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Preface 
 
This book is designed for use in an introductory course on digital logic design, typically offered 
in computer engineering, electrical engineering, computer science, and other related programs. 
Such a course is usually offered at the sophomore level. This book makes extensive use of 
animation to illustrate the flow of data within a digital system and to step through some of the 
procedures used to design and optimize digital circuits. 
 

My Approach 
 
There are numerous textbooks available that focus on digital logic design, and many of them 
are quite good. Any printed book, however, is limited in how it can present information. From 
its inception, I wanted to do something different with this book. Publishing this solely as an 
electronic book (eBook), I wanted to take advantage of the medium to present material in a 
way that I could not do in a traditional printed book. For this reason, this book incorporates 
animation to illustrate the functioning and flow of data within circuits throughout the book. 
 Over the past few years, I have perceived a shift in the learning styles of my 
undergraduate students. I believe that more of my students now are visual learners than in my 
earlier years in academia. The animations are an attempt to address this change and improve 
student learning. 
 The animations vary widely in complexity, ranging from showing all possible inputs and 
outputs of an AND gate to stepping through a function minimization using the Quine-McCluskey 
algorithm to showing the timing of data values changing within a sequential circuit. The 
animations are not very fancy; they are meant to convey knowledge with a minimum of 
distractions. Pixar certainly receives no competition from the animations in this book. 
 I like to include a lot of design work in my courses. I believe this helps students attain a 
deeper understanding of the material. For this reason, this book contains numerous design 
examples to illustrate circuit functions and design methodologies. The end-of-chapter problems 
are also weighted heavily toward design. 
 I have found that illustrating concepts using simple examples helps my students learn 
the material better. Some are absurdly simple. No company manufactures an 8x2 memory chip, 
but showing how such a chip functions gives students the base knowledge they need to design 
larger, more realistic memory chips. 
 

Scope of Coverage 
 
This book consists of ten chapters divided into four parts, as described below. 
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Part I: Background 
 
This part, comprising the first two chapters, provides fundamental background information. The 
first chapter focuses on number systems, with an emphasis on binary numbers and different 
formats used to represent numbers. Several representations for nonnumeric data are also 
presented. This chapter also introduces Gray codes, special sequences of binary values that 
change only one bit at a time. Later, we use Gray codes to minimize functions and to design 
sequential circuits. 
 Chapter 2 introduces Boolean algebra, the mathematical basis for digital logic design. 
This chapter covers the fundamental Boolean functions and mechanisms used to represent 
function values, including truth tables, sum of products, product of sums, minterms, and 
maxterms. Minimizing functions is an essential design practice that reduces the hardware 
needed to implement the function. Two mechanisms used to minimize functions, Karnaugh 
maps and the Quine-McCluskey algorithm, are presented. This chapter concludes by examining 
how to develop and minimize functions when the function value is not specified for some 
combinations of input values. 
 
Part II: Combinatorial Logic 
 
Chapters 3, 4, and 5 focus on combinatorial logic, circuits that produce output values based 
solely on the current values of the inputs. Chapter 3 introduces the basic logic gates, digital 
components that implement the fundamental Boolean functions introduced earlier in this book. 
This chapter also presents methods to combine these gates to realize more complex functions 
and the inverse of these functions. Digital components are subject to real-world constraints 
that may not be reflected in the underlying Boolean algebra models. This chapter discusses fan-
in and fan-out, buffers, and propagation delay. 
 Some functions are used very frequently in digital design. Rather than recreate circuits 
for these functions every time they are used, engineers have created chips and components to 
implement these functions. When needed in a circuit, a digital design can simply plug the chip 
directly into a circuit. This chapter introduces the function and design of these components: 
decoders, encoders, multiplexers, demultiplexers, comparators, and adders. It also discusses 
tri-state buffers, a special type of buffer with numerous applications in digital logic design. 
 Chapter 5 uses some of these components to implement Boolean functions. It presents 
methodologies for realizing functions using multiplexers and decoders. This chapter also 
introduces ROMs, read-only memory components that can be used to realize functions by 
looking up function values. This chapter presents only the very basics of ROMs. They are 
covered in more detail later in this book. 
 
Part III: Sequential Logic 
 
Unlike combinatorial logic, sequential logic generates outputs based on both its input values 
and its current state, or current internal conditions or values. Depending on its current state, 
the same input values may produce different output values and change to different next states. 
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 Chapter 6 introduces the basic model for sequential circuits and the fundamental 
components. Latches come in several varieties, including the S-R and D latches. This chapter 
introduces these components and their internal designs. Flip-flops, like latches, store binary 
values. Unlike latches, however, they load in values only on a clock edge, when the clock value 
changes from 0 to 1 or from 1 to 0. This chapter presents the internal designs and overall 
function of the D, J-K, and T flip-flops. 
 Just as engineers created more complex components for frequently used combinatorial 
functions, they have done the same for sequential components. This chapter introduces 
registers, which are used to store multi-bit values. Some registers can perform operations on 
their data. This chapter introduces several varieties of shift registers and counters and their 
internal designs. 
 With this foundational knowledge in place, Chapter 8 focuses on the design of 
sequential circuits. There are two primary models for sequential circuits: Mealy and Moore 
machines. Both are introduced and used to design several sequential systems. This chapter also 
introduces tools used in the design of these systems, including state diagrams and state tables. 
The designs presented here use fundamental and more complex components; this chapter 
discusses the methodology used for each of these. It also examines how to refine and optimize 
designs when some values are not specified, how to identify and combine equivalent states, 
and how to deal with signal glitches. 
 
Part IV: Advanced Topics 
 
The final two chapters present two advanced topics. Chapter 9 presents asynchronous circuits. 
Unlike the sequential circuits introduced in the previous chapter, asynchronous circuits do not 
have a clock signal to coordinate the flow of data within the circuit. This impacts how we 
analyze and design these circuits. Asynchronous circuit designers must contend with several 
issues that are not found, or are found much less frequently, in sequential circuits. This chapter 
presents methods to identify and eliminate issues including unstable circuits, static and 
dynamic hazards, and race conditions. 
 The final chapter examines programmable components. Programmable logic devices 
incorporate numerous logic gates and, for some PLDs, flip-flops. Designers specify the 
connections between components and between components and system inputs and outputs, 
to design a circuit within a single chip. This chapter also expands on the read-only memory 
(ROM) component briefly introduced in Chapter 5. It discusses the different types of memory 
devices and their internal designs.  



 

xi 
 

Acknowledgments 
 
Although I am the sole author of this book, its creation, and development were influenced and 
implemented by a large number of people. The greatest influence has been my students. They 
have given me very useful feedback as to what works best when presenting material. This led 
me to incorporate animation throughout this book and has also moved me to change how I 
present material in my courses, for the better, I hope. 
 Most of this book was written during a sabbatical leave provided by my home university, 
the New Jersey Institute of Technology, through its Faculty Authored Open Textbook (FAOT) 
program, which is a part of NJIT’s Open and Affordable Textbook Initiative. I am grateful to NJIT 
for providing this opportunity. I could not have completed this textbook in this timeframe, or 
possibly at all, without this support. 
 Through the Open and Affordable Textbook (OAT) Initiative’s FAOT program, NJIT 
provided support for the production of the final version of this book, converting my text and 
graphics files into a final product. Thanks to Ann Hoang, University Librarian and coordinator of 
the OAT’s FAOT program, and her staff who brought this book to fruition: Matthew Brown, 
Jennifer A. King, John Kromer, Jill Lagerstrom, Lisa Lakomy, Lisa Weissbard, Tim Valente, and 
Raymond Vasquez. 
 My colleagues at NJIT, both in the Helen and John C. Hartmann Department of Electrical 
and Computer Engineering and throughout the university, have had a great influence on this 
book, both its material and how it is presented. Special thanks to Professor Jacob Savir, course 
coordinator for our digital system design course. His advice, and especially his notes on 
asynchronous systems, were very helpful when preparing this material for this book. 
 I created most of the figures in this book using Microsoft Visio, with some figures using 
Word, Excel, and Paint for tables and minor tweaks. Thanks to Texas Instruments for granting 
permission to reproduce a couple of figures from their publications. I created the animations 
using the free converters at EZGIF.COM, with a little help from Adobe Photoshop for a couple of 
the more complex animations. Many thanks to the team at EZGIF for making this tool available 
to me and everyone. 
 Finally, last but certainly not least, I thank my family and friends for their love and 
support throughout the time writing this book, and really throughout my entire life. I especially 
thank my wife, Mary, my children, Maria and Tony, and my parents Dominick and Nina, to all of 
whom I dedicate this book.  



 

xii 
 

Table of Contents 
PART I: BACKGROUND 
 
Chapter 1: Digital Systems and Numbers............................................................................. 1-2 

1.1 What Are Digital Systems? ............................................................................................... 1-2 
1.2 One and Zero.................................................................................................................... 1-3 
1.3 Representing Numbers in Binary – Basics ....................................................................... 1-5 

1.3.1 How Binary Numbers Work .................................................................................... 1-5 
1.3.2 Octal and Hexadecimal Notations .......................................................................... 1-6 
1.3.3 Converting from Decimal to Binary ........................................................................ 1-7 

1.4 Numeric Formats ............................................................................................................. 1-9 
1.4.1 Unsigned Formats ................................................................................................... 1-9 
1.4.2 Signed Notations ................................................................................................... 1-11 
1.4.3 Floating Point Numbers ........................................................................................ 1-12 

1.5 Representing Nonnumeric Data .................................................................................... 1-13 
1.5.1 ASCII ...................................................................................................................... 1-14 
1.5.2 UNICODE ............................................................................................................... 1-16 

1.6 Gray Code ....................................................................................................................... 1-16 
1.7 Summary ........................................................................................................................ 1-17 
Bibliography ......................................................................................................................... 1-18 
Exercises ............................................................................................................................... 1-19 
 

Chapter 2: Boolean Algebra ................................................................................................ 2-2 
2.1 Boolean Algebra ............................................................................................................... 2-2 

2.1.1 Boolean Algebra Fundamentals .............................................................................. 2-3 
2.1.2 Truth Tables ............................................................................................................ 2-3 
2.1.3 Boolean Algebra Properties .................................................................................... 2-4 

Closure ....................................................................................................................... 2-4 
Identity Elements ....................................................................................................... 2-5 
Commutativity ........................................................................................................... 2-5 
Distributivity ............................................................................................................... 2-6 
Inverse ........................................................................................................................ 2-7 
Distinct Elements ....................................................................................................... 2-7 
Idempotence .............................................................................................................. 2-8 

https://docs.google.com/document/d/1lshuBEI_HdsMMvXmPw-uM5PuvyY2EPFicM0sBICdZyw/edit#heading=h.wsa7hmbg2o42
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.r6nd5fvoc327
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.n1n9uyq03w93
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.w22paemfrffb
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.5zekglsf0b6l
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.p6g1pxk3z0zv
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.u4mbchepov66
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.4yn3jxrt1f83


 

xiii 
 

Involution ................................................................................................................... 2-8 
Absorption ................................................................................................................. 2-8 
Associativity ............................................................................................................... 2-9 
De Morgan’s Laws .................................................................................................... 2-10 

2.2 Boolean Functions .......................................................................................................... 2-11 
2.2.1 Sum of Products .................................................................................................... 2-13 
2.2.2 Product of Sums .................................................................................................... 2-14 
2.2.3 The Relationship Between Minterms and Maxterms ........................................... 2-15 
2.2.4 Additional Examples.............................................................................................. 2-16 

2.3 Minimizing Functions ..................................................................................................... 2-18 
2.3.1 Karnaugh Maps ..................................................................................................... 2-18 

2.3.1.1 2-Input Maps ................................................................................................ 2-19 
2.3.1.2 3-Input Maps ................................................................................................ 2-21 
2.3.1.3 4-Input Maps ................................................................................................ 2-24 

2.3.2 Quine-McCluskey Algorithm ................................................................................. 2-25 
2.3.3 Don’t Care Values and Incompletely Specified Functions .................................... 2-31 

2.4 Summary ........................................................................................................................ 2-34 
Bibliography ......................................................................................................................... 2-35 
Exercises ............................................................................................................................... 2-36 

PART II: COMBINATORIAL LOGIC 
 
Chapter 3: Digital Logic Fundamentals ................................................................................ 3-2 

3.1 Basic Logic Gates .............................................................................................................. 3-2 
3.2 Implementing Functions .................................................................................................. 3-5 

3.2.1 Minimizing Logic ..................................................................................................... 3-5 
3.2.2 Implementing Functions Using Sum of Products .................................................... 3-7 
3.2.3 Implementing Functions Using Product of Sums .................................................. 3-10 

3.3 Inverse Functions ........................................................................................................... 3-11 
3.3.1 Inverse Functions Using Minterms ....................................................................... 3-11 
3.3.2 Inverse Functions Using Maxterms ....................................................................... 3-12 
3.3.3 What Inverse Functions Really Are ....................................................................... 3-13 

3.4 Beyond the Logic ............................................................................................................ 3-14 
3.4.1 Fan-in .................................................................................................................... 3-14 
3.4.2 Fan-out .................................................................................................................. 3-15 
3.4.3 Buffers ................................................................................................................... 3-15 

https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.v5fo5i8razil
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.78i69r2oz4gl
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.3756xzelu6z4
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.bcga90wkhj27
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.bcga90wkhj27
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.795l8c5u0ohy
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.s3o282cufdgs
https://docs.google.com/document/d/1rk2PPkkb-dpXNgRMEQx_jXc67eE1EAF9jqFIoUzYAsE/edit#heading=h.4v85jnl6xac8


 

xiv 
 

3.4.4 Propagation Delay ................................................................................................. 3-16 
3.5 Summary ........................................................................................................................ 3-18 
Bibliography ......................................................................................................................... 3-19 
Exercises ............................................................................................................................... 3-20 

 
Chapter 4: More Complex Components .............................................................................. 4-2 

4.1 Decoders .......................................................................................................................... 4-2 
4.1.1 Decoder Basics ........................................................................................................ 4-2 
4.1.2 Decoder Internal Design ......................................................................................... 4-6 
4.1.3 BCD to 7-segment Decoder ..................................................................................... 4-6 

4.2 Encoders ........................................................................................................................... 4-8 
4.2.1 Encoder Basics ........................................................................................................ 4-8 
4.2.2 Encoder Internal Design ........................................................................................ 4-11 
4.2.3 Priority Encoders ................................................................................................... 4-12 

4.3 Multiplexers ................................................................................................................... 4-13 
4.3.1 Multiplexer Basics ................................................................................................. 4-13 
4.3.2 Multiplexer Internal Design .................................................................................. 4-15 

4.4 Demultiplexers ............................................................................................................... 4-17 
4.5 Comparators .................................................................................................................. 4-19 
4.6 Adders ............................................................................................................................ 4-22 

4.6.1 Half Adders ............................................................................................................ 4-22 
4.6.2 Full Adders ............................................................................................................ 4-23 
4.6.3 Ripple Adders ........................................................................................................ 4-25 
4.6.4 Carry-lookahead Adders ....................................................................................... 4-25 

4.7 Tri-state Buffers ............................................................................................................. 4-29 
4.8 Summary ........................................................................................................................ 4-31 
Bibliography ......................................................................................................................... 4-32 
Exercises ............................................................................................................................... 4-33 

 
Chapter 5: More Complex Functions ................................................................................... 5-2 

5.1 Implementing Functions Using Decoders ........................................................................ 5-2 
5.2 Implementing Functions Using Multiplexers ................................................................... 5-4 
5.3 ROM Lookup Circuits........................................................................................................ 5-8 

5.3.1 The Very Basics of ROMs ........................................................................................ 5-8 
5.3.2 Memory Chip Configuration ................................................................................... 5-9 
5.3.3 Using ROMs in Lookup Circuits ............................................................................. 5-10 
5.3.4 Arithmetic Lookup ROM Circuits .......................................................................... 5-12 

https://docs.google.com/document/d/13X1BaFlu5UrjCJcTpY1crtyKzI879lroPqthoLWQ26M/edit#heading=h.yjnt4q6d67i2
https://docs.google.com/document/d/13X1BaFlu5UrjCJcTpY1crtyKzI879lroPqthoLWQ26M/edit#heading=h.19wv7onnh8ok


 

xv 
 

5.4 Summary ........................................................................................................................ 5-14 
Bibliography ......................................................................................................................... 5-15 
Exercises ............................................................................................................................... 5-16 

PART III: SEQUENTIAL LOGIC 
 

Chapter 6: Sequential Components ..................................................................................... 6-2 
6.1 Modeling Sequential Circuits ........................................................................................... 6-2 

6.1.1 What Is a State? ...................................................................................................... 6-3 
6.1.2 What Is a Clock? ...................................................................................................... 6-5 
6.1.3 Asynchronous Sequential Circuits .......................................................................... 6-6 

6.2 Latches ............................................................................................................................. 6-7 
6.2.1 S-R Latch .................................................................................................................. 6-8 
6.2.2 S-R Latch with Enable ............................................................................................ 6-10 
6.2.3 D Latch .................................................................................................................. 6-11 

6.3 Flip-Flops ........................................................................................................................ 6-12 
6.3.1 D Flip-Flop ............................................................................................................. 6-14 

6.3.1.1 Leader-Follower Design ............................................................................... 6-14 
6.3.1.2 Preset and Clear ........................................................................................... 6-15 

6.3.2 J-K Flip-Flop ........................................................................................................... 6-17 
6.3.3 T Flip-Flop .............................................................................................................. 6-19 

6.4 Summary ........................................................................................................................ 6-20 
Bibliography ......................................................................................................................... 6-22 
Exercises ............................................................................................................................... 6-23 

 
Chapter 7: More Complex Sequential Components ............................................................. 7-2 

7.1 Registers ........................................................................................................................... 7-2 
7.2 Shift Registers .................................................................................................................. 7-4 

7.2.1 Linear Shifts ............................................................................................................. 7-5 
7.2.2 Shift Register Design Using D Flip-Flops ................................................................. 7-5 
7.2.3 Shift Register Design Using J-K Flip-Flops ............................................................... 7-6 
7.2.4 Bidirectional Shift Registers .................................................................................... 7-7 
7.2.5 Shift Registers with Parallel Load ............................................................................ 7-8 
7.2.6 Combining Shift Registers ..................................................................................... 7-10 

7.3 Counters ......................................................................................................................... 7-11 
7.4 Binary Counters – Function ............................................................................................ 7-12 

https://docs.google.com/document/d/1wLTT29riP5WnrEkCH9cUAr51TZjfKFkb9EdY6gisBpM/edit#heading=h.h2fmjsvmqhly
https://docs.google.com/document/d/1wLTT29riP5WnrEkCH9cUAr51TZjfKFkb9EdY6gisBpM/edit#heading=h.jixfo5300xp7
https://docs.google.com/document/d/1wLTT29riP5WnrEkCH9cUAr51TZjfKFkb9EdY6gisBpM/edit#heading=h.crlryxx0rn8v
https://docs.google.com/document/d/1Z4zwbxUoCRAHTzx2C971KY-PwdBszbI-w1HJp2FN8Hs/edit#heading=h.2ypc2xwhz62f


 

xvi 
 

7.5 Binary Counters – Design ............................................................................................... 7-13 
7.5.1 Ripple Counters ..................................................................................................... 7-13 

7.5.1.1 Downcounter ............................................................................................... 7-16 
7.5.1.2 Up/Down Counter ........................................................................................ 7-16 
7.5.1.3 Additional Signals ......................................................................................... 7-17 
7.5.1.4 Why Are They Called Ripple Counters? ....................................................... 7-17 

7.5.2 Synchronous Counters .......................................................................................... 7-18 
7.6 Cascading Counters ........................................................................................................ 7-25 
7.7 Other Counters .............................................................................................................. 7-25 

7.7.1 BCD Counters ........................................................................................................ 7-25 
7.7.2 Modulo-n Counters ............................................................................................... 7-27 

7.8 Summary ........................................................................................................................ 7-29 
Bibliography ......................................................................................................................... 7-31 
Exercises ............................................................................................................................... 7-32 

 

Chapter 8: Sequential Circuits ............................................................................................. 8-2 
8.1 Finite State Machines – Basics ......................................................................................... 8-2 

8.1.1 What Is a State? ...................................................................................................... 8-2 
8.1.2 System Model ......................................................................................................... 8-3 
8.1.3 State Diagrams (Excluding Outputs) ....................................................................... 8-4 
8.1.4 State Tables (Also Excluding Outputs) .................................................................... 8-6 

8.2 Types of Finite State Machines ........................................................................................ 8-7 
8.2.1 Mealy Machines ...................................................................................................... 8-7 
8.2.2 Moore Machines ................................................................................................... 8-10 
8.2.3 A Word About Infinite State Machines ................................................................. 8-12 

8.3 Design Process ............................................................................................................... 8-12 
Step 1: Specify System Behavior .............................................................................. 8-13 
Step 2: Determine States and Transitions, and Create the State Diagram ............. 8-13 
Step 3: Create State Table with State Labels ........................................................... 8-13 
Step 4: Assign Binary Values to States ..................................................................... 8-14 
Step 5: Update the State Table with the Binary State Values ................................. 8-14 
Step 6: Determine Functions for the Next State Bits and Outputs ......................... 8-14 
Step 7: Implement the Functions Using Combinatorial Logic ................................. 8-14 

8.3.1 Design Example – Mealy Machine ........................................................................ 8-15 
8.3.2 Design Example – Moore Machine ....................................................................... 8-17 
8.3.3 A Brief Word About Flip-Flops .............................................................................. 8-19 
8.3.4 Comparing our Two Designs ................................................................................. 8-20 

https://docs.google.com/document/d/1Z4zwbxUoCRAHTzx2C971KY-PwdBszbI-w1HJp2FN8Hs/edit#heading=h.radehzkc33gs
https://docs.google.com/document/d/1Z4zwbxUoCRAHTzx2C971KY-PwdBszbI-w1HJp2FN8Hs/edit#heading=h.pn05ks9ds3vr
https://docs.google.com/document/d/1Z4zwbxUoCRAHTzx2C971KY-PwdBszbI-w1HJp2FN8Hs/edit#heading=h.k9yj50r8144b
https://docs.google.com/document/d/1Z4zwbxUoCRAHTzx2C971KY-PwdBszbI-w1HJp2FN8Hs/edit#heading=h.6uzxf2nnbuz9
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.izyjyy5bf4m8
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.v9g0bqg180at
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.v9g0bqg180at
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.xw0tibb340qp
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.x5xvnkweco97
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.2j1lwkheoq3g
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.s0qmjwsdmd3i


 

xvii 
 

8.4 Design Using More Complex Components .................................................................... 8-20 
8.4.1 Design Using a Counter ......................................................................................... 8-20 

Step 1: Specify System Behavior .............................................................................. 8-21 
Step 2: Determine States and Transitions, and Create the State Diagram ............. 8-21 
Step 3: Create State Table with State Labels ........................................................... 8-21 
Step 4: Assign Binary Values to States ..................................................................... 8-22 
Step 5: Update the State Table with the Binary State Values ................................. 8-22 
Step 6: Determine Functions for the Next State Bits and Outputs ......................... 8-23 
Step 7: Implement the Functions Using Combinatorial Logic ................................. 8-24 

8.4.2 Design Using a Decoder ........................................................................................ 8-25 
8.4.3 Design Using a Lookup ROM ................................................................................. 8-27 

8.5 Refining Your Designs .................................................................................................... 8-30 
8.5.1 Unused States ....................................................................................................... 8-30 
8.5.2 Equivalent States .................................................................................................. 8-33 
8.5.3 Glitches ................................................................................................................. 8-38 

8.6 Summary ........................................................................................................................ 8-40 
Bibliography ......................................................................................................................... 8-42 
Exercises ............................................................................................................................... 8-43 

PART IV: ADVANCED TOPICS 
 

Chapter 9: Asynchronous Sequential Circuits ...................................................................... 9-2 
9.1 Overview and Model ........................................................................................................ 9-2 
9.2 Design Process ................................................................................................................. 9-3 

9.2.1 Analysis Example ..................................................................................................... 9-3 
9.2.2 Design Example ....................................................................................................... 9-7 

Step 1: Develop System Specifications ...................................................................... 9-7 
Step 2: Define States .................................................................................................. 9-8 
Step 3: Minimize States ............................................................................................. 9-8 
Step 4: Assign Binary Values to States ..................................................................... 9-11 
Step 5: Determine Functions and Create Circuit ..................................................... 9-11 

9.3 Unstable Circuits ............................................................................................................ 9-13 
9.4 Hazards ........................................................................................................................... 9-15 

9.4.1 Static Hazards ........................................................................................................ 9-15 
9.4.1.1 Recognizing Static-1 Hazards ....................................................................... 9-16 
9.4.1.2 Resolving Static-1 Hazards ........................................................................... 9-17 

https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.omg6lripu0sy
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.7fmrfg5c0ee4
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.rams97owygt6
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.968qplqxlt7g
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.iiv724pscpl6
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.u02b6y2p7yfs
https://docs.google.com/document/d/1iRmRLagRkuwZ9eFriMzA4pRdyA9jo9s0rox64Ojs9L0/edit#heading=h.bj3llcnedd7u
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.n1k3bsc3ttxm
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.b390dhkm1vt3
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.afe2nxvsmlq9
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.dmqpsx6l1quh
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.95hp1xb019dk
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.30kivr43l7o7
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.sks3qpvqdp00
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.x5cx419ek7t


 

xviii 
 

9.4.1.3 Recognizing and Resolving Static-0 Hazards ................................................ 9-18 
9.4.2 Dynamic Hazards ................................................................................................... 9-20 

9.5 Race Conditions ............................................................................................................. 9-22 
9.5.1 Non-critical Race Conditions ................................................................................. 9-22 
9.5.2 Critical Race Conditions ........................................................................................ 9-23 
9.5.3 Resolving Critical Race Conditions ........................................................................ 9-24 

9.5.3.1 Another Example ......................................................................................... 9-25 
9.5.3.2 How Did We Do That? .................................................................................. 9-27 

9.6 Summary ........................................................................................................................ 9-30 
Acknowledgment ................................................................................................................. 9-31 
Bibliography ......................................................................................................................... 9-32 
Exercises ............................................................................................................................... 9-33 

 
Chapter 10: Programmable Devices .................................................................................. 10-2 

10.1 Why Programmable Devices? ...................................................................................... 10-2 
10.2 Programmable Logic Devices ....................................................................................... 10-3 

10.2.1 Programmable Array Logic ................................................................................. 10-3 
10.2.2 Programmable Logic Arrays ................................................................................ 10-5 
10.2.3 Complex PLDs and Field Programmable Gate Arrays ......................................... 10-6 

10.3 Memory Devices .......................................................................................................... 10-7 
10.3.1 Volatile Memory Devices .................................................................................... 10-7 
10.3.2 Non-volatile Memory Devices ............................................................................ 10-8 

10.3.2.1 Masked ROM, or ROM ............................................................................... 10-9 
10.3.2.2 Programmable ROM .................................................................................. 10-9 
10.3.2.3 Erasable PROM .......................................................................................... 10-9 
10.3.2.4 Electrically Erasable PROM ...................................................................... 10-10 

10.3.3 Internal Organization ........................................................................................ 10-10 
10.4 Summary .................................................................................................................... 10-15 
Bibliography ....................................................................................................................... 10-17 
Exercises ............................................................................................................................. 10-18 

 

https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.odhd1gjshf0
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.qwo3wpj6f4wv
https://docs.google.com/document/d/13TExlNXfgbkrkgsyg4Njdxrzkyu-OtbFLSMw50n4CA8/edit#heading=h.temm7is5iv7r
https://docs.google.com/document/d/1A5vQXbEgOZQz8433bMR5ATXgcXwqivFit6d3XKXisJA/edit#heading=h.yem5r0ssox
https://docs.google.com/document/d/1A5vQXbEgOZQz8433bMR5ATXgcXwqivFit6d3XKXisJA/edit#heading=h.5w5angeogms1
https://docs.google.com/document/d/1A5vQXbEgOZQz8433bMR5ATXgcXwqivFit6d3XKXisJA/edit#heading=h.snf93w999trp
https://docs.google.com/document/d/1A5vQXbEgOZQz8433bMR5ATXgcXwqivFit6d3XKXisJA/edit#heading=h.9qhqhwczojs9


PART I

Introduction and
Background



Chapter
1

Digital Systems and Numbers

Creative Commons License

Attribution-NonCommercial-ShareAlike
4.0 International (CC-BY-NC-SA 4.0)

https://www.creativecommons.org/licenses/


Chapter 1: Digital Systems and Numbers

Chapter 1: Digital Systems and Numbers

Digital systems are everywhere. From consumer appliances to the most advanced
supercomputer, including the phone/tablet/computer you’re using right now to read this
e-book, virtually no aspect of our lives is untouched by these systems. To design these systems,
the designer needs to understand what digital systems are (and are not), the mathematical
background underlying digital systems, the components used in these systems, and how the
digital design process works. We’ll look at all of these as we progress through the book. In this
chapter, we’ll start with the basics.

Digital systems use binary values. Mathematically, binary is a base-2 system, where each
value within the system is either 0 or 1. We’ll look at what this means and how we represent
these values in various media.

Just as we represent decimal numbers using more than one digit, we can represent
binary numbers using more than one binary digit, or bit. In this chapter, we’ll introduce several
numeric formats used in some digital systems.

Binary values can also be used to represent nonnumeric data, such as alphanumeric
characters (letters, numbers, and symbols). We’ll look at a couple of the most commonly used
formats.

Finally, this chapter introduces Gray code, a reflected binary code. We will make use of
this code in Chapter 2 as we optimize our first digital designs.

1.1 What Are Digital Systems?

The world is digital! Everything is run by computers! Digital this! Digital that! Blah, blah, blah.
You’ve probably heard all of this and more. But what is digital? What does it mean to be digital?
What is something if it isn’t digital? And how do you design something that is digital?

These are all fair questions. The first three are pretty straightforward, and we’ll discuss
them shortly. However, exploring that last question could fill many textbooks.. This book will
cover the basics of digital logic design for relatively simple systems. More advanced systems,
such as computer systems and microprocessor design, build on the design methodologies
presented here, but they are much more complex than those included in this book.

To answer the first question, let’s start with a quote.

There may be said to be two kinds of people in the world, those who constantly
divide everybody into two classes, and those who do not. – Robert Benchley

In this section, we’re going to be the kind of people who divide electrical signals into two
classes. Analog signals are continuous. They can take on any value within a given range. In the
sine wave shown in Figure 1.1 (a), the amplitude (height) of the sine wave can take on any value
from -1 to +1. Any value in this range corresponds to the amplitude at some point(s) on the sine
wave.
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(a) (b) (c)

Figure 1.1: (a) Analog sine wave; (b) Digital representation with nine possible values; (c) Digital
representation with nineteen possible values

In contrast, digital signals are quantized. They can only take on specific values, and there
are gaps between these values. The digital signals can only approximate the equivalent analog
values. Consider a digital system that can represent only these nine values: -1, -¾, -½, -¼, 0, ¼,
½, ¾, and 1. Figure 1.1 (b) shows how we could represent the sine wave in this digital system by
rounding the value of the amplitude to its nearest digital value.

The digital wave is rather choppy as compared to the analog wave. However, we can
make the digital wave more like the analog wave by increasing the number of possible values.
The digital wave in Figure 1.1 (c) uses a digital system with 19 possible values: -1, -0.9, -0.8, -0.7,
-0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. You can see this
wave is not as smooth as the analog wave, but it is much smoother than the previous digital
wave.

So, if analog gives us smoother curves and more accurate values, why should we even
use digital? There are many reasons to use digital. Digital signals are less susceptible to noise
during transmission, resulting in less distortion and better signal quality. Furthermore,
transmission across greater distances is possible with digital than with analog. Digital signals can
transmit more information (per second) than analog signals. Digital circuits are often cheaper to
design and manufacture than analog circuits. There are other reasons as well.

1.2 One and Zero

There are 10 kinds of people in the world, those who know binary, and those who
don’t. – Anonymous (with apologies to Robert Benchley)

When we examine digital logic, we see that it uses discrete values. Unlike decimal, which has
ten digits, digital logic uses binary values. Binary is base 2, as opposed to base 10 for decimal,
and it has only two digits. These are typically represented as 1 and 0. Each value is called a bit,
short for binary digit. You can also think of these values as true and false (which can be helpful
when we discuss Boolean algebra in Chapter 2), on and off (like a light switch, but only a regular
toggle switch, not a dimmer switch), or yes and no. As we design digital circuits, we’ll mostly use
1 and 0.

So, why do we use binary? Why not use ternary (base 3) or some other base? As it turns
out, it is much simpler to design electronics that generate two possible values than it is to
design circuits that can output three or more possible values. If we need more possible values,
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we can combine more outputs to represent these values. We’ll look at how to do this for
numeric values in the next section.

Now back to the electronics. Digital logic gates, the fundamental building blocks of
digital systems, are constructed from transistors. Without going too in-depth, a transistor can be
used in a circuit that is configured as a switch. When the switch is off, the circuit generates a
very low voltage that corresponds to a logic value of 0. When it is on, it outputs a voltage that is
interpreted as a logic value of 1. The circuit does not spend any appreciable time in the region
between these two extremes, though it does spend some minimal time there as it transitions
from one extreme to the other. Figure 1.2 shows these regions for transistor-transistor logic.

Figure 1.2: Voltage levels for transistor-transistor logic with a 5V source.

There are numerous ways to represent 1 and 0. As we just saw, voltage values are one
way to do this. For TTL, transistor-transistor logic, 2.7V to 5V typically represents the logic value
1 and 0V to 0.4V represents logic 0. Values for other technologies are shown in Figure 1.3. Note
that one technology, emitter-coupled logic, uses a negative power supply and thus has negative
voltage values for its logic levels.

Technology Source voltage Logic 1 Logic 0

TTL: transistor-transistor logic 5V 2.7-5V 0-0.4V

CMOS: complementary metal-oxide semiconductor 5V
3.3V

4.44-5V
2.4-3.3V

0-0.5V
0-0.4V

ECL: Emitter-coupled logic -5.2V -0.9V -1.75V

PECL: Positive ECL 5V
3.3V

4.1V
2.27-3.3V

0-3.3V
0-1.68V

Figure 1.3: Voltages corresponding to logic values for several technologies
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Memory chips are used to store digital logic values. For the E2PROM memory chips used
in flash drives, SD cards, and solid-state drives, these values are similar to those of TTL chips.

Voltage is not the only way to store digital logic values, though any other method
ultimately must be converted to voltages to be used by the rest of a digital system. A traditional
(non-SSD) drive stores each bit by magnetizing a portion of the disc in one of two directions.
The drive has two heads to read values from the disc. Reading the value induces a current from
one head to the other. The current flows in one of two directions, from the first head to the
second or vice versa, depending on the magnetization of the disc at that point. Circuitry
(connected to the heads of the disc drive) outputs a voltage value corresponding to logic 1 or
logic 0 that depends on the direction of current flow.

Optical discs, including CDs, DVDs, and Blu-Ray, encode logic values in one of two ways.
For pre-recorded discs, such as a movie you might buy on Blu-Ray (if anyone is still buying discs
by the time you read this), the discs are manufactured with areas called pits and lands that
reflect light. The disc drive shines a laser onto a portion of a disc that stores one bit and senses
the intensity of the reflected light. A higher intensity corresponds to a logic value of 1 and a
lower intensity denotes logic 0. Recordable optical discs, such as DVD RW, write data to the disc
by darkening and lightening areas of the disc to achieve the same result. As an aside, note that
Blu-Ray discs use lasers of a different frequency than CDs and DVDs which allows them to focus
on a smaller area of the disc; this is why they can store more data than the other optical discs.

1.3 Representing Numbers in Binary – Basics

Ultimately, we want to use binary values to represent all types of information. Foremost among
these are numbers and alphanumeric characters. In this section, we’ll introduce the basics of
binary numbers. In the following sections we’ll look at more complex numeric formats and
formats for characters.

1.3.1 How Binary Numbers Work

To explain how binary numbers work, first let’s look at how decimal numbers work, since the
general method is similar. The decimal number system has ten digits, 0 to 9, but it wouldn’t be
very useful if it could not represent values greater than nine. To do this, we use multiple digits in
a number. The value of each digit is based on both its value as a digit and its place in the
number. Consider, for example, the number 135.79. The 1 is in the hundreds place, so its value
is 1 × 100 = 100. Similarly, the 3 has a value of 3 × 10 = 30 because it is in the tens place, and so
on for the remaining digits. We could expand this as

135.79 = (1 × 100) + (3 × 10) + (5 × 1) + (7 × 0.1) + (9 × 0.01)
= (1 × 102) + (3 × 101) + (5 × 100) + (7 × 10-1) + (9 × 10-2)

Binary numbers are created in the same way, except we use powers of 2 instead of powers of 10
since binary is base 2. For example, the binary number 1011.01 can be expressed as follows.
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1011.01 = (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20) + (0 × 2-1) + (1 × 2-2)
= (1 × 8) + (0 × 4) + (1 × 2) + (1 × 1) + (0 × ½) + (1 × ¼)
= 11 ¼

You can include more bits to represent larger numbers or numbers with larger denominators.

1.3.2 Octal and Hexadecimal Notations

Properly designed digital circuits can deal with large binary numbers fairly easily. For humans,
however, long strings of 0s and 1s can become tedious and error-prone. Consider, for instance,
the decimal number 927.625. We would express this in binary as 1110011111.101. To make it
simpler for people to understand these numbers, we often use notations that combine several
bits into one symbol. It is fairly easy to convert binary notation to another notation that is an
exact power of 2, such as base 8 (octal) or base 16 (hexadecimal). It is much more complex to
convert from binary to another base, such as base 5.

First, let’s look at octal notation. This is base 8. It has eight symbols, 0 to 7. Since 8 = 23,
we can combine groups of three binary bits into single octal digits. The key is to start at the right
place; that place is the radix point. (Think of this as the decimal point, but in any base/radix.)
Going to the left, divide the binary bits into groups of three bits. If the final group has less than
three bits, add leading zeroes to complete a group of three bits. Now do the same with the bits
to the right of the radix point that represent the fractional portion of the number, grouping the
bits into threes going right and adding trailing zeroes if needed to complete the final group.
Figure 1.4 shows how we do this for our example value.

927.625 = 1110011111.101 = 001 110 011 111.101
= 1 6 3 7 . 5

Figure 1.4: Converting 927.625 from binary to octal. Zeroes added to complete groups of three
bits are shown in red.

WATCH ANIMATED FIGURE 1.4

Hexadecimal is base 16. It has 16 symbols. We can use the decimal symbols 0 to 9 for ten
of these symbols, but we still need six symbols for the values corresponding to 10 to 15.
Hexadecimal uses the letters A to F for these values, with A=10, B=11, C=12, D=13, E=14, and
F=15.

With that out of the way, we can use the same conversion process we used for octal,
with one exception. Since 16=24, we divide our binary number into groups of four bits instead of
three. Figure 1.5 shows the conversion process for our example value.
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927.625 = 1110011111.101 = 0011 1001 1111.1010
= 3 9 F . A

Figure 1.5: Converting 927.625 from binary to hexadecimal. Zeroes added to complete groups of
four bits are shown in red.

WATCH ANIMATED FIGURE 1.5

1.3.3 Converting from Decimal to Binary

There’s one step I didn’t cover explicitly yet: How did I get from 927.625 to 1110011111.101?
You may have a calculator app that will do this automatically for you. If so, great, but put it away
for a few minutes while we introduce the underlying process. We’re actually going to have two
separate processes, one for the integer part of the number and one for the fractional part.

First, let’s look at the integer part. We divide 927 ÷ 2 to get a quotient of 463 and a
remainder of 1. What we’re really doing is expressing 927 as 463 × 2 + 1. Next, we divide 463 by
2 to get 463 = 231 × 2 + 1, or

927 = 463 × 2 + 1 = (231 × 2 + 1) × 2 + 1 = 231 × 4 + 1 × 2 + 1

We continue this process until we’re down to a final value of 0. The complete process for the
integer portion is shown in Figure 1.6.

Figure 1.6: Conversion of decimal integer to binary

WATCH ANIMATED FIGURE 1.6
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The remainders are combined to give us the binary representation of the integer. The
first remainder is the least significant bit and the last remainder is the most significant bit. For
our value of 927, this is 1110011111.

We calculate the fractional portion using a different but analogous approach. Instead of
dividing by 2, we multiply by 2. The bits of the fraction in binary are the integer portion of each
product. For our fraction of 0.625, we first multiply by 2 to get 0.625 × 2 =1.25, or 0.625 = 1.25 ×
2-1. We keep the 1 and repeat the process on the remaining fractional value, 0.25, and continue
until the remaining fraction is 0. (Sometimes a fraction would never end. For example, 1/3 =
.010101… in binary. Normally we would decide how many bits to include in the fraction and
round the result to that many bits.) Figure 1.7 shows this process for our fractional value.

Figure 1.7: Conversion of decimal fraction to binary

WATCH ANIMATED FIGURE 1.7

Here, we combine the bits of the integer part of the product to generate the binary
fraction. The first 1, generated by 0.625 × 2, is the most significant bit of the fraction. Unlike the
integer procedure, which generated bits from least significant to most significant, the fraction
procedure generates the bits in the opposite order, from most significant to least significant. It
may help to describe this by saying that both procedures start by generating the bit closest to
the radix point and move further away each iteration.

The final step is trivial. We simply concatenate the integer and fraction to produce the
final result. For our example, this yields 927.625 = 1110011111.101.

As you might have guessed, you can use this process to convert a number from decimal
(base ten) to any arbitrary base. Instead of dividing and multiplying by 2, we divide and multiply
by the base we are converting to. Figure 1.8 shows this conversion from 927.625 in decimal to
12202.303 in base 5. Note that the fraction never terminates (it repeats as .303030…), so I
chose to truncate it after three digits.

Figure 1.8: Conversion of decimal number to base 5

WATCH ANIMATED FIGURE 1.8
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1.4 Numeric Formats

Many digital systems, mostly computers, use several different numeric formats. In this section,
we’ll look at some of these formats. The first type, unsigned formats, is typically used for
integers. In spite of its name, one unsigned format allows for both positive and negative
numbers. We’ll explain how this works shortly. Next, we’ll examine signed formats, which differ
from unsigned formats by as little as a single bit. Finally, we’ll introduce floating point formats
and the IEEE 754 floating point standard that is supported by virtually all computer systems.

1.4.1 Unsigned Formats

There are two unsigned formats we discuss in this section. The first, traditional unsigned
numbers, is simply the integer portion of the binary format we introduced in the previous
section. Here, an n-bit number can take on any integer value from 0 to 2n-1. Figure 1.9 (a) shows
the values for all 4-bit numbers in this format.

The second unsigned format is two’s complement. Before we discuss this format, let’s
take a minute to discuss what complements are and how they are formed.

A complement is the opposite of something. For binary numbers, there are two different
types of complements: one’s complement and two’s complement. To obtain the one’s
complement of a binary number, you can do one of two things:

● Change all the 1s to 0s and all the 0s to 1s (inverting bits), or
● Subtract the number from a number of equal length that is all 1s.

Figure 1.10 shows both processes for the binary value 0101, or 5 in decimal.
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Binary Unsigned traditional Binary Unsigned two’s complement
0000 0 0000 0
0001 1 0001 1
0010 2 0010 2
0011 3 0011 3
0100 4 0100 4
0101 5 0101 5
0110 6 0110 6
0111 7 0111 7
1000 8 1000 -8
1001 9 1001 -7
1010 10 1010 -6
1011 11 1011 -5
1100 12 1100 -4
1101 13 1101 -3
1110 14 1110 -2
1111 15 1111 -1

(a) (b)

Figure 1.9: Values for all 4-bit binary numbers in (a) traditional and (b) two’s complement
unsigned notations.

0 1 0 1 1 1 1 1
↓ ↓ ↓ ↓ - 0 1 0 1
1 0 1 0 1 0 1 0

(a) (b)

Figure 1.10: Creating one’s complement by (a) inverting bits, and (b) subtraction.

The two’s complement is simply the one’s complement plus 1. Just as was the case for
the one’s complement, there are two ways we can produce the two’s complement of a binary
number:

● Create the one’s complement and add 1, or
● Subtract the number from a number that has a leading 1 and as many zeroes as there

are bits in the original number. (For example, we would subtract a 4-bit number from
10000, a leading 1 and four zeroes.)
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Figure 1.11 shows both methods for our previous value, 0101.

0 1 0 1 1 0 0 0 0
↓ ↓ ↓ ↓ - 0 1 0 1
1 0 1 0 1 0 1 1

+ 1
1 0 1 1

(a) (b)
Figure 1.11: Creating two’s complement by (a) creating one’s complement and adding 1, and (b)

subtraction.

Now, the reason we did all this is because the two’s complement of a number represents
the negative of that number in two’s complement notation. For two’s complement numbers
with n bits, the values can range from -2n-1 to +2n-1-1. When the most significant bit is 1, the
number is negative. When it is 0, the number is positive or zero. Figure 1.9 (b) shows the values
for all 4-bit numbers in two’s-complement format.

Comparing these two unsigned formats, we see that both use the same representation
when the leading bit is 0. The difference in value occurs when the leading bit is 1.

Here’s one final question. Why is the two’s complement notation called unsigned when
the values can be either positive or negative? There’s a good reason for this, which we’ll see in
the next subsection.

1.4.2 Signed Notations

Signed notations are similar to unsigned notations, but with one important difference. Signed
notations have a separate bit that is used for the sign. The remaining bits give the magnitude of
the number. The sign bit is set to 1 for negative numbers and 0 for positive numbers and zero.

There are two commonly-used signed notations, both based on the unsigned notations
we just introduced. Signed-magnitude notation is based on the traditional unsigned notation. In
this notation, the magnitude is expressed like a traditional unsigned number. For example, +5
would be represented as a 0 for the sign bit and 0101 for the magnitude. On the other hand, -5
would be represented by a 1 in the sign bit and also 0101 for the magnitude. Figure 1.12 (a)
shows some selected values for numbers with a sign bit and four bits for the magnitude.
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Sign Magnitude Value Sign Magnitude Value
0 0000 +0 0 0000 +0
0 0001 +1 0 0001 +1
0 1111 +15 0 1111 +15
1 0001 -1 1 1111 -1
1 1111 -15 1 0001 -15

(a) (b)

Figure 1.12: Values for selected binary numbers in (a) signed-magnitude, and (b) signed-two’s
complement notations.

There is also a format based on the two’s complement format called signed-two’s
complement. It works the same as signed-magnitude format, except the magnitude is stored in
two’s complement format. Selected values are shown in Figure 1.12 (b). As with the unsigned
formats, positive numbers and zero are the same in both formats, but negative numbers are
not.

1.4.3 Floating Point Numbers

A floating point number is similar, but not identical to a number expressed in scientific notation.
Consider the number +927.625. In scientific notation, we would express this as +9.27625 × 102.
There are three components to this number: the sign (+), the mantissa (9.27625) and the
exponent (2). Of particular note, the mantissa must be at least 1 and less than 10, unless the
number is zero.

Floating point works in a similar way, with one difference. Instead of expressing 927.625
as +9.27625 × 102, we express it as +0.927625 × 103. The mantissa is replaced by the significand,
which must be at least 0.1 and less than 1, except for special cases, such as zero. This is a
normalized format; each number is expressed in one unique way.

Digital systems that use floating point numbers typically follow the IEEE 754 Floating
Point Standard for binary numbers. This standard changes how the significand is defined. Here,
the significand is of the form 1.xxxx; that is, it must be at least 1 and less than 2 (10 in binary),
again except for zero and other special values. This is much like the mantissa in scientific
notation. Since these numbers always have this leading 1, the digital system does not need to
include it when it stores the floating point representation; it already knows it is there.

There are two formats specified by IEEE 754: the first is called single precision. As shown
in Figure 1.13 (a), the single precision format has 32 bits: 1 bit for the sign; 23 bits for the
significand; and 8 bits for the exponent. We want to have both positive and negative exponents,
so this standard uses a bias of 128. That is, we store the exponent 0 as 128 (10000000 in
binary), exponent 1 is 129 (10000001), -1 is 127 (01111111), and so on for exponents ranging
from -128 (00000000) to +127 (11111111).
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Sign Significand Exponent 0 11001111110100000000000 10001001
1 bit 23 bits 8 bits

(a) (b)

Figure 1.13: IEEE 754 (a) single precision format, and (b) representations of 927.625.

Earlier, we found that +927.625 is equal to +1110011111.101 in binary. For the single
precision format, we can express this as 1.110011111101x29. Just as in the signed notations
(and floating point is also a signed notation), the sign bit is 0 since we have a positive number.
For the significand, we remove the 1 to the left of the radix point and store the remaining 12
bits. Since the significand has 23 bits, we fill in the remaining 11 rightmost bits with zeroes. The
exponent is 0, but with a bias of 128 it is stored as 9+128, or 137, or 10001001 in binary. The
complete representation is shown in Figure 1.13 (b).

The second IEEE 754 format is called double precision. It is similar in structure to single
precision, except it has 64 bits, double the number of bits in single precision and hence its
name. This format has one sign bit, 52 bits for the significand (again, we don’t store the implicit
leading 1 for everything except special cases), and 11 bits for the exponent. Double precision
uses a bias of 1024 for the exponent. Figure 1.14 shows the double precision format and how
+927.625 is stored in this format.

Sign Significand Exponent 0 11001111110100000000000000
00000000000000000000000000

10000001001

1 bit 52 bits 11 bits

(a) (b)

Figure 1.14: IEEE 754 (a) double precision format, and (b) representations of 927.625.

As mentioned already, zero is a special number that needs its own representation.
(Spoiler: the significand and exponent are set to all zeroes in both formats.) There are other
special numbers as well: ±∞, NaN (not a number), and denormalized numbers. They’re beyond
the scope of this book and we won’t be covering them here. I’ll just refer you to my previous
book Computer systems organization & architecture for more information about these special
numbers and how they complicate the digital circuits needed to work with floating point
numbers.

1.5 Representing Nonnumeric Data

Not all data is numeric; this sentence is proof of that statement. Much of the data used by
digital systems is not numeric, and much of that data consists of letters and other characters. In
this section, we’ll briefly look at two popular schemes for encoding characters, ASCII and
Unicode.
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1.5.1 ASCII

As mainframe computers began to find more uses in industry, and more companies designed
and manufactured them, it became necessary to standardize some aspects such as the codes
used to represent characters. One standard, initiated by IBM engineer Bob Bemer, led to the
development of ASCII, the American Standard Code for Information Interchange. This standard
dates back to the early 1960s, when it was developed by the American Standards Association.
When its use was mandated for all systems used by the United States federal government, its
success was assured.

ASCII specifies 7-bit codes for 27=128 characters. Of these 128 characters, 95 are
characters that can be printed, including uppercase and lowercase letters, decimal digits, and
punctuation marks. The other 33 are control characters, which controlled the teletype machines
of that era, performing functions like line feed to make the teletype machine go to the start of
the next line. (Computing history for you, but early computing education for me.)

Figure 1.15 shows the ASCII characters and their binary codes. The character names in
italics are the nonprinting control characters.

ASCII solved a lot of problems for computer developers, but it also had some significant
drawbacks. It did a great job if you wanted to encode text written in English, but it lacked
characters used in other languages, such as ñ in Spanish. If you wanted to write in a language
that uses a different alphabet, such as Russian, or a language that uses pictorial characters, such
as Japanese or Chinese, ASCII wasn’t going to work for you. Several extensions to ASCII were
developed. They typically extended the ASCII code to eight bits, which allowed up to 28=256
characters. In these extended versions, the first 128 characters were usually the original ASCII
characters, and the other 128 were the extended characters. This was a stopgap; clearly a more
robust system was needed. One such system is UNICODE, described next.
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Code Characte
r

Code Characte
r

Code Characte
r

Code Characte
r

00000000 NUL 00100000 space 01000000 @ 01100000 `

00000001 SOH 00100001 ! 01000001 A 01100001 a

00000010 STX 00100010 " 01000010 B 01100010 b

00000011 ETX 00100011 # 01000011 C 01100011 c

00000100 EOT 00100100 $ 01000100 D 01100100 d

00000101 ENQ 00100101 % 01000101 E 01100101 e

00000110 ACK 00100110 & 01000110 F 01100110 f

00000111 BEL 00100111 ' 01000111 G 01100111 g

00001000 BS 00101000 ( 01001000 H 01101000 h

00001001 HT 00101001 ) 01001001 I 01101001 i

00001010 LF 00101010 * 01001010 J 01101010 j

00001011 VT 00101011 + 01001011 K 01101011 k

00001100 FF 00101100 , 01001100 L 01101100 l

00001101 CR 00101101 - 01001101 M 01101101 m

00001110 SO 00101110 . 01001110 N 01101110 n

00001111 SI 00101111 / 01001111 O 01101111 o

00010000 DLE 00110000 0 01010000 P 01110000 p

00010001 DC1 00110001 1 01010001 Q 01110001 q

00010010 DC2 00110010 2 01010010 R 01110010 r

00010011 DC3 00110011 3 01010011 S 01110011 s

00010100 DC4 00110100 4 01010100 T 01110100 t

00010101 NAK 00110101 5 01010101 U 01110101 u

00010110 SYN 00110110 6 01010110 V 01110110 v

00010111 ETB 00110111 7 01010111 W 01110111 w

00011000 CAN 00111000 8 01011000 X 01111000 x

00011001 EM 00111001 9 01011001 Y 01111001 y

00011010 SUB 00111010 : 01011010 Z 01111010 z

00011011 ESC 00111011 ; 01011011 [ 01111011 {

00011100 FS 00111100 < 01011100 \ 01111100 |

00011101 GS 00111101 = 01011101 ] 01111101 }

00011110 RS 00111110 > 01011110 ^ 01111110 ~

00011111 US 00111111 ? 01011111 _ 01111111 DEL

Figure 1.15 ASCII Table
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1.5.2 UNICODE

As computing expanded its scope and breadth, English was joined by many other languages
used for documents stored in digital form. Some of these languages used the same characters
as English, sometimes with their own additions, and others used completely different
characters. It became clear that having a new encoding that encompassed all these characters,
or at least as many as feasible, was desirable. Several systems were developed; the most
commonly used is UNICODE.

UNICODE is actually a set of several encoding standards. The most popular are UTF-8
and UTF-16. UTF-8 was designed to maintain compatibility with ASCII. UTF-16 was designed to
address the inclusion of non-English characters. UTF-16 supports over one million characters,
but we’ll focus on the most basic representation, which uses 16 bits to specify one of 216=65,536
different codes. Most of these codes specify one specific character, though some are used in
combination with a second 16-bit code to specify a character. In addition to English-language
characters, UTF-16 also encodes Cyrillic, Arabic, Hebrew, Chinese, Japanese, Korean, and many
other characters. I won’t list all the characters here. See the UNICODE Consortium website or
your favorite online search engine for these character encodings.

1.6 Gray Code

Counting in binary is fairly straightforward. Just as we count from 0→1→2→3→4→5→6→7 in
decimal, we can count from 000→001→010→011→100→101→110→111 in binary. If all three
bits in the binary count change at exactly the same time, this sequence works fine. There are
ways to make this happen, often using additional hardware to synchronize these transitions.
Without this additional hardware, however, we could run into a problem.

Consider the transition from 011 to 100. If the first bit changes faster than the other
two, we could go to 111 instead of 100. Similarly, a faster second bit could bring us to 001, and a
faster third bit could send us to 010.

Another way to avoid this issue is to develop sequences in which only one bit changes in
each transition. Although not quite as useful when counting, this is very useful when developing
state machines (introduced later in this book). It also serves as the basis for Karnaugh maps,
which are used to simplify functions and their circuits, and are introduced in the next chapter.
This is the reason we’re introducing this topic now.

The Gray code, named after Bell Labs physicist Frank Gray, is a reflected binary code. To
construct this code, we start with a 1-bit sequence of 0 and 1, shown in Figure 1.16 (a). To
extend this to a 2-bit sequence, we first reflect the code, as shown in Figure 1.16 (b). We then
add a leading 0 to each entry above the line and a leading 1 to every value below the line to
give us the complete 2-bit code; see Figure 1.16 (c). (If we were to go through this code in
sequence, the last entry goes back to the first entry.) We could repeat this process to generate
the 3-bit Gray code shown in Figure 1.16 (d), and we could extend this sequence to produce a
Gray code of any length. Here, the 3-bit Gray code follows the sequence
000→001→011→010→110→111→101→100.
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(a) (b) (c) (d)

Figure 1.16: Gray codes: (a) 1-bit Gray code; (b) Reflecting the 1-bit code; (c) Adding leading bit
to produce the 2-bit Gray code; (d) 3-bit Gray code

WATCH ANIMATED FIG. 1.16

1.7 Summary

Digital systems are ubiquitous. Unlike analog systems, which use continuous values, digital
systems have discrete values with gaps between the values. By making the gaps small enough, a
digital system can approximate an analog system.

The binary number system is the basis for digital systems. The binary system has only
two values, which we call one and zero. The components used to construct digital systems are
typically built using transistors or other semiconductor components. Voltage levels represent
these two logic values. Some storage devices use magnetization or reflectivity. Ultimately, these
are converted to their corresponding voltage values.

Just as with decimal numbers, binary numbers can be extended beyond 0 and 1 by using
more binary digits, or bits. Long strings of bits can be difficult to read (for humans), so we often
use octal or hexadecimal notation to represent binary numbers. Digital systems, however,
always work with binary values. The processes to convert numbers between decimal, binary,
octal, and hexadecimal are straightforward.

In addition to traditional binary numbers, there are other ways to represent numbers in
binary. These include unsigned and signed notations, as well as floating point. There are also
encodings for nonnumeric data, such as characters. ASCII and UNICODE are two commonly used
methods. UNICODE specifies several different encodings, of which UTF-8 and UTF-16 are used
most frequently.

Gray codes are sequences of binary values in which adjacent values have only one bit
that is different. It is useful in designing systems to avoid issues when more than one bit
changes its value simultaneously. It is the basis for Karnaugh maps, a method used to simplify
binary functions, and hence the digital logic we use to implement these functions.

In the next chapter, we will introduce Boolean algebra. This is the mathematics behind
binary numbers and the basis for the digital logic we will use to design digital systems
throughout this book and beyond.
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Exercises

1. List three analog and three digital systems or devices found in a typical home.

2. Besides those listed at the end of Section 1.1, what are some other advantages that
digital systems have over analog systems? What are some advantages that analog
systems have over digital systems?

3. Convert 631 from:

a. Decimal to binary
b. Binary to octal
c. Binary to hexadecimal

4. Convert 185.375 from:

a. Decimal to binary
b. Binary to octal
c. Binary to hexadecimal

5. Convert 10111101 from binary to:

a. Decimal
b. Octal
c. Hexadecimal

6. Convert 1011011010.01 from binary to:

a. Decimal
b. Octal
c. Hexadecimal

7. Convert 1537 directly (i.e. without first converting to binary) from decimal to:

a. Octal
b. Hexadecimal

8. Convert 753 from octal to hexadecimal.

9. Convert A7F from hexadecimal to octal.

10. Show the decimal number 13 in the following formats:

a. Traditional unsigned (8 bits)
b. Unsigned two’s complement (8 bits)
c. Signed-magnitude (8-bit magnitude)
d. Signed two’s complement (8-bit magnitude)
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11. Show the decimal number -13 in the following formats:

a. Unsigned two’s complement (8 bits)
b. Signed-magnitude (8-bit magnitude)
c. Signed two’s complement (8-bit magnitude)

12. A digital system stores floating point numbers using an 8-bit significand and a 4-bit
exponent with a bias of 8. Show how it stores the binary number 101.11101.

13. A digital system stores floating point numbers using an 8-bit significand and a 4-bit
exponent with a bias of 8. Show how it stores the binary number .00101101.

14. Show how the binary value 101.11101 is stored in IEEE 754:

a. Single precision format
b. Double precision format

15. Show how the binary value .00101101 is stored in IEEE 754:

a. Single precision format
b. Double precision format

16. Show how your name is encoded in:

a. ASCII
b. UTF-8
c. UTF-16

17. Convert the following ASCII codes to the characters they represent:

1000011 1101111 1101101 1110000 1110101 1110100 1100101 1110010

18. Convert the following UTF-8 codes to the characters they represent:

01000100 01101001 01100111 01101011 01110100 0110001 01101100

19. Convert the following UTF-16 codes (shown in hexadecimal format) to the characters
they represent

a. 0043 0069 0072 0063 0075 0069 0074

20. Convert the codes shown in the previous three problems to each of the other formats.

a. Show the 4-bit Gray code.
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Chapter 2: Boolean Algebra

In the previous chapter, we introduced binary numbers, the base 2 number system. Consisting
solely of two digits, 0 and 1, we examined them strictly as they represent numeric values. There
is, however, another way to work with binary values, using them to represent logical values
rather than numeric values. Here, 1 and 0 can be thought of as TRUE and FALSE. The digital
circuits we will introduce and design throughout this book are based on this logical
interpretation of binary values.

There is an entire branch of mathematics that focuses on binary values and the logical
operations we can perform on them. It is called Boolean algebra, named after the English
mathematician George Boole. Boolean algebra is the theoretical foundation upon which digital
logic design is built. In this chapter, we’ll introduce the basics of Boolean algebra and how we
can use it to model real-world situations.

First, we introduce the fundamental operations of Boolean algebra and the basic
postulates of this algebra. Then we will examine how to combine these operations to specify
functions, which we will use to model the behavior of real-world actions or the desired
behavior of a digital system. Truth tables are a convenient mechanism used to specify the
function values for all possible Boolean input values. We’ll also look at how to express functions
based on truth table values, minterms, and maxterms.

Finally, we’ll look at ways to analyze and simplify functions. Karnaugh maps are a
graphical method used for this purpose. They make use of the Gray code we introduced in the
previous chapter. We’ll show why we need to use this code during our discussion of the topic.
Karnaugh maps work well when you have up to four inputs. Beyond that, due to the human
inability to see beyond three dimensions at any given time, they aren’t very useful. We’ll
introduce another method, the Quine-McCluskey algorithm, which can be used to simplify
functions with larger numbers of inputs. Finally, we’ll look at incompletely specified functions.
For these functions, sometimes we don’t care what the output is for certain combinations of
input values. We’ll look at how to take advantage of this to simplify functions as much as
possible.

2.1 Boolean Algebra

Before we can study digital logic design, we need to introduce the fundamentals of Boolean
algebra. The most fundamental digital logic components implement basic Boolean operations,
and more complex Boolean functions translate directly to digital logic designs.

First, I’ll start by noting that, mathematically speaking, there are really many different
Boolean algebras, an infinite number of them to be precise. Each of these Boolean algebras has
a different number of distinct elements (think of these as digits). Each has 2n digits, where n is
an integer and n≥1. Fortunately for us, we are concerned only with the Boolean algebra for
which n=1, which has 21=2 digits, which we denote as 0 and 1. This is also referred to as a
switching algebra.

We’ll introduce Boolean algebra as follows. In the next subsection, we present the basic
operations of Boolean algebra. We’ll also introduce truth tables, a mechanism we will use
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throughout this chapter and the rest of this book. The following subsection examines some
properties of this Boolean algebra and shows how we know they are correct.

2.1.1 Boolean Algebra Fundamentals

The fundamental components of any algebra are its symbol set and its operations. We have
already seen the symbol set for this Boolean algebra, {0, 1}. Every Boolean variable takes on one
of these two values.

With that out of the way, let’s look at the operations that comprise this Boolean algebra.
We’ll start with the AND operation. The AND function takes two or more Boolean input values
and generates a single output. The function output is 1 if and only if every input value is 1. If
one or more inputs is 0, the function output is 0. Symbolically, we represent the AND function
using the dot (⋅) or∧ symbol, or by simply concatenating the inputs that are ANDed by the
function. For example, if we want to AND Boolean values a and b, we could express this
function as a ⋅ b, a∧ b, or simply ab.

The second function is the OR function. This function also has two or more Boolean
inputs, but its output is 1 if any of its inputs is 1. It is only 0 when all its inputs are 0. It is
denoted using the + or∨ symbol; the OR of a and b is expressed as a + b or a∨ b.

Finally, there is the NOT function. Unlike the AND and OR functions, this function takes
in only one input. Its output is the opposite of the input value. That is, when the input is 0, the
output is 1, and when the input is 1 the output is 0. There are several ways to represent the

NOT of an input, say a, including a', ~a, !a, /a, and .𝑎
There are several other functions that can be created using these functions, including

the XOR (exclusive OR), NAND, NOR, and XNOR functions. They are not an official part of the
specification of this Boolean algebra, but they are commonly used in digital logic design. Digital
component designers have developed integrated circuit chips that implement the fundamental
AND, OR, and NOT functions, as well as the XOR, NAND, NOR, and XNOR functions. We’ll see
more about this in Chapter 3.

2.1.2 Truth Tables

A truth table is a convenient mechanism to specify the output of any Boolean function, from the
most fundamental to the most complex, for all possible combinations of input values. To
illustrate how this works, consider the truth table for the AND function, shown in Figure 2.1 (a).
Since there are two inputs (a and b), there are 22 = 4 possible combinations of input values: a=0
and b=0; a=0 and b=1; a=1 and b=0; and a=1 and b=1. (If we have three inputs, we would have
23 = 8 possible combinations of input values.) In the table, we list these input values on the left
side of the vertical line, one combination of inputs per row. On the right side, we list the value
of the function for the input values in each row. Here, the function is only 1 in the last row,
where all inputs are 1. Figures 2.1 (b) and 2.1 (c) show the truth tables for the OR and NOT
functions.
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a b AND

0 0 0
0 1 0
1 0 0
1 1 1

a b OR

0 0 0
0 1 1
1 0 1
1 1 1

a NOT

0 1
1 0

(a) (b) (c)

Figure 2.1: Truth tables for the functions (a) AND, (b) OR, and (c) NOT.

Truth tables are a nice way to show how these fundamental functions work, but they are
most useful when used to specify the behavior of more complex functions. We’ll see how this
works later in this chapter.

2.1.3 Boolean Algebra Properties

Mathematically speaking, an algebra is a theory encompassing a set of elements and a set of
operations performed on those elements. For our Boolean algebra, we have seen that the set of
elements is {0, 1} and the set of operations is {AND, OR, NOT}. An algebra must also have a set
of axioms (also called postulates) that are essentially the most basic rules or properties of the
algebra.

American mathematician Edward Huntington proposed a set of axioms for our Boolean
algebra, collectively called Huntington’s postulates. In addition, other axioms have been
proposed that are true for this Boolean algebra, but are not an official component of the
definition of the algebra. Some of Huntington’s postulates are solely for mathematical
completeness. Others can directly impact the design of digital logic circuits.

The remainder of this section will introduce these postulates and show how they are
true for this Boolean algebra. We’ll start with Huntington’s postulates.

Closure

Closure means that for any fundamental function, if all the function inputs are in the algebra’s
set of elements, then the function’s outputs are also in this set of elements. We can see this is
true by looking at the truth tables in Figure 2.1. For each truth table, all possible combinations
of input values are listed, and each function output is always equal to either 0 or 1.
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Identity Elements

For each function with more than one input, there is an element that causes the output of the
function to be the same as the other input. Note that the identity element does not have to be
the same for each function. Different functions can have different identity elements.

For our Boolean algebra, we have two functions that need identity elements, AND and
OR. We’ll look at them individually, and once again we’ll use truth tables to justify this
postulate. Starting with the AND function, it is straightforward to show that 1 is the identity
element for this function. Figure 2.2 (a) shows the truth table for this function, with a as the
input and a⋅1 as the function output. Clearly, a⋅1 = a.

a a ⋅ 1

0 0 ⋅ 1 = 0
1 1 ⋅ 1 = 1

a a + 0

0 0 + 0 = 0
1 1 + 0 = 1

(a) (b)

Figure 2.2: Truth tables showing the identity elements for the (a) AND, and (b) OR functions.

Using this same approach, we can see that 0 is the identity element for the OR
operation. This is shown in Figure 2.2 (b).

Commutativity

This is a fancy way of saying that the order of the inputs does not matter. For this algebra, this
means that a ⋅ b = b ⋅ a, and a + b = b + a. As before, we use truth tables to verify that this
Boolean algebra has this property, as shown in Figure 2.3.

a b a ⋅ b b ⋅ a

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

a b a + b b + a

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

(a) (b)

Figure 2.3: Truth tables verifying the commutativity of the (a) AND, and (b) OR functions.

WATCH ANIMATED FIG 2.3.a WATCH ANIMATED FIG 2.3.b
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Note that this property does not necessarily apply to all operations in all algebras. In
traditional algebra, basic arithmetic, addition and multiplication are commutative but
subtraction and division are not. For example 5-3 ≠ 3-5 and 6÷2 ≠ 2÷6.

Distributivity

The distributive property uses both 2-operand functions, with each being distributed over the
other. The property for the distribution of the AND function over the OR function can be
expressed as

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

Again using a truth table, we can verify this property is true for the distribution of AND over OR.
This table is shown in Figure 2.4.

a b c b + c a ⋅ (b + c) a ⋅ b a ⋅ c (a ⋅ b) + (a ⋅ c)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Figure 2.4: Truth table verifying the distributive property of AND over OR.

WATCH ANIMATED FIGURE 2.4

The distribution of OR over AND can be expressed as

a + (b ⋅ c) = (a + b) ⋅ (a + c)
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The truth table in Figure 2.5 verifies this property.

a b c b ⋅ c a + (b ⋅ c) a + b a + c (a + b) ⋅ (a + c)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

Figure 2.5: Truth table verifying the distributive property of OR over AND.

WATCH ANIMATED FIGURE 2.5

Inverse

Each element in the algebra has an inverse such that a ⋅ a' = 0 and a + a' = 1. The truth tables in
Figure 2.6 show that this is the case for our Boolean algebra.

a a' a ⋅ a'

0 1 0 ⋅ 1 =
0

1 0 1 ⋅ 0 =
0

a a' a + a'

0 1 0 + 1 = 1
1 0 1 + 0 = 1

(a) (b)

Figure 2.6: Truth table verifying the inverse property for the (a) AND, and (b) OR functions.

Distinct Elements

Huntington’s postulates specify that the algebra must have at least two distinct elements. This
was added just to exclude the trivial case of a Boolean algebra with 20 = 1 element. Our Boolean
algebra has two elements, 0 and 1, and thus meets this requirement.

Beyond Huntington’s postulates, there are several other axioms that are true for this
Boolean algebra. As with Huntington’s postulates, some are used widely to minimize functions
and the digital logic needed to implement them.
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Idempotence

When a function takes one value for both its inputs, the value of the function is equal to the
value of the input. Mathematically, this means a ⋅ a = a, and a + a = a for this algebra. Figure 2.7
shows the truth tables that verify this property.

(a) (b)

Figure 2.7: Truth table verifying the idempotence property for the (a) AND, and (b) OR
functions.

Involution

The inverse of the inverse of an element is the same as the element. You can think of this as a
double negative bringing you back to the original value. The truth table in Figure 2.8 verifies
that this property is true for this algebra.

a a' (a')'
0 1 1' = 0
1 0 0' = 1

Figure 2.8: Truth table verifying the involution property.

WATCH ANIMATED FIGURE 2.8

Absorption

This property has direct use in minimizing functions and digital logic. It has two forms.

a + (a ⋅ b) = a
a ⋅ (a + b) = a

Page 2-8

https://digitalcommons.njit.edu/dld-animations/30


Chapter 2: Boolean Algebra

The truth tables in Figure 2.9 verify both forms of this property.

a b a ⋅ b a + ( a ⋅ b)

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

a b a + b a ⋅ ( a + b)

0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

(a) (b)

Figure 2.9: Truth table verifying both forms of absorption.

WATCH ANIMATED FIGURE 2.9.a WATCH ANIMATED FIGURE 2.9.b

Associativity

When you have only one type of operation occurring in a function, the order in which you
perform them does not change the value of the function. Specifically,

(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(a + b) + c = a + (b + c)

Although Huntington did not include this in his postulates for Boolean algebras, it is indeed true.
Figure 2.10 shows the truth table for the AND function and Figure 2.11 shows the truth table for
the OR function.

a b c a ⋅ b (a ⋅ b) ⋅ c b ⋅ c a ⋅ (b ⋅ c)
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 1 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1

Figure 2.10: Truth table showing the associative property for the AND function.

WATCH ANIMATED FIGURE 2.10
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a b c a + b (a + b) + c b + c a + (b + c)
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 1 0 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

Figure 2.11: Truth table showing the associative property for the OR function.

WATCH ANIMATED FIGURE 2.11

De Morgan’s Laws

Two theorems of logic developed by Augustus De Morgan are fundamental in digital logic
design. However, they were not developed for digital circuits, which did not exist when these
theorems were first published in 1850. Rather, they were developed as part of De Morgan’s
efforts as a reformer in the study of logic and propositional calculus. The original theory behind
his laws dates to the 14th century. De Morgan’s contribution was to develop the logical,
mathematical expression of them. In De Morgan’s own words, (1851) the theorems are:

(1) The negation (or contradictory) of a disjunction is equal to the conjunction of
the negative of the alternatives – that is, not(p or q) equals not(p) and not(q), or
symbolically ~(p∨q) = ~p⋅~q.
(2) The negation of a conjunction is equal to the disjunction of the negation of the
original conjuncts – that is, not(p and q) equals not(p) or not(q), or symbolically
~(p⋅q) = ~p∨~q.

To decipher this, it helps to know that a conjunction is the AND function, a disjunction is the OR
function, and the negation, contradiction, and ~ symbol are the NOT function.

Well, all of that was quite a mouthful. Fortunately, rewriting the laws in our notation,
and using a and b instead of p and q, greatly simplifies them. The first law becomes

(a+b)' = a'⋅b'
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Once again, a truth table demonstrates the validity of this law. Figure 2.12 shows the truth table
for De Morgan’s first law.

a b a + b (a + b)' a' b' a' ⋅ b'
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

Figure 2.12: Truth table verifying De Morgan’s first law.

WATCH ANIMATED FIGURE 2.12

The second De Morgan’s law can also be expressed simply in our notation.

(a⋅b)' = a' + b'

Figure 2.13 shows the truth table to verify this law.

a b a ⋅ b (a ⋅ b)' a' b' a' + b'
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

Figure 2.13: Truth table verifying De Morgan’s first law

WATCH ANIMATED FIGURE 2.13

2.2 Boolean Functions

The fundamental Boolean operations we introduced in the previous section are just that,
fundamental. They are fine for some of the things we want to model, and ultimately design and
build circuits to implement. In most cases, however, we want to model more complex
operations that may be a combination of these operations. We refer to these as Boolean
functions.

To illustrate this, envision the following scenario based on one of my favorite sports,
baseball. We are entering the last day of the regular season, and my favorite team is leading its
division by one game over its dreaded archrival. Each team has one game remaining to be
played, not against each other. Figure 2.14 shows one such scenario.
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Team W L GB
(a) Favorite 95 66 ---
(b) Archrival 94 67 1.0

Figure 2.14: Baseball divisional standing entering the final day of the season.

In order to win its division, my favorite team must have a better record than its archrival.
To model the possible last-game results, I’ll start by creating two Boolean values.

a = My favorite team wins its final game
b = Dreaded archrival wins its final game

Each of these values is 1 if the statement is true, that is, the team wins its final game, and 0 if it
is false and the team loses its final game. There are 22 = 4 possible outcomes: both teams lose;
my team loses and the archrival team wins; my team wins and the archrival team loses, and;
both teams win. Figure 2.15 shows the final standings for all four scenarios.

Team W L GB

(a) Favorite 95 67 ---
(b) Archrival 94 68 1.0

Team W L GB

(a) Favorite 95 67 ---
(b) Archrival 95 67 ---

(a) (b)

Team W L GB

(a) Favorite 96 66 ---
(b) Archrival 94 68 2.0

Team W L GB

(a) Favorite 96 66 ---
(b) Archrival 95 67 1.0

(c) (d)

Figure 2.15: Final division standings when (a) both teams lose their final game; (b) my favorite
team loses and the archrival team wins; (c) my favorite team wins and the archrival team loses;

and (d) both teams win.

As we can see from this figure, my team finishes with a better record and wins the
division in three of the four scenarios. In the fourth scenario, the two teams are tied and a
tiebreaker criterion determines the division winner. For this example, we’ll assume the archrival
team would win the tiebreaker, so my team would lose the division in this case. (Otherwise my
favorite team would win 100% of the time, which would be great for my team but would make
for a lousy example.)
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Now let’s put all this information into one truth table, shown in Figure 2.16. This truth
table has two inputs, a and b, the two Boolean values we created earlier. It has one output, W,
that is 1 when my favorite team wins the division and 0 when it does not. The first row, with a =
0 and b = 0, represents the scenario in which both teams lose their last game. In this case,
shown in Figure 2.15 (a), my favorite team wins the division, indicated by a 1 in the W (= my
team wins the division) column. The second row has a = 0 and b = 1, the scenario in which my
favorite team loses its last game and the archrival team wins its last game. They both end up
with the same record, as shown in Figure 2.15 (b). The archrival team holds the tiebreaker, and
they win the division. My favorite team does not win the division, so W is 0. The third row is the
case when my favorite team wins its final game (a = 1) and their archrival loses its final game
(b = 0); this is shown in Figure 2.15 (c). Here, my favorite team wins its division, so W = 1. The
last row, with a = 1 and b = 1, occurs when both teams win their final game. As shown in Figure
2.15 (d), my team wins the division, so W = 1.

a b W
0 0 1
0 1 0
1 0 1
1 1 1

Figure 2.16: Truth table for my favorite team winning its division.

Now that we have the truth table, we would next derive a single function for W that will
produce the correct value for all possible cases. We’ll look at two common methods to do this in
the following subsections, along with a discussion of how they are related, followed by a couple
of more complex examples.

2.2.1 Sum of Products

In the sum of productsmethod, we create a product for each row of the truth table. For each
product, we have either an input or its complement, for every single input, ANDed together. If a
row has a 1 value for an input, we use the original input; if it is 0, we use its complement. By
doing this, the product, the AND of these terms, is equal to 1 only for that row’s input values.

This is probably a bit confusing, but another truth table may help clear this up. Figure
2.17 (a) shows all four possible ANDed values, a'⋅b', a'⋅b, a⋅b', and a⋅b. The first row, with a = 0
and b = 0, only sets one ANDed term to 1, a'⋅b'. The other terms are also set to 1 for only one
combination of values of a and b. The value set to 1 is called theminterm for these input
values. Figure 2.17 (b) shows the minterm for each row.
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a b a' ⋅ b' a' ⋅ b a ⋅ b' a ⋅ b

0 0 1 0 0 0

0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

a b Minterm

0 0 a' ⋅ b' (m0)
0 1 a' ⋅ b (m1)
1 0 a ⋅ b' (m2)
1 1 a ⋅ b (m3)

(a) (b)

Figure 2.17: (a) Values of all minterms for all possible input values; (b) Minterm associated with
all possible input values.

Notice the last value in each row of the table in Figure 2.17 (b). One common notation
for minterms is to denote each minterm as lowercase m with a subscript. If you read the inputs
from left to right as a binary number, and then convert that number to decimal, the decimal
value is the subscript of m for that row. That is, when a = 0 and b = 0, the inputs are 00 in binary,
which is 0 in decimal. The minterm for that row is thus m0. Similarly, inputs of 01, 10, and 11
give us minterms m1, m2, and m3, respectively.

So, now we have the products. Where’s the sum? The sum is an OR operation. We take
every minterm in a row that has the function output (W in this case) equal to 1, and logically OR
them together. For this function, the first, third, and fourth rows have W = 1. Their minterms are
a'⋅b', a⋅b', and a⋅b. We can OR these three terms together to get W = (a'⋅b') + (a⋅b') + (a⋅b),
or W = m0 + m2 + m3.

2.2.2 Product of Sums

The product of sumsmethod is sort of the opposite of the sum of products method. For each
sum, we logically OR together either an input or its complement for every single input. Unlike
sum of products, however, we use the original term if it is 0 and its complement if it is 1. As
shown in Figure 2.18 (a), this gives us only one sum per row that is equal to 0; the rest are 1.

a b a + b a + b' a' + b a' + b'

0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

a b Maxterm

0 0 a + b (M0)
0 1 a + b' (M1)
1 0 a' + b (M2)
1 1 a' + b' (M3)

(a) (b)

Figure 2.18: (a) Values of all maxterms for all possible input values; (b) Maxterm associated with
all possible input values.
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The sums shown in Figure 2.18 (a) are calledmaxterms. Unlike minterms, which have a
value of 1 in only one row, maxterms have a value of 0 in only one row. Furthermore, only one
maxterm is 0 in each row. The maxterm with a value of 0 is the maxterm for that row. The
maxterms for all rows are shown in Figure 2.18 (b). Just as we used lowercase m for minterms,
we use uppercase M with a subscript for maxterms. The subscript for the maxterms is
calculated exactly the same as it was calculated for minterms.

Now that we have the sums, we need to combine them to create our final function. We
do this by ANDing together the maxterms for all rows that set the function to 0.

For our function, there is only one maxterm that is 0, a + b', or M1. Thus, this becomes
our final function, W = a + b'. It is straightforward to verify that this function yields the desired
truth table shown in Figure 2.16.

2.2.3 The Relationship between Minterms and Maxterms

There seems to be a sort of symmetry between minterms and maxterms. When we express a
function as a sum of products using minterms, we take all the minterms that set a function to 1
and OR them together. Each minterm adds one set of input values that sets the function to 1. In
our example, there are three cases that set our output to 1, so there are three minterms that
are ORed together to give us our final function, W = (a'⋅b') + (a⋅b') + (a⋅b).

In contrast, we express a function as a product of sums by ANDing together all maxterms
that set the function to 0. Each maxterm removes one set of input values that sets the function
to 0. When all the input values that set the function to 0 are removed, we are left with all the
input values that set it to 1. This gives us a different, but equivalent, representation of the
function, W = a + b' in this example.

Now look at the truth tables we used to generate the m and M values. In Figure 2.15 (a),
we see that each row has exactly one minterm set to 1, whereas Figure 2.18 (a) has exactly one
maxterm set to 0. Furthermore, the position of these values is the same in each row. The value
of minterm mi is the opposite of the value of maxterm Mi, or mi = Mi', or mi' = Mi.

We can show this is true by using De Morgan’s laws. Consider m0 = a' ⋅ b'. Using
De Morgan’s second law, we know that

m0' = (a' ⋅ b')' = (a')' + (b')' = a + b = M0

You can follow the same procedure to show that this is true for all minterms and maxterms.
We could have gone in the other direction as well, showing that Mi = mi', or Mi' = mi.

Again looking at M0 = a + b, we use De Morgan’s first law to show that

M0' = (a + b)' = a' ⋅ b' = m0
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Finally, we can look at the two equations generated using minterms and maxterms to see
another relationship. If we use our m and M terms, we have expressed our function W as

W = m0 + m2 + m3

and
W = M1

For each subscript value, we use its minterm if it yields a value of 1 for the function, or its
maxterm if it generates a value of 0. Each index is included in exactly one of the two equations.

2.2.4 Additional Examples

In this subsection, we’ll go through a couple of more complex examples. First, we’ll start off
with the function q = a'bc' + ac. This function has three inputs, a, b, and c, so its truth table has
23=8 rows. Figure 2.19 shows the truth table for this function and its minterms. To calculate the
value of function q, we simply plugged in the values of a, b, and c into the equation for each
row.

a b c q Minterm
0 0 0 0 a'b'c' m0

0 0 1 0 a'b'c m1

0 1 0 1 a'bc' m2

0 1 1 0 a'bc m3

1 0 0 0 ab'c' m4

1 0 1 1 ab'c m5

1 1 0 0 abc' m6

1 1 1 1 abc m7

Figure 2.19: Truth table for q = a'bc' + ac with minterms shown.

WATCH ANIMATED FIGURE 2.19

Looking at the table, we can reconstruct the equation as q = m2 + m5 + m7, or q = a'bc' +
ab'c + abc. This is different from, but equivalent to, our initial equation. In the next section, we’ll
look at ways to simplify our equations as much as possible.

Now let’s do this again, but using maxterms instead of minterms. We have reconstructed
the truth table in Figure 2.20, this time showing the maxterm for each row.
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a b c q Maxterm
0 0 0 0 a+b+c M0

0 0 1 0 a+b+c' M1

0 1 0 1 a+b'+c M2

0 1 1 0 a+b'+c' M3

1 0 0 0 a'+b+c M4

1 0 1 1 a'+b+c' M5

1 1 0 0 a'+b'+c M6

1 1 1 1 a'+b'+c' M7

Figure 2.20: Truth table for q = a'bc' + ac with maxterms shown.

WATCH ANIMATED FIGURE 2.20

ANDing together the maxterms for rows with q = 0 gives us the equation

q = M0 ⋅M1 ⋅M3 ⋅M4 ⋅M6, or
q = (a + b + c) ⋅ (a + b + c') ⋅(a + b' + c') ⋅(a' + b + c) ⋅(a' + b' + c).

Here is one final example to conclude this section. Instead of starting with an equation,
we are given a truth table and must develop the sum of products and product of sums
equations for this function. The truth table for this example is given in Figure 2.21. To simplify
our work, the minterms and maxterms are also shown.

a b c q Minterm Maxterm
0 0 0 0 a'b'c' m0 a+b+c M0

0 0 1 1 a'b'c m1 a+b+c' M1

0 1 0 1 a'bc' m2 a+b'+c M2

0 1 1 1 a'bc m3 a+b'+c' M3

1 0 0 1 ab'c' m4 a'+b+c M4

1 0 1 1 ab'c m5 a'+b+c' M5

1 1 0 0 abc' m6 a'+b'+c M6

1 1 1 1 abc m7 a'+b'+c' M7

Figure 2.21: Truth table for the function q with minterms and maxterms shown.

WATCH ANIMATED FIGURE 2.21
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As before, we create the sum of products form of the equation for q by ORing together
all minterms for which q = 1. For this truth table, this becomes

q = m1 + m2 + m3 + m4 + m5 + m7, or
q = (a'⋅b'⋅c) + (a'⋅b⋅c') + (a'⋅b⋅c) + (a⋅b'⋅c') + (a⋅b'⋅c) + (a⋅b⋅c)

Using maxterms, we find the product of sums equation by ANDing the maxterms for
which q = 0. This gives us the equations

q = M0 ⋅M6, or
q = (a + b + c) ⋅ (a' + b' + c)

One thing to note about these equations is that they may have quite a few terms. In
general, we want to make our equations as simple as possible. When we design digital circuits
to realize functions, simpler functions lead to smaller and simpler circuits. Simpler circuits are
highly desirable. In the next section, we’ll look at ways to minimize these logic equations.

2.3 Minimizing Functions

As we saw in the previous section, both the sum of products and product of sums methods give
us correct equations for desired functions, but these equations may be unnecessarily large. In
practice, we want functions to be as simple as possible while still being correct. When we create
digital circuits to realize functions, simpler functions require less hardware and wiring, use less
power, and usually are faster than circuits for more complex functions. Knowing how to simplify
functions is an important skill for digital logic designers to have.

In this section, we introduce Karnaugh maps, or K-maps, a visual tool that designers can
use to minimize functions. Karnaugh maps work well when a function has up to four terms.
Beyond that, this method becomes increasingly difficult to use. Another method, the
Quine-McCluskey algorithm, can be used for those functions; we’ll introduce that method as
well. Finally, we’ll examine how to use these methods for functions that are incompletely
specified, that is, we don’t know the value of the function for certain values of the inputs, nor
do we care. This is not at all uncommon; it typically occurs when we know that certain input
values will never occur. We can use this to our advantage to minimize some functions even
more than we otherwise would be able to.

2.3.1 Karnaugh Maps

Just as Boolean algebras were developed from a logic perspective, Karnaugh maps also have
their foundations in logic theory. Allan Marquand developed a method to diagram logic for n
elements in the early 1880s. This work was expanded by Edward Veitch in 1952 as the basis for
his Veitch diagrams, which are used to “simplify truth functions.”Maurice Karnaugh further
extended Veitch’s work to create the Karnaugh maps we still use today to minimize digital logic
circuits.
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A Karnaugh map looks similar to a grid. To create this grid, we split up the function
inputs into two sets as evenly as possible. If we have four inputs, two are placed in each set;
three inputs are split so one set has two and the other has one. The possible values in the two
sets become the labels for the rows and columns of the grid. The value placed in the cell of the
grid is the value of the function for the values of the inputs for the cell’s row and column.
There’s more to this, but let’s stop here for a moment.

2.3.1.1 2-Input Maps

Now that we’ve dispensed with the formal, perhaps a bit confusing description, let’s look at
some Karnaugh maps for functions to see how this really works.

Let’s start with our baseball function, W = (a'⋅b') + (a⋅b') + (a⋅b). This function has two
inputs, a and b, so it’s easy to split them into two equal sets, one with a and the other with b.
Each set has one element which has 21 = 2 possible values, so we need to have a grid that is 2 ×
2. I’ll arbitrarily assign the set with a to the rows and the set with b to the columns. This gives us
the map shown in Figure 2.22 (a).

(a) (b) (c)

Figure 2.22: (a) A 2 × 2 Karnaugh map; (b) Truth table for the baseball function; (c) Karnaugh
map with values for function W shown.

WATCH ANIMATED FIGURE 2.22

Notice the label in the upper left corner of the grid, a\b. This indicates that the values
shown below this square, the labels of the rows, are the possible values of a. The values to the
right of this, the labels of the columns, are the possible values of b.

Next, we need to fill in the rest of the Karnaugh map. Consider the first empty cell, in the
row with a = 0 and the column with b = 0. We go to the truth table we developed earlier for this
function, repeated in Figure 2.22 (b), and look up the value of W for these input values. Here,
W = 1, so we enter the value 1 into this cell. We do the same thing for each cell in the Karnaugh
map, giving us the completed Karnaugh map shown in Figure 2.22 (c).

So, now we have this Karnaugh map. We didn’t create it just to make a nice looking map.
We want to use it to help us develop the most simple function equation possible. To do this, we
group together adjacent 1s in the map. For this map, look at the bottom row. It has two cells,
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both with a value of 1. These cells are adjacent, so we can group them together. We do this by
drawing a circle or oval around the two terms, as shown in Figure 2.23 (a). This is called an
implicant.

(a) (b)

Figure 2.23: Karnaugh map for the function W: (a) with a terms grouped; (b) with a terms and b'
terms grouped.

There is a second implicant in this Karnaugh map, the two 1s in the column with b= 0.
Figure 2.23 (b) shows the Karnaugh map with both implicants.

Notice the 1 in the row with a = 1 and the column with b = 0. That term is in both
implicants, and that’s OK. A cell with a 1 can be in more than one implicant.

Here is another important point. Every cell with a 1 must be in an implicant. If it cannot
be grouped with any other cell, we just circle it and make it its own implicant.

Mathematically, these implicants are created by performing algebraic operations.
Consider the first implicant, which combines the cells with a = 1 and b = 0, with the cell for
which a = 1 and b = 1. The first cell corresponds to minterm a ⋅ b' (a = 1, b = 0 or b' = 1, 1 ⋅ 1 =
1), and the second is minterm a ⋅ b. Grouping the two cells is essentially a logical OR operation.
This group corresponds to the following equation.

Group 1 = (a ⋅ b') + (a ⋅ b)
= a ⋅ (b' + b)
= a ⋅ 1
= a

This is the rationale for grouping terms. When we group terms together, we create one
term that covers the group’s terms. As a bonus, the one term is simpler than any of the terms
that are grouped together.

We can follow the same procedure for the second implicant as follows.

Group 2 = (a' ⋅ b') + (a ⋅ b')
= (a' + a) ⋅ b'
= 1 ⋅ b'
= b'

Finally, we logically OR the two implicant values together to get our final function,
W = a + ⋅ b'.
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2.3.1.2 3-Input Maps

Karnaugh maps for two inputs are useful, to a degree, but their value is somewhat limited. If
you didn’t have the Karnaugh map, you might be able to just look at the truth table and figure
out the minimal equation because there are so few terms. Karnaugh maps become more useful
when we have functions with more inputs, up to a point. Consider the Karnaugh map for a truth
table we saw in the previous section, repeated in Figure 2.24 (a).

a b c q

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

(a) (b) (c)

Figure 2.24: (a) Function truth table; (b) Karnaugh map; (c) Karnaugh map with implicants
shown.

To create the Karnaugh map, first we divide the inputs as evenly as possible. This
function has three inputs, so we put one (a) in one set and the other two (b and c) in the other
set. It doesn’t matter which input is in each set; I just chose these arbitrarily. Also, each input
has to be completely in one set; you can’t have 1½ inputs in each set.

Since the first set has one input, it has 21 = 2 rows, just like the Karnaugh map for the
baseball function. The other set, however, has two inputs, so our Karnaugh map has 22 = 4
columns. Figure 2.24 (b) shows the Karnaugh map for this truth table.

There are a couple of really important things I need to explain before we continue. First,
notice the top left cell of the Karnaugh map has the text a\bc. This means that the two-bit value
in the label for each column specifies the values of b and c in that order. For example, the
column labeled 01 has b = 0 and c = 1.

The other thing to note is the order of the labels. When we have only two rows or
columns, the order is always sequential, first 0, then 1. When we have more than two rows or
columns, however, this is not the case. The columns are not ordered 00, 01, 10, 11; they are
ordered 00, 01, 11, 10. The order of the labels follows the Gray code. We do this so we can
group adjacent terms. If we ordered the columns sequentially, we could not group together
entries in adjacent columns 01 and 10.

Page 2-21



Chapter 2: Boolean Algebra

Finally, we group terms just as we did before. The 1 in the upper right corner (a = 0, bc =
10, or a'bc') cannot be grouped with any other terms, so we just circle it as its own implicant.
The other two terms can be grouped together as follows.

(a ⋅ b' ⋅ c) + (a ⋅ b ⋅ c) = (a ⋅ c) ⋅ (b' + b) = (a ⋅ c)

Thus our final function becomes a'bc' + ac.
Indicants can have more than two entries of 1, but the total number of entries must

always be an exact power of 2, that is, 1, 2, 4, 8,… and so on. To see how this works, let’s look
at another truth table we saw earlier, repeated in Figure 2.25 (a).

a b c q

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

(a) (b) (c)

Figure 2.25: (a) Function truth table; (b) Karnaugh map with implicants of size 2; (c) Karnaugh
map with implicants prime implicants shown.

We can create the Karnaugh map for this truth table just as we did before, and then we
circle each possible implicant of two terms, as shown in Figure 2.25 (b). There are a lot of
implicants circled in this figure, six to be precise. Now, we want to see if we can combine any of
these implicants of two into larger implicants.

Two implicants can be combined if they are completely adjacent. That is, they can’t have
only part of the group being adjacent. For this function, consider the two implicants shown in
Figure 2.26 (a). The two terms in column 01 are adjacent, but the terms in columns 00 and 11
are not, so these two implicants cannot be combined.

(a) (b) (c)

Figure 2.26: (a) Two non-adjacent implicants; (b) and (c) Two adjacent implicants that can be
combined.

Page 2-22



Chapter 2: Boolean Algebra

The two implicants circled in Figure 2.26 (b), however, can be combined. Each term
along their common edge is adjacent to a term in the other implicant. The same is true for the
two implicants circled in Figure 2.26 (c). The final implicants are shown in Figure 2.25 (c). The
three implicants in the figure are all of maximum size; they cannot be combined further. They
are called prime implicants. Both groupings in Figures 2.26 (b) and (c) group together the same
elements and give us the same function.For the first figure, our implicants are

(a ⋅ b' ⋅ c) + (a ⋅ b ⋅ c) = (a ⋅ c), and
(a' ⋅ b' ⋅ c) + (a' ⋅ b ⋅ c) = (a' ⋅ c)

Our final implicant is

(a ⋅ c) + (a' ⋅ c) = c

The second figure has the implicants

(a' ⋅ b' ⋅ c) + (a ⋅ b' ⋅ c) = (b' ⋅ c), and
(a' ⋅ b ⋅ c) + (a ⋅ b ⋅ c) = (b ⋅ c)

They are grouped together as

(b' ⋅ c) + (b ⋅ c) = c

The other two groups have the functions (a ⋅ b') and (a' ⋅ b), and our final function is
(a ⋅ b') + (a' ⋅ b) + c.

There is another way that terms can be adjacent that is not so obvious. Consider the
Karnaugh map shown in Figure 2.27 (a). There are two terms set to 1 in this Karnaugh map, and
they appear quite distant from each other. However, they are actually adjacent, because the
rows and columns of the Karnaugh map wrap around. That is, the last cell in each row/column is
actually next to the first cell in that row/column. Traditionally, we group them as shown in
Figure 2.27 (b).

(a) (b)

Figure 2.27: (a) Karnaugh map; (b) Karnaugh map with implicant shown.

Mathematically, the two cells are adjacent if they have only one input that is different,
and that is the case here. The left cell has a = 0, b = 0, and c = 0, and corresponds to minterm
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a'b'c'. The other cell set to 1 has a = 0, b = 1, and c = 0, or minterm a'bc'. Grouping these two
cells together gives us an implicant with value
(a' ⋅ b' ⋅ c') + (a' ⋅ b ⋅ c') = (a' ⋅ c') ⋅(b' ⋅ b) = (a' ⋅ c').

We can only draw the Karnaugh map in two dimensions, as a flat grid. Mathematically
speaking, however, it is more like a three-dimensional torus. To see this, get a doughnut and a
piece of paper. Draw a Karnaugh map (just the cells, no labels) on a piece of paper, cut it out,
and try wrapping it around the doughnut. You may find it helpful to draw the squares as
trapezoids since the inner diameter of the doughnut is smaller than the outer diameter. This will
show you all the adjacencies within the Karnaugh map. After you have done this, take a picture
to document your success, and then feel free to remove your Karnaugh map and eat the
doughnut as your reward for a job well done.

2.3.1.3 4-Input Maps

The largest Karnaugh map you can reasonably use has four inputs. This map is shown in Figure
2.28. Notice that both the rows and columns use the Gray code sequence for their labels. It is
left as an exercise for the reader to group the terms in this map into prime implicants and
obtain an optimal function.

Figure 2.28: A 4-input Karnaugh map with function values shown.

There is one final point I need to share with you regarding implicants. Sometimes, after
you have created your Karnaugh map and generated all the prime implicants, you don’t need to
include all of them in your final equation for the function. As an example, consider the Karnaugh
map shown in Figure 2.29 (a). This map has three prime implicants as shown in the figure. The
lower prime implicant has the function a ⋅ b'; the vertical prime implicant has the function b' ⋅
c; and the upper prime implicant has the function a' ⋅ c. We could express this overall function
as (a ⋅ b') + (b' ⋅ c) + (a' ⋅ c), but we can do better than that. Notice that both cells in b' ⋅ c are
also included in one of the other two prime implicants, so we can remove it from the overall
function, leaving us with (a ⋅ b') + (a' ⋅ c), as shown in Figure 2.29 (b).
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(a) (b)

Figure 2.29: Karnaugh map with (a) all prime implicants; (b) essential prime implicants.

Look at the original map with all prime implicants and find the cell with a = 1, b = 0, and
c = 0. This cell is in only one prime implicant. That means any final function must include this
prime implicant, otherwise it will not produce the desired function value of 1 for these input
values. Such a prime implicant is called an essential prime implicant. Using similar reasoning,
the upper prime implicant is also an essential prime implicant. Knowing that these two essential
prime implicants must be in the final function, we can see that we are already setting the
function to 1 for all terms in the vertical prime implicant, so we don’t need to include it.

Summarizing, here’s the overall procedure to determine the function from a truth table
using Karnaugh maps.

● Divide the function inputs into two sets, splitting them up as evenly as possible.
● Create the blank Karnaugh map with these two sets, using the Gray code to create the

labels.
● Fill in the cells of the Karnaugh map with the values of the functions from the truth

table.
● Group adjacent terms together as implicants.
● Group implicants together to form larger implicants, repeating until each implicant has

reached its maximum size. These are the prime implicants for the function.
● Identify cells that are covered by only one prime implicant. These are the essential prime

implicants and must be included in the final function.
● Find a cell that is equal to 1 but not in any essential prime implicant. Find one prime

implicant that covers this cell and add it to the final function. Repeat this process for
other cells that are not covered by any essential prime implicant and the other prime
implicants you have added to the final function until all cells are covered.

2.3.2 Quine-McCluskey Algorithm

In theory, you can create a Karnaugh map for any number of function inputs. Realistically,
though, Karnaugh maps are difficult to work with when you have more than four function
inputs. For n inputs, each cell in the Karnaugh map is adjacent to n other cells. For 5 or more
inputs, some of the adjacent cells do not border the cell, which takes away one of the main
advantages of Karnaugh maps.
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For functions with larger numbers of inputs, we can use the Quine-McCluskey
algorithm. (This algorithm can also be used for functions with fewer inputs, but Karnaugh maps
already work well for these functions.) The original algorithm was developed byWilliam Quine
in 1952, though the underlying approach was previously developed by Hugh McColl in 1878 in
the domain of logic. Edward McCluskey extended this algorithm in 1956 to give us the
algorithm we use today. Computer programs that minimize logic functions are based on this
algorithm, not Karnaugh maps.

The Quine-McCluskey algorithm is a tabular method that has two phases. In the first
phase, we create a table and manipulate it to determine the prime implicants for the function.
This is equivalent to circling adjacent terms in Karnaugh maps and building them up until each
has reached its maximum size. Then we determine the function from among these prime
implicants in the second phase. We’ll describe the steps in this algorithm as we go through a
very simple example you have seen before, the baseball example we have used throughout this
chapter.

We start with the truth table for this function, shown again in Figure 2.30 (a). We use
this table to create the table we will actually use in the first phase of the Quine-McCluskey
algorithm. We take each entry in the truth table that sets the function value to 1 and add the
input values for that entry to our table. Then we group all the entries based on the number of
1s in the entries. For our truth table, there are three entries that set the function output to 1.
They are: a = 0 and b = 0; a = 1 and b = 0; and a = 1 and b = 1. We list these entries as 00, 10,
and 11, respectively. Then we divide the entries by the number of 1s. Group 0 has 00; group 1
has 01; and group 2 has 11. These groups are shown in Figure 2.30 (b).

(a) (b) (c)

Figure 2.30: Determining the equation for the baseball function using the Quine-McCluskey
algorithm: (a) Truth table for the function; (b) Table used by the Quine-McCluskey algorithm; (c)

Generating prime implicants.

WATCH ANIMATED FIGURE 2.30

Now that we have our table, the next step is to generate the prime implicants. This
process is analogous to finding prime implicants in Karnaugh maps. We group together terms
until we have grouped as many as possible. To do this, we start with group 0. We take every
term in group 0 and compare it to every term in group 1. If a pair of terms has all but one input
that are the same, we create an entry in the next column with a dash in place of the input that
is different, and all the values that are the same. As shown in Figure 2.30 (c), we combine 00
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and 10 to form term -0. Note that we don’t have to compare group 0 to group 2. Since group 2
has two terms that are 1 and group 0 has no terms that are 1, there cannot be a pair of terms
that vary by only one input.

Next, we go to group 1 and compare each term to every term in group 2. This combines
10 and 11 to form the term 1-. If there are any terms that could not be combined with any other
terms, we circle these terms; they are prime implicants. None of our initial terms in this
example are prime implicants; each was combined with at least one other term.

We would then group these newly created terms based on the number of 1s and repeat
the process, with one very important difference. We only compare terms that have their dashes
in the same location. This ensures that we avoid combining terms that are not aligned properly.
In our example, our two newly created terms, 1- and -0, have their dashes in different locations,
so we cannot compare them. We circle them both and phase 1 of our algorithm is complete. If
we had created new terms, we would repeat the process on each column of newly created
terms.

All entries in each column have exactly the same number of dashes. Initially, no entries
have any dashes. In the next column, each entry has exactly one dash, which makes sense since
we replace the one input that is different with a dash. Every newly created column adds one
dash to the entries. A function with n inputs will create at most n columns, usually less.

For all the prime implicants we generated using the first phase of the Quine-McCluskey
algorithm, the values without dashes can be used to represent the term as a product of input
variables. A 1 represents the original term and a 0 signifies that we use the complement of the
term. Terms with a dash are not included. Just as combining terms algebraically ended up
removing an input from the combined term, the dash does the same thing. Our two prime
implicants, 1- and -0, correspond to a and b', respectively.

Now, on to phase 2. We need to determine which prime implicants to include in our final
function. To do this, we create another table. The columns of this table are the input values that
set the function to 1. The rows are the prime implicants we generated in phase 1. Our baseball
function has three columns (00, 10, and 11), and two rows (1- and -0). In each entry in the table,
we place a check mark if the prime implicant includes the term for that column, or leave it blank
if it does not. The initial table is shown in Figure 2.31 (a).

00 10 11
1
-

✔ ✔

-
0

✔ ✔

(a) (b)

Figure 2.31: Quine-McCluskey algorithm, phase 2, for the baseball example: (a) Initial table; (b)
Table with essential prime implicants circled and rows and columns crossed out.

WATCH ANIMATED FIGURE 2.31
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First, we look at this table to see if any column has only one entry checked. If so, the
prime implicant for that column is an essential prime implicant. We circle that term and draw a
horizontal line through that row. We find all entries in that row and draw a vertical line through
their columns. For our example, we have two essential prime implicants. Figure 2.31 (b) shows
the table with essential prime implicants circled and rows and columns crossed out.

If any columns are not yet crossed out, we still need prime implicants to ensure those
terms set the function to 1. We try to choose prime implicants that cover as many of the
remaining terms as possible to minimize the overall function. For our example, all terms are
covered by the essential prime implicants, and our final function is W = a + b'.

Another familiar example

Let’s look at another example we’ve seen before, the truth table repeated in Figure 2.32 (a).
This function has six input values that set the function to 1. Grouping these input values as
before gives us the table shown in Figure 2.32 (b).

a b c q

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

(a) (b) (c)

Figure 2.32: Another Quine-McCluskey example: (a) Truth table for the function; (b) Table used
by phase 1; (c) Generating prime implicants.

WATCH ANIMATED FIGURE 2.32

As before, we compare each term in group 1 to each term in group 2, and each term in
group 2 to each term in group 3 to generate the second column in Figure 2.32 (c). We repeat the
procedure on the second column, remembering to compare only entries that have dashes in the
same location. Two entries, 01- and 10-, cannot be combined with any other terms and are
circled.

Notice, in the last column, we generated the term --1 twice. Recall that when we used
Karnaugh maps to determine this function, we were able to combine two implicants of size 2 to
create the same implicant of size 4 in two different ways; see Figure 2.26. That is what’s
happening here. Since we only need this term once, we simply cross out any duplicates.
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Finally, with only one term left, --1, there is nothing to combine it with and it is circled as
a prime implicant. Our three prime implicants are 10-, 01-, and --1, or ab', a'b, and c.

Now we move on to phase 2. We create the table for this function as before, shown in
Figure 2.33 (a). Looking at the table, the columns for inputs 001, 010, 100, and 111 each have
only one entry checked. The prime implicants for these entries are essential. We circle them and
cross out the rows and columns as before, as shown in Figure 2.33 (b). With all columns
covered, this phase is complete. Our final function is (a ⋅ b') + (a' ⋅ b) + c.

001 010 011 100 101 111
10- ✔ ✔

01- ✔ ✔

--1 ✔ ✔ ✔ ✔

(a) (b)

Figure 2.33: Phase 2 of the Quine-McCluskey algorithm: (a) Initial table; (b) Table with
essential prime implicants circled and rows and columns crossed out.

WATCH ANIMATED FIGURE 2.33

A new, more complex example

To close out this section, let’s look at a more complex example with five inputs. For larger
functions, it is not uncommon to express it as a sum of minterms using the little-m notation.
Our function is . The expanded truth table is shownΣ𝑚(4, 5, 6, 7, 11, 12, 13, 14, 15, 22, 27, 31)
in Figure 2.34.

Figure 2.34: Truth table for final example function
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As always, we create the table for phase 1 of the algorithm. We can read these values
directly from the truth table, or we can simply look at the minterms and list the subscripts as
5-bit values (because we have five inputs for our function). Using either method, we get the
initial table shown in Figure 2.35 (a).

(a) (b)

Figure 2.35: Final example phase 1 table: (a) Initial table; (b) Final table with prime implicants
circled.

WATCH ANIMATED FIGURE 2.35

Figure 2.35 (b) shows the results obtained from phase 1 of the Quine-McCluskey
algorithm. There are three prime implicants: -0110, -1-11, and 0-1--, or b'cde', bde, and a'c.

With this information, we create the table for phase 2 of the algorithm, shown in Figure
2.36. Once again, all three prime implicants are essential. Our final function is a'c + bde + b'cde'.

Figure 2.36: Final table for phase 2 of the final example function.

WATCH ANIMATED FIGURE 2.36
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2.3.3 Don’t Care Values and Incompletely Specified Functions

The functions we’ve looked at so far are completely specified, that is, they have a specific
output value for every possible combination of input values. However, this is not always the
case. For some functions, there are times we don’t care what output value is generated. The
most common reason for this is that certain combinations of input values will never occur. We
don’t care what output our function generates because we will never input those particular
values.

A classic example of this is a BCD to 7-segment decoder. This function has four inputs;
together, these inputs represent decimal digits 0 (0000) to 9 (1001). There are actually seven
functions, a through g, that either turn on or turn off one of the seven segments of an LED
display. Figure 2.37 shows the segments and the truth table for our ten defined inputs. A value
of 1 indicates that the LED for that segment is lit.

I3I2I1I0 a b c d e f g

0000 1 1 1 1 1 1 0
0001 0 1 1 0 0 0 0
0010 1 1 0 1 1 0 1
0011 1 1 1 1 0 0 1
0100 0 1 1 0 0 1 1
0101 1 0 1 1 0 1 1
0110 1 0 1 1 1 1 1
0111 1 1 1 0 0 0 0
1000 1 1 1 1 1 1 1
1001 1 1 1 1 0 1 1

I3I2I1I0 a b c d e f g
0000 1 1 1 1 1 1 0
0001 0 1 1 0 0 0 0
0010 1 1 0 1 1 0 1
0011 1 1 1 1 0 0 1
0100 0 1 1 0 0 1 1
0101 1 0 1 1 0 1 1
0110 1 0 1 1 1 1 1
0111 1 1 1 0 0 0 0
1000 1 1 1 1 1 1 1
1001 1 1 1 1 0 1 1
1010 X X X X X X X
1011 X X X X X X X
1100 X X X X X X X
1101 X X X X X X X
1110 X X X X X X X
1111 X X X X X X X

(a) (b) (c)

Figure 2.37: (a) 7-segment LED labels; (b) Truth table for defined inputs; (c) Truth table with
don’t care values shown.

But what happens if we input one of the unspecified values, 1010 through 1111? In
practice, we’re only displaying decimal digits, so we don’t care what it shows because we’re
never going to input those values anyway. The question is, how can we use this to our
advantage to minimize our functions?
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This is the role of the don’t care output. We denote this output as X in the truth table.
Figure 2.37 (c) shows the truth table with don’t care values included.

To see how we handle don’t care values, let’s look at the function for segment g. Using
the last column of the table, we can create the Karnaugh map shown in Figure 2.38 (a). Just as
we included outputs set to X in the truth table, we also include X values in the Karnaugh map.

(a) (b)

Figure 2.38: Segment g of the BCD to 7-segment decoder: (a) Original Karnaugh map; (b) One
possible final Karnaugh map with prime implicants shown.

WATCH ANIMATED FIGURE 2.38

When we start to group together terms, we might group together the two 1s in the
lower left cells, with inputs 1000 and 1001. But these two cells can be grouped with the two
don’t care values above it to form a group of four terms. And these four cells can be grouped
together with the four cells to their right to form a group of eight cells, which becomes a prime
implicant.

We continue the process, identifying other prime implicants and winnowing them down
to create a final function. Figure 2.38 (b) shows the Karnaugh map with final prime implicants;
this function is I3 + (I2 ⋅ I1') + (I1 ⋅ I0') + (I2' ⋅ I1). There is another possible function for this
segment with one different prime implicant. See if you can find it before continuing with the
rest of this section.

The Quine-McCluskey algorithm has an elegant way of handling don’t care values. It
includes them in phase 1 to minimize the prime implicants, but it excludes them in phase 2
since we don’t really have to generate any specific output value for these inputs.

In our compact minterm notation, we would represent this function as

+ . The m terms are the minterms that set g ∑ 𝑚 2, 3, 4, 5, 6, 8, 9( ) ∑ 𝑑 10. 11. 12. 13. 14. 15( )

to 1 and the d terms are the don’t care values. Figure 2.39 shows phase 1 of the algorithm.
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Figure 2.39: Phase 1 of the Quine-McCluskey algorithm to determine the function for g.

WATCH ANIMATED FIGURE 2.39

Finally, we create the table for phase 2, this time excluding the don’t care
values. Figure 2.40 shows this table after essential prime implicants are identified. These three
terms, -01-, -10-, and 1---, (I2' ⋅ I1, I2 ⋅ I1', and I3) must be included in the final function. You can
choose either of the two remaining prime implicants to cover input 0110 and complete the
function.

Figure 2.40: Phase 2 of the Quine-McCluskey algorithm to determine the function for g.

WATCH ANIMATED FIGURE 2.40
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2.4 Summary

Boolean algebra is the mathematical basis for digital logic design. Using 1 and 0 to represent
TRUE and FALSE, and incorporating the AND, OR, and NOT operations, we can create a function
to realize any desired output values for all combinations of input values. Functions can be used
to model real world scenarios. There are an infinite number of Boolean algebras. Fortunately,
digital logic design is based on the very simplest Boolean algebra, also called the switching
algebra. As with any algebra, our Boolean algebra follows some basic postulates that specify its
behavior.

Truth tables are one way to show the behavior of a function. It specifies the value of the
function for all possible combinations of input values. The equation for the function can be
derived directly from these input values, or the outputs can be treated as minterms or
maxterms and then used to specify the function.

Karnaugh maps are a useful tool that allows us to graphically combine terms and
minimize function equations. Minimizing equations results in simpler digital logic designs to
realize those functions, which has several benefits. Karnaugh maps become difficult to use
when a function has more than four inputs. The Quine-McCluskey algorithm can be used for any
number of inputs. Some functions do not specify output values for some input values. We can
use these don’t care outputs to minimize the function equations.

This concludes Part I, the background portion of this book. In the next chapter, we start
the design of digital circuits with Part II, Combinatorial Logic. This chapter will introduce the
basic digital logic components and show how they can be combined in circuits to realize desired
functions.
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Exercises

1. Show the truth tables for the 3-input AND and OR functions.

2. Show the truth tables for the 4-input AND and OR functions.

3. Verify the commutativity property of the 3-input AND and OR functions.

4. Verify the distributive property for

a. a ⋅ (b + c + d)
b. a + (b ⋅ c ⋅ d).

5. Verify associativity for

a. (a ⋅ b) ⋅ (c ⋅ d) = a ⋅ (b ⋅ c) ⋅ d
b. (a + b) + (c + d) = a + (b + c) + d

6. Use De Morgan’s law to find the function equivalent to (a + b')'.

7. Use De Morgan’s law to find the function equivalent to (a ⋅ b')'.

8. Show De Morgan’s laws for three variables and the truth tables to verify them.

9. Create the truth table for the function a + (a' ⋅ b) + (a' ⋅ c).

10. Specify the function in Problem 9 as a sum of products and as a product of sums.

11. Create the truth table for the function a + (a ⋅ b') + (b' ⋅ c) + (a' ⋅ c).

12. Specify the function in Problem 11 as a sum of products and as a product of sums.

13. Create the truth table for the function a ⋅ (b + c') + (a ⋅ b' ⋅ c).

14. Specify the function in Problem 13 as a sum of products and as a product of sums.

15. Minimize the function of Problem 9 using Karnaugh maps.

16. Minimize the function of Problem 9 using the Quine-McCluskey algorithm.

17. Minimize the function of Problem 11 using Karnaugh maps.

18. Minimize the function of Problem 11 using the Quine-McCluskey algorithm.

19. Minimize the function of Problem 13 using Karnaugh maps.

20. Minimize the function of Problem 13 using the Quine-McCluskey algorithm.
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21. Show the truth table corresponding to the following Karnaugh map. Find all prime
implicants and essential prime implicants, and give the minimal function for these
values.

22. For the truth table you created for Problem 21, use the Quine-McCluskey algorithm to
determine the minimal function.

23. Show the truth table corresponding to the following Karnaugh map. Find all prime
implicants and essential prime implicants, and give the minimal function for these
values.

24. For the truth table you created for Problem 23, use the Quine-McCluskey algorithm to
determine the minimal function.

25. Show the truth table corresponding to the following Karnaugh map. Find all prime
implicants and essential prime implicants, and give the minimal function for these
values.

26. For the truth table you created for Problem 25, use the Quine-McCluskey algorithm to
determine the minimal function.

27. Use the Quine-McCluskey algorithm to determine the minimum function for

. The function has five inputs.∑ 𝑚 3,  11.  12.  13.  14,  15,  19,  27( )
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Chapter 3: Digital Logic Fundamentals

In the previous chapter, we introduced the fundamentals of Boolean algebra and functions. In
this chapter, we’ll look at digital logic, circuitry developed to realize these functions. Digital logic
can be used to implement any Boolean function ranging from the simplest functions to complex
computer systems.

We start by introducing logic gates that realize the fundamental functions described in
the previous chapter, including AND, OR, XOR, and NOT. Then we will examine how to use these
gates to realize more complex functions using the sum of products and product of sums
introduced in Chapter 2. We will also look at inverse functions, because sometimes it is easier to
design a circuit that does the exact opposite of what you want it to do and then invert its
output. Finally, we’ll look at some real-world constraints that go beyond the underlying logic
that must be accounted for when designing digital logic circuits.

3.1 Basic Logic Gates

In Chapter 2, we examined several fundamental Boolean operations. In this chapter, we’ll move
from the algebraic specification of a Boolean function to designing a circuit to realize that
function.

Engineers developed integrated circuit chips that can realize these functions. For the
AND function, two or more pins on the chip are connected to the inputs of the AND function,
which implements the AND function inside the chip. Circuit designers connect these pins to
external inputs or other components in their circuits to send data to these inputs. The output of
the function is connected to another pin on the chip. Circuit designers can send this value out to
other parts of the circuit or send it out from the circuit as needed.

The part of the chip that performs the function is called a logic gate. Just as there are
different logic functions, there are different logic gates to realize these functions. Each gate has
its own logic symbol that is used in circuit diagrams. Next we’ll look at some of the most
fundamental logic gates.

Let’s start with the AND gate. As its name implies, it implements the AND function: its
output is 1 only when all inputs are 1. If any input is 0, its output is 0. In theory, an AND gate
could have any number of inputs, but in practice an AND gate has a relatively small number of
inputs, usually 2, 3, or 4. There are some physical limitations inherent to digital circuits that
must be accounted for beyond just the Boolean logic. We will discuss these more at the end of
this chapter and the end of Chapter 4.

Figure 3.1 (a) shows the standard schematic symbol for a 2-input AND gate. Its truth
table is shown in Figure 3.1 (b). For AND gates with more than two inputs, we use the same gate
symbol, just with more input lines. Three- and four-input AND gates are shown in Figure 3.1 (c).
The development of their truth tables are left as exercises for the reader.
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Figure 3.1: AND gates: (a) 2-input AND gate; (b) Truth table; (c) 3- and 4-input AND gates

WATCH ANIMATED FIGURE 3.1

The OR gate, like the AND gate, has two or more inputs and one output. The output is 1
if any input is 1, and is 0 only if all inputs are set to 0. The 2-input OR gate is shown in Figure 3.2
(a). Its truth table is given in Figure 3.2 (b), and 3- and 4-input OR gates are shown in Figure 3.2
(c).

Figure 3.2: OR gates: (a) 2-input OR gate; (b) Truth table; (c) 3- and 4-input OR gates

WATCH ANIMATED FIGURE 3.2

The exclusive-or, XOR, gate can have two or more inputs, though it usually has only two.
The output is 1 if an odd number of inputs are equal to 1, and it is 0 if the gate has an even
number of inputs set to 1. Figure 3.3 shows the symbol for the 2-input XOR gate, its truth table,
and the 3- and 4-input XOR gates.

Figure 3.3: XOR gates: (a) 2-input XOR gate; (b) Truth table; (c) 3- and 4-input XOR gates

WATCH ANIMATED FIGURE 3.3
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Unlike the previous gates, the NOT gate can have only one input. Its output is the
complement of the input. That is, when the input is 0 the output is 1, and when the input is 1
the output is 0. Figure 3.4 shows the symbol for the NOT gate and its truth table.

Figure 3.4: NOT gate: (a) Symbol; (b) Truth table

WATCH ANIMATED FIGURE 3.4

As we saw in the previous chapter, there are also complementary functions for the AND,
OR, and XOR functions. The NAND function is 0 when all its inputs are 1 and 1 if any input is 0.
The symbol for the 2-input NAND gate, shown in Figure 3.5 (a), is simply the symbol for the
2-input AND gate with a circle at its output, which indicates that it is followed by an inverter.
(Actually, internally these gates are designed the other way around; the AND gate is a NAND
gate followed by an inverter.) Figure 3.5 (b) and (c) show the truth table for the 2-input NAND
gate and the symbol for the 3- and 4-input NAND gates, respectively.

I1 I0 O
0 0 1
0 1 1
1 0 1
1 1 0

(a) (b) (c)

Figure 3.5: NAND gates: (a) 2-input NAND gate; (b) Truth table; (c) 3- and 4-input NAND gates

WATCH ANIMATED FIGURE 3.5

Continuing on, Figure 3.6 shows the symbols and truth table for the NOR gate, and
Figure 3.7 shows this information for the exclusive-NOR (XNOR, not NXOR) gate. Note that the
output of the 2-input XNOR gate is 1 when its two inputs are equal. For this reason, it is
sometimes referred to as the equivalence function.
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I1 I0 O
0 0 1
0 1 0
1 0 0
1 1 0

(a) (b) (c)

Figure 3.6: NOR gates: (a) 2-input NOR gate; (b) Truth table; (c) 3- and 4-input NOR gates

WATCH ANIMATED FIGURE 3.6

I1 I0 O
0 0 1
0 1 0
1 0 0
1 1 1

(a) (b) (c)

Figure 3.7: XNOR gates: (a) 2-input XNOR gate; (b) Truth table; (c) 3- and 4-input XNOR gates

WATCH ANIMATED FIGURE 3.7

3.2 Implementing Functions

Now that we have seen the fundamental logic gates, we’ll spend some time in this section
looking at how to use these logic gates to realize logic functions. Using some of the sample
functions we examined in Chapter 2, we first implement functions using the least number of
gates possible. Then we will design circuits to implement functions using sum of products and
product of sums.

3.2.1 Minimizing Logic

The first steps when designing a digital logic circuit are to determine the value of the output for
all possible input values and to create a Boolean equation that generates these outputs. Let’s
start with an equation we used in Chapter 2, q = a'bc' + ac. For your reference, its truth table is
shown in Figure 3.8 (a).
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a b c q
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

a b c a' c' a'bc' ac q
0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 1 1 0 1
0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 1 1
1 1 0 0 1 0 0 0
1 1 1 0 0 0 1 1

(a) (b) (c)

Figure 3.8: Implementing the function q = a'bc' + ac: (a) Original truth table; (b) Expanded truth
table; (c) Digital logic circuit to implement this function

WATCH ANIMATED FIGURE 3.8

Just by looking at the equation for the function, we can see several of the gates that we
will need in our final circuit:

● Two NOT gates to generate a' and c'
● One 3-input AND gate to generate a'bc'
● One 2-input AND gate to generate ac
● One 2-input OR gate to combine a'bc' and ac to produce q

The expanded truth table in Figure 3.8 (b) shows the values of a', c', a'bc', ac, and q for all values
of a, b, and c.

Finally, we implement all of this in digital logic. The sequence of gates is dependent on
the availability of their inputs. For example, the OR gate cannot combine a'bc' and ac until we
have generated these functions. In addition, we cannot create a'bc', the output of the 3-input
AND gate, until we have generated a' and c'. Note that b is an input, so it can be connected
directly to one of the inputs of this gate. Similarly, the 2-input AND gate receives inputs a and c
directly. The complete circuit is shown in Figure 3.8 (c), animated for all possible input values.

In this example, we were given the final equation for output q. Sometimes, however, we
may have only the output specified for some or all input values. If this is the case, we will need
to develop an equation that generates these outputs and then design a circuit to realize that
equation. Consider another function from Chapter 2 with the truth table shown in Figure 3.9 (a)
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a b c q
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

(a) (b) (c)

Figure 3.9: Another function: (a) Truth table; (b) Karnaugh map; (c) Implementation of
q = ab' + a'b + c' and q = (a ⊕ b) + c'

In Chapter 2, we used a Karnaugh map to generate the function q = ab' + a'b + c', as
shown in Figure 3.9 (b). We can create a circuit to realize this function using the same procedure
we used for the previous function. We will need three NOT gates to generate a', b', and c', two
2-input AND gates to generate ab' and a'b, and one 3-input OR gate to combine ab', a'b, and c'.
This is shown in the first circuit in Figure 3.9 (c).

Karnaugh maps are very useful for creating AND/OR-based functions, but sometimes we
can reduce the number of gates by going beyond these maps. In this example, ab' + a'b is the
same as a ⊕ b. We could substitute this into our equation, giving us q = (a ⊕ b) + c'. Then we
could replace the two AND gates and the two NOT gates that generate a' and b' with a single
XOR gate. In addition, the OR gate would only need two inputs instead of three. A circuit to
realize this revised function is also shown in Figure 3.9 (c).

3.2.2 Implementing Functions using Sum of Products

Recall from Chapter 2 that each row of the truth table, or each square in the Karnaugh map,
corresponds to one minterm. For each variable, we AND together either the variable or its
complement. We AND the variable if its value in the row is 1, or we AND its complement if its
value is 0. For example, the minterm for the row with a = 1, b = 0, and c = 1, is ab'c. Figure 3.10
(a) shows the truth table for a function we looked at previously, q = a'bc' + ac.
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a b c q Minterm

0 0 0 0 a'b'c'

0 0 1 1 a'b'c

0 1 0 0 a'bc'

0 1 1 0 a'bc

1 0 0 0 ab'c'

1 0 1 1 ab'c

1 1 0 0 abc'

1 1 1 1 abc

(a) (b)

Figure 3.10: Implementing q = a'bc' + ac using sum of products: (a) Truth table; (b) Circuit to
realize q using minterms

WATCH ANIMATED FIGURE 3.10

To create a sum of products function, we first generate each minterm that sets q to 1. In
this example, we need three NOT gates to output a', b', and c', three 3-input AND gates to
generate a'bc', ab'c, and abc, and finally a 3-input OR gate to combine these three minterms
and output a 1 if any of them is 1. A circuit to realize this implementation is shown in Figure
3.10 (b).

Comparing the two circuits to generate q, shown in Figures 3.8 (c) and 3.10 (b), it is clear
that the sum of products circuit is larger than the original circuit. So, why should we bother with
sum of products? There are several reasons, some of which we’ll discuss now and others that
we will examine in later chapters. If your goal is to minimize the digital logic needed to realize a
function, a very reasonable and frequently used goal, the sum of products can serve as a useful
first step in developing your final function. Karnaugh maps are quite useful when you have a
limited number of inputs, typically 4 or less, but other methods are used with larger numbers of
inputs. These methods often start with minterms and reduce their equations (and thus the
circuits that implement these equations) from there. Also, designers have implemented some
standard, more complex, digital components that can be used to realize functions. We will
introduce some of these components in the next chapter and how they can be used to realize
functions in Chapter 5.

Now let’s look at the other example from the previous subsection. Figure 3.11 (a) shows
the truth table from Figure 3.10 (a) with the addition of the minterms associated with each row.
There are six rows that set q to 1, so our sum of products implementation would use six 3-input
AND gates to generate these minterms, one 6-input OR gate to combine the minterms, and
three NOT gates to produce a', b', and c'. The circuit is shown in Figure 3.11 (b).
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a b c q Minterm

0 0 0 1 a'b'c'

0 0 1 0 a'b'c

0 1 0 1 a'bc'

0 1 1 1 a'bc

1 0 0 1 ab'c'

1 0 1 1 ab'c

1 1 0 1 abc'

1 1 1 0 abc

(a) (b)

Figure 3.11: Implementing q = a'b'c' + a'bc' + a'bc + ab'c' + ab'c + abc' using sum of products: (a)
Truth table; (b) Circuit to realize q using minterms

There are a couple of things we can generalize from these two examples. First, each
circuit has a column of AND gates followed by a single OR gate. For this reason, a sum of
products is said to be implemented by an AND-OR circuit. Each AND gate generates one
minterm and the OR gate combines them to produce the final output function. This leads to a
second generalization: the number of rows in the truth table that set the output to 1 is also the
number of AND gates in the first stage, and also the number of inputs to the OR gate. This is
true because each row corresponds to one minterm; each row that outputs a 1 is one minterm
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we must check. Since each AND gate outputs the value of one minterm, the two numbers must
be equal.

One thing that is obvious about the circuit for this function is that it is quite large. We
saw much simpler circuits for this function in Figure 3.9 (c). In the next subsection, we’ll look at
another design methodology that can also produce smaller circuits for some functions.

3.2.3 Implementing Functions using Product of Sums

In the previous example, six of the eight possible minterms set the output to 1, resulting in a
circuit that requires a lot of digital logic. Here’s another way of approaching this function.
Instead of saying the function is 1 if one of the minterms that sets q to 1 is active, we could say
the function is 1 if none of the minterms that sets q to 0 is active. That is, if it isn’t set to 0, then
it must be set to 1.

For our previous function, there are two minterms that set q to 0, a'b'c and abc. If a = 0,
b = 0, and c = 1, then minterm a'b'c is active (because a' = 1, b' = 1, and c = 1). Minterm abc is
active when a = 1, b = 1, and c = 1. For any other values of a, b, and c, neither of these minterms
is active. It doesn’t matter which of the other minterms is active; they all set q to 1.

In terms of our function, q = 1 if a'b'c = 0 and abc = 0. In Boolean algebra, we can express
this as

q = (a'b'c + abc)'

Applying De Morgan’s Laws, specifically X + Y = (X'Y')', or (X + Y)' = X'Y', with X = a'b'c and Y =
abc, this becomes

q = (a'b'c)'(abc)'

We can apply De Morgan’s Laws to each individual term, this time using the form XYZ = (X' + Y' +
Z')', or (XYZ)' = X' + Y' + Z'. For the first term, a'b'c, we set X = a', Y = b', and Z = c, and this
becomes

(a'b'c)' = (a + b + c')

(Remember that (a')' = a and (b')' = b.) Following the same procedure, (abc)' = (a' + b' + c'), and
our function becomes

q = (a + b + c')(a' + b' + c')

The terms (a + b + c') and (a' + b' + c') are called maxterms. Each maxterm is always 1 except for
one unique combination of input values. The first maxterm, (a + b + c'), is one for all possible
values of a, b, and c except a = 0, b = 0, and c = 1. The second term, (a' + b' + c'), is only zero
when a = 1, b = 1, and c = 1. If either of these combinations of values is active, one of the two
terms will be 0, and q = 0 ⋅ 1 (or 1 ⋅ 0) = 0. For all other values of a, b, and c, both terms are 1
and q = 1 ⋅ 1 = 1.
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From the structure of the equations for q, we can see that we will need two 3-input OR
gates to generate our maxterms and one 2-input AND gate to combine them, as well as three
NOT gates to produce a', b', and c'. Figure 3.12 shows the expanded truth table and a circuit to
implement the function as a product of sums.

a b c (a+b+c') (a'+b'+c') (a+b+c')(a'+b'+c)
0 0 0 1 1 1
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 0 0

(a) (b)

Figure 3.12: Implementing q = (a + b + c')(a' + b' + c') using Product of Sums: (a) Expanded truth
table; (b) Circuit to realize q using maxterms

WATCH ANIMATED FIGURE 3.12

Just as the minterm implementation produced a two-stage circuit, the maxterm circuit
also has two stages. This time, however, the circuit has OR gates in the first stage and an AND
gate in the second stage. This is referred to as an OR-AND circuit.

3.3 Inverse Functions

Sometimes it is easier to implement the inverse of a function rather than the function itself, and
then just invert it to realize the desired function. In this section, we’ll examine how to do this
using both minterms and maxterms.

3.3.1 Inverse Functions Using Minterms

To illustrate how this can be done using minterms, let’s start with the function given in
Figure 3.11. This table, repeated and expanded in Figure 3.13 (a), has six of its eight minterms
set q to 1. We have expanded the table to add a column with the value of q', which is only set to
1 by two minterms. First we will create a circuit to realize q'; then we will invert its output to
generate q.
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a b c q q' Minterm

0 0 0 1 0 a'b'c'

0 0 1 0 1 a'b'c

0 1 0 1 0 a'bc'

0 1 1 1 0 a'bc

1 0 0 1 0 ab'c'

1 0 1 1 0 ab'c

1 1 0 1 0 abc'

1 1 1 0 1 abc

(a) (b) (c)

Figure 3.13: Implementing q = (a'b'c + abc)' using Sum of Products for inverse functions: (a)
Truth table; (b) Circuit to realize q'; (c) Inverting the output to realize q

WATCH ANIMATED FIGURE 3.13.b WATCH ANIMATED FIGURE 3.13.c

Using only minterms, q' is only equal to 1 when either a'b'c or abc is 1. Just as we did
previously, we can use AND gates to generate the minterms and an OR gate to combine them to
produce the overall function. This circuit is shown in Figure 3.13 (b).

But we’re not quite done. Remember that this circuit generates the inverse of our
function, q', and we still need to invert that value to generate our final function, q. We could
accomplish this by placing a NOT gate at the output of the OR gate. A simpler method is to
replace the OR gate with a NOR gate. The final circuit is shown in Figure 3.13 (c).

In general, realizing inverse functions using minterms can reduce the hardware needed
when the number of minterms is large. In the truth table, this occurs when more than half the
entries set the function to 1.

3.3.2 Inverse Functions Using Maxterms

Just as inverse functions can be created more efficiently when the number of minterms is large,
inverse functions can also be created using less hardware when the number of maxterms is
large. Let’s return to another function from the previous section, q = a'bc' + ac. Its truth table,
with corresponding maxterms, is shown in Figure 3.14 (a).

Page 3-12

https://digitalcommons.njit.edu/dld-animations/43
https://digitalcommons.njit.edu/dld-animations/44


Chapter 3: Digital Logic Fundamentals

a b c q q' Maxterm

0 0 0 0 1 a+b+c

0 0 1 0 1 a+b+c'

0 1 0 1 0 a+b'+c

0 1 1 0 1 a+b'+c'

1 0 0 0 1 a'+b+c

1 0 1 1 0 a'+b+c'

1 1 0 0 1 a'+b'+c

1 1 1 1 0 a'+b'+c'

(a) (b) (c)

Figure 3.14: Implementing q = ((a+b'+c)(a'+b+c')(a'+b'+c'))' using product of sums for inverse
functions: (a) Truth table; (b) Circuit to realize q'; (c) Inverting the output to realize q

WATCH ANIMATED FIGURE 3.14.b WATCH ANIMATED FIGURE 3.14.c

If we wanted to realize q directly as a product of sums, we would generate each minterm
that sets q to 0 and logically AND them together. For this function, we would need five 3-input
OR gates and one 5-input AND gate. In this case, generating the inverse function and then
inverting its output produces a simpler design.

Consider how we could generate q' as a product of sums. Function q' has only three
maxterms equal to zero, so our circuit would need only three 3-input NOR gates and one
3-input AND gate. This circuit is shown in Figure 3.14 (b).

Finally, since this circuit generates q', not q, we need to invert its output. We can do this
by replacing the AND gate with a NAND gate. The final circuit is shown in Figure 3.14 (c).

Just as inverse functions can be used to reduce hardware when the number of minterms
is large, they can also reduce hardware when the number of maxterms is large. Unlike
minterms, however, this is the case when more than half the entries in the truth table set the
function to 0.

3.3.3 What Inverse Functions Really Are

I haven’t told you the entire story behind inverse functions yet, but I’ll do so now. Inverse
functions, as presented so far in this section, are not generally called inverse functions.
Remember from Chapter 2 that each set of inputs that sets a function output to 1 is a minterm,
and each that sets the function to 0 is a maxterm. In reality, the inverse function of minterms is
just using the maxterms to set the function, and the inverse function of maxterms is just using
the minterms to set the function. Both set it equally well; it’s just a matter of selecting which
method gives you the simplest circuits for the function you wish to realize.
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3.4 Beyond the Logic

In theory, practice and theory are the same. In practice they are not.

This somewhat famous quote has been attributed to a number of people, including Albert
Einstein, Richard Feynman, and Yogi Berra. Here, this quote is applicable to digital logic design.
Just because some function is theoretically possible doesn’t mean that it can be implemented
directly as shown in a Boolean equation. In the real world, there are limitations imposed by
constraints such as the amount of current a logic gate can output. Logic gates are quite fast, but
not instantaneous. They do take some small amount of time to output their results.

In this section, we will examine some of these constraints: fan-in, fan-out, and
propagation delays. We will also introduce the buffer, a component that performs no logical
function but is used to overcome constraints in certain cases.

3.4.1 Fan-in

The fan-in of a logic gate is the maximum number of inputs it can support. If you are using TTL
or CMOS chips, this has already been decided for you. The chip has some logic gates built into it,
and each gate has a fixed number of inputs. When creating new designs, such as a new chip
however, this may not be the case.

Consider, for example, an AND function that has 25 inputs. In theory, you could realize
that function using a single 25-input AND gate, as shown in Figure 3.15 (a). In practice, however,
your AND gate technology may have a fan-in of a much lower number, and you would have to
find another way to implement this function.

(a) (b)

Figure 3.15: A 25-input AND function: (a) Using a single AND gate; (b) Using multiple gates with
a maximum fan-in of 5

To realize this function, let’s assume that your AND gates have a maximum fan-in of five.
We could then divide our 25 inputs into five groups of five inputs each. Each group of five inputs
could be input to a 5-input AND gate. The output of each gate would be 1 only when its five
inputs are 1. Then, the output of each of these AND gates would be input to another 5-input
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AND gate. The output of this gate would only be 1 when its five inputs are 1, which only occurs
when all 25 inputs to the other AND gates are 1. This circuit is shown in Figure 3.15 (b).

3.4.2 Fan-out

Fan-out is comparable to fan-in, but on the other side of a logic gate. Succinctly put, the fan-out
of a logic gate is the maximum number of inputs of other gates it can be connected to. The gate
has a limit on how much current it can output. When it sends its output to more than one other
component’s input, this current is split up among those components. When the current
becomes too small, these components may not recognize the input value correctly. A typical TTL
component has a fan-out of around 5; it can send its output to up to five other component
inputs.

Consider the circuit shown in Figure 3.16. The OR gate sends its output to 25 different
AND gates. Although the logic may be correct in theory, in practice this will not work. The
maximum fan-out of the OR gate is much less than the number used in this circuit.

Figure 3.16: A digital circuit that does not meet fan-out requirements

Now let’s look at a way to get around fan-out limitations.

3.4.3 Buffers

To boost the output signal, engineers developed a component called a buffer. It inputs a signal
at a given logic value and outputs a signal at the same logic value. In terms of Boolean logic, a
buffer looks like the most useless component imaginable. All it does is output whatever is input
to it. A wire would perform the same logical function. Yet, it was invented and is commonly
used in digital circuits. Its truth table and logic symbol are shown in Figure 3.17.
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Figure 3.17: Buffer logic symbol and truth table

WATCH ANIMATED FIGURE 3.17

Although its logic output has the same logical value as its input, there is an important
difference. Its output current is at its maximum value, whereas the input current may be lower
if the logic gate that supplies the input also sends it to other components.

To illustrate this, consider the 25-input AND gate in Figure 3.16. We can use buffers to
realize this function while still meeting fan-out requirements. One way to do this is shown in
Figure 3.18. Here, the OR gate sends its output to five buffers. Each buffer, in turn, sends its
output to five AND gates. Since no component sends its output to more than five other inputs,
this circuit meets fan-out requirements, assuming each component has a maximum fan-out of
at least five.

Figure 3.18: Digital circuit that meets fan-out requirements

3.4.4 Propagation Delay

Prior to this section, we have been looking at logic gates in an idealized way. When we change
the inputs to a logic circuit, the outputs change to their new values instantaneously. In practice,
however, this is not the case. There is a very small, but non-zero amount of time needed for a
gate to change its output from 0 to 1 or from 1 to 0. This is called the propagation delay. In
many circuits, this delay is quite tolerable. Even with the propagation delay, the circuit functions
as desired. In some cases, however, this can cause problems.
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Consider, for example, the circuit shown in Figure 3.19 (a). When ToBe = 1, the output
should be 1 because the upper input to the OR gate is 1. When it is 0, the output of the inverter
is 1, so the OR gate should again output a value of 1. In theory, Q should always be 1, as shown
in the truth table in Figure 3.19 (b).

Figure 3.19: ToBe + ToBe': (a) Circuit diagram; (b) Truth table

Now let’s look at a more practical example, the same circuit with non-zero propagation
delays. For simplicity, assume that the NOT gate has a propagation delay of 5 nanoseconds (ns),
that is, it may not generate the correct value until 5 ns after the input changes. Also assume the
OR gate has a propagation delay of 8 ns. As shown in the timing diagram in Figure 3.20, when
ToBe changes from 1 to 0, it may take 5 ns for the output of the NOT gate to change from 0 to 1.
During this time, both inputs to the OR gate will be 0, causing it to output a value of 0. As with
the NOT gate, this output is also delayed, this time by 8 ns. After an additional 5 ns, the OR gate
has adjusted its output value based on the new value of ToBe'. This entire sequence is illustrated
in the animation of the circuit and timing diagram in Figure 3.20.

(a) (b)

Figure 3.20: ToBe + ToBe': (a) Circuit diagram; (b) Timing diagram with propagation delays

WATCH ANIMATED FIGURE 3.20

Finally, there’s one other thing to consider. The delays within a gate may or may not be
symmetric. That is, the propagation delay when an output changes from 0 to 1 may not be the
same as when the output changes from 1 to 0. For TTL and CMOS chips, you can refer to the
chip’s datasheet to find these values, denoted as tPLH (0 to 1) and tPHL (1 to 0).
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3.5 Summary

In this chapter, we introduced digital logic components that realize fundamental Boolean
functions. The AND gate outputs a logic 1 only if all its inputs are 1. The OR gate, on the other
hand, outputs a logic 1 if any of its inputs is 1. The XOR, or exclusive OR, gate outputs a 1 if it
has an odd number of inputs equal to 1. The NOT gate, unlike these other gates, has only one
input. It sets its output to the opposite of its input value. The NAND, NOR, and XNOR gates
perform exactly the opposite functions of the AND, OR, and XOR gates, respectively.

Next, this chapter examined how to realize more complex functions with these gates
using sum of products and product of sums methods, as well as inverse functions.

Beyond the Boolean algebra used to specify functions, there are some physical
limitations to digital logic that must be taken into account when designing a digital circuit. This
chapter examined fan-in and fan-out, and the use of buffers to overcome some of these
limitations. We also introduced propagation delay, which can inject timing delays into circuits
that sometimes produce unintended consequences.

Some functions are used frequently in digital logic design. Engineers have developed
integrated circuit chips to realize these functions; using them in digital circuits reduces the
amount of power used, wiring needed in the circuit, and other parameters. We’ll introduce
some of these functions in the next chapter.

Page 3-18



Chapter 3: Digital Logic Fundamentals

Bibliography

Hayes, J. P. (1993). Introduction to digital logic design. Addison-Wesley.
Mano, M. M., & Ciletti, M. (2017). Digital design: with an introduction to the Verilog HDL,

VHDL, and SystemVerilog (6th ed.). Pearson.
Mano, M. M., Kime, C., & Martin, T. (2015). Logic & computer design fundamentals (5th

ed.). Pearson.
Nelson, V., Nagle, H., Carroll, B., & Irwin, D. (1995). Digital logic circuit analysis and design.

Pearson.
Roth, J. C. H., Kinney, L. L., & John, E.B. (2020). Fundamentals of logic design enhanced

edition (7th ed.). Cengage Learning.
Texas Instruments, Inc. (1981). The TTL Data Book for Design Engineers. (2nd ed.). Texas

Instruments.
Wakerly, J. F. (2018). Digital design: Principles and practices (5th ed.). Pearson.

Data sheets for many semiconductor chips are available on numerous websites, including
www.ti.com, www.smcelectronics.com, and the sites for most vendors that sell these chips.

Page 3-19

http://www.ti.com
http://www.smcelectronics.com


Chapter 3: Digital Logic Fundamentals

Exercises

1. Show the truth tables for the 3- and 4-input AND gates.

2. Show the truth tables for the 3- and 4-input OR gates.

3. Show the truth tables for the 3- and 4-input XOR gates.

4. Show the truth tables for the 3- and 4-input NAND gates.

5. Show the truth tables for the 3- and 4-input NOR gates.

6. Show the truth tables for the 3- and 4-input XNOR gates.

7. Develop a minimal function for the truth table shown below and design a circuit to
realize this function.

8. For the truth table in Problem 7, develop a function consisting solely of minterms and
design a circuit to realize this function.

9. For the truth table in Problem 7, develop a function consisting solely of maxterms and
design a circuit to realize this function.

10. For the truth table in Problem 7, develop a function to realize q', the inverse of q, and
design a circuit to realize q based on this inverse function.
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11. Develop a minimal function for the truth table shown below and design a circuit to
realize this function.

12. For the truth table in Problem 11, develop a function consisting solely of minterms and
design a circuit to realize this function.

13. For the truth table in Problem 11, develop a function consisting solely of maxterms and
design a circuit to realize this function.

14. For the truth table in Problem 11, develop a function to realize q', the inverse of q, and
design a circuit to realize q based on this inverse function.

15. Redesign the circuit that implements the 25-input AND function in Figure 3.15 using
gates with a maximum fan-in of 3.

16. Redesign the circuit that implements the 25-output function in Figure 3.16 using gates
with a maximum fan-out of 3.
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17. Figures 3.9, 3.11, 3.12, and 3.14 show four different circuits to realize the same function.
For the maximum propagation delays for individual gates shown below, what is the
maximum propagation delay for each circuit?
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Chapter 4: More Complex Components

When designing digital circuits, there are certain functions that tend to occur frequently.
Semiconductor manufacturers have designed dedicated chips that implement these functions,
so designers can incorporate them into their circuits directly. This takes up less space on the
circuit board, requires less wiring, and uses less power than if the designer had to recreate the
function using the fundamental digital logic gates introduced in the previous chapter. Similarly,
CAD systems have libraries with these components and functions that designers can use in their
designs. In either case, the chips and library components improve the efficiency of the design
process. Since the chips and components have been thoroughly tested and verified, they can
also increase the reliability of the overall design.

In this chapter, we will examine several of these functions: decoders, encoders,
multiplexers, demultiplexers, comparators, and adders. In addition, we will introduce buffers.
They do not perform functions like the other components, but they are needed in some circuits
to overcome the physical limitations inherent to digital systems.

4.1 Decoders

As its name implies, the primary function of a decoder is to, well, decode. It takes in some
binary value and outputs a signal corresponding to that value. Recall from Chapter 1 how
several binary bits can represent a numeric value. The decoder performs this function in a single
chip or CAD component. Decoders are used inside memory chips to access individual memory
locations and in computers to access specific input and output devices.

4.1.1 Decoder Basics

A decoder has n inputs. Together, these bits represent a single n-bit value. The n bits can
represent any of 2n values, ranging from 0 to 2n – 1. For example, two bits can represent any of
four (22) values: 00, 01, 10, 11, or 0, 1, 2, 3, or 0 to 3 (0 to 22 – 1). Three bits can represent any
value from 0 (000) to 7 (111), and so on for any value of n. The decoder also has 2n outputs,
each representing one of the 2n possible values of the inputs. We typically refer to this as an n
to 2n decoder.

Figure 4.1 shows a generic 3 to 8 decoder. Inputs I2, I1, and I0 represent a 3-bit value. I2 is
the most significant bit and I0 is the least significant bit. For example, I2=1, I1=0 and I0=0
represents the binary value 100, or 4. Outputs O0 to O7 correspond to the eight (23) possible
values represented by these bits. The output corresponding to the input value is set to 1 and
the other outputs are set to 0. For input value 100, the decoder sets O4 to 1 and the other seven
outputs to 0. The animation in the figure shows the outputs for each possible input value.
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Figure 4.1: Generic 3 to 8 decoder with values shown

WATCH ANIMATED FIGURE 4.1

The decoder just presented, however, is not completely accurate. Whatever value is
input to this decoder always generates one specific output. But sometimes we don’t want any
of the outputs to be active. (Why? We’ll get to that shortly.) To do this, a decoder may have an
enable input. When the enable signal is active (usually 1), the decoder works exactly as
described previously. It sets the output corresponding to the inputs to 1 and the remaining
outputs to 0. However, if the enable input is 0, all the outputs are set to 0, even the output
corresponding to the input value. This is shown in Figure 4.2.

Figure 4.2: Generic 3 to 8 decoder with enable and values shown

WATCH ANIMATED FIGURE 4.2

Now, back to our previous question. Why would we sometimes not want any decoder
outputs to be active? That has a lot to do with the limitations of chip manufacturing. When
decoder chips were first developed, chip manufacturing technologies had limits on how many
pins could be on a chip. Since each input and each output is assigned to one pin, limiting the
number of pins limits the number of inputs and outputs, which limits the maximum size of the
decoder. For typical chips, the largest decoder is 4 to 16.
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You can use the enable signal to combine two or more decoders and make them act like
a single, larger decoder. To see how this works, consider the circuit shown in Figure 4.3. We
combine two 3 to 8 decoders to create a 4 to 16 decoder. We have a 4-bit value, but each
decoder only has three inputs. We take the three lowest order bits and connect them to the
three inputs of both decoders. Then we use the remaining bits, only one bit in this case, to
generate the values for the enable signals. In this figure, we take the most significant bit of the
4-bit value and use it to generate the enable signals. We pass it through a NOT gate to enable
the upper decoder, and we also send it directly to the enable of the lower decoder. When this
bit is 0, the NOT gate outputs a 1, the upper decoder is enabled, and the three lower bits cause
one of the decoder’s outputs to be active. Since it is input directly to the enable of the lower
decoder, that decoder is disabled, or not enabled, and all its outputs are set to 0. Conversely,
when the most significant bit is 1, the upper decoder is disabled and the lower decoder is
enabled. As shown in the figure, the outputs of the upper decoder correspond to input values
0000 (0) to 0111 (7) and those of the lower decoder are activated by input values 1000 (8) to
1111 (15).

Figure 4.3: 4 to 16 decoder constructed using two 3 to 8 decoders

WATCH ANIMATED FIGURE 4.3
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There are other ways to combine decoders. Consider the circuit shown in Figure 4.4.
Here, we use four 2 to 4 decoders to generate the outputs of a 4 to 16 decoder. These decoders
input the two low-order bits of the input value, and the two remaining bits are used to generate
the enable signals. We could use combinatorial logic gates, but instead we use another 2 to 4
decoder. The animation in this figure shows how each of the values generates its corresponding
output.

Figure 4.4: 4 to 16 decoder constructed using 2 to 4 decoders

WATCH ANIMATED FIGURE 4.4
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4.1.2 Decoder Internal Design

Now that we’ve seen how decoders work from the outside, the next question is how they work
on the inside. What does the circuitry inside a decoder chip look like (as a digital logic circuit)
that makes it generate the correct outputs for every possible combination of input values?
More succinctly, how can you design a decoder?

One way to do this is to determine the function for each output, and then implement
these functions in digital logic, much as we did in the previous chapter.

Consider, for example, a 2 to 4 decoder with an enable signal. Its truth table is shown in
Figure 4.5 (a). Now consider output O0. It should only be set to 1 when I1 = 0, I0 = 0, and enable
input E = 1. Figure 4.5 (b) shows one circuit to realize this function. Repeating this process for
the other outputs produce the final circuit shown in Figure 4.5 (c).

E I1 I0 O0 O1 O2 O3

0 X X 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

(a) (b) (c)

Figure 4.5: 2 to 4 decoder: (a) Truth table; (b) Circuit to realize output O0; (c) Complete circuit

4.1.3 BCD to 7-segment Decoder

Although you could design a chip to implement any function, it is only economically feasible to
produce chips for commonly used functions. Otherwise, you would not sell enough chips to
cover your development and manufacturing costs. One commonly used function is to convert a
BCD (binary-coded decimal) value to the signals needed to display it on a 7-segment LED display.
This is the function performed by a BCD to 7-segment decoder.

A BCD to 7-segment decoder has a 4-bit input that has the value of a decimal digit
ranging from 0 to 9, or 0000 to 1001. These decoders generally assume that they do not receive
an invalid input, 1010 to 1111. When designing the decoder, the outputs associated with these
inputs are treated as don’t care values, which simplifies the design of the chip. This decoder has
seven outputs, labeled a, b, c, d, e, f, and g, which are connected to the display and cause the
segments to light up or remain unlit.
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(a) (b)

Figure 4.6 (a) Generic BCD to 7-segment decoder; (b) 7-segment display with segments labeled

There are two types of 7-segment displays: common anode and common cathode. In
common anode displays, the inputs to the LEDs in the display are connected together, and in
the circuit they are connected to the positive voltage of the power supply, or logic 1. The
outputs of the LEDs are connected to the outputs of the decoder. When the decoder output is
0, the LED lights up; when it is 1, the LED is off. Common cathode displays do the opposite. The
outputs of the LEDs are connected together and connected to the circuit ground, which is logic
0. A decoder output of 1 lights the LED and 0 turns it off.

To design a BCD to 7-segment decoder, we will use the same procedure we’ve been
using all along. First, we create a truth table with four inputs (corresponding to the BCD digit)
and seven outputs (one for each segment). We will design a common cathode decoder, so we
want each segment’s value to be 1 when it should be lit. Figure 4.7 (a) shows the truth table for
our decoder.

Figure 4.7 BCD to 7-segment decoder: (a) Truth table; (b) Karnaugh Map for segment a; (c)
Circuit for segment a
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Next, we create the function for each segment individually. Figure 4.7 (b) shows the
Karnaugh Map and function for segment a. Finally, we design a circuit to realize the function.
One possible circuit is shown in Figure 4.7 (c). The design of the circuits for the remaining
segments and for the common anode decoder are left as exercises for the reader.

4.2 Encoders

If the name encoder makes you think it is the opposite of a decoder, you’re mostly right.
Encoders are used to create an n-bit output that corresponds to the one of its 2n inputs that is
active. In this section, we’ll look at the basics of encoding and the encoder’s internal design, as
well as a special encoder, called the priority encoder, which is used when more than one input is
active.

4.2.1 Encoder Basics

Whereas a decoder takes an n-bit input and sets one of its 2n outputs to 1, the encoder goes in
the other direction. It has 2n inputs, numbered 0 to 2n – 1, and outputs the n-bit value
corresponding to the single input that is set to 1.

Consider the generic 8 to 3 encoder shown in Figure 4.8. If one of the eight inputs is set
to 1, the three output bits indicate which input is set. For example, if input I6 is 1, the output
would be set to O2 = 1, O1 = 1, and O0 = 0, or 110.

Figure 4.8: Generic 8 to 3 encoder with values shown

WATCH ANIMATED FIGURE 4.8

As long as one input is active, the encoder functions as described. But what does the
encoder do if none of the inputs is active? Since the encoder outputs binary values, the O2, O1,
O0, will always be set to a value corresponding to one of the inputs, even though that input isn’t
active. This is the reason this encoder includes another output, V. V is the valid output. The
encoder sets V to 1 if any of the inputs is equal to 1, or 0 if none of the inputs is 1. When using
an encoder, there are two things we need to check. One is the encoded output bits and the
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other is the valid bit. If V = 1, then the output bits indicate which input is active. However, if
V = 0, then no input is active, regardless of the value of the output bits. Figure 4.9 shows the
truth table for the generic 8 to 3 encoder. For this encoder, O2, O1, O0 is set to 000 when there is
no active input.

I7I6I5I4I3I2I1I0 O2 O1 O0 V
00000000 0 0 0 0
00000001 0 0 0 1
00000010 0 0 1 1
00000100 0 1 0 1
00001000 0 1 1 1
00010000 1 0 0 1
00100000 1 0 1 1
01000000 1 1 0 1
10000000 1 1 1 1

Figure 4.9: Truth table for the generic 8 to 3 encoder

As with decoders, it is possible to combine encoders to handle more inputs. Figure 4.10
shows a 16 to 4 encoder constructed using two 8 to 3 encoders. Let’s look at each part of this
circuit in more detail.

Figure 4.10: 16 to 4 encoder constructed using 8 to 3 encoders

WATCH ANIMATED FIGURE 4.10

The encoder system has 16 inputs. This circuit allocates inputs 0 to 7 (0000 to 0111) to
the upper encoder and 8 to 15 (1000 to 1111) to the lower encoder. This becomes important
when we generate the data outputs shortly.
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If any input from I0 to I7 is active, the upper encoder sets its V output to 1 and its O
outputs to the value of the active input, 000 to 111. The same is true for inputs I8 to I15 for the
lower decoder. Figure 4.11 (a) shows a partial truth table for this system as it generates outputs
O2, O1, and O0. From this table, we can verify that logically ORing together the corresponding
outputs (the two O2s, the two O1s, and the two O0s) produces the correct three low-order bits of
the encoder output.

Upper Encoder Lower Encoder Overall

Active
Input

O2 O1 O0 O2 O1 O0 O2 O1 O0

None 0 0 0 0 0 0 0 0 0

I0 0 0 0 0 0 0 0 0 0

I1 0 0 1 0 0 0 0 0 1

I2 0 1 0 0 0 0 0 1 0

I3 0 1 1 0 0 0 0 1 1

I4 1 0 0 0 0 0 1 0 0

I5 1 0 1 0 0 0 1 0 1

I6 1 1 0 0 0 0 1 1 0

I7 1 1 1 0 0 0 1 1 1

I8 0 0 0 0 0 0 0 0 0

I9 0 0 0 0 0 1 0 0 1

I10 0 0 0 0 1 0 0 1 0

I11 0 0 0 0 1 1 0 1 1

I12 0 0 0 1 0 0 1 0 0

I13 0 0 0 1 0 1 1 0 1

I14 0 0 0 1 1 0 1 1 0

I15 0 0 0 1 1 1 1 1 1

(a)

Active
Input

Upper
Encoder

V

Lower
Encoder

V

Overall
V O3

Active
Input

O3 O2 O1 O0 V

None 0 0 0 0 None 0 0 0 0 0

I0 1 0 1 0 I0 0 0 0 0 1

I1 1 0 1 0 I1 0 0 0 1 1

I2 1 0 1 0 I2 0 0 1 0 1

I3 1 0 1 0 I3 0 0 1 1 1

I4 1 0 1 0 I4 0 1 0 0 1

I5 1 0 1 0 I5 0 1 0 1 1

I6 1 0 1 0 I6 0 1 1 0 1

I7 1 0 1 0 I7 0 1 1 1 1

I8 0 1 1 1 I8 1 0 0 0 1

I9 0 1 1 1 I9 1 0 0 1 1

I10 0 1 1 1 I10 1 0 1 0 1

I11 0 1 1 1 I11 1 0 1 1 1

I12 0 1 1 1 I12 1 1 0 0 1

I13 0 1 1 1 I13 1 1 0 1 1

I14 0 1 1 1 I14 1 1 1 0 1

I15 0 1 1 1 I15 1 1 1 1 1

(b) (c)

Figure 4.11: Truth tables for the 16 to 4 encoder: (a) Outputs O2, O1, and O0; (b) O3 and V;
(c) Final truth table
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Next, let’s look at O3. When any input from I0 to I7 is active, our output will be a value
from 0 (0000) to 7 (0111). All of these values have O3 = 0. If an input from I8 to I15 is active, then
the output will be in the range from 8 (1000) to 15 (1111). All of these values have O3 = 1.
Fortunately for our circuit, all of these inputs set the V output of the lower encoder to 1, and all
other inputs result in that output being set to 0. So, we can use that V output to generate O3

directly.
Finally, we need to generate the final V output. This should be 1 whenever any of the 16

inputs is 1. Since V of the upper encoder is 1 when any input from I0 to I7 is active, and V of the
lower encoder is 1 when an input from I8 to I15 is active, we can logically OR these two signals
together. The resulting signal is a 1 when any input from I0 to I15 is 1, which is exactly what we
want.

Figure 4.11 (b) shows the values of O3 and V for all possible inputs. The final truth table
for the overall circuit is shown in Figure 4.11 (c).

4.2.2 Encoder Internal Design

The internal design of the encoder is relatively straightforward. To design the 8 to 3 encoder, we
start with the truth table shown in Figure 4.9. Then we determine the function for each
individual output and create a circuit to realize each function.

First, let’s look at output O2. It should be set to 1 when any of inputs I4, I5, I6, or I7 is
active, or O2 = I4 + I5 + I6 + I7. (Remember from Chapter 2, + is the logical OR operation.)
Following the same process, we come up with these functions for the chip outputs.

Figure 4.12 shows a circuit to realize these functions.

Figure 4.12: Internal design of an 8 to 3 encoder
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4.2.3 Priority Encoders

The circuit shown in Figure 4.12 works under most, but not all, circumstances. When exactly
one input is active, it outputs the correct output value and sets V to 1, indicating that we have a
valid input. When no inputs are active, it sets V to 0, as required. But what happens when more
than one input is active? For example, if I6 and I3 are both set to 1, the circuit will set O2 = 1,
O1 = 1, O0 = 1, and V = 1, which incorrectly indicates that input I7 is active.

This is not a design flaw, but rather a limitation of our design. At the beginning of this
section, I stated that the encoder outputs the value corresponding to the single input that is set
to 1. This encoder is designed to work only when we can ensure that no more than one input is
active, and that is the case for many circuits. Sometimes, however, it is possible for more than
one input to be active, and we must choose which one to encode. To do this, we use a special
type of encoder called the priority encoder.

A priority encoder acts just like a normal encoder, with one exception. When more than
one input is active, a priority encoder outputs the value for the highest numbered active input.
That is, each input has priority over all inputs with lower numbers, and all inputs with higher
numbers have priority over it. In our earlier example, when I6 and I3 are both active, the priority
encoder outputs 110, because input I6 has priority over input I3.

Figure 4.13 (a) shows the truth table for the 8 to 3 priority encoder. Unlike the regular
encoder, which requires that no more than one input is set to 1, the priority encoder has no
restrictions on its input values. It simply encodes the highest numbered active input and ignores
those below it.

Figure 4.13: 8 to 3 priority encoder: (a) Truth table; (b) Circuit design

Naturally, implementing prioritization increases the complexity of the design for a
priority encoder as compared to a normal encoder, at least for parts of the circuit. As shown in
the circuit for the 8 to 3 priority encoder in Figure 4.13 (b), the circuitry to generate O2 and V is
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the same as for the normal encoder. However, this is not the case for the other outputs.
Consider output O1. The normal priority encoder sets this output to 1 if we are encoding input
I2, I3, I6, or I7. These inputs would be encoded as 010, 011, 110, and 111, respectively, all of
which have the middle bit set to 1. This would also be the case for the priority encoder, but only
if we are encoding one of these inputs. This will always be the case for I6 and I7, but not
necessarily for I2 and I3. For example, if I2 and I5 are both active, the priority encoder outputs
101, the value for I5. Here, O1 should be 0, not 1.

The design resolves this problem by checking to see if I4 or I5 is active. The circuit sets O1

= 1 if (either I6 or I7 is active) or if ((I2 or I3 is active) AND (neither I4 nor I5 is active)). The circuit to
generate O0 follows this same process, but it is more complex. It sets O0 to 1 under the following
conditions.

(IF I7 = 1) OR
(IF I5 = 1 AND I6 = 0) OR
(IF I3 = 1 AND I4 = 0 AND I6 = 0) OR
(IF I1 = 1 AND I2 = 0 AND I4 = 0 AND I6 = 0)

THEN O0 = 1.

4.3 Multiplexers

A multiplexer, or MUX for short, is a digital circuit that has several inputs and allows one of
them to pass through to its single output. In addition to these data inputs, it has several control
inputs that specify which data input is to pass through to the output. It has many uses in digital
circuits, one of which we will see in the next chapter.

4.3.1 Multiplexer Basics

Although different from a decoder, the multiplexer and decoder employ the same design
principles for part, but not all, of their designs. Throughout this subsection, I’ll highlight these
similarities. Later in this section, we’ll design a multiplexer that uses a decoder in its design.

To start, consider the generic 8-input multiplexer and its truth table, both shown in
Figure 4.14. The eight data inputs are labeled I0 to I7. In a circuit, each input will have a logical 0
or 1 connected to it, usually generated by some other digital logic in the circuit. In many circuits,
these input values may change over time.
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E S2 S1 S0 O0

0 X X X 0
1 0 0 0 I0
1 0 0 1 I1
1 0 1 0 I2
1 0 1 1 I3
1 1 0 0 I4
1 1 0 1 I5
1 1 1 0 I6
1 1 1 1 I7

(a) (b)

Figure 4.14: 8 to 1 multiplexer: (a) Truth table; (b) Generic representation with values shown

WATCH ANIMATED FIGURE 4.14

The three inputs labeled S2, S1, and S0 select the input to be passed to the output. The
three bits are decoded in the same way as they are in the decoder. However, in the decoder
these bits set the selected output bit to 1. In the multiplexer, they select an input and send it to
the output. For example, if S2S1S0 110 (6), then whatever value is on input I6 is output via O0. In
the truth table, we list the value of output O0 as I6 to indicate that O0 equals whatever value is
being input to I6. Finally, the multiplexer has an enable input, E. When E = 1, the multiplexer is
enabled and acts as described. However, when E = 0, the multiplexer is disabled and outputs the
value 0, regardless of the values on the data inputs and select signals.

Also, as is the case for decoders, we can combine two or more multiplexers to act like
one larger multiplexer. We follow the same strategy used to combine decoders. We use the
low-order select bits to choose an input from each multiplexer and the high-order select bits to
enable exactly one of the multiplexers.
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Figure 4.15 (a) shows two 8-input multiplexers combined to act like a single 16-input
multiplexer.

Figure 4.15: (a) 16 to 1 multiplexer constructed using two 8 to 1 multiplexers; (b) Truth table

WATCH ANIMATED FIGURE 4.15

Notice from the truth table in Figure 4.15 (b) that only one multiplexer is enabled at a
time, the upper multiplexer when S3 = 0 and the lower one when S3 = 1. The multiplexer that is
not enabled outputs 0, regardless of its input values, while the enabled multiplexer outputs the
value of one of its inputs. Then these values are logically ORed together. Since any value ORed
with 0 is its original value, this passes the selected input value directly to the output.

4.3.2 Multiplexer Internal Design

Now that we’ve seen what a multiplexer looks like from the outside, we need to design the
internal logic circuit to make it perform its desired functions. As usual, we’ll start with a truth
table. Figure 4.16 (a) shows the truth table for the multiplexer, but we’ve expanded it to include
the different data input values.
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E I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 O0

0 X X X X X X X X X X X 0
1 0 X X X X X X X 0 0 0 0
1 1 X X X X X X X 0 0 0 1
1 X 0 X X X X X X 0 0 1 0
1 X 1 X X X X X X 0 0 1 1
1 X X 0 X X X X X 0 1 0 0
1 X X 1 X X X X X 0 1 0 1
1 X X X 0 X X X X 0 1 1 0
1 X X X 1 X X X X 0 1 1 1
1 X X X X 0 X X X 1 0 0 0
1 X X X X 1 X X X 1 0 0 1
1 X X X X X 0 X X 1 0 1 0
1 X X X X X 1 X X 1 0 1 1
1 X X X X X X 0 X 1 1 0 0
1 X X X X X X 1 X 1 1 0 1
1 X X X X X X X 0 1 1 1 0
1 X X X X X X X 1 1 1 1 1

(a) (b)

Figure 4.16: 8 to 1 multiplexer (a) Truth table; (b) Internal design

WATCH ANIMATED FIGURE 4.16

For this design, we’re going to take a slightly different approach. Instead of creating one
large Karnaugh map, we create circuits for each possible value of select signals S2, S1, and S0, and
then combine the outputs to produce the final output of the multiplexer.

Consider the case S2S1S0 = 000 and E = 1. In the first column of AND gates, only the
uppermost AND gate outputs a 1; all others have at least one input equal to 0 and output a 0. In
the second column, the uppermost AND gate has one input set to 1 by the previous AND gate
and the other equal to the value on input I0. If I0 = 0, 1 ^ 0 = 0, and the gate outputs a 0; if it is 1,
1 ^ 1 = 1 and it outputs a 1. In either case, it outputs the value of I0. The other AND gates in this
column all input 0s from their previous AND gates and therefore output 0s, regardless of the
value of their data inputs. Finally, we logically OR these values (I0 and all 0s together. Anything
ORed with 0 is equal to its original value (0 + 0 = 0, 1 + 0 = 1), so the output would just be the
value of I0. The reasoning is the same for the other values of the select signals. Of course, if E =
0, all AND gates output a 0 and O0 becomes 0, as desired when the multiplexer is not enabled.
The complete design is shown in Figure 4.16 (b).
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Much of this design may look familiar to you. Everything from the first column of AND
gates to the left edge of the circuit is just a 3 to 8 decoder with an enable input. This is
highlighted in the animation in Figure 4.17, where the circuit is transformed to one using a
decoder to replace these components.

Figure 4.17: 8 to 1 multiplexer constructed using a 3 to 8 decoder

WATCH ANIMATED FIGURE 4.17

4.4 Demultiplexers

The term demultiplexer has two different meanings. In many cases, demultiplexer is just
another name for decoder, and the two may be used interchangeably. In the other meaning, a
demultiplexer routes a single data input to one of several outputs, with select bits indicating
which output receives the data. Since we have already covered decoders in Section 4.2, this
section focuses solely on the latter definition.
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A demultiplexer, like the decoder, has n select inputs and 2n outputs, numbered 0 to 2n –
1, and an enable input. In addition, it has a single data input. A generic 1 to 8 demultiplexer is
shown in Figure 4.18 (a). As indicated in the truth table in Figure 4.18 (b), when the
demultiplexer is enabled, the input value is sent to the output specified by the select bits. For
example, when S2S1S0 = 110, output O6 gets the value on the demultiplexer input.

E S2 S1 S0 O0 O1 O2 O3 O4 O5 O6 O7

0 X X X 0 0 0 0 0 0 0 0
1 0 0 0 I 0 0 0 0 0 0 0
1 0 0 1 0 I 0 0 0 0 0 0
1 0 1 0 0 0 I 0 0 0 0 0
1 0 1 1 0 0 0 I 0 0 0 0
1 1 0 0 0 0 0 0 I 0 0 0
1 1 0 1 0 0 0 0 0 I 0 0
1 1 1 0 0 0 0 0 0 0 I 0
1 1 1 1 0 0 0 0 0 0 0 I

(a) (b)

Figure 4.18: (a) Generic 1 to 8 demultiplexer (b) Truth table

WATCH ANIMATED FIGURE 4.18

To help you understand how a demultiplexer works, visualize the demultiplexer as a
decoder with a data input. The demultiplexer decodes the select bits as usual, but then we
logically AND the data input with each individual decoder output. This is shown in
Figure 4.19 (a). The selected output of the decoder (if enabled) is 1 and all other outputs are
0. I ^ 1 = I, which is output on the selected output. All other outputs have the value I ^ 0 = 0.
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(a)

Decoder Outputs Demultiplexer Outputs

E S2 S1 S0 O0 O1 O2 O3 O4 O5 O6 O7 O0 O1 O2 O3 O4 O5 O6 O7

0 X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 I 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0 0 I 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 I 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 I 0 0 0
1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 I 0 0
1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 I 0
1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 I

(b)

Figure 4.19: 1 to 8 demultiplexer constructed using a 3 to 8 decoder: (a) Circuit diagram; (b)
Truth table

WATCH ANIMATED FIGURE 4.19

4.5 Comparators

Computers can perform numerous arithmetic operations on numeric data, such as adding,
subtracting, multiplying, or dividing two numbers. They use circuits designed specifically to
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perform these operations, and these circuits often employ specially designed components. One
such component is the comparator.

A comparator does not add or subtract two values, nor does it perform any other
arithmetic or logical operation. Rather, it inputs two numbers, let’s call them A and B, and
determines which is larger, or if they are equal. Figure 4.20 shows a generic 4-bit comparator.

Figure 4.20: Generic 4-bit comparator

For this comparator, A and B can take on any value from 0000 (0) to 1111 (15). Exactly
one of the three outputs will be active, depending on the values of A and B.

To see how this works, consider how you would compare two 4-digit decimal numbers,
say 2021 and 2910. (Just as the comparator has two inputs with the same number of bits, this
example also requires two values with the same number of digits.) First, we compare the two
digits in the thousands place. For this example, they are both the same, 2, which doesn’t tell us
anything about which number is larger, so we go to the next digit. The hundreds digit in the first
number is 0 and in the second number is 9, so we know the second number must be larger than
the first. There is no need to check the remaining digits.

Here’s a general rule we can use to help us design a comparator. One number (A) is
greater than the other number (B) if one of these two conditions is met.

1. The digit we are checking in A is greater than the digit in B AND all previous digits in
these two numbers are the same; or

2. A previous digit had already determined that A is greater than B.

We would start at the most significant digit and work our way down to the least significant digit.
If we have not found one number to be greater than the other by the time we have finished
comparing all pairs of digits, then the two numbers are equal.

Since we are dealing with binary numbers, the comparison process is relatively
straightforward. If we are comparing bits Ai and Bi, one of these three conditions is met:
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Ai > Bi if Ai = 1 AND Bi = 0
Ai < Bi if Ai = 0 AND Bi = 1
Ai = Bi if Ai = Bi = 1 OR Ai = Bi = 0

Before you look at the circuit I’ve created in Figure 4.21, try to design your own circuit to realize
these functions.

Figure 4.21: A 1-bit comparator

Notice, in my design, I took advantage of the fact that, if Ai is not greater than Bi, and Ai

is not less than Bi, then Ai must be equal to Bi. This allows me to use a single NOR gate to
generate the A = B signal.

But what if a previous bit had already determined that one number is larger than the
other? If we are to construct a comparator using multiple copies of this circuit, one for each bit,
we need to make use of the results from previous bits. If we call these previous bits A>Bin, A<Bin,
and A=Bin, then we can say

A>BOUT = 1 IF (A>BIN = 1) OR (A=BIN = 1 AND Ai = 1 AND Bi = 0)
A<BOUT = 1 IF (A<BIN = 1) OR (A=BIN = 1 AND Ai = 0 AND Bi = 1)
A=BOUT = 1 IF (A=BIN = 1) AND (Ai = Bi)

We can modify the circuit from Figure 4.21 as shown in Figure 4.22 (a) to incorporate
these functions. Figure 4.22 (b) shows how this circuit can be replicated and configured to
create a 4-bit comparator.

(a) (b)

Figure 4.22: (a) An enhanced 1-bit comparator; (b) Four-bit comparator
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There is another method to perform comparison by subtracting two numbers and
examining the result. We will look at this method later in this book.

4.6 Adders

So far we have examined components that perform logical functions on binary values. But we
can also design logic circuits that treat their inputs as numeric values and perform arithmetic
operations on these values. In this section we examine adders, which, as their name implies,
add two numeric inputs to produce a numeric output. We’ll start with half adders and full
adders, the basic building blocks, and then we’ll use these building blocks to design adders that
can add any two n-bit values.

4.6.1 Half Adders

The half adder is the most fundamental arithmetic circuit there is. It inputs two 1-bit values,
arithmetically adds them, and outputs the sum. As shown in Figure 4.23 (a), the output can
have a value of 0 (0 + 0), 1 (0 + 1 or 1 + 0), or 2 (1 + 1). The last value is represented as 10 in
binary, so the half adder must output two bits. The least significant bit is called the sum, usually
denoted S, and the most significant bit is the carry, or C. The truth table for the half adder is
shown in Figure 4.23 (b).

Figure 4.23: Half adder: (a) Inputs and outputs; (b) Truth table; (c) Internal design

WATCH ANIMATED FIGURE 4.23

So, how can we take these two input values, A and B, and generate our sum and carry
outputs? We do this by treating this as a digital logic design problem, just as we have done
when designing the other components in this chapter. We design the logic for C and S based
solely on the value of inputs A and B.

Carry output C is relatively straightforward. It is only set to 1 when A = B = 1. This is just
the AND function, and C = A ^ B. The sum, S, is slightly more complicated but also pretty
straightforward. It is 1 when either A = 1 and B = 0 or A = 0 and B = 1. This is equivalent to A = 1
and B' = 1 or A' = 1 and B = 1. In the circuit shown in Figure 4.23 (c), examine the portion of the
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circuit that generates output S. The upper AND gate outputs a 1 when A = 1 and B' = 1; the
lower gate outputs a 1 when A' = 1 and B = 1. The OR gate sets S to 1 when either AND gate
outputs a 1, and 0 otherwise, exactly as desired.

There are other ways you could design the half adder. Everyone is going to come up with
the same design for C, but there are a few different ways to generate S. Looking at the truth
table, you may have noticed that S is the exclusive OR of A and B. We could have used an XOR
gate to generate S, as shown in Figure 4.24 (a). Less obvious, but still valid, we can find all values
that set S to 0 and NOR them together. That is, if we look at all the combinations that set S = 0,
and none of them are met, then S must be set to 1. One circuit to do this is shown in Figure 4.24
(b). Note that we reduce the size of our circuit by reusing the AND gate that generates C. Now it
both generates C and provides one of the inputs to the NOR gate that generates S.

(a) (b)

Figure 4.24: Additional implementations of the half adder: (a) Using an XOR gate;
(b) Using C to generate S

4.6.2 Full adders

Half adders work perfectly when adding numbers that are only one bit each, but they have a
problem when adding numbers that are more than one bit. To illustrate this, look at the circuit
in Figure 4.25. We want to add two numbers, 3 and 1, and generate the correct result, 4. In
binary, this could be expressed as 11 + 01 = 100. We use subscripts to indicate the individual bits
of each number as usual, starting with bit 0 as the least significant bit. Here, A = 11, so A1 = 1
and A0 = 1. Similarly, B = 01, or B1 = 0 and B0 = 1. We input A0 and B0 into the first half adder and
A1 and B1 into another. The final sum should be C of the most significant adder followed by all
the sum bits, C1S1S0 in this case.
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Figure 4.25: Unsuccessful addition using half adders

For these values, this circuit does not work. It has C1 = 0, S1 = 1, and S0 = 0, generating
the result 010, or 2. Clearly, 3 + 1 ≠ 2.

The problem has to do with C0. We generate a value for C0, but we don’t do anything
with it when we generate the final sum. The half adder’s inputs are all used by inputs A and B.
There are no inputs available to make use of the carry bits when generating the sum. We need a
new type of adder to make this work. That adder is the full adder.

The full adder has three inputs. Typically two are used for data, just as we did with the
half adder. The third input is used for the carry generated by the previous adder. Since the
largest result we can have is 3, or 11, when all three inputs are 1 and we form the sum 1 + 1 + 1,
we still need only two outputs.

Figure 4.26 (a) shows the full adder and Figure 4.26 (b) shows its truth table. As before,
we can design a circuit by treating each output as a separate function and creating a circuit for
each function. Figure 4.26 (c) shows one possible circuit; other designs are left as exercises for
the reader.

(a) (b) (c)

Figure 4.26: Full adders: (a) Inputs and outputs; (b) Truth table; (c) Internal design
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4.6.3 Ripple adders

Now that we have the full adder, we can create a circuit to add numbers that have more than
one bit. The easiest way to do this is to create a ripple adder. This is just a series of full adders
with each full adder’s carry out bit connected to the carry in of the next higher adder. Figure
4.27 shows how this works when adding 11 + 01. By making use of all the carry bits, this circuit
successfully adds these two numbers producing the output 100, or 4.

Figure 4.27: Successful addition using full adders

WATCH ANIMATED FIGURE 4.27

There are two things I want to point out about this circuit. First, you can create a ripple
adder that adds larger numbers by simply adding more full adders to the circuit and connecting
the carry out and carry in signals as we did here. Second, take a look at the least significant bit.
There is no other bit to send it a carry input, so this input must be wired to logic 0 to function
properly. Alternatively, we could have used a half adder for only this least significant bit of the
ripple adder. It is left as an exercise for the reader to verify that both implementations work
correctly.

4.6.4 Carry-lookahead Adders

Although ripple adders function properly, they are relatively slow. To see why this is, consider
the 4-bit ripple adder shown in Figure 4.28. The animation shows how the signals change their
values as it adds 111 + 0001. Initially, each adder adds its two data inputs. The least significant
adder generates a carry out value of 1. This is connected to the carry in bit of the next full adder.
Its inputs change from A = 1, B = 0, Cin = 0 to A = 1, B = 0, Cin = 1, and its outputs change from
Cout = 0, S = 1 to Cout = 1, S = 0. The same process is repeated for each full adder in sequence.
Each adder has to wait for the previous adder to update its carry value before it can generate its
final result. Logic gates are fast, but they do take time to output their results. As the number of
bits to be added increases, these delays add up.

Page 4-25

https://digitalcommons.njit.edu/dld-animations/63


Chapter 4: More Complex Components

Figure 4.28: 4-bit ripple adder

WATCH ANIMATED FIGURE 4.28

To speed this up, designers developed carry-lookahead adders. Like ripple adders, they
add two binary numbers. Unlike ripple adders, however, they do not need to wait for carry
values to propagate from bit to bit through the adder. Instead, they include additional circuitry
that “looks ahead” to see if a carry input will be generated and calculates its results accordingly.
As with the ripple adder, carry-lookahead adders incorporate full adders to add two values. The
difference lies in how they generate carry output values.

To understand how this works, consider a full adder within a carry-lookahead adder. It
has three inputs, two data inputs and a carry in, and two outputs, the sum and carry out. Our
goal is to speed up how we generate the carry out signal.

There are two cases that can cause the carry out to be set to 1. One is when the two
data inputs are both 1. Regardless of the value of the carry input signal, the carry out will always
be 1 in this case. We are adding either 1 + 1 + 0 = 10 or 1 + 1 + 1 = 11, both of which set carry
out to 1. We say that the input values generate a carry out.

The second case is when one of the input values is 1 and the carry in is 1. Here we add
either 0 + 1 + 1 = 10 or 1 + 0 + 1 = 10. The 1 on the carry in is propagated to the carry out signal.

Putting these two cases together, the carry out signal is 1 if we generate a carry from the
data inputs or if we propagate a 1 from the carry input to the carry output.

For each full adder, we will generate values that indicate if a carry is generated or if it can
be propagated. Then we will combine these signals with the carry in to generate the initial logic
functions for the carry out signals. But there is one more step. We will expand each function by
substituting in the function for the previous carry bit so that each carry output is expressed
solely in terms of the data inputs. This is how the adder “looks ahead” when generating the
carry bits. To clarify how this works, we’ll go through these steps individually for the 4-bit adder.
The inputs A and B have four bits, labeled A3A2A1A0 and B3B2B1B0.

Each full adder generates a carry if its two input bits are both 1. It is easy to check for
this by ANDing the two inputs together. We will call this function g, for generate. For our 4-bit
adder, these functions are:
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g0 = A0 ^ B0

g1 = A1 ^ B1

g2 = A2 ^ B2

g3 = A3 ^ B3

A full adder propagates its carry in if one of its inputs is 1. We could exclusive OR the two
input bits to produce a propagate function, but we’re going to do something different. We will
logically OR the two together instead. I’ll explain why shortly. This gives us the following
propagate functions.

p0 = A0 + B0

p1 = A1 + B1

p2 = A2 + B2

p3 = A3 + B3

Now, the carry out for each full adder is 1 if either the input data generates a carry or if
the carry input is 1 and the input data propagates the carry. We can express this as:

c0 = g0 + p0cin (with no carry in this is just g0)
c1 = g1 + p1c0
c2 = g2 + p2c1
c3 = g3 + p3c2

(Remember that the carry in for each full adder, except the least significant bit, is the carry out
of the previous full adder.)

Finally, we can substitute in the carry values until every function is expressed solely in
terms of the data inputs, or of the data inputs and the g and p values, which are constructed
solely from the data inputs. Proceeding from the least significant carry bit, we get:

c0 = g0 + p0cin
c1 = g1 + p1c0 = g1 + p1g0 + p1p0cin
c2 = g2 + p2c1 = g2 + p2g1 + p2p1g0 + p2p1p0cin
c3 = g3 + p3c2 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0cin

Before we get to the sum outputs, let’s go back to why we use the OR function instead
of the exclusive OR to implement the propagate functions. OR gates are faster than XOR gates
and require less hardware in their internal designs. That alone makes the OR gate a better
choice, but only if the circuit still functions properly. In this case, it does. Figure 4.29 shows two
truth tables. The first (a) generates the carry out using the exclusive OR function. The second (b)
uses the OR function. As the tables demonstrate, both produce the same value for the carry out
for all possible input values.
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A B CIN g=AB p=A⊕B COUT=g+pCIN A B CIN g=AB p=A+B COUT=g+pCIN

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 0 1 0 1 0 0 0 1 0

1 0 1 0 1 1 1 0 1 0 1 1

1 1 0 1 0 1 1 1 0 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1

(a) (b)

Figure 4.29: Carry out functions: (a) Using XOR to set p; (b) Using OR to set p;

The only time p is different in the two functions occurs when A = B = 1. The XOR sets p to
0 and the OR sets it to 1. However, in this case, g is 1, which sets the carry out to 1 regardless of
the value of pCin. This is why we can use the OR function instead of the XOR function.

Finally, we need to set the sum bits. We can do this as we did before, by exclusive ORing
the two data bits and the carry input bit. As an alternative, we can exclusive OR the full adder’s
g, p, and carry in bits. Figure 4.30 shows the truth tables for both functions, which verify that
both produce the same output for all possible input values.

A B CIN S=A⊕B⊕CIN A B CIN g=AB p=A+B S=g⊕p⊕CIN

0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 1

0 1 0 1 0 1 0 0 1 1

0 1 1 0 0 1 1 0 1 0

1 0 0 1 1 0 0 0 1 1

1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1 1

(a) (b)

Figure 4.30: Sum functions: (a) Using data and carry in; (b) Using g, p, and carry in

The complete design is shown in Figure 4.31. For simplicity, we used the non-expanded
functions for the carry bits when designing this circuit.
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Figure 4.31: 4-bit carry-lookahead adder

4.7 Tri-state Buffers

In Chapter 3, we introduced the buffer, a simple component that outputs whatever value is
input to it. In this section, we introduce a special type of buffer that is often used with buses,
called a tri-state buffer. Before describing these buffers, however, we need to spend a brief
amount of time talking about buses.

A bus is simply a wire used to transmit data. Many components can send data onto the
bus (though only one at a time), and many can receive data from the bus (this can be more than
one at a time, subject to fan-out limitations).

Buses can simplify a circuit by reducing the connections between components. For
example, consider a highway with 100 entrances/exits. Each of these has an entrance ramp to
go onto the highway, and an exit ramp to leave the highway. You can go from any entrance to
any exit using this highway.
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Now consider how to connect these locations without using a highway. In order to travel
directly from any one location to any of the others, we would need to build a road directly
between each pair of locations. This would total up to 4,950 roads. Furthermore, each location
would need 99 entrance and exit ramps, one for each road to/from each destination. In complex
digital systems, such as computers or microprocessor chips, this simply is not feasible. For this
reason, many digital systems use buses.

To connect components to a bus, you can’t just connect, say, the output of an AND gate
straight onto the bus. That works fine when the AND gate is sending its output to other
components via the bus, but not so well when it is not sending data through the bus. In this
case, it would still be putting data onto the bus, even if another component was trying to use it.
It would interfere with the data that should be on the bus, and components trying to read that
data might not be able to read it correctly. We need a way to connect components to the bus
when needed and to isolate them from the bus at all other times. This is the purpose of tri-state
buffers.

The tri-state buffer and its truth table are shown in Figure 4.32. In addition to its data
input, the tri-state buffer has an enable signal. When enabled, the tri-state buffer acts just like a
traditional buffer. When it is not enabled, its output is the high-impedance state, denoted as
Hi-Z.

(a) (b)

Figure 4.32: Tri-state buffer logic symbol and truth table

WATCH ANIMATED FIGURE 4.32

To understand how high impedance works, we need to go back to Ohm’s Law. You may
recall this law states that current equals voltage divided by resistance, or I = V/R. Well, that is
correct when a circuit has only resistive elements, but it does not take into account the
impedance introduced by inductive and capacitive elements. In practice, I = V/Z, where Z is the
overall impedance of the circuit.

When a tri-state buffer is disabled, it has a very high impedance. As Z increases, and the
voltage remains the same, the current decreases greatly, typically to some number of
micro-Amperes, or millionths of an Ampere. A circuit can usually handle some number of
disabled tri-state buffers placing micro-Amperes of current onto the bus and still have
components read the value on the bus correctly. Essentially, disabled components act as if they
are disconnected from the bus. As long as no more than one tri-state buffer sends data onto the
bus at any time, the system should function as desired.
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4.8 Summary

In this chapter, we have examined several types of logical functions that are commonly used in
digital circuit design. Decoders enable one of their outputs based on the value that is selected,
and encoders set an output based on which of its inputs is active. Multiplexers pass the selected
input’s value through to its output, and demultiplexers send a single input value to its selected
output. Comparators and adders treat their inputs as numeric data. Comparators examine the
data and set an output to indicate which input value is greater, or if both are the same. Adders
output the arithmetic sum of their two inputs. Buffers do not modify their inputs, but can be
used to overcome physical limitations inherent to digital electronics.

In the next chapter, we will use some of these components to implement more complex
functions than those we saw in Chapter 3. We will also introduce two new components: the
lookup ROM and the Programmable Logic Device.
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Exercises

1. Design a 3 to 8 decoder based on the design of the 2 to 4 decoder presented in Figure
4.5(c).

2. The 74138 is a TTL chip that is a 3 to 8 decoder. Unlike the designs presented in this
chapter, its outputs are active low. That is, the activated output is 0 and all the other
outputs are 1. Modify your design for problem 1 so that it functions like the 74138.

3. Design a 5 to 32 decoder using one 2 to 4 decoder and four 3 to 8 decoders.

4. Design a 5 to 32 decoder using one 3 to 8 decoder and as many 2 to 4 decoders as are
necessary. How many 2 to 4 decoders are needed?

5. Design the circuit to generate outputs b, c, d, e, f, and g of the BCD to 7-segment
decoder.

6. Design a 16 to 4 encoder based on the design of the 8 to 1 encoder presented in Figure
4.12.

7. Design a 16 to 4 encoder using five 4 to 2 encoders.

8. Design a 32 to 5 encoder using four 8 to 3 encoders and combinatorial logic gates.

9. Design a 32 to 5 encoder using four 8 to 3 encoders and one 4 to 2 encoder.

10. Design a 16 to 4 priority encoder.

11. Design a 16 to 1 multiplexer based on the design of the 8 to 1 multiplexer presented in
Figure 4.16.

12. Design a 32 to 1 multiplexer using four 8 to 1 multiplexers and one 4 to 1 multiplexer.

13. Design a 16 to 1 multiplexer using a 4 to 16 decoder.

14. Design a 1 to 8 demultiplexer using only basic logic gates.

15. Design a 1 to 16 demultiplexer using two 1 to 8 demultiplexers.

16. Show the value of each signal in the 4-bit comparator in Figure 4.22(b) as it compares
A=1011 and B=1100.

17. Design a circuit that directly compares two 2-bit values.

18. Show the value of each gate input and output for the half adders in Figure 4.24(a) and
(b) as they add A=1 and B=1.

19. Show the values of each gate input and output for the full adder circuit in Figure 4.26(c)
as it adds A=1, B=0, and Cin=1.
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20. Show the input and output values of each full adder in Figure 4.27 as it adds A=11 and
B=10.

21. For an 8-bit carry-lookahead adder, give the equations for g4, g5, g6, and g7; p4, p5, p6, and
p7; and c4, c5, c6, and c7.

22. If the maximum propagation delays for 2-input AND gates, 3-input OR gates, and 2-input
XOR gates are 20ns, 44ns, and 30ns, respectively1, what is the maximum propagation
delay for the full adder circuit in Figure 4.26(c)?

23. Design a circuit to meet the following specification. The circuit has four data inputs
labeled A, B, C, and D. Each of these is input to a tri-state buffer. The outputs are
connected together to generate output O. There are two control signals, E and F, which
determine the input value that is sent to output O, as follows.

Use one of the components introduced in this chapter to generate the enable signals for
the tri-state buffers.

1 Propagation delays shown are for the 74LS08 (AND), 74LS32 (OR, two gates), and 74LS86 (XOR) gates.
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Chapter 5: More Complex Functions

The components introduced in the previous chapter have many real-world applications.
Decoders can be used in computer systems to elect one of many memory chips based on the
address specified by the microprocessor. Multiplexers can select one of several inputs to be sent
to another component. Encoders can be used to specify the row and column of a key that is
pressed on a keypad. The possible uses of these components is limited only by the creativity of
the engineer using them.

In this chapter, we look at a limited application, realizing Boolean functions. We start by
focusing on two components: decoders and multiplexers. Each can be used to realize functions
in a relatively straightforward manner. Then we introduce ROMs, read-only memory chips.
Although memory chips are most commonly used to store data and programs in computer
systems, ROMs can also be configured to realize combinatorial functions by serving as lookup
tables.

5.1 Implementing Functions using Decoders

Among their many uses in digital logic design, decoders can be used to realize functions by
following a standard procedure. To illustrate how this works, consider the 3 to 8 decoder and its
truth table shown in Figure 5.1. Output O0=1 when a=0, b=0, and c=0. Alternatively, we can say
that O0=a'b'c'. We can do this for each output, which gives us the functions shown in the last
column of the table.

a b c O0 O1 O2 O3 O4 O5 O6 O7 Function
0 0 0 1 0 0 0 0 0 0 0 a'b'c'
0 0 1 0 1 0 0 0 0 0 0 a'b'c
0 1 0 0 0 1 0 0 0 0 0 a'bc'
0 1 1 0 0 0 1 0 0 0 0 a'bc
1 0 0 0 0 0 0 1 0 0 0 ab'c'
1 0 1 0 0 0 0 0 1 0 0 ab'c
1 1 0 0 0 0 0 0 0 1 0 abc'
1 1 1 0 0 0 0 0 0 0 1 abc

(a) (b)

Figure 5.1: 3 to 8 decoder: (a) Truth table; (b) Decoder

Now comes a key point that underlies this whole design methodology. Each of the
outputs represents a minterm of the inputs. To implement a function as a sum of products, we
can input the function inputs to the decoder and logically OR the desired outputs to realize the
function.
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Let’s look at a couple of examples we worked out earlier to illustrate this process. In
Figure 5.2 (a), we have the truth table for function q. This function is equal to 1 when a=0, b=1,
and c=0; a=1, b=0, and c=1; or a=1, b=1, and c=1. Alternatively, q=a'bc'+ab'c+abc. In the
previous chapter, we combined the last two terms and implemented the function as q=a'bc'+ac,
but we can’t do that when we use a decoder to realize the function. Since each decoder output
represents one minterm, we must express the function solely using minterms. The three
decoder outputs corresponding to a'bc', ab'c, and abc are O2, O5, and O7, respectively. Logically
ORing these three outputs together gives us the value for function q. This circuit is shown in
Figure 5.2 (b).

a b c q
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

(a) (b)

Figure 5.2: Implementing the function q=a'bc'+ab'c+abc using a decoder: (a) Truth table;
(b) Decoder circuit implementation

WATCH ANIMATED FIGURE 5.2.b

Now consider another example function with the truth table shown in Figure 5.3 (a).
There are six minterms which set function q to 1, and q can be expressed as
q=a'b'c'+a'bc'+a'bc+ab'c'+ab'c+abc'. We can logically OR the decoder outputs corresponding to
these minterms, which are O0, O2, O3, O4, O5, and O6, respectively, to realize function q. Figure
5.3 (b) shows this circuit. Since there are no standard TTL chips with 6-input OR gates, this
circuit uses OR gates with lower fan-in values to realize the same function.
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a b c q
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

(a) (b) (c)

Figure 5.3: Implementing the function q=a'b'c'+a'bc'+a'bc+ab'c'+ab'c+abc' using a decoder:
(a) Truth table; (b) Decoder circuit implementation; (c) Decoder circuit implementation using

inverse function

WATCH ANIMATED FIGURE 5.3.b and c

Just as we did in a previous chapter, we can realize the inverse of this function (using
maxterms) and then invert the output to realize the original function. For this function, this is
equivalent to saying that q'=1 if either O1 (a'b'c) or O7 (abc) is equal to 1. We can logically OR O1

and O7 to realize q', and then invert this value to generate q. The simplest way to do this is to
NOR O1 and O7, which generates q directly. This circuit is shown in Figure 5.3 (c).

5.2 Implementing Functions using Multiplexers

Just as decoders can be used to implement combinatorial logic functions, multiplexers can also
be used to implement these functions. To see how this works, let’s start with the 3-input AND
function. Its truth table is shown in Figure 5.4 (a). Output q=1 only when a=1, b=1, and c=1, or
q=abc.

Page 5-4

https://digitalcommons.njit.edu/dld-animations/67


Chapter 5: More Complex Functions

a b c q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

(a) (b)

Figure 5.4: q=abc: (a) Truth table; (b) Implementation using an 8 to 1 multiplexer

To implement a function using a multiplexer, we connect the function inputs (a, b, and c,
for this function) to the select inputs of the multiplexer. Then we connect the value of the
function for each possible set of function inputs to the corresponding multiplexer input. For
example, consider the circuit shown in Figure 5.4 (b). When a=0, b=0, and c=0, the multiplexer
will pass whatever value is at input I0 directly to output O0. Since q=0 for these values, we want
to have 0 at this multiplexer input. In fact, we want to have 0 connected to all inputs except I7.
That input is selected when a=1, b=1, and c=1. For these values, q=1, not 0, and we need to set
the value of this input to 1.

Examining the values of q in the truth table, we can see that they are exactly the same as
the data inputs to the multiplexer. In essence, this circuit is not computing the value of the
function; it is looking up the value by selecting the multiplexer input.

As the number of inputs to a function increases, the size of a multiplexer needed to
implement the function increases exponentially. For example, a function of 10 variables would
require a multiplexer with 10 select signals and 210=1024 data inputs. This is simply not feasible.
However, we can still use a smaller multiplexer by having some of the function inputs select a
multiplexer input and using the other function inputs to generate the multiplexer data inputs. At
first, this may seem confusing, but there is a straightforward method to design such a circuit.

To show how this works, let’s redesign our circuit to realize the function q=abc using a 4
to 1 multiplexer. The truth table for this function is repeated in Figure 5.5 (a). The first part of
the design is to connect the function inputs to the select signals of the multiplexer. With three
function inputs and two select signals, we must choose which function inputs to connect to the
select signals, and which to exclude. I chose to connect inputs a and b to the select signals and
to exclude input c. You can choose any two inputs and still create a working circuit, but choosing
the leftmost bits in the truth table can make your work slightly easier for reasons we’ll discuss
shortly. The circuit, so far, is shown in Figure 5.5 (b).
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a b c q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

(a) (b)

Figure 5.5: q=abc: (a) Truth table; (b) Assignment of function inputs to select signals

Now we have to determine the values of the data inputs to the multiplexer. To do this,
we are going to take a divide and conquer approach. We return to the truth table and divide it
into several separate tables, one for each multiplexer input. Consider multiplexer input I0. It is
selected and its value is passed through to output O0 when S1=0 and S0=0. For our circuit, this
occurs when a=0 and b=0. We take all the rows of our truth table with a=0 and b=0 and make
them into a separate table. We do this for each multiplexer input. (This is why I used the
leftmost bits of the truth table as the select inputs, so that each of these tables would consist of
consecutive rows.) The tables for this circuit are shown in Figure 5.6 (a).

I0: a b c q I1: a b c q
0 0 0 0 0 1 0 0
0 0 1 0 0 1 1 0

I2: a b c q I3: a b c q
1 0 0 0 1 1 0 0
1 0 1 0 1 1 1 1

(a) (b)

Figure 5.6: q=abc: (a) Partitioned truth tables; (b) Final design using a 4 to 1 multiplexer

WATCH ANIMATED FIGURE 5.6.b

Finally, we must create and implement a function for each of the multiplexer data
inputs. To do this, we express q as a function of the function inputs we excluded earlier, that is,
all the function inputs that are not input to the multiplexer’s select signals. We are already
taking the select values into account when we partition the tables. For example, let’s look at
input I0. This value is only passed through to output O0 when the select signals are both 0, or
a=0 and b=0. If a and b have any other values, this multiplexer input will not be passed through
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to the output, so we don’t care what its value is for any other values of a and b. We may,
however, need to take into account the value of other function inputs, c in this example.

For I0, I1, and I2, this is not the case. Each of these functions always sets q=0, so we
simply hardwire a logic 0 to these three multiplexer inputs. For I3, however, things are different.
When c=0, we want to set output q to 0, and when c=1 we want to set q to 1. The simplest way
to do this is to set I3=c. When a=1, b=1, and c=0, a and b select multiplexer data input I3, and its
input value is 0 (I3=c=0). When a=1, b=1, and c=1, we again select I3, but this time its value is 1.
The final design for this circuit is shown in Figure 5.6 (b).

Before we leave this topic, there are a couple of points I want to emphasize. First, each
function input is used either as a select signal or to generate the data inputs to the multiplexer,
but not both. If it is in both places, your circuit can be simplified.

The second point concerns the choice of function inputs used for the multiplexer select
signals. I used the leftmost function inputs in the truth table because that always creates
separate tables consisting of lines of the truth table that are next to each other. However, this
does not always result in an optimal design (although it will always produce a correct design,
sometimes with more hardware than absolutely necessary).

Figure 5.7 (a) shows the truth table for a function. Let’s say we implement this function
using a 4 to 1 multiplexer and connect a and b to the multiplexer select inputs. Using the
procedure we just demonstrated, we would create the four separate tables shown in Figure 5.7
(b). These give us input functions I0=0, I1=c', I2=c, and I3=c'. The circuit to realize the function is
shown in Figure 5.7 (c).

a b c q I0: a b c q I1: a b c q
0 0 0 0 0 0 0 0 0 1 0 1
0 0 1 1 0 0 1 1 0 1 1 0
0 1 0 1
0 1 1 0 I2: a b c q I3: a b c q
1 0 0 0 1 0 0 0 1 1 0 1
1 0 1 1 1 0 1 1 1 1 1 0
1 1 0 1
1 1 1 0

(a) (b) (c)

Figure 5.7: Function q: (a) Truth table; (b) Partitioned truth tables; (c) Implementation using a 4
to 1 multiplexer

WATCH ANIMATED FIGURE 5.7.c

Now let’s design this circuit again, but this time using b and c as the multiplexer inputs.
The truth table, repeated in Figure 5.8 (a) is partitioned as shown in Figure 5.8 (b). For this
design, we have I0=0, I1=1, I2=1, and I3=0. The final design is shown in Figure 5.8 (c).
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a b c q I0: a b c q I1: a b c q
0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 1 1 0 0 0 1 0 1 1
0 1 0 1
0 1 1 0 I2: a b c q I3: a b c q
1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 1 1 1 0 1 1 1 1 0
1 1 0 1
1 1 1 0

(a) (b) (c)
Figure 5.8: Function q: (a) Truth table; (b) Partitioned truth tables using b and c as multiplexer

select inputs; (c) Implementation using a 4 to 1 multiplexer

WATCH ANIMATED FIGURE 5.8.c

Comparing these two circuits, we see that some things do not vary between the designs.
The multiplexer is always the same size, output O0 always gives the value of q, and two of the
function inputs are connected to the multiplexer select inputs. The only thing we can change by
choosing which function inputs are connected to the multiplexer select inputs is the functions
(and thus the circuits needed to generate the functions) of the multiplexer data inputs. The first
design needed one NOT gate to generate these inputs, while the second design needed no logic
gates at all. This example was constructed just to illustrate this concept. For more complex
functions, the reduction in hardware needed to generate the multiplexer data inputs can be
much greater than in this example.

5.3 ROM Lookup Circuits

In the previous section, I mentioned that the multiplexer circuit looks up the value of a function
rather than calculating the value. A read-only memory, or ROM, can be used to generate values
in much the same way. We’ll look at ROMs and other memory components in more detail later
in this book. For now, this section introduces just enough information about ROMs for us to use
them to realize logic (or arithmetic) functions.

5.3.1 The Very Basics of ROMs

Memory chips are aptly named. They “remember” values that you can retrieve when needed,
that is, they store values. In computer systems, memory chips may store the instructions that
comprise a program, such as Microsoft Word, or data used by a program, for example, a Word
document. If your computer has a solid state hard drive, that drive is constructed from memory
chips. Flash drives are also built using memory chips.
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Memory chips can be divided into two groups, depending on what happens to their data
values when power goes off. Volatilememory only keeps its values when power is on. Once
power goes off, all the data values it had stored are lost. The most common type of volatile
memory is random access memory, or RAM. If a computer manufacturer says their computer
has 16GB of memory, or whatever value they say, they are talking about RAM.

ROM (read only memory), on the other hand, is a non-volatilememory. When power is
off, the data within the memory chip remains unchanged. If you turn power off and later turn it
back on, you can access the exact data that was there before you turned the power off, which is
why it is useful for things like flash drives, and for lookup tables for logic and arithmetic
functions.

To be clear, even though ROM chips store their data when power is off, you can’t read
this data from the chip unless power is on. The memory chips need to have power in order to
output their data. In addition to the memory cells that actually store the data, there are other
components used by the chip to access specific memory cells and to perform other functions
needed to read data from the memory chip. These components cannot function unless power is
on.

So, if a ROM is a read-only memory, how do you write data into it in the first place?
There are several types of ROMs, each with its own way to store data. Some chips are fabricated
with the data stored in its memory cells, and others use special programming hardware to write
values into these cells. We’ll talk about the writing process in more detail in Chapter 10. For our
ROM lookup circuits, we will assume that, somehow, the data for our lookup function has
already been written into the ROM.

5.3.2 Memory Chip Configuration

Regardless of the type of memory chip, its inputs and outputs work in a similar manner. We
input an address to the memory chip. This is just some number of Boolean inputs that are used
to select one unique memory cell, or location, within the chip. On a memory chip, each address
bit is assigned to a unique pin. The number of address inputs depends on how many memory
cells are in the chip. Remember from our discussion of numeric representations in Chapter 1
that n bits can represent 2n unique values. Here, 2n is the number of memory locations within a
chip and n is the number of address bit inputs. For example, consider a memory chip with 1024
locations. Since 1024=210, this chip must have 10 address bit inputs. If the address inputs are 00
0000 0000, we will access memory location 0 within the chip. Address 00 0000 0001 accesses
location 1, and so on, up to address 11 1111 1111 accessing location 1023.

There are different ways to label these address inputs. For consistency, we will use a
notation called little Endian throughout this book. The least significant bit is labeled A0. The
next bit is A1, and so on. The most significant bit is An-1. For our 1024-location ROM, 1024=210, so
n=10 and these bits are A9 to A0.

The memory chip may have one bit of data at each memory location, or it may have
more bits. Each bit must have its own data bit output. For a memory chip with m data outputs,
we again use little Endian notation, labeling them from Dm-1 (most significant bit) to D0 (least
significant bit). As with the address inputs, each data output is assigned to a unique pin on the
memory chip.
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For RAMs, these data pins are used both to input and output data. Programming
hardware may also use these bits to store data in a ROM. We won’t worry about that for now
since we are assuming the data is already stored in the ROM.

The size of a memory chip is said to be 2nxm. For our 1024-location memory chip, if it
has eight output bits, we would say it is of size 1024x8.

There are other pins on the memory chips that are important for other uses of these
chips. One of these is the chip enable, or chip select, input. Going back to our computer with
16GB of memory, it is unlikely that this computer has a single chip with 16GB locations. It is
much more likely that this 16GB of memory is constructed using smaller chips. Different
addresses in the 16GB range are assigned to different chips. When we want to get data from a
specific location, we need to get the data from one specific chip. We use the chip enable input
to choose the correct chip. We also use the chip enable inputs of the other chips to make sure
we’re not choosing those chips. Fortunately for us, ROM lookup circuits typically include just
one single memory chip, so we can always enable the chip in our circuits.

5.3.3 Using ROMs in Lookup Circuits

All ROM lookup circuits follow the same basic design procedure, summarized in the following
three steps.

1. All function inputs are connected to the address inputs of the ROM.
2. Function values are output on the ROM’s data outputs.
3. Each memory location in the ROM stores the value of the function for its input values.

I think the best way to illustrate how this works is to jump right in with an example. Let’s start
with a 3-input AND function. Its three inputs are a, b, and c, and its output q is 1 only when all
three inputs are equal to 1. Its truth table is shown in Figure 5.9 (a).

a b c q Address Data
0 0 0 0 000 (0) 0
0 0 1 0 001 (1) 0
0 1 0 0 010 (2) 0
0 1 1 0 011 (3) 0
1 0 0 0 100 (4) 0
1 0 1 0 101 (5) 0
1 1 0 0 110 (6) 0
1 1 1 1 111 (7) 1

(a) (b) (c)

Figure 5.9: 3-input AND function q=abc: (a) Truth table; (b) Lookup ROM circuit; (c) ROM data

WATCH ANIMATED FIGURE 5.9.b
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Following the procedure introduced at the beginning of this subsection, first we connect
the function inputs, a, b, and c, to the address inputs of the ROM, A2, A1, and A0, respectively.
Next, we connect the function output, q, to data output D0. Since we have three address inputs
and one data output, n=3 and m=1, and the size of our ROM is 23x1, or 8x1. That is, the ROM
has eight memory locations, each with one bit of data. The lookup ROM and its connections are
shown in Figure 5.9 (b).

Finally, we must determine the data values to store in every memory location. Let’s start
with address 0, or 000 in binary. We will read data from this memory location when a=0, b=0,
and c=0. When the function inputs have these values, q=abc=0^0^0=0, so we store a 0 at
memory location 0. We follow the same procedure to calculate the values at the other
locations. All other locations also have the value 0, except for location 7 (111), which has the
value q=1^1^1=1. These values are shown in Figure 5.9 (c).

Notice that the two tables in Figure 5.9 are essentially the same. This happens because
we connected our function inputs directly to the address inputs of the ROM, that is, A2=a, A1=b,
and A0=c.

Now, instead of an AND function, let’s say we want to implement an OR function. The
truth table for this function is shown in Figure 5.10 (a). Since this function has the same inputs
and outputs (though not the same output values) as the AND function, its connections are the
same as those for the AND circuit, as shown in Figure 5.10 (b). This is a really important point
and we’ll come back to this shortly. Finally, we determine the values to be stored in each
memory location. For this function, location 0 (a=0, b=0, and c=0) has the value 0 and all other
locations have the value 1, as shown in Figure 5.10 (c).

a b c q Address Data
0 0 0 0 000 (0) 0
0 0 1 1 001 (1) 1
0 1 0 1 010 (2) 1
0 1 1 1 011 (3) 1
1 0 0 1 100 (4) 1
1 0 1 1 101 (5) 1
1 1 0 1 110 (6) 1
1 1 1 1 111 (7) 1

(a) (b) (c)

Figure 5.10: 3-input OR function q=a+b+c: (a) Truth table; (b) Lookup ROM circuit; (c) ROM data

WATCH ANIMATED FIGURE 5.10.b

Now, back to our really important point. Both functions use exactly the same hardware
with identical input and output connections.We change the function of the circuit by changing
the contents of the ROM. By doing so, we can realize any function of the inputs using the same
circuit and modifying the data stored in the ROM.
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Finally, it is possible to use a lookup ROM to generate more than one function. To do
this, you need one data output for each function. After assigning each function to an output, we
determine the value for each location for each function and store those values in the ROM.
Consider a lookup ROM that generates both the AND and OR functions for three input values.
Here, q=abc and r=a+b+c. Figure 5.11 (a) shows the combined truth table for the two functions.
The circuit diagram is developed just as before. The ROM still has three inputs because the
functions each use the same three function inputs, a, b, and c. However, with two functions to
generate, the ROM now must have two outputs, so the ROM is of size 8x2. The circuit diagram is
shown in Figure 5.11 (b). To complete the design, we determine the values to be output for
both functions. These are shown in Figure 5.11 (c).

a b c q r Address Data
0 0 0 0 0 000 (0) 00 (0)
0 0 1 0 1 001 (1) 01 (1)
0 1 0 0 1 010 (2) 01 (1)
0 1 1 0 1 011 (3) 01 (1)
1 0 0 0 1 100 (4) 01 (1)
1 0 1 0 1 101 (5) 01 (1)
1 1 0 0 1 110 (6) 01 (1)
1 1 1 1 1 111 (7) 11 (3)

(a) (b) (c)

Figure 5.11: 3-input AND q=abc and OR q=a+b+c functions: (a) Truth table; (b) Lookup ROM
circuit; (c) ROM data

WATCH ANIMATED FIGURE 5.11.b

5.3.4 Arithmetic Lookup ROM Circuits

The previous examples used a lookup ROM to generate the output of a logic function. But
there’s nothing that stops us from using a lookup ROM to output other types of data values. The
ROM doesn’t know what type of data it outputs. It gets an address and outputs the data stored
at that address. By specifying the values input to the address pins, the contents of each memory
location within the ROM, and the connections from its outputs, the designer specifies its
function and the type and format of its data.

Arithmetic circuits are one type of circuit that can be implemented using a lookup ROM.
As in the previous examples, the function inputs are connected to the address pins of the ROM.
Instead of being Boolean logic values, however, these bits represent binary numbers. More than
one bit may be used to represent a number, and each bit is connected to a separate address bit.
Similarly, we may need several output bits to represent a single value.

To see how this works, consider a lookup ROM that multiplies two 2-bit numbers, X and
Y. Each input number has one of four possible values: 0 (00), 1 (01), 2 (10), or 3 (11). We’ll
represent X and Y as the two bit values X1X0 and Y1Y0. The product output by the ROM ranges
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from 0 (0x0) to 9 (3x3), or 0000 to 1001 in binary. So, we need four bits to represent the
product, which we’ll call Q and represent as Q3Q2Q1Q0 in binary.

Just as before, we’ll connect our function inputs (X1, X0, Y1, and Y0) to the ROM’s address
inputs and the product outputs (Q3, Q2, Q1, and Q0) to its data outputs. The circuit designer can
choose which function input and output bits are connected to each address and data pin on the
ROM. (Hint: Keeping the bits for each operand input and the product output together and in
order will make it easier to calculate the values to be stored in the lookup ROM.) For this
example, I decided to connect input value X to address bits A3 (X1) and A2 (X0), and input Y to
address bits A1 (Y1) and A0 (Y0). Output Q is connected to data outputs D3 (Q3), D2 (Q2), D1 (Q1),
and D0 (Q0). This is shown in Figure 5.12 (a).

(a) (b) (c)

Figure 5.12: 2-bit multiplier lookup ROM: (a) Lookup memory circuit; (b) ROM contents; (c)
Calculating values using a grid

WATCH ANIMATED FIGURE 5.12.a
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To complete the design of this circuit, we must specify the contents of the ROM. We do
exactly what we’ve done all along; we look at each possible set of input values and figure out
what output values they should produce. For this circuit, we can start with X=0 and Y=0, or X1=0,
X0=0, Y1=0, and Y0=0. When we multiply these values, we access memory address 0000, or 0.
The product of X and Y, 0*0=0, must be stored in that location. Doing this for all possible values
of X and Y gives us the data shown in Figure 5.12 (b).

It may be easier to visualize this if we use a grid to show these values, such as the one
shown in Figure 5.12 (c). Each row corresponds to a unique value of X and each column
represents a specific value of Y. The value at each location in the grid is the product of X and Y
for its row and column. We can concatenate X and Y to give the address associated with each
entry. For example, the third entry in the fourth row has X=11 and Y=10, and a data value of
0110. This shows that address 1110 has the value 0110, generating the output value 6 when we
multiply 3x2.

5.4 Summary

In this chapter, we examined several ways to design combinatorial logic circuits to realize
Boolean functions. Decoders can be used to generate the minterms of their inputs, and we can
logically OR the desired minterms to create a sum of products realization of the function. A
multiplexer can be configured to select the correct value of a function for any set of input values
and output it directly. A ROM can be used to look up one or more function values. The function
inputs specify the address and the data outputs produce the function values. Lookup ROMs can
be used to realize Boolean or arithmetic functions.

In Chapter 10, we’ll introduce programmable logic devices. These components have
many logic gates on a single chip. The design engineer can configure the connections between
gates to realize the desired function. Programmable logic devices can reduce the number of
chips in a design, as well as the amount of wiring and power needed in a circuit.

This concluded the material on combinatorial logic. In the next chapter, we begin our
discussion of sequential logic. Unlike combinatorial logic, which produces outputs based solely
on the current value of its inputs, sequential logic outputs are based on both the current inputs
and the current state, which in turn is based on previous values of the inputs. This may seem
confusing at first, but it will become clearer as we examine the basic components of sequential
logic and how they are used, along with combinatorial logic components, to realize sequential
designs.
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Exercises

1. Design a circuit to realize the following truth table using a decoder and an OR gate.

2. Design a circuit to realize the following truth table using a decoder and an OR gate.

3. Repeat problem 2, this time using a NOR gate to generate q instead of an OR gate.

4. Design circuits to perform the following functions for three inputs using a decoder.

a. AND
b. OR
c. XOR
d. NAND
e. NOR
f. XNOR
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5. Show the truth table and minimal function realized by the following circuit.

6. Using a 4 to 16 decoder, design a circuit to generate output a of the BCD to 7-segment
decoder.

7. Design a circuit to realize the following truth table using a multiplexer.

8. Design a circuit to realize the following truth table using a multiplexer.
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9. Design circuits to perform the following functions for three inputs using a multiplexer.

a. OR
b. XOR
c. NAND
d. NOR
e. XNOR

10. Show the truth table and minimal function realized by the following circuit.

11. Using a 16 to 1 multiplexer, design a circuit to generate output a of the BCD to
7-segment decoder.

12. Design a circuit to realize the following truth table using a ROM. Show the circuit and the
contents of the ROM.
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13. Design a circuit to realize the following truth table using a ROM. Show the circuit and the
contents of the ROM.

14. Design a circuit to realize the following truth table using a ROM. Output q1q0 is the sum
of a, b, and c. Show the circuit and the contents of the ROM.

15. Design a single circuit to perform the following functions for three inputs using a ROM.
Show the circuit and the contents of the ROM.

a. AND
b. OR
c. XOR
d. NAND
e. NOR
f. XNOR

16. Repeat Problem 15 for functions with four inputs.
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17. Show the truth table and minimal function realized by the following circuit and contents
of memory.

18. Design a BCD to 7-segment decoder using a ROM and show the contents of memory.
Segments a through g are connected to outputs O6 to O0, respectively.

19. A ROM has three address bits and three data bits. The inputs, a, b, and c form a 3-bit
binary value and are input to the ROM as in problem 17. The outputs of the ROM realize
the function (abc + 1) MOD 8. Show the contents of the ROM.
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Chapter 6: Sequential Components

In Part II of this book, we introduced combinatorial logic. Combinatorial circuits generate
outputs that depend only on the current values of the inputs. It doesn’t matter what value the
inputs were set to previously; the circuit only takes the current values into consideration when
generating its outputs.

Sequential circuits, in contrast, set their outputs based on both the values of the inputs
and its current status, or current state. The same input values could produce different outputs if
the circuit is in one state or another.

Consider a classroom filled with students. If the instructor asks the students to add 4 and
5, every student should come up with the same answer, 9. Their calculations depend only on
the values of the two inputs (4 and 5) and that we are adding them together. It does not matter
what the students were doing before the instructor asked them this question, whether they
were adding other numbers, performing a different arithmetic operation on the same or other
numbers, or watching online videos.

Now the instructor tells each student to stand up, take one step to the left, and sit back
down wherever they are. (For this example, every student has a seat available one step to their
left and nobody starts next to a wall on their left.) The students do not end up all sitting in the
same seat; if they follow directions properly, each student ends up in a different seat. Each
student received the same input (move one step to the left), but because they started in
different locations (current states), they ended up in different places.

As you’ve probably guessed, adding 4+5 is analogous to a combinatorial circuit, whereas
stepping to the left is more like a sequential circuit.

In order to access its current state, a sequential circuit must store this information
somewhere. We need digital components that can hold that information and make it available
to us as needed. That is largely the focus of this chapter.

The rest of this chapter is organized as follows. First, we examine basic models for
sequential circuits. We introduce synchronous circuits, which use a periodic signal called a clock
to synchronize the flow of data through the circuit. The rest of the chapter introduces two
classes of circuits that can store data: latches and flip-flops. We will look at several types of each
one, both their internal designs and external functions. We will expand on this in future
chapters to create more complex components and more advanced sequential circuits.

6.1 Modeling Sequential Circuits

As already noted, combinatorial circuits generate their outputs based solely on the values of
their inputs. Figure 6.1 (a) shows a very generic representation of a combinatorial circuit. The
circuit has inputs and combinatorial components, and it generates outputs. The inputs and
outputs are set to binary values. The combinatorial logic block may consist of fundamental logic
gates, more complex components, and other digital logic. The combinatorial block has one
restriction: it cannot contain any components that store information. When the values of the
inputs change, the outputs and the values within the combinatorial logic block change to give
the correct output for these input values. It doesn’t matter what outputs and values within the
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logic block were generated previously. The new values depend only on the current input values.
Specific input values always produce the same output values.

(a) (b)

Figure 6.1: Generic models: (a) Combinatorial circuit; (b) Sequential circuit.

For sequential circuits, outputs are based on both the current input values and the
previous state of the circuit. If a circuit inputs the exact same values at two different times, and
the circuit is in a different state at these two times, it may produce different output values. In
order to do this, a sequential circuit must have a way to store the current state and to use that
state, along with the input values, to generate both the output values of the current state and
the value of the new state. Figure 6.1 (b) shows the very generic representation of a sequential
circuit.

Everything in this circuit is similar to the combinatorial logic circuit except for the block
labeled STORAGE in Figure 6.1 (b). So far, we haven’t seen any circuits that can lock in and store
data. There are two main classes of circuits we use for this purpose: latches and flip-flops. We’ll
look at these in much greater detail in the remaining sections of this chapter. For now, it is
enough to know that there is a way to store the state.

This leads us to an obvious question – what is a state? – which we address in the
following subsection.

6.1.1 What Is a State?

In its simplest form, a state is just a way to represent the current condition of a circuit. Each
condition is its own state. We generate the outputs based on the values of the inputs and the
current state, and we also generate the new value of the current state (often called the next
state) based on these same values. We can model any sequential circuit as a finite state
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machine. Finite state machines is a large enough topic to warrant its own chapter, Chapter 8 in
this book.

To illustrate how this works on a generic level, consider the following specification. We
want to design a circuit that receives a single data input. When that input has been equal to 1
for a total of three times, we want to set a single output to 1 and start the whole process again.
To do this, we need to check the input to see if it is 1. We also need to keep track of how many
1s we have input so far, otherwise we won’t know when to set the output to 1. This is why we
need the states in our sequential circuit.

Our system needs three states:

● Zero values of 1 have been input so far.
● One value of 1 has been input so far.
● Two values of 1 have been input so far.

Now let’s look at the behavior of our system for each individual state. We’ll start with
the first state, Zero values of 1 have been input so far. If we input a 0, we still have zero 1s input,
and we have to do two things. We need to set our output to 0 because we have not read in
three 1s. Also, we still have zero 1s input, so we need to remain in this state. If we input a value
of 1, we still need to output a 0 since we still have not read in three 1s. However, since we have
now input 1 value of 1, we need to change to the state One value of 1 has been input so far.

The second state works in a similar way. If the input is 0, we output a 0 and remain in the
same state. If it is 1, we still output a 0 (because we now have read in two values of 1, not three)
and go to the state Two values of 1 have been input so far.

The final state acts like the others when the input is 0. It stays in the same state and sets
the output to be 0. If the input is 1, however, our circuit behaves differently. This is our third
input value of 1, so we have to set our output to 1. We also need to go to a different state.
There is no state called Three values of 1 have been input so far. Instead, we do what we said
we would do: set the output to 1 and start the whole process again. We do this by going back to
the state Zero values of 1 have been input so far.

Figure 6.2 shows the generic diagram for this circuit. The animation shows how the state
and output change for the input sequence 0, 1, 0, 1, 0, 1.

We’re not done yet. If I have the input set to 0, how do I know if that is one 0, two 0s, or
just how many 0s it is? The same question applies to the input value of 1.

There is another signal in this circuit labeled CLOCK. We use this signal to tell our circuit
when to check the input value. This signal might be used when generating the output value, but
it is mainly used to determine when to go from one state to the next. For that reason, it is also
passed directly to the portion of the circuit that stores the state. This leads us to our next
question: What is a clock?
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Figure 6.2: Block diagram of a circuit that outputs 1 when three 1’s have been input.

WATCH ANIMATED FIGURE 6.2

6.1.2 What Is a Clock?

There are many types of clocks. One that I built a number of years ago is shown in Figure 6.3. In
terms of sequential circuits, however, this has nothing to do with the CLOCK signal. This is not
our CLOCK.

Figure 6.3: Not our clock.

In digital circuits, a clock is a signal that alternates between high and low, or 1 and 0. In
order to minimize the time spent by the signal in between the voltage levels for logic 0 and
logic 1, it usually is implemented as a square wave, as shown in Figure 6.4 (a). This is an
idealized square wave, which instantaneously changes from 0 to 1 and from 1 to 0. In practice, it
does change extremely quickly, but not instantaneously. It does have a small rise and fall time,
as shown in Figure 6.4 (b).

For most circuits, the rise and fall times are insignificant. This can be of concern,
however, for circuits that run at a very high frequency, that is, a large number of clock cycles per
second. Modern microprocessors, for example, may have clock frequencies over 3GHz (3 billion
clock cycles per second). At this frequency, light travels about 4 inches, or 10 centimeters, in
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one clock cycle, which has a period (the time for a single clock cycle) of 0.33ns. At this
frequency, the rise or fall time is a greater percentage of the clock period.

(a) (b)

Figure 6.4: Our clock: (a) Idealized with clock cycles shown; (b) Rise and fall times.

As we will see in the following two sections, latches and flip-flops will use the clock
signal either as an enable signal to set the new state value when it is at the desired level, or they
will make use of its edges to set the new level.

Most sequential circuits are synchronous. They are easier to design and debug when a
clock signal can be used to synchronize changes in states within the circuit. As clock frequencies
increase, the circuits can do things more quickly, almost as if they aren’t even making use of the
clock. However, there is another type of sequential circuit that does not use a clock. We’ll look
at that next.

6.1.3 Asynchronous Sequential Circuits

Whereas synchronous sequential circuits use a clock to synchronize the changing of their states,
asynchronous sequential circuits do not use a clock signal. Instead, they typically incorporate
timing delays, or unclocked latches, in place of the storage found in synchronous sequential
circuits. Figure 6.5 shows the basic configuration of an asynchronous sequential circuit.

Other than replacing storage with time delays, this model is similar to that used for
synchronous sequential circuits. The circuit inputs values to a combinatorial logic block that
generates outputs and the next state of the circuit. This next state value is fed back to the
combinatorial logic block, after a delay, to use as it generates these values. In essence, the
asynchronous sequential circuit is just a combinatorial circuit with feedback and delays.
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Figure 6.5: Generic model for an asynchronous sequential circuit.

Asynchronous sequential circuits are more difficult to design than synchronous
sequential circuits. Being able to synchronize when values change in a circuit is a great
advantage that asynchronous sequential circuits, by their nature, simply do not have. In this
chapter and in Chapter 8, we will focus on synchronous sequential circuits. However, when we
design the latches and flip-flops used in synchronous sequential circuits, we will see that they
are actually combinatorial circuits with feedback, much like asynchronous sequential circuits.

6.2 Latches

So far we have alluded to the fact that we need to be able to store the current state of a
sequential circuit. So, what are we storing and how do we store it? The answer to the first part
of this question is “a binary value.” When we want to store the current state of the circuit, we
list all the possible states and assign a binary value to each state. The number of bits in these
binary values must be the same for all states. From our discussion of binary numbers at the
beginning of this book, we know that an n-bit number can have 2n unique values. We will
choose the smallest value possible for n such that:

# of states ≤ 2n, or
n = ⎡lg(# of states)⎤

where ⎡ ⎤ represents the ceiling function, the smallest integer value that is greater than or
equal to the number it encloses, and lg is the base 2 logarithm function.

In the example in the previous section, our circuit has three states, based on the number
of 1s read in so far. The smallest possible value of n for this circuit is 2. One possible assignment
of 2-bit values to states is shown in Figure 6.6.

Figure 6.6: One possible assignment of state values to states.
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This brings us to the second question: how to store these values. In this section we look
at latches. A latch consists of cross-coupled gates that settle into a stable state. Much as the
latch on a door keeps the door in place, a latch keeps its outputs at one value, our stable state.
In the next subsection, we will look at the S-R latch, and in the following subsection we
introduce the D latch.

6.2.1 S-R Latch

The S-R (Set-Reset) latch was the first latch developed for digital circuits. It consists entirely of
combinatorial logic, but is connected in such a way that the circuit locks in a binary value, 1 or
0, based on the values of its inputs. Figure 6.7 (a) shows one way to construct the S-R latch
using NOR gates. Notice that the output of each NOR gate is fed back to supply one of the
inputs of the other NOR gate. This is the cross-coupling mentioned earlier; this is what allows
the circuit to lock in a value.

(a) (b)

Figure 6.7: S-R Latch: (a) Internal configuration using NOR gates; (b) Truth table.

WATCH ANIMATED FIGURE 6.7

The truth table for this circuit is shown in Figure 6.7 (b). When S = 1 and R = 0, we set

output Q to 1 and the complemented output, to 0. When S = 0 and R = 1, we do the opposite:𝑄
Q = 0 and = 1. When S = 1 and R = 1, both NOR gates output a 0. This is an invalid value𝑄
because it sets Q = , which should never be the case. This combination of input values is not𝑄
allowed for the S-R latch. The final input values, S = 0 and R = 0, do something different. This
keeps whatever value is already stored unchanged. If Q = 0, SR = 00 keeps Q = 0. If Q = 1, they
keep Q = 1.

The animation for this figure shows how the internal values change as we go through the
following sequence of values for S and R: 00→ 01→ 00→ 10→ 00→ 11. In this animation,
we start by setting SR = 01. Since R = 1, the output of the lower NOR gate will be 0, no matter
what its other input is. The upper NOR gate has S = 0 as its first input and the output of the
second NOR gate, also 0, as its second input. With both inputs equal to 0, its output is 1. This is
fed back as an input to the second NOR gate, but does not change its value. The circuit is in a

stable state with Q = 0 and = 1.𝑄
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Next, we set SR = 00. Since Q = 0, both inputs to the upper NOR gate are still 0, and it
continues to output a 1. This value is fed back into the lower NOR gate; R = 0 is also an input to
that gate. With input values of 1 and 0, the NOR gate outputs a 0. The circuit is once again

stable, with Q = 0 and = 1.𝑄
Then we set S = 1 and R = 0. Since S = 1, the upper NOR gate outputs a 0 regardless of

the value of the other input. This 0, and R = 0, are input to the lower NOR gate, which outputs a
1. Feeding this back into the first NOR gate does not change its output. In its stable state, the

circuit has Q = 1 and = 0.𝑄
Now we set SR = 00 again. The upper NOR gate has input values S = 0 and Q = 1, and sets

its output to 0. The lower gate inputs = 0 and R = 0, setting its output to 1. The circuit is stable𝑄
with Q= 1 and = 0. Just as it did earlier, the circuit retains its output values when SR = 00.𝑄

Finally, we set SR = 11. Both NOR gates have an input equal to 1, so both gates set their

outputs to 0, giving us the invalid outputs Q = 0 and = 0.𝑄
There is another configuration for the S-R latch that uses NAND gates. It is shown in

Figure 6.8 (a). Notice that the S and R inputs are inverted; this is necessary for this circuit to
function in the same way as the cross-coupled NOR circuit. Its truth table is shown in
Figure 6.8 (b). Notice that there is one difference between this truth table and the truth table

for the previous circuit. When we have invalid inputs SR = 11, this circuits sets Q = 1 and = 1𝑄
instead of setting both to 0.

(a) (b)

Figure 6.8: S-R Latch: (a) Internal configuration using NAND gates; (b) Truth table.

WATCH ANIMATED FIGURE 6.8

The animation for this figure takes us through the same input sequence as before:
SR = 00→ 01→ 00→ 10→ 00→ 11.

An alternative design dispenses with the two NOT gates and leaves it to the designer to

invert S and R before inputting them to the circuit. This is sometimes called the - latch and is𝑆 𝑅
shown in Figure 6.9 (a). Its truth table, with values for , , S, and R, is shown in Figure 6.9 (b).𝑆 𝑅
The animation shows the internal signals as it goes through the same sequence of values for S

and R, this time shown as = 11→ 10→ 11→ 01→ 11→ 00.𝑆𝑅
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(a) (b)

Figure 6.9: - Latch: (a) Internal configuration using NAND gates; (b) Truth table.𝑆 𝑅

WATCH ANIMATED FIGURE 6.9

6.2.2 S-R Latch with Enable

In Chapter 4, we introduced several more complex components. Some of these components
have an enable input. When the enable signal is asserted, usually by setting its value to 1, the
component behaves normally, as it is designed to do. When the enable signal is not asserted,
however, it does not perform its intended function. As an example, consider the 2 to 4 decoder
shown in Section 4.1.2, Figure 4.5. When its enable signal is 0, all the outputs are set to 0, no
matter what values the select inputs I1 and I0 have.

We can also add an enable signal to an S-R latch. When the enable signal is 1, the S-R
latch functions just as described in the previous subsection. However, when it is 0, we do not
change the outputs regardless of the values of S and R. Here, we will call it an enable signal. As
we use the S-R latch to create flip-flops in the next section, this signal will morph into a clock.

We can incorporate this enable signal into the S-R latch fairly easily by taking advantage
of the fact that setting SR = 00 does not change the output values. This is exactly what we want
to happen when our enable signal is 0. We keep the cross-coupled design of the S-R latch the
same, and combine the enable with the S and R inputs to create the final SR inputs to the latch.
This is shown in Figure 6.10.

Figure 6.10: S-R Latch with Enable Signal

WATCH ANIMATED FIGURE 6.10
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The way this works is fairly straightforward. When E = 1, S ^ 1 = S, R ^ 1 = R, and the
original S and R values are input to the S-R latch, it functions as it normally would.
When E = 0, S ^ 0 =0, R ^ 0 =0, then the circuit inputs 00 to the S-R latch which keeps its outputs
unchanged.

This methodology, conditioning the inputs and using the rest of the circuit without
changes, is used regularly in digital design. The unmodified portion of the circuit, the original
S-R latch in this case, may be available only as a component or integrated circuit chip that
cannot be modified. There are also other advantages, including that the unmodified portion has
already been verified as correct, which simplifies the design cycle. In my other book, we use this
methodology to design the arithmetic and logic unit (ALU) portion of a microprocessor.

6.2.3 D Latch

In many instances, we don’t want to deal with the latch inputs. We have a value that we want to
store in the latch, and we don’t want to spend time and construct circuitry to create the latch
inputs to store that value. We want to say, “Here’s the value; store it in the latch.” This led to the
creation of the D (Delay) latch. Its truth table is shown in Figure 6.11 (a).

(a) (b) (c)

Figure 6.11: D Latch: (a) Truth table; (b) Excitation table with S and R input values; (c) Circuit
design.

WATCH ANIMATED FIGURE 6.11

As was the case with the S-R latch, with enable, we design the D latch by starting with an
S-R latch and conditioning its inputs. Looking at the truth table, we see that we want Q to be the
same as input D. To do this, we need to determine the values of S and R that will accomplish
this. In Figure 6.11 (b), we expand the truth table to show the S and R values we need to
produce. This is called an excitation table. An excitation table is very much like a truth table.
Instead of showing outputs, however, it shows the inputs to be generated for the given values of
the inputs and the current state/outputs.

From this table, we can easily see that we must set S = D and R = D'. We can connect
input D directly to S of the S-R latch, and we pass D through a NOT gate to generate D', which
we connect to input R. This circuit is shown in Figure 6.11 (c). Everything inside the dashed box
comprises the D latch.
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Looking at the behavior of this circuit, you might argue that it is fairly useless. You may
be storing some value, but as soon as the value of D changes, the latched value changes too. If
this is your argument, well, you’re quite correct. In this circuit, we always output the same value
that we input.

For this reason, D latches always have an enable input, which functions much like the
enable signal we added to the S-R latch. When the enable input is 1, we set output Q to the

value of input D (and output to its complement). When the enable is 0, Q retains its previous𝑄
value, no matter what value input D has. The excitation table for the D latch with enable is
shown in Figure 6.12 (a), including the values of S and R.

(a) (b)

Figure 6.12: D latch: (a) Excitation table; (b) Circuit design.

WATCH ANIMATED FIGURE 6.12

To implement this, we’ll do exactly what we did for the S-R latch with enable. We take
the S and R inputs for the latch without enable and logically AND them with the enable signal.
When the enable input is 1, S = D ^ 1 = D and R = D' ^ 1 = D'. When the enable input
is 0, S = D ^ 0 = 0 and R = D' ^ 0 = 0, and the output is unchanged. The circuit to implement the
D latch with enable is shown in Figure 6.12 (b).

6.3 Flip-Flops

For the D latch with an enable signal presented in the previous subsection, what happens if the
value on the D input changes while the enable signal is high? For example, consider the values
shown for the D input and the enable signal shown in Figure 6.13. What would the waveform
for output Q look like? Think this through for a minute before proceeding.

Figure 6.13: D latch input values with D changing while E = 1.
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Hopefully you did take some time to think this through, and to look back at the truth
table in Figure 6.12 (a). When E = 1, we set Q to whatever value is being input on D. As D goes
from 0 to 1, back to 0, and then back to 1 again, the Q output does the same because E = 1.
When E goes to 0, the circuit locks in the value of Q and does not change it, even when D
changes from 1 to 0. The timing diagram, with output values, is shown in Figure 6.14. The
animation for this figure shows how the inputs, S and R values, and outputs change over time.

Figure 6.14: D latch input, output, and internal signal values.

WATCH ANIMATED FIGURE 6.14

For many designs, this behavior is undesirable. We want to update our output values
and lock them in. When we use a clock to enable our latch, we often want to update these
values only once in each clock cycle. This is the reason why most sequential circuits do not use
latches.

Instead, engineers designed another type of device to store data values and only update
them once per clock cycle, usually on the rising or falling edge of the clock. (The rising edge
occurs when the clock changes from 0 to 1, and the falling edge is when the clock changes from
1 to 0.) These are called flip-flops, and that is what we’ll be discussing in this section. There are
several types of flip-flops, all of which incorporate latches in their design. This is why I spent
time writing a section on a component you won’t use; we do use it to design the component
you actually will use.

The remainder of this section introduces three flip-flops: the D, J-K, and T flip-flops. We
will see how they are constructed from the D and S-R latches introduced in the previous section,
their overall functions, and how some of them are extended to include asynchronous signals to
preset (set Q = 1) and clear (set Q = 0) them, regardless of the value of the clock.
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6.3.1 D Flip-Flop

The D flip-flop is functionally similar to the D latch. The data value on the D input becomes the
value placed on the Q output. Unlike the D latch, however, the value is only loaded into the
D flip-flop on one of the clock edges. Throughout this section, we will design flip-flops so they
load in data on the rising edge of the clock. Figure 6.15 (a) shows the truth table for the D
flip-flop. The symbol ↑ indicates the rising edge of the clock.

(a) (b) (c)

Figure 6.15: Positive edge-triggered D flip-flop: (a) Truth table; (b) Logic symbol
(edge-triggered); (c) Logic symbol (pulse triggered).

The standard symbols to represent the D flip-flop are shown in Figures 6.15 (b) and (c).
Note that there are two types of flip-flops. The edge-triggered flip-flops use only one edge of
the clock internally; the > symbol indicates the clock input and that this is a positive
edge-triggered clock. A pulse-triggered flip-flop uses both edges of the clock. From the outside,
we see only one edge changing data, but internally there are operations occurring on both

edges. The ⎤ symbol on the Q and outputs indicate that the flip-flop is pulse triggered.𝑄

6.3.1.1 Leader-Follower Design

Given all of this, let’s look at the internal design of the D flip-flop. The most straightforward
design consists of two D latches in what has been called a master-slave configuration, but in this
book will be referred to as a leader-follower configuration. This design is shown in
Figure 6.16 (a). It is pulse-triggered, as each edge of the clock enables one of the latches. It
works as follows.

1. When CLK = 0, the first D latch is enabled and it continuously sets its output Q to
whatever value D has. It passes its Q value to the D input of the second D latch, but that
latch is not enabled, so it ignores that input and keeps its previous value.

2. On the rising edge of the clock, the first D latch is no longer enabled. Whatever value it
has at that time is locked in and is held as the D input to the second latch. Any changes
in the D input of the first latch are ignored. At the same time, the second latch is now
enabled. It continually passes the value on its D input to its Q output as long as CLK = 1.
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This input value is the value that was just locked into the first latch. Since that value does
not change, neither does its output.

3. The clock eventually hits its falling edge, transitioning from 1 to 0. This disables the
second latch, locking in its value. The first latch is now enabled, and we’re back at the
first step in this process.

(a) (b)

Figure 6.16: D flip-flop: (a) Leader-follower design; (b) Signal values for sample input sequence.

WATCH ANIMATED FIGURE 6.16

Figure 6.16 (b) shows a timing diagram for a sample D and CLK input sequence. This sequence is
shown in the animation for this figure and briefly described below.

1. Initially, CLK = 0. The first D latch is enabled. The value in its D input, D1, is passed
through to its output, Q1. The second latch is disabled; its output remains unchanged.

2. The clock changes from 0 to 1 on its rising edge. The first latch is disabled and locks in its
value. It does not change when its D input changes as long as CLK = 1. The second latch
is now enabled. It passes the value on its D input, D2, to its output, Q2, and to the Q
output of the flip-flop. Since its input is connected to the output of the first D latch,
which does not change, its output stays at 1 the entire time that CLK = 1.

3. The clock goes back to 0. The second latch is disabled and locks in its output. The first
latch is now enabled and passes the value on its input D1 to its output Q1.

4. On the next rising edge of CLK, D = 0, and this value is locked into the first latch; Q1 = 0.
The second latch reads in this value and passes it through to its Q output.

5. On the final falling edge, the second latch is disabled and locks in its output value of 0.
The first latch is enabled and passes the D input to its Q output.

6.3.1.2 Preset and Clear

There is another design commonly used for edge-triggered D flip-flops. It uses three - latches,𝑆 𝑅
a total of six gates. This design, however, includes two additional inputs, (preset) and𝑃𝑅𝐸 𝐶𝐿𝑅
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(clear). When =0, it sets output Q to 1, regardless of the state of the D input. Similarly,𝑃𝑅𝐸
=0 sets Q to 0. Unlike the D input, which is sent to the output on the rising edge of the𝐶𝐿𝑅

clock, and are asynchronous. When either value goes to 0, the output is changed𝑃𝑅𝐸 𝐶𝐿𝑅
immediately; it does not have to wait for the rising edge of the clock. The truth table for this
flip-flop is shown in Figure 6.17.

Figure 6.17: Truth table for the edge-triggered D flip-flop with preset and clear. and𝑃𝑅𝐸 𝐶𝐿𝑅
may not both be set to 0 at the same time.

The complete circuit used to design the 7474 integrated circuit chip that has two
edge-triggered D flip-flops is shown in Figure 6.18. Note what happens to the Q output when

= 0. This value is input directly to the NAND gate that generates Q. Once it is set to 0, the𝑃𝑅𝐸
output of that gate becomes 1, regardless of the values of D and the clock. In a similar way,

setting = 0 causes to become 1 immediately.𝐶𝐿𝑅 𝑄

Figure 6.18: Internal design of the positive edge-triggered D flip-flop with preset and clear.

WATCH ANIMATED FIGURE 6.18
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6.3.2 J-K Flip-Flop

The S-R latch would be a good candidate to extend and create an S-R flip-flop, except for one
thing – the invalid SR = 11 input values. To address this, digital design engineers developed
another type of flip-flop that defines a function to be performed with these input values; it
inverts the output values. To avoid confusion with the S-R latch, this is called the J-K flip-flop.
Here, J replaces S and K replaces R. Its truth table and logic symbols are shown in Figure 6.19.

(a) (b) (c)

Figure 6.19: J-K flip-flop: (a) Truth table; (b) Logic symbol (edge-triggered); (c) Logic symbol
(pulse triggered).

There are a couple of ways to design this flip-flop. We can use the leader-follower
methodology we employed for the D flip-flop. Like its counterpart, this is technically considered
to be pulse triggered because it uses both the rising and falling clock edges. This design uses
two S-R latches as the leader and follower, as shown in Figure 6.20.

Figure 6.20: J-K flip-flop: Leader-follower design.

WATCH ANIMATED FIGURE 6.20

When the clock input is 0, the first latch has S = J ^ Q' and R = K' ^ Q. This ensures the
latch never has the invalid SR = 11 input. Also during this time, the two inputs to the second
latch’s S and R inputs are both 0, so it does not change its outputs. When the clock goes from 0
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to 1, the SR inputs to the first latch become 00 and it locks in its value. Its outputs become the
inputs to the second latch, which produces the desired output. The outputs of the first latch are
always 10 or 01, so this latch also never receives the invalid 11 input.

It is also possible to design a J-K edge-triggered flip-flop using the D flip-flop we designed
in the previous subsection. We just need to generate the D input using J, K, and the current
outputs Q and Q'. To do this, consider the excitation table shown in Figure 6.21 (a). In this table,
note that Q is an input, not an output. We are trying to generate D and we will use the current
output of the J-K flip-flop to do this.

(a) (b) (c)

Figure 6.21: Creating a J-K flip-flop using a D flip-flop: (a) Excitation table; (b) Karnaugh map to
generate D; (c) Final circuit.

WATCH ANIMATED FIGURE 6.21

With this excitation table, we can create the Karnaugh map shown in Figure 6.21 (b),
identify the essential prime implicants (JK' is not essential, nor is it needed to generate D), and
determine the function to produce the desired value of D. The final circuit is shown in Figure
6.21 (c).

Finally, it is possible to incorporate asynchronous preset and clear signals in an
edge-triggered J-K flip-flop, just as we did for the D flip-flop. Figure 6.22 shows the design for
this circuit. This is mostly the design for the 74112 TTL chip, except the clock is inverted. This
changes the design from the negative edge-triggered circuit in this chip to a positive
edge-triggered design.
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Figure 6.22: Internal design of the positive edge-triggered J-K flip-flop with preset and clear.

6.3.3 T Flip-Flop

The T (toggle) flip-flop, unlike the D and J-K flip-flops, cannot set its output to 0 or 1 explicitly.
Rather, it can invert its output or leave it unchanged. It has one input, T, and a clock, and the

usual Q and outputs. If T = 0 on the rising edge of the clock, output Q remains unchanged;𝑄
if T = 1, it is inverted. Figure 6.23 shows the truth table and logic symbol for the positive
edge-triggered T flip-flop. Note that the clock is not shown in the truth table. We can leave it
out of the truth table when it is implicit that all transitions must occur on a clock edge. We
could not leave it out of the truth tables for the flip-flops with preset and clear signals, since
those signals do not need a clock edge to perform their functions.

(a) (b)

Figure 6.23: T flip-flop: (a) Truth table; (b) Logic symbol.

Several companies manufacture chips with D and J-K flip-flops for designers to use in
their circuits. However, no company manufactures a chip with T flip-flops. Nevertheless, they
are commonly used, and no company makes them because they are very easy to construct
using existing flip-flops. First, let’s look at how to construct a T flip-flop using a D flip-flop.

To design a T flip-flop from a D flip-flop, we start by going back to the truth table and
using it to generate the excitation table. We expand the table to list all values of Q explicitly; this
is shown in Figure 6.24 (a).
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T Q D
0 0 0
0 1 1
1 0 1
1 1 0

(a) (b)

Figure 6.24: T flip-flop constructed using a D flip-flop: (a) Excitation table; (b) Final design.

One way to generate D from the T and Q values is to set D = T'Q + TQ'. A simpler way is
to XOR T and Q, giving us D = T ⊕ Q. Either way is fine; we use the latter in the circuit shown in
Figure 6.24 (b).

We can also use a J-K flip-flop to construct a T flip-flop. As before, we can generate the
excitation table, shown in Figure 6.25 (a). Notice that there are several don’t care entries in this
table. This occurs because there are two ways to set the new output value. For the first row, for
example, we have a current value of Q = 0 and we want to end up with the same value. We can
set JK = 00, which keeps it at its current value of 0, or we can set JK = 01, which explicitly sets
the value to 0. The second row either sets Q = 1 explicitly with JK = 10 or inverts the output to 1
if JK = 11. The remaining entries are derived in a similar manner.

T Q J K
0 0 0 X
0 1 X 0
1 0 1 X
1 1 X 1

(a) (b)

Figure 6.25: T flip-flop constructed using a J-K flip-flop: (a) Excitation table; (b) Final design.

With this table, you could construct Karnaugh maps and derive minimal functions for J
and K; for this design, J = T and K = T. The final design is shown in Figure 6.25 (b). For this
particular design, we could have said “If T = 0, we want the output to remain unchanged, so we
want J = K = 0, and if T = 1, we want to invert the output, so we must set J = K = 1. Putting them
together, we want J = K = T.” Most designs cannot be completed so easily – good for you if you
realized this before reading this paragraph.

6.4 Summary

This chapter begins our study of sequential circuits. Unlike combinatorial circuits, which
produce outputs based solely on the current input values, a sequential circuit produces outputs
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based on the current input values and its current state. Depending on the state of the circuit,
the same input values may generate different output values.

A sequential circuit requires something to store the current state of the circuit. A block
of combinatorial logic reads in the state of this circuit from the storage elements and the data
inputs, and it generates the circuit outputs; it also sends the new state of the circuit to the
storage elements.

Latches are a fundamental storage component. They use cross-coupled logic gates to
lock in (or latch) a data value, either 0 or 1. This chapter introduced the S-R latch (and its

variant, the - latch) and the D latch. We examined their overall functions and their internal𝑆 𝑅
configurations.

Latches may have an enable signal. When it is asserted, the output changes whenever
the input changes. This can be problematic for many sequential circuit designs. For this reason,
designers developed flip-flops. These devices load new data only on the rising edge of the clock,
when it changes from 0 to 1, though some can force the output to 1 (preset) or 0 (clear) at any
time, without regard for the clock. The design of the D flip-flop is based on the S-R latch. The
leader-follower design is pulse-triggered, and the design with asynchronous preset and clear

signals uses three modified - latches. The J-K flip-flop is created from the edge-triggered D𝑆 𝑅
flip-flop by using its inputs and current outputs to generate the next value of D to be stored in
the flip-flop. The T flip-flop employs the same strategy as it is constructed from either a D or J-K
flip-flop.

In the next chapter, we will examine some more complex sequential components. These
components are constructed using the flip-flops introduced in this chapter, with the addition of
combinatorial logic needed to generate the correct inputs to the flip-flops and the correct
component outputs.
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Exercises

1. For the 1s counter sequential system in Section 6.1, show the state and output after
each input in the following sequence: 0→ 1→ 1→ 1→ 0→ 1. Initially the system is in
state Zero values of 1 have been input so far.

2. Repeat Problem 1 for the sequence 1→ 0→ 1→ 1→ 1→ 0.

3. The 1s counter sequential system has the following sequence of inputs and outputs.

Show its initial and final state.

4. Show the outputs of the S-R latch in Figure 6.8 for the input sequence SR = 10→ 00→
01→ 10→ 01→ 00.

5. Repeat Problem 4 for the sequence SR = 01→ 10→ 01→ 00→ 10→ 00.

6. Show the outputs of the - latch in Figure 6.9 for the input sequence = 10→ 11→𝑆 𝑅 𝑆𝑅
01→ 10→ 01→ 11.

7. Repeat Problem 6 for the sequence = 01→ 10→ 01→ 11→ 10→ 11.𝑆𝑅

8. For the S-R latch with enable in Figure 6.10, show the values of Q and for the input𝑄
values in the following timing diagram.

9. Repeat Problem 8 for the input sequence shown in the following timing diagram.
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10. For the D latch in Figure 6.11, show the values of S, R, Q, and for the input sequence𝑄
D = 0→ 1→ 1→ 0→ 1→ 0.

11. Repeat Problem 10 for the input sequence shown in the following timing diagram.

12. For the D latch with enable in Figure 6.12, show the values of S, R, Q, and for the input𝑄
sequence DE = 01→ 11→ 10→ 00→ 11→ 01.

13. Repeat Problem 12 for the input sequence shown in the following timing diagram.

14. For the leader-follower D flip-flop shown in Figure 6.16, show the output of each D latch
for the input sequence D CLK = 00→ 10→ 11→ 01→ 00→ 11.

15. Repeat Problem 14 for the input sequence shown in the following timing diagram.

16. For the edge-triggered D flip-flop with preset and clear in Figure 6.18, show the output
of each NAND gate for the input values shown in the following timing diagram.
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17. Repeat Problem 16 for the input values shown in the following timing diagram.

18. For the leader-follower J-K flip-flop shown in Figure 6.20, show the output of each S-R
latch for the input sequence J K CLK = 010→ 011→ 000→ 001→ 100→ 101→ 110→
111.

19. Repeat Problem 18 for the input sequence shown in the following timing diagram.

20. Repeat Problem 18 for the positive edge-triggered J-K flip shown in Figure 6.21.

21. Repeat Problem 19 for the positive edge-triggered J-K flip shown in Figure 6.21.

22. For the positive edge-triggered J-K flip-flop with preset and clear shown in Figure 6.22,
show the output of each gate for the input values in the following timing diagram.

23. For the T flip-flop shown in Figure 6.24, show the values of D, Q and for the input𝑄
sequence T CLK = 00→ 01→ 10→ 111→ 10→ 11.
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24. Repeat Problem 23 for the input sequence shown in the following timing diagram.

25. For the T flip-flop shown in Figure 6.25, show the values of J, K, Q, and for the input𝑄
sequence shown in Problem 6.23.

26. Repeat Problem 25 for the input sequence shown in Problem 6.24.

27. Design a D flip-flop using a J-K flip-flop. (Hint: Create the excitation table, then
determine the functions for J and K.)

28. Design a D flip-flop using a T flip-flop.

29. Design a J-K flip-flop using a T flip-flop.
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Chapter 7: More Complex Sequential Components

Earlier in this book, we saw that there are some combinatorial logic functions that are used so
frequently that engineers created components specifically to realize these functions. When a
digital designer wants to include a decoder, encoder, multiplexer, or demultiplexers in a design,
they can simply use a chip with that function or call up a predefined component in their design
software. This is an efficient and cost-effective way to streamline the design process and
minimize design errors. The same reasoning can be used to justify the creation of similar
components for sequential logic. In this chapter, we examine some of these components, their
functions, and their internal designs.

First, we examine registers. A flip-flop is sufficient to store a single bit of data, but we
often use data consisting of multiple bits, such as the n-bit binary numbers we introduced
earlier in this book. Registers do just that; they store multi-bit binary values. We will see how
they can be designed in a straightforward manner using the flip-flops introduced in the previous
chapter.

There are certain types of registers that can not only store data, but can also perform
one or more operations on that data. We will look at shift registers, which, as the name implies,
can shift their bits one place to the right or left. These are particularly useful for data
communication, in which a multi-bit value is transmitted one bit at a time. We will introduce
several types of shift registers and how they are designed using flip-flops.

Finally, we will present counters. They may count up or down, or have the ability to
count in either direction. There are counters that count in binary or decimal. A digital circuit
may cascade several counters to count a larger number, much as the odometer on an
automobile uses several digits to count the number of miles driven. We will show how this
works and the signals used by the counters to communicate with each other. We will also
examine the methodologies used in the internal designs of these counters.

7.1 Registers

In digital circuits, it is fairly common to store and perform operations on numeric, binary values.
In some cases, the value may be a single bit, and a flip-flop is sufficient to store these values.
Most of the time, however, the value will have more than one bit. Although we could use
multiple flip-flops to store these values, this can become cumbersome, resulting in additional
wiring and greater power usage. For this reason, digital circuit designers developed dedicated
chips and components just for this purpose. These are called registers.

Internally, you can think of a register as several D flip-flops connected in parallel. Each
flip-flop receives one bit of a value as its input and outputs that one bit. Consider, for example,
the 8-bit register shown in Figure 7.1. An 8-bit value is input to the register via inputs D7-D0 and
the output is made available at outputs Q7-Q0.
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Figure 7.1: 8-bit positive edge-triggered register.

WATCH ANIMATED FIGURE 7.1

Note that all flip-flops within the register use the same clock signal. That is, when we
load a value into a register, we load all the bits of the register. Since registers are used to hold a
single, multi-bit value, we usually want to load the entire value or nothing at all. You can’t load,
say, bits 3, 5, and 6 with new values and leave the other bits unchanged. If you need your circuit
to be able to load individual bits, you should not use a register; you should use individual
flip-flops instead.

In more complex digital systems, such as microprocessors, the system may have a clock
signal that is used to synchronize all components within the system. In these systems, good
design practice is to use the clock input only for the system clock, and to have a separate signal
that indicates when to load the register.

Digital designers have modified the register design shown in Figure 7.1 just for this
purpose. They added a separate signal, which we call LOAD. When LOAD = 1, we load the new
value into the register on the rising edge of the clock. When LOAD = 0, we do not load in a new
value, regardless of the clock value. Figure 7.2 shows a generic 8-bit register with a LOAD signal
and a sample timing diagram. The animation shows this progression over time.

(a) (b)

Figure 7.2: 8-bit register with LOAD: (a) Generic diagram showing inputs and outputs; (b)
Example timing diagram.

WATCH ANIMATED FIGURE 7.2
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Before you continue reading, think about how you can make the CLK and LOAD signals
work with flip-flops that have only a single clock signal.

Hopefully you developed your own method to make the register with CLK and LOAD
signals function properly. Here’s my solution, which is not the only solution and may or may not
match yours. Even if our solutions are not the same, it is still quite possible that your solution is
perfectly valid.

I started by creating a truth table, with the LOAD and CLK signals as inputs and the clock
signal of the flip-flops as the output. Since we only care about the rising edge of CLK, I use ↑ and
not↑ as the value for CLK instead of the usual 0 and 1. This truth table is shown in Figure 7.3 (a).

LOAD CLK FF CLOCK My
choice

0 not ↑ not ↑ 0
0 ↑ not ↑ 0
1 not ↑ not ↑ 0
1 ↑ ↑ ↑

(a) (b)

Figure 7.3: 8-bit register with LOAD: (a) Truth table for flip-flop clock inputs; (b) Final design.

From the table, we see that we must generate a rising edge when LOAD = 1 and CLK = ↑,
and any value that is not a rising edge in all other cases. I choose to make this value 0 when
LOAD = 0 and the same value as CLK when LOAD = 1. (The latter works both when we do and do
not have a rising edge.) To create this value, we can simply AND together the LOAD and CLK
signals. Figure 7.3 (b) shows the final design for an 8-bit register with LOAD signal.

7.2 Shift Registers

Registers were created to simplify the design process. Instead of wiring up several chips
containing individual flip-flops, engineers could use a single chip to store multi-bit values.
Registers are very useful, but their functionality is somewhat limited. They can load and store
data, but they cannot perform any operations on that data.

For that reason, design engineers created extended versions of registers, components
that can load and store data, but also perform specific operations on that data. The designers
chose functions that are frequently used by circuit designers. In this section, we look at one
class of registers, the shift register. First we will introduce the linear shift operation, how it
works, and the designs of linear shift registers using both D and J-K flip-flops. Then we will
discuss ways to combine shift registers for data values with large numbers of bits.
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7.2.1 Linear Shifts

Imagine that you are in a small store. There is one line of customers at the checkout. When a
customer finishes checking out and leaves, the next customer moves up to the cashier, and
everyone else in line moves forward one step. This is essentially how a linear shift operation
works.

Instead of customers in a checkout line, consider an 8-bit binary value, for example,
10110110. We can perform a linear shift on this data in one of two ways: linear shift left or
linear shift right. First, let’s look at the linear shift left. Just as with our line of customers, every
bit is shifted one position to the left, as shown in Figure 7.4 (a). This takes care of most of the
bits, but it leaves us with two questions. What happens to the most significant bit? And what
gets shifted into the least significant bit? Just as the customer who finishes paying leaves the
store, the most significant bit also leaves. We say it is shifted out. As for the least significant bit,
by definition a linear shift places a 0 in this position.

(a) (b)

Figure 7.4: (a) Linear left shift; (b) Linear right shift.

The linear shift right works in exactly the same way, but in the opposite direction. The
least significant bit is shifted out and a 0 is placed in the most significant bit, as shown in Figure
7.4 (b).

7.2.2 Shift Register Design Using D Flip-Flops

Now that we know how linear shift operations work, we can design shift registers to implement
these operations. The easiest way to do this is to use flip-flops. First, we will see how to do this
using D flip-flops, which is the most straightforward design.

Consider the 8-bit register constructed from eight D flip-flops shown in Figure 7.5. The
subscripts 7 to 0 represent the positions of the eight bits, with bit 7 being the most significant
and bit 0 being the least significant. When we perform a linear shift right, we want to move the
value from bit 7 to bit 6, from bit 6 to bit 5, and so on. More specifically, we want to load the
value in bit 7 into bit 6, and so on. To do this, we connect the Q output of bit 7, Q7, to the D
input of bit 6, D6; we do the same for the other bits. We do not connect Q0 to anything since
that value is shifted out. We connect D7 to a hard-wired 0 since the linear shift places a 0 in that
bit position. Finally, our shift register must have an input signal, which I’ll call SHIFT, that causes
the shift operation to occur on its rising edge. Putting all of this together gives us the design
shown in Figure 7.5.
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Figure 7.5: 8-bit linear shift right register constructed using D flip-flops.

WATCH ANIMATED FIGURE 7.5

We can use exactly the same design to implement the linear shift left operation. We
simply reverse the labels. Instead of labeling the flip-flops from 7 to 0 (left to right), we number
them from 0 to 7. It’s perfectly acceptable to do this. The flip-flops don’t really care what you
call them. The only thing that matters to them is how their inputs, outputs, and clock signals are
connected. Figure 7.6 shows this configuration.

Figure 7.6: 8-bit linear shift register relabeled for linear shift left operation.

WATCH ANIMATED FIGURE 7.6

There is one extremely important point to emphasize when it comes to shift registers.
All the shifts occur at exactly the same time. The values that are shifted are the values in each
flip-flop at the beginning of the shift operation. We don’t shift a value from bit 7 to bit 6, and
then shift that value from bit 6 to bit 5, and so on. We shift the original value from bit 7 to bit 6,
the original value from bit 6 to bit 5, and so on. This ensures that our design implements the
linear shift operation properly.

One final point I want to mention concerns the 0 that is loaded into the most significant
(linear shift right) or least significant (linear shift left) bit. In most shift register designs, there is
a dedicated input called SHIFT_IN that supplies this input. This is particularly useful when we
cascade shift registers to accommodate larger numbers; we’ll examine this later in this section.
For now, we have hard-wired a logic 0 to this input for the designs presented here.

7.2.3 Shift Register Design Using J-K Flip-Flops

We can also design a shift register using J-K flip-flops. Just as before, we use one flip-flop for
each bit and use the outputs of each flip-flop to generate the inputs of the next flip-flop. Here,
the key is to determine the functions for inputs J and K for each flip-flop.

Figure 7.7 (a) shows the excitation table for a J-K flip-flop within the shift register. In this
table, Q is the output of the previous flip-flop, and also the value we want to load into this J-K
flip-flop.
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Q J K
0 0 1
1 1 0

(a) (b)

Figure 7.7: Linear shift register constructed using J-K flip-flops: (a) Excitation table;
(b) Final design.

WATCH ANIMATED FIGURE 7.7

Looking at the excitation table, it is fairly easy to see that J = Q and K = . Since the J-K𝑄
flip-flop produces both Q and outputs, they can be connected directly to the inputs of the𝑄
next flip-flop. We do this for every flip-flop except the first one. Since the linear shift operation
must set that bit to 0, we set J = 0 and K = 1 for that flip-flop. The final design for the register
that shifts to the right is shown in Figure 7.7 (b). We can simply relabel the bits as we did for the
shift register constructed using D flip-flops to make this shift register perform a shift to the left.

If our register has a SHIFT_IN signal, we would handle the first bit slightly differently.
Instead of hard-wiring J = 0 and K = 1, we would use SHIFT_IN to generate the J and K inputs.
When SHIFT_IN = 0, we want to set the flip-flop to 0, which we do by setting J = 0 and K = 1. If
SHIFT_IN = 1, we set the output to 1 by setting J = 1 and K = 0. Combining these two gives us the
functions J = SHIFT_IN and K = SHIFT_IN'. The shift register with a SHIFT_IN signal is shown in
Figure 7.8.

Figure 7.8: Linear shift register with SHIFT_IN signal constructed using J-K flip-flops.

7.2.4 Bidirectional Shift Registers

You may need to design a circuit that can shift its data either left or right. A single input, which
we’ll call SHIFT_DIR, would indicate the direction to shift the data; we will use SHIFT_DIR = 0 for
shift left and SHIFT_DIR = 1 for shift right. You cannot use the designs we’ve seen so far; they
can only shift data in one direction. However, we can modify these designs to create a
bidirectional shift register. We’ll modify our design using D flip-flops.

The key to this design is to develop functions for each flip-flop input and the circuitry to
realize these functions. Let’s start by considering one of the flip-flops in the middle of the shift
register, say bit 4. If SHIFT_DIR = 1, we want to shift the contents of the register one bit to the
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right. Bit 4 must get the value of bit 5, which is available on its output, Q5. If SHIFT_DIR = 1,
D4 = Q5. If SHIFT_DIR = 0, however, we are shifting the data left by one bit, and bit 4 must get
the value of bit 3; when SHIFT_DIR = 0, D4 = Q3.

We can combine the two cases to generate D4 by using combinatorial logic gates or a 2
to 1 multiplexer. Figure 7.9 shows one possible design using multiplexers. Notice that the
designs for the inputs to the bit 7 and bit 0 flip-flops are slightly different. Rather than getting
one of two flip-flop outputs as their D input value, they get either one flip-flop value or the
SHIFT_IN value.

Figure 7.9: Bidirectional shift register constructed using D flip-flops and multiplexers, color
coded as follows: RED = direction of shift (0=left, 1=right); GREEN = data paths for left shift;

PURPLE = data paths for right shift; BLACK = clock and data path from multiplexers to flip-flops.

WATCH ANIMATED FIGURE 7.9

If we do not have a SHIFT_IN signal on our shift register, we can use the same design to
perform a regular linear shift operation. The only change we need to make to our design is to
replace SHIFT_IN with a hardwired 0.

7.2.5 Shift Registers with Parallel Load

It is very useful to be able to load a shift register in parallel, that is to load data into all the bits
of a shift register simultaneously, just as we load all bits of a traditional register. In computer
systems, a microprocessor may send data to a specialized chip called a Universal Asynchronous
Receiver/Transmitter, or UART. The microprocessor sends the data in parallel, and the UART
outputs the data to a modem or other serial device one bit at a time. As you may have guessed,
UARTs incorporate shift registers designed to perform a parallel load in their designs.

We can modify the designs presented previously in this section to add the ability to load
the shift register in parallel. We need to add some input signals to do this. First, we add eight
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inputs, I7 to I0. When we load data in parallel, the data will be placed on these inputs. We also
need to add a signal that tells the shift register to load the data; we’ll just call that signal LOAD.

With these additional signals, we can modify any of the shift registers presented so far.
As an example, we will modify the bidirectional shift register shown in Figure 7.9. We start by
creating the truth table for our design, which is given in Figure 7.10. As shown in this table, one
of four things can happen. When LOAD = 0 and SHIFT = 0, we do not want to load in a new value
nor shift the current value. We want to keep the value in the register unchanged. If LOAD = 0
and SHIFT = 1, we want to shift the data. The value of SHIFT_DIR determines whether we should
shift left (SHIFT_DIR = 0) or right (SHIFT_DIR = 1). Finally, if LOAD = 1 we must load in the data
on the data inputs.

Notice what happens when LOAD = 1 and SHIFT = 1. You cannot both load and shift data
simultaneously. You must choose one or the other. Since I’m writing this book, I get to choose,
and I choose to give LOAD priority over SHIFT. If both signals are high, our register will load data.

LOAD SHIFT SHIFT_DIR Q
0 0 X Q0

0 1 0 Q6-0,SHIFT_IN
0 1 1 SHIFT_IN, Q7-1

1 X X I7-0

Figure 7.10: Truth table for the bidirectional shift register with parallel load.

As shown in the truth table, there are three possible values we can load into each
flip-flop: the next lower bit or SHIFT_IN (shift left); the next higher bit or SHIFT_IN (shift right);
or the value on input I (load). To do this, we follow the same design methodology we used for
the original bidirectional shift register: we use a multiplexer to select the correct input. Since we
have three inputs, we need a larger multiplexer, a 4 to 1 multiplexer. (Multiplexers always have
the number of inputs equal to a power of 2. Nobody makes a 3 to 1 multiplexer. We just don’t
use the extra input and we make sure we never select that input.) Figure 7.11 (a) shows how I
chose to assign the possible data values to the multiplexer inputs.

LOAD SHIFT SHIFT_DIR S1 S0

0 0 X X X
0 1 0 0 0
0 1 1 0 1
1 X X 1 0

(a) (b)

Figure 7.11: Multiplexer to generate Di: (a) Data connections – replace Qi-1 or Qi+1 with SHIFT_IN
for D0 and D7, respectively; (b) Excitation table for multiplexer select signals.

Next, we must determine the functions for S1 and S0 to select the correct input. We
create the excitation table shown in Figure 7.11 (b) and develop the function for each
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multiplexer select signal. We can set S1 = LOAD and S0 = LOAD' ^ SHIFT ^ SHIFT_DIR. There is a
simpler function for S0; finding this function is left as an exercise for the reader.

The last step is to determine when to load data into the flip-flops. We do not want to
load new data on every rising edge of the clock; when LOAD = 0 and SHIFT = 0, we want to leave
the data unchanged. We only want to change the data when one or both of these signals are 1
and the clock is rising. The function to realize these conditions is (LOAD + SHIFT) ^ CLOCK.
Putting all of this together gives us the final design shown in Figure 7.12.

Figure 7.12: Bidirectional shift register with parallel load, color coded as follows: RED and
ORANGE = multiplexer select signals; GREEN = data paths for left shift; PURPLE = data paths for

right shift; BLACK = clock and data path from multiplexers to flip-flops.

7.2.6 Combining Shift Registers

It is not feasible to design shift registers for all possible applications. Consider, for example, a
circuit that, for some reason, needs to shift data that has 128 bits. Designing a single TTL chip to
incorporate such a large shift register would not be feasible for several reasons. One has to do
with the number of pins on the chip. Shift registers can output their current values, that is, the
output of each flip-flop is connected to an output pin on the chip. The only chips with enough
pins for all these outputs are the pin grid array chips used for microprocessors and advanced
programmable gate arrays.

To get around these practical restrictions, designers created shift registers that can be
combined to form larger shift registers. To illustrate this, consider how we would create a 16-bit
shift right register using two 8-bit shift registers.

The two registers take care of shifting their own data internally, and we can shift in data
using the SHIFT_IN signal of one of the registers. But one bit must be shifted out of one register
and into the other. The way to do this is to connect the output for the least significant bit of the
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first register, the bit that will be shifted out, to the SHIFT_IN input of the second register, as
shown in Figure 7.13.

Figure 7.13: 16-bit shift register constructed from two 8-bit shift registers.

WATCH ANIMATED FIGURE 7.13

With the data connections completed, the final task is to set up the control signals, just
the SHIFT signal in our design. The way we do this is to connect the SHIFT inputs of the two shift
registers together. When the SHIFT input is asserted, this ensures that both registers shift their
data at the same time, which is what we want to happen.

To expand this even further, we could combine more registers using the same
methodology to create even larger shift registers. However, there is one thing you have to
consider. You must ensure that the fan-out of the SHIFT signal is sufficient to supply a valid
signal to all of the shift registers. If it is not sufficient, you can use buffers to alleviate this
problem, just as we did for the combinatorial circuits in Chapter 3; see Figure 3.16 in subsection
3.4.3.

7.3 Counters

So far in this chapter, we have seen components that store data (registers) and components that
move individual data bits (shift registers). There are also components that modify stored data by
performing arithmetic operations on the data. One class of this type of components is counters.

As the name implies, counters count. That is, they may increment (add 1 to) or
decrement (subtract 1 from) their value. There are counters that operate on binary or decimal
data, and it is possible to design a counter for any numeric base. In this chapter, we will examine
designs for these types of counters.

When we increment a number, we may change more than one bit. For example,
incrementing the binary value 0111 gives us 1000, which changes all four bits. As we design the
various counters, we will examine ways to tell the correct bits to change their values when
incrementing or decrementing. We will also introduce carry and borrow bits and see how they
can be used to combine counters for larger numbers of bits.
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7.4 Binary Counters – Function

There are many applications that require a circuit to count something. A car odometer and a
digital clock are just two examples. The circuit we discussed in Chapter 6, which outputs a 1
when three 1s have been input, can also use a counter to realize its function. More complex
circuits, such as microprocessors, often incorporate counters within their designs.

Many (but not all) of these counters are simple binary counters. These counters store a
binary value, like a register. When a COUNT signal is asserted, the counter adds 1 to (or
subtracts 1 from) that value and stores the result as its new value. For example, a 3-bit
upcounter (a fancy way of saying a counter that increments, or counts up) will go through the
following sequence.

000→ 001→ 010→ 011→ 100→ 101→ 110→ 111→ 000→

In decimal, this sequence is 0→ 1→ 2→ 3→ 4→ 5→ 6→ 7→ 0→
Just like an odometer, when it reaches its largest value, the next increment operation

brings the value back to the lowest value – from 111 (7) to 000 (0) in this case. And just like an
odometer, this may cause the next digit to be incremented, as when an odometer increments
from 19 to 20. If each digit has its own counter, we need a way for one counter to tell the next
counter that it has gone from the highest value to the lowest. In the odometer example, the
ones digit counter needs to inform the tens digit that it also must be incremented. To do this,
counters typically have a carry out signal that is set to 1 when this happens. The next counter
will use this signal to determine when it must increment its value.

Internally, we must do the same for the bits within the counter. For our 3-bit counting
sequence, for example, consider the transition from 001 to 010. The least significant bit changes
from its maximum value, 1, to its minimum value, 0. It must signal the next bit so that it changes
from 0 to 1, otherwise we will not produce the correct value of 010. In the next section, we will
introduce two design methodologies for counters that address this design task in two different
ways.

Downcounters work in a similar manner, but in the opposite direction. A 3-bit
downcounter goes through the sequence:

111→ 110→ 101→ 100→ 011→ 010→ 011→ 000→ 111→

In decimal, this is 7→ 6→ 5→ 4→ 3→ 2→ 1→ 0→ 7→
Just as upcounters have a carry bit to indicate when the counter goes from its maximum

value to its minimum value, downcounters have a borrow signal that is asserted when it loops
back from its minimum value to its maximum value.

There are also counters that can count in either direction called up-down counters. Like
the bidirectional shift register, these counters have an additional input that determines whether
the counter increments or decrements its value. Also like the shift registers, many counters can
load data in parallel. Finally, many counters can clear their data, setting all bits to 0. We’ll look at
these options as we design counters in the remainder of this section.
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7.5 Binary Counters – Design

Now that we have established what binary counters do, we can design them. There are two
types of designs for these counters based on how one digit rolling over causes the next digit to
increment or decrement, as happens with the odometer in the previous section increments
from 19 to 20. These two methodologies, ripple counters and synchronous counters, are
described in the two subsections that follow.

Before we look at these methodologies, I want to introduce a couple of things that are
common to all binary counters, regardless of which methodology they use. The first thing is the
number of flip-flops used to store the value within the counter. An n-bit counter must always
have n flip-flops, one for each bit of the count value. This is the case regardless of which type of
flip-flop is used. We’ll look at examples of counters using D and J-K flip-flops in the following
subsections. This may seem intuitively obvious, but it’s best to specify this right up front.

The second commonality is not quite so obvious, but is important to note when
designing the counters. Look back at the sequence for the 3-bit count up, which goes from 000
to 111 and then back to 000. For every bit, we either leave the bit unchanged, or change it from
0 to 1 or from 1 to 0. Rephrasing this, we either do not load a new value into the flip-flop for a
bit or we complement its value. Thinking of the function in this way will simplify our work when
we design our counters.

7.5.1 Ripple Counters

I think the best way to illustrate the design of ripple counters is to jump right into a design. So,
let’s start by designing a 4-bit ripple counter using positive edge-triggered D flip-flops. There are
two steps in the design process: establish the data paths and implement the clock signals. There
are two possible functions for every flip-flop in our counter at any given time; either:

● Do not load a new value into the flip-flop: If you don’t want to load in a new value, don’t
send a positive edge to the clock. The flip-flop only loads data when the clock goes from
0 to 1. If it stays at 0, or at 1, or it goes from 1 to 0, the flip-flop does not load in data; it
retains its previous value.

Or

● Complement its value: When we do want to change the value of a flip-flop, we load the
complement of the value. The flip-flop outputs its value on its Q output and the

complement of its value on its output. If we connect to the D input for a flip-flop, it𝑄 𝑄
will load its complement on the rising edge of its clock input.

Putting these together allows us to design the data paths, the connections used for the data
as opposed to the clocks. This partial design is shown in Figure 7.14.
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Figure 7.14: Data paths for the 4-bit ripple counter constructed using D flip-flops.

Now we need to tell each flip-flop when to load in a new value. We’ll start with the least
significant bit, the rightmost flip-flop in this design. Consider the complete sequence for a 4-bit
upcounter:

000→ 001→ 010→ 011→ 100→ 101→ 110→ 111→ 000→

Whenever our COUNT signal is 1, we need to invert the least significant bit on the rising edge of
the CLOCK input. We can do this by ANDing together these two signals. Adding this to our circuit
gives us the partial design shown in Figure 7.15.

Figure 7.15: 4-bit ripple counter with data paths and clock input for the least significant bit.

Next, let’s look at the next bit. Going back to the count sequence, we find that bit 1
changes only when bit 0 changes from 1 to 0. When this happens, Q0 changes from 1 to 0 and

changes from 0 to 1. If we connect to the clock input of the flip-flop for bit 1, it will invert𝑄
0

𝑄
0

bit 1 exactly when we want it to.

We can repeat this process for bits 2 and 3 to see that is connected to the clock input𝑄
1

for bit 2, and serves as the clock input for bit 3. The complete design for the 4-bit ripple𝑄
2

counter is shown in Figure 7.16.

Figure 7.16: 4-bit ripple counter – final design.

WATCH ANIMATED FIGURE 7.16
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If we wish to design this counter using J-K flip-flops instead of D flip-flops, we can easily

modify our design. Instead of connecting to our inputs, we simply set J = K = 1. When JK = 11,𝑄
we complement the value stored in the J-K flip-flop on the rising edge of the clock. Since we still
want to invert our counter bits at the same time as we did in the design using D flip-flops, our
clock signals remain the same. This design is shown in Figure 7.17.

Figure 7.17: 4-bit upcounter constructed using J-K flip-flops.

In addition to the bits that contain the count value, many counters also have one
additional output bit called the carry out, or carry bit, or just carry. The counter sets this bit to 1
when its count value changes from all 1s to all 0s, or from 1111 to 0000 for our 4-bit counters.
The counter does not use a register for the carry bit; it generates the carry using combinatorial
logic. The carry is set to 1 when Q = 1 for all flip-flops in the counter and COUNT = 1. The
circuitry to add a carry to our 4-bit counters is shown in Figure 7.18 (a). The timing diagram in
Figure 7.18 (b) shows how the counter outputs change as its value changes from 1111 to 0000.
Note that the carry is 1 until the value changes. Once it does change, the Q values input to the
AND gate become 0 and the carry output immediately changes from 1 to 0.

(a) (b)

Figure 7.18: Counter carry-out: (a) Circuit to generate CARRY; (b) Sample timing diagram setting
CARRY = 1.

WATCH ANIMATED FIGURE 7.18
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7.5.1.1 Downcounter

For some applications, you might need to count down instead of up. As it turns out, we can
modify our upcounter fairly easily to change it into a downcounter. Consider the sequence for a
4-bit downcounter shown here.

1111→ 1110→ 1101→ 1100→ 1011→ 1010→ 1011→ 1000→
0111→ 0110→ 0101→ 0100→ 0011→ 0010→ 0011→ 0000→ 1111→

In the upcounter, whenever a bit changed from 1 to 0 we would also need to change the
next most significant bit. For the downcounter sequence, the opposite is true. We change the
next most significant bit when a bit changes from 0 to 1. For example, when we change the
value from 0110 to 0101, the least significant bit changes from 0 to 1, so the next significant bit

must also change, from 1 to 0 for these values. We can do this by using Q instead of as our𝑄
clock signal. This design is shown in Figure 7.19.

(a) (b)

Figure 7.19: Ripple downcounter: (a) Circuit design; (b) Circuit to generate the BORROW signal.

Instead of a CARRY signal, downcounters have a BORROW signal that is set to 1 when

going from a value of all 0s to all 1s. It is set to 1 when all the Qs are 0 (or all the s are 1) and𝑄
COUNT = 1. The circuit to generate the BORROW signal is combinatorial, just like the circuit that
generates CARRY in the upcounter. This circuit is shown in Figure 7.19 (b).

7.5.1.2 Up/Down Counter

Earlier in this chapter, we combined the designs for registers that shift right and shift left to
create a bidirectional shift register. Here, we will follow a similar procedure to create a single

counter that can count either up or down. We will add a new signal, , to indicate whether𝑈/𝐷
we count up ( = 1) or down ( = 0). This is similar to the SHIFT_DIR signal in the𝑈/𝐷 𝑈/𝐷
bidirectional shift register.

There is one very important difference in our design procedure. In the shift register
design, our data varied depending on the direction of the shift, but our clock signals were
always the same. It is exactly the opposite for the up/down counter. The data inputs to the

flip-flops are always the same; D = whether we are counting up or down. It is the clock that𝑄
varies.
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With this in mind, we can use a multiplexer to select which value to use for our clock

signals. If = 0, we should use Q; if = 1, we use . This circuit is shown in Figure 7.20.𝑈/𝐷 𝑈/𝐷 𝑄

Figure 7.20: 4-bit up/down counter.

WATCH ANIMATED FIGURE 7.20

Bidirectional counters typically combine the CARRY and BORROW signals into a single
output signal. This design is left as an exercise for the reader.

7.5.1.3 Additional Signals

It is possible to enhance the capabilities of our counters to include additional functions. For
counters, the two most common functions are to load a value into the counter and to clear the
counter, that is, set its value to zero. Both modifications are left as exercises for the reader, but
here are some hints about how to proceed.

You can add the capability to load data into the counter in the same way that we added
this function to the bidirectional shift register in Section 7.2. You will need a LOAD signal that
causes the counter to load the data on its inputs I3 to I0 into its flip-flops on the rising edge of
the clock. You will need to modify both the data inputs and the clock signal of the flip-flops to
implement this function.

To enable the counter to clear its value, you will need to add a CLEAR input signal. Using
D flip-flops with preset and clear inputs will greatly simplify your design.

7.5.1.4 Why Are They Called Ripple Counters?

Given these designs, why are they called ripple counters? Think about this for half a minute or
so, then read on.

The ripple in ripple counters has to do with how the clock signals propagate through the
counter, from one flip-flop to the next. Consider the transition from 0111 to 1000. The COUNT
signal is high and the CLOCK signal changes from 0 to 1. This generates a rising edge on the clock

input to the flip-flop for bit 0. That bit changes from 1 to 0. As it changes, the output for 𝑄
0

changes from 0 to 1, which sends a rising edge to the clock for bit 1. This bit also changes from 1

to 0, changes from 0 to 1 and it generates a rising edge on the clock for bit 2. Bit 2 does𝑄
1

exactly the same thing, sending a rising edge to the flip-flop for bit 3. The flip-flops all toggle
their values, but not simultaneously. Bit 0 toggles first, then bit 1, followed by bit 2, and finally
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bit 3. The changes move through the counter much like the ripples on a pond after something
disturbs the still water.

The ripple design is very efficient in terms of hardware, but it does have a very
significant drawback. It takes a relatively long time to set the final value of the counter if you are
changing the value of all or most of the bits. We will introduce another design methodology in
the next subsection that was developed specifically to address this concern.

7.5.2 Synchronous Counters

In Chapter 4, we introduced carry-lookahead adders. These adders incorporate logic to generate
the carry out signals of the full adders within adders without having to wait for carry bits to
propagate (ripple) through the full adder. In this section, we will follow the same methodology
to speed up our counters. As an example, we will redesign the 4-bit upcounter as a synchronous
counter, one that sets all its bits simultaneously. First, let’s go back to the sequence for this
counter.

0000→ 0001→ 0010→ 0011→ 0100→ 0101→ 0110→ 0111→ 1000→ 1001→ 1010→
1011→ 1100→ 1101→ 1110→ 1111→ 0000→

Looking at the least significant bit, we can easily see that it changes every time the
counter counts up, which occurs when COUNT = 1. The second bit changes when the least
significant bit is 1 and we count up, or when Q0 = 1 and COUNT = 1. The third bit changes when
the last two bits are both 1 and we count up, or when Q1 = 1, Q0 = 1 and COUNT = 1. You may
have noticed a pattern already, or you may simply check the sequence to realize that the most
significant bit changes when Q2 = 1, Q1 = 1, Q0 = 1 and COUNT = 1. We can summarize this as
follows.

For every bit in the counter, the bit changes on the rising edge of the clock if every less
significant bit is 1 and COUNT is 1.

With this in mind, we can create a new design for the 4-bit counter, as shown in
Figure 7.21. Our design will be a synchronous counter that loads all bits simultaneously, that is,
they will all have the same clock input. For our counter, we AND together the CLK and COUNT
inputs.
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Figure 7.21: 4-bit synchronous upcounter.

WATCH ANIMATED FIGURE 7.21

The data inputs generate one of two values. If all less significant bits are 1, we want to
load the counter with the complement of its current value. Otherwise, we want to load in the
same value it currently has stored so that its output stays the same. For the least significant bit,

there are no less significant bits and we always want to change that bit; inputting on the D𝑄
input accomplishes this task.

For the other bits, an XOR gate realizes this function. One input is Q. If the other input is

0, Q ⊕ 0 = Q and we reload the current value. However, if the other input is 1, Q ⊕ 1 = and we𝑄
complement the value in the flip-flop. We want this second input to be 1 when all less
significant bits are 1. This is the function we implement for this XOR gate input for each flip-flop.
For D1, we only need to check Q0. D2 needs both Q0 and Q1 to be 1. And D2 requires Q0, Q1, and
Q2 all to be 1.

The design for the synchronous counter can be derived almost directly from the
carry-lookahead adder with Cin = 0. The carry-lookahead adder from Figure 4.31 is repeated in
Figure 7.22.
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Figure 7.22: 4-bit carry-lookahead adder.

Instead of adding A3A2A1A0+ B3B2B1B0, however, we will add A3A2A1A0 + 1. This sets our p
and g signals as follows:

p0 = A0 + B0 = A0 + 1 = 1
g0 = A0 ^ B0 = A0 ^ 1 = A0

p1 = A1 + B1 = A1 + 0 = A1

g1 = A1 ^ B1 = A1 ^ 0 = 0
p2 = A2 + B2 = A2 + 0 = A2

g2 = A2 ^ B2 = A2 ^ 0 = 0
p3 = A3 + B3 = A3 + 0 = A3

g3 = A3 ^ B3 = A3 ^ 0 = 0

Page 7- 20



Chapter 7: More Complex Sequential Components

In Figure 7.23, we modify the carry-lookahead adder to include these simplified signal functions.

Figure 7.23: 4-bit carry-lookahead adder with simplified p and g signals when B = 0001.

Next, we move to generate the carry signals. Our counter will not have a Cin signal, so we
set Cin = 0. When we use the new p and g values, our carry signals become:

c0 = g0 + p0cin = A0 + A0 ^ 0 = A0

c1 = g1 + p1c0 = 0 + A1 ^ A0 = A1 ^ A0

c2 = g2 + p2c1 = g2 + p2g1 + p2p1g0 = 0 + A2 ^ 0 + A2 ^ A1 ^ A0 = 0 + A2 ^ A1 ^ A0

c3 = g3 + p3c2 = g3 + p3g2 + p3p2g1 + p3p2p1g0 = 0 + A3 ^ 0 + A3 ^ A2 ^ 0 + A3 ^ A2 ^ A1 ^ A0

= A3 ^ A2 ^ A1 ^ A0
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Figure 7.24 shows our circuit with these changes.

Figure 7.24: 4-bit carry-lookahead adder with simplified c signals.

Finally, we get to the XOR gates that generate the sum bits. These are exactly the bits we
want to load into the flip-flops of the counter. Removing gate inputs that are equal to zero gives
us the circuit shown in Figure 7.25. Comparing this circuit to the circuit in Figure 7.20, we can
see that the S outputs of the modified carry-lookahead adder are the same as the inputs to the
flip-flops.
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Figure 7.25: Carry-lookahead adder modified to add A + 1.

Inputting these sum bits to flip-flops, and adding the clock signal, gives us the final
circuit for the synchronous 4-bit upcounter shown in Figure 7.26.
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Figure 7.26: Final design for the 4-bit synchronous upcounter.

Figure 7.27 is an animation-only figure that shows this complete sequence.

WATCH ANIMATED FIGURE 7.27

Figure 7.27: Conversion of the 4-bit carry-lookahead adder to the 4-bit synchronous upcounter.
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7.6 Cascading Counters

Just as there are practical limitations on the size of shift registers, there are also practical
limitations on the size of counters. And just like shift registers, counters have been designed so
they can be cascaded, combined to create counters with larger numbers of bits. To do this, the
counters we use must have a carry out signal.

A generic 16-bit counter constructed using two 8-bit counters is shown in Figure 7.28.
Just as our odometer needed a way to tell the tens digit to increment when the ones digit went
back to 0 when the odometer went from 19 to 20, the carry out of the counter on the right (our
ones digit) is used to generate the signal that increments the second counter (our tens digit).
Note that CLK is only input to the first counter. Internally, it is used to generate the carry out
signal for that counter, so it is already accounted for and does not need to be input separately
into any other counter.

Figure 7.28: 16-bit counter constructed using two 8-bit counters.

7.7 Other Counters

So far we have seen several ways to design counters, but all of the designs presented focus on
one type of counter, the binary counter. There are other types of counters that are useful for
some applications. One is the BCD counter. Instead of counting from 0000 to 1111 (0 to 15), this
4-bit counter counts from 0000 to 1001 (0 to 9). It is particularly useful for applications involving
digital displays. We will introduce this counter and its design in this section.

The idea behind a BCD counter can be extended to any modulo-n counter. For example,
the ten-minutes digit on a digital clock could be implemented with a modulo 6 counter that
counts from 000 to 101. We will introduce another design that can be used to create a
modulo-n counter for any value of n.

7.7.1 BCD Counters

The BCD counter, also called a decimal counter or a decade counter, is used frequently in
digital circuit design. In this subsection, we design this counter using D flip-flops. Our counter
must go through the following sequence.

0000→ 0001→ 0010→ 0011→ 0100→ 0101→ 0110→ 0111→ 1000→ 1001→ 0000→
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As with the synchronous binary counter, we will AND together the COUNT and CLK
inputs to produce the clock input to the flip-flops. Our remaining design task is to generate the
D inputs to the flip-flops.

We then create the excitation table for the BCD counter, as shown in Figure 7.29. Before
we continue, there’s something I need to explain about this table. Notice the last six rows, with
Q = 1010 to 1111. These are not valid BCD digits. So, why are they in the table? Think about this
for a minute before reading on.

Q3 Q2 Q1 Q0 D3 D2 D1 D0

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0

Figure 7.29: Excitation table for the BCD counter.

Once your counter has a valid BCD value, it will always progress through the decimal
counting sequence and will always have a valid BCD value. But what happens if the counter has
one of the invalid values? A design flaw could cause this to happen, but the most likely reason
for this to occur is that the flip-flops are set to invalid values when the circuit first powers up. To
address this concern, we load in the value 0000 whenever the counter has one of the non-BCD
values. Once that is done, the counter will function as we want it to.

With this table developed, we can create Karnaugh maps for the individual flip-flop
inputs. I did this and derived the following functions.

D0 = +𝑄
3
 ^ 𝑄

0
𝑄

2
 ^ 𝑄

1
 ^ 𝑄

0

D1 = (Q1 ⊕ Q0)𝑄
3
 ^ 

D2 = (Q2 ⊕ (Q1 ^ Q0))𝑄
3
 ^ 

D2 = ( Q2 ^ Q1 ^ Q0) + (Q3 ^ )𝑄
3
 ^ 𝑄

2
 ^ 𝑄

1
 ^ 𝑄

0

The final circuit, with these functions implemented using combinatorial logic, is shown in
Figure 7.30.
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Figure 7.30: Synchronous BCD counter.

WATCH ANIMATED FIGURE 7.30

Now, if we’re going to load 0000 into the counter when we reach the end of our
sequence or an invalid value, why don’t we just use D flip-flops with CLR inputs and clear the
counter instead? We’ll see what happens if we try to do this in the next subsection.

7.7.2 Modulo-n Counters

The BCD counter is a modulo-10 counter. That is, it counts from 0 to 9, 0000 to 1001, and then
goes back to 0000, continuing this cycle ad infinitum. In practice, we can design and construct a
modulo-n counter for any value of n > 1. (A modulo-1 counter would just output a 0 at all times,
which would be fairly useless.)
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Consider our 1s counter from Chapter 6. It counts the number of 1s coming in and
outputs a 1 when it has counted three 1s. This is basically a modulo-3 counter; the output
would be generated whenever the counter goes back to 0.

We can follow the procedure from the previous section to design this modulo-3 counter,
or any modulo-n counter. However, there is a simpler way to do this if your circuit can tolerate a
momentary glitch in its output.

The basic procedure is to start with a synchronous binary counter constructed using D
flip-flops with preset and clear inputs, and with a maximum value that is greater than n – 1. If its
maximum value is equal to n – 1, we just use the binary counter. For example, a modulo-8
counter can just use a 3-bit binary counter which has values ranging from 000 (0) to 111 (7).

We will increment the counter as before, ANDing together the COUNT and CLK signals.
Unlike the previous design methodology, however, we do not change the D inputs. Instead, we
generate a clear signal whenever we have an invalid value. For the BCD counter, we would
increment the counter from 1001 (9) to 1010 (10) and then immediately clear the counter back
to 0. The CLR input on the D flip-flop is asynchronous, that is, independent of the clock, so this
occurs very quickly, on the order of nanoseconds, after the count goes to 1010. The design of a
BCD counter using this methodology is shown in Figure 7.31.

Figure 7.31: BCD counter with transient 1010 output.

For something like a digital clock, it is quite possible that nobody will ever see this invalid
value on the display, but for other applications, this may not be the case.

Figure 7.32 shows the timing diagram for this counter as it transitions from 1001 to 1010
to 0000.
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Figure 7.32: Timing diagram for the BCD counter with transient 1010 output.

WATCH ANIMATED FIGURE 7.32

In response to the question I raised at the end of section 7.7.1, the transient 1010
output is the reason I did not use the clear input in the previous design. You can always use the
earlier design, but the latter design using the clear input can only be used in circuits that can
tolerate the transient 1010 output.

7.8 Summary

Just as with combinatorial logic, digital designers have developed components for frequently
used sequential logic. First and foremost among these components are registers. Essentially,
these are a series of flip-flops configured in parallel to store multi-bit values. The flip-flops have
common control signal inputs so that they act together on the bits of their stored value. Their
clock signals are the same, as are other signals they may have, such as a clear input.

Shift registers store data, just like registers, but they can also shift their data. Some shift
registers can shift their data in one direction, left or right; others can shift data in either
direction. Some shift registers can also load data in parallel. Shift registers can be connected
together to store and shift data values with larger numbers of bits.

Counters can store data, but also increment or decrement (or both) their stored values.
Ripple counters propagate clock signals from one flip-flop to the next within the counter. This is
efficient in terms of hardware, but it can result in slower performance as the clock signals
propagate through the counter. Synchronous counters use additional logic gates to speed up the
performance of the counters.

Upcounters can generate a carry out bit to indicate that its value has reached its
maximum value and looped back to its slowest value, generally 0. Downcounters generate a
borrow bit when they loop back from – to their highest value. These bits are particularly useful
when we cascade counters to count values with larger numbers of bits.
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Traditional counters count in binary; an n-bit counter sequences through values in the
range from 0 to 2n – 1. BCD counters, in contrast, are 4-bit counters that only sequence through
the values corresponding to decimal digits, 0 (0000) through 9 (1001). It is also possible to
design modulo-n counters that can store any of n possible values, 0 to n – 1. Both the BCD and
modulo-n counters have a wide variety of applications.
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Exercises

1. Show the outputs of the register in Figure 7.1 for the inputs shown in the following
timing diagram.

2. Show the outputs of the register in Figure 7.2 for the inputs shown in the following
timing diagram.

3. Show the results of the linear shift left and linear shift right operations on the data value
11010101.

4. Show the values of the D inputs and Q outputs of the linear shift register after the shift
left and shift right operations. The register initially has the value 01101011.

5. Repeat Problem 4 for the linear shift register constructed using J-K flip-flops.

6. Repeat Problem 4 for the bidirectional shift register with

a. SHIFT_DIR = 0
b. SHIFT_DIR = 1

7. Design a bidirectional shift register using J-K flip-flops.

8. Redesign the bidirectional shift register using combinatorial logic instead of multiplexers.

9. Modify the bidirectional shift register with parallel load to prioritize SHIFT over LOAD.

10. Minimize the function for S0 in the bidirectional shift register with parallel load.
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11. A circular shift operation works much like a linear shift, except the bit that is shifted out
is circulated back and loaded into the bit that receives a 0 value in the linear shift.
Modify the existing designs for the linear shift register to implement the circular shift
left and circular shift right operations.

12. An arithmetic shift operation is similar to a linear shift, except it leaves the most
significant bit unchanged. For the arithmetic shift left, all other bits are shifted left and
the next to most significant bit is shifted out. For the arithmetic shift right, the most
significant bit is unchanged and is also shifted into the next to most significant bit.
Modify the existing designs for the linear shift register to implement the arithmetic shift
left and arithmetic shift right operations.

13. Design a 32-bit shift register using 8-bit shift registers.

14. Design a 4-bit upcounter using T flip-flops.

15. Design a downcounter using J-K flip-flops.

16. Design a downcounter using T flip-flops.

17. Simplify the up-down counter of Figure 7.19 by using a single logic gate instead of a
multiplexer to generate the clock signal.

18. Design a combined CARRY-BORROW signal for the bidirectional counter in Figure 7.19.

19. Design a 4-bit up-down counter using J-K flip-flops.

20. Design a 4-bit up-down counter using T flip-flops.

21. Modify the up-down counter to include LOAD and CLEAR signals.

22. Design a synchronous 4-bit upcounter using J-K flip-flops.

23. Design a 4-bit synchronous downcounter using:

a. D flip-flops
b. J-K flip-flops
c. T flip-flops

24. Design a 16-bit counter using 4-bit counters.

25. Create Karnaugh maps for the D bits in the excitation table in Figure 7.28 and derive
functions that do not use XOR gates.

26. Design the 1s counter from Section 6.1.1 with and without transient values
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Chapter 8: Sequential Circuits

In the previous two chapters, we introduced the fundamental components of sequential logic:
latches and flip-flops, as well as some more complex components that are designed using these
components: registers and counters. In this chapter, we extend this knowledge to design
synchronous sequential digital systems.

To design these systems, we will model each system as a finite state machine. In this
approach, the system is always in one of its possible states. Depending on the values of the
system inputs, the system will produce specific output values and transition to a different state
(or remain in the same state). This may sound a bit confusing, but it will become clearer as we
progress through this chapter. Using this methodology, we can design any digital system from
the simplest controller to the most complex (non-quantum) computer system.

This chapter begins by introducing the basic model of finite state machines and the tools
frequently used in their design: state diagrams and state tables. The state tables are not the
same as the truth tables we’ve already seen, but they do have some similarities.

Next, we’ll present the two main types of finite state machines, Mealy machines and
Moore machines. Both are useful design models; they differ primarily in how they generate
their output values.

With this background, we will then examine the state machine design process using
flip-flops. We will go through design examples using both Mealy and Moore machines.

For some state machines, it is possible to use some of the more complex combinatorial
and sequential components introduced earlier in this book to simplify our designs. We’ll look at
when this is helpful and which components to use.

Regardless of the design methodology used, sometimes it is helpful, or even necessary,
to refine your design. It may be possible for your design to be in a state that it does not use, or
there may be two or more states that are equivalent and can be merged together to simplify
your final design. We close out this chapter by examining these and other scenarios.

8.1 Finite State Machines – Basics

When we started our study of sequential logic in Chapter 6, we noted that we can use the finite
state machine methodology to model any sequential system. In this section, we introduce some
of the fundamental ideas and tools used in finite state machine design. Let’s start with perhaps
the most fundamental idea of all.

8.1.1 What Is a State?

The Merriam-Webster dictionary has numerous definitions of the word state. The definition of
interest for finite state machines is a mode of condition of being. This sounds really unclear, but
it is a succinct and correct definition. This might be explained best by going through a couple of
familiar examples.
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First, let’s look at a very simple example, the D flip-flop. At any given time, this flip-flop
stores one of two values, 0 or 1. These two conditions of being, storing 0 and storing 1, are the
two states of the D flip-flop. The system that is the D flip-flop has two states.

In this case, the Q output of the D flip-flop is 0 when it is in the storing 0 state, and 1
when it is in the storing 1 state. This is not necessarily the case for all finite state machines.

Remember the 1s counter we introduced in Chapter 6. When it has received an input
value of 1 three times, it sets its output to 1. As noted in that chapter, this system has three
states.

● Zero values of 1 have been input so far.
● One value of 1 has been input so far.
● Two values of 1 have been input so far.

For the first two states, our output is set to 0. Only when the system is in the third state, and we
input a third 1, do we set the output to 1.

For some systems, the output values directly correspond to the state. Usually, however,
this is not the case, and more than one state may generate the same output values.

In both examples, we performed the first step in the finite state machine design process.
We listed all the possible states that can exist in our system. Next, we must determine every
possible change that can occur in each state. We’ll start with a system model.

8.1.2 System Model

In Chapter 6, we introduced a generic model of a sequential circuit. Figure 6.1 (b) shows this
model, which is repeated and enhanced as Figure 8.1. This is also the model for a finite state
machine. The state block is a set of flip-flops that stores a value corresponding to the state of
the machine; this value is called the present state. We combine the value of the present state
with the values of the inputs to determine what state we should next have for our system. This
value, called the next state, is sent back to the state block.

Page 8-3



Chapter 8: Sequential Circuits

Figure 8.1: Generic finite state machine.

Notice that the clock (CLK) is also input to the block with the flip-flops that store the
present state. Finite state machines are generally synchronous circuits, that is, they have a
system clock that coordinates the flow of data. In our model, the logic within the combinatorial
logic block (CLB) will require some amount of time to set its outputs, including the value of the
next state. When selecting the frequency of the system clock, we must ensure that it is slow
enough to let the CLB set all its values.

The final part of the finite state machine model is its outputs. Depending on the type of
finite state machine we use, the outputs will be generated either as a function of the value of
the present state and the inputs, or as a function of only the present state. We’ll look at this in
more detail in Section 8.2.

8.1.3 State Diagrams (Excluding Outputs)

A state diagram is a convenient mechanism used to graphically represent the functioning of the
finite state machine. Each state is represented as a circle with the name of the state shown
inside the circle. Directed arcs, basically arrows, show the transition from one state to another,
or from one state back to itself. The conditions under which each transition occurs are shown on
the arc. Outputs are also shown on the state diagram, but each type of finite state machine
shows them in a different way. We will not show outputs in this subsection, but we’ll come back
to them when we introduce our models in Section 8.2.
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Consider the D flip-flop. It has only two states, storing 0 and storing 1. We give each
state a shorter label that fits more easily inside the state circle; I’ll use S0 for storing 0 and S1 for
storing 1. So far, our state diagram consists of just two states, no transitions yet, as shown in
Figure 8.2 (a).

(a) (b) (c)

(d) (e)

Figure 8.2: D flip-flop state diagram: (a) States; (b) States and all transitions; (c) and (d) Alternate
representations of values; (e) Representation with self-arcs removed.

Now, let’s see what happens in each individual state for all possible input values, starting
with S0. If D = 1, we want our flip-flop to go to S1, storing 1. It should stay in the same state if D =
0. When our system is in state S1, we want it to go to S0 if D = 0 or to stay in S1 if D = 1. Figure 8.2
(b) shows the state diagram with these state transitions included. The label above each arc
indicates the conditions that must be met for the transition to occur.

Figure 8.2 (c) shows an alternative and more common way to represent the conditions.
Here, we list the condition that must be true, equal to 1, for the transition to occur. D = 1 simply
becomes D. D = 0 becomes D' because, if D = 0, then D' = 1. We can also dispense with the Ds
and simply show the input values, as in Figure 8.2 (d).

State diagrams can also be represented without the self-arcs, the arcs that go from a
state back to itself. By default, if a system is in a state, and the conditions are not met for any of
the arcs coming out of the state, then the system just stays in its current state. Figure 8.2 (e)
shows the state diagram with self-arcs removed.

All of this brings up an important point regarding the condition values. The conditions on
all arcs coming out of a state must be mutually exclusive. That is, the conditions for only one arc
(or possibly zero arcs if self-arcs are eliminated) can be true at any given time. This ensures that
the system only tries to go to one state at a time.
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Finally, there is one input signal we did not include in our state diagram, the system
clock. The system clock is only used to synchronize the flow of data within the system, generally
by causing edge-triggers that store the value of the present state to load in the value of the next
state. This is implicit to the finite state machine and is not explicitly shown in the state diagram.

As another example, consider the 1s counter. This system has three states, which we’ll
call S0, S1, and S2, which correspond to the states with 0, 1, and 2 1s already counted,
respectively. In state S0, we stay in S0 if the input is 0 or go to S1 if the input is 1. Similarly, if we
are in state S1, an input of 0 keeps us in S1 and an input of 1 brings our system to S2. In S2, we
remain in S2 when the input is 0. However, if the input is 1, that becomes our third 1 and we
reset our count back to 0 by going to S0. The state diagram for this system is shown without
self-arcs in Figure 8.3.

Figure 8.3: State diagram for the 1s counter.

8.1.4 State Tables (Also Excluding Outputs)

Another tool frequently used in finite state machine design is the state table. It is quite similar
in format to the truth tables we’ve already seen throughout this book. The input side of the
table includes not only the system inputs, but also the present state. The output portion of the
table includes both the system outputs and the next state. To save space, we usually denote the
present state and next state as PS and NS, respectively.

To illustrate this, the state table for the D flip-flop, excluding output values, is shown in
Figure 8.4. Each row of the table corresponds to one state and one set of input values for the
state machine. The animation for this figure shows how each row corresponds to an arc in the
state diagram.

PS D NS Q
S0 0 S0

S0 1 S1

S1 0 S0

S1 1 S1

Figure 8.4: D flip-flop state table, excluding output values.

WATCH ANIMATED FIGURE 8.4
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Figure 8.5 shows the state table for the 1s counter, also excluding output values.

PS I NS O
S0 0 S0

S0 1 S1

S1 0 S1

S1 1 S2

S2 0 S2

S2 1 S0

Figure 8.5: 1s counter state table, excluding output values.

8.2 Types of Finite State Machines

With this background, we’re almost ready to design circuits to realize our finite state machines,
except for one thing. As currently designed, our state machines don’t generate any outputs. We
excluded them so far because we had not yet introduced the models of finite state machines,
each of which uses a different method to produce its outputs. In this section, we introduce
these two methodologies, Mealy machines and Moore machines, and we complete the
specifications, state diagrams, and state tables we developed for our two examples. In the next
section, we will begin the actual design process.

Both Mealy and Moore machines are used frequently in sequential logic design. Neither
is superior to the other. I chose to introduce them in alphabetical order, which is also the order
in which they were developed.

8.2.1 Mealy Machines

The Mealy machine model for finite state machines was first published by George Mealy in
1955. It makes use of the state diagram and state table introduced in the previous section to
indicate the transitions between states and the specification of the next state. It extends what
we presented so far to include the output values generated by the state machine. This is where
Mealy and Moore machines differ.

In the Mealy machine, outputs are specified as functions of both the present state and
the input values. This being the case, they are shown on the arcs in state diagrams. The
standard notation lists the inputs, then a slash, followed by the output values.

To illustrate this, let’s return to the state diagram for the D flip-flop. We’ll use the
diagram in Figure 8.2 (d). We look at each arc in the state diagram and determine the output
values it will produce, and then we add those values to the diagram. We start with state S0 and
its self-arc. When the flip-flop is in this state and D = 0, we want it to set output Q to 0. We
denote this input/output combination as 0/0 on the state diagram. Similarly, when D = 1, the
flip-flop should set Q = 1, or 1/1 in our notation. Repeating this process for the two arcs coming
out of state S1 gives us the final Mealy machine state diagram shown in Figure 8.6.
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Figure 8.6: Mealy machine state diagram for the D flip-flop.

We modify the state table in the same manner. We determine the outputs generated by
the present state and input values for each row in the state table. This is exactly how we
generated the outputs for the state diagram. As shown in the state table in Figure 8.7, the state
table outputs are identical to the values in the state diagram.

PS D NS Q
S0 0 S0 0
S0 1 S1 1
S1 0 S0 0
S1 1 S1 1

Figure 8.7: Mealy machine state table for the D flip-flop.

WATCH ANIMATED FIGURE 8.7

As another example, let’s look at the 1s counter. We want to output a 1 when we have
counted three 1s, and 0 at all other times. If we add the self-arcs to the state diagram, and
include the output values, we get the mostly complete state diagram shown in Figure 8.8.

Figure 8.8: Mostly complete Mealy machine state diagram for the 1s counter.
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This diagram would be fine if it weren’t for the unspecified output on the self-arc at
state S0. The problem is not with the Mealy machine per se, but rather with the original
specification. We said that we want the final circuit to set its output to 1 when it inputs a total
of three 1s, but we did not say how long this signal should stay set to 1. Do we want it to
continue to output a 1 until the next input value of 1, or do we want it to output a 1 for only
one clock cycle, regardless of the input values that follow?

In the first case, the unspecified output should be 1. This will keep the output equal to 1
until another 1 is input; when this happens, the state machine transitions from S0 to S1 and sets
its output to 0.

In the latter case, the unspecified output should be set to 0. The state machine would
input its third 1, transition from S2 to S0, and set its output to 1. In the next clock cycle, it would
either stay in S0 (if the input value is 0) or go to S1 (if the input is 1). In either case, it would set
its output to 0, resulting in an output of 1 for only one clock cycle. The state diagrams for both
cases are shown in Figure 8.9.

(a) (b)

Figure 8.9: Mealy machine state diagram for the 1s counter: (a) Output is 1 until the next
sequence begins; (b) Output is 1 for only one clock cycle.

The state tables are constructed just as we did for the previous example. The state tables
for both outputs are shown in Figure 8.10.

PS I NS O PS I NS O
S0 0 S0 1 S0 0 S0 0
S0 1 S1 0 S0 1 S1 0
S1 0 S1 0 S1 0 S1 0
S1 1 S2 0 S1 1 S2 0
S2 0 S2 0 S2 0 S2 0
S2 1 S0 1 S2 1 S0 1

(a) (b)

Figure 8.10: Mealy machine state table for the 1s counter: (a) Output is 1 until the next
sequence begins; (b) Output is 1 for only one clock cycle.
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8.2.2 Moore Machines

One year after George Mealy introduced his model for finite state machines, Edward Moore
published a different model that is also commonly used today. Unlike Mealy machines, Moore
machines generate their outputs based solely on the present state. Moore machines do not use
the values of the inputs to generate the output values. The input values do have an indirect role
in generating the outputs since they may cause the machine to go to a specific next state, and
that state has certain output values. However, when we ultimately develop sequential circuits to
realize these state machines, the circuitry that generates the outputs has only the present state
as its inputs.

Since a Moore machine always produces the same output values when it is in a given
state, we use a different notation in the state diagram than we use for Mealy machines. The
output values are included after the label for the state, separated from the state by a forward
slash.

Consider once again the D flip-flop state machine. Whenever the machine is in state S0,
we want it to set its Q output to 0. When it is in state S1, it should output Q = 1. Figure 8.11
shows the state diagram for the Moore machine version of the D flip-flop.

Figure 8.11: Moore machine state diagram for the D flip-flop.

The state table for the Moore machine has exactly the same format as that of the Mealy
machine, though its values for the outputs may differ. In the Moore machine, the output value
for each state is not changed by the input values. For the D flip-flop, our machine always
outputs a 0 when it is in state S0; in state S1, it always outputs a 1. The state table for this
machine is shown in Figure 8.12.

PS D NS Q
S0 0 S0 0
S0 1 S1 0
S1 0 S0 1
S1 1 S1 1

Figure 8.12: Moore machine state table for the D flip-flop.

WATCH ANIMATED FIGURE 8.12
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If you compare the state tables for the Mealy and Moore machines for the D flip-flop,
you will find that the only difference is the value of output Q in the two middle rows. These are
the only two rows associated with a change in state, that is, the next state is not the same as
the present state. The Moore machine generates outputs based on the present state, whereas
the Mealy machine generates outputs associated with the next state. In the state table for the
Moore machine, Q = 0 when the present state is S0 and Q = 1 when it is S1. The Mealy machine
sets Q = 0 when the next state is S0 and Q = 1 when it is S1.

Now let’s revisit the 1s counter. Remember that there are two interpretations of the
output value: it remains at 1 until the next 1 is input, or it is set to 1 for only one clock cycle.
We’ll look at both cases in that order.

When the value stays at 1, we can simply set the output for state S0 to 1 and set it to 0
for the other states. This state diagram is shown in Figure 8.13 (a); its corresponding state table
is shown in Figure 8.13 (b).

(a) (b)

Figure 8.13: Moore machine for the 1s counter that outputs 1 until the next sequence begins:
(a) State diagram; (b) State table.

WATCH ANIMATED FIGURE 8.13

The latter case, which sets the output to 1 for only one clock cycle, is not so simple.
When we go to state S0 from S2, we want the output to be 1. However, if we then loop back
from S0 to itself (because we input a 0), we want the output to be 0. In Moore machines, we
cannot have a state generate different output values at different times; it must always produce
the same output values. Before reading on, think about how you would resolve this problem.

Here is one way to handle this issue. I created a new state, S3. When the machine
receives its third input of 1, it transitions from S2 to S3 instead of going to S0. The output is set to
1 in this new state. If we are in state S3 and receive a 0 input, we go to state S0 since we have not
input any 1s for our new group of three ones. If we instead input a 1, our group has one input of
1 and we go to state S1. The rest of the state diagram is unchanged. This state diagram and its
associated state table are shown in Figure 8.14.
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S0 0 S0 1

S0 1 S1 1

S1 0 S1 0

S1 1 S2 0

S2 0 S2 0

S2 1 S0 0
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(a) (b)

Figure 8.14: Moore machine for the 1s counter that outputs 1 for only one clock cycle: (a) State
diagram; (b) State table.

8.2.3 A Word about Infinite State Machines

All of this discussion about finite state machines raises the question, “Are there infinite state
machines?” The short answer is yes, at least in theory. Consider, for example, a state machine
that recognizes all sequences of inputs that are palindromes, that is, they are the same when
read from first to last bit or from last to first. Since the string of inputs can be of any length,
even infinite, we would need an infinite number of states in our machine to represent these
input strings. The classic Turing machine and pushdown automata can also be considered as
infinite state machines.

The problem with having an infinite number of states is that your system needs an
infinite amount of storage to represent these states. You can’t really design nor build such a
system. For this reason, we’ll note that infinite state machines can be specified mathematically,
but since this book focuses on digital logic design, we won’t be discussing them any further.

8.3 Design Process

There are several ways to enumerate the steps in the design process for finite state machines.
The process used in this book has seven steps. Other processes may split some of these steps
into multiple steps or combine two or more steps into a single step. I can’t say that the process
presented here is better or worse than other processes. This is very subjective and may be a
matter of personal preference, as all of these design processes should lead to valid final designs.

With that said, here is our seven-step process. Throughout this process, we’ll use the 1s
counter as a running example.
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Step 1: Specify System Behavior

You can’t design something until you know what it is supposed to do. This probably sounds
obvious, but a lot of design errors start in this step. Occasionally a designer misrepresents the
desired system behavior, but many errors in this step occur because the designer doesn’t
consider all possibilities. Thinking back to our BCD counter, it is straightforward to specify that
the counter must sequence from 0 to 9 and then go back to 0. However, an incomplete
specification might neglect to indicate that any invalid values (1010 to 1111) should go to 0 as
well.

For the 1s counter, we specify that the system should input a sequence of values and
output a 1 when it has received a total of three inputs equal to 1 and then start again.

Step 2: Determine States and Transitions, and Create the State Diagram

What are the possible conditions of being for our system? When we determine this, each
becomes a state in our design. Then we look at each state individually, and each possible set of
input values, to determine the outputs to generate and the next state to go to. Once this is
done, we can create either the Mealy or Moore machine state diagram.

The Mealy machine implementation has three states:

S0: Zero values of 1 have been input so far.
S1: One value of 1 has been input so far.
S2: Two values of 1 have been input so far.

For the Moore machine, we add a fourth state so we can set the output to 1 for only a
single clock cycle.

S3: Three values of 1 have been input so far.

Next, we look at each individual state and each input value to determine the next state
and output value, and create the state diagram. We already did this in the previous section. The
state diagram for the Mealy machine is shown in Figure 8.9 (a). The Moore machine state
diagram is shown in Figure 8.14 (a).

Step 3: Create State Table with State Labels

You’ve already done most of the work for this in the previous step. The state diagram and state
table are equivalent. The diagram illustrates system behavior graphically, whereas the state
table enumerates the behaviors explicitly. The state tables for the Mealy and Moore machines
are given in Figures 8.10 (b) and 8.14 (b), respectively.
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As you can see, the first three steps are things we have already done in the previous
section. The remaining steps, however, are new for our design. We present the steps here, and
then we use the steps to complete the design of the Mealy and Moore machines in the next
two subsections.

Step 4: Assign Binary Values to States

In our final design, we will be using digital logic. We need to store the value of the current state,
and we will use flip-flops for this purpose. A flip-flop can only store the values 0 and 1; it can’t
store a state label such as S0. So, we need to create a unique binary value for each state. The
number of bits in the state value is based on the total number of states in the machine.
Mathematically, a machine with n states needs at least ⎡lg n⎤ bits.

Step 5: Update the State Table with the Binary State Values

We take the state table created in Step 3 and substitute the binary state values developed in
Step 4. For example, if state S0 is represented as binary value 00, we replace S0 with 00 in the
state table wherever it is shown as either a present state or next state.

Step 6: Determine Functions for the Next State Bits and Outputs

At this point, our state table is essentially a truth table. The table inputs are the present state
bits and the system inputs, and the table outputs are the next state bits and the system outputs.
We can proceed as we have done previously to develop functions for these table outputs.
Taking each table output individually, we create a function based solely on the table inputs. For
small numbers of table inputs, a Karnaugh map will suffice. Larger numbers of inputs may
require the Quine-McCluskey method to determine the final function.

Step 7: Implement the Functions Using Combinatorial Logic

Finally, we create combinatorial logic circuits to implement the functions developed in the
previous step. This logic must be combinatorial because the system must transition from the
present state to the next state in a single clock cycle. This would not be possible if the functions
included sequential logic.

Some parts of this design process are relatively straightforward; others, perhaps less so.
In the next two subsections, we illustrate how these steps work as we complete the Mealy and
Moore machine designs for the 1s counter that sets the output to 1 for a single clock cycle.
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8.3.1 Design Example – Mealy Machine

First, we’ll design the 1s counter as a Mealy machine. We developed the state diagram and state
table for this machine in Section 8.2, so we’ve already completed the first three steps of the
design process. The state diagram and state table are repeated in Figure 8.15.

(a) (b)

Figure 8.15: Mealy machine (a) state diagram, and (b) state table for the 1s counter.

Now we move on to Step 4 of the design process and assign binary values to states.
Since there are three states, and ⎡lg 3⎤ = 2, we need two bits to represent the state values. You
can choose any assignment you wish, as long as your design generates the correct output value
and next state values. For this example, I assign 00 to S0, 01 to S1, and 10 to S2.

With these assignments made, we proceed to Step 5 and update the state table to
include these values for both the present state and the next state. This table is shown in Figure
8.16.

Figure 8.16: Mealy machine state table for the 1s counter with binary state values.
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PS I NS O

S0 0 S0 0

S0 1 S1 0

S1 0 S1 0

S1 1 S2 0

S2 0 S2 0

S2 1 S0 1

PS PS1 PS0 I NS NS1 NS0 O

S0 0 0 0 S0 0 0 0

S0 0 0 1 S1 0 1 0

S1 0 1 0 S1 0 1 0

S1 0 1 1 S2 1 0 0

S2 1 0 0 S2 1 0 0

S2 1 0 1 S0 0 0 1
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Notice in this table that I have created separate names for each bit of the present state
and the next state. As you’ll see in the next step, we will create separate functions for the
output and each individual bit of the next state value, and each function may use the individual
bits of the present state, as well as the value of the input.

Now that everything in the state table is in binary, we can proceed as if it were a truth
table. The three inputs, PS1, PS0, and I, will be used to create functions to generate NS1, NS0, and
O. Figure 8.17 shows the Karnaugh maps. Notice the two don’t-care values in each K-map.
These correspond to present state value 11, which is not used in this design. We will proceed
with this for now, but we will revisit this decision in the next section.

Figure 8.17: Karnaugh maps for the next state and output functions for the Mealy machine.

Here are the functions we derived from these Karnaugh maps.

NS1 = PS0I + PS1I'
NS0 = PS0I' + PS1'PS0'I
O = PS1I

Finally, in Step 7, we create combinatorial logic circuits to realize these functions, as
shown in Figure 8.18. The complete circuit is shown in Figure 8.19.

Figure 8.18 Combinatorial logic circuits to generate the next state and output for the Mealy
machine.
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Figure 8.19: Complete circuit for the Mealy machine implementation of the 1s counter.

There is actually one more step in the design process that I did not list explicitly. After
you have created the final design, you must verify that the design functions as desired for all
possible states and input values. Simulation can be used for much of this work, but your design
doesn’t really work until you have actually built it and tested the circuit and have shown that it
functions as desired.

8.3.2 Design Example – Moore Machine

Now let’s create another design for this system based on the Moore machine we previously
developed. The first three steps produced the state diagram and state table for this machine.
Both are repeated in Figure 8.20.

(a) (b)

Figure 8.20: Moore machine (a) state diagram, and (b) state table for the 1s counter.
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PS I NS O

S0 0 S0 0

S0 1 S1 0

S1 0 S1 0

S1 1 S2 0

S2 0 S2 0

S2 1 S3 0

S3 0 S0 1

S3 1 S1 1
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The Moore machine has one more state than the Mealy machine for the 1s counter.
Nevertheless, it still needs only two bits to represent the state since ⎡lg 4⎤ = 2. As with the
Mealy machine, you can choose any assignments you wish; there are 4! = 24 possible state
assignments. For this example, I assign 00 to S0, 01 to S1, 10 to S2, and 11 to S3.

Next, in Step 5, we update the state table to include these values. This is shown in Figure
8.21.

Figure 8.21: Moore machine state table for the 1s counter with binary state values.

From the table, we create Karnaugh maps for the next state bits and the output and
determine functions for each one. These K-maps are shown in Figure 8.22. Notice that the map
for output O is different from the other maps, and different for output O of the Mealy machine.
Since this is a Moore machine, outputs are based solely on the present state; input values are
not used to generate outputs.

Figure 8.22: Karnaugh maps for the next state and output functions for the Moore machine.

We derive the following functions from the Karnaugh maps.

NS1 = PS1'PS0I + PS1PS0'
NS0 = PS1'PS0I' + PS1I + PS0'I
O = PS1PS0

Next, we create the combinatorial circuit to generate these values. These circuits are
shown in Figure 8.23, and the complete circuit is shown in Figure 8.24. Finally, we must build,
test, and verify that our circuit functions as desired.
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PS PS1 PS0 I NS NS1 NS0 O

S0 0 0 0 S0 0 0 0

S0 0 0 1 S1 0 1 0

S1 0 1 0 S1 0 1 0

S1 0 1 1 S2 1 0 0

S2 1 0 0 S2 1 0 0

S2 1 0 1 S3 1 1 0

S3 1 1 0 S0 0 0 1

S3 1 1 1 S1 0 1 1
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Figure 8.23 Combinatorial logic circuits to generate the next state and output for the Moore
machine.

Figure 8.24: Complete circuit for the Moore machine implementation of the 1s counter.

8.3.3 A Brief Word about Flip-Flops

For the Mealy and Moore machines we just presented, we used D flip-flops to store the present
state value. This is not strictly necessary; any type of edge-triggered flip-flop could be used
instead. D flip-flops, however, do simplify the design process a bit.

When we generate the next state, we are producing the next value to be stored in the
present state flip-flops. For D flip-flops, this is exactly the value we want to place on the D inputs
of the flip-flops. For other flip-flops, such as J-K or T flip-flops, this is not necessarily the case.
For implementations using these flip-flops, we would need to take the state table with the
binary values, created in Step 5 of our design process, and create an excitation table for the
flip-flops. In the remaining steps of the design process, we would create functions and circuits
for the flip-flop inputs rather than the next state. The process of creating functions and circuits
to generate the output values would remain the same.
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8.3.4 Comparing our Two Designs

Now that we have completed the Mealy and Moore machine designs for the 1s counter circuit,
how do the two designs compare? Is one better than the other?

Looking at the state diagrams, one difference is immediately apparent. The Mealy
machine has fewer states than the Moore machine. This is not uncommon. It occurs whenever a
Mealy machine has a state with two or more arcs going into the state, and those arcs have
different output values. In a Moore machine, we need a separate state for each of these output
values.

Having more states may result in a design with additional hardware, but this is not
always the case. For the 1s counter design, both the Mealy and Moore machine need two
flip-flops to store the present state value, since ⎡lg 3⎤ = ⎡lg 4⎤ = 2.

The combinatorial logic to generate the next state and output values is slightly less
complex for the Mealy machine for this particular design. This is not always the case, and it is
also impacted by other factors, such as the values assigned to each state. Output values for the
Moore machine may require less combinatorial logic than those of the Mealy machine simply
because they do not use system input values. Moore machine outputs are generated only from
the present state. Once again, this is not always the case. For the 1s counter, both machines use
a single 2-input AND gate to produce output O.

As far as the end user is concerned, both circuits perform the same function. They read
in a sequence of bits and output a 1 for one clock cycle whenever it reads in three values set to
1.

8.4 Design Using More Complex Components

All the finite state machine designs we have seen so far in this chapter use edge-triggered
flip-flops and basic logic gates in their final circuits. For some state machines, it is possible to
use some of the more complex components introduced earlier in this book to simplify our
designs. In this section, we’ll look at three of these components: counters, decoders, and ROMs,
and when and how they can be used in finite state machine design.

8.4.1 Design Using a Counter

Counters are useful when designing finite state machines that always go through a specific
sequence of states. You have already seen one example of this: the Mealy machine
implementation of the 1s counter. Looking at the state diagram in Figure 8.9 (b), and repeated
in Figure 8.15 (a), we see that, for every state, the machine either stays in its current state or
goes to one specific next state. Furthermore, this one specific next state is different for every
state.

We have already spent a fair amount of time on the 1s counter, so we will illustrate how
counters can be used in finite state machines using a different example. In this subsection, we
design a 3-bit Gray code sequence generator using a counter; we will design this system as a
Moore machine.
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Step 1: Specify System Behavior

Our system will produce a 3-bit Gray code. It has a clock input, CLK, and a data input I. It has a
3-bit output O, consisting of bits O2, O1, and O0, that give the current value in the sequence. On
the rising edge of the clock, if I = 1, O changes to the next value in the Gray code sequence;
otherwise it keeps its current output value. As we described in Chapter 1, the 3-bit Gray code
sequence is

000→ 001→ 011→ 010→ 110→ 111→ 101→ 100→ 000→…

Step 2: Determine States and Transitions, and Create the State Diagram

We are designing a Moore machine, and our system has eight possible output values. Therefore,
our system must have at least eight states. From each state, we go to one of two states: the
state that outputs the next value in the Gray code sequence, or back to itself so that it outputs
the same value.

For example, let’s say that state S0 sets the output to 000. On the rising edge of the
clock, if I = 1, we want the sequence generator to transition to a state that outputs 001; we’ll
call this state S1. Otherwise we want to remain in state S0 and continue to output 000. In S1, we
want to stay in S1 and output 001 if I = 0, or go to S2 and output 011 if I = 1 on the rising edge of
the clock. Following this process for the entire sequence gives us the state diagram shown in
Figure 8.25; self-loops are not shown.

Figure 8.25: Moore machine state diagram for the 3-bit Gray code sequence generator.

Step 3: Create State Table with State Labels

Now we can convert our state diagram into a state table. Although the self-loops are not shown
explicitly in the state diagram, they do exist and we must include them in the state table.
Following the same procedure we have used throughout this chapter, we develop the state
table shown in Figure 8.26.
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PS I NS O2 O1 O0

S0 0 S0 0 0 0
S0 1 S1 0 0 0
S1 0 S1 0 0 1
S1 1 S2 0 0 1
S2 0 S2 0 1 1
S2 1 S3 0 1 1
S3 0 S3 0 1 0
S3 1 S4 0 1 0
S4 0 S4 1 1 0
S4 1 S5 1 1 0
S5 0 S5 1 1 1
S5 1 S6 1 1 1
S6 0 S6 1 0 1
S6 1 S7 1 0 1
S7 0 S7 1 0 0
S7 1 S0 1 0 0

Figure 8.26: State table for the 3-bit Gray code sequence generator.

Step 4: Assign Binary Values to States

When using a counter in a finite state machine design, your work will be much easier if you
assign sequential values to the states corresponding to the order in which they are accessed.
For example, if we assign 000 to S0, and we next go to S1, we should assign 001 to S1. This allows
us to simply increment the counter to transition from one state to the next, and counters
already have the ability to increment their values built into their designs. Doing this gives us the
following state value assignments.

S0 = 000 S4 = 100
S1 = 001 S5 = 101
S2 = 010 S6 = 110
S3 = 011 S7 = 111

Note that the state values are not the same as the output values, but that’s OK. Later in
the design process, we will use these values for the present state, along with the value of I, to
generate the output values O2, O1, and O0. As we’ll soon see, we will use (or not use) the
counter’s increment function to generate the next state.

Step 5: Update the State Table with the Binary State Values

This is pretty straightforward. We take the binary values we just developed and substitute them
for the state labels in the state table. This gives us the updated state table shown in Figure 8.27.
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PS PS2 PS1 PS0 I NS NS2 NS1 NS0 O2 O1 O0

S0 0 0 0 0 S0 0 0 0 0 0 0
S0 0 0 0 1 S1 0 0 1 0 0 0
S1 0 0 1 0 S1 0 0 1 0 0 1
S1 0 0 1 1 S2 0 1 0 0 0 1
S2 0 1 0 0 S2 0 1 0 0 1 1
S2 0 1 0 1 S3 0 1 1 0 1 1
S3 0 1 1 0 S3 0 1 1 0 1 0
S3 0 1 1 1 S4 1 0 0 0 1 0
S4 1 0 0 0 S4 1 0 0 1 1 0
S4 1 0 0 1 S5 1 0 1 1 1 0
S5 1 0 1 0 S5 1 0 1 1 1 1
S5 1 0 1 1 S6 1 1 0 1 1 1
S6 1 1 0 0 S6 1 1 0 1 0 1
S6 1 1 0 1 S7 1 1 1 1 0 1
S7 1 1 1 0 S7 1 1 1 1 0 0
S7 1 1 1 1 S0 0 0 0 1 0 0

Figure 8.27: State table updated with binary state values.

Step 6: Determine Functions for the Next State Bits and Outputs

This is the step where we save ourselves some work by using a counter. If our next state is
always either the same as our current state or our current state + 1 (or 000 when our current
state is 111), we can use the counter’s clock signal to generate our next state. To do this, we’ll
do something we did in Chapter 7. We AND together the clock signal (CLK) and our input signal
(I) to generate the clock input to the counter, as shown in Figure 8.28. When I = 0, the output of
the AND gate is always 0, regardless of the value of CLK. Since this does not produce a rising
edge, the counter does not increment; it keeps its current value. For our system, it stays in its
current state. If I = 1, however, the output of the AND gate is the same as CLK. A rising edge on
CLK produces a rising edge on the clock input of the counter, causing it to increment its value.
For our system, this goes to the next state and outputs the next value in the Gray code
sequence.

Figure 8.28: Generating the next state using a counter.
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Even though we simplified how we generate the next state, we still must develop
functions for our outputs. Since we are using a Moore machine, we only need to consider the
present state value. To make it a little easier to visualize this, I’ve taken our state table and
removed everything except the present state and output values; this is shown in Figure 8.29.
From this table, you can create Karnaugh maps or simply create the functions by just inspecting
the table itself. The final functions for O2, O1, and O0 are also shown in the figure. I chose to use
the XOR function, but any valid Boolean function will suffice.

PS2 PS1 PS0 O2 O1 O0

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

O2 = PS2

O1 = PS2 ⊕ PS1

O0 = PS1 ⊕ PS0

Figure 8.29: Reduced state table and functions for system outputs.

WATCH ANIMATED FIGURE 8.29

Step 7: Implement the Functions Using Combinatorial Logic

For this system, we need a total of two 2-input XOR gates to generate our outputs. The
complete, final design is shown in Figure 8.30.

Figure 8.30: Final circuit for the 3-bit Gray code sequence generator using a counter.

WATCH ANIMATED FIGURE 8.30
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8.4.2 Design Using a Decoder

As we have seen in earlier chapters, decoders can be used in numerous combinatorial logic
circuits. They also can be used in sequential circuits. When used in finite state machines, there
is one role they play particularly well: producing signals corresponding to individual states.

To show how this works, we’ll redesign the 3-bit Gray code sequence generator to use a
decoder. Fortunately for us, we can reuse much of the work we just completed for this state
machine in the previous subsection. The state behavior (Step 1), state diagram (Step 2), state
table with state labels (Step 3), state assignments (Step 4), and state table with binary values
(Step 5) are exactly the same as the previous design using a counter. We will also use a counter
in this design, and the logic needed to create the clock signal for the counter is the same as that
shown in Figure 8.28. The only thing we will change is the logic to generate the output values.

To do this, we take the output of the counter and send it to the inputs of a 3 to 8
decoder, as shown in Figure 8.31. When the counter value is 000, output O0 of the decoder is
asserted. From our state assignments (Step 4), we know that the value 000 is assigned to state
S0; therefore, decoder output O0 corresponds to state S0. The other decoder outputs correspond
to the remaining states as shown in the figure.

Figure 8.31: Generating state signals using a decoder.

Since we are developing a Moore machine, and outputs are based solely on the present
state, we can combine these state signals to generate the system’s outputs. We take the state
table and remove everything except the present state label and binary output values as shown
in Figure 8.32. For each output, we take all the states that set the output to 1 and logically OR
them together. Output O2 = 1 when the state machine is in state S4, S5, S6, and S7, so O2 = S4 + S5

+ S6 + S7. We do the same for O1 and O0, giving us the functions shown in the figure.
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PS O2 O1 O0

S0 0 0 0
S1 0 0 1
S2 0 1 1
S3 0 1 0
S4 1 1 0
S5 1 1 1
S6 1 0 1
S7 1 0 0

O2 = S4 + S5 + S6 + S7

O1 = S2 + S3 + S4 + S5

O0 = S1 + S2 + S5 + S6

Figure 8.32: Reduced state table and functions for system outputs.

Looking back to the earlier chapters, you may realize that the decoder generates
minterms based on the state value. Each output function is expressed as a sum of products.

Finally, we create combinatorial logic circuits to realize these functions. Each can be
created using a single 4-input OR gate. The final design is shown in Figure 8.33.

Figure 8.33: Final circuit for the 3-bit Gray code sequence generator using a counter and a
decoder.

WATCH ANIMATED FIGURE 8.33

For this machine, using a decoder makes the circuit more complex than the circuit that
uses only two XOR gates to generate its outputs. For other circuits, this strategy can reduce the
hardware complexity. In either case, it is a viable design methodology that can be employed
when appropriate.
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8.4.3 Design Using a Lookup ROM

In Chapter 5, we introduced the concept of a lookup ROM. Instead of using combinatorial logic
to realize a logical or arithmetic function, we store values in a non-volatile memory chip. The
function inputs are connected to the address inputs of the ROM, and the data output pins
supply the values of the functions for those input values. We can do something similar for
sequential circuits.

Looking at our state tables, we can see that there are two types of information we need
in order to use a lookup ROM in a finite state machine. As with the earlier lookup ROM circuits,
we need to know the values of the inputs. But for sequential circuits, we also need to know
which state we are presently in. With all this information, we can determine our next state and
the value of all system outputs.

Figure 8.34 shows a generic configuration for a finite state machine using a lookup ROM.
The bits of the present state and the inputs are connected to the address inputs of the lookup
ROM. At each location in the ROM, data is stored. Some bits specify the next state of the
machine for the present state and input values, and other data bits give the values of the
system outputs. The next state bits are loaded into a register every clock cycle. They become
the new present state and are fed back to the address bits of the ROM.

Figure 8.34: Generic state machine constructed using a lookup ROM.

WATCH ANIMATED FIGURE 8.34

To illustrate how this works, let’s redesign the 3-bit Gray code sequence generator one
final time. This system has the following:

● 3-bit present state (PS2, PS1, PS0)
● 1-bit input (I)
● 3-bit next state (NS2, NS1, NS0)
● 3-bit Gray code output (O2, O1, O0)
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We will connect PS2, PS1, PS0, and I to the address bits of the ROM, and the ROM outputs will
supply the values of NS2, NS1, NS0, O2, O1, and O0. The three next state bits are connected to the
data inputs of a register. The register stores the present state value and its outputs are fed back
to the address inputs of the ROM. Our system needs a ROM with four address pins and six data
pins, and has a total size of 24 = 16 locations; its size is 16 × 6. Figure 8.35 shows the circuit for
this state machine.

Figure 8.35: Circuit for the 3-bit Gray code sequence generator using a lookup ROM.

To make this circuit function properly, we must determine the data values to be stored in
all of the locations in the ROM. We can do this by starting with the state table with binary
values, repeated once again in Figure 8.36 (a). Then we see which address pin is connected to
each present state bit and input, and we replace these labels in the table with the labels for the
corresponding address bits. We do the same for the next state and output bits, this time
replacing their labels with those of the corresponding data bits. This gives us the data table
shown in Figure 8.36 (b). The left side of the table lists the addresses in the ROM and the right
side shows the data stored at each location in the ROM.
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PS2 PS1 PS0 I NS2 NS1 NS0 O2 O1 O0

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 1
0 0 1 1 0 1 0 0 0 1
0 1 0 0 0 1 0 0 1 1
0 1 0 1 0 1 1 0 1 1
0 1 1 0 0 1 1 0 1 0
0 1 1 1 1 0 0 0 1 0
1 0 0 0 1 0 0 1 1 0
1 0 0 1 1 0 1 1 1 0
1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1
1 1 0 0 1 1 0 1 0 1
1 1 0 1 1 1 1 1 0 1
1 1 1 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 0 0

(a)

A3 A2 A1 A0 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 1
0 0 1 1 0 1 0 0 0 1
0 1 0 0 0 1 0 0 1 1
0 1 0 1 0 1 1 0 1 1
0 1 1 0 0 1 1 0 1 0
0 1 1 1 1 0 0 0 1 0
1 0 0 0 1 0 0 1 1 0
1 0 0 1 1 0 1 1 1 0
1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1
1 1 0 0 1 1 0 1 0 1
1 1 0 1 1 1 1 1 0 1
1 1 1 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 0 0

(b)

Figure 8.36: (a) State table for the 3-bit Gray code sequence generator; (b) Data table showing
the contents of the lookup ROM.
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Figure 8.37 shows an animation of the final circuit. To illustrate how this works, consider
the case when the circuit is in state S3 (011) and input I = 1. The 011 state value is stored in the
register and fed back to ROM address bits A3, A2, and A1. I = 1 is connected to address bit A0.
Thus, we are accessing address 0111 in the ROM. Now, looking at the data table for the ROM,
we see that this location stores the data 100010. The three most significant bits, 100, are output
on data pins D5, D4, and D3. These are the next state bits. When we are in state S3 and I = 1, we
want to go to state S4, which is represented by this value. The three least significant bits, 010,
are output on pins D2, D1, and D0. These are the Gray code output bits, and they are the correct
output values for our present state, S3.

WATCH ANIMATED FIGURE 8.37

Figure 8.37: Animation of the ROM-based 3-bit Gray code sequence generator.

On the rising edge of the clock, the next state value, 100, is loaded into the register and
becomes our new present state. If input I remains at 1, the ROM address becomes 1001. The
ROM then outputs the value 101110, corresponding to next state value 101 (S5) and the output
value for present state S4, 110. This process repeats for every rising edge of the clock.

This overall configuration is used in many applications, including microprocessor design.
It is used there for a type of control unit called a microsequencer. That is beyond the scope of
this book, but you can find out more information about microsequencers and microprocessor
design in my other book (Carpinelli, J. 2001. Computer Systems Organization and Architecture.
Chapter 7) and numerous other books about computer architecture.

8.5 Refining Your Designs

So far in this chapter, we have gone through the entire design process for finite state machines,
or so it might appear. Actually, we have gone through the process of creating a first draft of our
designs. The designs we have seen so far mostly work properly, but it is often necessary to
refine our designs to minimize the hardware needed to implement them and to ensure they
work properly under all conditions. In this section, we will look at three design refinements:
handling unused states, combining equivalent states, and handling glitches.

8.5.1 Unused States

As we have seen in the designs presented so far in this chapter, finite state machines generally
use either flip-flops, a register, or a counter to store the binary value representing the present
state of the machine. A machine with n states requires ⎡lg n⎤ bits to store the state value. When
n is an exact power of 2 (2, 4, 8, 16, etc.), this works out fine. Every value that could possibly be
stored represents a valid state. When n is not an exact power of 2, however, our state machine
will have one or more possible values that do not correspond to valid states. If any of these
values ever ends up being stored as the state value, for example, when the system first powers
up, our system may fail.
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One way to avoid this problem is to create extra states that correspond to these unused
values. Each of these states should unconditionally (regardless of the input values) transition to
a valid state. Once the machine does this, it should function normally.

Consider again the Mealy machine implementation of the 1s counter that outputs a 1 for
only one clock cycle. Its state diagram is repeated in Figure 8.38 (a), and its state table is shown
again in Figure 8.38 (b).

(a) (b)

Figure 8.38: Mealy machine (a) state diagram, and (b) state table for the 1s counter.

As we went through this design in Section 8.3.1, we decided to represent states S0, S1,
and S2 as 00, 01, and 10, respectively. We treated state value 11 as a don’t care when
developing the functions and digital logic to generate the next state and output values. The
functions we developed are

NS1 = PS0I + PS1I'
NS0 = PS0I' + PS1'PS0'I
O = PS1I

If our machine ever ends up in state 11, this becomes

NS1 = 1^I + 1^I' = 1
NS0 = 1^I' + 0^0^I = I'
O = 1^I = I

In short, if I = 0, then we stay in this undefined state, and if I = 1 we transition to state S2 (10)
and incorrectly set the output to 1.

To resolve this problem, we can add one extra state to our machine for every unassigned
state value. For this machine, there is only one unassigned state value, 11, so we add only one
additional state to this machine, which I’ll call S3. I choose to have the machine go from this
state to state S0. The revised state diagram is shown in Figure 8.39 (a). Notice the notation on
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S0 1 S1 0
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S2 0 S2 0
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the arc from S3 to S0. The dash indicates that this transition always occurs, no matter what
values the inputs have. I also set the output to 0, as required.

(a) (b)

Figure 8.39: Revised state diagram for the Mealy machine implementation of the 1s counter:
(a) Excluding the first input bit; (b) Including the first input bit.

This works fine, as long as the first input bit is 0. But what happens if it is 1? In that case,
the first 1 takes the machine to state S0, the next 1 takes it to S1, and the third brings it to S2.
None of these transitions sets the output to 1. We need a fourth input of 1 to set the output of
1 in this initial sequence. One way to get around this issue is to specify that the state machine
ignores the data read in during the first clock cycle. A better way is to modify the state diagram
further, so that it goes from S3 to S0 when I = 0 and from S3 to S1 when I = 1. This is shown in
Figure 8.39 (b).

You can proceed through the rest of the design process as before to complete your
design. When I say you can do this, I do mean you. This is left as an exercise for the reader.

There is one other strategy that I want to introduce to address this issue. When power is
first applied to the state machine, we can asynchronously clear the flip-flops or other
components used to store the state value. This forces the state value to become all zeroes, 00
for this machine. As long as this is a valid state, S0 in this case, this strategy ensures that the
machine goes to a valid state when power is applied.

Early microprocessors, such as Intel’s 8085, have dedicated reset pins. The reset pin on
the 8085 is active low. A logic 0 causes the processor to clear its registers and reset its state,
much like we wish to do for the 1s counter.

To do this, designers set up an R-C circuit, as shown in Figure 8.40 (a). When the circuit
initially powers up, there is no charge on the capacitor. All the voltage is dropped across the
resistor, and the voltage at the point between the resistor and the capacitor is at 0 V, which a
digital circuit would recognize as logic 0. The capacitor charges up and the voltage across the
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capacitor increases roughly as shown in the voltage curve in Figure 8.40 (b). The time required
to reach the maximum voltage will vary, depending on the values of R and C; after five time
constants (R × C), it will have reached over 99% of the source voltage value. For the 8085, and
for our circuit, this will be on the order of microseconds. When the capacitor reaches its
maximum charge, it drops the entire 5 V and there is no voltage drop across the resistor. The
voltage level at the point between the resistor and the capacitor is 5 V, which is recognized as a
logic 1. The voltage stays at this level as long as the circuit has power.

(a) (b)

Figure 8.40: (a) R-C circuit to clear state value on power-up; (b) Voltage curve for the signal.𝐶𝐿𝑅

For our state machine, we can connect the point between the resistor and capacitor to

the active-low signal of the flip-flops storing the state value. When the circuit first powers𝐶𝐿𝑅
up, this signal is logic 0 and the flip-flops set their outputs to 0. Once the capacitor charges, 𝐶𝐿𝑅
becomes logic 1 and does not affect the flip-flop’s value any more.

8.5.2 Equivalent States

After creating the initial state diagram and state table for a finite state machine, it might be
possible to reduce the number of states. We do this by identifying equivalent states and
combining them into a single state. Reducing the number of states simplifies the state machine,
which can lead to less digital logic needed to implement the machine, as well as other ancillary
benefits such as reduced power requirements and faster circuits.

Two states are equivalent if all the conditions for its type of machine are met.

Moore machines:

● The states’ output values are all exactly the same.
● For every combination of input values, both states transition to the same

next state.
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Mealy machines:

● For every combination of input values, both states transition to the same
next state and produce exactly the same output values.

As one example, consider the state diagram and state table shown in Figure 8.41. To
identify equivalent states, we compare every pair of states individually. Some pairs clearly are
not equivalent because they generate different output values for the same input values, such as
S0 and S2 with I = 1.

(a) (b)

Figure 8.41: Initial state diagram (a) and state table (b) for the example state machine.

For this machine, we find that states S1 and S3 are equivalent, so we combine them into a
single state. I choose to combine them into a state named S13, but any name will do. The arcs
coming out of the combined state must be the same as those coming out of S1 and S3, which are
identical. All arcs going into S1 and S3 must be redirected to the combined state. The state table
must be updated to replace the two states. The updated state diagram and state table are
shown in Figure 8.42.
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PS I NS O

S0 0 S0 0

S0 1 S1 0

S1 0 S3 0

S1 1 S2 0

S2 0 S4 0

S2 1 S0 1

S3 0 S3 0

S3 1 S2 0

S4 0 S4 0

S4 1 S5 1

S5 0 S0 0

S5 1 S3 0
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(a) (b)

Figure 8.42: State diagram (a) and state table (b) after combining S1 and S3.

Now we repeat this process on the reduced state machine, continuing until all
equivalent states have been identified and combined. In this example, we find that states S0 and
S5 are equivalent, and we combine them into a single state, S05. The updated state diagram and
state table are shown in Figure 8.43.

(a) (b)

Figure 8.43: State diagram (a) and state table (b) after combining S0 and S5.

With S0 and S5 combined, we see that S2 and S4 are now equivalent. We combine them to
give us the state diagram and state table shown in Figure 8.44. None of these states are
equivalent, so this becomes our final design, in this case the Mealy machine for the 1s counter.
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PS I NS O

S0 0 S0 0

S0 1 S13 0

S13 0 S13 0

S13 1 S2 0

S2 0 S4 0

S2 1 S0 1

S4 0 S4 0

S4 1 S5 1

S5 0 S0 0

S5 1 S13 0

PS I NS O

S05 0 S05 0

S05 1 S13 0

S13 0 S13 0

S13 1 S2 0

S2 0 S4 0

S2 1 S05 1

S4 0 S4 0

S4 1 S05 1
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(a) (b)

Figure 8.44: Final state diagram (a) and state table (b) after combining S2 and S4.

WATCH ANIMATED FIGURE 8.44

To formalize this process, designers can use a mechanism called an implication table.
We start by creating a table with one row per state for all but one state, and one column per
state for all but one different state. By convention, we exclude the first state from the rows and
the last state from the columns, but any selections will work. Each entry indicates the
equivalence of the states for its row and column. We remove the redundant entries; for
example, we keep row S3 column S2, but we remove row S2 column S3. We also remove entries
with the same state in the row and column. Doing this for the previous example gives us the
empty table shown in Figure 8.45 (a).

S1 S1 S1 0-3
1-2

S2 S2 X X S2 X X

S3 S3 X S3 1-2 ✔ X

S4 S4 X X X S4 X X 0-5 X

S5 S5 X X S5 1-3 0-1 X 0-3
2-3

X

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4

(a) (b) (c)

Figure 8.45: Implication table for the state diagram and state table in Figure 8.41: (a) Blank
table; (b) Table with states that cannot be equivalent; (c) Completed initial table.
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PS I NS O

S05 0 S05 0

S05 1 S13 0

S13 0 S13 0

S13 1 S24 0

S24 0 S24 0

S24 1 S05 1
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Next, we populate our table. For each cell, we look at the entries in the state table for
the states of its row and column. For each input value, we compare the outputs. If they are not
the same for any input values, the two states cannot be equivalent. For example, in the state
table in Figure 8.41 (b), we see that S0 outputs a 0 when I = 0 and I = 1. State S2, however,
outputs a 0 when I = 0, but it outputs a 1 when I = 1. Therefore, S0 and S2 cannot be equivalent,
and we place an X at the location in the table for row S2 and column S0. Figure 8.45 (b) shows
the table with states that cannot be equivalent.

The cells that are still blank may or may not be equivalent. Since we know their outputs
are the same, we examine their next states. Sometimes we are fortunate to have a pair of states
that go to exactly the same next states for all possible input values. In this state machine, S1 and
S3 both transition to S3 when I = 0 and S2 when I = 1. We denote this using a✔ in the table.

For all other cells, the two states are equivalent if their next states are equivalent. We
don’t know if their next states are equivalent, at least not yet, so we simply list the required
equivalences in each cell. As an example, consider the uppermost cell in row S1 column S0. If I =
0, the next state for S0 is S0 and the next state for S1 is S3. This means that these two states can
only be equivalent if states S0 and S3 are equivalent. Also, if I = 1, S0 transitions to S1 and S1 goes
to S2, so we must also have S1 and S2 be equivalent. We place both entries in the cell since we
need both to be true for S0 and S1 to be equivalent.

Some entries are self-evident and can be excluded. Consider the cell for states S0 and S5.
If I = 0, both states transition to state S0. We don’t need to include this in the table; S0 is always
equivalent to itself.

Similarly, we don’t need to include an equivalency that refers to the cell itself. For
example, when I = 0, S0 goes to the next state S0, and S3 goes to S3. We do not need to include
this entry in the table. That would be like saying “S0 and S3 are equivalent if S0 and S3 are
equivalent.” This is clearly true, and including it in the table doesn’t help us find the equivalent
states.

Following this process for each cell gives us the completed initial table shown in Figure
8.45 (c).

Next, we update the table based on the pairs of states that we know are or are not
equivalent. For example, we know that S1 and S2 are not equivalent, so every cell that has this
combination as a requirement can be changed to an X. That is, since S0 and S3 are equivalent
only if S1 and S2 are equivalent, and we know that S1 and S2 are not equivalent, then S0 and S3

are not equivalent.
We also know that S1 and S3 are equivalent. Looking at the table, we see that S0 and S5

are equivalent only if S1 and S3 are equivalent. Since there are no other requirements for S0 and
S5, these two states are equivalent, and we change the entry for this cell to✔. Doing this for
each table entry gives us the updated table shown in Figure 8.46.
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Figure 8.46: Implication table updated for initial entries.

Just as we did in the previous example, we would continue to revise our table to
consider the new values created in the previous iteration, repeating until all entries are
completed. We only need one more iteration for this example. Since S0 and S1 are not
equivalent, S1 and S5 cannot be equivalent. Also, because S0 and S5 are equivalent, S2 and S4

must be equivalent. This gives us the completed table shown in Figure 8.47. With this
information, we can update the state diagram and state table, and proceed with the rest of the
design process.

Figure 8.47: Completed implication table.

WATCH ANIMATED FIGURE 8.47

8.5.3 Glitches

Glitches are the bane of digital designers. Often just a momentary change in a signal’s value,
they can wreak havoc with an otherwise well-designed system. They can be caused by
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S1 X

S2 X X

S3 X ✔ X

S4 X X 0-5 X

S5 1-3 0-1 X X X

S0 S1 S2 S3 S4

S1 X

S2 X X

S3 X ✔ X

S4 X X X X

S5 ✔ X X X X

S0 S1 S2 S3 S4
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component timing and propagation delay issues, signal noise, or transmission line effects. They
can also be caused by design errors, particularly those that do not take all possibilities into
account. We look at one of these errors in this subsection.

To examine this error, we return to the Mealy machine for the 1s counter shown in
Figure 8.19. Consider the values for the clock, present state, and input I shown in Figure 8.48.
Before continuing, take a couple of minutes to sketch out the values of the next state and
output O, as well as the value of the present state once the rising edge of the clock is reached.

Figure 8.48: Partial timing diagram for the 1s counter.

Hopefully you’ve completed the timing diagram and found the area of concern. Just so
we’re all on the same page, we’ll work from my completed timing diagram, shown in Figure
8.49. As input I changes, both NS1 and output O also change. The change in NS1 isn’t really a
problem, since this value is not loaded into its flip-flop until we have a rising edge on the clock
signal. The change in O, however, is quite visible and is not what we want our system to show to
the outside world.

Figure 8.49: Completed timing diagram for the 1s counter.

WATCH ANIMATED FIGURE 8.49
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The problem occurs because the state transition is synchronized to the clock, while the
output is not. That is, the present state only changes on the rising edge of the clock, but the
output can change at any time. In this timing diagram, a change in the value of input I changes
the value of output O immediately.

The present state does not have this issue because it uses an edge-triggered flip-flop,
and we can use this same strategy to get rid of this problem with output O. We send the value
we generate for O to an edge-triggered D flip-flop and connect the same clock signal used for
the present state flip-flops to the new flip-flop, as shown in Figure 8.50. Now, O will also change
only on the rising edge of the clock; it will not be impacted by the glitch on input I.

Figure 8.50: Circuit implementing the Mealy machine for the 1s counter with flip-flop for output O.

8.6 Summary

Sequential digital systems can be modeled as finite state machines. A finite state machine
accepts inputs, and outputs values, just like combinatorial circuits. But unlike combinatorial
circuits, the outputs depend on both the input values and the present state of the system. The
same input values, when accepted while the system is in different states, may produce different
output values.

To design a finite state machine, we determine all possible states. For each state we
consider all possible input values to ascertain the next state of the machine and the outputs to
be generated. We can represent this information using a state diagram and a state table. After
assigning a binary value to each state, we can develop the functions and design the digital logic
to generate the next state and output values.

There are two primary types of finite state machines that vary in how they generate
their outputs. The outputs of the Mealy machine are a function of both the present state and
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the input values. Moore machines generate their outputs based solely on the present state.
Both machines use both the present state and input values to produce the next state.

Most finite state machines use flip-flops or registers to store their present state, though
it is also possible to use a counter for some systems. Decoders can be used to generate signals
corresponding to individual states. A lookup ROM may be used to generate next state and
output values in place of traditional combinatorial logic.

Initial designs can often be refined to correct errors, account for unused state values,
and simplify the design and resultant hardware. Designers can create additional states that
correspond to all unused binary state values. Should the circuit end up in one of these states,
such as when the circuit initially powers up, the designer ensures that the machine transitions
to a valid state and then functions properly.

Some machines may have states that are equivalent. These states can be merged into a
single state, which simplifies the state machine and ultimately the circuit designed to
implement the state machine. Implication tables can be used to identify equivalent states.

Glitches can occur for a number of reasons. When designing a circuit to implement a
finite state machine, it is important to ensure that output values change only at the desired
time. Using flip-flops to store the output value is one way to address this issue.

This completes Part III of this book. In the next chapter, we introduce asynchronous
circuits. Although less frequently used than synchronous circuits, they have valid real-world
applications. However, they also have issues that must be taken into account during system
design, issues beyond those of synchronous systems. We’ll look at all of this next.
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Exercises

1. List the states of a 3-bit binary counter.

2. List the states of a BCD counter.

3. Show the Mealy machine state diagram and state table for a J-K flip-flop.

4. Show the Moore machine state diagram and state table for a J-K flip-flop.

5. Show the Mealy machine state diagram and state table for a T flip-flop.

6. Show the Moore machine state diagram and state table for a T flip-flop.

7. Modify the Mealy machine 1s counter state diagram and state table so it outputs a 1 for
one clock cycle after counting five inputs equal to 1.

8. Complete the design of the Mealy machine with the state diagram and state table you
developed in the previous problem.

9. Modify the Moore machine 1s counter state diagram and state table so it outputs a 1 for
one clock cycle after counting five inputs equal to 1.

10. Complete the design of the Moore machine with the state diagram and state table you
developed in the previous problem.

11. Is the following state table for a Mealy or Moore machine? How can you tell?
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PS I NS O1 O0

S0 0 S0 0 0

S0 1 S1 1 0

S1 0 S1 1 0

S1 1 S2 1 1

S2 0 S2 1 1

S2 1 S3 0 1

S3 0 S3 0 1

S3 1 S0 0 0
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12. Show the state table and state diagram for the following circuit.

13. Design a circuit that reads in a series of individual bits and outputs a 1 whenever the
sequence 1101 is read in. The circuit has a single input, I, and a single output, O. Design
your circuit as a Mealy machine.

14. Design the circuit in the previous problem as a Moore machine.

15. Redesign the Mealy machine for the 1s counter that outputs a 1 for a single clock cycle
so that it uses the following state assignments: S0 = 11; S1 = 00; S2 = 01.

16. Redesign the Moore machine for the 1s counter that outputs a 1 for a single clock cycle
so that it uses the following state assignments: S0 = 11; S1 = 00; S2 = 01; S3 = 10.

17. Redesign the Mealy machine for the original 1s counter using a 2-bit counter with a clear
input.

18. Redesign the Moore machine for the original 1s counter using a 2-bit counter with a
clear input.

19. Design a 3-bit Gray code sequence generator as a Mealy machine using a 3-bit binary
counter and combinatorial logic.
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20. Design a 4-bit Gray code sequence generator using a 4-bit binary counter and
combinatorial logic.

21. Design a 4-bit Gray code sequence generator using a 4-bit binary counter and a 4 to 16
decoder.

22. Redesign the 1s counter using a lookup ROM.

23. Design a 3-bit Gray code sequence generator as a Moore machine using a lookup ROM.

24. Complete the design of the 1s counter in Section 8.5.1 using the state diagram in Figure
8.39 (b).

25. Revise the design of the BCD counter to incorporate unused states.

26. For the following state diagram (a) and state table (b), simplify this design by combining
all equivalent states.

(a) (b)
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PS I NS O

S0 0 S0 0

S0 1 S1 0

S1 0 S2 0

S1 1 S1 0

S2 0 S0 1

S2 1 S3 0

S3 0 S4 0

S3 1 S5 0

S4 0 S4 0

S4 1 S3 1

S5 0 S4 0

S5 1 S5 0
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Chapter 9: Asynchronous Sequential Circuits

The finite state machines introduced in the last chapter are synchronous, that is, they use a
clock input to synchronize the flow of data within the circuit. They primarily do this by loading
positive-edge-triggered flip-flops to lock in the value of the present state, and possibly also the
values of system outputs. Most sequential systems are synchronous, but some are not. This
chapter introduces asynchronous sequential circuits.

We start by describing the basic characteristics and model of asynchronous sequential
circuits. Next, this chapter introduces the asynchronous system design process, first by analyzing
an existing asynchronous circuit and then by demonstrating a complete design.

There are specific issues related to asynchronous sequential design that are not present,
or are present much less frequently, in synchronous circuits. This chapter introduces oscillation,
hazards, and races, and design strategies to resolve these issues in asynchronous sequential
circuit design.

9.1 Overview and Model

The clock frequency used in digital circuits has increased dramatically over the past several
decades. Whereas early microprocessors used clocks with frequencies around 3 MHz (3 million
cycles per second), modern microprocessors use clocks with frequencies over 3 GHz, a
thousand-fold increase. Due to improvements in the technology used to create integrated
circuit chips, the individual components on these chips produce outputs more quickly, take up
less space, and use less power per component. Producing outputs more quickly lowers the
propagation delay and is primarily responsible for the faster clock time. But even at such high
clock frequencies, there is sometimes a need for circuits that are even faster than these clock
frequencies can support. This need can sometimes be met by asynchronous sequential circuits.

Asynchronous sequential circuits were mentioned briefly in Chapter 6. A generic model
for these circuits is repeated in Figure 9.1. It is similar to the model for synchronous sequential
circuits, with a couple of differences.

● Asynchronous sequential circuits do not use flip-flops or other storage elements to hold
the present state. Instead, we model these circuits using a delay. The input to the delay
block is the next state of the system. After a delay, this is output as the new present
state.

● Since there are no flip-flops, there is no need for a clock signal.
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Figure 9.1: Generic model for an asynchronous sequential circuit.

Although there are differences between asynchronous and synchronous sequential
circuits, there are also many similarities. Each employs a combinatorial logic block that receives
system input values and the present state, and produces system outputs and the next state
value. The design processes for the two are also similar, as are the tools used in the design
process. In the next section, we’ll examine the design process and the mechanisms we use in
more detail.

9.2 Design Process

Before getting into the design process for asynchronous sequential systems, this section
introduces several tools that we will use in the design process. To do this, we’ll analyze a given
circuit to illustrate how these tools work. Then we’ll go through a complete design from
beginning to end.

9.2.1 Analysis Example

To introduce the design tools, we will analyze an asynchronous sequential circuit we have
already seen in this book, the S-R latch constructed using NOR gates. For this example, we will

only consider the Q output of the latch. We will ignore the output. Figure 9.2 (a) shows the𝑄
design for this latch.

(a) (b)

Figure 9.2: Asynchronous sequential circuit: the partial S-R latch: (a) Logic diagram; (b) Redrawn
to incorporate delay and feedback.
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When modeling asynchronous sequential circuits, it is standard practice to incorporate a
delay block between what we would call the present state and the next state. We redraw the
logic diagram to include this delay, and we reformat it to emphasize the feedback path in the
circuit. This is shown in Figure 9.2 (b). By tracing through the data paths, you can verify that
both circuits are the same.

Notice the new label, q, associated with the lower input of the leftmost NOR gate. In a
steady state, q has the same value as Q. When Q changes, q will also change, but only after a
delay. In this circuit, q is similar to the present state of the circuit; Q is both a circuit output and
similar to the next state.

From this circuit, we can determine the value of Q as a function of S, R, and q, as follows.

Q = ((S + q)' + R)'

Using DeMorgan’s Law of the form (A + B) ' = A'B', this becomes

Q = ((S + q)')'R'
= (S + q) R'

Now that we have our function for Q, we can create a transition table. This looks very
similar to a truth table. For this circuit, the table inputs are the circuit inputs, S, R, and q, and
the output is circuit output Q. Just as with a truth table, we determine the output value for all
possible combinations of input values. The transition table for this circuit is shown in Figure 9.3.
Ignore the column labeled PSD for now; we’ll explain and make use of that shortly.

S R q Q PSD state
0 0 0 0 a
0 0 1 1 b
0 1 0 0 c
0 1 1 0 d
1 0 0 1 e
1 0 1 1 f
1 1 0 0 g
1 1 1 1 h

Figure 9.3: Transition table for the S-R latch.

We use the transition table to create the excitation map. This looks very much like the
Karnaugh maps we have been using throughout this book. As with Karnaugh maps, we set up a
grid, with the rows and columns corresponding to all possible input values. Figure 9.4 shows
two ways to draw the excitation map for this circuit; they are equivalent.
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Figure 9.4: Excitation maps for the S-R latch. The two maps are equivalent.

There is one very significant difference between the excitation map and a Karnaugh
map. Notice that some, but not all of the entries are circled. The entries that are circled are the
stable states of the circuit. A state is stable when, for its input values, the circuit is to remain in
that state. That is, its present state and next state are the same, or q = Q.

To illustrate a stable state, consider the case when S = 0, R = 0, and Q = 1. An S-R latch
with SR = 00 should retain its current value. Let’s examine this from the beginning. Initially, Q =
1. After a brief delay, q = 1. The inputs to the first NOR gate are S = 0 and q = 1, and its output is
(0 + 1)' = 0. The second NOR gate inputs this value and R = 0, outputting (0 + 0)' = 1. This cycle
repeats continuously, and Q does not change. This is shown in Figure 9.5 and its animation.

Figure 9.5: S-R latch in a stable state.

WATCH ANIMATED FIGURE 9.5

Not all states, however, are stable. When Q ≠ q, the state is called a transient state.
When a circuit enters a transient state, it immediately (after our Δ delay) transitions to another
state. Because this occurs so quickly, we model this with our input values not changing while
the circuit is in this state. If it goes to another transient state, it transitions out of that state,
continuing until it reaches a stable state. A well-designed circuit will always reach a stable state.
If it doesn’t, well, we’ll discuss this more later in this chapter.

As an example, let’s say we are in the stable state just discussed, with S = 0, R = 0, and Q
= q = 1. Then the R input changes from 0 to 1, giving us S = 0, R = 1, and Q = 1. For an S-R latch, S
= 0 and R = 1 should set Q = 0, not 1, so this state is transient, not stable. Tracing through our
circuit, the first NOR gate has inputs S = 0 and q = 1 and outputs a 0. The second NOR gate has
this input and R = 1, and it also outputs a 0. This sets Q = 0 and, after a brief delay, also sets q =
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0. Now the first NOR gate has inputs S = 0 and q = 0 and outputs a 1. The second NOR gate has
this 1 and R = 1 as inputs and outputs a 0. The circuit has transitioned from the transient state
with S = 0, R = 1, and Q = 1 to the stable state with S = 0, R = 1, and Q = 0. This is shown in Figure
9.6 and its animation.

(a) (b)

Figure 9.6: Transition from (a) a transient state to (b) a stable state.

WATCH ANIMATED FIGURE 9.6

Now, back to our analysis and one final tool, the primitive state diagram. This is similar
to the state diagrams we have seen earlier in this book, but it takes into account the constraints
placed on our system. The primitive state diagram for the S-R latch is shown in Figure 9.7. It uses
the values in the PSD column of the state transition table in Figure 9.3 to denote the states.

Figure 9.7: Primitive state diagram for the S-R latch. Transient states are shown in red.
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We placed two constraints on asynchronous sequential circuits, and both are reflected in
this primitive state diagram. First, at most one input value can change at a time. For this reason,
arcs are not included for inputs that change two values. For example, state a corresponds to S =
0 and R = 0. The primitive state diagram does not include an arc from state a with input values S
= 1 and R = 1. The other three input combinations, SR = 00, 01, and 10, are included in the
diagram.

The second constraint is that input values do not change during transient states. The
transient states in the primitive state diagram, d, e, and h, each have one arc entering and one
arc exiting; both have the same input values. Of course, the output value is different. If it were
the same, our system would remain in the same state and this state would be stable, not
transient.

With these tools, and those we will introduce shortly, we are ready to design an
asynchronous sequential system from its initial specification to its final implementation. We’ll
do that in the next subsection.

9.2.2 Design Example

There are several ways to divide the steps in the design process for an asynchronous sequential
system. Here are the steps we will use in this book.

1. Develop system specifications.
2. Define all states.
3. Minimize states.
4. Assign binary values to states.
5. Determine functions and design the circuit.

We will examine each of these steps as we proceed through our example design. In this
subsection, we will design the S-R latch with only a Q output.

Step 1: Develop System Specifications

We wish to design an asynchronous sequential system with two inputs, S and R, and one
output, Q. When SR = 00, output Q should retain its previous value. If SR = 01, the system
should set Q = 0, and the system should output Q = 1 when SR = 10. Finally, which SR = 11, the
system should set output Q to 0. Figure 9.8 shows a block diagram of our system.
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Figure 9.8: Block diagram for the S-R latch.

Step 2: Define States

In the block diagram for this system, there are three inputs to the combinatorial logic block that
generate the next state and output values. These three inputs can take on any of 23 = 8 possible
values, from 000 to 111, so this system has eight states (before minimization). Some of these
states are stable, and the rest are transient. Figure 9.9 shows these states.

State S R q Condition
a 0 0 0 S=0, R=0, Previously Q = 0
b 0 0 1 S=0, R=0, Previously Q = 1
c 0 1 0 S=0, R=1, Sets Q = 0
d 0 1 1 Transition to state c
e 1 0 0 Transition to state f
f 1 0 1 S=1, R=0, Sets Q = 1
g 1 1 0 S=1, R=1, Sets Q = 0
h 1 1 1 Transition to state g

Figure 9.9: Primitive states for the S-R latch. Transient states are shown in red.

To develop this table, we would go to the specification and identify values corresponding
to the specification. These are the stable states of the system. The Condition column in the
table shows which condition in the specification corresponds to each state.

The remaining values represent transient states. When the system is in a transient state,
we want it to transition to a stable state. Its inputs (S and R for this system) cannot change when
the system is in a transient state, so it must go to another state with the same input values but
different outputs. The Condition column gives the next state for each transient state.

Step 3: Minimize States

To minimize states, we first create the primitive state diagram and a new mechanism, the
primitive state table. Let’s start with the primitive state diagram. For each state, we list all
possible valid input combinations and determine the output value to be generated. We exclude
values for which more than one input changes, and those that are not the same inputs as were
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set when the system enters a transient state. Figure 9.10 shows the primitive state diagram for
this system. This is exactly the state diagram we derived for the S-R latch in Figure 9.7 in the
previous subsection.

Figure 9.10: Primitive state diagram for the S-R latch.

Notice that some transitions are not made directly. For example, if the system is in state
b (S = 0, R = 0, Q = q = 1) and R changes to 1, the system should transition to state c (S = 0, R = 1,
Q = q = 0). Remember that when input values change, Q does not immediately change; there is
a slight delay. In the primitive state diagram, I have placed all states with q = 0 in the upper row
of the diagram, and all states in the lower row have q= 1. When input values change, the
machine transitions to another state in the same row, that is, the output does not change. Also,
the states in each column have the same input values but different output values. It is within
these states that the machine changes its output. This can be summarized as follows.

When an asynchronous sequential system changes input and output values, it
first changes its input values and, after a very brief transient delay, changes its
output values.

Now let’s look at the primitive state table. This table is equivalent to the primitive state
diagram. To construct this table, we list each state in the first column. We then create one
additional column for each possible combination of input values; for this example, the four
columns correspond to SR = 00, 01, 11, and 10. Then we fill in the table. For each state and
input values, we list the next state and output values generated. When an input value is not
valid, we place a dash in the table. As you’ll see soon, we treat the dashes as don’t care values.
The complete primitive state table for this system is shown in Figure 9.11.
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State 00 01 11 10
a a,0 c,0 --- e,0
b b,1 d,1 --- f,1
c a,0 c,0 g,0 ---
d --- c,0 --- ---
e --- --- --- f,1
f b,1 --- h,1 f,1
g --- c,0 g,0 e,0
h --- --- g,0 ---

Figure 9.11: Primitive state table for the S-R latch.

Now we are ready to minimize the states in our system. Since the primitive state
diagram does not include the don’t care conditions, it may be easier to use the primitive state
table. To identify equivalent states and minimize the number of states, we compare every pair
of states individually. When comparing two states, they are equivalent only if all the entries are
equivalent. Two entries are equivalent if (i) they have the same state and output value, or (ii)
one or both are don’t cares.

We start by comparing states a and b. Since their entries for input values 00, 01, and 10
have different outputs, they cannot be equivalent.

Moving on to a and c, we find that both have a,0 for input value 00, and c,0 for input
value 01. So far so good. In the next column, 11, state c has the value g,0 and a has a don’t care.
By definition, they also match. Finally, column a has e,0 and c has a don’t care, so this matches
as well. Since all entries match, a and c are equivalent.

We continue this process until we have compared every pair of states. Then we can
create an implication table for our results. If we find any conditions necessary for equivalence,
we include these entries in the table and continue to check these entries until the table is
complete. For this example, there are no such conditions, and we get the implication table
shown in Figure 9.12.

b X

c X X

d ✔ X ✔

e X ✔ X X

f X ✔ X X ✔

g ✔ X ✔ ✔ X X

h ✔ X ✔ ✔ X X ✔

a b c d e f g

Figure 9.12: Implication table for the primitive state table for the S-R latch.
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From this table, we see that there are several pairs of states that are equivalent, namely
a and c, a and d, a and g, a and h, b and e, b and f, c and d, c and g, c and h, d and g, d and h, e
and f, and g and h.

We could choose one equivalence, combine the states, and repeat this process to see if
more than two states are equivalent, but there is an easier way to do this. For any set of states,
the states are all equivalent if and only if every pair of states within the set are equivalent.

Consider states b, e, and f. We have found that b and e are equivalent, b and f are
equivalent, and e and f are equivalent. Therefore, states b, e, and f are all equivalent to each
other and can be combined. Following this same procedure, we can show that states a, c, d, g,
and h are also all equivalent. Our 8-state system can be reduced to a 2-state system.

To combine equivalent states, we create a single state that has the entries of its
combined states. Consider the combined state for b, e, and f, which I’ll call β. For inputs 00, b
and f have the entry b,1 and e has a don’t care. Since we don’t care what the entry is for e, we’ll
make it b,1. Now all three entries match. Since b is combined into state β, the entry becomes
β,1. We determine the other entries in the same way. We also combine a, c, d, g, and h into a
single state, which I’ll call α, and combine their entries in the same way. This gives us the revised
state table shown in Figure 9.13 (a). The equivalent, revised state diagram is shown in Figure
9.13 (b).

State 00 01 11 10
α α,0 α,0 α,0 β,

0
β β,1 α,1 α,1 β,

1

(a) (b)

Figure 9.13: Revised (a) state table, and (b) state diagram for the S-R latch.

Step 4: Assign Binary Values To States

Since we have only two states in our system (after minimization), we need only one bit to
represent each state. I choose to assign α = 0 and β = 1.

Step 5: Determine Functions and Create Circuit

From here we can create the transition table and excitation map for the revised states. Again
using q as the present state and Q as the next state, and including the binary values for α and β,
we get the transition table shown in Figure 9.14 (a).
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S R q Q PSD state
0 0 0 0 a
0 0 1 1 b
0 1 0 0 c
0 1 1 0 d
1 0 0 1 e
1 0 1 1 f
1 1 0 0 g
1 1 1 1 h

(a) (b)

Figure 9.14: (a) State table, and (b) excitation map for the revised S-R latch.

As before, we can derive the excitation map from this state table. The excitation map is
shown in Figure 9.14 (b). Both the state table and the excitation map are identical to those
derived from the circuit for the S-R latch at the beginning of this section, which makes sense
since we are now trying to develop that same circuit.

From this excitation map, it is straightforward to derive the function for Q, which is Q =
SR' + R'q. A bit of logical manipulation transforms it as follows.

Q = SR' + R'q
= R'(S + q)
= (R + (S + q)')'

This in turn leads to the implementation using two NOR gates, one to generate (S + q)'
and the other to realize the final function. This circuit is shown in Figure 9.15 (a), with a delay
block included to show the feedback generating q from Q. The circuit is redrawn more like a
traditional S-R latch in Figure 9.15 (b)

(a) (b)

Figure 9.15: (a) Circuit to generate function Q. (b) Redrawn as a traditional S-R latch.
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9.3 Unstable Circuits

Stability is an important consideration when designing asynchronous sequential circuits. We
have previously introduced stable states, but what makes an entire circuit stable?

Simply put, an asynchronous sequential circuit is stable if it always reaches a stable
state. It may pass through one or more transient states to reach a stable state, but it always gets
there, no matter what value the inputs have and what state it is currently in.

This leads to an interesting and necessary condition. For each possible combination of
input value, there must be at least one stable state. Furthermore, since input values do not
change while the circuit is in a transient state, each transient state must ultimately transition to
one of these stable states. If a set of input values does not have any stable states, this cannot
happen, and the circuit is unstable.

Consider the circuit shown in Figure 9.16 (a). It is straightforward for us to find that the
function for Q can be expressed as

Q = Aq + Bq'

We can use this function as we create the transition table shown in Figure 9.16 (b).

(a) (b)

Figure 9.16: An unstable asynchronous sequential circuit: (a) Logic diagram; (b) Transition table.

You may already see the problem just by looking at the transition table, but it becomes
much clearer when we create the excitation map for this circuit. This map is shown in Figure
9.17. Notice that the column for inputs AB = 01 has no stable states. If we input 01 to this
circuit, it will constantly transition between two states. When AB = 01 and q = 0, it will set Q = 1.
This value is fed back and, after a delay, q = 1. This leaves us with AB = 01 and q = 1, which sets
Q = 0. This in turn sets q = 0, bringing us back to the original state. This bouncing back and forth
between transient states is an oscillation.

Page 9-13



Chapter 9: Asynchronous Sequential Circuits

Figure 9.17: Excitation map for the unstable asynchronous sequential circuit.

Using the state labels in the transition table, we can create the primitive state diagram
shown in Figure 9.18. Notice the loop in the graph between states c and d. This is the same
oscillation described in the previous paragraph.

Figure 9.18: Primitive state diagram for the unstable asynchronous sequential circuit.

This process is useful during the analysis of existing circuits, as well as the initial design
process. Once a function is determined, we can develop the transition table, excitation map,
and primitive state diagram to identify unstable input conditions. However, there is no quick fix
to this problem. If a specification is met and the solution leads to an unstable design, it is
necessary to revise the initial specification to make the system fully stable.
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9.4 Hazards

In combinatorial circuits, a hazard occurs when a change to a single input value causes a
momentary change to an output value that, logically speaking, should not occur. In this section,
we’ll look at two classes of hazards, how to identify them, and how to design circuits that are
hazard-free.

9.4.1 Static Hazards

You have already seen an example of a hazard earlier in this book. See if you can recall this
example before continuing.

The example is our Shakespeare-inspired circuit, which comes from the end of Chapter 3
in our discussion of propagation delays. (See Hamlet, Act III, Scene 1.) The circuit, its timing
diagram, and its animation are repeated in Figure 9.19. When input ToBe changes from 1 to 0,
inverted output ToBe' changes from 0 to 1, but only after the brief propagation delay of the NOT
gate. During this delay, the OR gate may see both inputs as 0 and momentarily set its output to
0. This is called a static-1 hazard; it occurs when the output should remain at 1, but it glitches to
0.

(a) (b)

Figure 9.19: Example of a static-1 hazard: (a) Circuit; (b) Timing diagram.

WATCH ANIMATED FIGURE 9.19

There is an equivalent hazard, called a static-0 hazard, that occurs when an output that
should remain at 0 glitches to 1. An example circuit and timing diagram are shown in Figure
9.20. In this circuit, when input A changes from 0 to 1, the output of the NOT gate changes from
1 to 0 after a slight propagation delay. During the time the NOT gate is changing its output, the
AND gate may interpret both inputs as 1, and thus output a 1 very briefly.
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(a) (b)

Figure 9.20: Example of a static-0 hazard: (a) Circuit; (b) Timing diagram.

WATCH ANIMATED FIGURE 9.20

In general, static-1 hazards occur most frequently in AND-OR circuits, that is, circuits
with several AND gates, each of which sends its output to a single OR gate to generate the
circuit output. Static-0 hazards typically occur in OR-AND circuits. These are common circuit
configurations. AND-OR circuits are frequently used to implement sum-of-products functions,
and OR-AND circuits typically implement product-of-sums functions.

9.4.1.1 Recognizing Static-1 Hazards

One of the easiest ways to identify static hazards is to examine their Karnaugh maps. Consider,
for example, a function with the truth table shown in Figure 9.21 (a). We can use this table to
create the Karnaugh map in Figure 9.21 (b). Grouping adjacent 1s as shown in the figure, we
derive the function Q = ab' + a'c. Finally, we implement it as shown in Figure 9.21 (c). It looks
good, but it is not; it has a static-1 hazard.

A B q Q
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

(a) (b) (c)

Figure 9.21: Example design with a static-1 hazard: (a) Truth table; (b) Karnaugh map; (c) Circuit.

The hazard occurs when b = 0, c = 1, and a changes from 1 to 0. Under these conditions,
the upper AND gate changes from 1 to 0 and the lower gate changes from 0 to 1. However,
because a passes through a NOT gate before going into the lower AND gate, the upper gate may
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change its output to 0 before the lower gate changes its output to 1. Both gates will send a 0 to
the OR gate for a brief time, causing it to generate a glitch output of 0. This sequence is shown
in Figure 9.22.

Figure 9.22: Timing diagram illustrating the static-1 hazard.

WATCH ANIMATED FIGURE 9.22

This is a key point in the root cause of static-1 hazards. These hazards occur when the
value of two terms in the function change simultaneously, one from 0 to 1 and the other from 1
to 0. Due to different propagation delays, however, the two terms do not actually change at
exactly the same time. There is a slight difference, and this difference causes the glitch.

In a Karnaugh map, each circled group corresponds to one of the AND gates. When
changing only one input causes the circuit to move from one group to another in the Karnaugh
map, we are changing the outputs of two of the AND gates. The AND gate for the group we are
leaving changes from 1 to 0, and the AND gate for the group we are entering changes from 0 to
1. So, to find static-1 hazards in a Karnaugh map, look for adjacent 1s that are in different
groups. In this map, this occurs in the cells with abc = 001 and abc = 101.

9.4.1.2 Resolving Static-1 Hazards

Now that we have identified the hazard, how do we get rid of it? Think about this for a minute
before reading on.

Hopefully you did think about this, and hopefully you found the solution. The way to get
rid of the static-1 hazard is to add another term to our function and another group to the
Karnaugh map. The new group should include all the terms that cause the glitch to appear. For
our function, this occurs when b = 0 and c = 1, and a is either 0 or 1. Our additional term is b'c.
The revised Karnaugh map and circuit are shown in Figure 9.23.
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(a) (b)

Figure 9.23: (a) Karnaugh map and (b) circuit updated to remove the static-1 hazard.

Now when the inputs change from abc = 001 to abc = 101, the output of the new,
uppermost AND gate remains at 1. The output of this gate is input to the OR gate, which also
keeps its output at 1, removing the glitch. Figure 9.24 shows the updated timing diagram.

Figure 9.24: Timing diagram showing the static-1 hazard has been resolved.

WATCH ANIMATED FIGURE 9.24

9.4.1.3 Recognizing and Resolving Static-0 Hazards

Just as we can recognize static-1 hazards in a Karnaugh map, we can also recognize static-0
hazards using K-maps. We form groups of the 0 terms; the sum of these is Q'. If any of the terms
is true, then Q = 0 and Q' = 1.

For our previous example, we can group terms as shown in Figure 9.25. The two groups
are ab and a'c'.

Figure 9.25: Karnaugh map with zeroes grouped.
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We can apply DeMorgan’s laws to generate a product of sums formula for Q as follows.

Q' = ab + a'c'
Q = (ab + a'c')'

= (ab)'(a'c')'
= (a' + b')(a + c)

We can implement this function for Q using the circuit shown in Figure 9.26.

Figure 9.26: Circuit with static-0 hazard.

Static-1 hazards occur when moving from one group to another, and the same is true for
static-0 hazards. In this example, this occurs when b = 1 and c = 0, and a changes from 0 to 1.
The output of the upper OR gate changes from 0 to 1, and the output of the lower OR gate
changes from 1 to 0, but only after a slight propagation delay due to the NOT gate that outputs
a'. During this delay, the AND gate may see both inputs as 1 and very briefly change its output
to 1, as shown in the timing diagram in Figure 9.27.

Figure 9.27: Timing diagram showing the static-0 hazard.

WATCH ANIMATED FIGURE 9.27
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So far, everything presented seems analogous to the static-1 hazard. The solution continues this
trend. To remove the static-0 hazard, we add a term to cover the terms with the hazard, in this
case bc'. Our equations become

Q' = ab + a'c' + bc'
Q = (ab + a'c' + bc')'

= (ab)'(a'c')'(bc')'
= (a' + b')(a + c) (b' + c)

The Karnaugh map, revised circuit, and new timing diagram are shown in Figure 9.28. As
we can see in the timing diagram and animation, the additional OR gate outputs a 0 the entire
time that the circuit transitions from abc = 010 to abc = 110. This ensures that the output of the
AND gate remains at 0, removing the glitch.

(a) (b) (c)

Figure 9.28: (a) Karnaugh map; (b) updated circuit; and (c) timing diagram with static-0 hazard
removed.

WATCH ANIMATED FIGURE 9.28

9.4.2 Dynamic Hazards

Static hazards occur when an output that is (logically) not supposed to change experiences a
glitch. It is also possible to have a glitch when an output is supposed to change. An output that
should change from 0 to 1, for example, might have a glitch and change from 0 to 1, back to 0,
and finally back to 1. This is called a dynamic hazard.

To see how a dynamic hazard can occur, consider the circuit shown in Figure 9.29 (a).
The OR gate realizes the function B + B'. In theory, this value should always be 1. In practice,
however, it has a static-1 hazard and can glitch to 0 when B changes from 1 to 0, as described in
the previous subsection. The AND gate realizes the function (B + B')B', or B'.
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(a) (b)

Figure 9.29: (a) Circuit with a dynamic hazard, and (b) its timing diagram.

WATCH ANIMATED FIGURE 9.29

To distinguish the outputs of the two inverters, I’ve labeled them B1' and B2'. Both will
output the value B', but there is no guarantee that both will take exactly the same amount of
time to produce this value. In this example, the lower NOT gate generates B2' more quickly than
the upper NOT gate outputs B1'. The lower NOT gate and the AND gate have 5 ns propagation
delays, the OR gate has a propagation delay of 15 ns, and the propagation delay of the upper
NOT gate is 25 ns.

The timing diagram in Figure 9.29 (b) and the animation for this figure show the signal
values throughout the circuit as B changes from 1 to 0. Initially, B = 1, B1' = 0, and the output of
the OR gate (B + B') = 1. The output of the lower NOT gate, B2', is 0 and Q = 0.

Then B changes from 1 to 0. 5 ns later, B2' changes from 0 to 1. This sets both inputs of
the AND gate to 1. After an additional 5 ns to accommodate the propagation delay of the AND
gate, its output becomes 1.

After another 5 ns, or 15 ns after B changes from 1 to 0, the OR gate sets its output to 0
since its B and B1' inputs are both 0. This sets one input of the AND gate to 0, and 5 ns later its
output goes back to 0.

5 ns later, or 25 ns after B changes, the output of the upper NOT gate, B1', becomes 1.
After its 15 ns propagation delay, the output of the OR gate changes from 0 to 1. Now the inputs
to the AND gate are again all set to 1, and 5 ns later the AND gate again outputs the final value
of 1. This changing of the output of the AND gate, output Q, from 0 to 1 to 0 to 1 is the dynamic
hazard in this circuit.

Now that we know where the dynamic hazard is within the circuit, how do we get rid of
it? Think about this for a minute, but here’s a hint: you’ve already seen the solution to this
problem.
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There is a specific condition of dynamic hazards that greatly simplifies the process of
correcting them. A dynamic hazard can only exist if the circuit also includes at least one static
hazard. In this circuit, the OR gate has a static-1 hazard that causes it to have a glitch in its
output. This glitch is input to the AND gate, which causes its output to glitch and generates the
dynamic hazard.

Putting this all together, if we get rid of the glitch generated by the static-1 hazard, we
no longer have an input glitch to trigger the dynamic hazard. That’s the key to mitigating
dynamic hazards: get rid of the static hazards in the circuit and the dynamic hazards disappear.

9.5 Race Conditions

The hazards we introduced in the previous section are caused when a single input value
changes. Within a circuit, there is another condition that can cause problems. This condition
occurs when two (or more) values within a circuit are supposed to change simultaneously. It is
very unlikely that the two values will change at exactly the same instant in time. In general, one
may change slightly more quickly than the others, placing the circuit in a state that it should not
be in. This is called a race condition.

To illustrate this, consider an asynchronous sequential circuit that continuously outputs
two-bit values in the sequence 00→ 01→ 10→ 11→ 00… This circuit has four states with the
same values as the outputs. Now look at the point where the state (and outputs) change from
01 to 10. If both bits change at exactly the same time, the circuit functions as desired. But what
happens if the most significant bit changes slightly faster than the least significant bit? In this
case, the circuit may go from 01 to 11 instead of from 01 to 10. If the least significant bit
changes more quickly, the circuit might go from 01 back to 00. This, in a nutshell, is the issue
arising from race conditions.

I was careful to specify that this is an asynchronous circuit. In synchronous circuits, race
conditions typically occur in the combinatorial logic used to generate the inputs to flip-flops
within the circuit. To resolve race conditions, we simply wait until all values have changed
before loading the flip-flops. We can do this by reducing the frequency (and hence increasing
the period) of the clock. For this reason, the remainder of this section will focus solely on race
conditions in asynchronous sequential circuits.

Some race conditions don’t matter, and some do. In the following two subsections, we’ll
look at these two cases. Then we’ll examine methods to resolve race conditions when
necessary.

9.5.1 Non-critical Race Conditions

When analyzing asynchronous sequential circuits, we are primarily concerned with the stable
states. If a race condition exists, but all possible paths always lead to the desired stable state,
the race condition is called a non-critical race condition. To see how this works, consider the
example transition table shown in Figure 9.30. The circuit has four states, each represented by a
2-bit value: a (00), b (01), c (10), and d (11). Initially, the circuit is in state a (00) and the inputs
are set to 11; this is a stable state for this input value. Now the input changes to 01 and we want
our circuit to transition to state d (11). If both bits representing the state change from 0 to 1 at
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the same instant in time, the circuit goes directly to state d as desired. This is possible but very
unlikely.

Figure 9.30: Transition table with non-critical race conditions.

WATCH ANIMATED FIGURE 9.30

Let’s examine the two cases in which one bit of the state value changes more quickly
than the other. If the most significant bit is faster, the circuit goes from state value 00 (a) to 10
(c). But looking at state c for input value 01, we see that the circuit next goes to state d (11).
Since the most significant bit for both c and d is 1, it doesn’t change any more. At this point,
only the least significant bit changes from 0 to 1. With only one bit changing, the state value
goes from 10 (c) to 11 (d), thus ending up in the final, stable state that we wanted it to go to.

If the least significant bit changes more quickly, the circuit instead goes from state a (00)
to state b (01). State b also transitions to state d (11) with only the most significant bit in its
state value changing.

No matter which bit of the state value (if either) changes more quickly, the circuit always
ends up in state d. This is why this race condition is non-critical. There are also some other
non-critical race conditions in this table. Identifying these race conditions is left as an exercise
for the reader.

9.5.2 Critical Race Conditions

It would make our lives much easier if all races in asynchronous sequential circuits were
non-critical, but that’s just not the case. Frequently, races cause the circuit to go into the wrong
stable state, and not function as desired. These races are called critical races.

The transition table shown in Figure 9.31 includes a critical race. Let’s say the circuit is in
state a (00) and the input value is 0; the circuit is currently in a stable state. Then the input value
changes from 0 to 1. The circuit should transition to state d (11). If both bits of the state change
simultaneously, unlikely but possible, this is exactly what happens. The circuit goes directly from
state a to state d.
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Figure 9.31: Transition table with a critical race condition.

WATCH ANIMATED FIGURE 9.31

Next, consider the case in which the most significant bit changes more quickly than the
least significant bit. Instead of going directly to state d (11), the state value changes from 00 to
10, bringing the circuit to state c. Fortunately, when the circuit is in state c and the input is 1, it
transitions from c (10) to d (11), which is the stable state we wanted to reach. So far the circuit
is functioning as desired.

Finally, we see what happens if the least significant bit changes first. We go from state a
(00) to state b (01). When the input is 1, this is a stable state and the circuit remains in this
state. This is not where it should be, and this is a critical race.

We need to modify this system so that all critical races are removed. We look at how to
do that in the next subsection.

9.5.3 Resolving Critical Race Conditions

As we’ve seen in the previous examples, both non-critical and critical race conditions occur
when two or more bits of the state value change at the same time, but one may change more
quickly than the other(s). When this happens, the circuit may enter an incorrect state, and thus
fail to perform as required. The best way to get rid of races in an asynchronous sequential circuit
is to assign state values so that each state transition only changes one bit of the state value. Just
like a horse race with only one horse,1 there isn’t really a race with only one bit changing; there
isn’t anything for it to race against.

Going back to the last example, let’s swap the values for states c and d. This makes our
state representations a = 00, b = 01, c = 11, and d = 10. When our circuit is in state a and the
input value changes from 00 to 10 instead of from 00 to 11. For the new state values, this
transition only changes one bit, which removes the race condition. Equally important, it does
not introduce any other race conditions.

It is important to note that changing the state value does not change the output values.
The circuit must still generate the outputs as originally specified. If the outputs were derived
from the original state values, then we would need to redesign the logic to generate outputs
based on the new state values. Remember that whoever is using the circuit does not see the
states; they only see the input and output values.

1Technically, it is possible to have a horse race with only one horse. This happens when all but one horse is
scratched, withdrawn from the race, usually due to illness or injury. A one-horse race is called a walkover.
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9.5.3.1 Another Example

We want to design an asynchronous sequential circuit that counts the number of times an input
value changes. For simplicity, the circuit outputs a 2-bit value, O1O0, and a single input I. When I
changes either from 0 to 1 or from 1 to 0, the output value is incremented, progressing through
the sequence 00→ 01→ 10→ 11→ 00…

Since there are four different output values, this circuit needs (at least) four states. For
this example, the four states and their state values are a (00), b (01), c (10), and d (11). For the
initial design, the output values are the same as the state values. Initially, the circuit is in state a
and input I = 0. When I changes to 1, the circuit goes to state b. It stays in b until I = 0; then it
goes to c. When I becomes 1, the circuit transitions to state d, and when I is again 0, the circuit
moves to state a. Before looking at the transition table in Figure 9.32, try to derive this table
from the description given in this paragraph.

(a) (b)

Figure 9.32: Transition table for the counter: (a) With symbolic state names; (b) With the initial
binary state values.

It is relatively easy to determine the functions for the two-bit “next states” Q1 and Q0.
We can see just by looking at the table that Q0 = I. Q1 is best determined using an excitation
map. Its function is q1q0' + q1I + q1'q0I'. The circuit to realize these functions, and the entire
asynchronous sequential machine, is shown in Figure 9.33. Because we chose these specific
state assignments, the outputs can be expressed as O1 = Q1 and O0 = Q0.
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Figure 9.33: Preliminary circuit to realize the counter.

Unfortunately, this circuit has some critical races. Consider the case when the circuit is in
state b and input I changes from 1 to 0. We want the circuit to transition from state b to state c,
with the state value changing from 01 to 10. This might happen if both bits change at exactly
the same time. If the least significant bit changes more quickly than the most significant bit,
which is realistic since it does not use any logic gates at all, the circuit would transition to state
value 00, or state a. This is a stable state and the circuit would stay there, not reaching the
desired state c. If, for some reason, Q1 changes first, the circuit would go to state d with state
value 11. From here, it would try to go to state a (00), and could go to that state. It could also go
to state b (01), which is where the circuit just was. There is also a chance that it will go to
desired state c (10), but this is by no means certain.

Once again, we can remove the race by setting the state values to a (00), b (01), c (11),
and d (10). Figure 9.34 shows the state table with these values. Using the excitation maps, the
development of which is left as an exercise for the reader, we derive the equations for state
variables Q1 and Q0 as:

Q1 = q0I' + q1'I
Q0 = q0I' + q1I

(a) (b)

Figure 9.34: Transition table for the counter: (a) With symbolic state names; (b) With revised
binary state values.
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Since the outputs are no longer the same as the state values for states c and d, we need
to develop functions for the outputs. The reader can verify that these functions are

O1 = Q1

O0 = Q1 ⊕ Q0

The circuit for the counter with the revised state values is shown in Figure 9.35. This
design has no race conditions.

Figure 9.35: Final circuit to realize the counter.

9.5.3.2 How Did We Do That?

So, how did I know that exchanging the state values for c and d would get rid of the critical
races? There is a specific method I used, which I’ll explain here. First, I looked at each row of the
transition table to see which states are adjacent, that is, which states are involved in a
transition. For state a, we stay in a if I = 0 and go to b if I = 1. Hence, a and b are adjacent. We
ignore the cases when the circuit remains in the same state since the state values do not
change. Continuing through the transition table row by row, we find that b and c, c and d, and d
and a are also adjacent.

To remove races from the circuit, we want to assign values to each state so that adjacent
states’ values vary by only one bit. I started by assigning 00 to a.

State a is adjacent to two states, b and d. There are two values that are different from
the 00 value of state a by only one bit, 01 and 10. I assigned 01 to b and 10 to d.

Now, state b is adjacent to states a and c. We’ve already assigned 00 to a, and there is
only one other binary value that differs from the 01 value of state b by one bit. We assign this
value, 11, to state c. Finally, we see that the values of adjacent states c (11) and d (10) also vary
by only one bit.
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Notice that the counter progresses from a→ b→ c→ d→ a…, or through state values
00→ 01→ 11→ 10→ 00… This is the 2-bit reflected Gray code introduced earlier in this
book, and this is one of the most common uses of the Gray code, to get rid of races in
asynchronous sequential circuits.

Gray codes work great when the number of states is exactly a power of 2 and you
progress through the states sequentially. But that’s not always the case. Consider the case when
we want to extend this circuit so it counts from 0 to 5 instead of 0 to 3. It will have six states,
which we label a, b, c, d, e, and f. We take the first six entries of the 3-bit Gray code and assign
them to these states, which gives us a = 000, b = 001, c = 011, d = 010, e = 110, and f = 111. We
can construct the transition table in much the same way as we did for the original example. This
gives us the transition table and primitive state diagram shown in Figure 9.36.

(a) (b)

(c)

Figure 9.36: 6-value counter: (a) Primitive transition table; (b) Primitive transition table with
state values listed; and (c) Primitive state diagram.
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As we transition through the states of this asynchronous sequential system, using the
Gray code sequence largely achieves its purpose. Almost all transitions change only one bit of
the state value. The only transition that causes a problem occurs in state f when input I = 0.
There, the circuit transitions from state f (111) to state a (000). All three bits of the state value
change, giving the circuit a three-way race.

Before reading on, try to list some ways to resolve this problem.
Hopefully you’ve developed some alternatives to the design presented here. Below are a

few that I found.

1. Change the state value for f from 111 to 100.
2. Change the state values for d, e, and f from 010, 110, and 111 to 111, 110, and 100,

respectively.
3. Add transient states between states f and a.

For this example, we’ll implement the third option.
The idea behind adding transient states is to have this system change only one bit of the

state value for each transition. By incorporating transient states, the system can change one bit
of the state value and then transition to another state very quickly, continuing until all bits are
changed.

Since three bits are changed as the system goes from state f to state a, this transition
must be divided into three transitions, each of which changes one bit of the state value. To do
this, we create two new transient states, g and h, with state values 101 and 100, respectively.
Instead of going from f (111) to a (000), the system will go from f (111) to g (101) to h (100) to a
(000). Now, each transition changes only one bit of the state value and the critical race
condition is removed. The revised transition table and state diagram are shown in Figure 9.37.
Note the two entries for I = 1 in states g and h. Since these are transient states, only the entries
for I = 0 are defined in this design. The entries for I = 1 are treated as don’t cares.

(a) (b)
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(c)

Figure 9.37: Revised (a) transition table; (b) transition table with state values listed; and (c) state
diagram for the 6-value counter.

With the revised states, we can now design the asynchronous, race-free sequential
circuit for this system. The circuit will sequence through the states properly and generate the
correct outputs. This is left as an exercise for the reader.

9.6 Summary

The vast majority of sequential circuits are synchronous, that is, they use a clock to coordinate
the flow of data within the circuit. Asynchronous sequential circuits, though less frequently
used, still play an important role when even the fastest synchronous circuits are not fast
enough.

Unlike synchronous circuits, asynchronous sequential circuits do not use storage
elements such as flip-flops to store their present state. They incorporate feedback delays as
they transition from one state to another.

There are several tools we can use to design and analyze asynchronous sequential
circuits. A transition table is similar to a traditional truth table, with system inputs and the
present state as inputs and system outputs and the next state as outputs. An excitation map is
derived from the transition table. It looks much like a Karnaugh map, with stable entries circled.
A primitive state diagram is very much like a traditional state diagram, incorporating constraints
placed on the system.
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The design process for asynchronous sequential systems begins with the specification of
the system and definition of all states. This preliminary specification often results in a large
number of states, which can often be combined to reduce the final number of states in the
system. We then determine functions and create the final circuit to realize the system
specification.

Asynchronous sequential circuits can have several issues that do not occur, or occur less
often, in synchronous sequential circuits. A circuit that does not have at least one stable state
for every possible combination of input value may oscillate, transitioning continuously between
two or more transient states. Static hazards occur when an output value that should stay
constant briefly glitches to the opposite value. Static glitches occur when going from one group
of terms in a Karnaugh map to another group. Incorporating redundant logic is the usual way to
remove static hazards from a circuit. Dynamic hazards occur when a value that is supposed to
change once has a glitch and changes several times on its way to its intended value. Dynamic
hazards are caused by static hazards. Removing the static hazards also removes the dynamic
hazards they cause.

Race conditions occur when two values are supposed to change simultaneously, but the
delays associated with the changes are not equal. A race condition is non-critical when the race
does not change the overall system behavior; the circuit ultimately reaches its desired state and
generates its specified output values. A critical race condition can result in a circuit reaching an
incorrect state and outputting the wrong values. We can resolve critical race conditions by
assigning binary values to states such that each transition changes only one bit, thus giving that
bit nothing to race against. It is also possible to incorporate additional, transient states into the
system to limit the number of bits that change to one per transition.
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Exercises

For problems 1-5, analyze the S-R latch modified to only output .𝑄

1. Show the circuit model with feedback and delay.

2. Show the transition table.

3. Show the excitation map.

4. Show the primitive state diagram.

5. Show the timing diagram for the S-R latch as inputs transition from 10 to 00 to 01.

For problems 6-9, design the D latch as an asynchronous sequential circuit.

6. Show the transition table and define the primitive states.

7. Minimize the states and show the revised transition table.

8. Show the excitation map and derive the functions.

9. Design the circuit to implement this design.

10. For the transition table below, identify and correct all oscillations.

State 00 01 11 10
a b,0 d,1 a,1 c,0
b c,0 b,1 c,1 c,0
c d,0 c,1 c,1 c,0
d d,1 a,1 a,1 b,0

11. For the following circuit, identify and mitigate all static-1 hazards.
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12. For the following circuit, identify and mitigate all static-0 hazards.

13. Find and resolve all dynamic hazards in the following circuit.

14. Find and resolve all dynamic hazards in the following circuit.

15. Find all non-critical race conditions in the transition table shown in Figure 9.30.

16. Develop the excitation maps for the transition table in Figure 9.34.

17. For the following transition table, identify all race conditions and indicate whether they
are critical or non-critical.

State 00 01 11 10
00/a a,0 b,1 d,1 a,0
01/b c,1 b,1 d,1 a,0
10/c c,1 d,1 d,1 d,0
11/d c,0 d,1 d,1 a,0
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18. Resolve all critical race conditions in the transition table of the previous problem.

19. For the following circuit, identify all race conditions and indicate whether they are
critical or non-critical.

20. Resolve all critical race conditions in the circuit of the previous problem.

21. Redesign the six-state circuit in Section 9.5.3 using the first option for reassigning state
values.

22. Redesign the six-state circuit in Section 9.5.3 using the second option for reassigning
state values.

23. Design the circuit to complete the six-state circuit design at the end of Section 9.5.3.
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Chapter 10: Programmable Devices

Almost all of the devices presented so far in this book have static configurations. An AND gate
has some set number of inputs and only sets its output to 1 when all its inputs are 1. There are
AND gates with different numbers of inputs, but for any particular AND gate the number of
inputs does not change. A 2-input AND gate doesn’t suddenly become a 3-input AND gate. Nor
does it change its function, changing, for example, into a 2-input OR gate. Once the gate is
fabricated, it stays that way.

There are a couple of types of components, however, that are not static. These are
programmable devices. We can program these devices so they output whatever values we want
for specific input values, or they realize different functions for different inputs. A designer can
change how a circuit functions by programming one of these chips. This chapter begins by
examining the programmable device methodology and its advantages and disadvantages.

Next, we introduce programmable logic devices, or PLDs. Unlike memory devices, which
store data values, PLDs incorporate a large number of logic gates (and sometimes flip-flops) on a
single chip. We do not program the gates themselves; they are fixed and do not change. Rather,
we program the interconnections between gates. By programming these data paths, we connect
gate outputs to the inputs of other gates, or chip outputs, and chip inputs to gate inputs. In
essence, this is like wiring up our circuit within the chip. Making these connections creates a
circuit to realize any desired function.

Finally, we examine programmable memory devices. We saw one type of memory
device, read-only memory, when we introduced lookup ROMs in Chapter 5. In this chapter, we
introduce several types of memory devices, as well as their internal organization. We discuss
some of the uses for these devices in digital logic circuits, computer systems, and inside of a
microprocessor.

10.1 Why Programmable Devices?

Programmable logic devices and programmable memory chips offer a number of advantages
when used to construct combinatorial and sequential logic circuits, and are used frequently in
engineering design. Quite often, a single programmable chip can replace several chips in a
circuit. This can lower the cost of the final circuit. Having functions realized using a single chip
can also reduce the amount of wiring in the circuit, allowing it to be manufactured using a
smaller circuit board, as well as reducing the amount of power required for the circuit.
Programmable components can also simplify the process of modifying an existing circuit. For
many designs, we can correct design errors or modify our designs to add or change functionality
simply by reprograming a chip, without needing to modify the rest of the circuit and its wiring.

Programmable devices also have some drawbacks. Depending on the application, a
programmable device may have too many memory locations or components, and the extra logic
would be wasted in the circuit design. Another consideration is the speed of the circuit.
Memory chips, for example, are generally slower than combinatorial logic gates. Replacing gates
with a lookup ROM, as we did in Chapter 5, can increase the amount of time needed to
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generate the circuit’s outputs. For complex circuits, however, the opposite may be true,
depending on how many gates data must pass through to reach the circuit’s outputs.

10.2 Programmable Logic Devices

Of all the methods we’ve looked at so far to realize combinatorial logic functions, the most
efficient is the very first method we saw: minimize the function and design a circuit using
fundamental logic gates. Decoders, multiplexers, and ROMs all incorporate logic components
within their designs that are not needed for specific logic functions. However, building a circuit
with different types and sizes of logic gates may require several chips. This means you’ll also
need a larger circuit board, additional wiring to connect the chips, and more power. This was
the impetus behind the creation of programmable logic devices, or PLDs.

A PLD is a single chip with many basic logic gates built into it. The designer can specify
the connections between the gates, and between input and output pins and the gates, to realize
the desired function. Some types of PLDs allow only limited connections, while others are more
flexible.

The designer “builds” the circuit using a computer program, which converts the design
to the connections needed within the chip. The computer has a programmer, a piece of
hardware attached to the computer (usually through a USB port), and the program sends the
connection information to the programming hardware, which sends it to the PLD chip, thus
creating the circuit to realize the desired function.

This section examines several classes of PLDs: Programmable Array Logic (PAL),
Programmable Logic Array (PLA), Complex Programmable Logic Device (CPLD), and
Field-Programmable Gate Array (FPGA).

10.2.1 Programmable Array Logic

A Programmable Array Logic, or PAL, chip consists of several AND-OR arrays of gates. That is,
each array has several AND gates, and the outputs of the AND gates are connected to the inputs
of an OR gate. The function inputs are connected to the input pins of the PAL chip, and the
designer selects which function inputs and complements of function inputs are connected to
the inputs of each AND gate. The designer also specifies which chip pin each OR gate output is
connected to. PALs can typically output the value generated by the OR gate or its complement
as specified by the designer. Some PALs have registers on their outputs that can store their
values even after the inputs are changed. For now, we’ll limit our discussion of all
programmable logic devices to those without registers.

A generic PAL array is shown in Figure 10.1. This array is one of several that may be
contained within the PAL chip. This chip has four inputs, and each input and its complement can
be connected to an input of each AND gate. In this figure, each AND gate is shown with a single
input line. This is the convention used for PLDs. This line represents all inputs to the gate. The Xs
on this line indicate that a signal is connected to a gate input. In this figure, the uppermost AND
gate has a and c as its inputs, and the second AND gate has inputs a', b, and c'. The third gate
has no inputs shown. Some functions do not need to use every AND gate. By convention,
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showing no connections indicates that the gate’s inputs are 0. This causes the AND gate to
output a 0, which is then input to the OR gate. Since anything ORed with 0 is just the logical OR
of the other inputs, this essentially removes that AND gate from the equation. The output of the
OR gate is ac + a'bc' + 0, or ac + a'bc', the same function we’ve seen in previous chapters.

Figure 10.1: Generic PAL cell implementing the function ac + a'bc'

WATCH ANIMATED FIGURE 10.1

A PAL may include a feedback path from the output of some or all of the OR gates,
allowing these outputs to be used as inputs to an AND gate in another AND-OR array within the
chip. This is useful for functions that have many terms logically ORed together. Consider, for
example, the function a⊕b⊕c; its truth table is shown in Figure 10.2 (a). Since PALs do not
incorporate XOR gates, we must express this function solely using AND and OR functions. We
must also use NOT gates to produce the complements of the inputs, a', b', and c', but the PAL
already does that for us. This function can be expressed as a⊕b⊕c=a'b'c+a'bc'+ab'c'+abc. If our
cells use the configuration shown in Figure 5.13, we could not fit this design into a single cell.
We need four AND gates to generate the terms to be logically ORed together, but each cell has
only three AND gates. However, if we have feedback paths, we could OR together the first three
terms in one cell and feed this result back to a second cell. This cell could OR the feedback value
with the fourth term, producing the desired function. This two-cell design is shown in Figure
10.2 (b).

To give you an idea for the size of a real-world PAL, consider the PAL16L8 chip. This chip
has 10 dedicated input pins, two dedicated output pins, and six pins that can be configured
either as input or output pins. There are eight cells, each of which can output its results to an
output or bidirectional pin. Each cell has eight AND gates. The six cells that can drive the
bidirectional pins can also feedback their outputs to be used as inputs to AND gates in the other
cells.
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a b c q
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(a) (b)

Figure 10.2: a⊕b⊕c: (a) Truth table; (b) Implementation using two cells of a PAL. The upper cell
generates a'b'c+a'bc'+ab'c' and the lower cell generates the final function.

WATCH ANIMATED FIGURE 10.2

10.2.2 Programmable Logic Arrays

Although its name is similar to that of the PAL, a programmable logic array, or PLA, has one
significant difference. In addition to being able to specify the inputs to the AND gate, the
designer can also specify which AND gates input their values to each OR gate. In the generic
PAL, each OR gate can have up to three AND gates supply its inputs. Here, we do not have this
limitation. Also, one AND gate can send its output to more than one OR gate. Figure 10.3 shows
a generic PLA cell.

The PLA is more flexible than the PAL, and at first glance it might seem to make sense to
always use a PLA instead of a PAL. In fact, the exact opposite is the case. Most designs use PALs
instead of PLAs. In spite of their flexibility, PLAs have some shortcomings. This flexibility
introduces additional costs to the PLA. Besides being more expensive to fabricate, the PLA is
generally slower than a PAL chip that implements the same function. For these reasons, PAL
chips are used much more frequently than PLAs.

Page 10-5

https://digitalcommons.njit.edu/dld-animations/125


Chapter 10: Programmable Devices

Figure 10.3: Generic PLA cell implementing the function ac + a'bc'

WATCH ANIMATED FIGURE 10.3

10.2.3 Complex PLDs and Field Programmable Gate Arrays

PALs and PLAs are frequently used in digital logic design. However, as the complexity of digital
circuits increased, the need arose for more complex programmable logic devices to hold these
designs. In this section, we’ll briefly examine two classes of these devices: Complex
Programmable Logic Devices (CPLDs) and Field-Programmable Gate Arrays (FPGAs).

PALs and PLAs are classified as Simple Programmable Logic Devices, or SPLDs. (I’m not
sure why developers in this field seem to be more enamored with acronyms than those in other
areas, but it is what it is.) Typical SPLDs have on the order of hundreds of gates. The PAL16L8
introduced earlier has about 100 gates. Complex PLDs, in comparison, have thousands of gates.

Beyond the sheer increase in the number of gates, CPLDs have a more complex internal
architecture to allow the components to communicate with each other. A CPLD is designed as a
series of logic blocks. Each logic block includes a logic array that is similar to a complete array
within a PAL or PLA, and a macrocell. The macrocell may include registers to store results, and
may act as an intermediary between the logic block and rest of the chip. We will refer to all of
this as a cell.

The CPLD has an interconnect structure that allows the output of a cell to be sent to
other cells. The rationale is much like that of the feedback connections within a PAL or PLA.
Doing so allows for the implementation of more complex functions. But beyond this, it allows
the designer to partition the design. One cell could be used to generate the value of some
function, and the chip could send that value to other cells that perform different actions based
on that value. For example, let’s say your CPLD inputs some 4-bit value. When that value
reaches 0000, you want the chip to cause several things to happen. Maybe you want to light an
LED, start another sequence, or perform whatever operations you need to perform. One cell
could be programmed to check the input value and generate an output that indicates whether
or not it is 0000. It could send that value to other cells via the interconnect structure, and each
of those cells could perform one of the necessary operations.
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In addition to these interconnects, a CPLD also has logic blocks to coordinate I/O
operations, that is, accepting inputs via the chip’s input pins and outputting data via its output
pins.

Like SPLDs, CPLDs are programmed before they are used in a circuit. Once the power is
turned on, they begin to function right away. This may seem pretty obvious, but it is not the
case for our next component.

Field-Programmable Gate Arrays are several orders of magnitude more complex than
CPLDs. Whereas CPLDs have thousands of gates, FPGAs can have millions of gates. This allows
designers to program much more complex designs into the chip than they can using CPLDs.
These applications may include digital signal processing designs, and even some complete
microprocessors. The OpenCores website has over 200 microprocessor designs that can be
downloaded and programmed directly into an FPGA, as well as many designs for other
components of computer systems.

Unlike SPLDs and CPLDs, many FPGAs are programmed when power is turned on.
Typically, an FPGA circuit will include a ROM with the configuration programming information
and any additional circuitry needed to load this information into the FPGA. This must be done
every time the circuit’s power is turned on, but once this is done the FPGA operates as desired
as long as the power remains on.

10.3 Memory Devices

There are several different types of memory components, each with its own applications in
digital system design. In Chapter 5, we noted that memory components can be classified as
volatile, losing their contents when power is removed, and non-volatile, retaining stored data
even when power is disconnected. Within each classification, there are several types of memory
devices. We’ll look at those in the next two subsections. Then we’ll look inside the memory chip
to see how it functions.

10.3.1 Volatile Memory Devices

In a typical personal computer, there are several types of memory. Two of these types are
classified as volatile memory. One of these is dynamic random access memory, DRAM, or
dynamic RAM. If your PC has 16GB of memory, this refers to its dynamic RAM.

Conceptually, you can think of dynamic RAM as acting like leaky capacitors. You can store
charge in a capacitor or discharge a capacitor to remove its charge. These two conditions
correspond to logic values 1 and 0. As long as power is supplied to the dynamic RAM, it stores
its value. But when power is disconnected, the capacitors lose their charge and the data values
are lost.

The capacitors in our model for dynamic RAM are not perfect. Even when power is
connected, they leak charge. If we did not do anything, dynamic RAM would leak all its charge
and lose its data, whether or not power is on. Figure 10.4 (a) represents the loss of charge over
time for a logic value of 1.
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(a) (b)

Figure 10.4: Model of dynamic RAM charge: (a) Without refresh; (b) With refresh.

To resolve this problem, dynamic RAM includes refresh circuitry. This circuitry reads the
contents of memory locations and then writes the same values back to these locations. This
does not change the data values, but it does store the maximum charge in the memory
locations as shown in Figure 10.4 (b).

As stated earlier, Figure 10.4 shows this process for logic value 1. The same refresh
process is used for all bits of dynamic RAM. The bits storing logic value 0, however, remain in a
discharged state.

The other type of volatile memory in a computer system is called static RAM, or SRAM.
This type of memory acts more like D flip-flops. Unlike dynamic RAM, static RAM does not leak
charge and does not need to be refreshed. It is also faster than dynamic RAM. Unfortunately, it
is also much more expensive than dynamic RAM, which is why DRAM is used as the primary
physical memory in computer systems. Static RAM is used to construct cache memory, a small,
high-speed memory found within a microprocessor chip. Cache memory is beyond the scope of
this book. I recommend you check out my other book or any book on computer systems for a
detailed description of cache memory and how it is used in computer systems.

10.3.2 Non-volatile Memory Devices

When power is removed from a non-volatile memory, it retains the data in its memory cells.
This has many practical uses, one of which is the lookup tables introduced in Chapter 5. But this
is just one application; in fact, it is one of the less frequently used applications of non-volatile
memory. Before reading on, try to think of some devices you have used that include non-volatile
memory.

I hope you did stop to think about everyday uses of non-volatile memory before reading
this paragraph. If you did, I’d guess the most common (correct) answer that students chose is
USB flash drives. You can insert the drive into the USB port of a computer, which gives it power
and access to data. After writing a file to the drive, as I’m doing as I write this chapter, you can
eject the drive and remove it from the USB port. This removes power from the flash drive.
When you reinsert it into the USB port, you can access the file again. The non-volatile memory
retained its contents, even when power was removed. An SD card, typically used to store data
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in devices such as cameras, operates in much the same way, except it uses a different interface
than USB.

A typical personal computer includes a non-volatile memory called the BIOS ROM, BIOS,
or UEFI. The BIOS (Basic Input/Output System) or UEFI (Unified Extensible Firmware Interface) is
used when the computer first starts up to initialize and test system hardware, and then load in
software to start up the operating system (Windows, MacOS, Linux, et. al.).

One other place you’ll find non-volatile memory in a computer system is inside the
microprocessor chip. Many modern microprocessors use a microsequencer as a control unit. (If
you think of the microprocessor as the brain of a computer, the control unit is the brain of the
microprocessor.) A microsequencer stores data that causes it to perform the correct sequence
of micro-operations to process instructions. The details are beyond the scope of this book; see
my other book or any book on computer architecture for more details about microsequencers
and how they work.

Just as there are different types of volatile memory, there are also several types of
non-volatile memory.

10.3.2.1 Masked ROM, or ROM

A masked ROM, or just a ROM, is a read-only memory that has its data fixed when it is
manufactured. This is useful when you’re manufacturing a large number of a single product that
uses a non-volatile memory that will never change its data. Some consumer appliances, such as
washing machines or microwave ovens, which use simple microprocessors may use this type of
memory. The memory in the microsequencer of a microprocessor chip would also fall into this
category.

10.3.2.2 Programmable ROM

A programmable read-only memory, or PROM, is a ROM that can be programmed by the user
with specialized programming hardware, but only once. The PROM chip contains a fuse for each
bit of memory. Programming the PROM chip blows out the fuse or leaves it intact to store a
logic 0 or 1 for that bit. Just as with fuses in electrical circuits, once a fuse is blown, it cannot be
un-blown. PROMs are useful when prototyping circuits, or when manufacturing a small quantity
of a product that might otherwise use a masked ROM.

10.3.2.3 Erasable PROM

Unlike a PROM, an erasable PROM, or EPROM, can be erased. The EPROM chip is programmed
using specialized programming hardware, much like a PROM. Instead of blowing fuses, however,
the EPROM stores data in separate cells that set the data for each bit. These cells retain their
data under normal circumstances, but leak charge when exposed to ultraviolet light. EPROM
chips have a clear window at the top of the chip. To erase the contents of the chip, it is placed in
a UV eraser, just a strong ultraviolet light in a completely enclosed case. The EPROM is cooked,
or exposed to the UV light for approximately 20 minutes to erase its contents so it can be
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reprogrammed. When used in a circuit, it is common practice to cover the window with black
electrical tape to prevent ultraviolet light from entering the chip and erasing its contents.

10.3.2.4 Electrically Erasable PROM

The electrically erasable programmable read-only memory, EEPROM, or E2PROM, functions
like an EPROM, but it can be erased and reprogrammed electrically. The hardware to erase and
reprogram an E2PROM is typically built into the circuit that uses the E2PROM, allowing its
contents to be modified in place, without removing it from the circuit. The BIOS or UEFI ROM in
a computer is constructed using E2PROM technology. Flash drives and SD cards use a type of
E2PROM that is block programmable. These devices write and read entire blocks of memory
locations, rather than individual locations. They are particularly well suited for storage devices
such as these, as well as the solid state drives becoming commonplace in personal computers.

10.3.3 Internal Organization

Internally, there are two primary ways to model a read-only memory. One is to model it as a
PLD, with a series of AND gates sending their outputs to a series of OR gates. The other is to
model each bit of storage as a D flip-flop, with associated hardware to access the individual bits
within the memory chip. We’ll look at both, starting with the PLD model.

In the PLD model, the address bits and their complements are sent as inputs to an array
of AND gates. Figure 10.5 shows this model for a ROM with eight memory locations, each of
which stores a 2-bit value. The connections to the AND gates are fixed, that is, they are always
connected as shown in the figure. The uppermost AND gate outputs a 1 when A2’ = A1’ = A0’ = 1,
or when the address is A2A1A0 = 000. The next AND gate sets its output to 1 when the address is
001, and so on, continuing to the last AND gate, which outputs a 1 when the address is 111. This
portion of the memory chip acts as a decoder, setting the output of exactly one AND gate to 1.

The outputs of the AND gates are sent to the OR array. If a bit at a given memory
address is 1, we connect the output of the AND gate corresponding to that memory location to
the input of the OR gate for that bit. In the animation for this figure, address input 4 (100) sets
the output of the memory to 2 (10).
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Figure 10.5: PLD model of an 8x2 ROM

WATCH ANIMATED FIGURE 10.5

Now let’s look at the model using D flip-flops. Figure 10.6 shows a model for a 16x2
ROM. Here, we show the decoder explicitly rather than construct it using an array of AND gates.
Inside the decoder, however, you basically have that AND gate array. Instead of making
connections from the AND gates directly to the OR gates to represent the data, this model takes
a different approach. The data is stored in an array of D flip-flops. When we access a memory
location, we enable the tri-state buffers for the bits of only that memory location. This allows
these bits to be output on the data pins of the memory chip.
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Figure 10.6: D flip-flop model of a 16x2 ROM. Buffer enable signals shown in green.

WATCH ANIMATED FIGURE 10.6

There is one problem with this model. It works fine when our chip has only eight
locations, but what happens when it has 8G (233) locations? Its decoder would have 33 address
bits and 233 outputs. The size of a decoder is proportional to the number of outputs, and this
decoder would be huge. Instead, memory chips can divide the address bits into different groups
and decode each group. They then combine the outputs of the decoders to select individual
locations.

Consider a chess board, as shown in Figure 107. In algebraic notation, letters a through h
represent the columns of the board, and numbers 1 to 8 represent the rows. Each square is
represented by the labels of its row and column, and each combination of labels corresponds to
one unique square of the chessboard.
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Figure 10.7: Chess board with algebraic notation. Square d5 labeled.

When using two-level decoding, we split up the bits into two groups. In the chess board
analogy, one group is decoded to specify the row and the other group is decoded to specify the
column. We combine the two decoded values to select a single memory location, or square on
the chess board.

Figure 10.8 shows the 16x2 memory chip constructed using two 2 to 4 decoders. The
first decoder enables every memory address with the two address bits corresponding to that
decoder output. In this figure, address bits A3 and A2 are input to the upper decoder. Decoder
output 0 is active when A3A2 = 00, so we want that decoder output to enable all locations having
addresses with A3A2 = 00. For this chip, this is addresses 0000, 0001, 0010, and 0011, or 0, 1, 2,
and 3. The other decoder outputs enable the remaining locations. This decoder is equivalent to
selecting the row of the chess board.
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Figure 10.8: Memory chip constructed using two-level decoding. Buffer enable signals shown in
green.

The remaining bits are decoded to select all locations with the address bits
corresponding to its inputs, A1 and A0. When A1A0 = 00, the chip enables the tri-state buffers
that can receive data from all memory locations with these low-order address bits, 0000 (0),
0100 (4), 1000 (8), and 1100 (12) in this case. The other values of A1 and A0 select their
corresponding locations. This is equivalent to selecting the column of the chess board.

By selecting one row and one column, the memory chip accesses one memory address
within the chip, just as specifying one row and one column specifies one square on the chess
board.

By using two smaller decoders, this chip reduces the overall size of the decoders. Since
the size of the decoder is proportional to the number of outputs, using two-level decoding
reduces the total size of the decoding hardware from O(16) to O(4) + O(4), or O(8), a savings of
about 50%. For larger memory chips, this savings can reach over 99%. It is also possible to use
more than two levels of decoding to realize even greater reductions in decoding hardware.

The models are meant to give you a basic idea of how a ROM works, but they are
incomplete. Real memory chips include an enable signal. When used in a computer system,
there may be many ROM chips, as well as RAM chips, and we need to make sure only one
memory chip is active at a given time. (If your circuit uses the ROM chip as a lookup table, you
can just set this input so the chip is always enabled.) The memory chip may also have a separate
output enable signal. In a computer system, you would typically enable the chip first and give it
time to decode its address, enable the tri-state buffers, and have the data ready to be output.
Then the computer system would enable the outputs, usually through additional tri-state
buffers, by asserting the output enable signal. (For lookup ROMs, this signal can always be
asserted too.) Figure 10.9 shows how these signals could be used within the memory chip to
achieve their desired functions.
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Figure 10.9: D flip-flop model of a 16x2 ROM with chip enable and output enable signals.

WATCH ANIMATED FIGURE 10.9

One final thing that is missing is how we can have the chip write data into a memory
location. First, we would include a data path from the data pins of the chip to the D inputs of
the flip-flops for each memory location. We would also load the location when its conditions are
met. The chip would decode the address just as it does to output data. It would also combine it
with a chip enable signal and some signal that indicates we are programming the chip (for
ROMs) or just writing data to memory (for RAMs). When using ROMs in digital circuits, we
generally don’t need to do that once the chip is programmed initially, so we do not cover that
here. The reader should consult a book on computer organization and architecture for more
information on how this is done.

10.4 Summary

Programmable devices offer designers a number of advantages. Using a single chip to hold
several components can reduce circuit size, wiring, power consumption, and propagation delay.

One class of programmable devices is PLDs, or programmable logic devices. A PLD has
many combinatorial logic gates within the chip; some, but not all, also include a limited number
of flip-flops. By specifying the connections of chip inputs, gate inputs and outputs, and chip
outputs, the designer can create an entire circuit within a single chip.

There are several types of PLDs. A PAL, programmable array logic, is composed of
multiple AND-OR arrays. The output of the OR gate, or its complement, may be connected to a
chip output or to a flip-flop input, with the output of the flip-flop connected to the chip output.
Some PALs allow the output of some or all OR gates to be fed back and made available as an
input to other AND-OR arrays on the chip. This is especially useful for more complex functions.
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A programmable logic array, PLA, is similar to a PAL. Unlike a PAL, however, any AND gate
can send its output to any OR gate; the AND-OR array is not fixed. PLAs are more flexible than
PALs, but in general they are slower than PALs.

Complex Programmable Logic Devices, CPLDs, have many more gates than the simpler
PALs and PLAs, as well as more complex internal architectures. This increases the ability for
components within the chip to be interconnected and communicate with each other. CPLDs
include multiple logic blocks and macrocells.

Field Programmable Gate Arrays, FPGAs, have several orders of magnitude more gates
than CPLDs. Many FPGAs are programmed when power is connected, whereas the other
components are programmed before they are added to the circuit. The FPGA typically includes a
ROM with configuration information and hardware that uses this information to set up the
FPGA.

There are several types of memory devices. Random Access Memory, RAM, is volatile.
When power is removed from a RAM chip, its data is lost. Dynamic RAM is the type of memory
used in most computer systems. Its contents are constantly refreshed to restore leaked charge.
Static RAM is faster but more expensive than DRAM. It is used to construct cache memory
within a microprocessor.

Masked ROMs, PROMs, EPROMs, and E2PROMs are types of read-only memory. They are
used in USB flash drives, SD cards, and other devices that are required to retain their data when
power is removed. As discussed earlier in this book, they can be used as lookup tables in digital
circuits. They are also used to store microcode within many microprocessors. Internally, a ROM
can be modeled as a PAL in which the array of AND gates is in a fixed configuration that decodes
the input address bits. It can also be modeled as an array of flip-flops with outputs enabled by
decoders that explicitly decode the address bits. Multiple decoders can be used to divide the
address bits and decrease the total size of the decoding hardware.
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Exercises

1. List additional advantages of using a programmable memory and PLDs beyond those
listed in Section 10.1.

2. List additional advantages of using a programmable memory and PLDs beyond those
listed in Section 10.1.

3. List the contents of all memory locations in the memory component shown in Figure
10.5.

4. Show the PLD model for a ROM with four address inputs, four data outputs, and the
following values stored in locations 0 to 15, respectively:
2,5,8,9,0,11,3,14,12,5,7,15,1,6,14,11.

5. Implement the function ab+ac+bc on the PAL cell shown in Figure 10.1.

6. Implement the function a'⊕b⊕c on the PAL cells shown in Figure 10.2.

7. Modify the connections of the PAL cell shown in Figure 10.1 to realize the following truth
table.

8. Modify the connections of the PAL cell shown in Figure 10.2 to realize the following truth
table.
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9. Show the connections in Figure 10.1 or 10.2 needed for a PAL to realize the following
functions for three variables. Use feedback if necessary.

a. AND
b. OR
c. XOR
d. NAND
e. NOR
f. XNOR

10. Show the truth table and function in minimal form realized by the following PAL cell.

11. Show the connections in Figure 10.3 needed to realize the functions a+b+c and abc.

12. Show the connections in Figure 10.3 needed to realize the functions ab+ac and ac+bc.

13. Show the connections in Figure 10.1 needed to realize the following truth table.
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14. Show the connections in Figure 10.3 needed to realize the following truth table.

15. A PLA has three inputs, four AND gates, and two OR gates. The OR gate outputs can be
fed back as inputs to the AND gates. Show this PLA and the connections needed to
realize the functions a'b+c and ab'+ac+a'b+c.

16. Show the truth table and functions realized by the following PLA. Reprogram the PLA to
generate the same truth table using the fewest possible connections.

17. Design an 8x2 memory chip using 3-level decoding.
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18. Show the contents of the following ROM.

19. A ROM has three inputs and three outputs. Show the AND-OR configuration of a ROM
with the following contents: 7, 6, 5, 4, 3, 2, 1, 0.

20. Repeat Problem 19 for a D flip-flop configuration of the ROM using a single decoder.

21. Repeat Problem 20 for a ROM using two-level decoding.

22. In Figure 10.6, swap A3 and A0, and swap A2 and A1. Show the address corresponding to
each bit in the memory.

23. In Figure 10.8, swap A3 and A2, and swap A1 and A0. Show the address corresponding to
each bit in the memory.

24. Show the 2-bit multiplier lookup ROM in Figure 5.12 as an AND-OR array
implementation.
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