
Hans Petter Langtangen

Finite Diff erence
Computing
with Exponential
Decay Models

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

110

www.dbooks.org

https://www.dbooks.org/

110

Editors:

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Lecture Notes
in Computational Science
and Engineering

More information about this series at http://www.springer.com/series/3527

www.dbooks.org

http://www.springer.com/series/3527
https://www.dbooks.org/

Hans Petter Langtangen

Finite Difference
Computing with
Exponential Decay Models

Hans Petter Langtangen
Simula Research Laboratory
Lysaker, Norway

On leave from:

Department of Informatics
University of Oslo
Oslo, Norway

ISSN 1439-7358 ISSN 2197-7100 (electronic)
Lecture Notes in Computational Science and Engineering
ISBN 978-3-319-29438-4 ISBN 978-3-319-29439-1 (eBook)
DOI 10.1007/978-3-319-29439-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2016932614

Mathematic Subject Classification (2010): 34, 65, 68

© The Editor(s) (if applicable) and the Author(s) 2016 This book is published open access.
Open Access This book is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source, a link is
provided to the Creative Commons license and any changes made are indicated.
The images or other third party material in this book are included in the work’s Creative Commons
license, unless indicated otherwise in the credit line; if such material is not included in the work’s
Creative Commons license and the respective action is not permitted by statutory regulation, users will
need to obtain permission from the license holder to duplicate, adapt or reproduce the material.
This work is subject to copyright. All commercial rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.dbooks.org

http://creativecommons.org/licenses/by-nc/4.0/
http://www.springer.com
https://www.dbooks.org/

Preface

This book teaches the basic components in the scientific computing pipeline: mod-
eling, differential equations, numerical algorithms, programming, plotting, and
software testing. The pedagogical idea is to treat these topics in the context of
a very simple mathematical model, the differential equation for exponential decay,
u0.t/ D �au.t/, where u is unknown and a is a given parameter. By keeping the
mathematical problem simple, the text can go deep into all details about how one
must combine mathematics and computer science to create well-tested, reliable,
and flexible software for such a mathematical model.

The writing style is gentle and aims at a broad audience. I am much inspired by
Nick Trefethen’s praise of easy learning:

Some people think that stiff challenges are the best device to induce learning, but I am not
one of them. The natural way to learn something is by spending vast amounts of easy,
enjoyable time at it. This goes whether you want to speak German, sight-read at the piano,
type, or do mathematics. Give me the German storybook for fifth graders that I feel like
reading in bed, not Goethe and a dictionary. The latter will bring rapid progress at first,
then exhaustion and failure to resolve.

The main thing to be said for stiff challenges is that inevitably we will encounter them,
so we had better learn to face them boldly. Putting them in the curriculum can help teach
us to do so. But for teaching the skill or subject matter itself, they are overrated. [13, p. 86]

Prerequisite knowledge for this book is basic one-dimensional calculus and
preferably some experience with computer programming in Python or MATLAB.
The material was initially written for self study and therefore features compre-
hensive and easy-to-understand explanations. For some readers it may act as an
overview and refresher of traditional mathematical topics and likely a first introduc-
tion to many of the software topics. The text can also be used as a case-based and
mathematically simple introduction to modern multi-disciplinary problem solving
with computers, using the range of applications in Chap. 4 as motivation and then
treating the details of the mathematical and computer science subjects from the
other chapters. In particular, I have also had in mind the new groups of readers
from bio- and geo-sciences who need to enter the world of computer-based differ-
ential equation modeling, but lack experience with (and perhaps also interest in)
mathematics and programming.

The choice of topics in this book is motivated from what is needed in more
advanced courses on finite difference methods for partial differential equations

v

vi Preface

(PDEs). It turns out that a range of concepts and tools needed for PDEs can be
introduced and illustrated by very simple ordinary differential equation (ODE)
examples. The goal of the text is therefore to lay a foundation for understanding
numerical methods for PDEs by first meeting the fundamental ideas in a simpler
ODE setting. Compared to other books, the present one has a much stronger focus
on how to turn mathematics into working code. It also explains the mathematics
and programming in more detail than what is common in the literature.

There is a more advanced companion book in the works, “Finite Difference
Computing with Partial Differential Equations”, which treats finite difference meth-
ods for PDEs using the same writing style and having the same focus on turning
mathematical algorithms into reliable software.

Although the main example in the present book is u0 D �au, we also address
the more general model problem u0 D �a.t/uC b.t/, and the completely general,
nonlinear problem u0 D f .u; t/, both for scalar and vector u.t/. The author be-
lieves in the principle simplify, understand, and then generalize. That is why we
start out with the simple model u0 D �au and try to understand how methods are
constructed, how they work, how they are implemented, and how they may fail for
this problem, before we generalize what we have learned from u0 D �au to more
complicated models.

The following list of topics will be elaborated on.

� How to think when constructing finite difference methods, with special focus on
the Forward Euler, Backward Euler, and Crank–Nicolson (midpoint) schemes.

� How to formulate a computational algorithm and translate it into Python code.
� How to make curve plots of the solutions.
� How to compute numerical errors.
� How to compute convergence rates.
� How to test that an implementation is correct (verification) and how to automate

tests through test functions and unit testing.
� How to work with Python concepts such as arrays, lists, dictionaries, lambda

functions, and functions in functions (closures).
� How to perform array computing and understand the difference from scalar com-

puting.
� How to uncover numerical artifacts in the computed solution.
� How to analyze the numerical schemes mathematically to understand why arti-

facts may occur.
� How to derive mathematical expressions for various measures of the error in

numerical methods, frequently by using the sympy software for symbolic com-
putations.

� How to understand concepts such as finite difference operators, mesh (grid),
mesh functions, stability, truncation error, consistency, and convergence.

� How to solve the general nonlinear ODE u0 D f .u; t/, which is either a scalar
ODE or a system of ODEs (i.e., u and f can either be a function or a vector of
functions).

� How to access professional packages for solving ODEs.
� How the model equation u0 D �au arises in a wide range of phenomena in

physics, biology, chemistry, and finance.
� How to structure a code in terms of functions.

www.dbooks.org

https://www.dbooks.org/

Preface vii

� How to make reusable modules.
� How to read input data flexibly from the command line.
� How to create graphical/web user interfaces.
� How to use test frameworks for automatic unit testing.
� How to refactor code in terms of classes (instead of functions).
� How to conduct and automate large-scale numerical experiments.
� How to write scientific reports in various formats (LATEX, HTML).

The exposition in a nutshell
Everything we cover is put into a practical, hands-on context. All mathematics
is translated into working computing codes, and all the mathematical theory of
finite difference methods presented here is motivated from a strong need to un-
derstand why we occasionally obtain strange results from the programs. Two
fundamental questions saturate the text:

� How do we solve a differential equation problem and produce numbers?
� How do we know that the numbers are correct?

Besides answering these two questions, one will learn a lot about mathematical
modeling in general and the interplay between physics, mathematics, numerical
methods, and computer science.

The book contains a set of exercises in most of the chapters. The exercises
are divided into three categories: exercises refer to the text (usually variations or
extensions of examples in the text), problems are stand-alone exercises without ref-
erences to the text, and projects are larger problems. Exercises, problems, and
projects share a common numbering to avoid confusion between, e.g., Exercise 4.3
and Problem 4.3 (it will be Exercise 4.3 and Problem 4.4 if they follow after each
other).

All program and data files referred to in this book are available from the book’s
primary web site: http://hplgit.github.io/decay-book/doc/web/.

Acknowledgments Professor Svein Linge provided very detailed and constructive
feedback on this text, and all his efforts are highly appreciated. Many students have
also pointed out weaknesses and found errors. A special thank goes to Yapi Dona-
tien Achou’s proof reading. Many thanks also to Linda Falch-Koslung, Dr. Olav
Dajani, and the rest of the OUS team for feeding me with FOLFIRINOX and
thereby keeping me alive and in good enough shape to finish this book. As al-
ways, the Springer team ensured a smooth and rapid review process and production
phase. This time special thanks go to all the efforts by Martin Peters, Thanh-Ha Le
Thi, and Yvonne Schlatter.

Oslo, August 2015 Hans Petter Langtangen

http://hplgit.github.io/decay-book/doc/web/

Contents

1 Algorithms and Implementations . 1
1.1 Finite Difference Methods . 1

1.1.1 A Basic Model for Exponential Decay 1
1.1.2 The Forward Euler Scheme . 2
1.1.3 The Backward Euler Scheme 7
1.1.4 The Crank–Nicolson Scheme 8
1.1.5 The Unifying �-Rule . 10
1.1.6 Constant Time Step . 11
1.1.7 Mathematical Derivation of Finite Difference Formulas . . 11
1.1.8 Compact Operator Notation for Finite Differences 14

1.2 Implementations . 15
1.2.1 Computer Language: Python 16
1.2.2 Making a Solver Function . 17
1.2.3 Integer Division . 18
1.2.4 Doc Strings . 18
1.2.5 Formatting Numbers . 19
1.2.6 Running the Program . 20
1.2.7 Plotting the Solution . 21
1.2.8 Verifying the Implementation 22
1.2.9 Computing the Numerical Error as a Mesh Function 25
1.2.10 Computing the Norm of the Error Mesh Function 26
1.2.11 Experiments with Computing and Plotting 28
1.2.12 Memory-Saving Implementation 33

1.3 Exercises . 35

2 Analysis . 39
2.1 Experimental Investigations . 39

2.1.1 Discouraging Numerical Solutions 39
2.1.2 Detailed Experiments . 41

2.2 Stability . 44
2.2.1 Exact Numerical Solution . 44
2.2.2 Stability Properties Derived from the Amplification Factor 45

ix

www.dbooks.org

https://www.dbooks.org/

x Contents

2.3 Accuracy . 46
2.3.1 Visual Comparison of Amplification Factors 46
2.3.2 Series Expansion of Amplification Factors 47
2.3.3 The Ratio of Numerical and Exact Amplification Factors . 49
2.3.4 The Global Error at a Point . 50
2.3.5 Integrated Error . 50
2.3.6 Truncation Error . 52
2.3.7 Consistency, Stability, and Convergence 53

2.4 Various Types of Errors in a Differential Equation Model 54
2.4.1 Model Errors . 55
2.4.2 Data Errors . 58
2.4.3 Discretization Errors . 61
2.4.4 Rounding Errors . 62
2.4.5 Discussion of the Size of Various Errors 64

2.5 Exercises . 64

3 Generalizations . 67
3.1 Model Extensions . 67

3.1.1 Generalization: Including a Variable Coefficient 67
3.1.2 Generalization: Including a Source Term 68
3.1.3 Implementation of the Generalized Model Problem 69
3.1.4 Verifying a Constant Solution 70
3.1.5 Verification via Manufactured Solutions 71
3.1.6 Computing Convergence Rates 73
3.1.7 Extension to Systems of ODEs 75

3.2 General First-Order ODEs . 76
3.2.1 Generic Form of First-Order ODEs 76
3.2.2 The �-Rule . 77
3.2.3 An Implicit 2-Step Backward Scheme 77
3.2.4 Leapfrog Schemes . 78
3.2.5 The 2nd-Order Runge–Kutta Method 78
3.2.6 A 2nd-Order Taylor-Series Method 79
3.2.7 The 2nd- and 3rd-Order Adams–Bashforth Schemes 79
3.2.8 The 4th-Order Runge–Kutta Method 80
3.2.9 The Odespy Software . 81
3.2.10 Example: Runge–Kutta Methods 82
3.2.11 Example: Adaptive Runge–Kutta Methods 85

3.3 Exercises . 86

4 Models . 91
4.1 Scaling . 91

4.1.1 Dimensionless Variables . 91
4.1.2 Dimensionless Numbers . 92
4.1.3 A Scaling for Vanishing Initial Condition 92

4.2 Evolution of a Population . 93
4.2.1 Exponential Growth . 93
4.2.2 Logistic Growth . 94

4.3 Compound Interest and Inflation . 94

Contents xi

4.4 Newton’s Law of Cooling . 95
4.5 Radioactive Decay . 95

4.5.1 Deterministic Model . 96
4.5.2 Stochastic Model . 96
4.5.3 Relation Between Stochastic and Deterministic Models . . 97
4.5.4 Generalization of the Radioactive Decay Modeling 98

4.6 Chemical Kinetics . 98
4.6.1 Irreversible Reaction of Two Substances 98
4.6.2 Reversible Reaction of Two Substances 99
4.6.3 Irreversible Reaction of Two Substances into a Third 100
4.6.4 A Biochemical Reaction . 101

4.7 Spreading of Diseases . 101
4.8 Predator-Prey Models in Ecology . 102
4.9 Decay of Atmospheric Pressure with Altitude 103

4.9.1 The General Model . 103
4.9.2 Multiple Atmospheric Layers 104
4.9.3 Simplifications . 104

4.10 Compaction of Sediments . 105
4.11 Vertical Motion of a Body in a Viscous Fluid 106

4.11.1 Overview of Forces . 106
4.11.2 Equation of Motion . 107
4.11.3 Terminal Velocity . 108
4.11.4 A Crank–Nicolson Scheme . 108
4.11.5 Physical Data . 109
4.11.6 Verification . 109
4.11.7 Scaling . 110

4.12 Viscoelastic Materials . 110
4.13 Decay ODEs from Solving a PDE by Fourier Expansions 111
4.14 Exercises . 112

5 Scientific Software Engineering . 127
5.1 Implementations with Functions and Modules 127

5.1.1 Mathematical Problem and Solution Technique 128
5.1.2 A First, Quick Implementation 128
5.1.3 A More Decent Program . 129
5.1.4 Prefixing Imported Functions by the Module Name 131
5.1.5 Implementing the Numerical Algorithm in a Function . . . 133
5.1.6 Do not Have Several Versions of a Code 133
5.1.7 Making a Module . 134
5.1.8 Example on Extending the Module Code 136
5.1.9 Documenting Functions and Modules 137
5.1.10 Logging Intermediate Results 138

5.2 User Interfaces . 142
5.2.1 Command-Line Arguments . 142
5.2.2 Positional Command-Line Arguments 145
5.2.3 Option-Value Pairs on the Command Line 146
5.2.4 Creating a Graphical Web User Interface 148

www.dbooks.org

https://www.dbooks.org/

xii Contents

5.3 Tests for Verifying Implementations 151
5.3.1 Doctests . 151
5.3.2 Unit Tests and Test Functions 153
5.3.3 Test Function for the Solver 157
5.3.4 Test Function for Reading Positional Command-Line

Arguments . 158
5.3.5 Test Function for Reading Option-Value Pairs 159
5.3.6 Classical Class-Based Unit Testing 160

5.4 Sharing the Software with Other Users 161
5.4.1 Organizing the Software Directory Tree 162
5.4.2 Publishing the Software at GitHub 163
5.4.3 Downloading and Installing the Software 164

5.5 Classes for Problem and Solution Method 166
5.5.1 The Problem Class . 167
5.5.2 The Solver Class . 168
5.5.3 Improving the Problem and Solver Classes 169

5.6 Automating Scientific Experiments 172
5.6.1 Available Software . 172
5.6.2 The Results We Want to Produce 173
5.6.3 Combining Plot Files . 174
5.6.4 Running a Program from Python 175
5.6.5 The Automating Script . 176
5.6.6 Making a Report . 178
5.6.7 Publishing a Complete Project 182

5.7 Exercises . 183

References . 189

Index . 191

List of Exercises, Problems, and Projects

Exercise 1.1: Define a mesh function and visualize it 35
Problem 1.2: Differentiate a function . 35
Problem 1.3: Experiment with divisions . 36
Problem 1.4: Experiment with wrong computations 37
Problem 1.5: Plot the error function . 37
Problem 1.6: Change formatting of numbers and debug 37
Problem 2.1: Visualize the accuracy of finite differences 64
Problem 2.2: Explore the �-rule for exponential growth 65
Problem 2.3: Explore rounding errors in numerical calculus 66
Exercise 3.1: Experiment with precision in tests and the size of u 86
Exercise 3.2: Implement the 2-step backward scheme 86
Exercise 3.3: Implement the 2nd-order Adams–Bashforth scheme 87
Exercise 3.4: Implement the 3rd-order Adams–Bashforth scheme 87
Exercise 3.5: Analyze explicit 2nd-order methods 87
Project 3.6: Implement and investigate the Leapfrog scheme 87
Problem 3.7: Make a unified implementation of many schemes 89
Problem 4.1: Radioactive decay of Carbon-14 . 112
Exercise 4.2: Derive schemes for Newton’s law of cooling 112
Exercise 4.3: Implement schemes for Newton’s law of cooling 113
Exercise 4.4: Find time of murder from body temperature 114
Exercise 4.5: Simulate an oscillating cooling process 114
Exercise 4.6: Simulate stochastic radioactive decay 115
Problem 4.7: Radioactive decay of two substances 115
Exercise 4.8: Simulate a simple chemical reaction 116
Exercise 4.9: Simulate an n-th order chemical reaction 116
Exercise 4.10: Simulate a biochemical process 117
Exercise 4.11: Simulate spreading of a disease 118
Exercise 4.12: Simulate predator-prey interaction 118
Exercise 4.13: Simulate the pressure drop in the atmosphere 119
Exercise 4.14: Make a program for vertical motion in a fluid 119
Project 4.15: Simulate parachuting . 120
Exercise 4.16: Formulate vertical motion in the atmosphere 121
Exercise 4.17: Simulate vertical motion in the atmosphere 122
Problem 4.18: Compute y D jxj by solving an ODE 122

xiii

www.dbooks.org

https://www.dbooks.org/

xiv List of Exercises, Problems, and Projects

Problem 4.19: Simulate fortune growth with random interest rate 122
Exercise 4.20: Simulate a population in a changing environment 123
Exercise 4.21: Simulate logistic growth . 124
Exercise 4.22: Rederive the equation for continuous compound interest 124
Exercise 4.23: Simulate the deformation of a viscoelastic material 124
Problem 5.1: Make a tool for differentiating curves 183
Problem 5.2: Make solid software for the Trapezoidal rule 184
Problem 5.3: Implement classes for the Trapezoidal rule 186
Problem 5.4: Write a doctest and a test function 186
Problem 5.5: Investigate the size of tolerances in comparisons 186
Exercise 5.6: Make use of a class implementation 186
Problem 5.7: Make solid software for a difference equation 187

1Algorithms and Implementations

Throughout industry and science it is common today to study nature or technolog-
ical devices through models on a computer. With such models the computer acts
as a virtual lab where experiments can be done in a fast, reliable, safe, and cheap
way. In some fields, e.g., aerospace engineering, the computer models are now so
sophisticated that they can replace physical experiments to a large extent.

A vast amount of computer models are based on ordinary and partial differen-
tial equations. This book is an introduction to the various scientific ingredients we
need for reliable computing with such type of models. A key theme is to solve
differential equations numerically on a computer. Many methods are available for
this purpose, but the focus here is on finite difference methods, because these are
simple, yet versatile, for solving a wide range of ordinary and partial differential
equations. The present chapter first presents the mathematical ideas of finite dif-
ference methods and derives algorithms, i.e., formulations of the methods ready for
computer programming. Then we create programs and learn how we can be sure
that the programs really work correctly.

1.1 Finite DifferenceMethods

This section explains the basic ideas of finite difference methods via the simple or-
dinary differential equation u0 D �au. Emphasis is put on the reasoning around
discretization principles and introduction of key concepts such as mesh, mesh func-
tion, finite difference approximations, averaging in a mesh, derivation of algorithms,
and discrete operator notation.

1.1.1 A Basic Model for Exponential Decay

Our model problem is perhaps the simplest ordinary differential equation (ODE):

u0.t/ D �au.t/ :

In this equation, u.t/ is a scalar function of time t , a is a constant (in this book
we mostly work with a > 0), and u0.t/ means differentiation with respect to t .

1© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_1

www.dbooks.org

https://www.dbooks.org/

2 1 Algorithms and Implementations

This type of equation arises in a number of widely different phenomena where
some quantity u undergoes exponential reduction (provided a > 0). Examples
include radioactive decay, population decay, investment decay, cooling of an object,
pressure decay in the atmosphere, and retarded motion in fluids. Some models with
growth, a < 0, are treated as well, see Chap. 4 for details and motivation. We have
chosen this particular ODE not only because its applications are relevant, but even
more because studying numerical solution methods for this particular ODE gives
important insight that can be reused in far more complicated settings, in particular
when solving diffusion-type partial differential equations.

The exact solution Although our interest is in approximate numerical solutions of
u0 D �au, it is convenient to know the exact analytical solution of the problem so
we can compute the error in numerical approximations. The analytical solution of
this ODE is found by separation of variables, which results in

u.t/ D Ce�at ;

for any arbitrary constant C . To obtain a unique solution, we need a condition to
fix the value of C . This condition is known as the initial condition and stated as
u.0/ D I . That is, we know that the value of u is I when the process starts at
t D 0. With this knowledge, the exact solution becomes u.t/ D Ie�at . The initial
condition is also crucial for numerical methods: without it, we can never start the
numerical algorithms!

A complete problem formulation Besides an initial condition for the ODE, we
also need to specify a time interval for the solution: t 2 .0; T �. The point t D 0

is not included since we know that u.0/ D I and assume that the equation governs
u for t > 0. Let us now summarize the information that is required to state the
complete problem formulation: find u.t/ such that

u0 D �au; t 2 .0; T �; u.0/ D I : (1.1)

This is known as a continuous problem because the parameter t varies continuously
from 0 to T . For each t we have a corresponding u.t/. There are hence infinitely
many values of t and u.t/. The purpose of a numerical method is to formulate
a corresponding discrete problem whose solution is characterized by a finite num-
ber of values, which can be computed in a finite number of steps on a computer.
Typically, we choose a finite set of time values t0; t1; : : : ; tNt

, and create algorithms
that generate the corresponding u values u0; u1; : : : ; uNt

.

1.1.2 The Forward Euler Scheme

Solving an ODE like (1.1) by a finite difference method consists of the following
four steps:

1. discretizing the domain,
2. requiring fulfillment of the equation at discrete time points,
3. replacing derivatives by finite differences,
4. formulating a recursive algorithm.

1.1 Finite Difference Methods 3

Fig. 1.1 Time mesh with discrete solution values at points and a dashed line indicating the true
solution

Step 1: Discretizing the domain The time domain Œ0; T � is represented by a finite
number of Nt C 1 points

0 D t0 < t1 < t2 < � � � < tNt�1 < tNt
D T : (1.2)

The collection of points t0; t1; : : : ; tNt
constitutes a mesh or grid. Often the mesh

points will be uniformly spaced in the domain Œ0; T �, which means that the spacing
tnC1 � tn is the same for all n. This spacing is often denoted by �t , which means
that tn D n�t .

We want the solution u at the mesh points: u.tn/, n D 0; 1; : : : ; Nt . A notational
short-form for u.tn/, which will be used extensively, is un. More precisely, we let
un be the numerical approximation to the exact solution u.tn/ at t D tn.

When we need to clearly distinguish between the numerical and exact solution,
we often place a subscript e on the exact solution, as in ue.tn/. Figure 1.1 shows
the tn and un points for n D 0; 1; : : : ; Nt D 7 as well as ue.t/ as the dashed line.

We say that the numerical approximation, i.e., the collection of un values for
n D 0; : : : ; Nt , constitutes a mesh function. A “normal” continuous function is
a curve defined for all real t values in Œ0; T �, but a mesh function is only defined
at discrete points in time. If you want to compute the mesh function between the
mesh points, where it is not defined, an interpolation method must be used. Usually,
linear interpolation, i.e., drawing a straight line between the mesh function values,
see Fig. 1.1, suffices. To compute the solution for some t 2 Œtn; tnC1�, we use the
linear interpolation formula

u.t/ � un C unC1 � un

tnC1 � tn
.t � tn/ : (1.3)

www.dbooks.org

https://www.dbooks.org/

4 1 Algorithms and Implementations

Fig. 1.2 Linear interpolation between the discrete solution values (dashed curve is exact solution)

Notice
The goal of a numerical solution method for ODEs is to compute the mesh func-
tion by solving a finite set of algebraic equations derived from the original ODE
problem.

Step 2: Fulfilling the equation at discrete time points The ODE is supposed to
hold for all t 2 .0; T �, i.e., at an infinite number of points. Now we relax that
requirement and require that the ODE is fulfilled at a finite set of discrete points in
time. The mesh points t0; t1; : : : ; tNt

are a natural (but not the only) choice of points.
The original ODE is then reduced to the following equations:

u0.tn/ D �au.tn/; n D 0; : : : ; Nt ; u.0/ D I : (1.4)

Even though the original ODE is not stated to be valid at t D 0, it is valid as close
to t D 0 as we like, and it turns out that it is useful for construction of numerical
methods to have (1.4) valid for n D 0. The next two steps show that we need (1.4)
for n D 0.

Step 3: Replacing derivatives by finite differences The next and most essential
step of the method is to replace the derivative u0 by a finite difference approxima-
tion. Let us first try a forward difference approximation (see Fig. 1.3),

u0.tn/ � unC1 � un

tnC1 � tn
: (1.5)

The name forward relates to the fact that we use a value forward in time, unC1, to-
gether with the value un at the point tn, where we seek the derivative, to approximate

1.1 Finite Difference Methods 5

Fig. 1.3 Illustration of a forward difference

u0.tn/. Inserting this approximation in (1.4) results in

unC1 � un

tnC1 � tn
D �aun; n D 0; 1; : : : ; Nt � 1 : (1.6)

Note that if we want to compute the solution up to time level Nt , we only need (1.4)
to hold for n D 0; : : : ; Nt � 1 since (1.6) for n D Nt � 1 creates an equation for the
final value uNt .

Also note that we use the approximation symbol � in (1.5), but not in (1.6).
Instead, we view (1.6) as an equation that is not mathematically equivalent to (1.5),
but represents an approximation to (1.5).

Equation (1.6) is the discrete counterpart to the original ODE problem (1.1), and
often referred to as a finite difference scheme or more generally as the discrete equa-
tions of the problem. The fundamental feature of these equations is that they are
algebraic and can hence be straightforwardly solved to produce the mesh function,
i.e., the approximate values of u at the mesh points: un, n D 1; 2; : : : ; Nt .

Step 4: Formulating a recursive algorithm The final step is to identify the com-
putational algorithm to be implemented in a program. The key observation here
is to realize that (1.6) can be used to compute unC1 if un is known. Starting with
n D 0, u0 is known since u0 D u.0/ D I , and (1.6) gives an equation for u1.
Knowing u1, u2 can be found from (1.6). In general, un in (1.6) can be assumed
known, and then we can easily solve for the unknown unC1:

unC1 D un � a.tnC1 � tn/un : (1.7)

We shall refer to (1.7) as the Forward Euler (FE) scheme for our model problem.
From a mathematical point of view, equations of the form (1.7) are known as differ-
ence equations since they express how differences in the dependent variable, here
u, evolve with n. In our case, the differences in u are given by unC1 � un D

www.dbooks.org

https://www.dbooks.org/

6 1 Algorithms and Implementations

�a.tnC1 � tn/un. The finite difference method can be viewed as a method for turn-
ing a differential equation into an algebraic difference equation that can be easily
solved by repeated use of a formula like (1.7).

Interpretation There is a very intuitive interpretation of the FE scheme, illustrated
in the sketch below. We have computed some point values on the solution curve
(small red disks), and the question is how we reason about the next point. Since we
know u and t at the most recently computed point, the differential equation gives us
the slope of the solution curve: u0 D �au. We can draw this slope as a red line and
continue the solution curve along that slope. As soon as we have chosen the next
point on this line, we have a new t and u value and can compute a new slope and
continue the process.

Computing with the recursive formula Mathematical computation with (1.7) is
straightforward:

u0 D I;

u1 D u0 � a.t1 � t0/u0 D I.1 � a.t1 � t0//;

u2 D u1 � a.t2 � t1/u1 D I.1 � a.t1 � t0//.1 � a.t2 � t1//;

u3 D u2 � a.t3 � t2/u2 D I.1 � a.t1 � t0//.1 � a.t2 � t1//.1 � a.t3 � t2//;

and so on until we reach uNt . Very often, tnC1 � tn is constant for all n, so we
can introduce the common symbol �t D tnC1 � tn, n D 0; 1; : : : ; Nt � 1. Using
a constant mesh spacing �t in the above calculations gives

u0 D I;

u1 D I.1 � a�t/;

1.1 Finite Difference Methods 7

u2 D I.1 � a�t/2;

u3 D I.1 � a�t/3;

:::

uNt D I.1 � a�t/Nt :

This means that we have found a closed formula for un, and there is no need to let
a computer generate the sequence u1; u2; u3; : : : However, finding such a formula
for un is possible only for a few very simple problems, so in general finite difference
equations must be solved on a computer.

As the next sections will show, the scheme (1.7) is just one out of many alterna-
tive finite difference (and other) methods for the model problem (1.1).

1.1.3 The Backward Euler Scheme

There are several choices of difference approximations in step 3 of the finite differ-
ence method as presented in the previous section. Another alternative is

u0.tn/ � un � un�1

tn � tn�1

: (1.8)

Since this difference is based on going backward in time (tn�1) for information, it is
known as a backward difference, also called Backward Euler difference. Figure 1.4
explains the idea.

Fig. 1.4 Illustration of a backward difference

www.dbooks.org

https://www.dbooks.org/

8 1 Algorithms and Implementations

Inserting (1.8) in (1.4) yields the Backward Euler (BE) scheme:

un � un�1

tn � tn�1

D �aun; n D 1; : : : ; Nt : (1.9)

We assume, as explained under step 4 in Sect. 1.1.2, that we have computed
u0; u1; : : : ; un�1 such that (1.9) can be used to compute un. Note that (1.9) needs n

to start at 1 (then it involves u0, but no u�1) and end at Nt .
For direct similarity with the formula for the Forward Euler scheme (1.7) we

replace n by nC 1 in (1.9) and solve for the unknown value unC1:

unC1 D 1

1C a.tnC1 � tn/
un; n D 0; : : : ; Nt � 1 : (1.10)

1.1.4 The Crank–Nicolson Scheme

The finite difference approximations (1.5) and (1.8) used to derive the schemes (1.7)
and (1.10), respectively, are both one-sided differences, i.e., we collect information
either forward or backward in time when approximating the derivative at a point.
Such one-sided differences are known to be less accurate than central (or midpoint)
differences, where we use information both forward and backward in time. A nat-
ural next step is therefore to construct a central difference approximation that will
yield a more accurate numerical solution.

The central difference approximation to the derivative is sought at the point
tnC 1

2
D 1

2
.tn C tnC1/ (or tnC 1

2
D .n C 1

2
/�t if the mesh spacing is uniform in

time). The approximation reads

u0.tnC 1
2
/ � unC1 � un

tnC1 � tn
: (1.11)

Figure 1.5 sketches the geometric interpretation of such a centered difference. Note
that the fraction on the right-hand side is the same as for the Forward Euler ap-
proximation (1.5) and the Backward Euler approximation (1.8) (with n replaced by
n C 1). The accuracy of this fraction as an approximation to the derivative of u

depends on where we seek the derivative: in the center of the interval Œtn; tnC1� or at
the end points. We shall later see that it is more accurate at the center point.

With the formula (1.11), where u0 is evaluated at tnC 1
2
, it is natural to demand

the ODE to be fulfilled at the time points between the mesh points:

u0.tnC 1
2
/ D �au.tnC 1

2
/; n D 0; : : : ; Nt � 1 : (1.12)

Using (1.11) in (1.12) results in the approximate discrete equation

unC1 � un

tnC1 � tn
D �aunC 1

2 ; n D 0; : : : ; Nt � 1; (1.13)

where unC 1
2 is a short form for the numerical approximation to u.tnC 1

2
/.

1.1 Finite Difference Methods 9

Fig. 1.5 Illustration of a centered difference

There is a fundamental problem with the right-hand side of (1.13): we aim to
compute un for integer n, which means that unC 1

2 is not a quantity computed by
our method. The quantity must therefore be expressed by the quantities that we
actually produce, i.e., the numerical solution at the mesh points. One possibility is
to approximate unC 1

2 as an arithmetic mean of the u values at the neighboring mesh
points:

unC 1
2 � 1

2
.un C unC1/ : (1.14)

Using (1.14) in (1.13) results in a new approximate discrete equation

unC1 � un

tnC1 � tn
D �a

1

2
.un C unC1/ : (1.15)

There are three approximation steps leading to this formula: 1) the ODE is only
valid at discrete points (between the mesh points), 2) the derivative is approximated
by a finite difference, and 3) the value of u between mesh points is approximated
by an arithmetic mean value. Despite one more approximation than for the Back-
ward and Forward Euler schemes, the use of a centered difference leads to a more
accurate method.

To formulate a recursive algorithm, we assume that un is already computed so
that unC1 is the unknown, which we can solve for:

unC1 D 1 � 1
2
a.tnC1 � tn/

1C 1
2
a.tnC1 � tn/

un : (1.16)

The finite difference scheme (1.16) is often called the Crank–Nicolson (CN) scheme
or a midpoint or centered scheme. Note that (1.16) as well as (1.7) and (1.10) apply
whether the spacing in the time mesh, tnC1 � tn, depends on n or is constant.

www.dbooks.org

https://www.dbooks.org/

10 1 Algorithms and Implementations

1.1.5 The Unifying �-Rule

The Forward Euler, Backward Euler, and Crank–Nicolson schemes can be formu-
lated as one scheme with a varying parameter � :

unC1 � un

tnC1 � tn
D �a.�unC1 C .1 � �/un/ : (1.17)

Observe that

� � D 0 gives the Forward Euler scheme
� � D 1 gives the Backward Euler scheme,
� � D 1

2
gives the Crank–Nicolson scheme.

We shall later, in Chap. 2, learn the pros and cons of the three alternatives. One may
alternatively choose any other value of � in Œ0; 1�, but this is not so common since
the accuracy and stability of the scheme do not improve compared to the values
� D 0; 1; 1

2
.

As before, un is considered known and unC1 unknown, so we solve for the latter:

unC1 D 1 � .1 � �/a.tnC1 � tn/

1C �a.tnC1 � tn/
: (1.18)

This scheme is known as the �-rule, or alternatively written as the “theta-rule”.

Derivation
We start with replacing u0 by the fraction

unC1 � un

tnC1 � tn
;

in the Forward Euler, Backward Euler, and Crank–Nicolson schemes. Then we
observe that the difference between the methods concerns which point this frac-
tion approximates the derivative. Or in other words, at which point we sample the
ODE. So far this has been the end points or the midpoint of Œtn; tnC1�. However,
we may choose any point Qt 2 Œtn; tnC1�. The difficulty is that evaluating the right-
hand side �au at an arbitrary point faces the same problem as in Sect. 1.1.4: the
point value must be expressed by the discrete u quantities that we compute by
the scheme, i.e., un and unC1. Following the averaging idea from Sect. 1.1.4, the
value of u at an arbitrary point Qt can be calculated as a weighted average, which
generalizes the arithmetic mean 1

2
un C 1

2
unC1. The weighted average reads

u.Qt / � �unC1 C .1 � �/un; (1.19)

where � 2 Œ0; 1� is a weighting factor. We can also express Qt as a similar
weighted average

Qt � � tnC1 C .1 � �/tn : (1.20)

Let now the ODE hold at the point Qt 2 Œtn; tnC1�, approximate u0 by the
fraction .unC1 � un/=.tnC1 � tn/, and approximate the right-hand side �au by
the weighted average (1.19). The result is (1.17).

1.1 Finite Difference Methods 11

1.1.6 Constant Time Step

All schemes up to now have been formulated for a general non-uniform mesh in
time: t0 < t1 < � � � < tNt

. Non-uniform meshes are highly relevant since one
can use many points in regions where u varies rapidly, and fewer points in regions
where u is slowly varying. This idea saves the total number of points and therefore
makes it faster to compute the mesh function un. Non-uniform meshes are used
together with adaptive methods that are able to adjust the time mesh during the
computations (Sect. 3.2.11 applies adaptive methods).

However, a uniformly distributed set of mesh points is not only convenient, but
also sufficient for many applications. Therefore, it is a very common choice. We
shall present the finite difference schemes for a uniform point distribution tn D
n�t , where �t is the constant spacing between the mesh points, also referred to as
the time step. The resulting formulas look simpler and are more well known.

Summary of schemes for constant time step

unC1 D .1 � a�t/un Forward Euler (1.21)

unC1 D 1

1C a�t
un Backward Euler (1.22)

unC1 D 1 � 1
2
a�t

1C 1
2
a�t

un Crank–Nicolson (1.23)

unC1 D 1 � .1 � �/a�t

1C �a�t
un The �-rule (1.24)

It is not accidental that we focus on presenting the Forward Euler, Backward
Euler, and Crank–Nicolson schemes. They complement each other with their dif-
ferent pros and cons, thus providing a useful collection of solution methods for
many differential equation problems. The unifying notation of the �-rule makes it
convenient to work with all three methods through just one formula. This is par-
ticularly advantageous in computer implementations since one avoids if-else tests
with formulas that have repetitive elements.

Test your understanding!
To check that key concepts are really understood, the reader is encouraged to
apply the explained finite difference techniques to a slightly different equation.
For this purpose, we recommend you do Exercise 4.2 now!

1.1.7 Mathematical Derivation of Finite Difference Formulas

The finite difference formulas for approximating the first derivative of a function
have so far been somewhat justified through graphical illustrations in Figs. 1.3,
1.4, and 1.5. The task is to approximate the derivative at a point of a curve using
only two function values. By drawing a straight line through the points, we have
some approximation to the tangent of the curve and use the slope of this line as

www.dbooks.org

https://www.dbooks.org/

12 1 Algorithms and Implementations

an approximation to the derivative. The slope can be computed by inspecting the
figures.

However, we can alternatively derive the finite difference formulas by pure math-
ematics. The key tool for this approach is Taylor series, or more precisely, approxi-
mation of functions by lower-order Taylor polynomials. Given a function f .x/ that
is sufficiently smooth (i.e., f .x/ has “enough derivatives”), a Taylor polynomial of
degree m can be used to approximate the value of the function f .x/ if we know the
values of f and its first m derivatives at some other point x D a. The formula for
the Taylor polynomial reads

f .x/ � f .a/C f 0.a/.x � a/C 1

2
f 00.a/.x � a/2 C 1

6
f 000.a/.x � a/3 C � � �

C 1

mŠ

df .m/

dxm
.a/.x � a/m : (1.25)

For a function of time, f .t/, related to a mesh with spacing �t , we often need
the Taylor polynomial approximation at f .tn ˙ �t/ given f and its derivatives at
t D tn. Replacing x by tn C�t and a by tn gives

f .tn C�t/ � f .tn/C f 0.tn/�t C 1

2
f 00.tn/�t2 C 1

6
f 000.tn/�t3 C � � �

C 1

mŠ

df .m/

dxm
.tn/�tm : (1.26)

The forward difference We can use (1.26) to find an approximation for f 0.tn/

simply by solving with respect to this quantity:

f 0.tn/ � f .tn C�t/ � f .tn/

�t
� 1

2
f 00.tn/�t � 1

6
f 000.tn/�t2 C � � �

� 1

mŠ

df .m/

dxm
.tn/�tm�1 : (1.27)

By letting m!1, this formula is exact, but that is not so much of practical value.
A more interesting observation is that all the power terms in �t vanish as �t ! 0,
i.e., the formula

f 0.tn/ � f .tn C�t/ � f .tn/

�t
(1.28)

is exact in the limit �t ! 0.
The interesting feature of (1.27) is that we have a measure of the error in the

formula (1.28): the error is given by the extra terms on the right-hand side of (1.27).
We assume that �t is a small quantity (�t � 1). Then �t2 � �t , �t3 � �t2,
and so on, which means that the first term is the dominating term. This first term
reads � 1

2
f 00.tn/�t and can be taken as a measure of the error in the Forward Euler

formula.

1.1 Finite Difference Methods 13

The backward difference To derive the backward difference, we use the Taylor
polynomial approximation at f .tn ��t/:

f .tn ��t/ � f .tn/ � f 0.tn/�t C 1

2
f 00.tn/�t2 � 1

6
f 000.tn/�t3 C � � �

C 1

mŠ

df .m/

dxm
.tn/�tm : (1.29)

Solving with respect to f 0.tn/ gives

f 0.tn/ � f .tn/� f .tn ��t/

�t
C 1

2
f 00.tn/�t � 1

6
f 000.tn/�t2 C � � �

� 1

mŠ

df .m/

dxm
.tn/�tm�1 : (1.30)

The term 1
2
f 00.tn/�t can be taken as a simple measure of the approximation error

since it will dominate over the other terms as �t ! 0.

The centered difference The centered difference approximates the derivative at
tn C 1

2
�t . Let us write up the Taylor polynomial approximations to f .tn/ and

f .tnC1/ around tn C 1
2
�t :

f .tn/ � f

�
tn C 1

2
�t

�
� f 0

�
tn C 1

2
�t

�
1

2
�t C f 00

�
tn C 1

2
�t

��
1

2
�t

�2

�

f 000
�

tn C 1

2
�t

��
1

2
�t

�3

C � � � (1.31)

f .tnC1/ � f

�
tn C 1

2
�t

�
C f 0

�
tn C 1

2
�t

�
1

2
�t C f 00

�
tn C 1

2
�t

��
1

2
�t

�2

C

f 000
�

tn C 1

2
�t

��
1

2
�t

�3

C � � � (1.32)

Subtracting the first from the second gives

f .tnC1/�f .tn/ D f 0
�

tn C 1

2
�t

�
�tC2f 000

�
tn C 1

2
�t

��
1

2
�t

�3

C� � � (1.33)

Solving with respect to f 0.tn C 1
2
�t/ results in

f 0
�

tn C 1

2
�t

�
� f .tnC1/ � f .tn/

�t
� 1

4
f 000

�
tn C 1

2
�t

�
�t2 C c � � � (1.34)

This time the error measure goes like 1
4
f 000�t2, i.e., it is proportional to �t2 and

not only �t , which means that the error goes faster to zero as �t is reduced. This
means that the centered difference formula

f 0
�

tn C 1

2
�t

�
� f .tnC1/� f .tn/

�t
(1.35)

is more accurate than the forward and backward differences for small �t .

www.dbooks.org

https://www.dbooks.org/

14 1 Algorithms and Implementations

1.1.8 Compact Operator Notation for Finite Differences

Finite difference formulas can be tedious to write and read, especially for differen-
tial equations with many terms and many derivatives. To save space and help the
reader spot the nature of the difference approximations, we introduce a compact
notation. For a function u.t/, a forward difference approximation is denoted by the
DCt operator and written as

ŒDCt u�n D unC1 � un

�t

�
� d

dt
u.tn/

�
: (1.36)

The notation consists of an operator that approximates differentiation with respect
to an independent variable, here t . The operator is built of the symbol D, with the
independent variable as subscript and a superscript denoting the type of difference.
The superscript C indicates a forward difference. We place square brackets around
the operator and the function it operates on and specify the mesh point, where the
operator is acting, by a superscript after the closing bracket.

The corresponding operator notation for a centered difference and a backward
difference reads

ŒDt u�n D unC 1
2 � un� 1

2

�t
� d

dt
u.tn/; (1.37)

and

ŒD�t u�n D un � un�1

�t
� d

dt
u.tn/ : (1.38)

Note that the superscript � denotes the backward difference, while no superscript
implies a central difference.

An averaging operator is also convenient to have:

Œut �n D 1

2
.un� 1

2 C unC 1
2 / � u.tn/ (1.39)

The superscript t indicates that the average is taken along the time coordinate. The
common average .un C unC1/=2 can now be expressed as Œut �nC

1
2 . (When also

spatial coordinates enter the problem, we need the explicit specification of the co-
ordinate after the bar.)

With our compact notation, the Backward Euler finite difference approximation
to u0 D �au can be written as

ŒD�t u�n D �aun :

In difference equations we often place the square brackets around the whole equa-
tion, to indicate at which mesh point the equation applies, since each term must be
approximated at the same point:

ŒD�t u D �au�n : (1.40)

Similarly, the Forward Euler scheme takes the form

ŒDCt u D �au�n; (1.41)

1.2 Implementations 15

while the Crank–Nicolson scheme is written as

ŒDt u D �aut �nC
1
2 : (1.42)

Question
By use of (1.37) and (1.39), are you able to write out the expressions in (1.42) to
verify that it is indeed the Crank–Nicolson scheme?

The �-rule can be specified in operator notation by

Œ NDt u D �aut;� �nC� : (1.43)

We define a new time difference

Œ NDt u�nC� D unC1 � un

tnC1 � tn
; (1.44)

to be applied at the time point tnC� � � tn C .1 � �/tnC1. This weighted average
gives rise to the weighted averaging operator

Œut;� �nC� D .1 � �/un C �unC1 � u.tnC� /; (1.45)

where � 2 Œ0; 1� as usual. Note that for � D 1
2

we recover the standard cen-
tered difference and the standard arithmetic mean. The idea in (1.43) is to sample
the equation at tnC� , use a non-symmetric difference at that point Œ NDtu�nC� , and
a weighted (non-symmetric) mean value.

An alternative and perhaps clearer notation is

ŒDtu�nC
1
2 D �Œ�au�nC1C .1 � �/Œ�au�n :

Looking at the various examples above and comparing them with the underlying
differential equations, we see immediately which difference approximations that
have been used and at which point they apply. Therefore, the compact notation
effectively communicates the reasoning behind turning a differential equation into
a difference equation.

1.2 Implementations

We want to make a computer program for solving

u0.t/ D �au.t/; t 2 .0; T �; u.0/ D I;

by finite difference methods. The program should also display the numerical solu-
tion as a curve on the screen, preferably together with the exact solution.

All programs referred to in this section are found in the src/alg1 directory (we
use the classical Unix term directory for what many others nowadays call folder).

1 http://tinyurl.com/ofkw6kc/alg

www.dbooks.org

http://tinyurl.com/ofkw6kc/alg
https://www.dbooks.org/

16 1 Algorithms and Implementations

Mathematical problem We want to explore the Forward Euler scheme, the Back-
ward Euler, and the Crank–Nicolson schemes applied to our model problem. From
an implementational point of view, it is advantageous to implement the �-rule

unC1 D 1 � .1 � �/a�t

1C �a�t
un;

since it can generate the three other schemes by various choices of � : � D 0 for
Forward Euler, � D 1 for Backward Euler, and � D 1=2 for Crank–Nicolson. Given
a, u0 D I , T , and �t , our task is to use the �-rule to compute u1; u2; : : : ; uNt ,
where tNt

D Nt �t , and Nt the closest integer to T=�t .

1.2.1 Computer Language: Python

Any programming language can be used to generate the unC1 values from the for-
mula above. However, in this document we shall mainly make use of Python. There
are several good reasons for this choice:

� Python has a very clean, readable syntax (often known as “executable pseudo-
code”).

� Python code is very similar to MATLAB code (and MATLAB has a particularly
widespread use for scientific computing).

� Python is a full-fledged, very powerful programming language.
� Python is similar to C++, but is much simpler to work with and results in more

reliable code.
� Python has a rich set of modules for scientific computing, and its popularity in

scientific computing is rapidly growing.
� Python was made for being combined with compiled languages (C, C++, For-

tran), so that existing numerical software can be reused, and thereby easing high
computational performance with new implementations.

� Python has extensive support for administrative tasks needed when doing large-
scale computational investigations.

� Python has extensive support for graphics (visualization, user interfaces, web
applications).

Learning Python is easy. Many newcomers to the language will probably learn
enough from the forthcoming examples to perform their own computer experiments.
The examples start with simple Python code and gradually make use of more pow-
erful constructs as we proceed. Unless it is inconvenient for the problem at hand,
our Python code is made as close as possible to MATLAB code for easy transition
between the two languages.

The coming programming examples assumes familiarity with variables, for
loops, lists, arrays, functions, positional arguments, and keyword (named) ar-
guments. A background in basic MATLAB programming is often enough to
understand Python examples. Readers who feel the Python examples are too hard
to follow will benefit from reading a tutorial, e.g.,

1.2 Implementations 17

� The Official Python Tutorial2

� Python Tutorial on tutorialspoint.com3

� Interactive Python tutorial site4

� A Beginner’s Python Tutorial5

The author also has a comprehensive book [8] that teaches scientific programming
with Python from the ground up.

1.2.2 Making a Solver Function

We choose to have an array u for storing the un values, n D 0; 1; : : : ; Nt . The
algorithmic steps are

1. initialize u0

2. for t D tn, n D 1; 2; : : : ; Nt : compute un using the �-rule formula

An implementation of a numerical algorithm is often referred to as a solver. We
shall now make a solver for our model problem and realize the solver as a Python
function. The function must take the input data I , a, T , �t , and � of the problem
as arguments and return the solution as arrays u and t for un and tn, n D 0; : : : ; Nt .
The solver function used as

u, t = solver(I, a, T, dt, theta)

One can now easily plot u versus t to visualize the solution.
The function solver may look as follows in Python:

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
Nt = int(T/dt) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

The numpy library contains a lot of functions for array computing. Most of the
function names are similar to what is found in the alternative scientific computing
language MATLAB. Here we make use of

� zeros(Nt+1) for creating an array of size Nt+1 and initializing the elements to
zero

2 http://docs.python.org/2/tutorial/
3 http://www.tutorialspoint.com/python/
4 http://www.learnpython.org/
5 http://en.wikibooks.org/wiki/A_Beginner’s_Python_Tutorial

www.dbooks.org

http://docs.python.org/2/tutorial/
http://www.tutorialspoint.com/python/
http://www.learnpython.org/
http://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial
https://www.dbooks.org/

18 1 Algorithms and Implementations

� linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates uniformly
distributed between 0 and T

The for loop deserves a comment, especially for newcomers to Python. The con-
struction range(0, Nt, s) generates all integers from 0 to Nt in steps of s, but
not including Nt. Omitting s means s=1. For example, range(0, 6, 3) gives 0
and 3, while range(0, 6) generates the list [0, 1, 2, 3, 4, 5]. Our loop im-
plies the following assignments to u[n+1]: u[1], u[2], . . . , u[Nt], which is what
we want since u has length Nt+1. The first index in Python arrays or lists is always
0 and the last is then len(u)-1 (the length of an array u is obtained by len(u) or
u.size).

1.2.3 Integer Division

The shown implementation of the solver may face problems and wrong results if
T, a, dt, and theta are given as integers (see Exercises 1.3 and 1.4). The prob-
lem is related to integer division in Python (as in Fortran, C, C++, and many other
computer languages!): 1/2 becomes 0, while 1.0/2, 1/2.0, or 1.0/2.0 all be-
come 0.5. So, it is enough that at least the nominator or the denominator is a real
number (i.e., a float object) to ensure a correct mathematical division. Inserting
a conversion dt = float(dt) guarantees that dt is float.

Another problem with computing Nt D T=�t is that we should round Nt to
the nearest integer. With Nt = int(T/dt) the int operation picks the largest
integer smaller than T/dt. Correct mathematical rounding as known from school is
obtained by

Nt = int(round(T/dt))

The complete version of our improved, safer solver function then becomes

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

1.2.4 Doc Strings

Right below the header line in the solver function there is a Python string enclosed
in triple double quotes """. The purpose of this string object is to document what
the function does and what the arguments are. In this case the necessary documen-

1.2 Implementations 19

tation does not span more than one line, but with triple double quoted strings the
text may span several lines:

def solver(I, a, T, dt, theta):
"""
Solve

u’(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
(0,T]. The time interval is divided into time steps of
length dt.

theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-
Nicolson method.
"""
...

Such documentation strings appearing right after the header of a function are called
doc strings. There are tools that can automatically produce nicely formatted docu-
mentation by extracting the definition of functions and the contents of doc strings.

It is strongly recommended to equip any function with a doc string, unless the
purpose of the function is not obvious. Nevertheless, the forthcoming text deviates
from this rule if the function is explained in the text.

1.2.5 Formatting Numbers

Having computed the discrete solution u, it is natural to look at the numbers:

Write out a table of t and u values:
for i in range(len(t)):

print t[i], u[i]

This compact print statement unfortunately gives less readable output because the
t and u values are not aligned in nicely formatted columns. To fix this problem,
we recommend to use the printf format, supported in most programming languages
inherited from C. Another choice is Python’s recent format string syntax. Both
kinds of syntax are illustrated below.

Writing t[i] and u[i] in two nicely formatted columns is done like this with
the printf format:

print ’t=%6.3f u=%g’ % (t[i], u[i])

The percentage signs signify “slots” in the text where the variables listed at the end
of the statement are inserted. For each “slot” one must specify a format for how the
variable is going to appear in the string: f for float (with 6 decimals), s for pure
text, d for an integer, g for a real number written as compactly as possible, 9.3E
for scientific notation with three decimals in a field of width 9 characters (e.g.,
-1.351E-2), or .2f for standard decimal notation with two decimals formatted

www.dbooks.org

https://www.dbooks.org/

20 1 Algorithms and Implementations

with minimum width. The printf syntax provides a quick way of formatting tabular
output of numbers with full control of the layout.

The alternative format string syntax looks like

print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=u[i])

As seen, this format allows logical names in the “slots” where t[i] and u[i] are
to be inserted. The “slots” are surrounded by curly braces, and the logical name
is followed by a colon and then the printf-like specification of how to format real
numbers, integers, or strings.

1.2.6 Running the Program

The function and main program shown above must be placed in a file, say with
name decay_v1.py6 (v1 for 1st version of this program). Make sure you write the
code with a suitable text editor (Gedit, Emacs, Vim, Notepad++, or similar). The
program is run by executing the file this way:

Terminal

Terminal> python decay_v1.py

The text Terminal> just indicates a prompt in a Unix/Linux or DOS termi-
nal window. After this prompt, which may look different in your terminal win-
dow (depending on the terminal application and how it is set up), commands like
python decay_v1.py can be issued. These commands are interpreted by the op-
erating system.

We strongly recommend to run Python programs within the IPython shell. First
start IPython by typing ipython in the terminal window. Inside the IPython shell,
our program decay_v1.py is run by the command run decay_v1.py:

Terminal

Terminal> ipython

In [1]: run decay_v1.py
t= 0.000 u=1
t= 0.800 u=0.384615
t= 1.600 u=0.147929
t= 2.400 u=0.0568958
t= 3.200 u=0.021883
t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05

6 http://tinyurl.com/ofkw6kc/alg/decay_v1.py

http://tinyurl.com/ofkw6kc/alg/decay_v1.py

1.2 Implementations 21

The advantage of running programs in IPython are many, but here we explicitly
mention a few of the most useful features:

� previous commands are easily recalled with the up arrow,
� %pdb turns on a debugger so that variables can be examined if the program aborts

(due to a Python exception),
� output of commands are stored in variables,
� the computing time spent on a set of statements can be measured with the

%timeit command,
� any operating system command can be executed,
� modules can be loaded automatically and other customizations can be performed

when starting IPython

Although running programs in IPython is strongly recommended, most execution
examples in the forthcoming text use the standard Python shell with prompt »> and
run programs through a typesetting like

Terminal

Terminal> python programname

The reason is that such typesetting makes the text more compact in the vertical
direction than showing sessions with IPython syntax.

1.2.7 Plotting the Solution

Having the t and u arrays, the approximate solution u is visualized by the intuitive
command plot(t, u):

from matplotlib.pyplot import *
plot(t, u)
show()

It will be illustrative to also plot the exact solution ue.t/ D Ie�at for comparison.
We first need to make a Python function for computing the exact solution:

def u_exact(t, I, a):
return I*exp(-a*t)

It is tempting to just do

u_e = u_exact(t, I, a)
plot(t, u, t, u_e)

However, this is not exactly what we want: the plot function draws straight lines
between the discrete points (t[n], u_e[n]) while ue.t/ varies as an exponential

www.dbooks.org

https://www.dbooks.org/

22 1 Algorithms and Implementations

function between the mesh points. The technique for showing the “exact” variation
of ue.t/ between the mesh points is to introduce a very fine mesh for ue.t/:

t_e = linspace(0, T, 1001) # fine mesh
u_e = u_exact(t_e, I, a)

We can also plot the curves with different colors and styles, e.g.,

plot(t_e, u_e, ’b-’, # blue line for u_e
t, u, ’r--o’) # red dashes w/circles

With more than one curve in the plot we need to associate each curve with
a legend. We also want appropriate names on the axes, a title, and a file con-
taining the plot as an image for inclusion in reports. The Matplotlib package
(matplotlib.pyplot) contains functions for this purpose. The names of the
functions are similar to the plotting functions known from MATLAB. A complete
function for creating the comparison plot becomes

from matplotlib.pyplot import *

def plot_numerical_and_exact(theta, I, a, T, dt):
"""Compare the numerical and exact solution in a plot."""
u, t = solver(I=I, a=a, T=T, dt=dt, theta=theta)

t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’) # blue line for exact sol.

legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
savefig(’plot_%s_%g.png’ % (theta, dt))

plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

Note that savefig here creates a PNG file whose name includes the values of �

and �t so that we can easily distinguish files from different runs with � and �t .
The complete code is found in the file decay_v2.py7. The resulting plot is

shown in Fig. 1.6. As seen, there is quite some discrepancy between the exact and
the numerical solution. Fortunately, the numerical solution approaches the exact
one as �t is reduced.

1.2.8 Verifying the Implementation

It is easy to make mistakes while deriving and implementing numerical algorithms,
so we should never believe in the solution before it has been thoroughly verified.

7 http://tinyurl.com/ofkw6kc/alg/decay_v2.py

http://tinyurl.com/ofkw6kc/alg/decay_v2.py

1.2 Implementations 23

Fig. 1.6 Comparison of numerical and exact solution

Verification and validation
The purpose of verifying a program is to bring evidence for the property that there
are no errors in the implementation. A related term, validate (and validation),
addresses the question if the ODE model is a good representation of the phenom-
ena we want to simulate. To remember the difference between verification and
validation, verification is about solving the equations right, while validation is
about solving the right equations. We must always perform a verification before
it is meaningful to believe in the computations and perform validation (which
compares the program results with physical experiments or observations).

The most obvious idea for verification in our case is to compare the numerical so-
lution with the exact solution, when that exists. This is, however, not a particularly
good method. The reason is that there will always be a discrepancy between these
two solutions, due to numerical approximations, and we cannot precisely quantify
the approximation errors. The open question is therefore whether we have the math-
ematically correct discrepancy or if we have another, maybe small, discrepancy due
to both an approximation error and an error in the implementation. It is thus impos-
sible to judge whether the program is correct or not by just looking at the graphs in
Fig. 1.6.

To avoid mixing the unavoidable numerical approximation errors and the unde-
sired implementation errors, we should try to make tests where we have some exact
computation of the discrete solution or at least parts of it. Examples will show how
this can be done.

Running a few algorithmic steps by hand The simplest approach to produce
a correct non-trivial reference solution for the discrete solution u, is to compute
a few steps of the algorithm by hand. Then we can compare the hand calculations
with numbers produced by the program.

www.dbooks.org

https://www.dbooks.org/

24 1 Algorithms and Implementations

A straightforward approach is to use a calculator and compute u1, u2, and u3.
With I D 0:1, � D 0:8, and �t D 0:8 we get

A � 1 � .1 � �/a�t

1C �a�t
D 0:298245614035

u1 D AI D 0:0298245614035;

u2 D Au1 D 0:00889504462912;

u3 D Au2 D 0:00265290804728

Comparison of these manual calculations with the result of the solver function
is carried out in the function

def test_solver_three_steps():
"""Compare three steps with known manual computations."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
u_by_hand = array([I,

0.0298245614035,
0.00889504462912,
0.00265290804728])

Nt = 3 # number of time steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

tol = 1E-15 # tolerance for comparing floats
diff = abs(u - u_by_hand).max()
success = diff < tol
assert success

The test_solver_three_steps function follows widely used conventions for
unit testing. By following such conventions we can at a later stage easily execute
a big test suite for our software. That is, after a small modification is made to the
program, we can by typing just a short command, run through a large number of
tests to check that the modifications do not break any computations. The conven-
tions boil down to three rules:

� The test function name must start with test_ and the function cannot take any
arguments.

� The test must end up in a boolean expression that is True if the test was passed
and False if it failed.

� The function must run assert on the boolean expression, resulting in program
abortion (due to an AssertionError exception) if the test failed.

A typical assert statement is to check that a computed result c equals the expected
value e: assert c == e. However, since real numbers are stored in a computer
using only 64 units, most numbers will feature a small rounding error, typically of
size 10�16. That is, real numbers on a computer have finite precision. When doing
arithmetics with finite precision numbers, the rounding errors may accumulate or
not, depending on the algorithm. It does not make sense to test c == e, since
a small rounding error will cause the test to fail. Instead, we use an equality with
tolerance tol: abs(e - c) < tol. The test_solver_three_steps functions
applies this type of test with a tolerance 01�15.

1.2 Implementations 25

The main program can routinely run the verification test prior to solving the real
problem:

test_solver_three_steps()
plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

(Rather than calling test_*() functions explicitly, one will normally ask a test-
ing framework like nose or pytest to find and run such functions.) The complete
program including the verification above is found in the file decay_v3.py8.

1.2.9 Computing the Numerical Error as a Mesh Function

Now that we have some evidence for a correct implementation, we are in position to
compare the computed un values in the u array with the exact u values at the mesh
points, in order to study the error in the numerical solution.

A natural way to compare the exact and discrete solutions is to calculate their
difference as a mesh function for the error:

en D ue.tn/ � un; n D 0; 1; : : : ; Nt : (1.46)

We may view the mesh function un
e D ue.tn/ as a representation of the continuous

function ue.t/ defined for all t 2 Œ0; T �. In fact, un
e is often called the representative

of ue on the mesh. Then, en D un
e � un is clearly the difference of two mesh

functions.
The error mesh function en can be computed by

u, t = solver(I, a, T, dt, theta) # Numerical sol.
u_e = u_exact(t, I, a) # Representative of exact sol.
e = u_e - u

Note that the mesh functions u and u_e are represented by arrays and associated
with the points in the array t.

Array arithmetics
The last statements

u_e = u_exact(t, I, a)
e = u_e - u

demonstrate some standard examples of array arithmetics: t is an array of mesh
points that we pass to u_exact. This function evaluates -a*t, which is a scalar
times an array, meaning that the scalar is multiplied with each array element.
The result is an array, let us call it tmp1. Then exp(tmp1) means applying
the exponential function to each element in tmp1, giving an array, say tmp2.

8 http://tinyurl.com/ofkw6kc/alg/decay_v3.py

www.dbooks.org

http://tinyurl.com/ofkw6kc/alg/decay_v3.py
https://www.dbooks.org/

26 1 Algorithms and Implementations

Finally, I*tmp2 is computed (scalar times array) and u_e refers to this array
returned from u_exact. The expression u_e - u is the difference between two
arrays, resulting in a new array referred to by e.

Replacement of array element computations inside a loop by array arithmetics
is known as vectorization.

1.2.10 Computing the Norm of the Error Mesh Function

Instead of working with the error en on the entire mesh, we often want a single
number expressing the size of the error. This is obtained by taking the norm of the
error function.

Let us first define norms of a function f .t/ defined for all t 2 Œ0; T �. Three
common norms are

jjf jjL2 D
0
@

TZ
0

f .t/2dt

1
A

1=2

; (1.47)

jjf jjL1 D
TZ

0

jf .t/jdt; (1.48)

jjf jjL1 D max
t2Œ0;T �

jf .t/j : (1.49)

The L2 norm (1.47) (“L-two norm”) has nice mathematical properties and is the
most popular norm. It is a generalization of the well-known Eucledian norm of
vectors to functions. The L1 norm looks simpler and more intuitive, but has less
nice mathematical properties compared to the two other norms, so it is much less
used in computations. The L1 is also called the max norm or the supremum norm
and is widely used. It focuses on a single point with the largest value of jf j, while
the other norms measure average behavior of the function.

In fact, there is a whole family of norms,

jjf jjLp D
0
@

TZ
0

f .t/pdt

1
A

1=p

; (1.50)

with p real. In particular, p D 1 corresponds to the L1 norm above while p D 1
is the L1 norm.

Numerical computations involving mesh functions need corresponding norms.
Given a set of function values, f n, and some associated mesh points, tn, a numer-
ical integration rule can be used to calculate the L2 and L1 norms defined above.
Imagining that the mesh function is extended to vary linearly between the mesh
points, the Trapezoidal rule is in fact an exact integration rule. A possible modifi-
cation of the L2 norm for a mesh function f n on a uniform mesh with spacing �t

1.2 Implementations 27

is therefore the well-known Trapezoidal integration formula

jjf njj D

�t

1

2
.f 0/2 C 1

2
.f Nt /2 C

Nt�1X
nD1

.f n/2

!!1=2

A common approximation of this expression, motivated by the convenience of hav-
ing a simpler formula, is

jjf njj`2 D

�t

NtX
nD0

.f n/2

!1=2

:

This is called the discrete L2 norm and denoted by `2. If jjf jj2
`2 (i.e., the square

of the norm) is used instead of the Trapezoidal integration formula, the error is
�t..f 0/2 C .f Nt /2/=2. This means that the weights at the end points of the mesh
function are perturbed, but as �t ! 0, the error from this perturbation goes to zero.
As long as we are consistent and stick to one kind of integration rule for the norm
of a mesh function, the details and accuracy of this rule is of no concern.

The three discrete norms for a mesh function f n, corresponding to the L2, L1,
and L1 norms of f .t/ defined above, are defined by

jjf njj`2 D

�t

NtX
nD0

.f n/2

!1=2

; (1.51)

jjf njj`1 D �t

NtX
nD0

jf nj; (1.52)

jjf njj`1 D max
0�n�Nt

jf nj : (1.53)

Note that the L2, L1, `2, and `1 norms depend on the length of the interval of
interest (think of f D 1, then the norms are proportional to

p
T or T). In some

applications it is convenient to think of a mesh function as just a vector of function
values without any relation to the interval Œ0; T �. Then one can replace �t by T=Nt

and simply drop T (which is just a common scaling factor in the norm, independent
of the vector of function values). Moreover, people prefer to divide by the total
length of the vector, Nt C 1, instead of Nt . This reasoning gives rise to the vector
norms for a vector f D .f0; : : : ; fN /:

jjf jj2 D

1

N C 1

NX
nD0

.fn/2

!1=2

; (1.54)

jjf jj1 D 1

N C 1

NX
nD0

jfnj; (1.55)

jjf jj`1 D max
0�n�N

jfnj : (1.56)

www.dbooks.org

https://www.dbooks.org/

28 1 Algorithms and Implementations

Here we have used the common vector component notation with subscripts (fn)
and N as length. We will mostly work with mesh functions and use the discrete
`2 norm (1.51) or the max norm `1 (1.53), but the corresponding vector norms
(1.54)–(1.56) are also much used in numerical computations, so it is important to
know the different norms and the relations between them.

A single number that expresses the size of the numerical error will be taken as
jjenjj`2 and called E:

E D
vuut�t

NtX
nD0

.en/2 (1.57)

The corresponding Python code, using array arithmetics, reads

E = sqrt(dt*sum(e**2))

The sum function comes from numpy and computes the sum of the elements of an
array. Also the sqrt function is from numpy and computes the square root of each
element in the array argument.

Scalar computing Instead of doing array computing sqrt(dt*sum(e**2)) we
can compute with one element at a time:

m = len(u) # length of u array (alt: u.size)
u_e = zeros(m)
t = 0
for i in range(m):

u_e[i] = u_exact(t, a, I)
t = t + dt

e = zeros(m)
for i in range(m):

e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):

s = s + e[i]**2
error = sqrt(dt*s)

Such element-wise computing, often called scalar computing, takes more code, is
less readable, and runs much slower than what we can achieve with array comput-
ing.

1.2.11 Experiments with Computing and Plotting

Let us write down a new function that wraps up the computation and all the plotting
statements used for comparing the exact and numerical solutions. This function can
be called with various � and �t values to see how the error depends on the method
and mesh resolution.

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).
"""

1.2 Implementations 29

u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = u_exact(t, I, a)
e = u_e - u
E = sqrt(dt*sum(e**2))
if makeplot:

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[theta], dt))
show()

return E

The figure() call is key: without it, a new plot command will draw the new
pair of curves in the same plot window, while we want the different pairs to appear
in separate windows and files. Calling figure() ensures this.

Instead of including the � value in the filename to implicitly inform about the
applied method, the code utilizes a little Python dictionary that maps each relevant
� value to a corresponding acronym for the method name (FE, BE, or CN):

theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))

The explore function stores the plot in two different image file formats: PNG
and PDF. The PNG format is suitable for being included in HTML documents,
while the PDF format provides higher quality for LATEX (i.e., PDFLATEX) documents.
Frequently used viewers for these image files on Unix systems are gv (comes with
Ghostscript) for the PDF format and display (from the ImageMagick software
suite) for PNG files:

Terminal

Terminal> gv BE_0.5.pdf
Terminal> display BE_0.5.png

A main program may run a loop over the three methods (given by their corre-
sponding � values) and call explore to compute errors and make plots:

def main(I, a, T, dt_values, theta_values=(0, 0.5, 1)):
print ’theta dt error’ # Column headings in table
for theta in theta_values:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot=True)
print ’%4.1f %6.2f: %12.3E’ % (theta, dt, E)

main(I=1, a=2, T=5, dt_values=[0.4, 0.04])

www.dbooks.org

https://www.dbooks.org/

30 1 Algorithms and Implementations

Fig. 1.7 The Forward Euler scheme for two values of the time step

The file decay_plot_mpl.py9 contains the complete code with the functions
above. Running this program results in

Terminal

Terminal> python decay_plot_mpl.py
theta dt error
0.0 0.40: 2.105E-01
0.0 0.04: 1.449E-02
0.5 0.40: 3.362E-02
0.5 0.04: 1.887E-04
1.0 0.40: 1.030E-01
1.0 0.04: 1.382E-02

We observe that reducing �t by a factor of 10 increases the accuracy for all
three methods. We also see that the combination of � D 0:5 and a small time step
�t D 0:04 gives a much more accurate solution, and that � D 0 and � D 1 with
�t D 0:4 result in the least accurate solutions.

Figure 1.7 demonstrates that the numerical solution produced by the Forward
Euler method with �t D 0:4 clearly lies below the exact curve, but that the accuracy
improves considerably by reducing the time step by a factor of 10.

The behavior of the two other schemes is shown in Figs. 1.8 and 1.9. Crank–
Nicolson is obviously the most accurate scheme from this visual point of view.

Combining plot files Mounting two PNG files beside each other, as done in
Figs. 1.7–1.9, is easily carried out by the montage10 program from the ImageMag-
ick suite:

Terminal

Terminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FE1.png

Terminal> convert -trim FE1.png FE1.png

9 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
10 http://www.imagemagick.org/script/montage.php

http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
http://www.imagemagick.org/script/montage.php

1.2 Implementations 31

Fig. 1.8 The Backward Euler scheme for two values of the time step

Fig. 1.9 The Crank–Nicolson scheme for two values of the time step

The -geometry argument is used to specify the size of the image. Here, we
preserve the individual sizes of the images. The -tile HxV option specifies H im-
ages in the horizontal direction and V images in the vertical direction. A series of
image files to be combined are then listed, with the name of the resulting com-
bined image, here FE1.png at the end. The convert -trim command removes
surrounding white areas in the figure (an operation usually known as cropping in
image manipulation programs).

For LATEX reports it is not recommended to use montage and PNG files as the
result has too low resolution. Instead, plots should be made in the PDF format and
combined using the pdftk, pdfnup, and pdfcrop tools (on Linux/Unix):

Terminal

Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf FE1.png # output in FE1.png

Here, pdftk combines images into a multi-page PDF file, pdfnup combines
the images in individual pages to a table of images (pages), and pdfcrop removes
white margins in the resulting combined image file.

www.dbooks.org

https://www.dbooks.org/

32 1 Algorithms and Implementations

Plotting with SciTools The SciTools package11 provides a unified plotting inter-
face, called Easyviz, to many different plotting packages, including Matplotlib,
Gnuplot, Grace, MATLAB, VTK, OpenDX, and VisIt. The syntax is very similar to
that of Matplotlib and MATLAB. In fact, the plotting commands shown above look
the same in SciTool’s Easyviz interface, apart from the import statement, which
reads

from scitools.std import *

This statement performs a from numpy import * as well as an import of the most
common pieces of the Easyviz (scitools.easyviz) package, along with some
additional numerical functionality.

With Easyviz one can merge several plotting commands into a single one using
keyword arguments:

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’, # blue line for exact sol.
legend=[’numerical’, ’exact’],
xlabel=’t’,
ylabel=’u’,
title=’theta=%g, dt=%g’ % (theta, dt),
savefig=’%s_%g.png’ % (theta2name[theta], dt),
show=True)

The decay_plot_st.py12 file contains such a demo.
By default, Easyviz employs Matplotlib for plotting, but Gnuplot13 and Grace14

are viable alternatives:

Terminal

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

The actual tool used for creating plots (called backend) and numerous other op-
tions can be permanently set in SciTool’s configuration file.

All the Gnuplot windows are launched without any need to kill one before the
next one pops up (as is the case with Matplotlib) and one can press the key ‘q’
anywhere in a plot window to kill it. Another advantage of Gnuplot is the auto-
matic choice of sensible and distinguishable line types in black-and-white PDF and
PostScript files.

For more detailed information on syntax and plotting capabilities, we refer to the
Matplotlib [5] and SciTools [7] documentation. The hope is that the programming
syntax explained so far suffices for understanding the basic plotting functionality
and being able to look up the cited technical documentation.

11 https://github.com/hplgit/scitools
12 http://tinyurl.com/ofkw6kc/alg/decay_plot_st.py
13 http://www.gnuplot.info/
14 http://plasma-gate.weizmann.ac.il/Grace/

https://github.com/hplgit/scitools
http://tinyurl.com/ofkw6kc/alg/decay_plot_st.py
http://www.gnuplot.info/
http://plasma-gate.weizmann.ac.il/Grace/

1.2 Implementations 33

Test your understanding!
Exercise 4.3 asks you to implement a solver for a problem that is slightly dif-
ferent from the one above. You may use the solver and explore functions
explained above as a starting point. Apply the new solver to solve Exercise 4.4.

1.2.12 Memory-Saving Implementation

The computer memory requirements of our implementations so far consist mainly
of the u and t arrays, both of length Nt C 1. Also, for the programs that involve
array arithmetics, Python needs memory space for storing temporary arrays. For
example, computing I*exp(-a*t) requires storing the intermediate result a*t be-
fore the preceding minus sign can be applied. The resulting array is temporarily
stored and provided as input to the exp function. Regardless of how we implement
simple ODE problems, storage requirements are very modest and put no restrictions
on how we choose our data structures and algorithms. Nevertheless, when the pre-
sented methods are applied to three-dimensional PDE problems, memory storage
requirements suddenly become a challenging issue.

Let us briefly elaborate on how large the storage requirements can quickly be in
three-dimensional problems. The PDE counterpart to our model problem u0 D �a

is a diffusion equation ut D ar2u posed on a space-time domain. The discrete
representation of this domain may in 3D be a spatial mesh of M 3 points and a time
mesh of Nt points. In many applications, it is quite typical that M is at least 100, or
even 1000. Storing all the computed u values, like we have done in the programs so
far, would demand storing arrays of size up to M 3Nt . This would give a factor of
M 3 larger storage demands compared to what was required by our ODE programs.
Each real number in the u array requires 8 bytes (b) of storage. With M D 100 and
Nt D 1000, there is a storage demand of .103/3 � 1000 � 8 D 8 Gb for the solution
array. Fortunately, we can usually get rid of the Nt factor, resulting in 8 Mb of
storage. Below we explain how this is done (the technique is almost always applied
in implementations of PDE problems).

Let us critically evaluate how much we really need to store in the computer’s
memory for our implementation of the � method. To compute a new unC1, all we
need is un. This implies that the previous un�1; un�2; : : : ; u0 values do not need to
be stored, although this is convenient for plotting and data analysis in the program.
Instead of the u array we can work with two variables for real numbers, u and u_1,
representing unC1 and un in the algorithm, respectively. At each time level, we
update u from u_1 and then set u_1 = u, so that the computed unC1 value becomes
the “previous” value un at the next time level. The downside is that we cannot
plot the solution after the simulation is done since only the last two numbers are
available. The remedy is to store computed values in a file and use the file for
visualizing the solution later.

We have implemented this memory saving idea in the file decay_memsave.py15,
which is a slight modification of decay_plot_mpl.py16 program.

15 http://tinyurl.com/ofkw6kc/alg/decay_memsave.py
16 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

www.dbooks.org

http://tinyurl.com/ofkw6kc/alg/decay_memsave.py
http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
https://www.dbooks.org/

34 1 Algorithms and Implementations

The following function demonstrates how we work with the two most recent
values of the unknown:

def solver_memsave(I, a, T, dt, theta, filename=’sol.dat’):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.
Minimum use of memory. The solution is stored in a file
(with name filename) for later plotting.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of intervals

outfile = open(filename, ’w’)
u: time level n+1, u_1: time level n
t = 0
u_1 = I
outfile.write(’%.16E %.16E\n’ % (t, u_1))
for n in range(1, Nt+1):

u = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u_1
u_1 = u
t += dt
outfile.write(’%.16E %.16E\n’ % (t, u))

outfile.close()
return u, t

This code snippet also serves as a quick introduction to file writing in Python. Read-
ing the data in the file into arrays t and u is done by the function

def read_file(filename=’sol.dat’):
infile = open(filename, ’r’)
u = []; t = []
for line in infile:

words = line.split()
if len(words) != 2:

print ’Found more than two numbers on a line!’, words
sys.exit(1) # abort

t.append(float(words[0]))
u.append(float(words[1]))

return np.array(t), np.array(u)

This type of file with numbers in rows and columns is very common, and numpy
has a function loadtxt which loads such tabular data into a two-dimensional array
named by the user. Say the name is data, the number in row i and column j is
then data[i,j]. The whole column number j can be extracted by data[:,j].
A version of read_file using np.loadtxt reads

def read_file_numpy(filename=’sol.dat’):
data = np.loadtxt(filename)
t = data[:,0]
u = data[:,1]
return t, u

The present counterpart to the explore function from decay_plot_mpl.py17

must run solver_memsave and then load data from file before we can compute the
error measure and make the plot:

17 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py

1.3 Exercises 35

def explore(I, a, T, dt, theta=0.5, makeplot=True):
filename = ’u.dat’
u, t = solver_memsave(I, a, T, dt, theta, filename)

t, u = read_file(filename)
u_e = u_exact(t, I, a)
e = u_e - u
E = sqrt(dt*np.sum(e**2))
if makeplot:

figure()
...

Apart from the internal implementation, where un values are stored in a file
rather than in an array, decay_memsave.py file works exactly as the
decay_plot_mpl.py file.

1.3 Exercises

Exercise 1.1: Define a mesh function and visualize it

a) Write a function mesh_function(f, t) that returns an array with mesh point
values f .t0/; : : : ; f .tNt

/, where f is a Python function implementing a mathe-
matical function f(t) and t0; : : : ; tNt

are mesh points stored in the array t. Use
a loop over the mesh points and compute one mesh function value at the time.

b) Use mesh_function to compute the mesh function corresponding to

f .t/ D
(

e�t ; 0 � t � 3;

e�3t ; 3 < t � 4

Choose a mesh tn D n�t with �t D 0:1. Plot the mesh function.

Filename: mesh_function.

Remarks In Sect. 1.2.9 we show how easy it is to compute a mesh function by
array arithmetics (or array computing). Using this technique, one could simply
implement mesh_function(f,t) as return f(t). However, f(t) will not work
if there are if tests involving t inside f as is the case in b). Typically, if t < 3
must have t < 3 as a boolean expression, but if t is array, t < 3, is an array of
boolean values, which is not legal as a boolean expression in an if test. Computing
one element at a time as suggested in a) is a way of out of this problem.

We also remark that the function in b) is the solution of u0 D �au, u.0/ D 1,
for t 2 Œ0; 4�, where a D 1 for t 2 Œ0; 3� and a D 3 for t 2 Œ3; 4�.

Problem 1.2: Differentiate a function
Given a mesh function un as an array u with un values at mesh points tn D n�t ,
the discrete derivative can be based on centered differences:

d n D ŒD2tu�n D unC1 � un�1

2�t
; n D 1; : : : ; Nt � 1 : (1.58)

www.dbooks.org

https://www.dbooks.org/

36 1 Algorithms and Implementations

At the end points we use forward and backward differences:

d 0 D ŒDCt u�n D u1 � u0

�t
;

and

d Nt D ŒD�t u�n D uNt � uNt�1

�t
:

a) Write a function differentiate(u, dt) that returns the discrete derivative
d n of the mesh function un. The parameter dt reflects the mesh spacing �t .
Write a corresponding test function test_differentiate() for verifying the
implementation.

Hint The three differentiation formulas are exact for quadratic polynomials. Use
this property to verify the program.

b) A standard implementation of the formula (1.58) is to have a loop over i . For
large Nt , such loop may run slowly in Python. A technique for speeding up
the computations, called vectorization or array computing, replaces the loop
by array operations. To see how this can be done in the present mathematical
problem, we define two arrays

uC D .u2; u3; : : : ; uNt /; u� D .u0; u1; : : : ; uNt�2/ :

The formula (1.58) can now be expressed as

.d 1; d 2; : : : ; d Nt�1/ D 1

2�t
.uC � u�/ :

The corresponding Python code reads

d[1:-1] = (u[2:] - u[0:-2])/(2*dt)
or
d[1:N_t] = (u[2:N_t+1] - u[0:N_t-1])/(2*dt)

Recall that an array slice u[1:-1] contains the elements in u starting with index
1 and going all indices up to, but not including, the last one (-1).
Use the ideas above to implement a vectorized version of the differentiate
function without loops. Make a corresponding test function that compares the
result with that of differentiate.

Filename: differentiate.

Problem 1.3: Experiment with divisions
Explain what happens in the following computations, where some are mathemati-
cally unexpected:

1.3 Exercises 37

>>> dt = 3
>>> T = 8
>>> Nt = T/dt
>>> Nt
2
>>> theta = 1; a = 1
>>> (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
0

Filename: pyproblems.

Problem 1.4: Experiment with wrong computations
Consider the solver function in the decay_v1.py18 file and the following call:

u, t = solver(I=1, a=1, T=7, dt=2, theta=1)

The output becomes

t= 0.000 u=1
t= 2.000 u=0
t= 4.000 u=0
t= 6.000 u=0

Print out the result of all intermediate computations and use type(v) to see the
object type of the result stored in some variable v. Examine the intermediate cal-
culations and explain why u is wrong and why we compute up to t D 6 only even
though we specified T D 7.

Filename: decay_v1_err.

Problem 1.5: Plot the error function
Solve the problem u0 D �au, u.0/ D I , using the Forward Euler, Backward
Euler, and Crank–Nicolson schemes. For each scheme, plot the error mesh function
en D ue.tn/ � un for �t D 0:1; 0:05; 0:025, where ue is the exact solution of the
ODE and un is the numerical solution at mesh point tn.

Hint Modify the decay_plot_mpl.py19 code.
Filename: decay_plot_error.

Problem 1.6: Change formatting of numbers and debug
The decay_memsave.py20 program writes the time values and solution values to
a file which looks like

0.0000000000000000E+00 1.0000000000000000E+00
2.0000000000000001E-01 8.3333333333333337E-01
4.0000000000000002E-01 6.9444444444444453E-01
6.0000000000000009E-01 5.7870370370370383E-01
8.0000000000000004E-01 4.8225308641975323E-01
1.0000000000000000E+00 4.0187757201646102E-01
1.2000000000000000E+00 3.3489797668038418E-01
1.3999999999999999E+00 2.7908164723365347E-01

18 http://tinyurl.com/ofkw6kc/alg/decay_v1.py
19 http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
20 http://tinyurl.com/ofkw6kc/alg/decay_memsave.py

www.dbooks.org

http://tinyurl.com/ofkw6kc/alg/decay_v1.py
http://tinyurl.com/ofkw6kc/alg/decay_plot_mpl.py
http://tinyurl.com/ofkw6kc/alg/decay_memsave.py
https://www.dbooks.org/

38 1 Algorithms and Implementations

Modify the file output such that it looks like

0.000 1.00000
0.200 0.83333
0.400 0.69444
0.600 0.57870
0.800 0.48225
1.000 0.40188
1.200 0.33490
1.400 0.27908

If you have just modified the formatting of numbers in the file, running the modified
program

Terminal

Terminal> python decay_memsave_v2.py --T 10 --theta 1 \
--dt 0.2 --makeplot

leads to printing of the message Bug in the implementation! in the terminal
window. Why?

Filename: decay_memsave_v2.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

2Analysis

We address the ODE for exponential decay,

u0.t/ D �au.t/; u.0/ D I; (2.1)

where a and I are given constants. This problem is solved by the �-rule finite
difference scheme, resulting in the recursive equations

unC1 D 1 � .1 � �/a�t

1C �a�t
un (2.2)

for the numerical solution unC1, which approximates the exact solution ue at time
point tnC1. For constant mesh spacing, which we assume here, tnC1 D .nC 1/�t .

The example programs associated with this chapter are found in the directory
src/analysis1.

2.1 Experimental Investigations

We first perform a series of numerical explorations to see how the methods behave
as we change the parameters I , a, and �t in the problem.

2.1.1 Discouraging Numerical Solutions

Choosing I D 1, a D 2, and running experiments with � D 1; 0:5; 0 for �t D
1:25; 0:75; 0:5; 0:1, gives the results in Figs. 2.1, 2.2, and 2.3.

The characteristics of the displayed curves can be summarized as follows:

� The Backward Euler scheme gives a monotone solution in all cases, lying above
the exact curve.

� The Crank–Nicolson scheme gives the most accurate results, but for �t D 1:25

the solution oscillates.

1 http://tinyurl.com/ofkw6kc/analysis

39© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_2

www.dbooks.org

http://tinyurl.com/ofkw6kc/analysis
https://www.dbooks.org/

40 2 Analysis

Fig. 2.1 Backward Euler

� The Forward Euler scheme gives a growing, oscillating solution for �t D 1:25;
a decaying, oscillating solution for �t D 0:75; a strange solution un D 0 for
n 	 1 when �t D 0:5; and a solution seemingly as accurate as the one by
the Backward Euler scheme for �t D 0:1, but the curve lies below the exact
solution.

Since the exact solution of our model problem is a monotone function, u.t/ D
Ie�at , some of these qualitatively wrong results indeed seem alarming!

Key questions
� Under what circumstances, i.e., values of the input data I , a, and �t will the

Forward Euler and Crank–Nicolson schemes result in undesired oscillatory
solutions?

� How does �t impact the error in the numerical solution?

The first question will be investigated both by numerical experiments and by
precise mathematical theory. The theory will help establish general criteria on
�t for avoiding non-physical oscillatory or growing solutions.

For our simple model problem we can answer the second question very pre-
cisely, but we will also look at simplified formulas for small �t and touch upon

2.1 Experimental Investigations 41

Fig. 2.2 Crank–Nicolson

important concepts such as convergence rate and the order of a scheme. Other
fundamental concepts mentioned are stability, consistency, and convergence.

2.1.2 Detailed Experiments

To address the first question above, we may set up an experiment where we loop
over values of I , a, and �t in our chosen model problem. For each experiment, we
flag the solution as oscillatory if

un > un�1;

for some value of n. This seems like a reasonable choice, since we expect un to
decay with n, but oscillations will make u increase over a time step. Doing some
initial experimentation with varying I , a, and �t , quickly reveals that oscillations
are independent of I , but they do depend on a and �t . We can therefore limit the
investigation to vary a and �t . Based on this observation, we introduce a two-
dimensional function B.a; �t/ which is 1 if oscillations occur and 0 otherwise.
We can visualize B as a contour plot (lines for which B D const). The contour
B D 0:5 corresponds to the borderline between oscillatory regions with B D 1 and
monotone regions with B D 0 in the a; �t plane.

www.dbooks.org

https://www.dbooks.org/

42 2 Analysis

Fig. 2.3 Forward Euler

The B function is defined at discrete a and �t values. Say we have given P

values for a, a0; : : : ; aP�1, and Q values for �t , �t0; : : : ; �tQ�1. These ai and
�tj values, i D 0; : : : ; P � 1, j D 0; : : : ; Q � 1, form a rectangular mesh of
P
 Q points in the plane spanned by a and �t . At each point .ai ; �tj /, we
associate the corresponding value B.ai ; �tj /, denoted Bij . The Bij values are nat-
urally stored in a two-dimensional array. We can thereafter create a plot of the
contour line Bij D 0:5 dividing the oscillatory and monotone regions. The file
decay_osc_regions.py2 given below (osc_regions stands for “oscillatory re-
gions”) contains all nuts and bolts to produce the B D 0:5 line in Figs. 2.4 and 2.5.
The oscillatory region is above this line.

from decay_mod import solver
import numpy as np
import scitools.std as st

def non_physical_behavior(I, a, T, dt, theta):
"""
Given lists/arrays a and dt, and numbers I, dt, and theta,
make a two-dimensional contour line B=0.5, where B=1>0.5
means oscillatory (unstable) solution, and B=0<0.5 means
monotone solution of u’=-au.
"""

2 http://tinyurl.com/ofkw6kc/analysis/decay_osc_regions.py

http://tinyurl.com/ofkw6kc/analysis/decay_osc_regions.py

2.1 Experimental Investigations 43

Fig. 2.4 Forward Euler scheme: oscillatory solutions occur for points above the curve

a = np.asarray(a); dt = np.asarray(dt) # must be arrays
B = np.zeros((len(a), len(dt))) # results
for i in range(len(a)):

for j in range(len(dt)):
u, t = solver(I, a[i], T, dt[j], theta)
Does u have the right monotone decay properties?
correct_qualitative_behavior = True
for n in range(1, len(u)):

if u[n] > u[n-1]: # Not decaying?
correct_qualitative_behavior = False
break # Jump out of loop

B[i,j] = float(correct_qualitative_behavior)
a_, dt_ = st.ndgrid(a, dt) # make mesh of a and dt values
st.contour(a_, dt_, B, 1)
st.grid(’on’)
st.title(’theta=%g’ % theta)
st.xlabel(’a’); st.ylabel(’dt’)
st.savefig(’osc_region_theta_%s.png’ % theta)
st.savefig(’osc_region_theta_%s.pdf’ % theta)

non_physical_behavior(
I=1,
a=np.linspace(0.01, 4, 22),
dt=np.linspace(0.01, 4, 22),
T=6,
theta=0.5)

By looking at the curves in the figures one may guess that a�t must be less
than a critical limit to avoid the undesired oscillations. This limit seems to be about
2 for Crank–Nicolson and 1 for Forward Euler. We shall now establish a precise
mathematical analysis of the discrete model that can explain the observations in our
numerical experiments.

www.dbooks.org

https://www.dbooks.org/

44 2 Analysis

Fig. 2.5 Crank–Nicolson scheme: oscillatory solutions occur for points above the curve

2.2 Stability

The goal now is to understand the results in the previous section. To this end, we
shall investigate the properties of the mathematical formula for the solution of the
equations arising from the finite difference methods.

2.2.1 Exact Numerical Solution

Starting with u0 D I , the simple recursion (2.2) can be applied repeatedly n times,
with the result that

un D IAn; A D 1 � .1 � �/a�t

1C �a�t
: (2.3)

Solving difference equations
Difference equations where all terms are linear in unC1, un, and maybe un�1,
un�2, etc., are called homogeneous, linear difference equations, and their solu-
tions are generally of the form un D An, where A is a constant to be determined.
Inserting this expression in the difference equation and dividing by AnC1 gives
a polynomial equation in A. In the present case we get

A D 1 � .1 � �/a�t

1C �a�t
:

This is a solution technique of wider applicability than repeated use of the recur-
sion (2.2).

2.2 Stability 45

Regardless of the solution approach, we have obtained a formula for un. This
formula can explain everything we see in the figures above, but it also gives us
a more general insight into accuracy and stability properties of the three schemes.

Since un is a factor A raised to an integer power n, we realize that A < 0 will
imply un < 0 for odd n and un > 0 for even n. That is, the solution oscillates
between the mesh points. We have oscillations due to A < 0 when

.1 � �/a�t > 1 : (2.4)

Since A > 0 is a requirement for having a numerical solution with the same basic
property (monotonicity) as the exact solution, we may say that A > 0 is a stability
criterion. Expressed in terms of �t the stability criterion reads

�t <
1

.1 � �/a
: (2.5)

The Backward Euler scheme is always stable since A < 0 is impossible for
� D 1, while non-oscillating solutions for Forward Euler and Crank–Nicolson de-
mand �t � 1=a and �t � 2=a, respectively. The relation between �t and a look
reasonable: a larger a means faster decay and hence a need for smaller time steps.

Looking at the upper left plot in Fig. 2.3, we see that �t D 1:25, and remember-
ing that a D 2 in these experiments, A can be calculated to be�1:5, so the Forward
Euler solution becomes un D .�1:5/n (I D 1). This solution oscillates and grows.
The upper right plot has a�t D 2 � 0:75 D 1:5, so A D �0:5, and un D .�0:5/n

decays but oscillates. The lower left plot is a peculiar case where the Forward Euler
scheme produces a solution that is stuck on the t axis. Now we can understand why
this is so, because a�t D 2 � 0:5 D 1, which gives A D 0, and therefore un D 0 for
n 	 1. The decaying oscillations in the Crank–Nicolson scheme in the upper left
plot in Fig. 2.2 for �t D 1:25 are easily explained by the fact that A � �0:11 < 0.

2.2.2 Stability Properties Derived from the Amplification Factor

The factor A is called the amplification factor since the solution at a new time
level is the solution at the previous time level amplified by a factor A. For a decay
process, we must obviously have jAj � 1, which is fulfilled for all �t if � 	 1=2.
Arbitrarily large values of u can be generated when jAj > 1 and n is large enough.
The numerical solution is in such cases totally irrelevant to an ODE modeling decay
processes! To avoid this situation, we must demand jAj � 1 also for � < 1=2,
which implies

�t � 2

.1 � 2�/a
; (2.6)

For example, �t must not exceed 2=a when computing with the Forward Euler
scheme.

www.dbooks.org

https://www.dbooks.org/

46 2 Analysis

Stability properties
We may summarize the stability investigations as follows:

1. The Forward Euler method is a conditionally stable scheme because it re-
quires �t < 2=a for avoiding growing solutions and �t < 1=a for avoiding
oscillatory solutions.

2. The Crank–Nicolson is unconditionally stable with respect to growing solu-
tions, while it is conditionally stable with the criterion �t < 2=a for avoiding
oscillatory solutions.

3. The Backward Euler method is unconditionally stable with respect to grow-
ing and oscillatory solutions – any �t will work.

Much literature on ODEs speaks about L-stable and A-stable methods. In our
case A-stable methods ensures non-growing solutions, while L-stable methods
also avoids oscillatory solutions.

2.3 Accuracy

While stability concerns the qualitative properties of the numerical solution, it re-
mains to investigate the quantitative properties to see exactly how large the numer-
ical errors are.

2.3.1 Visual Comparison of Amplification Factors

After establishing how A impacts the qualitative features of the solution, we shall
now look more into how well the numerical amplification factor approximates the
exact one. The exact solution reads u.t/ D Ie�at , which can be rewritten as

ue.tn/ D Ie�an�t D I.e�a�t /n : (2.7)

From this formula we see that the exact amplification factor is

Ae D e�a�t : (2.8)

We see from all of our analysis that the exact and numerical amplification factors
depend on a and �t through the dimensionless product a�t : whenever there is
a �t in the analysis, there is always an associated a parameter. Therefore, it is
convenient to introduce a symbol for this product, p D a�t , and view A and Ae as
functions of p. Figure 2.6 shows these functions. The two amplification factors are
clearly closest for the Crank–Nicolson method, but that method has the unfortunate
oscillatory behavior when p > 2.

Significance of the p D a�t parameter
The key parameter for numerical performance of a scheme is in this model prob-
lem p D a�t . This is a dimensionless number (a has dimension 1/s and �t

2.3 Accuracy 47

Fig. 2.6 Comparison of amplification factors

has dimension s) reflecting how the discretization parameter plays together with
a physical parameter in the problem.

One can bring the present model problem on dimensionless form through
a process called scaling. The scaled modeled has a modified time Nt D at and
modified response Nu D u=I such that the model reads d Nu=d Nt D �Nu, Nu.0/ D 1.
Analyzing this model, where there are no physical parameters, we find that �Nt
is the key parameter for numerical performance. In the unscaled model, this
corresponds to �Nt D a�t .

It is common that the numerical performance of methods for solving ordinary
and partial differential equations is governed by dimensionless parameters that
combine mesh sizes with physical parameters.

2.3.2 Series Expansion of Amplification Factors

As an alternative to the visual understanding inherent in Fig. 2.6, there is a strong
tradition in numerical analysis to establish formulas for approximation errors when
the discretization parameter, here �t , becomes small. In the present case, we let p

be our small discretization parameter, and it makes sense to simplify the expressions
for A and Ae by using Taylor polynomials around p D 0. The Taylor polynomi-
als are accurate for small p and greatly simplify the comparison of the analytical
expressions since we then can compare polynomials, term by term.

Calculating the Taylor series for Ae is easily done by hand, but the three versions
of A for � D 0; 1; 1

2
lead to more cumbersome calculations. Nowadays, analyti-

cal computations can benefit greatly by symbolic computer algebra software. The
Python package sympy represents a powerful computer algebra system, not yet as
sophisticated as the famous Maple and Mathematica systems, but it is free and very
easy to integrate with our numerical computations in Python.

www.dbooks.org

https://www.dbooks.org/

48 2 Analysis

When using sympy, it is convenient to enter an interactive Python shell where the
results of expressions and statements can be shown immediately. Here is a simple
example. We strongly recommend to use isympy (or ipython) for such interactive
sessions.

Let us illustrate sympy with a standard Python shell syntax (»> prompt) to com-
pute a Taylor polynomial approximation to e�p:

>>> from sympy import *
>>> # Create p as a mathematical symbol with name ’p’
>>> p = Symbols(’p’)
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)

Lines with »> represent input lines, whereas without this prompt represent the result
of the previous command (note that isympy and ipython apply other prompts, but
in this text we always apply »> for interactive Python computing). Apart from the
order of the powers, the computed formula is easily recognized as the beginning of
the Taylor series for e�p .

Let us define the numerical amplification factor where p and � enter the formula
as symbols:

>>> theta = Symbol(’theta’)
>>> A = (1-(1-theta)*p)/(1+theta*p)

To work with the factor for the Backward Euler scheme we can substitute the value
1 for theta:

>>> A.subs(theta, 1)
1/(1 + p)

Similarly, we can substitute theta by 1=2 for Crank–Nicolson, preferably using an
exact rational representation of 1=2 in sympy:

>>> half = Rational(1,2)
>>> A.subs(theta, half)
1/(1 + (1/2)*p)*(1 - 1/2*p)

The Taylor series of the amplification factor for the Crank–Nicolson scheme can
be computed as

>>> A.subs(theta, half).series(p, 0, 4)
1 + (1/2)*p**2 - p - 1/4*p**3 + O(p**4)

2.3 Accuracy 49

We are now in a position to compare Taylor series:

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

From these expressions we see that the error A � Ae � O.p2/ for the Forward and
Backward Euler schemes, while A�Ae � O.p3/ for the Crank–Nicolson scheme.
The notation O.pm/ here means a polynomial in p where pm is the term of lowest-
degree, and consequently the term that dominates the expression for p < 0. We call
this the leading order term. As p ! 0, the leading order term clearly dominates
over the higher-order terms (think of p D 0:01: p is a hundred times larger than p2).

Now, a is a given parameter in the problem, while �t is what we can vary. Not
surprisingly, the error expressions are usually written in terms �t . We then have

A � Ae D
(
O.�t2/; Forward and Backward Euler;

O.�t3/; Crank–Nicolson
(2.9)

We say that the Crank–Nicolson scheme has an error in the amplification factor
of order �t3, while the two other schemes are of order �t2 in the same quantity.

What is the significance of the order expression? If we halve �t , the error in am-
plification factor at a time level will be reduced by a factor of 4 in the Forward and
Backward Euler schemes, and by a factor of 8 in the Crank–Nicolson scheme. That
is, as we reduce �t to obtain more accurate results, the Crank–Nicolson scheme
reduces the error more efficiently than the other schemes.

2.3.3 The Ratio of Numerical and Exact Amplification Factors

An alternative comparison of the schemes is provided by looking at the ratio A=Ae,
or the error 1 � A=Ae in this ratio:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

The leading-order terms have the same powers as in the analysis of A � Ae.

www.dbooks.org

https://www.dbooks.org/

50 2 Analysis

2.3.4 The Global Error at a Point

The error in the amplification factor reflects the error when progressing from time
level tn to tn�1 only. That is, we disregard the error already present in the solution
at tn�1. The real error at a point, however, depends on the error development over
all previous time steps. This error, en D un � ue.tn/, is known as the global error.
We may look at un for some n and Taylor expand the mathematical expressions as
functions of p D a�t to get a simple expression for the global error (for small p).
Continuing the sympy expression from previous section, we can write

>>> n = Symbol(’n’)
>>> u_e = exp(-p*n)
>>> u_n = A**n
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)

Note that sympy does not sort the polynomial terms in the output, so p3 appears
before p2 in the output of BE.

For a fixed time t , the parameter n in these expressions increases as p ! 0 since
t D n�t D const and hence n must increase like �t�1. With n substituted by t=�t

in the leading-order error terms, these become

en D 1

2
np2 D 1

2
ta2�t; Forward Euler (2.10)

en D �1

2
np2 D �1

2
ta2�t; Backward Euler (2.11)

en D 1

12
np3 D 1

12
ta3�t2; Crank–Nicolson (2.12)

The global error is therefore of second order (in �t) for the Crank–Nicolson scheme
and of first order for the other two schemes.

Convergence
When the global error en ! 0 as �t ! 0, we say that the scheme is convergent.
It means that the numerical solution approaches the exact solution as the mesh is
refined, and this is a much desired property of a numerical method.

2.3.5 Integrated Error

It is common to study the norm of the numerical error, as explained in detail in
Sect. 1.2.10. The L2 norm of the error can be computed by treating en as a func-
tion of t in sympy and performing symbolic integration. From now on we shall
do import sympy as sym and prefix all functions in sympy by sym to explicitly

2.3 Accuracy 51

notify ourselves that the functions are from sympy. This is particularly advanta-
geous when we use mathematical functions like sin: sym.sin is for symbolic
expressions, while sin from numpy or math is for numerical computation. For the
Forward Euler scheme we have

import sympy as sym
p, n, a, dt, t, T, theta = sym.symbols(’p n a dt t T theta’)
A = (1-(1-theta)*p)/(1+theta*p)
u_e = sym.exp(-p*n)
u_n = A**n
error = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
Introduce t and dt instead of n and p
error = error.subs(’n’, ’t/dt’).subs(p, ’a*dt’)
error = error.as_leading_term(dt) # study only the first term
print error
error_L2 = sym.sqrt(sym.integrate(error**2, (t, 0, T)))
print ’L2 error:’, sym.simplify(error_error_L2)

The output reads

sqrt(30)*sqrt(T**3*a**4*dt**2*(6*T**2*a**2 - 15*T*a + 10))/60

which means that the L2 error behaves like a2�t .
Strictly speaking, the numerical error is only defined at the mesh points so it

makes most sense to compute the `2 error

jjenjj`2 D
vuut�t

NtX
nD0

.ue.tn/� un/2 :

We have obtained an exact analytical expression for the error at t D tn, but here we
use the leading-order error term only since we are mostly interested in how the error
behaves as a polynomial in �t or p, and then the leading order term will dominate.
For the Forward Euler scheme, ue.tn/ � un � 1

2
np2, and we have

jjenjj2
`2 D �t

NtX
nD0

1

4
n2p4 D �t

1

4
p4

NtX
nD0

n2 :

Now,
PNt

nD0 n2 � 1
3
N 3

t . Using this approximation, setting Nt D T=�t , and taking
the square root gives the expression

jjenjj`2 D 1

2

r
T 3

3
a2�t : (2.13)

Calculations for the Backward Euler scheme are very similar and provide the same
result, while the Crank–Nicolson scheme leads to

jjenjj`2 D 1

12

r
T 3

3
a3�t2 : (2.14)

www.dbooks.org

https://www.dbooks.org/

52 2 Analysis

Summary of errors
Both the global point-wise errors (2.10)–(2.12) and their time-integrated versions
(2.13) and (2.14) show that

� the Crank–Nicolson scheme is of second order in �t , and
� the Forward Euler and Backward Euler schemes are of first order in �t .

2.3.6 Truncation Error

The truncation error is a very frequently used error measure for finite difference
methods. It is defined as the error in the difference equation that arises when in-
serting the exact solution. Contrary to many other error measures, e.g., the true
error en D ue.tn/ � un, the truncation error is a quantity that is easily computable.

Before reading on, it is wise to review Sect. 1.1.7 on how Taylor polynomials
were used to derive finite differences and quantify the error in the formulas. Very
similar reasoning, and almost identical mathematical details, will be carried out
below, but in a slightly different context. Now, the focus is on the error when solving
a differential equation, while in Sect. 1.1.7 we derived errors for a finite difference
formula. These errors are tightly connected in the present model problem.

Let us illustrate the calculation of the truncation error for the Forward Euler
scheme. We start with the difference equation on operator form,

ŒDCt u D �au�n;

which is the short form for

unC1 � un

�t
D �aun :

The idea is to see how well the exact solution ue.t/ fulfills this equation. Since
ue.t/ in general will not obey the discrete equation, we get an error in the discrete
equation. This error is called a residual, denoted here by Rn:

Rn D ue.tnC1/� ue.tn/

�t
C aue.tn/ : (2.15)

The residual is defined at each mesh point and is therefore a mesh function with
a superscript n.

The interesting feature of Rn is to see how it depends on the discretization pa-
rameter �t . The tool for reaching this goal is to Taylor expand ue around the point
where the difference equation is supposed to hold, here t D tn. We have that

ue.tnC1/ D ue.tn/C u0e.tn/�t C 1

2
u00e.tn/�t2 C � � � ;

2.3 Accuracy 53

which may be used to reformulate the fraction in (2.15) so that

Rn D u0e.tn/C 1

2
u00e.tn/�t C : : :C aue.tn/ :

Now, ue fulfills the ODE u0e D �aue, which means that the first and last term
cancel and we have

Rn D 1

2
u00e.tn/�t CO.�t2/ :

This Rn is the truncation error, which for the Forward Euler is seen to be of first
order in �t as �! 0.

The above procedure can be repeated for the Backward Euler and the Crank–
Nicolson schemes. We start with the scheme in operator notation, write it out in
detail, Taylor expand ue around the point Qt at which the difference equation is
defined, collect terms that correspond to the ODE (here u0e C aue), and identify
the remaining terms as the residual R, which is the truncation error. The Backward
Euler scheme leads to

Rn � �1

2
u00e.tn/�t;

while the Crank–Nicolson scheme gives

RnC 1
2 � 1

24
u000e .tnC 1

2
/�t2;

when �t ! 0.
The order r of a finite difference scheme is often defined through the leading

term �tr in the truncation error. The above expressions point out that the Forward
and Backward Euler schemes are of first order, while Crank–Nicolson is of second
order. We have looked at other error measures in other sections, like the error in
amplification factor and the error en D ue.tn/ � un, and expressed these error
measures in terms of �t to see the order of the method. Normally, calculating the
truncation error is more straightforward than deriving the expressions for other error
measures and therefore the easiest way to establish the order of a scheme.

2.3.7 Consistency, Stability, and Convergence

Three fundamental concepts when solving differential equations by numerical
methods are consistency, stability, and convergence. We shall briefly touch upon
these concepts below in the context of the present model problem.

Consistency means that the error in the difference equation, measured through
the truncation error, goes to zero as �t ! 0. Since the truncation error tells
how well the exact solution fulfills the difference equation, and the exact solution
fulfills the differential equation, consistency ensures that the difference equation
approaches the differential equation in the limit. The expressions for the truncation
errors in the previous section are all proportional to �t or �t2, hence they vanish
as �t ! 0, and all the schemes are consistent. Lack of consistency implies that we
actually solve some other differential equation in the limit �t ! 0 than we aim at.

www.dbooks.org

https://www.dbooks.org/

54 2 Analysis

Stability means that the numerical solution exhibits the same qualitative proper-
ties as the exact solution. This is obviously a feature we want the numerical solution
to have. In the present exponential decay model, the exact solution is monotone and
decaying. An increasing numerical solution is not in accordance with the decaying
nature of the exact solution and hence unstable. We can also say that an oscillat-
ing numerical solution lacks the property of monotonicity of the exact solution and
is also unstable. We have seen that the Backward Euler scheme always leads to
monotone and decaying solutions, regardless of �t , and is hence stable. The For-
ward Euler scheme can lead to increasing solutions and oscillating solutions if �t

is too large and is therefore unstable unless �t is sufficiently small. The Crank–
Nicolson can never lead to increasing solutions and has no problem to fulfill that
stability property, but it can produce oscillating solutions and is unstable in that
sense, unless �t is sufficiently small.

Convergence implies that the global (true) error mesh function en D ue.tn/ �
un ! 0 as �t ! 0. This is really what we want: the numerical solution gets as
close to the exact solution as we request by having a sufficiently fine mesh.

Convergence is hard to establish theoretically, except in quite simple problems
like the present one. Stability and consistency are much easier to calculate. A major
breakthrough in the understanding of numerical methods for differential equations
came in 1956 when Lax and Richtmeyer established equivalence between conver-
gence on one hand and consistency and stability on the other (the Lax equivalence
theorem3). In practice it meant that one can first establish that a method is stable
and consistent, and then it is automatically convergent (which is much harder to
establish). The result holds for linear problems only, and in the world of nonlinear
differential equations the relations between consistency, stability, and convergence
are much more complicated.

We have seen in the previous analysis that the Forward Euler, Backward Euler,
and Crank–Nicolson schemes are convergent (en ! 0), that they are consistent
(Rn ! 0), and that they are stable under certain conditions on the size of �t . We
have also derived explicit mathematical expressions for en, the truncation error, and
the stability criteria.

2.4 Various Types of Errors in a Differential Equation Model

So far we have been concerned with one type of error, namely the discretization
error committed by replacing the differential equation problem by a recursive set
of difference equations. There are, however, other types of errors that must be
considered too. We can classify errors into four groups:

1. model errors: how wrong is the ODE model?
2. data errors: how wrong are the input parameters?
3. discretization errors: how wrong is the numerical method?
4. rounding errors: how wrong is the computer arithmetics?

Below, we shall briefly describe and illustrate these four types of errors. Each of
the errors deserve its own chapter, at least, so the treatment here is superficial to

3 http://en.wikipedia.org/wiki/Lax_equivalence_theorem

http://en.wikipedia.org/wiki/Lax_equivalence_theorem

2.4 Various Types of Errors in a Differential EquationModel 55

give some indication about the nature of size of the errors in a specific case. Some
of the required computer codes quickly become more advanced than in the rest of
the book, but we include to code to document all the details that lie behind the
investigations of the errors.

2.4.1 Model Errors

Any mathematical modeling like u0 D �au, u.0/ D I , is just an approximate
description of a real-world phenomenon. How good this approximation is can be
determined by comparing physical experiments with what the model predicts. This
is the topic of validation and is obviously an essential part of mathematical mod-
eling. One difficulty with validation is that we need to estimate the parameters in
the model, and this brings in data errors. Quantifying data errors is challenging,
and a frequently used method is to tune the parameters in the model to make model
predictions as close as possible to the experiments. That is, we do not attempt to
measure or estimate all input parameters, but instead find values that “make the
model good”. Another difficulty is that the response in experiments also contains
errors due to measurement techniques.

Let us try to quantify model errors in a very simple example involving u0 D �au,
u.0/ D I , with constant a. Suppose a more accurate model has a as a function of
time rather than a constant. Here we take a.t/ as a simple linear function: a C pt .
Obviously, u with p > 0 will go faster to zero with time than a constant a.

The solution of
u0 D .aC pt/u; u.0/ D I;

can be shown (see below) to be

u.t/ D Ie�t.aC 1
2 pt/ :

Let a Python function true_model(t, I, a, p) implement the above u.t/

and let the solution of our primary ODE u0 D �au be available as the function
model(t, I, a). We can now make some plots of the two models and the
error for some values of p. Figure 2.7 displays model versus true_model for
p D 0:01; 0:1; 1, while Fig. 2.8 shows the difference between the two models as
a function of t for the same p values.

The code that was used to produce the plots looks like

from numpy import linspace, exp
from matplotlib.pyplot import \

plot, show, xlabel, ylabel, legend, savefig, figure, title

def model_errors():
p_values = [0.01, 0.1, 1]
a = 1
I = 1
t = linspace(0, 4, 101)
legends = []
Work with figure(1) for the discrepancy and figure(2+i)
for plotting the model and the true model for p value no i
for i, p in enumerate(p_values):

u = model(t, I, a)

www.dbooks.org

https://www.dbooks.org/

56 2 Analysis

Fig. 2.7 Comparison of two models for three values of p

2.4 Various Types of Errors in a Differential EquationModel 57

Fig. 2.8 Discrepancy of Comparison of two models for three values of p

u_true = true_model(t, I, a, p)
discrepancy = u_true - u
figure(1)
plot(t, discrepancy)
figure(2+i)
plot(t, u, ’r-’, t, u_true, ’b--’)
legends.append(’p=%g’ % p)

figure(1)
legend(legends, loc=’lower right’)
savefig(’tmp1.png’); savefig(’tmp1.pdf’)
for i, p in enumerate(p_values):

figure(2+i)
legend([’model’, ’true model’])
title(’p=%g’ % p)
savefig(’tmp%d.png’ % (2+i)); savefig(’tmp%d.pdf’ % (2+i))

To derive the analytical solution of the model u0 D �.a C pt/u, u.0/ D I , we
can use SymPy and the code below. This is somewhat advanced SymPy use for
a newbie, but serves to illustrate the possibilities to solve differential equations by
symbolic software.

def derive_true_solution():
import sympy as sym
u = sym.symbols(’u’, cls=sym.Function) # function u(t)
t, a, p, I = sym.symbols(’t a p I’, real=True)

def ode(u, t, a, p):
"""Define ODE: u’ = (a + p*t)*u. Return residual."""
return sym.diff(u, t) + (a + p*t)*u

eq = ode(u(t), t, a, p)
s = sym.dsolve(eq)
s is sym.Eq object u(t) == expression, we want u = expression,
so grab the right-hand side of the equality (Eq obj.)
u = s.rhs
print u

www.dbooks.org

https://www.dbooks.org/

58 2 Analysis

u contains C1, replace it with a symbol we can fit to
the initial condition
C1 = sym.symbols(’C1’, real=True)
u = u.subs(’C1’, C1)
print u
Initial condition equation
eq = u.subs(t, 0) - I
s = sym.solve(eq, C1) # solve eq wrt C1
print s
s is a list s[0] = ...
Replace C1 in u by the solution
u = u.subs(C1, s[0])
print ’u:’, u
print sym.latex(u) # latex formula for reports

Consistency check: u must fulfill ODE and initial condition
print ’ODE is fulfilled:’, sym.simplify(ode(u, t, a, p))
print ’u(0)-I:’, sym.simplify(u.subs(t, 0) - I)

Convert u expression to Python numerical function
(modules=’numpy’ allows numpy arrays as arguments,
we want this for t)
u_func = sym.lambdify([t, I, a, p], u, modules=’numpy’)
return u_func

true_model = derive_true_solution()

2.4.2 Data Errors

By “data” we mean all the input parameters to a model, in our case I and a. The
values of these may contain errors, or at least uncertainty. Suppose I and a are
measured from some physical experiments. Ideally, we have many samples of I

and a and from these we can fit probability distributions. Assume that I turns
out to be normally distributed with mean 1 and standard deviation 0.2, while a is
uniformly distributed in the interval Œ0:5; 1:5�.

How will the uncertainty in I and a propagate through the model u D Ie�at ?
That is, what is the uncertainty in u at a particular time t? This answer can easily
be answered using Monte Carlo simulation. It means that we draw a lot of samples
from the distributions for I and a. For each combination of I and a sample we
compute the corresponding u value for selected values of t . Afterwards, we can for
each selected t values make a histogram of all the computed u values to see what the
distribution of u values look like. Figure 2.9 shows the histograms corresponding
to t D 0; 1; 3. We see that the distribution of u values is much like a symmetric
normal distribution at t D 0, centered around u D 1. At later times, the distribution
gets more asymmetric and narrower. It means that the uncertainty decreases with
time.

From the computed u values we can easily calculate the mean and standard de-
viation. The table below shows the mean and standard deviation values along with
the value if we just use the formula u D Ie�at with the mean values of I and a:
I D 1 and a D 1. As we see, there is some discrepancy between this latter (naive)
computation and the mean value produced by Monte Carlo simulation.

2.4 Various Types of Errors in a Differential EquationModel 59

time mean st.dev. u.t I I D a D 1/

0 1.00 0.200 1.00
1 0.38 0.135 0.37
3 0.07 0.060 0.14

Actually, u.t I I; a/ becomes a stochastic variable for each t when I and a are
stochastic variables, as they are in the above Monte Carlo simulation. The mean
of the stochastic u.t I I; a/ is not equal to u with mean values of the input data,
u.t I I D a D 1/, unless u is linear in I and a (here u is nonlinear in a).

Estimating statistical uncertainty in input data and investigating how this uncer-
tainty propagates to uncertainty in the response of a differential equation model
(or other models) are key topics in the scientific field called uncertainty quantifica-
tion, simply known as UQ. Estimation of the statistical properties of input data can
either be done directly from physical experiments, or one can find the parameter
values that provide a “best fit” of model predictions with experiments. Monte Carlo
simulation is a general and widely used tool to solve the associated statistical prob-
lems. The accuracy of the Monte Carlo results increases with increasing number of
samples N , typically the error behaves like N �1=2.

The computer code required to do the Monte Carlo simulation and produce the
plots in Fig. 2.9 is shown below.

def data_errors():
from numpy import random, mean, std
from matplotlib.pyplot import hist
N = 10000
Draw random numbers for I and a
I_values = random.normal(1, 0.2, N)
a_values = random.uniform(0.5, 1.5, N)
Compute corresponding u values for some t values
t = [0, 1, 3]
u_values = {} # samples for various t values
u_mean = {}
u_std = {}
for t_ in t:

Compute u samples corresponding to I and a samples
u_values[t_] = [model(t_, I, a)

for I, a in zip(I_values, a_values)]
u_mean[t_] = mean(u_values[t_])
u_std[t_] = std(u_values[t_])

figure()
dummy1, bins, dummy2 = hist(

u_values[t_], bins=30, range=(0, I_values.max()),
normed=True, facecolor=’green’)

#plot(bins)
title(’t=%g’ % t_)
savefig(’tmp_%g.png’ % t_); savefig(’tmp_%g.pdf’ % t_)

Table of mean and standard deviation values
print ’time mean st.dev.’
for t_ in t:

print ’%3g %.2f %.3f’ % (t_, u_mean[t_], u_std[t_])

www.dbooks.org

https://www.dbooks.org/

60 2 Analysis

Fig. 2.9 Histogram of solution uncertainty at three time points, due to data errors

2.4 Various Types of Errors in a Differential EquationModel 61

Fig. 2.10 Discretization errors in various schemes for four time step values

2.4.3 Discretization Errors

The errors implied by solving the differential equation problem by the �-rule has
been thoroughly analyzed in the previous sections. Below are some plots of the error
versus time for the Forward Euler (FE), Backward Euler (BN), and Crank–Nicolson
(CN) schemes for decreasing values of �t . Since the difference in magnitude
between the errors in the CN scheme versus the FE and BN schemes grows sig-
nificantly as �t is reduced (the error goes like �t2 for CN versus �t for FE/BE),
we have plotted the logarithm of the absolute value of the numerical error as a mesh
function.

The table below presents exact figures of the discretization error for various
choices of �t and schemes.

�t FE BE CN
0.4 9 � 10�2 6 � 10�2 5 � 10�3

0.1 2 � 10�2 2 � 10�2 3 � 10�4

0.01 2 � 10�3 2 � 10�3 3 � 10�6

The computer code used to generate the plots appear next. It makes use of a solver
function as shown in Sect. 1.2.3.

www.dbooks.org

https://www.dbooks.org/

62 2 Analysis

def discretization_errors():
from numpy import log, abs
I = 1
a = 1
T = 4
t = linspace(0, T, 101)
schemes = {’FE’: 0, ’BE’: 1, ’CN’: 0.5} # theta to scheme name
dt_values = [0.8, 0.4, 0.1, 0.01]
for dt in dt_values:

figure()
legends = []
for scheme in schemes:

theta = schemes[scheme]
u, t = solver(I, a, T, dt, theta)
u_e = model(t, I, a)
error = u_e - u
print ’%s: dt=%.2f, %d steps, max error: %.2E’ % \

(scheme, dt, len(u)-1, abs(error).max())
Plot log(error), but exclude error[0] since it is 0
plot(t[1:], log(abs(error[1:])))
legends.append(scheme)

xlabel(’t’); ylabel(’log(abs(numerical error))’)
legend(legends, loc=’upper right’)
title(r’$\Delta t=%g$’ % dt)
savefig(’tmp_dt%g.png’ % dt); savefig(’tmp_dt%g.pdf’ % dt)

2.4.4 Rounding Errors

Real numbers on a computer are represented by floating-point numbers4, which
means that just a finite number of digits are stored and used. Therefore, the floating-
point number is an approximation to the underlying real number. When doing
arithmetics with floating-point numbers, there will be small approximation errors,
called round-off errors or rounding errors, that may or may not accumulate in com-
prehensive computations.

The cause and analysis of rounding errors are described in most books on nu-
merical analysis, see for instance Chapter 2 in Gander et al. [1]. For very simple
algorithms it is possible to theoretically establish bounds for the rounding errors,
but for most algorithms one cannot know to what extent rounding errors accumu-
late and potentially destroy the final answer. Exercise 2.3 demonstrates the impact
of rounding errors on numerical differentiation and integration.

Here is a simplest possible example of the effect of rounding errors:

>>> 1.0/51*51
1.0
>>> 1.0/49*49
0.9999999999999999

We see that the latter result is not exact, but features an error of 10�16. This is
the typical level of a rounding error from an arithmetic operation with the widely
used 64 bit floating-point number (float object in Python, often called double or
double precision in other languages). One cannot expect more accuracy than 10�16.
The big question is if errors at this level accumulate in a given numerical algorithm.

4 https://en.wikipedia.org/wiki/Floating_point

https://en.wikipedia.org/wiki/Floating_point

2.4 Various Types of Errors in a Differential EquationModel 63

What is the effect of using float objects and not exact arithmetics when solving
differential equations? We can investigate this question through computer experi-
ments if we have the ability to represent real numbers to a desired accuracy. For-
tunately, Python has a Decimal object in the decimal5 module that allows us to
use as many digits in floating-point numbers as we like. We take 1000 digits as the
true answer where rounding errors are negligible, and then we run our numerical
algorithm (the Crank–Nicolson scheme to be precise) with Decimal objects for all
real numbers and compute the maximum error arising from using 4, 16, 64, and 128
digits.

When computing with numbers around unity in size and doing Nt D 40 time
steps, we typically get a rounding error of 10�d , where d is the number of digits
used. The effect of rounding errors may accumulate if we perform more operations,
so increasing the number of time steps to 4000 gives a rounding error of the order
10�dC2. Also, if we compute with numbers that are much larger than unity, we
lose accuracy due to rounding errors. For example, for the u values implied by
I D 1000 and a D 100 (u � 103), the rounding errors increase to about 10�dC3.
Below is a table summarizing a set of experiments. A rough model for the size of
rounding errors is 10�dCqCr , where d is the number of digits, the number of time
steps is of the order 10q time steps, and the size of the numbers in the arithmetic
expressions are of order 10r .

digits u � 1, Nt D 40 u � 1, Nt D 4000 u � 103, Nt D 40 u � 103, Nt D 4000

4 3:05 � 10�4 2:51 � 10�1 3:05 � 10�1 9:82 � 102

16 1:71 � 10�16 1:42 � 10�14 1:58 � 10�13 4:84 � 10�11

64 2:99 � 10�64 1:80 � 10�62 2:06 � 10�61 1:04 � 10�57

128 1:60 � 10�128 1:56 � 10�126 2:41 � 10�125 1:07 � 10�122

We realize that rounding errors are at the lowest possible level if we scale the differ-
ential equation model, see Sect. 4.1, so the numbers entering the computations are
of unity in size, and if we take a small number of steps (40 steps gives a discretiza-
tion error of 5 � 10�3 with the Crank–Nicolson scheme). In general, rounding errors
are negligible in comparison with other errors in differential equation models.

The computer code for doing the reported experiments need a new version of the
solver function where we do arithmetics with Decimal objects:

def solver_decimal(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
from numpy import zeros, linspace
from decimal import Decimal as D
dt = D(dt)
a = D(a)
theta = D(theta)
Nt = int(round(D(T)/dt))
T = Nt*dt
u = zeros(Nt+1, dtype=object) # array of Decimal objects
t = linspace(0, float(T), Nt+1)

u[0] = D(I) # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

5 https://docs.python.org/2/library/decimal.html

www.dbooks.org

https://docs.python.org/2/library/decimal.html
https://www.dbooks.org/

64 2 Analysis

The function below carries out the experiments. We can conveniently set the num-
ber of digits as we want through the decimal.getcontext().prec variable.

def rounding_errors(I=1, a=1, T=4, dt=0.1):
import decimal
from numpy import log, array, abs
digits_values = [4, 16, 64, 128]
"Exact" arithmetics is taken as 1000 decimals here
decimal.getcontext().prec = 1000
u_e, t = solver_decimal(I=I, a=a, T=T, dt=dt, theta=0.5)
for digits in digits_values:

decimal.getcontext().prec = digits # set no of digits
u, t = solver_decimal(I=I, a=a, T=T, dt=dt, theta=0.5)
error = u_e - u
error = array(error[1:], dtype=float)
print ’%d digits, %d steps, max abs(error): %.2E’ % \

(digits, len(u)-1, abs(error).max())

2.4.5 Discussion of the Size of Various Errors

The previous computational examples of model, data, discretization, and rounding
errors are tied to one particular mathematical problem, so it is in principle danger-
ous to make general conclusions. However, the illustrations made point to some
common trends that apply to differential equation models.

First, rounding errors have very little impact compared to the other types of er-
rors. Second, numerical errors are in general smaller than model and data errors, but
more importantly, numerical errors are often well understood and can be reduced
by just increasing the computational work (in our example by taking more smaller
time steps).

Third, data errors may be significant, and it also takes a significant amount of
computational work to quantify them and their impact on the solution. Many types
of input data are also difficult or impossible to measure, so finding suitable values
requires tuning of the data and the model to a known (measured) response. Nev-
ertheless, even if the predictive precision of a model is limited because of severe
errors or uncertainty in input data, the model can still be of high value for inves-
tigating qualitative properties of the underlying phenomenon. Through computer
experiments with synthetic input data one can understand a lot of the science or
engineering that goes into the model.

Fourth, model errors are the most challenging type of error to deal with. Sim-
plicity of model is in general preferred over complexity, but adding complexity is
often the only way to improve the predictive capabilities of a model. More com-
plexity usually also means a need for more input data and consequently the danger
of increasing data errors.

2.5 Exercises

Problem 2.1: Visualize the accuracy of finite differences
The purpose of this exercise is to visualize the accuracy of finite difference approx-
imations of the derivative of a given function. For any finite difference approxima-

2.5 Exercises 65

tion, take the Forward Euler difference as an example, and any specific function,
take u D e�at , we may introduce an error fraction

E D ŒDCt u�n

u0.tn/
D exp .�a.tn C�t// � exp .�atn/

�a exp .�atn/�t

D 1

a�t
.1 � exp .�a�t// ;

and view E as a function of �t . We expect that lim�t!0 E D 1, while E may
deviate significantly from unity for large �t . How the error depends on �t is best
visualized in a graph where we use a logarithmic scale for �t , so we can cover
many orders of magnitude of that quantity. Here is a code segment creating an
array of 100 intervals, on the logarithmic scale, ranging from 10�6 to 10�0:5 and
then plotting E versus p D a�t with logarithmic scale on the p axis:

from numpy import logspace, exp
from matplotlib.pyplot import semilogx
p = logspace(-6, -0.5, 101)
y = (1-exp(-p))/p
semilogx(p, y)

Illustrate such errors for the finite difference operators ŒDCt u�n (forward), ŒD�t u�n

(backward), and ŒDtu�n (centered) in the same plot.
Perform a Taylor series expansions of the error fractions and find the leading

order r in the expressions of type 1C Cpr CO.prC1/, where C is some constant.

Hint To save manual calculations and learn more about symbolic computing, make
functions for the three difference operators and use sympy to perform the sym-
bolic differences, differentiation, and Taylor series expansion. To plot a symbolic
expression E against p, convert the expression to a Python function first: E =
sympy.lamdify([p], E).
Filename: decay_plot_fd_error.

Problem 2.2: Explore the �-rule for exponential growth
This exercise asks you to solve the ODE u0 D �au with a < 0 such that the
ODE models exponential growth instead of exponential decay. A central theme is
to investigate numerical artifacts and non-physical solution behavior.

a) Set a D �1 and run experiments with � D 0; 0:5; 1 for various values of �t

to uncover numerical artifacts. Recall that the exact solution is a monotone,
growing function when a < 0. Oscillations or significantly wrong growth are
signs of wrong qualitative behavior.
From the experiments, select four values of �t that demonstrate the kind of
numerical solutions that are characteristic for this model.

b) Write up the amplification factor and plot it for � D 0; 0:5; 1 together with the
exact one for a�t < 0. Use the plot to explain the observations made in the
experiments.

www.dbooks.org

https://www.dbooks.org/

66 2 Analysis

Hint Modify the decay_ampf_plot.py6 code (in the src/analysis directory).
Filename: exponential_growth.

Problem 2.3: Explore rounding errors in numerical calculus

a) Compute the absolute values of the errors in the numerical derivative of e�t

at t D 1
2

for three types of finite difference approximations: a forward differ-
ence, a backward difference, and a centered difference, for �t D 2�k , k D
0; 4; 8; 12; : : : ; 60. When do rounding errors destroy the accuracy?

b) Compute the absolute values of the errors in the numerical approximation ofR 4

0 e�t dt using the Trapezoidal and the Midpoint integration methods. Make
a table of the errors for n D 2k intervals, k D 1; 3; 5; : : : ; 21. Is there any
impact of rounding errors?

Hint The Trapezoidal rule for
R b

a
f .x/dx reads

bZ
a

f .x/dx � h

1

2
f .a/C 1

2
f .b/C

n�1X
iD1

f .aC ih/

!
; h D b � a

n
:

The Midpoint rule is

bZ
a

f .x/dx � h

nX
iD1

f

�
aC

�
i C 1

2

�
h

�
:

Filename: rounding.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

6 http://tinyurl.com/ofkw6kc/analysis/decay_ampf_plot.py

http://creativecommons.org/licenses/by-nc/4.0/
http://tinyurl.com/ofkw6kc/analysis/decay_ampf_plot.py

3Generalizations

It is time to consider generalizations of the simple decay model u0 D �au and also
to look at additional numerical solution methods. We consider first variable coeffi-
cients, u0 D a.t/uC b.t/, and later a completely general scalar ODE u0 D f .u; t/

and its generalization to a system of such general ODEs. Among numerical meth-
ods, we treat implicit multi-step methods, and several families of explicit methods:
Leapfrog schemes, Runge–Kutta methods, and Adams–Bashforth formulas.

3.1 Model Extensions

This section looks at the generalizations to u0 D �a.t/u and u0 D �a.t/u C
b.t/. We sketch the corresponding implementations of the �-rule for such variable-
coefficient ODEs. Verification can no longer make use of an exact solution of the
numerical problem so we make use of manufactured solutions, for deriving an exact
solution of the ODE problem, and then we can compute empirical convergence rates
for the method and see if these coincide with the expected rates from theory. Finally,
we see how our numerical methods can be applied to systems of ODEs.

The example programs associated with this chapter are found in the directory
src/genz1.

3.1.1 Generalization: Including a Variable Coefficient

In the ODE for decay, u0 D �au, we now consider the case where a depends on
time:

u0.t/ D �a.t/u.t/; t 2 .0; T �; u.0/ D I : (3.1)

A Forward Euler scheme consists of evaluating (3.1) at t D tn and approximating
the derivative with a forward difference ŒDCt u�n:

unC1 � un

�t
D �a.tn/un : (3.2)

1 http://tinyurl.com/ofkw6kc/genz

67© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_3

www.dbooks.org

http://tinyurl.com/ofkw6kc/genz
https://www.dbooks.org/

68 3 Generalizations

The Backward Euler scheme becomes

un � un�1

�t
D �a.tn/un : (3.3)

The Crank–Nicolson method builds on sampling the ODE at tnC 1
2
. We can evaluate

a at tnC 1
2

and use an average for u at times tn and tnC1:

unC1 � un

�t
D �a.tnC 1

2
/
1

2
.un C unC1/ : (3.4)

Alternatively, we can use an average for the product au:

unC1 � un

�t
D �1

2
.a.tn/un C a.tnC1/u

nC1/ : (3.5)

The �-rule unifies the three mentioned schemes. One version is to have a evaluated
at the weighted time point .1 � �/tn C � tnC1,

unC1 � un

�t
D �a..1 � �/tn C � tnC1/..1 � �/un C �unC1/ : (3.6)

Another possibility is to apply a weighted average for the product au,

unC1 � un

�t
D �.1 � �/a.tn/un � �a.tnC1/u

nC1 : (3.7)

With the finite difference operator notation the Forward Euler and Backward
Euler schemes can be summarized as

ŒDCt u D �au�n; (3.8)

ŒD�t u D �au�n : (3.9)

The Crank–Nicolson and � schemes depend on whether we evaluate a at the sample
point for the ODE or if we use an average. The various versions are written as

ŒDtu D �aut �nC
1
2 ; (3.10)

ŒDtu D �aut �nC
1
2 ; (3.11)

ŒDtu D �aut;� �nC� ; (3.12)

ŒDtu D �aut;� �nC� : (3.13)

3.1.2 Generalization: Including a Source Term

A further extension of the model ODE is to include a source term b.t/:

u0.t/ D �a.t/u.t/C b.t/; t 2 .0; T �; u.0/ D I : (3.14)

3.1 Model Extensions 69

The time point where we sample the ODE determines where b.t/ is evaluated.
For the Crank–Nicolson scheme and the �-rule we have a choice of whether to
evaluate a.t/ and b.t/ at the correct point or use an average. The chosen strategy
becomes particularly clear if we write up the schemes in the operator notation:

ŒDCt u D �auC b�n; (3.15)

ŒD�t u D �auC b�n; (3.16)

ŒDt u D �aut C b�nC
1
2 ; (3.17)

ŒDt u D �auC b
t
�nC

1
2 ; (3.18)

ŒDt u D �aut;� C b�nC� ; (3.19)

ŒDt u D �auC b
t;�

�nC� : (3.20)

3.1.3 Implementation of the Generalized Model Problem

Deriving the �-rule formula Writing out the �-rule in (3.20), using (1.44) and
(1.45), we get

unC1 � un

�t
D �.�anC1unC1 C bnC1//C .1 � �/.�anun C bn//; (3.21)

where an means evaluating a at t D tn and similar for anC1, bn, and bnC1. We solve
for unC1:

unC1 D ..1��t.1��/an/unC�t.�bnC1C.1��/bn//.1C�t�anC1/�1 : (3.22)

Python code Here is a suitable implementation of (3.21) where a.t/ and b.t/ are
given as Python functions:

def solver(I, a, b, T, dt, theta):
"""
Solve u’=-a(t)*u + b(t), u(0)=I,
for t in (0,T] with steps of dt.
a and b are Python functions of t.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))

return u, t

This function is found in the file decay_vc.py2 (vc stands for “variable coeffi-
cients”).

2 http://tinyurl.com/ofkw6kc/genz/decay_vc.py

www.dbooks.org

http://tinyurl.com/ofkw6kc/genz/decay_vc.py
https://www.dbooks.org/

70 3 Generalizations

Coding of variable coefficients The solver function shown above demands the
arguments a and b to be Python functions of time t, say

def a(t):
return a_0 if t < tp else k*a_0

def b(t):
return 1

Here, a(t) has three parameters a0, tp, and k, which must be global variables.
A better implementation, which avoids global variables, is to represent a by

a class where the parameters are attributes and where a special method __call__
evaluates a.t/:

class A:
def __init__(self, a0=1, k=2):

self.a0, self.k = a0, k

def __call__(self, t):
return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)

For quick tests it is cumbersome to write a complete function or a class. The
lambda function construction in Python is then convenient. For example,

a = lambda t: a_0 if t < tp else k*a_0

is equivalent to the def a(t) definition above. In general,

f = lambda arg1, arg2, ...: expression

is equivalent to

def f(arg1, arg2, ...):
return expression

One can use lambda functions directly in calls. Say we want to solve u0 D �uC 1,
u.0/ D 2:

u, t = solver(2, lambda t: 1, lambda t: 1, T, dt, theta)

Whether to use a plain function, a class, or a lambda function depends on the
programmer’s taste. Lazy programmers prefer the lambda construct, while very
safe programmers go for the class solution.

3.1.4 Verifying a Constant Solution

An extremely useful partial verification method is to construct a test problem with
a very simple solution, usually u D const. Especially the initial debugging of

3.1 Model Extensions 71

a program code can benefit greatly from such tests, because 1) all relevant numerical
methods will exactly reproduce a constant solution, 2) many of the intermediate
calculations are easy to control by hand for a constant u, and 3) even a constant u

can uncover many bugs in an implementation.
The only constant solution for the problem u0 D �au is u D 0, but too many

bugs can escape from that trivial solution. It is much better to search for a problem
where u D C D const ¤ 0. Then u0 D �a.t/u C b.t/ is more appropriate: with
u D C we can choose any a.t/ and set b D a.t/C and I D C . An appropriate test
function is

def test_constant_solution():
"""
Test problem where u=u_const is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def u_exact(t):

return u_const

def a(t):
return 2.5*(1+t**3) # can be arbitrary

def b(t):
return a(t)*u_const

u_const = 2.15
theta = 0.4; I = u_const; dt = 4
Nt = 4 # enough with a few steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
print u
u_e = u_exact(t)
difference = abs(u_e - u).max() # max deviation
tol = 1E-14
assert difference < tol

An interesting question is what type of bugs that will make the computed un

deviate from the exact solution C . Fortunately, the updating formula and the initial
condition must be absolutely correct for the test to pass! Any attempt to make
a wrong indexing in terms like a(t[n]) or any attempt to introduce an erroneous
factor in the formula creates a solution that is different from C .

3.1.5 Verification via Manufactured Solutions

Following the idea of the previous section, we can choose any formula as the exact
solution, insert the formula in the ODE problem and fit the data a.t/, b.t/, and
I to make the chosen formula fulfill the equation. This powerful technique for
generating exact solutions is very useful for verification purposes and known as the
method of manufactured solutions, often abbreviated MMS.

One common choice of solution is a linear function in the independent vari-
able(s). The rationale behind such a simple variation is that almost any relevant
numerical solution method for differential equation problems is able to reproduce
a linear function exactly to machine precision (if u is about unity in size; precision
is lost if u takes on large values, see Exercise 3.1). The linear solution also makes
some stronger demands to the numerical method and the implementation than the

www.dbooks.org

https://www.dbooks.org/

72 3 Generalizations

constant solution used in Sect. 3.1.4, at least in more complicated applications.
Still, the constant solution is often ideal for initial debugging before proceeding
with a linear solution.

We choose a linear solution u.t/ D ct C d . From the initial condition it follows
that d D I . Inserting this u in the left-hand side of (3.14), i.e., the ODE, we get

c D �a.t/uC b.t/ :

Any function u D ct C I is then a correct solution if we choose

b.t/ D c C a.t/.ct C I / :

With this b.t/ there are no restrictions on a.t/ and c.
Let us prove that such a linear solution obeys the numerical schemes. To this

end, we must check that un D ca.tn/.ctn C I / fulfills the discrete equations. For
these calculations, and later calculations involving linear solutions inserted in finite
difference schemes, it is convenient to compute the action of a difference operator
on a linear function t :

ŒDCt t �n D tnC1 � tn

�t
D 1; (3.23)

ŒD�t t �n D tn � tn�1

�t
D 1; (3.24)

ŒDt t�
n D

tnC 1
2
� tn� 1

2

�t
D .nC 1

2
/�t � .n � 1

2
/�t

�t
D 1 : (3.25)

Clearly, all three finite difference approximations to the derivative are exact for
u.t/ D t or its mesh function counterpart un D tn.

The difference equation for the Forward Euler scheme

ŒDCt u D �auC b�n;

with an D a.tn/, bn D c C a.tn/.ctn C I /, and un D ctn C I then results in

c D �a.tn/.ctn C I /C c C a.tn/.ctn C I / D c

which is always fulfilled. Similar calculations can be done for the Backward Euler
and Crank–Nicolson schemes, or the �-rule for that matter. In all cases, un D
ctnC I is an exact solution of the discrete equations. That is why we should expect
that un � ue.tn/ D 0 mathematically and jun � ue.tn/j less than a small number
about the machine precision for n D 0; : : : ; Nt .

The following function offers an implementation of this verification test based
on a linear exact solution:

def test_linear_solution():
"""
Test problem where u=c*t+I is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""

3.1 Model Extensions 73

def u_exact(t):
return c*t + I

def a(t):
return t**0.5 # can be arbitrary

def b(t):
return c + a(t)*u_exact(t)

theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
T = 4
Nt = int(T/dt) # no of steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = u_exact(t)
difference = abs(u_e - u).max() # max deviation
print difference
tol = 1E-14 # depends on c!
assert difference < tol

Any error in the updating formula makes this test fail!
Choosing more complicated formulas as the exact solution, say cos.t/, will not

make the numerical and exact solution coincide to machine precision, because finite
differencing of cos.t/ does not exactly yield the exact derivative � sin.t/. In such
cases, the verification procedure must be based on measuring the convergence rates
as exemplified in Sect. 3.1.6. Convergence rates can be computed as long as one has
an exact solution of a problem that the solver can be tested on, but this can always
be obtained by the method of manufactured solutions.

3.1.6 Computing Convergence Rates

We expect that the error E in the numerical solution is reduced if the mesh size �t

is decreased. More specifically, many numerical methods obey a power-law relation
between E and �t :

E D C�tr ; (3.26)

where C and r are (usually unknown) constants independent of �t . The formula
(3.26) is viewed as an asymptotic model valid for sufficiently small �t . How small
is normally hard to estimate without doing numerical estimations of r .

The parameter r is known as the convergence rate. For example, if the conver-
gence rate is 2, halving �t reduces the error by a factor of 4. Diminishing �t then
has a greater impact on the error compared with methods that have r D 1. For
a given value of r , we refer to the method as of r-th order. First- and second-order
methods are most common in scientific computing.

Estimating r There are two alternative ways of estimating C and r based on a set
of m simulations with corresponding pairs .�ti ; Ei /, i D 0; : : : ; m � 1, and �ti <

�ti�1 (i.e., decreasing cell size).

1. Take the logarithm of (3.26), ln E D r ln �t C ln C , and fit a straight line to the
data points .�ti ; Ei /, i D 0; : : : ; m � 1.

www.dbooks.org

https://www.dbooks.org/

74 3 Generalizations

2. Consider two consecutive experiments, .�ti ; Ei / and .�ti�1; Ei�1/. Dividing
the equation Ei�1 D C�tr

i�1 by Ei D C�tr
i and solving for r yields

ri�1 D ln.Ei�1=Ei /

ln.�ti�1=�ti /
(3.27)

for i D 1; : : : ; m � 1. Note that we have introduced a subindex i � 1 on r

in (3.27) because r estimated from a pair of experiments must be expected to
change with i .

The disadvantage of method 1 is that (3.26) might not be valid for the coarsest
meshes (largest �t values). Fitting a line to all the data points is then misleading.
Method 2 computes convergence rates for pairs of experiments and allows us to see
if the sequence ri converges to some value as i ! m � 2. The final rm�2 can then
be taken as the convergence rate. If the coarsest meshes have a differing rate, the
corresponding time steps are probably too large for (3.26) to be valid. That is, those
time steps lie outside the asymptotic range of �t values where the error behaves
like (3.26).

Implementation We can compute r0; r1; : : : ; rm�2 from Ei and �ti by the follow-
ing function

def compute_rates(dt_values, E_values):
m = len(dt_values)
r = [log(E_values[i-1]/E_values[i])/

log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

Round to two decimals
r = [round(r_, 2) for r_ in r]
return r

Experiments with a series of time step values and � D 0; 1; 0:5 can be set up as
follows, here embedded in a real test function:

def test_convergence_rates():
Create a manufactured solution
define u_exact(t), a(t), b(t)

dt_values = [0.1*2**(-i) for i in range(7)]
I = u_exact(0)

for theta in (0, 1, 0.5):
E_values = []
for dt in dt_values:

u, t = solver(I=I, a=a, b=b, T=6, dt=dt, theta=theta)
u_e = u_exact(t)
e = u_e - u
E = sqrt(dt*sum(e**2))
E_values.append(E)

r = compute_rates(dt_values, E_values)
print ’theta=%g, r: %s’ % (theta, r)
expected_rate = 2 if theta == 0.5 else 1
tol = 0.1
diff = abs(expected_rate - r[-1])
assert diff < tol

3.1 Model Extensions 75

The manufactured solution is conveniently computed by sympy. Let us choose
ue.t/ D sin.t/e�2t and a.t/ D t2. This implies that we must fit b as b.t/ D
u0.t/ � a.t/. We first compute with sympy expressions and then we convert the
exact solution, a, and b to Python functions that we can use in the subsequent
numerical computing:

Create a manufactured solution with sympy
import sympy as sym
t = sym.symbols(’t’)
u_e = sym.sin(t)*sym.exp(-2*t)
a = t**2
b = sym.diff(u_e, t) + a*u_exact

Turn sympy expressions into Python function
u_exact = sym.lambdify([t], u_e, modules=’numpy’)
a = sym.lambdify([t], a, modules=’numpy’)
b = sym.lambdify([t], b, modules=’numpy’)

The complete code is found in the function test_convergence_rates in the file
decay_vc.py3.

Running this code gives the output

Terminal

theta=0, r: [1.06, 1.03, 1.01, 1.01, 1.0, 1.0]
theta=1, r: [0.94, 0.97, 0.99, 0.99, 1.0, 1.0]
theta=0.5, r: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

We clearly see how the convergence rates approach the expected values.

Why convergence rates are important
The strong practical application of computing convergence rates is for verifi-
cation: wrong convergence rates point to errors in the code, and correct conver-
gence rates bring strong support for a correct implementation. Experience shows
that bugs in the code easily destroy the expected convergence rate.

3.1.7 Extension to Systems of ODEs

Many ODE models involve more than one unknown function and more than one
equation. Here is an example of two unknown functions u.t/ and v.t/:

u0 D auC bv; (3.28)

v0 D cuC dv; (3.29)

for constants a; b; c; d . Applying the Forward Euler method to each equation results
in a simple updating formula:

unC1 D un C�t.aun C bvn/; (3.30)

vnC1 D un C�t.cun C dvn/ : (3.31)

3 http://tinyurl.com/ofkw6kc/genz/decay_vc.py

www.dbooks.org

http://tinyurl.com/ofkw6kc/genz/decay_vc.py
https://www.dbooks.org/

76 3 Generalizations

On the other hand, the Crank–Nicolson or Backward Euler schemes result in a 2
2

linear system for the new unknowns. The latter scheme becomes

unC1 D un C�t.aunC1 C bvnC1/; (3.32)

vnC1 D vn C�t.cunC1 C dvnC1/ : (3.33)

Collecting unC1 as well as vnC1 on the left-hand side results in

.1 ��ta/unC1 C bvnC1 D un; (3.34)

cunC1 C .1 ��td/vnC1 D vn; (3.35)

which is a system of two coupled, linear, algebraic equations in two unknowns.
These equations can be solved by hand (using standard techniques for two algebraic
equations with two unknowns x and y), resulting in explicit formulas for unC1 and
vnC1 that can be directly implemented. For systems of ODEs with many equations
and unknowns, one will express the coupled equations at each time level in matrix
form and call software for numerical solution of linear systems of equations.

3.2 General First-Order ODEs

We now turn the attention to general, nonlinear ODEs and systems of such ODEs.
Our focus is on numerical methods that can be readily reused for time-discretization
of PDEs, and diffusion PDEs in particular. The methods are just briefly listed,
and we refer to the rich literature for more detailed descriptions and analysis – the
books [2–4, 12] are all excellent resources on numerical methods for ODEs. We
also demonstrate the Odespy Python interface to a range of different software for
general first-order ODE systems.

3.2.1 Generic Form of First-Order ODEs

ODEs are commonly written in the generic form

u0 D f .u; t/; u.0/ D I; (3.36)

where f .u; t/ is some prescribed function. As an example, our most general expo-
nential decay model (3.14) has f .u; t/ D �a.t/u.t/C b.t/.

The unknown u in (3.36) may either be a scalar function of time t , or a vector
valued function of t in case of a system of ODEs with m unknown components:

u.t/ D .u.0/.t/; u.1/.t/; : : : ; u.m�1/.t// :

In that case, the right-hand side is a vector-valued function with m components,

f .u; t/ D .f .0/.u.0/.t/; : : : ; u.m�1/.t//;

f .1/.u.0/.t/; : : : ; u.m�1/.t//;

:::

f .m�1/.u.0/.t/; : : : ; u.m�1/.t/// :

3.2 General First-Order ODEs 77

Actually, any system of ODEs can be written in the form (3.36), but higher-order
ODEs then need auxiliary unknown functions to enable conversion to a first-order
system.

Next we list some well-known methods for u0 D f .u; t/, valid both for a single
ODE (scalar u) and systems of ODEs (vector u).

3.2.2 The �-Rule

The �-rule scheme applied to u0 D f .u; t/ becomes

unC1 � un

�t
D �f .unC1; tnC1/C .1 � �/f .un; tn/ : (3.37)

Bringing the unknown unC1 to the left-hand side and the known terms on the right-
hand side gives

unC1 ��t�f .unC1; tnC1/ D un C�t.1 � �/f .un; tn/ : (3.38)

For a general f (not linear in u), this equation is nonlinear in the unknown unC1

unless � D 0. For a scalar ODE (m D 1), we have to solve a single nonlinear alge-
braic equation for unC1, while for a system of ODEs, we get a system of coupled,
nonlinear algebraic equations. Newton’s method is a popular solution approach in
both cases. Note that with the Forward Euler scheme (� D 0) we do not have to
deal with nonlinear equations, because in that case we have an explicit updating
formula for unC1. This is known as an explicit scheme. With � ¤ 1 we have to
solve (systems of) algebraic equations, and the scheme is said to be implicit.

3.2.3 An Implicit 2-Step Backward Scheme

The implicit backward method with 2 steps applies a three-level backward differ-
ence as approximation to u0.t/,

u0.tnC1/ � 3unC1 � 4un C un�1

2�t
;

which is an approximation of order �t2 to the first derivative. The resulting scheme
for u0 D f .u; t/ reads

unC1 D 4

3
un � 1

3
un�1 C 2

3
�tf .unC1; tnC1/ : (3.39)

Higher-order versions of the scheme (3.39) can be constructed by including more
time levels. These schemes are known as the Backward Differentiation Formulas
(BDF), and the particular version (3.39) is often referred to as BDF2.

Note that the scheme (3.39) is implicit and requires solution of nonlinear equa-
tions when f is nonlinear in u. The standard 1st-order Backward Euler method or
the Crank–Nicolson scheme can be used for the first step.

www.dbooks.org

https://www.dbooks.org/

78 3 Generalizations

3.2.4 Leapfrog Schemes

The ordinary Leapfrog scheme The derivative of u at some point tn can be ap-
proximated by a central difference over two time steps,

u0.tn/ � unC1 � un�1

2�t
D ŒD2tu�n (3.40)

which is an approximation of second order in �t . The scheme can then be written
as

ŒD2t u D f .u; t/�n;

in operator notation. Solving for unC1 gives

unC1 D un�1 C 2�tf .un; tn/ : (3.41)

Observe that (3.41) is an explicit scheme, and that a nonlinear f (in u) is trivial
to handle since it only involves the known un value. Some other scheme must be
used as starter to compute u1, preferably the Forward Euler scheme since it is also
explicit.

The filtered Leapfrog scheme Unfortunately, the Leapfrog scheme (3.41) will
develop growing oscillations with time (see Problem 3.6). A remedy for such unde-
sired oscillations is to introduce a filtering technique. First, a standard Leapfrog step
is taken, according to (3.41), and then the previous un value is adjusted according
to

un un C �.un�1 � 2un C unC1/ : (3.42)

The �-terms will effectively damp oscillations in the solution, especially those with
short wavelength (like point-to-point oscillations). A common choice of � is 0.6
(a value used in the famous NCAR Climate Model).

3.2.5 The 2nd-Order Runge–Kutta Method

The two-step scheme

u� D un C�tf .un; tn/; (3.43)

unC1 D un C�t
1

2
.f .un; tn/C f .u�; tnC1// ; (3.44)

essentially applies a Crank–Nicolson method (3.44) to the ODE, but replaces the
term f .unC1; tnC1/ by a prediction f .u�; tnC1/ based on a Forward Euler step
(3.43). The scheme (3.43)–(3.44) is known as Huen’s method, but is also a 2nd-
order Runge–Kutta method. The scheme is explicit, and the error is expected to
behave as �t2.

3.2 General First-Order ODEs 79

3.2.6 A 2nd-Order Taylor-Series Method

One way to compute unC1 given un is to use a Taylor polynomial. We may write up
a polynomial of 2nd degree:

unC1 D un C u0.tn/�t C 1

2
u00.tn/�t2 :

From the equation u0 D f .u; t/ it follows that the derivatives of u can be expressed
in terms of f and its derivatives:

u0.tn/ D f .un; tn/;

u00.tn/ D @f

@u
.un; tn/u0.tn/C @f

@t

D f .un; tn/
@f

@u
.un; tn/C @f

@t
;

resulting in the scheme

unC1 D un C f .un; tn/�t C 1

2

�
f .un; tn/

@f

@u
.un; tn/C @f

@t

�
�t2 : (3.45)

More terms in the series could be included in the Taylor polynomial to obtain meth-
ods of higher order than 2.

3.2.7 The 2nd- and 3rd-Order Adams–Bashforth Schemes

The following method is known as the 2nd-order Adams–Bashforth scheme:

unC1 D un C 1

2
�t
�
3f .un; tn/ � f .un�1; tn�1/

�
: (3.46)

The scheme is explicit and requires another one-step scheme to compute u1 (the
Forward Euler scheme or Heun’s method, for instance). As the name implies, the
error behaves like �t2.

Another explicit scheme, involving four time levels, is the 3rd-order Adams–
Bashforth scheme

unC1 D un C 1

12

�
23f .un; tn/ � 16f .un�1; tn�1/C 5f .un�2; tn�2/

�
: (3.47)

The numerical error is of order �t3, and the scheme needs some method for com-
puting u1 and u2.

More general, higher-order Adams–Bashforth schemes (also called explicit
Adams methods) compute unC1 as a linear combination of f at kC 1 previous time
steps:

unC1 D un C
kX

jD0

ǰ f .un�j ; tn�j /;

where ǰ are known coefficients.

www.dbooks.org

https://www.dbooks.org/

80 3 Generalizations

3.2.8 The 4th-Order Runge–Kutta Method

The perhaps most widely used method to solve ODEs is the 4th-order Runge–Kutta
method, often called RK4. Its derivation is a nice illustration of common numerical
approximation strategies, so let us go through the steps in detail to learn about
algorithmic development.

The starting point is to integrate the ODE u0 D f .u; t/ from tn to tnC1:

u.tnC1/ � u.tn/ D
tnC1Z
tn

f .u.t/; t/dt :

We want to compute u.tnC1/ and regard u.tn/ as known. The task is to find good ap-
proximations for the integral, since the integrand involves the unknown u between
tn and tnC1.

The integral can be approximated by the famous Simpson’s rule4:

tnC1Z
tn

f .u.t/; t/dt � �t

6

�
f n C 4f nC 1

2 C f nC1
�

:

The problem now is that we do not know f nC 1
2 D f .unC 1

2 ; tnC 1
2
/ and f nC1 D

.unC1; tnC1/ as we know only un and hence f n. The idea is to use various ap-
proximations for f nC 1

2 and f nC1 based on well-known schemes for the ODE in
the intervals Œtn; tnC 1

2
� and Œtn; tnC1�. We split the integral approximation into four

terms:
tnC1Z
tn

f .u.t/; t/dt � �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
;

where Of nC 1
2 , Qf nC 1

2 , and Nf nC1 are approximations to f nC 1
2 and f nC1, respectively,

that can be based on already computed quantities. For Of nC 1
2 we can apply an ap-

proximation to unC 1
2 using the Forward Euler method with step 1

2
�t :

Of nC 1
2 D f .un C 1

2
�tf n; tnC 1

2
/ (3.48)

Since this gives us a prediction of f nC 1
2 , we can for Qf nC 1

2 try a Backward Euler
method to approximate unC 1

2 :

Qf nC 1
2 D f .un C 1

2
�t Of nC 1

2 ; tnC 1
2
/ : (3.49)

With Qf nC 1
2 as a hopefully good approximation to f nC 1

2 , we can for the final term
Nf nC1 use a Crank–Nicolson method on Œtn; tnC1� to approximate unC1:

Nf nC1 D f .un C�t Of nC 1
2 ; tnC1/ : (3.50)

4 http://en.wikipedia.org/wiki/Simpson’s_rule

http://en.wikipedia.org/wiki/Simpson's_rule

3.2 General First-Order ODEs 81

We have now used the Forward and Backward Euler methods as well as the Crank–
Nicolson method in the context of Simpson’s rule. The hope is that the combination
of these methods yields an overall time-stepping scheme from tn to tnC1 that is
much more accurate than the O.�t/ and O.�t2/ of the individual steps. This is
indeed true: the overall accuracy is O.�t4/!

To summarize, the 4th-order Runge–Kutta method becomes

unC1 D un C �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
; (3.51)

where the quantities on the right-hand side are computed from (3.48)–(3.50). Note
that the scheme is fully explicit so there is never any need to solve linear or nonlinear
algebraic equations. However, the stability is conditional and depends on f . There
is a whole range of implicit Runge–Kutta methods that are unconditionally stable,
but require solution of algebraic equations involving f at each time step.

The simplest way to explore more sophisticated methods for ODEs is to apply
one of the many high-quality software packages that exist, as the next section ex-
plains.

3.2.9 The Odespy Software

A wide range of methods and software exist for solving (3.36). Many of the meth-
ods are accessible through a unified Python interface offered by the Odespy5 [10]
package. Odespy features simple Python implementations of the most fundamen-
tal schemes as well as Python interfaces to several famous packages for solving
ODEs: ODEPACK6, Vode7, rkc.f8, rkf45.f9, as well as the ODE solvers in SciPy10,
SymPy11, and odelab12.

The code below illustrates the usage of Odespy the solving u0 D �au, u.0/ D
I , t 2 .0; T �, by the famous 4th-order Runge–Kutta method, using �t D 1 and
Nt D 6 steps:

def f(u, t):
return -a*u

import odespy
import numpy as np

I = 1; a = 0.5; Nt = 6; dt = 1
solver = odespy.RK4(f)
solver.set_initial_condition(I)
t_mesh = np.linspace(0, Nt*dt, Nt+1)
u, t = solver.solve(t_mesh)

5 https://github.com/hplgit/odespy
6 https://computation.llnl.gov/casc/odepack/odepack_home.html
7 https://computation.llnl.gov/casc/odepack/odepack_home.html
8 http://www.netlib.org/ode/rkc.f
9 http://www.netlib.org/ode/rkf45.f
10 http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
11 http://docs.sympy.org/dev/modules/mpmath/calculus/odes.html
12 http://olivierverdier.github.com/odelab/

www.dbooks.org

https://github.com/hplgit/odespy
https://computation.llnl.gov/casc/odepack/odepack_home.html
https://computation.llnl.gov/casc/odepack/odepack_home.html
http://www.netlib.org/ode/rkc.f
http://www.netlib.org/ode/rkf45.f
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://docs.sympy.org/dev/modules/mpmath/calculus/odes.html
http://olivierverdier.github.com/odelab/
https://www.dbooks.org/

82 3 Generalizations

The previously listed methods for ODEs are all accessible in Odespy:

� the �-rule: ThetaRule
� special cases of the �-rule: ForwardEuler, BackwardEuler,

CrankNicolson
� the 2nd- and 4th-order Runge–Kutta methods: RK2 and RK4
� The BDF methods and the Adam-Bashforth methods: Vode, Lsode, Lsoda,

lsoda_scipy
� The Leapfrog schemes: Leapfrog and LeapfrogFiltered

3.2.10 Example: Runge–Kutta Methods

Since all solvers have the same interface in Odespy, except for a potentially different
set of parameters in the solvers’ constructors, one can easily make a list of solver
objects and run a loop for comparing a lot of solvers. The code below, found in
complete form in decay_odespy.py13, compares the famous Runge–Kutta meth-
ods of orders 2, 3, and 4 with the exact solution of the decay equation u0 D �au.
Since we have quite long time steps, we have included the only relevant �-rule for
large time steps, the Backward Euler scheme (� D 1), as well. Figure 3.1 shows
the results.

import numpy as np
import matplotlib.pyplot as plt
import sys

def f(u, t):
return -a*u

I = 1; a = 2; T = 6
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1)

solvers = [odespy.RK2(f),
odespy.RK3(f),
odespy.RK4(f),]

BackwardEuler must use Newton solver to converge
(Picard is default and leads to divergence)
solvers.append(

odespy.BackwardEuler(f, nonlinear_solver=’Newton’))
Or tell BackwardEuler that it is a linear problem
solvers[-1] = odespy.BackwardEuler(f, f_is_linear=True,

jac=lambda u, t: -a)]
legends = []
for solver in solvers:

solver.set_initial_condition(I)
u, t = solver.solve(t)

plt.plot(t, u)
plt.hold(’on’)
legends.append(solver.__class__.__name__)

13 http://tinyurl.com/ofkw6kc/genz/decay_odespy.py

http://tinyurl.com/ofkw6kc/genz/decay_odespy.py

3.2 General First-Order ODEs 83

Fig. 3.1 Behavior of different schemes for the decay equation

Compare with exact solution plotted on a very fine mesh
t_fine = np.linspace(0, T, 10001)
u_e = I*np.exp(-a*t_fine)
plt.plot(t_fine, u_e, ’-’) # avoid markers by specifying line type
legends.append(’exact’)

plt.legend(legends)
plt.title(’Time step: %g’ % dt)
plt.show()

With the odespy.BackwardEuler method we must either tell that the problem is
linear and provide the Jacobian of f .u; t/, i.e., @f=@u, as the jac argument, or we
have to assume that f is nonlinear, but then specify Newton’s method as solver for
the nonlinear equations (since the equations are linear, Newton’s method will con-
verge in one iteration). By default, odespy.BackwardEuler assumes a nonlinear
problem to be solved by Picard iteration, but that leads to divergence in the present
problem.

Visualization tip
We use Matplotlib for plotting here, but one could alternatively import
scitools.std as plt instead. Plain use of Matplotlib as done here results
in curves with different colors, which may be hard to distinguish on black-and-
white paper. Using scitools.std, curves are automatically given colors and

www.dbooks.org

https://www.dbooks.org/

84 3 Generalizations

markers, thus making curves easy to distinguish on screen with colors and on
black-and-white paper. The automatic adding of markers is normally a bad idea
for a very fine mesh since all the markers get cluttered, but scitools.std
limits the number of markers in such cases. For the exact solution we use a very
fine mesh, but in the code above we specify the line type as a solid line (-),
which means no markers and just a color to be automatically determined by the
backend used for plotting (Matplotlib by default, but scitools.std gives the
opportunity to use other backends to produce the plot, e.g., Gnuplot or Grace).

Also note the that the legends are based on the class names of the solvers, and
in Python the name of the class type (as a string) of an object obj is obtained by
obj.__class__.__name__.

The runs in Fig. 3.1 and other experiments reveal that the 2nd-order Runge–Kutta
method (RK2) is unstable for �t > 1 and decays slower than the Backward Euler
scheme for large and moderate �t (see Exercise 3.5 for an analysis). However, for
fine �t D 0:25 the 2nd-order Runge–Kutta method approaches the exact solution
faster than the Backward Euler scheme. That is, the latter scheme does a better job
for larger �t , while the higher order scheme is superior for smaller �t . This is
a typical trend also for most schemes for ordinary and partial differential equations.

The 3rd-order Runge–Kutta method (RK3) also has artifacts in the form of os-
cillatory behavior for the larger �t values, much like that of the Crank–Nicolson
scheme. For finer �t , the 3rd-order Runge–Kutta method converges quickly to the
exact solution.

The 4th-order Runge–Kutta method (RK4) is slightly inferior to the Backward
Euler scheme on the coarsest mesh, but is then clearly superior to all the other
schemes. It is definitely the method of choice for all the tested schemes.

Remark about using the �-rule in Odespy The Odespy package assumes that
the ODE is written as u0 D f .u; t/ with an f that is possibly nonlinear in u. The
�-rule for u0 D f .u; t/ leads to

unC1 D un C�t
�
�f .unC1; tnC1/C .1 � �/f .un; tn/

�
;

which is a nonlinear equation in unC1. Odespy’s implementation of the �-rule
(ThetaRule) and the specialized Backward Euler (BackwardEuler) and Crank–
Nicolson (CrankNicolson) schemes must invoke iterative methods for solving the
nonlinear equation in unC1. This is done even when f is linear in u, as in the
model problem u0 D �au, where we can easily solve for unC1 by hand. There-
fore, we need to specify use of Newton’s method to solve the equations. (Odespy
allows other methods than Newton’s to be used, for instance Picard iteration, but
that method is not suitable. The reason is that it applies the Forward Euler scheme
to generate a start value for the iterations. Forward Euler may give very wrong so-
lutions for large �t values. Newton’s method, on the other hand, is insensitive to
the start value in linear problems.)

3.2 General First-Order ODEs 85

3.2.11 Example: Adaptive Runge–Kutta Methods

Odespy also offers solution methods that can adapt the size of �t with time to match
a desired accuracy in the solution. Intuitively, small time steps will be chosen in
areas where the solution is changing rapidly, while larger time steps can be used
where the solution is slowly varying. Some kind of error estimator is used to adjust
the next time step at each time level.

A very popular adaptive method for solving ODEs is the Dormand-Prince
Runge–Kutta method of order 4 and 5. The 5th-order method is used as a reference
solution and the difference between the 4th- and 5th-order methods is used as an
indicator of the error in the numerical solution. The Dormand-Prince method is the
default choice in MATLAB’s widely used ode45 routine.

We can easily set up Odespy to use the Dormand-Prince method and see how
it selects the optimal time steps. To this end, we request only one time step from
t D 0 to t D T and ask the method to compute the necessary non-uniform time
mesh to meet a certain error tolerance. The code goes like

import odespy
import numpy as np
import decay_mod
import sys
#import matplotlib.pyplot as plt
import scitools.std as plt

def f(u, t):
return -a*u

def u_exact(t):
return I*np.exp(-a*t)

I = 1; a = 2; T = 5
tol = float(sys.argv[1])
solver = odespy.DormandPrince(f, atol=tol, rtol=0.1*tol)

Nt = 1 # just one step - let the scheme find
its intermediate points

t_mesh = np.linspace(0, T, Nt+1)
t_fine = np.linspace(0, T, 10001)

solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

u and t will only consist of [I, u^Nt] and [0,T]
solver.u_all and solver.t_all contains all computed points
plt.plot(solver.t_all, solver.u_all, ’ko’)
plt.hold(’on’)
plt.plot(t_fine, u_exact(t_fine), ’b-’)
plt.legend([’tol=%.0E’ % tol, ’exact’])
plt.savefig(’tmp_odespy_adaptive.png’)
plt.show()

Running four cases with tolerances 10�1, 10�3, 10�5, and 10�7, gives the results
in Fig. 3.2. Intuitively, one would expect denser points in the beginning of the decay
and larger time steps when the solution flattens out.

www.dbooks.org

https://www.dbooks.org/

86 3 Generalizations

Fig. 3.2 Choice of adaptive time mesh by the Dormand-Prince method for different tolerances

3.3 Exercises

Exercise 3.1: Experiment with precision in tests and the size of u

It is claimed in Sect. 3.1.5 that most numerical methods will reproduce a linear
exact solution to machine precision. Test this assertion using the test function
test_linear_solution in the decay_vc.py14 program. Vary the parameter c
from very small, via c=1 to many larger values, and print out the maximum differ-
ence between the numerical solution and the exact solution. What is the relevant
value of the tolerance in the float comparison in each case?

Filename: test_precision.

Exercise 3.2: Implement the 2-step backward scheme
Implement the 2-step backward method (3.39) for the model u0.t/ D �a.t/u.t/C
b.t/, u.0/ D I . Allow the first step to be computed by either the Backward Euler
scheme or the Crank–Nicolson scheme. Verify the implementation by choosing
a.t/ and b.t/ such that the exact solution is linear in t (see Sect. 3.1.5). Show
mathematically that a linear solution is indeed a solution of the discrete equations.

Compute convergence rates (see Sect. 3.1.6) in a test case using a D const
and b D 0, where we easily have an exact solution, and determine if the choice

14 http://tinyurl.com/ofkw6kc/genz/decay_vc.py

http://tinyurl.com/ofkw6kc/genz/decay_vc.py

3.3 Exercises 87

of a first-order scheme (Backward Euler) for the first step has any impact on the
overall accuracy of this scheme. The expected error goes like O.�t2/.

Filename: decay_backward2step.

Exercise 3.3: Implement the 2nd-order Adams–Bashforth scheme
Implement the 2nd-order Adams–Bashforth method (3.46) for the decay problem
u0 D �a.t/u C b.t/, u.0/ D I , t 2 .0; T �. Use the Forward Euler method for
the first step such that the overall scheme is explicit. Verify the implementation
using an exact solution that is linear in time. Analyze the scheme by searching for
solutions un D An when a D const and b D 0. Compare this second-order scheme
to the Crank–Nicolson scheme.

Filename: decay_AdamsBashforth2.

Exercise 3.4: Implement the 3rd-order Adams–Bashforth scheme
Implement the 3rd-order Adams–Bashforth method (3.47) for the decay problem
u0 D �a.t/uC b.t/, u.0/ D I , t 2 .0; T �. Since the scheme is explicit, allow it to
be started by two steps with the Forward Euler method. Investigate experimentally
the case where b D 0 and a is a constant: Can we have oscillatory solutions for
large �t?

Filename: decay_AdamsBashforth3.

Exercise 3.5: Analyze explicit 2nd-order methods
Show that the schemes (3.44) and (3.45) are identical in the case f .u; t/ D �a,
where a > 0 is a constant. Assume that the numerical solution reads un D An for
some unknown amplification factor A to be determined. Find A and derive stability
criteria. Can the scheme produce oscillatory solutions of u0 D �au? Plot the
numerical and exact amplification factor.

Filename: decay_RK2_Taylor2.

Project 3.6: Implement and investigate the Leapfrog scheme
A Leapfrog scheme for the ODE u0.t/ D �a.t/u.t/C b.t/ is defined by

ŒD2t u D �auC b�n : (3.52)

A separate method is needed to compute u1. The Forward Euler scheme is a possi-
ble candidate.

a) Implement the Leapfrog scheme for the model equation. Plot the solution in the
case a D 1, b D 0, I D 1, �t D 0:01, t 2 Œ0; 4�. Compare with the exact
solution ue.t/ D e�t .

b) Show mathematically that a linear solution in t fulfills the Forward Euler scheme
for the first step and the Leapfrog scheme for the subsequent steps. Use this lin-
ear solution to verify the implementation, and automate the verification through
a test function.

Hint It can be wise to automate the calculations such that it is easy to redo the
calculations for other types of solutions. Here is a possible sympy function that

www.dbooks.org

https://www.dbooks.org/

88 3 Generalizations

takes a symbolic expression u (implemented as a Python function of t), fits the b
term, and checks if u fulfills the discrete equations:

import sympy as sym

def analyze(u):
t, dt, a = sym.symbols(’t dt a’)

print ’Analyzing u_e(t)=%s’ % u(t)
print ’u(0)=%s’ % u(t).subs(t, 0)

Fit source term to the given u(t)
b = sym.diff(u(t), t) + a*u(t)
b = sym.simplify(b)
print ’Source term b:’, b

Residual in discrete equations; Forward Euler step
R_step1 = (u(t+dt) - u(t))/dt + a*u(t) - b
R_step1 = sym.simplify(R_step1)
print ’Residual Forward Euler step:’, R_step1

Residual in discrete equations; Leapfrog steps
R = (u(t+dt) - u(t-dt))/(2*dt) + a*u(t) - b
R = sym.simplify(R)
print ’Residual Leapfrog steps:’, R

def u_e(t):
return c*t + I

analyze(u_e)
or short form: analyze(lambda t: c*t + I)

c) Show that a second-order polynomial in t cannot be a solution of the discrete
equations. However, if a Crank–Nicolson scheme is used for the first step,
a second-order polynomial solves the equations exactly.

d) Create a manufactured solution u.t/ D sin.t/ for the ODE u0 D �au C b.
Compute the convergence rate of the Leapfrog scheme using this manufactured
solution. The expected convergence rate of the Leapfrog scheme is O.�t2/.
Does the use of a 1st-order method for the first step impact the convergence
rate?

e) Set up a set of experiments to demonstrate that the Leapfrog scheme (3.52) is
associated with numerical artifacts (instabilities). Document the main results
from this investigation.

f) Analyze and explain the instabilities of the Leapfrog scheme (3.52):
1. Choose a D const and b D 0. Assume that an exact solution of the discrete

equations has the form un D An, where A is an amplification factor to be
determined. Derive an equation for A by inserting un D An in the Leapfrog
scheme.

2. Compute A either by hand and/or with the aid of sympy. The polynomial for
A has two roots, A1 and A2. Let un be a linear combination un D C1A

n
1 C

C2A
n
2 .

3. Show that one of the roots is the reason for instability.
4. Compare A with the exact expression, using a Taylor series approximation.
5. How can C1 and C2 be determined?

g) Since the original Leapfrog scheme is unconditionally unstable as time grows,
it demands some stabilization. This can be done by filtering, where we first find

3.3 Exercises 89

unC1 from the original Leapfrog scheme and then replace un by un C �.un�1 �
2un C unC1/, where � can be taken as 0.6. Implement the filtered Leapfrog
scheme and check that it can handle tests where the original Leapfrog scheme is
unstable.

Filename: decay_leapfrog.

Problem 3.7: Make a unified implementation of many schemes
Consider the linear ODE problem u0.t/ D �a.t/u.t/ C b.t/, u.0/ D I . Explicit
schemes for this problem can be written in the general form

unC1 D
mX

jD0

cj un�j ; (3.53)

for some choice of c0; : : : ; cm. Find expressions for the cj coefficients in case of
the �-rule, the three-level backward scheme, the Leapfrog scheme, the 2nd-order
Runge–Kutta method, and the 3rd-order Adams–Bashforth scheme.

Make a class ExpDecay that implements the general updating formula (3.53).
The formula cannot be applied for n < m, and for those n values, other schemes
must be used. Assume for simplicity that we just repeat Crank–Nicolson steps until
(3.53) can be used. Use a subclass to specify the list c0; : : : ; cm for a particular
method, and implement subclasses for all the mentioned schemes. Verify the im-
plementation by testing with a linear solution, which should be exactly reproduced
by all methods.

Filename: decay_schemes_unified.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

www.dbooks.org

http://creativecommons.org/licenses/by-nc/4.0/
https://www.dbooks.org/

4Models

This chapter presents many mathematical models that all end up with ODEs of the
type u0 D �auC b. The applications are taken from biology, finance, and physics,
and cover population growth or decay, interacting predator-prey populations, com-
pound interest and inflation, radioactive decay, chemical and biochemical reaction,
spreading of diseases, cooling of objects, compaction of geological media, pressure
variations in the atmosphere, viscoelastic response in materials, and air resistance
on falling or rising bodies.

Before we turn to the applications, however, we take a brief look at the technique
of scaling, which is so useful in many applications.

4.1 Scaling

Real applications of a model u0 D �auCb will often involve a lot of parameters in
the expressions for a and b. It can be quite a challenge to find relevant values of all
parameters. In simple problems, however, it turns out that it is not always necessary
to estimate all parameters because we can lump them into one or a few dimension-
less numbers by using a very attractive technique called scaling. It simply means to
stretch the u and t axis in the present problem – and suddenly all parameters in the
problem are lumped into one parameter if b ¤ 0 and no parameter when b D 0!

4.1.1 Dimensionless Variables

Scaling means that we introduce a new function Nu.Nt /, with

Nu D u � um

uc

; Nt D t

tc
;

where um is a characteristic value of u, uc is a characteristic size of the range of
u values, and tc is a characteristic size of the range of t where u shows signifi-
cant variation. Choosing um, uc , and tc is not always easy and is often an art in
complicated problems. We just state one choice first:

uc D I; um D b=a; tc D 1=a :

91© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_4

92 4 Models

Inserting u D umCuc Nu and t D tc Nt in the problem u0 D �auCb, assuming a and
b are constants, results (after some algebra) in the scaled problem

d Nu
d Nt D �Nu; Nu.0/ D 1 � ˇ;

where

ˇ D b

Ia
:

4.1.2 Dimensionless Numbers

The parameter ˇ is a dimensionless number. From the equation we see that b must
have the same unit as the term au. The initial condition I must have the same unit
as u, so Ia has the same unit as b, making the fraction b=.Ia/ dimensionless.

An important observation is that Nu depends on Nt and ˇ. That is, only the special
combination of b=.Ia/ matters, not what the individual values of b, a, and I are.
The original unscaled function u depends on t , b, a, and I .

A second observation is striking: if b D 0, the scaled problem is independent of
a and I ! In practice this means that we can perform a single numerical simulation
of the scaled problem and recover the solution of any problem for a given a and I

by stretching the axis in the plot: u D I Nu and t D Nt=a. For b ¤ 0, we simulate the
scaled problem for a few ˇ values and recover the physical solution u by translating
and stretching the u axis and stretching the t axis.

In general, scaling combines the parameters in a problem to a set of dimension-
less parameters. The number of dimensionless parameters is usually much smaller
than the number of original parameters. Section 4.11 presents an example where 11
parameters are reduced to one!

4.1.3 A Scaling for Vanishing Initial Condition

The scaling breaks down if I D 0. In that case we may choose um D 0, uc D b=a,
and tc D 1=b, resulting in a slightly different scaled problem:

d Nu
d Nt D 1 � Nu; Nu.0/ D 0 :

As with b D 0, the case I D 0 has a scaled problem with no physical parameters!
It is common to drop the bars after scaling and write the scaled problem as u0 D

�u, u.0/ D 1 � ˇ, or u0 D 1 � u, u.0/ D 0. Any implementation of the problem
u0 D �auC b, u.0/ D I , can be reused for the scaled problem by setting a D 1,
b D 0, and I D 1 � ˇ in the code, if I ¤ 0, or one sets a D 1, b D 1, and I D 0

when the physical I is zero. Falling bodies in fluids, as described in Sect. 4.11,
involves u0 D �au C b with seven physical parameters. All these vanish in the
scaled version of the problem if we start the motion from rest!

Many more details about scaling are presented in the author’s book Scaling of
Differential Equations [9].

www.dbooks.org

https://www.dbooks.org/

4.2 Evolution of a Population 93

4.2 Evolution of a Population

4.2.1 Exponential Growth

Let N be the number of individuals in a population occupying some spatial domain.
Despite N being an integer in this problem, we shall compute with N as a real num-
ber and view N.t/ as a continuous function of time. The basic model assumption is
that in a time interval �t the number of newcomers to the populations (newborns)
is proportional to N , with proportionality constant Nb. The amount of newcomers
will increase the population and result in

N.t C�t/ D N.t/C NbN.t/ :

It is obvious that a long time interval �t will result in more newcomers and hence
a larger Nb. Therefore, we introduce b D Nb=�t : the number of newcomers per unit
time and per individual. We must then multiply b by the length of the time interval
considered and by the population size to get the total number of new individuals,
b�tN .

If the number of removals from the population (deaths) is also proportional to
N , with proportionality constant d�t , the population evolves according to

N.t C�t/ D N.t/C b�tN.t/ � d�tN.t/ :

Dividing by �t and letting �t ! 0, we get the ODE

N 0 D .b � d/N; N.0/ D N0 : (4.1)

In a population where the death rate (d) is larger than then newborn rate (b), b�d <

0, and the population experiences exponential decay rather than exponential growth.
In some populations there is an immigration of individuals into the spatial do-

main. With I individuals coming in per time unit, the equation for the population
change becomes

N.t C�t/ D N.t/C b�tN.t/ � d�tN.t/C�tI :

The corresponding ODE reads

N 0 D .b � d/N C I; N.0/ D N0 : (4.2)

Emigration is also modeled by this I term if we just change its sign: I < 0. So, the
I term models migration in and out of the domain in general.

Some simplification arises if we introduce a fractional measure of the population:
u D N=N0 and set r D b � d . The ODE problem now becomes

u0 D ruC f; u.0/ D 1; (4.3)

where f D I=N0 measures the net immigration per time unit as the fraction of
the initial population. Very often, r is approximately constant, but f is usually
a function of time.

94 4 Models

4.2.2 Logistic Growth

The growth rate r of a population decreases if the environment has limited re-
sources. Suppose the environment can sustain at most Nmax individuals. We may
then assume that the growth rate approaches zero as N approaches Nmax, i.e., as u

approaches M D Nmax=N0. The simplest possible evolution of r is then a linear
function: r.t/ D %.1�u.t/=M /, where % is the initial growth rate when the popula-
tion is small relative to the maximum size and there is enough resources. Using this
r.t/ in (4.3) results in the logistic model for the evolution of a population (assuming
for the moment that f D 0):

u0 D %.1 � u=M /u; u.0/ D 1 : (4.4)

Initially, u will grow at rate %, but the growth will decay as u approaches M , and
then there is no more change in u, causing u!M as t !1. Note that the logistic
equation u0 D %.1 � u=M /u is nonlinear because of the quadratic term �u2%=M .

4.3 Compound Interest and Inflation

Say the annual interest rate is r percent and that the bank adds the interest once
a year to your investment. If un is the investment in year n, the investment in year
unC1 grows to

unC1 D un C r

100
un :

In reality, the interest rate is added every day. We therefore introduce a parameter
m for the number of periods per year when the interest is added. If n counts the
periods, we have the fundamental model for compound interest:

unC1 D un C r

100m
un : (4.5)

This model is a difference equation, but it can be transformed to a continuous dif-
ferential equation through a limit process. The first step is to derive a formula for
the growth of the investment over a time t . Starting with an investment u0, and
assuming that r is constant in time, we get

unC1 D
�
1C r

100m

�
un

D
�
1C r

100m

�2

un�1

:::

D
�
1C r

100m

�nC1

u0

Introducing time t , which here is a real-numbered counter for years, we have that
n D mt , so we can write

umt D
�
1C r

100m

�mt

u0 :

www.dbooks.org

https://www.dbooks.org/

4.4 Newton’s Law of Cooling 95

The second step is to assume continuous compounding, meaning that the interest is
added continuously. This implies m!1, and in the limit one gets the formula

u.t/ D u0e
rt=100; (4.6)

which is nothing but the solution of the ODE problem

u0 D r

100
u; u.0/ D u0 : (4.7)

This is then taken as the ODE model for compound interest if r > 0. However,
the reasoning applies equally well to inflation, which is just the case r < 0. One
may also take the r in (4.7) as the net growth of an investment, where r takes both
compound interest and inflation into account. Note that for real applications we
must use a time-dependent r in (4.7).

Introducing a D r
100

, continuous inflation of an initial fortune I is then a process
exhibiting exponential decay according to

u0 D �au; u.0/ D I :

4.4 Newton’s Law of Cooling

When a body at some temperature is placed in a cooling environment, experience
shows that the temperature falls rapidly in the beginning, and then the change in
temperature levels off until the body’s temperature equals that of the surroundings.
Newton carried out some experiments on cooling hot iron and found that the tem-
perature evolved as a “geometric progression at times in arithmetic progression”,
meaning that the temperature decayed exponentially. Later, this result was formu-
lated as a differential equation: the rate of change of the temperature in a body is
proportional to the temperature difference between the body and its surroundings.
This statement is known as Newton’s law of cooling, which mathematically can be
expressed as

dT

dt
D �k.T � Ts/; (4.8)

where T is the temperature of the body, Ts is the temperature of the surroundings
(which may be time-dependent), t is time, and k is a positive constant. Equation
(4.8) is primarily viewed as an empirical law, valid when heat is efficiently con-
vected away from the surface of the body by a flowing fluid such as air at constant
temperature Ts . The heat transfer coefficient k reflects the transfer of heat from the
body to the surroundings and must be determined from physical experiments.

The cooling law (4.8) needs an initial condition T .0/ D T0.

4.5 Radioactive Decay

An atomic nucleus of an unstable atom may lose energy by emitting ionizing par-
ticles and thereby be transformed to a nucleus with a different number of protons
and neutrons. This process is known as radioactive decay1. Actually, the process

1 http://en.wikipedia.org/wiki/Radioactive_decay

http://en.wikipedia.org/wiki/Radioactive_decay

96 4 Models

is stochastic when viewed for a single atom, because it is impossible to predict ex-
actly when a particular atom emits a particle. Nevertheless, with a large number
of atoms, N , one may view the process as deterministic and compute the mean
behavior of the decay. Below we reason intuitively about an ODE for the mean
behavior. Thereafter, we show mathematically that a detailed stochastic model for
single atoms leads to the same mean behavior.

4.5.1 Deterministic Model

Suppose at time t , the number of the original atom type is N.t/. A basic model
assumption is that the transformation of the atoms of the original type in a small
time interval �t is proportional to N , so that

N.t C�t/ D N.t/ � a�tN.t/;

where a > 0 is a constant. The proportionality factor is a�t , i.e., proportional to �t

since a longer time interval will produce more transformations. We can introduce
u D N.t/=N.0/, divide by �t , and let �t ! 0:

lim
r!0

N0

u.t C�t/ � u.t/

�t
D �aN0u.t/ :

The left-hand side is the derivative of u. Dividing by the N0 gives the following
ODE for u:

u0 D �au; u.0/ D 1 : (4.9)

The parameter a can for a given nucleus be expressed through the half-life t1=2,
which is the time taken for the decay to reduce the initial amount by one half, i.e.,
u.t1=2/ D 0:5. With u.t/ D e�at , we get t1=2 D a�1 ln 2 or a D ln 2=t1=2.

4.5.2 Stochastic Model

Originally, we have N0 atoms. Up to some particular time t , each atom may either
have decayed or not. If not, they have “survived”. We want to count how many orig-
inal atoms that have survived. The survival of a single atom at time t is a random
event. Since there are only two outcomes, survival or decay, we have a Bernoulli
trial2. Let p be the probability of survival (implying that the probability of decay
is 1 � p). If each atom survives independently of the others, and the probability of
survival is the same for every atom, we have N0 Bernoulli trials, known as a bino-
mial experiment from probability theory. The probability P.N / that N out of the
N0 atoms have survived at time t is then given by the famous binomial distribution

P.N / D N0Š

N Š.N0 �N /Š
pN .1 � p/N0�N :

The mean (or expected) value EŒP � of P.N / is known to be N0p.

2 http://en.wikipedia.org/wiki/Bernoulli_trial

www.dbooks.org

http://en.wikipedia.org/wiki/Bernoulli_trial
https://www.dbooks.org/

4.5 Radioactive Decay 97

It remains to estimate p. Let the interval Œ0; t � be divided into m small subinter-
vals of length �t . We make the assumption that the probability of decay of a single
atom in an interval of length �t is Qp, and that this probability is proportional to �t :
Qp D ��t (it sounds natural that the probability of decay increases with �t). The

corresponding probability of survival is 1 � ��t . Believing that � is independent
of time, we have, for each interval of length �t , a Bernoulli trial: the atom either
survives or decays in that interval. Now, p should be the probability that the atom
survives in all the intervals, i.e., that we have m successful Bernoulli trials in a row
and therefore

p D .1 � ��t/m :

The expected number of atoms of the original type at time t is

EŒP � D N0p D N0.1 � ��t/m; m D t=�t : (4.10)

To see the relation between the two types of Bernoulli trials and the ODE above,
we go to the limit �t ! 0, m!1. It is possible to show that

p D lim
m!1.1 � ��t/m D lim

m!1

�
1 � �

t

m

�m

D e��t

This is the famous exponential waiting time (or arrival time) distribution for a Pois-
son process in probability theory (obtained here, as often done, as the limit of
a binomial experiment). The probability of decay, or more precisely that at least
one atom has undergone a transition, is 1 � p D 1 � e��t . This is the exponential
distribution3. The limit means that m is very large, hence �t is very small, and
Qp D ��t is very small since the intensity of the events, �, is assumed finite. This

situation corresponds to a very small probability that an atom will decay in a very
short time interval, which is a reasonable model. The same model occurs in lots of
different applications, e.g., when waiting for a taxi, or when finding defects along
a rope.

4.5.3 Relation Between Stochastic and Deterministic Models

With p D e��t we get the expected number of original atoms at t as N0p D N0e
��t ,

which is exactly the solution of the ODE model N 0 D ��N . This also gives an
interpretation of a via � or vice versa. Our important finding here is that the ODE
model captures the mean behavior of the underlying stochastic model. This is,
however, not always the common relation between microscopic stochastic models
and macroscopic “averaged” models.

Also of interest, is that a Forward Euler discretization of N 0 D ��N , N.0/ D
N0, gives N m D N0.1 � ��t/m at time tm D m�t , which is exactly the expected
value of the stochastic experiment with N0 atoms and m small intervals of length
�t , where each atom can decay with probability ��t in an interval.

A fundamental question is how accurate the ODE model is. The underlying
stochastic model fluctuates around its expected value. A measure of the fluctuations

3 http://en.wikipedia.org/wiki/Exponential_distribution

http://en.wikipedia.org/wiki/Exponential_distribution

98 4 Models

is the standard deviation of the binomial experiment with N0 atoms, which can be
shown to be StdŒP � D pN0p.1 � p/. Compared to the size of the expectation, we
get the normalized standard deviation

p
Var.P /

EŒP �
D N

�1=2

0

p
p�1 � 1 D N

�1=2

0

q
.1 � e��t /�1 � 1 � .N0�t/�1=2;

showing that the normalized fluctuations are very small if N0 is very large, which
is usually the case.

4.5.4 Generalization of the Radioactive Decay Modeling

The modeling in Sect. 4.5 is in fact very general, despite a focus on a particular
physical process. We may instead of atoms and decay speak about a set of items,
where each item can undergo a stochastic transition from one state to another. In
Sect. 4.6 the item is a molecule and the transition is a chemical reaction, while in
Sect. 4.7 the item is an ill person and the transition is recovering from the illness (or
an immune person who loses her immunity).

From the modeling in Sect. 4.5 we can establish a deterministic model for a large
number of items and a stochastic model for an arbitrary number of items, even
a single one. The stochastic model has a parameter � reflecting the probability
that a transition takes place in a time interval of unit length (or equivalently, that
the probability is ��t for a transition during a time interval of length �t). The
probability of making a transition before time t is given by

F.t/ D 1 � e��t :

The corresponding probability density is f .t/ D F 0.t/ D e��t . The expected value
of F.t/, i.e., the expected time to transition, is ��1. This interpretation of � makes
it easy to measure its value: just carry out a large number of experiments, measure
the time to transition, and take one over the average of these times as an estimate of
�. The variance is ��2.

The deterministic model counts how many items, N.t/, that have undergone the
transition (on average), and N.t/ is governed by the ODE

N 0 D ��N.t/; N.0/ D N0 :

4.6 Chemical Kinetics

4.6.1 Irreversible Reaction of Two Substances

Consider two chemical substances, A and B, and a chemical reaction that turns A
into B. In a small time interval, some of the molecules of type A are transformed
into molecules of B. This process is, from a mathematical modeling point of view,
equivalent to the radioactive decay process described in the previous section. We

www.dbooks.org

https://www.dbooks.org/

4.6 Chemical Kinetics 99

can therefore apply the same modeling approach. If NA is the number of molecules
of substance A, we have that NA is governed by the differential equation

dNA

dt
D �kNA;

where (the constant) k is called the rate constant of the reaction. Rather than us-
ing the number of molecules, we use the concentration of molecules: ŒA�.t/ D
NA.t/=NA.0/. We see that dŒA�=dt D NA.0/�1dNA=dt . Replacing NA by ŒA� in
the equation for NA leads to the equation for the concentration ŒA�:

dŒA�

dt
D �kŒA�; t 2 .0; T �; ŒA�.0/ D 1 : (4.11)

Since substance A is transformed to substance B, we have that the concentration of
ŒB� grows by the loss of ŒA�:

dŒB�

dt
D kŒA�; ŒB�.0/ D 0 :

The mathematical model can either be (4.11) or the system

dŒA�

dt
D �kŒA�; t 2 .0; T � (4.12)

dŒB�

dt
D kŒA�; t 2 .0; T � (4.13)

ŒA�.0/ D 1; (4.14)

ŒB�.0/D 0 : (4.15)

This reaction is known as a first-order reaction, where each molecule of A makes
an independent decision about whether to complete the reaction, i.e., independent
of what happens to any other molecule.

An n-th order reaction is modeled by

dŒA�

dt
D �kŒA�n; (4.16)

dŒB�

dt
D kŒA�n; (4.17)

for t 2 .0; T � with initial conditions ŒA�.0/ D 1 and ŒB�.0/ D 0. Here, n can be
a real number, but is most often an integer. Note that the sum of the concentrations
is constant since

dŒA�

dt
C dŒB�

dt
D 0) ŒA�.t/C ŒB�.t/ D const D ŒA�.0/C ŒB�.0/ D 1C 0 :

4.6.2 Reversible Reaction of Two Substances

Let the chemical reaction turn substance A into B and substance B into A. The rate
of change of ŒA� has then two contributions: a loss kAŒA� and a gain kBŒB�:

dŒA�

dt
D �kAŒA�C kBŒB�; t 2 .0; T �; ŒA�.0/ D A0 : (4.18)

100 4 Models

Similarly for substance B,

dŒB�

dt
D kAŒA� � kBŒB�; t 2 .0; T �; ŒB�.0/ D B0 : (4.19)

This time we have allowed for arbitrary initial concentrations. Again,

dŒA�

dt
C dŒB�

dt
D 0) ŒA�.t/C ŒB�.t/ D A0 C B0 :

4.6.3 Irreversible Reaction of Two Substances into a Third

Now we consider two chemical substances, A and B, reacting with each other and
producing a substance C. In a small time interval �t , molecules of type A and B
are occasionally colliding, and in some of the collisions, a chemical reaction occurs,
which turns A and B into a molecule of type C. (More generally, MA molecules of A
and MB molecules of B react to form MC molecules of C .) The number of possible
pairings, and thereby collisions, of A and B is NANB , where NA is the number of
molecules of A, and NB is the number of molecules of B. A fraction k of these
collisions, Ok�tNANB , features a chemical reaction and produce NC molecules of
C. The fraction is thought to be proportional to �t : considering a twice as long time
interval, twice as many molecules collide, and twice as many reactions occur. The
increase in molecules of substance C is now found from the reasoning

NC .t C�t/ D NC .t/C Ok�tNANB :

Dividing by �t ,
NC .t C�t/ �NC .t/

�t
D OkNANB;

and letting �t ! 0, gives the differential equation

dNC

dt
D OkNANB :

(This equation is known as the important law of mass action4 discovered by the
Norwegian scientists Cato M. Guldberg and Peter Waage. A more general form of
the right-hand side is OkN ˛

A N
ˇ
B . All the constants Ok, ˛, and ˇ must be determined

from experiments.)
Working instead with concentrations, we introduce ŒC �.t/ D NC .t/=NC .0/,

with similar definitions for ŒA� and ŒB� we get

dŒC �

dt
D kŒA�ŒB� : (4.20)

4 https://en.wikipedia.org/wiki/Law_of_mass_action

www.dbooks.org

https://en.wikipedia.org/wiki/Law_of_mass_action
https://www.dbooks.org/

4.7 Spreading of Diseases 101

The constant k is related to Ok by k D OkNA.0/NB.0/=NC .0/. The gain in C is a loss
of A and B:

dŒA�

dt
D �kŒA�ŒB�; (4.21)

dŒB�

dt
D �kŒA�ŒB� : (4.22)

4.6.4 A Biochemical Reaction

A common reaction (known as Michaelis–Menten kinetics5) turns a substrate S into
a product P with aid of an enzyme E. The reaction is a two-stage process: first S
and E reacts to form a complex ES, where the enzyme and substrate are bound to
each other, and then ES is turned into E and P. In the first stage, S and E react to
produce a growth of ES according to the law of mass action:

dŒS�

dt
D �kCŒE�ŒS�;

d ŒES�

dt
D kCŒE�ŒS� :

The complex ES reacts and produces the product P at rate �kvŒES� and E at rate
�k�ŒES�. The total set of reactions can then be expressed by

dŒES�

dt
D kCŒE�ŒS�� kvŒES� � k�ŒES�; (4.23)

dŒP �

dt
D kvŒES�; (4.24)

dŒS�

dt
D �kCŒE�ŒS�C k�ŒES�; (4.25)

dŒE�

dt
D �kCŒE�ŒS�C k�ŒES�C kvŒES� : (4.26)

The initial conditions are ŒES�.0/ D ŒP �.0/ D 0, and ŒS� D S0, ŒE� D E0. The
constants kC, k�, and kv must be determined from experiments.

4.7 Spreading of Diseases

The modeling of spreading of diseases is very similar to the modeling of chemical
reactions in Sect. 4.6. The field of epidemiology speaks about susceptibles: people
who can get a disease; infectives: people who are infected and can infect suscep-
tibles; and recovered: people who have recovered from the disease and become
immune. Three categories are accordingly defined: S for susceptibles, I for infec-
tives, and R for recovered. The number in each category is tracked by the functions
S.t/, I.t/, and R.t/.

5 https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics

https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics

102 4 Models

To model how many people that get infected in a small time interval �t , we
reason as with reactions in Sect. 4.6. The possible number of pairings (“collisions”)
between susceptibles and infected is SI . A fraction of these, ˇ�tSI , will actually
meet and the infected succeed in infecting the susceptible, where ˇ is a parameter to
be empirically estimated. This leads to a loss of susceptibles and a gain of infected:

S.t C�t/ D S.t/ � ˇ�tSI;

I.t C�t/ D I.t/C ˇ�tSI :

In the same time interval, a fraction ��tI of the infected is recovered. It follows
from Sect. 4.5.4 that the parameter ��1 is interpreted as the average waiting time to
leave the I category, i.e., the average length of the disease. The ��tI term is a loss
for the I category, but a gain for the R category:

I.t C�t/ D I.t/C ˇ�tSI � ��tI; R.t C�t/ D R.t/C ��tI :

Dividing these equations by �t and going to the limit �t ! 0, gives the ODE
system

dS

dt
D �ˇSI; (4.27)

dI

dt
D ˇSI � �I; (4.28)

dR

dt
D �I; (4.29)

with initial values S.0/ D S0, I.0/ D I0, and R.0/ D 0. By adding the equations,
we realize that

dS

dt
C dI

dt
C dR

dt
D 0) S C I CR D const D N;

where N is the total number in the population under consideration. This property
can be used as a partial verification during simulations.

Equations (4.27)–(4.29) are known as the SIR model in epidemiology. The
model can easily be extended to incorporate vaccination programs, immunity loss
after some time, etc. Typical diseases that can be simulated by the SIR model and
its variants are measles, smallpox, flu, plague, and HIV.

4.8 Predator-Prey Models in Ecology

A model for the interaction of predator and prey species can be based on reasoning
from population dynamics and the SIR model. Let H.t/ be the number of preys in
a region, and let L.t/ be the number of predators. For example, H may be hares
and L lynx, or rabbits and foxes.

The population of the prey evolves due to births and deaths, exactly as in a pop-
ulation dynamics model from Sect. 4.2.1. During a time interval �t the increase in
the population is therefore

H.t C�t/ �H.t/ D a�tH.t/;

www.dbooks.org

https://www.dbooks.org/

4.9 Decay of Atmospheric Pressure with Altitude 103

where a is a parameter to be measured from data. The increase is proportional to
H , and the proportionality constant a�t is proportional to �t , because doubling
the interval will double the increase.

However, the prey population has an additional loss because they are eaten by
predators. All the prey and predator animals can form LH pairs in total (assuming
all individuals meet randomly). A small fraction b�t of such meetings, during
a time interval �t , ends up with the predator eating the prey. The increase in the
prey population is therefore adjusted to

H.t C�t/ �H.t/ D a�tH.t/� b�tH.t/L.t/ :

The predator population increases as a result of eating preys. The amount of
eaten preys is b�tLH , but only a fraction d�tLH of this amount contributes to
increasing the predator population. In addition, predators die and this loss is set to
c�tL. To summarize, the increase in the predator population is given by

L.t C�t/ � L.t/ D d�tL.t/H.t/ � c�tL.t/ :

Dividing by �t in the equations for H and L and letting t ! 0 results in

lim
�t!0

H.t C�t/ �H.t/

�t
D H 0.t/ D aH.t/ � bL.t/H.t/;

lim
�t!0

L.t C�t/ �L.t/

�t
D L0.t/ D dL.t/H.t/ � cL.t/ :

We can simplify the notation to the following two ODEs:

H 0 D H.a � bL/; (4.30)

L0 D L.dH � c/ : (4.31)

This is a so-called Lokta-Volterra model. It contains four parameters that must be
estimated from data: a, b, c, and d . In addition, two initial conditions are needed
for H.0/ and L.0/.

4.9 Decay of Atmospheric Pressure with Altitude

4.9.1 The General Model

Vertical equilibrium of air in the atmosphere is governed by the equation

dp

dz
D �%g : (4.32)

Here, p.z/ is the air pressure, % is the density of air, and g D 9:807 m=s2 is a stan-
dard value of the acceleration of gravity. (Equation (4.32) follows directly from the
general Navier-Stokes equations for fluid motion, with the assumption that the air
does not move.)

104 4 Models

The pressure is related to density and temperature through the ideal gas law

% D Mp

R�T
; (4.33)

where M is the molar mass of the Earth’s air (0.029 kg=mol), R� is the universal
gas constant (8:314 Nm/(mol K)), and T is the temperature in Kelvin. All variables
p, %, and T vary with the height z. Inserting (4.33) in (4.32) results in an ODE with
a variable coefficient:

dp

dz
D � Mg

R�T .z/
p : (4.34)

4.9.2 Multiple Atmospheric Layers

The atmosphere can be approximately modeled by seven layers. In each layer,
(4.34) is applied with a linear temperature of the form

T .z/ D NTi C Li.z � hi /;

where z D hi denotes the bottom of layer number i , having temperature NTi , and Li

is a constant in layer number i . The table below lists hi (m), NTi (K), and Li (K/m)
for the layers i D 0; : : : ; 6.

i hi
NTi Li

0 0 288 �0.0065
1 11,000 216 0.0
2 20,000 216 0.001
3 32,000 228 0.0028
4 47,000 270 0.0
5 51,000 270 �0.0028
6 71,000 214 �0.002

For implementation it might be convenient to write (4.34) on the form

dp

dz
D � Mg

R�. NT .z/C L.z/.z � h.z///
p; (4.35)

where NT .z/, L.z/, and h.z/ are piecewise constant functions with values given in
the table. The value of the pressure at the sea level z D 0, p0 D p.0/, is 101,325 Pa.

4.9.3 Simplifications

Constant layer temperature One common simplification is to assume that the
temperature is constant within each layer. This means that L D 0.

One-layer model Another commonly used approximation is to work with one
layer instead of seven. This one-layer model6 is based on T .z/ D T0 � Lz,

6 http://en.wikipedia.org/wiki/Density_of_air

www.dbooks.org

http://en.wikipedia.org/wiki/Density_of_air
https://www.dbooks.org/

4.10 Compaction of Sediments 105

with sea level standard temperature T0 D 288 K and temperature lapse rate L D
0:0065 K=m.

4.10 Compaction of Sediments

Sediments, originally made from materials like sand and mud, get compacted
through geological time by the weight of new material that is deposited on the sea
bottom. The porosity � of the sediments tells how much void (fluid) space there is
between the sand and mud grains. The porosity drops with depth, due to the weight
of the sediments above. This makes the void space shrink, and thereby compaction
increases.

A typical assumption is that the change in � at some depth z is negatively pro-
portional to �. This assumption leads to the differential equation problem

d�

dz
D �c�; �.0/ D �0; (4.36)

where the z axis points downwards, z D 0 is the surface with known porosity, and
c > 0 is a constant.

The upper part of the Earth’s crust consists of many geological layers stacked on
top of each other, as indicated in Fig. 4.1. The model (4.36) can be applied for each
layer. In layer number i , we have the unknown porosity function �i .z/ fulfilling
� 0i .z/ D �ci z, since the constant c in the model (4.36) depends on the type of
sediment in the layer. Alternatively, we can use (4.36) to describe the porosity
through all layers if c is taken as a piecewise constant function of z, equal to ci in
layer i . From the figure we see that new layers of sediments are deposited on top
of older ones as time progresses. The compaction, as measured by �, is rapid in the
beginning and then decreases (exponentially) with depth in each layer.

When we drill a well at present time through the right-most column of sediments
in Fig. 4.1, we can measure the thickness of the sediment in (say) the bottom layer.

Fig. 4.1 Illustration of the compaction of geological layers (with different colors) through time

106 4 Models

Let L1 be this thickness. Assuming that the volume of sediment remains constant
through time, we have that the initial volume,

R L1;0

0
�1dz, must equal the volume

seen today,
R `

`�L1
�1dz, where ` is the depth of the bottom of the sediment in the

present day configuration. After having solved for �1 as a function of z, we can
then find the original thickness L1;0 of the sediment from the equation

L1;0Z
0

�1dz D
`Z

`�L1

�1dz :

In hydrocarbon exploration it is important to know L1;0 and the compaction history
of the various layers of sediments.

4.11 Vertical Motion of a Body in a Viscous Fluid

A body moving vertically through a fluid (liquid or gas) is subject to three different
types of forces: the gravity force, the drag force7, and the buoyancy force.

4.11.1 Overview of Forces

Taking the upward direction as positive, the gravity force is Fg D �mg, where m

is the mass of the body and g is the acceleration of gravity. The uplift or buoyancy
force (“Archimedes force”) is Fb D %gV , where % is the density of the fluid and V

is the volume of the body.
The drag force is of two types, depending on the Reynolds number

Re D %d jvj
	

; (4.37)

where d is the diameter of the body in the direction perpendicular to the flow, v

is the velocity of the body, and 	 is the dynamic viscosity of the fluid. When
Re < 1, the drag force is fairly well modeled by the so-called Stokes’ drag, which
for a spherical body of diameter d reads

F
.S/

d D �3
d	v : (4.38)

Quantities are taken as positive in the upwards vertical direction, so if v > 0 and
the body moves upwards, the drag force acts downwards and become negative, in
accordance with the minus sign in expression for F

.S/

d .
For large Re, typically Re > 103, the drag force is quadratic in the velocity:

F
.q/

d D �1

2
CD%Ajvjv; (4.39)

7 http://en.wikipedia.org/wiki/Drag_(physics)

www.dbooks.org

http://en.wikipedia.org/wiki/Drag_(physics)
https://www.dbooks.org/

4.11 Vertical Motion of a Body in a Viscous Fluid 107

where CD is a dimensionless drag coefficient depending on the body’s shape, and A

is the cross-sectional area as produced by a cut plane, perpendicular to the motion,
through the thickest part of the body. The superscripts q and S in F

.S/

d and F
.q/

d

indicate Stokes’ drag and quadratic drag, respectively.

4.11.2 Equation ofMotion

All the mentioned forces act in the vertical direction. Newton’s second law of mo-
tion applied to the body says that the sum of these forces must equal the mass of the
body times its acceleration a in the vertical direction.

ma D Fg C F
.S/

d C Fb :

Here we have chosen to model the fluid resistance by the Stokes’ drag. Inserting
the expressions for the forces yields

ma D �mg � 3
d	vC %gV :

The unknowns here are v and a, i.e., we have two unknowns but only one equation.
From kinematics in physics we know that the acceleration is the time derivative of
the velocity: a D dv=dt . This is our second equation. We can easily eliminate a

and get a single differential equation for v:

m
dv

dt
D �mg � 3
d	vC %gV :

A small rewrite of this equation is handy: We express m as %bV , where %b is the
density of the body, and we divide by the mass to get

v0.t/ D �3
d	

%bV
v C g

�
%

%b

� 1

�
: (4.40)

We may introduce the constants

a D 3
d	

%bV
; b D g

�
%

%b

� 1

�
; (4.41)

so that the structure of the differential equation becomes obvious:

v0.t/ D �av.t/C b : (4.42)

The corresponding initial condition is v.0/ D v0 for some prescribed starting ve-
locity v0.

This derivation can be repeated with the quadratic drag force F
.q/

d , leading to the
result

v0.t/ D �1

2
CD

%A

%bV
jvjv C g

�
%

%b

� 1

�
: (4.43)

108 4 Models

Defining

a D 1

2
CD

%A

%bV
; (4.44)

and b as above, we can write (4.43) as

v0.t/ D �ajvjv C b : (4.45)

4.11.3 Terminal Velocity

An interesting aspect of (4.42) and (4.45) is whether v will approach a final constant
value, the so-called terminal velocity vT , as t ! 1. A constant v means that
v0.t/! 0 as t !1 and therefore the terminal velocity vT solves

0 D �avT C b

and
0 D �ajvT jvT C b :

The former equation implies vT D b=a, while the latter has solutions vT D
�pjbj=a for a falling body (vT < 0) and vT D

p
b=a for a rising body (vT > 0).

4.11.4 A Crank–Nicolson Scheme

Both governing equations, the Stokes’ drag model (4.42) and the quadratic drag
model (4.45), can be readily solved by the Forward Euler scheme. For higher ac-
curacy one can use the Crank–Nicolson method, but a straightforward application
of this method gives a nonlinear equation in the new unknown value vnC1 when
applied to (4.45):

vnC1 � vn

�t
D �a

1

2
.jvnC1jvnC1 C jvnjvn/C b : (4.46)

The first term on the right-hand side of (4.46) is the arithmetic average of �jvjv
evaluated at time levels n and nC 1.

Instead of approximating the term �jvjv by an arithmetic average, we can use
a geometric mean:

.jvjv/nC 1
2 � jvnjvnC1 : (4.47)

The error is of second order in �t , just as for the arithmetic average and the centered
finite difference approximation in (4.46). With the geometric mean, the resulting
discrete equation

vnC1 � vn

�t
D �ajvnjvnC1 C b

www.dbooks.org

https://www.dbooks.org/

4.11 Vertical Motion of a Body in a Viscous Fluid 109

becomes a linear equation in vnC1, and we can therefore easily solve for vnC1:

vnC1 D vn C�tbnC 1
2

1C�tanC 1
2 jvnj

: (4.48)

Using a geometric mean instead of an arithmetic mean in the Crank–Nicolson
scheme is an attractive method for avoiding a nonlinear algebraic equation when
discretizing a nonlinear ODE.

4.11.5 Physical Data

Suitable values of 	 are 1:8 �10�5 Pa s for air and 8:9 �10�4 Pa s for water. Densities
can be taken as 1:2 kg=m3 for air and as 1:0 � 103 kg=m3 for water. For consider-
able vertical displacement in the atmosphere one should take into account that the
density of air varies with the altitude, see Sect. 4.9. One possible density variation
arises from the one-layer model in the mentioned section.

Any density variation makes b time dependent and we need bnC 1
2 in (4.48). To

compute the density that enters bnC 1
2 we must also compute the vertical position

z.t/ of the body. Since v D dz=dt , we can use a centered difference approxima-
tion:

znC 1
2 � zn� 1

2

�t
D vn) znC 1

2 D zn� 1
2 C�t vn :

This znC 1
2 is used in the expression for b to compute %.znC 1

2 / and then bnC 1
2 .

The drag coefficient8 CD depends heavily on the shape of the body. Some values
are: 0.45 for a sphere, 0.42 for a semi-sphere, 1.05 for a cube, 0.82 for a long
cylinder (when the center axis is in the vertical direction), 0.75 for a rocket, 1.0-1.3
for a man in upright position, 1.3 for a flat plate perpendicular to the flow, and 0.04
for a streamlined, droplet-like body.

4.11.6 Verification

To verify the program, one may assume a heavy body in air such that the Fb force
can be neglected, and further assume a small velocity such that the air resistance Fd

can also be neglected. This can be obtained by setting 	 and % to zero. The motion
then leads to the velocity v.t/ D v0 � gt , which is linear in t and therefore should
be reproduced to machine precision (say tolerance 10�15) by any implementation
based on the Crank–Nicolson or Forward Euler schemes.

Another verification, but not as powerful as the one above, can be based on
computing the terminal velocity and comparing with the exact expressions. The
advantage of this verification is that we can also test the situation % ¤ 0.

As always, the method of manufactured solutions can be applied to test the im-
plementation of all terms in the governing equation, but then the solution has no
physical relevance in general.

8 http://en.wikipedia.org/wiki/Drag_coefficient

http://en.wikipedia.org/wiki/Drag_coefficient

110 4 Models

4.11.7 Scaling

Applying scaling, as described in Sect. 4.1, will for the linear case reduce the need
to estimate values for seven parameters down to choosing one value of a single
dimensionless parameter

ˇ D
%bgV

�
%

%b
� 1

�
3
d	I

;

provided I ¤ 0. If the motion starts from rest, I D 0, the scaled problem reads

Nu0 D 1 � Nu; Nu.0/ D 0;

and there is no need for estimating physical parameters (!). This means that there
is a single universal solution to the problem of a falling body starting from rest:
Nu.t/ D 1 � e�Nt . All real physical cases correspond to stretching the Nt axis and the
Nu axis in this dimensionless solution. More precisely, the physical velocity u.t/ is
related to the dimensionless velocity Nu.Nt/ through

u D
%bgV

�
%

%b
� 1

�
3
d	

Nu.t=.g.%=%b � 1/// D
%bgV

�
%

%b
� 1

�
3
d	

.1 � et=.g.%=%b�1/// :

4.12 Viscoelastic Materials

When stretching a rod made of a perfectly elastic material, the elongation (change in
the rod’s length) is proportional to the magnitude of the applied force. Mathematical
models for material behavior under application of external forces use strain " and
stress � instead of elongation and forces. Strain is relative change in elongation and
stress is force per unit area. An elastic material has a linear relation between stress
and strain: � D E". This is a good model for many materials, but frequently the
velocity of the deformation (or more precisely, the strain rate "0) also influences the
stress. This is particularly the case for materials like organic polymers, rubber, and
wood. When the stress depends on both the strain and the strain rate, the material
is said to be viscoelastic. A common model relating forces to deformation is the
Kelvin–Voigt model9:

�.t/ D E".t/C �"0.t/ : (4.49)

Compared to a perfectly elastic material, which deforms instantaneously when
a force is acting, a Kelvin–Voigt material will spend some time to elongate. For
example, when an elastic rod is subject to a constant force � at t D 0, the strain
immediately adjusts to " D �=E. A Kelvin–Voigt material, however, has a response
".t/ D �

E
.1 � eEt=�/. Removing the force when the strain is ".t1/ D I will for

an elastic material immediately bring the strain back to zero, while a Kelvin–Voigt
material will decay: " D Ie�.t�t1/E=�/.

9 https://en.wikipedia.org/wiki/Kelvin-Voigt_material

www.dbooks.org

https://en.wikipedia.org/wiki/Kelvin-Voigt_material
https://www.dbooks.org/

4.13 Decay ODEs from Solving a PDE by Fourier Expansions 111

Introducing u for " and treating � .t/ as a given function, we can write the
Kelvin–Voigt model in our standard form

u0.t/ D �au.t/C b.t/; (4.50)

with a D E=� and b.t/ D � .t/=�. An initial condition, usually u.0/ D 0, is
needed.

4.13 Decay ODEs from Solving a PDE by Fourier Expansions

Suppose we have a partial differential equation

@u

@t
D ˛

@2u

@x2
C f .x; t/;

with boundary conditions u.0; t/ D u.L; t/ D 0 and initial condition u.x; 0/ D
I.x/. One may express the solution as

u.x; t/ D
mX

kD1

Ak.t/eikx
=L;

for appropriate unknown functions Ak , k D 1; : : : ; m. We use the complex ex-
ponential eikx
=L for easy algebra, but the physical u is taken as the real part of
any complex expression. Note that the expansion in terms of eikx
=L is compatible
with the boundary conditions: all functions eikx
=L vanish for x D 0 and x D L.
Suppose we can express I.x/ as

I.x/ D
mX

kD1

Ikeikx
=L :

Such an expansion can be computed by well-known Fourier expansion techniques,
but those details are not important here. Also, suppose we can express the given
f .x; t/ as

f .x; t/ D
mX

kD1

bk.t/eikx
=L :

Inserting the expansions for u and f in the differential equations demands that all
terms corresponding to a given k must be equal. The calculations result in the
follow system of ODEs:

A0k.t/ D �˛
k2
2

L2
C bk.t/; k D 1; : : : ; m :

From the initial condition

u.x; 0/ D
X

k

Ak.0/eikx
=L D I.x/ D
X

k

Ike.ikx
=L/;

112 4 Models

so it follows that Ak.0/ D Ik , k D 1; : : : ; m. We then have m equations of the
form A0k D �aAk C b, Ak.0/ D Ik , for appropriate definitions of a and b. These
ODE problems are independent of each other such that we can solve one problem
at a time. The outlined technique is a quite common solution approach to partial
differential equations.

Remark Since ak depends on k and the stability of the Forward Euler scheme
demands ak�t � 1, we get that �t � ˛�1L2
�2k�2 for this scheme. Usually, quite
large k values are needed to accurately represent the given functions I and f so that
�t in the Forward Euler scheme needs to be very small for these large values of k.
Therefore, the Crank–Nicolson and Backward Euler schemes, which allow larger
�t without any growth in the solutions, are more popular choices when creating
time-stepping algorithms for partial differential equations of the type considered in
this example.

4.14 Exercises

Problem 4.1: Radioactive decay of Carbon-14
The Carbon-1410 isotope, whose radioactive decay is used extensively in dating
organic material that is tens of thousands of years old, has a half-life of 5,730 years.
Determine the age of an organic material that contains 8.4 % of its initial amount of
Carbon-14. Use a time unit of 1 year in the computations. The uncertainty in the
half time of Carbon-14 is ˙40 years. What is the corresponding uncertainty in the
estimate of the age?

Hint 1 Let A be the amount of Carbon-14. The ODE problem is then A0.t/ D
�aA.t/, A.0/ D I . Introduced the scaled amount u D A=I . The ODE problem
for u is u0 D �au, u.0/ D 1. Measure time in years. Simulate until the first mesh
point tm such that u.tm/ � 0:084.

Hint 2 Use simulations with 5;730˙ 40 y as input and find the corresponding un-
certainty interval for the result.
Filename: carbon14.

Exercise 4.2: Derive schemes for Newton’s law of cooling
Show in detail how we can apply the ideas of the Forward Euler, Backward Euler,
and Crank–Nicolson discretizations to derive explicit computational formulas for
new temperature values in Newton’s law of cooling (see Sect. 4.4):

dT

dt
D �k.T � Ts.t//; T .0/ D T0 :

Here, T is the temperature of the body, Ts.t/ is the temperature of the surroundings,
t is time, k is the heat transfer coefficient, and T0 is the initial temperature of the
body. Summarize the discretizations in a �-rule such that you can get the three
schemes from a single formula by varying the � parameter.

Filename: schemes_cooling.

10 http://en.wikipedia.org/wiki/Carbon-14

www.dbooks.org

http://en.wikipedia.org/wiki/Carbon-14
https://www.dbooks.org/

4.14 Exercises 113

Exercise 4.3: Implement schemes for Newton’s law of cooling
The goal of this exercise is to implement the schemes from Exercise 4.2 and inves-
tigate several approaches for verifying the implementation.

a) Implement the �-rule from Exercise 4.2 in a function

cooling(T0, k, T_s, t_end, dt, theta=0.5)

where T0 is the initial temperature, k is the heat transfer coefficient, T_s is
a function of t for the temperature of the surroundings, t_end is the end time of
the simulation, dt is the time step, and theta corresponds to � . The cooling
function should return the temperature as an array T of values at the mesh points
and the time mesh t.

b) In the case limt!1 Ts.t/ D C D const, explain why T .t/ ! C . Construct
an example where you can illustrate this property in a plot. Implement a corre-
sponding test function that checks the correctness of the asymptotic value of the
solution.

c) A piecewise constant surrounding temperature,

Ts.t/ D
(

C0; 0 � t � t�

C1; t > t�;

corresponds to a sudden change in the environment at t D t�. Choose C0 D 2T0,
C1 D 1

2
T0, and t� D 3=k. Plot the solution T .t/ and explain why it seems

physically reasonable.
d) We know from the ODE u0 D �au that the Crank–Nicolson scheme can give

non-physical oscillations for �t > 2=a. In the present problem, this results
indicates that the Crank–Nicolson scheme give undesired oscillations for �t >

2=k. Discuss if this a potential problem in the physical case from c).
e) Find an expression for the exact solution of T 0 D �k.T � Ts.t//, T .0/ D T0.

Construct a test case and compare the numerical and exact solution in a plot.
Find a value of the time step �t such that the two solution curves cannot (vi-
sually) be distinguished from each other. Many scientists will claim that such
a plot provides evidence for a correct implementation, but point out why there
still may be errors in the code. Can you introduce bugs in the cooling function
and still achieve visually coinciding curves?

Hint The exact solution can be derived by multiplying (4.8) by the integrating fac-
tor ekt .

f) Implement a test function for checking that the solution returned by the cooling
function is identical to the exact numerical solution of the problem (to machine
precision) when Ts is constant.

Hint The exact solution of the discrete equations in the case Ts is a constant can
be found by introducing u D T � Ts to get a problem u0 D �ku, u.0/ D T0 � Ts .
The solution of the discrete equations is then of the form un D .T0 � Ts/A

n for

114 4 Models

some amplification factor A. The expression for T n is then T n D Ts.tn/ C un D
Ts C .T0 � Ts/A

n. We find that

A D 1 � .1 � �/k�t

1C �k�t
:

The test function, testing several � values for a quite coarse mesh, may take the
form

def test_discrete_solution():
"""
Compare the numerical solution with an exact solution
of the scheme when the T_s is constant.
"""
T_s = 10
T0 = 2
k = 1.2
dt = 0.1 # can use any mesh
N_t = 6 # any no of steps will do
t_end = dt*N_t
t = np.linspace(0, t_end, N_t+1)

for theta in [0, 0.5, 1, 0.2]:
u, t = cooling(T0, k, lambda t: T_s , t_end, dt, theta)
A = (1 - (1-theta)*k*dt)/(1 + theta*k*dt)
u_discrete_exact = T_s + (T0-T_s)*A**(np.arange(len(t)))
diff = np.abs(u - u_discrete_exact).max()
print ’diff computed and exact discrete solution:’, diff
tol = 1E-14
success = diff < tol
assert success, ’diff=%g’ % diff

Running this function shows that the diff variable is 3.55E-15 as maximum so
a tolerance of 10�14 is appropriate. This is a good test that the cooling function
works!

Filename: cooling.

Exercise 4.4: Find time of murder from body temperature
A detective measures the temperature of a dead body to be 26.7 ıC at 2 pm. One
hour later the temperature is 25.8 ıC. The question is when death occurred.

Assume that Newton’s law of cooling (4.8) is an appropriate mathematical model
for the evolution of the temperature in the body. First, determine k in (4.8) by
formulating a Forward Euler approximation with one time steep from time 2 am to
time 3 am, where knowing the two temperatures allows for finding k. Assume the
temperature in the air to be 20 ıC. Thereafter, simulate the temperature evolution
from the time of murder, taken as t D 0, when T D 37 ıC, until the temperature
reaches 25.8 ıC. The corresponding time allows for answering when death occurred.

Filename: detective.

Exercise 4.5: Simulate an oscillating cooling process
The surrounding temperature Ts in Newton’s law of cooling (4.8) may vary in time.
Assume that the variations are periodic with period P and amplitude a around

www.dbooks.org

https://www.dbooks.org/

4.14 Exercises 115

a constant mean temperature Tm:

Ts.t/ D Tm C a sin

�
2

P
t

�
: (4.51)

Simulate a process with the following data: k D 0:05 min�1, T .0/ D 5 ıC, Tm D
25 ıC, a D 2:5 ıC, and P D 1 h, P D 10 min, and P D 6 h. Plot the T solutions
and Ts in the same plot.

Filename: osc_cooling.

Exercise 4.6: Simulate stochastic radioactive decay
The purpose of this exercise is to implement the stochastic model described in
Sect. 4.5 and show that its mean behavior approximates the solution of the cor-
responding ODE model.

The simulation goes on for a time interval Œ0; T � divided into Nt intervals of
length �t . We start with N0 atoms. In some time interval, we have N atoms that
have survived. Simulate N Bernoulli trials with probability ��t in this interval
by drawing N random numbers, each being 0 (survival) or 1 (decay), where the
probability of getting 1 is ��t . We are interested in the number of decays, d , and
the number of survived atoms in the next interval is then N � d . The Bernoulli
trials are simulated by drawing N uniformly distributed real numbers on Œ0; 1� and
saying that 1 corresponds to a value less than ��t :

Given lambda_, dt, N
import numpy as np
uniform = np.random.uniform(N)
Bernoulli_trials = np.asarray(uniform < lambda_*dt, dtype=np.int)
d = Bernoulli_trials.size

Observe that uniform < lambda_*dt is a boolean array whose true and false val-
ues become 1 and 0, respectively, when converted to an integer array.

Repeat the simulation over Œ0; T � a large number of times, compute the average
value of N in each interval, and compare with the solution of the corresponding
ODE model.

Filename: stochastic_decay.

Problem 4.7: Radioactive decay of two substances
Consider two radioactive substances A and B. The nuclei in substance A decay to
form nuclei of type B with a half-life A1=2, while substance B decay to form type
A nuclei with a half-life B1=2. Letting uA and uB be the fractions of the initial
amount of material in substance A and B, respectively, the following system of
ODEs governs the evolution of uA.t/ and uB.t/:

1

ln 2
u0A D uB=B1=2 � uA=A1=2; (4.52)

1

ln 2
u0B D uA=A1=2 � uB=B1=2; (4.53)

with uA.0/ D uB.0/ D 1.

116 4 Models

a) Make a simulation program that solves for uA.t/ and uB.t/.
b) Verify the implementation by computing analytically the limiting values of uA

and uB as t ! 1 (assume u0A; u0B ! 0) and comparing these with those ob-
tained numerically.

c) Run the program for the case of A1=2 D 10 minutes and B1=2 D 50 minutes.
Use a time unit of 1 minute. Plot uA and uB versus time in the same plot.

Filename: radioactive_decay_2subst.

Exercise 4.8: Simulate a simple chemical reaction
Consider the simple chemical reaction where a substance A is turned into a sub-
stance B according to

dŒA�

dt
D �kŒA�;

d ŒB�

dt
D kŒA�;

where ŒA� and ŒB� are the concentrations of A and B, respectively. It may be a chal-
lenge to find appropriate values of k, but we can avoid this problem by working
with a scaled model (as explained in Sect. 4.1). Scale the model above, using a time
scale 1=k, and use the initial concentration of ŒA� as scale for ŒA� and ŒB�. Show
that the scaled system reads

du

dt
D �u;

dv

dt
D u;

with initial conditions u.0/ D 1, and v.0/ D ˛, where ˛ D ŒB�.0/=ŒA�.0/ is
a dimensionless number, and u and v are the scaled concentrations of ŒA� and ŒB�,
respectively. Implement a numerical scheme that can be used to find the solutions
u.t/ and v.t/. Visualize u and v in the same plot.

Filename: chemcial_kinetics_AB.

Exercise 4.9: Simulate an n-th order chemical reaction
An n-order chemical reaction, generalizing the model in Exercise 4.8, takes the
form

dŒA�

dt
D �kŒA�n;

d ŒB�

dt
D kŒA�n;

where symbols are as defined in Exercise 4.8. Bring this model on dimensionless
form, using a time scale ŒA�.0/n�1=k, and show that the dimensionless model sim-

www.dbooks.org

https://www.dbooks.org/

4.14 Exercises 117

plifies to

du

dt
D �un;

dv

dt
D un;

with u.0/ D 1 and v.0/ D ˛ D ŒB�.0/=ŒA�.0/. Solve numerically for u.t/ and
show a plot with u for n D 0:5; 1; 2; 4.

Filename: chemcial_kinetics_ABn.

Exercise 4.10: Simulate a biochemical process
The purpose of this exercise is to simulate the ODE system (4.23)–(4.26) modeling
a simple biochemical process.

a) Scale (4.23)–(4.26) such that we can work with dimensionless parameters,
which are easier to prescribe. Introduce

NQ D ŒES�

Qc

; NP D P

Pc

; NS D S

S0

; NE D E

E0

; Nt D t

tc
;

where appropriate scales are

Qc D S0E0

K
; Pc D Qc; tc D 1

kCE0

;

with K D .kv C k�/=kC (Michaelis constant). Show that the scaled system
becomes

d NQ
d Nt D ˛. NE NS � NQ/; (4.54)

d NP
d Nt D ˇ NQ; (4.55)

d NS
d Nt D �

NE NS C .1 � ˇ˛�1/ NQ; (4.56)

d NE
d Nt D �

NE NS C NQ; (4.57)

where we have three dimensionless parameters

˛ D K

E0

; ˇ D kv

kCE0

; D E0

S0

:

The corresponding initial conditions are NQ D NP D 0 and NS D NE D 1.
b) Implement a function for solving (4.54)–(4.57).
c) There are two conservation equations implied by (4.23)–(4.26):

ŒES�C ŒE� D E0; (4.58)

ŒES�C ŒS�C ŒP � D S0 : (4.59)

118 4 Models

Derive these two equations. Use these properties in the function in b) to do
a partial verification of the solution at each time step.

d) Simulate a case with T D 8, ˛ D 1:5 and ˇ D 1, and two values: 0.9 and 0.1.

Filename: biochem.

Exercise 4.11: Simulate spreading of a disease
The SIR model (4.27)–(4.29) can be used to simulate spreading of an epidemic
disease.

a) Estimating the parameter ˇ is difficult so it can be handy to scale the equations.
Use tc D 1=� as time scale, and scale S , I , and R by the population size
N D S.0/CI.0/CR.0/. Show that the resulting dimensionless model becomes

d NS
d Nt D �R0

NS NI ; (4.60)

d NI
d Nt D R0

NS NI � NI ; (4.61)

d NR
d Nt D I; (4.62)

NS.0/ D 1 � ˛; (4.63)

NI .0/ D ˛; (4.64)

NR.0/ D 0; (4.65)

where R0 and ˛ are the only parameters in the problem:

R0 D Nˇ

�
; ˛ D I.0/

N
:

A quantity with a bar denotes a dimensionless version of that quantity, e.g, Nt is
dimensionless time, and Nt D �t .

b) Show that the R0 parameter governs whether the disease will spread or not at
t D 0.

Hint Spreading means dI=dt > 0.

c) Implement the scaled SIR model. Check at every time step, as a verification,
that NS C NI C NR D 1.

d) Simulate the spreading of a disease where R0 D 2; 5 and 2 % of the population
is infected at time t D 0.

Filename: SIR.

Exercise 4.12: Simulate predator-prey interaction
Section 4.8 describes a model for the interaction of predator and prey populations,
such as lynx and hares.

www.dbooks.org

https://www.dbooks.org/

4.14 Exercises 119

a) Scale the equations (4.30)–(4.31). Use the initial population H.0/ D H0 of H

has scale for H and L, and let the time scale be 1=.bH0/.
b) Implement the scaled model from a). Run illustrating cases how the two popu-

lations develop.
c) The scaling in a) used a scale for H and L based on the initial condition H.0/ D

H0. An alternative scaling is to make the ODEs as simple as possible by intro-
ducing separate scales Hc and Lc for H and L, respectively. Fit Hc , Lc , and
the time scale tc such that there are as few dimensionless parameters as possi-
ble in the ODEs. Scale the initial conditions. Compare the number and type of
dimensionless parameters with a).

d) Compute with the scaled model from c) and create plots to illustrate the typical
solutions.

Filename: predator_prey.

Exercise 4.13: Simulate the pressure drop in the atmosphere
We consider the models for atmospheric pressure in Sect. 4.9. Make a program with
three functions,

� one computing the pressure p.z/ using a seven-layer model and varying L,
� one computing p.z/ using a seven-layer model, but with constant temperature in

each layer, and
� one computing p.z/ based on the one-layer model.

How can these implementations be verified? Should ease of verification impact how
you code the functions? Compare the three models in a plot.

Filename: atmospheric_pressure.

Exercise 4.14: Make a program for vertical motion in a fluid
Implement the Stokes’ drag model (4.40) and the quadratic drag model (4.43) from
Sect. 4.11, using the Crank–Nicolson scheme and a geometric mean for jvjv as
explained, and assume constant fluid density. At each time level, compute the
Reynolds number Re and choose the Stokes’ drag model if Re < 1 and the quadratic
drag model otherwise.

The computation of the numerical solution should take place either in a stand-
alone function or in a solver class that looks up a problem class for physical data.
Create a module and equip it with pytest/nose compatible test functions for auto-
matically verifying the code.

Verification tests can be based on

� the terminal velocity (see Sect. 4.11),
� the exact solution when the drag force is neglected (see Sect. 4.11),
� the method of manufactured solutions (see Sect. 3.1.5) combined with comput-

ing convergence rates (see Sect. 3.1.6).

Use, e.g., a quadratic polynomial for the velocity in the method of manufactured
solutions. The expected error is O.�t2/ from the centered finite difference approx-
imation and the geometric mean approximation for jvjv.

120 4 Models

A solution that is linear in t will also be an exact solution of the discrete equa-
tions in many problems. Show that this is true for linear drag (by adding a source
term that depends on t), but not for quadratic drag because of the geometric mean
approximation. Use the method of manufactured solutions to add a source term in
the discrete equations for quadratic drag such that a linear function of t is a so-
lution. Add a test function for checking that the linear function is reproduced to
machine precision in the case of both linear and quadratic drag.

Apply the software to a case where a ball rises in water. The buoyancy force is
here the driving force, but the drag will be significant and balance the other forces
after a short time. A soccer ball has radius 11 cm and mass 0.43 kg. Start the motion
from rest, set the density of water, %, to 1000 kg=m3, set the dynamic viscosity, 	,
to 10�3 Pa s, and use a drag coefficient for a sphere: 0.45. Plot the velocity of the
rising ball.

Filename: vertical_motion.

Project 4.15: Simulate parachuting
The aim of this project is to develop a general solver for the vertical motion of
a body with quadratic air drag, verify the solver, apply the solver to a skydiver in
free fall, and finally apply the solver to a complete parachute jump.

All the pieces of software implemented in this project should be realized as
Python functions and/or classes and collected in one module.

a) Set up the differential equation problem that governs the velocity of the motion.
The parachute jumper is subject to the gravity force and a quadratic drag force.
Assume constant density. Add an extra source term to be used for program
verification. Identify the input data to the problem.

b) Make a Python module for computing the velocity of the motion. Also equip
the module with functionality for plotting the velocity.

Hint 1 Use the Crank–Nicolson scheme with a geometric mean of jvjv in time to
linearize the equation of motion with quadratic drag.

Hint 2 You can either use functions or classes for implementation. If you choose
functions, make a function solver that takes all the input data in the problem as
arguments and that returns the velocity (as a mesh function) and the time mesh. In
case of a class-based implementation, introduce a problem class with the physical
data and a solver class with the numerical data and a solve method that stores the
velocity and the mesh in the class.

Allow for a time-dependent area and drag coefficient in the formula for the drag
force.

c) Show that a linear function of t does not fulfill the discrete equations because of
the geometric mean approximation used for the quadratic drag term. Fit a source
term, as in the method of manufactured solutions, such that a linear function of
t is a solution of the discrete equations. Make a test function to check that this
solution is reproduced to machine precision.

www.dbooks.org

https://www.dbooks.org/

4.14 Exercises 121

d) The expected error in this problem goes like �t2 because we use a centered finite
difference approximation with error O.�t2/ and a geometric mean approxima-
tion with error O.�t2/. Use the method of manufactured solutions combined
with computing convergence rate to verify the code. Make a test function for
checking that the convergence rate is correct.

e) Compute the drag force, the gravity force, and the buoyancy force as a function
of time. Create a plot with these three forces.

Hint You can either make a function forces(v, t, plot=None) that returns the
forces (as mesh functions) and t, and shows a plot on the screen and also saves
the plot to a file with name stored in plot if plot is not None, or you can extend
the solver class with computation of forces and include plotting of forces in the
visualization class.

f) Compute the velocity of a skydiver in free fall before the parachute opens.

Hint Meade and Struthers [11] provide some data relevant to skydiving11. The
mass of the human body and equipment can be set to 100 kg. A skydiver in spread-
eagle formation has a cross-section of 0.5 m2 in the horizontal plane. The density
of air decreases with altitude, but can be taken as constant, 1 kg=m3, for altitudes
relevant to skydiving (0–4000 m). The drag coefficient for a man in upright position
can be set to 1.2. Start with a zero velocity. A free fall typically has a terminating
velocity of 45 m=s. (This value can be used to tune other parameters.)

g) The next task is to simulate a parachute jumper during free fall and after the
parachute opens. At time tp , the parachute opens and the drag coefficient and the
cross-sectional area change dramatically. Use the program to simulate a jump
from z D 3000 m to the ground z D 0. What is the maximum acceleration,
measured in units of g, experienced by the jumper?

Hint Following Meade and Struthers [11], one can set the cross-section area per-
pendicular to the motion to 44 m2 when the parachute is open. Assume that it takes
8 s to increase the area linearly from the original to the final value. The drag coeffi-
cient for an open parachute can be taken as 1.8, but tuned using the known value of
the typical terminating velocity reached before landing: 5.3 m=s. One can take the
drag coefficient as a piecewise constant function with an abrupt change at tp . The
parachute is typically released after tp D 60 s, but larger values of tp can be used to
make plots more illustrative.
Filename: parachuting.

Exercise 4.16: Formulate vertical motion in the atmosphere
Vertical motion of a body in the atmosphere needs to take into account a varying air
density if the range of altitudes is many kilometers. In this case, % varies with the
altitude z. The equation of motion for the body is given in Sect. 4.11. Let us assume
quadratic drag force (otherwise the body has to be very, very small). A differential

11 http://en.wikipedia.org/wiki/Parachuting

http://en.wikipedia.org/wiki/Parachuting

122 4 Models

equation problem for the air density, based on the information for the one-layer
atmospheric model in Sect. 4.9, can be set up as

p0.z/ D � Mg

R�.T0 C Lz/
p; (4.66)

% D p
M

R�T
: (4.67)

To evaluate p.z/ we need the altitude z. From the principle that the velocity is the
derivative of the position we have that

z0.t/ D v.t/; (4.68)

where v is the velocity of the body.
Explain in detail how the governing equations can be discretized by the Forward

Euler and the Crank–Nicolson methods. Discuss pros and cons of the two methods.
Filename: falling_in_variable_density.

Exercise 4.17: Simulate vertical motion in the atmosphere
Implement the Forward Euler or the Crank–Nicolson scheme derived in Exer-
cise 4.16. Demonstrate the effect of air density variation on a falling human, e.g.,
the famous fall of Felix Baumgartner12. The drag coefficient can be set to 1.2.

Filename: falling_in_variable_density.

Problem 4.18: Compute y D jxj by solving an ODE
Consider the ODE problem

y0.x/ D
(
�1; x < 0;

1; x 	 0
x 2 .�1; 1�; y.1�/ D 1;

which has the solution y.x/ D jxj. Using a mesh x0 D �1, x1 D 0, and
x2 D 1, calculate by hand y1 and y2 from the Forward Euler, Backward Euler,
Crank–Nicolson, and Leapfrog methods. Use all of the former three methods for
computing the y1 value to be used in the Leapfrog calculation of y2. Thereafter, vi-
sualize how these schemes perform for a uniformly partitioned mesh with N D 10

and N D 11 points.
Filename: signum.

Problem 4.19: Simulate fortune growth with random interest rate
The goal of this exercise is to compute the value of a fortune subject to inflation and
a random interest rate. Suppose that the inflation is constant at i percent per year
and that the annual interest rate, p, changes randomly at each time step, starting at
some value p0 at t D 0. The random change is from a value pn at t D tn to pnC�p

with probability 0.25 and pn � �p with probability 0.25. No change occurs with
probability 0.5. There is also no change if pnC1 exceeds 15 or becomes below 1.
Use a time step of one month, p0 D i , initial fortune scaled to 1, and simulate 1000

12 http://en.wikipedia.org/wiki/Felix_Baumgartner

www.dbooks.org

http://en.wikipedia.org/wiki/Felix_Baumgartner
https://www.dbooks.org/

4.14 Exercises 123

scenarios of length 20 years. Compute the mean evolution of one unit of money
and the corresponding standard deviation. Plot the mean curve along with the mean
plus one standard deviation and the mean minus one standard deviation. This will
illustrate the uncertainty in the mean curve.

Hint 1 The following code snippet computes pnC1:

import random

def new_interest_rate(p_n, dp=0.5):
r = random.random() # uniformly distr. random number in [0,1)
if 0 <= r < 0.25:

p_np1 = p_n + dp
elif 0.25 <= r < 0.5:

p_np1 = p_n - dp
else:

p_np1 = p_n
return (p_np1 if 1 <= p_np1 <= 15 else p_n)

Hint 2 If ui .t/ is the value of the fortune in experiment number i , i D 0; : : : ; N�1,
the mean evolution of the fortune is

Nu.t/ D 1

N

N�1X
iD0

ui .t/;

and the standard deviation is

s.t/ D
vuut 1

N � 1

�. Nu.t//2 C

N�1X
iD0

.ui .t//2

!
:

Suppose ui .t/ is stored in an array u. The mean and the standard deviation of
the fortune is most efficiently computed by using two accumulation arrays, sum_u
and sum_u2, and performing sum_u += u and sum_u2 += u**2 after every ex-
periment. This technique avoids storing all the ui .t/ time series for computing the
statistics.
Filename: random_interest.

Exercise 4.20: Simulate a population in a changing environment
We shall study a population modeled by (4.3) where the environment, represented
by r and f , undergoes changes with time.

a) Assume that there is a sudden drop (increase) in the birth (death) rate at time
t D tr , because of limited nutrition or food supply:

r.t/ D
(

%; t < tr ;

% �A; t 	 tr :

This drop in population growth is compensated by a sudden net immigration at
time tf > tr :

f .t/ D
(

0; t < tf ;

f0; t 	 ta:

124 4 Models

Start with % and make A > %. Experiment with these and other parameters to
illustrate the interplay of growth and decay in such a problem.

b) Now we assume that the environmental conditions changes periodically with
time so that we may take

r.t/ D %C A sin
�

2

P
t

�
:

That is, the combined birth and death rate oscillates around % with a maximum
change of ˙A repeating over a period of length P in time. Set f D 0 and
experiment with the other parameters to illustrate typical features of the solution.

Filename: population.py.

Exercise 4.21: Simulate logistic growth
Solve the logistic ODE (4.4) using a Crank–Nicolson scheme where .unC 1

2 /2 is
approximated by a geometric mean:

.unC 1
2 /2 � unC1un :

This trick makes the discrete equation linear in unC1.
Filename: logistic_CN.

Exercise 4.22: Rederive the equation for continuous compound interest
The ODE model (4.7) was derived under the assumption that r was constant. Per-
form an alternative derivation without this assumption: 1) start with (4.5); 2) intro-
duce a time step �t instead of m: �t D 1=m if t is measured in years; 3) divide by
�t and take the limit �t ! 0. Simulate a case where the inflation is at a constant
level I percent per year and the interest rate oscillates: r D �I=2 C r0 sin.2
t/.
Compare solutions for r0 D I; 3I=2; 2I .

Filename: interest_modeling.

Exercise 4.23: Simulate the deformation of a viscoelastic material
Stretching a rod made of polymer will cause deformations that are well described
with a Kelvin–Voigt material model (4.49). At t D 0 we apply a constant force
� D �0, but at t D t1, we remove the force so � D 0. Compute numerically the
corresponding strain (elongation divided by the rod’s length) and visualize how it
responds in time.

Hint To avoid finding proper values of the E and � parameters for a polymer, one
can scale the problem. A common dimensionless time is Nt D tE=�. Note that " is
already dimensionless by definition, but it takes on small values, say up to 0.1, so
we introduce a scaling: Nu D 10" such that Nu takes on values up to about unity.

Show that the material model then takes the form Nu0 D � NuC 10�.t/=E. Work
with the dimensionless force F D 10�.t/=E, and let F D 1 for Nt 2 .0; Nt1/ and
F D 0 for Nt 	 Nt1. A possible choice of t1 is the characteristic time �=E, which
means that Nt1 D 1.
Filename: KelvinVoigt.

www.dbooks.org

https://www.dbooks.org/

4.14 Exercises 125

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

5Scientific Software Engineering

Teaching material on scientific computing has traditionally been very focused on
the mathematics and the applications, while details on how the computer is pro-
grammed to solve the problems have received little attention. Many end up writing
as simple programs as possible, without being aware of much useful computer sci-
ence technology that would increase the fun, efficiency, and reliability of the their
scientific computing activities.

This chapter demonstrates a series of good practices and tools from modern com-
puter science, using the simple mathematical problem u0 D �au, u.0/ D I , such
that we minimize the mathematical details and can go more in depth with implemen-
tations. The goal is to increase the technological quality of computer programming
and make it match the more well-established quality of the mathematics of scientific
computing.

The conventions and techniques outlined here will save you a lot of time when
you incrementally extend software over time from simpler to more complicated
problems. In particular, you will benefit from many good habits:

� new code is added in a modular fashion to a library (modules),
� programs are run through convenient user interfaces,
� it takes one quick command to let all your code undergo heavy testing,
� tedious manual work with running programs is automated,
� your scientific investigations are reproducible,
� scientific reports with top quality typesetting are produced both for paper and

electronic devices.

5.1 Implementations with Functions andModules

All previous examples in this book have implemented numerical algorithms as
Python functions. This is a good style that readers are expected to adopt. How-
ever, this author has experienced that many students and engineers are inclined to
make “flat” programs, i.e., a sequence of statements without any use of functions,
just to get the problem solved as quickly as possible. Since this programming style
is so widespread, especially among people with MATLAB experience, we shall

127© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_5

www.dbooks.org

https://www.dbooks.org/

128 5 Scientific Software Engineering

look at the weaknesses of flat programs and show how they can be refactored into
more reusable programs based on functions.

5.1.1 Mathematical Problem and Solution Technique

We address the differential equation problem

u0.t/ D �au.t/; t 2 .0; T �; (5.1)

u.0/ D I; (5.2)

where a, I , and T are prescribed parameters, and u.t/ is the unknown function to
be estimated. This mathematical model is relevant for physical phenomena featur-
ing exponential decay in time, e.g., vertical pressure variation in the atmosphere,
cooling of an object, and radioactive decay.

As we learned in Chap. 1.1.2, the time domain is discretized with points 0 D
t0 < t1 � � � < tNt

D T , here with a constant spacing �t between the mesh points:
�t D tn � tn�1, n D 1; : : : ; Nt . Let un be the numerical approximation to the
exact solution at tn. A family of popular numerical methods are provided by the �

scheme,

unC1 D 1 � .1 � �/a�t

1C �a�t
un; (5.3)

for n D 0; 1; : : : ; Nt � 1. This formula produces the Forward Euler scheme when
� D 0, the Backward Euler scheme when � D 1, and the Crank–Nicolson scheme
when � D 1=2.

5.1.2 A First, Quick Implementation

Solving (5.3) in a program is very straightforward: just make a loop over n and
evaluate the formula. The u.tn/ values for discrete n can be stored in an array. This
makes it easy to also plot the solution. It would be natural to also add the exact
solution curve u.t/ D Ie�at to the plot.

Many have programming habits that would lead them to write a simple program
like this:

from numpy import *
from matplotlib.pyplot import *

A = 1
a = 2
T = 4
dt = 0.2
N = int(round(T/dt))
y = zeros(N+1)
t = linspace(0, T, N+1)
theta = 1
y[0] = A
for n in range(0, N):

y[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*y[n]

5.1 Implementations with Functions and Modules 129

y_e = A*exp(-a*t) - y
error = y_e - y
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E
plot(t, y, ’r--o’)
t_e = linspace(0, T, 1001)
y_e = A*exp(-a*t_e)
plot(t_e, y_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’y’)
show()

This program is easy to read, and as long as it is correct, many will claim that it
has sufficient quality. Nevertheless, the program suffers from two serious flaws:

1. The notation in the program does not correspond exactly to the notation in the
mathematical problem: the solution is called y and corresponds to u in the math-
ematical description, the variable A corresponds to the mathematical parameter
I , N in the program is called Nt in the mathematics.

2. There are no comments in the program.

These kind of flaws quickly become crucial if present in code for complicated math-
ematical problems and code that is meant to be extended to other problems.

We also note that the program is flat in the sense that it does not contain func-
tions. Usually, this is a bad habit, but let us first correct the two mentioned flaws.

5.1.3 AMore Decent Program

A code of better quality arises from fixing the notation and adding comments:

from numpy import *
from matplotlib.pyplot import *

I = 1
a = 2
T = 4
dt = 0.2
Nt = int(round(T/dt)) # no of time intervals
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh
theta = 1 # Backward Euler method

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

Compute norm of the error
u_e = I*exp(-a*t) - u # exact u at the mesh points
error = u_e - u
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E

Compare numerical (u) and exact solution (u_e) in a plot
plot(t, u, ’r--o’)
t_e = linspace(0, T, 1001) # very fine mesh for u_e
u_e = I*exp(-a*t_e)

www.dbooks.org

https://www.dbooks.org/

130 5 Scientific Software Engineering

plot(t_e, u_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’u’)
show()

Comments in a program There is obviously not just one way to comment a pro-
gram, and opinions may differ as to what code should be commented. The guiding
principle is, however, that comments should make the program easy to understand
for the human eye. Do not comment obvious constructions, but focus on ideas and
(“what happens in the next statements?”) and on explaining code that can be found
complicated.

Refactoring into functions At first sight, our updated program seems like a good
starting point for playing around with the mathematical problem: we can just
change parameters and rerun. Although such edit-and-rerun sessions are good for
initial exploration, one will soon extend the experiments and start developing the
code further. Say we want to compare � D 0; 1; 0:5 in the same plot. This extension
requires changes all over the code and quickly leads to errors. To do something
serious with this program, we have to break it into smaller pieces and make sure
each piece is well tested, and ensure that the program is sufficiently general and can
be reused in new contexts without changes. The next natural step is therefore to
isolate the numerical computations and the visualization in separate Python func-
tions. Such a rewrite of a code, without essentially changing the functionality, but
just improve the quality of the code, is known as refactoring. After quickly putting
together and testing a program, the next step is to refactor it so it becomes better
prepared for extensions.

Program file vs IDE vs notebook There are basically three different ways of
working with Python code:

1. One writes the code in a file, using a text editor (such as Emacs or Vim) and
runs it in a terminal window.

2. One applies an Integrated Development Environment (the simplest is IDLE,
which comes with standard Python) containing a graphical user interface with
an editor and an element where Python code can be run.

3. One applies the Jupyter Notebook (previously known as IPython Notebook),
which offers an interactive environment for Python code where plots are auto-
matically inserted after the code, see Fig. 5.1.

It appears that method 1 and 2 are quite equivalent, but the notebook encourages
more experimental code and therefore also flat programs. Consequently, notebook
users will normally need to think more about refactoring code and increase the use
of functions after initial experimentation.

5.1 Implementations with Functions and Modules 131

Fig. 5.1 Experimental code in a notebook

5.1.4 Prefixing Imported Functions by theModule Name

Import statements of the form from module import * import all functions and
variables in module.py into the current file. This is often referred to as “import
star”, and many find this convenient, but it is not considered as a good programming
style in Python. For example, when doing

from numpy import *
from matplotlib.pyplot import *

we get mathematical functions like sin and exp as well as MATLAB-style func-
tions like linspace and plot, which can be called by these well-known names.
Unfortunately, it sometimes becomes confusing to know where a particular func-
tion comes from, i.e., what modules you need to import. Is a desired function from
numpy or matplotlib.pyplot? Or is it our own function? These questions are
easy to answer if functions in modules are prefixed by the module name. Doing an
additional from math import * is really crucial: now sin, cos, and other mathe-
matical functions are imported and their names hide those previously imported from
numpy. That is, sin is now a sine function that accepts a float argument, not an
array.

www.dbooks.org

https://www.dbooks.org/

132 5 Scientific Software Engineering

Doing the import such that module functions must have a prefix is generally
recommended:

import numpy
import matplotlib.pyplot

t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)

The modules numpy and matplotlib.pyplot are frequently used, and since
their full names are quite tedious to write, two standard abbreviations have evolved
in the Python scientific computing community:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)

The downside of prefixing functions by the module name is that mathematical
expressions like e�at sin.2
t/ get cluttered with module names,

numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
or
np.exp(-a*t)*np.sin(2*np.pi*t)

Such an expression looks like exp(-a*t)*sin(2*pi*t) in most other program-
ming languages. Similarly, np.linspace and plt.plot look less familiar to
people who are used to MATLAB and who have not adopted Python’s prefix style.
Whether to do from module import * or import module depends on personal
taste and the problem at hand. In these writings we use from module import *
in more basic, shorter programs where similarity with MATLAB could be an ad-
vantage. However, in reusable modules we prefix calls to module functions by their
function name, or do explicit import of the needed functions:

from numpy import exp, sum, sqrt

def u_exact(t, I, a):
return I*exp(-a*t)

error = u_exact(t, I, a) - u
E = sqrt(dt*sum(error**2))

Prefixing module functions or not?
It can be advantageous to do a combination: mathematical functions in formulas
are imported without prefix, while module functions in general are called with
a prefix. For the numpy package we can do

import numpy as np
from numpy import exp, sum, sqrt

5.1 Implementations with Functions and Modules 133

such that mathematical expression can apply exp, sum, and sqrt and hence look
as close to the mathematical formulas as possible (without a disturbing prefix).
Other calls to numpy function are done with the prefix, as in np.linspace.

5.1.5 Implementing the Numerical Algorithm in a Function

The solution formula (5.3) is completely general and should be available as a Python
function solver with all input data as function arguments and all output data re-
turned to the calling code. With this solver function we can solve all types of
problems (5.1)–(5.2) by an easy-to-read one-line statement:

u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

Refactoring the numerical method in the previous flat program in terms of
a solver function and prefixing calls to module functions by the module name
leads to this code:

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Tip: Always use a doc string to document a function!
Python has a convention for documenting the purpose and usage of a function in
a doc string: simply place the documentation in a one- or multi-line triple-quoted
string right after the function header.

Be careful with unintended integer division!
Note that we in the solver function explicitly covert dt to a float object. If
not, the updating formula for u[n+1] may evaluate to zero because of integer
division when theta, a, and dt are integers!

5.1.6 Do not Have Several Versions of a Code

One of the most serious flaws in computational work is to have several slightly
different implementations of the same computational algorithms lying around in
various program files. This is very likely to happen, because busy scientists often
want to test a slight variation of a code to see what happens. A quick copy-and-
edit does the task, but such quick hacks tend to survive. When a real correction is
needed in the implementation, it is difficult to ensure that the correction is done in
all relevant files. In fact, this is a general problem in programming, which has led
to an important principle.

www.dbooks.org

https://www.dbooks.org/

134 5 Scientific Software Engineering

The DRY principle: Don’t repeat yourself!
When implementing a particular functionality in a computer program, make sure
this functionality and its variations are implemented in just one piece of code.
That is, if you need to revise the implementation, there should be one and only
one place to edit. It follows that you should never duplicate code (don’t repeat
yourself!), and code snippets that are similar should be factored into one piece
(function) and parameterized (by function arguments).

The DRY principle means that our solver function should not be copied to
a new file if we need some modifications. Instead, we should try to extend solver
such that the new and old needs are met by a single function. Sometimes this
process requires a new refactoring, but having a numerical method in one and only
one place is a great advantage.

5.1.7 Making aModule

As soon as you start making Python functions in a program, you should make sure
the program file fulfills the requirement of a module. This means that you can
import and reuse your functions in other programs too. For example, if our solver
function resides in a module file decay.py, another program may reuse of the
function either by

from decay import solver
u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

or by a slightly different import statement, combined with a subsequent prefix of
the function name by the name of the module:

import decay
u, t = decay.solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

The requirements for a program file to also qualify for a module are simple:

1. The filename without .py must be a valid Python variable name.
2. The main program must be executed (through statements or a function call) in

the test block.

The test block is normally placed at the end of a module file:

if __name__ == ’__main__’:
Statements

When the module file is executed as a stand-alone program, the if test is true and
the indented statements are run. If the module file is imported, however, __name__
equals the module name and the test block is not executed.

To demonstrate the difference, consider the trivial module file hello.py with
one function and a call to this function as main program:

5.1 Implementations with Functions and Modules 135

def hello(arg=’World!’):
print ’Hello, ’ + arg

if __name__ == ’__main__’:
hello()

Without the test block, the code reads

def hello(arg=’World!’):
print ’Hello, ’ + arg

hello()

With this latter version of the file, any attempt to import hello will, at the same
time, execute the call hello() and hence write “Hello, World!” to the screen. Such
output is not desired when importing a module! To make import and execution of
code independent for another program that wants to use the function hello, the
module hello must be written with a test block. Furthermore, running the file itself
as python hello.py will make the block active and lead to the desired printing.

All coming functions are placed in a module!
The many functions to be explained in the following text are put in one module
file decay.py1.

What more than the solver function is needed in our decay module to do ev-
erything we did in the previous, flat program? We need import statements for numpy
and matplotlib as well as another function for producing the plot. It can also be
convenient to put the exact solution in a Python function. Our module decay.py
then looks like this:

import numpy as np
import matplotlib.pyplot as plt

def solver(I, a, T, dt, theta):
...

def u_exact(t, I, a):
return I*np.exp(-a*t)

def experiment_compare_numerical_and_exact():
I = 1; a = 2; T = 4; dt = 0.4; theta = 1
u, t = solver(I, a, T, dt, theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)

plt.plot(t, u, ’r--o’) # dashed red line with circles
plt.plot(t_e, u_e, ’b-’) # blue line for u_e
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

1 http://tinyurl.com/ofkw6kc/softeng/decay.py

www.dbooks.org

http://tinyurl.com/ofkw6kc/softeng/decay.py
https://www.dbooks.org/

136 5 Scientific Software Engineering

error = u_exact(t, I, a) - u
E = np.sqrt(dt*np.sum(error**2))
print ’Error norm:’, E

if __name__ == ’__main__’:
experiment_compare_numerical_and_exact()

We could consider doing from numpy import exp, sqrt, sum to make the
mathematical expressions with these functions closer to the mathematical formulas,
but here we employed the prefix since the formulas are so simple and easy to read.

This module file does exactly the same as the previous, flat program, but now
it becomes much easier to extend the code with more functions that produce other
plots, other experiments, etc. Even more important, though, is that the numerical
algorithm is coded and tested once and for all in the solver function, and any need
to solve the mathematical problem is a matter of one function call.

5.1.8 Example on Extending theModule Code

Let us specifically demonstrate one extension of the flat program in Sect. 5.1.2 that
would require substantial editing of the flat code (Sect. 5.1.3), while in a structured
module (Sect. 5.1.7), we can simply add a new function without affecting the exist-
ing code.

Our example that illustrates the extension is to make a comparison between the
numerical solutions for various schemes (� values) and the exact solution:

Wait a minute!
Look at the flat program in Sect. 5.1.2, and try to imagine which edits that are
required to solve this new problem.

With the solver function at hand, we can simply create a function with a loop
over theta values and add the necessary plot statements:

5.1 Implementations with Functions and Modules 137

def experiment_compare_schemes():
"""Compare theta=0,1,0.5 in the same plot."""
I = 1; a = 2; T = 4; dt = 0.4
legends = []
for theta in [0, 1, 0.5]:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u, ’--o’)
legends.append(’theta=%g’ % theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

A call to this experiment_compare_schemes function must be placed in the
test block, or you can run the program from IPython instead:

In[1]: from decay import *

In[2]: experiment_compare_schemes()

We do not present how the flat program from Sect. 5.1.3 must be refactored
to produce the desired plots, but simply state that the danger of introducing bugs
is significantly larger than when just writing an additional function in the decay
module.

5.1.9 Documenting Functions andModules

We have already emphasized the importance of documenting functions with a doc
string (see Sect. 5.1.5). Now it is time to show how doc strings should be structured
in order to take advantage of the documentation utilities in the numpy module. The
idea is to follow a convention that in itself makes a good pure text doc string in the
terminal window and at the same time can be translated to beautiful HTML manuals
for the web.

The conventions for numpy style doc strings are well documented2, so here we
just present a basic example that the reader can adopt. Input arguments to a function
are listed under the heading Parameters, while returned values are listed under
Returns. It is a good idea to also add an Examples section on the usage of the
function. More complicated software may have additional sections, see pydoc
numpy.load for an example. The markup language available for doc strings is
Sphinx-extended reStructuredText. The example below shows typical constructs:
1) how inline mathematics is written with the :math: directive, 2) how arguments
to the functions are referred to using single backticks (inline monospace font for
code applies double backticks), and 3) how arguments and return values are listed
with types and explanation.

2 https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

www.dbooks.org

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://www.dbooks.org/

138 5 Scientific Software Engineering

def solver(I, a, T, dt, theta):
"""
Solve :math:‘u’=-au‘ with :math:‘u(0)=I‘ for :math:‘t \in (0,T]‘
with steps of ‘dt‘ and the method implied by ‘theta‘.

Parameters

I: float

Initial condition.
a: float

Parameter in the differential equation.
T: float

Total simulation time.
theta: float, int

Parameter in the numerical scheme. 0 gives
Forward Euler, 1 Backward Euler, and 0.5
the centered Crank-Nicolson scheme.

Returns

‘u‘: array

Solution array.
‘t‘: array

Array with time points corresponding to ‘u‘.

Examples

Solve :math:‘u’ = -\frac{1}{2}u, u(0)=1.5‘
with the Crank-Nicolson method:

>>> u, t = solver(I=1.5, a=0.5, T=9, theta=0.5)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, u)
>>> plt.show()
"""

If you follow such doc string conventions in your software, you can easily produce
nice manuals that meet the standard expected within the Python scientific comput-
ing community.

Sphinx3 requires quite a number of manual steps to prepare a manual, so it is
recommended to use a premade script4 to automate the steps. (By default, the script
generates documentation for all *.py files in the current directory. You need to
do a pip install of sphinx and numpydoc to make the script work.) Figure 5.2
provides an example of what the above doc strings look like when Sphinx has trans-
formed them to HTML.

5.1.10 Logging Intermediate Results

Sometimes one may wish that a simulation program could write out intermediate
results for inspection. This could be accomplished by a (global) verbose variable
and code like

if verbose >= 2:
print ’u[%d]=%g’ % (i, u[i])

3 http://sphinx-doc.org/
4 http://tinyurl.com/ofkw6kc/softeng/make_sphinx_api.py

http://sphinx-doc.org/
http://tinyurl.com/ofkw6kc/softeng/make_sphinx_api.py

5.1 Implementations with Functions and Modules 139

Fig. 5.2 Example on Sphinx API manual in HTML

The professional way to do report intermediate results and problems is, however, to
use a logger. This is an object that writes messages to a log file. The messages are
classified as debug, info, and warning.

Introductory example Here is a simple example using defining a logger, using
Python’s logging module:

import logging
Configure logger
logging.basicConfig(

filename=’myprog.log’, filemode=’w’, level=logging.WARNING,
format=’%(asctime)s - %(levelname)s - %(message)s’,
datefmt=’%m/%d/%Y %I:%M:%S %p’)

Perform logging
logging.info(’Here is some general info.’)
logging.warning(’Here is a warning.’)
logging.debug(’Here is some debugging info.’)
logging.critical(’Dividing by zero!’)
logging.error(’Encountered an error.’)

Running this program gives the following output in the log file myprog.log:

09/26/2015 09:25:10 AM - INFO - Here is some general info.
09/26/2015 09:25:10 AM - WARNING - Here is a warning.
09/26/2015 09:25:10 AM - CRITICAL - Dividing by zero!
09/26/2015 09:25:10 AM - ERROR - Encountered an error.

The logger has different levels of messages, ordered as critical, error, warning,
info, and debug. The level argument to logging.basicConfig sets the level

www.dbooks.org

https://www.dbooks.org/

140 5 Scientific Software Engineering

and thereby determines what the logger will print to the file: all messages at the
specified and lower levels are printed. For example, in the above example we set
the level to be info, and therefore the critical, error, warning, and info messages
were printed, but not the debug message. Setting level to debug (logging.DEBUG)
prints all messages, while level critical prints only the critical messages.

The filemode argument is set to w such that any existing log file is overwritten
(the default is a, which means append new messages to an existing log file, but this
is seldom what you want in mathematical computations).

The messages are preceded by the date and time and the level of the message.
This output is governed by the format argument: asctime is the date and time,
levelname is the name of the message level, and message is the message itself.
Setting format=’%(message)s’ ensures that just the message and nothing more
is printed on each line. The datefmt string specifies the formatting of the date and
time, using the rules of the time.strftime5 function.

Using a logger in our solver function Let us let a logger write out intermediate
results and some debugging results in the solver function. Such messages are
useful for monitoring the simulation and for debugging it, respectively.

def solver_with_logging(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh
logging.debug(’solver: dt=%g, Nt=%g, T=%g’ % (dt, Nt, T))

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

logging.info(’u[%d]=%g’ % (n, u[n]))
logging.debug(’1 - (1-theta)*a*dt: %g, %s’ %

(1-(1-theta)*a*dt,
str(type(1-(1-theta)*a*dt))[7:-2]))

logging.debug(’1 + theta*dt*a: %g, %s’ %
(1 + theta*dt*a,
str(type(1 + theta*dt*a))[7:-2]))

return u, t

The application code that calls solver_with_logging needs to configure the log-
ger. The decay module offers a default configure function:

import logging

def configure_basic_logger():
logging.basicConfig(

filename=’decay.log’, filemode=’w’, level=logging.DEBUG,
format=’%(asctime)s - %(levelname)s - %(message)s’,
datefmt=’%Y.%m.%d %I:%M:%S %p’)

5 https://docs.python.org/2/library/time.html#time.strftime

https://docs.python.org/2/library/time.html#time.strftime

5.1 Implementations with Functions and Modules 141

If the user of a library does not configure a logger or call this configure function,
the library should prevent error messages by declaring a default logger that does
nothing:

import logging
logging.getLogger(’decay’).addHandler(logging.NullHandler())

We can run the new solver function with logging in a shell:

>>> import decay
>>> decay.configure_basic_logger()
>>> u, t = decay.solver_with_logging(I=1, a=0.5, T=10, \

dt=0.5, theta=0.5)

During this execution, each logging message is appended to the log file. Suppose
we add some pause (time.sleep(2)) at each time level such that the execution
takes some time. In another terminal window we can then monitor the evolution of
decay.log and the simulation by the tail -f Unix command:

Terminal> tail -f decay.log
2015.09.26 05:37:41 AM - INFO - u[0]=1
2015.09.26 05:37:41 AM - INFO - u[1]=0.777778
2015.09.26 05:37:41 AM - INFO - u[2]=0.604938
2015.09.26 05:37:41 AM - INFO - u[3]=0.470508
2015.09.26 05:37:41 AM - INFO - u[4]=0.36595
2015.09.26 05:37:41 AM - INFO - u[5]=0.284628

Especially in simulation where each time step demands considerable CPU time
(minutes, hours), it can be handy to monitor such a log file to see the evolution of
the simulation.

If we want to look more closely into the numerator and denominator of the for-
mula for unC1, we can change the logging level to level=logging.DEBUG and get
output in decay.log like

2015.09.26 05:40:01 AM - DEBUG - solver: dt=0.5, Nt=20, T=10
2015.09.26 05:40:01 AM - INFO - u[0]=1
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[1]=0.777778
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[2]=0.604938
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[3]=0.470508
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[4]=0.36595
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float

Logging can be much more sophisticated than shown above. One can, e.g., out-
put critical messages to the screen and all messages to a file. This requires more
code as demonstrated in the Logging Cookbook6.

6 https://docs.python.org/2/howto/logging-cookbook.html

www.dbooks.org

https://docs.python.org/2/howto/logging-cookbook.html
https://www.dbooks.org/

142 5 Scientific Software Engineering

5.2 User Interfaces

It is good programming practice to let programs read input from some user inter-
face, rather than requiring users to edit parameter values in the source code. With
effective user interfaces it becomes easier and safer to apply the code for scien-
tific investigations and in particular to automate large-scale investigations by other
programs (see Sect. 5.6).

Reading input data can be done in many ways. We have to decide on the func-
tionality of the user interface, i.e., how we want to operate the program when
providing input. Thereafter, we use appropriate tools to implement the particular
user interface. There are four basic types of user interface, listed here according to
implementational complexity, from lowest to highest:

1. Questions and answers in the terminal window
2. Command-line arguments
3. Reading data from files
4. Graphical user interfaces (GUIs)

Personal preferences of user interfaces differ substantially, and it is difficult to
present recommendations or pros and cons. Alternatives 2 and 4 are most popular
and will be addressed next. The goal is to make it easy for the user to set physical
and numerical parameters in our decay.py program. However, we use a little toy
program, called prog.py, as introductory example:

delta = 0.5
p = 2
from math import exp
result = delta*exp(-p)
print result

The essential content is that prog.py has two input parameters: delta and p.
A user interface will replace the first two assignments to delta and p.

5.2.1 Command-Line Arguments

The command-line arguments are all the words that appear on the command line
after the program name. Running a program prog.py as python prog.py arg1
arg2 means that there are two command-line arguments (separated by white
space): arg1 and arg2. Python stores all command-line arguments in a special list
sys.argv. (The name argv stems from the C language and stands for “argument
values”. In C there is also an integer variable called argc reflecting the number of
arguments, or “argument counter”. A lot of programming languages have adopted
the variable name argv for the command-line arguments.) Here is an example
on a program what_is_sys_argv.py that can show us what the command-line
arguments are

import sys
print sys.argv

5.2 User Interfaces 143

A sample run goes like

Terminal

Terminal> python what_is_sys_argv.py 5.0 ’two words’ -1E+4
[’what_is_sys_argv.py’, ’5.0’, ’two words’, ’-1E+4’]

We make two observations:

� sys.argv[0] is the name of the program, and the sublist sys.argv[1:] con-
tains all the command-line arguments.

� Each command-line argument is available as a string. A conversion to float is
necessary if we want to compute with the numbers 5.0 and 104.

There are, in principle, two ways of programming with command-line arguments in
Python:

� Positional arguments: Decide upon a sequence of parameters on the command
line and read their values directly from the sys.argv[1:] list.

� Option-value pairs: Use –option value on the command line to replace
the default value of an input parameter option by value (and utilize the
argparse.ArgumentParser tool for implementation).

Suppose we want to run some program prog.py with specification of two param-
eters p and delta on the command line. With positional command-line arguments
we write

Terminal

Terminal> python prog.py 2 0.5

and must know that the first argument 2 represents p and the next 0.5 is the value
of delta. With option-value pairs we can run

Terminal

Terminal> python prog.py --delta 0.5 --p 2

Now, both p and delta are supposed to have default values in the program, so
we need to specify only the parameter that is to be changed from its default value,
e.g.,

Terminal

Terminal> python prog.py --p 2 # p=2, default delta
Terminal> python prog.py --delta 0.7 # delta-0.7, default a
Terminal> python prog.py # default a and delta

How do we extend the prog.py code for positional arguments and option-value
pairs? Positional arguments require very simple code:

www.dbooks.org

https://www.dbooks.org/

144 5 Scientific Software Engineering

import sys
p = float(sys.argv[1])
delta = float(sys.argv[2])

from math import exp
result = delta*exp(-p)
print result

If the user forgets to supply two command-line arguments, Python will raise an
IndexError exception and produce a long error message. To avoid that, we should
use a try-except construction:

import sys
try:

p = float(sys.argv[1])
delta = float(sys.argv[2])

except IndexError:
print ’Usage: %s p delta’ % sys.argv[0]
sys.exit(1)

from math import exp
result = delta*exp(-p)
print result

Using sys.exit(1) aborts the program. The value 1 (actually any value different
from 0) notifies the operating system that the program failed.

Command-line arguments are strings!
Note that all elements in sys.argv are string objects. If the values are used in
mathematical computations, we need to explicitly convert the strings to numbers.

Option-value pairs requires more programming and is actually better explained
in a more comprehensive example below. Minimal code for our prog.py program
reads

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--p’, default=1.0)
parser.add_argument(’--delta’, default=0.1)

args = parser.parse_args()
p = args.p
delta = args.delta

from math import exp
result = delta*exp(-p)
print result

Because the default values of delta and p are float numbers, the args.delta and
args.p variables are automatically of type float.

Our next task is to use these basic code constructs to equip our decay.pymodule
with command-line interfaces.

5.2 User Interfaces 145

5.2.2 Positional Command-Line Arguments

For our decay.py module file, we want to include functionality such that we can
read I , a, T , � , and a range of �t values from the command line. A plot is then to be
made, comparing the different numerical solutions for different �t values against
the exact solution. The technical details of getting the command-line information
into the program is covered in the next two sections.

The simplest way of reading the input parameters is to decide on their sequence
on the command line and just index the sys.argv list accordingly. Say the se-
quence of input data for some functionality in decay.py is I , a, T , � followed by
an arbitrary number of �t values. This code extracts these positional command-line
arguments:

def read_command_line_positional():
if len(sys.argv) < 6:

print ’Usage: %s I a T on/off BE/FE/CN dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
theta = float(sys.argv[4])
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, T, theta, dt_values

Note that we may use a try-except construction instead of the if test.
A run like

Terminal

Terminal> python decay.py 1 0.5 4 0.5 1.5 0.75 0.1

results in

sys.argv = [’decay.py’, ’1’, ’0.5’, ’4’, ’0.5’, ’1.5’, ’0.75’, ’0.1’]

and consequently the assignments I=1.0, a=0.5, T=4.0, thet=0.5, and
dt_values = [1.5, 0.75, 0.1].

Instead of specifying the � value, we could be a bit more sophisticated and let the
user write the name of the scheme: BE for Backward Euler, FE for Forward Euler,
and CN for Crank–Nicolson. Then we must map this string to the proper � value, an
operation elegantly done by a dictionary:

scheme = sys.argv[4]
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
if scheme in scheme2theta:

theta = scheme2theta[scheme]
else:

print ’Invalid scheme name:’, scheme; sys.exit(1)

www.dbooks.org

https://www.dbooks.org/

146 5 Scientific Software Engineering

Now we can do

Terminal

Terminal> python decay.py 1 0.5 4 CN 1.5 0.75 0.1

and get ‘theta=0.5‘in the code.

5.2.3 Option-Value Pairs on the Command Line

Now we want to specify option-value pairs on the command line, using –I for I (I),
–a for a (a), –T for T (T), –scheme for the scheme name (BE, FE, CN), and –dt for
the sequence of dt (�t) values. Each parameter must have a sensible default value
so that we specify the option on the command line only when the default value is
not suitable. Here is a typical run:

Terminal

Terminal> python decay.py --I 2.5 --dt 0.1 0.2 0.01 --a 0.4

Observe the major advantage over positional command-line arguments: the input
is much easier to read and much easier to write. With positional arguments it is easy
to mess up the sequence of the input parameters and quite challenging to detect
errors too, unless there are just a couple of arguments.

Python’s ArgumentParser tool in the argparse module makes it easy to cre-
ate a professional command-line interface to any program. The documentation
of ArgumentParser7 demonstrates its versatile applications, so we shall here
just list an example containing the most basic features. It always pays off to use
ArgumentParser rather than trying to manually inspect and interpret option-value
pairs in sys.argv!

The use of ArgumentParser typically involves three steps:

import argparse
parser = argparse.ArgumentParser()

Step 1: add arguments
parser.add_argument(’--option_name’, ...)

Step 2: interpret the command line
args = parser.parse_args()

Step 3: extract values
value = args.option_name

7 http://docs.python.org/library/argparse.html

http://docs.python.org/library/argparse.html

5.2 User Interfaces 147

A function for setting up all the options is handy:

def define_command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(

’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

parser.add_argument(
’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument
method8. Alternative options, like the short –I and the more explaining version
--initial_condition can be defined. Other arguments are type for the Python
object type, a default value, and a help string, which gets printed if the command-
line argument -h or –help is included. The metavar argument specifies the value
associated with the option when the help string is printed. For example, the option
for I has this help output:

Terminal

Terminal> python decay.py -h
...
--I I, --initial_condition I

initial condition, u(0)
...

The structure of this output is

--I metavar, --initial_condition metavar
help-string

Finally, the –dt option demonstrates how to allow for more than one value (sep-
arated by blanks) through the nargs=’+’ keyword argument. After the command
line is parsed, we get an object where the values of the options are stored as at-
tributes. The attribute name is specified by the dist keyword argument, which for
the –dt option is dt_values. Without the dest argument, the value of an option
–opt is stored as the attribute opt.

8 We use the expression method here, because parser is a class variable and functions in classes
are known as methods in Python and many other languages. Readers not familiar with class
programming can just substitute this use of method by function.

www.dbooks.org

https://www.dbooks.org/

148 5 Scientific Software Engineering

The code below demonstrates how to read the command line and extract the
values for each option:

def read_command_line_argparse():
parser = define_command_line_options()
args = parser.parse_args()
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
data = (args.I, args.a, args.T, scheme2theta[args.scheme],

args.dt_values)
return data

As seen, the values of the command-line options are available as attributes in args:
args.opt holds the value of option –opt, unless we used the dest argument (as
for --dt_values) for specifying the attribute name. The args.opt attribute has
the object type specified by type (str by default).

The making of the plot is not dependent on whether we read data from the com-
mand line as positional arguments or option-value pairs:

def experiment_compare_dt(option_value_pairs=False):
I, a, T, theta, dt_values = \

read_command_line_argparse() if option_value_pairs else \
read_command_line_positional()

legends = []
for dt in dt_values:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u)
legends.append(’dt=%g’ % dt)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t_e, u_e, ’--’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plt.title(’theta=%g’ % theta)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

5.2.4 Creating a Graphical Web User Interface

The Python package Parampool9 can be used to automatically generate a web-based
graphical user interface (GUI) for our simulation program. Although the program-
ming technique dramatically simplifies the efforts to create a GUI, the forthcoming
material on equipping our decay module with a GUI is quite technical and of sig-
nificantly less importance than knowing how to make a command-line interface.

Making a compute function The first step is to identify a function that performs
the computations and that takes the necessary input variables as arguments. This is
called the compute function in Parampool terminology. The purpose of this function
is to take values of I , a, T together with a sequence of �t values and a sequence
of � and plot the numerical against the exact solution for each pair of .�; �t/. The
plots can be arranged as a table with the columns being scheme type (� value) and

9 https://github.com/hplgit/parampool

https://github.com/hplgit/parampool

5.2 User Interfaces 149

Fig. 5.3 Automatically generated graphical web interface

the rows reflecting the discretization parameter (�t value). Figure 5.3 displays what
the graphical web interface may look like after results are computed (there are 3
3

plots in the GUI, but only 2
 2 are visible in the figure).
To tell Parampool what type of input data we have, we assign default values of

the right type to all arguments in the compute function, here called main_GUI:

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for displaying the
result in a web page. Here we want to show a table of plots. Assume for now that
the HTML code for one plot and the value of the norm of the error can be computed
by some other function compute4web. The main_GUI function can then loop over
�t and � values and put each plot in an HTML table. Appropriate code goes like

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

Build HTML code for web page. Arrange plots in columns
corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
html_text = ’<table>\n’
for dt in dt_values:

html_text += ’<tr>\n’
for theta in theta_values:

E, html = compute4web(I, a, T, dt, theta)
html_text += """

www.dbooks.org

https://www.dbooks.org/

150 5 Scientific Software Engineering

<td>
<center>%s, dt=%g, error: %.3E</center>

%s
</td>
""" % (theta2name[theta], dt, E, html)

html_text += ’</tr>\n’
html_text += ’</table>\n’
return html_text

Making one plot is done in compute4web. The statements should be straightfor-
ward from earlier examples, but there is one new feature: we use a tool in Parampool
to embed the PNG code for a plot file directly in an HTML image tag. The details
are hidden from the programmer, who can just rely on relevant HTML code in the
string html_text. The function looks like

def compute4web(I, a, T, dt, theta=0.5):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions in a PNG
plot whose data are embedded in an HTML image tag.
"""
u, t = solver(I, a, T, dt, theta)
u_e = u_exact(t, I, a)
e = u_e - u
E = np.sqrt(dt*np.sum(e**2))

plt.figure()
t_e = np.linspace(0, T, 1001) # fine mesh for u_e
u_e = u_exact(t_e, I, a)
plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical’, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=%g, dt=%g’ % (theta, dt))
Save plot to HTML img tag with PNG code as embedded data
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)

return E, html_text

Generating the user interface The web GUI is automatically generated by the
following code, placed in the file decay_GUI_generate.py10.

from parampool.generator.flask import generate
from decay import main_GUI
generate(main_GUI,

filename_controller=’decay_GUI_controller.py’,
filename_template=’decay_GUI_view.py’,
filename_model=’decay_GUI_model.py’)

Running the decay_GUI_generate.py program results in three new files whose
names are specified in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input data in
the web interface,

10 http://tinyurl.com/ofkw6kc/softeng/decay_GUI_generate.py

http://tinyurl.com/ofkw6kc/softeng/decay_GUI_generate.py

5.3 Tests for Verifying Implementations 151

2. templates/decay_GUI_views.py defines the layout of the web page,
3. decay_GUI_controller.py runs the web application.

We only need to run the last program, and there is no need to look into these files.

Running the web application The web GUI is started by

Terminal

Terminal> python decay_GUI_controller.py

Open a web browser at the location 127.0.0.1:5000. Input fields for I, a, T,
dt_values, and theta_values are presented. Figure 5.3 shows a part of the re-
sulting page if we run with the default values for the input parameters. With the
techniques demonstrated here, one can easily create a tailored web GUI for a par-
ticular type of application and use it to interactively explore physical and numerical
effects.

5.3 Tests for Verifying Implementations

Any module with functions should have a set of tests that can check the correctness
of the implementations. There exists well-established procedures and correspond-
ing tools for automating the execution of such tests. These tools allow large test sets
to be run with a one-line command, making it easy to check that the software still
works (as far as the tests can tell!). Here we shall illustrate two important software
testing techniques: doctest and unit testing. The first one is Python specific, while
unit testing is the dominating test technique in the software industry today.

5.3.1 Doctests

A doc string, the first string after the function header, is used to document the pur-
pose of functions and their arguments (see Sect. 5.1.5). Very often it is instructive
to include an example in the doc string on how to use the function. Interactive
examples in the Python shell are most illustrative as we can see the output result-
ing from the statements and expressions. For example, in the solver function, we
can include an example on calling this function and printing the computed u and t
arrays:

def solver(I, a, T, dt, theta):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=1.5, dt=0.5, theta=0.5)
>>> for n in range(len(t)):
... print ’t=%.1f, u=%.14f’ % (t[n], u[n])
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923

www.dbooks.org

https://www.dbooks.org/

152 5 Scientific Software Engineering

t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
"""
...

When such interactive demonstrations are inserted in doc strings, Python’s
doctest11 module can be used to automate running all commands in interactive
sessions and compare new output with the output appearing in the doc string. All
we have to do in the current example is to run the module file decay.py with

Terminal> python -m doctest decay.py

This command imports the doctest module, which runs all doctests found in the
file and reports discrepancies between expected and computed output. Alterna-
tively, the test block in a module may run all doctests by

if __name__ == ’__main__’:
import doctest
doctest.testmod()

Doctests can also be embedded in nose/pytest unit tests as explained in the next
section.

Doctests prevent command-line arguments!
No additional command-line argument is allowed when running doctests. If your
program relies on command-line input, make sure the doctests can be run without
such input on the command line.

However, you can simulate command-line input by filling sys.argv with
values, e.g.,

import sys; sys.argv = ’--I 1.0 --a 5’.split()

The execution command above will report any problem if a test fails. As an
illustration, let us alter the u value at t=1.5 in the output of the doctest by replacing
the last digit 8 by 7. This edit triggers a report:

Terminal

Terminal> python -m doctest decay.py
**
File "decay.py", line ...
Failed example:

for n in range(len(t)):
print ’t=%.1f, u=%.14f’ % (t[n], u[n])

Expected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948

Got:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923

11 http://docs.python.org/library/doctest.html

http://docs.python.org/library/doctest.html

5.3 Tests for Verifying Implementations 153

t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761947

Pay attention to the number of digits in doctest results!
Note that in the output of t and u we write u with 14 digits. Writing all 16
digits is not a good idea: if the tests are run on different hardware, round-off
errors might be different, and the doctest module detects that the numbers are
not precisely the same and reports failures. In the present application, where
0 < u.t/ � 0:8, we expect round-off errors to be of size 10�16, so comparing 15
digits would probably be reliable, but we compare 14 to be on the safe side. On
the other hand, comparing a small number of digits may hide software errors.

Doctests are highly encouraged as they do two things: 1) demonstrate how
a function is used and 2) test that the function works.

5.3.2 Unit Tests and Test Functions

The unit testing technique consists of identifying smaller units of code and writ-
ing one or more tests for each unit. One unit can typically be a function. Each
test should, ideally, not depend on the outcome of other tests. The recommended
practice is actually to design and write the unit tests first and then implement the
functions!

In scientific computing it is not always obvious how to best perform unit testing.
The units are naturally larger than in non-scientific software. Very often the solution
procedure of a mathematical problem identifies a unit, such as our solver function.

Two Python test frameworks: nose and pytest Python offers two very easy-to-
use software frameworks for implementing unit tests: nose and pytest. These work
(almost) in the same way, but our recommendation is to go for pytest.

Test function requirements For a test to qualify as a test function in nose or pytest,
three rules must be followed:

1. The function name must start with test_.
2. Function arguments are not allowed.
3. An AssertionError exception must be raised if the test fails.

A specific example might be illustrative before proceeding. We have the following
function that we want to test:

def double(n):
return 2*n

www.dbooks.org

https://www.dbooks.org/

154 5 Scientific Software Engineering

The corresponding test function could, in principle, have been written as

def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
if expected != computed:

raise AssertionError

The last two lines, however, are never written like this in test functions. Instead,
Python’s assert statement is used: assert success, msg, where success is
a boolean variable, which is False if the test fails, and msg is an optional message
string that is printed when the test fails. A better version of the test function is
therefore

def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
msg = ’expected %g, computed %g’ % (expected, computed)
success = expected == computed
assert success, msg

Comparison of real numbers Because of the finite precision arithmetics on
a computer, which gives rise to round-off errors, the == operator is not suitable for
checking whether two real numbers are equal. Obviously, this principle also applies
to tests in test functions. We must therefore replace a == b by a comparison based
on a tolerance tol: abs(a-b) < tol. The next example illustrates the problem
and its solution.

Here is a slightly different function that we want to test:

def third(x):
return x/3.

We write a test function where the expected result is computed as 1
3
x rather than

x=3:

def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.0)*x
computed = third(x)
success = expected == computed
assert success

This test_third function executes silently, i.e., no failure, until x becomes 0.15.
Then round-off errors make the == comparison False. In fact, seven of the x values
above face this problem. The solution is to compare expected and computed with
a small tolerance:

5.3 Tests for Verifying Implementations 155

def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.)*x
computed = third(x)
tol = 1E-15
success = abs(expected - computed) < tol
assert success

Always compare real numbers with a tolerance!
Real numbers should never be compared with the == operator, but always with
the absolute value of the difference and a tolerance. So, replace a == b, if a
and/or b is float, by

tol = 1E-14
abs(a - b) < tol

The suitable size of tol depends on the size of a and b (see Problem 5.5). Unless
a and b are around unity in size, one should use a relative difference:

tol = 1E-14
abs((a - b)/a) < tol

Special assert functions from nose Test frameworks often contain more tailored
assert functions that can be called instead of using the assert statement. For ex-
ample, comparing two objects within a tolerance, as in the present case, can be done
by the assert_almost_equal from the nose framework:

import nose.tools as nt

def test_third():
x = 0.15
expected = (1/3.)*x
computed = third(x)
nt.assert_almost_equal(

expected, computed, delta=1E-15,
msg=’diff=%.17E’ % (expected - computed))

Whether to use the plain assert statement with a comparison based on a tol-
erance or to use the ready-made function assert_almost_equal depends on the
programmer’s preference. The examples used in the documentation of the pytest
framework stick to the plain assert statement.

Locating test functions Test functions can reside in a module together with the
functions they are supposed to verify, or the test functions can be collected in sepa-
rate files having names starting with test. Actually, nose and pytest can recursively
run all test functions in all test*.py files in the current directory, as well as in all
subdirectories!

www.dbooks.org

https://www.dbooks.org/

156 5 Scientific Software Engineering

The decay.py12 module file features test functions in the module, but we
could equally well have made a subdirectory tests and put the test functions in
tests/test_decay.py13.

Running tests To run all test functions in the file decay.py do

Terminal

Terminal> nosetests -s -v decay.py
Terminal> py.test -s -v decay.py

The -s option ensures that output from the test functions is printed in the termi-
nal window, while -v prints the outcome of each individual test function.

Alternatively, if the test functions are located in some separate test*.py files,
we can just write

Terminal

Terminal> py.test -s -v

to recursively run all test functions in the current directory tree. The corresponding

Terminal

Terminal> nosetests -s -v

command does the same, but requires subdirectory names to start with test or end
with _test or _tests (which is a good habit anyway). An example of a tests
directory with a test*.py file is found in src/softeng/tests14.

Embedding doctests in a test function Doctests can also be executed from
nose/pytest unit tests. Here is an example of a file test_decay_doctest.py15

where we in the test block run all the doctests in the imported module decay, but
we also include a local test function that does the same:

import sys, os
sys.path.insert(0, os.pardir)
import decay
import doctest

def test_decay_module_with_doctest():
"""Doctest embedded in a nose/pytest unit test."""
Test all functions with doctest in module decay
failure_count, test_count = doctest.testmod(m=decay)
assert failure_count == 0

if __name__ == ’__main__’:
Run all functions with doctests in this module
failure_count, test_count = doctest.testmod(m=decay)

12 http://tinyurl.com/ofkw6kc/softeng/decay.py
13 http://tinyurl.com/ofkw6kc/softeng/tests/test_decay.py
14 http://tinyurl.com/ofkw6kc/softeng/tests
15 http://tinyurl.com/ofkw6kc/softeng/tests/test_decay_doctest.py

http://tinyurl.com/ofkw6kc/softeng/decay.py
http://tinyurl.com/ofkw6kc/softeng/tests/test_decay.py
http://tinyurl.com/ofkw6kc/softeng/tests
http://tinyurl.com/ofkw6kc/softeng/tests/test_decay_doctest.py

5.3 Tests for Verifying Implementations 157

Running this file as a program from the command line triggers the doctest.
testmod call in the test block, while applying py.test or nosetests to the file
triggers an import of the file and execution of the test function
test_decay_modue_with_doctest.

Installing nose and pytest With pip available, it is trivial to install nose and/or
pytest: sudo pip install nose and sudo pip install pytest.

5.3.3 Test Function for the Solver

Finding good test problems for verifying the implementation of numerical methods
is a topic on its own. The challenge is that we very seldom know what the numerical
errors are. For the present model problem (5.1)–(5.2) solved by (5.3) one can,
fortunately, derive a formula for the numerical approximation:

un D I

�
1 � .1 � �/a�t

1C �a�t

�n

:

Then we know that the implementation should produce numbers that agree with
this formula to machine precision. The formula for un is known as an exact discrete
solution of the problem and can be coded as

def u_discrete_exact(n, I, a, theta, dt):
"""Return exact discrete solution of the numerical schemes."""
dt = float(dt) # avoid integer division
A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*A**n

A test function can evaluate this solution on a time mesh and check that the u values
produced by the solver function do not deviate with more than a small tolerance:

def test_u_discrete_exact():
"""Check that solver reproduces the exact discr. sol."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

Evaluate exact discrete solution on the mesh
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])

Find largest deviation
diff = np.abs(u_de - u).max()
tol = 1E-14
success = diff < tol
assert success

Among important things to consider when constructing test functions is testing
the effect of wrong input to the function being tested. In our solver function, for
example, integer values of a, �t , and � may cause unintended integer division. We

www.dbooks.org

https://www.dbooks.org/

158 5 Scientific Software Engineering

should therefore add a test to make sure our solver function does not fall into this
potential trap:

def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a = 1; I = 1; dt = 2
Nt = 4
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max()
assert diff < 1E-14

In more complicated problems where there is no exact solution of the numerical
problem solved by the software, one must use the method of manufactured solu-
tions, compute convergence rates for a series of �t values, and check that the rates
converges to the expected ones (from theory). This type of testing is fully explained
in Sect. 3.1.6.

5.3.4 Test Function for Reading Positional Command-Line
Arguments

The function read_command_line_positional extracts numbers from the com-
mand line. To test it, we must decide on a set of values for the input data, fill
sys.argv accordingly, and check that we get the expected values:

def test_read_command_line_positional():
Decide on a data set of input parameters
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
Expected return from read_command_line_positional
expected = [I, a, T, theta, dt_values]
Construct corresponding sys.argv array
sys.argv = [sys.argv[0], str(I), str(a), str(T), ’CN’] + \

[str(dt) for dt in dt_values]
computed = read_command_line_positional()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Note that sys.argv[0] is always the program name and that we have to copy that
string from the original sys.argv array to the new one we construct in the test
function. (Actually, this test function destroys the original sys.argv that Python
fetched from the command line.)

Any numerical code writer should always be skeptical to the use of the exact
equality operator == in test functions, since round-off errors often come into play.
Here, however, we set some real values, convert them to strings and convert back
again to real numbers (of the same precision). This string-number conversion does
not involve any finite precision arithmetics effects so we can safely use == in tests.
Note also that the last element in expected and computed is the list dt_values,
and == works for comparing two lists as well.

5.3 Tests for Verifying Implementations 159

5.3.5 Test Function for Reading Option-Value Pairs

The function read_command_line_argparse can be verified with a test function
that has the same setup as test_read_command_line_positional above. How-
ever, the construction of the command line is a bit more complicated. We find it
convenient to construct the line as a string and then split the line into words to get
the desired list sys.argv:

def test_read_command_line_argparse():
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
Expected return from read_command_line_argparse
expected = [I, a, T, theta, dt_values]
Construct corresponding sys.argv array
command_line = ’%s --a %s --I %s --T %s --scheme CN --dt ’ % \

(sys.argv[0], a, I, T)
command_line += ’ ’.join([str(dt) for dt in dt_values])
sys.argv = command_line.split()
computed = read_command_line_argparse()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Recall that the Python function zip enables iteration over several lists, tuples, or
arrays at the same time.

Let silent test functions speak up during development!
When you develop test functions in a module, it is common to use IPython for
interactive experimentation:

In[1]: import decay

In[2]: decay.test_read_command_line_argparse()

Note that a working test function is completely silent! Many find it psycho-
logically annoying to convince themselves that a completely silent function is
doing the right things. It can therefore, during development of a test function, be
convenient to insert print statements in the function to monitor that the function
body is indeed executed. For example, one can print the expected and computed
values in the terminal window:

def test_read_command_line_argparse():
...
for expected_arg, computed_arg in zip(expected, computed):

print expected_arg, computed_arg
assert expected_arg == computed_arg

After performing this edit, we want to run the test again, but in IPython the
module must first be reloaded (reimported):

www.dbooks.org

https://www.dbooks.org/

160 5 Scientific Software Engineering

In[3]: reload(decay) # force new import

In[2]: decay.test_read_command_line_argparse()
1.6 1.6
1.8 1.8
2.2 2.2
0.5 0.5
[0.1, 0.2, 0.05] [0.1, 0.2, 0.05]

Now we clearly see the objects that are compared.

5.3.6 Classical Class-Based Unit Testing

The test functions written for the nose and pytest frameworks are very straightfor-
ward and to the point, with no framework-required boilerplate code. We just write
the statements we need to get the computations and comparisons done, before ap-
plying the required assert.

The classical way of implementing unit tests (which derives from the JUnit
object-oriented tool in Java) leads to much more comprehensive implementations
with a lot of boilerplate code. Python comes with a built-in module unittest for
doing this type of classical unit tests. Although nose or pytest are much more con-
venient to use than unittest, class-based unit testing in the style of unittest
has a very strong position in computer science and is so widespread in the software
industry that even computational scientists should have an idea how such unit test
code is written. A short demo of unittest is therefore included next. (Readers
who are not familiar with object-oriented programming in Python may find the text
hard to understand, but one can safely jump to the next section.)

Suppose we have a function double(x) in a module file mymod.py:

def double(x):
return 2*x

Unit testing with the aid of the unittest module consists of writing a file
test_mymod.py for testing the functions in mymod.py. The individual tests must
be methods with names starting with test_ in a class derived from class TestCase
in unittest. With one test method for the function double, the test_mymod.py
file becomes

import unittest
import mymod

class TestMyCode(unittest.TestCase):
def test_double(self):

x = 4
expected = 2*x
computed = mymod.double(x)
self.assertEqual(expected, computed)

if __name__ == ’__main__’:
unittest.main()

5.4 Sharing the Software with Other Users 161

The test is run by executing the test file test_mymod.py as a standard Python
program. There is no support in unittest for automatically locating and running
all tests in all test files in a directory tree.

We could use the basic assert statement as we did with nose and pytest
functions, but those who write code based on unittest almost exclusively
use the wide range of built-in assert functions such as assertEqual,
assertNotEqual, assertAlmostEqual, to mention some of them.

Translation of the test functions from the previous sections to unittest means
making a new file test_decay.py file with a test class TestDecay where the
stand-alone functions for nose/pytest now become methods in this class.

import unittest
import decay
import numpy as np

def u_discrete_exact(n, I, a, theta, dt):
...

class TestDecay(unittest.TestCase):

def test_exact_discrete_solution(self):
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = decay.solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
Evaluate exact discrete solution on the mesh
u_de = np.array([u_discrete_exact(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max() # largest deviation
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_potential_integer_division(self):
...
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_read_command_line_positional(self):
...
for expected_arg, computed_arg in zip(expected, computed):

self.assertEqual(expected_arg, computed_arg)

def test_read_command_line_argparse(self):
...

if __name__ == ’__main__’:
unittest.main()

5.4 Sharing the Software with Other Users

As soon as you have some working software that you intend to share with oth-
ers, you should package your software in a standard way such that users can easily
download your software, install it, improve it, and ask you to approve their im-
provements in new versions of the software. During recent years, the software
development community has established quite firm tools and rules for how all this
is done. The following subsections cover three steps in sharing software:

1. Organizing the software for public distribution.
2. Uploading the software to a cloud service (here GitHub).
3. Downloading and installing the software.

www.dbooks.org

https://www.dbooks.org/

162 5 Scientific Software Engineering

5.4.1 Organizing the Software Directory Tree

We start with organizing our software as a directory tree. Our software consists of
one module file, decay.py, and possibly some unit tests in a separate file located
in a directory tests.

The decay.py can be used as a module or as a program. For distribution to other
users who install the program decay.py in system directories, we need to insert the
following line at the top of the file:

#!/usr/bin/env python

This line makes it possible to write just the filename and get the file executed by
the python program (or more precisely, the first python program found in the
directories in the PATH environment variable).

Distributing just a module file Let us start out with the minimum solution alter-
native: distributing just the decay.py file. Then the software is just one file and all
we need is a directory with this file. This directory will also contain an installation
script setup.py and a README file telling what the software is about, the author’s
email address, a URL for downloading the software, and other useful information.

The setup.py file can be as short as

from distutils.core import setup
setup(name=’decay’,

version=’0.1’,
py_modules=[’decay’],
scripts=[’decay.py’],
)

The py_modules argument specifies a list of modules to be installed, while
scripts specifies stand-alone programs. Our decay.py can be used either as
a module or as an executable program, so we want users to have both possibilities.

Distributing a package If the software consists of more files than one or two mod-
ules, one should make a Python package out of it. In our case we make a package
decay containing one module, also called decay.

To make a package decay, create a directory decay and an empty file in it with
name __init__.py. A setup.py script must now specify the directory name of
the package and also an executable program (scripts=) in case we want to run
decay.py as a stand-alone application:

from distutils.core import setup
import os

setup(name=’decay’,
version=’0.1’,
author=’Hans Petter Langtangen’,
author_email=’hpl@simula.no’,
url=’https://github.com/hplgit/decay-package/’,
packages=[’decay’],
scripts=[os.path.join(’decay’, ’decay.py’)]

)

5.4 Sharing the Software with Other Users 163

We have also added some author and download information. The reader is referred
to the Distutils documentation16 for more information on how to write setup.py
scripts.

Remark about the executable file
The executable program, decay.py, is in the above installation script taken to be
the complete module file decay.py. It would normally be preferred to instead
write a very short script essentially importing decay and running the test block
in decay.py. In this way, we distribute a module and a very short file, say
decay-main.py, as an executable program:

#!/usr/bin/env python
import decay
decay.decay.experiment_compare_dt(True)
decay.decay.plt.show()

In this package example, we move the unit tests out of the decay.py module to
a separate file, test_decay.py, and place this file in a directory tests. Then the
nosetests and py.test programs will automatically find and execute the tests.

The complete directory structure reads

Terminal

Terminal> /bin/ls -R
.:
decay README setup.py

./decay:
decay.py __init__.py tests

./decay/tests:
test_decay.py

5.4.2 Publishing the Software at GitHub

The leading site today for publishing open source software projects is GitHub at
http://github.com, provided you want your software to be open to the world. With
a paid GitHub account, you can have private projects too.

Sign up for a GitHub account if you do not already have one. Go to your account
settings and provide an SSH key (typically the file ~/.ssh/id_rsa.pub) such that
you can communicate with GitHub without being prompted for your password. All
communication between your computer and GitHub goes via the version control
system Git. This may at first sight look tedious, but this is the way professionals
work with software today. With Git you have full control of the history of your
files, i.e., “who did what when”. The technology makes Git superior to simpler
alternatives like Dropbox and Google Drive, especially when you collaborate with
others. There is a reason why Git has gained the position it has, and there is no
reason why you should not adopt this tool.

16 https://docs.python.org/2/distutils/setupscript.html

www.dbooks.org

http://github.com
https://docs.python.org/2/distutils/setupscript.html
https://www.dbooks.org/

164 5 Scientific Software Engineering

To create a new project, click on New repository on the main page and fill out
a project name. Click on the check button Initialize this repository with a README,
and click on Create repository. The next step is to clone (copy) the GitHub repo
(short for repository) to your own computer(s) and fill it with files. The typical
clone command is

Terminal

Terminal> git clone git://github.com:username/projname.git

where username is your GitHub username and projname is the name of the repo
(project). The result of git clone is a directory projname. Go to this directory
and add files. As soon as the repo directory is populated with files, run

Terminal

Terminal> git add .
Terminal> git commit -am ’First registration of project files’
Terminal> git push origin master

The above git commands look cryptic, but these commands plus 2–3 more are
the essence of what you need in your daily work with files in small or big software
projects. I strongly encourage you to learn more about version control systems and
project hosting sites17 [6].

Your project files are now stored in the cloud at https://github.com/username/
projname. Anyone can get the software by the listed git clone command you
used above, or by clicking on the links for zip and tar files.

Every time you update the project files, you need to register the update at GitHub
by

Terminal

Terminal> git commit -am ’Description of the changes you made...’
Terminal> git push origin master

The files at GitHub are now synchronized with your local ones. Similarly, every
time you start working on files in this project, make sure you have the latest version:
git pull origin master.

You are recommended to read a quick intro18 that makes you up and going with
this style of professional work. And you should put all your writings and program-
ming projects in repositories in the cloud!

5.4.3 Downloading and Installing the Software

Users of your software go to the Git repo at github.com and clone the repository.
One can use either SSH or HTTP for communication. Most users will use the latter,
typically

17 http://hplgit.github.io/teamods/bitgit/html/
18 http://hplgit.github.io/teamods/bitgit/html/

https://github.com/username/projname
https://github.com/username/projname
http://hplgit.github.io/teamods/bitgit/html/
http://hplgit.github.io/teamods/bitgit/html/

5.4 Sharing the Software with Other Users 165

Terminal

Terminal> git clone https://github.com/username/projname.git

The result is a directory projname with the files in the repo.

Installing just a module file The software package is in the case above a directory
decay with three files

Terminal

Terminal> ls decay
README decay.py setup.py

To install the decay.py file, a user just runs setup.py:

Terminal

Terminal> sudo python setup.py install

This command will install the software in system directories, so the user needs
to run the command as root on Unix systems (therefore the command starts with
sudo). The user can now import the module by import decay and run the program
by

Terminal

Terminal> decay.py

A user can easily install the software on her personal account if a system-wide in-
stallation is not desirable. We refer to the installation documentation19 for the many
arguments that can be given to setup.py. Note that if the software is installed on
a personal account, the PATH and PYTHONPATH environment variables must contain
the relevant directories.

Our setup.py file specifies a module decay to be installed as well as a pro-
gram decay.py. Modules are typically installed in some lib directory on the
computer system, e.g., /usr/local/lib/python2.7/dist-packages, while ex-
ecutable programs go to /usr/local/bin.

Installing a package When the software is organized as a Python package, the
installation is done by running setup.py exactly as explained above, but the use of
a module decay in a package decay requires the following syntax:

import decay
u, t = decay.decay.solver(...)

That is, the call goes like packagename.modulename.functionname.

19 https://docs.python.org/2/install/index.html#alternate-installation

www.dbooks.org

https://docs.python.org/2/install/index.html#alternate-installation
https://www.dbooks.org/

166 5 Scientific Software Engineering

Package import in __init__.py
One can ease the use of packages by providing a somewhat simpler import like

import decay
u, t = decay.solver(...)

or
from decay import solver
u, t = solver(...)

This is accomplished by putting an import statement in the __init__.py file,
which is always run when doing the package import import decay or from
decay import. The __init__.py file must now contain

from decay import *

Obviously, it is the package developer who decides on such an __init__.py
file or if it should just be empty.

5.5 Classes for Problem and Solution Method

The numerical solution procedure was compactly and conveniently implemented
in a Python function solver in Sect. 5.1.1. In more complicated problems it
might be beneficial to use classes instead of functions only. Here we shall de-
scribe a class-based software design well suited for scientific problems where there
is a mathematical model of some physical phenomenon, and some numerical meth-
ods to solve the equations involved in the model.

We introduce a class Problem to hold the definition of the physical problem,
and a class Solver to hold the data and methods needed to numerically solve the
problem. The forthcoming text will explain the inner workings of these classes and
how they represent an alternative to the solver and experiment_* functions in
the decay module.

Explaining the details of class programming in Python is considered far beyond
the scope of this text. Readers who are unfamiliar with Python class programming
should first consult one of the many electronic Python tutorials or textbooks to come
up to speed with concepts and syntax of Python classes before reading on. The
author has a gentle introduction to class programming for scientific applications in
[8], see Chapter 7 and 9 and Appendix E20. Other useful resources are

� The Python Tutorial: http://docs.python.org/2/tutorial/classes.html
� Wiki book on Python Programming: http://en.wikibooks.org/wiki/Python_

Programming/Classes
� tutorialspoint.com: http://www.tutorialspoint.com/python/python_

classes_objects.htm21

20 http://hplgit.github.io/primer.html/doc/web/index.html
21 http://www.tutorialspoint.com/python/python_classes_objects.htm

http://docs.python.org/2/tutorial/classes.html
http://en.wikibooks.org/wiki/Python_Programming/Classes
http://en.wikibooks.org/wiki/Python_Programming/Classes
http://hplgit.github.io/primer.html/doc/web/index.html
http://www.tutorialspoint.com/python/python_classes_objects.htm

5.5 Classes for Problem and Solution Method 167

5.5.1 The Problem Class

The purpose of the problem class is to store all information about the mathematical
model. This usually means the physical parameters and formulas in the problem.
Looking at our model problem (5.1)–(5.2), the physical data cover I , a, and T .
Since we have an analytical solution of the ODE problem, we may add this solution
in terms of a Python function (or method) to the problem class as well. A possible
problem class is therefore

from numpy import exp

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def u_exact(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

We could in the u_exact method have written self.I*exp(-self.a*t), but us-
ing local variables I and a allows the nicer formula I*exp(-a*t), which looks
much closer to the mathematical expression Ie�at . This is not an important issue
with the current compact formula, but is beneficial in more complicated problems
with longer formulas to obtain the closest possible relationship between code and
mathematics. The coding style in this book is to strip off the self prefix when the
code expresses mathematical formulas.

The class data can be set either as arguments in the constructor or at any time
later, e.g.,

problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5

(Some programmers prefer set and get functions for setting and getting data in
classes, often implemented via properties in Python, but this author considers that
overkill when there are just a few data items in a class.)

It would be convenient if class Problem could also initialize the data from the
command line. To this end, we add a method for defining a set of command-line
options and a method that sets the local attributes equal to what was found on the
command line. The default values associated with the command-line options are
taken as the values provided to the constructor. Class Problem now becomes

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def define_command_line_options(self, parser=None):
"""Return updated (parser) or new ArgumentParser object."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()

www.dbooks.org

https://www.dbooks.org/

168 5 Scientific Software Engineering

parser.add_argument(
’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.I, self.a, self.T = args.I, args.a, args.T

def u_exact(self, t):
"""Return the exact solution u(t)=I*exp(-a*t)."""
I, a = self.I, self.a
return I*exp(-a*t)

Observe that if the user already has an ArgumentParser object it can be supplied,
but if she does not have any, class Problem makes one. Python’s None object is
used to indicate that a variable is not initialized with a proper value.

5.5.2 The Solver Class

The solver class stores parameters related to the numerical solution method and
provides a function solve for solving the problem. For convenience, a problem
object is given to the constructor in a solver object such that the object gets access to
the physical data. In the present example, the numerical solution method involves
the parameters �t and � , which then constitute the data part of the solver class.
We include, as in the problem class, functionality for reading �t and � from the
command line:

class Solver(object):
def __init__(self, problem, dt=0.1, theta=0.5):

self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):
"""Return updated (parser) or new ArgumentParser object."""
parser.add_argument(

’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.dt, self.theta = args.dt, args.theta

5.5 Classes for Problem and Solution Method 169

def solve(self):
self.u, self.t = solver(

self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

def error(self):
"""Return norm of error at the mesh points."""
u_e = self.problem.u_exact(self.t)
e = u_e - self.u
E = np.sqrt(self.dt*np.sum(e**2))
return E

Note that we see no need to repeat the body of the previously developed and tested
solver function. We just call that function from the solve method. In this way,
class Solver is merely a class wrapper of the stand-alone solver function. With
a single object of class Solver we have all the physical and numerical data bundled
together with the numerical solution method.

Combining the objects Eventually we need to show how the classes Problem and
Solver play together. We read parameters from the command line and make a plot
with the numerical and exact solution:

def experiment_classes():
problem = Problem()
solver = Solver(problem)

Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

Solve and plot
solver.solve()
import matplotlib.pyplot as plt
t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = problem.u_exact(t_e)
print ’Error:’, solver.error()

plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)
plt.show()

5.5.3 Improving the Problem and Solver Classes

The previous Problem and Solver classes containing parameters soon get much
repetitive code when the number of parameters increases. Much of this code can be
parameterized and be made more compact. For this purpose, we decide to collect all
parameters in a dictionary, self.prm, with two associated dictionaries self.type
and self.help for holding associated object types and help strings. The reason is
that processing dictionaries is easier than processing a set of individual attributes.

www.dbooks.org

https://www.dbooks.org/

170 5 Scientific Software Engineering

For the specific ODE example we deal with, the three dictionaries in the problem
class are typically

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

Provided a problem or solver class defines these three dictionaries in the con-
structor, we can create a super class Parameters with general code for defining
command-line options and reading them as well as methods for setting and getting
each parameter. A Problem or Solver for a particular mathematical problem can
then inherit most of the needed functionality and code from the Parameters class.
For example,

class Problem(Parameters):
def __init__(self):

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

def u_exact(self, t):
I, a = self[’I a’.split()]
return I*np.exp(-a*t)

class Solver(Parameters):
def __init__(self, problem):

self.problem = problem # class Problem object
self.prm = dict(dt=0.5, theta=0.5)
self.type = dict(dt=float, theta=float)
self.help = dict(dt=’time step value’,

theta=’time discretization parameter’)

def solve(self):
from decay import solver
I, a, T = self.problem[’I a T’.split()]
dt, theta = self[’dt theta’.split()]
self.u, self.t = solver(I, a, T, dt, theta)

By inheritance, these classes can automatically do a lot more when it comes to
reading and assigning parameter values:

problem = Problem()
solver = Solver(problem)

Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

Other syntax for setting/getting parameter values
problem[’T’] = 6
print ’Time step:’, solver[’dt’]

solver.solve()
u, t = solver.u, solver.t

5.5 Classes for Problem and Solution Method 171

A generic class for parameters A simplified version of the parameter class looks
as follows:

class Parameters(object):
def __getitem__(self, name):

"""obj[name] syntax for getting parameters."""
if isinstance(name, (list,tuple)): # get many?

return [self.prm[n] for n in name]
else:

return self.prm[name]

def __setitem__(self, name, value):
"""obj[name] = value syntax for setting a parameter."""
self.prm[name] = value

def define_command_line_options(self, parser=None):
"""Automatic registering of options."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prm:
tp = self.type[name] if name in self.type else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prm:

self.prm[name] = getattr(args, name)

The file decay_oo.py22 contains a slightly more advanced version of class
Parameters where the functions for getting and setting parameters contain tests
for valid parameter names, and raise exceptions with informative messages if any
name is not registered.

We have already sketched the Problem and Solver classes that build on in-
heritance from Parameters. We have also shown how they are used. The only
remaining code is to make the plot, but this code is identical to previous versions
when the numerical solution is available in an object u and the exact one in u_e.

The advantage with the Parameters class is that it scales to problems with
a large number of physical and numerical parameters: as long as the parameters
are defined once via a dictionary, the compact code in class Parameters can han-
dle any collection of parameters of any size. More advanced tools for storing large
collections of parameters in hierarchical structures is provided by the Parampool23

package.

22 http://tinyurl.com/ofkw6kc/softeng/decay_oo.py
23 https://github.com/hplgit/parampool

www.dbooks.org

http://tinyurl.com/ofkw6kc/softeng/decay_oo.py
https://github.com/hplgit/parampool
https://www.dbooks.org/

172 5 Scientific Software Engineering

5.6 Automating Scientific Experiments

Empirical scientific investigations based on running computer programs require
careful design of the experiments and accurate reporting of results. Although there
is a strong tradition to do such investigations manually, the extreme requirements
to scientific accuracy make a program much better suited to conduct the experi-
ments. We shall in this section outline how we can write such programs, often
called scripts, for running other programs and archiving the results.

Scientific investigation
The purpose of the investigations is to explore the quality of numerical solutions
to an ordinary differential equation. More specifically, we solve the initial-value
problem

u0.t/ D �au.t/; u.0/ D I; t 2 .0; T �; (5.4)

by the �-rule:

unC1 D 1 � .1 � �/a�t

1C �a�t
un; u0 D I : (5.5)

This scheme corresponds to well-known methods: � D 0 gives the Forward
Euler (FE) scheme, � D 1 gives the Backward Euler (BE) scheme, and � D 1

2

gives the Crank–Nicolson (CN) or midpoint/centered scheme.
For chosen constants I , a, and T , we run the three schemes for various values

of �t , and present the following results in a report:

1. visual comparison of the numerical and exact solution in a plot for each �t

and � D 0; 1; 1
2
,

2. a table and a plot of the norm of the numerical error versus �t for � D 0; 1; 1
2
.

The report will also document the mathematical details of the problem under
investigation.

5.6.1 Available Software

Appropriate software for implementing (5.5) is available in a program model.py24,
which is run as

Terminal

Terminal> python model.py --I 1.5 --a 0.25 --T 6 --dt 1.25 0.75 0.5

The command-line input corresponds to setting I D 1:5, a D 0:25, T D 6, and
run three values of �t : 1.25, 0.75, ad 0.5.

The results of running this model.py command are text in the terminal window
and a set of plot files. The plot files have names M_D.E, where M denotes the method
(FE, BE, CN for � D 0; 1; 1

2
, respectively), D the time step length (here 1.25, 0.75,

24 http://tinyurl.com/nc4upel/doconce_src/model.py

http://tinyurl.com/nc4upel/doconce_src/model.py

5.6 Automating Scientific Experiments 173

or 0.5), and E is the plot file extension png or pdf. The text output in the terminal
window looks like

0.0 1.25: 5.998E-01
0.0 0.75: 1.926E-01
0.0 0.50: 1.123E-01
0.0 0.10: 1.558E-02
0.5 1.25: 6.231E-02
0.5 0.75: 1.543E-02
0.5 0.50: 7.237E-03
0.5 0.10: 2.469E-04
1.0 1.25: 1.766E-01
1.0 0.75: 8.579E-02
1.0 0.50: 6.884E-02
1.0 0.10: 1.411E-02

The first column is the � value, the next the �t value, and the final column repre-
sents the numerical error E (the norm of discrete error function on the mesh).

5.6.2 The Results WeWant to Produce

The results we need for our investigations are slightly different than what is directly
produced by model.py:

1. We need to collect all the plots for one numerical method (FE, BE, CN) in
a single plot. For example, if 4 �t values are run, the summarizing figure for
the BE method has 2
 2 subplots, with the subplot corresponding to the largest
�t in the upper left corner and the smallest in the bottom right corner.

2. We need to create a table containing �t values in the first column and the nu-
merical error E for � D 0; 0:5; 1 in the next three columns. This table should
be available as a standard CSV file.

3. We need to plot the numerical error E versus �t in a log-log plot.

Consequently, we must write a script that can run model.py as described and pro-
duce the results 1–3 above. This requires combining multiple plot files into one file
and interpreting the output from model.py as data for plotting and file storage.

If the script’s name is exper1.py, we run it with the desired �t values as posi-
tional command-line arguments:

Terminal

Terminal> python exper1.py 0.5 0.25 0.1 0.05

This run will then generate eight plot files: FE.png and FE.pdf summarizing
the plots with the FE method, BE.png and BE.pdf with the BE method, CN.png
and CN.pdf with the CN method, and error.png and error.pdfwith the log-log
plot of the numerical error versus �t . In addition, the table with numerical errors is
written to a file error.csv.

Reproducible and replicable science
A script that automates running our computer experiments will ensure that the
experiments can easily be rerun by anyone in the future, either to confirm the

www.dbooks.org

https://www.dbooks.org/

174 5 Scientific Software Engineering

same results or redo the experiments with other input data. Also, whatever we
did to produce the results is documented in every detail in the script.

A project where anyone can easily repeat the experiments with the same
data is referred to as being replicable, and replicability should be a fundamental
requirement in scientific computing work. Of more scientific interest is repro-
ducibilty, which means that we can also run alternative experiments to arrive at
the same conclusions. This requires more than an automating script.

5.6.3 Combining Plot Files

The script for running experiments needs to combine multiple image files into one.
The montage25 and convert26 programs in the ImageMagick software suite can
be used to combine image files. However, these programs are best suited for PNG
files. For vector plots in PDF format one needs other tools to preserve the quality:
pdftk, pdfnup, and pdfcrop.

Suppose you have four files f1.png, f2.png, f3.png, and f4.png and want to
combine them into a 2
 2 table of subplots in a new file f.png, see Fig. 5.4 for an
example.

Fig. 5.4 Illustration of the Backward Euler method for four time step values

25 http://www.imagemagick.org/script/montage.php
26 http://www.imagemagick.org/script/convert.php

http://www.imagemagick.org/script/montage.php
http://www.imagemagick.org/script/convert.php

5.6 Automating Scientific Experiments 175

The appropriate ImageMagick commands are

Terminal

Terminal> montage -background white -geometry 100% -tile 2x \
f1.png f2.png f3.png f4.png f.png

Terminal> convert -trim f.png f.png
Terminal> convert f.png -transparent white f.png

The first command mounts the four files in one, the next convert command
removes unnecessary surrounding white space, and the final convert command
makes the white background transparent.

High-quality montage of PDF files f1.pdf, f2.pdf, f3.pdf, and f4.pdf into
f.pdf goes like

Terminal

Terminal> pdftk f1.pdf f2.pdf f3.pdf f4.pdf output tmp.pdf
Terminal> pdfnup --nup 2x2 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf f.pdf
Terminal> rm -f tmp.pdf

5.6.4 Running a Program from Python

The script for automating experiments needs to run the model.py program with
appropriate command-line options. Python has several tools for executing an arbi-
trary command in the operating systems. Let cmd be a string containing the desired
command. In the present case study, cmd could be ’python model.py –I 1 –dt
0.5 0.2’. The following code executes cmd and loads the text output into a string
output:

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()

Check if the execution was successful
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

Unsuccessful execution usually makes it meaningless to continue the program, and
therefore we abort the program with sys.exit(1). Any argument different from 0
signifies to the computer’s operating system that our program stopped with a failure.

Programming tip: use _ for dummy variable
Sometimes we need to unpack tuples or lists in separate variables, but we are not
interested in all the variables. One example is

output, error = p.communicate()

www.dbooks.org

https://www.dbooks.org/

176 5 Scientific Software Engineering

but error is of no interest in the example above. One can then use underscore _
as variable name for the dummy (uninteresting) variable(s):

output, _ = p.communicate()

Here is another example where we iterate over a list of three-tuples, but the
interest is limited to the second element in each three-tuple:

for _, value, _ in list_of_three_tuples:
work with value

We need to interpret the contents of the string output and store the data in
an appropriate data structure for further processing. Since the content is basically
a table and will be transformed to a spread sheet format, we let the columns in
the table be represented by lists in the program, and we collect these columns in
a dictionary whose keys are natural column names: dt and the three values of � .
The following code translates the output of cmd (output) to such a dictionary of
lists (errors):

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

5.6.5 The Automating Script

We have now all the core elements in place to write the complete script where we
run model.py for a set of �t values (given as positional command-line arguments),
make the error plot, write the CSV file, and combine plot files as described above.
The complete code is listed below, followed by some explaining comments.

import os, sys, glob
import matplotlib.pyplot as plt

def run_experiments(I=1, a=2, T=5):
The command line must contain dt values
if len(sys.argv) > 1:

dt_values = [float(arg) for arg in sys.argv[1:]]
else:

print ’Usage: %s dt1 dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

Run module file and grab output
cmd = ’python model.py --I %g --a %g --T %g’ % (I, a, T)
dt_values_str = ’ ’.join([str(v) for v in dt_values])
cmd += ’ --dt %s’ % dt_values_str
print cmd

5.6 Automating Scientific Experiments 177

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:

E_min = min(E_min, min(errors[theta]))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)
plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel(’log(time step)’)
plt.ylabel(’log(error)’)
plt.axis([min(dt_values), max(dt_values), E_min, E_max])
plt.title(’Error vs time step’)
plt.savefig(’error.png’); plt.savefig(’error.pdf’)

Write out a table in CSV format
f = open(’error.csv’, ’w’)
f.write(r’Δt,$\theta=0$,$\theta=0.5$,$\theta=1$’ \

+ ’\n’)
for _dt, _fe, _cn, _be in zip(

errors[’dt’], errors[0], errors[0.5], errors[1]):
f.write(’%.2f,%.4f,%.4f,%.4f\n’ % \

(_dt, _fe, _cn, _be))
f.close()

Combine images into rows with 2 plots in each row
image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’ ’.join([’%s_%g.pdf’ % (method, dt)
for dt in dt_values])

png_files = ’ ’.join([’%s_%g.png’ % (method, dt)
for dt in dt_values])

image_commands.append(
’montage -background white -geometry 100%’ +
’ -tile 2x %s %s.png’ % (png_files, method))

image_commands.append(
’convert -trim %s.png %s.png’ % (method, method))

image_commands.append(
’convert %s.png -transparent white %s.png’ %
(method, method))

image_commands.append(
’pdftk %s output tmp.pdf’ % pdf_files)

num_rows = int(round(len(dt_values)/2.0))
image_commands.append(

’pdfnup --nup 2x%d --outfile tmp.pdf tmp.pdf’ % \
num_rows)

image_commands.append(
’pdfcrop tmp.pdf %s.pdf’ % method)

www.dbooks.org

https://www.dbooks.org/

178 5 Scientific Software Engineering

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

Remove the files generated above and by model.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_*.pdf’) + \

glob(’tmp*.pdf’)
for filename in filenames:

os.remove(filename)

if __name__ == ’__main__’:
run_experiments(I=1, a=2, T=5)
plt.show()

We may comment upon many useful constructs in this script:

� [float(arg) for arg in sys.argv[1:]] builds a list of real numbers
from all the command-line arguments.

� [’%s_%s.png’ % (method, dt) for dt in dt_values] builds a list of
filenames from a list of numbers (dt_values).

� All montage, convert, pdftk, pdfnup, and pdfcrop commands for creating
composite figures are stored in a list and later executed in a loop.

� glob(’*_*.png’) returns a list of the names of all files in the current directory
where the filename matches the Unix wildcard notation27 *_*.png (meaning
any text, underscore, any text, and then .png).

� os.remove(filename) removes the file with name filename.
� failure = os.system(cmd) runs an operating system command with simpler

syntax than what is required by subprocess (but the output of cmd cannot be
captured).

5.6.6 Making a Report

The results of running computer experiments are best documented in a little report
containing the problem to be solved, key code segments, and the plots from a series
of experiments. At least the part of the report containing the plots should be auto-
matically generated by the script that performs the set of experiments, because in
the script we know exactly which input data that were used to generate a specific
plot, thereby ensuring that each figure is connected to the right data. Take a look at
a sample report28 to see what we have in mind.

Word, OpenOffice, GoogleDocs Microsoft Word, its open source counterparts
OpenOffice and LibreOffice, along with GoogleDocs and similar online services
are the dominating tools for writing reports today. Nevertheless, scientific reports
often need mathematical equations and nicely typeset computer code in monospace
font. The support for mathematics and computer code in the mentioned tools is

27 http://en.wikipedia.org/wiki/Glob_(programming)
28 http://tinyurl.com/nc4upel/_static/sphinx-cloud/

http://en.wikipedia.org/wiki/Glob_(programming)
http://tinyurl.com/nc4upel/_static/sphinx-cloud/

5.6 Automating Scientific Experiments 179

Fig. 5.5 Report in HTML format with MathJax

in this author’s view not on par with the technologies based on markup languages
and which are addressed below. Also, with markup languages one has a readable,
pure text file as source for the report, and changes in this text can easily be tracked
by version control systems like Git. The result is a very strong tool for monitor-
ing “who did what when” with the files, resulting in increased reliability of the
writing process. For collaborative writing, the merge functionality in Git leads to
safer simultaneously editing than what is offered even by collaborative tools like
GoogleDocs.

HTML with MathJax HTML is the markup language used for web pages. Nicely
typeset computer code is straightforward in HTML, and high-quality mathematical
typesetting is available using an extension to HTML called MathJax29, which allows
formulas and equations to be typeset with LATEX syntax and nicely rendered in web
browsers, see Fig. 5.5. A relatively small subset of LATEX environments for mathe-
matics is supported, but the syntax for formulas is quite rich. Inline formulas look
like \(u’=-au \) while equations are surrounded by $$ signs. Inside such signs,
one can use \[u’=-au \] for unnumbered equations, or \begin{equation} and
\end{equation} for numbered equations, or \begin{align} and \end{align}
for multiple numbered aligned equations. You need to be familiar with mathemati-
cal typesetting in LaTeX30 to write MathJax code.

29 http://www.mathjax.org/
30 http://en.wikibooks.org/wiki/LaTeX/Mathematics

www.dbooks.org

http://www.mathjax.org/
http://en.wikibooks.org/wiki/LaTeX/Mathematics
https://www.dbooks.org/

180 5 Scientific Software Engineering

Fig. 5.6 Report in PDF format generated from LATEX source

The file exper1_mathjax.py31 calls a script exper1.py32 to perform the nu-
merical experiments and then runs Python statements for creating an HTML file33

with the source code for the scientific report34.

LATEX The de facto language for mathematical typesetting and scientific report
writing is LaTeX35. A number of very sophisticated packages have been added to
the language over a period of three decades, allowing very fine-tuned layout and
typesetting. For output in the PDF format36, see Fig. 5.6 for an example, LATEX
is the definite choice when it comes to typesetting quality. The LATEX language
used to write the reports has typically a lot of commands involving backslashes
and braces37, and many claim that LATEX syntax is not particularly readable. For
output on the web via HTML code (i.e., not only showing the PDF in the browser
window), LATEX struggles with delivering high quality typesetting. Other tools, es-
pecially Sphinx, give better results and can also produce nice-looking PDFs. The
file exper1_latex.py38 shows how to generate the LATEX source from a program.

Sphinx Sphinx39 is a typesetting language with similarities to HTML and LATEX,
but with much less tagging. It has recently become very popular for software doc-
umentation and mathematical reports. Sphinx can utilize LATEX for mathematical

31 http://tinyurl.com/p96acy2/report_generation/exper1_html.py
32 http://tinyurl.com/p96acy2/exper1.py
33 http://tinyurl.com/nc4upel/_static/report_mathjax.html.html
34 http://tinyurl.com/nc4upel/_static/report_mathjax.html
35 http://en.wikipedia.org/wiki/LaTeX
36 http://tinyurl.com/nc4upel/_static/report.pdf
37 http://tinyurl.com/nc4upel/_static/report.tex.html
38 http://tinyurl.com/p96acy2/report_generation/exper1_latex.py
39 http://sphinx.pocoo.org/

http://tinyurl.com/p96acy2/report_generation/exper1_html.py
http://tinyurl.com/p96acy2/exper1.py
http://tinyurl.com/nc4upel/_static/report_mathjax.html.html
http://tinyurl.com/nc4upel/_static/report_mathjax.html
http://en.wikipedia.org/wiki/LaTeX
http://tinyurl.com/nc4upel/_static/report.pdf
http://tinyurl.com/nc4upel/_static/report.tex.html
http://tinyurl.com/p96acy2/report_generation/exper1_latex.py
http://sphinx.pocoo.org/

5.6 Automating Scientific Experiments 181

Fig. 5.7 Report in HTML format generated from Sphinx source

formulas and equations. Unfortunately, the subset of LATEX mathematics supported
is less than in full MathJax (in particular, numbering of multiple equations in an
align type environment is not supported). The Sphinx syntax40 is an extension of
the reStructuredText language. An attractive feature of Sphinx is its rich support
for fancy layout of web pages41. In particular, Sphinx can easily be combined with
various layout themes that give a certain look and feel to the web site and that offers
table of contents, navigation, and search facilities, see Fig. 5.7.

Markdown A recent, very popular format for easy writing of web pages is Mark-
down42. Text is written very much like one would do in email, using spacing
and special characters to naturally format the code instead of heavily tagging the
text as in LATEX and HTML. With the tool Pandoc43 one can go from Markdown
to a variety of formats. HTML is a common output format, but LATEX, epub,
XML, OpenOffice/LibreOffice, MediaWiki, and Microsoft Word are some other
possibilities. A Markdown version of our scientific report demo is available as an
IPython/Jupyter notebook (described next).

IPython/Jupyter notebooks. The Jupyter Notebook44 is a web-based tool where
one can write scientific reports with live computer code and graphics. Or the other
way around: software can be equipped with documentation in the style of scien-
tific reports. A slightly extended version of Markdown is used for writing text and
mathematics, and the source code of a notebook45 is in json format. The interest in

40 http://tinyurl.com/nc4upel/_static/report_sphinx.rst.html
41 http://tinyurl.com/nc4upel/_static/sphinx-cloud/index.html
42 http://daringfireball.net/projects/markdown/
43 http://johnmacfarlane.net/pandoc/
44 http://jupyter.org
45 http://tinyurl.com/nc4upel/_static/report.ipynb.html

www.dbooks.org

http://tinyurl.com/nc4upel/_static/report_sphinx.rst.html
http://tinyurl.com/nc4upel/_static/sphinx-cloud/index.html
http://daringfireball.net/projects/markdown/
http://johnmacfarlane.net/pandoc/
http://jupyter.org
http://tinyurl.com/nc4upel/_static/report.ipynb.html
https://www.dbooks.org/

182 5 Scientific Software Engineering

the notebook has grown amazingly fast over just a few years, and further develop-
ment now takes place in the Jupyter project46, which supports a lot of programming
languages for interactive notebook computing. Jupyter notebooks are primarily live
electronic documents, but they can be printed out as PDF reports too. A notebook
version of our scientific report can be downloaded47 and experimented with or just
statically viewed48 in a browser.

Wiki formats A range of wiki formats are popular for creating notes on the web,
especially documents which allow groups of people to edit and add content. Apart
from MediaWiki49 (the wiki format used for Wikipedia), wiki formats have no sup-
port for mathematical typesetting and also limited tools for displaying computer
code in nice ways. Wiki formats are therefore less suitable for scientific reports
compared to the other formats mentioned here.

DocOnce Since it is difficult to choose the right tool or format for writing a scien-
tific report, it is advantageous to write the content in a format that easily translates to
LATEX, HTML, Sphinx, Markdown, IPython/Jupyter notebooks, and various wikis.
DocOnce50 is such a tool. It is similar to Pandoc, but offers some special convenient
features for writing about mathematics and programming. The tagging is mod-
est51, somewhere between LATEX and Markdown. The program exper1_do.py52

demonstrates how to generate DocOnce code for a scientific report. There is also
a corresponding rich demo of the resulting reports53 that can be made from this
DocOnce code.

5.6.7 Publishing a Complete Project

To assist the important principle of replicable science, a report documenting sci-
entific investigations should be accompanied by all the software and data used for
the investigations so that others have a possibility to redo the work and assess the
quality of the results.

One way of documenting a complete project is to make a directory tree with
all relevant files. Preferably, the tree is published at some project hosting site like
Bitbucket or GitHub54 so that others can download it as a tarfile, zipfile, or fork the
files directly using the Git version control system. For the investigations outlined in
Sect. 5.6.6, we can create a directory tree with files

46 https://jupyter.org/
47 http://tinyurl.com/p96acy2/_static/report.ipynb
48 http://nbviewer.ipython.org/url/hplgit.github.com/teamods/writing_reports/_static/report.ipynb
49 http://www.mediawiki.org/wiki/MediaWiki
50 https://github.com/hplgit/doconce
51 http://tinyurl.com/nc4upel/_static/report.do.txt.html
52 http://tinyurl.com/p96acy2/exper1_do.py
53 http://tinyurl.com/nc4upel/index.html
54 http://hplgit.github.com/teamods/bitgit/html/

https://jupyter.org/
http://tinyurl.com/p96acy2/_static/report.ipynb
http://nbviewer.ipython.org/url/hplgit.github.com/teamods/writing_reports/_static/report.ipynb
http://www.mediawiki.org/wiki/MediaWiki
https://github.com/hplgit/doconce
http://tinyurl.com/nc4upel/_static/report.do.txt.html
http://tinyurl.com/p96acy2/exper1_do.py
http://tinyurl.com/nc4upel/index.html
http://hplgit.github.com/teamods/bitgit/html/

5.7 Exercises 183

setup.py
./src:

model.py
./doc:

./src:
exper1_mathjax.py
make_report.sh
run.sh

./pub:
report.html

The src directory holds source code (modules) to be reused in other projects,
the setup.py script builds and installs such software, the doc directory contains
the documentation, with src for the source of the documentation (usually writ-
ten in a markup language) and pub for published (compiled) documentation. The
run.sh file is a simple Bash script listing the python commands we used to run
exper1_mathjax.py to generate the experiments and the report.html file.

5.7 Exercises

Problem 5.1: Make a tool for differentiating curves
Suppose we have a curve specified through a set of discrete coordinates .xi ; yi /,
i D 0; : : : ; n, where the xi values are uniformly distributed with spacing �x: xi D
�x. The derivative of this curve, defined as a new curve with points .xi ; di /, can
be computed via finite differences:

d0 D y1 � y0

�x
; (5.6)

di D yiC1 � yi�1

2�x
; i D 1; : : : ; n � 1; (5.7)

dn D yn � yn�1

�x
: (5.8)

a) Write a function differentiate(x, y) for differentiating a curve with coor-
dinates in the arrays x and y, using the formulas above. The function should
return the coordinate arrays of the resulting differentiated curve.

b) Since the formulas for differentiation used here are only approximate, with un-
known approximation errors, it is challenging to construct test cases. Here are
three approaches, which should be implemented in three separate test functions.
1. Consider a curve with three points and compute di , i D 0; 1; 2, by hand.

Make a test that compares the hand-calculated results with those from the
function in a).

2. The formulas for di are exact for points on a straight line, as all the di val-
ues are then the same, equal to the slope of the line. A test can check this
property.

3. For points lying on a parabola, the values for di , i D 1; : : : ; n � 1, should
equal the exact derivative of the parabola. Make a test based on this property.

c) Start with a curve corresponding to y D sin.
x/ and n C 1 points in Œ0; 1�.
Apply differentiate four times and plot the resulting curve and the exact
y D sin
x for n D 6; 11; 21; 41.

Filename: curvediff.

www.dbooks.org

https://www.dbooks.org/

184 5 Scientific Software Engineering

Problem 5.2: Make solid software for the Trapezoidal rule
An integral

bZ
a

f .x/dx

can be numerically approximated by the Trapezoidal rule,

bZ
a

f .x/dx � h

2
.f .a/C f .b//C h

n�1X
iD1

f .xi /;

where xi is a set of uniformly spaced points in Œa; b�:

h D b � a

n
; xi D aC ih; i D 1; : : : ; n � 1 :

Somebody has used this rule to compute the integral
R

0
sin2 x dx:

from math import pi, sin
np = 20
h = pi/np
I = 0
for k in range(1, np):

I += sin(k*h)**2
print I

a) The “flat” implementation above suffers from serious flaws:
1. A general numerical algorithm (the Trapezoidal rule) is implemented in

a specialized form where the formula for f is inserted directly into the code
for the general integration formula.

2. A general numerical algorithm is not encapsulated as a general function,
with appropriate parameters, which can be reused across a wide range of
applications.

3. The lazy programmer dropped the first terms in the general formula since
sin.0/ D sin.
/ D 0.

4. The sloppy programmer used np (number of points?) as variable for n in
the formula and a counter k instead of i. Such small deviations from the
mathematical notation are completely unnecessary. The closer the code and
the mathematics can get, the easier it is to spot errors in formulas.

Write a function trapezoidal that fixes these flaws. Place the function in
a module trapezoidal.

b) Write a test function test_trapezoidal. Call the test function explicitly to
check that it works. Remove the call and run pytest on the module:

Terminal

Terminal> py.test -s -v trapezoidal

5.7 Exercises 185

Hint Note that even if you know the value of the integral, you do not know the error
in the approximation produced by the Trapezoidal rule. However, the Trapezoidal
rule will integrate linear functions exactly (i.e., to machine precision). Base a test
function on a linear f .x/.

c) Add functionality such that we can compute
R b

a
f .x/dx by providing f , a, b,

and n as positional command-line arguments to the module file:

Terminal

Terminal> python trapezoidal.py ’sin(x)**2’ 0 pi 20

Here, a D 0, b D
 , and n D 20.
Note that the trapezoidal.py file must still be a valid module file, so the
interpretation of command-line data and computation of the integral must be
performed from calls in a test block.

Hint To translate a string formula on the command line, like sin(x)**2, into
a Python function, you can wrap a function declaration around the formula and
run exec on the string to turn it into live Python code:

import math, sys
formula = sys.argv[1]
f_code = """
def f(x):

return %s
""" % formula
exec(code, math.__dict__)

The result is the same as if we had hardcoded

from math import *

def f(x):
return sin(x)**2

in the program. Note that exec needs the namespace math.__dict__, i.e., all
names in the math module, such that it understands sin and other mathematical
functions. Similarly, to allow a and b to be math expressions like pi/4 and exp(4),
do

Terminal

a = eval(sys.argv[2], math.__dict__)
b = eval(sys.argv[2], math.__dict__)

d) Write a test function for verifying the implementation of data reading from the
command line.

Filename: trapezoidal.

www.dbooks.org

https://www.dbooks.org/

186 5 Scientific Software Engineering

Problem 5.3: Implement classes for the Trapezoidal rule
We consider the same problem setting as in Problem 5.2. Make a module with
a class Problem representing the mathematical problem to be solved and a class
Solver representing the solution method. The rest of the functionality of the mod-
ule, including test functions and reading data from the command line, should be as
in Problem 5.2.

Filename: trapezoidal_class.

Problem 5.4: Write a doctest and a test function
Type in the following program:

import sys
This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
"""
Return the roots of the quadratic polynomial
p(x) = a*x**2 + b*x + c.

The roots are real or complex objects.
"""
q = b**2 - 4*a*c
r1 = (-b + sqrt(q))/(2*a)
r2 = (-b - sqrt(q))/(2*a)
return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)

a) Equip the roots function with a doctest. Make sure to test both real and com-
plex roots. Write out numbers in the doctest with 14 digits or less.

b) Make a test function for the roots function. Perform the same mathematical
tests as in a), but with different programming technology.

Filename: test_roots.

Problem 5.5: Investigate the size of tolerances in comparisons
When we replace a comparison a == b, where a and/or b are float objects, by
a comparison with tolerance, abs(a-b) < tol, the appropriate size of tol de-
pends on the size of a and b. Investigate how the size of abs(a-b) varies when b
takes on values 10k , k D �5;�9; : : : ; 20 and a=1.0/49*b*49. Thereafter, com-
pute the relative difference abs((a-b)/a) for the same b values.

Filename: tolerance.

Remarks You will experience that if a and b are large, as they can be in, e.g.,
geophysical applications where lengths measured in meters can be of size 106 m,
tol must be about 10�9, while a and b around unity can have tol of size 10�15.
The way out of the problem with choosing a tolerance is to use relative differences.

Exercise 5.6: Make use of a class implementation
Implement the experiment_compare_dt function from decay.py using class
Problem and class Solver from Sect. 5.5. The parameters I, a, T, the scheme
name, and a series of dt values should be read from the command line.

Filename: experiment_compare_dt_class.

5.7 Exercises 187

Problem 5.7: Make solid software for a difference equation
We have the following evolutionary difference equation for the number of individ-
uals un of a certain specie at time n�t :

unC1 D un C�t run

�
1 � un

M n

�
; u0 D U0 : (5.9)

Here, n is a counter in time, �t is time between time levels n and nC 1 (assumed
constant), r is a net reproduction rate for the specie, and M n is the upper limit of
the population that the environment can sustain at time level n.

Filename: logistic.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

www.dbooks.org

http://creativecommons.org/licenses/by-nc/4.0/
https://www.dbooks.org/

References

1. W. Gander, M. J. Gander, and F. Kwok, Scientific Computing - An Introducting Using Maple
and MATLAB. Texts in Computational Science and Engineering. Springer, 2015

2. D. Griffiths, F. David, and D. J. Higham, Numerical Methods for Ordinary Differential Equa-
tions: Initial Value Problems. Springer, 2010

3. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer, 1993

4. G. Hairer and E. Wanner, Solving Ordinary Differential Equations II. Springer, 2010

5. J. D. Hunter, D. Dale, E. Firing, and M. Droettboom, Matplotlib documentation, 2012. http://
matplotlib.org/users/

6. H. P. Langtangen, Quick intro to version control systems and project hosting sites. http://
hplgit.github.io/teamods/bitgit/html/

7. H. P. Langtangen, SciTools documentation. http://hplgit.github.io/scitools/doc/web/index.
html

8. H. P. Langtangen, A Primer on Scientific Programming with Python. Texts in Computational
Science and Engineering. Springer, fourth edition, 2014

9. H. P. Langtangen and G. K. Pedersen, Scaling of Differential Equations. SimulaSpringerBrief.
Springer, 2015. http://tinyurl.com/qfjgxmf/web

10. H. P. Langtangen and L. Wang, Odespy software package. https://github.com/hplgit/odespy

11. D. B. Meade and A. A. Struthers, Differential equations in the new millenium: the parachute
problem. International Journal of Engineering Education, 15(6):417–424, 1999

12. L. Petzold and U. M. Ascher, Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, volume 61. SIAM, 1998

13. L. N. Trefethen, Trefethen’s index cards - Forty years of notes about People, Words and
Mathematics. World Scientific, 2011

189© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1

http://matplotlib.org/users/
http://matplotlib.org/users/
http://hplgit.github.io/teamods/bitgit/html/
http://hplgit.github.io/teamods/bitgit/html/
http://hplgit.github.io/scitools/doc/web/index.html
http://hplgit.github.io/scitools/doc/web/index.html
http://tinyurl.com/qfjgxmf/web
https://github.com/hplgit/odespy

Index

�-rule, 10, 77

A
Adams–Bashforth scheme, 2nd-order, 79
Adams–Bashforth scheme, 3rd order, 79
adaptive time stepping, 85
algebraic equation, 5
amplification factor, 45
argparse (Python module), 146
ArgumentParser (Python class), 146
array arithmetics, 25, 35
array computing, 25, 35
A-stable methods, 45
averaging

arithmetic, 9
geometric, 108

B
backward difference, 7
Backward Euler scheme, 7
backward scheme, 1-step, 7
backward scheme, 2-step, 77
BDF2 scheme, 77

C
centered difference, 8
chemical reactions

irreversible, 98
reversible, 99

command-line arguments, 145, 146
consistency, 53
continuous function norms, 26
convergence, 53
convergence rate, 73
Crank–Nicolson scheme, 8
cropping images, 30

D
debugging, 138
decay ODE, 1

difference equation, 5
directory, 15
discrete equation, 5
discrete function norms, 26
Distutils, 163
doc strings, 18
DocOnce, 182
doctest in test function, 156
doctests, 151
Dormand-Prince Runge–Kutta 4-5 method, 85

E
EPS plot, 29
error

amplification factor, 49
global, 50
norms, 28

explicit schemes, 77
exponential decay, 1

F
finite difference operator notation, 14
finite difference scheme, 5
finite differences, 4

backward, 7
centered, 8
forward, 4

folder, 15
format string syntax (Python), 20
forward difference, 4
Forward Euler scheme, 5

G
geometric mean, 108
GitHub, 163
Google Docs, 178
grid, 2

H
Heun’s method, 78

191

www.dbooks.org

https://www.dbooks.org/

192 Index

HTML, 179

I
implicit schemes, 77
importing modules, 131, 165
interactive Python, 47
IPython notebooks, 181
isympy, 47

J
Jupyter notebooks, 181

K
Kelvin–Voigt material model, 110

L
lambda functions, 70
LaTeX, 180
Leapfrog scheme, 78
Leapfrog scheme, filtered, 78
LibreOffice, 178
list comprehension, 145
logger, 138
logging module, 138
logistic model, 94
Lotka-Volterra model, 102
L-stable methods, 45

M
Markdown, 181
MathJax, 179
mesh, 2
mesh function, 3
mesh function norms, 26
method of manufactured solutions, 71
MMS (method of manufactured solutions), 71
montage program, 30
Monte Carlo simulation, 58

N
norm

continuous, 26
discrete (mesh function), 26

nose tests, 153

O
ode45, 85
OpenOffice, 178
operator notation, finite differences, 14
option-value pairs (command line), 146
os.system, 176

P
PDF plot, 29
pdfcrop program, 31
pdfnup program, 31
pdftk program, 31
plotting curves, 21
PNG plot, 29

population dynamics, 93
predator-prey model, 102
printf format, 19
problem class, 167
pytest tests, 153

R
radioactive decay, 95
reading the command line, 146
refactoring, 130
relative differences, 154, 186
replicability, 173, 182
representative (mesh function), 25
reproducibility, 173
RK4, 80
Runge–Kutta, 2nd-order method, 78
Runge–Kutta, 4th-order method, 80

S
scalar computing, 28
scaling, 109
setup.py, 162
software testing

doctests, 151
nose, 153
pytest, 153
test function, 153
unit testing (class-based), 160

solver class, 168
Sphinx (typesetting tool), 180
stability, 45, 53
sympy, 47
sys.argv, 145

T
Taylor-series methods (for ODEs), 79
terminal velocity, 108
test function, 24, 153
TestCase (class in unittest), 160
theta-rule, 10, 77
time step, 11

U
unit testing, 24, 153, 160
unittest, 160
Unix wildcard notation, 176

V
vectorization, 25, 35
verification, 75
viewing graphics files, 29
viscoelasticity, 110
visualizing curves, 21

W
weighted average, 10
wildcard notation (Unix), 176
Word (Microsoft), 178
wrapper (code), 168

Editorial Policy

1. Volumes in the following three categories will be published in LNCSE:

i) Research monographs
ii) Tutorials
iii) Conference proceedings

Those considering a book which might be suitable for the series are strongly advised to
contact the publisher or the series editors at an early stage.

2. Categories i) and ii). Tutorials are lecture notes typically arising via summer schools
or similar events, which are used to teach graduate students. These categories will be
emphasized by Lecture Notes in Computational Science and Engineering. Submissions by
interdisciplinary teams of authors are encouraged. The goal is to report new develop-
ments – quickly, informally, and in a way that will make them accessible to non-specialists.
In the evaluation of submissions timeliness of the work is an important criterion. Texts
should be well-rounded, well-written and reasonably self-contained. In most cases the work
will contain results of others as well as those of the author(s). In each case the author(s)
should provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses
will usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in
these categories should be submitted either to one of the series editors or to Springer-Verlag,
Heidelberg, and will be refereed. A provisional judgement on the acceptability of a project
can be based on partial information about the work: a detailed outline describing the contents
of each chapter, the estimated length, a bibliography, and one or two sample chapters – or
a first draft. A final decision whether to accept will rest on an evaluation of the completed
work which should include

– at least 100 pages of text;
– a table of contents;
– an informative introduction perhaps with some historical remarks which should be acces-

sible to readers unfamiliar with the topic treated;
– a subject index.

3. Category iii). Conference proceedings will be considered for publication provided that
they are both of exceptional interest and devoted to a single topic. One (or more) expert
participants will act as the scientific editor(s) of the volume. They select the papers which are
suitable for inclusion and have them individually refereed as for a journal. Papers not closely
related to the central topic are to be excluded. Organizers should contact the Editor for CSE
at Springer at the planning stage, see Addresses below.

In exceptional cases some other multi-author-volumes may be considered in this category.

4. Only works in English will be considered. For evaluation purposes, manuscripts may
be submitted in print or electronic form, in the latter case, preferably as pdf- or zipped
ps-files. Authors are requested to use the LaTeX style files available from Springer at
http://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/
5636 (Click on LaTeX Template! monographs or contributed books).

For categories ii) and iii) we strongly recommend that all contributions in a volume be written
in the same LaTeX version, preferably LaTeX2e. Electronic material can be included if
appropriate. Please contact the publisher.

Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online.

www.dbooks.org

http://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
http://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
https://www.dbooks.org/

5. The following terms and conditions hold. Categories i), ii) and iii):

Authors receive 50 free copies of their book. No royalty is paid.
Volume editors receive a total of 50 free copies of their volume to be shared with authors, but
no royalties.

Authors and volume editors are entitled to a discount of 33.3 % on the price of Springer books
purchased for their personal use, if ordering directly from Springer.

6. Springer secures the copyright for each volume.

Addresses:

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120 th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

Lecture Notes
in Computational Science
and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Comput-
ing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory, Com-
putation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical
Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm,
and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.

www.dbooks.org

https://www.dbooks.org/

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing – CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction
to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-
tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox
ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation: Ap-
plications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-
tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior
Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II – Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insur-
ance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

www.dbooks.org

https://www.dbooks.org/

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computa-
tional and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite
Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis – Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media – Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic Differ-
entiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational Fluid
Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques for
Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial Dif-
ferential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm
Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain Decomposition
Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), High
Order Nonlinear Numerical Methods for Evolutionary PDEs – HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VII.

101. R. Hoppe (ed.), Optimization with PDE Constraints – OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,
H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics and
Advanced Applications – ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain Decomposition
Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering – CE2014.
Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial Dif-
ferential Equations – ICOSAHOM’14.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL
2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H.P. Langtangen, Finite Difference Computing with Exponential Decay Models.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527

www.dbooks.org

www.springer.com/series/3527
https://www.dbooks.org/

Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 4th Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 4th Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation and Applications.

11. W. Gander, M. Gander, F. Kwok, Scientific Computing: An Introduction using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

13. M. H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations – A Gentle Introduction to Numerical
Simulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations – A Gentle Introduction to Numerical
Simulations with Python.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

www.springer.com/series/7417
www.springer.com/series/5151

	Preface
	Contents
	List of Exercises, Problems, and Projects
	1 Algorithms and Implementations
	1.1 Finite Difference Methods
	1.2 Implementations
	1.3 Exercises

	2 Analysis
	2.1 Experimental Investigations
	2.2 Stability
	2.3 Accuracy
	2.4 Various Types of Errors in a Differential Equation Model
	2.5 Exercises

	3 Generalizations
	3.1 Model Extensions
	3.2 General First-Order ODEs
	3.3 Exercises

	4 Models
	4.1 Scaling
	4.2 Evolution of a Population
	4.3 Compound Interest and Inflation
	4.4 Newton's Law of Cooling
	4.5 Radioactive Decay
	4.6 Chemical Kinetics
	4.7 Spreading of Diseases
	4.8 Predator-Prey Models in Ecology
	4.9 Decay of Atmospheric Pressure with Altitude
	4.10 Compaction of Sediments
	4.11 Vertical Motion of a Body in a Viscous Fluid
	4.12 Viscoelastic Materials
	4.13 Decay ODEs from Solving a PDE by Fourier Expansions
	4.14 Exercises

	5 Scientific Software Engineering
	5.1 Implementations with Functions and Modules
	5.2 User Interfaces
	5.3 Tests for Verifying Implementations
	5.4 Sharing the Software with Other Users
	5.5 Classes for Problem and Solution Method
	5.6 Automating Scientific Experiments
	5.7 Exercises

	References
	Index

