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Preface

A Wasserstein distance is a metric between probability distributions μ and ν on a
ground space X , induced by the problem of optimal mass transportation or simply
optimal transport. It reflects the minimal effort that is required in order to reconfig-
ure the mass of μ to produce the mass distribution of ν . The ‘effort’ corresponds
to the total work needed to achieve this reconfiguration, where work equals the
amount of mass at the origin times the distance to the prescribed destination of this
mass. The distance between origin and destination can be raised to some power
other than 1 when defining the notion of work, giving rise to correspondingly differ-
ent Wasserstein distances. When viewing the space of probability measures on X
as a metric space endowed with a Wasserstein distance, we speak of a Wassertein
Space.

Mass transportation and the associated Wasserstein metrics/spaces are ubiqui-
tous in mathematics, with a long history that has seen them catalyse core devel-
opments in analysis, optimisation, and probability. Beyond their intrinsic mathe-
matical richness, they possess attractive features that make them a versatile tool
for the statistician. They frequently appear in the development of statistical the-
ory and inferential methodology, sometimes as a technical tool in asymptotic the-
ory, due to the useful topology they induce and their easy majorisation; and other
times as a methodological tool, for example, in structural modelling and goodness-
of-fit testing. A more recent trend in statistics is to consider Wasserstein spaces
themselves as a sample and/or parameter space and treat inference problems in
such spaces. It is this more recent trend that is the topic of this book and is
coming to be known as ‘statistics in Wasserstein spaces’ or ‘statistical optimal
transport’.

From the theoretical point of view, statistics in Wasserstein spaces represents an
emerging topic in mathematical statistics, situated at the interface between func-
tional data analysis (where the data are functions, seen as random elements of an
infinite-dimensional Hilbert space) and non-Euclidean statistics (where the data
satisfy non-linear constraints, thus lying on non-Euclidean manifolds). Wasser-
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viii Preface

stein spaces provide the natural mathematical formalism to describe data collec-
tions that are best modelled as random measures on R

d (e.g. images and point
processes). Such random measures carry the infinite-dimensional traits of func-
tional data, but are intrinsically non-linear due to positivity and integrability re-
strictions. Indeed, contrarily to functional data, their dominating statistical variation
arises through random (non-linear) deformations of an underlying template, rather
than the additive (linear) perturbation of an underlying template. This shows op-
timal transport to be a canonical framework for dealing with problems involving
the so-called phase variation (also known as registration, multi-reference align-
ment, or synchronisation problems). This connection is pursued in detail in this
book and linked with the so-called problem of optimal multitransport (or optimal
multicoupling).

In writing our monograph, we had two aims in mind:

1. To present the key aspects of optimal transportation and Wasserstein spaces
(Chaps. 1 and 2) relevant to statistical inference, tailored to the interests and
background of the (mathematical) statistician. There are, of course, classic texts
comprehensively covering this background.1 But their choice of topics and style
of exposition are usually adapted to the analyst and/or probabilist, with aspects
most relevant for statisticians scattered among (much) other material.

2. To make use of the ‘Wasserstein background’ to present some of the funda-
mentals of statistical estimation in Wasserstein spaces, and its connection to the
problem of phase variation (registration) and optimal multicoupling. In doing
so, we highlight connections with classical topics in statistical shape theory,
such as Procrustes analysis. On these topics, no book/monograph appears to yet
exist.

The book focusses on the theory of statistics in Wasserstein spaces. It does
not cover the associated computational/numerical aspects. This is partially due
to space restrictions, but also due to the fact that a reference entirely dedicated
to such issues can be found in the very recent monograph of Peyré and Cu-
turi [103]. Moreover, since this book is meant to be a rapid introduction for
non-specialists, we have made no attempt to give a complete bibliography. We
have added some bibliographic remarks at the end of each chapter, but these are
in no way meant to be exhaustive. For those seeking reference works, Rachev
[106] is an excellent overview of optimal transport up to 1985. Other recent re-
views are Bogachev and Kolesnikov [26] and Panaretos and Zemel [101]. The lat-
ter review can be thought of as complementary to the present book and surveys
some of the applications of optimal transport methods to statistics and probability
theory.

1 E.g. by Rachev and Rüschendorf [107], Villani [124, 125], Ambrosio and Gigli [10], Ambrosio
et al. [12], and more recently by Santambrogio [119].
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Structure of the Book

The material is organised into five chapters.

• Chapter 1 presents the necessary background in optimal transportation. Starting
with Monge’s original formulation, it presents Kantorovich’s probabilistic relax-
ation and the associated duality theory. It then focusses on quadratic cost func-
tions (squared normed cost) and gives a more detailed treatment of certain impor-
tant special cases. Topics of statistical concern such as the regularity of transport
maps and their stability under weak convergence of the origin/destination mea-
sures are also presented. The chapter concludes with a consideration of more gen-
eral cost functions and the characterisation of optimal transport plans via cyclical
monotonicity.

• Chapter 2 presents the salient features of (�2-)Wasserstein space starting with
topological properties of statistical importance, as well as metric properties such
as covering numbers. It continues with geometrical features of the space, review-
ing the tangent bundle structure of the space, the characterisation of geodesics,
and the log and exponential maps as related to transport maps. Finally, it reviews
the relationship between the curvature and the so-called compatibility of trans-
port maps, roughly speaking when can one expect optimal transport maps to form
a group.

• Chapter 3 starts to shift attention to issues more statistical and treats the prob-
lem of existence, uniqueness, characterisation, and regularity of Fréchet means
(barycenters) for collections of measures in Wasserstein space. This is done by
means of the so-called multimarginal transport problem (a.k.a. optimal multi-
transport or optimal multicoupling problem). The treatment starts with finite col-
lections of measures, and then considers Fréchet means for (potentially uncount-
ably supported) probability distributions on Wasserstein space and associated
measurability concerns.

• Chapter 4 considers the problem of estimation of the Fréchet mean of a prob-
ability distribution in Wasserstein space, on the basis of a finite collection of
i.i.d. elements from this law observed with ‘sampling noise’. It is shown that
this problem is inextricably linked to the problem of separation of amplitude and
phase variation (a.k.a. registration) of random point patters, where the focus is on
estimating the maps yielding the optimal multicoupling rather than the Fréchet
mean itself. Nonparametric methodology for solving either problem is reviewed,
coupled with associated asymptotic theory and several illustrative examples.

• Chapter 5 focusses on the problem of actually constructing the Fréchet mean
and/or optimal multicoupling of a collection of measures, which is a necessary
step when using the methods of Chap. 4 in practice. It presents the steepest de-
scent algorithm based on the geometrical features reviewed in Chap. 2 and a con-
vergence analysis thereof. Interestingly, it is seen that the algorithm is closely
related to Procrustes algorithms in shape theory, and this connection is discussed
in depth. Several special cases are reviewed in more detail.
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x Preface

Each chapter comes with some bibliographic notes at the end, giving some back-
ground and suggesting further reading. The first two chapters can be used indepen-
dently as a crash course in optimal transport for statisticians at the MSc or PhD
level depending on the audience’s background. Proofs that were omitted from the
main text due to space limitations have been organised into an online supplement
accessible at www.somewhere.com
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Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 Analogy with Procrustes Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Convergence of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.1 Gaussian Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.2 Compatible Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.3 Partially Gaussian Trivariate Measures . . . . . . . . . . . . . . . . . 135

5.5 Population Version of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

www.dbooks.org

https://www.dbooks.org/


Chapter 1
Optimal Transport

In this preliminary chapter, we introduce the problem of optimal transport, which
is the main concept behind Wasserstein spaces. General references on this topic are
the books by Rachev and Rüschendorf [107], Villani [124, 125], Ambrosio et al.
[12], Ambrosio and Gigli [10], and Santambrogio [119]. This chapter includes only
few proofs, when they are simple, informative, or are not easily found in one of the
cited references.

1.1 The Monge and the Kantorovich Problems

In 1781, Monge [95] asked the following question: given a pile of sand and a pit
of equal volume, how can one optimally transport the sand into the pit? In modern
mathematical terms, the problem can be formulated as follows. There is a sand space
X , a pit space Y , and a cost function c : X ×Y → R that encapsulates how
costly it is to move a unit of sand at x ∈ X to a location y ∈ Y in the pit. The
sand distribution is represented by a measure μ on X , and the shape of the pit is
described by a measure ν on Y . Our decision where to put each unit of sand can be
thought of as a function T : X → Y , and it incurs a total transport cost of

C(T ) =
∫

X
c(x,T (x))dμ(x).

Moreover, one cannot put all the sand at a single point y in the pit; it is not allowed to
shrink or expand the sand. The map T must be mass-preserving: for any subset B ⊆

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/
978-3-030-38438-8 1) contains supplementary material.
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2 1 Optimal Transport

Y representing a region of the pit of volume ν(B), exactly that same volume of sand
must go into B. The amount of sand allocated to B is {x ∈X : T (x)∈ B}= T−1(B),
so the mass preservation requirement is that μ(T−1(B)) = ν(B) for all B ⊆Y . This
condition will be denoted by T #μ = ν and in words: ν is the push-forward of μ un-
der T , or T pushes μ forward to ν . To make the discussion mathematically rigorous,
we must assume that c and T are measurable maps, and that μ(T−1(B)) = ν(B) for
all measurable subsets of Y . When the underlying measures are understood from
the context, we call T a transport map. Specifying B = Y , we see that no such T
can exist unless μ(X ) = ν(Y ); we shall assume that this quantity is finite, and by
means of normalisation, that μ and ν are probability measures. In this setting, the
Monge problem is to find the optimal transport map, that is, to solve

inf
T :T #μ=ν

C(T ).

We assume throughout this book that X and Y are complete and separable met-
ric spaces,1 endowed with their Borel σ -algebra, which, we recall, is defined as
the smallest σ -algebra containing the open sets. Measures defined on the Borel σ -
algebra of X are called Borel measures. Thus, if μ is a Borel measure on X , then
μ(A) is defined for any A that is open, or closed, or a countable union of closed sets,
etc., and any continuous map on X is measurable. Similarly, we endow Y with its
Borel σ -algebra. The product space X ×Y is also complete and separable when
endowed with its product topology; its Borel σ -algebra is generated by the product
σ -algebra of those of X and Y ; thus, any continuous cost function c : X ×Y →R

is measurable. It will henceforth always be assumed, without explicit further notice,
that μ and ν are Borel measures on X and Y , respectively, and that the cost func-
tion is continuous and nonnegative.

It is quite natural to assume that the cost is an increasing function of the dis-
tance between x and y, such as a power function. More precisely, that Y = X is a
complete and separable metric space with metric d, and

c(x,y) = dp(x,y), p ≥ 0, x,y ∈ X . (1.1)

In particular, c is continuous, hence measurable, if p> 0. The limit case p= 0 yields
the discontinuous function c(x,y) = 1{x = y}, which nevertheless remains measur-
able because the diagonal {(x,x) : x ∈ X } is measurable in X ×X . Particular
focus will be put on the quadratic case p = 2 (Sect. 1.6) and the linear case p = 1
(Sect. 1.8.2).

The problem introduced by Monge [95] is very difficult, mainly because the set
of transport maps {T : T #μ = ν} is intractable. And, it may very well be empty: this
will be the case if μ is a Dirac measure at some x0 ∈ X (meaning that μ(A) = 1 if
x0 ∈A and 0 otherwise) but ν is not. Indeed, in that case the set B= {T (x0)} satisfies
μ(T−1(B)) = 1 > ν(B), so no such T can exist. This also shows that the problem
is asymmetric in μ and ν : in the Dirac example, there always exists a map T such
that T #ν = μ—the constant map T (x) = x0 for all x is the unique such map. A less

1 But see the bibliographical notes for some literature on more general spaces.

www.dbooks.org

https://www.dbooks.org/


1.1 The Monge and the Kantorovich Problems 3

extreme situation occurs in the case of absolutely continuous measures. If μ and ν
have densities f and g on R

d and T is continuously differentiable, then T #μ = ν if
and only if for μ-almost all x

f (x) = g(T (x))|det∇T (x)|.

This is a highly non-linear equation in T , nowadays known as a particular case of a
family of partial differential equations called Monge–Ampère equations. More than
two centuries after the work of Monge, Caffarelli [32] cleverly used the theory of
Monge–Ampère equations to show smoothness of transport maps (see Sect. 1.6.4).

As mentioned above, if μ = δ{x0} is a Dirac measure and ν is not, then no
transport maps from μ to ν can exist, because the mass at x0 must be sent to a unique
point x0. In 1942, Kantorovich [77] proposed a relaxation of Monge’s problem in
which mass can be split. In other words, for each point x ∈ X one constructs a
probability measure μx that describes how the mass at x is split among different
destinations. If μx is a Dirac measure at some y, then all the mass at x is sent to y.
The formal mathematical object to represent this idea is a probability measure π on
the product space X ×Y (which is X 2 in our particular setting). Here π(A×B)
is the amount of sand transported from the subset A ⊆ X into the part of the pit
represented by B ⊆ Y . The total mass sent from A is π(A×Y ), and the total mass
sent into B is π(X ×B). Thus, π is mass-preserving if and only if

π(A×Y ) = μ(A), A ⊆ X Borel;

π(X ×B) = ν(B), B ⊆ Y Borel.
(1.2)

Probability measures satisfying (1.2) will be called transference plans, and the set of
those will be denoted by Π(μ ,ν). We also say that π is a coupling of μ and ν , and
that μ and ν are the first and second marginal distributions, or simply marginals, of
π . The total cost associated with π ∈ Π(μ ,ν) is

C(π) =
∫

X ×Y
c(x,y)dπ(x,y).

In our setting of a complete separable metric space X , one can represent π as a col-
lection of probability measures {πx}x∈X on Y , in the sense that for all measurable
nonnegative g

∫
X ×Y

g(x,y)dπ(x,y) =
∫

X

[∫
Y

g(x,y)dπx(y)

]
dμ(x).

The collection {πx} is that of the conditional distributions, and the iteration of inte-
grals is called disintegration. For proofs of existence of conditional distributions,
one can consult Dudley [47, Section 10.2] or Kallenberg [76, Chapter 5]. Con-
versely, the measure μ and the collection {πx} determine π uniquely by choosing
g to be indicator functions. An interpretation of these notions in terms of random
variables will be given in Sect. 1.2.
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The Kantorovich problem is to find the best transference plan, that is, to solve

inf
π∈Π(μ ,ν)

C(π).

The Kantorovich problem is a relaxation of the Monge problem, because to each
transport map T one can associate a transference plan π = πT of the same total cost.
To see this, choose the conditional distribution πx to be a Dirac at T (x). Disintegra-
tion then yields

C(π)=
∫
X ×Y

c(x,y)dπ(x,y)=
∫
X

[∫
Y

c(x,y)dπx(y)

]
dμ(x)=

∫
X

c(x,T (x))dμ(x)=C(T ).

This choice of π satisfies (1.2) because π(A× B) = μ(A∩ T−1(B)) and ν(B) =
μ(T−1(B)) for all Borel A ⊆ X and B ⊆ Y .

Compared to the Monge problem, the relaxed problem has considerable advan-
tages. Firstly, the set of transference plans is never empty: it always contains the
product measure μ ⊗ν defined by [μ ⊗ν ](A) = μ(A)ν(B). Secondly, both the ob-
jective function C(π) and the constraints (1.2) are linear in π , so the problem can be
seen as infinite-dimensional linear programming. To be precise, we need to endow
the space of measures with a linear structure, and this is done in the standard way:
define the space M(X ) of all finite signed Borel measures on X . This is a vector
space with (μ1+αμ2)(A)= μ1(A)+αμ2(A) for α ∈R, μ1,μ2 ∈M(X ) and A⊆X
Borel. The set of probability measures on X is denoted by P(X ), and is a convex
subset of M(X ). The set Π(μ ,ν) is then a convex subset of P(X ×Y ), and as C(π)
is linear in π , the set of minimisers is a convex subset of Π(μ ,ν). Thirdly, there is
a natural symmetry between Π(μ ,ν) and Π(ν ,μ). If π belongs to the former and
we define π̃(B×A) = π(A×B), then π̃ ∈ Π(ν ,μ). If we set c̃(y,x) = c(x,y), then

C(π) =
∫

X ×Y
c(x,y)dπ(x,y) =

∫
Y ×X

c̃(y,x)dπ̃(y,x) = C̃(π̃).

In particular, when X = Y and c = c̃ is symmetric (as in (1.1)),

inf
π∈Π(μ ,ν)

C(π) = inf
π̃∈Π(ν ,μ)

C̃(π̃),

and π ∈ Π(μ ,ν) is optimal if and only if its natural counterpart π̃ is optimal in
Π(ν ,μ). This symmetry will be fundamental in the definition of the Wasserstein
distances in Chap. 2.

Perhaps most importantly, a minimiser for the Kantorovich problem exists under
weak conditions. In order to show this, we first recall some definitions. Let Cb(X )
be the space of real-valued, continuous bounded functions on X . A sequence of
probability measures {μn} ∈ M(X ) is said to converge weakly2 to μ ∈ M(X )
if for all f ∈ Cb(X ),

∫
f dμn →

∫
f dμ . To avoid confusion with other types of

convergence, we will usually write μn → μ weakly; in the rare cases where a symbol

2 Weak convergence is sometimes called narrow convergence, weak* convergence, or convergence
in distribution.
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is needed we shall use the notation μn
w→ μ . Of course, if μn → μ weakly and

μn ∈ P(X ), then μ must be in P(X ) too (this is seen by taking f ≡ 1 and by
observing that

∫
f dμ ≥ 0 if f ≥ 0).

A collection of probability measures K is tight if for all ε > 0 there exists a com-
pact set K such that infμ∈K μ(K)> 1−ε . If K is represented by a sequence {μn},
then Prokhorov’s theorem (Billingsley [24, Theorem 5.1]) states that a subsequence
of {μn} must converge weakly to some probability measure μ .

We are now ready to show that the Kantorovich problem admits a solution when c
is continuous and nonnegative and X and Y are complete separable metric spaces.
Let {πn} be a minimising sequence for C. Then, according to [24, Theorem 1.3],
μ and ν must be tight. If K1 and K2 are compact with μ(K1),ν(K2) > 1− ε , then
K1×K2 is compact and for all π ∈ Π(μ ,ν), π(K1×K2)> 1−2ε . It follows that the
entire collection Π(μ ,ν) is tight, and by Prokhorov’s theorem πn has a weak limit
π after extraction of a subsequence. For any integer K, cK(x,y) = min(c(x,y),K) is
a continuous bounded function, and

C(πn) =
∫

c(x,y)dπn(x,y)≥
∫

cK(x,y)dπn(x,y)→
∫

cK(x,y)dπ(x,y), n→∞.

By the monotone convergence theorem

liminf
n→∞

C(πn)≥ lim
K→∞

∫
cK(x,y)dπ(x,y) =C(π) if πn → π weakly. (1.3)

Since {πn} was chosen as a minimising sequence for C, π must be a minimiser, and
existence is established.

As we have seen, the Kantorovich problem is a relaxation of the Monge problem,
in the sense that

inf
T :T #μ=ν

C(T ) = inf
πT :T #μ=ν

C(π)≥ inf
π∈Π(μ ,ν)

C(π) =C(π∗),

for some optimal π∗. If π∗ = πT for some transport map T , then we say that the
solution is induced from a transport map. This will happen in two different and
important cases that are discussed in Sects. 1.3 and 1.6.1.

A remark about terminology is in order. Many authors talk about the Monge–
Kantorovich problem or the optimal transport(ation) problem. More often than not,
they refer to what we call here the Kantorovich problem. When one of the scenarios
presented in Sects. 1.3 and 1.6.1 is considered, this does not result in ambiguity.

1.2 Probabilistic Interpretation

The preceding section was an analytic presentation of the Monge and the Kan-
torovich problems. It is illuminating, however, to also recast things in probabilistic
terms, and this is the topic of this section.
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A random element on a complete separable metric space (or any topological
space) X is simply a measurable function X from some (generic) probability space
(Ω ,F ,P) to X (with its Borel σ -algebra). The probability law (or probability dis-
tribution) is the probability measure μX = X#P defined on the space X ; this is the
Borel measure satisfying μX (A) = P(X ∈ A) for all Borel sets A.

Suppose that one is given two random elements X and Y taking values in X and
Y , respectively, and a cost function c : X ×Y →R. The Monge problem is to find
a measurable function T such that T (X) has the same distribution as Y , and such
that the expectation

C(T ) =
∫

X
c(x,T (x))dμ(x) =

∫
Ω

c[X(ω),T (X(ω))]dP(ω) = Ec(X ,T (X))

is minimised.
The Kantorovich problem is to find a joint distribution for the pair (X ,Y ) whose

marginals are the original distributions of X and Y , respectively, and such that the
probability law π = (X ,Y )#P minimises the expectation

C(π) =
∫

X ×Y
c(x,y)dπ(x,y) =

∫
Ω

c[X(ω),Y (ω))]dP(ω) = Eπ c(X ,Y ).

Any such joint distribution is called a coupling of X and Y . Of course, (X ,T (X)) is a
coupling when T (X) has the same distribution as Y . The measures πx in the previous
section are then interpreted as the conditional distribution of Y given X = x.

Consider now the important case where X = Y = R
d , c(x,y) = ‖x− y‖2, and

X and Y are square integrable random vectors (E‖X‖2 +E‖Y‖2 < ∞). Let A and B
be the covariance matrices of X and Y , respectively, and notice that the covariance

matrix of a coupling π must have the form C =

(
A V
V t B

)
for a d ×d matrix V . The

covariance matrix of the difference X −Y is

(
Id −Id

)(A V
Vt B

)(
Id

−Id

)
= A+B−Vt −V

so that

Eπ c(X ,Y ) = Eπ‖X −Y‖2 = ‖EX −EY‖2 + trπ [A+B−Vt −V ].

Since only V depends on the coupling π , the problem is equivalent to that of max-
imising the trace of V , the cross-covariance matrix between X and Y . This must be
done subject to the constraint that a coupling π with covariance matrix C exists; in
particular, C has to be positive semidefinite.
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1.3 The Discrete Uniform Case

There is a special case in which the Monge–Kantorovich problem reduces to a finite
combinatorial problem. Although it may seem at first hand as an oversimplification
of the original problem, it is of importance in practice because arbitrary measures
can be approximated by discrete measures by means of the strong law of large num-
bers. Moreover, the discrete case is important in theory as well, as a motivating
example for the Kantorovich duality (Sect. 1.4) and the property of cyclical mono-
tonicity (Sect. 1.7).

Suppose that μ and ν are each uniform on n distinct points:

μ =
1
n
(δ{x1}+ · · ·+δ{xn}) , ν =

1
n
(δ{y1}+ · · ·+δ{yn}) .

The only relevant costs are ci j = c(xi,y j), the collection of which can be represented
by an n×n matrix C. Transport maps T are associated with permutations in Sn, the
set of all bijective functions from {1, . . . ,n} to itself: given σ ∈ Sn, a transport map
can be constructed by defining T (xi) = yσ(i). If σ is not a permutation, then T will
not be a transport map from μ to ν . Transference plans π are equivalent to n× n
matrices M with coordinates Mi j = π({(xi,y j)}) = Mi j; this is the amount of mass
sent from xi to y j. In order for π to a be a transference plan, it must be that ∑ j Mi j =
1/n for all i and ∑i Mi j = 1/n for all j, and in addition M must be nonnegative. In
other words, the matrix M′ = nM belongs to Bn, the set of bistochastic matrices of
order n, defined as n×n matrices M′ satisfying

n

∑
j=1

M′
i j = 1, i = 1, . . . ,n;

n

∑
i=1

M′
i j = 1, j = 1, . . . ,n; M′

i j ≥ 0.

The Monge problem is the combinatorial optimisation problem over permutations

inf
σ∈Sn

C(σ) =
1
n

inf
σ∈Sn

n

∑
i=1

ci,σ(i),

and the Kantorovich problem is the linear program

inf
nM∈Bn

n

∑
i, j=1

ci jMi j = inf
M∈Bn/n

n

∑
i, j=1

ci jMi j = inf
M∈Bn/n

C(M).

If σ is a permutation, then one can define M = M(σ) by Mi j = 1/n if j = σ(i) and
0 otherwise. Then M ∈ Bn/n and C(M) =C(σ). Such M (or, more precisely, nM) is
called a permutation matrix.

The Kantorovich problem is a linear program with n2 variables and 2n con-
straints. It must have a solution because Bn (hence Bn/n) is a compact (nonempty)
set in R

n2
and the objective function is linear in the matrix elements, hence contin-

uous. (This property is independent of the possibly infinite-dimensional spaces X
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and Y in which the points lie.) The Monge problem also admits a solution because
Sn is a finite set. To see that the two problems are essentially the same, we need to
introduce the following notion. If B is a convex set, then x ∈ B is an extremal point
of B if it cannot be written as a convex combination tz+(1− t)y for some distinct
points y,z ∈ B. It is well known (Luenberger and Ye [89, Section 2.5]) that there
exists an optimal solution that is extremal, so that it becomes relevant to identify
the extremal points of Bn. It is fairly clear that each permutation matrix is extremal
in Bn; the less obvious converse is known as Birkhoff’s theorem, a proof of which
can be found, for instance, at the end of the introduction in Villani [124] or (in a
different terminology) in Luenberger and Ye [89, Section 6.5]. Thus, we have:

Proposition 1.3.1 (Solution of Discrete Problem) There exists σ ∈ Sn such that
M(σ) minimises C(M) over Bn/n. Furthermore, if {σ1, . . . ,σk} is the set of opti-
mal permutations, then the set of optimal matrices is the convex hull of {M(σ1), . . . ,
M(σk)}. In particular, if σ is the unique optimal permutation, then M(σ) is the
unique optimal matrix.

Thus, in the discrete case, the Monge and the Kantorovich problems coincide. One
can of course use the simplex method [89, Chapter 3] to solve the linear program,
but there are n! vertices, and there is in principle no guarantee that the simplex
method solves the problem efficiently. However, the constraints matrix has a very
specific form (it contains only zeroes and ones, and is totally unimodular), so spe-
cialised algorithms for this problem exist. One of them is the Hungarian algorithm
of Kuhn [85] or its variant of Munkres [96] that has a worst-case computational
complexity of at most O(n4). Another alternative is the class of net flow algorithms
described in [89, Chapter 6]. In particular, the algorithm of Edmonds and Karp [50]
has a complexity of at most O(n3 logn). This monograph does not focus on compu-
tational aspects for optimal transport. This is a fascinating and very active area of
contemporary research, and readers are directed to Peyré and Cuturi [103].

Remark 1.3.2 The special case described here could have been more precisely
called “the discrete uniform case on the same number of points”, as “the discrete
case” could refer to any two finitely supported measures μ and ν . In the Monge
context, the setup discussed here is the most interesting case, see page 8 in the sup-
plement for more details.

1.4 Kantorovich Duality

The discrete case of Sect. 1.3 is an example of a linear program and thus enjoys a
rich duality theory (Luenberger and Ye [89, Chapter 4]). The general Kantorovich
problem is an infinite-dimensional linear program, and under mild assumptions ad-
mits similar duality.
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1.4.1 Duality in the Discrete Uniform Case

We can represent any matrix M as a vector in R
n2

, say M, by enumeration of the
elements row by row. If nM is bistochastic, i.e., M ∈ Bn/n, then the 2n constraints
can be represented in a (2n)×n2 matrix A. For instance, if n = 3, then

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
6×9.

For general n, the constraints read AM = n−1(1, . . . ,1) ∈ R
2n and A takes the form

A =

⎛
⎜⎜⎜⎜⎜⎝

1n

1n
. . .

1n

In In . . . In

⎞
⎟⎟⎟⎟⎟⎠

∈ R
2n×n2

, 1n = (1, . . . ,1) ∈ R
n,

with In the n×n identity matrix. Thus, the problem can be written

min
M

CtM subject to AM =
1
n
(1, . . . ,1) ∈ R

2n; M ≥ 0.

The last constraint is to be interpreted coordinate-wise; all the elements of M must
be nonnegative. The dual problem is constructed by introducing one variable for
each row of A, transposing the constraint matrix and interchanging the roles of the
objective vector C and the constraints vector b = n−1(1, . . . ,1). Call the new vari-
ables p1, . . . , pn and q1, . . . ,qn, and notice that each column of A corresponds to
exactly one pi and one q j, and that the n2 columns exhaust all possibilities. Hence,
the dual problem is

max
p,q∈Rn

bt
(

p
q

)
=

1
n

n

∑
i=1

pi +
1
n

n

∑
j=1

q j subject to pi +q j ≤ ci j, i, j = 1, . . . ,n.

(1.4)
In the context of duality, one uses the terminology primal problem for the original
optimisation problem. Weak duality states that if M and (p,q) satisfy the respective
constraints, then

bt
(

p
q

)
= ∑

i
pi

1
n
+∑

j
q j

1
n
= ∑

i, j
(pi +q j)Mi j ≤ ∑

i, j
Ci jMi j = CtM.
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In particular, if equality holds, then M is primal optimal and (p,q) is dual optimal.
Strong duality is the nontrivial assertion that there exist M∗ and (p∗,q∗) satisfying
CtM∗ = bt

(p∗
q∗
)
.

1.4.2 Duality in the General Case

The vectors C and M were obtained from the cost function c and the transference
plan π as Ci j = c(xi,y j) and Mi j = π({(xi,y j)}). Similarly, we can view the vectors p
and q as restrictions of functions ϕ : X →R and ψ : Y →R of the form pi = ϕ(xi)
and q j =ψ(y j). The constraint vector b=(1n,1n) can be written as bi = μ({xi}) and
bn+ j = ν({y j}). In this formulation, the constraint pi +q j ≤ ci j writes (ϕ,ψ) ∈ Φc

with

Φc =
{
(ϕ,ψ) ∈ L1(μ)×L1(ν) : ϕ(x)+ψ(y)≤ c(x,y) for all x,y

}
,

and the dual problem (1.4) becomes

sup
(ϕ,ψ)∈L1(μ)×L1(ν)

[∫
X

ϕ(x)dμ(x)+
∫

Y
ψ(y)dν(y)

]
subject to (ϕ,ψ) ∈ Φc.

Simple measure theory shows that the set constraints (1.2) defining the transference
plans set Π(μ ,ν) are equivalent to functional constraints. For future reference, we
state this formally as:

Lemma 1.4.1 (Functional Constraints) Let μ and ν be probability measures. Then
π ∈ Π(μ ,ν) if and only if for all integrable functions ϕ ∈ L1(μ), ψ ∈ L1(ν),

∫
X ×Y

[ϕ(x)+ψ(y)]dπ(x,y) =
∫

X
ϕ(x)dμ(x)+

∫
Y

ψ(y)dν(y).

The proof follows from the fact that (1.2) yields the above equality when ϕ and ψ
are indicator functions. One then uses linearity and approximations to deduce the
result.

Weak duality follows immediately from Lemma 1.4.1. For if π ∈ Π(μ ,ν) and
(ϕ,ψ) ∈ Φc, then

∫
X

ϕ(x)dμ(x)+
∫

Y
ψ(y)dν(y) =

∫
X ×Y

[ϕ(x)+ψ(y)]dπ(x,y)≤C(π).

Strong duality can be stated in the following form:

Theorem 1.4.2 (Kantorovich Duality) Let μ and ν be probability measures on
complete separable metric spaces X and Y , respectively, and let c : X ×Y →R+

be a measurable function. Then

www.dbooks.org

https://www.dbooks.org/


1.5 The One-Dimensional Case 11

inf
π∈Π(μ ,ν)

∫
X ×Y

cdπ = sup
(ϕ,ψ)∈Φc

[∫
X

ϕ dμ +
∫

Y
ψ dν

]
.

See the Bibliographical Notes for other versions of the duality.
When the cost function is continuous, or more generally, a countable supremum

of continuous functions, the infimum is attained (see (1.3)). The existence of max-
imisers (ϕ,ψ) is more delicate and requires a finiteness condition, as formulated in
Proposition 1.8.1 below.

The next sections are dedicated to more concrete examples that will be used
through the rest of the book.

1.5 The One-Dimensional Case

When X = Y = R, the Monge–Kantorovich problem has a particularly simple
structure, because the class of “nice” transport maps contains at most a single el-
ement. Identify μ ,ν ∈ P(R) with their cumulative distribution functions F and G
defined by

F(t) = μ((−∞, t]), G(t) = ν((−∞, t]), t ∈ R.

Let the cost function be (momentarily) quadratic: c(x,y) = |x − y|2/2. Since for
x1 ≤ x2, y1 ≤ y2

c(y2,x1)+ c(y1,x2)− c(y1,x1)− c(y2,x2) = (x2 − x1)(y2 − y1)≥ 0,

it seems natural to expect the optimal transport map to be monotonically increasing.
It turns out that, on the real line, there is at most one such transport map: if T is
increasing and T #μ = ν , then for all t ∈ R

G(t) = ν((−∞, t]) = μ((−∞,T−1(t)]) = F(T−1(t)).

If t = T (x), then the above equation reduces to T (x) = G−1(F(x)). This formula
determines T uniquely, and has an interesting probabilistic interpretation: it is well-
known that if X is a random variable with continuous distribution function F , then
F(X) follows a uniform distribution on (0,1). Conversely, if U follows a uniform
distribution, G is any distribution function, and

G−1(u) = infG−1([u,1]) = inf{x ∈ R : G(x)≥ u}, 0 < u < 1,

is the quantile function of X , then the random variable G−1(U) has distribution func-
tion G. We say that G−1 is the left-continuous inverse of G. In terms of push-forward
maps, we can write F#μ = Leb|[0,1] and G−1#Leb|[0,1] = ν , with Leb standing for
Lebesgue measure, and it is restricted to the interval [0,1]. Consequently, if F is
continuous and G is arbitrary, then T #μ = ν ; we can view T as pushing μ forward
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to ν in two steps: firstly, μ is pushed forward to Leb|[0,1] and secondly, Leb|[0,1] is
pushed forward to ν .

Using the change of variables formula, we see that the total cost of T is

C(T ) =
∫
R

|G−1(F(x))− x|2 dμ(x) =
∫ 1

0
|G−1(u)−F−1(u))|2 du.

If F is discontinuous, then F#μ is not Lebesgue measure, and T is not necessar-
ily defined. But there will exist an optimal transference plan π ∈ Π(μ ,ν) that is
monotone in the following sense: there exists a set Γ ⊂ R

2 such that π(Γ ) = 1 and
whenever (xi,yi) ∈ Γ ,

|y2 − x1|2 + |y1 − x2|2 −|y1 − x1|2 −|y2 − x2|2 ≥ 0.

Thus, mass at x1 and x2 can be split if need be, but in a monotone way. For example,
if μ puts mass 1/2 at x1 = −1 and at x2 = 1 and ν is uniform on [−1,1]. Then the
transference plan spreads the mass of x1 uniformly on [−1,0], and the mass of x2

uniformly on [0,1]. This is a particular case of the cyclical monotonicity that will be
discussed in Sect. 1.7.

Elementary calculations show that the inequality

c(y2,x1)+ c(y1,x2)− c(y1,x1)− c(y2,x2)≥ 0, x1 ≤ x2; y1 ≤ y2

holds more generally than the quadratic cost c(x,y)= |x−y|2. Specifically, it suffices
that c(x,y) = h(|x− y|) with h convex on R+.

Since any distribution can be approximated by continuous distributions, in view
of the above discussion, the following result from Villani [124, Theorem 2.18]
should not be too surprising.

Theorem 1.5.1 (Optimal Transport in R) Let μ ,ν ∈ P(R) with distribution func-
tions F and G, respectively, and let the cost function be of the form c(x,y) =
h(|x− y|) with h convex and nonnegative. Then

inf
π∈Π(μ ,ν)

C(π) =
∫ 1

0
h(G−1(u)−F−1(u))du.

If the infimum is finite and h is strictly convex, then the optimal transference plan is
unique. Furthermore, if F is continuous, then the infimum is attained by the trans-
port map T = G−1 ◦F.

The prototypical choice for h is h(z) = |z|p with p > 1. This result allows in particu-
lar a direct evaluation of the Wasserstein distances for measures on the real line (see
Chap. 2).

Note that no regularity is needed in order that the optimal transference plan be
unique, unlike in higher dimensions (compare Theorem 1.8.2). The structure of so-
lutions in the concave case (0 < p < 1) is more complicated, see McCann [94].
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When p = 1, the cost function is convex but not strictly so, and solutions will not
be unique. However, the total cost in Theorem 1.5.1 admits another representation
that is often more convenient.

Proposition 1.5.2 (Quantiles and Distribution Functions) If F and G are distri-
bution functions, then

∫ 1

0
|G−1(u)−F−1(u)|du =

∫
R

|G(x)−F(x)|dx.

The proof is a simple application of Fubini’s theorem; see page 13 in the supple-
ment.

Corollary 1.5.3 If c(x,y) = |x− y|, then under the conditions of Theorem 1.5.1

inf
π∈Π(μ ,ν)

C(π) =
∫
R

|G(x)−F(x)|dx.

1.6 Quadratic Cost

This section is devoted to the specific cost function

c(x,y) =
‖x− y‖2

2
, x,y ∈ X ,

where X is a separable Hilbert space. This cost is popular in applications, and
leads to a lucid and elegant theory. The factor of 1/2 does not affect the minimising
coupling π and leads to cleaner expressions. (It does affect the optimal dual pair, but
in an obvious way.)

1.6.1 The Absolutely Continuous Case

We begin with the Euclidean case, where X = Y = (Rd ,‖ · ‖) is endowed with
the Euclidean metric, and use the Kantorovich duality to obtain characterisations of
optimal maps.

Since the dual objective function to be maximised
∫
Rd

ϕ dμ +
∫
Rd

ψ dν

is increasing in ϕ and ψ , one should seek functions that take values as large as pos-
sible subject to the constraint ϕ(x)+ψ(y)≤‖x−y‖2/2. Suppose that an oracle tells
us that some ϕ ∈ L1(μ) is a good candidate. Then the largest possible ψ satisfying
(ϕ,ψ) ∈ Φc is
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ψ(y) = inf
x∈Rd

[
‖x− y‖2

2
−ϕ(x)

]
=

‖y‖2

2
+ inf

x∈Rd

[
‖x‖2

2
−ϕ(x)−〈x,y〉

]
.

In other words,

ψ̃(y) :=
‖y‖2

2
−ψ(y) = sup

x∈Rd
[〈x,y〉− ϕ̃(x)] , ϕ̃(x) =

‖x‖2

2
−ϕ(x).

As a supremum over affine functions (in y), ψ̃ enjoys some useful properties. We
remind the reader that a function f : X → R∪{∞} is convex if f (tx+(1− t)y) ≤
t f (x)+ (1− t) f (y) for all x,y ∈ X and t ∈ [0,1]. It is lower semicontinuous if for
all x ∈ X , f (x)≤ liminfy→x f (y). Affine functions are convex and lower semicon-
tinuous, and it straightforward from the definitions that both convexity and lower
semicontinuity are preserved under the supremum operation. Thus, the function ψ̃
is convex and lower semicontinuous. In particular, it is Borel measurable due to the
following characterisation: f is lower semicontinuous if and only if {x : f (x)≤ α}
is a closed set for all α ∈ R.

From the preceding subsection, we now know that optimal dual functions ϕ and
ψ must take the form of the difference between ‖ · ‖2/2 and a convex function.
Given the vast wealth of knowledge on convex functions (Rockafellar [113]), it will
be convenient to work with ϕ̃ and ψ̃ , and to assume that ψ̃ = (ϕ̃)∗, where

f ∗(y) = sup
x∈Rd

[〈x,y〉− f (x)], y ∈ R
d

is the Legendre transform of f ([113, Chapter 26]; [124, Chapter 2]), and is of
fundamental importance in convex analysis. Now by symmetry, one can also replace
ϕ̃ by (ψ̃)∗ = (ϕ̃)∗∗, so it is reasonable to expect that an optimal dual pair should take
the form (‖ · ‖2/2− ϕ̃,‖ · ‖2/2− (ϕ̃)∗), with ϕ̃ convex and lower semicontinuous.

The alternative representation of the dual objective value as

∫
Rd

ϕ dμ +

∫
Rd

ψ dν =
1
2

∫
Rd
‖x‖2 dμ(x)+

1
2

∫
Rd
‖y‖2 dν(y)−

∫
Rd

ϕ̃ dμ −
∫
Rd

ψ̃ dν

is valid under the integrability condition
∫
Rd
‖x‖2 dμ(x)+

∫
Rd
‖y‖2 dν(y)< ∞

that μ and ν have finite second moments. This condition also guarantees that an
optimal ϕ exists, as the conditions of Proposition 1.8.1 are satisfied. An alternative
direct proof for the quadratic case can be found in Villani [124, Theorem 2.9].

Suppose that an optimal ϕ is found. What can we say about optimal transference
plans π? According to the duality, a necessary and sufficient condition is that

∫
Rd×Rd

‖x− y‖2

2
dπ(x,y) =

∫
Rd

ϕ dμ +
∫
Rd

ψ dν ,
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where ψ = ‖ · ‖2/2− (‖ · ‖2/2−ϕ)∗. Equivalently (using Lemma 1.4.1),
∫
Rd×Rd

[ϕ̃(x)+(ϕ̃)∗(y)−〈x,y〉]dπ(x,y) = 0. (1.5)

Since we have ϕ̃(x) + (ϕ̃)∗(y) ≥ 〈x,y〉 everywhere, the integrand is nonnegative.
Hence, the integral vanishes if and only if π is concentrated on the set of (x,y) such
that ϕ̃(x)+ ϕ̃∗(y) = 〈x,y〉. By definition of the Legendre transform as a supremum,
this happens if and only if the supremum defining ϕ̃∗(y) is attained at x; equivalently

ϕ̃(z)− ϕ̃(x)≥ 〈z− x,y〉 , z ∈ X .

This condition is precisely the definition of y being a subgradient of ϕ̃ at x [113,
Chapter 23]. When ϕ̃ is differentiable at x, its unique subgradient is the gradient
y = ∇ϕ̃(x) [113, Theorem 25.1]. If we are fortunate and ϕ̃ is differentiable every-
where, or even μ-almost everywhere, then the optimal transference plan π is unique,
and in fact induced from the transport map ∇ϕ̃ . The problem, of course, is that ϕ̃
may fail to be differentiable μ-almost surely. This is remedied by assuming some
regularity on the source measure μ in order to make sure that any convex func-
tion be differentiable μ-almost surely, and is done via the following regularity re-
sult, which, roughly speaking, states that convex functions are differentiable almost
surely. A stronger version is given in Rockafellar [113, Theorem 2.25], with an al-
ternative proof in Alberti and Ambrosio [6, Chapter 2]. One could also combine the
local Lipschitz property of convex functions [113, Chapter 10] with Rademacher’s
theorem (Villani [125, Theorem 10.8]).

Theorem 1.6.1 (Differentiability of Convex Functions) Let f : Rd →R∪{∞} be
a convex function with domain dom f = {x ∈ R

d : f (x) < ∞} and let N be the set
of points at which f is not differentiable. Then N ∩dom f has Lebesgue measure 0.

Theorem 1.6.1 is usually stated for the interior of dom f , denoted int(dom f ), rather
than the closure. But, since A= dom f is convex, its boundary has Lebesgue measure
zero. To see this assume first that A is bounded. If intA is empty, then A lies in a lower
dimensional subspace [113, Theorem 2.4]. Otherwise, without loss of generality
0 ∈ intA, and then by convexity of A, ∂A ⊆ (1 + ε)A for all ε > 0. When A is
unbounded, write it as ∪nA∩ [−n,n]d .

Another issue that might arise is that optimal ϕ’s might not exist. This is easily
dealt with using Proposition 1.8.1. If we assume that μ and ν have finite second
moments:

∫
Rd
‖x‖2 dμ(x)< ∞ and

∫
Rd
‖y‖2 dν(y)< ∞,

then any transference plan π ∈ Π(μ ,ν) has a finite cost, as is seen from integrating
the elementary inequality ‖x− y‖2 ≤ 2‖x‖2 +2‖y‖2 and using Lemma 1.4.1:

C(π)≤
∫
Rd×Rd

[‖x‖2 +‖y‖2]dπ(x,y) =
∫
Rd
‖x‖2 dμ(x)+

∫
Rd
‖y‖2 dν(y)< ∞.
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With these tools, we can now prove a fundamental existence and uniqueness result
for the Monge–Kantorovich problem. It has been proven independently by several
authors, including Brenier [31], Cuesta-Albertos and Matrán [37], Knott and Smith
[83], and Rachev and Rüschendorf [117].

Theorem 1.6.2 (Quadratic Cost in Euclidean Spaces) Let μ and ν be probability
measures on R

d with finite second moments, and suppose that μ is absolutely contin-
uous with respect to Lebesgue measure. Then the solution to the Kantorovich prob-
lem is unique, and is induced from a transport map T that equals μ-almost surely the
gradient of a convex function φ . Furthermore, the pair (‖x‖2/2− φ ,‖y‖2/2− φ ∗)
is optimal for the dual problem.

Proof. To alleviate the notation we write φ instead of ϕ̃ . By Proposition 1.8.1, there
exists an optimal dual pair (ϕ,ψ) such that φ(x) = ‖x‖2/2−ϕ(x) is convex and
lower semicontinuous, and by the discussion in Sect. 1.1, there exists an optimal π .
Since φ is μ-integrable, it must be finite almost everywhere, i.e., μ(domφ) = 1. By
Theorem 1.6.1, if we define N as the set of nondifferentiability points of φ , then
Leb(N ∩ domφ) = 0; as μ is absolutely continuous, the same holds for μ . (Here
Leb denotes Lebesgue measure.)

We conclude that μ(int(domφ)\N ) = 1. In other words, φ is differentiable μ-
almost everywhere, and so for μ-almost any x, there exists a unique y such that
φ(x) + φ ∗(y) = 〈x,y〉, and y = ∇φ(x). This shows that π is unique and induced
from the transport map ∇φ(x). The gradient ∇φ is Borel measurable, since each
of its coordinates can be written as limsupq→0,q∈Q q−1(φ(x+qv)−φ(x)) for some
vector v (the canonical basis of Rd), which is Borel measurable because the limit
superior is taken on countably many functions (and φ is measurable because it is
lower semicontinuous).

1.6.2 Separable Hilbert Spaces

The finite-dimensionality of Rd in the previous subsection was only used in order to
apply Theorem 1.6.1, so one could hope to extend the results to infinite-dimensional
separable Hilbert spaces.

Although there is no obvious parallel for Lebesgue measure (i.e., translation in-
variant) on infinite-dimensional Banach spaces, one can still define absolute con-
tinuity via Gaussian measures. Indeed, μ ∈ P(Rd) is absolutely continuous with
respect to Lebesgue measure if and only if the following holds: if N ⊂ R

d is such
that ν(N ) = 0 for any nondegenerate Gaussian measure ν , then μ(N ) = 0. This
definition can be extended to any separable Banach space X via projections, as
follows. Let X ∗ be the (topological) dual of X , consisting of all real-valued, con-
tinuous linear functionals on X .

Definition 1.6.3 (Gaussian Measures) A probability measure μ ∈ P(X ) is a non-
degenerate Gaussian measure if for any � ∈ X ∗ \ {0}, �#μ ∈ P(R) is a Gaussian
measure with positive variance.
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Definition 1.6.4 (Gaussian Null Sets and Absolutely Continuous Measures) A
subset N ⊂ X is a Gaussian null set if whenever ν is a nondegenerate Gaussian
measure, ν(N ) = 0. A probability measure μ ∈ P(X ) is absolutely continuous if
μ vanishes on all Gaussian null sets.

Clearly, if ν is a nondegenerate Gaussian measure, then it is absolutely continuous.
As explained in Ambrosio et al. [12, Section 6.2], a version of Rademacher’s

theorem holds in separable Hilbert spaces: a locally Lipschitz function is Gâteaux
differentiable except on a Gaussian null set of X . Theorem 1.6.2 (and more gener-
ally, Theorem 1.8.2) extend to infinite dimensions; see [12, Theorem 6.2.10].

1.6.3 The Gaussian Case

Apart from the one-dimensional case of Sect. 1.5, there is another special case in
which there is a unique and explicit solution to the Monge–Kantorovich problem.

Suppose that μ and ν are Gaussian measures on R
d with zero means and nonsin-

gular covariance matrices A and B. By Theorem 1.6.2, we know that there exists a
unique optimal map T such that T #μ = ν . Since linear push-forwards of Gaussians
are Gaussian, it seems natural to guess that T should be linear, and this is indeed the
case.

Since T is a linear map that should be the gradient of a convex function φ , it must
be that φ is quadratic, i.e., φ(x)−φ(0) = 〈x,Qx〉 for x ∈R

d and some matrix Q. The
gradient of φ at x is (Q+Qt)x and the Hessian matrix is Q+Qt . Thus, T = Q+Qt

and since φ is convex, T must be positive semidefinite.
Viewing T as a matrix leads to the Riccati equation TAT = B (since T is sym-

metric). This is a quadratic equation in T , and so we wish to take square roots in a
way that would isolate T . This is done by multiplying the equation from both sides
with A1/2:

[A1/2TA1/2][A1/2TA1/2] = A1/2TATA1/2 = A1/2BA1/2 = [A1/2B1/2][B1/2A1/2].

All matrices in brackets are positive semidefinite. By taking square roots and multi-
plying with A−1/2, we finally find

T = A−1/2[A1/2BA1/2]1/2A−1/2.

A straightforward calculation shows that TAT = B indeed, and T is positive definite,
hence optimal. To calculate the transport cost C(T ), observe that (T − I)#μ is a
centred Gaussian measure with covariance matrix

TAT −TA−AT +A=A+B−A1/2[A1/2BA1/2]1/2A−1/2−A−1/2[A1/2BA1/2]1/2A1/2.

If Y ∼N (0,C), then E‖Y‖2 equals the trace of C, denoted trC. Hence, by properties
of the trace,
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C(T ) = tr
[
A+B−2(A1/2BA1/2)1/2

]
. (1.6)

By continuity arguments, (1.6) is the total transport cost between any two Gaussian
distributions with zero means, even if A is singular.

If AB = BA, the above formulae simplify to

T = B1/2A−1/2, C(T ) = tr
[
A+B−2A1/2B1/2

]
= ‖A1/2 −B1/2‖2

F ,

with F the Frobenius norm.
If the means of μ and ν are m and n, one simply needs to translate the measures.

The optimal map and the total cost are then

T x = n+A−1/2[A1/2BA1/2]1/2A−1/2(x−m);

C(T ) = ‖n−m‖2 + tr[A+B−2(A1/2BA1/2)1/2].

From this, we can deduce a lower bound on the total cost between any two mea-
sures in R

d in terms of their second order structure. This is worth mentioning, be-
cause such lower bounds are not very common (the Monge–Kantorovich problem
is defined by an infimum, and thus typically easier to bound from above).

Proposition 1.6.5 (Lower Bound for Quadratic Cost) Let μ ,ν ∈ P(Rd) have
means m and n and covariance matrices A and B and let π be the optimal map.
Then

C(π)≥ ‖n−m‖2 + tr[A+B−2(A1/2BA1/2)1/2].

Proof. It will be convenient here to use the probabilistic terminology of Sect. 1.2.
Let X and Y be random variables with distributions μ and ν . Any coupling of X and

Y will have covariance matrix of the form C =

(
A V
V t B

)
∈ R

2d×2d for some matrix

V ∈R
d×d , constrained so that C is positive semidefinite. This gives the lower bound

inf
π∈Π(μ,ν)

Eπ‖X−Y‖2 = ‖m−n‖2+ inf
π∈Π(μ,ν)

trπ [A+B−2V ]≥‖m−n‖2+ inf
V :C≥0

tr[A+B−2V ].

As we know from the Gaussian case, the last infimum is given by (1.6).

1.6.4 Regularity of the Transport Maps

The optimal transport map T between Gaussian measures on R
d is linear, so it is

of course very smooth (analytic). The densities of Gaussian measures are analytic
too, so that T inherits the regularity of μ and ν . Using the formula for T , one can
show that a similar phenomenon takes place in the one-dimensional case. Though
we do not have a formula for T at our disposal when μ and ν are general absolutely
continuous measures on R

d , d ≥ 2, it turns out that even in that case, T inherits the
regularity of μ and ν if some convexity conditions are satisfied.
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To guess what kind of results can be hoped for, let us first examine the case d = 1.
Let F and G denote the distribution functions of μ and ν , respectively. Suppose
that G is continuously differentiable and that G′ > 0 on some open interval (finite
or not) I such that ν(I) = 1. Then the inverse function theorem says that G−1 is
also continuously differentiable. Recall that the support of a (Borel) probability
measure μ (denoted suppμ) is the smallest closed set K such that μ(K) = 1. A
simple application of the chain rule (see page 19 in the supplement) gives:

Theorem 1.6.6 (Regularity in R) Let μ ,ν ∈ P(R) possess distribution functions
F and G of class Ck, k ≥ 1. Suppose further that suppν is an interval I (possibly
unbounded) and that G′ > 0 on the interior of I. Then the optimal map is of class Ck

as well. If F,G ∈C0 are merely continuous, then so is the optimal map.

The assumption on the support of ν is important: if μ is Lebesgue measure on [0,1]
and the support of ν is disconnected, then T cannot even be continuous, no matter
how smooth ν is.

The argument above cannot be easily extended to measures on R
d , d ≥ 2, because

there is no explicit formula available for the optimal maps. As before, we cannot
expect the optimal map to be continuous if the support of ν is disconnected. It turns
out that the condition on the support of ν is not connectedness, but rather convexity.
This was shown by Caffarelli, who was able to prove ([32] and the references within)
that the optimal maps have the same smoothness as the measures. To state the result,
we recall the following notation for an open Ω ⊆ R

d , k ≥ 0 and α ∈ (0,1]. We say
that f ∈ Ck,α(Ω) if all the partial derivatives of order k of f are locally α-Hölder
on Ω . For example, if k = 1, this means that for any x ∈ Ω there exists a constant L
and an open ball B containing x such that

‖∇ f (z)−∇ f (y)‖ ≤ L‖y− z‖α , y,z ∈ B.

Note that f ∈ Ck+1 =⇒ f ∈ Ck,β =⇒ f ∈ Ck,α =⇒ f ∈ Ck, for 0 ≤ α ≤ β ≤ 1 so
α gives a “fractional” degree of smoothness for f . Moreover, Ck,0 =Ck and Ck,1 is
quite close to Ck+1, since Lipschitz functions are almost surely differentiable.

Theorem 1.6.7 (Regularity of Transport Maps) Fix open sets Ω1,Ω2 ⊆ R
d, with

Ω2 convex, and absolutely continuous measures μ ,ν ∈ P(Rd) with finite sec-
ond moments and bounded, strictly positive densities f ,g, respectively, such that
μ(Ω1) = 1 = ν(Ω2). Let φ be such that ∇φ#μ = ν .

1. If Ω1 and Ω2 are bounded and f ,g are bounded below, then φ is strictly convex
and of class C1,α(Ω1) for some α > 0.

2. If Ω1 = Ω2 = R
d and f ,g ∈C0,α , then φ ∈C2,α(Ω1).

If in addition f ,g ∈Ck,α , then φ ∈Ck+2,α(Ω1).

In other words, the optimal map T = ∇φ ∈ Ck+1,α(Ω1) is one derivative smoother
than the densities, so has the same smoothness as the measures μ ,ν .

Theorem 1.6.7 will be used in two ways in this book. Firstly, it is used to derive
criteria for a Karcher mean of a collection of measures to be the Fréchet mean of that
collection (Theorem 3.1.15). Secondly, it allows one to obtain very smooth estimates
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for the transport maps. Indeed, any two measures μ and ν can be approximated by
measures satisfying the second condition: one can approximate them by discrete
measures using the law of large numbers and then employ a convolution with, e.g.,
a Gaussian measure (see, for instance, Theorem 2.2.7). It is not obvious that the
transport maps between the approximations converge to the transport maps between
the original measures, but we will see this to be true in the next section.

1.7 Stability of Solutions Under Weak Convergence

In this section, we discuss the behaviour of the solution to the Monge–Kantorovich
problem when the measures μ and ν are replaced by approximations μn and νn.
Since any measure can be approximated by discrete measures or by smooth mea-
sures, this allows us to benefit from both worlds. On the one hand, approximating μ
and ν with discrete measures leads to the finite discrete problem of Sect. 1.3 that can
be solved exactly. On the other hand, approximating μ and ν with Gaussian convo-
lutions thereof leads to very smooth measures (at least on R

d), and so the regularity
results of the previous section imply that the respective optimal maps will also be
smooth. Finally, in applications, one would almost always observe the measures of
interest μ and ν with a certain amount of noise, and it is therefore of interest to
control the error introduced by the noise. In image analysis, μ can represent an im-
age that has undergone blurring, or some other perturbation (Amit et al. [13]). In
other applications, the noise could be due to sampling variation, where instead of μ
one observes a discrete measure μN obtained from realisations X1, . . . ,XN of random
elements with distribution μ as μN = N−1 ∑N

i=1 δ{Xi} (see Chap. 4).
In Sect. 1.7.1, we will see that the optimal transference plan π depends continu-

ously on μ and ν . With this result under one’s belt, one can then deduce an analo-
gous property for the optimal map T from μ to ν given some regularity of μ , as will
be seen in Sect. 1.7.2.

We shall assume throughout this section that μn → μ and νn → ν weakly, which,
we recall, means that

∫
X f dμn →

∫
X f dμ for all continuous bounded f : X → R.

The following equivalent definitions for weak convergence will be used not only in
this section, but elsewhere as well.

Lemma 1.7.1 (Portmanteau) Let X be a complete separable metric space and let
μ ,μn ∈ P(X ). Then the following are equivalent:

• μn → μ weakly;
• Fn(x)→F(x) for any continuity point x of F. Here X =R

d, Fn is the distribution
function of μn and F is that of μ;

• for any open G ⊆ X , liminf μn(G)≥ μ(G);
• for any closed F ⊆ X , limsup μn(F)≤ μ(F);
•

∫
hdμn →

∫
hdμ for any bounded measurable h whose set of discontinuity points

is a μ-null set.
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For a proof, see, for instance, Billingsley [24, Theorem 2.1]. The equivalence with
the last condition can be found in Pollard [104, Section III.2].

1.7.1 Stability of Transference Plans and Cyclical Monotonicity

In this subsection, we state and sketch the proof of the fact that if μn → μ and
νn → ν weakly, then the optimal transference plans πn ∈ Π(μn,νn) converge to an
optimal π ∈Π(μ ,ν). The result, as stated in Villani [125, Theorem 5.20], is valid on
complete separate metric spaces with general cost functions, and reads as follows.

Theorem 1.7.2 (Weak Convergence and Optimal Plans) Let μn and νn converge
weakly to μ and ν , respectively, in P(X ) and let c : X 2 → R+ be continuous. If
πn ∈ Π(μn,νn) are optimal transference plans and

limsup
n→∞

∫
X 2

c(x,y)dπn(x,y)< ∞.

then (πn) is a tight sequence and each of its weak limits π ∈ Π(μ ,ν) is optimal.

One can even let c vary with n under some conditions.
Let c(x,y) = ‖x− y‖2/2. We prefer to keep the notation c(·, ·) in order to stress

the generality of the arguments. A key idea in the proof is the replacement of opti-
mality by another property called cyclical monotonicity, which behaves nicely with
respect to weak convergence. To motivate this property, we recall the discrete case
of Sect. 1.3 where μ = N−1 ∑N

i=1 δ{xi} and ν = N−1 ∑N
i=1 δ{yi}. There exists an op-

timal transference plan π induced from a permutation σ0 ∈ SN . Since the ordering
of {xi} and {yi} is irrelevant in the representations of μ and ν , we may assume
without loss of generality that σ0 is the identity permutation. Then, by definition of
optimality,

N

∑
i=1

c(xi,yi)≤
N

∑
i=1

c(xi,yσ(i)), σ ∈ SN . (1.7)

If σ is the identity except for a subset i1, . . . , in, n ≤ N, then in particular

n

∑
k=1

c(xik ,yik)≤
n

∑
k=1

c(xik ,yσ(ik)), σ ∈ Sn,

and if we choose σ(ik) = ik−1 with i0 = in, this writes

n

∑
k=1

c(xik ,yik)≤
n

∑
k=1

c(xik ,yik−1). (1.8)

By decomposing a permutation σ ∈ SN to disjoint cycles, one can verify that (1.8)
implies (1.7). This will be useful since, as it turns out, a variant of (1.8) holds for
arbitrary measures μ and ν for which there is no relevant finite N as in (1.7).
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Definition 1.7.3 (Cyclically Monotone Sets and Measures) A set Γ ⊆ X 2 is
cyclically monotone if for any n and any (x1,y1), . . . ,(xn,yn) ∈ Γ ,

n

∑
i=1

c(xi,yi)≤
n

∑
i=1

c(xi,yi−1), (y0 = yn). (1.9)

A probability measure π on X 2 is cyclically monotone if there exists a monotone
Borel set Γ such that π(Γ ) = 1.

The relevance of cyclical monotonicity becomes clear from the following obser-
vation. If μ and ν are discrete uniform measures on N points and σ is an op-
timal permutation for the Monge–Kantorovich problem, then the coupling π =
(1/N)∑N

i=1 δ{(xi,yσ(i))} is cyclically monotone. In fact, even if the optimal per-
mutation is not unique, the set

Γ = {(xi,yσ(i)) : i = 1, . . . ,N,σ ∈ SN optimal}

is cyclically monotone. Furthermore, π ∈ Π(μ ,ν) is optimal if and only if it is
cyclically monotone, if and only if π(Γ ) = 1. It is heuristically easy to see that
cyclical monotonicity is a necessary condition for optimality:

Proposition 1.7.4 (Optimal Plans Are Cyclically Monotone) Let μ ,ν ∈ P(X )
and suppose that the cost function c is nonnegative and continuous. Assume that
the optimal π ∈ Π(μ ,ν) has a finite total cost. Then suppπ is cyclically monotone.
In particular, π is cyclically monotone.

The idea of the proof is that if for some (x1,y1), . . . ,(xn,yn) in the support of π ,

n

∑
i=1

c(xi,yi)>
n

∑
i=1

c(xi,yi−1),

then by continuity of c, the same inequality holds on some balls of positive mea-
sure. One can then replace π by a measure having (xi,yi−1) rather than (xi,yi) in its
support, and this measure will incur a lower cost than π . A rigorous proof can be
found in Gangbo and McCann [59, Theorem 2.3].

Thus, optimal transference plans π solve infinitely many discrete Monge–
Kantorovich problems emanating from their support. More precisely, for any fi-
nite collection (xi,yi) ∈ suppπ , i = 1, . . . ,N and any permutation σ ∈ SN , (1.7)
is satisfied. Therefore, the identity permutation is optimal between the measures
(1/N)∑δ{xi} and (1/N)∑δ{y j}.

In the same spirit as Γ defined above for the discrete case, one can strengthen
Proposition 1.7.4 and prove existence of a cyclically monotone set Γ that includes
the support of any optimal transference plan π: take Γ = ∪supp(π) for π optimal.

The converse of Proposition 1.7.4 also holds.

Proposition 1.7.5 (Cyclically Monotone Plans Are Optimal) Let μ ,ν ∈ P(X ),
c : X 2 → R+ continuous and π ∈ Π(μ ,ν) a cyclically monotone measure with
C(π) finite. Then π is optimal in Π(μ ,ν).
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Let us sketch the proof in the quadratic case c(x,y) = ‖x− y‖2/2 and see how con-
vexity comes into play. Straightforward algebra shows that (1.9) is equivalent, in the
quadratic case, to

n

∑
i=1

〈yi,xi+1 − xi〉 ≤ 0, (xn+1 = x1). (1.10)

Fix (x0,y0) ∈ Γ = suppπ and define φ : X → R∪{∞} by

φ(x) = sup{〈y0,x1 − x0〉+ · · ·+ 〈ym−1,xm − xm−1〉
+〈ym,x− xm〉 : m ∈ N, (xi,yi) ∈ Γ } .

This function is defined as a supremum of affine functions, and is therefore convex
and lower semicontinuous. Cyclical monotonicity of Γ implies that φ(x0) = 0, so φ
is not identically infinite (it would have been so if Γ were not cyclically monotone).
Straightforward computations show that Γ is included in the subdifferential of φ : y
is a subgradient of φ at x when (x,y) ∈ Γ . Optimality of π then follows by weak
duality, since π assigns full measure to the set of (x,y) such that φ(x)+ φ ∗(y) =
〈x,y〉; see (1.5) and the discussion around it.

The argument for more general costs follows similar lines and is sketched at the
end of this subsection.

Given these intermediary results, it is now instructive to prove Theorem 1.7.2.

Proof (Proof of Theorem 1.7.2). Since μn → μ weakly, it is a tight sequence, and
similarly for νn. Consequently, the entire set of plans ∪nΠ(μn,νn) is tight too (see
the discussion before deriving (1.3)). Therefore, up to a subsequence, (πn) has a
weak limit π . We need to show that π is cyclically monotone and that C(π) is finite.
The latter is easy, since cM(x,y) = min(M,c(x,y)) is continuous and bounded:

C(π) = lim
M→∞

∫
X 2

cM dπ = lim
M→∞

lim
n→∞

∫
X 2

cM dπn ≤ liminf
n→∞

∫
X 2

cdπn < ∞.

To show that π is cyclically monotone, fix (x1,y1), . . . ,(xN ,yN) ∈ suppπ . We show
that there exist (xn

k ,y
n
k) ∈ suppπn that converge to (xk,yk). Once this is established,

we conclude from the cyclical monotonicity of suppπn and the continuity of c that

N

∑
k=1

c(xk,yk) = lim
n→∞

N

∑
k=1

c(xn
k ,y

n
k)≤ lim

n→∞

N

∑
k=1

c(xn
k ,y

n
k−1) =

N

∑
k=1

c(xk,yk−1).

The existence proof for the sequence is standard. For ε > 0, let B = Bε(xk,yk) be
an open ball around (xk,yk). Then π(B) > 0 and by the portmanteau Lemma 1.7.1,
πn(B) > 0 for sufficiently large n. It follows that there exist (xn

k ,y
n
k) ∈ B∩ suppπn.

Let ε = 1/m, say, then for all n ≥ Nm we can find (xn
k ,y

n
k) ∈ suppμn of distance

2/m from (xk,yk). We can choose Nm+1 > Nm without loss of generality in order to
complete the proof.
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A few remarks are in order. Firstly, quadratic cyclically monotone sets (with respect
to ‖x− y‖2/2) are included in the subdifferential of convex functions. The converse
is also true, as can be easily deduced from summing up the subgradient inequalities

φ(xi+1)≥ φ(xi)+ 〈yi,xi+1 − xi〉 , i = 1, . . . ,N,

where yi is a subgradient of φ at xi. For future reference, we state this characterisa-
tion as a theorem (which is valid in infinite dimensions too).

Theorem 1.7.6 (Rockafellar [112]) A nonempty Γ ⊆ X 2 is quadratic cyclically
monotone if and only if it is included in the graph of the subdifferential of a lower
semicontinuous convex function that is not identically infinite.

Secondly, we have not used at all the Kantorovich duality, merely its weak form.
The machinery of cyclical monotonicity can be used in order to prove the duality
Theorem 1.4.2. This is indeed the strategy of Villani [125, Chapter 5], who explains
its advantage with respect to Hahn–Banach-type duality proofs.

Lastly, the idea of the proof of Proposition 1.7.5 generalises to other costs in a
natural way. Given a cyclically monotone (with respect to a cost function c) set Γ
and a fixed pair (x0,y0) ∈ Γ , define (Rüschendorf [116])

ϕ(x)= inf{c(x1,y0)−c(x0,y0)+ c(xm,ym−1)−c(xm−1,ym−1)+ c(x,ym)−c(xm,ym)} .

Then under some conditions, (ϕ,ψ) is dual optimal for some ψ . As explained in
Sect. 1.8, ψ can be chosen to be essentially ϕc (as defined in that section).

1.7.2 Stability of Transport Maps

We now extend the weak convergence of πn to π of the previous subsection to con-
vergence of optimal maps. Because of the applications we have in mind, we shall
work exclusively in the Euclidean space X = R

d with the quadratic cost function;
our results can most likely be extended to more general situations.

In this setting, we know that optimal plans are supported on graphs of subdif-
ferentials of convex functions. Suppose that πn is induced by Tn and π is induced
by T . Then in some sense, the weak convergence of πn to π yields convergence of
the graphs of Tn to the graph of T . Our goal is to strengthen this to uniform conver-
gence of Tn to T . Roughly speaking, we show the following: there exists a set A with
μ(A) = 1 and such that Tn converge uniformly to T on every compact subset of A.
For the reader’s convenience, we give a user-friendly version here; a more general
statement is given in Proposition 1.7.11 below.

Theorem 1.7.7 (Uniform Convergence of Optimal Maps) Let μn,μ be absolutely
continuous measures with finite second moments on an open convex set U ⊆R

d such
that μn → μ weakly, and let νn → ν weakly with νn,ν ∈ P(Rd) with finite second
moments. If Tn and T are continuous on U and C(Tn) is bounded uniformly in n,
then
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sup
x∈Ω

‖Tn(x)−T (x)‖→ 0, n → ∞,

for any compact Ω ⊆U.

Since Tn and T are only defined up to Lebesgue null sets, it will be more convenient
to work directly with the subgradients. That is, we view Tn and T as set-valued
functions that to each x ∈R

d assign a (possibly empty) subset of Rd . In other words,
Tn and T take values in the power set of Rd , denoted by 2R

d
.

Let φ : Rd →R∪{∞} be convex, y1 ∈ ∂φ(x1) and y2 ∈ ∂φ(x2). Putting n = 2 in
the definition of cyclical monotonicity (1.10) gives

〈y2 − y1,x2 − x1〉 ≥ 0.

This property (which is weaker than cyclical monotonicity) is important enough to
have its own name. Following the notation of Alberti and Ambrosio [6], we call
a set-valued function (or multifunction) u : Rd → 2R

d
monotone if whenever yi ∈

u(xi), i = 1,2,
〈y2 − y1,x2 − x1〉 ≥ 0.

If d = 1, this simply means that u is a nondecreasing (set-valued) function. For
example, one can define u(x) = {0} for x ∈ [0,1), u(1) = [0,1] and u(x) = /0 if
x /∈ [0,1]. Next, u is said to be maximally monotone if no points can be added to its
graph while preserving monotonicity:

{〈
y′ − y,x′ − x

〉
≥ 0 whenever y ∈ u(x)

}
=⇒ y′ ∈ u(x′).

It will be convenient to identify u with its graph; we will often write (x,y) ∈ u to
mean y ∈ u(x). Note that u(x) can be empty, even when u is maximally monotone.
The previous example for u is not maximally monotone, but it will be if we modify
u(0) to be (−∞,0] and u(1) to be [0,∞).

Of course, if φ : Rd → R∪ {∞} is convex, then u = ∂φ is monotone. It fol-
lows from Theorem 1.7.6 that u is maximally cyclically monotone (no points can be
added to its graph while preserving cyclical monotonicity). It can actually be shown
that u is maximally monotone [6, Section 7]. In what follows, we will always work
with subdifferentials of convex functions, so unless stated otherwise, u will always
be assumed maximally monotone.

Maximally monotone functions enjoy the following very useful continuity prop-
erty. It is proven in [6, Corollary 1.3] and will be used extensively below.

Proposition 1.7.8 (Continuity at Singletons) Let x ∈R
d such that u(x) = {y} is a

singleton. Then u is nonempty on some neighbourhood of x and it is continuous at
x: if xn → x and yn ∈ u(xn), then yn → y.

Notice that this result implies that if a convex function φ is differentiable on some
open set E ⊆ R

d , then it is continuously differentiable there (Rockafellar [113,
Corollary 25.5.1]).
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If f : Rd →R∪{∞} is any function, one can define its subgradient at x locally as

∂ f (x) = {y : f (z)≥ f (x)+ 〈y,z− x〉+o(‖z− x‖)}

=

{
y : liminf

z→x

f (z)− f (x)+ 〈y,z− x〉
‖z− x‖ ≥ 0

}
.

(See the discussion after Theorem 1.8.2.) When f is convex, one can remove the
o(‖z−x‖) term and the inequality holds for all z, i.e., globally and not locally. Since
monotonicity is related to convexity, it should not be surprising that monotonicity is
in some sense a local property. Suppose that u(x0) = {y0} is a singleton and that for
some y∗ ∈ R

d ,
〈y− y∗,x− x0〉 ≥ 0

for all x ∈ R
d and y ∈ u(x). Then by maximality, y∗ must equal y0. By “local prop-

erty”, we mean that the conclusion y∗ = y0 holds if the above inequality holds for x
in a small neighbourhood of x0 (an open set that includes x0). We will need a more
general version of this result, replacing neighbourhoods by a weaker condition that
can be related to Lebesgue points. The strengthening is somewhat technical; the
reader can skip directly to Lemma 1.7.10 and assume that G is open without losing
much intuition.

Let Br(x0) = {x : ‖x−x0‖< r} for r ≥ 0 and x0 ∈R
d . The interior of a set G⊆R

d

is denoted by intG and the closure by G. If G is measurable, then LebG denotes the
Lebesgue measure of G. Finally, convG denotes the convex hull of G.

A point x0 is a Lebesgue point (or of Lebesgue density) of a measurable set
G ⊆ R

d if for any ε > 0 there exists tε > 0 such that

Leb(Bt(x0)∩G)

Leb(Bt(x0))
> 1− ε , 0 < t < tε .

An illuminating example is the set {y≤
√
|x|} in R

2 (see Fig. 1.1). Since the “slope”
of the square root is infinite, x0 = (0,0) is a Lebesgue point, but the fraction above
is strictly smaller than one, for all t > 0.

Fig. 1.1: The set G = {(x,y) : |x| ≤ 1, −0.2 ≤ y ≤
√

|x|}

We denote the set of points of Lebesgue density of G by Gden. Here are some
facts about Gden: clearly, intG ⊆ Gden ⊆ G. Stein and Shakarchi [121, Chapter 3,
Corollary 1.5] show that Leb(G\Gden) = 0 (and Leb(Gden \G) = 0, so Gden is very
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close to G). By the Hahn–Banach theorem, Gden ⊆ int(conv(G)): indeed, if x is not
in int(convG), then there is a separating hyperplane between x and convG ⊇ G, so
the fraction above is at most 1/2 for all t > 0.

The “denseness” of Lebesgue points is materialised in the following result. It is
given as exercise in [121] when d = 1, and the proof can be found on page 27 in the
supplement.

Lemma 1.7.9 (Density Points and Distance) Let x0 be a point of Lebesgue density
of a measurable set G ⊆ R

d. Then

δ (z) = δG(z) = inf
x∈G

‖z− x‖= o(‖z− x0‖), as z → x0.

Of course, this result holds for any x0 ∈ G if the little o is replaced by big O, since
δ is Lipschitz. When x0 ∈ intG, this is trivial because δ vanishes on intG.

The important part here is the following corollary: for almost all x ∈ G, δ (z) =
o(‖z − x‖) as z → x. This can be seen in other ways: since δ is Lipschitz, it is
differentiable almost everywhere. If x ∈ G and δ is differentiable at x, then ∇δ (x)
must be 0 (because δ is minimised there), and then δ (z) = o(‖z − x‖). We just
showed that δ is differentiable with vanishing derivative at all Lebesgue points of x.
The converse is not true: G = {±1/n}∞

n=1 has no Lebesgue points, but δ (y) ≤ 4y2

as y → 0.
The locality of monotone functions can now be stated as follows. It is proven on

page 27 of the supplement.

Lemma 1.7.10 (Local Monotonicity) Let x0 ∈ R
d such that u(x0) = {y0} and x0

is a Lebesgue point of a set G satisfying

〈y− y∗,x− x0〉 ≥ 0 ∀x ∈ G ∀y ∈ u(x).

Then y∗ = y0. In particular, the result is true if the inequality holds on G = O\N
with /0 �= O open and N Lebesgue negligible.

These continuity properties cannot be of much use unless u(x) is a singleton for
reasonably many values of x. Fortunately, this is indeed the case: the set of points x
such that u(x) contains more than one element has Lebesgue measure 0 (see Alberti
and Ambrosio [6, Remark 2.3] for a stronger result). Another issue is that u may be
empty, and convexity comes into play here again. Let domu = {x : u(x) �= /0}. Then
there exists a convex closed set K such that

intK ⊆ domu ⊆ K.

[6, Corollary 1.3(2)]. Although domu itself may fail to be convex, it is almost con-
vex in the above sense. By convexity, K \ intK has Lebesgue measure 0 (see the
discussion after Theorem 1.6.1) and so the set of points in K where u is not a sin-
gleton,

{x ∈ K : u(x) = /0}∪{x ∈ K : u(x) contains more than one point},
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has Lebesgue measure 0, and u(x) is empty for all x /∈ K. (It is in fact not difficult to
show that if x ∈ ∂K, then u(x) cannot be a singleton, by the Hahn–Banach theorem.)

With this background on monotone functions at our disposal, we are now ready
to state the stability result for the optimal maps. We assume the following.

Assumptions 1 Let μn,μ ,νn,ν ∈ P(Rd) with optimal couplings (with respect to
quadratic cost) πn ∈ Π(μn,νn), π ∈ Π(μ ,ν) and convex potentials φn and φ , re-
spectively, such that

• (convergence) μn → μ and νn → ν weakly;
• (finiteness) the optimal couplings πn ∈ Π(μn,νn) satisfy

limsup
n→∞

∫
X 2

1
2
‖x− y‖2 dπn(x,y)< ∞;

• (unique limit) the optimal π ∈ Π(μ ,ν) is unique.

We further denote the subgradients ∂φn and ∂φ by un and u, respectively.

These assumptions imply that π has a finite total cost. This can be shown by the
liminf argument in the proof of Theorem 1.7.2 but also from the uniqueness of π .
As a corollary of the uniqueness of π , it follows that πn → π weakly; notice that this
holds even if πn is not unique for any n. We will now translate this weak convergence
to convergence of the maximal monotone maps un to u, in the following form.

Proposition 1.7.11 (Uniform Convergence of Optimal Maps) Let Assumptions 1
hold true and denote E = suppμ and Eden the set of its Lebesgue points. Let Ω be
a compact subset of Eden on which u is univalued (i.e., u(x) is a singleton for all
x ∈ Ω ). Then un converges to u uniformly on Ω : un(x) is nonempty for all x ∈ Ω
and all n > NΩ , and

sup
x∈Ω

sup
y∈un(x)

‖y−u(x)‖→ 0, n → ∞.

In particular, if u is univalued throughout int(E) (so that φ ∈C1 there), then uniform
convergence holds for any compact Ω ⊂ int(E).

The proof of Proposition 1.7.11, given on page 28 of the supplement, follows two
separate steps:

• if a sequence in the graph of un converges, then the limit is in the graph of u;
• sequences in the graph of un are bounded if the domain is bounded.

Corollary 1.7.12 (Pointwise Convergence μ-Almost Surely) If in addition μ is
absolutely continuous, then un(x)→ u(x) μ-almost surely.

Proof. We first claim that E ⊆ domu. Indeed, for any x ∈ E and any ε > 0, the ball
B = Bε(x) has positive measure. Consequently, u cannot be empty on the entire ball,
because otherwise μ(B) = π(B×R

d) would be 0. Since domu is almost convex (see
the discussion before Assumptions 1), this implies that actually int(convE)⊆ domu.
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The rest is now easy: the set of points x ∈ E for which Ω = {x} fails to satisfy
the conditions of Proposition 1.7.11 is included in

(E \Eden)∪{x ∈ int(conv(E)) : u(x) contains more than one point},

which is μ-negligible because μ is absolutely continuous and both sets have
Lebesgue measure 0.

1.8 Complementary Slackness and More General Cost Functions

It is well-known (Luenberger and Ye [89, Section 4.4]) that the solutions to the
primal and dual problems are related to each other via complementary slackness. In
other words, solution of one problem provides a lot of information about the solution
of the other problem. Here, we show that this idea remains true for the Kantorovich
primal and dual problems, extending the discussion in Sect. 1.6.1 to more general
cost functions.

Let X and Y be complete separable metric spaces, μ ∈ P(X ), ν ∈ P(Y ), and
c : X ×Y → R+ be a measurable cost function.

If one finds functions (ϕ,ψ) ∈ Φc and a transference plan π ∈ Π(μ ,ν) having
the same objective values, then by weak duality (ϕ,ψ) is optimal in Φc and π is
optimal in Π(μ ,ν). Having the same objective values is equivalent to

∫
X ×Y

[c(x,y)−ϕ(x)−ψ(y)]dπ(x,y) = 0

which is in turn equivalent to

ϕ(x)+ψ(y) = c(x,y), π-almost surely.

It has already been established that there exists an optimal transference plan π∗.
Assuming that C(π∗) < ∞ (otherwise all transference plans are optimal), a pair
(ϕ,ψ) ∈ Φc is optimal if and only if

ϕ(x)+ψ(y) = c(x,y), π∗-almost surely.

Conversely, if (ϕ0,ψ0) is an optimal pair, then π is optimal if and only if it is con-
centrated on the set

{(x,y) : ϕ0(x)+ψ0(y) = c(x,y)}.
In particular, if for a given x there exists a unique y such that ϕ0(x)+ψ0(y) = c(x,y),
then the mass at x must be sent entirely to y and not be split; if this is the case for μ-
almost all x, then this relation defines y as a function of x and the resulting optimal π
is in fact induced from a transport map. This idea provides a criterion for solvability
of the Monge problem (Villani [125, Theorem 5.30]).
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1.8.1 Unconstrained Dual Kantorovich Problem

It turns out that the dual Kantorovich problem can be recast as an unconstrained
optimisation problem of only one function ϕ . The new formulation is not only con-
ceptually simpler than the original one, but also sheds light on the properties of the
optimal dual variables. Since the dual objective function to be maximised,

∫
X

ϕ dμ +

∫
Y

ψ dν ,

is increasing in ϕ and ψ , one should seek functions that take values as large as
possible subject to the constraint ϕ(x)+ψ(y)≤ c(x,y). Suppose that an oracle tells
us that some ϕ ∈ L1(μ) is a good candidate. Then the largest possible ψ satisfying
(ϕ,ψ) ∈ Φc is defined as

ψ(y) = inf
x∈X

[c(x,y)−ϕ(x)] := ϕc(y).

A function taking this form is called c-concave [124, Chapter 2]; we say that ψ is the
c-transform of ϕ . It is not necessarily true that ϕc is integrable or even measurable,
but if we neglect this difficulty, then it is obvious that

sup
ψ∈L1(ν):(ϕ,ψ)∈Φc

[∫
X

ϕ dμ +
∫

Y
ψ dν

]
=
∫

X
ϕ dμ +

∫
Y

ϕc dν .

The dual problem can thus be formulated as the unconstrained problem

sup
ϕ∈L1(μ)

[∫
X

ϕ dμ +

∫
Y

ϕc dν
]
.

One can apply this c-transform again and replace ϕ by

ϕcc(x) = (ϕc)c(x) = inf
y∈Y

[c(x,y)−ϕc(y)]≥ ϕ(x),

so that ϕcc has a better objective value yet still (ϕcc,ϕc)∈Φc (modulo measurability
issues). An elementary calculation shows that in general ϕccc = ϕc. Thus, for any
function ϕ1, the pair of functions (ϕ,ψ) = (ϕcc

1 ,ϕc
1) has a better objective value than

(ϕ1,ψ1), and satisfies (ϕ,ψ) ∈ Φc. Moreover, ϕc = ψ and ψc = ϕ; in words, ϕ and
ψ are c-conjugate. An optimal dual pair (ϕ,ψ) can be expected to be c-conjugate;
this is indeed true almost surely:

Proposition 1.8.1 (Existence of an Optimal Pair) Let μ and ν be probability mea-
sures on X and Y such that the independent coupling with respect to the nonnega-
tive and lower semicontinuous cost function is finite:

∫
X ×Y c(x,y)dμ(x)dν(y)< ∞.

Then there exists an optimal pair (ϕ,ψ) for the dual Kantorovich problem. Further-
more, the pair can be chosen in a way that μ-almost surely, ϕ = ψc and ν-almost
surely, ψ = ϕc.

Proposition 1.8.1 is established (under weaker conditions) by Ambrosio and Pratelli
[11, Theorem 3.2]. It is clear from the discussion above that once existence of an
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optimal pair (ϕ1,ψ1) is established, the pair (ϕ,ψ) = (ϕcc
1 ,ϕc

1) should be optimal.
Combining Proposition 1.8.1 with the preceding subsection, we see that if ϕ is op-
timal (for the unconstrained dual problem), then any optimal transference plan π∗

must be concentrated on the set

{(x,y) : ϕ(x)+ϕc(y) = c(x,y)}.

If for μ-almost every x this equation defines y uniquely as a (measurable) function
of x, then π∗ is induced by a transport map. Indeed, we have seen how this is the
case, in the quadratic case c(x,y) = ‖x− y‖2/2, when μ is absolutely continuous.
An extension to p > 1 (instead of p = 2) is sketched in Sect. 1.8.3.

We remark that at the level of generality of Proposition 1.8.1, the function ϕc

may fail to be Borel measurable; Ambrosio and Pratelli show that this pair can be
modified up to null sets in order to be Borel measurable. If c is continuous, however,
then ϕc is an infimum of a collection of continuous functions (in y). Hence −ϕc is
lower semicontinuous, which yields that ϕc is measurable. When c is uniformly
continuous, measurability of ϕc is established in a more lucid way, as exemplified
in the next subsection.

1.8.2 The Kantorovich–Rubinstein Theorem

Whether ϕc(y) is tractable to evaluate depends on the structure of c. We have seen
an example where c was the quadratic Euclidean distance. Here, we shall consider
another useful case, where c is a metric. Assume that X = Y , denote their metric
by d, and let c(x,y) = d(x,y). If ϕ = ψc is c-concave, then it is 1-Lipschitz. Indeed,
by definition and the triangle inequality

ϕ(z) = inf
y∈Y

[d(z,y)−ψ(y)]≤ inf
y∈Y

[d(x,y)+d(x,z)−ψ(y)] = ϕ(x)+d(x,z).

Interchanging x and z yields |ϕ(x)−ϕ(z)| ≤ d(x,z).3

Next, we claim that if ϕ is Lipschitz, then ϕc(y) = −ϕ(y). Indeed, choosing
x = y in the infimum shows that ϕc(y)≤ d(y,y)−ϕ(y) =−ϕ(y). But the Lipschitz
condition on ϕ implies that for all x, d(x,y)−ϕ(x) ≥ −ϕ(y). In view of that, we
can take in the dual problem ϕ to be Lipschitz and ψ =−ϕ , and the duality formula
(Theorem 1.4.2) takes the form

inf
π∈Π(μ ,ν)

∫
X 2

d(x,y)dπ(x,y) = sup
‖ϕ‖Lip≤1

∣∣∣∣
∫

X
ϕ dμ −

∫
X

ϕ dν
∣∣∣∣ ,

‖ϕ‖Lip = sup
x �=y

|ϕ(x)−ϕ(y)|
d(x,y)

. (1.11)

3 In general, ψc inherits the modulus of continuity of c, see Santambrogio [119, page 11].
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This is known as the Kantorovich–Rubinstein theorem [124, Theorem 1.14]. (We
have been a bit sloppy because ϕ may not be integrable. But if for some x0 ∈ X ,
x �→ d(x,x0) is in L1(μ), then any Lipschitz function is μ-integrable. Otherwise one
needs to restrict the supremum to, e.g., bounded Lipschitz ϕ .)

1.8.3 Strictly Convex Cost Functions on Euclidean Spaces

We now return to the Euclidean case X = Y = R
d and explore the structure of

c-transforms. When c is different than ‖x− y‖2/2, we can no longer “open up the
square” and relate the Monge–Kantorovich problem to convexity. However, we can
still apply the idea that ϕ(x)+ϕc(y) = c(x,y) if and only if the infimum is attained
at x. Indeed, recall that

ϕc(y) = inf
x∈X

[c(x,y)−ϕ(x)],

so that ϕ(x)+ϕc(y) = c(x,y) if and only if

ϕ(z)−ϕ(x)≤ c(z,y)− c(x,y), z ∈ X .

Notice the similarity to the subgradient inequality for convex functions, with the
sign being reversed. In analogy, we call the collection of y’s satisfying the above in
equality the c-superdifferential of ϕ at x, and we denote it by ∂ cϕ(x). Of course, if
c(x,y) = ‖x−y‖2/2, then y ∈ ∂ c(x) if and only if y is a subgradient of (‖·‖2/2−ϕ)
at x.

The following result generalises Theorem 1.6.2 to other powers p > 1 of the
Euclidean norm. These cost functions define the Wasserstein distances of the next
chapter.

Theorem 1.8.2 (Strictly Convex Costs on R
d) Let c(x,y) = h(x− y) with h(v) =

‖v‖p/p for some p > 1 and let μ and ν be probability measures on R
d with finite p-

th moments such that μ is absolutely continuous with respect to Lebesgue measure.
Then the solution to the Kantorovich problem with cost function c is unique and
induced from a transport map T . Furthermore, there exists an optimal pair (ϕ,ϕc)
of the dual problem, with ϕ c-concave. The solutions are related by

T (x) = x−∇ϕ(x)‖∇ϕ(x)‖1/(p−1)−1 (μ-almost surely).

Proof (Assuming ν has Compact Support). The existence of the optimal pair (ϕ,ϕc)
with the desired properties follows from Proposition 1.8.1 (they are Borel mea-
surable because c is continuous). We shall now show that ϕ has a unique c-
supergradient μ-almost surely.

Step 1: ϕ is c-superdifferentiable. Let π∗ be an optimal coupling. By duality
arguments, π is concentrated on the set of (x,y) such that y ∈ ∂ cϕ(x). Consequently,
for μ-almost any x, the c-superdifferential of ϕ at x is nonempty.
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Step 2: ϕ is differentiable. Here, we impose the additional condition that ν is
compactly supported. Then ϕ can be taken as a c-transform on the compact support
of ν . Since h is locally Lipschitz (it is C1 because p> 1) this implies that ϕ is locally
Lipschitz. Hence, it is differentiable Lebesgue almost surely, and consequently μ-
almost surely.

Step 3: Conclusion. For μ-almost every x there exists y ∈ ∂ cϕ(x) and a gradient
u = ∇ϕ(x). In particular, u is a subgradient of ϕ:

ϕ(z)−ϕ(x)≥ 〈u,z− x〉+o(‖z− x‖).

Here and more generally, o(‖z− x‖) denotes a function r(z) (defined in a neigh-
bourhood of x) such that r(z)/‖z− x‖ → 0 as z → x. (If ϕ were convex, then we
could take r ≡ 0, so the definition for convex functions is equivalent, and then the
inequality holds globally and not only locally.) But y ∈ ∂ cϕ(x) means that as z → x,

h(z− y)−h(x− y) = c(z,y)− c(x,y)≥ ϕ(z)−ϕ(x)≥ 〈u,z− x〉+o(‖z− x‖).

In other words, u is a subgradient of h at x− y. But h is differentiable with gradient
∇h(v) = v‖v‖p−2 (zero if v = 0). We obtain ∇ϕ(x) = u = ∇h(x− y) and since the
gradient of h is invertible, we conclude

y = T (x) := x− (∇h)−1[∇ϕ(x)],

which defines y as a (measurable) function of x.4 Hence, the optimal transference
plan π is unique and induced from the transport map T .

The general result, without assuming compact support for ν , can be found in
Gangbo and McCann [59]. It holds for a larger class of functions h, those that are
strictly convex on R

d (this yields that ∇h is invertible), have superlinear growth
(h(v)/‖v‖ → ∞ as v → ∞) and satisfying a technical geometric condition (which
‖v‖p/p does when p > 1). Furthermore, if h is sufficiently smooth, namely h ∈C1,1

locally (it is if p ≥ 2, but not if p ∈ (1,2)), then μ does not need to be absolutely
continuous; it suffices that it not give positive measure to any set of Hausdorff di-
mension smaller or equal than d −1. When d = 1 this means that Theorem 1.8.2 is
still valid as long as μ has no atoms (μ({x}) = 0 for all x ∈ R), which is a weaker
condition than μ being absolutely continuous.

It is also noteworthy that for strictly concave cost functions (e.g., p ∈ (0,1)), the
situation is similar when the supports of μ and ν are disjoint. The reason is that h
may fail to be differentiable at 0, but it only needs to be differentiated at x− y with
x ∈ suppμ and y ∈ suppν . If the supports are not disjoint, then one needs to leave all
common mass in place until the supports become disjoint (Villani [124, Chapter 2])
and then the result of [59] applies. As a simple example, let μ be uniform on [0,1]
and ν be uniform on [0,2]. After leaving common mass in place, we are left with
uniforms on [0,1] and [1,2] (with total mass 1/2) with essentially disjoint supports,

4 Gradients of Borel functions are measurable, as the limit can be taken on a countable set. The
inverse (∇h)−1 equals the gradient of the Legendre transform h∗ and is therefore Borel measurable.
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for which the optimal transport map is the decreasing map T (x) = 2− x. Thus, the
unique optimal π is not induced from a map, but rather from an equal weight mixture
of T and the identity. Informally, each point x in the support of μ needs to be split;
half stays and x and the other half transported to 2−x. The optimal coupling from ν
to μ is unique and induced from the map S(x) = x if x ≤ 1 and 2− x if x ≥ 1, which
is neither increasing nor decreasing.

1.9 Bibliographical Notes

Many authors, including Villani [124, Theorem 1.3]; [125, Theorem 5.10], give the
duality Theorem 1.4.2 for lower semicontinuous cost functions. The version given
here is a simplification of Beiglböck and Schachermayer [17, Theorem 1]. The du-
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infinite too often [17, Example 4.1]. For results outside the Polish space setup, see
Kellerer [80] and Rachev and Rüschendorf [107, Chapter 4].

Theorem 1.5.1 for the one-dimensional case is taken from [124], where it is
proven using the general duality theorem. For direct proofs and the history of this re-
sult, one may consult Rachev [106] or Rachev and Rüschendorf [107, Section 3.1].
The concave case is carefully treated by McCann [94].

The results in the Gaussian case were obtained independently by Olkin and
Pukelsheim [98] and Givens and Shortt [65]. The proof given here is from Bha-
tia [20, Exercise 1.2.13]. An extension to separable Hilbert spaces can be found in
Gelbrich [62] or Cuesta-Albertos et al. [39].

The regularity theory of Sect. 1.6.4 is very delicate. Caffarelli [32] showed the
first part of Theorem 1.6.7; the proof can also be found in Figalli’s book [52, Theo-
rem 4.23]. Villani [124, Theorem 4.14] states the result without proof and refers to
Alesker et al. [7] for a sketch of the second part of Theorem 1.6.7. Other regularity
results exist, Villani [125, Chapter 12]; Santambrogio [119, Section 1.7.6]; Figalli
[52].

Cuesta-Albertos et al. [40, Theorem 3.2] prove Theorem 1.7.2 for the quadratic
case; the form given here is from Schachermayer and Teichmann [120, Theorem 3].

The definition of cyclical monotonicity depends on the cost function. It is typi-
cally referred to as c-cyclical monotonicity, with “cyclical monotonicity” reserved
to the special case of quadratic cost. Since we focus on the quadratic case and for
readability, we slightly deviate from the standard jargon. That cyclical monotonic-
ity implies optimality (Proposition 1.7.5) was shown independently by Pratelli [105]
(finite lower semicontinuous cost) and Schachermayer and Teichmann [120] (possi-
bly infinite continuous cost). A joint generalisation is given by Beiglböck et al. [18].

Section 1.7.2 is taken from Zemel and Panaretos [134, Section 7.5]; a slightly
weaker version was shown independently by Chernozhukov et al. [35]. Heinich and
Lootgieter [68] establish almost sure pointwise convergence. If μn = μ , then the
optimal maps converge in μ-measure [125, Corollary 5.23] in a very general setup,
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but there are simple examples where this fails if μn �= μ [125, Remark 5.25]. In the
quadratic case, further stability results of a weaker flavour (focussing on the convex
potential φ , rather than its derivative, which is the optimal map) can be found in del
Barrio and Loubes [42].
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Chapter 2
The Wasserstein Space

The Kantorovich problem described in the previous chapter gives rise to a metric
structure, the Wasserstein distance, in the space of probability measures P(X ) on
a space X . The resulting metric space, a subspace of P(X ), is commonly known
as the Wasserstein space W (although, as Villani [125, pages 118–119] puts it, this
terminology is “very questionable”; see also Bobkov and Ledoux [25, page 4]). In
Chap. 4, we shall see that this metric is in a sense canonical when dealing with
warpings, that is, deformations of the space X (for example, in Theorem 4.2.4).
In this chapter, we give the fundamental properties of the Wasserstein space. Af-
ter some basic definitions, we describe the topological properties of that space in
Sect. 2.2. It is then explained in Sect. 2.3 how W can be endowed with a sort of
infinite-dimensional Riemannian structure. Measurability issues are dealt with in
the somewhat technical Sect. 2.4.

2.1 Definition, Notation, and Basic Properties

Let X be a separable Banach space. The p-Wasserstein space on X is defined as

Wp(X ) =

{
μ ∈ P(X ) :

∫
X
‖x‖p dμ(x)< ∞

}
, p ≥ 1.

We will sometimes abbreviate and write simply Wp instead of Wp(X ).
Recall that if μ ,ν ∈ P(X ), then Π(μ ,ν) is defined to be the set of measures

π ∈ P(X 2) having μ and ν as marginals in the sense of (1.2). The p-Wasserstein
distance between μ and ν is defined as the minimal total transportation cost between
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μ and ν in the Kantorovich problem with respect to the cost function cp(x,y) =
‖x− y‖p:

Wp(μ ,ν) =
(

inf
π∈Π(μ ,ν)

Cp(π)
)1/p

=

(
inf

π∈Π(μ ,ν)

∫
X ×X

‖x1 − x2‖p dπ(x1,x2)

)1/p

.

The Wasserstein distance between μ and ν is finite when both measures are in
Wp(X ), because

‖x1 − x2‖p ≤ 2p‖x1‖p +2p‖x2‖p.

Thus, Wp is finite on [Wp(X )]2 = Wp(X )×Wp(X ); it is nonnegative and sym-
metric and it is easy to see that Wp(μ ,ν) = 0 if and only if μ = ν . A proof that
Wp is a metric (satisfies the triangle inequality) on Wp can be found in Villani [124,
Chapter 7].

The aforementioned setting is by no means the most general one can consider.
Firstly, one can define Wp and Wp for 0 < p < 1 by removing the power 1/p from
the infimum and the limit case p = 0 yields the total variation distance. Another
limit case can be defined as W∞(μ ,ν) = limp→∞ Wp(μ ,ν). Moreover, Wp and Wp

can be defined whenever X is a complete and separable metric space (or even
only separable; see Clément and Desch [36]): one fixes some x0 in X and replaces
‖x‖ by d(x,x0). Although the topological properties below still hold at that level of
generality (except when p = 0 or p = ∞), for the sake of simplifying the notation we
restrict the discussion to Banach spaces. It will always be assumed without explicit
mention that 1 ≤ p < ∞.

The space Wp(X ) is defined as the collection of measures μ such that Wp(μ ,δ0)<
∞ with δx being a Dirac measure at x. Of course, Wp(μ ,ν) can be finite even if
μ ,ν /∈ Wp(X ). But if μ ∈ Wp(X ) and ν /∈ Wp(X ), then Wp(μ ,ν) is always infi-
nite. This can be seen from the triangle inequality

∞ =Wp(ν ,δ0)≤Wp(μ ,δ0)+Wp(μ ,ν).

In the sequel, we shall almost exclusively deal with measures in Wp(X ).
The Wasserstein spaces are ordered in the sense that if q ≥ p, then Wq(X ) ⊆

Wp(X ). This property extends to the distances in the form:

q ≥ p ≥ 1 =⇒ Wq(μ ,ν)≥Wp(μ ,ν). (2.1)

To see this, let π ∈ Π(μ ,ν) be optimal with respect to q. Jensen’s inequality for the
convex function z �→ zq/p gives

W q
q (μ ,ν) =

∫
X 2

‖x− y‖q dπ(x,y)≥
(∫

X 2
‖x− y‖p dπ(x,y)

)q/p

≥W q
p (μ ,ν).

The converse of (2.1) fails to hold in general, since it is possible that Wp be finite
while Wq is infinite. A converse can be established, however, if μ and ν are bounded:
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q≥ p≥1, μ(K)=ν(K)=1 =⇒ Wq(μ ,ν)≤W p/q
p (μ ,ν)

(
sup

x,y∈K
‖x−y‖

)1−p/q

.

(2.2)
Indeed, if we denote the supremum by dK and let π be now optimal with respect to
p, then π(K ×K) = 1 and

W q
q (μ ,ν)≤

∫
K2
‖x− y‖q dπ(x,y)≤ dq−p

K

∫
K2
‖x− y‖p dπ(x,y) = dq−p

K W p
p (μ ,ν).

Another useful property of the Wasserstein distance is the upper bound

Wp(t#μ ,s#μ)≤
(∫

X
‖t(x)− s(x)‖p dμ(x)

)1/p

= ‖ ‖t− s‖X ‖Lp(μ) (2.3)

for any pair of measurable functions t,s : X → X . Situations where this inequal-
ity holds as equality and t and s are optimal maps are related to compatibility of
the measures μ , ν = t#μ and ρ = s#μ (see Sect. 2.3.2) and will be of conceptual
importance in the context of Fréchet means (see Sect. 3.1).

We also recall the notation BR(x0) = {x : ‖x− x0‖ < R} and BR(x0) = {x : ‖x−
x0‖ ≤ R} for open and closed balls in X .

2.2 Topological Properties

2.2.1 Convergence, Compact Subsets

The topology of a space is determined by the collection of its closed sets. Since
Wp(X ) is a metric space, whether a set is closed or not depends on which se-
quences in Wp(X ) converge. The following characterisation from Villani [124,
Theorem 7.12] will be very useful.

Theorem 2.2.1 (Convergence in Wasserstein Space) Let μ ,μn ∈ Wp(X ). Then
the following are equivalent:

1. Wp(μn,μ)→ 0 as n → ∞;
2. μn → μ weakly and

∫
X ‖x‖p dμn(x)→

∫
X ‖x‖p dμ(x);

3. μn → μ weakly and

sup
n

∫
{x:‖x‖>R}

‖x‖p dμn(x)→ 0, R → ∞; (2.4)

4. for any C > 0 and any continuous f : X →R such that | f (x)| ≤C(1+‖x‖p) for
all x, ∫

X
f (x)dμn(x)→

∫
X

f (x)dμ(x).
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5. (Le Gouic and Loubes [87, Lemma 14]) μn → μ weakly and there exists ν ∈
Wp(X ) such that Wp(μn,ν)→Wp(μ ,ν).

Consequently, the Wasserstein topology is finer than the weak topology induced
on Wp(X ) from P(X ). Indeed, let A ⊆ Wp(X ) be weakly closed. If μn ∈ A
converge to μ in Wp(X ), then μn → μ weakly, so μ ∈ A . In other words, the
Wasserstein topology has more closed sets than the induced weak topology. More-
over, each Wp(X ) is a weakly closed subset of P(X ) by the same arguments that
lead to (1.3). In view of Theorem 2.2.1, a common strategy to establish Wasserstein
convergence is to first show tightness and obtain weak convergence, hence a candi-
date limit, and then show that the stronger Wasserstein convergence actually holds.
In some situations, the last part is automatic:

Corollary 2.2.2 Let K ⊂ X be a bounded set and suppose that μn(K) = 1 for all
n ≥ 1. Then Wp(μn,μ)→ 0 if and only if μn → μ weakly.

Proof. This is immediate from (2.4).

The fact that convergence in Wp is stronger than weak convergence is exemplified
in the following result. If μn → μ and νn → ν in Wp(X ), then it is obvious that
Wp(μn,νn)→ Wp(μ ,ν). But if the convergence is only weak, then the Wasserstein
distance is still lower semicontinuous:

liminf
n→∞

Wp(μn,νn)≥Wp(μ ,ν). (2.5)

This follows from Theorem 1.7.2 and (1.3).
Before giving some examples, it will be convenient to formulate Theorem 2.2.1

in probabilistic terms. Let X ,Xn be random elements on X with laws μ ,μn ∈
Wp(X ). Assume without loss of generality that X ,Xn are defined on the same prob-
ability space (Ω ,F ,P) and write Wp(Xn,X) to denote Wp(μn,μ). Then Wp(Xn,X)→
0 if and only if Xn → X weakly and E‖Xn‖p → E‖X‖p.

An early example of the use of Wasserstein metric in statistics is due to Bickel
and Freedman [21]. Let Xn be independent and identically distributed random vari-
ables with mean zero and variance 1 and let Z be a standard normal random vari-
able. Then Zn = ∑n

i=1 Xi/
√

n converge weakly to Z by the central limit theorem.
But EZ2

n = 1 = EZ2, so W2(Zn,Z) → 0. Let Z∗
n be a bootstrapped version of Zn

constructed by resampling the Xn’s. If W2(Z∗
n ,Zn)→ 0, then W2(Z∗

n ,Z)→ 0 and in
particular Z∗

n has the same asymptotic distribution as Zn.
Another consequence of Theorem 2.2.1 is that (in the presence of weak conver-

gence) convergence of moments automatically yields convergence of smaller mo-
ments (there are, however, more elementary ways to see this). In the previous exam-
ple, for instance, one can also conclude that E|Zn|p → E|Z|p for any p ≤ 2 by the
last condition of the theorem. If in addition EX4

1 < ∞, then

EZ4
n = 3− 3

n
+

EX4
1

n
→ 3 = EZ4
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(see Durrett [49, Theorem 2.3.5]) so W4(Zn,Z)→ 0 and all moments up to order 4
converge.

Condition (2.4) is called uniform integrability of the function x �→ ‖x‖p with re-
spect to the collection (μn). Of course, it holds for a single measure μ ∈ Wp(X )
by the dominated convergence theorem. This condition allows us to characterise
compact sets in the Wasserstein space. One should beware that when X is infinite-
dimensional, (2.4) alone is not sufficient in order to conclude that μn has a con-
vergent subsequence: take μn to be Dirac measures at en with (en) an orthonormal
basis of a Hilbert space X (or any sequence with ‖en‖ = 1 that has no convergent
subsequence, if X is a Banach space). The uniform integrability (2.4) must be ac-
companied with tightness, which is a consequence of (2.4) only when X = R

d .

Proposition 2.2.3 (Compact Sets in Wp) A weakly tight set K ⊆Wp is Wasserstein-
tight (has a compact closure in Wp) if and only if

sup
μ∈K

∫
{x:‖x‖>R}

‖x‖p dμ(x)→ 0, R → ∞. (2.6)

Moreover, (2.6) is equivalent to the existence of a monotonically divergent function
g : R+ → R+ such that

sup
μ∈K

∫
X
‖x‖pg(‖x‖)dμ(x)< ∞.

The proof is on page 41 of the supplement.

Remark 2.2.4 For any sequence (μn) in Wp (tight or not) there exists a monotoni-
cally divergent g with

∫
X ‖x‖pg(‖x‖)dμn(x)< ∞ for all n.

Corollary 2.2.5 (Measures with Common Support) Let K ⊆ X be a compact
set. Then

K = Wp(K) = {μ ∈ P(X ) : μ(K) = 1} ⊆ Wp(X )

is compact.

Proof. This is immediate, since K is weakly tight and the supremum in (2.6) van-
ishes when R is larger than the finite quantity supx∈K ‖x‖. Finally, K is closed, so K
is weakly closed, hence Wasserstein closed, by the portmanteau Lemma 1.7.1.

For future reference, we give another consequence of uniform integrability, called
uniform absolute continuity

∀ε ∃δ ∀n ∀A ⊆ X Borel : μn(A)≤ δ =⇒
∫

A
‖x‖p dμn(x)< ε . (2.7)

To show that (2.4) implies (2.7), let ε > 0, choose R = Rε > 0 such that the supre-
mum in (2.4) is smaller than ε/2, and set δ = ε/(2Rp). If μn(A)≤ δ , then
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∫
A
‖x‖p dμn(x)≤

∫
A∩BR(0)

‖x‖p dμn(x)+
∫

A\BR(0)
‖x‖p dμn(x)< δRp + ε/2 ≤ ε .

2.2.2 Dense Subsets and Completeness

If we identify a measure μ ∈ Wp(X ) with a random variable X (having distribu-
tion μ), then X has a finite p-th moment in the sense that the real-valued random
variable ‖X‖ is in Lp. In view of that, it should not come as a surprise that Wp(X )
enjoys topological properties similar to Lp spaces. In this subsection, we give some
examples of useful dense subsets of Wp(X ) and then “show” that like X itself, it
is a complete separable metric space. In the next subsection, we describe some of
the negative properties that Wp(X ) has, again in similarity with Lp spaces.

We first show that Wp(X ) is separable. The core idea of the proof is the feasi-
bility of approximating any measure with discrete measures as follows.

Let μ be a probability measure on X , and let X1,X2, . . . be a sequence of inde-
pendent random elements in X with probability distribution μ . Then the empirical
measure μn is defined as the random measure (1/n)∑n

i=1 δ{Xi}. The law of large
numbers shows that for any (measurable) bounded or nonnegative f : X → R, al-
most surely

∫
X

f (x)dμn(x) =
1
n

n

∑
i=1

f (Xi)→ E f (X1) =
∫

X
f (x)dμ(x).

In particular when f (x) = ‖x‖p, we obtain convergence of moments of order p.
Hence by Theorem 2.2.1, if μ ∈ Wp(X ), then μn → μ in Wp(X ) if and only if
μn → μ weakly. We know that integrals of bounded functions converge with prob-
ability one, but the null set where convergence fails may depend on the chosen
function and there are uncountably many such functions. When X = R

d , by the
portmanteau Lemma 1.7.1 we can replace the collection Cb(X ) by indicator func-
tions of rectangles of the form (−∞,a1]×·· ·× (−∞,ad ] for a = (a1, . . . ,ad) ∈ R

d .
It turns out that the countable collection provided by rational vectors a suffices (see
the proof of Theorem 4.4.1 where this is done in a more complicated setting). For
more general spaces X , we need to find another countable collection { f j} such that
convergence of the integrals of f j for all j suffices for weak convergence. Such a col-
lection exists, by using bounded Lipschitz functions (Dudley [47, Theorem 11.4.1]);
an alternative construction can be found in Ambrosio et al. [12, Section 5.1]. Thus:

Proposition 2.2.6 (Empirical Measures in Wp) For any μ ∈ P(X ) and the corre-
sponding sequence of empirical measures μn, Wp(μn,μ) → 0 almost surely if and
only if μ ∈ Wp(X ).

Indeed, if μ /∈ Wp(X ), then Wp(μn,μ) is infinite for all n, since μn is compactly
supported, hence in Wp(X ).

Proposition 2.2.6 is the basis for constructing dense subsets of the Wasserstein
space.
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Theorem 2.2.7 (Dense Subsets of Wp) The following collections of measures are
dense in Wp(X ):

1. finitely supported measures with rational weights;
2. compactly supported measures;
3. finitely supported measures with rational weights on a dense subset A ⊆ X ;
4. if X = R

d, the collection of absolutely continuous and compactly supported
measures;

5. if X = R
d, the collection of absolutely continuous measures with strictly posi-

tive and bounded analytic densities.

In particular, Wp is separable (the third set is countable as X is separable).

This is a simple consequence of Proposition 2.2.6 and approximations, and the de-
tails are given on page 43 in the supplement.

Proposition 2.2.8 (Completeness) The Wasserstein space Wp(X ) is complete.

One may find two different proofs in Villani [125, Theorem 6.18] and Ambrosio et
al. [12, Proposition 7.1.5]. On page 43 of the supplement, we sketch an alternative
argument based on completeness of the weak topology.

2.2.3 Negative Topological Properties

In the previous subsection, we have shown that Wp(X ) is separable and complete
like Lp spaces. Just like them, however, the Wasserstein space is neither locally com-
pact nor σ -compact. For this reason, existence proofs of Fréchet means in Wp(X )
require tools that are more specific to this space, and do not rely upon local com-
pactness (see Sect. 3.1).

Proposition 2.2.9 (Wp is Not Locally Compact) Let μ ∈ Wp(X ) and let ε > 0.
Then the Wasserstein ball

Bε(μ) = {ν ∈ Wp(X ) : Wp(μ ,ν)≤ ε}

is not compact.

Ambrosio et al. [12, Remark 7.1.9] show this when μ is a Dirac measure, and we
extend their argument on page 43 of the supplement.

From this, we deduce:

Corollary 2.2.10 The Wasserstein space Wp(X ) is not σ -compact.

Proof. If K is a compact set in Wp(X ), then its interior is empty by Proposi-
tion 2.2.9. A countable union of compact sets has an empty interior (hence cannot
equal the entire space Wp(X )) by the Baire property, which holds on the complete
metric space Wp(X ) by the Baire category theorem (Dudley [47, Theorem 2.5.2]).
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2.2.4 Covering Numbers

Let K ⊂ Wp(X ) be compact and assume that X = R
d . Then for any ε > 0 the

covering number

N(ε;K )=min

{
n :∃μ1, . . . ,μn ∈ Wp(X ) such that K ⊆

n⋃
i=1

{μ : Wp(μ ,μi)<ε}
}

is finite. These numbers appear in statistics in various ways, particularly in empir-
ical processes (see, for instance, Wainwright [126, Chapter 5]) and the goal of this
subsection is to give an upper bound for N(ε;K ). Invoking Proposition 2.2.3, in-
troduce a continuous monotone divergent f : [0,∞)→ [0,∞] such that

sup
μ∈K

∫
Rd
‖x‖p f (‖x‖)dμ(x)≤ 1.

The function f provides a certain measure of how compact K is. If K = Wp(K) is
the set of measures supported on a compact K ⊆R

d , then f (L) can be taken infinite
for L large, and L can be treated as a constant in the theorem. Otherwise L increases
as ε ↘ 0, at a speed that depends on f : the faster f diverges, the slower L grows
with decreasing ε and the better the bound becomes.

Theorem 2.2.11 Let ε > 0 and L = f−1(1/ε p). If dε ≤ L, then

logN(ε)≤C1(d)

(
L
ε

)d [
(p+d) log

L
ε
+C2(d, p)

]
,

with C1(d) = 3deθd, C2(d, p) = (p+d) log3+(p+2) log2+ logθd and θd = d[5+
logd + log logd].

Since ε > 0 is small and L is increasing in ε , the restriction that dε ≤ L is typically
not binding. We provide some examples before giving the proof.

Example 1: if all the measures are supported on the d-dimensional unit ball, then
L can be taken equal to one, independently of ε . We obtain

Ñ(ε) :=
logN(ε)
log1/ε

≤ (d + p)C1(d)ε−d + smaller order terms.

Example 2: if all the measures in K have uniform exponential moments, then
f (L) = eL and Ñ(ε) is a constant times ε−d [log1/ε ]d . The exponent p appears only
in the constant.

Example 3: suppose that K is a Wasserstein ball of order p+δ , that is, f (L) =
Lδ . Then L ∼ ε−p/δ and

Ñ(ε)≤C1(d)(p+d)(1+ p/δ )ε−d[1+p/δ ]
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up to smaller order terms. Here (when 0 < δ < ∞) the behaviour of Ñ(ε) depends
more strongly upon p: if p′ < p, then we can replace δ by δ ′ = δ + p− p′ > δ ,
leading to a smaller magnitude of Ñ(ε).

Example 4: if f (L) is only logL, then Ñ behaves like ε−(d+p) exp(ε−pd), so p
has a very dominant effect.

Proof. The proof is divided into four steps.
Step 1: Compact support. Let PL : Rd → R

d be the projection onto BL(0) =
{x ∈ R

d : ‖x‖ ≤ L} and let μ ∈ K . Then

W p
p (μ ,PL#μ)≤

∫
Rd
‖x−PL(x)‖p dμ(x) =

∫
‖x‖>L

‖x−PL(x)‖p dμ(x)

≤
∫
‖x‖>L

‖x‖p dμ(x)≤ 1
f (L)

∫
‖x‖>L

‖x‖p f (‖x‖)dμ(x)≤ 1
f (L)

,

and this vanishes as L → ∞.
Step 2: n-Point measures. Let n = N(ε;BL(0)) be the covering number of the

Euclidean ball in R
d . There exists a set x1, . . . ,xn ∈ R

d such that BL(0) ⊆ ∪Bε(xi).
If μ ∈ Wp(BL(0)), there exists a measure μn supported on the xi’s and such that

Wp(μ ,μn)≤ ε .

Indeed let C1 = Bε(x1), Ci = Bε(xi)\∪ j<iBε(x j) and define μn({xi}) = μ(Ci). The
transport map defined by t(x) = xi for x ∈Ci pushes μ forward to μn and

W p
p (μn,μ)≤

n

∑
i=1

∫
Ci

‖x− xi‖p dμ(x)≤
n

∑
i=1

ε pμ(Ci) = ε p.

According to Rogers [114], we have the bound

n ≤ eθd [L/ε ]d , θd = d[5+ logd + log logd],

whenever ε ≤ L/d.
Step 3: Common weights. If μ = ∑akδxk and ν = ∑bkδxk , then W p

p (μ ,ν) ≤
∑k |ak −bk|supi, j ‖xi − x j‖p. Let

μn,ε ,δ =

{
n

∑
k=1

akδxk : ak ∈ {0,δ ,2δ , . . . ,�1/δ�δ};∑ak = 1

}
.

This set contains fewer than (2+1/δ )n−1 elements, and any measure supported on
{x1, . . . ,xn} can be approximated by a measure in μn,ε ,δ with error 2L(nδ )1/p.

Step 4: Conclusion. Let L = f−1(1/ε p), n = N(ε;BL(0)) and δ = [ε/(2L)]p/n.
Combining the previous three steps, we obtain in the case L ≥ εd that

N(3ε)≤ (2+1/δ )n−1 ≤
[

2+

(
L
ε

)p+d

2peθd

]eθd [L/ε ]d

≤
[(

L
ε

)p+d

2p+2θd

]eθd [L/ε ]d

,
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because L/ε ≥ 1 and θd ≥ 5. Conclude that

N(ε)≤
[

3p+d
(

L
ε

)p+d

2p+2θd

]3deθd [L/ε ]d

.

2.3 The Tangent Bundle

Although the Wasserstein space Wp(X ) is non-linear in terms of measures, it is
linear in terms of maps. Indeed, if μ ∈ Wp(X ) and Ti : X → X are such that
‖Ti‖ ∈ Lp(μ), then (αT1 +βT2)#μ ∈ Wp(X ) for all α,β ∈ R. Later, in Sect. 2.4,
we shall see that Wp(X ) is in fact homeomorphic to a subset of the space of such
functions. The goal of this section is to exploit the linearity of the latter in order to
define the tangent bundle of Wp. This in particular will be used for deriving differ-
entiability properties of the Wasserstein distance in Sect. 3.1.6. However, the latter
can be understood at a purely analytic level, and readers uncomfortable with differ-
ential geometry can access most of the rest of the monograph without reference to
this section.

We assume here that X is a Hilbert space and that p = 2; the results extend to
any p > 1. Absolutely continuous measures are assumed to be so with respect to
Lebesgue measure if X = R

d and otherwise refer to Definition 1.6.4.

2.3.1 Geodesics, the Log Map and the Exponential Map in W2(X )

Let γ ∈W2(X ) be absolutely continuous and μ ∈W2(X ) arbitrary. From Sect. 1.6.1,
we know that there exists a unique solution to the Monge–Kantorovich problem,
and that solution is given by a transport map that we denote by tμ

γ . Recalling that
i : X → X is the identity map, we can define a curve

γt =
[
i+ t(tμ

γ − i)
]

#γ , t ∈ [0,1].

This curve is known as McCann’s [93] interpolant. As hinted in the introduction to
this section, it is constructed via classical linear interpolation of the transport maps
tμ
γ and the identity. Clearly γ0 = γ , γ1 = μ and from (2.3),

W2(γt ,γ)≤
√∫

X

[
t(tμ

γ − i)
]2

dγ = tW2(γ ,μ);

W2(γt ,μ)≤
√∫

X

[
(1− t)(tμ

γ − i)
]2

dγ = (1− t)W2(γ ,μ).

It follows from the triangle inequality in W2 that these inequalities must hold as
equalities. Taking this one step further, we see that
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W2(γt ,γs) = (t − s)W2(γ ,μ), 0 ≤ s ≤ t ≤ 1.

In other words, McCann’s interpolant is a constant-speed geodesic in W2(X ).
In view of this, it seems reasonable to define the tangent space of W2(X ) at μ

as (Ambrosio et al. [12, Definition 8.5.1])

Tanμ = {t(t− i) : t = tν
μ for some ν ∈ W2(X ); t > 0}L2(μ)

.

It follows from the definition that Tanμ ⊆ L2(μ). (Strictly speaking, Tanμ is a subset
of the space of functions f : X →X such that ‖ f‖ ∈ L2(μ) rather than L2(μ) itself,
as in Definition 2.4.3, but we will write L2 for simplicity.)

Although not obvious from the definition, this is a linear space. The reason is
that, in R

d , Lipschitz functions are dense in L2(μ), and for t Lipschitz the negative
of a tangent element

−t(t− i) = s(s− i), s > t‖t‖Lip, s = i+
t
s
(i− t)

lies in the tangent space, since s can be seen to belong to the subgradient of a con-
vex function by definition of s. This also shows that Tanμ can be seen to be the
L2(μ)-closure of all gradients of C∞

c functions. We refer to [12, Definition 8.4.1 and
Theorem 8.5.1] for the proof and extensions to other values of p > 1 and to infinite
dimensions, using cylindrical functions that depend on finitely many coordinates
[12, Definition 5.1.11]. The alternative definition highlights that it is essentially the
inner product in Tanμ , but not the elements themselves, that depends on μ .

The tangent space definition is valid for arbitrary measures in W2(X ). The ex-
ponential map at γ ∈ W2(X ) is the restriction to Tanγ of the mapping that sends
r ∈ L2(γ) to [r+ i]#γ ∈ W2(X ). More explicitly, expγ : Tanγ → W2 takes the form

expγ(t(t− i)) = expγ([tt+(1− t)i]− i) = [tt+(1− t)i]#γ (t ∈ R).

Thus, when γ is absolutely continuous, expγ is surjective, as can be seen from its
right inverse, the log map

logγ : W2 → Tanγ logγ(μ) = tμ
γ − i,

defined throughout W2 (by virtue of Theorem 1.6.2). In symbols,

expγ(logγ(μ)) = μ , μ ∈W2, and logγ(expγ(t(t− i))) = t(t− i) (t ∈ [0,1]),

because convex combinations of optimal maps are optimal maps as well. In particu-
lar, McCann’s interpolant

[
i+ t(tμ

γ − i)
]

#γ is mapped bijectively to the line segment
t(tμ

γ − i) ∈ Tanγ through the log map.
It is also worth mentioning that McCann’s interpolant can also be defined as

[t p2 +(1− t)p1]#π, p1(x,y) = x, p2(x,y) = y,
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where p1, p2 : X 2 →X are projections and π is any optimal transport plan between
γ and μ . This is defined for arbitrary measures γ ,μ ∈W2, and reduces to the previous
definition if γ is absolutely continuous. It is shown in Ambrosio et al. [12, Chapter
7] or Santambrogio [119, Proposition 5.32] that these are the only constant-speed
geodesics in W2.

2.3.2 Curvature and Compatibility of Measures

Let γ ,μ ,ν ∈ W2(X ) be absolutely continuous measures. Then by (2.3)

W 2
2 (μ ,ν)≤

∫
X
‖tμ

γ (x)− tν
γ (x)‖2 dγ(x) = ‖ logγ(μ)− logγ(ν)‖2.

In other words, the distance between μ and ν is smaller in W2(X ) than the distance
between the corresponding vectors logγ(μ) and logγ(ν) in the tangent space Tanγ .
In the terminology of differential geometry, this means that the Wasserstein space
has nonnegative sectional curvature at any absolutely continuous γ .

It is instructive to see when equality holds. As tγ
ν = (tν

γ )
−1, a change of variables

gives

W 2
2 (μ ,ν)≤

∫
X
‖tμ

γ (t
γ
ν(x))− x‖2 dν(x).

Since the map tμ
γ ◦tγ

ν pushes forward ν to μ , equality holds if and only if tμ
γ ◦tγ

ν = tμ
ν .

This motivates the following definition.

Definition 2.3.1 (Compatible Measures) A collection of absolutely continuous
measures C ⊆ W2(X ) is compatible if for all γ ,μ ,ν ∈ C , we have tμ

γ ◦ tγ
ν = tμ

ν
(in L2(ν)).

Remark 2.3.2 The absolute continuity is not necessary and was introduced for no-
tational simplicity. A more general definition that applies to general measures is the
following: every finite subcollection of C admits an optimal multicoupling whose
relevant projections are simultaneously pairwise optimal; see the paragraph pre-
ceding Theorem 3.1.9.

A collection of two (absolutely continuous) measures is always compatible. More
interestingly, if X =R, then the entire collection of absolutely continuous (or even
just continuous) measures is compatible. This is because of the simple geometry of
convex functions in R: gradients of convex functions are nondecreasing, and this
property is stable under composition. In a more probabilistic way of thinking, one
can always push-forward μ to ν via the uniform distribution Leb|[0,1] (see Sect. 1.5).
Letting F−1

μ and F−1
ν denote the quantile functions, we have seen that

W2(μ ,ν) = ‖F−1
μ −F−1

ν ‖L2(0,1).
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(As a matter of fact, in this specific case, the equality holds for all p ≥ 1 and not
only for p= 2.) In other words, μ �→ F−1

μ is an isometry from W2(R) to the subset of
L2(0,1) formed by (equivalence classes of) left-continuous nondecreasing functions
on (0,1). Since this is a convex subset of a Hilbert space, this property provides a
very simple way to evaluate Fréchet means in W2(R) (see Sect. 3.1). If γ = Leb|[0,1],
then F−1

μ = tμ
γ for all μ , so we can write the above equality as

W 2
2 (μ ,ν) = ‖F−1

μ −F−1
ν ‖L2(0,1) = ‖ logγ(μ)− logγ(ν)‖2,

so that if X =R, the Wasserstein space is essentially flat (has zero sectional curva-
ture).

The importance of compatibility can be seen as mimicking the simple one-
dimensional case in terms of a Hilbert space embedding. Let C ⊆ W2(X ) be com-
patible and fix γ ∈ C . Then for all μ ,ν ∈ C

W 2
2 (μ ,ν) =

∫
X
‖tμ

γ (x)− tν
γ (x)‖2 dγ(x) = ‖ logγ(μ)− logγ(ν)‖2

L2(γ).

Consequently, once again, μ �→ tμ
γ is an isometric embedding of C into L2(γ). Gen-

eralising the one-dimensional case, we shall see that this allows for easy calculations
of Fréchet means by means of averaging transport maps (Theorem 3.1.9).

Example: Gaussian compatible measures. The Gaussian case presented in
Sect. 1.6.3 is helpful in shedding light on the structure imposed by the compati-
bility condition. Let γ ∈ W2(R

d) be a standard Gaussian distribution with identity
covariance matrix. Let Σμ denote the covariance matrix of a measure μ ∈ W2(R

d).
When μ and ν are centred nondegenerate Gaussian measures,

tμ
γ = Σ 1/2

μ ; tν
γ = Σ 1/2

ν ; tν
μ = Σ−1/2

μ [Σ 1/2
μ Σν Σ 1/2

μ ]1/2Σ−1/2
μ ,

so that γ ,μ , and ν are compatible if and only if

tν
μ = tν

γ ◦ tγ
μ = Σ 1/2

ν Σ−1/2
μ .

Since the matrix on the left-hand side must be symmetric, it must necessarily be

that Σ 1/2
ν and Σ−1/2

μ commute (if A and B are symmetric, then AB is symmetric if
and only if AB = BA), or equivalently, if and only if Σν and Σμ commute. We see
that a collection C of Gaussian measures on R

d that includes the standard Gaussian
distribution is compatible if and only if all the covariance matrices of the measures
in C are simultaneously diagonalisable. In other words, there exists an orthogonal
matrix U such that Dμ = UΣμUt is diagonal for all μ ∈ C . In that case, formula
(1.6)

W 2
2 (μ ,ν) = tr[Σμ +Σν −2(Σ 1/2

μ Σν Σ 1/2
μ )1/2] = tr[Σμ +Σν −2Σ 1/2

μ Σ 1/2
ν ]

www.dbooks.org

https://www.dbooks.org/


50 2 The Wasserstein Space

simplifies to

W 2
2 (μ ,ν) = tr[Dμ +Dν −2D1/2

μ D1/2
ν ] =

d

∑
i=1

(
√

αi−
√

βi)
2, αi = [Dμ ]ii; βi = [Dν ]ii,

and identifying the (nonnegative) number a ∈ R with the map x �→ ax on R, the
optimal maps take the “orthogonal separable” form

tν
μ = Σ 1/2

ν Σ−1/2
μ =UD1/2

ν D−1/2
μ Ut =U ◦

(√
β1/α1, . . . ,

√
βd/αd

)
◦Ut .

In other words, up to an orthogonal change of coordinates, the optimal maps take the
form of d nondecreasing real-valued functions. This is yet another crystallisation of
the one-dimensional-like structure of compatible measures.

With the intuition of the Gaussian case at our disposal, we can discuss a more
general case. Suppose that the optimal maps are continuously differentiable. Then
differentiating the equation tν

μ = tν
γ ◦ tγ

μ gives

∇tν
μ(x) = ∇tν

γ (t
γ
μ(x))∇tγ

μ(x).

Since optimal maps are gradients of convex functions, their derivatives must be
symmetric and positive semidefinite matrices. A product of such matrices stays sym-
metric if and only if they commute, so in this differentiable setting, compatibility is
equivalent to commutativity of the matrices ∇tν

γ (t
γ
μ(x)) and ∇tγ

μ(x) for μ-almost all
x. In the Gaussian case, the optimal maps are linear functions, so x does not appear
in the matrices.

Here are some examples of compatible measures. It will be convenient to de-
scribe them using the optimal maps from a reference measure γ ∈ W2(R

d). Define
C = t#γ with t belonging to one of the following families. The first imposes the
one-dimensional structure by varying only the behaviour of the norm of x, while the
second allows for separation of variables that splits the d-dimensional problem into
d one-dimensional ones.

Radial transformations. Consider the collection of functions t : Rd → R
d of the

form t(x) = xG(‖x‖) with G : R+ →R differentiable. Then a straightforward calcu-
lation shows that

∇t(x) = G(‖x‖)I +[G′(‖x‖)/‖x‖] xxt .

Since both I and xxt are positive semidefinite, the above matrix is so if both G
and G′ are nonnegative. If s(x) = xH(‖x‖) is a function of the same form, then
s(t(x)) = xG(‖x‖)H(‖x‖G(‖x‖)) which belongs to that family of functions (since
G is nonnegative). Clearly

∇s(t(x)) = H
[
‖x‖G(‖x‖)

]
I +

[
G(‖x‖)H ′(‖x‖G(‖x‖))/‖x‖

]
xxt

commutes with ∇t(x), since both matrices are of the form aI+bxxt with a,b scalars
(that depend on x). In order to be able to change the base measure γ , we need to
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check that the inverses belong to the family. But if y = t(x), then x = ay for some
scalar a that solves the equation

aG(a‖y‖) = 1.

Such a is guaranteed to be unique if a �→ aG(a) is strictly increasing and it will exist
(for y in the range of t) if it is continuous. As a matter of fact, since the eigenvalues
of ∇t(x) are G(a) and

G(a)+G′(a)a = (aG(a))′, a = ‖x‖,

the condition that a �→ aG(a) is strictly increasing is sufficient (this is weaker than
G itself increasing). Finally, differentiability of G is not required, so it is enough if
G is continuous and aG(a) is strictly increasing.

Separable variables. Consider the collection of functions t :Rd →R
d of the form

t(x1, . . . ,xd) = (T1(x1), . . . ,Td(xd)), Ti : R→ R, (2.8)

with Ti continuous and strictly increasing. This is a generalisation of the compatible
Gaussian case discussed above in which all the Ti’s were linear. Here, it is obvious
that elements in this family are optimal maps and that the family is closed under
inverses and composition, so that compatibility follows immediately.

This family is characterised by measures having a common dependence structure.
More precisely, we say that C : [0,1]d → [0,1] is a copula if C is (the restriction of)
a distribution function of a random vector having uniform margins. In other words,
if there is a random vector V = (V1, . . . ,Vd) with P(Vi ≤ a) = a for all a ∈ [0,1] and
all j = 1, . . . ,d, and

P(V1 ≤ v1, . . . ,Vd ≤ vd) =C(v1, . . . ,vd), ui ∈ [0,1].

Nelsen [97] provides an overview on copulae. To any d-dimensional probability
measure μ , one can assign a copula C =Cμ in terms of the distribution function G
of μ and its marginals G j as

G(a1, . . . ,ad) = μ((−∞,a1]×·· ·× (−∞,ad ]) =C(G1(a1), . . . ,Gd(ad)).

If each G j is surjective on (0,1), which is equivalent to it being continuous, then this
equation defines C uniquely on (0,1)d , and consequently on [0,1]d . If some marginal
G j is not continuous, then uniqueness is lost, but C still exists [97, Chapter 2].
The connection of copulae to compatibility becomes clear in the following lemma,
proven on page 51 in the supplement.

Lemma 2.3.3 (Compatibility and Copulae) The copulae associated with abso-
lutely continuous measures μ ,ν ∈ W2(R

d) are equal if and only if tν
μ takes the

separable form (2.8).

Composition with linear functions. If φ :Rd →R is convex with gradient t and A is a
d×d matrix, then the gradient of the convex function x �→ φ(Ax) at x is tA =Att(Ax).
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Suppose ψ is another convex function with gradient s and that compatibility holds,
i.e., ∇s(t(x)) commutes with ∇t(x) for all x. Then in order for

∇sA(tA(x)) = At∇s(AAt t(Ax))A and ∇tA(x) = At∇t(Ax)A

to commute, it suffices that AAt = I, i.e., that A be orthogonal. Consequently, if
{t#μ}t∈T are compatible, then so are {tU #μ}t∈T for any orthogonal matrix U .

2.4 Random Measures in Wasserstein Space

Let μ be a fixed absolutely continuous probability measure in W2(X ). If Λ ∈
W2(X ) is another probability measure, then the transport map tΛ

μ and the convex
potential are functions of Λ . If Λ is now random, then we would like to be able
to make probability statements about them. To this end, it needs to be shown that
tΛ
μ and the convex potential are measurable functions of Λ . The goal of this sec-

tion is to develop a rigorous mathematical framework that justifies such probability
statements. We show that all the relevant quantities are indeed measurable, and in
particular establish a Fubini-type result in Proposition 2.4.9. This technical section
may be skipped at first reading.

Here is an example of a measurability result (Villani [125, Corollary 5.22]). Re-
call that P(X ) is the space of Borel probability measures on X , endowed with the
topology of weak convergence that makes it a metric space. Let X be a complete
separable metric space and c : X 2 →R+ a continuous cost function. Let (Ω ,F ,P)
be a probability space and Λ ,κ : Ω → P(X ) be measurable maps. Then there ex-
ists a measurable selection of optimal transference plans. That is, a measurable
π : Ω → P(X 2) such that π(ω) ∈ Π(Λ(ω),κ(ω)) is optimal for all ω ∈ Ω .

Although this result is very general, it only provides information about π . If π
is induced from a map T , it is not obvious how to construct T from π in a mea-
surable way; we will therefore follow a different path. In order to (almost) have a
self-contained exposition, we work in a somewhat simplified setting that neverthe-
less suffices for the sequel. At least in the Euclidean case X = R

d , more general
measurability results in the flavour of this section can be found in Fontbona et al.
[53]. On the other hand, we will not need to appeal to abstract measurable selection
theorems as in [53, 125].

2.4.1 Measurability of Measures and of Optimal Maps

Let X be a separable Banach space. (Most of the results below hold for any com-
plete separable metric space but we will avoid this generality for brevity and simpler
notation). The Wasserstein space Wp(X ) is a metric space for any p ≥ 1. We can
thus define:
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Definition 2.4.1 (Random Measure) A random measure Λ is any measurable map
from a probability space (Ω ,F ,P) to Wp(X ), endowed with its Borel σ -algebra.

In what follows, whenever we call something random, we mean that it is measurable
as a map from some generic unspecified probability space.

Lemma 2.4.2 A random measure Λ is measurable if and only if it is measurable
with respect to the induced weak topology.

Since both topologies are Polish, this follows from abstract measure-theoretic results
(Fremlin [57, Paragraph 423F]). We give an elementary proof on page 53 of the
supplement.

Optimal maps are functions from X to itself. In order to define random optimal
maps, we need to define a topology and a σ -algebra on the space of such functions.

Definition 2.4.3 (The Space Lp(μ)) Let X be a Banach space and μ a Borel
measure on X . Then the space Lp(μ) is the space of measurable functions
f : X → X such that

‖ f‖Lp(μ) =

(∫
X
‖ f (x)‖p

X dμ(x)
)1/p

< ∞.

When X is separable, Lp(μ) is an example of a Bochner space, though we will
not use this terminology.

It follows from the definition that ‖ f‖Lp(μ) is the Lp norm of the map x �→
‖ f (x)‖X from X to R:

‖ f‖Lp(μ) = ‖ ‖ f‖X ‖Lp(μ).

As usual we identify functions that coincide almost everywhere. Clearly, Lp(μ) is a
normed vector space. It enjoys another property shared by Lp spaces—completeness:

Theorem 2.4.4 (Riesz–Fischer) The space Lp(μ) is a Banach space.

The proof, a simple variant of the classical one, is given on page 53 of the supple-
ment.

Random maps lead naturally to random measures:

Lemma 2.4.5 (Push-Forward with Random Maps) Let μ ∈ Wp(X ) and let t be
a random map in Lp(μ). Then Λ = t#μ is a continuous mapping from Lp(μ) to
Wp(X ), hence a random measure.

Proof. That Λ takes values in Wp follows from a change of variables
∫

X
‖x‖p dΛ(x) =

∫
X
‖t(x)‖p dμ(x) = ‖t‖Lp(μ) < ∞.

Since Wp(t#μ ,s#μ)≤ ‖ ‖t− s‖X ‖Lp(μ) = ‖t− s‖Lp(μ) (see (2.3)), Λ is a continu-
ous (in fact, 1-Lipschitz) function of t.

Conversely, t is a continuous function of Λ :
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Lemma 2.4.6 (Measurability of Transport Maps) Let Λ be a random measure in
Wp(X ) and let μ ∈ Wp(X ) such that (i, tΛ

μ )#μ is the unique optimal coupling of

μ and Λ . Then Λ �→ tΛ
μ is a continuous mapping from Wp(X ) to Lp(μ), so tΛ

μ
is a random element in Lp(μ). In particular, the result holds if X is a separable
Hilbert space, p > 1, and μ is absolutely continuous.

Proof. This result is more subtle than Lemma 2.4.5, since Λ �→ tΛ
μ is not necessarily

Lipschitz. We give here a self-contained proof for the Euclidean case with quadratic
cost and μ absolutely continuous. The general case builds on Villani [125, Corol-
lary 5.23] and is given on page 54 of the supplement.

Suppose that Λn → Λ in W2(R
d) and fix ε > 0. For any S ⊆ R

d ,

‖tΛn
μ − tΛ

μ ‖2
L2(μ) =

∫
S
‖tΛn

μ − tΛ
μ ‖2 dμ +

∫
Rd\S

‖tΛn
μ − tΛ

μ ‖2 dμ .

Since ‖a−b‖p ≤ 2p‖a‖p +2p‖b‖p, the last integral is no larger than

4
∫
Rd\S

‖tΛn
μ ‖2 dμ+4

∫
Rd\S

‖tΛ
μ ‖2 dμ = 4

∫
(tΛn

μ )−1(Rd\S)
‖x‖2 dΛn(x)+4

∫
(tΛ

μ )
−1(Rd\S)

‖x‖2 dΛ(x).

Since (Λn) and Λ are tight in the Wasserstein space, they must satisfy the absolute
uniform continuity (2.7). Let δ = δε as in (2.7), and notice that by the measure
preserving property of the optimal maps, the last two integrals are taken on sets of
measures 1− μ(S). Since μ is absolutely continuous, we can find a compact set S
of μ-measure at least 1− δ and on which Proposition 1.7.11 applies (see Corol-
lary 1.7.12), yielding

∫
S
‖tΛn

μ − tΛ
μ ‖2 dμ ≤ ‖tΛn

μ − tΛ
μ ‖2

∞ → 0, n → ∞,

so that
limsup

n→∞
‖tΛn

μ − tΛ
μ ‖L2(μ) ≤ 8ε ,

and this completes the proof upon letting ε → 0.

In Proposition 5.3.7, we show under some conditions that ‖tΛ
μ ‖L2(μ) is a continuous

function of μ .

2.4.2 Random Optimal Maps and Fubini’s Theorem

From now on, we assume that X is a separable Hilbert space and that p = 2. The
results can most likely be generalised to all p > 1 (see Ambrosio et al. [12, Sec-
tion 10.2]), but we restrict to the quadratic case for simplicity.
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Theorem 3.2.13 below requires the application of Fubini’s theorem in the form

E

∫
X

〈
tΛ
θ0
− i, tθ

θ0
− i

〉
dθ0 =

∫
X
E

〈
tΛ
θ0
− i, tθ

θ0
− i

〉
dθ0 =

∫
X

〈
EtΛ

θ0
− i, tθ

θ0
− i

〉
dθ0.

In order for this to even make sense, we need to have a meaning for “expectation” in
the spaces L2(θ0) and L2(θ0), both of which are Banach spaces. There are several
(nonequivalent) definitions for integrals in such spaces (Hildebrant [69]); the one
which will be the most convenient for our needs is the Bochner integral.

Definition 2.4.7 (Bochner Integral) Let B be a Banach space and let f : (Ω ,F ,
P)→ B be a simple random element taking values in B:

f (ω) =
n

∑
j=1

f j1{ω ∈ Ω j}, Ω j ∈ F , f j ∈ B.

Then the Bochner integral (or expectation) of f is defined by

E f =
n

∑
j=1

P(Ω j) f j ∈ B.

If f is measurable and there exists a sequence fn of simple random elements such
that ‖ fn − f‖→ 0 almost surely and E‖ fn − f‖→ 0, then the Bochner integral of f
is defined as the limit

E f = lim
n→∞

E fn.

The space of functions for which the Bochner integral is defined is the Bochner
space L1(Ω ;B), but we will use neither this terminology nor the notation. It is not
difficult to see that Bochner integrals are well-defined: the expectations do not de-
pend on the representation of the simple functions nor on the approximating se-
quence, and the limit exists in B (because it is complete). More on Bochner integrals
can be found in Hsing and Eubank [71, Section 2.6] or Dunford et al. [48, Chap-
ter III.6]. A major difference from the real case is that there is no clear notion of
“infinity” here: the Bochner integral is always an element of B, whereas expecta-
tions of real-valued random variables can be defined in R∪{±∞}. It turns out that
separability is quite important in this setting:

Lemma 2.4.8 (Approximation of Separable Functions) Let f : Ω → B be mea-
surable. Then there exists a sequence of simple functions fn such that ‖ fn(ω)−
f (ω)‖→ 0 for almost all ω if and only if f (Ω \N ) is separable for some N ⊆ Ω
of probability zero. In that case, fn can be chosen so that ‖ fn(ω)‖ ≤ 2‖ f (ω)‖ for
all ω ∈ Ω .
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A proof can be found in [48, Lemma III.6.9], or on page 55 of the supplement. Func-
tions satisfying this approximation condition are sometimes called strongly measur-
able or Bochner measurable. In view of the lemma, we will call them separately
valued, since this is the condition that will need to be checked in order to define
their integrals.

Two remarks are in order. Firstly, if B itself is separable, then f (Ω) will obvi-
ously be separable. Secondly, the set N ′ ⊂Ω \N on which (gnk) does not converge
to f may fail to be measurable, but must have outer probability zero (it is included
in a measurable set of measure zero) [48, Lemma III.6.9]. This can be remedied by
assuming that the probability space (Ω ,F ,P) is complete. It will not, however, be
necessary to do so, since this measurability issue will not alter the Bochner expec-
tation of f .

Proposition 2.4.9 (Fubini for Optimal Maps) Let Λ be a random measure in
W2(X ) such that EW2(δ0,Λ) < ∞ and let θ0,θ ∈ W2(X ) such that tΛ

θ0
and tθ

θ0
exist (and are unique) with probability one. (For example, if θ0 is absolutely contin-
uous.) Then

E

∫
X

〈
tΛ
θ0
− i, tθ

θ0
− i

〉
dθ0 =

∫
X
E

〈
tΛ
θ0
− i, tθ

θ0
− i

〉
dθ0 =

∫
X

〈
EtΛ

θ0
− i, tθ

θ0
− i

〉
dθ0.

(2.9)

This holds by linearity when Λ is a simple random measure. The general case fol-
lows by approximation: the Wasserstein space is separable and so is the space of
optimal maps, by Lemma 2.4.6, so we may apply Lemma 2.4.8 and approximate tΛ

θ0
by simple maps for which the equality holds by linearity. On page 56 of the sup-
plement, we show that these simple maps can be assumed optimal, and give the full
details.

2.5 Bibliographical Notes

Our proof of Theorem 2.2.11 borrows heavily from Bolley et al. [29]. A similar
result was obtained by Kloeckner [81], who also provides a lower bound of a similar
order.

The origins of Sect. 2.3 can be traced back to the seminal work of Jordan et al.
[74], who interpret the Fokker–Planck equation as a gradient flow (where function-
als defined on W2 can be differentiated) with respect to the 2-Wasserstein metric.
The Riemannian interpretation was (formally) introduced by Otto [99], and rigor-
ously established by Ambrosio et al. [12] and others; see Villani [125, Chapter 15]
for further bibliography and more details.

Compatible measures (Definition 2.3.1) were implicitly introduced by Boissard
et al. [28] in the context of admissible optimal maps where one defines families
of gradients of convex functions (Ti) such that T−1

j ◦ Ti is a gradient of a convex
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function for any i and j. For (any) fixed measure γ ∈ C , compatibility of C is then
equivalent to admissibility of the collection of maps {tμ

γ }μ∈C . The examples we
gave are also taken from [28].

Lemma 2.3.3 is from Cuesta-Albertos et al. [38, Theorem 2.9] (see also Zemel
and Panaretos [135]).
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Chapter 3
Fréchet Means in the Wasserstein
Space W2

If H is a Hilbert space (or a closed convex subspace thereof) and x1, . . . ,xN ∈ H,
then the empirical mean xN = N−1 ∑xi is the unique element of H that minimises
the sum of squared distances from the xi’s.1 That is, if we define

F(θ) =
N

∑
i=1

‖θ − xi‖2, θ ∈ H,

then θ = xN is the unique minimiser of F . This is easily seen by “opening the
squares” and writing

F(θ) = F(xN)+N‖θ − xN‖2.

The concept of a Fréchet mean (Fréchet [55]) generalises the notion of mean to a
more general metric space by replacing the usual “sum of squares” with a “sum
of squared distances”, giving rise to the so-called Fréchet functional. A closely re-
lated notion is that of a Karcher mean (Karcher [78]), a term that describes station-
ary points of the sum of squares functional, when the latter is differentiable (see
Sect. 3.1.6). Population versions of Fréchet means, assuming the space is endowed
with a probability law, can also be defined, replacing summation by expectation with
respect to that law.

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/
978-3-030-38438-8 3) contains supplementary material.

1 It should be remarked that this is a Hilbertian property (or at least a property linked to an inner
product), not merely a linear property. In other words, it does not extend to Banach spaces. As an
example, let H =R

2 with the L1 norm and consider the vertices (0,0), (0,1), and (1,0) of the unit
simplex. The mean of these is (1/3,1/3) but for (x,y) in the triangle,

F(x,y) = (x+ y)2 +(x+1− y)2 +(1− x+ y)2 = 2+ x2 + y2 +(x− y)2

is minimised at (0,0).
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60 3 Fréchet Means in the Wasserstein Space W2

Fréchet means are perhaps the most basic object of statistical interest, and this
chapter studies such means when the underlying space is the Wasserstein space W2.
In general, existence and uniqueness of a Fréchet mean can be subtle, but we will
see that the nature of optimal transport allows for rather clean statements in the case
of Wasserstein space.

3.1 Empirical Fréchet Means in W2

3.1.1 The Fréchet Functional

As foretold in the preceding paragraph, the definition of a Fréchet mean requires the
definition of an appropriate sum-of-squares functional, the Fréchet functional:

Definition 3.1.1 (Empirical Fréchet Functional and Mean) The Fréchet functi-
onal associated with measures μ1, . . . ,μN ∈ W2(X ) is

F : W2(X )→ R F(γ) =
1

2N

N

∑
i=1

W 2
2 (γ ,μ i), γ ∈ W2(X ). (3.1)

A Fréchet mean of (μ1, . . . ,μN) is a minimiser of F in W2(X ) (if it exists).

In analysis, a Fréchet mean is often called a barycentre. We shall use the terminol-
ogy of “Fréchet mean” that is arguably more popular in statistics.2

The factor 1/(2N) is irrelevant for the definition of Fréchet mean. It is introduced
in order to have simpler expressions for the derivatives (Theorems 3.1.14 and 3.2.13)
and to be compatible with a population version EW 2

2 (γ ,Λ)/2 (see (3.3)).
The first reference that deals with empirical Fréchet means in W2(R

d) is the sem-
inal paper of Agueh and Carlier [2]. They treat the more general weighted Fréchet
functional

F(γ) =
1
2

N

∑
i=1

wiW
2
2 (γ ,μ i), 0 ≤ wi,

N

∑
i=1

wi = 1,

but, for simplicity, we shall focus on the case of equal weights. (If all the wi’s are
rational, then the weighted functional can be encompassed in (3.1) by taking some
of the μ i’s to be the same. The case of irrational wi’s is then treated with continuity
arguments. Moreover, (3.3) encapsulates (3.1) as well as the weighted version when
Λ can take finitely many values.)

2 Interestingly, Fréchet himself [56] considered the Wasserstein metric between probability mea-
sures on R, and some refer to this as the Fréchet distance (e.g., Dowson and Landau [44]), which
is another reason to use this terminology.
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3.1.2 Multimarginal Formulation, Existence, and Continuity

In [60], Gangbo and Świȩch consider the following multimarginal Monge–
Kantorovich problem. Let μ1, . . . ,μN be N measures in W2(X ) and let Π(μ1, . . . ,
μN) be the set of probability measures in X N having {μ i}N

i=1 as marginals. The
problem is to minimise

G(π) =
1

2N2

∫
X N

∑
i< j

‖xi − x j‖2 dπ(x1, . . . ,xN), over π ∈ Π(μ1, . . . ,μN).

The factor 1/(2N2) is of course irrelevant for the minimisation and its purpose will
be clarified shortly. If N = 2, we obtain the Kantorovich problem with quadratic
cost. The probabilistic interpretation (as in Sect. 1.2) is that one is given random
variables X1, . . . ,XN with marginal probability laws μ1, . . . ,μN and seeks to con-

struct a random vector Y = (Y1, . . . ,YN) on X N such that Xi
d
= Yi and

1
2N2E∑

i< j
‖Yi −Yj‖2 ≤ 1

2N2E∑
i< j

‖Zi −Z j‖2.

for any other random vector Z = (Z1, . . . ,ZN) such that Xi
d
= Zi. Intuitively, we seek

a random vector with prescribed marginals but maximally correlated entries.
We refer to elements of Π(μ1, . . . ,μN) (equivalently, joint laws of X1, . . . ,XN) as

multicouplings (of μ1, . . . ,μN). Just like in the Kantorovich problem, there always
exists an optimal multicoupling π .

Let us now show how the multimarginal problem is equivalent to the problem
of finding the Fréchet mean of μ1, . . . ,μN . The first thing to observe is that the
objective function can be written as

G(π) =
∫

X N

1
2N

N

∑
i=1

‖xi −M(x)‖2 dπ(x), M(x) = M(x1, . . . ,xn) =
1
N

N

∑
i=1

xi.

The next result shows that the Fréchet mean and the multicoupling problems are
essentially the same.

Proposition 3.1.2 (Fréchet Means and Multicouplings) Let μ1, . . . ,μN∈W (X ).
Then μ is a Fréchet mean of (μ1, . . . ,μN) if and only if there exists an optimal
multicoupling π ∈ W (X N) of (μ1, . . . ,μN) such that μ = M#π , and furthermore
F(μ) = G(π).

Proof. Let π be an arbitrary multicoupling of (μ1, . . . ,μN) and set μ = M#π . Then
(x �→ xi,M)#π is a coupling of μ i and μ , and therefore

∫
X N

‖xi −M(x)‖2 dπ(x)≥W 2(μ ,μi).

Summation over i gives F(μ)≤ G(π) and so infF ≤ infG.
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For the other inequality, let μ ∈ W (X ) be arbitrary. For each i, let π i be an
optimal coupling between μ and μ i. Invoking the gluing lemma (Ambrosio and
Gigli [10, Lemma 2.1]), we may glue all π i’s using their common marginal μ . This
procedure constructs a measure η on X N+1 with marginals μ1, . . . ,μN ,μ and its
relevant projection π is then a multicoupling of μ1, . . . ,μN .

Since X is a Hilbert space, the minimiser of y �→ ∑‖xi − y‖2 is y = M(x). Thus

F(μ)=
1

2N

∫
X N+1

N

∑
i=1

‖xi−y‖2 dη(x,y)≥ 1
2N

∫
X N+1

N

∑
i=1

‖xi−M(x)‖2 dη(x,y)=G(π).

In particular, infF ≥ infG and combining this with the established converse inequal-
ity we see that infF = infG. Observe also that the last displayed inequality holds as
equality if and only if y=M(x) η-almost surely, in which case μ =M#π . Therefore,
if μ does not equal M#π , then F(μ)> G(π)≥ F(M#π), and μ cannot be optimal.
Finally, if π is optimal, then

F(M#π)≤ G(π) = infG = infF

establishing optimality of μ = M#π and completing the proof.

Since optimal couplings exist, we deduce that so do Fréchet means.

Corollary 3.1.3 (Fréchet Means and Moments) Any finite collection of measures
μ1, . . . ,μN ∈ W2(X ) admits a Fréchet mean μ , for all p ≥ 1

∫
X
‖x‖p dμ(x)≤ 1

N

N

∑
i=1

∫
X
‖x‖p dμ i(x),

and when p > 1 equality holds if and only if μ1 = · · ·= μN.

Proof. Let π be a multicoupling of μ1, . . . ,μN such that μ = MN#π (Proposi-
tion 3.1.2). Then

∫
X
‖x‖p dμ(x) =

∫
X N

∥∥∥∥∥
1
N

N

∑
i=1

xi

∥∥∥∥∥
p

dπ(x)≤ 1
N

N

∑
i=1

∫
X N

‖xi‖p dπ(x)

=
1
N

N

∑
i=1

∫
X
‖x‖p dμ i(x).

The statement about equality follows from strict convexity of x �→ ‖x‖p if p > 1.

A further corollary of Proposition 3.1.2 is a bound on the support:

Corollary 3.1.4 The support of any Fréchet mean is included in the set

suppμ1 + · · ·+ suppμN

N
=

{
x1 + · · ·+ xN

N
: xi ∈ suppμ i

}
⊆ conv

(
N⋃

i=1

suppμ i

)
.
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In particular, if all the μ i’s are supported on a common convex set K, then so is any
of their Fréchet means.

The multimarginal formulation also yields a continuity property for the empirical
Fréchet mean. Conditions for uniqueness will be given in the next subsection.

Theorem 3.1.5 (Continuity of Fréchet Means) Suppose that W2(μ i
k,μ

i) → 0 for
i = 1, . . . ,N and let μk denote any Fréchet mean of (μ1

k , . . . ,μ
N
k ). Then (μk) stays in

a compact set of W2(X ), and any limit point is a Fréchet mean of (μ1, . . . ,μN).

In particular, if μ1, . . . ,μN have a unique Fréchet mean μ , then μk → μ in W2(X ).

Proof. We sketch the steps of the proof here, with the full details given on page 63
of the supplement.

Step 1: tightness of (μk). This is true because the collection of multicouplings is
tight, and the mean function M is continuous.

Step 2: weak limits are limits in W2(X ). This holds because the mean function
has linear growth.

Step 3: the limit is a Fréchet mean of (μ1, . . . ,μN). From Corollary 3.1.3, it
follows that μk must be sought on some fixed bounded set in W2(X ). On such
sets, the Fréchet functionals are uniformly Lipschitz, so their minimisers converge
as well.

3.1.3 Uniqueness and Regularity

A general situation in which Fréchet means are unique is when the Fréchet func-
tional is strictly convex. In the Wasserstein space, this requires some regularity,
but weak convexity holds in general. Absolutely continuous measures on infinite-
dimensional X are defined in Definition 1.6.4.

Proposition 3.1.6 (Convexity of the Fréchet Functional) Let Λ ,γi ∈W2(X ) and
t ∈ [0,1]. Then

W 2
2 (tγ1 +(1− t)γ2,Λ)≤ tW 2

2 (γ1,Λ)+(1− t)W 2
2 (γ2,Λ). (3.2)

When Λ is absolutely continuous, the inequality is strict unless t ∈ {0,1} or γ1 = γ2.

Remark 3.1.7 The Wasserstein distance is not convex along geodesics. That is, if
we replace the linear interpolant tγ1 +(1− t)γ2 by McCann’s interpolant, then t �→
W 2

2 (γt ,Λ) is not necessarily convex (Ambrosio et al. [12, Example 9.1.5]).

Proof. Let πi ∈ Π(γi,Λ) be optimal and notice that the linear interpolant tπ1+(1−
t)π2 ∈ Π(tγ1 +(1− t)γ2,Λ), so that

W 2
2 (tγ1 +(1− t)γ2,Λ)≤

∫
X 2

‖x− y‖2 d[tπ1 +(1− t)π2](x,y),
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which is (3.2). When Λ is absolutely continuous and t ∈ (0,1), equality in (3.2)

holds if and only if πt = tπ1 +(1− t)π2 = (ttγ1+(1−t)γ2
Λ × i)#Λ . But πt is supported

on the graphs of two functions: tγ1
Λ and tγ2

Λ . Consequently, equality can hold only if
these two maps equal Λ -almost surely, or, equivalently, if γ1 = γ2.

As a corollary, we deduce that the Fréchet mean is unique if one of the measures
μ i is absolutely continuous, and this extends to the population version (see Proposi-
tion 3.2.7).

We conclude this subsection by stating an important regularity property in the
Euclidean case. See Agueh and Carlier [2, Proposition 5.1] for a proof.

Proposition 3.1.8 (L∞-Regularity of Fréchet Means) Let μ1, . . . ,μN ∈ W2(R
d)

and suppose that μ1 is absolutely continuous with density bounded by M. Then
the Fréchet mean of {μ i} is absolutely continuous with density bounded by NdM
and is consequently a Karcher mean.

In Theorem 5.5.2, we extend Proposition 3.1.8 to the population level.

3.1.4 The One-Dimensional and the Compatible Case

When X = R, there is a simple expression for the Fréchet mean because W2(R)
can be imbedded in a Hilbert space. Indeed, recall that

W2(μ ,ν) = ‖F−1
μ −F−1

ν ‖L2(0,1)

(see Sect. 2.3.2 or 1.5). In view of that, W2(R) can be seen as the convex closed
subset of L2(0,1) formed by equivalence classes of left-continuous nondecreasing
functions on (0,1): any quantile function is left-continuous and nondecreasing, and
any such function G can be seen to be the inverse function of the distribution func-
tion, the right-continuous inverse of G

F(x) = inf{t ∈ (0,1) : G(t)> x}= sup{t ∈ (0,1) : G(t)≤ x}.

(See, for example, Bobkov and Ledoux [25, Appendix A].) Therefore, the Fréchet
mean of μ1, . . . ,μN ∈ W2(R) is the measure μ having quantile function

F−1
μ =

1
N

N

∑
i=1

Fμ i .

The Fréchet mean is thus unique. This is no longer true in higher dimension, unless
some regularity is imposed on the measures (Proposition 3.2.7).

Boissard et al. [28] noticed that compatibility of μ1, . . . ,μN according to Def-
inition 2.3.1 allows for a simple solution to the Fréchet mean problem, as in the
one-dimensional case. Recall from Proposition 3.1.2 that this is equivalent to the
multimarginal problem. Returning to the original form of G, we obtain an easy lower
bound for any π ∈ Π(μ1, . . . ,μN):
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G(π) =
1

2N2

∫
X N

∑
i< j

‖xi − x j‖2 dπ(x1, . . . ,xN)≥
1

2N2 ∑
i< j

W 2
2 (μ i,μ j),

because the (i, j)-th marginal of π is a coupling of μ i and μ j. Thus, if equality above
holds for π , then π is optimal and M#π is the Fréchet mean by Proposition 3.1.2.

This is indeed the case for π = (i, tμ2

μ1 , . . . , t
μN

μ1 )#μ1 because the compatibility gives:

∫
X N

‖xi − x j‖2 dπ(x1, . . . ,xN) =

∫
X

∥∥∥tμ i

μ1 − tμ j

μ1

∥∥∥2
dμ1

=
∫

X

∥∥∥tμ i

μ1 ◦ tμ i

μ j − i
∥∥∥ dμ j =W 2

2 (μ i,μ j).

We may thus conclude, in a slightly more general form (γ was μ1 above):

Theorem 3.1.9 (Fréchet Mean of Compatible Measures) Suppose that {γ ,μ1,
. . . ,μN} are compatible measures. Then

[
1
N

N

∑
i=1

tμ i

γ

]
#γ

is the Fréchet mean of (μ1, . . . ,μN).

A population version is given in Theorem 5.5.3.

3.1.5 The Agueh–Carlier Characterisation

Agueh and Carlier [2] provide a useful sufficient condition for γ to be the Fréchet
mean. When X = R

d , this condition is also necessary [2, Proposition 3.8], hence
characterising Fréchet means in R

d . It will allow us to easily deduce some equiv-
ariance results for Fréchet means with respect to independence (Lemma 3.1.11) and
rotations (3.1.12). More importantly, it provides a sufficient condition under which
a local minimum of F is a global minimum (Theorem 3.1.15) and the same idea
can be used to relate the population Fréchet mean to the expected value of the opti-
mal maps (Theorem 4.2.4). Recall that φ ∗ denotes the Legendre transform of φ , as
defined on page 14.

Proposition 3.1.10 (Fréchet Means and Potentials) Let μ1, . . . ,μN ∈ W2(X ) be
absolutely continuous, let γ ∈W2(X ) and denote by φ ∗

i the convex potentials of tγ
μ i .

If φi = φ ∗∗
i are such that

1
N

N

∑
i=1

φi(x)≤
1
2
‖x‖2, ∀x ∈ X , with equality γ-almost surely,

then γ is the unique Fréchet mean of μ1, . . . ,μN.
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Proof. Uniqueness follows from Proposition 3.2.7. If θ ∈ W2(X ) is any measure,
then the Kantorovich duality yields

W 2
2 (γ ,μ i) =

∫
X

(
1
2
‖x‖2 −φi(x)

)
dγ(x)+

∫
X

(
1
2
‖y‖2 −φ ∗

i (y)

)
dμ i(y);

W 2
2 (θ ,μ i)≥

∫
X

(
1
2
‖x‖2 −φi(x)

)
dθ(x)+

∫
X

(
1
2
‖y‖2 −φ ∗

i (y)

)
dμ i(y).

Summation over i gives the result.

A population version of this result, based on similar calculations, is given in Theo-
rem 4.2.4.

The next two results are formulated in R
d because then the converse of Propo-

sition 3.1.10 is proven to be true. If one could extend [2, Proposition 3.8] to any
separable Hilbert X , then the two lemmata below will hold with R

d replaced by
X . The simple proofs are given on page 66 of the supplement.

Lemma 3.1.11 (Independent Fréchet Means) Let μ1, . . . ,μN and ν1, . . . ,νN be
absolutely continuous measures in W2(R

d1) and W2(R
d2) with Fréchet means μ

and ν , respectively. Then the independent coupling μ ⊗ ν is the Fréchet mean of
μ1 ⊗ν1, . . . ,μN ⊗νN.

By induction (or a straightforward modification of the proof), one can show that the
Fréchet mean of (μ i ⊗ν i ⊗ρ i) is μ ⊗ν ⊗ρ , and so on.

Lemma 3.1.12 (Rotated Fréchet Means) If μ is the Fréchet mean of the abso-
lutely continuous measures μ1, . . . ,μN and U is orthogonal, then U#μ is the Fréchet
mean of U#μ1, . . . ,U#μN.

3.1.6 Differentiability of the Fréchet Functional and Karcher
Means

Since we seek to minimise the Fréchet functional F , it would be helpful if F were
differentiable, because we could then find at least local minima by solving the equa-
tion F ′ = 0. This observation of Karcher [78] leads to the notion of Karcher mean.

Definition 3.1.13 (Karcher Mean) Let F be a Fréchet functional associated with
some random measure Λ in W2(X ). Then γ is a Karcher mean for Λ if F is differ-
entiable at γ and F ′(γ) = 0.

Of course, if γ is a Fréchet mean for the random measure Λ and F is differentiable at
γ , then F ′(γ) must vanish. In this subsection, we build upon the work of Ambrosio
et al. [12] and determine the derivative of the Fréchet functional. This will not only
allow for a simple characterisation of Karcher means in terms of the optimal maps tΛ

γ
(Proposition 3.2.14), but will also be the cornerstone of the construction of a steepest
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descent algorithm for empirical calculation of Fréchet means. The differentiability
holds at the population level too (Theorem 3.2.13).

It turns out that the tangent bundle structure described in Sect. 2.3 gives rise to a
differentiable structure in the Wasserstein space. Fix μ0 ∈ W2(X ) and consider the
function

F0 : W2(X )→ R, F0(γ) =
1
2

W 2
2 (γ ,μ0).

Ambrosio et al. [12, Corollary 10.2.7] show that when γ is absolutely continuous,

lim
W2(ν ,γ)→0

F0(ν)−F0(γ)+
∫

X

〈
tμ0

γ (x)− x, tν
γ (x)− x

〉
dγ(x)

W2(ν ,γ)
= 0.

Parts of the proof of this result (the limit superior above is ≤ 0; the limit inferior
is bounded below) are reproduced in Proposition 3.2.12. The integral above can be
seen as the inner product 〈

tμ0

γ − i, tν
γ − i

〉

in the space L2(γ) that includes as a (closed) subspace the tangent space Tanγ . In
terms of this inner product and the log map, we can write

F0(ν)−F0(γ) =−
〈

logγ(μ
0), logγ(ν)

〉
+o(W2(ν ,γ)), ν → γ in W2,

so that F0 is Fréchet-differentiable3 at γ with derivative

F ′
0(γ) =− logγ(μ

0) =−
(

tμ0

γ − i
)
∈ Tanγ .

By linearity, one immediately obtains:

Theorem 3.1.14 (Gradient of the Fréchet Functional) Fix a collection of mea-
sures μ1, . . . ,μN ∈W2(X ). When γ ∈W2(X ) is absolutely continuous, the Fréchet
functional

F(γ) =
1

2N

N

∑
i=1

W 2
2 (γ ,μ i), γ ∈ W2(X )

is Fréchet-differentiable and

F ′(γ) =− 1
N

N

∑
i=1

logγ(μ
i) =− 1

N

N

∑
i=1

(
tμi
γ − i

)
.

It follows from this that an absolutely continuous γ ∈ W2(X ) is a Karcher mean if
and only if the average of the optimal maps is the identity. If in addition one μ i is
absolutely continuous with bounded density, then the Fréchet mean μ is absolutely

3 The notion of Fréchet derivative is also named after Maurice Fréchet, but is not directly related
to Fréchet means.
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continuous by Proposition 3.1.8, so it is a Karcher mean. The result extends to the
population version; see Proposition 3.2.14.

It may happen that a collection μ1, . . . ,μN of absolutely continuous measures
have a Karcher mean that is not a Fréchet mean; see Álvarez-Esteban et al. [9, Ex-
ample 3.1] for an example in R

2. But a Karcher mean γ is “almost” a Fréchet mean

in the following sense. By Proposition 3.2.14, N−1 ∑ tμ i

γ (x) = x for γ-almost all x.
If, on the other hand, the equality holds for all x ∈X , then γ is the Fréchet mean by
taking integrals and applying Proposition 3.1.10. One can hope that under regular-
ity conditions, the γ-almost sure equality can be upgraded to equality everywhere.
Indeed, this is the case:

Theorem 3.1.15 (Optimality Criterion for Karcher Means) Let U ⊆ R
d be an

open convex set and let μ1, . . . ,μN ∈ W2(R
d) be probability measures on U with

bounded strictly positive densities g1, . . . ,gN. Suppose that an absolutely continu-
ous Karcher mean γ is supported on U with bounded strictly positive density f there.
Then γ is the Fréchet mean of μ1, . . . ,μN if one of the following holds:

1. U = R
d and the densities f ,g1, . . . ,gN are of class C0,α for some α > 0;

2. U is bounded and the densities f ,g1, . . . ,gN are bounded below on U.

Proof. The result exploits Caffarelli’s regularity theory for Monge–Ampère equa-
tions in the form of Theorem 1.6.7. In the first case, there exist C1 (in fact, C2,α )

convex potentials ϕi on R
d with tμ i

γ =∇ϕi, so that tμ i

γ (x) is a singleton for all x∈R
d .

The set {x ∈ R
d : ∑ tμ i

γ (x)/N �= x} is γ-negligible (and hence Lebesgue negligible)
and open by continuity. It is therefore empty, so F ′(γ) = 0 everywhere, and γ is the
Fréchet mean (see the discussion before the theorem).

In the second case, by the same argument we have ∑ tμ i

γ (x)/N = x for all x ∈U .
Since U is convex, there must exist a constant C such that ∑ϕi(x) =C+N‖x‖2/2 for
all x ∈ U , and we may assume without loss of generality that C = 0. If one repeats
the proof of Proposition 3.1.10, then F(γ) ≤ F(θ) for all θ ∈ P(U). By continuity
considerations, the inequality holds for all θ ∈ P(U) (Theorem 2.2.7) and since U
is closed and convex, γ is the Fréchet mean by Corollary 3.1.3.

3.2 Population Fréchet Means

In this section, we extend the notion of empirical Fréchet mean to the population
level, where Λ is a random element in W2(X ) (a measurable mapping from a prob-
ability space to W2(X )). This requires a different strategy, since it is not clear how
to define the analogue of the multicouplings at that level of abstraction. However, it
is important to point out that when there is more structure in Λ , multicouplings can
be defined as laws of stochastic processes; see Pass [102] for a detailed account of
the problem in this case.

In analogy with (3.1), we define:
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Definition 3.2.1 (Population Fréchet Mean) Let Λ be a random measure in
W2(X ). The Fréchet mean of Λ is the minimiser (if it exists and is unique) of the
Fréchet functional

F(γ) =
1
2
EW 2

2 (γ ,Λ), γ ∈ W2(X ). (3.3)

Since W2 is continuous and nonnegative, the expectation is well-defined.

3.2.1 Existence, Uniqueness, and Continuity

Existence and uniqueness of Fréchet means on a general metric space M are rather
delicate questions. Usually, existence proofs are easier: for example, since the
Fréchet functional F is continuous on M (as we show below), one often invokes
local compactness of M in order to establish existence of a minimiser. Unfortu-
nately, a different strategy is needed when M = W2(X ), because the Wasserstein
space is not locally compact (Proposition 2.2.9).

The first thing to notice is that F is indeed continuous (this is clear for the em-
pirical version). This is a consequence of the triangle inequality and holds when
W2(X ) is replaced by any metric space.

Lemma 3.2.2 (Finiteness of the Fréchet Functional) If F is not identically infi-
nite, then it is finite and locally Lipschitz everywhere on W2(X ).

Proof. Assume that F is finite at γ . If θ is any other measure in W2(X ), write

2F(γ)−2F(θ) = E[W2(γ ,Λ)−W2(θ ,Λ)][W2(γ ,Λ)+W2(θ ,Λ)].

Since x ≤ 1+ x2 for all x, the triangle inequality in W2(X ) yields

2|F(γ)−F(θ)| ≤W2(γ ,θ)[2EW2(γ ,Λ)+W2(θ ,γ)]

≤W2(γ ,θ)[2EW 2
2 (γ ,Λ)+2+W2(θ ,γ)].

Since F(γ)< ∞, this shows that F is finite everywhere and the right-hand side van-
ishes as θ → γ in W2(X ). Now that we know that F is continuous, the same upper
bound shows that it is in fact locally Lipschitz.

Example: let (an) be a sequence of positive numbers that sum up to one. Let
xn = 1/an and suppose that Λ equals δ{xn} ∈ W2(R) with probability an. Then

EW 2
2 (Λ ,δ0) =

∞

∑
n=1

anx2
n =

∞

∑
n=1

1/an = ∞,

and by Lemma 3.2.2 F is identically infinite. Henceforth, we say that F is finite
when the condition in Lemma 3.2.2 holds.
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Using the lower semicontinuity (2.5), one can prove existence on R
d rather easily.

(The empirical means exist even in infinite dimensions by Corollary 3.1.3.)

Proposition 3.2.3 (Existence of Fréchet Means) The Fréchet functional associ-
ated with any random measure Λ in W2(R

d) admits a minimiser.

Proof. The assertion is clear if F is identically infinite. Otherwise, let (γn) be a
minimising sequence. We wish to show that the sequence is tight. Define L =
supn F(γn)< ∞ and observe that since x ≤ 1+ x2 for all x ∈ R,

EW2(γn,Λ)≤ 1+EW 2
2 (γn,Λ)≤ 2L+1, n = 1,2, . . . .

By the triangle inequality

L′ = EW2(δ0,Λ)≤W2(δ0,γ1)+EW2(γ1,Λ)≤W2(δ0,γ1)+2L+1

so that for all n

(∫
Rd
‖x‖2 dγn(x)

)1/2

=W2(γn,δ0)≤ EW2(γn,Λ)+EW2(Λ ,δ0)≤ 2L+1+L′ < ∞.

Since closed and bounded sets in R
d are compact, it follows that (γn) is a tight

sequence. We may assume that γn → γ weakly, then use (2.5) and Fatou’s lemma to
obtain

2F(γ) = EW 2
2 (γ ,Λ)≤ E liminf

n→∞
W 2

2 (γn,Λ)≤ liminf
n→∞

EW 2
2 (γn,Λ) = 2infF.

Thus, γ is a minimiser of F , and existence is established.

When X is an infinite-dimensional Hilbert space, existence still holds under a com-
pactness assumption. We first prove a result about the support of the Fréchet mean.
At the empirical level, one can say more about the support (see Corollary 3.1.4).

Proposition 3.2.4 (Support of Fréchet Mean) Let Λ be a random measure in
W2(X ) and let K ⊆ X be a convex closed set such that P[Λ(K) = 1] = 1. If γ
minimises F, then γ(K) = 1.

Remark 3.2.5 For any closed K ⊆ X and any α ∈ [0,1], the set {Λ ∈ Wp(X ) :
Λ(K)≥ α} is closed in Wp(X ) because {Λ ∈ P(X ) : Λ(K)≥ α} is weakly closed
by the portmanteau lemma (Lemma 1.7.1).

The proof amounts to a simple projection argument; see page 70 in the supplement.

Corollary 3.2.6 If there exists a compact convex K satisfying the hypothesis of
Proposition 3.2.4, then the Fréchet functional admits a minimiser supported on K.

Proof. Proposition 3.2.4 allows us to restrict the domain of F to W2(K), the collec-
tion of probability measures supported on K. Since this set is compact in W2(X )
(Corollary 2.2.5), the result follows from continuity of F .
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From the convexity (3.2), one obtains a simple criterion for uniqueness. See Def-
inition 1.6.4 for absolute continuity in infinite dimensions.

Proposition 3.2.7 (Uniqueness of Fréchet Means) Let Λ be a random measure in
W2(X ) with finite Fréchet functional. If Λ is absolutely continuous with positive
(inner) probability, then the Fréchet mean of Λ is unique (if it exists).

Remark 3.2.8 It is not obvious that the set of absolutely continuous measures is
measurable in W2(X ). We assume that there exists a Borel set A ⊂ W2(X ) such
that P(Λ ∈ A)> 0 and all measures in A are absolutely continuous.

Proof. By taking expectations in (3.2), one sees that F is convex on W2(X ) with
respect to linear interpolants. From Proposition 3.1.6, we conclude that

Λ absolutely continuous =⇒ γ �→ 1
2

W 2
2 (γ ,Λ) strictly convex.

As F was already shown to be weakly convex in any case, it follows that

P(Λ absolutely continuous)> 0 =⇒ F strictly convex.

Since strictly convex functionals have at most one minimiser, this completes the
proof.

We state without proof an important consistency result (Le Gouic and Loubes
[87, Theorem 3]). Since W2(X ) is a complete and separable metric space, we can
define the “second degree” Wasserstein space W2(W2(X )). The law of a random
measure Λ is in W2(W2(X )) if and only if the corresponding Fréchet functional is
finite.

Theorem 3.2.9 (Consistency of Fréchet Means) Let Λn,Λ be random measures
in W2(R

d) with finite Fréchet functionals and laws Pn,P ∈ W2(W2(R
d)). If Pn → P

in W2(W2(R
d)), then any sequence λn of Fréchet means of Λn has a W2-limit point

λ , which is a Fréchet mean of Λ .

See the Bibliographical Notes for a more general formulation.

Corollary 3.2.10 (Wasserstein Law of Large Numbers) Let Λ be a random mea-
sure in W2(R

d) with finite Fréchet functional and let Λ1, . . . be a sample from Λ .
Assume λ is the unique Fréchet mean of Λ (see Proposition 3.2.7). Then almost
surely, the sequence of empirical Fréchet means of Λ1, . . . ,Λn converges to λ .

Proof. Let P be the law of Λ and let Pn be its empirical counterpart (a random
element in W2(W2(R

d)). Like in the proof of Proposition 2.2.6 (with X replaced by
the complete separable metric space W2(R

d)), almost surely Pn →P in W2(W2(R
d))

and Theorem 3.2.9 applies.
Under a compactness assumption, one can give a direct proof for the law of large

numbers as in Theorem 3.1.5. This is done on page 71 in the supplement.
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3.2.2 The One-Dimensional Case

As a generalisation of the empirical version, we have:

Theorem 3.2.11 (Fréchet Means in W2(R)) Let Λ be a random measure in W2(R)
with finite Fréchet functional. Then the Fréchet mean of Λ is the unique measure λ
with quantile function F−1

λ (t) = EF−1
Λ (t), t ∈ (0,1).

Proof. Since L2(0,1) is a Hilbert space, the random element F−1
Λ ∈ L2(0,1) has a

unique Fréchet mean g ∈ L2(0,1), defined by the relations 〈g, f 〉 = E
〈
F−1

Λ , f
〉

for
all f ∈ L2(0,1). On page 72 of the supplement, we show that g can be identified
with F−1

λ .

Interestingly, no regularity is needed in order for the Fréchet mean to be unique.
This is not the case for higher dimensions, see Proposition 3.2.7. If there is some
regularity, then one can state Theorem 3.2.11 in terms of optimal maps, because F−1

Λ
is the optimal map from Leb|[0,1] to Λ . If γ ∈ W2(R) is any absolutely continuous
(or even just continuous) measure, then Theorem 3.2.11 can be stated as follows:
the Fréchet mean of Λ is the measure [EtΛ

γ ]#γ . A generalisation of this result to
compatible measures (Definition 2.3.1) can be carried out in the same way, since
compatible measures are imbedded in a Hilbert space, using the Bochner integrals
for the definition of the expected optimal maps (see Sect. 2.4).

3.2.3 Differentiability of the Population Fréchet Functional

We now use the Fubini result (Proposition 2.4.9) in order to extend the differentiabil-
ity of the Fréchet functional to the population version. This will follow immediately
if we can interchange the expectation and the derivative in the form

F ′(γ) =
1
2
(EW 2

2 )
′(γ ,Λ) = E

(
1
2

W 2
2

)′
(γ ,Λ) =−E(tΛ

γ − i).

In order to do this, we will use dominated convergence in conjunction with uniform
bounds on the slopes

u(θ ,Λ)=
0.5W 2

2 (θ ,Λ)−0.5W 2
2 (θ0,Λ)+

∫
X 〈tΛ

θ0
−i, tθ

θ0
−i〉dθ0

W2(θ ,θ0)
, u(θ0,Λ) = 0.

(3.4)

Proposition 3.2.12 (Slope Bounds) Let θ0, Λ , and θ be probability measures with
θ0 absolutely continuous, and set δ =W2(θ ,θ0). Then

1
2

δ −W2(θ0,Λ)−
√

2W 2
2 (θ0,δ0)+2W 2

2 (Λ ,δ0)≤ u(θ ,Λ)≤ 1
2

δ ,
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where u is defined by (3.4). If the measures are compatible in the sense of Defini-
tion 2.3.1, then u(θ ,Λ) = δ/2.

The proof is a slight variation of Ambrosio et al. [12, Theorem 10.2.2 and Proposi-
tion 10.2.6], and the details are given on page 72 of the supplement.

Theorem 3.2.13 (Population Fréchet Gradient) Let Λ be a random measure with
finite Fréchet functional F. Then F is Fréchet-differentiable at any absolutely con-
tinuous θ0 in the Wasserstein space, and F ′(θ0)=EtΛ

θ0
− i∈L2(θ0). More precisely,

F(θ)−F(θ0)+
∫
X 〈EtΛ

θ0
− i, tθ

θ0
− i〉dθ0

W2(θ ,θ0)
→ 0, θ → θ0 in W2.

Thus, the Fréchet derivative of F can be identified with the map −(EtΛ
θ0
− i) in the

tangent space at θ0, a subspace of L2(θ0).

Proof. Introduce the slopes u(θ ,Λ) defined by (3.4). Then for all Λ ,u(θ ,Λ) → 0
as W2(θ ,θ0)→ 0, by the differentiability properties established above. Let us show
that Eu(θ ,Λ)→ 0 as well. By Proposition 3.2.12, the expectation of u is bounded
above by a constant that does not depend on Λ , and below by the negative of

EW2(θ0,Λ)+E

√
2W 2

2 (θ0,δ0)+2W 2
2 (Λ ,δ0)

≤
√

2W2(θ0,δ0)+EW2(θ0,Λ)+
√

2EW2(Λ ,δ0).

Both expectations are finite by the hypothesis on Λ because the Fréchet functional
is finite. The dominated convergence theorem yields

Eu(θ ,Λ) =
F(θ)−F(θ0)+E

∫
X 〈tΛ

θ0
− i, tθ

θ0
− i〉dθ0

W2(θ ,θ0)
→ 0, W2(θ0,θ)→ 0.

The measurability of the integral and the result then follow from Fubini’s theorem
(see Proposition 2.4.9).

Proposition 3.2.14 Let Λ be a random measure in W2(X ) with finite Fréchet func-
tional F, and let γ be absolutely continuous in W2(X ). Then γ is a Karcher mean
of Λ if and only if EtΛ

γ − i = 0 in L2(γ). Furthermore, if γ is a Fréchet mean of Λ ,
then it is also a Karcher mean.

The characterisation of Karcher means follows immediately from Theorem 3.2.13.
The other statement is that the derivative vanishes at the minimum, which is fairly
obvious intuitively; see page 73 in the supplement.
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Chapter 4
Phase Variation and Fréchet Means

Why is it relevant to construct the Fréchet mean of a collection of measures with
respect to the Wasserstein metric? A simple answer is that this kind of average will
often express a more natural notion of “typical” realisation of a random probabil-
ity distribution than an arithmetic average.1 Much more can be said, however, in
that the Wasserstein–Fréchet mean and the closely related notion of an optimal mul-
ticoupling arise canonically as the appropriate framework for the formulation and
solution to the problem of separation of amplitude and phase variation of a point
process. It would almost seem that Wasserstein–Fréchet means were “made” for
precisely this problem.

When analysing the (co)variation of a real-valued stochastic process {Y (x) : x ∈
K} over a convex compact domain K, it can be broadly said that one may distinguish
two layers of variation:

• Amplitude variation. This is the “classical” variation that one would also en-
counter in multivariate analysis, and refers to the stochastic fluctuations around a
mean level, usually encoded in the covariance kernel, at least up to second order.

In short, this is variation “in the y-axis” (ordinate).

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/
978-3-030-38438-8 4) contains supplementary material.

1 For instance, the arithmetic average of two scalar Gaussians N(μ1,1) and N(μ2,1) will be their
mixture with equal weights, but their Fréchet–Wasserstein average will be the Gaussian N( 1

2 μ1 +
1
2 μ2,1) (see Lemma 4.2.1), which is arguably more representative from an intuitive point of view.
In much the same way, the Fréchet–Wasserstein average of probability measures representing some
type of object (e.g., normalised greyscale images of faces) will also be an object of the same type.
This sort of phenomenon is well-known in manifold statistics, more generally, and is arguably one
of the key motivations to account for the non-linear geometry of the sample space, rather than
imbed it into a larger linear space and use the addition operation.
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• Phase variation. This is a second layer of non-linear variation peculiar to contin-
uous domain stochastic processes, and is rarely—if ever—encountered in multi-
variate analysis. It arises as the result of random changes (or deformations) in the
time scale (or the spatial domain) of definition of the process. It can be concep-
tualised as a composition of the stochastic process with a random transformation
(warp map) acting on its domain.

This is variation “in the x-axis” (abscissa).

The terminology on amplitude/phase variation is adapted from random trigonomet-
ric functions, which may vary in amplitude (oscillations in the range of the function)
or phase (oscillations in the domain of the function). Failing to properly account for
the superposition of these two forms of variation may entirely distort the findings
of a statistical analysis of the random function (see Sect. 4.1.1). Consequently, it is
an important problem to be able to separate the two, thus correctly accounting for
the distinct contribution of each. The problem of separation is also known as that of
registration (Ramsay and Li [108]), synchronisation (Wang and Gasser [129]), or
multireference alignment (Bandeira et al. [16]), though in some cases these terms
refer to a simpler problem where there is no amplitude variation at all.

Phase variation naturally arises in the study of random phenomena where there
is no absolute notion of time or space, but every realisation of the phenomenon
evolves according to a time scale that is intrinsic to the phenomenon itself, and (un-
fortunately) unobservable. Processes related to physiological measurements, such
as growth curves and neuronal signals, are usual suspects. Growth curves can be
modelled as continuous random functions (functional data), whereas neuronal sig-
nals are better modelled as discrete random measures (point processes). We first
describe amplitude/phase variation in the former2 case, as that is easier to appreci-
ate, before moving on to the latter case, which is the main subject of this chapter.

4.1 Amplitude and Phase Variation

4.1.1 The Functional Case

Let K denote the unit cube [0,1]d ⊂ R
d . A real random function Y = (Y (x) : x ∈ K)

can, broadly speaking, have two types of variation. The first, amplitude varia-
tion, results from Y (x) being a random variable for every x and describes its fluc-
tuations around the mean level m(x) = EY (x), usually encoded by the variance
varY (x). For this reason, it can be referred to as “variation in the y-axis”. More

2 As the functional case will only serve as a motivation, our treatment of this case will mostly
be heuristic and superficial. Rigorous proofs and more precise details can be found in the books
by Ferraty and Vieu [51], Horváth and Kokoszka [70], or Hsing and Eubank [71]. The notion
of amplitude and phase variation is discussed in the books by Ramsay and Silverman [109, 110]
that are of a more applied flavour. One can also consult the review by Wang et al. [127], where
amplitude and phase variation are discussed in Sect. 5.2.
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generally, for any finite set x1, . . . ,xn, the n × n covariance matrix with entries
κ(xi,x j) = cov[Y (xi),Y (x j)] encapsulates (up to second order) the stochastic de-
viations of the random vector (Y (x1), . . . ,Y (xn)) from its mean, in analogy with the
multivariate case. Heuristically, one then views amplitude variation as the collection
κ(x,y) for x,y ∈ K in a sense we discuss next.

One typically views Y as a random element in the separable Hilbert space L2(K),
assumed to have E‖Y‖2 < ∞ and continuous sample paths, so that in particular Y (x)
is a random variable for all x ∈ K. Then the mean function

m(x) = EY (x), x ∈ K

and the covariance kernel

κ(x,y) = cov[Y (x),Y (y)], x,y ∈ K

are well-defined and finite; we shall assume that they are continuous, which is equiv-
alent to Y being mean-square continuous:

E[Y (y)−Y (x)]2 → 0, y → x.

The covariance kernel κ gives rise to the covariance operator R : L2(K)→ L2(K),
defined by

(R f )(y) =
∫

K
κ(x,y) f (x)dx,

a self-adjoint positive semidefinite Hilbert–Schmidt operator on L2(K). The justi-
fication to this terminology is the observation that when m = 0, for all bounded
f ,g ∈ L2(K),

E〈Y, f 〉〈Y,g〉= E

[∫
K2

Y (x) f (x)Y (y)g(y)d(x,y)

]
=
∫

K
g(y)(R f )(y)dy,

and so, without the restriction to m = 0,

cov [〈Y, f 〉 ,〈Y,g〉] =
∫

K
g(y)(R f )(y)dy = 〈g,R f 〉 .

The covariance operator admits an eigendecomposition (rk,φk)
∞
k=1 such that rk ↘ 0,

Rφk = rkφk and (φk) is an orthonormal basis of L2(K). One then has the celebrated
Karhunen–Loève expansion

Y (x) = m(x)+
∞

∑
k=1

〈Y −m,φk〉φk(x) = m(x)+
∞

∑
k=1

ξkφk(x).

A major feature in this expansion is the separation of the functional part from the
stochastic part: the functions φk(x) are deterministic; the random variables ξk are
scalars. This separation actually holds for any orthonormal basis; the role of choos-
ing the eigenbasis of R is making ξk uncorrelated:
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cov(ξk,ξl) = cov [〈Y,φk〉 ,〈Y,φl〉] = 〈φl ,Rφk〉

vanishes when k �= l and equals rk otherwise. For this reason, it is not surprising
that using as φk the eigenfunctions yields the optimal representation of Y . Here,
optimality is with respect to truncations: for any other basis (ψk) and any M,

E

∥∥∥∥∥Y −m−
M

∑
k=1

〈Y −m,ψk〉ψk

∥∥∥∥∥
2

≥ E

∥∥∥∥∥Y −m−
M

∑
k=1

〈Y −m,φk〉φk

∥∥∥∥∥
2

so that (φk) provides the best finite-dimensional approximation to Y . The approxi-
mation error on the right-hand side equals

E

∥∥∥∥∥
∞

∑
k=M+1

ξkφk

∥∥∥∥∥
2

=
∞

∑
k=M+1

rk

and depends on how quickly the eigenvalues of R decay.
One carries out inference for m and κ on the basis of a sample Y1, . . . ,Yn by

m̂(x) =
1
n

n

∑
i=1

Yi(x), x ∈ K

and

κ̂(x,y) =
1
n

n

∑
i=1

Yi(x)Yi(y)− m̂(x)m̂(y),

from which one proceeds to estimate R and its eigendecomposition.
We have seen that amplitude variation in the sense described above is linear and

dealt with using linear operations. There is another, qualitatively different type of
variation, phase variation, that is non-linear and does not have an obvious finite-
dimensional analogue. It arises when in addition to the randomness in the values
Y (x) itself, an extra layer of stochasticity is present in its domain of definition. In
mathematical terms, there is a random invertible warp function (sometimes called
deformation or warping) T : K → K and instead of Y (x), one observes realisations
from

Ỹ (x) = Y (T−1(x)), x ∈ K.

For this reason, phase variation can be viewed as “variation in the x-axis”. When d =
1, the set K is usually interpreted as a time interval, and then the model stipulates that
each individual has its own time scale. Typically, the warp function is assumed to be
a homeomorphism of K independent of Y and often some additional smoothness is
imposed, say T ∈C2. One of the classical examples is growth curves of children, of
which a dataset from the Berkeley growth study (Jones and Bayley [73]) is shown
in Fig. 4.1. The curves are the derivatives of the height of a sample of ten girls
as a function of time, from birth until age 18. One clearly notices the presence
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of the two types of variation in the figure. The initial velocity for all children is
the highest immediately or shortly after birth, and in most cases decreases sharply
during the first 2 years. Then follows a period of acceleration for another year or
so, and so on. Despite presenting qualitatively similar behaviour, the curves differ
substantially not only in the magnitude of the peaks but also in their location. For
instance, one red curve has a local minimum at the age of three, while a green one
has a local maximum at almost that same time point. It is apparent that if one tries
to estimate the mean function by averaging the curves at each time x, the shape
of the resulting estimate would look very different from each of the curves. Thus,
this pointwise averaging (known as the cross-sectional mean) fails to represent the
typical behaviour. This phenomenon is seen more explicitly in the next example.
The terminology of amplitude and phase comes from trigonometric functions, from
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Fig. 4.1: Derivatives of growth curves of ten girls from the Berkeley dataset. The
data and the code for the figure are from the R package fda (Ramsay et al. [111])

which we derive an artificial example that illustrates the difficulties of estimation
in the presence of phase variation. Let A and B be symmetric random variables and
consider the random function

Ỹ (x) = Asin[8π(x+B)]. (4.1)

(Strictly speaking, x �→ x+B is not from [0,1] to itself; for illustration purposes, we
assume in this example that K =R.) The random variable A generates the amplitude
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variation, while B represents the phase variation. In Fig. 4.2, we plot four realisations
and the resulting empirical means for the two extreme scenarios where B = 0 (no
phase variation) or A = 1 (no amplitude variation). In the left panel of the figure,
we see that the sample mean (in thick blue) lies between the observations and has a
similar form, so can be viewed as the curve representing the typical realisation of the
random curve. This is in contrast to the right panel, where the mean is qualitatively
different from all curves in the sample: though periodicity is still present, the peaks
and troughs have been flattened, and the sample mean is much more diffuse than
any of the observations.

0.0 0.2 0.4 0.6 0.8 1.0
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0

Fig. 4.2: Four realisations of (4.1) with means in thick blue. Left: amplitude varia-
tion (B = 0); right: phase variation (A = 1)

The phenomenon illustrated in Fig. 4.2 is hardly surprising, since as mentioned
earlier amplitude variation is linear while phase variation is not, and taking sample
means is a linear operation. Let us see in formulae how this phenomenon occurs.
When A = 1 we have

EỸ (x) = sin(8πx)E[cos(8πB)]+ cos(8πx)E[sin(8πB)].

Since B is symmetric the second term vanishes, and unless B is trivial the expectation
of the cosine is smaller than one in absolute value. Consequently, the expectation of
Ỹ (x) is the original function sin8πx multiplied by a constant of magnitude strictly
less than one, resulting in peaks of smaller magnitude.

In the general case, where Ỹ (x) = Y (T−1(x)) and Y and T are independent, we
have

EỸ (x) = E[m(T−1(x))]

and

cov[Ỹ (x),Ỹ (y)] = E[κ(T−1(x),T−1(y))]+ cov[m(T−1(x),m(T−1(y))].
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From this, several conclusions can be drawn. Let μ̃ = μ(T−1(x)) be the conditional
mean function given T . Then the value of the mean function itself, Eμ̃ , at x0 is
determined not by a single point, say x, but rather by all the values of m at the
possible outcomes of T−1(x). In particular, if x0 was a local maximum for m, then
E[μ̃(x0)] will typically be strictly smaller than m(x0); the phase variation results in
smearing m.

At this point an important remark should be made. Whether or not phase variation
is problematic depends on the specific application. If one is interested indeed in the
mean and covariance functions of Ỹ , then the standard empirical estimators will be
consistent, since Ỹ itself is a random function. But if it is rather m, the mean of Y ,
that is of interest, then the confounding of the amplitude and phase variation will
lead to inconsistency. This can also be seen from the formula

Ỹ (x) = m(T−1(x))+
∞

∑
k=1

ξkφk(T
−1(x)).

The above series is not the Karhunen–Loève expansion of Ỹ ; the simplest way to
notice this is the observation that φk(T−1(x)) includes both the functional compo-
nent φk and the random component T−1(x). The true Karhunen–Loève expansion
of Ỹ will in general be qualitatively very different from that of Y , not only in terms
of the mean function but also in terms of the covariance operator and, consequently,
its eigenfunctions and eigenvalues. As illustrated in the trigonometric example, the
typical situation is that the mean EỸ is more diffuse than m, and the decay of the
eigenvalues r̃k of the covariance operator is slower than that of rk; as a result, one
needs to truncate the sum at high threshold in order to capture a substantial enough
part of the variability. In the toy example (4.1), the Karhunen–Loève expansion has
a single term besides the mean if B = 0, while having two terms if A = 1.

When one is indeed interested in the mean m and the covariance κ , the random
function T pertaining to the phase variation is a nuisance parameter. Given a sample
Ỹi =Yi ◦T−1

i , i = 1, . . . ,n, there is no point in taking pointwise means of Ỹi, because
the curves are misaligned; Ỹ1(x) = Y1(T

−1
1 (x)) should not be compared with Ỹ2(x),

but rather with Y2(T
−1

1 (x)) = Ỹ2(T
−1

1 (T2(x)). To overcome this difficulty, one seeks
estimators T̂i such that

Ŷi(x) = Ỹi(T̂i(x)) = Yi(T
−1

i (T̂i(x)))

is approximately Yi(x). In other words, one tries to align the curves in the sample
to have a common time scale. Such a procedure is called curve registration. Once
registration has been carried out, one proceeds the analysis on Ŷi(x) assuming only
amplitude variation is now present: estimate the mean m by

m̂(x) =
1
n

n

∑
i=1

Ŷi(x)
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and the covariance κ by its analogous counterpart. Put differently, registering the
curves amounts to separating the two types of variation. This step is crucial regard-
less of whether the warp functions are considered as nuisance or an analysis of the
warp functions is of interest in the particular application.

There is an obvious identifiability problem in the model Ỹ = Y ◦T−1. If S is any
(deterministic) invertible function, then the model with (Y,T ) is statistically indis-
tinguishable from the model with (Y ◦ S,T ◦ S). It is therefore often assumed that
ET = i is the identity and in addition, in nearly all application, that T is monotoni-
cally increasing (if d = 1).

Discretely observed data. One cannot measure the height of person at every sin-
gle instant of her life. In other words, it is rare in practice that one has access to the
entire curve. A far more common situation is that one observes the curves discretely,
i.e., at a finite number of points. The conceptually simplest setting is that one has
access to a grid x1, . . . ,xJ ∈ K, and the data come in the form

ỹi j = Ỹi(t j),

possibly with measurement error. The problem is to find, given ỹi j, consistent esti-
mators of Ti and of the original, aligned functions Yi.

In the bibliographic notes, we review some methods for carrying out this sepa-
ration of amplitude and phase variation. It is fair to say that no single registration
method arises as the canonical solution to the functional registration problem. In-
deed, most need to make additional structural and/or smoothness assumptions on
the warp maps, further to the basic identifiability conditions requiring that T be in-
creasing and that ET equal the identity. We will eventually see that, in contrast, the
case of point processes (viewed as discretely observed random measures) admits a
canonical framework, without needing additional assumptions.

4.1.2 The Point Process Case

A point process is the mathematical object that represents the intuitive notion of a
random collection of points in a space X . It is formally defined as a measurable
map Π from a generic probability space into the space of (possibly infinite) Borel
integer-valued measures of X in such a way that Π(B) is a measurable real-valued
random variable for all Borel subsets B of X . The quantity Π(B) represents the
random number of points observed in the set B. Among the plethora of books on
point processes, let us mention Daley and Vere-Jones [41] and Karr [79]. Kallenberg
[75] treats more general objects, random measures, of which point processes are a
peculiar special case. We will assume for convenience that Π is a measure on a
compact subset K ⊂ R

d .
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Amplitude variation of Π can be understood in analogy with the functional case.
One defines the mean measure

λ (A) = E[Π(A)], A ⊂ K Borel

and, provided that E[Π(K)]2 < ∞, the covariance measure

κ(A,B) = cov[Π(A),Π(B)] = E[Π(A)Π(B)]−λ (A)λ (B),

the latter being a finite signed Borel measure on K. Just like in the functional case,
these two objects encapsulate the (second-order) amplitude variation3 properties of
the law of Π .

Given a sample Π1, . . . ,Πn of independent point processes distributed as Π , the
natural estimators

λ̂ (A) =
1
n

n

∑
i=1

Πi(A); κ̂(A,B) =
1
n

n

∑
i=1

Πi(A)Πi(B)− λ̂ (A)λ̂ (B),

are consistent and the former asymptotically normal [79, Proposition 4.8].
Phase variation then pertains to a random warp function T : K → K (independent

of Π ) that deforms Π : if we denote the points of Π by x1, . . . ,xK (with K random),
then instead of (xi), one observes T (x1), . . . ,T (xK). In symbols, this means that the
data arise as Π̃ = T #Π . We refer to Π as the original point processes, and Π̃ as the
warped point processes. An example of 30 warped and unwarped point processes
is shown in Fig. 4.3. The point patterns in both panels present a qualitatively simi-
lar structure: there are two peaks of high concentration of points, while few points
appear between these peaks. The difference between the two panels is in the posi-
tion and concentration of those peaks. In the left panel, only amplitude variation is
present, and the location/concentration of the peaks is the same across all observa-
tions. In contrast, phase variation results in shifting the peaks to different places for
each of the observations, while also smearing or sharpening them. Clearly, estima-
tion of the mean measure of a subset A by averaging the number of observed points
in A would not be satisfactory as an estimator of λ when carried out with the warped
data. As in the functional case, it will only be consistent for the measure λ̃ defined
by

λ̃ (A) = E[λ (T−1(A))], A ⊆ X ,

and λ̃ = E[T #λ ] misses most (or at least a significant part) of the bimodal structure
of λ and is far more diffuse.

3 If the cumulative count process Γ (t) = Π [0, t) is mean-square continuous, then the use of the
term “amplitude variation” can be seen to remain natural, as Γ (t) will admit a Karhunen–Loève
expansion, with all stochasticity being attributable to the random amplitudes in the expansion.
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Since Π and T are independent, the conditional expectation of Π̃ given T is

E[Π̃(A)|T ] = E[Π(T−1(A))|T ] = λ (T−1(A)) = [T #λ ](A).

Consequently, we refer to Λ = T #λ as the conditional mean measure. The problem
of separation of amplitude and phase variation can now be stated as follows. On the
basis of a sample Π̃1, . . . ,Π̃n, find estimators of (Ti) and (Πi). Registering the point

processes amounts to constructing estimators, registration maps T̂−1
i , such that the

aligned points

Π̂i = T̂−1
i #Π̃i = [T̂−1

i ◦Ti]#Πi

are close to the original points Πi.

0
5

10
15

20
25

30

−16 −12 −8 −4 0 4 8 12 16

0
5

10
15

20
25

30

−16 −12 −8 −4 0 4 8 12 16

Fig. 4.3: Unwarped (left) and warped Poisson point processes

Remark 4.1.1 (Poisson Processes) A special but important case is that of a Pois-
son process. Gaussian processes probably yield the most elegant and rich theory
in functional data analysis, and so do Poisson processes when it comes to point
processes. We say that Π is a Poisson process when the following two conditions
hold. (1) For any disjoint collection (A1, . . . ,An) of Borel sets, the random variables
Π(A1), . . . ,Π(An) are independent; and (2) for every Borel A ⊆ K, Π(A) follows a
Poisson distribution with mean λ (A):

P(Π(A) = k) = e−λ (A) [λ (A)]k

k!
.

Conditional upon T , the random variables Π̃(Ak) = Π(T−1(Ak)), k = 1, . . . ,n are
independent as the sets (T−1(Ak)) are disjoint, and Π̃(A) follows a Poisson distribu-
tion with mean λ (T−1(A)) =Λ(A). This is precisely the definition of a Cox process:
conditional upon the driving measure Λ , Π̃ is a Poisson process with mean measure
λ . For this reason, it is also called a doubly stochastic process; in our context, the
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phase variation is associated with the stochasticity of Λ while the amplitude one is
associated with the Poisson variation conditional upon Λ .

As in the functional case there are problems with identifiability: the model (Π ,T )
cannot be distinguished from the model (S#Π ,T ◦S−1) for any invertible S : K → K.
It is thus natural to assume that ET is the identity map4 (otherwise set S = ET , i.e.,
replace Π by [ET ]#Π and T by T ◦ [ET ]−1).

Constraining T to have mean identity is nevertheless not sufficient for the model
Π̃ = T #Π to be identifiable. The reason is that given the two point sets Π̃ and Π ,
there are many functions that push forward the latter to the former. This ambiguity
can be dealt with by assuming some sort of regularity or parsimony for T . For ex-
ample, when K = [a,b] is a subset of the real line, imposing T to be monotonically
increasing guarantees its uniqueness. In multiple dimensions, there is no obvious
analogue for increasing functions. One possible definition is the monotonicity de-
scribed in Sect. 1.7.2:

〈T (y)−T (x),y− x〉 ≥ 0, x,y ∈ K.

This property is rather weak in a sense we describe now. Let K ⊆R
2 and write y ≥ x

if and only if yi ≥ xi for i = 1,2. It is natural to expect the deformations to maintain
the lexicographic order in R

2:

y ≥ x =⇒ T (y)≥ T (x).

If we require in addition that the ordering must be preserved for all quadrants: for
z = T (x) and w = T (y)

{y1 ≥ x1,y2 ≤ x2} =⇒{w1 ≥ z1,w2 ≤ z2},

then monotonicity is automatically satisfied. In that sense, it is arguably not very
restrictive.

Monotonicity is weaker than cyclical monotonicity (see (1.10) with yi = T (xi)),
which is itself equivalent to the property of being the subgradient of a convex
function. But if extra smoothness is present and T is a gradient of some function
φ : K →R, then φ must be convex and T is then cyclically monotone. Consequently,
we will make the following assumptions:

• the expected value of T is the identity;
• T is a gradient of a convex function.

In the functional case, at least on the real line, these two conditions are imposed
on the warp functions in virtually all applications, often accompanied with addi-
tional assumptions about smoothness of T , its structural properties, or its distance
from the identity. In the next section, we show how these two conditions alone lead
to the Wasserstein geometry and open the door to consistent, fully nonparametric
separation of the amplitude and phase variation.

4 This can be defined as Bochner integral in the space of measurable bounded T : K → K.
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4.2 Wasserstein Geometry and Phase Variation

4.2.1 Equivariance Properties of the Wasserstein Distance

A first hint to the relevance of Wasserstein metrics in Wp(X ) for deformations of
the space X is that for all p ≥ 1 and all x,y ∈ X ,

Wp(δx,δy) = ‖x− y‖,

where δx is as usual the Dirac measure at x ∈ X . This is in contrast to metrics such
as the bounded Lipschitz distance (that metrises weak convergence) or the total
variation distance on P(X ). Recall that these are defined by

‖μ −ν‖BL = sup
‖ϕ‖BL≤1

∣∣∣∣
∫

X
ϕ dμ −

∫
X

ϕ dν
∣∣∣∣ ; ‖μ −ν‖TV = sup

A
|μ(A)−ν(A)|,

so that

‖δx −δy‖BL = min(1,‖x− y‖); ‖δx −δy‖TV =

{
1 x �= y

0 x = y.

In words, the total variation metric “does not see the geometry” of the space X .
This is less so for the bounded Lipschitz distance that does take small distances into
account but not large ones.

Another property (shared by BL and TV) is equivariance with respect to transla-
tions. It is more convenient to state it using the probabilistic formalism of Sect. 1.2.
Let X ∼ μ and Y ∼ ν be random elements in X , a be a fixed point in X , X ′ = X +a
and Y ′ = Y +a. Joint couplings Z′ = (X ′,Y ′) are precisely those that take the form
(a,a)+Z for a joint coupling Z = (X ,Y ). Thus

Wp(μ ∗δa,ν ∗δa) =Wp(X
′+a,Y ′+a) =Wp(X ,Y ) =Wp(μ ,ν),

where δa is a Dirac measure at a and ∗ denotes convolution.
This carries over to Fréchet means in an obvious way.

Lemma 4.2.1 (Fréchet Means and Translations) Let Λ be a random measure in
W2(X ) with finite Fréchet functional and a ∈ X . Then γ is a Fréchet mean of Λ if
and only if γ ∗δa is a Fréchet mean of Λ ∗δa.

The result holds for other values of p, in the formulation sketched in the bibli-
ographic notes of Chap. 2. In the quadratic case, one has a simple extension to
the case where only one measure is translated. Denote the first moment (mean) of
μ ∈ W1(X ) by

m : W1(X )→ X m(μ) =
∫

X
xdμ(x).
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(When X is infinite-dimensional, this can be defined as the unique element m ∈X
satisfying

〈m,y〉=
∫

X
〈x,y〉 dμ(x), y ∈ X .)

By an equivalence of couplings similar to above, we obtain

W 2
2 (μ ∗δa,ν) =W 2

2 (μ ,ν)+(a− [m(μ)−m(ν)])2 − [m(μ)−m(ν)]2,

which is minimised at a = m(μ)−m(ν). This leads to the following conclusion:

Proposition 4.2.2 (First Moment of Fréchet Mean) Let Λ be a random measure
in W2(X ) with finite Fréchet functional and Fréchet mean γ . Then

∫
X

xdγ(x) = E

[∫
X

xdΛ(x)

]
.

4.2.2 Canonicity of Wasserstein Distance in Measuring
Phase Variation

The purpose of this subsection is to show that the standard functional data analysis
assumptions on the warp function T , having mean identity and being increasing, are
equivalent to purely geometric conditions on T and the conditional mean measure
Λ = T #λ . Put differently, if one is willing to assume that ET = i and that T is
increasing, then one is led unequivocally to the problem of estimation of Fréchet
means in the Wasserstein space W2(X ). When X �= R, “increasing” is interpreted
as being the gradient of a convex function, as explained at the end of Sect. 4.1.2.

The total mass λ (X ) is invariant under the push-forward operation, and when it
is finite, we may assume without loss of generality that it is equal to one, because all
the relevant quantities scale with the total mass. Indeed, if λ = τμ with μ probability
measure and τ > 0, then T #λ = τ ×T #μ , and the Wasserstein distance (defined as
the infimum-over-coupling integrated cost) between τμ and τν is τWp(μ ,ν) for
μ ,ν probabilities.

We begin with the one-dimensional case, where the explicit formulae allow for a
more transparent argument, and for simplicity we will assume some regularity.

Assumptions 2 The domain K ⊂R is a nonempty compact convex set (an interval),
and the continuous and injective random map T : K → R (a random element in
Cb(K)) satisfies the following two conditions:

(A1) Unbiasedness: E[T (x)] = x for all x ∈ K.
(A2) Regularity: T is monotone increasing.

The relevance of the Wasserstein geometry to phase variation becomes clear in the
following proposition that shows that Assumptions 2 are equivalent to geometric
assumptions on the Wasserstein space W2(R).
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Proposition 4.2.3 (Mean Identity Warp Functions and Fréchet Means in W2(R))
Let φ ⊂ K ⊂R compact and convex and T : K →R continuous. Then Assumptions 2
hold if and only if, for any λ ∈W2(K) supported on K such that E[W 2

2 (T #λ ,λ )]<∞,
the following two conditions are satisfied:

(B1) Unbiasedness: for any θ ∈ W2(R)

E[W 2
2 (T #λ ,λ )]≤ E[W 2

2 (T #λ ,θ)].

(B2) Regularity: if Q : K → R is such that T #λ = Q#λ , then with probability one

∫
K

∣∣∣T (x)− x
∣∣∣2 dλ (x)≤

∫
K

∣∣∣Q(x)− x
∣∣∣2 dλ (x), almost surely.

These assumptions have a clear interpretation: (B1) stipulates that λ is a Fréchet
mean of the random measure Λ = T #λ , while (B2) states that T must be the optimal
map from λ to Λ , that is, T = tΛ

λ .

Proof. If T satisfies (B2) then, as an optimal map, it must be nondecreasing λ -
almost surely. Since λ is arbitrary, T must be nondecreasing on the entire domain
K. Conversely, if T is nondecreasing, then it is optimal for any λ . Hence (A2) and
(B2) are equivalent.

Assuming (A2), we now show that (A1) and (B1) are equivalent. Condition (B1)
is equivalent to the assertion that for all θ ∈ W2(R),

E‖F−1
T #λ −F−1

λ ‖2
L2(0,1)

=E[W 2
2 (T #λ ,λ )]≤E[W 2

2 (T #λ ,θ)] =E‖F−1
T #λ −F−1

θ ‖2
L2(0,1)

,

which is in turn equivalent to E[FT #λ ]
−1] = E[F−1

Λ ] = F−1
λ (see Sect. 3.1.4). Con-

dition (A2) and the assumptions on T imply that FΛ (x) = Fλ (T
−1(x)). Suppose

that Fλ is invertible (i.e., continuous and strictly increasing on K). Then F−1
Λ (u) =

T (F−1
λ (u)). Thus (B1) is equivalent to ET (x) = x for all x in the range of F−1

λ , which
is K. The assertion that (A1) implies (B1), even if Fλ is not invertible, is proven in
the next theorem (Theorem 4.2.4) in a more general context.

The situation in more than one dimension is similar but the proof is less transpar-
ent. To avoid compactness assumptions, we introduce the following power growth
condition (taken from Agueh and Carlier [2]) of continuous functions that grow like
‖ · ‖q (q ≥ 0):

Gq(X ) = (1+‖ · ‖q)Cb(X ) =

{
f : X → R continuous : sup

x∈X

| f (x)|
1+‖x‖q < ∞

}

with the norm ‖ f‖Gq = sup | f (x)|/(1 + ‖x‖q) = ‖ f/(1 + ‖ · ‖q)‖∞. The space
Gq(X ,X ) is defined similarly, with f taking values in X instead of R, and the
norm will be denoted in the same way. These are nonseparable Banach spaces.

Theorem 4.2.4 (Mean Identity Warp Functions and Fréchet Means) Fix λ ∈
P(X ) and let t ∈ G1(X ,X ) be a (Bochner measurable) random optimal map
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with (Bochner) mean identity and such that E‖t‖G1 < ∞. Then Λ = t#λ has Fréchet
mean λ :

E[W 2
2 (λ ,Λ)]≤ E[W 2

2 (θ ,Λ)] ∀θ ∈ W2(X ).

The generalisation with respect to the one-dimensional result is threefold. Firstly,
since our main interest is the implication (A1–A2) ⇒ (B1–B2), we need not assume
T to be injective. Secondly, the support of λ is not required to be compact. Lastly, the
result holds in arbitrary dimension, including infinite-dimensional separable Hilbert
spaces X . In particular, if t is a linear map, then ‖t‖G1 coincides with the operator
norm of t, so the assumption is that t be a bounded self-adjoint nonnegative operator
with mean identity and finite expected operator norm.

Proof. Optimality of t ensures that it has a convex potential φ , and strong and weak
duality give

W 2
2 (λ ,Λ) =

∫
X

(
1
2
‖x‖2 −φ(x)

)
dλ (x)+

∫
X

(
1
2
‖y‖2 −φ ∗(y)

)
dΛ(y);

W 2
2 (θ ,Λ)≥

∫
X

(
1
2
‖x‖2 −φ(x)

)
dθ(x)+

∫
X

(
1
2
‖y‖2 −φ ∗(y)

)
dΛ(y).

Formally taking expectations, using Fubini’s theorem and that Eφ = ‖ · ‖2/2 (since
Et is the identity) yields

E[W 2
2 (θ ,Λ)]≥

∫
X

(
1
2
‖x‖2 −Eφ(x)

)
dθ(x)+E

[∫
X

(
1
2
‖y‖2 −φ ∗(y)

)
dΛ(y)

]
= E[W 2

2 (λ ,Λ)]

as required. The rigorous mathematical justification for this is given on page 88 in
the supplement.

Remark 4.2.5 The “natural” space for t would be L2(λ ), but without the conti-
nuity assumption, the result may fail (Álvarez-Esteban et al. [9, Example 3.1]). A
simple argument shows that the growth condition imposed by the G1 assumption is
minimal; see page 89 in the supplement or Galasso et al. [58].

Remark 4.2.6 The same statement holds if X is replaced by a (Borel) convex sub-
set K thereof. The integrals will then be taken on K, showing that λ minimises the
Fréchet functional among measures supported on K, and, by continuity, on K. By
Proposition 3.2.4, λ is a Fréchet mean.

4.3 Estimation of Fréchet Means

4.3.1 Oracle Case

In view of the canonicity of the Wasserstein geometry in Sect. 4.2.2, separation of
amplitude and phase variation of the point processes Π̃i essentially requires comput-
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ing Fréchet means in the 2-Wasserstein space. It is both conceptually important and
technically convenient to introduce the case where an oracle reveals the conditional
mean measures Λ = T #λ entirely. Thus, assuming that λ ∈ W2(X ) is the unique
Fréchet mean of a random measure Λ , the goal is to estimate the structural mean λ
on the basis of independent and identically distributed realisations Λ1, . . . ,Λn of λ .

Given that λ is defined as the minimiser of the Fréchet functional

F(γ) =
1
2
EW 2

2 (Λ ,γ), γ ∈ W2(X ),

it is natural to estimate λ by a minimiser, say λn, of the empirical Fréchet functional

Fn(γ) =
1

2n

n

∑
i=1

W 2
2 (Λi,γ), γ ∈ W2(X ).

A minimiser λn exists by Corollary 3.1.3. When X = R, λn can be seen to be an
unbiased estimator of λ in a generalised sense of Lehmann [88] (see Sect. 4.3.5).

The warp maps (and their inverses) can then be estimated as the optimal maps
from λn to each Λi (see Sect. 4.3.4).

4.3.2 Discretely Observed Measures

In practice, one does not have the fortune of fully observing the inherently infinite-
dimensional objects Λ1, . . . ,Λn. A far more realistic scenario is that one only has
access to a discrete version of Λi, say Λ̃i. The simplest situation is when Λ̃i arises
as an empirical measure of the form τ−1 ∑τ

i=1 δ{Yj}, where Yj are independent with
distribution Λi. More generally, Λ̃i can be a normalised point process Π̃i with mean
measure τΛi, i.e.

Λ̃i =
1

Π̃i(X )
Π̃i with E[Π̃i(A)|Λi] = τΛi(A), A ⊆ X Borel.

This encapsulates the case of empirical measure when τ is an integer and Π̃i is a
binomial point process. The parameter τ is the expected number of observed points
over the entire space X ; the larger τ is, the more information Π̃i gives on Λi.

Except if Λ̃i is an empirical measure, there is one difficulty in the above setting
that needs to be addressed. Unless Π̃i is binomial, there is a positive probability that
Π̃i(X ) = 0 and no points pertaining to Λi are observed. In the asymptotic setup
below, conditions will be imposed to ensure that this probability becomes negligible
as n→∞. For concreteness we define Λ̃i = λ (0) for some fixed measure λ (0) that will
be of minor importance. This can be a Dirac measure at 0, a certain fixed Gaussian
measure, or (normalised) Lebesgue measure on some bounded set in case X =R

d .
We can now replace the estimator λn by λ̃n, defined as any minimiser of
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F̃n(γ) =
1

2n

n

∑
i=1

W 2
2 (Λ̃i,γ), γ ∈ W2(X ),

which exists by Corollary 3.1.3.
As a generalisation of the discrete case discussed in Sect. 1.3, the Fréchet mean

of discrete measures can be computed exactly. Suppose that Ni = Π̃i(X ) is nonzero
for all i. Then each Λ̃i is a discrete measure supported on Ni points. One can then re-
cast the multimarginal formulation (see Sect. 3.1.2) as a finite linear program, solve
it, and “average” the solution as in Proposition 3.1.2 in order to obtain λ̃n (an al-
ternative linear programming formulation for finding a Fréchet mean is given by
Anderes et al. [14]). Thus, λ̃n can be computed in finite time, even when X is
infinite-dimensional.

Finally, a remark about measurability is in order. Point processes can be viewed
as random elements in M+(X ) endowed with the vague topology induced from
convergence of integrals of continuous functions with compact support. If μn con-
verge to μ vaguely, and an are numbers that converge to a, then anμn → aμ vaguely.
Thus, Λ̃i is a continuous function of the pair (Π̃i,Π̃i(X )) and can be viewed as a
random measure with respect to the vague topology. The restriction of the vague
topology to probability measures is equivalent to the weak topology,5 and therefore
vague, weak, and Wasserstein measurability are all equivalent.

4.3.3 Smoothing

Even when the computational complexity involved in calculating λ̃n is tractable,
there is another reason not to use it as an estimator for λ . If one has a-priori knowl-
edge that λ is smooth, it is often desirable to estimate it by a smooth measure. One
way to achieve this would be to apply some smoothing technique to λ̃n using, e.g.,
kernel density estimation. However, unless the number of observed points from each
measure is the same N1 = · · · = Nn = N, λ̃n will usually be concentrated on many
points, essentially N1+ · · ·+Nn of them. In other words, the Fréchet mean is concen-
trated on many more points than each of the measures Λ̃i, thus potentially hindering
its usefulness as a mean because it will not be a representative of the sample.

This is most easily seen when X =R, in which case each Λ̃i is a discrete uniform
measure on points xi

1 < xi
2 < · · · < xi

Ni
, where we assume for simplicity that the

points are not repeated (this will happen with probability one if Λi is diffuse). If we
now set Gi to be the distribution function of Λ̃i, then the quantile function G−1

i is
piecewise constant on each interval (k,k+1]/Ni with jumps at

G−1
i (k/Ni) = xi

k, k = 1,2, . . . ,Ni.

5 In finite dimensional (or more generally, locally compact metric) spaces. If X is an infinite-
dimensional Hilbert space, the vague topology is trivial. This is stated and proved as Lemma 5 on
page 27 in the supplement.



92 4 Phase Variation and Fréchet Means

The Fréchet mean has quantile function G−1(u) = n−1 ∑G−1
i (u) and will have

jumps at every point of the form k/Ni for k ≤ Ni and i = 1, . . . ,n. In the worst-case
scenario, when no pair from Ni has a common divisor, there will be

(
n

∑
i=1

Ni −1

)
+1 =

(
n

∑
i=1

Ni

)
−n+1

jumps for G−1, which is the number of points on which the Fréchet mean will be
supported. (All the G−1

i ’s have a jump at one which thus needs to be counted once
rather than n times.)

By counting the number of redundancies in the constraints matrix of the linear
program, one can show that this is in general an upper bound on the number of
support points of the Fréchet mean.

An alternative approach is to first smooth each observation λ̃n and then calculate
the Fréchet mean. Since it is easy to bound the Wasserstein distances when deal-
ing with convolutions, we will employ kernel density estimation, although other
smoothing approaches could be used as well.

To simplify the exposition, we provide the technical details only when X =R
d ,

but a similar construction will work when the dimension of X is infinite. Let ψ :
R

d → (0,∞) be a continuous, bounded, strictly positive isotropic density function
with unit variance: ψ(x) = ψ1(‖x‖) with ψ1 nonincreasing and

∫
Rd
‖x‖2ψ(x)dx = 1 =

∫
Rd

ψ(x)dx.

(Besides the boundedness all these properties can be relaxed, and if X = R even
boundedness is not necessary.) A classical example for ψ is the standard Gaussian
density in R

d . Define the rescaled version ψσ (x) = σ−dψ(x/σ) for all σ > 0. We
can then replace Λ̃i by a smooth proxy Λ̃i ∗ψσ . If Λ̃i is a sum of Dirac masses at
x1, . . . ,xNi , then

Λ̃i ∗ψσ has density g(x) =
1
Ni

Ni

∑
j=1

ψσ (x− xi).

If Ni = 0, one can either use λ (0) or λ (0) ∗ψσ ; this event will have negligible prob-
ability anyway.

For the purpose of approximating Λ̃i, this convolution is an acceptable estimator,
because as was seen in the proof of Theorem 2.2.7,

W 2
2 (Λ̃i,Λ̃i ∗ψσ )≤ σ2.

But the measure Λ̃i has a strictly positive density throughout Rd . If we know that Λ
is supported on a convex compact K ⊂ R

d , it is desirable to construct an estimator
that has the same support K. The first idea that comes to mind is to project Λ̃i ∗ψσ to
K (see Proposition 3.2.4), as this will further decrease the Wasserstein distance, but

www.dbooks.org

https://www.dbooks.org/


4.3 Estimation of Fréchet Means 93

the resulting measure will then have positive mass on the boundary of K, and will
not be absolutely continuous. We will therefore use a different strategy: eliminate
all the mass outside K and redistribute it on K. The simplest way to do this is to
restrict Λ̃i ∗ψσ to K and renormalise the restriction to be a probability measure.
For technical reasons, it will be more convenient to bound the Wasserstein distance
when the restriction and renormalisation is done separately on each point of Λ̃i. This
yields the measure

Λ̂i =
1
Ni

Ni

∑
j=1

δ{x j}∗ψσ

[δ{x j}∗ψσ ](K)

∣∣∣∣
K
, (4.2)

Lemma 4.4.2 below shows that W 2
2 (Λ̃i,Λ̂i) ≤ Cσ2 for some finite constant C. It is

apparent that Λ̂i is a continuous function of Λ̃i and σ , so Λ̂i is measurable; in any
case this is not particularly important because σ will vanish, so Λ̂i = Λ̃i asymptoti-
cally and the latter is measurable.

Our final estimator λ̂n for λ is defined as the minimiser of

F̂n(γ) =
1

2n

n

∑
i=1

W 2
2 (Λ̂i,γ), γ ∈ W2(X ).

Since the measures Λ̂i are absolutely continuous, λ̂n is unique. We refer to λ̂n as the
regularised Fréchet–Wasserstein estimator, where the regularisation comes from the
smoothing and the possible restriction to K.

In the case X =R, λ̂n can be constructed via averaging of quantile functions. Let
Ĝi be the distribution function of Λ̂i. Then λ̂n is the measure with quantile function

F−1
λ̂n

(u) =
1
n

n

∑
i=1

Ĝ−1
i (u), u ∈ (0,1),

and distribution function
F̂λn

(x) = [F−1
λ̂n

]−1(x).

By construction, the Ĝi are continuous and strictly increasing, so the inverses are
proper inverses and one does not to use the right-continuous inverse as in Sect. 3.1.4.

If X = R
d and d ≥ 2, then there is no explicit expression for λ̂n, although it

exists and is unique. In the next chapter, we present a steepest descent algorithm that
approximately constructs λ̂n by taking advantage of the differentiability properties
of the Fréchet functional F̂n in Sect. 3.1.6.

4.3.4 Estimation of Warpings and Registration Maps

Once estimators Λ̂i, i = 1, . . . ,n and λ̂n are constructed, it is natural to estimate the
map Ti = tΛi

λ and its inverse T−1
i = tλ

Λi
(when Λi are absolutely continuous; see the

discussion after Assumptions 3 below) by the plug-in estimators
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T̂i = tΛ̂i

λ̂n
, T̂−1

i = (T̂i)
−1 = tλ̂n

Λ̂i
.

The latter, the registration maps, can then be used in order to register the points Πi

via

Π̂ (n)
i = T̂−1

i #Π̃ (n)
i =

[
T̂−1

i ◦Ti

]
#Π (n)

i .

It is thus reasonable to expect that if T̂−1
i is a good estimator, then its composition

with Ti should be close to the identity and Π̂i should be close to Πi.

4.3.5 Unbiased Estimation When X = R

In the same way, Fréchet means extend the notion of mean to non-Hilbertian spaces,
they also extend the definition of unbiased estimators. Let H be a separable Hilbert
space (or a convex subset thereof) and suppose that θ̂ is a random element in H
whose distribution μθ depends on a parameter θ ∈ H. Then θ̂ is unbiased for θ if
for all θ ∈ H

Eθ θ̂ =
∫

H
xdμθ (x) = θ .

(We use the standard notation Eθ g(θ̂) =
∫

g(x)dμθ (x) in the sequel.) This is equiv-
alent to

Eθ‖θ − θ̂‖2 ≤ Eθ‖γ − θ̂‖2, ∀θ ,γ ∈ H.

In view of that, one can define unbiased estimators of λ ∈ W2 as measurable func-
tions δ = δ (Λ1, . . . ,Λn) for which

EλW 2
2 (λ ,δ )≤ EλW 2

2 (γ ,δ ), ∀γ ,θ ∈ W2.

This definition was introduced by Lehmann [88].
Unbiased estimators allow us to avoid the problem of over-registering (the so-

called pinching effect; Kneip and Ramsay [82, Section 2.4]; Marron et al. [90, p.
476]). An extreme example of over-registration is if one “aligns” all the observed
patterns into a single fixed point x0. The registration will then seem “successful”
in the sense of having no residual phase variation, but the estimation is clearly bi-
ased because the points are not registered to the correct reference measure. Thus,
requiring the estimator to be unbiased is an alternative to penalising the registration
maps.

Due to the Hilbert space embedding of W2(R), it is possible to characterise unbi-
ased estimators in terms of a simple condition on their quantile functions. As a corol-
lary, λn, the Fréchet mean of {Λ1, . . . ,Λn}, is unbiased. Our regularised Fréchet–
Wasserstein estimator λ̂n can then be interpreted as approximately unbiased, since
it approximates the unobservable λn.
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Proposition 4.3.1 (Unbiased Estimators in W2(R)) Let Λ be a random measure
in W2(R) with finite Fréchet functional and let λ be the unique Fréchet mean of Λ
(Theorem 3.2.11). An estimator δ constructed as a function of a sample (Λ1, . . . ,Λn)
is unbiased for λ if and only if the left-continuous representatives (in L2(0,1)) sat-
isfy E[F−1

δ (x)] = F−1
λ (x) for all x ∈ (0,1).

Proof. The proof is straightforward from the definition: δ is unbiased if and only if
for all λ and all γ ,

Eλ‖F−1
λ −F−1

δ ‖2
L2

≤ Eλ‖F−1
γ −F−1

δ ‖2
L2
,

which is equivalent to Eλ [F
−1
δ ] = F−1

λ . In other words, these two functions must
equal almost everywhere on (0,1), and their left-continuous representatives must
equal everywhere (the fact that Eλ [F

−1
δ ] has such a representative was established

in Sect. 3.1.4).
To show that δ = λn is unbiased, we simply invoke Theorem 3.2.11 twice to see

that

E[F−1
δ ] = E

[
1
n

n

∑
i=1

F−1
Λi

]
= E[F−1

Λ ] = F−1
λ ,

which proves unbiasedness of δ .

4.4 Consistency

In functional data analysis, one often assumes that the number of curves n and the
number of observed points per curve m both diverge to infinity. An analogous frame-
work for point processes would similarly require the number of point processes n as
well as the expected number of points τ per processes to diverge. A technical com-
plication arises, however, because the mean measures do not suffice to characterise
the distribution of the processes. Indeed, if one is given a point processes Π with
mean measure λ (not necessarily a probability measure), and τ is an integer, there
is no unique way to define a process Π (τ) with mean measure τλ . One can define
Π (τ) = τΠ , so that every point in Π will be counted τ times. Such a construction,
however, can never yield a consistent estimator of λ , even when τ → ∞.

Another way to generate a point process with mean measure τλ is to take a
superposition of τ independent copies of Π . In symbols, this means

Π (τ) = Π1 + · · ·+Πτ ,

with (Πi) independent, each having the same distribution as Π . This superposition
scheme gives the possibility to use the law of large numbers. If τ is not an integer,
then this construction is not well-defined but can be made so by assuming that the
distribution of Π is infinitely divisible. The reader willing to assume that τ is always
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an integer can safely skip to Sect. 4.4.1; all the main ideas are developed first for
integer values of τ and then extended to the general case.

A point process Π is infinitely divisible if for every integer m there exists a

collection of m independent and identically distributed Π (1/m)
i such that

Π = Π (1/m)
1 + · · ·+Π (1/m)

m in distribution.

If Π is infinitely divisible and τ = k/m is rational, then can define π(τ) using km
independent copies of Π (1/m):

Π (τ) =
km

∑
i=1

Π (1/m)
i .

One then deals with irrational τ via duality and continuity arguments, as follows.
Define the Laplace functional of Π by

LΠ ( f ) = E
[
e−Π f ]= E

[
exp

(
−
∫

X
f dΠ

)]
∈ [0,1], f : X → R+ Borel.

The Laplace functional characterises the distribution of the point process, generalis-
ing the notion of Laplace transform of a random variable or vector (Karr [79, Theo-
rem 1.12]). By definition, it translates convolutions into products. When Π = Π (1)

is infinitely divisible, the Laplace functional L1 of Π takes the form (Kallenberg
[75, Chapter 6]; Karr [79, Theorem 1.43])

L1( f ) = E

[
e−Π (1) f

]
= exp

[
−
∫

M+(X )
(1−e−μ f )dρ(μ)

]
for some ρ ∈ M+(M+(X )).

The Laplace functional of Π (τ) is Lτ( f ) = [L1( f )]τ for any rational τ , which simply
amounts to multiplying the measure ρ by the scalar τ . One can then do the same for
an irrational τ , and the resulting Laplace functional determines the distribution of
Π (τ) for all τ > 0.

4.4.1 Consistent Estimation of Fréchet Means

We are now ready to define our asymptotic setup. The following assumptions will
be made. Notice that the Wasserstein geometry does not appear explicitly in these
assumptions, but is rather derived from them in view of Theorem 4.2.4. The com-
pactness requirement can be relaxed under further moment conditions on λ and the
point process Π ; we focus on the compact case for the simplicity and because in
practice the point patterns will be observed on a bounded observation window.
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Assumptions 3 Let K ⊂ R
d be a compact convex nonempty set, λ an absolutely

continuous probability measure on K, and τn a sequence of positive numbers. Let Π
be a point processes on K with mean measure λ . Finally, define U = intK.

• For every n, let {Π (n)
1 , . . . ,Π (n)

n } be independent point processes, each having the
same distribution as a superposition of τn copies of Π .

• Let T be a random injective function on K (viewed as a random element in
Cb(K,K) endowed with the supremum norm) such that T (x) ∈U for x ∈U (that
is, T ∈Cb(U,U)) with nonsingular derivative ∇T (x)∈R

d×d for almost all x∈U,
that is a gradient of a convex function. Let {T1, . . . ,Tn} be independent and iden-
tically distributed as T .

• For every x ∈U, assume that E[T (x)] = x.

• Assume that the collections {Tn}∞
n=1 and {Π (n)

i }i≤n,n=1,2,... are independent.

• Let Π̃ (n)
i = Ti#Π (n)

i be the warped point processes, having conditional mean mea-

sures Λi = Ti#λ = τ−1
n E

{
Π̃ (n)

i

∣∣∣Ti

}
.

• Define Λ̂i by the smoothing procedure (4.2), using bandwidth σ (n)
i ∈ [0,1] (pos-

sibly random).

The dependence of the estimators on n will sometimes be tacit. But Λi does not
depend on n.

By virtue of Theorem 4.2.4, λ is a Fréchet mean of the random measure Λ = T #λ .
Uniqueness of this Fréchet mean will follow from Proposition 3.2.7 if we show
that Λ is absolutely continuous with positive probability. This is indeed the case,
since T is injective and has a nonsingular Jacobian matrix; see Ambrosio et al. [12,
Lemma 5.5.3]. The Jacobian assumption can be removed when X = R, because
Fréchet means are always unique by Theorem 3.2.11.

Notice that there is no assumption about the dependence between rows. Assump-
tions 3 thus cover, in particular, two different scenarios:

• Full independence: here the point processes are independent across rows, that is,

Π (n)
i and Π (n+1)

i are also independent.

• Nested observations: here Π (n+1)
i includes the same points as Π (n)

i and addi-

tional points, that is, Π (n+1)
i is a superposition of Π (n)

i and another point process
distributed as (τn+1 − τn)Π .

Needless to say, Assumptions 3 also encompass binomial processes when τn are
integers, as well as Poisson processes or, more generally, Poisson cluster processes.

We now state and prove the consistency result for the estimators of the condi-
tional mean measures Λi and the structural mean measure λ .

Theorem 4.4.1 (Consistency) If Assumptions 3 hold, σn = n−1 ∑n
i=1 σ (n)

i → 0 al-
most surely and τn → ∞ as n → ∞, then:

1. The estimators Λ̂i defined by (4.2), constructed with bandwidth σ = σ (n)
i , are

Wasserstein-consistent for the conditional mean measures: for all i such that

σ (n)
i

p→ 0



98 4 Phase Variation and Fréchet Means

W2

(
Λ̂i,Λi

)
p−→ 0, as n → ∞;

2. The regularised Fréchet–Wasserstein estimator of the structural mean measure
(as described in Sect. 4.3) is strongly Wasserstein-consistent,

W2(λ̂n,λ )
a.s.−→ 0, as n → ∞.

Convergence in 1. holds almost surely under the additional conditions that ∑∞
n=1 τ−2

n

< ∞ and E
[
Π(Rd)

]4
< ∞. If σn → 0 only in probability, then convergence in 2. still

holds in probability.

Theorem 4.4.1 still holds without smoothing (σn = 0). In that case, λ̂n = λ̃n is pos-
sibly not unique, and the theorem should be interpreted in a set-valued sense (as in
Proposition 1.7.8): almost surely, any choice of minimisers λ̃n converges to λ as
n → ∞.

The preceding paragraph notwithstanding, we will usually assume that some
smoothing is present, in which case λ̂n is unique and absolutely continuous by
Proposition 3.1.8. The uniform Lipschitz bounds for the objective function show
that if we restrict the relevant measures to be absolutely continuous, then λ̂n is a
continuous function of (Λ̂1, . . . ,Λ̂n) and hence λ̂n : (Ω ,F ,P)→ W2(K) is measur-
able; this is again a minor issue because many arguments in the proof hold for each
ω ∈ Ω separately. Thus, even if λ̂n is not measurable, the proof shows that the con-
vergence holds outer almost surely or in outer probability.

The first step in proving consistency is to show that the Wasserstein distance be-
tween the unsmoothed and the smoothed estimators of Λi vanishes with the smooth-
ing parameter. The exact rate of decay will be important to later establish the rate of
convergence of λ̂n to λ , and is determined next.

Lemma 4.4.2 (Smoothing Error) There exists a finite constant Cψ,K, depending
only on ψ and on K, such that

W 2
2

(
Λ̂i,Λ̃i

)
≤Cψ,Kσ2 if σ ≤ 1. (4.3)

Since the smoothing parameter will anyway vanish, this restriction to small values
of σ is not binding. The constant Cψ,K is explicit. When X = R, a more refined
construction allows to improve this constant in some situations, see Panaretos and
Zemel [100, Lemma 1].

Proof. The idea is that (4.2) is a sum of measures with mass 1/Ni that can be all sent
to the relevant point x j, and we refer to page 98 in the supplement for the precise
details.

Proof (Proof of Theorem 4.4.1). The proof, detailed on page 97 of the supplement,
follows the following steps: firstly, one shows the convergence in probability of Λ̂i

to Λi. This is basically a corollary of Karr [79, Proposition 4.8] and the smoothing
bound from Lemma 4.4.2.
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To prove claim (2) one considers the functionals, defined on W2(K):

F(γ) =
1
2
EW 2

2 (Λ ,γ);

Fn(γ) =
1

2n

n

∑
i=1

W 2
2 (Λi,γ);

F̃n(γ) =
1

2n

n

∑
i=1

W 2
2 (Λ̃i,γ), Λ̃i =

Π̃ (n)
i

N(n)
i

or λ (0) if N(n)
i = 0;

F̂n(γ) =
1

2n

n

∑
i=1

W 2
2 (Λ̂i,γ), Λ̂i = λ (0) if N(n)

i = 0.

Since K is compact, they are all locally Lipschitz, so their differences can be con-
trolled by the distances between Λi, Λ̃i, and Λ̂i. The first distance vanishes since
the intensity τ → ∞, and the second by the smoothing bound. Another compactness
argument yields that F̂n → F uniformly on W2(K), and so the minimisers converge.

The almost sure convergence in (1) is proven as follows. Under the stronger con-
ditions at the end of the theorem’s statement, for any fixed a = (a1, . . . ,ad) ∈ R

d ,

P

(
Π̃ (n)

i ((−∞,a])

τn
−Λi((−∞,a])→ 0

)
= 1

by the law of large numbers. This extends to all rational a’s, then to all a by approx-
imation. The smoothing error is again controlled by Lemma 4.4.2.

4.4.2 Consistency of Warp Functions and Inverses

We next discuss the consistency of the warp and registration function estimators.
These are key elements in order to align the observed point patterns Π̃i. Recall that
we have consistent estimators Λ̂i for Λi and λ̂n for λ . Then Ti = tΛi

λ is estimated by

tΛ̂i

λ̂n
and T−1

i is estimated by tλ̂n

Λ̂i
. We will make the following extra assumptions that

lead to more transparent statements (otherwise one needs to replace K with the set
of Lebesgue points of the supports of λ and Λi).

Assumptions 4 (Strictly Positive Measures) In addition to Assumptions 3 sup-
pose that:

1. λ has a positive density on K (in particular, suppλ = K);
2. T is almost surely surjective on U = intK (thus a homeomorphism of U).

As a consequence suppΛ = supp(T #λ ) = T (suppλ ) = K almost surely.
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Theorem 4.4.3 (Consistency of Optimal Maps) Let Assumptions 4 be satisfied in

addition to the hypotheses of Theorem 4.4.1. Then for any i such that σ (n)
i

p→ 0 and
any compact set S ⊆ intK,

sup
x∈S

‖T̂−1
i (x)−T−1

i (x)‖ p→ 0, sup
x∈S

‖T̂i(x)−Ti(x)‖
p→ 0.

Almost sure convergence can be obtained under the same provisions made at the
end of the statement of Theorem 4.4.1.

A few technical remarks are in order. First and foremost, it is not clear that the
two suprema are measurable. Even though Ti and T−1

i are random elements in
Cb(U,Rd), their estimators are only defined in an L2 sense. The proof of Theo-
rem 4.4.3 is done ω-wise. That is, for any ω in the probability space such that The-
orem 4.4.1 holds, the two suprema vanish as n→∞. In other words, the convergence
holds in outer probability or outer almost surely.

Secondly, assuming positive smoothing, the random measures Λ̂i are smooth with

densities bounded below on K, so T̂−1
i are defined on the whole of U (possibly as

set-valued functions on a Λi-null set). But the only known regularity result for λ̂n is
an upper bound on its density (Proposition 3.1.8), so it is unclear what is its support
and consequently what is the domain of definition of T̂i.

Lastly, when the smoothing parameter σ is zero, T̂i and T̂−1
i are not defined.

Nevertheless, Theorem 4.4.3 still holds in the set-valued formulation of Proposi-
tion 1.7.11, of which it is a rather simple corollary:

Proof (Proof of Theorem 4.4.3). The proof amounts to setting the scene in order to
apply Proposition 1.7.11 of stability of optimal maps. We define

μn = Λ̂i; νn = λ̂n; μ = Λi; ν = λ ; un = T̂−1
i ; u = T−1

i ,

and verify the conditions of the proposition. The weak convergence of μn to μ and
νn to ν is the conclusion of Theorem 4.4.1; the finiteness is apparent because K is
compact and the uniqueness follows from the assumed absolute continuity of Λi.
Since in addition T−1

i is uniquely defined on U = intK which is an open convex set,
the restrictions on Ω in Proposition 1.7.11 are redundant. Uniform convergence of
T̂i to Ti is proven in the same way.

Corollary 4.4.4 (Consistency of Point Pattern Registration) For any i such that

σ (n)
i

p→ 0,

W2

⎛
⎝ Π̂ (n)

i

N(n)
i

,
Π (n)

i

N(n)
i

⎞
⎠ p→ 0.

The division by the number of observed points ensures that the resulting measures
are probability measures; the relevant information is contained in the point patterns
themselves, and is invariant under this normalisation.
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Proof. The law of large numbers entails that N(n)
i /τn → 1, so in particular N(n)

i is

almost surely not zero when n is large. Since Π̂ (n)
i = (T̂−1

i ◦Ti)#Π (n)
i , we have the

upper bound

W 2
2

⎛
⎝ Π̂ (n)

i

N(n)
i

,
Π (n)

i

N(n)
i

⎞
⎠≤

∫
K
‖T̂−1

i (Ti(x))− x‖2 d
Π (n)

i

N(n)
i

.

Fix a compact Ω ⊆ intK and split the integral to Ω and its complement. Then

∫
K\Ω

‖T̂−1
i (Ti(x))− x‖2 d

Π (n)
i

N(n)
i

≤ d2
K

Π (n)
i (K \Ω)

τn

τn

N(n)
i

as→ d2
Kλ (K \Ω),

by the law of large numbers, where dK is the diameter of K. By writing intK as a
countable union of compact sets (and since λ is absolutely continuous), this can be
made arbitrarily small by choice of Ω .

We can easily bound the integral on Ω by

∫
Ω
‖T̂−1

i (Ti(x))− x‖2 d
Π (n)

i

N(n)
i

≤ sup
x∈Ω

‖T̂−1
i (Ti(x))−x‖2 = sup

y∈Ti(Ω)

‖T̂−1
i (y)−T−1

i (y)‖2.

But Ti(Ω) is a compact subset of U = intK, because Ti ∈Cb(U,U). The right-hand
side therefore vanishes as n → ∞ by Theorem 4.4.3, and this completes the proof.

Possible extensions pertaining to the boundary of K are discussed on page 33 of the
supplement.

4.5 Illustrative Examples

In this section, we illustrate the estimation framework put forth in this chapter
by considering an example of a structural mean λ with a bimodal density on the
real line. The unwarped point patterns Π originate from Poisson processes with
mean measure λ and, consequently, the warped points Π̃ are Cox processes (see
Sect. 4.1.2). Another scenario involving triangular densities can be found in Panare-
tos and Zemel [100].

4.5.1 Explicit Classes of Warp Maps

As a first step, we introduce a class of random warp maps satisfying Assumptions 2,
that is, increasing maps that have as mean the identity function. The construction is
a mixture version of similar maps considered by Wang and Gasser [128, 129].
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For any integer k define ζk : [0,1]→ [0,1] by

ζ0(x) = x, ζk(x) = x− sin(πkx)
|k|π , k ∈ Z\{0}. (4.4)

Clearly ζk(0) = 0, ζk(1) = 1 and ζk is smooth and strictly increasing for all k. Fig-
ure 4.4a plots ζk for k = −3, . . . ,3. To make ζk a random function, we let k be an
integer-valued random variable. If the latter is symmetric, then we have

E [ζk(x)] = x, x ∈ [0,1].

By means of mixtures, we replace this discrete family by a continuous one: let J > 1
be an integer and V = (V1, . . . ,VJ) be a random vector following the flat Dirichlet
distribution (uniform on the set of nonnegative vectors with v1 + · · ·+ vJ = 1). Take
independently k j following the same distribution as k and define

T (x) =
J

∑
j=1

Vjζk j(x). (4.5)

Since Vj is positive, T is increasing and as (Vj) sums up to unity T has mean identity.
Realisations of these warp functions are given in Fig. 4.4b and c for J = 2 and J =
10, respectively. The parameters (k j) were chosen as symmetrised Poisson random
variables: each k j has the law of XY with X Poisson with mean 3 and P(Y = 1) =
P(Y = −1) = 1/2 for Y and X independent. When J = 10 is large, the function T
deviates only mildly from the identity, since a law of large numbers begins to take
effect. In contrast, J = 2 yields functions that are quite different from the identity.
Thus, it can be said that the parameter J controls the variance of the random warp
function T .
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Fig. 4.4: (a) The functions {ζ−3, . . . ,ζ3}; (b) realisations of T defined by (4.5) with
J = 2 and k j symmetrisations of Poisson random variables with mean 3; (c) realisa-
tions of T defined by (4.5) with J = 10 and k j as in (b)
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4.5.2 Bimodal Cox Processes

Let the structural mean measure λ be a mixture of a bimodal Gaussian distribution
(restricted to K = [−16,16]) and a beta background on the interval [−12,12], so that
mass is added at the centre of K but not near the boundary. In symbols this is given
as follows. Let ϕ be the standard Gaussian density and let βα ,β denote the density
of a the beta distribution with parameters α and β . Then λ is chosen as the measure
with density

f (x) =
1− ε

2
[ϕ(x−8)+ϕ(x+8)]+

ε
24

β1.5,1.5

(
x+12

24

)
, x ∈ [−16,16],

(4.6)

where ε ∈ [0,1] is the weight of the beta background. (We ignore the loss of a
negligible amount of mass due to the restriction of the Gaussians to [−16,16].) Plots
of the density and distribution functions are given in Fig. 4.5.
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Fig. 4.5: Density and distribution functions corresponding to (4.6) with ε = 0 and
ε = 0.15
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The main criterion for the quality of our regularised Fréchet–Wasserstein estima-
tor will be its success in discerning the two modes at ±8; these will be smeared by
the phase variation arising from the warp functions.

We next simulated 30 independent Poisson processes with mean measure λ ,
ε = 0.1, and total intensity (expected number of points) τ = 93. In addition, we
generated warp functions as in (4.5) but rescaled to [−16,16]; that is, having the
same law as the functions

x �→ 32T

(
x+16

32

)
−16

from K to K. These cause rather violent phase variation, as can be seen by the plots
of the densities and distribution functions of the conditional measures Λ = T #λ
presented in Fig. 4.6a and b; the warped points themselves are displayed in Fig. 4.6c.

Using these warped point patterns, we construct the regularised Fréchet–
Wasserstein estimator employing the procedure described in Sect. 4.3. Each Π̃i was
smoothed with a Gaussian kernel and bandwidth chosen by unbiased cross valida-
tion. We deviate slightly from the recipe presented in Sect. 4.3 by not restricting the
resulting estimates to the interval [−16,16], but this has no essential effect on the
finite sample performance. The regularised Fréchet–Wasserstein estimator λ̂n serves
as the estimator of the structural mean λ and is shown in Fig. 4.7a. It is contrasted
with λ at the level of distribution functions, as well as with the empirical arithmetic
mean; the latter, the naive estimator, is calculated by ignoring the warping and sim-
ply averaging linearly the (smoothed) empirical distribution functions across the
observations. We notice that λ̂n is rather successful at locating the two modes of λ ,
in contrast with the naive estimator that is more diffuse. In fact, its distribution func-
tion increases approximately linearly, suggesting a nearly constant density instead
of the correct bimodal one.
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Fig. 4.6: (a) 30 warped bimodal densities, with density of λ given by (4.6) in solid
black; (b) their corresponding distribution functions, with that of λ in solid black;
(c) 30 Cox processes, constructed as warped versions of Poisson processes with
mean intensity 93 f using as warp functions the rescaling to [−16.16] of (4.5)
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Fig. 4.7: (a) Comparison between the regularised Fréchet–Wasserstein estimator,
the empirical arithmetic mean, and the true distribution function, including residual
curves centred at y = 3/4; (b) The estimated warp functions; (c) Kernel estimates
of the density function f of the structural mean, based on the warped and registered
point patterns

Estimators of the warp maps T̂i, depicted in Fig. 4.7b, and their inverses, are de-
fined as the optimal maps between λ̂n and the estimated conditional mean measures,
as explained in Sect. 4.3.4. Then we register the point patterns by applying to them

the inverse estimators T̂−1
i (Fig. 4.8). Figure 4.7c gives two kernel estimators of the

density of λ constructed from a superposition of all the warped points and all the
registered ones. Notice that the estimator that uses the registered points is much
more successful than the one using the warped ones in discerning the two den-
sity peaks. This is not surprising after a brief look at Fig. 4.8, where the unwarped,
warped, and registered points are displayed. Indeed, there is very high concentra-
tion of registered points around the true location of the peaks, ±8. This is not the
case for the warped points because of the phase variation that translates the centres
of concentration for each individual observation. It is important to remark that the
fluctuations in the density estimator in Fig. 4.7c are not related to the registration
procedure, and could be reduced by a better choice of bandwidth. Indeed, our pro-
cedure does not attempt to estimate the density, but rather the distribution function.
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Fig. 4.8: Bimodal Cox processes: (a) the observed warped point processes; (b) the
unobserved original point processes; (c) the registered point processes



106 4 Phase Variation and Fréchet Means

Figure 4.9 presents a superposition of the regularised Fréchet–Wasserstein esti-
mators for 20 independent replications of the experiment, contrasted with a similar
superposition for the naive estimator. The latter is clearly seen to be biased around
the two peaks, while the regularised Fréchet–Wasserstein seems approximately un-
biased, despite presenting fluctuations. It always captures the bimodal nature of the
density, as is seen from the two clear elbows in each realisation.

To illustrate the consistency of the regularised Fréchet–Wasserstein estimator λ̂n

for λ as shown in Theorem 4.4.1, we let the number of processes n as well as the
expected number of observed point per process τ to vary. Figures 4.10 and 4.11
show the sampling variation of λ̂n for different values of n and τ . We observe that as
either of these increases, the realisations λ̂n indeed approach λ . The figures suggest
that, in this scenario, the amplitude variation plays a stronger role than the phase
variation, as the effect of τ is more substantial.
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Fig. 4.9: (a) Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n

and the true mean measure λ for 20 independent replications of the experiment;
(b) sampling variation of the arithmetic mean, and the true mean measure λ for the
same 20 replications; (c) superposition of (a) and (b). For ease of comparison, all
three panels include residual curves centred at y = 3/4

4.5.3 Effect of the Smoothing Parameter

In order to work with measures of strictly positive density, the observed point pat-
terns have been smoothed using a kernel function. This necessarily incurs an ad-
ditional bias that depends on the bandwidth σi. The asymptotics (Theorem 4.4.1)
guarantee the consistency of the estimators, in particular the regularised Fréchet–
Wasserstein estimator λ̂n, provided that maxn

i=1 σi → 0. In our simulations, we
choose σi in a data-driven way by employing unbiased cross validation. To gauge
for the effect of the smoothing, we carry out the same estimation procedure but with
σi multiplied by a parameter s. Figure 4.12 presents the distribution function of λ̂n

as a function of s. Interestingly, the curves are nearly identical as long as s ≤ 1,
whereas when s > 1, the bias becomes more substantial.
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These findings are reaffirmed in Fig. 4.13 that show the registered point processes
again as a function of s. We see that only minor differences are present as s varies
from 0.1 to 1, for example, in the grey (8), black (17), and green (19) processes.
When s = 3, the distortion becomes quite more substantial. This phenomenon re-
peats itself across all combinations of n, τ , and s tested.
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Fig. 4.10: Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and
the true mean measure λ for 20 independent replications of the experiment, with ε =
0 and n = 30. Left: τ = 43; middle: τ = 93; right: τ = 143. For ease of comparison,
all three panels include residual curves centred at y = 3/4
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Fig. 4.11: Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and
the true mean measure λ for 20 independent replications of the experiment, with ε =
0 and τ = 93. Left: n = 30; middle: n = 50; right: n = 70. For ease of comparison,
all three panels include residual curves centred at y = 3/4.

4.6 Convergence Rates and a Central Limit Theorem
on the Real Line

Since the conditional mean measures Λi are discretely observed, the rate of conver-
gence of our estimators will be affected by the rate at which the number of observed

points per process N(n)
i increases to infinity. The latter is controlled by the next

lemma, which is valid for any complete separable metric space X .
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Lemma 4.6.1 (Number of Points Grows Linearly) Let N(n)
i = Π (n)

i (X ) denote
the total number of observed points. If τn/ logn → ∞, then there exists a constant
CΠ > 0, depending only on the distribution of Π , such that almost surely

liminf
n→∞

min1≤i≤n N(n)
i

τn
≥CΠ .
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Fig. 4.12: Regularised Fréchet–Wasserstein mean as a function of the smoothing
parameter multiplier s, including residual curves. Here, n = 30 and τ = 143
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Fig. 4.13: Registered point processes as a function of the smoothing parameter mul-
tiplier s. Left: s = 0.1; middle: s = 1; right: s = 3. Here, n = 30 and τ = 43

In particular, there are no empty point processes, so the normalisation is well-
defined. If Π is a Poisson process, then we have the more precise result

lim
n→∞

min1≤i≤n N(n)
i

τn
= 1 almost surely.
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Remark 4.6.2 One can also show that the limit superior of the same quantity is
bounded by a constant C′

Π . If τn/ logn is bounded below, then the same result holds
but with worse constants. If only τn → ∞, then the result holds for each i separately
but in probability.

The proof is a simple application of Chernoff bounds; see page 108 in the supple-
ment.

With Lemma 4.6.1 under our belt, we can replace terms of the order mini N(n)
i by

the more transparent order τn. As in the consistency proof, the idea is to write

F − F̂n = (F −Fn)+(Fn − F̃n)+(F̃n − F̂n)

and control each term separately. The first term corresponds to the phase variation,
and comes from the approximation of the theoretical expectation F by a sample
mean Fn. The second term is associated with the amplitude variation resulting from
observing Λi discretely. The third term can be viewed as the bias incurred by the
smoothing procedure. Accordingly, the rate at which λ̂n converges to λ is a sum
of three separate terms. We recall the standard OP terminology: if Xn and Yn are
random variables, then Xn = OP(Yn) means that the sequence (Xn/Yn) is bounded in
probability, which by definition is the condition

∀ε > 0 ∃M : sup
n
P

(∣∣∣∣Xn

Yn

∣∣∣∣> M

)
< ε .

Instead of Xn = OP(Yn), we will sometimes write Yn ≥ OP(Xn). The former notation
emphasises the condition that Xn grows no faster than Yn, while the latter stresses
that Yn grows at least as fast as Xn (which is of course the same assertion). Finally,
Xn = oP(Yn) means that Xn/Yn → 0 in probability.

Theorem 4.6.3 (Convergence Rates on R) Suppose in addition to Assumptions 3
that d = 1, τn/ logn → ∞ and that Π is either a Poisson process or a binomial
process. Then

W2(λ̂n,λ )≤ OP

(
1√
n

)
+OP

(
1

4
√

τn

)
+OP (σn) , σn =

1
n

n

∑
i=1

σ (n)
i ,

where all the constants in the OP terms are explicit.

Remark 4.6.4 Unlike classical density estimation, no assumptions on the rate of
decay of σn are required, because we only need to estimate the distribution function

and not the derivative. If the smoothing parameter is chosen to be σ (n)
i = [N(n)

i ]−α

for some α > 0 and τn/ logn → ∞, then by Lemma 4.6.1 σn ≤ max1≤i≤n σ (n)
i =

OP(τ−α
n ). For example, if Rosenblatt’s rule α = 1/5 is employed, then the OP(σn)

term can be replaced by OP(1/ 5
√

τn).

One can think about the parameter τ as separating the sparse and dense regimes as in
classical functional data analysis (see also Wu et al. [132]). If τ is bounded, then the



110 4 Phase Variation and Fréchet Means

setting is ultra sparse and consistency cannot be achieved. A sparse regime can be
defined as the case where τn → ∞ but slower than logn. In that case, consistency is
guaranteed, but some point patterns will be empty. The dense regime can be defined
as τn � n2, in which case the amplitude variation is negligible asymptotically when
compared with the phase variation.

The exponent −1/4 of τn can be shown to be optimal without further assump-
tions, but it can be improved to −1/2 if P( fΛ ≥ ε on K) = 1 for some ε > 0,
where fΛ is the density of Λ (see Sect. 4.7). In terms of T , the condition is that
P(T ′ ≥ ε) = 1 for some ε and λ has a density bounded below. When this is the
case, τn needs to compared with n rather than n2 in the next paragraph and the next
theorem.

Theorem 4.6.3 provides conditions for the optimal parametric rate
√

n to be
achieved: this happens if we set σn to be of the order OP(n−1/2) or less and if τn is
of the order n2 or more. But if the last two terms in Theorem 4.6.3 are negligible
with respect to n−1/2, then a sort of central limit theorem holds for λ̂n:

Theorem 4.6.5 (Asymptotic Normality) In addition to the conditions of Theorem
4.6.3, assume that τn/n2 → ∞, σn = oP(n−1/2) and λ possesses an invertible distri-
bution function Fλ on K. Then

√
n
(

tλ̂n
λ − i

)
−→Z weakly in L2(λ ),

for a zero-mean Gaussian process Z with the same covariance operator of T (the
latter viewed as a random element in L2(λ )), namely with covariance kernel

κ(x,y) = cov
{

T (x),T (y)
}
.

If the density fλ exists and is (piecewise) continuous and bounded below on K, then
the weak convergence also holds in L2(K).

In view of Sect. 2.3, Theorem 4.6.5 can be interpreted as asymptotic normality of
λ̂n in the tangential sense:

√
n logλ (λ̂n) converges to a Gaussian random element

in the tangent space Tanλ , which is a subset of L2(λ ). The additional smoothness
conditions allow to switch to the space L2(K), which is independent of the unknown
template measure λ .

See pages 109 and 110 in the supplement for detailed proofs of these theorems.
Below we sketch the main ideas only.

Proof (Proof of Theorem 4.6.3). The quantile formula W2(γ ,θ)= ‖F−1
θ −F−1

γ ‖L2(0,1)
from Sect. 1.5 and the average quantile formula for the Fréchet mean (Sect. 3.1.4)
show that the oracle empirical mean F−1

λn
follows a central limit theorem in L2(0,1).

Since we work in the Hilbert space L2(0,1), Fréchet means are simple averages,
so the errors in the Fréchet mean have the same rate as the errors in the Fréchet
functionals. The smoothing term is easily controlled by Lemma 4.4.2.

Controlling the amplitude term is more difficult. Bounds can be given using the
machinery sketched in Sect. 4.7, but we give a more elementary proof by reducing
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to the 1-Wasserstein case (using (2.2)), which can be more easily handled in terms
of distributions functions (Corollary 1.5.3).

Proof (Proof of Theorem 4.6.5). The hypotheses guarantee that the amplitude and
smoothing errors are negligible and

√
n
(

F−1
λ̂n

−F−1
λ

)
→ GP weakly in L2(0,1),

where GP is the Gaussian process defined in the proof of Theorem 4.6.3. One then
employs a composition with Fλ .

4.7 Convergence of the Empirical Measure and Optimality

One may find the term OP(1/ 4
√

τn) in Theorem 4.6.3 to be somewhat surprising,
and expect that it ought to be OP(1/

√
τn). The goal of this section is to show why

the rate 1/ 4
√

τn is optimal without further assumptions and discuss conditions under
which it can be improved to the optimal rate 1/

√
τn. For simplicity, we concentrate

on the case τn = n and assume that the point process Π is binomial; the Poisson
case being easily obtained from the simplified one (using Lemma 4.6.1). We are
thus led to study rates of convergence of empirical measures in the Wasserstein
space. That is to say, for a fixed exponent p ≥ 1 and a fixed measure μ ∈ Wp(X ),
we consider independent random variables X1, . . . with law μ and the empirical
measure μn = n−1 ∑n

i=1 δ{Xi}. The first observation is that EWp(μ ,μn)→ 0:

Lemma 4.7.1 Let μ ∈ P(X ) be any measure. Then

EWp(μ ,μn)

{
= ∞ μ /∈ Wp(X )

→ 0 μ ∈ Wp(X ).

Proof. This result has been established in an almost sure sense in Proposition 2.2.6.
To extend to convergence in expectation observe that

W p
p (μ ,μn)≤

∫
X 2

‖x− y‖p dμ ⊗μn(x,y) =
1
n

n

∑
i=1

∫
X
‖x−Xi‖p dμ(x).

Thus, the random variable 0 ≤ Yn = W p
p (μ ,μn) is bounded by the sample average

Zn of a random variable V =
∫
X ‖x−X1‖p dμ(x) that has a finite expectation. A

version of the dominated converge theorem (given on page 111 in the supplement)
implies that EYn → 0. Now invoke Jensen’s inequality.

Remark 4.7.2 The sequence EWp(μ ,μn) is not monotone, as the simple example
μ = (δ0 +δ1)/2 shows (see page 111 in the supplement).

The next question is how quickly EWp(μ ,μn) vanishes when μ ∈Wp(X ). We shall
begin with two simple general lower bounds, then discuss upper bounds in the one-
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dimensional case, put them in the context of Theorem 4.6.3, and finally briefly touch
the d-dimensional case.

Lemma 4.7.3 (
√

n Lower Bound) Let μ ∈ P(X ) be nondegenerate. Then there
exists a constant c(μ)> 0 such that for all p ≥ 1 and all n

EWp(μn,μ)≥
c(μ)√

n
.

Proof. Let X ∼ μ and let a �= b be two points in the support μ . Consider f (x) =
min(1,‖x−a‖), a bounded 1-Lipschitz function such that f (a) = 0 < f (b). Then

√
nEWp(μn,μ)≥

√
nEW1(μn,μ)≥E

∣∣∣∣∣n−1/2
n

∑
i=1

f (Xi)−E f (X)

∣∣∣∣∣→
√

2var f (X)

π
> 0

by the central limit theorem and the Kantorovich–Rubinstein theorem (1.11).

For discrete measures, the rates scale badly with p. More generally:

Lemma 4.7.4 (Separated Support) Suppose that there exist Borel sets A,B ⊂ X
such that μ(A∪B) = 1,

μ(A)μ(B)> 0 and dmin = inf
x∈A,y∈B

‖x− y‖> 0.

Then for any p ≥ 1 there exists cp(μ)> 0 such that EWp(μn,μ)≥ cp(μ)n−1/(2p).

Any nondegenerate finitely discrete measure μ satisfies this condition, and so do
“non-pathological” countably discrete ones. (An example of a “pathological” mea-
sure is one assigning positive mass to any rational number.)

Proof. Let k ∼ B(n,q = μ(A)) denote the number of points from the sample
(X1, . . . ,Xn) that fall in A. Then a mass of |k/n− q| must travel between A and B,
a distance of at least dmin. Thus, W p

p (μn,μ) ≥ dp
min|k/n− q|, and the result follows

from the central limit theorem for k; see page 112 in the supplement for the full
details.

These lower bounds are valid on any separable metric space. On the real line, it is
easy to obtain a sufficient condition for the optimal rate n−1/2 to be attained for
W1: since Fn(t) ∼ B(n,F(t)) has variance F(t)(1−F(t))/n, we have (by Fubini’s
theorem and Jensen’s inequality)

EW1(μn,μ) =
∫
R

E|Fn(t)−F(t)|dt ≤ n−1/2
∫
R

√
F(t)(1−F(t))dt,

so that W1(μn,μ) is of the optimal order n−1/2 if

J1(μ) :=
∫
R

√
F(t)(1−F(t))dt < ∞.
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Since the integrand is bounded by 1/2, this is certainly satisfied if μ is compactly
supported. The J1 condition is essentially a moment condition, since for any δ > 0,
we have for X ∼ μ that E|X |2+δ <∞=⇒ J1(μ)<∞=⇒E|X |2 <∞. It turns out that
this condition is necessary, and has a more subtle counterpart for any p ≥ 1. Let f
denote the density of the absolutely continuous part of μ (so f ≡ 0 if μ is discrete).

Theorem 4.7.5 (Rate of Convergence of Empirical Measures) Let p≥ 1 and μ ∈
Wp(R). The condition

Jp(μ) =
∫
R

[F(t)(1−F(t))]p/2

[ f (t)]p−1 dt < ∞, (00 = 1)

is necessary and sufficient for EWp(μn,μ) = O(n−1/2).

See Bobkov and Ledoux [25, Theorem 5.10] for a proof for the Jp condition, and
Theorems 5.1 and 5.3 for the values of the constants and a stronger result.

When p> 1, for Jp(μ) to be finite, the support of μ must be connected; this is not
needed when p= 1. Moreover, the Jp condition is satisfied when f is bounded below
(in which case the support of μ must be compact). However, smoothness alone does
not suffice, even for measures with positive density on a compact support. More
precisely, we have:

Proposition 4.7.6 For any rate εn → 0 there exists a measure μ on [−1,1] with
positive C∞ density there, and such that for all n

EWp(μn,μ)≥C(p,μ)n−1/(2p)εn.

The rate n−1/(2p) from Lemma 4.7.4 is the worst among compactly supported mea-
sures on R. Indeed, by Jensen’s inequality and (2.2), for any μ ∈ P([0,1]),

EWp(μn,μ)≤
[
EW p

p (μn,μ)
]1/p ≤ [EW1(μn,μ)]1/p ≤ n−1/(2p).

The proof of Proposition 4.7.6 is done by “smoothing” the construction in
Lemma 4.7.4, and is given on page 113 in the supplement.

Let us now put this in the context of Theorem 4.6.3. In the binomial case, since

each Π (n)
i and each Λi are independent, we have

EW2(Λi,Λ̃i)|Λi ≤
√

2J2(Λi)
1√
τn
.

(In the Poisson case, we need to condition on N(n)
i and then estimate its inverse

square root as is done in the proof of Theorem 4.6.3.) Therefore, a sufficient con-
dition for the rate 1/

√
τn to hold is that E

√
J2(Λ) < ∞ and a necessary condition

is that P(
√

J2(Λ) < ∞) = 1. These hold if there exists δ > 0 such that with prob-
ability one Λ has a density bounded below by δ . Since Λ = T #λ , this will happen
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provided that λ itself has a bounded below density and T has a bounded below
derivative. Bigot et al. [23] show that the rate

√
τn cannot be improved.

We conclude by proving a lower bound for absolutely continuous measures and
stating, without proof, an upper bound.

Proposition 4.7.7 Let μ ∈W1(R
d) have an absolutely continuous part with respect

to Lebesgue measure, and let νn be any discrete measure supported on n points (or
less). Then there exists a constant C(μ)> 0 such that

Wp(μ ,νn)≥W1(μ ,νn)≥C(μ)n−1/d .

Proof. Let f be the density of the absolutely continuous part μc, and observe that
for some finite number M,

2δ = μc({x : f (x)≤ M})> 0.

Let x1, . . . ,xn be the support points of νn and ε > 0. Let μc,M be the restriction of
μc to the set where the density is smaller than M. The union of balls Bε(xi) has
μc,M-measure of at most

M
n

∑
i=1

Leb(Bε(xi)) = MnεdLebd(B1(0)) = MnεdCd = δ ,

if εd = δ (nMCd)
−1. Thus, a mass 2δ −δ = δ must travel more than ε from νn to μ

in order to cover μc,M . Hence

W1(νn,μ)≥ δε = δ (δ/MCd)
1/d n−1/d .

The lower bound holds because we need ε−d balls of radius ε in order to cover
a sufficiently large fraction of the mass of μ . The determining quantity for upper
bounds on the empirical Wasserstein distance is the covering numbers

N(μ ,ε ,τ) = minimal number of balls whose union has μ mass ≥ 1− τ .

Since μ is tight, these are finite for all ε ,τ > 0, and they increase as ε and τ approach
zero. To put the following bound in context, notice that if μ is compactly supported
on R

d , then N(μ ,ε ,0)≤ Kε−d .

Theorem 4.7.8 If for some d>2p, N(μ ,ε ,εd p/(d−2p))≤Kε−d, then EWp≤Cpn−1/d.

Comparing this with the lower bound in Lemma 4.7.4, we see that in the high-
dimensional regime d > 2p, absolutely continuous measures have a worse rate than
discrete ones. In the low-dimensional regime d < 2p, the situation is opposite. We
also obtain that for d > 2 and a compactly supported absolutely continuous μ ∈
W1(R

d), EW1(μn,μ)∼ n−1/d .
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4.8 Bibliographical Notes

Our exposition in this chapter closely follows the papers Panaretos and Zemel [100]
and Zemel and Panaretos [134].

Books on functional data analysis include Ramsay and Silverman [109, 110],
Ferraty and Vieu [51], Horváth and Kokoszka [70], and Hsing and Eubank [71], and
a recent review is also available (Wang et al. [127]). The specific topic of amplitude
and phase variation is discussed in [110, Chapter 7] and [127, Section 5.2]. The next
paragraph gives some selective references.

One of the first functional registration techniques employed dynamic program-
ming (Wang and Gasser [128]) and dates back to Sakoe and Chiba [118]. Landmark
registration consists of identifying salient features for each curve, called landmarks,
and aligning them (Gasser and Kneip [61]; Gervini and Gasser [63]). In pairwise
synchronisation (Tang and Müller [122]) one aligns each pair of curves and then
derives an estimator of the warp functions by linear averaging of the pairwise reg-
istration maps. Another class of methods involves a template curve, to which each
observation is registered, minimising a discrepancy criterion; the template is then
iteratively updated (Wang and Gasser [129]; Ramsay and Li [108]). James [72] de-
fines a “feature function” for each curve and uses the moments of the feature func-
tion to guarantee identifiability. Elastic registration employs the Fisher–Rao metric
that is invariant to warpings and calculates averages in the resulting quotient space
(Tucker et al. [123]). Other techniques include semiparametric modelling (Rønn
[115]; Gervini and Gasser [64]) and principal components registration (Kneip and
Ramsay [82]). More details can be found in the review article by Marron et al. [90].
Wrobel et al. [131] have recently developed a registration method for functional
data with a discrete flavour. It is also noteworthy that a version of the Wasserstein
metric can also be used in the functional case (Chakraborty and Panaretos [34]).

The literature on the point processes case is more scarce; see the review by Wu
and Srivastava [133].

A parametric version of Theorem 4.2.4 was first established by Bigot and
Klein [22, Theorem 5.1] in R

d , extended to a compact nonparametric formulation
in Zemel and Panaretos [134]. There is an infinite-dimensional linear version in
Masarotto et al. [91]. The current level of generality appears to be new.

Theorem 4.4.1 is a stronger version of Panaretos and Zemel [100, Theorem 1]
where it was assumed that τn must diverge to infinity faster than logn. An analo-
gous construction under the Bayesian paradigm can be found in Galasso et al. [58].
Optimality of the rates of convergence in Theorem 4.6.3 is discussed in detail by
Bigot et al. [23], where finiteness of the functional J2 (see Sect. 4.7) is assumed and

consequently OP(τ
−1/4
n ) is improved to OP(τ

−1/2
n ).

As far as we know, Theorem 4.6.5 (taken from [100]) is the first central limit the-
orem for Fréchet means in Wasserstein space. When the measures Λi are observed
exactly (no amplitude variation: τn = ∞ and σ = 0) Kroshnin et al. [84] have re-
cently proven a central limit theorem for random Gaussian measures in arbitrary
dimension, extending a previous result of Agueh and Carlier [3]. It seems likely that
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in a fully nonparametric setting, the rates of convergence (compare Theorem 4.6.3)
might be slower than

√
n; see Ahidar-Coutrix et al. [4].

The magnitude of the amplitude variation in Theorem 4.6.3 pertains to the rates
of convergence of EWp(μn,μ) to zero (Sect. 4.7). This is a topic of intense research,
dating back to the seminal paper by Dudley [46], where a version of Theorem 4.7.8
with p = 1 is shown for the bounded Lipschitz metric. The lower bounds proven in
this section were adapted from [46], Fournier and Guillin [54], and Weed and Bach
[130].

The version of Theorem 4.7.8 given here can be found in [130] and extends
Boissard and Le Gouic [27]. Both papers [27, 130] work in a general setting of com-
plete separable metric spaces. An additional logn term appears in the limiting case
d = 2p, as already noted (for p = 1) by [46], and the classical work of Ajtai et al. [5]
for μ uniform on [0,1]2. More general results are available in [54]. A longer (but far
from being complete) bibliography is given in the recent review by Panaretos and
Zemel [101, Subsection 3.3.1], including works by Barthe, Dobrić, Talagrand, and
coauthors on almost sure results and deviation bounds for the empirical Wasserstein
distance.

The J1 condition is due to del Barrio et al. [43], who showed it to be necessary
and sufficient for the empirical process

√
n(Fn −F) to converge in distribution to

B◦F , with B Brownian bridge. The extension to 1 ≤ p ≤ ∞ (and a lot more) can be
found in Bobkov and Ledoux [25], employing order statistics and beta distributions
to reduce to the uniform case. Alternatively, one may consult Mason [92], who uses
weighted approximations to Brownian bridges.

An important aspect that was not covered here is that of statistical inference of
the Wasserstein distance on the basis of the empirical measure. This is a challeng-
ing question and results by del Barrio, Munk, and coauthors are available for one-
dimensional, elliptical, or discrete measures, as explained in [101, Section 3].
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Chapter 5
Construction of Fréchet Means and
Multicouplings

When given measures μ1, . . . ,μN are supported on the real line, computing their
Fréchet mean μ̄ is straightforward (Sect. 3.1.4). This is in contrast to the multivari-
ate case, where, apart from the important yet special case of compatible measures,
closed-form formulae are not available. This chapter presents an iterative procedure
that provably approximates at least a Karcher mean with mild restrictions on the
measures μ1, . . . ,μN . The algorithm is based on the differentiability properties of
the Fréchet functional developed in Sect. 3.1.6 and can be interpreted as classical
steepest descent in the Wasserstein space W2(R

d). It reduces the problem of finding
the Fréchet mean to a succession of pairwise transport problems, involving only the
Monge–Kantorovich problem between two measures. In the Gaussian case (or any
location-scatter family), the latter can be done explicitly, rendering the algorithm
particularly appealing (see Sect. 5.4.1).

This chapter can be seen as a complementary to Chap. 4. On the one hand, one
can use the proposed algorithm to construct the regularised Fréchet–Wasserstein
estimator λ̂n that approximates a population version (see Sect. 4.3). On the other
hand, it could be that the object of interest is the sample μ1, . . . ,μN itself, but that
the latter is observed with some amount of noise. If one only has access to proxies

μ̂1, . . . , μ̂N , then it is natural to use their Fréchet mean ̂̄μ as an estimator of μ̄ .
The proposed algorithm can then be used, in principle, in order to construct μ̄ , and
the consistency framework of Sect. 4.4 then allows to conclude that if each μ̂ i is
consistent, then so is ̂̄μ .

After presenting the algorithm in Sect. 5.1, we make some connections to Pro-
crustes analysis in Sect. 5.2. A convergence analysis of the algorithm is carried out
in Sect. 5.3, after which examples are given in Sect. 5.4. An extension to infinitely
many measures is sketched in Sect. 5.5.
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5.1 A Steepest Descent Algorithm for the Computation
of Fréchet Means

Throughout this section, we assume that N is a fixed integer and consider a fixed
collection

μ1, . . . ,μN ∈ W2(R
d) with μ1 absolutely continuous with bounded density,

(5.1)
whose unique (Proposition 3.1.8) Fréchet mean μ̄ is sought. It has been established
that if γ is absolutely continuous then the associated Fréchet functional

F(γ) =
1

2N

n

∑
i=1

W 2
2 (μ i,γ), γ ∈ W2(R

d),

has Fréchet derivative (Theorem 3.1.14)

F ′(γ) =− 1
N

N

∑
i=1

logγ(μ
i) =− 1

N

N

∑
i=1

(
tμi
γ − i

)
∈ Tanγ (5.2)

at γ . Let γ j ∈W2(R
d) be an absolutely continuous measure, representing our current

estimate of the Fréchet mean at step j. Then it makes sense to introduce a step size
τ j > 0, and to follow the steepest descent of F given by the negative of the gradient:

γ j+1 = expγ j

(
−τ jF

′(γ j)
)
=

[
i+ τ j

1
N

N

∑
i=1

logγ(μ
i)

]
#γ j =

[
i+ τ j

1
N

N

∑
i=1

(tμ i

γ j − i)

]
#γ j.

In order to employ further descent at γ j+1, it needs to be verified that F is differen-
tiable at γ j+1, which amounts to showing that the latter stays absolutely continuous.
This will happen for all but countably many values of the step size τ j, but necessarily
if the latter is contained in [0,1]:

Lemma 5.1.1 (Regularity of the Iterates) If γ0 is absolutely continuous and τ =
τ0 ∈ [0,1], then γ1 = expγ0

(−τ0F ′(γ0)) is also absolutely continuous.

The idea is that push-forwards of γ0 under monotone maps are absolutely continuous
if and only if the monotonicity is strict, a property preserved by averaging. See page
118 in the supplement for the details.

Lemma 5.1.1 suggests that the step size should be restricted to [0,1]. The next re-
sult suggests that the objective function essentially tells us that the optimal step size,
achieving the maximal reduction of the objective function (thus corresponding to an
approximate line search), is exactly equal to 1. It does not rely on finite-dimensional
arguments and holds when replacing R

d by a separable Hilbert space.
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Lemma 5.1.2 (Optimal Stepsize) If γ0 ∈ W2(R
d) is absolutely continuous, then

F(γ1)−F(γ0)≤−‖F ′(γ0)‖2
[

τ − τ2

2

]

and the bound on the right-hand side of the last display is minimised when τ = 1.

Proof. Let Si = tμ i

γ0 be the optimal map from γ0 to μ i, and set Wi = Si − i. Then

2NF(γ0) =
N

∑
i=1

W 2
2 (γ0,μ i) =

N

∑
i=1

∫
Rd
‖Si − i‖2 dγ0 =

N

∑
i=1

‖Wi‖2
L 2(γ0)

, (5.3)

Both γ1 and μ i can be written as push-forwards of γ0 and (2.3) gives the bound

W 2
2 (γ1,μ i)≤

∫
Rd

∥∥∥∥∥
[
(1− τ)i+

τ
N

N

∑
j=1

S j

]
−Si

∥∥∥∥∥
2

Rd

dγ0 =

∥∥∥∥∥−Wi +
τ
N

N

∑
j=1

Wj

∥∥∥∥∥
2

L 2(γ0)

.

For brevity, we omit the subscript L 2(γ0) from the norms and inner products. De-
veloping the squares, summing over i = 1, . . . ,N and using (5.3) gives

2NF(γ1)≤
N

∑
i=1

‖Wi‖2 −2
τ
N

N

∑
i, j=1

〈
Wi,Wj

〉
+Nτ2

∥∥∥∥∥
N

∑
j=1

1
N

Wj

∥∥∥∥∥
2

= 2NF(γ0)−2Nτ

∥∥∥∥∥
N

∑
i=1

1
N

Wi

∥∥∥∥∥
2

+Nτ2

∥∥∥∥∥
N

∑
i=1

1
N

Wi

∥∥∥∥∥
2

,

and recalling that Wi = Si − i yields

F(γ1)−F(γ0)≤
τ2 −2τ

2

∥∥∥∥∥
1
N

N

∑
i=1

Wi

∥∥∥∥∥
2

=−‖F ′(γ0)‖2
[

τ − τ2

2

]
.

To conclude, observe that τ − τ2/2 is maximised at τ = 1.

In light of Lemmata 5.1.1 and 5.1.2, we will always take τ j = 1. The resulting
iteration is summarised as Algorithm 1. A first step in the convergence analysis is
that the sequence (F(γ j)) is nonincreasing and that for any integer k,

1
2

k

∑
j=0

‖F ′(γ j)‖2 ≤
k

∑
j=0

F(γ j)−F(γ j+1) = F(γ0)−F(γk+1)≤ F(γ0).

As k →∞, the infinite sum on the left-hand side converges, so ‖F ′(γ j)‖2 must vanish
as j → ∞.
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Remark 5.1.3 The proof of Proposition 3.1.2 suggests a generalisation of Algo-
rithm 1 to arbitrary measures in W2(R

d) even if none are absolutely continuous.
One can verify that Lemmata 5.1.2 and 5.3.5 (below) also hold in this setup, so it
may be that convergence results also apply in this setup. The iteration no longer has
the interpretation as steepest descent, however.

Algorithm 1 Steepest descent via Procrustes analysis

(A) Set a tolerance threshold ε > 0.
(B) For j = 0, let γ j be an arbitrary absolutely continuous measure.

(C) For i = 1, . . . ,N solve the (pairwise) Monge problem and find the optimal transport map tμ i

γ j

from γ j to μ i.

(D) Define the map Tj = N−1 ∑N
i=1 tμ i

γ j .
(E) Set γ j+1 = Tj#γ j , i.e. push-forward γ j via Tj to obtain γ j+1.

(F) If ‖F ′(γ j+1)‖ < ε , stop, and output γ j+1 as the approximation of μ̄ and tμ i

γ j+1 as the approxi-

mation of tμ i

μ̄ , i = 1, . . . ,N. Otherwise, return to step (C).

5.2 Analogy with Procrustes Analysis

Algorithm 1 is similar in spirit to another procedure, generalised Procrustes anal-
ysis, that is used in shape theory. Given a subset B ⊆ R

d , most commonly a finite
collection of labelled points called landmarks, an interesting question is how to
mathematically define the shape of B. One way to reach such a definition is to dis-
regard those properties of B that are deemed irrelevant for what one considers this
shape should be; typically, these would include its location, its orientation, and/or its
scale. Accordingly, the shape of B can be defined as the equivalence class consist-
ing of all sets obtained as gB, where g belongs to a collection G of transformations
of Rd containing all combinations of rotations, translations, dilations, and/or reflec-
tions (Dryden and Mardia [45, Chapter 4]).

If B1 and B2 are two collections of k landmarks, one may define the distance
between their shapes as the infimum of ‖B1 − gB2‖2 over the group G . In other
words, one seeks to register B2 as close as possible to B1 by using elements of the
group G , with distance being measured as the sum of squared Euclidean distances
between the transformed points of B2 and those of B1. In a sense, one can think about
the shape problem and the Monge problem as dual to each other. In the former, one
is given constraints on how to optimally carry out the registration of the points with
the cost being judged by how successful the registration procedure is. In the latter,
one imposes that the registration be done exactly, and evaluates the cost by how
much the space must be deformed in order to achieve this.

The optimal g and the resulting distance can be found in closed-form by means
of ordinary Procrustes analysis [45, Section 5.2]. Suppose now that we are given
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N > 2 collections of points, B1, . . . ,BN , with the goal of minimising the sum of
squares ‖giBi − g jB j‖2 over gi ∈ G .1 As in the case of Fréchet means in W2(R

d)
(Sect. 3.1.2), there is a formulation in terms of sum of squares from the average
N−1 ∑g jB j. Unfortunately, there is no explicit solution for this problem when d ≥ 3.
Like Algorithm 1, generalised Procrustes analysis (Gower [66]; Dryden and Mardia
[45, p. 90]) tackles this “multimatching” setting by iteratively solving the pairwise
problem as follows. Choose one of the configurations as an initial estimate/template,
then register every other configuration to the template, employing ordinary Pro-
crustes analysis. The new template is then given by the linear average of the regis-
tered configurations, and the process is iterated subsequently.

Paralleling this framework, Algorithm 1 iterates the two steps of registration and
linear averaging given the current template γ j, but in a different manner:

(1) Registration: by finding the optimal transportation maps tμ i

γ j , we identify each

μ i with the element tμ i

γ j − i= logγ j
(μ i). In this sense, the collection (μ1, . . . ,μN)

is viewed in the common coordinate system given by the tangent space at the
template γ j and is registered to it.

(2) Averaging: the registered measures are averaged linearly, using the common
coordinate system of the registration step (1), as elements in the linear space
Tanγ j . The linear average is then retracted back onto the Wasserstein space via
the exponential map to yield the estimate at the ( j+1)-th step, γ j+1.

Notice that in the Procrustes sense, the maps that register each μ i to the template

γ j are t
γ j

μ i , the inverses of tμ i

γ j . We will not use the term “registration maps” in the
sequel, to avoid possible confusion.

5.3 Convergence of Algorithm 1

In order to tackle the issue of convergence, we will use an approach that is specific
to the nature of optimal transport. This is because the Hessian-type arguments that
are used to prove similar convergence results for steepest descent on Riemannian
manifolds (Afsari et al. [1]) or Procrustes algorithms (Le [86]; Groisser [67]) do not
apply here, since the Fréchet functional may very well fail to be twice differentiable.

In fact, even in Euclidean spaces, convergence of steepest descent usually re-
quires a Lipschitz bound on the derivative of F (Bertsekas [19, Subsection 1.2.2]).
Unfortunately, F is not known to be differentiable at discrete measures, and these
constitute a dense set in W2; consequently, this Lipschitz condition is very unlikely
to hold. Still, this specific geometry of the Wasserstein space affords some advan-
tages; for instance, we will place no restriction on the starting point for the iteration,
except that it be absolutely continuous; and no assumption on how “spread out” the
collection μ1, . . . ,μN is will be necessary as in, for example, [1, 67, 86].

1 One needs to add an additional constraint to prevent registering all the collections to the origin.
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Theorem 5.3.1 (Limit Points are Karcher Means) Let μ1, . . . ,μN ∈ W2(R
d) be

probability measures and suppose that one of them is absolutely continuous with
a bounded density. Then, the sequence generated by Algorithm 1 stays in a com-
pact set of the Wasserstein space W2(R

d), and any limit point of the sequence is a
Karcher mean of (μ1, . . . ,μN).

Since the Fréchet mean μ̄ is a Karcher mean (Proposition 3.1.8), we obtain imme-
diately:

Corollary 5.3.2 (Wasserstein Convergence of Steepest Descent) Under the con-
ditions of Theorem 5.3.1, if F has a unique stationary point, then the sequence {γ j}
generated by Algorithm 1 converges to the Fréchet mean of {μ1, . . . ,μN} in the
Wasserstein metric,

W2(γ j, μ̄)−→0, j → ∞.

Alternatively, combining Theorem 5.3.1 with the optimality criterion Theorem
3.1.15 shows that the algorithm converges to μ̄ when the appropriate assumptions
on {μ i} and the Karcher mean μ = limγ j are satisfied. This allows to conclude that
Algorithm 1 converges to the unique Fréchet mean when μ i are Gaussian measures
(see Theorem 5.4.1).

The proof of Theorem 5.3.1 is rather elaborate, since we need to use specific
methods that are tailored to the Wasserstein space. Before giving the proof, we state
two important consequences. The first is the uniform convergence of the optimal

maps tμ i

γ j to tμ i

μ̄ on compacta. This convergence does not immediately follow from
the Wasserstein convergence of γ j to μ̄ , and is also established for the inverses. Both
the formulation and the proof of this result are similar to those of Theorem 4.4.3.

Theorem 5.3.3 (Uniform Convergence of Optimal Maps) Under the conditions
of Corollary 5.3.2, there exist sets A,B1, . . . ,BN ⊆R

d such that μ̄(A)= 1= μ1(B1)=
· · ·= μN(BN) and

sup
Ω1

∥∥∥tμ i

γ j − tμ i

μ̄

∥∥∥ j→∞−→ 0, sup
Ω i

2

∥∥∥t
γ j

μ i − tμ̄
μ i

∥∥∥ j→∞−→ 0, i = 1, . . . ,N,

for any pair of compacta Ω1 ⊆A, Ω i
2 ⊆Bi. If in addition all the measures μ1, . . . ,μN

have the same support, then one can choose all the sets Bi to be the same.

The other consequence is convergence of the optimal multicouplings.

Corollary 5.3.4 (Convergence of Multicouplings) Under the conditions of Corol-
lary 5.3.2, the sequence of multicouplings

(
tμ1

γ j , . . . t
μn

γ j

)
#γ j

of {μ1, . . . ,μN} converges (in Wasserstein distance on (Rd)N) to the optimal multi-

coupling (tμ1

μ , . . . tμn

μ )#μ .

The proofs of Theorem 5.3.3 and Corollary 5.3.4 are given at the end of the present
section.
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The proof of Theorem 5.3.1 is achieved by establishing the following facts:

1. The sequence (γ j) stays in a compact subset of W2(R
d) (Lemma 5.3.5).

2. Any limit of (γ j) is absolutely continuous (Proposition 5.3.6 and the paragraph
preceding it).

3. Algorithm 1 acts continuously on its argument (Corollary 5.3.8).

Since it has already been established that ‖F ′(γ j)‖ → 0, these three facts indeed
suffice.

Lemma 5.3.5 The sequence generated by Algorithm 1 stays in a compact subset of
the Wasserstein space W2(R

d).

Proof. For all j ≥ 1, γ j takes the form Mn#π , where MN(x1, . . . ,xN) = x and π is
a multicoupling of μ1, . . . ,μN . The compactness of this set has been established in
Step 2 of the proof of Theorem 3.1.5; see page 63 in the supplement, where this is
done in a more complicated setup.

A closer look at the proof reveals that a more general result holds true. Let A
denote the steepest descent iteration, that is, A (γ j) = γ j+1. Then the image of A ,
{A μ : μ ∈ W2(R

d) absolutely continuous} has a compact closure in W2(R
d). This

is also true if Rd is replaced by a separable Hilbert space.
In order to show that a weakly convergent sequence (γ j) of absolutely continuous

measures has an absolutely continuous limit γ , it suffices to show that the densities
of γ j are uniformly bounded. Indeed, if C is such a bound, then for any open O⊆R

d ,
liminfγk(O) ≤CLeb(O), so γ(O) ≤CLeb(O) by the portmanteau Lemma 1.7.1. It
follows that γ is absolutely continuous with density bounded by C. We now show
that such C can be found that applies to all measures in the image of A , hence to all
sequences resulting from iterations of Algorithm 1.

Proposition 5.3.6 (Uniform Density Bound) For each i = 1, . . . ,N denote by gi

the density of μ i (if it exists) and ‖gi‖∞ its supremum, taken to be infinite if gi does
not exist (or if gi is unbounded). Let γ0 be any absolutely continuous probability
measure. Then the density of γ1 = A (γ0) is bounded by the 1/d-th harmonic mean
of ‖gi‖∞,

Cμ =

[
1
N

N

∑
i=1

1

‖gi‖1/d
∞

]−d

.

The constant Cμ depends only on the measures (μ1, . . . ,μN), and is finite as long as
one μ i has a bounded density, since Cμ ≤ Nd‖gi‖∞ for any i.

Proof. Let hi be the density of γi. By the change of variables formula, for γ0-almost
any x

h1(t
γ1
γ0(x)) =

h0(x)

det∇tγ1
γ0(x)

; gi(tμ i

γ0 (x)) =
h0(x)

det∇tμ i

γ0 (x)
, when gi exists.
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(Convex functions are twice differentiable almost surely (Villani [125, Theorem
14.25]), hence these gradients are well-defined γ0-almost surely.) We seek a lower
bound on the determinant of ∇tγ1

γ0(x), which by definition equals

N−d det
N

∑
i=1

∇tμ i

γ0 (x).

Such a bound is provided by the Brunn–Minkowski inequality (Stein and Shakarchi
[121, Section 1.5]) for symmetric positive semidefinite matrices

[det(A+B)]1/d ≥ [detA]1/d +[detB]1/d ,

which, applied inductively, yields

[
det∇tγ1

γ0(x)
]1/d ≥ 1

N

N

∑
i=1

[
det∇tμ i

γ0 (x)
]1/d

.

From this, we obtain an upper bound for h1:

1

h1/d
1 (tγ1

γ0(x))
=

det1/d ∑N
i=1 ∇tμ i

γ0 (x)

Nh1/d
0 (x)

≥ 1
N

N

∑
i=1

1

[gi(tμ i

γ0 (x))]
1/d

≥ 1
N

N

∑
i=1

1

‖gi‖1/d
∞

=C−1/d
μ .

Let Σ be the set of points where this inequality holds, then γ0(Σ) = 1. Hence

γ1(t
γ1
γ0(Σ)) = γ0[(t

γ1
γ0)

−1(tγ1
γ0(Σ))]≥ γ0(Σ) = 1.

Thus, γ1-almost surely and for all i,

h1(y)≤Cμ .

The third statement (continuity of A ) is much more subtle to establish, and its rather
lengthy proof is given next. In view of Proposition 5.3.6, the uniform bound on the
densities is not a hindrance for the proof of convergence of Algorithm 1.

Proposition 5.3.7 Let (γn) be a sequence of absolutely continuous measures with
uniformly bounded densities, suppose that W2(γn,γ)→ 0, and let

η j =
(

tμ1

γ j , . . . t
μn

γ j , i
)

#γ j, η =
(

tμ1

γ , . . . tμn

γ , i
)

#γ .

Then η j → η in W2([R
d ]N+1).

Proof. As has been established in the discussion before Proposition 5.3.6, the limit
γ must be absolutely continuous, so η is well-defined.

In view of Theorem 2.2.1, it suffices to show that if h : (Rd)N+1 → R is any
continuous nonnegative function such that
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|h(t1, . . . , tN ,y)| ≤
2
N

N

∑
i=1

‖ti‖2 +2‖y‖2,

then
∫
Rd

gn dγn =
∫
(Rd)N+1

hdηn →
∫
(Rd)N+1

hdη =
∫
Rd

gdγ , gn(x)=h(tμ1

γ j (x), . . . t
μn

γ j (x),x),

and g defined analogously. The proof, given in full detail on page 124 of the supple-
ment, is sketched here.

Step 1: Truncation. Since γn converge in the Wasserstein space, they satisfy the
uniform integrability (2.4) and absolute continuity (2.7) by Theorem 2.2.1. Conse-
quently, gn,R = min(gn,4R) is uniformly close to gn:

sup
n

∫
[gn(x)−gn,R(x)]dγn(x)→ 0, R → ∞.

We may thus replace gn by a bounded version gn,R.

Step 2: Convergence of gn to g. By Proposition 1.7.11, the optimal maps tμ i

γn

converge to tμ i

γ and (since h is continuous), gn → g uniformly on “nice” sets Ω ⊆
E = suppγ . Write
∫

gn,R dγn −
∫

gR dγ =
∫

gR d(γn − γ)+
∫

Ω
(gn,R −gR)dγn +

∫
Rd\Ω

(gn,R −gR)dγn.

Step 3: Bounding the first two integrals. The first integral vanishes as n → ∞,
by the portmanteau Lemma 1.7.1, and the second by uniform convergence.

Step 4: Bounding the third integral. The integrand is bounded by 8R, so it suf-
fices to bound the measures of Rd \Ω . This is a bit technical, and uses the uniform
density bound on (γn) and the portmanteau lemma.

Corollary 5.3.8 (Continuity of A ) If W2(γn,γ)→ 0 and γn have uniformly bounded
densities, then A (γn)→ A (γ).

Proof. Choose h in the proof of Proposition 5.3.7 to depend only on y.

Proof (Proof of Corollary 5.3.4). Choose h in the proof of Proposition 5.3.7 to de-
pend only on t1, . . . , tn.

Proof (Proof of Theorem 5.3.3). Let E = suppμ̄ and set Ai = Eden ∩{x : tμ i

μ̄ (x) is

univalued}. As μ̄ is absolutely continuous, μ̄(Ai) = 1, and the same is true for A =
∩N

i=1Ai. The first assertion then follows from Proposition 1.7.11.
The second statement is proven similarly. Let Ei = suppμ i and notice that by

absolute continuity the Bi = (Ei)den ∩{x : tμ̄
μ i(x) is univalued} has measure 1 with

respect to μ i. Apply Proposition 1.7.11. If in addition E1 = · · ·=EN , then μ i(B) = 1
for B = ∩Bi.
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5.4 Illustrative Examples

As an illustration, we implement Algorithm 1 in several scenarios for which pair-
wise optimal maps can be calculated explicitly at every iteration, allowing for fast
computation without error propagation. In each case, we give some theory first, de-
scribing how the optimal maps are calculated, and then implement Algorithm 1 on
simulated examples.

5.4.1 Gaussian Measures

No example illustrates the use of Algorithm 1 better than the Gaussian case. This is
so because optimal maps between centred nondegenerate Gaussian measures with
covariances A and B have the explicit form (see Sect. 1.6.3)

tB
A(x) = A−1/2[A1/2BA1/2]1/2A−1/2x, x ∈ R

d ,

with the obvious slight abuse of notation. In contrast, the Fréchet mean of a collec-
tion of Gaussian measures (one of which nonsingular) does not admit a closed-form
formula and is only known to be a Gaussian measure whose covariance matrix Γ is
the unique invertible root of the matrix equation

Γ =
1
N

N

∑
i=1

[
Γ 1/2SiΓ 1/2

]1/2
, (5.4)

where Si is the covariance matrix of μ i.
Given the formula for tB

A, application of Algorithm 1 to Gaussian measures is
straightforward. The next result shows that, in the Gaussian case, the iterates must
converge to the unique Fréchet mean, and that (5.4) can be derived from the charac-
terisation of Karcher means.

Theorem 5.4.1 (Convergence in Gaussian Case) Let μ1, . . . ,μN be Gaussian mea-
sures with zero means and covariance matrices Si with S1 nonsingular, and let the
initial point γ0 be N (0,Γ0) with Γ0 nonsingular. Then the sequence of iterates gen-
erated by Algorithm 1 converges to the unique Fréchet mean of (μ1, . . . ,μN).

Proof. Since the optimal maps are linear, so is their mean and therefore γk is a
Gaussian measure for all k, say N (0,Γk) with Γk nonsingular. Any limit point of γ
is a Karcher mean by Theorem 5.3.1. If we knew that γ itself were Gaussian, then it

actually must be the Fréchet mean because N−1 ∑ tμ i

γ equals the identity everywhere
on R

d (see the discussion before Theorem 3.1.15).
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Let us show that every limit point γ is indeed Gaussian. It suffices to prove that
(Γk) is a bounded sequence, because if Γk → Γ , then N (0,Γk)→ N (0,Γ ) weakly,
as can be seen from either Lehmann–Scheffé’s theorem (the densities converge) or
Lévy’s continuity theorem (the characteristic functions converge).

To see that (Γk) is bounded, observe first that for any centred (Gaussian or not)
measure μ with covariance matrix S,

W 2
2 (μ ,δ0) = tr[S],

where δ0 is a Dirac mass at the origin. (This follows from the spectral decomposition
of S.) Therefore

0 ≤ tr[Γk] =W 2
2 (γk,δ0)

is bounded uniformly, because {γk} stays in a Wasserstein-compact set by Lemma
5.3.5. If we define C = supk tr[Γk] < ∞, then all the diagonal elements of Γk are
bounded uniformly. When A is symmetric and positive semidefinite, 2|Ai j| ≤ Aii +
Ai j. Consequently, all the entries of Γk are bounded uniformly by C, which means
that (Γk) is a bounded sequence.

From the formula for the optimal maps, we see that if Γ is the covariance of the
Fréchet mean, then

I =
1
N

N

∑
i=1

Γ −1/2
[
Γ 1/2SiΓ 1/2

]1/2
Γ −1/2

and we recover the fixed point equation (5.4).
If the means are nonzero, then the optimal maps are affine and the same result

applies; the Fréchet mean is still a Gaussian measure with covariance matrix Γ and
mean that equals the average of the means of μ i, i = 1, . . . ,N.

Figure 5.1 shows density plots of N = 4 centred Gaussian measures on R
2

with covariances Si ∼ Wishart(I2,2), and Fig. 5.2 shows the density of the result-
ing Fréchet mean. In this particular example, the algorithm needed 11 iterations
starting from the identity matrix. The corresponding optimal maps are displayed
in Fig. 5.3. It is apparent from the figure that these maps are linear, and after a
more careful reflection one can be convinced that their average is the identity. The
four plots in the figure are remarkably different, in accordance with the measures
themselves having widely varying condition numbers and orientations; μ3 and more
so μ4 are very concentrated, so the optimal maps “sweep” the mass towards zero.
In contrast, the optimal maps to μ1 and μ2 spread the mass out away from the
origin.
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Fig. 5.1: Density plot of four Gaussian measures in R
2.
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Fig. 5.2: Density plot of the Fréchet mean of the measures in Fig. 5.1
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Fig. 5.3: Gaussian example: vector fields depicting the optimal maps x �→ tμ i

μ̄ (x)

from the Fréchet mean μ̄ of Fig. 5.2 to the four measures {μ i} of Fig. 5.1. The order
corresponds to that of Fig. 5.1

5.4.2 Compatible Measures

We next discuss the behaviour of the algorithm when the measures are compatible.
Recall that a collection C ⊆W2(X ) is compatible if for all γ ,ρ ,μ ∈C , tν

μ ◦ tμ
γ = tν

γ
in L2(γ) (Definition 2.3.1). Boissard et al. [28] showed that when this condition
holds, the Fréchet mean of (μ1, . . . ,μN) can be found by simple computations in-
volving the iterated barycentre. We again denote by γ0 the initial point of Algo-
rithm 1, which can be any absolutely continuous measure.

Lemma 5.4.2 (Compatibility and Convergence) If γ0 ∪{μ i} is compatible, then
Algorithm 1 converges to the Fréchet mean of (μ i) after a single step.

Proof. By definition, the next iterate is
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γ1 =

[
1
N

N

∑
i=1

tμ i

γ0

]
#γ0,

which is the Fréchet mean by Theorem 3.1.9.

In this case, Algorithm 1 requires the calculation of N pairwise optimal maps, and
this can be reduced to N −1 if the initial point is chosen to be μ1. This is the same
computational complexity as the calculation of the iterated barycentre proposed in
[28].

When the measures have a common copula, finding the optimal maps reduces to
finding the optimal maps between the one-dimensional marginals (see Lemma 2.3.3)
and this can be done using quantile functions as described in Sect. 1.5. The marginal
Fréchet means are then plugged into the common copula to yield the joint Fréchet
mean. We next illustrate Algorithm 1 in three such scenarios.

5.4.2.1 The One-Dimensional Case

When the measures are supported on the real line, there is no need to use the al-
gorithm since the Fréchet mean admits a closed-form expression in terms of quan-
tile functions (see Sect. 3.1.4). We nevertheless discuss this case briefly because we
build upon this construction in subsequent examples. Given that tν

μ = F−1
ν ◦Fμ , we

may apply Algorithm 1 starting from one of these measures (or any other measure).
Figure 5.4 plots N = 4 univariate densities and the Fréchet mean yielded by the
algorithm in two different scenarios. At the left, the densities were generated as

f i(x) =
1
2

φ
(

x−mi
1

σ i
1

)
+

1
2

φ
(

x−mi
2

σ i
2

)
, (5.5)

with φ the standard normal density, and the parameters generated independently as

mi
1 ∼U [−13,−3], mi

2 ∼U [3,13], σ i
1,σ

i
2 ∼ Gamma(4,4).

At the right of Fig. 5.4, we used a mixture of a shifted gamma and a Gaussian:

f i(x) =
3
5

β 3
i

Γ (3)
(x−mi

3)
2e−βi(x−mi

3) +
2
5

φ(x−mi
4), (5.6)

with
β i ∼ Gamma(4,1), mi

3 ∼U [1,4], mi
4 ∼U [−4,−1].

The resulting Fréchet mean density for both settings is shown in thick light blue,
and can be seen to capture the bimodal nature of the data. Even though the Fréchet
mean of Gaussian mixtures is not a Gaussian mixture itself, it is approximately so,
provided that the peaks are separated enough. Figure 5.5 shows the optimal maps
pushing the Fréchet mean μ̄ to the measures μ1, . . . ,μN in each case. If one ignores
the “middle part” of the x axis, the maps appear (approximately) affine for small
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values of x and for large values of x, indicating how the peaks are shifted. In the
middle region, the maps need to “bridge the gap” between the different slopes and
intercepts of these affine maps.
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Fig. 5.4: Densities of a bimodal Gaussian mixture (left) and a mixture of a Gaussian
with a gamma (right), with the Fréchet mean density in light blue
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Fig. 5.5: Optimal maps tμ i

μ̄ from the Fréchet mean μ̄ to the four measures {μ i} in
Fig. 5.4. The left plot corresponds to the bimodal Gaussian mixture, and the right
plot to the Gaussian/gamma mixture

5.4.2.2 Independence

We next take measures μ i on R
2, having independent marginal densities f i

X as in
(5.5), and f i

Y as in (5.6). Figure 5.6 shows the density plot of N = 4 such measures,
constructed as the product of the measures from Fig. 5.4. One can distinguish the
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independence by the “parallel” structure of the figures: for every pair (y1,y2), the
ratio g(x,y1)/g(x,y2) does not depend on x (and vice versa, interchanging x and
y). Figure 5.7 plots the density of the resulting Fréchet mean. We observe that the
Fréchet mean captures the four peaks and their location. Furthermore, the parallel
nature of the figure is preserved in the Fréchet mean. Indeed, by Lemma 3.1.11 the
Fréchet mean is a product measure. The optimal maps, in Fig. 5.10, are the same as
in the next example, and will be discussed there.
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Fig. 5.6: Density plots of the four product measures of the measures in Fig. 5.4
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Fig. 5.7: Density plot of the Fréchet mean of the measures in Fig. 5.6
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5.4.2.3 Common Copula

Let μ i be a measure on R
2 with density

gi(x,y) = c(Fi
X (x),F

i
Y (y)) f i

X (x) f i
Y (y),

where f i
X and f i

Y are random densities on the real line with distribution functions Fi
X

and Fi
Y , and c is a copula density. Figure 5.8 shows the density plot of N = 4 such

measures, with f i
X generated as in (5.5), f i

Y as in (5.6), and c is the Frank(−8) copula
density, while Fig. 5.9 plots the density of the Fréchet mean obtained. (For ease of
comparison we use the same realisations of the densities that appear in Fig. 5.4.) The
Fréchet mean can be seen to preserve the shape of the density, having four clearly
distinguished peaks. Figure 5.10, depicting the resulting optimal maps, allows for a
clearer interpretation: for instance, the leftmost plot (in black) shows more clearly
that the map splits the mass around x =−2 to a much wider interval; and conversely
a very large amount mass is sent to x ≈ 2. This rather extreme behaviour matches
the peak of the density of μ1 located at x = 2.
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Fig. 5.8: Density plots of four measures in R
2 with Frank copula of parameter −8
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Fig. 5.9: Density plot of the Fréchet mean of the measures in Fig. 5.8
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Fig. 5.10: Frank copula example: vector fields of the optimal maps tμ i

μ̄ from the

Fréchet mean μ̄ of Fig. 5.9 to the four measures {μ i} of Fig. 5.8. The colours match
those of Fig. 5.4
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5.4.3 Partially Gaussian Trivariate Measures

We now apply Algorithm 1 in a situation that entangles two of the previous settings.
Let U be a fixed 3× 3 real orthogonal matrix with columns U1, U2, U3 and let μ i

have density

gi(y1,y2,y3) = gi(y) = f i(Ut
3y)

1

2π
√

detSi
exp

⎡
⎣− (Ut

1y,Ut
2y)(Si)−1

(Ut
1y

Ut
2y

)
2

⎤
⎦ ,

with f i bounded density on the real line and Si ∈ R
2×2 positive definite. We sim-

ulated N = 4 such densities with f i as in (5.5) and Si ∼ Wishart(I2,2). We apply
Algorithm 1 to this collection of measures and find their Fréchet mean (see the end
of this subsection for precise details on how the optimal maps were calculated).
Figure 5.11 shows level set of the resulting densities for some specific values. The
bimodal nature of f i implies that for most values of a, {x : f i(x) = a} has four el-
ements. Hence, the level sets in the figures are unions of four separate parts, with
each peak of f i contributing two parts that form together the boundary of an ellip-
soid in R

3 (see Fig. 5.12). The principal axes of these ellipsoids and their position in
R

3 differ between the measures, but the Fréchet mean can be viewed as an average
of those in some sense.

In terms of orientation (principal axes) of the ellipsoids, the Fréchet mean is most
similar to μ1 and μ2, whose orientations are similar to one another.
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Fig. 5.11: The set {v ∈ R
3 : gi(v) = 0.0003} for i = 1 (black), the Fréchet mean

(light blue), i = 2,3,4 in red, green, and dark blue, respectively
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Let us now see how the optimal maps are calculated. If Y = (y1,y2,y3)∼ μ i, then
the random vector (x1,x2,x3) = X =U−1Y has joint density

f i(x3)exp

[
−
(x1,x2)(Σ i)−1

(x1
x2

)
2

]
1

2π
√

detΣ i
,

so the probability law of X is ρ i ⊗ ν i with ρ i centred Gaussian with covariance
matrix Σ i and ν i having density f i on R. By Lemma 3.1.11, the Fréchet mean of
(U−1#μ i) is the product measure of that of (ρ i) and that of (ν i); by Lemma 3.1.12,
the Fréchet mean of (μ i) is therefore

U#(N (0,Σ)⊗ f ), f = F ′, F−1(q) =
1
N

N

∑
i=1

F−1
i (q), Fi(x) =

∫ x

−∞
f i(s)ds,

where Σ is the Fréchet–Wasserstein mean of Σ1, . . . ,ΣN .
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Fig. 5.12: The set {v ∈ R
3 : gi(v) = 0.0003} for i = 3 (left) and i = 4 (right), with

each of the four different inverses of the bimodal density f i corresponding to a
colour

Starting at an initial point γ0 = U#(N (0,Σ0)⊗ ν0), with ν0 having continuous
distribution Fν0 , the optimal maps are U ◦ ti

0 ◦U−1 = ∇(ϕ i
0 ◦U−1) with

ti
0(x1,x2,x3) =

(
tΣ j

Σ0
(x1,x2)

F−1
j ◦Fν0(x3)

)

the gradients of the convex function

ϕ i
0(x1,x2,x3) = (x1,x2)tΣ i

γ0

(
x1

x2

)
+
∫ x3

0
F−1

j (Fν0(s))ds,

where we identify tΣ i

γ0
with the positive definite matrix (Σ i)1/2[(Σ i)1/2Σ0(Σ i)1/2]−1/2

(Σ i)1/2 that pushes forward N (0,Σ0) to N (0,Σ i). Due to the one-dimensionality,
the algorithm finds the third component of the rotated measures after one step, but
the convergence of the Gaussian component requires further iterations.
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5.5 Population Version of Algorithm 1

Let Λ ∈W2(R
d) be a random measure with finite Fréchet functional. The population

version of (5.1) is

q=P(Λ absolutely continuous with density bounded by M)> 0 for some M <∞,
(5.7)

which we assume henceforth. This condition is satisfied if and only if

P(Λ absolutely continuous with bounded density)> 0.

These probabilities are well-defined because the set

W2(R
d ;M) = {μ ∈ W2(R

d) : μ absolutely continuous with density bounded by M}

is weakly closed (see the paragraph before Proposition 5.3.6), hence a Borel set of
W2(R

d).
In light of Theorem 3.2.13, we can define a population version of Algorithm 1

with the iteration function

A (γ) = EtΛ
γ , γ ∈ W2(R

d) absolutely continuous.

The (Bochner) expectation is well-defined in L2(γ) because the random map tΛ
γ is

measurable (Lemma 2.4.6). Since L2(γ) is a Hilbert space, the law of large num-
bers applies there, and results for the empirical version carry over to the population
version by means of approximations. In particular:

Lemma 5.5.1 Any descent iterate γ has density bounded by q−dM, where q and M
are as in (5.7).

Proof. The result is true in the empirical case, by Proposition 5.3.6. The key point
(observed by Pass [102, Subsection 3.3]) is that the number of measures does not
appear in the bound q−dM.

Let Λ1, . . . be a sample from Λ and let qn be the proportion of measures in
(Λ1, . . . ,Λn) that have density bounded by M. Then both n−1 ∑n

i=1 tΛi
γ → EtΛ

γ and
qn → q almost surely by the law of large numbers. Pick any ω in the probability
space for which this happens and notice that (invoking Lemma 2.4.5)

A (γ) =

[
lim
n→∞

1
n

n

∑
i=1

tΛi
γ

]
#γ = lim

n→∞

[
1
n

n

∑
i=1

tΛi
γ

]
#γ .

Let λn denote the measure in the last limit. By Proposition 5.3.6, its density is
bounded by q−d

n M → q−dM almost surely, so for any C > q−dM and n large, λn has
density bounded by C. By the portmanteau Lemma 1.7.1, so does limλn = [EtΛ

γ ]#γ .
Now let C ↘ q−dM.
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Though it follows that every Karcher mean of Λ has a bounded density, we cannot
yet conclude that the same bound holds for the Fréchet mean, because we need an a-
priori knowledge that the latter is absolutely continuous. This again can be achieved
by approximations:

Theorem 5.5.2 (Bounded Density for Population Fréchet Mean) Let Λ ∈W2(R
d)

be a random measure with finite Fréchet functional. If Λ has a bounded density
with positive probability, then the Fréchet mean of Λ is absolutely continuous with
a bounded density.

Proof. Let q and M be as in (5.7), Λ1, . . . be a sample from Λ , and qn the proportion
of (Λi)i≤n with density bounded by M. The empirical Fréchet mean λn of the sample
(Λ1, . . . ,Λn) has a density bounded by q−d

n M. The Fréchet mean λ of Λ is unique by
Proposition 3.2.7, and consequently λn → λ in W2(R

d) by the law of large numbers
(Corollary 3.2.10). For any C > limsupq−d

n M, the density of λ is bounded by C
by the portmanteau Lemma 1.7.1, and the limsup is q−dM almost surely. Thus, the
density is bounded by q−dM.

In the same way, one shows the population version of Theorem 3.1.9:

Theorem 5.5.3 (Fréchet Mean of Compatible Measures) Let Λ : (Ω ,F ,P) →
W2(R

d) be a random measure with finite Fréchet functional, and suppose that with
positive probability Λ is absolutely continuous and has bounded density. If the col-
lection {γ}∪Λ(Ω) is compatible and γ is absolutely continuous, then [EtΛ

γ ]#γ is
the Fréchet mean of Λ .

It is of course sufficient that {γ} ∪Λ(Ω \N ) be compatible for some null set
N ⊂ Ω .

5.6 Bibliographical Notes

The algorithm outlined in this chapter was suggested independently in this steepest
descent form by Zemel and Panaretos [134] and in the form a fixed point equation it-
eration by Álvarez-Esteban et al. [9]. These two papers provide different alternative
proofs of Theorem 5.3.1. The exposition here is based on [134]. Although longer and
more technical than the one in [9], the formalism in [134] is amenable to directly
treating the optimal maps (Theorem 5.3.3) and the multicouplings (Corollary 5.3.4).
On the flip side, it is noteworthy that the proof of the Gaussian case (Theorem 5.4.1)
given in [9] is more explicit and quantitative; for instance, it shows the additional
property that the traces of the matrix iterates are monotonically increasing.

Developing numerical schemes for computing Fréchet means in W2(R
d) is a very

active area of research, and readers are referred to the recent monograph of Peyré
and Cuturi [103, Section 9.2] for a survey.
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In recent work, Backhoff-Varaguas et al. [15] propose a stochastic steepest de-
scent for finding Karcher means of a population Fréchet functional associated with
a random measure Λ . At iterate j, one replaces γ j by

[t jt
μ j
γ j +(1− t j)i]#γ j, μ j ∼ Λ .

The analogue of Theorem 5.3.1 holds under further conditions.
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56. M. Fréchet, Sur la distance de deux lois de probabilité. C.R. Hebd. Seances
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