storage, examples include
Ceph and MinlO. Some of those stacks are also prepared to be run locally
for development purposes, such as various flavours of Kubernetes including
Minikube, Microk8s and K3s. Nevertheless, operating such basic infrastruc-
ture is typically outside the scope of a data scientist or engineer even with a
faible for DataOps. A small misconfiguration can have serious and irreversible
consequences such as data leak or data loss. On the positive side, a private
cloud gives a maximum amount of freedom and flexibility, especially for trying
out new technologies.

Many smaller commercial cloud providers exist on a national level in case a
private cloud is not an option. Typically, these public providers operate their
service portfolio based on existing cloud stacks. However, they do often not
extend beyond simple application deployment and hosting, and their physical
presence in many cases encompasses a single data centre or a pair of primary
and secondary (failover) location. For most Small and Medium Enterprises
(SMEs), this is more than sufficient, but a lack of support for diverse deploy-
ments (edge, serverless, accelerated computing) may become apparent soon
even for them. A commercial but not-profit-oriented variant are institutional
clouds operated, for instance, by national research and education networks for
academic purposes.

Large multinational cloud providers, the so-called hyperscalers, all provide
fully managed services for all target groups including a rich variety of offers for
data scientists. Often these are provider-specific and sometimes even domain-

47

Chapter 4

specific, such as analytics services for the health domain. These providers
operate dozens of data centres in multiple regions. Additionally, the hyper-
scalers operate smaller edge location in order to reduce the network latency
for time-critical messaging and computation, such as processing data from IoT
devices. The global presence allows for operating responsive follow-the-sun
services for a global audience, while it is less impactful on time-tolerant batch
processing. A rich portfolio of turnkey services especially for data ingestion,
processing and analytics is available at all hyperscalers. While often com-
petitive in portfolio and pricing, failures in hyperscalers do occur frequently,
often with devastating impact for large parts of the economy. Moreover, they
are typically not well integrated into local research, innovation and supplier
structures, leading to long-term issues with digital souvereignty.

Hence, a conscious and informed choice of the operational model with
clouds, as a basis for DataOps, is crucial. More background information on
three typical cloud scenarios is consequently given next.

4.5.1 Full application hosting

In this model, hypervisors, container engines and programming language-
specific frameworks (e.g. web applications or function executors) are offered as
managed services, ready to ingest custom program logic in the form of virtual
machine images, container images or program code, respectively. This logic
needs to adhere to certain conventions concerning port numbers, environment
variables and lifecycle behaviour. Likewise, an application needs to be broken
down into parts that fit into this environment, with appropriate glue in the
form of triggers and messages in between. In a layered cloud environment,
basic program execution is referred to as Infrastructure-as-a-Service (IaaS),
whereas higher-level program management along with development and mid-
dleware services is referred to as Platform-as-a-Service (PaaS). The running
application, serving multiple end users or tenants through a web interface or
other interfaces, is then referred to as Software-as-a-Service (SaaS). However,
all of these collective *aaS (or XaaS) terms are often used in a blurred man-
ner in commercial practice and are merely a vague indicator of the service
functionality and characteristics.

4.5.2 Partial hosting and on-demand offloading

Both in fully public cloud-hosted and in self-operated, private cloud-hosted
scenarios, it might be useful to speed up program execution or achieve greater
functionality by ofHloading crucial parts of the program and data to another
cloud. Such offloading requires bundling the credentials of the secondary of-
floading cloud with the application code running either on the primary cloud
or on cloud-attached devices such as mobile phones or edge machines. It

48

Concepts: Infrastructure

might also require workflow orchestration so that the offloading happens with
the right context. Multi-cloud and cross-cloud frameworks such as Crossplane
attempt to abstract away from the concrete cloud runtime locations. They fa-
cilitate programming in the large across execution technologies and providers,
but are still emerging and neither required nor recommended for data scien-
tists.

Similarly, data can be offloaded to storage services while performing the
computation in a conventional form. This is especially useful for differen-
tial storage, in which data archiving happens across providers for maximised
durability. The commonly used storage abstractions (FUSE, RClone) offer
support for over 40 commercial cloud services and eliminate the network pro-
tocol differences between these services, presenting them all as unified storage
resources.

4.5.3 Cloud backup

Almost the inverse to selected offloading of computation to the cloud is merely
using the cloud as occasional backup for data. All primary data remains else-
where, but sending encrypted data into a cloud storage service is cost-effective
(ingress is usually for free), protective against data loss (although recovery
egress will cost), and reasonably secure against data leaks. If infrastructure
can be self-operated and hyperscaler service offerings are not needed, then this
cloud usage pattern should be evaluated. Data can be synchronised to the
cloud in intervals or based on events. Moreover, a trade-off between confiden-
tiality and functionality can be achieved: all unencrypted data can still be pro-
cessed by cloud services, for instance for analytics dashboards, and even some
forms of encrypted data (using homomorphic, order-preserving and structure-
preserving encryption) can still be put to constrained use without revealing too
much. Lastly, anonymisation algorithms can be applied to maintain data char-
acteristics while hiding the most concerning aspects, in particular Personally
Identifiable Information (PII) from a privacy angle.

Repetition

1. Would a service offered on the IP address 127.0.0.1 be reachable from
other computers?

2. A web service should be formally documented. Which language can be
used for that purpose?

3. A latency-sensitive software function is to be deployed at massive scale
to respond to vehicle movements. Would the deployment be more suitable
in cloud computing or in high-performance computing environments?

49

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 5

Applications and Tools

In this section, the foundational and conceptual knowledge conveyed in the first
part of the book is put into practice in a local system context. This refers to
a number of applications, primarily in the form of small composable tools and
utilities that run locally on the interactive workstation of the data scientist
or within the personal account on a remote server. These applications and
tools support the exploration of the operating system and the juggling of data,
models and code on that system as needed. Whenever appropriate, families
of semantically identical or at least very similar tools are outlined first. To
keep the text compact, at most one of the alternative implementations within
each family is explained in detail. That does not imply that the alternatives
are not valid choices depending on the scenario and surrounding conditions.
Appropriate further reading pointers are given in selected cases to allow for
making an informed decision about viable options.

5.1 Fundamentals

In order to work with local data processing and management tools efficiently,
one has to understand a number of underlying concepts. Good tools are opti-
mised for one task but also configurable and composable to be able to accom-
plish more complex tasks. Depending on the operating system, these concepts
are more or less implemented on the operating system level or within third-
party tools. Conventionally, Unix-like systems such as Linux and Mac OS
X have had strong support with many pre-installed tools, whereas Windows
has had limited support for many common tasks especially in networked en-
vironments. Nevertheless, all OSes evolve and, judging by their footprint of
requiring multiple GB of storage space for installation nowadays, ship with
an impressive number of tools out of the box. Generally, any functionality

51

Chapter 5

already implemented in a tool and battle-tested in engineering scenarios saves
time and effort to re-implement the same functionality, including in a higher-
level programming language such as Python.

When interfacing with computers, the input modality or user interface is
a primary concern. Tools are either headless, requiring no user interaction,
or assume input and output in formats such as plain text (TUI, or Text User
Interface), raster graphics (GUI, or Graphical User Interface), speech (VUI,
or Voice User Interface) or, still rarely, gestures, eye movement or neuroelec-
tronics. The history of computing has favoured text-mode tools, in alignment
with textual programming languages, for automation and control tasks, which
therefore form the focus of this chapter. Text refers to characters that are
human-readable in the mastered languages and also human-writable, which
comes with some challenges due to restricted keyboard layouts. The output
of the text-mode interaction can be based on a raw line-based terminal where
printing occurs sequentially but the cursor can be shifted as well as the terminal
cleared. The interaction can also be done on the basis of a text-based navi-
gation menu, with the background of text characters forming into rectangles
that represent menus and input widgets. Foreground font attributes such as
colours, underlining and bold face are also commonly supported by terminals
to improve the text appearance. Limited support for mouse actions is provided
by some text-mode applications, but typically the keyboard is the main input
device. While the era of true text terminals (i.e. text-only combinations of
screens and keyboards) has long been over in favour of high-resolution displays,
the concept of terminals still exist today through terminal emulators, virtual
terminals and virtual keyboards.

Such text tools, accessible through a terminal, work in a controlling oper-
ating system environment, typically a shell, that runs itself in a terminal as
its main interaction point while putting itself into the background whenever
a tool is in the focus. The shell completely supervises the tool lifecycle and
facilitates composition.

A shell running as OS process permits navigating the filesystem and inter-
actively entering the name of an executable on the search path. It then starts
that executable as a subprocess, either in the foreground or in the background,
with the working directory of the process set to the current directory of the
shell. Tools might also be launched by other tools programmatically. While
some tools strictly abide by the principle of being optimised for a single repet-
itive task, the behaviour of many tools can be adjusted to a certain degree.
This can be accomplished statically before or during the invocation by pa-
rameterisation, through environment variables, or through configuration files.
Moreover, some long-running tools allow for dynamic reconfiguration through
OS signals, configuration file updates and other techniques. Command-line
parameters, options and arguments are specified as a space-separated list after

52

Applications and Tools

the command name. They are then interpreted by the command depending
on its implementation; for instance, a tool created in Python can refer to the
system argument vector (sys.argv).

Once a tool is running, it can either remain quiet or provide text output
to inform about progress and results. In addition to direct feedback from
the execution in the form of standard output and error messages, many tools
(especially those operating in headless mode) also produce log files that can
be inspected after the execution to verify whether the invocation succeeded.

Most OSes support a superset of the shell and tools functionality defined
in the 3rd volume of the IEEE Standard 1003.1-2017 "POSIX" (Portable Op-
erating System Interface) that can be consulted for a more formal coverage.

5.2 Mastering Tools

5.2.1 Text-mode interaction

As text consists of individual characters, being able to read and type these
characters in a fast way is a key skill in effective working with text tools. Read-
ing and understanding character sets is a first step towards that. In Unicode,
most characters have a single width, although some symbols from languages
may have a double width, hence occupying twice the space as a single-width
character. Text terminals are not always able to represent all characters de-
pending on the chosen font (often replacing them by just an empty box)
and moreover may have problems with variable-width character sets. Legacy
tools may also have problems with alphabetic characters beyond the Latin al-
phabet, although this issue has been reduced in recent years. Characters in
Unicode are grouped into language-specific letters and symbols (A-Z, umlauts,
accented letters and others), numbers, visible symbols including punctuation
and mathematic operators (e.g. <, ;) as well as invisible control characters
such as backspace or enter.

With the keyboard, a limited set of characters can be entered directly by
typing a key. More characters become available by combinations: @(shift)-+key,
(Alt)+key, (Alt)J+@+key, or multiple keys pressed in the right order. Multiple
physical keyboard layouts exist to further complicate the input. For high
productivity expressed by fast typing, it is important to understand these
combinations, some of which are not shown on the physical keys themselves.

Care must also be applied when copying and pasting text from other sources
such as web pages and PDF files. Often, they embed formatting and text
modifications meant only for human consumption such as ligatures, ellipses
and adjusted quotation marks (compare: ,fi...“ and "fi..."). Search and replace
patterns are then needed to make such text usable in the human-computer
interaction. Pasting with (Ctrl)+(Shift)+ helps removing formatting.

53

Chapter 5

Raw typing speed alone is often insufficient to be productive. Using macros
or user-defined functions to avoid typing in the first place is often possible
within shells, text editors and other tools. Moreover, interactive text input
often allows for retrieval of the previously entered text for modification, which
is another timesaver.

5.2.2 Types of tools

When choosing an appropriate tool, one should take a number of considerations
into account. The first one is documentation. Good tools are documented with
regard to what their purpose is, how they are configured and invoked (including
examples), what error situations may occur and what standards they follow,
if any. The second consideration is interface stability. Tools that have been
around for a long time and are properly maintained by the OS distribution
require less pre-configuration and are less likely to break in the future. This is
important in the context of reducing technical debt when creating scripts for
automating tasks.

In the next subsections, a number of representative tools from various cat-
egories are introduced. There are certainly valid alternatives to any of them,;
however, in order to get the job done, a data scientist is supposed to master at
least one per category, and that one is introduced in sufficient detail. Several
tools exist in multiple flavours, for instance, as stand-alone tools and as Python
modules, enabling the re-use of functionality across working environments.

1. Operating system interaction: Shells, inspection and management of
files, OS interaction, package and container management.

2. Data management: Synchronisation, version control.

3. Data processing: Text search, text processing and numeric processing,
as well as visualisation.

5.3 Shells

Shells are command interpreters and process managers at the operating system
level. In order to control and manage a system, but also to run and use
complex infrastructure, it is essential to understand the basic role of local and
remote shells. Interactive shells provide the command-line interface (CLI) as a
specialisation of a textual user interface (TUI) to further tools and application
programs. In contrast, shell command can also be invoked in batch mode. In
this case, the commands are supposed to be written in a script file that is
linearly interpreted, and interaction is only possible at the level of individual
commands.

54

Applications and Tools

5.3.1 Overview on shells and terminals

Due to historic developments, there is no single shell. Rather, each OS has its
own concept of a shell, and each shell has its own command set and language
for automating the execution of tools. Windows has two main shells - Com-
mand Prompt (cmd) and PowerShell. Typing cmd in the OS start menu allows
launching an instance of the former. These shells are both tightly coupled
to the terminal window, whereas other operating systems maintain a separa-
tion. Mac OS X has the native Terminal.app that uses either Bash or Zsh as
shells; although many users prefer iTerm that adds support for the Tesh and
Fish shells among other features. And Linux has a whole range of shells (e.g.
Bash, Dash, Zsh, Fish, Tcsh, Ksh, Xonsh, Busybox-Ash, Yash), in addition to a
plethora of graphical terminal emulators that make the shells accessible to their
users. These emulators are often strongly related to the corresponding desktop
environments, such as GNOME Terminal, XFCE Terminal, Konsole, ETerm
and XTerm but can be used interchangeably. On a graphical Linux desktop,
one either types the emulator’s command name (konsole, gnome-terminal,
xfced-terminal, xterm, Eterm) or typically finds a menu entry for a terminal
under System or Tools. Even on such systems, a text-mode shell terminal
might be autostarted by default. Switching from the graphical environment to
the text mode is then possible with a key combination such as (Ctrl)-+-Al)-+HE2).
However, this should rarely be needed, especially with graphical terminal em-
ulators that can be started in full-screen mode or switched to this mode via
a menu entry or application-specific key combination, such as (Alt)+(Enter) in
XTerm.

5.3.2 Local shell access with Bash

Bash'| is one of the most powerful shells, acting as an interface between the
user (or user applications), the virtual terminal and the operating system. It
is one of the native shells in Linux and Mac OS X and is also available as
an add-on package in Windows. In this section, Bash is explained in greater
detail as one of the most capable and widely used interactive shells.

Bash commands can be given interactively at the command prompt or as
interpreted files in the form of shell scripts. This is similar to Python, whose
shell (i.e. interpreter) understands both interactive commands and scripts.
However, the Bash language is different from Python in many ways. For
example, built-in command names differ (echo instead of print), variable
assignments must not use any spaces (a=0), and references to variables require
a dollar sign (echo $a). Single-line comments, on the other hand, are given in
similar form preceded with the hash or pound sign (#).

1Bash website: https://www.gnu.org/software/bash/

55

https://www.gnu.org/software/bash/

Chapter 5

Attributed to the rich feature set of Bash is its startup behaviour, which is
often too slow for non-interactive use, i.e. batch scripts. Therefore, alternative
shells remain relevant, such as Dash for non-interactive shell scripts. The mix
of shells might lead to confusion on the user side. A command executes well on
the interactive terminal but does not run in a script. Often, this is caused by
different shells executing the same command, with correspondingly different
behaviour and outcome. As a rule of thumb, all shell scripts should be explicit
about the interpreter in the form of a shebang line as explained below.

A brief introduction to the language and behaviour in addition to practical
Bash handling is given in the work 'Bash Quick Start Guide’ and reference
usage documentation, such as the manual page for Bash (man bash), also
hosted as an online copyl?| This section only documents a few essential Bash
commands and concepts to cover the occasional use, without claiming to be a
full shell programming guide.

The canonical form of interactive usage is bash, leading to a new shell pro-
cess being instantiated. Alternatively, the shell is invoked as a non-interactive
wrapper around a command, i.e. bash -c¢ ’command to be executed’, where
commands may range from simple executables to compound commands with
input-output redirection, boolean logic and other shell execution facilities. A
special form is the login shell, which is invoked automatically upon text-mode
login to the system, either at a local text-mode login prompt or over the net-
work using a terminal emulator. Login shells are interactive but ready different
configuration files upon invocation. The startup of the shell can thus be cus-
tomised through invocation-specific configuration files that are themselves shell
scripts. For login shells, this is primarily the system-wide file /etc/profile,
complemented by the per-user file ~/.profile and further Bash-specific files
in the home directory (.bash_profile, .bash_login). For non-login inter-
active shells, notable configuration takes place in /etc/bash.bashrc and the
.bashrc file in the user’s home directory. This file can source other files,
and this is supported by convention with .bash_aliases. In contrast, non-
interactive shell processes do not read any default configuration.

Bash scripts marked as executable in their file metadata (explained below)
can and should contain a first line pointing to the executable of the shell to
execute these scripts with exactly that shell. This is called a shebang line. For
instance, a script called test.sh might be marked with #!/bin/bash so that
running ./test.sh works and shows up in the process list despite the shell
script not being an executable in the OS sense of the word. This first line is
treated as a comment by the shell itself but instructs the OS loader to invoke
the right shell.

Interactive Bash processes require a controlling terminal, either a native
text-mode terminal of the operating system or a graphical terminal emulator.

2Bash manual page online: |https://man7.org/linux/man-pages/mani/bash.1.html

56

https://man7.org/linux/man-pages/man1/bash.1.html

Applications and Tools

These interactive shells keep track of the current working directory and permit
navigation with built-in commands such as cd (change directory). The com-
mand prompt is configurable but in most cases shows the working directory for
reference. The special character ~ (tilde) refers to the current user directory,
e.g. /home/user, and ~otheruser to the home directory of other users.

Commands to repeat in alphabetic order: bash, cd (built-in)

5.3.3 Bash variables

Variable names in Bash are case sensitive. They start with a letter (restricted
to ASCII) or underscore and can contain further letters, underscores and digits.
Variables are dynamically typed and created by assignment to a variable name
by using the equal sign without surrounding spaces and without spaces in
unquoted values. Exemplary assignments are var=123, var=abc and var="abc
def". Both single and double quotes can be used, with the difference that
other variables referenced within double quotes are substituted by their values,
whereas single quotes force the verbatim assignment. The only exception is
the assignment of special characters in the form of var=$’\n’.

Assigned variables can be used with the dollar sign prepended, such as
$var. The most common case shows their value interactively with the shell
built-in command echo, as in echo $var. While the echo command tolerates
an empty argument in case the variable is not set at all, other commands do not
necessarily tolerate the same. To enforce passing an empty argument instead of
no argument in this case, the recommended notion is enclosing the variable in
quotation marks, resulting in the instruction echo "$var". Another difficulty
is that, in a string context, Bash would sometimes not know the boundaries of
a variable name, as in echo "$numberhouses". The boundaries can then be
supplied explicitly, as in echo "${number}houses".

Bash scripts and functions can be parameterised; while $0 refers to the
script or function name itself, $1 and following arguments contain the parame-
ters. They can be tested for being empty or not with an if-clause involving for
instance test -z "$1". In that case they should always be enclosed in double
quotes, because the variable may not exist, leading to a syntactically incorrect
test statement. In Bash, the test instruction can be replaced by square brack-
ets in conditional clauses. For instance, if [! -z "$1"]; then ...; fi
only executes a block of code if the first parameter has been supplied.

Bash processes also keep track of the environment through environment
variables. Any process spawned from the shell inherits these exported variables
so that custom program behaviour can be triggered by setting up appropriate
variables. This differs from regular local variables that are only valid within
one shell process. A simple assignment of an environment variable may read

57

Chapter 5

like export a=0, although exported variables by convention use uppercase
names. All variables can be shown with the env command, or alternatively
shown and filtered with printenv. Among the ones often referred to are $USER,
$HOME and $LANG, representing the current user’s identity, home directory and
language setting, respectively, as well as $PWD and $PATH further explained
below. Rarely, there are recommendations to set LD_PRELOAD to inject override
functionality into compiled applications, such as eatmydata to avoid file system
syncs, fakeroot to not let privileged operations fail or faking the system time;
however, this dynamic reprogramming must be used with care. To temporarily
set an environment variable for one particular process without affecting the
shell or other processes, the variable assignment can precede the command, as
in forcing a particular language: LANG=en_US <command>.

While environment variables are a portable concept and also work in shells
other than Bash, there are additional Bash-internal variables predefined by
the interpreter instance and partially affecting the programming behaviour
of the shell itself. Examples include OSTYPE and HOSTTYPE giving information
about the operating system, EUID containing the effective user id of the current
process and IFS, the internal field separator used when reading from sequences
of data. These variables are not shown in env. To nevertheless include these
variables but also other internal definitions such as functions, and to see all
entries in the entire namespace of the running shell, the set command can
be used. Shell-internal variables are explained later in the section on shell
programming.

Special variables exist in Bash to retrieve the current shell process identifier
($$) and its parent ($PPID) and to generate a random integer number in the
range 0-32768 ($RANDOM).

Commands to repeat in alphabetic order: echo (built-in & executable),
env (built-in), export (built-in), printenv (built-in), set (built-in), test
(built-in)

Environment variables to repeat: $$, SHOME, $IFS, $LD PRELOAD,
SLANG, $PATH, $PPID, $PWD, SRANDOM, $USER

5.3.4 Bash commands

The imperative vocabulary of shells consists of both built-in and executable
commands, where built-in commands are internal to the shell (part of the
default vocabulary) or provided by the user within the shell programming
environment, and executable commands refer to programs found in the search
path. A number of executables are always installed by default on any system,
whereas, sometimes, useful tools exist but must be regularly post-installed,

58

Applications and Tools

referred to as non-default or external commands. This is especially true for
services (daemons) and other middleware.

The search path for executables, expressed as environment variable $PATH,
is interpreted as a list of absolute and relative directories separated by colon
(:). New entries can be prepended or appended to it as necessary. The order of
evaluation is from left to right. As soon as an executable matching a command
name not available as internal command is found, it is taken as a match. Hence,
this paths list has similar semantics to the variable sys.path for searching
modules to be included in Python. Notably, the default path does not contain
the current working directory by default (.), and therefore executables not on
the search path need to be addressed by relative or absolute path, such as:
./myprog or /opt/myprog. Alternatively, the paths list can be extended to
include the current directory (export PATH=.:$PATH). In that case, running
just myprog works. Attention should be paid to this because it is at risk of
changing behaviour when accidentally a globally installed program is shadowed
by an executable produced in this directory. With the which command, the
first matching path for an executable is informed.

The most trivial built-in is the colon (:), a no-op command that does
not do anything but having command semantics, similar to pass in Python.
POSIX defines around 20 built-ins while modern shells support a few more.
Programmable shells also permit the creation of custom internal commands.
Bash in particular allows two kinds of custom commands: simple aliases (with
the built-in alias command) and arbitrarily complex functions. The reso-
lution order matters so that sometimes external commands are shadowed by
built-ins with slightly different behaviour (echo, but also time and kill intro-
duced later). For instance, when talking about echo, this might refer to the
shell built-in explained before or to the namesake executable on the default
path, which is not much different (/usr/bin/echo), or potentially a self-built
executable in the current working directory in case that is part of the search
path. The type command, similar to the function with the same name in
Python, tells about what type a command name is of (built-in command,
user-defined function, alias, external command/executable or reserved name).
A brief documentation for built-in commands may be shown with the help
command.

Commands are entered on a per-line basis at the command prompt. Com-
mand names may be autocompleted with the Tab (tabulator) key (&). If the
completion would be ambiguous because multiple commands with the same
prefix exist, the Tab key needs to be pressed twice to show all of the candi-
dates. For instance, typing e<tab><tab> shows echo among other command
options. After completing a command with the key, the command is
executed and the result is shown before returning to the prompt. Previous
commands may be retrieved in order by pressing the Arrow-up key. Search-

59

Chapter 5

ing through previous commands is possible by pressing (Ctr+@ followed by
a search term. When composing the input at the prompt, further quick nav-
igation is possible with, for instance, (Ctr+@ and (Ctr+@ to jump to the
beginning and the end of the input line, respectively. With those few key-
board strokes, entering commands becomes efficient and the shell becomes an
indispensable tool for automating tasks.

Complete commands in Bash consist of the case-sensitive command name,
either built-in or an executable, and a number of options, parameters and
arguments, all separated by spaces and otherwise defined in an application-
dependent way. Values with spaces can be quoted with * (single quotes) or "
(double quotes). The quotes may be combined, but if single quotes are used
in the outer scope, then variables are not expanded within it. Arguments with
placeholders (7 for single characters, * for multiple characters) are expanded
based on the content of matching files and directories in the underlying filesys-
tem, through so-called globbing, but only if there is at least one such file or
directory. Otherwise, the placeholders remain in place verbatim, which is often
not the intended behaviour. There is also a limit to the size of the argument
list. Hence, copying (cp *.jpeg myfolder) might fail if the number of files is
too high; in that case, an iteration over all files with a for loop or with the
find command must be used. Overall, shell globbing is a powerful feature but
must be used with care due to the mentioned and often not obvious limitations.

Multiple independent commands may be chained for serial execution by
; (semicolon), although that is not recommended as it impedes readability
compared to placement across multiple lines. With the parallel wrapper
command, multiple instances of the same command or other independent com-
mands can also be run at the same time. Lastly, the pipe operator | is able
to chain dependent commands such that there is a data stream flow from the
first to the last while they execute in parallel.

An example invocation combining both piping and parallelisation is to
shorten the execution time by converting multiple photos from the digital
camera to a lower resolution. It could be achieved as follows: 1s Px.JPG |
parallel convert -scale 1200 {} S{}. As a result of involving the exter-
nal conversion tools, each image (e.g. P1020.JPG) ends up downscaled and
renamed (SP1020.JPG). Drawing from the way parallel works, one can con-
cluded that external shell commands can be divided into two groups: regular
commands, and wrapper commands that execute commands given as param-
eters. Among the more useful wrapper commands beyond the ones already
mentioned are stdbuf to change especially the output buffering behaviour
and timeout to run a command under a time barrier.

All commands are executed in the foreground, blocking the shell from pro-
ceeding, but they can be put into the background either at invocation time by
appending & (ampersand) or after interactive invocation by pressing (Ctrl)}+@

60

Applications and Tools

(suspend) followed by the built-in command bg (background). Likewise, pro-
cesses can be brought to the foreground again with fg. Applications can be
cancelled and terminated with (Ctr}+@. In practice, this job control is only
useful for batch processing, whereas some programs are meant to run inter-
actively in the foreground as they take over the entire terminal and do not
leave any output trace after termination. Batch output can also be redirected
to a file, assuming the specified file location is writable for the current user.
Writing and overwriting the file is achieved using the > operator for regular
output and 2> for error output, mirroring the ability to redirect input with
<. Appending to the file without destroying previous content is also possible
with the >> operator. If output should still be visible while at the same time
be captured to a file, piping can be used as follows: command | tee <file>
for overwriting, and using tee -a <file> for appending.

Subcommands can be executed and their output captured with the back-
tick character (¢), as in: command ‘subcommand‘. The subcommand is then
executed first, and its output is placed in lieu of the backticked placeholder,
effectively executing the first command with the subcommand output as ar-
gument.

Bash contains built-in facilities for integer arithmetics, for instance, echo
$(($a+1)) and basic support for advanced data types such as dictionaries.
For more precise calculations and more versatile data structures, external tools
must be used. Finally, Bash processes can be quit with the exit command,
like Python but without the parentheses, or alternatively the keyboard com-

bination (Ctr}+(d).

The following listing shows exemplary shell commands with an explanation.

echo "a b c" # output the string "a b c”" to the terminal’s
standard output channel

sleep 5 # do nmothing for five seconds

sleep 5 & # do nothing in the background, while
liberating the command prompt

ls -1 /etc > “/conffiles.txt # create file with list of
system configuration files

Like the built-in help command in Python, it is often possible to obtain at
least basic documentation on commands via manual pages. The representa-
tive command man 1s documents all possible parameters for listing files and
directories. For built-in Bash commands, the help command is used instead.
Finally, when it becomes hard to keep the overview, the clear command can
be invoked to clear the screen. In case the terminal is severely messed up and
no longer produces linebreaks, the reset command can help to bring its state
back to order.

61

Chapter 5

Commands to repeat in alphabetic order: bg (built-in), clear, cp, fg (built-
in), help (built-in), man, parallel, reset, sleep, tee, type (built-in), which

Environment variables to repeat: $PATH

5.3.5 Remote shell access with OpenSSH

Oftentimes, the data scientist’s local workstation environment is considered
unfit for a certain task due to general resource shortage (disk, memory, pro-
cessors), lack of specialised resources (especially GPUs), outdated or unsuitable
OS, or the need to collaborate among multiple people. In these situations, a
dedicated physical computer might be set up or a virtual machine might be
instantiated at a virtual machine provider. This machine then serves as a re-
mote machine to which a connection can be established, linking it with the
workstation by allowing cross-machine file access and tool execution.

An interactive and secure remote shell connection to any server can be
established using the SSH (Secure Shell) protocol, most commonly in the form
of OpenSSH. This stateful application creates a remote work session in which
it takes control of keyboard input on the local (client) machine and relays it to
the remote (server) machine, more specifically to the configured login shell of
the chosen user, while relaying back the responses. The OpenSSH client has
over time become a standard tool for remote operations on all major operating
systems — Linux, Mac OS X and Windows. Apart from text-based sessions,
it also permits the forwarding of graphical applications on pairs of systems
supporting the X11 protocol, such as Linux.

The canonical form of usage for a text session is ssh <user>@<server>,
using the default port number (22) and default negotiation of encryption pa-
rameters, the so-called ciphers. This command either asks for a password, or
in case an SSH key is used for authentication, it may or may not ask for a
passphrase, depending on how the key was created.

Graphical counterparts to the SSH CLI are available, for example, putty
as utility on Windows formerly recommended over many years. However, they
might not be suitable for automation in data science-related shell scripts. In
case the standard OpenSSH CLI client is not available on a Windows installa-
tion, it can also be installed in Powershell easily with administrator privileges:
Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0.

Hence, no matter what shells are installed locally on machines, remote shell
access permits standardising shell scripts and other shell-based automation
across teams in a portable manner.

Authentication is performed using passwords or better using a public/pri-
vate key pair that must be first generated on the client. The private key
remains on the machine the user is working one, while the public key can be

62

Applications and Tools

deployed on the remote machine, including in several collaboration services
beyond SSH itself. The usual command to generate a key on the local work-
station is ssh-keygen -f <filename.key>. The command can be simplified
to ssh-keygen upon first use, resulting in the key stored in the default loca-
tion. On Unix-like systems, the private key path is ~/.ssh/id_rsa whereas
on Windows it is C:\Users\<user>\.ssh\id_rsa. The corresponding public
key has the same path, but with .pub appended to the file name. A key can
be protected with a passphrase, although that can also be omitted, especially
when automated batch authentications are planned. Losing a password-less
private key would, however, constitute a grave security risk, and the key needs
to be handled with extra care to prevent that from ever happening.

With OpenSSH, the public key must then be placed into the file ~/ . ssh/au-
thorized_keys on the remote account with locked down permissions by the
account administrator or, if password-based logins are still enabled, by the
user. The permissions require both the .ssh directory and the file to be only
accessible by the user itself including automatically the superuser. Moreover,
unless the default path is used, the key needs to be specified as identity upon
each connection (-i) or the configuration file (.ssh/config) needs to have an
IdentityFile setting for the affected Host entry.

Files are transferred via the SSH protocol with the scp command, meaning
secure copy, in the form: scp <filename> <user>@<server>:<path>. The
path can be omitted in case the user’s home directory is the target. SSH also
supports a secure variant of the File Transfer Protocol (FTP) with the sftp
command. After logging into a system with sftp <user>@<server>, typical
FTP commands can be used to copy files back and forth and to compare the
presence of local and remote files.

Usually, the first file to transfer from the workstation to the remote machine
is the SSH public key to prepare it for use. This procedure is explained in the
following listing. All commands around copying files are explained in greater
detail in a later section.

First, copy the public key to the remote machine, into
the user’s home directory

scp id_rsa.pub user@machine:

Then, log into the machine, and perform remaining steps
there

ssh user@machine

Create the .ssh directory with the right permissions; the
mode 700 is ezplained further douwn

mkdir -m 700 .ssh

Register the public key file

chmod 600 id_rsa

mv id_rsa.pub .ssh/authorized_keys

63

Chapter 5

The commonly used flag -r is used for recursively copying entire directories.
The secure copy commands are explained in greater detail in the section on
file management. A remote shell can also be quit by terminating the shell with
the exit command or by (Ctrl+(d).

More information on OpenSSH usage is available through the auxiliary
article ’'SSH: a Modern Lock for Your Server?’ as well as through online doc-
umentation ®

Commands to repeat in alphabetic order: exit (built-in), scp, ssh, ssh-
keygen

5.3.6 Advanced shell management with Screen and TMux

Sometimes, the interactive use of applications, either shells or other appli-
cations spawned from them, stretches across long sessions beyond the login
period. Due to occasional disconnects when using remote sessions caused by
the SSH configuration or external network events, the login period can some-
times be quite short, and any tool running for more than a few seconds is at
risk of either continuing its execution in the background or even of termination
when no special protection is applied. Screen is a tool which extends remote
shells with the possibility to reconnect to them later without losing the session.
It achieves that by running as invisible layer in between the application and the
shell. The shell runs Screen which in turn spawns a long-running background
process, and that Screen process runs the tool command. It should be noted
that Screen thus protects against disconnects, but not against restarts of the
server itself. Evidently, in such cases the tool must be further protected with
automated restart and internal checkpointing capabilities.

A basic invocation is screen <command>. Screen runs as long as the com-
mand itself, but a preliminary detachment is possible with the keycode se-
quence (Ctr}+-@:(d) (i.e. first pressing the control key () and the letter
A without shift (@) simultaneously, then releasing the keys, then pressing
(d). The detachment drops the user back into the shell Screen was started
from. Closing this shell has then no effect on the screened command exe-
cution. To re-attach, all running Screen sessions can be shown with screen
-list and a particular session can be chosen and restored with screen -r
<session>. Default session names include the terminal number and the lo-
cal host name. Screen sessions can be invoked in the background in the first
place, even with human-recognisable names, by adding the parameters -d -m
-S <name>. Many additional invocation options and key codes for managing
sessions exist. The authoritative documentation for Screen is available onling?),

30penSSH manual: https://www.openssh.com/manual . html
4Screen documentation: https://www.gnu.org/software/screen/manual/screen.html

64

https://www.openssh.com/manual.html
https://www.gnu.org/software/screen/manual/screen.html

Applications and Tools

and the manual page is also sufficiently useful for further customising the use
of the tool.

On larger displays, it may also be desired to split up the terminal estate into
two or more shells. That way, the output of two commands can be compared,
or one command can be inspected while a shell is provided at the same time
to further control that command, among other scenarios.

While Screen has some support for splitting sessions, a small tool not nec-
essarily bound to background sessions might be useful in this case. TMux, the
terminal multiplexer, can do just that. Its canonical invocation is just tmux,
launching a subshell that behaves like the parent shell but accepts special key
codes to manage screen splitting. Commands to a running tmux session are
given by key sequences starting with (Ctrl)J+(b) and followed by another key or
combination of keys. Most importantly, +; creates a new horizon-
tally split pane (@ for vertical split), and (Ctr)+b)(Ctr])+@ rotates through
the panes. Each pane runs a shell by default and can simply be closed by the
command exit or (Ctrl)+(d).

Commands to repeat in alphabetic order: screen, tmux

Repetition

1. How can a user log into the server X with account name Y7

2. How can the same user transfer a file Z into his or her home directory
on the server?

3. The user would like to work on a text over many hours. Which com-
mand sets up a suitable long-running shell session?

4. Which wrapper commands to launch other commands exist?

5.4 Useful shell tools

Data scientists who are familiar with the shell as a working environment soon
understand why it is called a shell: It is just a shell for a lot of tools that
permit interacting with the system and with data. Like a precious pearl, the
interest soon shifts to those tools. In this section, a lot of standard tools
are introduced. The ambition should not be to remember all of them, at
least not at once. Rather, the section makes an attempt to group similar tools
together and explain their relationships, so that looking them up later becomes
a systematic and efficient process. For that matter, seven groups of tools are
distinguished.

The first two sections explain basic overview and exploration tools for the
underlying hardware resources and the operating system, respectively. This is

65

Chapter 5

followed by three groups of tools related to time and event handling, to data
organisation through files and directories, and to data creation and modifica-
tion. Two more sections then dive deeper into issues around networking and
system administration, both of which form the basis of distributed DataOps
in practice.

5.4.1 Hardware resources exploration

In a dynamic world where users roam across different local and remote systems,
getting an overview of the current capabilities on the operating system and
underlying hardware resource levels is often the first step. The commands
free -h, df -Th and 1lscpu (or more verbose, cat /proc/cpuinfo) are used
to convey information about the available main memory, free disk space per
file system and CPU resources, respectively. They are usually called first
on a new system to verify the ability to work. In greater detail, the free
command differentiates between main memory and, if configured, disk-based
swap space as resources to store volatile process data, and indicates the amount
of available, currently used, and free memory. Memory usage occurs as the sum
of all usage per process, with some being more memory-hungry than others.
The free value often tends to be quite low, almost going towards the zero line,
due to the OS keeping used memory pages (blocks of memory) around as cache
and buffer memory and using some pages as shared area between processes.
Therefore, the tool also informs about the net free value, which is often higher
and the value of interest for checking if sufficient memory would be available
when freeing up all disposable pages. While the default unit of the output
numbers is KiB and the output could be processed by automated scripts, the
parameter -h is meant for human consumption and adapts the unit to what
makes sense for a number, such as MiB or GiB. The option -h is not universal
and often implies the invocation of help, but a number of system-related tools
use it to express human-friendly output.

The df (disk free) tool is such an example. It is the equivalent of free
for persistent data stored across multiple storage media and storage-related
block devices, potentially across an even higher number of partitions. Its
often-used option are the mentioned -h for human-readable output and -T
for displaying the partition types, effectively the file systems in use in each
partition. This tool shows not only available and used disk space for each
partition but also where that partition is mounted in the file system hierarchy.
A system consists of at least a persistent partition at the root directory /,
using file systems such as ext/ or zfs. Typical systems furthermore include a
safety-critical and therefore separated persistent boot partition /boot as well
as OS-specific internal volatile partitions outlined below.

The command lscpu (list CPU specifications) informs about the proces-
sor architecture and performance, the number of processor cores, cache sizes,

66

Applications and Tools

hardware virtualisation support and similar CPU information. In contrast to
the other two tools, its output is human-readable by default. For automation
use, /proc/cpuinfo is consulted or lscpu -b is invoked to show all sizes in
bytes, or even lscpu -j to output JSON-formatted data.

To get further information about system resources, a family of 1s-derived
list commands similar to 1scpu exist. For instance, information about periph-
erals can be obtained with 1spci for PCI-connected internal peripherals such
as graphics adapters, disk and network controllers, audio chips and non-volatile
memory. Likewise, especially for workstations, 1susb informs about the USB
hub, devices connected to it, often including the notebook webcam by default,
and plugged in storage media. Not all block devices may be mounted. The
1sblk command shows the hierarchies of volumes and partitions and correlates
them to active mountpoints.

Basic information about available network adapters can be retrieved by
reading the file cat /proc/net/dev. A more comfortable management of net-
work interfaces is explained later. With the covered commands, the capabilities
of all important computing resources (CPU, RAM, disk, network, peripherals)
should be known on any system, and the exploration can proceed further into
the OS-specific processes and structures.

Commands to repeat in alphabetic order: df, free, Isblk, Iscpu, Ispci, Isusb

5.4.2 Operating system exploration

At the top of the hardware resources, uname -a (Unix name with all informa-
tion) gives basic information about the running operating system kernel. A
more challenging question could be which OS flavour or distribution is being
used in case additional software needs to be installed. This is explained in
the system administration section below. The name of a system is not suffi-
cient to see what it does. Revisiting the df output, several internal partitions
mounted in-memory without relation to physical block storage become evi-
dent. Some of them are using tmpfs as in-memory file system, such as /run
for temporary data storage of services and /dev/shm for named shared mem-
ory areas. While the df output is human-friendly, it may omit information
about some more internally mounted file systems, and hence the mount com-
mand gives a complete but less readable information about all file systems in
use, all with highly exotic and system-dependent virtual file systems. This
includes /sys for information on the hardware, /proc for running processes
and /sys/fs/cgroup for process isolation among many others. Additional file
systems may be mounted into the hierarchy from block devices with mount -t
<type> <device> <mountpoint>, alternatively from images as loop mounts
with mount -o loop, or from a directory with mount -bind.

67

Chapter 5

More commands similar to 1scpu exist for revealing OS structures. For
instance, 1lsipc gives a statistical account of inter-process communication,
with 1sipc -m drilling down into shared memory areas. Information about
open files and network connections is given with 1lsof. The more active a
system is with running processes and services, the longer the output of these
commands gets. They are useful especially for debugging, to find out which
process has opened which file among other questions.

The main memory and disk-free commands in the previous section include
information about the current resource utilisation, whereas the CPU-related
statistics only show static capacity information. Going deeper into knowing the
running processes and their computational needs requires process monitoring.
There are tools to monitor all resources combined over time, such as vmstat
1 showing memory and processor utilisation on a per-second basis, but their
output is not easy to interpret and moreover does not reveal the troublesome
processes that might cause a CPU to be overloaded.

Therefore, process-level monitoring is important to find out about the CPU
utilisation and about the activities managed by an operating system in general.
The command ps and the related pstree show the already running processes
along with basic statistical information. Typical invocations are ps wxf to
list all of the user’s processes, and ps wwauxf to list all processes of all users
with all arguments. Evidently, this comes with drawbacks such as verbose
output and lack of highlighting the CPU-intensive processes. A live view can
be performed with top or its fancier cousin htop. Both tools take over the
terminal and need to be terminated with the key (4. In top, CPU-intensive
processes are listed first, yet with the key this can be changed to memory-
intensive processes. In htop, process management works in a menu-based
way. One or multiple processes can be marked with the space key (=). To
terminate selected processes, the F9 key (i.e. E)+E9) on many notebooks)
is pressed, offering the selection of a signal to be sent to these processes, by
default the TERM signal that can be confirmed by pressing the key.

In case a stray process is detected and must be terminated before re-
invoking a command, the kill command outside of top/htop can be used
for that purpose, taking the PID (process id) as parameter. This command
sends a signal to the OS asking it to terminate the process, which works if the
process is owned by the user sending the request or of course when the supe-
ruser sends this instruction. The default signal is TERM, asking for graceful
termination while giving the affected process the ability to perform some last
work or even block the request. A forced invocation would happen with the
KILL signal, as that can not be blocked, via ki1l -KILL <pid>. Further use-
ful signals from a user perspective are STOP to pause a process and CONT to
continue its execution, while many other signals are sent by the OS itself to be
handled by the process. Applications can implement handlers for interceptable
user-defined signals (USRI, USR2), for instance, as Python methods.

68

Applications and Tools

If multiple processes are running with the same name, their PIDs can be ob-
tained with the command pidof <program>. For example, pidof bash shows
the identifiers of all active Bash processes, including both executed scripts and
interactive sessions. With options such as -s (single shot) or -q (quiet, only
report existence of at least one process via exit status), this tool is useful in
shell scripts to detect for instance stray instances of a program, especially in
conjunction with PID files, and to force termination of all instances in up-
grade scenarios. Combining the functionality of pidof and kill, the killall
command can send signals including soft and hard termination to a group
of processes. Detailed statistics for a single process may be shown with the
prtstat <pid> command.

The command hostname conveys information about the host’s own internal
name, which is typically reflected in the output of uname -a and in the com-
mand prompt appearance as well. As outlined in the description of networking
concepts, the file /etc/hosts can map IP addresses to names for other hosts in
the format <ip> <hostname>. On Windows, the corresponding file also exists
and is located in C:\Windows\System32\drivers\etc\hosts, and on Mac OS
X in /private/etc/hosts. Typically, entries in the hosts file override DNS
queries. Often, though, the local IP address 127.0.0.1 resolves to localhost
whereas the name given by hostname is unknown due to a missing entry in
the mapping file. This might cause problems later working with services that
report unresolved hostnames. The solution is to add both forward and re-
verse mappings to that file and update them in case the host gets renamed.
To work further with the mappings, the host <ip>|<name> command can re-
solve names to IP addresses and vice versa but usually does not consult the
hosts file unless this is configured in the file /etc/resolv.conf; the command
getent hosts is more appropriate in that case. The ping <ip>|<hostname>
command may be used to check for reachability of a host. It always consults
the mapping file, although its communication via ICMP might be blocked by
that host. No tool is perfect, and the necessary trade-offs show especially in
attempts of debugging network issues..

A related command to convey OS identitity information is whoami, showing
the current user that is likewise reflected in the prompt, along with id showing
more information about that user, in particular group memberships. This
encompasses the primary group by name and numeric identifier (GID), but
also secondary groups. Moreover, the uptime command shows how long the
system has been running and under which load. One may even maintain the
history of all uptimes with uprecords. The related command who shows all
users currently logged into the system, complemented by w giving more details
and combining it with the uptime functionality, last showing the full history
of previous login sessions, and lastlog informing about the most recent login
of each user on the system. This typically includes special-purpose system
users created to isolate more complex applications who obviously never log in.

69

Chapter 5

With the additionally covered commands, the exploration on the OS level
is complete. All essential configuration settings and actively running processes
are known, and further tools can be used to perform productive work related
to data, time and space (locations within the file system).

Commands to repeat in alphabetic order: host, hostname, id, kill, killall,
last, lastlog, lsipe, lsof, mount, pidof, ping, prtstat, ps, pstree, top/htop,
uname, uptime, vmstat, w, who, whoami

5.4.3 Time- and event-related commands

The command date outputs the local date and time down to second precision
according to the local conventions, consisting of both language and timezone.
The language and associated culture-specific date format can be adjusted with-
out affecting the time, as in: LANG=en_US date. The value of the environment
variable LANG in this context is either just a language code (e.g. en according to
the international norm ISO 639-1) or a language code combined with a country
code (e.g. US according to ISO 3166-1 Alpha 2). The timezone can be set ei-
ther to the canonical universal coordinated time (UTC) with date --utc/-u
or with a timezone environment variable such as TZ=Europe/Lisbon date.
The file /etc/timezone contains the system-wide timezone setting. Human-
readable times can be converted into numerical timestamps with date +%s,
and converted back from those timestamps with date -d ©1700000000 (short
for for --date). These 32-bit integer timestamps refer to the number of sec-
onds elapsed since the epoch on January 1, 1970. In other contexts, such as in
Python’s time.time () functions, the timestamps also appear with sub-second
precision, indicating a microseconds fraction although the actual precision de-
pends on the CPU quartz and is likely in the milliseconds range. In the shell,
the closest equivalent is date %s.%N, indicating nanoseconds with the same
caveat. Other standard notations of dates can be produced in the sorting-
friendly ISO 8601 YYYY-MM-DD format with the shortcut date -I and in
the human-friendly DD.MM.YYYY format with the string formatting date
+%d.%m. %Y. Several more placeholders exist in the +J, syntax, making custom
formatting trivial.

To measure the relative execution time of commands as delta between ab-
solute start and finish times, two timing facilities are available. The first is
the Bash wrapper built-in time showing real elapsed time of a command with
sub-second precision such as time sleep 2. The second is a more portable
and sophisticated wrapper command with the same name that is shadowed by
the built-in, and thus must be referenced explicitly, such as: /bin/time sleep
2. When supplied the option -p, its less readable output matches that of the
built-in, providing portability also in that sense.

70

Applications and Tools

The performance of program execution as time-based metric is inherently
resource-dependent. It is not trivially possible to slow down a processor or a
disk in case certain situations should be simulated in a controlled environment.
Per process, the priority can be influenced with the niceness level through the
wrapper command nice -Nwith N between -20 (highest priority) to 19 (lowest
priority). However, this only influences the relative priority and depends on
the chosen scheduler, by defaut the Completely Fair Scheduler (CFS) in Linux.
The cpulimit command (that needs to be installed separately) is helpful in
this regard. It can act both as a wrapper command for new processes and
to reconfigure running processes identified by a PID. With cpulimit -1 5
<program>, it would execute a program with 5% allocated CPU share.

On the networking level, throttling data transfer speeds is possible by intro-
ducing Sluice into the pipeline, which is another program to be installed sep-
arately beyond the typical base installation. For example, cat <file.txt> |
sluice -r 100 | ... ensures that all data arrives at the end of the pipeline
with a constant rate of 100 bytes per second. The throttling mechanism works
with dynamically sized buffers, hence high speeds may lead to not all input
data eventually arriving.

To run a command in regular intervals and compare the output in an
interactive session, it can be watched with another wrapper: watch -n 1 1s
-1. Complex commands should be quoted, as in: watch -d -n 1 "pstree |
grep x".

Non-interactive scheduling of commands based on absolute days and times
can be achieved with Cron, or based on relative times pragmatically by a
prepended sleep. Interacting with Cron primarily works by editing its plan
(per user or superuser) with the crontab -e command, using the default text
editor as described in the section on editing files. This requires discipline to
produce a file in the right format, consisting of lines that are either comments
(starting with #) or scheduled commands consisting of a time pattern and
the full command line or environment variable settings. Viewing (listing) an
existing plan is possible with the corresponding crontab -1 command. A
rarely used and rather destructive option is crontab -r to remove the plan
for a user entirely.

The use of Cron requires understanding that as it runs as a central daemon,
its time zone and path settings might be different from the user environment.
To mitigate these issues, the standard Cron implementation supports setting
and overriding environment variables (PATH=...) in addition to scheduled
commands (e.g. * * * * * <per-minute-command>). The five time specifica-
tion fields refer to the minute, the hour, the day of month, the month (counting
from 1) and the day of week (starting with 1 for Monday but also accepting
0 for Sunday). An asterisk signals an unconditional invocation. Cron invoca-
tions are logged with a CRON tag into the system log file /var/log/syslog,
which is useful to consult if a command did not run although it should have.

71

Chapter 5

The behaviour of Cron is that missed schedules, often due to system down-
time, are not repeated, and neither are commands that temporarily failed, for
instance, due to a network transmission problem. Another restriction is that
fine-grained scheduling on a per-second basis is not possible, unless with the
workaround of using multiple invocation with sleep prepended if the interval
is a divider of the 60 seconds of a minute. There are more advanced but not
yet as widely installed alternative implementations such as fcron, xcron or
anacron that overcome at least some of those limitations, although sometimes
by introducing additional restrictions. If SystemD is available, then timer units
can also start service units on specified times including with second resolution.
SystemD is described later on in the system administration section.

When, instead of being triggered by time, events should rather run in
response to certain general events, it is suitable to have a monitoring com-
mand that blocks until the event happens and then lets the next command
run. Specifically for file system events, running fsnotifywait -e modify
/tmp/myfile would block until a content modification happens with the spec-
ified file. This functionality can be used to trigger data processing after data
arrival in an event-driven way.

In summary, the shell offers a plethora of tools related to retrieve absolute
and relative (delta) time information and scheduling. Some of those might
not be enough for production scenarios, and therefore especially for complex
workflow scheduling there are alternatives that are discussed in later chapters
of this book.

Commands to repeat in alphabetic order: crontab, cpulimit (external),
date, fsnotifywait, nice, sleep, sluice (external), time (built-in & exe-
cutable), watch

Environment variables to repeat: $LANG, $PATH, $TZ

5.4.4 Managing data in files and directories

The previous groups of tools were either command-centric or produced minimal
amounts of transient data. Retaining the data and organising structures to
maintain and use the data become important complementary activities that
require a thorough understanding of the file system layout in operating systems
including data and metadata. The subsequent paragraphs thus provide a guide
to working with nested directories and files.

Directories are organised in trees of arbitrary depth, with files being leaf
nodes. Each directory contains two pseudo-entries: a reference to itself (.)
and a reference to its parent directory (..). This is even true for the top-
most directory (/) for which both references are identical. The path to a leaf
node flattens this tree structure. The leaf node name itself is referred to as

72

Applications and Tools

basename, whereas the remainder of the path leading to it is called dirname.
Hence, the namesake commands dirname a/b/c and basename a/b/c would
display a/b and c, respectively.

On most file systems, metadata on both files and directories contains of
three sets of dates (creation, last modification and last access). This means
that reading files causes write modifications on the file system, which might
affect the underlying device’s wear level. Apart from that association, read-
ing and writing are thoroughly separated through permissions, which is the
next information kept in the metadata. Finally, the ownership, the size and
the name of a file or a directory as well as extended attributes complete the
metadata.

The size of a directory represents the number of files and subdirectories
contained in it. The size might not be reported accurately depending on the
file system. For example, on the common ext file system, an empty directory
is 4 kB in size. This number remains constant until around 340 entries, when
it grows to 12 kB, and then further in 4 kB increments for further hundreds
of entries. The reported size of files corresponds to the volume of data stored
in them, although files with explicit sparse data (i.e. with gaps in between
significant data portions) may occupy less space on the storage medium.

The permissions are represented as a triple referring to the assigned owner
of the file, users of the assigned group, and all other system users. Each set of
permissions in turn consists of the read permission (r), write permission (r)
and execute/search permission (x). The latter one refers to the permission to
execute a file or to search through a directory and may be replaced by t for di-
rectories, which implies searching but with the additional constraint that only
owners of the file in that directory (and the super-user) may delete it. The
directory for storing temporary information (/tmp) is a case of rwt. Permis-
sions can also be represented numerically as sums of permission bits, with the
formula x=1,w=2,r=4. Hence, a permission of 755 (owner: rwx, group/others:
rx) refers to normal directories and 644 (owner: rw, group/others: r) to nor-
mal files.

Typing pwd reveals the current working directory of the shell, thus provid-
ing an entry point to the file system. The output should be consistent with
the environment variable $PWD. To find out the effective location, even in the
presence of symbolic links, pwd -P can be used with confidence. Directly after
login, the user’s home directory is set as working directory. After logging in,
the user can traverse the file system and therefore the working directory can be
changed anytime with the command cd <dir> (change directory). The com-
mand without arguments (just cd) resets the working directory to the home
directory. Special shortcuts are cd .., changing to the parent directory, and
cd -, changing back to the previous directory. A user can only change into
directories with appropriate rx permissions. Moreover, shell sessions might be

73

Chapter 5

restricted to prohibit directory traversal at all, especially in case the shell is
launched through bash -r, although this is rarely seen in practice for real sys-
tem users. Such facilities are rather used to lock down user accounts assigned
to automatic program execution.

With the 1s command, all files and directories within the current working
directory are displayed along with their most important metadata, such as the
last modification date. Common invocations include the options -1 for the
long view with all properties and -a to show all files including hidden ones,
i.e. starting with a dot like .hidden. The physical occupation of blocks on
the storage medium is shown with -s, and the reported sizes can be made
human-friendly with -h similar to the same option in df /free. The output
can be furthermore sorted by size (-S) or by modification date (-t).

With stat, all relevant metadata of files and directories such as size and
timestamps are summarised. To get a tree-like view or calculate the disk usage
of all subdirectories and files contained within, the tree and du commands
complement its functionality. The latter command is typically invoked as du
-sh to summarise disk usage in human-readable form.

Files and directories can be copied with the cp [-r] command and removed
with the rm [-r] [-f] commands, requiring recursive operation for directories
and optionally forced mode to avoid confirmation prompts in batch scripts.
The behaviour of the copy command differs depending on whether the target
is an existing directory or not. For instance, cp filel dir/ assuming the
directory exists copies the file into the directory under its original name (i.e.
dir/filel), whereas cp filel file2 create a copy of the file under a different
name in the same directory. If multiple source files are specified, the target is
required to be a directory in any case (cp filel file2 dir/).

While cp duplicates the content of files and directories on the storage
medium, symbolic links (symlinks) can be used to create only references with-
out requiring additional space apart from a single file system entry. The canon-
ical invocation is 1n -s <source> <target>, with source being an absolute
path or relative to the target. The output of 1s -1 then shows an arrow in
the form of <target> -> <source>. Apart from that, the link can be used
normally just like the source file or directory, and removing it does not affect
the source.

Renaming and moving works with mv for files and directories, and with the
regular expression-capable rename for larger collections. The same behavioural
switch as with file copies applies. For instance, mv filel file2 renames a file,
whereas mv filel dir/ moves the file into the specified directory assuming it
exists. New directories would be created with mkdir. The trailing slash shown
at the end of directory names can be omitted. They are shown to clarify the
status of a name as directory, and it is considered good practice to include
such slashes in own commands.

74

Applications and Tools

Working with files across computers can be facilitated over the secure copy
(scp) command SSH as previously mentioned. It is typically invoked with
a local and a remote component. For retrieving a remote file to the current
working directory, the syntax is: scp <user>@<server>:/path/to/file .
including the significant final dot. As the default path refers to the home
directory, any remote file located in there can be specified without absolute
path, as in: scp <user>@server:fileinhomedir . again with the final dot.
For the inverse direction, pushing a local file into the remote location, the
syntax is scp localfile <user>@<server>: with the significant final colon.
Called with the flag scp -r, entire directories can be copied in either direction.
If a directory is specified but the flag is forgotten, the command complains
accordingly.

File attributes in terms of user, group and other permissions are modified
with the chmod command, using either symbolic or numeric syntax. Typical
examples include chmod 755 <dir> and chmod u+rw,g+r,o+r <file>. The
default permissions for newly created files are typically set to the difference 022,
meaning that write access from group members or other users is not possible,
or whatever is configured with the tool umask per shell session. Advanced
attributes such as undeletable or append-only, if supported by the underlying
file system, can be set with chattr and listed with 1sattr. Checksums of
files can be created with the simple sum/cksum tools or with their more robust
alternatives md5sum and shalsum. These checksums can be used to determine
whether the file content has changed including after a corrupted or interrupted
transfer. Differences between two files can be produced with diff (contextual)
as well as with cmp (byte for byte).

As outlined in the concepts, files can be compressed to save space on the
storage medium or during transmission. Commands such as unzip or tar xvf
are useful to extract their contents, while packing is achieved with zip -r
<*.zip> <files/folder> for ZIP files and tar czvf/tar cjvf for archives
with the common GZip and BZip2 compression schemes, respectively. The a
flag selects the compression scheme automatically based on the file extensions,
which is useful when switching schemes often, involving also the supported
LZMA, LZIP, LZOP, XZ and ZStd. Uncompressing works similarly with the
commands unzip and, again automating based on the file extension, tar xvf.
Many applications can work with compressed archives transparently at least
in read-only mode; this applies in particular to text viewers and editors.

Commands to repeat in alphabetic order: cd, chattr, chmod, cmp, cp, diff,
du, In, Is, Isattr, md5sum, mkdir, mv, pwd, rename, rm, scp, shalsum,
stat, tar, tree, zip/unzip

Environment variables to repeat: $PWD

75

Chapter 5

5.4.5 Creating, viewing and editing files

The cat and tac commands output the contents of a text file or multiple files
(concatenated, hence the name) in forward and backward order to the standard
output. The command pair head and tail are also aimed at line-based formats
and display only a portion at the beginning or the end, respectively. A useful
option for cat is -n for numbering the output lines. One might argue that tac
should have the same option symetrically, but while it does not, it is easy to
emulate, for instance, with the command combination tac <file> | cat -n.
The most common option for head and tail is -¥, with N being the number
of lines to reproduce, by default 10. This technique of dynamic options has
grown historically and can also be expressed more according to conventions by
-n V.

With binary files, all of these text-assuming output commands might mess
up the screen unless proper options are given such as cat -v. Hence, the
less command provides a more convenient view of portions of a file includ-
ing a binary-safe mode, and hexdump -C gives a detailed account of binary
contents on the byte level. All file-related commands take one or multiple
filenames as command-line argument, in addition to further options, as in cat
-n <filename> (short for --number).

The dd command is useful for working with binary files. It allows for
creating files with null content or random content as well as partial copies, such
as: dd if=/dev/zero of=/tmp/mynull bs=1 count=100. For that tool, the
options do not take leading dashes. They refer to the input file, output file,
blocksize and number of blocks, respectively. The special device files usable as
data sources are zero and random/urandom, and the one usable as blackhole
data sink is null. Custom FIFOs (first in first out queues) as temporary
buffers allowing for both writing and once reading the same content may be
created with mkfifo. Files can be created by output redirection, such as echo
"text" > <file>. Empty regular files can also be created with the touch
command.

For interactive text file content modification, several text-mode editors ex-
ist. While working with them might not be easy in the beginning for people
not used to text-mode tools, they are inherently powerful and can be found
ubiquitously across systems so that it pays off learning them, especially as
an engineer, to avoid time-costly roundtrips between a local editor and file
copy commands. On the other hand, the file synchronisation might be auto-
mated, avoiding the need for editing in such a way. In practice, constraints
differ and thus a basic mastering of these editors is still recommended. Com-
mon editors are vi (and its modern cousin vim®) as well as nano and joe. If
the choice of editor does not matter, the editor command always works and
brings up one that is installed. On the other hand, this alias is sometimes

5Vim website: https://www.vim.org/

76

https://www.vim.org/

Applications and Tools

invoked automatically, and it might be necessary to understand at least the
basic commands in these three editors to not be surprised by the appearance
while being completely lost in them.

With nano, the user gets to see a title line containing the name of the
editor, and two footer lines containing hints for the most important keyboard
combinations. Specifically, (Ctr)+® quits (and asks whether changes should
be saved if any), whereas (Ctr}+- @ saves changes without quitting. With
joe, or Joe’s Own Editor, as it announced in the footer line on startup, the
corresponding combinations are (Ctrl)+([kJ;(@ for quitting with asking for saving
changes, (Ctr+{;® for quitting with unconditional saving, (Ctrl)+{);(d) for
saving without quitting, and (CtrJ+@ for an attempted quit without saving
with asking in case anything has changed.

In vim <filename>, there is a concept of editor states (modes). As a
result, text editing works within bounded sessions. An editing session starts by
pressing the (i) key, and the escape key ends it again. Direct character-by-
character text modification is only possible within the editing session, whereas
control commands work in between sessions, including after startup of the
editor. These control commands allow for rule-based editing especially of larger
portions of text.

Among the often-used control commands are copy (@/(V)) and paste (®)/([P)).
Similarly, this applied to navigation commands: jumps to the top, (G] to
the bottom. Pressing a number followed by the arrow key jumps in the indi-
cated direction by that number of rows or lines, for instance, would place
the cursor three lines above the current line. Numbers can also appear in other
contexts as multipliers. Search works by pressing the slash key () followed by
the search term (that can be a regular expression) followed by the Enter key.
Working outside of the editing session also applies to further modification
commands beyond paste. The command deletes one character; multiple
characters can be deleted by indicating the distance with a number and the
direction with the cursor (@;number;), and cuts a whole line. An often-
used advanced command is the visual block selection ((Ctrl)+® and pressing
cursor up/down @) along with insertion of characters at the beginning of the
block (; characters;) This can be used to comment out a whole block of
lines with the comment characters defined in a programming language or data
format (#, //, % among others). For more rule-based editing, custom regular
expression may be applied, for instance, with :%s/before/after/.

A whole range of such commands starting with colon (@) are available,
including the program execution with :!<program with arguments>, which
temporarily pauses the editor until the command returns. Entire files can be
pasted with :r <filename>, and as the logical combination of the two com-
mands, :r! <program with arguments>, executes a program and pastes its
output into the currently edited file. For more productive editing with mul-

7

Chapter 5

tiple views on the same file or different files, there is also :split/:vsplit
to create new panes between which the user can navigate with the sequence
(Cul+-@:®). The command without parameters creates another view on the
same file, whereas : (v)split <filename> directly loads another file for con-
current editing.

The colon commands also govern how to save changes and leave the Vim
editor, similar to what was explained for Nano and Joe. A :w command saves
all edits to a file. A new file can be created by starting vim without arguments
and the command :w <filename>. The command :x unconditionally saves
and quits, :q quits a pane the editor if being in the last pane but asks if changes
need to be saved, and :q! unconditionally quits without saving, potentially
losing changes.

Encodings are an important concern when working with data files, espe-
cially those downloaded from various Internet sources. The canonical encoding
should be Unicode, with its standard representation UTF-8. Sometimes, legacy
encodings appear and are either handled on a case by case basis by specify-
ing the corresponding encoding at each file open operation in Python, or the
file is converted before use. With Vim, differently encoded files are shown as
[converted] upon startup, and details about the file encoding can be shown
with :set watching for the fileencoding setting. The appropriate command
to fix the encoding is :set fileencoding=utf-8 followed by a save :w.

Commands to repeat in alphabetic order: cat, dd, editor, head, hexdump,
joe, less, mkfifo, nano, tac, tail, touch, vi/vim

5.4.6 Networking

A number of commands are very useful to know and to master in networked
environments beyond SSH and ping: netstat/ss and netcat for basic net-
working interaction, and wget/curl® to fetch files from the web and interact
with web services.

An invocation of netstat -1tp shows all port numbers occupied by TCP-
listening services, including the service names of those that run under the
same user account. The parameters relate to showing listening services (-1),
restricting to TCP connections (-t) and showing the program names (-p).
Program names are only shown for accessible processes, i.e. own processes of
the calling user or all processes when the tool is invoked by the super user
(root). Even without this option, the PID is shown, allowing stray processes
to be terminated to liberate port numbers. Depending on the service imple-
mentation, the port may still be occupied for a number of seconds before it
is finally liberated. Another useful piece of information is the bind address.

6Curl: https://curl.se/

78

https://curl.se/

Applications and Tools

If it says ::1 or localhost, the service is only accessible from localhost; or
otherwise, from outside as well. Bind hosts are resolved unless numeric display
(-n) is requested.

The command netcat can be used to test simple client/server connections.
First, netcat -1 -p <port> starts listening on a certain port number. A
netstat on a second terminal can verify that the service works. Then, netcat
<host> <port> connects to this service, allowing for bidirectional communi-
cation. The host can be set to localhost if running on the same host as the
service, and it can also be set to an IP address such as 127.0.0.1. Of course,
the client can also be used to communicate with existing services, as long as
they accept a text-based protocol, by specifying a different hostname and port
number.

With wget <url> and curl <url>, it is possible to download files from
HTTP servers. The Wget command by default saves the file, whereas Curl
pastes its contents on the terminal, making it suitable for rather small files un-
less additional parameters are set. Additionally, Curl makes it trivial to inter-
act with web services, including the ability to post data. For instance, the com-
mand curl -X POST "https://httpbin.org/post?a=b" -H "accept: ap
plication/json" submits a JSON request to a web service that parses the
URL arguments and returns an informational JSON structure about them and
other arguments not used in this example. Some web services also require the
content type to be set in order to recognise posted content. Setting another
header solves this problem, as in -H "content-type: text/csv".

For security reasons, it should be pointed out that the often-seen combi-
nation of curling and executing a script from untrusted sources (e.g. curl
https://... | sudo sh) on trusted systems is discouraged. Such com-
mands should be decomposed, executed manually and complemented with a
brief validation of the file contents. This also applies to any advice given on
the Internet on running certain scripts and commands.

On the other hand, too tight security often gets in the way of learning com-
mands. In case a certificate cannot be validated over an HTTPS connection,
both commands allow for switching off the check, at the expense of reduced
security: wget --no-check-certificate and curl --insecure (alias curl
-k).

Commands to repeat in alphabetic order: curl, netcat, netstat, ss, wget

5.4.7 System administration

Administering a system means being responsible for it. The system in question
can be a data scientist’s workstation or notebook, a physical server hosted at
the company premises or a dedicated data centre, a virtual machine obtained

79

Chapter 5

from a cloud provider offering computing infrastructure as a service or a con-
tainer running on any of those. Typical administration tasks include regular
housecleaning tasks, i.e. removal of cruft such as old files and stray processes
to reduce the resource utilisation, keeping the system up to date and secure,
the installation of additional software needed for being productive, and ensur-
ing automation and auditability. Sometimes, unplanned maintenance needs to
be performed, for instance, restarting a service that crashed, evidently after
having found out about this situation.

After having obtained information about the system resources, the first step
on any system is usually awareness about what flavour of the operating system
is running. This knowledge is helpful when consulting documentation on any
problem or when looking for software packages to install. If the operating
system is self-installed, this knowledge is usually given, but otherwise it needs
to be obtained. Due to many evolving flavours, there is no systematic way to
learn the differences in operation and administration. Rather, using different
systems once in a while helps in building up experience.

On Linux systems, there is also no systematic way but rather a heuristic
approach. If the configuration file /etc/apt/sources.list exists, it hints at
the presence of a Debian-based system, e.g. plain Debian’| (indicated by the
existence of /etc/debian_version) or Debian derivatives such as Ubuntu.
These flavours or more specifically these distributions have emerged as most
popular ones over time. They have existed since the mid-1990s and since the
mid-2000s, respectively, and are largely maintained by volunteers around the
world, with plenty of forums and mailing lists available for help. If the file
/etc/lsb-release exists, it may give further information about the oper-
ating system distribution. Other popular distributions include Arch Linux,
indicated by /etc/pacman.conf, Red Hat/CentOS and SUSE. Once a flavour
or distribution is known, it can be put to work.

Providing services on a computer or performing complex data analysis tasks
inevitably leads to long-running processes. Unless a computer is rebooted or
the process crashes, the execution time of a long-running process may be in
the order of hours, days or even months.

Long-running processes ideally provide their own means for inspection, such
as status and progress messages, log files or dashboards. In absence of these
means, to find out what a process is doing, the generic strace (system call
trace) wrapper command provides insights into running processes on the oper-
ating system call (syscall) level. Although not all activities - such as complex
numerical calculations and other internal logic - show up this way, it is possible
to understand much of the OS-interfacing behaviour of the processes monitored
with the command prepended to the usual command name and arguments. For
instance, strace 1s -1 >/dev/null reveals how the list of files and subdirec-

"Debian universal operating system website: https://www.debian.org/

80

https://www.debian.org/

Applications and Tools

tories is read from the current working directory, potentially following child
processes (-f) or attaching to a running process (-p <pid>). The wrapper also
shows the wrapped command’s writes to the terminal on standard output. The
tracing information itself is written to the standard error channel, and due to
output redirection, the tool’s output is suppressed so that both do not mix and
all terminal output comes from the tracing. Somewhere in the middle of much
output, the experienced user can then spot an internal operating system call
called getdents64(), the purpose of which is to get directory entries. These
system calls are functions implemented in the programming language C within
the Linux kernel. Even when programming in C close to the system, they are
usually not invoked directly but rather through portable wrapper functions as
part of the libc system library, in this case: readdir (), and those in turn are
wrapped by the various Python modules close to the system, such as os, in
this case by: os.listdir(). In the reverse direction, this allows for finding
out what exactly a Python program is doing on the OS level.

Most operating systems do not have a concept of persistent sessions. All
processes are lost when a reboot occurs. Moreover, when starting processes
through SSH, they are often terminated along with the session, whereas it
would be desired to keep them running automatically without having to invoke
them through a screen wrapper. In case they crash, perhaps they should be
even restarted automatically. Supervising and autostarting applications rep-
resent an important concept to achieve that and to ensure continuous service
delivery. This applies to both user-level and system-level services. Technically,
it involves setting up appropriate launch scripts and unit files.

With SystemD as supervisor, a system user first needs to be given the per-
missions by the super user to host long-running services with the command
sudo loginctl enable-linger <username>. The user can then deploy and
start a unit file with the unprivileged commands sequence: cp my.service
~/.config/systemd/user to register the unit file in the default location, fol-
lowed by systemctl --user enable my.service to activate it upon next
boot, and finally systemctl --user start my.service to also start it right
away. Whether the service works correctly can be verified with the command
systemctl --user status my.service and ultimately by checking the lis-
tening port with netstat. The service unit file content may be as follows, not
taking automated restarts into account:

[Unit]

Description=My service

[Servicel

ExecStart=python3
WorkingDirectory=/home/username/mydir
[Installl

WantedBy=default.target

81

Chapter 5

If the command is not a long-running service but rather something that
should run in defined intervals, a Cron-like regular command invocation is
possible by setting up an additional timer unit that references the sservice
unit by name, either explicitly with the Unit specification, or implicitly by
having the same name minus the suffix (i.e. my.timer in the example).

[Unit]

Description=My timer

[Timer]

OnUnitActiveSec=30 # or OnCalendar
AccuracySec=1

Unit=my.service

[Installl

WantedBy=timers.target

Several commands are related to the management of such system-wide ser-
vices under the responsibility of the super user, including privileged services
running as root. For all of those, the effective process user is set to root,
expressed by the environment variable $USER. The command sudo service
--status-all gives an overview about the registered services and indicates
active ones with a + sign. A service (for instance an Apache web server lis-
tening on port 80 and thus required to be privileged) might be hanging and
requires a restart. This requires knowing the service name and furthermore
privileged execution through the sudo wrapper command, as follows: sudo
service apache restart. The command informs the supervisor service to
perform a lifecycle operation (start, stop, restart, reload configuration, status
check) on an application service.

The same wrapper command Sudo can be used to edit global configuration
files, for instance in the /etc folder that is write-protected to ordinary users, by
carefully running sudo editor <global-file> or variations thereof. While
incorrect use of an editor may always lead to a loss of data, privileged execution
may furthermore lead to an unusable system, and therefore extra care needs
to be applied to ensure the file is backed up beforehand. This can be achived
with a simple sudo cp <global-file> <global-file>.backup<date> be-
fore editing, although more sophisticated version control and backup strategies
exist and are explained later.

The way Sudo authenticates users is by asking for their system password.
This makes it tricky to use Sudo in non-interactive scripts because the asking
is interactive. As first precondition to gain privileged access, this password
must be correct, but as second precondition, the user or a group the user
is member of needs to be registered for being able to run Sudo in the file
/etc/sudoers.conf.

Privileged command execution may also be necessary for other tasks. Among
them is administering users, primarily the addition of new users and groups

82

Applications and Tools

with adduser <username> and addgroup <groupname> on Debian-based sys-
tems, and the similarly-named useradd and groupadd on other systems. For
testing a new application, isolating the test by creating a custom user and
group may be useful. To achieve the isolation, one would first create a new sys-
tem account with sudo adduser [--shell /bin/bash] [--home /home/tes
tuser] --comment "" testuser, with explicitly chosen login shell and home
directory in case the default values are not applicable. This command first asks
for the Sudo authentication, then twice for the new user’s password, and with
that information it creates the user, a corresponding group, and a home direc-
tory with default (skeleton) content. (It should be noted that the comment
field may still appear as gecos on older systems, derived from human-readable
information attached to the user account originally appearing in the General
Comprehensive Operating System (GECOS).) The new user does not have
Sudo privilege, and therefore an application run under that account can only
cause minimal damage. To proceed, the interactive shell session switches to
that new account (sudo su - testuser), testing can occur, and the test ses-
sion can be closed with exit. Finally, the custom user can be removed along
with the generated group and all files with sudo deluser --remove-home
testuser.

Privileged commands are also required to change modes and ownership of
files owned by other system users (sudo chgrp, sudo chown) and to send mes-
sages to all local users with active shell sessions (sudo wall) on a shared login
system. Executables can be configured to gain elevated privileges automati-
cally upon execution with the set-user-id and set-group-id bits (SUID/SGID),
as in: chmod u+s <executable>. Careful application design involves dropping
these privileges as soon as the privilege-requiring operation has finished.

Lastly, system administration also involves checking log files occasionally.
System-wide logs are stored in /var/log. Many of them are rotated as they can
grow big, marked by a number after the log file name. Of primary interest is
the file syslog that contains kernel and application messages. Appended lines
to that file may be followed with sudo tail -f /var/log/syslog. The log
directory also contains the information base for commands such as last, with
binary files such as lastlog and wtmp, but primarily contains text files, some-
times in subdirectories for more complex applications. In addition, hardware-
related issues might be found out with sudo dmesg (diagnostic messages).

Commands to repeat in alphabetic order: addgroup/groupadd, adduser/
useradd, chown, chgrp, dmesg, loginctl, service, strace, sudo, systemctl,
wall

Environment variables to repeat: $USER

83

Chapter 5

Repetition

1. What is the difference between a TERM signal and a KILL signal?

2. When grepping for a list of processes, the grep command itself appears
in the list. How can this be avoided?

3. How to count the number of current and past login sessions to a system?

5.5 Shell programming

The previously given information on shell variables, shell commands and useful
tools is sufficient for occasional use of a system. For automation, a higher-level
programming language such as Python may be used. Sometimes, though,
data scientists are confronted with complex shell scripts containing all sorts of
programming constructs. Bash in particular is therefore not only a command
prompt but also a programming language on its own. Learning yet another
language might not be favoured, but being able to understand this language
in order to customise or extend scripts is nevertheless a useful skill. In this
section, basic shell programming concepts and constructs are conveyed.

5.5.1 Vocabulary and interaction with scripts

Bash contains a number of built-in commands that, together with the executa-
bles on a system and user-defined functions, form its vocabulary. An overview
can be obtained with help as well as more comprehensively (but missing some
commands unfortunately) with man builtins. The vocabulary can be divided
into flow control, job management, directory bookmarking, arguments parsing
and other groups.

One characteristic behaviour of shell scripts is that, while syntax errors
are fatal, execution errors in commands signalled with non-zero exit status
are ignored by default. The offending lines are then simply skipped, and the
errors in these commands are ignored. In many cases, a stricter behaviour
closer to that of most programming languages is desired. Shell scripts therefore
often start with the command set -e, which makes the shell exit immediately
whenever a command returns a non-zero status.

In turn, this behaviour has led to the convention that tools as well as user-
defined functions return a zero exit code upon successful termination, and a
documented non-zero exit code otherwise. In Bash, exit 1 would adhere to
this convention. In Python, using exit(1) or, to include an error message,
exit("message") achieves the intended behaviour. In other languages, similar
constructs are available to signal a non-successful termination to the shell. The
special variable $7 reports about the exit status of synchronously executed
child processes.

84

Applications and Tools

There are also conventions on how to parameterise tools and functions.
Historically, four main flavours developed. These are short dashless param-
eters (<program> x), long dashless parameters (<program> extract), short
dashed parameters (<program> -x) and, finally, more self-explaining but re-
quiring more typing effort, also long double-dashed parameters (<program>
--extract). The first flavour is still in use with some historic tools but has
largely fallen out of favour, such as ar x <archive.ar> for uncompressing a
compressed file. The second flavour is typically used for subcommands offered
by a complex command, such as git clone. The third and fourth flavour
are very common and often go hand in hand as equivalents, such as vim -h
equal to vim --help. Short options can also be combined, such that -x -y is
equivalent to -xy. Due to the limited set of characters in the Latin alphabet
that are traditionally used for the third flavour, complex programs only assign
such short parameters to the most important options. Sometimes, they match
with the first letter with the long parameter but sometimes they do not, some-
thing to be aware of. For those last two flavours, there are parameters with
and without argument values (e.g. -s or --strict, either binary or with a
default value, versus -s high or --strictness high). The argument value
may often also be appended with equal sign, as in --strictness=high, and for
short-style parameters also without space (-shigh). Its type (string, numeral,
boolean, filename or URL) is defined by the application. In addition, com-
mands may take a variable number of arguments, often files or URLSs, given at
the end of the invocation line. Hence, it is not unusual to see a command with
mixed parameters and arguments in the following form: prog -xy --strict
a.py b.py. In this book, for brevity and rapid practice, the short-style pa-
rameters are used in most places, sometimes complemented by their longer
equivalents.

Shell scripts can thus be parameterised with arguments. Each parameter
is given a numerical variable, with $0 referring to the script itself and $1 to
the first parameter. If the parameter is not supplied, the variable remains
unset and empty. The special variables $@ and $* refer to the whole argument
vector containing all parameters as space-separated list. The difference is in
further passing the arguments internally to functions or commands. The vari-
ant "$*" joins the arguments into one (i.e. becomes $1 in the called function
or command), whereas "$@" keeps the list intact and passes each argument
separately.

More sophisticated parameter parsing is possible with the getopts instruc-
tion. This command is called repetitively on an arguments list and is able to
process short-style parameters with and without argument values. For in-
stance, the following script can be called as script -a -b -c x or in various
combinations thereof and allows its subsequent logic to be adapted to the
parameters. The variable $var contains one of the valid parameters in each

85

Chapter 5

iteration, and $0PTARG the argument value if indicated with a colon as is the
case for ¢ (c:). The loop and condition contained in this script are explained
in detail further below.

while true
do
getopts "abc:" var "$e"

if ["$var" = "7"]
then
break
fi
echo "**x $var [$OPTARG]"
done

Testing for empty or unset variables can be done with test -z "$1" or
alternatively [-z "$1"], a condition that returns 0 if the variable is empty,
and 1 otherwise.

Text including variables is output by echo. The counterpart to assign
variables with user-defined input is read. A typical invocation is by including
a prompt to tell the user what the input should be, as in read -p "Prompt?
" var. The variable $var can then be used for further processing.

Dynamic command evaluation can be performed with eval, a command to
be used sparsely and with extreme care concerning user input. For example,
eval "ls -1" interprets the provided string argument as a shell command
to execute, and a=9; eval "sleep $a" builds and runs a variable-dependent
command. Many more built-in commands exist, but three groups are now
explained in greater detail: job management, control flow programming, and
function definition.

Commands to repeat in alphabetic order: eval (built-in), getopts (built-
in), read (built-in), set (built-in), test (built-in)

Environment variables to repeat: $*, $@, $0..n

5.5.2 Job management

Jobs in the context of a shell refers to active processes on the OS level that
have been spawned from that shell. In addition to global process management
tools (pidof, kill etc.), the shell offers additional management functionality
for the commands directly under its control.

The command jobs displays all jobs. For instance, running sleep 10 &
in the background immediately followed by jobs -1 shows the still running
sleep command along with its PID and its shell-internal job number in long

86

Applications and Tools

format. In case the process terminates, it appears one more time with the
status finished before disappearing from that list. Any backgrounded job can
be foregrounded, taking over the terminal, with fg <job>. A command run
in the foreground can be suspended by pressing (CtrJ+@), assigning it a job
number. The job can then continue in the background with the command bg
<job>. A foreground job can also be terminated with (Ctr}+(©. Hence, any
job is in the status of running, suspended, or finished.

The running shell itself may be terminated with exit or suspended with
suspend. The suspension blocks the shell entirely unless it receives a contin-
uation signal (kill -CONT <pid>|<job>). With many active shells, finding
out the PID of a just suspended shell is not trivial but becomes easier knowing
that the output of ps shows the status Ts+. In a running shell, the special vari-
able $$ informs about the PID. Shell suspension is rarely needed in practice.
It should be noted that the shell command kill, similar to time and echo,
shadows the identically named executable and is therefore able to control both
processes and jobs under the control of the shell.

The command history shows all shell commands executed in the current
session as well as in previous sessions based on session recording.

Commands to repeat in alphabetic order: bg (built-in), fg (built-in), his-
tory (built-in), jobs (built-in), kill (built-in & executable), suspend (built-
in)

Environment variables to repeat: $$

5.5.3 Control flow programming

Bash is an imperative programming language based on conditional branching
and looping. Such constructs can be written across multiple lines but can
also be shortcut by using the semicolon (;) in place of line breaks. While
loops follow the form while <condition>; do <command>; done. For loops
iterate over a sequence of values or a globbed list of files, as follows: for <var>
in <list>; do <command>; done. Loops can be controlled with continue,
jumping back to the first line of the loop body, and break, jumping out of the
loop.

Sequences for iteration are parsed as strings divided by a separator, the
internal field separator (IFS), which by default is set to the space character.
This may collide with spaces in file names, not when iterating over files directly
but for instance when reading a list of files from another file. Hence, the IF'S can
temporarily be set to something else which is unlikely to occur as character in
filenames, such as line breaks. The following code achieves that: IFS=$’\n’;
for fn in ‘cat myfileslist‘; do echo "* $fn!"; done. However, this

87

Chapter 5

alters the field separator beyond the end of the command, so that it should be
saved and restored (ORIGIFS=$IFS; ...; IFS=$0RIGIFS).

Branching and conditional execution may be based on if or case. The
canonical form of a choice between two branches is then either if <condition>;
then <command>; else <command>; done or case <var> in <patternl>)
<commandl>;; <pattern2>) <command2>;; esac.

Commands to repeat in alphabetic order: break (built-in), case/esac
(built-in), continue (built-in), for/do/done (built-in), if/then/fi (built-in),
while/do/done (built-in)

Environment variables to repeat: $IFS

5.5.4 Shell functions definition

Functions are declared by simply typing the function name followed by a pair
of parentheses, and another pair of curly braces containing commands with
significant spaces in between. Similar to a shell script, a function may receive
arguments, which are numbered starting from 1. Hence, the function decla-
ration func(O{ echo "$1"; } leads to a new command func <argument> in
the running shell.

Functions are either invoked explicitly or based on events such as OS sig-
nals. The trap command can be used to intercept system signals such as
SIGTERM and SIGCONT in addition to the two user-defined signals SI-
GUSRI1 and SIGUSR2. For instance, trap func USR1 runs the previously
defined function whenever a signal is received, which can be verified with ki1l
-USR1 $$. All active traps can be printed with trap -p. In practice, trapping
is in demand for cleanup actions that need to be performed no matter whether
a script is terminated regularly or irregularly.

Commands to repeat in alphabetic order: kill (built-in), trap (built-in)

Repetition

1. What may happen if a user types xyz into a shell?
2. What happens when the command kill $$ is invoked?

5.6 Python modules for OS interaction

Although Bash programming is great for automation at the operating system
level, it may be in itself tedious especially for higher-level applications that

88

Applications and Tools

require structure, modularity and more powerful built-in functions. For those,
writing the corresponding code in Python, invoking Python scripts from the
shell or combining Python code with OS-level tools might be the better appli-
cation design. Hence, in the following, six additional Python modules (out of
the larger built-in module list®) of high relevance in the interaction between
Python code and the OS are introduced, and complementary information of
interacting with Python on the shell is given.

5.6.1 Running the Python interpreter

The default Python interpreter is cPython. It is implemented in the C pro-
gramming language and can be invoked on the command line by its versioned
interpreter name python3 or, as used throughout this book, its alias name
python. As the Python programming language evolves, checking the version
with python -V is advisable. For pragmatic reasons, the book assumes the
version to be at least 3.10, although previous versions 3.x should also work
fine for most of the examples.

The Python interpreter enters interactive mode by default similar to Bash.
More specifically, it follows the Read-Evaluate-Print-Loop (REPL) paradigm.
First, it reads user input with the prompt indicating a new command (>>>) or
a continuation of a previous line (. . .). Then, it evaluates the input in the form
of an expression or a statement, such as variable assignments, mathematical
formulas, functions, control flow instructions. Afterwards, it prints out the
return value of any statement or expression, unless it is None, before closing
the loop and reading the next input. The interpreter can be quit with the
command exit () or with the keyboard combination (CtrI}+(d).

When invoked in the form of python <scriptname.py>, the interpreter
instead executes the specified script in batch mode. Nothing is then printed
unless the print () function is used or an uncaught exception is raised, and
no interaction happens unless the input () function is used. A one-liner script
consisting of one statement or expression or a sequence of those separated by
semicolon can also be passed directly on the command line with python -c
"<command>". Similarly, python -m <module> loads a module and executes it
as script, i.e. typically the guarded main code.

There are several environment variables and options that influence the be-
haviour of the Python interpreter. Not all of them can be documented here,
but among the more often used ones are running python -u for unbuffered
output especially when piping the output to another tool invoked on the shell;
and informing about additional module search paths beyond the default (in-
formed as sys.path) with the environment variable PYTHONPATH.

Python scripts can be made executable by using chmod +x and setting

8Python modules: https://docs.python.org/3/library/index.html

89

https://docs.python.org/3/library/index.html

Chapter 5

#!/usr/bin/env python as their shebang line. Due to Python being an in-
terpreted language, similar to Bash, all Python scripts appear in the OS pro-
cess list as merely python. The script name appears at least as second pa-
rameter so that processes can be distinguished with ps x, but using process
management tools such as pidof or killall is then challenging. An exter-
nal Python module setproctitle can be installed from PyPI (pip install
setproctitle) or from the distribution repository (e.g. on Debian-based sys-
tems with sudo apt-get install python3-setproctitle) as solution. At
the start of a Python script, calling setproctitle.setproctitle("title")
then allows for giving a unique name.

In general, it is important to consider the effects of Python code on perfor-
mance and memory use especially when handling very large volumes of data.
Performance may slightly degrade especially for multi-threaded and iterative
operations, which can be remedied by choosing the right interpreter and data-
processing modules. Compared to the standard cPython interpreter, PyPy
is optimised for higher performance and better threading support and can
be invoked as pypy3 to give a faster and more scalable drop-in replacement.
Further alternative interpreters exist, notably iPython, which is known for its
integration into Jupyter notebooks, and MyPy as an emerging interpreter with
support for static typing enforcement. Memory usage in the interpreter may
also increase due to data being represented with metadata in memory. Us-
ing libraries such as Numpy and Pandas that manage raw data without the
metadata helps to avoid this issue.

Commands to repeat in alphabetic order: python, pypy3

Module functions: setproctitle.setproctitle (external)

5.6.2 Modules ’os’ and ’sys’

The os module, along with its submodule os.path, represents the main in-
terface to low-level operating system functionality’ It wraps many of the
functions contained in the main system libraries to make them accessible from
Python in a portable manner. Achieving portability requires discipline in using
the module’s OS abstractions without compromises. For this matter, differ-
ences in operating systems are masked, for example, path separators (/ versus
\ as os.pathsep). On Linux, the os module is primarily the interface to libc,
which in turn provides convenience functions to access low-level functions in
the kernel itself. Therefore, calling one of this functions switches the execu-
tion context from user space to kernel space temporarily. This is not different

908 module documentation: https://docs.python.org/3/library/os.html

90

https://docs.python.org/3/library/os.html

Applications and Tools

from print, which is, however, used so often that it was turned into a Python
built-in function instead of being exported through this module.

Among the commonly used functions is os.system to spawn a new process.
On Linux, the command is interpreted as a shell command, so that all shell
facilities such as pipes and redirections are available. An example invocation
is os.system("ls -1 > /tmp/listing"). Proper care must be applied to
avoid using untrusted input to that function and for properly quoting the
command. Other useful commands are os.cpu_count to get information about
the possible parallelism in multiprocessing and os.kill to send signals to
processes.

To interact with environment variables, the functions os.getenv retrieves
values of variables passed to the Python interpreter with default values for
unset variables, for instance, os.getenv("LANG", "C"). Its counterpart is
os.putenv to update the values or introduce new environment variables. It
should be noted that this only affects processes spawned from the current
one. To effectively update variables within the running Python session itself,
the dictionary-like data structure holding the environment must be modified
directly, following the form os.environ["LANG"] = "C". To avoid a spoofed
user identity, os.getlogin is preferred over reading out the value of $USER,
albeit it does not follow Sudo semantics.

Among the often-used functions related to directory trees are os.getcwd
to report the current working directory, os.chdir to change to a different di-
rectory, os.makedirs to create a new directory unless it already exists, and
os.listdir to report the directory contents. Helpful functions from the sub-
module are os.path. join to construct subpaths for the navigation, the reverse
with os.path.basename to split off the rightmost file or directory name and
os.path.dirname for the remainder, and os.path.isdir/os.path.isfile
to check the type of entry when iterating over a directory as reported by
os.listdir.

The os module is complemented by sys for some OS interaction, mostly
related to the process itself!'Y| This encompasses the handover of parameters to
the Python interpreter or script (sys.argv), the search paths for executables
to be spawned (sys.path) and the default communication channels for input,
output and errors, respectively (sys.stdin, sys.stdout, sys.stderr).

To request the termination of a Python process, even multiple functions
are available: The built-in functions exit and quit take either a numerical
exit code argument (0 meaning success, otherwise failure) or a text message
(None meaning success, otherwise failure message). Failures are treated as
exit code 1, represented by a raised SystemExit exception, with appropri-
ate error message, if specified, written on the standard error channel. These
methods can be overridden in interactive sessions and are unavailable in some

108ys module documentation: |https://docs.python.org/3/library/sys.html

91

https://docs.python.org/3/library/sys.html

Chapter 5

interpreters like iPython when running scripts. Therefore, it is advisable to
use sys.exit, which takes the same parameters. Still, the exception may be
caught by higher-level code, which is often the desired behaviour but as a
consequence does not guarantee termination. Alternative options for forced
termination are os._exit, taking only a numerical exit code, and os.abort,
immediately terminating the process with a failure code.

Module functions: exit (built-in), quit (built-in); os.abort, os.chdir,
os.cpu__count, os.getcwd, os.getenv, os.kill, os.listdir, os.makedirs,
os.putenv, os.system; os.path.basename, os.path.isfile, os.path.isdir,
os.path.join; sys.exit

5.6.3 Module ’shutil’

This module'!| refers to shell utilities and represents the equivalent of many file
and directory management commands typically invoked on the OS shell. These
include commands to copy or move files (shutil.copy, shutil.copytree,
shutil.move), to change their ownership (shutil.chown) or to get the cu-
mulative disk usage of a directory path (shutil.disk_usage). To copy a
single file, for instance, the syntax would be shutil.copy("origfile.txt",
"filecopy.txt"). Like all I/O operations, it should be enclosed in a try-
except block to check for typical errors such as disk full or insufficient per-
missions. Recursion is used by shutil.copytree and shutil.move if the
second parameter is a target directory so that entire directory hierarchies can
be copied or moved. The module can also be used to pack and unpack an
archive such as a ZIP file or compressed TAR files (shutil.make_archive,
shutil.unpack_archive). This resembles the invocation of the compression
utilities in the shell, whereas for more fine-grained support, dedicated Python
modules for compression and archiving are available,'?

Module functions: shutil.chown, shutil.disk usage, shutil.copy,
shutil.copytree, shutil.make archive/ shutil.unpack archive, shutil.move

5.6.4 Module ’tempfile’

The module enables the safe creation of temporary files and directories with
unique names in a shared directory, by default the standard directory for tem-
porary files, which is usually at risk for race conditions when multiple appli-
cations would create a file with the same name. On Unix-like systems, the di-
rectory for temporary files is /tmp, whereas on Windows, they can be found in

1 Shutil module documentation: https://docs.python.org/3/library/shutil.html
12Python modules for compression: |https://docs.python.org/3/library/archiving.
html

92

https://docs.python.org/3/library/shutil.html
https://docs.python.org/3/library/archiving.html
https://docs.python.org/3/library/archiving.html

Applications and Tools

C:\Windows\Temp and C:\Users\<user>\AppData\Local\Temp. The canoni-
cal call for the safe opening of temporary files for write access is to the con-
structor of the class NamedTemporaryFile with appropriate parameters. For
example, in a web service to handle image uploads, the following code would
ensure that all write access is redirected to an unprivileged area first: f =
tempfile.NamedTemporaryFile(suffix=".jpg"); print(f.name), followed
by f.write(b"..."); f.close(). As long as the file is not closed, the at-
tribute name of the object can be used to share the file content with other
processes.

Module classes: tempfile.Named TemporaryFile

5.6.5 Module ’argparse’

To facilitate the interface between shell and application, this module provides
a structured way to access command-line parameters that influence the ac-
tions of the application. It is based on the convention that an application
can be invoked with a binary parameter or flag (e.g. app --strict), a qual-
ified parameter with argument value (app --strictness 5), subcommands
(app check ...) and an arbitrary number of arguments (app 1.txt 2.txt
3.txt). The module provides the ArgumentParser class that is first con-
structed with information about the permissible flags and arguments. The
information encompasses even typing information to inform that an argument
takes only numeric values or references to files. Then, the parser object is
applied on the standard Python interface for command line arguments, i.e.
sys.argv excluding the script name itself, and sets attributes on the returned
arguments object that the application can evaluate. A minimal use case would
thus be as shown in the listing below.

import sys

import argparse

p = argparse.ArgumentParser ()

p.add_argument ("--url", default=None, help="URL to load")
args = p.parse_args(sys.argv[1:])

print (args.url)

Documentation about the supported invocation options is automatically
created from the parser object and made available via the long-style --help
parameter or its short-style equivalent -h. Moreover, in case incorrect op-
tions are supplied, an error message with a short synopsis of correct options is
generated automatically, written to the standard error channel and causing a
non-zero exit status. The module is therefore the first step in input validation,
although further checks on the validity of parameters and arguments should
be performed within the application code.

93

Chapter 5

Module classes: argparse.ArgumentParser

5.6.6 Module ’subprocess’

Python processes can spawn synchronously executing (i.e. blocking) subpro-
cesses via os.system("command ..."). This function returns the exit code
and therefore lets the calling application code decide on the convention of zero
meaning success and non-zero meaning failure how to proceed. However, this
function is unable to return any output from the executed command. The
output is instead just written to the standard output channel of the terminal.
Moreover, it does not easily permit the execution in the background, instead
requiring the use of multithreading for this purpose or appending & to the
command but then returning immediately without being able to track when
the command finishes. Hence, the subprocess module is a more versatile al-
ternative, giving more control about subprocesses handling to the application
engineer, in return for a slightly more complicated invocation interface. The
canonical invocation behaviourally equivalent to os.system is as follows: p =
subprocess.run("command ...", shell=True, stdout=subprocess.PIPE).
The return value is an object encapsulating information about the spawned
process. This can be followed by p.wait () to wait for the command to finish,
print (p.returncode) to inform about the success (0 meaning success by con-
vention), and print (p.stdout.read() .decode()) to access the command’s
standard output.

Module functions: subprocess.run

5.6.7 Module ’socket’

The socket module allows re-implementing the Netcat command in Python
and adding application-specific logic on top of it. On the server side, it per-
mits the creation of a socket by calling s = socket.socket() and binding
it to a network interface specified by IP address and port number, as fol-
lows: s.bind(("0.0.0.0", 9999)). The special IP address, equivalent to
the empty string "", instructs the OS to bind to all interfaces. In practical
terms, the service is then accessible from incoming connections originating out-
side of the computer. Alternatively, the address "127.0.0.1" can be used to
allow only local connections. Once the socket is created, it can be used to lis-
ten to incoming connections (s.listen(1)) and to represent the client-specific
socket along with client address information after a successful connection (c,
caddr = s.accept()). The client object then offers basic network interaction
with the recv, send and, eventually, close methods. Sending and receiving
data works similar to reading and writing binary files. On the client side, the

94

Applications and Tools

interface is similar but omits the creation of additional sockets. A socket of-
fers the connect method that mirrors bind, and then allows for sending and
receiving directly on that socket.

While these socket methods mirror the low-level system functions, a slightly
more comfortable interface is available. On the server side, the function
socket.create_server creates a socket ready to accept without requiring
the binding and listening steps; on the client side, the corresponding function
socket.create_connection sets up the connection with control over time-
outs.

The historic OS behaviour is that, whenever a program terminates, any
port that it bound to as a server remains occupied for a short period of time.
Restarting then usually fails unless precautions were taken to tell the OS to dis-
able this reservation. The higher-level interface makes these easy to integrate,
as in: socket.create_server (("", 2000), reuse_port=True).

To access HTTP services, the Python equivalent of the Curl/Wget func-
tionality can be achieved with the default module urllib.request, as well as
the third-party module requests. Both provide extensive support for HT'TP
GET and POST requests, but are not explained in detail here.

Module functions: socket.create connection, socket.create server,
socket.socket

Repetition

1. What would the command python -c ’import os;
print(os.getpid())’ do?

2. How to programmatically create a directory in an idempotent way, i.e.
adding it if it does not already exist, and do nothing otherwise?

5.7 Package management

Customising and maintaining an operating system requires understanding the
lifecycle of software and data, their representation as layered and strongly re-
lated packages and the use of package managers to achieve a desired system
state. While essential functionality and many basic tools might be already
pre-installed, several complex data-processing and analytics packages for data
scientists require not only a one-time additional installation, but even tracking
new releases systematically and upgrading the workstation or server accord-
ingly. One advantage of using provisioned packages through appropriate pack-
age managers is that all necessary dependencies are automatically installed.
This reduces the cognitive load and allows focussing on what functionality

95

Chapter 5

should be present, without having to understand how that functionality is im-
plemented. A second advantage is that, instead of having to trust dozens or
hundreds of different download locations, many package repositories take at
least basic precautions to avoid low-quality and malicious packages.

Packages emerge within certain ecosystems that are developed by commu-
nities. Some communities work close-knit almost like teams, while others are
rather loose sets of people. Ecosystems are also either thematically focused
on operating systems, languages or technologies, or they are rather universal.
Navigating these ecosystems is not trivial. In this book, the emphasis is on
Python packages, OS-level packages, and (in the subsequent section) Docker
images. Understanding those concerning lifecycle, tool support and obstacles
also opens the door to understanding others.

5.7.1 Python package management with Pip

When it comes to extending the functionality of the installed Python inter-
preter, the language-specific ecosystem of packages provides a huge diversity
and generally a high quality of popular packages. The pip tool is the pack-
age installer for Python and the main interface to this ecosystem. Before the
installation, the scope needs to be defined. A package can be installed system-
wide by invoking Pip as super-user, or per user by invoking Pip as that user,
or even confined to a single project’s virtual environment in conjunction with
additional tools such as virtualenv'® and the derived venv library. To avoid
clashes with packages already provided by the operating system, the use of
virtualenv or venv can even be mandatory/'*

On most Linux installations, the default directory for system-wide Python
package installation from third-pary sources is in the /usr/local hierarchy,
specifically /usr/local/lib/python3.X/dist-packages. Correspondingly,
for per-user packages it is ~/.local/1ib/python3. X /site-packages, with
X referring to the minor version (e.g. 10 for Python 3.10). The OS distri-
bution itself may have placed its curated packages into the /usr hierarchy,
specifically /usr/lib/python3/dist-packages, which is also understood by
pip. By default, /usr/local overrides /usr in the module loading mecha-
nism. The creation of a virtual environment is possible with python -m venv
<directory> or alternatively virtualenv <directory>. It is then supplied
with its own copies of the Python interpreter and package installer, and using
them confines all installations to within the specified directory, specifically into
the relative subdirectory 1ib/python3. X /site-packages.

The command pip list shows all installed packages, and a subsequent
pip show <package> shows details including about where they are installed.

13Virtualenv website: https://virtualenv.pypa.io/en/latest/
MPEP 668: https://peps.python.org/pep-0668/

96

https://virtualenv.pypa.io/en/latest/
https://peps.python.org/pep-0668/

Applications and Tools

New packages can in principle be found with pip search <term>, but over
time this has caused too much load on the servers, and therefore lookups now
need to be done interactively on the package repository websites.

Python packages may depend on other packages such that installing a single
package triggers the implied installation of many other packages. These are
either pure Python packages that are simply placed into the corresponding
interpreter folder, or native packages that are compiled on the spot in order
to work on the computer’s hardware architecture. There is only one category
of dependencies with such packages, so that excluding rather optional ones is
not possible; however, it is possible to exclude all dependencies for tests with
the flag --no-deps.

Packages may not only contain pure Python code but also natively com-
piled code in other programming languages such as C. In this case, the installa-
tion will automatically trigger the compilation and placement of the resulting
shared libraries. As a prerequisite, a C compiler along with other build tools
(assembler, linker) needs to be present.

The canonical invocation for user-wide package installation from the global
Python Package Index (PyPI'°) follows the format pip install <package>.
Popular packages for data science include for instance pandas or dsfaker.
For better control over the versions, a concrete version of a package may be
specified (pandas==2.0.0), or a range of permissible versions may be given.
In more complex scenarios requiring multiple packages, it is a convention to
create a requirements.txt file with one versioned dependency per line. The
installation of all packages can then be automated with one command: pip
install -r requirements.txt.

Details on using pip to install packages are documented on the Python
website/'S| The complementary view on how to produce such packages from
own code are documented as well.1”

Commands to repeat in alphabetic order: pip, virtualenv

5.7.2 Advanced Python package management with Pipx
and Poetry

While pip handles the heavy duty tasks of package management, by itself it
is often insufficient for the needs of complex yet productive data science envi-
ronments. Two extensions are available to ease the installation of applications
and the handling of dependencies.

15Python package index portal: https://pypi.org/
16Pip user documentation: https://docs.python.org/3/installing/index.html
17Pip package production: https://docs.python.org/3/distributing/index.html

97

https://pypi.org/
https://docs.python.org/3/installing/index.html
https://docs.python.org/3/distributing/index.html

Chapter 5

With pipx'®, executable Python applications can be installed from vari-
ous sources that run in non-privileged, isolated directories on a per-user basis.
This essentially combines the functionality of virtual environments, package
installations and taking care of custom PATH environment variable settings,
so that executables from the packages can be invoked directly in the shell.
Moreover, pipx supports continuous development scenarios by referencing code
repositories. For instance, to install the Datadiary package that summarises
the outcome of machine learning processes, the command can be invoked to
proceed with the installation directly from a Git repository: pipx install
git+https://github.com/itsayellow/ datadiary. Hence, pipx is applica-
ble to all Python packages that provide executables on the command line.

From the user perspective, the installation is therefore as easy as it can
get. Still, providing own packages takes some effort in describing the packages,
formulating dependencies and performing the publishing process on package
repositories. With Poetry'®, providing custom Python packages is made easier
in contrast to the conventional approaches of distutils/setuptools (setup.py,
pyproject.toml). It allows for fine-grained specification of dependencies,
caching during dependency resolution and publishing to PyPI or other package
distribution sites.

Additional projects and distribution channels for Python packages exist,
including Conda and the C++ reimplementation Mamba. They can be con-
sulted when needed.

Commands to repeat in alphabetic order: pipx, poetry

5.7.3 Package management for other programming
languages

Beyond Python, many programming language communities have developed
ecosystems to distribute software. In typical data science scenarios, it is com-
mon to mix applications and libraries from these ecosystems. Through files,
databases, services and containers, different software implementations can in-
teract with each other despite differences in the implementation language.
The following thus summarises how to install packages written in popular lan-
guages, using the respective mechanisms for selection and deployment.
Projects using R can rely on the comprehensive R archive network (CRAN)?"
to find additional packages. They are organised into libraries, represented
by local directories. The syntax for the installation of a locally available
package (archive file packagename.gz) from the shell is R CMD INSTALL -1

18Pipx website: https://pypa.github.io/pipx/
9Poetry website: https://python-poetry.org/docs/
20CRAN: https://cran.r-project.org/

98

https://pypa.github.io/pipx/
https://python-poetry.org/docs/
https://cran.r-project.org/

Applications and Tools

/path/to/library <packagename.gz>. There are also alternative techniques
to download packages directly from within an R script or interactive session,
and those can also be combined with the shell invocation to access CRAN
with the command: R -e "install.packages(’<packagename>’)". An ex-
emplary invocation would be with the LGDtoolkit package. By default, R in-
stalls packages system-wide into the directory /usr/local/lib/R/site-1ib-
rary and therefore requires privileged invocation with sudo.

JavaScript packages based on the NodeJS runtime are distributed via the
Node Package Manager (NPM?!)). For instance, installing the JavaScript equiv-
alent of the Pandas module is conducted with the command npm install
pandas-js. Apart from the code, such packages have a package file in JSON
format with metadata and recursive information about their own versioned
dependencies, in two sets: for running the code and for development. When
such a file exists in a project directory, simply calling npm install automat-
ically covers all listed dependencies, effectively preparing the project for use.
In contrast to Python packages, NPM packages are installed in a per-project
scope by default into a node_modules folder. The flag -g activates a global,
system-wide installation, with the location /usr/local/lib/node_modules.

Java artefacts are packaged with Maven??| and distributed via Maven Cen-
tral®l The mvn tool build prepares the project and ensures the download
of Maven dependencies. Alternative approaches exist, such as building Java
projects with Gradle®%. In general, these approaches are more software engineer-
ing-centric and are typically used within other Java development project struc-
tures, regulated via files such as pom.xml or build.gradle. This also applies
to other compiled languages such as C and C++, where build commands like
make or cmake are common, indicated by the presence of either a Makefile or
a CMakeList.txt. If these build files do not yet exist, they may be produced
by a locally existing executable auto-configuration script configure, which
produces these files from templates based on the Autotools framework. If even
that script does not exist, it might be possible to bootstrap it with another
script, by convention called autogen.sh. C/C++ projects are more scattered
over the Internet, although recently, with the C+-+ package repository?®, a
package catalogue with dependency tracking support has become available.

Commands to repeat in alphabetic order: cmake, make, mvn, npm, R

2INPM website: https://npm.io/

22Maven website: https://maven.apache.org/

23Maven package search: https://search.maven.org/

24Gradle user guide: https://docs.gradle.org/current/userguide/userguide.html
25C++ repository: https://cppget.org/

99

https://npm.io/
https://maven.apache.org/
https://search.maven.org/
https://docs.gradle.org/current/userguide/userguide.html
https://cppget.org/

Chapter 5

5.7.4 System package management with APT

Not all applications and tools are implemented in Python or one of the other
covered languages, and even some of those that are require a deeper integration
into the operating system. Additionally, it is convenient to have a unified,
language-independent way to install well-curated packages whose dependencies
are balanced out.

Hence, an OS-specific software catalogue is needed. On Debian or Debian-
based systems such as Ubuntu, the Advanced Package Tool (APT) performs
this role. It does so in conjunction with a well-maintained, tightly integrated
and policy-driven repository containing packages around the OS itself as well
libraries, applications, datasets and documentation. Thousands of packages
including their dependencies can be installed with a tool invocation of the
form sudo apt-get install <package>. The command looks up package
locations in a system-wide catalogue cache configured with a sources list file
/etc/apt/sources.list containing references to installable packages (deb
lines) and, if properly configured, corresponding source packages (deb-src).
An example line for Debian is deb http://ftp.ch.debian.org/debian/ boo-
kworm main, indicating the named version of the OS distribution and the main
archive that contains exclusively free software.

Before the installation succeeds, the system-wide catalogue cache must
first be created in the directory /var/lib/apt/lists via the command sudo
apt-get update, which is also updated occasionally with the same command
as the repository evolves. Rarely, for finalising a system and making it im-
mutable, it can also be deleted again rm -rf /var/lib/apt/lists. The in-
stallation command itself also caches packages, which fill the disk over time, in
the directory /var/cache/apt/archives/. They can occasionally be cleaned
up with the more accessible command sudo apt-get clean. Packages are
archive files created with ar and containing tar files. Apart from metadata
and installation scripts, the main file data.tar contains directory hierarchies
that are applied relative to the system’s root directory /.

A typical example would be curl in order to ensure the system-wide avail-
ability of this command that is a Swiss army knife for interacting with web
services. However, while pip works both in user mode and in privileged
system-wide mode, apt-get installation and maintenance commands require
system privileges, i.e. the use of sudo. There are some ways around this
requirement. The first way is to retrieve only the installable binary pack-
age with apt-get download <package> or the corresponding source pack-
age with apt-get source <package>, if the proper source lines were added
to the sources list. As a downside, this way skips the dependencies. The
second way is to use a fake root environment, for instance, by working en-
tirely within a user-level OS hierarchy through the command fakeroot -s
fakechroot.save fakechroot debootstrap --variant=fakechroot book-

100

Applications and Tools

worm /tmp/osroot. This results in a the directory /tmp/osroot containing an
entire operating system, which can then be activated with the follow-up com-
mand call fakeroot -i fakechroot.save fakechroot chroot /tmp/osroo-
t/ /bin/bash to obtain a shell with fake root privileges. The third and most
complex way, apart from the use of non-fake virtual environments with chroot,
is virtualisation or containerisation to obtain virtual root access.

This requirement for privileged invocation does also not apply to simple
package description search through apt-cache search <term>. A related
command is sudo apt-file update that creates a system-wide database of
mappings of file paths to packages containing those paths. While it requires
root privileges, the subsequent search command apt-file search <partialp-
ath> does not.

If the sources list gets modified to include a new version of the distri-
bution, a more complex upgrade command in the form of sudo apt-get
dist-upgrade should be run to accomodate larger changes in the packaging.

Despite the high curation quality, the package updates sometimes get stuck.
Diverse calls such as apt-get -f install or to the underlying Debian package
management tool (dpkg) may help in resolving the issues.

Over time, one learns the package-naming conventions, such as python3-X
for Python packages often taken from PyPI or r-cran-X for all R packages
taken from CRAN. The online package catalogues can also be searched, for
instance, for Debian?%| or Ubuntu?’, which in contrast to local system search-
ing is especially useful to find packages not currently offered for the running
distribution version.

Commands to repeat in alphabetic order: apt-file, apt-get, debootstrap,
dpkg, fakechroot, fakeroot

Repetition

1. In case the editor Vim is not yet installed on a system, how would it
be installed?

2. With which command can a user count the number of externally in-
stalled Python packages?

5.8 Container management

Application isolation and containerisation has become widely popular since
the mid 2010s due to a number of convenient technology stacks. Isolation

26Debian packages: https://www.debian.org/distrib/packages
27Ubuntu packages: https://packages.ubuntu.com/

101

https://www.debian.org/distrib/packages
https://packages.ubuntu.com/

Chapter 5

itself has for many decades been confined to file systems with the change root
(chroot) command, but has been expanded to other OS-managed resources
with CGroups, which paved the way for convenient containers. Containers
are therefore a fine-grained runtime isolation mechanism at the OS level with
representation in /sys/fs/cgroup/. At the same time, tangible container
images have complemented the isolation with greater portability and more
options to ship code and data from creators to users.

The most widely used containerisation stack and distribution channel es-
pecially for mainstream use by data scientists is Docker and the Open Con-
tainer Initiative (OCI)[*® OCI is an evolving set of specifications on container
images, runtimes and distribution mechanisms, and Docker Hub the most pop-
ular public distribution site. In recent years, Podman has emerged as mostly-
compatible container interaction tool with security benefits. It has simplified
configuration requirements and integrates into the operating system process
management without requiring elevated privileges, allowing for better self-
healing capabilities not available in the plain Docker client,?’| This part of the
book introduces primarily Podman, explains how to work with existing con-
tainers, and also informs about how to create custom containers for isolating
and shipping own code and data. Occasionally, references are made to Docker
and to OCI specs.*®

5.8.1 Introduction to Podman

Podman consists of the intuitively podman command for individual container
and container image management. Docker moreover provides support to oper-
ate composite applications through Docker Compose and Docker Swarm. Due
to operational complexities with the Docker stack, there are alternative run-
times for the same container images, with some like Podman almost offering a
drop-in interface, and others that operate slightly differently.

With Podman, the other package management approaches (programming
language-specific and OS-level packages) are complemented by the ability to
distribute complex applications in a pre-configured way encapsulated in con-
tainer images. At the target machine, only some system bindings such as port
numbers (for services) or volume directories (for applications requiring data
persistence) need to be set up. Containerised applications can therefore run
multiple services implemented in different languages without interfering with
the host system such as a data scientist’s workstation or virtual machine. A
downside of this approach is the duplication of code in dependency libraries,
which also requires discipline to keep container images updated to not be ex-

28Docker/OCI ecosystem: https://opencontainers.org/

29Podman documentation: https://docs.podman.io/en/latest/

300CI runtime specification: https://opencontainers.org/release-notices/|
v1-1-0-runtime-spec/

102

https://opencontainers.org/
https://docs.podman.io/en/latest/
https://opencontainers.org/release-notices/v1-1-0-runtime-spec/
https://opencontainers.org/release-notices/v1-1-0-runtime-spec/

Applications and Tools

posed to security issues. The podman command offers many subcommands,
each with its own set of options and arguments. In the following, only the
most-needed commands are explained.

5.8.2 Fetching and running containers

Container images use a layered file format to store containerised application
code and data. The user workflow consists of fetching the layered images from
a container registry, combining them into a local directory tree representing an
entire filesystem hierarchy (minus OS kernel), and then executing commands
within that filesystem through CGroups isolation. Docker Hub?!|is the default
public registry on which thousands of container images are available. Collabo-
rative programming platforms also offer integrated container image registries,
and, moreover, it is possible to operate standalone instances for private use.

Finding the right image on any registry requires searching, trying out and
trusting the provided images or the provider behind them, and gradually build-
ing up experience on what to look for. Image names on Docker Hub usually
consist of one or two stem components (user name being the first one which
could be omitted for official images) as well as a version number or practi-
cally unique version hashsum. With podman search <registry>/<term>, an
approximated search for published images can be conducted, with the same
caveats applying to Python packages and OS packages.

The canonical form of invoking Podman interactively is by specifying the
name of the container image, optionally extended with the version information
and the launch command, as in: podman run -ti <container-image>[:<ver-
sion>] [<command>] [<arguments>...]. By default, the start command
given at container image build time is used, but it can be overridden. In par-
ticular, debugging an image that does not start as intended is often possible by
overriding the default start command with a shell invocation: podman run -ti

/bin/bash. The run command implies a podman pull <registry>/<co
ntainer-image> with all images stored as overlay file systems in the per-user
path ~/.local/share/containers in case there is no local image replica yet.
If there is, pull can also update from a moving version tag.

If the image does not yet exist locally on the machine the tool is exe-
cuted on, its layers are transparently downloaded and merged, leading to a
slight delay in invocation. For testing purposes, a hello-world image is pro-
vided on Docker Hub that runs without further arguments and exits after
delivering a message, and alpine is another convenient and small image to
get a basic containerised shell. An example invocation of a useful container
with configurable launch command would thus be as follows: podman run -ti
curlimages/curl:latest https://www.zhaw.ch/de/hochschule/.

31Docker Hub: https://hub.docker.com/

103

https://hub.docker.com/

Chapter 5

Port numbers (-p <hostport>:<containerport>) and directories serving
as volumes (-v <hostdir>:<containerdir>) connect the container’s OS re-
sources to the one from the host OS. For non-interactive invocation, the flags
-ti are dropped, and the new flag -d leads to an invocation in the background,
informing about the container identifier (id) as only output.

With podman images and podman rmi [-f] <image-id>, container im-
ages can be managed. Further commands such as podman ps or podman kill
<container-id> are available to monitor containers and to manage the lifecy-
cle of containers beyond starting up. Their semantics has been derived from the
respective OS-level commands. In case a container has exited, podman ps -a
shows an archived list of previous executions that still remain until podman rm
is invoked on them. Well-maintained container images also provide endpoints
for tracking the health status, showing up in the status column of the process
list, in conjunction with specifying a container restart policy as self-healing
instrument. With advanced container orchestrators, further self-management,
autoscaling and other operations-supporting features become possible.

5.8.3 Building custom container images

A container image is built by incrementally modifying an existing image and
storing the differences as another layer or set of layers. In the most trivial
case, this would mean adding some files and customising the default startup
command. Hence, selecting a base image to start with becomes a crucial task
and a skill to master.

From a security viewpoint, often only a subset of ’official’ images are consid-
ered trusted and are used exclusively as a basis for deriving custom container
images. For example, instead of directly running the Azure ML Inference con-
tainer, one would fetch an appropriate base image such as Alpine Linuz, and
then install the Machine Learning (ML) tools such as Tensorflow, PyTorch
and Scikit-Learn manually into a derived image. Naming (tagging) the images
for private use, uploading them to a private registry to share, and uploading
them to Docker Hub for world-wide access are further options to consider after
having modified an image that way.

Building such derived images works by specifying the base image as well
as any modification commands in a Containerfile. This file can be written
manually, or for some types of application even be generated automatically,
at least to some degree. A Containerfile consists of a specification of the base
image (FROM tag), files to be copied or commands to be run within the image
(COPY and RUN, respectively), and the default launch command (CMD). The
build command is then podman build -t <tag> ., with the last dot being a
reference to the current directory which contains the Containerfile but also all
files referenced from it.

104

Applications and Tools

Commands to repeat in alphabetic order: chroot, podman

Repetition

1. Can Podman be used to run a different version of the operating system?
2. How can PyPy be run interactively in a container?

5.9 Data management and version control

Keeping track of data, code and configuration files requires data-centric tool-
ing for basic shuffling of data between locations. Before starting to accumulate
data, certain criteria need to be assessed. This concerns primarily the protec-
tion of sensitive data. Such data contains privacy-related identification of
persons or business secrets. It should never be stored on unencrypted physical
media such as disks and should never be exposed to the Internet. In contrast,
in order to not lose valuable data, safety replicas and backups need to be ar-
ranged. Automating this process may require lifting the exposure criterion for
a short amount of time, still with the aim to minimise risks. This minimisation
also includes occasional replacement of physical media and regular checks on
the presence and recoverability of data. Once the criteria on data safety and
security are fulfilled, the question becomes more technical concerning the best
tools to use for content-agnostic data management on the file level.

Over the years, delta transfer and version control systems have emerged as
technologies of choice for software engineers but also for data scientists with
potentially large files. From early centralised approaches in version control such
as CVS and Subversion (SVN), the collaborative nature of many projects has
led to the proliferation of decentralised approaches. The widespread adoption
and commercial success of Git has led to it being the de-facto standard for data
management especially in development and operations, whereas unversioned
data might also be effectively managed with RSync. This section explains both
tools to ensure that file-based data can be handled in a safe manner.

5.9.1 Delta synchronisation with RSync

The previously introduced commands to copy files have basic support for incre-
mental synchronisation and backup. Using cp -auv <source> <target>, or
--archive --update --verbose in the long form, copies all files from a source
directory including their metadata but only if they have changed compared to
the last run, based on a comparison with the contents of the (previously exist-
ing) target directory, and informs about the progress of copying. Running the
same command twice while keeping the source files unchanged shows that no

105

Chapter 5

copying takes place anymore on the second run. Copying the files to a remote
machine requires a syntax like scp -r <source> <machine>:<target> that
unconditionally performs a copy operation without consideration of whether
changes have occurred.

In summary, while cp and scp/sftp are suitable to copy few files and
directories locally and remotely, respectively, the remote copy process always
assumes the full file, leading to unnecessary occupation of bandwidth and
processing time. When the amount of data is large and the amount of modified
data is small, it is more practical to synchronise only the changes, represented
as deltas between the old and the new version. With rsync, delta transfer
happens transparently both on local systems and across the network. RSync
is therefore a suitable single and efficient interface for all data shuffling, no
matter whether system boundaries need to be crossed.

A typical invocation is rsync -avz <source>[/] <destination>[/], with
the flags representing archive mode (keeping all file attributes), verbosity, and
compression of the deltas. The trailing slashes are significant concerning the
reference to the directory itself or its contents. Source and destination ei-
ther refer to local directories or to remote ones based on SSH in the form of
<user>@<machine>:<path>. In case certain file and directory patterns should
not be part of the replication, the option --exclude <pattern> (only available
as long-style option) can be added to the command.

If low copy time is less of a concern compared to low bandwidth use, RSync
supports a bandwidth limitation in the form of --bwlimit <rate>. The rate
is typically specified with a data size per second unit suffix, for instance as 2.3m
to allow for 2.3 MB/s. Units can be chosen flexibly, including g for GB/s which
is closer in line with evolving network speeds. For comparison, scp -1 <rate>
requires the value to be specified with high numbers in kB/s, whereas cp has
no bandwidth limitation support, making RSync also a suitable choice overall
for predictable rate data transfers independent of local or remote operations.

RSync can also run in daemon mode on a server to grant public read
access to files organised as areas, offering a delta-capable alternative over the
File Transfer Protocol (FTP) or HTTP. In that case, a listing of the exported
areas can be obtained using rsync <machine>::, and the source location in
the copy process is then addressed as <machine>::<area>. In contrast to
version control systems, datasets obtained that way will be smaller albeit not
collaboratively editable.

File transfers with RSync are documented on its website.*?] While RSync
is not a backup solution in itself, several backup tools and strategies are built
on top of it, such as RSnapshot3|

32RSync website: https://rsync.samba.org/
33RSnapshot website: https://github.com/rsnapshot/rsnapshot

106

https://rsync.samba.org/
https://github.com/rsnapshot/rsnapshot

Applications and Tools

5.9.2 Version control with Git

Git is a tool to shufle files between machines, but also a Version Control System
(VCS) to track the evolution of those files, containing data and software with
version history and a clear indication of what changed. Using Git properly
aids in distributing and backing up data, ensuring provenance of data, code
and models in larger projects and traceability of modifications.

The central data structure of Git is a repository containing binary files with
the full history of all tracked files. Repositories can be cloned (replicated) and
delta-updated multiple times from each other, leading to a decentralised model,
which is, however, in practice often subject to agreeing on one centralised mas-
ter repository, not for technical but for social or legal reasons. Repositories
grow over time, but due to delta storage of the modifications, the growth espe-
cially with text files is modest. The advantage of keeping the entire history on
all machines the repository is cloned to is that most operations such as search
through the history work locally without requiring permanent network access.
Especially for mobile workstations, this is a practical design choice. Each file
tracked in a repository exists in versions that start with the addition of the file
and run up to the lastest version. These versions might be located in different
branches, so that each branch contains a subset of versions. The default branch
is often called master. Version numbering in Git is not consecutive but based
on file content hashsums, which are hexadecimal numbers often abbreviated
as long as the short version is unique within a repository (e.g. 510906fa as
shortcut for 510906faecd6e8eae8c74blcead294347b3£1a97). The latest ver-
sion of each branch with all latest versions of the files in that branch is referred
to as HEAD.

The second data structure of Git is the indexr, which memorises intended
changes to the repository. An index is a local companion to a clone. The third
data structure is the working directory, essentially the directory in which the
files representing the currently checked out version of a branch in a repository
are located and are being worked on. A working directory may therefore be
either clean, or consist of a number of untracked files and/or files currently
marked for changes (addition, removal, modification) in the index.

5.9.3 Basic usage of Git

The Git usage from a data scientist perspective follows a number of workflows
centered around working on a cloned repository, adding files to branches within
the index, commiting those files to the repository locally, and propagating the
modifications to other repository clones while also ingesting modifications from
them. Delta transfers work similar to RSync, with the advantage of versioning,
but with the slight disadvantage of requiring double the space on checked-out
working copies.

107

Chapter 5

The standard command to invoke the Git client is just git, with a plethora
of subcommands. There are also graphical frontends to Git available such
as Github Desktop, and many collaborative environments automatically syn-
chronise changes through Git. Often, Git is not yet properly preconfigured
upon first use. The basic configuration requires two commands: git config
--global user.email <email> to set a contact address, which may not nec-
essarily be an e-mail address, and git config --global user.name "<name>"
for a corresponding full name. The global setting ensures that the configura-
tion becomes usable across all working copies. The configuration settings are
then stored in the file ~/.gitconfig which with some experience can also
be edited directly to modify the identity, add custom commands and perform
other settings.

When using Git on the shell, an apparent characteristic is that all files
are tracked in branches of local repositories, effectively represented by hidden
directories called .git at the top folder of a checked out clone, i.e. working
directory, also called working copy or workspace. The repositories are initially
empty when created with git init within an arbitrary directory that then
becomes a working copy. Repositories can also be created with git init
--bare in a dedicated directory meant purely for cloning without being usable
as a working copy. When a repository already exists, it can be cloned with
git clone <url>, with the URL either being a local file path, an HTTP(S)
URL to a web-served Git repository or an SSH account on a server managing
Git repository access based on SSH keys.

In a working copy, files can be prepared to be added to the default branch,
typically called master, by marking them with git add <file>, which only
adds them to the local index in an intermediary step. Directories are tracked
implicitly as paths to those files, while empty directories are not tracked.
Nevertheless, the add command also works recursively if a directory is spec-
ified. Only directories and files matching the names or patterns given in a
.gitignore files are excluded. That file can be placed in the top-level direc-
tory of a repository or in subdirectories to override the configuration for those.
Consequently, git rm <file> removes files or recursively removes directories
again. To maintain an overview, git status shows information about the
branch, the index and untracked files.

The current branch can also be queried with git branch, with the option
-a to show all available branches. If desired, to try out experimental changes,
a new branch can be created with git branch <name> and switched to with
git checkout <name>. Whenever the working copy ends up in a broken state,
for instance, due to versioning conflicts, it may also be disassociated from
any branch, requiring more work to be aligned again. In those cases, git
merge with the default merge strategy or a custom one helps to recombine
independently conducted changes across branches or from different people.

108

Applications and Tools

A repository as well as the index both contain hashsum references to files.
Whenever a file changes, the hashsum no longer matches, and the file is de-
tected as modified. The modifications can then be staged to be added to the
repository as well by invoking git add once again, keeping the index current.
The actual modification of the repository based on the index then requires
another command, git commit, which produces a new revision. In this com-
mand, a commit message can be entered either interactively or for short mes-
sages via git commit -m "<message>". To combine the two steps (adding to
index and finally adding to local repository), git commit -a can be used.

The history of all changes on the current branch can be shown with git
log, and all changes themselves with git log -p. This command also shows
whether all branches and remotes are synchronised. Remotes refer to the ma-
chines that are known to host other clones of the repository. When a working
copy 1is initially cloned from an existing repository, that one gets recorded
as known. Other clones can be registered manually with git remote add
<name> <url> and queried with git remote -v.

Git then becomes decentralised by the ability to push revisions on a branch,
in other words: to synchronise a branch, with remote copies of the same repos-
itory. Hence, a data server may run a Git daemon process or SSH-wrapped
Git executable to receive modifications via the git push <remote> command,
where the remote is a symbolic name usually pointing to an HTTP or SSH
URL. Calling only git push attempts the default remote. If the modifica-
tions are purely additive, the push command is accepted and the repository
branches are synchronised. Otherwise, for instance, after concurrent modifi-
cations by multiple users, the user intending to push is instructed to resolve
the conflicts first. This usually requires merging the user’s changes with those
of other users by running a sequence of git pull, manual resolution via file
editing, and finally again adding, committing and pushing.

A guided introduction to Git is given in the 'Pro Git’ book. Further infor-
mation including client download options are available on the website,>*

5.9.4 Advanced usage of Git

Git offers the ability to execute repository-side hooks upon receiving modifica-
tions. This feature can be used to prevent the modification in the first place,
by executing sanity checks on the files, as well as to trigger external actions
such as sending the current files to an external service. Being activated by
repository changes applies both to the local repository (after commit) and to
any attached remotes (after push). This ability allows for setting up contin-
uous delivery schemes. For instance, a data scientist may train a model, and
pushing the files to Git ensures that the model is also properly deployed in

34Git clients: |https://git-scm.com/downloads/guis

109

https://git-scm.com/downloads/guis

Chapter 5

all inference services. On remotes, the pre-receive and post-update hooks
are primarily of interest for this functionality to enforce policies, whereas in
the working copy, the commit-msg hook can perform a first sanity check on
what got modified, and the pre-push hook can further check whether a series
of commits are worth pushing and likely allowed by the remote’s policy. The
hooks are implemented as shell scripts invoked by Git. All of those scripts
must be placed as executable shell scripts into the repository’s hook directory,
which is in .git/hooks relative to the top level of any working directory and
by default already contains templates for common hooks.

Git is optimised for text content. Smaller binary files can be stored without
a problem. However, larger binary files such as compressed models or multime-
dia content not only become inefficient in terms of double space handling (for
the checkout and the local repository) but also in terms of change detection
and other Git management tasks. For this purpose, extensions are available
such as Git LFS (Large File Storage), Git-Annex and DVC (Data Version
Control). Git LFS stores only metadata about the files in the repository and
can therefore inform about the absence of expected files. The files themselves
are stored on a special LFS server. Git LFS must first be activated inside a
working copy with git 1fs install. Large files are then marked for tracking
with the command git 1fs track <pattern>, producing a .gitattributes
file which must be added to the repository. Git-Annex follows a similar design,
but does not require a dedicated server. Instead, it can synchronise large file
content flexibly via RSync. The usage pattern is git annex init followed by
git annex add <largefile> which replaces the file with a symbolic link to
it, putting the actual file into the folder .git/annex, and marks the file within
git annex status. The command git annex sync then synchronises repos-
itories. Finally, git annex copy --to <remote> replicates the large files to
a remote manually.

Commands to repeat in alphabetic order: git, git annex, git Ifs, rsync

Repetition

1. Which merge strategies are available in Git to resolve conflicts after a
pull?

2. You would like to dive deeper into extended file system attributes
and have an idea to extend the custom attr tool for that, hosted at
https://git.savannah.nongnu.org/git/attr.git. Which steps would
be needed?

110

Applications and Tools

5.10 Data processing tools

Programming languages such as Python allow for very powerful text process-
ing. Yet sometimes, as part of a shell-level automation workflow, it might be
more convenient to remain on the shell for trivial processing steps, or it might
take too much effort to implement a certain text processing algorithm.

Coreutils are therefore available as a collection of several small tools in-
voked from a shell to facilitate the processing of data stored in files. This
encompasses the formatting of data, the creation of checksums and statistical
information about file contents, performing string-based and numeric process-
ing as well as search. A subset of the functionality is briefly summarised here,
in conjunction with Sed, Grep and other tools also suitable for command-line
data processing. While individual commands are documented with manual
pages, a more systematic documentation is often provided in the so-called info
format, especially for the individual utility programs that are part of Coreutils;
hence, info coreutils brings up relevant pointers. A broader introduction
to use coreutils and other command-line utilities for data science tasks is given
in online books.??

5.10.1 Text search

The file command is able to inspect and inform about the content of any
given file. If it is a text file, in contrast to a binary file, the text encoding is
also determined heuristically. The default output is for human consumption,
whereas a technical representation as MIME type is given with the parameter
-i. A file may also be reported as a symbolic link; in that case, using the
option -L to dereference the link is advisable. Working with text data files
from various sources may also require a more sophisticated way to determine
the encoding. Although some text editors are capable of showing a text file
encoding, this is always subject to heuristics. The chardet tool includes a
confidence value to make this decision more transparent.

Text files can be summarised with wec to count lines, words and bytes. One
should be careful not to mistake the bytes with characters, as depending on
the encoding the number might be different. Hence, to determine the number
of characters for instance to check form limits of significance to humans, the
option -m or long --chars for character counting should be used. Again, care
must be applied to not use -c, which unintuitively is the short form of the
default counting in --bytes.

The canonical tool to find occurrences of text in unstructured and semi-
structured files is grep, along with similarly invoked tools such as ack. These
tools can also search directory trees recursively and report the findings in detail

35CLI data processing tutorial website: https://datascienceatthecommandline.com/2e/
chapter-1-introduction.html

111

https://datascienceatthecommandline.com/2e/chapter-1-introduction.html
https://datascienceatthecommandline.com/2e/chapter-1-introduction.html

Chapter 5

or summarised as binary result whether or not certain text has been found.
Searching a text token in a file works by calling grep <token> <file>. All
complete lines containing the token are printed to standard output, and if the
token was found at least once, the command exits with code 0, or else with 1.
The commonly used option -q (-quiet) suppresses the printing. By default,
search is case sensitive, whereas case-insensitive search can be instructed with
-1, so that searching for either word or WORD matches either occurrence in a
file.

To search through an entire directory recursively, the option -r is used.
When the directory traversal encounters a binary file, it also attempts a search
there and may report a match if by chance a short sequence of letters also
appears therein. To prevent this behaviour and skip binary files, the option
can be extended to -rI. With ack, recursion is the default when either no file
or a directory is given as argument to search in.

The dot in a search term stands for arbitrary characters; hence, to search
for a dot, it must be double-quoted once for the shell and once for Grep itself,
by using either grep "\." or grep \\. as search command. A number of
characters are interpreted as basic regular expression but in a Grep-specific
interpretation. To achieve support for standard expressions, the switch -E for
extended regular expressions (e.g. [[:digit:]1]1) or -P for Perl-compatible
regular expressions (e.g. \d) should be used.

Text search is slow when conducted repeatedly. There are fulltext search
engines such as Xapian that depend on prior indexing of content that is not sup-
posed to change afterwards, such as archive files, so that subsequent searches
are faster. In practice, non-indexed search is fast enough for most purposes.

The expr command evaluates expressions related to text strings. For in-
stance, the command expr index abcdef cz determines the first occurrence
of any character of the character set cz in the string abcdef as a 1-based po-
sition, i.e. 3, whereas 0 would signal that no character from the set was found
in the string. Alternative invocations are expr match for matching regular ex-
pressions, expr substr to find out substring relationships, and expr length
to calculate the length of a string.

Commands to repeat in alphabetic order: ack, chardet, expr, file, grep

5.10.2 Text processing

The text-processing commands work on files or text passed on standard input
as their input and write the results to standard output, with the option to
redirect them into other files through shell redirection techniques or explicit
output file specification (often -o <outputfile>).

While cat and tac were already introduced for outputting text content,
the n1 command works like cat but prepends line numbers.

112

Applications and Tools

The sort command sorts a text file line by line, either alphabetically
or, with the -g option, numerically. Sorting can be further configured to
be case-insensitive (-f), strictly numeric (-n) and in reverse order (-r). To
speed up the sorting of large amounts of text, the built-in parallelisation
(--parallel=N) to use N CPU cores is advisable.

The related command shuf performs a random permutation of all lines,
without repetitions by default or with infinite repetitions by the parameter
-r. To reduce the number of repetitions, this option is usually combined with
-n <lines>.

The uniq command drops all duplicate consecutive lines and with the op-
tion -c also counts the occurrences of each line in a file. To enforce that
identical lines are consecutive, a text must be sorted first; a pipeline of the
form sort <file> | uniq -c is therefore commonly used.

The cut command is able to extract separated columns. For instance, cut
-d , -f 1 <file.csv> outputs the first column of a CSV-formatted file. The
logical opposite is paste, merging content from several files as columns into a
single output line per line. Similarly, join merges lines based on a common
join key, dropping all lines without occurrence of the key across all files.

Sometimes, using cut is difficult because there may be one or more spaces
used as separator between words. The awk command is an alternative in
such cases as it can also extract based on token positions independently from
repeated separators. Running awk ’{print $2}°’, for example, always prints
the second word on a line, and awk >NR>10 {print $33}’ always prints the
third word while skipping over the first ten lines (with NR being the number of
records skipped).

Rearranging text to fit into a specific width can be achieved with fold -w
20 <file>.

Search and replace functionality based on regular expressions can be achieved
with Sed. A typical use case for automated text replacement would be to sub-
stitute all occurrences of A with B in a file with the following invocation: sed
-i -e ’s/A/B/? <file>.

Commands to repeat in alphabetic order: awk, cut, fold, join, nl, paste,
sed, shuf, sort, unique

5.10.3 Numeric processing

Basic mathematical operations on integers are built into shells, not as com-
mands, but as arithmetic expressions that can be evaluated. For instance,
the expression $((141)) evaluates to 2, as can be verified with the command:
echo $((1+1)). If a has the value 5, $(($a*2)) returns 10. Supported op-
erators include addition, subtraction, multiplication, division, exponentiation,

113

Chapter 5

remainder (+ - * / ** %) as well as bitwise and comparison operators. Incor-
rect results can be expected with the division (/) which resembles the integer
division operator (//) in Python.

For arbitrary-precision calculations, the bc tool can be used, taking an
input formula on standard input. The standard math library needs to be
activated to achieve the full functionality including floating-point numbers
support. For instance, echo 7/2 | bc -1 outputs the mathematically correct
result, like all floating-point operations only subject to minor discretisation
errors, and echo "s(1.0)" | bc -1 returns the sine value for X = 1.

Moreover, several coreutils assist in numeric calculations. With factor, a
number can be divided into its prime factors. For example, factor 999999993
yields the factors 3, 17 and 19607843, all of which are prime. The seq command
produces a sequence of numbers over which an iteration can be performed,
similar to the for loop in Python.

Commands to repeat in alphabetic order: bc, factor, seq

5.10.4 Media formats

Beyond text and numbers, files may contain multimedia information, often in
binary format, such as documents, images, audio and video. Working with
that kind of data requires format-specific tools. Typical operations include
retrieving format-specific metadata, scaling, other manipulation and cross-
format conversion. Due to the variety of formats, only a brief glimpse at the
possibilities to automate those tasks in the shell is given here.

PDF documents are inspected with pdfinfo. They can be scaled with the
GhostScript (gs) tool, as follows: gs -sDEVICE=pdfwrite -dCompatibility-
Level=1.4 -dPDFSETTINGS=/<level> -dNOPAUSE -dQUIET -dBATCH -sOut-
putFile=<out.pdf> <in.pdf>. The target level is one of screen, ebook,
printer or prepress, in ascending order of quality. With pdftk, pages can be
extracted (pdftk <in.pdf> cat 2 output <out.pdf>) or stitched together
(pdftk <inl.pdf> <in2.pdf> cat output <out.pdf>). PDFs can be con-
verted to text with pdftotext.

Raster images are usually stored as lossless PNG or lossy JPEG files. The
file command shows resolution and colourspace. With convert, formats may
be changed as well as the resolution and other settings, for instance: convert
-scale 800 <in.png> <out.png>. Videos may be scaled with ffmpeg, which,
despite the name, covers a lot of video formats through plugins, including
MPEG/MP4, AVI, MOV and OGV. A typical invocation for resizing and qual-
ity adjustment in terms of data points per second for the video stream is ffmpeg
-i <in.mp4> -s 800x600 -b:v 1000k <out.mp4>. Frames can be extracted
from videos as still images with a command following this pattern: ffmpeg -i

114

Applications and Tools

<in.mp4> -r 1 -s 800x600 -ss 10 -t 2 out-%03d.jpg. This creates two
images at seconds 10 and 11 of the video, and give each of them a consecutively
numbered filename.

Commands to repeat in alphabetic order: convert, ffmpeg, gs, pdftk,
pdftotext

Repetition

1. How can you look up all phone numbers in a collection of text files?
2. How can a picture be reduced in size to a quarter, i.e. with half of its
original width and height?

5.11 Structured data processing

Several command-line tools exist to perform basic checks, queries and modifi-
cations on structured data files in the common formats CSV, XML and JSON.
Although the choice of tools is large, their names are usually related to the
data formats they can work on, making it still possible to find the right tool
given a dataset and an associated task. Moreover, some commands exist to
perform basic data science and machine learning on specifically structured files
with tabular formats.

5.11.1 Format-specific processing

For all structured data files containing text content, the same advice applies as
previously given for text-file processing. In particular, using file or chardet
to determine the character set and encoding is recommended before starting
the processing.

For JSON, json_pp performs pretty-printing (and basic validation). It
reads from standard input and is therefore invoked either in the form of cat
<file.json> | json_pp or, more elegantly, json_pp < <file.json> The
output is indented and dictionary keys are sorted alphabetically, giving a uni-
form representation that does not matter for programmatic processing but is
more suitable for humans and for maintaining a JSON file in version control
systems.

To learn more about JSON files and especially the evolution between multi-
ple versions, the Pip-installable genson <file.json> generates a basic schema
from a data file, which is again in JSON format following the JSON Schema
specification/*®| The schema is written to standard output. A schema contains

36 JSON Schema: http://json-schema.org/

115

http://json-schema.org/

Chapter 5

a description of the structure and rules about the permitted values. Auto-
generated schemas may be too strict or too relaxed and might therefore need
manual refinement afterwards. With the tool jsonschema, such a schema
(possibly refined) can be checked against various instances of JSON files (-1)
whether or not they conform. Hence, the following sequence of commands
should work by first generating the schema from one file and then check-
ing that same file against the schema: genson <file.json> > schema.json;
jsonschema -i <file.json> schema. json.

If there are multiple versions of a JSON data file, jsondiff creates a
machine-readable (JSON-formatted) difference representation (diff) between
pairs of two data files. The inverse command is jsonpatch that takes such
a diff and the first file and reproduces the second file. Therefore, the follow-
ing sequence should again work: jsondiff <filel.json> <file2.json> >
diff.json; jsonpatch <filel.json> diff.json > <file2b>.json; diff
-u <file2. json> <file2b.json>. The two files <file2. json> and <file2b.
json> should then represent the same content, and if they are properly sorted,
the text diff at the end is empty.

The jq tool queries over the nested list and tree structures that may
exist in a JSON file. For instance, jq .<key> returns the value of a key
top-level dictionary from a JSON file. More complex queries are possible by
pipelines that resemble shell pipes. For example, to select dictionaries with
key Y that are in a list that is defined by a top-level key X, use the following
command: jq ’>.X | .[] | select(.name=="Y")’. Typical string process-
ing methods can be chained as additional operators, for instance, .name |
contains("substring").

Linting and pretty-printing for XML files is done with xm11lint based on
XPath expressions. The equivalent of the example above with the modification
that the key could be anywhere in the document structure would then be
xmlstarlet sel -t -v "//key".

CSVKit contains many small tools to work with CSV files. Using csvclean
helps in preprocessing and removing common formatting glitches. Lines with
a column matching an expression can be extracted with an adjusted grep
command, for instance, on entries with price equal to 3: csvgrep -d -c
price -m 3 <x.csv> The csvtool command is another way to work with
CSV files.

Conversions between formats are also possible. With csvjson <*.csv>,
a CSV file can be converted to JSON and with csvsql correspondingly to
insertion statements for several relational databases. With csv2/2xml and
xm12/2csv, bidirectional conversions between flat XML formats and CSV can
be achieved. For instance, to convert a flat XML file to JSON, the following
pipeline may be set up, assuming the source XML has an element L2 under
its root representing the record which in turn contains L3 containing the field:

116

Applications and Tools

xml2 < <file.xml> | 2csv L2 L3 | csvjson. More complex conversions
and transformations are the domain of data integration tools such as Meltano
that will be presented in a later chapter.

Commands to repeat in alphabetic order: csv2/2csv, csvclean, csvgrep,
csvjson, csvsql, csvtool, genson, jq, json pp, jsondiff, jsonpatch, json-
schema, xml2/2xml, xmllint, xmlstarlet

5.11.2 Training and inference

Tabular data is often the input for data analytics and machine-learning tasks
such as training, testing and validation. Many of these tasks are conducted
programmatically due to the sheer number of options and algorithmic deci-
sions. Nevertheless, a few tools exist to perform basic tasks on the command
line. One such tool is Vowpal Wabbit, which assumes training data in a line-
based tabular format <label> | <feature:value> <feature> ... and test
data in the same format with purposefully removed labels (that should be pre-
dicted). With Vowpal Wabbit, the training data is first used to produce an
optimised binary mathematical model with vw -d train.txt -f model.vw.
Next, the missing test labels are predicted in order with vw -d test.txt -i
model.vw -p predictions.txt. The predictions can then be compared with
the labels that were removed to determine an accuracy score.

Binary classification of text based on trained word frequencies (Bayes model)
is possible with several tools, for instance, spamoracle for e-mails. First,
training data is specified to contain either good or bad e-mails, as follows:
spamoracle add -good <mbox> (and -bad, respectively). Then, newly in-
coming messages can be tested with spamoracle test <mbox>, giving a record
with score between 0 and 1.

Commands to repeat in alphabetic order: spamoracle, vw

Repetition

1. A RESTful API provides a compact JSON representation on a GET
endpoint that should be formatted adequately for human inspection. Which
command pipeline could be used?

2. A CSV file using semicolons as field diver has a column A with prod-
uct names. How can all lines with A containing the character sequence
PRODUCT be extracted?

117

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 6

Middleware

Middleware, such as generic compute services, remote file systems, databases,
message queues and message brokers as well as event processing frameworks,
fulfil an important role of bringing scalable and stateful data processing ca-
pabilities to applications while keeping those applications lean. As opposed
to rather static file management systems such as Git that only interact occa-
sionally with servers, most middleware is operated continuously as standalone
services, although some provide strong local processing support in the form of
a tool as well or allow for configuring the service to listen only to local clients.
From a programming perspective, for instance, from a Python application, it
is therefore possible to connect to these services either locally or remotely to
gain powerful functionality. This section covers middleware in a number of
broad and partially overlapping categories: custom programmatic data and
service provisioning, file system abstractions, database management systems,
frameworks for data processing and integration, model serving and workflow
execution.

6.1 Programmatic data serving

In addition to accessing web services from a client perspective, there is often the
need to serve data and program logic from a service perspective. Serving means
either to the human (from plain text to interactive websites based on structured
and unstructured formats, i.e. HTML/XHTML) or to client applications (APIs
or programmable web, i.e. structured data formats such as JSON, CSV, XML
or YAML). Apart from the data formats and layout in the form of directories
and subdirectories, the protocol needs to be defined. Data serving on the web
is appropriate in most situations, giving the choice of both anonymous and
authenticated access for read and/or write operations. Further protocols such

119

Chapter 6

as FTP/SFTP, RSync or S3, or even decentralised protocols such as Bittorrent,
each come with their own characteristics and can be chosen depending on the
needs.

For static data serving on the web, simple tools like netwox 125 -P 8080
or thttpd or even the Python built-in module python -m http.server can
be used on the simplistic end of the spectrum and sophisticated web servers
such as Apache HTTPd!| on the other end. As explained in the section on
system administration tools, long-running servers would be set up with service
supervision and logging to ensure availability and to provide means to detect
and correct any issues with the service provisioning. In static data serving,
the endpoints for clients typically correspond to the physical file system layout,
although advanced web servers offer support for virtual folders within virtual
host definitions and interfaces to custom logic through Custom Gateway In-
terface (CGI) scripts.

Often, more complex logic elements such as differential data transfer and
sophisticated endpoints are required. This leads to programmatic web-serving
in which a user-defined application runs as service and waits for client requests.
In Python, this functionality can be realised through appropriate modules. A
few of these modules are briefly introduced in the next paragraphs. Which
one to choose depends on the functional and non-functional needs as well as
on the serving model.

6.1.1 Third-party module ’flask’

Several web frameworks make it easy to serve data, both of the static and
of the dynamically generated kind. Data, including model files, can be made
available over the network to clients on other machines, aiding the integration
of pieces of software towards more complex software. One of the most wide-
spread web framework is Flask?. In Flask, Python functions or methods are
marked via decorators as accessible via the web protocol HI'TP and interfaced
on the server side with either an external web server or, for convenience in case
scalability is not an issue, with the built-in Flask web server.

First, the flask object is created by calling import flask followed by app
= flask.Flask("Myapp"). Functions serving as exported endpoints are deco-
rated with the endpoint path and optionally with the list of supported HTTP
method beyond the default of GET. Segments of the path may be typed to in-
dicate that a field should be numeric or a wildcard path follows. For example,
@app.route("/hello") or @app.route("/<path:path>", methods=["GET",
"POST"]). The module import and use of decorators also works conditionally
inside functions or methods in a class, using inner functions to make sure the

1 Apache HTTP server: https://httpd.apache.org/
2Flask website: https://wuw.fullstackpython.com/flask.html

120

https://httpd.apache.org/
https://www.fullstackpython.com/flask.html

Middleware

decorators only apply in case Flask is available. Finally, the application main
loop is entered with app.run(host="0.0.0.0", port=8080) or a variation
thereof, indicating the listening network interface determined by the IP ad-
dress, and the respective port number. In this case, 0.0.0.0 indicates any
interface, whereas 127.0.0.1 would listen only on localhost and thus prevent
access to the service from outside the machine.

Within the methods, metadata and data can be accessed. For instance, the
context-dependent attribute flask.request.method informs about the HT'TP
method used, and the method flask.request.get_data() gives access to any
raw submitted payload in POST requests. Special methods also exist to process
form data from HTML uploads.

For practical use, extensions such as Flask CORS and HTTPS activa-
tion need to be used to build applications that can be deployed and invoked
across machines in secured environments. The CORS extension is imported
with import flask_cors and instantiated atop a Flask application object
with flask_cors.CORS(app). Its behaviour can be further configured, for
instance, through app.config["CORS_HEADERS"] = "Content-Type" to al-
low POST requests on JSON and other specific data types. HTTP is ac-
tivated by passing an additional ssl_context parameter to app.run(). It
refers to either a certificate/private key pair or an anonymous context. The
first can be established through the Python SSL module with context =
ssl.SSLContext (ssl.PROTOCOL_TLSv1_2) followed by the configuration step
context.load_cert_chain("cert.pem", "key.pem") based on the two pre-
viously generated files, whereas the second is more trivial with context =
"adhoc". Both options nevertheless produce various security warnings in most
web browsers unless a cross-signed certificate is used. More Flask extensions
such as Flask Talisman?| attempt to provide more security options.

Flask is primarily concerned with low-level HTTP request-response me-
chanics and less with the content of the messages. While HTTP responses can
deliver HTML pages, their parameterisation calls for using Flask extensions
that permit easy template rendering, such as Jinja*l Another extension is
Flask-RESTful, easing the development of resource-oriented APIs)’

The command-line tool £1lask can help debugging a Flask application, when
invoked with the following command: FLASK_APP=x.py flask routes.

Multiple alternatives exist with a basic functionality similar to Flask and
similar integration into the web server gateway interface (WSGI) of Python,
such as Bottle® or, specifically for continuous web sockets updates, Tornado’l

3Talisman: https://pypi.org/project/flask-talisman/

4Jinja website: https://jinja.palletsprojects.com/

5Flask-RESTful website: https://flask-restful.readthedocs.io/en/latest/
6Bottle: https://bottlepy.org/docs/dev/

"Tornado: https://www.tornadoweb.org/en/stable/

121

https://pypi.org/project/flask-talisman/
https://jinja.palletsprojects.com/
https://flask-restful.readthedocs.io/en/latest/
https://bottlepy.org/docs/dev/
https://www.tornadoweb.org/en/stable/

Chapter 6

6.1.2 Third-party module ’streamlit’

When not only raw data should be provisioned, but instead human-consumable
visualisations, a data visualisation library can be helpful. Streamlit®|is more
oriented towards frontend prototyping and development. It is not often pack-
aged yet and needs to be installed separately from PyPI through pip install
streamlit in a virtual environment previously created with python -m venv
<venv-dir>. The streamlit command documents its usage and gives exam-
ples, whereas the equally named streamlit Python module allows for inte-
gration into code. The idea behind Streamlit is that only the program logic is
programmed and any visualisations emerge from that code, without data sci-
entists having to worry about frontend/backend separation or content delivery
via HTML.

For example, a Pandas dataframe created in a Python script can be vi-
sualised as a linechart with a single command streamlit.line_chart(df),
which renders an HTML page with embedded interactive chart. This script
then needs to be executed with streamlit run <script.py> to let the visu-
alisations take effect. The command launches a local web server on port 8501
and automatically opens a web browser window to it. Headless mode can be
configured automatically by absence of the DISPLAY environment variable or
by passing environment variables STREAMLIT_SERVER_HEADLESS or the option
run --server-headless true.

More chart types are possible including streamlit.bar_chart and the
generic streamlit.pyplot for anything manually plotted with Matplotlib.
Tabular visualisation can be achieved with streamlit.table for static ta-
bles and streamlit.dataframe for dynamic tables. There are many integra-
tions to visualise complex data structures such as maps, using the built-in
streamlit.map function that requires geocoordinate columns in a dataframe
(1lat, lon) and defaults to using Mapbox or alternatively the more advanced
streamlit_folium module, which directly interfaces with OpenStreetMap.

6.1.3 Third-party module ’bokeh’

Bokeh is another library aimed at human consumption of data. It integrates
with Python data science libraries and generates visualisations as static files or
as dynamically served web pages consisting of HITML markup and JavaScript
code. Similar to Streamlit, it is not widely packaged and needs to be in-
stalled manually into a virtual environment through pip install bokeh. The
submodule plotting then allows for creating the first visualisations. Sim-
ilar to Matplotlib, a bokeh.plotting.figure object is created first (p =
figure(title="...")), followed by plot commands such as p.line(x, vy,
...) and finally p.show(). When invoking bokeh <script.py>, a temporary

8Streamlit website: https://streamlit.io/

122

https://streamlit.io/

Middleware

HTML file is produced and the web browser is opened to display it. Bokeh also
supports plotting circles and colourful scatter plots, colour maps, bar charts
and stacked areas.

Bokeh can be combined with Flask by calling flask.render_template
along with the utility function bokeh.embed. components() that returns both
an HTML div element and a portion of JavaScript code (script, based on
BokehJS) to embed into a rendered page template. This can be accomplished
as follows: flask.render_template("template.html", plot_script=scr-
ipt, plot_div=div, ...). DBokeh also ships with a standalone Tornado-
based server running by default on port 5006. The command bokeh serve
--show <app.py> deploys the application to the server and shows the gen-
erated web page in the browser on http://localhost:5006/myapp. Within
the Python code, HTTP requests can then be accessed through the function
curdoc ().

The reference documentation for Bokeh is available online.”

Repetition

1. Why does CORS support have to be added to web services that should
be accessible from a dynamic web frontend?

2. Why can Streamlit-using scripts not simply be executed with the
Python interpreter but instead require the streamlit command?

6.2 File system abstractions and network
storage

Virtual file systems are the most basic form of middleware for hierarchical
data storage. They provide a regular file system structure to applications
while physically storing the files in arbitrary locations such as other file sys-
tems, network services or data encoding applications. Hence, the application
does not need to take care of the specific interactions with any such service
itself, including protocol and data representation details. Instead, the interface
to the application is always the standard file system structure with directo-
ries, files and — with varying degrees of support — metadata. File systems in
userspace (FUSE) are the basis for most virtual file systems on Linux. Some
are well-maintained and can be used in production, while others are more
experimental in nature. FUSE mounts run as processes so that the data avail-
ability depends on the availability of the service, which can be ensured with
process supervision, e.g. SystemD units. Some FUSE implementations do not

9Bokeh website: https://docs.bokeh.org/en/latest/

123

https://docs.bokeh.org/en/latest/

Chapter 6

handle all low-level operations on the file systems, but most applications write
and read data from such mounts without problems.

6.2.1 Basic FUSE operations

The generic form for mounting FUSE file systems is via the mount command
by specifying the type, like mount -t fuse.<fusefs> [options] <source>
<target>, where the target represents a local directory and the source is a
type-specific identifier such as a path, a URL or something else. File systems
based on FUSE that are pre-configured by the system administrator in the file
system table /etc/fstab can be mounted to the configured location within
the local file system by privileged users with the command mount <target>.
Usually, and especially for unprivileged users, the mount command name along
with the type of file system (option -t) are also substituted by an executable
with type-specific command name such as <fusefs> <source> <target>. To
unmount again, the command fusermount -u <target> is used on Linux or
umount <target> on Mac OS X. Such file systems can be layered in modular
combinations, for instance, to achieve transparent compression, encryption
and distribution of files. The application, which is unaware of these layered
data modifications, writes into a file on a path of a mountpoint of file system
A that encrypts it, and the underlying file system B delivers the data to an
online service, for example.

Slightly confusingly, not all FUSE mounts show up in the df command out-
put, but all show up when running mount. Unprivileged user mounts are by
default only visible to those users, but the line user_allow_other in the oth-
erwise almost empty configuration file /etc/fuse.conf along with the mount
option -o allow_other changes this behaviour. This is also necessary for
loop-mounted and bind-mounted file systems passed as volume to Docker con-
tainers due to the Docker daemon running under its own user identity.

Among the more commonly used abstractions are SSHF'S, providing trans-
parent file access over SSH connections, EncFS, adding encryption on the
storage path, Fuse2F'S, for loop-mounting disk images containing an ext2/3/4
file system, and BindFS, for bind-mounting one directory on top of another
one, which may or may not be a FUSE mount location. Less commonly used
but still useful are HTTPFS, allowing to interact with files on web servers as if
they were local (unfortunately not supporting HTTPS), and Restic, for back-
ing up data to various network services. An example for HTTPFS is to create
an empty directory with mkdir ~/cifs and then mounting a website’s HTML
file to it with httpfs2 http://cifs.servicelaboratory.ch/ ~/cifs.

There are also more obscure abstractions such as 7-FS or FUSE filesystems
exporting the online mailbox as a virtual directory. Further information is

124

Middleware

available online about the FUSE base technology'’| and, albeit incomplete,
about selected file systems created with FUSE/'!

6.2.2 Selected file systems and synchronisation

In case a user has access to a remote machine via SSH, then using SSHF'S is
a straightforward way to view a directory on that machine’s file system. All
files remain physically on that machine but can be listed and modified within
the mountpoint. A production-grade invocation of SSHF'S to resiliently mount
the remote machine’s work directory to the same name on the local machine
is sshfs -o reconnect,ServerAliveInterval=15,ServerAliveCo
untMax=10 <server>:work ~/work (on Mac OS X, where it supports slightly
fewer parameters: sshfs -o reconnect <server>:work ~/work). Thiscom-
mand mounts the remote folder of a machine serving SSH to the local equiva-
lent and instructs SSHFS to overcome temporary connection drops, providing
an always-on experience for remote file access. To automate this access with-
out the need for manual authentication, apart from pre-confirming the host
fingerprint with a first interactive SSH connection, a passwordless SSH public
key needs to be deployed on the target machine, and an autostart file (e.g. via
SystemD) needs to be provided. After mounting, the command 1s ~/work
works transparently on both the server (running the server’s 1s command on
the local file system) and the client (running the client’s 1s command on the
local mountpoint translating the access to the server’s file system).

Disk images contain a file system within a file of fixed size and are a suitable
mechanism to mount capacity-limited storage. They can be trivially produced
by running dd followed by file system creation, for instance, with mkfs.ext4.
Fuse2FS can then loop-mount these images: fuse2fs <fs.img> <target>.
BindF'S is able to mirror both loop-mounted and other directories to another
location: bindfs [-o allow_other] <source> <target>. This makes the
content accessible in two locations and can also be used to work around prob-
lems with low-level file system operations on the source mount.

EncFS and its alternative implementation, GoCryptFS, allow producing en-
crypted data from any application. When running encfs <source> <target>,
a configuration mode and then a password need to be specified interactively.
By default, any content is encrypted symmetrically with AES-256. The com-
mand echo "plaintext" > <target>/text leads to a 10-bytes unencrypted
virtual file on the mounted target and a 26-bytes encrypted physical file in the
source directory.

RClone builds on FUSE to provide a more integrated package for compres-
sion, encryption, chunking, as well as serving files both as local file system

10FUSE: https://github.com/libfuse/libfuse/
H1List of file systems: https://github.com/koding/awesome-fuse-fs

125

https://github.com/libfuse/libfuse/
https://github.com/koding/awesome-fuse-fs

Chapter 6

and as locally operated file network service, while physically storing the files
in arbitrary locations,?

Repetition

1. How can a filesystem contained in a single file be mounted?
2. SSHFS only grants access to certain files on a remote computer, not
to the computer itself. Correct?

6.3 Database interaction and management

Databases (DBs) are useful collections of structured or unstructured data.
The collection format can be very strict with schema information as in re-
lational databases or rather loose as in schemaless/schema-flexible document
databases. Database management systems (DBMS) assist in the collection
process by providing data management commands and queries. Consequently,
there are relational /tabular, tree-/graph-based and document-oriented DBMS
as well as key-value stores, matching the respective database contents.

The term relational refers to normalised tabular data in which values in
certain columns of a table form a reference to the same values in a column
of another table. For instance, a table with addresses might contain coun-
try codes, and a second table maps these codes to country names. Tables
are managed following the CRUD paradigm for creating (inserting), reading
(selecting), updating and deleting rows. Read and update operations are also
possible for a subset of columns. Read, update and delete operations are more-
over possible on a subset of rows by filtering. Tables may be further grouped
into schemas, databases and other higher-level structures. In non-relational
databases, the main structures are collections or graphs.

Most DBMS offer a command-line client to manage tables, collections or
graphs interactively and to insert or query data in the form of records or
documents. For automated mass processing, programming interfaces specific
to the chosen language are available, typically called connectors. Both clients
and connectors require access to a running database service, although some
also work on in-process embedded data structures.

6.3.1 Embedded relational databases with SQlite

The standard API from Python to relational databases is DB-API, although
there is also support for such databases in Pandas due to the tabular data
dominating in relational DBMS. Many DBMS require a complex server setup.

12RClone homepage: https://rclone.org/

126

https://rclone.org/

Middleware

For more modest use cases, an embedded DB entirely contained within one
file is a good alternative. One such system is SQlite, an embedded relational
DBMS with support for the standard query language SQL and the ability to
interface from both Pandas and DB-API. All commands starting with a dot
are non-SQL internal commands.

The canonical invocation on the shell level is sqlite3. Within its command
prompt, a database file is created with .open <filename>. Then, tables can
be defined with schema and populated, for example, with: CREATE TABLE left
(x int, y str); INSERT INTO left (x, y) VALUES (3, 4);. Thesecond
value ought to be written as *4?, but the parser is flexible concerning the types.
With .mode table, the default output formatting optimised for scripting is
made more human-friendly, and a SELECT * FROM left; confirms the table
contents.

From a Python script, that data can be imported into a Pandas dataframe
by running a schema-dependent query. This is accomplised by importing the
respective modules import sqlite3; import pandas and by running two
successive commands conn = sqlite3.connect(<filename>); response =
pandas.read_sql ("SELECT * FROM left", conn). The corresponding DB-
API connection starts by setting up the connection first with conn = sqlite3.
Connection(<filename>), then creating a queriable cursor object on top with
the query cur = conn.execute("SELECT * FROM left"), and eventually ob-
taining the query results through cur.fetchall (). This returns a list of tuples
covering all columns, which should obviously only be used for smaller tables.
Alternatively, one can iterate using cur.fetchone (), which returns one tuple
at a time, or None at the end of the table.

SQlite also supports transient in-memory databases with a pseudo :memory:
filename. The complete SQL syntax of SQlite is documented online®| whereas
the built-in Python module has its own documentation/'4

6.3.2 Networked relational database systems

MySQL/MariaDB and PostgreSQL are relational DBMS that have seen active
development and high adoption for many years. Both run either as standalone
services or in various scalable cluster combinations. They support conven-
tional relations but also binary-optimised structured data, as evidenced by the
JSONB data type in PostgreSQL. MariaDB listens on port 3306, whereas it
is 5432 (or merely a local socket in localhost connections) for PostgreSQL.
The following describes an exemplary setup for PostgreSQL. First, the DBMS
needs to be installed in the right version, for instance, with sudo apt-get
install postgresql-15. Next, a user for local DB access needs to be created:

133Qlite syntax: https://sqlite.org/lang.html
143Qlite Python module: https://docs.python.org/3/library/sqlite3.html

127

https://sqlite.org/lang.html
https://docs.python.org/3/library/sqlite3.html

Chapter 6

sudo -u postgres createuser $USER and a corresponding database sudo
-u postgres createdb -owner=$USER <dbname>. Finally, this database can
be accessed interactively from the shell: psql. Automation is possible via the
batch command execution psql -c¢ "<sql-statement>". In Python, DB-API
is implemented by the widely packaged psycopg2 module. A local database
can be connected to with conn = psycopg2.connect (database="<dbname>",
user=os.getenv("USER")).

6.3.3 Beyond relational databases

The system families of key-value stores, document databases, graph databases
and timeseries databases all offer means to manage data beyond tabular for-
mats and relations. Many of the respective database management systems are
however not easily installable or maintainable in operation.

Key-value stores offer low-latency access to dictionary structures held on
disk or in memory. One of the earlier embedded database options for key-value
storage was Berkeley DB. Later, networked alternatives such as Memcached'®
and Redis became popular. To improve network latency, they support setting
and getting the values for multiple keys at the same time.

Document databases support collections of large structured and unstruc-
tured documents. In structured documents, such as JSON-serialised data,
searches can be performed. Popular implementations beyond the mentioned
document support in relational databases include MongoDB, CouchDB and
BaseX (specifically for XML documents).

Graph databases represent graphs as labelled, weighted and directed rela-
tions between nodes. They implement graph algorithms such as shortest path
search. Neo4J and OrientDB are typical examples of graph databases.

While conventional databases are suitable for mostly static data that needs
to be retained over long periods of time, the nature of data is sometimes closely
bound to its production time. Specific timeseries DBMS exist to handle such
chronological data. Examples include TimescaleDB (an extension to Post-
greSQL), as well as Prometheus and Victoria Metrics, both of which offer a
native HTTP API for data management. One advantage of using a timeseries
database is in being able to set up automatic compressions of events that have
been longer back in the past, saving storage capacity.

TimescaleDB is installed into a running PostgreSQL extension by preparing
the environment (sudo apt-get install cmake libkrb5-dev postgresql-
server-dev-15) and executing the bootstrap script from the most recent ver-
sion/'%| Next, the extension library needs to be loaded by setting shared_prelo
ad_libraries = ’timescaledb’ in the global configuration file /etc/postgre

15Memcached: https://www.memcached.org/
16TimescaleDB downloads: https://github.com/timescale/timescaledb/releases

128

https://www.memcached.org/
https://github.com/timescale/timescaledb/releases

Middleware

sql/14/main/postgresql.conf and activated within the client with CREATE
EXTENSION timescaledb;. Afterwards, so-called hypertables on top of ex-
isting tables with a time column of type TIMESTAMPTZ are created with, for
instance: SELECT create_hypertable(’<tablename>’, ’time’);.

Repetition

1. Inserting a million records into a relational DBMS might be very slow.
What could be done to speed it up?

2. Why does PostgreSQL not ask for a password when connecting to a
local database?

6.4 Message brokers for real-time data
processing

When data should be forwarded or processed immediately as soon as it arrives,
message brokers are another form of middleware that is suitable for ephemeral
and event-based scenarios. Events are received and need to be processed or
distributed to other machines without necessarily storing them beyond the
processing stage. This is typically called Event-Driven Architecture (EDA),
Event Stream Processing (ESP) or, especially when certain state data such as
counters and aggregate values are retained, Complex Event Processing (CEP).
The encapsulated processing logic in this context is referred to as operators,
which often contain standing queries applied to the incoming data-stream.

Message brokers are related to message queues and publish-subscribe sys-
tems. In all of these systems, there is a notion of events, event producers and
event consumers. A variety of networked systems with overlapping functional-
ity exist, for example, ZeroMQ, RabbitMQ, NATS, Kafka and Pulsar. Pulsar
has the unique functionality that it executes small code functions to modify
messages and influence the routing. ZeroMQ works daemon-less but also sup-
ports the setup of persistent devices to handle multiple dynamic producers and
consumers. There are also file-based systems such as SEC, reacting on lines,
for instance, continuously appended to log files, and Fever, listening to JSON
events on a local socket.

In Python, ZeroMQ can be used with import zmq, setting up an event pro-
ducer queue with sock = zmq.Context () .socket(zmq.REQ) and connecting
it to a consumer with sock.connect ("tcp://localhost:5555"). The block-
ing consumer sets up its counterpart with sock = zmq.Context () .socket (zm
q.REP) and listens for producers with sock.bind("tcp://*:5555"). On TCP,
acknowledgements for sent events need to be received; thus, a message ex-
change may look like: socket.send("<msg>".encode()); sock.recv().

129

Chapter 6

Pulsar is addressed via its default port number pulsar://localhost:6650.
In Python, this works after import pulsar with client = pulsar.Client(<
url>), creating a first producer with a full topic URL prod = client.create_
producer ("non-persistent://public/default/<topic>") and then send-
ing events with prod.send("<msg>".encode()). No acknowledgements need
to be read. With cons = client.subscribe(<topic-url>) and cons.recei
ve(timeout_millis=50), events can be received in a non-blocking way. Fi-
nally, with the pulsar-admin command, functions can be deployed between
input and output topic paths.

Due to the wide variety of systems, these are not further explored here but
should be kept in mind when designing a data science architecture for stream-
ing data. More information can be found in the documentation of ZeroMQ'”
and Pulsan!®|

Repetition

1. What is the main advantage of message brokers over polling ap-
proaches?
2. Why is the recv() method invocation necessary for ZMQ sockets?

6.5 Parallel and distributed computing

Parallel computing concepts were described before and command-oriented tools
such as parallel were introduced earlier in this book as well. In this section,
more capable data-oriented frameworks that combine automated parallelisa-
tion on one machine with distributed computation across several machines are
introduced. These frameworks typically involve an initial overhead, but for
larger quantities of data, their benefits become clear quickly. Among them are
a local speedup by using multiple CPUs and even GPUs relative to the wall
clock (at the expense of higher resource usage) as well as the enablement of
processing of data volumes that no longer fit into the main memory of a single
computer.

To make parallel computation available programmatically, several middle-
ware systems and language-specific libraries exist. Among the more popular
frameworks based on at least the map-reduce paradigm are Hadoop, Spark,
Ray, Dask and Lithops. Further paradigms are supported by some of them
with parallel and distributed processing capabilities, including composable
pipelines, graph algorithms, windowed stream aggregation and data warehous-
ing. The use of such a framework is not always required, especially when

17ZeroMQ: |https://learning-Omq-with-pyzmq.readthedocs.io/
18Pulsar: https://pulsar.apache.org/docs/

130

https://learning-0mq-with-pyzmq.readthedocs.io/
https://pulsar.apache.org/docs/

Middleware

software supports distributed operation internally. This is the case with some
shells (dsh multiplexing) and compilers (distcc). In the following section,
Spark is introduced from a Python (PySpark) perspective as exemplary frame-
work for horizontal scaling of queries and user-defined functions in a compute
cluster.

6.5.1 Data processing with Spark

Apache Spark'?|is a framework for parallel and distributed computing on se-
quences, tables and graphs as well as running relational database queries on
tables. It offers interfaces for multiple programming languages, in particular
Java, Scala and Python (PySpark). The execution model of Spark is driver-
master-worker, with each worker covering one machine, each with potentially
multiple CPU cores and GPUs. The application runs the driver that needs to
be reachable from the workers, which limits deployment options. The master
runs its main service on port 7077, to which the driver and workers connect,
and a web interface on port 8080. Each worker runs a web interface on port
8081 to expose logs in addition to their main service port (e.g. 6666), and the
driver additionally runs a web interface on port 4040. Furthermore, the driver
opens a port to be reachable from the master and a second port for the block
manager (e.g. 5555 and 4444, respectively). Many of those port numbers are
only the starting points, as the driver automatically counts up in case a port
number is already occupied. This complex handling of ports makes Spark not
trivial to operate in a larger setting. Hence, in the following explanations, the
focus is on the application interface for Python applications.

In a downloaded and extracted Spark folder, the interactive PySpark in-
terpreter can be invoked with the command bin/pyspark. It can be used as
a regular Python interpreter, but by embedding a Spark driver it offers access
to the PySpark API through its pre-defined objects such as sc (Spark con-
text), referring to a local in-memory worker, and spark (session object and
SQL context). Alternatively, PySpark can be invoked as a wrapper around
standalone applications (spark-submit) with the code importing the pyspark
module to create the Spark context explicitly. This way, or alternatively by
parameterising the PySpark interpreter, a Spark context to a remote clus-
ter with potentially many worker nodes can be established with the line sc =
pyspark.SparkContext ("spark://<sparkmaster>:7077", appName="...",
conf=pyspark.SparkConf ()). This context then allocates the resources on
the cluster until it is explicitly stopped with sc.stop(). Spark can also be
embedded into other Python execution contexts such as scientific notebooks.
For that purpose, instead of downloading the entire Spark release, one would
typically run pip install pyspark in a virtual environment, along with op-

19Spark: https://spark.apache.org/

131

https://spark.apache.org/

Chapter 6

tional dependencies such as PyArrow and Pandas. A full download is however
necessary to operate the cluster itself. If no cluster is available or needed,
Spark can also parallelise computation within one computer (Local[*]).

A number of options can be set on the SparkConf object as string key-
value pairs. This includes spark.driver.host as driver hostname resolvable
from the worker nodes along with the corresponding spark.driver.port,
spark.port.maxRetries to raise the limit of concurrent connections over
the default of 16 (e.g. 50 would be appropriate for a classroom setting),
and spark.cores.max for the maximum number of requested cores. The as-
signed cores may be less if fewer are available, or temporarily zero (putting
the application into waiting state) if none are available. Another option is
spark. jars.packages to activate extension packages such as Graphframes
for graph processing, Glow for genomics data, sparkMeasure to obtain met-
rics, and RAPIDS to get GPU acceleration.

Programming pipelines for data queries in Spark requires a good under-
standing of asynchronous programming concepts. Instructions are evaluated
lazily, not necessarily at the line the instruction is written on, but rather when
results have to be calculated. Usually this is at the end of pipelines or at explicit
caching instructions in between. Moreover, despite being able to handle large
amounts of data, Spark is not safe against out-of-memory situations. When
performing an operation that joins data from all worker nodes or otherwise
brings data to one place, the driver in PySpark may run out of memory.

Spark offers two main data structures, resilient distributed datasets (RDDs)
for unstructured data and dataframes for structured, tabular data. A prereq-
uisite is the setup of the context object as mentioned: import pyspark; sc =
..., for instance, with spark-submit: sc = SparkContext (appName="<name>
"). An RDD can be produced programmatically with the command rdd
= sc.parallelize(<1list>) or (assuming shared storage access) by reading
in a text file with sc.textFile(<filename>). The distribution of the data
partitions can be verified with the command rdd.glom().collect(). For
structured data, the session/SQL context object must be set up first: import
pyspark.sql; spark = pyspark.sql.SparkSession.builder.getOrCreate
(). A dataframe can then be produced by adding a tabular schema to an RDD,
by converting a Pandas dataframe, or by reading tabular data right away, such
as in the command: df = spark.read.format("csv").option("header",
"true") .load("file.csv"). Relational SQL queries, graph processing and
structured streaming are all implemented atop the dataframe API. Spark
also provides a drop-in Pandas API for easier conversion of existing code
towards distributed environments (pyspark.pandas). Further information
about Spark programming is available from the respective guide.?"

208park programming guide: |https://spark.apache.org/docs/latest/quick-start.
html

132

https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html

Middleware

Repetition

1. What is the difference between using spark-submit and PySpark ap-
plications not making use of spark-submit?

2. The line df = spark.read.format("csv").load("file.csv") loads
the indicated CSV file. Correct?

6.6 Model serving

Model serving refers to the provisioning and lifecycle management of trained
machine-learning models, essentially statistical models, as a service. Such
models contain read-optimised information about quantitative or categorical
features found in the training data. The models allow inference and subse-
quent decision-making based on input data sent as a request to the service.
The lifecycle management includes input data preparation, versioned training,
testing and validation with the primary goal of achieving a high accuracy of
predictions. Specific management tasks therefore encompass systematic model
(re)training (split, test, validate, regression testing), version control (input
data provenance, cleaning, lineage), delivery of model data and code (packag-
ing, containerisation, registration, discovery, serving at scale) and operational
concerns (authentication, logging, metering, monitoring). Access to such mod-
els for the purposes of inference and prediction should be possible from mul-
tiple applications, with high reliability and low latency. Accordingly, APIs
for matching and prediction services should be generated automatically and
integrate with workflow managers and message brokers. Among often-used
model serving implementations are Iguazio, Kubeflow /KFserving, TensorFlow
Serving/TFX, MLflow, Clipper and BentoML. The latter is briefly introduced
here.

6.6.1 BentoML model serving

BentoML is a specialised middleware system to register machine-trained math-
ematical models and perform scalable inference on them. It comes with support
for a number of ML libraries such as MLflow, TensorFlow, PyTorch, Keras,
CatBoost, Light GBM, ONNX and Scikit-Learn. It is called a unified model
serving framework due to this multi-format support. The models are transmit-
ted as Python code via function call to BentoML which then physically stores
them in a local directory in Pickle format. Hence, model persistence is achieved
through files and directories, which can be optionally versioned by the use of
Git. Moreover, BentoML allows for the automatic containerisation of models
with Docker, with the containers starting a ready-to-use API for matching and
inference. Moreover, it integrates with Airflow for model training pipelines or

133

Chapter 6

workflows, specifically with Airflow’s PythonOperator and PythonVirtualenv-
Operator as well as with Flink’s stream processing capabilities for streaming
model inference and with MLflow.

A common way to use BentoML is to create the predictor code in the form of
a generic Python model class. The class should have a __call__(inputlist)
method. Instantiated with input data, this becomes a predictor as Python
model instance with data already loaded. This model can be persisted as Ben-
toML saved model via bentoml.pickable_model.save_model (<modelname>,
<modelinstance()>), and executed with a runner. The runner may be im-
plemented as follows:

import bentoml

next line ts only for testing

lmodel_content = bentoml.picklable_model.load_model("<
modelname >: latest")

lmodel = bentoml.picklable_model.get("<modelname>:latest")

runner = 1lmodel.to_runner ()

runner.init_local ()

prediction = runner.run(<inputlist>)

print (prediction)

All saved models may be inspected in the shell with bentoml models list.
For production use and access by multiple applications, custom service logic
can then be defined in Python and delivered through an instance of the Ben-
toML service. The implementation requires setting up a service object by in-
stantiating bentoml.Service(<service-id>, runners) which then uses the
@<service-object>.api decorator to specify input and output data formats.
Again, a brief example is given:

import bentoml
import bentoml.io

runner = bentoml.picklable_model.get("<modelname>:latest").
to_runner ()
svc = bentoml.Service(<modelname>, runners=[runner])

@svc.api(input=bentoml.io.JSON(), output=bentoml.io.JSON())
def predict(inputlist):
return runner.run(inputlist)

These services are launched through bentoml serve <python-filename>:
<service-object> --reload. Tools like Curl can then be used to run predic-
tions, for example: curl -X POST -H "Content-Type: application/json"
--data "[-..]" http://127.0.0.1:3000/predict.

BentoML services can also be exported as self-contained units with both al-
gorithmic service logic and model data, through the command bentoml build
based on instructions given in a service description file bentofile.yaml. A
minimal service description would be service: "<modelname>:svc". All

134

Middleware

such built units can be inspected with bentoml list, and exported for model
transfer with bentoml export <modelname>:latest <modelname>.bento.

These units can in turn then be converted into Docker container images via
bentoml containerize <modelname>:latest, based on additional docker
entries in the YAML file specifying the base image and Python interpreter
version. Containers then serve the model and allow for using it (e.g. for pre-
dictions) on port 3000. Hence, they can be run individually with the command
docker run -it -rm -p 3000:3000 <modelname>:<tag> serve.

A step-by-step documentation with further information is available on the
BentoML website /!

Repetition

1. Why are there dedicated model serving implementations when instead
a web server could be used for distributed access to a model?

2. Why does Bento need a POST request for the prediction? Predictions
are read-only and thus should work with a GET request.

6.7 Data integration

Data integration refers to the ability to shuffle data between data stores, or be-
tween applications, while performing conversion and transformation. Format
conversion would, for instance, take CSV input from a source and deliver it as
JSON to a sink. Transformations happen within the same format and would
filter, aggregate or augment the input data. There are many approaches to
data integration referred to as ETL or ELT, a reference to the order of steps
in Extract-Transform-Load integration processes. Recent implementations to
set up generic integrations include Meltano, Arrow Flight and dbt-core.

6.7.1 Meltano data integration

Meltano aids in setting up pipelines for large-scale data transformations from
sources to destinations. It is installed through pipx with the command pipx
install meltano and can then be activated for a project directory via meltano
init <projectname>. For the affected directory, Meltano creates a number
of default files and empty directories and administers several runtime environ-
ments such as development, staging and production. The main configuration
file is meltano.yaml, which has the default environment set to development
(dev). The project directory is designed in a way that it can be curated in
Git, so that an additional git init is recommended. In their initial state, all

21Bento documentation: https://docs.bentoml.org/en/latest/concepts/model . html

135

https://docs.bentoml.org/en/latest/concepts/model.html

Chapter 6

environments are empty and waiting to be configured with a sink-source combi-
nation or, in Meltano terms, either extractor-loader or tap-target combination.
The configuration may additionally encompass transforms and transformers,
files, utilities and other pipeline ingredients.

The commands meltano discover extractors and meltano discover
loaders are used to define the data transformation pipeline. There are more
than 500 extractors available, alls prefixed with tap, and more than 30 load-
ers, all prefixed with target. Many exist in multiple implementation variants,
so that, in practice, extracting data from a system or loading it into another
system may only work well with specific variants. For the purpose of test-
ing and interoperability, there are some generic loaders such as JSON files
(target-jsonl).

The extractor-loader combination is installed into the current Meltano en-
vironment, but not yet configured, with meltano add <extractor/loader>
[--variant=<variant>]. This command adds the chosen extractor or loader
to meltano.yaml but also places its implementation into the plugins direc-
tory. Subsequently, a mandatory configuration is conducted with meltano
config <extractor/loader> set --interactive, which asks the user about
few to many key-value settings such as endpoints, credentials and options.
Moreover, meltano select <extractor> --list --all followed by meltano
select <extractor> <table> <column> selects a source table (entity) and
column (attribute) in case multiple are offered by the extractor.

Finally, meltano run runs the pipeline that in turn extracts data from the
configured source and sends and loads transformed data into the configured
destination. While the run command runs once, a regular run to catch up-
dates to the data source can also be configured with the meltano schedule
command and activated with meltano invoke, both taking additional parame-
ters. Schedules in particular can be set up with commands of the form meltano
schedule add <schedname> --extractor <extractor> --loader <loader
> --transform [run|skipl|only] --interval "@hourly". Many commands
are predefined and others can be added with some configuration, including
Jupyter notebooks as steps within a pipeline. To maintain an overview about
pipelines, a web-based user interface is also available through the blocking
command meltano ui for subsequent access at http://localhost:5000/.

A detailed documentation is available online.*?| Hundreds of plugins, specif-
ically for different data sources, are available from the hub/*) A managed
service for Meltano is not yet available but expected to arrive sometime in
the near future. There are also more complex alternatives to Meltano such as
Pachyderm that require a more sophisticated deployment and configuration**

22Meltano documentation: https://docs.meltano.com/getting-started
23Meltano hub: https://hub.meltano.com/
24Pachyderm: |https://www.pachyderm.com/

136

https://docs.meltano.com/getting-started
https://hub.meltano.com/
https://www.pachyderm.com/

Middleware

Repetition

1. There are targets, loaders, extractors and taps. Which of these terms
are practically synonyms?

2. What is the advantage of maintaining the data integration configura-
tion in a Git repository?

6.8 Workflows and distributed scheduling

Meltano and other data integration tools represent static workflows with a
source, a sink and a set of transformation rules. In many scenarios, more com-
plex workflows with tree and graph structures need to be set up and triggered
through various events including matching times. Scheduled task invocation
beyond the use of Cron is broadly supported in programming environments,
for instance, through Celery or, with emphasis on parallelisms similar to Spark,
through Dask. Such workflows may however also occur in continuous delivery
scenarios triggered by a change in data or code, for instance, via Git hooks
and corresponding workflows like Gitlab Pipelines. The complexity increases
in workflow languages permitting subtasks, branching, looping, nesting and
other internal control structures. Corresponding workflow systems need to
support automation (scripting and APIs), robustness (checkpointing, restarts)
and optimisation (caching, adaptive re-entrant execution). They also need to
support regulated environments through logging as well as lifecycle and user
management. Finally, they should be flexible concerning the task implemen-
tation: as shell commands, Python functions, API calls, ETL processes and
others. In the following, Airflow is introduced as a representative system for
both scheduled invocations and workflows, supporting many of the listed re-
quirements.

6.8.1 Airflow task and workflow specification

Apache Airflow?| is a workflow engine, a scheduler and a programming in-
terface to express complex executable workflows. Workflows are expressed as
DAGs in Python in three main parts: metadata, a set of tasks and an execu-
tion order specification for those tasks. A task is triggered by a timer event,
by a previous task having finished, or by a data dependency having changed.
For that purpose, Airflow makes available an airflow Python module, and a
script file importing this module and making use of it represents a workflow.
The package with module and executable can be installed into a virtual en-
vironment with pip install airflow. The service start command airflow

25 Airflow website: https://airflow.apache.org/

137

https://airflow.apache.org/

Chapter 6

standalone listens on two ports: 8793 for internal scheduling purposes and
8080 for the web interface. The following listing shows a customised and de-
composed start sequence.

airflow db init

airflow users create \

--username admin \

--firstname X \

--lastname Y \

--role Admin \

--email Z # enter password, or use --password
airflow webserver --port 8080

airflow scheduler

With airflow dags list --subdir ., all DAGs present in the current
working directory are summarised. If needed, calling airflow dags test
--subdir . <dag_id> tests the execution of a specific workflow.

The DAG class from the airflow module needs to be instantiated with a
unique identifier given as dag_id. A particular design decision of Airflow is that
workflows are addressed later by this identifier, independently of the name of
the containing Python file. Further parameters refer to the workflow ownership
and its timing information, including start date and interval in Quartz cron
syntax. Hence, a typical Airflow specification may start as follows:

from datetime import timedelta
import datetime

import airflow

import airflow.utils.dates

with airflow.DAG(
dag_id="helloworld_bash",
default_args={"owner": "airflow"},
schedule_interval="0 0 * *x x" |
start_date=airflow.utils.dates.days_ago (2),
dagrun_timeout=datetime.timedelta(minutes=60),
) as dag:

Tasks are specified as instances of operator classes along with a unique
identifier and operator-specific parameters. The identifier is a string given as
task_id parameter. The instances can be named differently but for simple
cases may follow a convention of t1, t2 and so forth. The following operator
classes are among the often used ones:

1. EmptyOperator. This operator does nothing (no-op) and has no further
parameters. It can be used as placeholder in a workflow, similar to a
pass instruction in Python.

138

Middleware

2. PythonOperator. Executes a Python function that must be reachable,
either within the same file or from an imported module. The function
is referenced with the python_callable attribute, and is completed by
the keywords argument op_kwargs to specify parameters that should
be passed to the invoked function. Alternatively, the Python operator
can directly be specified as decorator of an existing function, like this:
@task(task_id="...").

3. PythonVirtualenvOperator. A variant that supports custom module de-
ployment into virtual environments.

4. BranchPythonOperator. This special operator makes it possible to choose
one out of several branches by evaluating a condition.

5. BashOperator. This operator works similar to os.system() by syn-
chronously executing one shell command. The command is passed as
bash_command parameter.

6. PapermillOperator. Loads a Jupyter notebook from the absolute path in
input_nb and, since such notebooks are modified during execution, saves
the result notebook as output_nb. Optionally, a dictionary parameters
may be passed to parameterise the notebook according to the Papermill
conventions, which are documented in the Jupyter notebook section of
the book.

Further operators exist for system and data integration, including Simple-
HttpOperator, EmailOperator, MysqlOperator and PostgresOperator. With
those operators, Airflow overlaps functionally with Meltano, although both
can also be integrated with meltano add orchestrator airflow followed by
meltano invoke airflow scheduler and meltano invoke airflow dags
list. The invocation of operators follows tristate semantics: 0 signals success,
99 signals skipping, and all other numeric codes signal failure.

The last line of a simple Airflow file specifies the order of execution and
therefore constructs the actual workflow. Two greater-than signs are used to
create a sequence, e.g. t1 >> t2. Tasks that can be parallelised due to not
depending on each other’s results are grouped in square brackets, e.g. [t3,
t4].

Repetition

1. A BashOperator t1 creates a file, and a PythonOperator t2 reads that
file. Would [t1, t2] be a valid workflow?
2. What does the schedule interval used in the example (* * 0 0 0) mean?

139

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 7

Collaboration and
Governance Platforms

In contrast to the last two sections that focused on locally run shell tools and
locally operated middleware, this section dives deeper into provisioned and
managed middleware online platforms to accomplish data science-related gov-
ernance and collaboration tasks. These platforms typically offer a web interface
and, while they can be operated locally for a single user, have the capability
to serve multiple users in teams and thus facilitate collaboration supported by
extensive authentication and authorisation schemes. Consequently, they are
often consumed as pre-provisioned setups and managed services supporting the
data science workflows on a team or institution basis with oversight, change
management and compliance concerns.

Three exemplary collaboration platforms with suitable open source licenc-
ing are introduced: Jupyter, Gitlab and Open Data Discovery. Data scientists
should be familiar with the main workflows within these platforms and are
then able to also use similar platforms. Such alternatives are mentioned in
each respective section. Where applicable, possibilities for integration of the
previously mentioned tools and middleware are highlighted.

7.1 Scientific notebooks

A digital scientific notebook is a web-based environment subdivided into in-
put cells that either contain static information or run dynamic code, such as
Python, R or Julia. Output cells then contain text, plots and other content.
In contrast to a script, the cells can be run selectively. This might speed up
explorative data analysis, but it might also lead to inconsistencies when the
dependency order between cells is not manually considered. Moreover, there

141

Chapter 7

is no explicit termination unless the code execution context (kernel) is termi-
nated. This means allocated resources may be blocked unless explicitly freed
up programmatically or implicitly by kernel termination.

Various notebook implementations with single-language or polyglot kernels
exist, such as Jupyter which is described next, Apache Zeppelin', Querybook?,
and Polynote®|

7.1.1 Jupyter notebooks

Jupyter is a popular implementation of notebooks that can run in isolation, but
also shared among team members. In Python Jupyter notebooks, the kernel
can be chosen; by default, the iPython interpreter is used with support for spe-
cial commands starting with ! (system execution) or #. Big data frameworks
such as PySpark can be integrated into notebooks through the corresponding
Python modules to perform parallel computing tasks by offloading them to a
larger cluster. There are also Jupyter extensions such as Toree and BeakerX
for Spark, and Elyra to visually design workflows that can then be mapped to
Airflow or Kubeflow implementations.

Jupyter can be operated as single instance, catering to a single user or
multiple users in a fully shared environment without isolation. It can also run
as JupyterLab, combining the notebook with web-based text editors, termi-
nals, launchers and custom widgets, while still catering to single users. For
multi-user environments with isolation between users, JupyterHub can launch
containerised notebooks, including on container orchestrators such as Kuber-
netes.

7.1.2 Working with notebooks

Launching an interactive single-user or fully shared notebook environment lo-
cally is achieved with the subcommand jupyter notebook or the alias com-
mand jupyter-notebook (with dash). The command hangs to serve a web
browser at the URL containing a secret token indicated at standard output,
and can be terminated with the keyboard combination (Ctr]}+@. The token
can be disabled by running jupyter notebook password and thus setting a
password permanently. Headless mode can subsequently be used by adding
--no-browser. The default port number is 8888 and can be changed with the
parameter --port. Furthermore, notebooks only listen to local connections
by default. To be network-enabled, the parameter --ip 0.0.0.0 needs to be
set. The notebook serves the entire current working directory available. One

1Zeppelin website: https://zeppelin.apache.org/
2Querybook website: https://www.querybook.org/
3Polynote website: https://polynote.org/latest/

142

https://zeppelin.apache.org/
https://www.querybook.org/
https://polynote.org/latest/

Collaboration and Governance Platforms

further important parameter is therefore --notebook-dir <dir> to confine
the access to a certain directory.

A number of configuration settings becomes available through files only.
This includes the ability for users to switch off the running Jupyter instance
with a Quit button. In the file ~/. jupyter/jupyter_notebook_config. json,
the setting "quit_button": false removes this ability. JavaScript-based
customisations such as default contents in new notebook can furthermore be
performed by placing appropriate files into the directory /usr/share/jupyter/
nbextensions/ and activating the extension with a JSON configuration file
in /etc/jupyter/nbconfig/notebook.d/.

The batch execution of notebooks including parameterisation is the task of
Papermill*, which can be installed with pip install papermill and requires
adding ~/.local/bin to $PATH.

Notebook files are stored with the extension . ipynb (from the original name
iPython notebook) and can also be exported as Python scripts to facilitate
automation.

Jupyter notebooks can be tried out for free®| although that is not recom-
mended for important scripts or confidential data. A more convenient service
is Binder to execute notebooks already stored on the Internet in a Git reposi-
toryl®

7.2 Code and data lifecycle management

The management and easy use of versioned repositories, possibly backed by Git
or other version control system, is the domain of online repository frontends.
They provide functionality for creating hierarchies of projects and subprojects
with multiple repositories, assigning access rights, web-based read access to
existing files and even web-based write access for the creation of new files.
Such collaborative platforms also allow for planning and discussing the content
in terms of code and data, for forking variants and for submitting wishlist and
bug reports. Moreover, they support actions based on changes to the code or
data, such as the automated rebuilding of binary packages.

Apart from shell-oriented tools such as Gitolite, and the built-in Gitweb
as well as cgit, there are many web-based Git management platforms. Gitlab
is one of them and is presented next. Potentially leaner alternatives include
Gogs", Gitea® and Trac”.

4Papermill documentation: https://papermill.readthedocs.io/

5Jupyter demonstration: https://jupyter.org/try- jupyter/retro/notebooks/?path=
notebooks/Intro.ipynb

°MyBinder: https://mybinder.org/

7Gogs website: [https://gogs.io/

8Gitea website: https://gitea.io/en-us/

9Trac website: https://trac.edgewall.org/

143

https://papermill.readthedocs.io/
https://jupyter.org/try-jupyter/retro/notebooks/?path=notebooks/Intro.ipynb
https://jupyter.org/try-jupyter/retro/notebooks/?path=notebooks/Intro.ipynb
https://mybinder.org/
https://gogs.io/
https://gitea.io/en-us/
https://trac.edgewall.org/

Chapter 7

7.2.1 Gitlab as repository management platform

Gitlab is a collaborative environment around a fully managed set of Git repos-
itories. The most obvious functionality of the platform is the creation of per-
sonal projects and project groups and the definition of Git repositories within
these projects. On the collaboration side, it allows sending invitations to users
who are added with differentiated access rights into the projects depending on
the chosen role. Full access rights are available to owners. Creating a new
project results in ownership automatically. Fewer access rights are available
for maintainers, developers, reporters and finally guests. For instance, only an
owner can delete a project, and only owners and maintainers can rename a
project or change its settings.

The platform supports patch management in the form of pull requests for
those not sufficiently privileged or unsure about direct file modification in one
of the Git branches. Moreover, it supports the definition of server-side hooks
that run whenever a commit is pushed. This feature can be used to implement
a continuous data processing pipeline, for instance, updated training whenever
new data arrives.

Finally, Gitlab also contains registries for packages (e.g. Python packages
similar to PyPI) and container images. The Docker container registry runs on
port 5050. The command docker login <gitlabserver>:5050 configures
the local Docker client to make use of it. Images can then be pushed to
<gitlabserver>:5050/<user>/<project>/<image>.

Due to many system integrations and complex configuration, the native
installation of Gitlab requires elevated privileges and several required post-
installation configuration steps. The installation process is described in the
documentation,'¥) A more portable approach is to run Gitlab as a container,
in the following form:

export GITLAB_HOME=$HOME/gitlab

sudo docker run -ti \
--hostname localhost \
--publish 30000:80 \ # Container port 80 becomes 30000 on

the host

--name gitlab \
--restart always \
--volume $GITLAB_HOME/config:/etc/gitlab \
--volume $GITLAB_HOME/logs:/var/log/gitlab \
--volume $GITLAB_HOME/data:/var/opt/gitlab \
--shm-size 256m \
gitlab/gitlab-ee:latest

10Gitlab documentation: https://about.gitlab.com/install/#ubuntu

144

https://about.gitlab.com/install/#ubuntu

Collaboration and Governance Platforms

For security reasons, a password is auto-generated upon the first invocation.
The additional command sudo docker exec -it gitlab grep ’Password:’
/etc/gitlab/initial_root_password retrieves the password from the con-
tainer and displays it on standard output.

Gitlab as a managed service'llis similar to Github, with the added advan-
tage of being open source and thus more fit for self-hosting. The Gitlab CLI can
be used to interact with Gitlab instances. An exemplary invocation is to list all
active projects with python-gitlab --server-url https://<gitlabserver>
project list.

7.2.2 Gitlab as delivery platform

Based on any changes to data, code or other managed artefacts, Gitlab can
run processes for continuous integration (CI) or continuous delivery (CD). Both
terms largely overlap, but the former typically refers to a build-test-release
process, whereas the latter refers to the deployment of artefacts to production
systems, ready to be delivered to users.

To define what should happen upon a change, Gitlab uses the concept of
Git hooks and connects them to pipelines and web hooks. Web hooks are
external APIs that get called on certain events such as repository pushes or
changes in the issue tracker.

Pipelines executing internally in Github are also represented by a webhook
mechanism. The web hook endpoint then follows the form https://<gitlabse
rver>/api/v4/projects/27/ref /REF_NAME/trigger/pipeline?token=TKN.
Despite the name, pipelines can be not only basic pipelines in the form of
sequences but also DAG workflows representing full workflows or even multi-
project pipelines to automate a larger release process. Each pipeline works in
defined stages such as build, test or release as well as jobs representing steps
of each pipeline. The pipeline definition is edited as a YAML file and can be
compared to a makefile in terms of providing targets that trigger command
sequences, with each command being a job. The following listing gives an
example of a two-stage pipeline sketch:

stages:
- prepare
- test
image: alpine # global or per job; must contain job scripts
prep_a:
stage: prepare
script: # before_script + after_script also availabdble
- echo "This job prepares something."
- wget

1 Gitlab.com service: https://about.gitlab.com/

145

https://about.gitlab.com/

Chapter 7

prep_b:
stage: prepare
script:
- echo "This job prepares something else."
- jupyter -execute
test_a:
stage: test
script:
- echo "This job tests something. It will only run when
all jobs in the"
- echo "preparation stage are complete."

Gitlab runners execute the jobs, for instance, in the form of containerised
tools to provide isolation. This way, Gitlab can also execute an Airflow image
so that a more sophisticated workflow is initiated under the control of Airflow.
Gitlab metadata can also be pulled by Meltano, by using the tap-gitlab
extractor based on a configured access token in the project’s settings menu
next to the webhook configuration.

The global Gitlab registry contains re-usable pipeline components such as
linters that can be used to rapidly construct useful pipelines for production
scenarios.

7.3 Data catalogues and governance

There are two main flavours of these platforms. Some are more focused on pub-
lishing single datasets, often file-based, along with metadata. Implementations
include CKAN'? and Magda'?. Others are more focused on ETL processes,
data provenance and lineage. Those include many emerging platforms that are
often still non-trivial to deploy, such as Open-Metadata'4, Datahub'®, Amund-
sen'® and Apache Atlas'’, The Open Data Discovery platform (ODD) is also
in this camp and are briefly introduced next.

7.3.1 ODD deployment

ODD'® can be up and running with moderate effort when using the provided
container composition. First, the code repository needs to be cloned to get
access to all relevant launch files (size ca. 50 MB). The referenced container

2CKAN website: https://ckan.org/

13Magda website: https://magda.io/

4 0Open-Metadata website: https://open-metadata.org/
15Datahub website: https://datahubproject.io/

16 Amundsen website: https://www.amundsen.io/

17 Atlas website: |https://atlas.apache.org/#/

180DD website: https://opendatadiscovery.org/

146

https://ckan.org/
https://magda.io/
https://open-metadata.org/
https://datahubproject.io/
https://www.amundsen.io/
https://atlas.apache.org/#/
https://opendatadiscovery.org/

Collaboration and Governance Platforms

images are then automatically downloaded (size ca. 900 MB). The instructions
are as follows:

git clone https://github.com/opendatadiscovery/odd-platform

cd odd-platform/

docker compose -f docker/demo.yaml up -d odd-platform-
enricher

or docker-compose in older Docker environments

The web interface to the platform is then running on port 8080, whereas
the platform’s PostgreSQL database can be accessed on port 5432. If the setup
happens on a remote virtual machine, the ability to use SSH port forwarding
becomes handy again: ssh -L 10080:localhost:8080 ubuntu@<vmhost>.

Data can be pulled from many sources through collectors including files,
relational tables and message broker topics. MySQL, PostgreSQL, MongoDB,
Airflow and Kafka are among the supported systems. In addition to input
data, ODD supports transformers, quality checkers and other typical data
integration pipeline elements.

Custom collectors can be added as well. In the management interface,
one would click on ’add collector’ and choose an arbitrary name for it. An
access token is generated and can be copied from the interface for pasting
into the collector configuration file. For demonstration purposes, one such file
for a custom PostgreSQL connector is already provided in the code reposi-
tory: docker/config/collector_config.yaml. With the token pasted into
the empty token string within this file, the command docker compose -f
docker/demo.yaml up -d odd-collector pulls additional Docker images (size
ca. 2 GB) and adds the custom data source. In the web interface’s catalog
menu, filtering can be used to focus only on this source (named postgresql-st
ep2-test by default) to show all datasets and other pipeline elements available
from this source. For curation purposes, string tags and key-value metadata
entries can be added to each element.

Repetition

1. How does the process hierarchy look like if the command os.system("1s")
is invoked from a Jupyter notebook?

2. What is the command for pulling Docker images from a Gitlab con-
tainer registry?

147

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 8

Execution and Orchestration
Platforms

Most of the software covered in this book is deployable in the form of system-
wide packages per-user packages, or container images. When software be-
comes more complex, it might require a lower-level configuration of storage
and networking resources, autoscaling rules, proxies and orchestration logic.
The execution of containers or of virtual machines under this configuration
is then controlled by dedicated platforms. In this chapter, two representa-
tive platforms for the execution of virtual machines and containers are briefly
introduced: OpenStack and Kubernetes. Moreover, a mapping of those plat-
forms and the previously discussed middleware and collaboration platforms
into cloud services is given. The coverage is not meant to be an extensive
guide into orchestration but rather to convey sufficient knowledge to be able
to deploy data science tools should they require such a setup.

8.1 Virtual machines management

Virtual machines are highly isolated execution contexts on top of abstracted
hardware, including both kernel and userland applications in a guest context
on top of the host operating system. A hypervisor configures the available
hardware resources and ensures that all guest system calls are appropriately
translated into host calls. Hardware-supported virtualisation is often available
for this task. On Linux, the Kernel Virtual Machine (KVM) has become the
dominant hypervisor. However, this still requires managing the virtual ma-
chine images that should be executed, along with their configuration known

as instance types. For example, a machine learning application might re-
quire 4 virtual CPUs (vCPUs), 1 GPU, 8 GB of memory, 100 GB of disk

149

Chapter 8

space, and a public IP address. Tools like virsh, virt-install or plain
kvm/qemu-system-x86_64 are powerful but not easy to operate.

Instead of interacting with the hypervisor directly, setting up all config-
uration is eased by web-based infrastructure management software. In the
next section, OpenStack is introduced. Possible alternatives include Apache
CloudStack', OpenNebula? and Proxmox®. Eucalyptus® has been one of the
first platforms in this space but might be no longer actively maintained. Simi-
larly, Danube Cloud®| might be a candidate platform to look at with the same
caution.

8.1.1 Using OpenStack web interface and API

OpenStack®| is a set of named components to manage infrastructure, primarily
virtual machines and containers. Not all components need to be active, and
therefore OpenStack instances differ in their functionality. A typical compo-
nent combination might be Glance to manage virtual machine images, Nova
for interaction with the hypervisor running virtual machine instances, Swift
or Cinder for object or block storage, respectively, Keystone for identity man-
agement and Heat for orchestration.

All services integrate into Horizon, the web-based management interface.
Users log into this interface, see their assigned projects with quotas, and set
up virtual machines and other resources like virtual block devices within the
project. Accounts, instance types, quotas, projects and other privileged config-
uration settings are handled by a system administrator. Hence, to get started
with an instance that is not self-operated, a user would first have to request
access from the administrator, by specifying the desired resources, and would
subsequently get the account and the ability to log into Horizon.

Inside the interface, users would register SSH keys, network policies and,
optionally, secondary persistent block storage devices. Then, they would
launch VMs, each of which comes with a primary block storage device of
reasonable but perhaps limited capacity. A typical instance type might have
4 vCPUs, 1 GPU, 8 GB of memory and 40 GB disk space. Then for the
aforementioned machine learning application, a secondary block device is nec-
essary. Within the Horizon dashboard, the block device would receive a
label, which can then be used to automount it inside the VM by putting
a line like LABEL=seconddisk /home/ubuntu/mountpoint ext4 defaults O
0 into the file /etc/fstab.

LCloudStack website: [https://cloudstack.apache.org/
20penNebula website: https://opennebula.io/

3Proxmox website: https://www.proxmox.com/en/proxmox-ve
4Bucalyptus website: https://www.eucalyptus.cloud/
5Danube Cloud website: [https://danube.cloud/

60penStack website: https://www.openstack.org/

150

https://cloudstack.apache.org/
https://opennebula.io/
https://www.proxmox.com/en/proxmox-ve
https://www.eucalyptus.cloud/
https://danube.cloud/
https://www.openstack.org/

Execution and Orchestration Platforms

By default, VMs are only accessible on an internal network accessible by all
VMs, with IP addresses of the form 10.0.x.y. OpenStack has the concept of
floating IP addresses which depending on the quota settings can be assigned
to running VMs to make network services on them accessible from outside.
A VM then possesses three network interfaces that can be distinguished to
enforce access policies: localhost, the internal IP, and the floating IP.

Access to VMs can be granted to users who do not have an OpenStack
account, by requesting the desired resource configuration from them, as well
as the SSH public key, and setting the VM up for them. The owner of a virtual
machine, possibly a data scientist, then merely has the tasks of maintaining the
VM itself, including the regular installation of security updates, and ensuring
that no unnecessary services are exposed to the world. Regular maintenance
also involves checking for resource shortage using df, free and similar tools
introduced previously in this book.

Access to OpenStack is also possible programmatically. The lifecycle man-
agement of virtual machines serves as an example. Due to such VMs be-
ing managed by Nova, the first step is importing the Python submodule
novaclient.client and setting up a client object. Next, the list of virtual
machines is retrieved. Each machine has a current state and, in case a task
such as powering on or off a VM is still running, also a task state. The follow-
ing code exemplifies starting all switched off VMs inside a project, unless they
are already in the process of being started. The authentication URL follows
the pattern https://<openstack-domain>:5000.

import novaclient.client

nova_client = novaclient.client.Client(version="2",
username=os.getenv ("OS_USERNAME"), password=os.getenv ("
0S_PASSWORD"), project_name=os.getenv ("0S_PROJECT"),
auth_url=os.getenv("OS_AUTH_URL"), user_domain_name="
default", project_domain_name="default")
servers = nova_client.servers.list ()
for server in servers:
status = server._info["status"]
taskstate = server._info["OS-EXT-STS:task_state"]
if status == "SHUTOFF" and taskstate is None:
print ("Starting machine", server.name)
server.start ()

A nested dictionary of network interfaces is also available through the ob-
ject attribute server.addresses. Each inner dictionary can be checked for the
presence of a fixed IP address assignment, for instance, with: ip ["0S-EXT-IPS:
type"] == "fixed". The field ip["addr"] then contains the IP address.

151

Chapter 8

8.2 Container management

A lot of software is shipping with the option to run in containerised form,
or even requires container-native deployments. Container orchestration plat-
forms ensure that they can run in production with the right provisioning and
scaling characteristics. Over the past years, Kubernetes has emerged as one of
the dominant orchestrators, with many features but also correspondingly high
complexity. It is briefly introduced in the next sections.

8.2.1 Kubernetes ecosystem

Kubernetes runs as a standalone system or more typically as a cluster involving
multiple virtual or physical machines. Within a running instance, different
namespaces can be set up to increase isolation. By default, the namespace
kube-system is reserved for Kubernetes-internal resources.

Kubernetes orchestrates resources of different types, each with correspond-
ing declarative configuration. YAML or JSON files describe resources such as
containers instantiated from images (with the types Deployment, StatefulSet,
Job/CronJob and others), exposed network interfaces (Service) and storage
areas (PersistentVolumeClaim). Many of these resources have a physical
representation, such as CPU and memory limit assignments in deployments.
Custom resources such as bindings to other platforms can be developed and
deployed. Operators are further containerised software components that auto-
mate the lifecycle.

Multiple implementations of Kubernetes exist, especially to account for
smaller (single-node) operation when horizontal scaling is not required. Among
the well-maintained implementations are Minikubd”, K3<8 MicroK8d’| and
Kind'l They differ especially in terms of how easily extensions can be installed
and how strictly authentication needs to be performed. There are also multiple
platforms building on top of Kubernetes, especially with additional features
for application engineers, such as OpenShift and CloudFoundry.

The command-line utility kubectl is used to interact with a Kubernetes
cluster. It works based on contexts, so that for each cluster a specific context
can be set up and working across clusters becomes possible. With this tool,
applications can be deployed and configured and the cluster status can be
monitored. With OpenShift, the oc tool can be largely used as a substitute.
Similarly, with Minikube, K3s and MicroK8s, bundled wrapper commands
exist (e.g. k3s kubectl) so that a separate installation is not necessary.

"Minikube website: fhttps://minikube.sigs.k8s.io/docs/
8K3s website: https://k3s.i0/
9MicroK8s website: https://microk8s.io/

10Kind website: https://kind.sigs.k8s.io/

152

https://minikube.sigs.k8s.io/docs/
https://k3s.io/
https://microk8s.io/
https://kind.sigs.k8s.io/

Execution and Orchestration Platforms

Helm'!|is a package manager for Kubernetes applications. On the shell,
the tool helm allows for updating information about packages and installing
them to a cluster namespace. These packages, also called Helm charts, are in
essence templated resource descriptions along with metadata and dependen-
cies, allowing for a higher-level handling of more complex applications. The
Artifact Hub'?is a popular repository for such applications. There are also al-
ternative tools to adjust applications to specific needs, for instance Kustomize.

8.2.2 Kubernetes installation

In the following, MicroK8s is used as exemplary implementation to obtain a
self-hosted Kubernetes instance. On an Ubuntu system, the installation of Ku-
bernetes servers is performed with a dedicated meta-package: sudo apt-get
install kubernetes followed by kubernetes install and choosing option
1, MicroK8s. The metrics server can be enabled as extension with microk8s
enable metrics-server, and then works out of the box without requiring au-
thentication. With alias kubectl="microk8s kubectl", client-side access
to the Kubernetes instance becomes possible.

In case a Kubernetes instance is already provisioned elsewhere, an alter-
native path needs to be taken. First, the instructions to download it need
to be followed!'?, and, second, an access context needs to be configured. The
following listing shows an exemplary use:

packaged: <1f available, use that and skip the three
manual lines below

sudo apt-get install kubernetes-client

manual: get current wversion first, and use it instead of
1.27.2 below

curl -LS https://dl.k8s.io/release/stable.txt

curl -LO https://dl.k8s.io/release/v1.27.2/bin/linux/amd64/
kubectl

sudo install kubectl /usr/local/bin/kubectl

kubectl config set-cluster <clustername> --server=<host>
kubectl config get-clusters

As a first confirmation of a successful deployment, kubectl get all should
show all resources in the default namespace. In particular, there should
be a Kubernetes service (service/kubernetes) with a cluster IP address.
Other namespaces can be chosen, for instance by appending --namespace
kube-system. To get a list of all namespaces, kubectl get namespaces is

HHelm website: https://helm.sh/
12Hub website: https://artifacthub.io/
13Kubectl guide: |https://kubernetes.io/de/docs/tasks/tools/install-kubectl/

153

https://helm.sh/
https://artifacthub.io/
https://kubernetes.io/de/docs/tasks/tools/install-kubectl/

Chapter 8

helpful. With kubectl top nodes, statistics about the resource consumption
can be shown, and with kubectl api-resources, all resource types known to
the instance are shown as well. Access to internal information can be achieved
by combining the tool with post-processing, as in: kubectl get service
--namespace kube-system -o json | jq ".items[0].spec.clusterIP".

When these commands work as expected, the Kubernetes instance can be
used to deploy applications.

8.2.3 Working with Kubernetes

Assuming a working Kubernetes instance and properly installed tools (kubectl
and helm), an application can be installed in two ways. If it is packaged for
Helm, the steps follow the sequence of commands listed below, assuming a
self-chosen release name:

kubectl create namespace <namespace>

helm repo add <name> <repo-url> # for custom applications
not in Artifact Hubd

helm repo update

helm search repo <searchterm> # or ’hub’ for Artifact Hub;
lists charts

helm install <release-name> <chart> # simple test
installation; more complete:

helm upgrade --namespace <namespace> --install <release-
name> <chart>

Otherwise, if only YAML files are provided, a typical sequence would look
as follows:

kubectl create namespace <namespace>
kubectl apply -f <app>.yaml --namespace=<namespace>
kubectl get deployments # werify that deployments show wup

Static scaling of containers can be set up directly as configuration in-
structions on the container-related resources such as Deployment. For ver-
tical and horizontal autoscaling, more sophisticated resources exist, including
VerticalPodAutoscaler (VPA). Whether or not a certain autoscaling mech-
anism is offered in a Kubernetes instance can be found out by querying the
available APIs with kubectl get --raw /apis. It contains the namespaced
list of API groups. Those of relevance to autoscaling are autoscaling/hpa
for horizontal scaling, autoscaling.k8s.io/vpa for vertical scaling and fi-
nally keda.sh/keda for event-driven scaling. Most scaling mechanisms (static,
VPA and HPA) are reactive based on CPU and memory consumption, whereas
KEDA can also react on network traffic and other events. In contrast to the

154

Execution and Orchestration Platforms

others, VPA is able to calculate recommendations on predicted resource re-
quirements. Usually, the autoscalers are used in combination with the metrics
server, metrics.k8s.io/metrics.

configure HPA autoscaling

kubectl autoscale deployment <deployment> --cpu-percent=50
--min=1 --max=3

verify HPA autoscaling status

kubectl get hpa -o json | jq ".items[O].status"

8.3 Cloud services

Cloud computing refers to the on-demand provisioning of programmable ser-
vices representing infrastructure, platforms, applications and data. Applica-
tion orchestration in commercially offered clouds combines execution in vir-
tual machines, containers and other environments with managed middleware
services. Long-running virtual machines and containers are typically offered
as Infrastructure-as-a-Service (IaaS), containers also as Container-as-a-Service
(CaaS) hosting. Short-running containers and function implementations are
also offered as runtime for Function-as-a-Service (FaaS). Likewise, databases
may be offered as DBaaS, and other middleware as Backend-as-a-Service (BaaS).
Many cloud providers run Kubernetes for CaaS, along with KNative for
scale-to-zero containers as backing for FaaS. Moreover, some providers also
run registries for VM and container images. Hence, working with a cloud is
not difficult when the fundamental technologies and platforms are understood,
primarily by mapping the cloud service product names to the names of the
platform and infrastructure technologies. Sometimes, cloud providers are ex-
plicit about what technology is used under the hood, and sometimes this can
be found out by trying. Nevertheless, some cloud services also run proprietary
software not available outside of the provider, and some run heavily modified
or customised software. In the interest of interoperability and avoidance of
vendor lock-in, the subscription to such services should be assessed carefully.

Repetition

1. Is a virtual machine managed in OpenStack aware of its public IP
address?
2. Does Kubernetes support proactive autoscaling?

155

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Chapter 9

Global Infrastructure

Beyond the individual hosted tools and online platforms, some online platforms
offer much more combined functionality and thus qualify as complete self-
service infrastructure for data scientists. While it may be technically possible
to operate them locally, their complexity no longer permits doing so in an
affordable manner. This holds for platforms located in a single region and even
more so for truly globally distributed infrastructure such as content delivery
networks (CDNs) and edge clouds, serving their users in geographic proximity.
To give a second reason, the reliance of the platforms on social interaction
workflows often stimulates a single global instance instead of isolated personal
or institution-internal instances. Similarly, having a single global entrypoint
facilitates discovery and bootstrapping, and a single global data broker for non-
confidential data facilitates integration. Hence, the selection of appropriate
platforms, account creation, subscription management and reliance on internal
administrators or external operators needs to be factored into the equation
when designing automation for data science.

In general, there are two paths towards global platforms: federation and
dominance. To compare, consider the case of online social networks: In many
parts of the world, Twitter had become the dominant commercial platform for
broadcasting short messages. Mastodon, XMPP and other implementations
allow for federation and therefore decentralised control of the hosting but,
lacking the budget power, would not cause the same necessary network effect.
In data science, few platforms support federation, and therefore global infras-
tructure is primarily reliant on dominant players, both full-stack cloud/CDN
providers and providers of other platforms. Examplary platforms with lock-in
risks include Github, social networks and hyperscalers. While most of those
platforms are commercially operated based on mandatory subscriptions, there
are always long-lasting global infrastructure providers with free tiers or even
entirely free offerings that are especially suitable for learning the technology.

157

Chapter 9

In the following, two worthwhile global infrastructure platforms based on
open source implementations are described: Renku Lab and Zenodo. They
are complemented with a national infrastructure service on the data input
side: OpenTransportData. Together, they can be used to form a whole data
pipeline without self-operated infrastructure. Complementary services for dis-
covery (Eted) and streaming (Dweet) are also described to facilitate distributed
applications with various data processing and analytics components. One com-
monality is that these services and platforms are available for free and invite
studying their functionality without having to put a credit card on file. They
are also fairly easy to get started with and automate without unnecessary ob-
stacles such as two-factor authentication, which may have their justification
in production but are not helpful in learning situations. As with all online
services, it is advised to carefully consider the use of pseudonym identities
and temporary e-mail addresses while trying out the services, while maintain-
ing discipline knowing that they are offered free of charge although real cost
occurs for their operation.

9.1 Data pipeline infrastructure

A typical data pipeline involves one or more data sources, reproducible insights
generation, and a long-term archive for the results data. In the following, the
already available global infrastructure to set up such a pipeline is described. It
starts with the acquisition of public data from OpenTransportData, followed
by its collection and processing in Renku, and the public archiving in Zenodo.
In turn, Zenodo might again serve as one of the input data sources for further
pipelines...

9.1.1 OpenTransportData

There are many sources for public data. Well-curated ones with suitable licenc-
ing and reasonable long-term availability are open government data (OGD)
available from many countries and their subordinate administrative levels. A
global view on OGD in selected countries is available from the Open Data
Barometer'| or the older and now archived Global Open Data Index?. Individ-
ual collections are available from countries like Switzerland® or the USAH or
organisations like the European Union?| or the United Nations®,

1OGD barometer: https://opendatabarometer.org/
2Index: |http://index.okfn.org/

3CH data: https://opendata.swiss/de

4US data: https://data.gov/

5EU data: https://data.europa.eu/en

6UN data: https://data.un.org/

158

https://opendatabarometer.org/
http://index.okfn.org/
https://opendata.swiss/de
https://data.gov/
https://data.europa.eu/en
https://data.un.org/

Global Infrastructure

Complementary to such top-down approaches, community curation of data
has led to DBpedia’| and Wikidata®. A third source category are real-time
updates mostly from measured data. One can fetch public real-time data on
earthquakes®, consume dweets'?, and inspect live camera feeds'.

OpenTransportData serves as exemplary input data platform for a global
pipeline. It offers access to static and real-time data related to public trans-
portation such as networks, routes, schedules and delays."?| While it is country-
specific, many of the data formats and associated algorithms can also be
found in other places, as evidenced by the global Mobility Database refer-
encing almost 2000 static schedules/'3| The OpenTransportData site is among
the higher-quality contenders as it is based on a tightly integrated national
transportation system and also offers various APIs such as a journey planner.
Registration is necessary to obtain an API key for the journey planner and
the real-time feed, whereas static data retrieval and some of the other APIs do
not require registration as long as temporal request limits are adhered to. The
first example translates a coordinates pair to a list of nearby stations, returned
as a JSON structure. It should be noted that = refers to the latitude and y to
the longitude, in degrees:

curl ’http://transport.opendata.ch/vi/locations?x=47.006001
&y=9.106130"

The second example demonstrates retrieval of the live data, including his-
toric live updates dating back to up to a week, in JSON format amounting to
hundreds of thousands of lines:

register key first, or use test key for occasional use
testkey=57c5dbbbf1£fe4d000100001842c323fa9ff44fbbal0b9b925f0c
052d1
baseurl=https://api.opentransportdata.swiss/gtfsrt2020
curl -H "Content-type: text/xml" -H "Authorization: $testkey
" $baseurl?format=JSON

9.1.2 Renku Lab

Renku Lab'4|is the reference deployment of the open source Renku infrastruc-
ture. Renku fosters the collaboration between data scientists and supports

"DBpedia: https://www.dbpedia.org/resources/
8Wikidata: [https://www.wikidata.org/wiki/Wikidata:Main_Page
9Earthquakes: https://earthquake.usgs.gov/earthquakes/feed/v1.0/
0Dweets: http://dweet.io/see
HInsecam: http://www.insecam.org/en/byrating/
120penTransportData: https://opentransportdata.swiss/en/
13Mobility Database: https://database.mobilitydata.org/
14Renku website: |https://renkulab.io/

159

https://www.dbpedia.org/resources/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://earthquake.usgs.gov/earthquakes/feed/v1.0/
http://dweet.io/see
http://www.insecam.org/en/byrating/
https://opentransportdata.swiss/en/
https://database.mobilitydata.org/
https://renkulab.io/

Chapter 9

reproducible data-driven workflows based on version controlled data, contain-
ers and a unique knowledge graph. With Renku, the implications of changes
on the input side (i.e. a modified dataset) on the output (i.e. workflow results)
become traceable.

In Renku, data and scripts are stored in an integrated Gitlab instance. The
Git repository needs to adhere to a specific structure, which is accomplished by
running the appropriate Renku commands that create the directories and per-
form the file modifications as needed. Scripts are typically defined as Jupyter
notebooks containing cells of Python code mixed with documentation and ref-
erence results.

Experiments are defined as sequential workflows that run the scripts and
build a knowledge graph that shows the dependencies and how changes in the
code or input data lead to different results in consecutive executions. This way,
accidental degradations can be detected and mitigated quickly. The following
example shows how to use the renku wrapper command to track a script
invocation. This commands can be invoked in Renku’s integrated Jupyter Lab
terminal and will produce a knowledge graph on how modifications to a CSV
file were made:

make sure there is a dataset; i1f not, create it with an
arbitrary CSV file and register it under a specific name
<dsname>
renku dataset add --create <dsname> <filename.csv>
renku dataset 1s
inspect the dataset
ls data/<dsname>
track script invocation
renku run --name <wfname> --no-output rm data/<dsname>/<
filename.csv>
check status and save session for later use in case there
are changes
renku status
renku save
re-run the recorded tnvocation for all operations
affecting a certain file
renku rerun data/<dsname>/<filename.csv>

Further commands stress the workflow nature of recorded invocations.

show the workflow

renku workflow show <wfname>

re-execute a recorded timvocation

renku workflow execute <wfname>

compose a workflow as sequence of multiple exzisting
workflows

160

Global Infrastructure

renku workflow compose --link-all <wfname> <wflname> <
wf2name >

Renku also offers an API in addition to the graphical web interface, and
a command-line client (Renku Client) to interface with this API from the
command line. Alternatively, the API can be used from custom Python ap-
plications. Moreover, Renku integrates with public data repositories such as
Zenodo and Dataverse in order to import existing datasets.

How to use Renku step by step is well explained in the first-steps tutorial /'

9.1.3 Zenodo

Working with data in research settings requires platforms to exchange files
and larger datasets. While Git is suitable for data engineering processes, it
has comparatively few ways to add publishing information to data or declare
relationships between datasets. Moreover, despite technical support for large
files, it might not be the best tool to store such files for long-term public access
in the first place.

Zenodd'%|is a platform for sharing research data which also archives larger
datasets and thus guarantees their availability for further exploration and anal-
ysis. Most of the interaction with Zenodo is web-based, such as uploading
datasets, describing it with metadata, creating a community and tagging the
dataset with the community. Datasets can be imported from Git (and thus
also from Renku) and receive a unique publication record in the form of a
digital object identifier (DOI). An HTTP API is available to upload datasets
but also to search for existing data. An access token must be obtained before
being able to use the API for write access such as data deposits. Reading works
without such a key, as evidenced by the following example that retrieves the
first ten records from a search result and also gives the URLs for navigating to
further records: curl https://zenodo.org/api/records/7q=serverless |
json_pp > records.json. The complete search syntax is described online,*”

9.2 Distributed applications infrastructure

Building a globally distributed application requires the ability to reach out
from one component to another. This is accomplished through a naming and
discovery service. Etcd offers such a service. Once the addresses and other
metadata of application components are known, communication in the form

150ne of the Renku tutorials: https://renku.readthedocs.io/en/latest/tutorials/01_
firststeps.html

T6Zenodo website: https://zenodo.org/

17Zenodo search: https://developers.zenodo.org/#records

161

https://renku.readthedocs.io/en/latest/tutorials/01_firststeps.html
https://renku.readthedocs.io/en/latest/tutorials/01_firststeps.html
https://zenodo.org/
https://developers.zenodo.org/#records

Chapter 9

of message delivery between them can start. Dweet offers the appropriate
interface for the sending and receiving components.

9.2.1 Etcd Discovery

Distributed systems, and even fully decentralised systems, need a way to boot-
strap and identify endpoints. There are many ways to accomplish that in a
fault-tolerant way beyond local-only approaches such as environment variables:
with a list of meta-servers to maintain a decentralised approach, with registra-
tion of records into the DNS of a domain name or informative files placed into
the root directory of a web server running on these domain names or finally
with a global discovery service. Etcd is a distributed reliable key-value store
which for its own purposes, but also for other applications, makes such a dis-
covery service available.'®| In Etcd, key-value pairs can be nested, essentially
forming a hierarchy of such entries.

The first step is to request a universally unique identifier (UUID), which is
mathematically speaking not entirely unique but sufficient for all practical pur-
poses. The secured HTTP request curl https://discovery.etcd.io/new?s
ize=5 would create such an identifier allocated for an application with 5 com-
ponents. Those may be replicas of a single service, or arbitrary components.
The response is a single URL that encodes the identifier as a path on the base
URL and serves as endpoint for further operations. A typical undashed UUID
may thus look like 24f7beedc1e99d5f02ca3cab05124bde.

In a subsequent step, naming information about the components are reg-
istered. For instance, a component nodel may want to inform other compo-
nents of its presence and endpoint. The HTTP write request curl -X PUT
https://discovery.etcd.io/<UUID>/nodel -d value="myip=127.0.0.1"
would register that information. The response in JSON format contains the
key as /<UUID>/nodel and the value as specified in the request.

Hence, a subsequent read request on the identifier makes that information
available to other processes or application components:

$ curl https://discovery.etcd.io/<UUID>
{"action":"get","node":{"key":"/<UUID>","dir":true, "nodes"
:[{"key":"/<UUID>/nodel","value":"myip=127.0.0.1","
modifiedIndex":...,"createdIndex":...}],"modifiedIndex"
.,"createdIndex":...}}

9.2.2 Dweet

Sending and receiving non-confidential messages on arbitrary streaming chan-
nels, for instance, in IoT scenarios or other forms of machine-generated data,

18Etcd discovery service: |http://discovery.etcd.io/

162

http://discovery.etcd.io/

Global Infrastructure

is the task of several IoT platforms. They range from standalone or niche
platforms to IoT integration capabilities of clouds. A globally usable platform
with low entry barrier for occasional needs is Dweet/™”,

The interface to publish simple key-value information is, perhaps slightly
deviating from protocol conventions, an HTTP GET request of the form
https://dweet.io/dweet/for/<channelname>7k=v[&k2=v2...]. An HTTP
POST mechanism is also available which conforms better to standards and ac-
cepts more complex JSON-formatted structured data. Both interfaces respond
with a JSON message about the success status and a transaction number. For
instance, a script may regularly publish simple information about the avail-
able free memory on a machine. It uses a static channel name related to the
local identity of the machine, but by combining with the Etcd discovery ser-
vice introduced beforehand, globally unique names could also be achieved, as
follows:

freemem=‘LANG=C free -m | grep Mem | awk ’{print $73}’°¢
msg="lots%200f%20free’,20memory"

while true

do
curl "https://dweet.io/dweet/for/my::notebook?
fremem=$freemem&msg=%msg"
sleep 5
done

A consumer script would then retrieve this information. The HTTP connec-
tion is kept open to facilitate streaming. Thus, a continuous retrieval could be
achieved with the following invocation: curl https://dweet.io/listen/for
/dweets/from/my: :notebook.

Repetition

1. How many stations can be found at the coordinate 47.00° north and
9.00° east?

2. How many datasets with R scripts does Zenodo provide on the topic
of rattlesnakes?

YDweet website: http://dweet.io/

163

http://dweet.io/

© CC BY-NC-SA, vdf.ch/operating-systems-and-infrastructure-in-data-science-e-book.html

Solutions

This part of the book contains answers and solutions to the repetition questions
and tasks.

2. Concepts: Programming, Data Representation
and DataOps

1. Tasks may be in sequential order, connecting the input of one with the
output of another; or executing in parallel. Or they may be unrelated, for in-
stance, in a sequence that has other tasks in between. 2. Map invocations are
isolated from each other and can be parallelised without side effects or mutual
dependencies. The map-reduce computing paradigm relies on this characteri-
sation. 3. It might be a cost-effective and rapid alternative, but it comes with
risks such as vendor lock-in and inability to customise the analytics logic.

3. Concepts: Operating Systems

1. The OS attempts to use swap files or swap partitions if these have been
set up. If they are not set up or also full, the OS terminates a process. It
may be the one that requested additional memory pages. 2. Containerisation
typically provides lightweight isolation, with emphasis on fast start-up times.
Stronger isolation can be achieved with virtualisation. 3. This website is not
registered in the DNS. Either it is registered locally in the hosts files and the
server is running, in which case the website is shown. Otherwise, a browser
error message is provoked.

4. Concepts: Infrastructure

1. No. This IP address is bound to the local network interface and not to
any of the physical network cards (NICs) that would accept traffic from other

165

Solutions

computers. 2. OpenAPI is the most widely used language to describe web
services, although RAML and other alternatives also exist. 3. Due to the la-
tency sensitivity, cloud computing would be more suitable. Despite clouds not
supporting hard realtime constraints, they typically have provisioning models
with short response times, contrasting the rather batch-oriented HPC models.

5. Applications and Tools

Shells

1. Logins use the current username by default, but that can be changed with:
ssh Y@X. 2. The transfer would happen with the following command: scp Z
user@server:. 3. This command: ssh user@server screen editor. 4. At
least seven wrapper tools have been introduced at that point: bash -c, ssh,
sudo, screen, parallel, stdbuf, timeout.

Useful shell tools

1. The TERM signal asks the process to terminate itself, but this request
could be overridden so that the process keeps running. The KILL signal is
unconditional and always leads to immediate termination. 2. With a construct
in the following form: ps wauxf | grep PROC | grep -v grep. The last
part filters all occurrences of grep in the input. 3. The output of last contains
one line per login session plus two extra lines at the end. Thus, echo $((‘last
| we -1¢-2)).

Shell programming

1. There is no (well-known) command xyz. In that case, nothing happens. But
it could be a custom-installed program with this name, or a local alias defini-
tion, or a shell command. Therefore, when unsure, the nature of the command
should be found out first with type and which. 2. This command would ask
to terminate the current shell session. It is however intercepted by the shell
for safety reasons. Only a kill -KILL $$ can override the interception.

Python modules for OS interaction

1. It would print the PID of the just invoked Python interpreter process
to standard output, and then terminate. 2. With os.makedirs(<dir>,
exist_ok=True).

166

Solutions

Package management

1. By running this installation command: apt-get install vim. In case
the package is already installed, this command may nevertheless lead to an
upgrade of the package. 2. Assuming these installations happened via Pip, an
appropriate command might be: pip 1list | wc -1.

Container management

1. Not of the OS kernel, but — assuming basic compatibility between kernel and
userland — certainly another version of all other components of the OS distribu-
tion, or even a different distribution. This could be accomplished and verified
best with a versioned run command: docker run --rm -ti ubuntu:20.10
cat /etc/lsb-release. 2. This command first requires finding an appropri-
ate image via docker search pypy. It should be noted that this search is not
resilient and might need several attempts. The output shows that there are lots
of choices, but there is also one image plainly called pypy hinting at its official
nature, and furthermore conveying credibility by having lots of stars assigned
to it from users. Therefore, docker run --rm -ti pypy:latest might be a
good choice.

Data management and version control

1. According to the manual page man git-merge, the following six strate-
gies exist as of version 2.39: ORT (Ostensibly Recursive’s Twin), Recursive,
Resolve, Octopus, Ours, Subtree. 2. First, the repository would have to
be cloned: git clone https://git.savannah.nongnu.org/git/attr.git.
Then, the tool would have to be built. It is evidently an Autotools-based
project, hence: cd attr; ./autogen.sh followed by ./configure and make.
Next, modifications can be applied for instance in tools/attr.c, and tested by
a rebuild. If everything works, then git add tools/attr.c and git commit
-m "<message>" extends the changes into the local repository clone, with sudo
make install also making the tool available on the system.

Data processing tools

1. First, a unified phone number format needs to be established, for instance
with international prefix. Turned into a regular expression, it can then be
grepped out of arbitrary text as follows for notations both with and without
spaces in between numbers: grep -rIP "\+\d{2}\s?\d{2}\s?\d{3}\s?\d{2}
\s?\d{2}" . with the final dot representing the top-most search path. 2. By
combining a query of the original size and a conversion, for instance, for PNG

167

Solutions

files: convert -scale $((‘file <in.png> | awk ’{print $5}’¢/2)) <in.
png> <out.png>.

Structured data processing

1. The following pipeline gives a suitable JSON formatting for human con-
sumption based on a provided endpoint URL: curl -s ’http://.../<file>
.json’ | json_pp. 2. This can be accomplished by a conversion to JSON, as
follows: csvjson <file.csv> | jq ’.[] | select(.A | contains("PRODU
CT"))?, or more directly: csvgrep -m PRODUCT -c A -d ";" <file.csv>.

6. Middleware

Programmatic data serving

1. Web browsers enforce CORS. Web services not properly reporting CORS
headers do not receive any HTTP requests from the browser, effectively ren-
dering the dynamic functionality useless. 2. The minimal Python code is aug-
mented to listen for HT'TP requests and to deliver complete HTML content
as responses. This augmentation needs code generation which the streamlit
command contains.

File system abstractions and network storage

1. Either using loopmounting with the privileged command mount -o loop
<file> <mountpoint> or, in case the file system is supported by Fuse2FS,
then by calling fuse2fs <file> <mountpoint>. 2. SSHFS itself yes; but to
automate the mounting, a passphrase-less key is typically used. This means the
remote computer can also be reached with an interactive login with the same
key, and hence full access to that computer (under the indicated user privi-
leges) becomes possible. In other words, if sshfs <user>@<server>:<dir>
<mountpoint> works, then ssh <user>@<server> also works.

Database interaction and management

1. First, the reason for the slowness needs to be identified. It is caused by many
network requests and many small database transactions. A bulk/batch insert
operation, if supported by the DBMS, massively speeds up the inserts. 2. Local
user authentication refers to the operating system’s authoritative information
on user identities. Hence, a password authentication is not necessary. Over a
network, no such authority exists, and a password must always be supplied.

168

Solutions

Message brokers for real-time data processing

1. Polling refers to active checks for new messages with high frequency. It
corresponds to a pull mechanism that consumes unnecessary system resources,
whereas by using a broker, a process can sleep until it is woken up by the
arrival of a new message, corresponding to a push notification. 2. The ZMQ
protocol mirrors the underlying TCP protocol. In that, the receipt of each
sent packet is acknowledged, and the acknowledgement must be read before
another packet can be sent.

Parallel and distributed computing

1. By using spark-submit, the application only needs an empty SparkCon-
text. All resource allocation parameters are set by this wrapper command. In
contrast, applications executing without spark-submit must parameterise the
SparkContext object regarding local or remote (Spark master) resources and
other settings. 2. Not quite. As Spark follows a lazy evaluation approach, it
merely records the series of instructions to be run whenever strictly needed.
In that case, outputting the dataframe (df.show()) would require the results
and run all instructions.

Model serving

1. For the access part, indeed a web server could be used, but it would need
logic to upload models, revert to older versions and so forth. The model-
serving implementations contain all that. For high scalability, a caching proxy
web server could be used in front of a model server. 2. In principle, this is
correct. However, the HTTP standard only foresees limited key-value param-
eters for GET requests, whereas entire request bodies can be supplied with
POST requests. Only that way can user-defined data structures required for
the inference/prediction process be guaranteed to be expressable in a request.

Data integration

1. Both extractors and taps refer to data sources or read access. Both loaders
and targets refer to data sinks or write access. 2. Change management. All
changes to the configuration can be verified and traced, and upon misconfigu-
ration, a previous configuration can be easily reinstated.

Workflows and distributed scheduling

1. No. Due to the dependency between both operators, they can only be
executed sequentially: t1 >> t2. 2. It is a cron expression, meaning that a

169

Solutions

job should be executed at midnight (both hour and minute being 0), on all
days (day of month, month, and day of week all being irrelevant).

7. Collaboration and Governance Platforms

1. The top-most process would be Jupyter itself. Its child process is the
iPython interpreter. And the 1s process is in turn a child of that one. Each
child process is controlled by its parent. 2. There are two commands: first,
podman login <gitlabserver>:5050 as auxiliary step and, second, podman
pull <gitlabserver>:5050/<u>/<project>/<image>.

8. Execution and Orchestration Platforms

1. No. Floating IPs are assigned by OpenStack to a network proxy that runs
outside the VM. Within the VM, only the internal IP address is visible. Soft-
ware such as web servers needs to be consciously configured to react to public
IP addresses or public (fully-qualified) hostnames. 2. No. Only reactive (after-
the-fact) autoscaling is supported by the container orchestrator. Applications
or helper containers can use their intrinsic knowledge, for instance, upcoming
events, to emit proactive autoscaling decisions.

9. Global Infrastructure

1. The stations can be counted with the instruction: curl ’http://transport
.opendata.ch/vl/locations?x=47.00&y=9.00’ | jq | grep name | wc -
1. Accordingly there are ten stations nearby. 2. This is a slightly tricky ques-
tion due to incomplete Zenodo search syntax documentation. With some at-
tempts, the answer can be constructed as follows: curl "https://zenodo.org
/api/records/?q=rattlesnake&file_type=r" | jq ".hits.hits | lengt
h". Accordingly, there are six such datasets published at the time of writing.

170

/\/—-

Operating Systems and Infrastructure in
Data Science

Modern data scientists work with a number
of tools and operating system facilities in
addition to online platforms. Mastering
these in combination to manage their data
and to deploy software, models and data as
ready-to-use online services as well as to
perform data science and analysis tasks is
in the focus of Operating Systems and
Infrastructure in Data Science.

Readers will come to understand the funda-
mental concepts of operating systems and
to explore plenty of tools in hands-on tasks
and thus gradually develop the skills neces-
sary to compose them for programming in
the large, an essential capability in their
later career.

The book guides students through semester
studies, acts as reference knowledge base
and aids in acquiring the necessary knowl-
edge, skills and competences especially in
self-study settings.

A unique feature of the printed book is the
associated access to Edushell, a live
environment to practice operating systems
and infrastructure tasks.

T _—

Print Version:
ISBN 978-3-7281-4167-5

eBook:
ISBN 978-3-7281-4168-2 / DOl 10.3218/4168-2

vdf

	Operating Systems and Infrastructure in Data Science
	Impressum
	Contents
	Introduction
	Prerequisites
	Target competences and anticipated skillset
	Book structure
	Dedication

	Concepts: Programming, Data Representation and DataOps
	Data Structures: Graphs, Streams and Units
	Graphs
	Streams
	Units for Data and Resources

	Data Formats
	Compute-Centric Processing: Pipelines and Workflows
	Data-Centric Processing: Sharding and Map-Reduce
	Event Processing, Handlers and Hooks
	Encapsulation: Functions, Tools, Containers and Services
	Data Management, Engineering and Operations
	Data Engineering
	Data Integration
	DataOps
	Reproducibility

	Repetition

	Concepts: Operating Systems
	Fundamentals
	Current Operating Systems
	Building Blocks: Executables, Processes and Resource Management
	Isolation, Virtualisation and Containerisation
	File System, Paths and File Access
	Networking
	User Management, Authentication, Authorisation and Credentials
	Repetition

	Concepts: Infrastructure
	Networks and Internet
	Networked Computers
	Services and Platforms
	Parallel and High-Performance Computing
	Cloud Computing
	Full application hosting
	Partial hosting and on-demand offloading
	Cloud backup

	Repetition

	Applications and Tools
	Fundamentals
	Mastering Tools
	Text-mode interaction
	Types of tools

	Shells
	Overview on shells and terminals
	Local shell access with Bash
	Bash variables
	Bash commands
	Remote shell access with OpenSSH
	Advanced shell management with Screen and TMux

	Useful shell tools
	Hardware resources exploration
	Operating system exploration
	Time- and event-related commands
	Managing data in files and directories
	Creating, viewing and editing files
	Networking
	System administration

	Shell programming
	Vocabulary and interaction with scripts
	Job management
	Control flow programming
	Shell functions definition

	Python modules for OS interaction
	Running the Python interpreter
	Modules 'os' and 'sys'
	Module 'shutil'
	Module 'tempfile'
	Module 'argparse'
	Module 'subprocess'
	Module 'socket'

	Package management
	Python package management with Pip
	Advanced Python package management with Pipx and Poetry
	Package management for other programming languages
	System package management with APT

	Container management
	Introduction to Podman
	Fetching and running containers
	Building custom container images

	Data management and version control
	Delta synchronisation with RSync
	Version control with Git
	Basic usage of Git
	Advanced usage of Git

	Data processing tools
	Text search
	Text processing
	Numeric processing
	Media formats

	Structured data processing
	Format-specific processing
	Training and inference

	Middleware
	Programmatic data serving
	Third-party module 'flask'
	Third-party module 'streamlit'
	Third-party module 'bokeh'

	File system abstractions and network storage
	Basic FUSE operations
	Selected file systems and synchronisation

	Database interaction and management
	Embedded relational databases with SQlite
	Networked relational database systems
	Beyond relational databases

	Message brokers for real-time data processing
	Parallel and distributed computing
	Data processing with Spark

	Model serving
	BentoML model serving

	Data integration
	Meltano data integration

	Workflows and distributed scheduling
	Airflow task and workflow specification

	Collaboration and Governance Platforms
	Scientific notebooks
	Jupyter notebooks
	Working with notebooks

	Code and data lifecycle management
	Gitlab as repository management platform
	Gitlab as delivery platform

	Data catalogues and governance
	ODD deployment

	Repetition

	Execution and Orchestration Platforms
	Virtual machines management
	Using OpenStack web interface and API

	Container management
	Kubernetes ecosystem
	Kubernetes installation
	Working with Kubernetes

	Cloud services
	Repetition

	Global Infrastructure
	Data pipeline infrastructure
	OpenTransportData
	Renku Lab
	Zenodo

	Distributed applications infrastructure
	Etcd Discovery
	Dweet

	Repetition

	Solutions

