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Preface 

A few years ago, our department started a new undergraduate degree program in Biomedical Physics. The 

prerequisites to enter this program included two semesters of physics and two semesters of calculus, both 

differential and integral. A group of participating educators (including some members from the departments of 

physics, mathematics, and biology as well as from the School of Medicine) developed the courses and their 

contents for this new program. For one of these courses, Mathematics for Biomedical Physics, all the required 

topics were not covered in any single textbook available. As the instructor of this course, I had to prepare my 

own personal notes for some of the topics that I shared with students. I felt that it would be great if a single 

textbook can be produced which covered all the mathematical topics that were needed for the biomedical 

physics program. I wanted to make this textbook freely available to all students everywhere using internet. 

Access to education is a basic human right which should not be hindered by any lack of money or dearth of 

educational resources. With this thought in mind, I started turning the course materials and lectures that I had 

been using in my course into an open educational resource (OER). After transcribing all the notes in Word, I gave 

the notes away to students in my next class, seeking their feedback and comments. I have carefully included 

responses to these comments in the book. 

Even though the prerequisites for this textbook are two semester-long courses in calculus, which cover functions 

of single variables, the first two chapters of this textbook are devoted to differential calculus and integral 

calculus. These chapters lead the reader from calculus of functions of a single variable to calculus of multivariable 

functions. In this scheme, the ideas related to partial derivatives as well as multiple integrals are revealed quite 

naturally. Throughout the textbook I have attempted to start with something that a typical student may be 

familiar with and end up with something that will be entirely new for the reader. I would appreciate receiving (at 

wadehra@wayne.edu) constructive feedback, from students and faculty as well as other readers, who are using 

this book as a whole or in parts. 

The textbook is geared to introduce several mathematical topics at the rudimentary level so that students can 

appreciate the applications of mathematics to the interdisciplinary field of biomedical physics. Most of the topics 

are presented in their simplest but rigorous form so that students can easily understand the advanced form of 

these topics when the need arises. Several end-of-chapter problems and chapter examples relate the 

applications of mathematics to biomedical physics. After mastering the topics of this book, the students would 

be ready to embark on quantitative thinking in various topics of biology and medicine. The famous renaissance 

philosopher and astronomer, Galileo Galilei, is quoted to say, “Mathematics is the language in which Nature has 

written the book of Universe”. This textbook is an endeavor to teach the language of Nature in a careful, yet 

simple, manner to undergraduate students. 

mailto:wadehra@wayne.edu
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Chapter 1: Differential Calculus 

We will start with a review of differential calculus, assuming that the reader has already seen derivatives for 

functions of a single variable. After a brief review of simple derivatives, we will introduce the derivatives of 

functions of multiple variables, also known as partial derivatives. 

1.1 DERIVATIVE OF A FUNCTION OF A SINGLE VARIABLE 

𝐹(𝑥) is a function of a single independent variable 𝑥 as shown in Figure 1.1. An independent variable means that 

its value can be assigned at will, without any constraining conditions. By definition, the derivative of 𝐹(𝑥) is 
𝑑𝐹

𝑑𝑥
, 

given by  

𝑑𝐹

𝑑𝑥
=  lim

ℎ→0

𝐹(𝑥 + ℎ) −  𝐹(𝑥)

ℎ
                                                         𝐸𝑞. (1.1) 

 

Figure 1.1. 𝑭(𝒙) is a function of a single independent variable 𝒙. 

As a simple example, consider the derivative of 𝐹(𝑥)  =  sin (𝑥), 

𝑑𝐹

𝑑𝑥
=  lim

ℎ→0

sin(𝑥 + ℎ) −  sin(𝑥)

ℎ
  . 

In the numerator, we use the trigonometric identity 

sin 𝐴 − sin𝐵 = 2 sin (
𝐴 − 𝐵

2
) cos (

𝐴 + 𝐵

2
) 

to get 
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𝑑 sin (𝑥)

𝑑𝑥
= lim
ℎ→0

2 sin (
ℎ
2
) cos (𝑥 +

ℎ
2
)

ℎ
= lim
ℎ→0

sin(ℎ/2)

ℎ/2
lim
ℎ→0

cos (𝑥 +
ℎ

2
)  . 

Or, 

𝑑 sin (𝑥)

𝑑𝑥
= cos(𝑥) lim

ℎ→0

sin(ℎ/2)

ℎ/2
  . 

The limiting value of this expression can be easily obtained, using simple geometry and trigonometry (see 

Appendix A), to be 1. Using this limiting value, we get the result 

𝑑 sin(𝑥)

𝑑𝑥
= cos(𝑥)  . 

A similar procedure can be used to determine derivatives of other well-known functions. Here is a compilation of 

derivatives of several commonly used functions: 

𝑑𝐶

𝑑𝑥
= 0,     𝐶   is a constant 

𝑑 𝑥𝑛

𝑑𝑥
= 𝑛 𝑥𝑛−1 

𝑑 exp(𝑥)

𝑑𝑥
= exp(𝑥) 

𝑑 ln(𝑥)

𝑑𝑥
=
1

𝑥
 

𝑑 cos(𝑥)

𝑑𝑥
= −sin(𝑥) 

𝑑 tan(𝑥)

𝑑𝑥
= sec2 𝑥 

𝑑 arcsin 𝑥

𝑑𝑥
=  

1

√1 − 𝑥2
 

𝑑 arccos 𝑥

𝑑𝑥
=  − 

1

√1 − 𝑥2
 

𝑑 arctan 𝑥

𝑑𝑥
=  

1

1 + 𝑥2
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Higher Order Derivatives 

Assume that the derivative 
𝑑𝐹

𝑑𝑥
 of the function 𝐹(𝑥) is represented by a new function 𝐹1(𝑥); that is, 𝐹1(𝑥) =  

𝑑𝐹

𝑑𝑥
. 

Then, 
𝑑𝐹1

𝑑𝑥
 is the second derivative of 𝐹(𝑥), namely, 

𝑑2𝐹

𝑑𝑥2
. Similarly, if 𝐹2(𝑥) =  

𝑑𝐹1

𝑑𝑥
, then 

𝑑𝐹2

𝑑𝑥
 is the third derivative of 

𝐹(𝑥), namely, 
𝑑3𝐹

𝑑𝑥3
. Using this procedure, higher derivatives of any order can be determined for a function of a 

single variable. 

Chain Rule 

When a function 𝐹 of variable 𝑥 can be expressed as a function of another function as 𝐹[𝑔(𝑥)], then the 

derivative of 𝐹 can be most conveniently evaluated using the chain rule as 

𝑑𝐹

𝑑𝑥
=  
𝑑𝐹

𝑑𝑔
 
𝑑𝑔

𝑑𝑥
  .                                                  𝐸𝑞. (1.2) 

Example: Using the chain rule, determine the derivative of the function 𝑭(𝒙) =  √𝒙𝟐 + 𝒂𝟐.  

Solution: To determine the derivative 
𝑑𝐹

𝑑𝑥
, first define a new function 𝑔(𝑥) =  𝑥2 + 𝑎2. Then, 𝐹(𝑥) can be written 

as a function of 𝑔(𝑥) as 𝐹(𝑥) =  √𝑔(𝑥) = 𝑔1/2. Using chain rule, 

𝑑𝐹

𝑑𝑥
=  
𝑑𝐹

𝑑𝑔
 
𝑑𝑔

𝑑𝑥
=  
1

2
 𝑔−1/2 (2𝑥) =  

𝑥

√𝑥2 + 𝑎2
  . 

Product and Quotient Rules 

When a function 𝐹 of variable 𝑥 can be expressed as a product of two simpler functions as 𝐹(𝑥) =  𝑓(𝑥) 𝑔(𝑥), 

then the derivative of 𝐹(𝑥) is given by 

𝑑𝐹

𝑑𝑥
=  𝑓(𝑥)

𝑑𝑔(𝑥)

𝑑𝑥
+ 
𝑑𝑓(𝑥)

𝑑𝑥
𝑔(𝑥)  .                                      𝐸𝑞. (1.3) 

 

In words, if 𝐹(𝑥) = (𝐹𝐼𝑅𝑆𝑇)( 𝑆𝐸𝐶𝑂𝑁𝐷), then 

𝑑𝐹

𝑑𝑥
=  (𝐹𝐼𝑅𝑆𝑇)

𝑑 (𝑆𝐸𝐶𝑂𝑁𝐷)

𝑑𝑥
+ 
𝑑 (𝐹𝐼𝑅𝑆𝑇)

𝑑𝑥
(𝑆𝐸𝐶𝑂𝑁𝐷). 
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Example: Using the product rule, determine the derivative of 𝑭(𝒙) =  𝒙𝟐 𝐥𝐧 𝒙.  

Solution: Derivative of 𝐹(𝑥) using the product rule is 

𝑑𝐹

𝑑𝑥
=  𝑥2  

𝑑 ln 𝑥

𝑑𝑥
+ ln 𝑥 

𝑑𝑥2

𝑑𝑥
=  𝑥2  

1

𝑥
+ ln 𝑥 (2𝑥) =  𝑥 + 2𝑥 ln 𝑥   . 

A special case of the product rule is the quotient rule, which is used when the function 𝐹(𝑥) can be expressed 

as 𝐹(𝑥) =  
𝑓(𝑥)

𝑔(𝑥)
. In this case, 

𝑑𝐹

𝑑𝑥
=  
1

𝑔2
[𝑔(𝑥) 

𝑑𝑓

𝑑𝑥
−  𝑓(𝑥) 

𝑑𝑔

𝑑𝑥
]   .                                     𝐸𝑞. (1.4) 

Example: Using the quotient rule, determine the derivative of 𝑭(𝒙) = 𝐞𝐱𝐩(𝒂𝒙) /𝒙.  

Solution: The derivative of 𝐹(𝑥) using the quotient rule is 

𝑑𝐹

𝑑𝑥
=  
1

𝑥2
[𝑥 
𝑑 exp (𝑎𝑥)

𝑑𝑥
− exp(𝑎𝑥) 

𝑑𝑥

𝑑𝑥
] =  

𝑎

𝑥
exp(𝑎𝑥) − 

1

𝑥2
exp(𝑎𝑥) = exp(𝑎𝑥)

𝑎𝑥 − 1

𝑥2
  . 

Interpretations of a Derivative 

The derivative 
𝑑𝐹

𝑑𝑥
 of the function 𝐹(𝑥) has two distinct interpretations. 

First, the value of a derivative, 
𝑑𝐹(𝑥)

𝑑𝑥
, at 𝑥 =  𝑎 is the slope of the line that is tangent to the function 𝐹(𝑥) at 𝑥 =

 𝑎. Now, since the slope of a function at a point where the function has its minimum or maximum value is zero, it 

follows that the derivative of the function at its extremum points (that is, points with minimum or maximum 

values) is also zero. So, the extremum (minimum or maximum) points of a function can be determined by setting 

its derivative equal to zero. The equation 
𝑑𝐹(𝑥)

𝑑𝑥
= 0 can be solved to obtain the values of 𝑥 = 𝑥𝑚𝑖𝑛 where the 

function is minimum or 𝑥 = 𝑥𝑚𝑎𝑥  where the function is maximum. In the vicinity of 𝑥𝑚𝑖𝑛, the values of 
𝑑𝐹(𝑥)

𝑑𝑥
 are 

negative for 𝑥 < 𝑥𝑚𝑖𝑛, zero for 𝑥 = 𝑥𝑚𝑖𝑛 , and positive for 𝑥 > 𝑥𝑚𝑖𝑛. In other words, 
𝑑2𝐹

𝑑𝑥2
 is positive at 𝑥 = 𝑥𝑚𝑖𝑛. 

Similarly, in the vicinity of 𝑥𝑚𝑎𝑥, the values of 
𝑑𝐹(𝑥)

𝑑𝑥
 are positive for 𝑥 < 𝑥𝑚𝑎𝑥, zero for 𝑥 = 𝑥𝑚𝑎𝑥 , and negative for 

𝑥 > 𝑥𝑚𝑎𝑥 . In other words, 
𝑑2𝐹

𝑑𝑥2
 is negative at 𝑥 = 𝑥𝑚𝑎𝑥.  

Second, the derivative 
𝑑𝐹(𝑥)

𝑑𝑥
 represents the rate of variation of function 𝐹(𝑥) with 𝑥. Suppose that when 

independent variable 𝑥 changes by a small amount ∆𝑥, then the corresponding change in the value of the 

function is ∆𝐹. Using this interpretation of the derivative, 
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(𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐹) = (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐹 𝑤𝑖𝑡ℎ 𝑥) ∙ (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥) 

or, 

(∆𝐹) =  
𝑑𝐹

𝑑𝑥
 (∆𝑥)  .                             𝐸𝑞. (1.5) 

The idea about the rate of change of a quantity appears in many diverse areas of knowledge. For example, in 

physiology we talk about the rate at which blood flows in veins; in geography we talk about the rate at which 

population grows in a certain area; in meteorology we talk about the rate at which pressure varies with altitude; 

in medicine we talk about the rate at which a cancerous tumor grows or a contagious virus spreads; in sociology 

we talk about the rate at which a news or some rumor spreads; in psychology we talk about the rate at which 

different people learn certain skills (that is, the learning curve); in physics we talk about the rate at which the 

velocity of an accelerating automobile changes, etc. No matter in which context we talk about the rate of change 

of a quantity, its mathematical description would always be presented in the form of a derivative. 

Example: As an example of the first interpretation of a derivative, let us look at the case of a young mom, 

sitting on a bench on a concrete patio, watching her small child playing on the grass nearby, as shown in the 

Figure 1.2. 𝐓𝐡𝐞 𝐥𝐞𝐧𝐠𝐭𝐡𝐬 𝒅𝒑 and 𝒅𝒈 are the shortest distances of mom and child, respectively, from the patio-

grass boundary. Mom can run on the patio with speed 𝒗𝒑 and on the grass with speed 𝒗𝒈. When an emergency 

arises, the mom would like to reach the child in the shortest possible time. Which path should she take during 

an emergency? 

 

Figure 1.2. The quickest path a mom can take to reach her child in distress. 
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Solution: The mom can either take path 1 or path 2 (shown in the figure) or any path in between. Consider an 

arbitrary path, as shown in the figure, taken by mom to rush to her child. Total time taken by mom using this 

path is 

𝑡 =  
√𝑑𝑝

2 + 𝑥2

𝑣𝑝
+ 
√𝑑𝑔

2 + (𝐿 − 𝑥)2

𝑣𝑔
  . 

Here 𝐿 is the separation between the mom and the child along the patio-grass boundary. The distance 𝑥, shown 

in the figure, will vary depending on the specific path taken by the rushing mom. The path with the shortest time, 

according to the above interpretation of the derivative, will be the one for which 
𝑑𝑡

𝑑𝑥
 is equal to zero. Thus, 

𝑑𝑡

𝑑𝑥
=

2𝑥

2𝑣𝑝  √𝑑𝑝
2 + 𝑥2

+
2(𝐿 − 𝑥)(−1)

2𝑣𝑔 √𝑑𝑔
2 + (𝐿 − 𝑥)2

= 0  , 

or 

1

𝑣𝑝
 

𝑥

√𝑑𝑝
2 + 𝑥2

=
1

𝑣𝑔
 

(𝐿 − 𝑥)

√𝑑𝑔
2 + (𝐿 − 𝑥)2

  , 

or, in terms of the angles 𝜃𝑝 and 𝜃𝑔 shown in the Figure 1.2, 

sin 𝜃𝑝

𝑣𝑝 
=
sin 𝜃𝑔

𝑣𝑔 
  . 

This relationship describes the path that mom should take to reach the child in the shortest possible time. It is, 

essentially, Snell’s law of refraction in optics that concerns the bending of light as it travels from one medium 

(number 1) into another medium (number 2). Mathematically, Snell’s law is stated as 𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 

where 𝑛1 and 𝑛2 are the indices of refraction of the two media. Light travels with different speeds in media with 

different indices of refraction with 𝑣1 = 𝑐/𝑛1 and 𝑣2 = 𝑐/𝑛2 (𝑐 being the speed of light in vacuum). Thus, Snell’s 

law can be expressed as sin 𝜃1/𝑣1 = sin 𝜃2/𝑣2. Stated differently, Snell’s law implies that when light travels 

from a point in the first medium to another point in the second medium, it takes a path that minimizes its time of 

travel. 

1.2 FUNCTIONS OF MULTIPLE VARIABLES: PARTIAL DERIVATIVES 

Recall that for an independent variable, any value can be assigned to it without any constraining conditions. If 𝐹 

is a function of two or more independent variables, then the derivative of 𝐹 with respect to one of the variables, 

while holding the other variable fixed, is called the partial derivative. Formally, if 𝐹(𝑥, 𝑦) is a function of two 

independent variables 𝑥 and 𝑦, then 
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𝜕𝐹(𝑥, 𝑦)

𝜕𝑥
=  lim

ℎ→0

𝐹(𝑥 + ℎ, 𝑦) −  𝐹(𝑥, 𝑦)

ℎ
                                                 𝐸𝑞. (1.6𝑎) 

𝜕𝐹(𝑥, 𝑦)

𝜕𝑦
=  lim

ℎ→0

𝐹(𝑥, 𝑦 + ℎ) −  𝐹(𝑥, 𝑦)

ℎ
                                                 𝐸𝑞. (1.6𝑏) 

are the partial derivatives of 𝐹. Note the use of 
𝜕

𝜕𝑥
 and 

𝜕

𝜕𝑦
 for partial derivatives versus 

𝑑

𝑑𝑥
 for derivatives of a 

function of only one independent variable. A common notation for writing partial derivatives also includes (
𝜕𝐹

𝜕𝑥
)
𝑦

 

and (
𝜕𝐹

𝜕𝑦
)
𝑥

in which the fixed variable is written as a subscript. 

Example: Determine the partial derivatives of the function 𝑭(𝒙, 𝒚) = 𝒙𝟑 − 𝒙 𝒚𝟐 +  𝒚.  

Solution: Since 𝑥 and 𝑦 are two independent variables, the partial derivatives of 𝐹(𝑥, 𝑦) with respect to 𝑥 and 𝑦 

are: 

𝜕𝐹(𝑥, 𝑦)

𝜕𝑥
= 3 𝑥2 − 𝑦2  , 

𝜕𝐹(𝑥, 𝑦)

𝜕𝑦
= −2𝑥𝑦 + 1  . 

As before, 
𝜕𝐹

𝜕𝑥
 (or 

𝜕𝐹

𝜕𝑦
) represents the rate of variation of 𝐹 with 𝑥 (or 𝑦). If both 𝑥 and 𝑦 vary independently, then 

(𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐹) = (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐹 𝑤𝑖𝑡ℎ 𝑥) ∙ (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥) + (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐹 𝑤𝑖𝑡ℎ 𝑦)

∙ (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑦)  , 

or 

(∆𝐹) =  
𝜕𝐹

𝜕𝑥
 (∆𝑥) + 

𝜕𝐹

𝜕𝑦
 (∆𝑦)  .                                         𝐸𝑞. (1.7) 

Higher Order Partial Derivatives: Clairaut’s Theorem 

If 𝐹𝑥 =
𝜕𝐹

𝜕𝑥
  and 𝐹𝑦 =

𝜕𝐹

𝜕𝑦
, then 

𝜕𝐹𝑥

𝜕𝑥
=
𝜕2𝐹

𝜕𝑥2
, 
𝜕𝐹𝑥

𝜕𝑦
=

𝜕2𝐹

𝜕𝑦𝜕𝑥 
, 
𝜕𝐹𝑦

𝜕𝑥
=

𝜕2𝐹

𝜕𝑥𝜕𝑦  
 and 

𝜕𝐹𝑦

𝜕𝑦
=
𝜕2𝐹

𝜕𝑦2
 are the second derivatives of 

𝐹(𝑥, 𝑦). Higher order partial derivatives can be defined in an analogous manner. The 𝐶𝑙𝑎𝑖𝑟𝑎𝑢𝑡′𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 states 

that 

𝜕𝐹𝑥
𝜕𝑦

=  
𝜕𝐹𝑦

𝜕𝑥
   or   

𝜕 
𝜕𝑦
(
𝜕𝐹

𝜕𝑥
) =  

𝜕 
𝜕𝑥
(
𝜕𝐹

𝜕𝑦
)  .  
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In words, it means that for a function of several independent variables, the multiple partial derivatives can be 

carried out in any order. 

Example: Verify Clairaut’s theorem for the function 𝑭(𝒙, 𝒚) = 𝒙𝟑 − 𝒙 𝒚𝟐 +  𝒚. 

Solution: In the previous example, we calculated 
𝜕𝐹

𝜕𝑥
= 3 𝑥2 − 𝑦2 and 

𝜕𝐹

𝜕𝑦
= −2𝑥𝑦 + 1. So now 

𝜕 
𝜕𝑦
(
𝜕𝐹

𝜕𝑥
) =  −2𝑦  , 

𝜕 
𝜕𝑥
(
𝜕𝐹

𝜕𝑦
) =  −2𝑦  . 

so the Clairaut’s theorem is indeed satisfied. 

Example: Check whether the Clairaut’s theorem for the function 𝑭(𝒙, 𝒚) = 𝐞𝐱𝐩(𝒂𝒙) 𝐬𝐢𝐧(𝒃𝒚) is satisfied. 

Solution: In this case, there are two independent variables 𝑥 and 𝑦. So, first partial derivatives are 

𝜕𝐹(𝑥, 𝑦)

𝜕𝑥
= 𝑎 exp(𝑎𝑥) sin(𝑏𝑦)  , 

𝜕𝐹(𝑥, 𝑦)

𝜕𝑦
= exp(𝑎𝑥) 𝑏 cos(𝑏𝑦)  . 

The second derivative gives 

𝜕 
𝜕𝑦
(
𝜕𝐹

𝜕𝑥
) =  𝑎 exp(𝑎𝑥) 𝑏 cos(𝑏𝑦)  , 

𝜕 
𝜕𝑥
(
𝜕𝐹

𝜕𝑦
) =  𝑎 exp(𝑎𝑥) 𝑏 cos(𝑏𝑦)  . 

that verifies Clairaut’s theorem. 

If 𝐹 is a function of 𝑛 independent variables, that is, 𝐹 = 𝐹(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛), then 
𝜕𝐹

𝜕𝑥1
,
𝜕𝐹

𝜕𝑥2
, …

𝜕𝐹

𝜕𝑥𝑛
 represent the 

rates of variation of 𝐹 with 𝑥1, 𝑥2, … 𝑥𝑛, respectively. Since all 𝑛 variables can change independently, then 

(𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐹) = (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐹 𝑤𝑖𝑡ℎ 𝑥1) ∙ (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥1) +  (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐹 𝑤𝑖𝑡ℎ 𝑥2)

∙ (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥2) + ⋯+ (𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐹 𝑤𝑖𝑡ℎ 𝑥𝑛) ∙ (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥𝑛)  , 

or, 
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(∆𝐹) =  
𝜕𝐹

𝜕𝑥1
 (∆𝑥1) + 

𝜕𝐹

𝜕𝑥2
 (∆𝑥2) + ⋯+ 

𝜕𝐹

𝜕𝑥𝑛
 (∆𝑥𝑛)  .                             𝐸𝑞. (1.8) 

(∆𝐹) is the total change in function 𝐹 when all 𝑛 variables are changed independently. It is called total 

differential. At a point where 𝐹 is extremum (namely, a minimum or a maximum), ∆𝐹 = 0. Since 𝑥1, 𝑥2, … 𝑥𝑛 are 

independent variables, they may be chosen so that all but one of the ∆𝑥, in turn, are zero. It follows that 

𝜕𝐹

𝜕𝑥1
= 0,   

𝜕𝐹

𝜕𝑥2
= 0,   … 

𝜕𝐹

𝜕𝑥𝑛−1
= 0   and 

𝜕𝐹

𝜕𝑥𝑛
= 0  .                                                         𝐸𝑞. (1.9) 

These 𝑛 algebraic equations can be solved to find the values of variables 𝑥1, 𝑥2, … 𝑥𝑛 that make the function 𝐹 

extremum.  

The idea of a total differential, introduced above, is very useful in estimating the largest possible error in the 

measurement of a physical quantity that is a function of several variables. An example will help in understanding 

the concept.  

Example: According to the Poiseuille’s equation, the total volume of blood flowing through a blood vessel of 

radius 𝑹 and length 𝑳 per unit time is given by 𝑭 =  𝒌
𝑹𝟒

𝑳
, where constant 𝒌 is independent of the geometry of 

the blood vessel. If the relative error, 𝚫𝑹, in the measurement of the radius is 2% and the relative error, 𝚫𝑳, in 

the measurement of length is 4%, then what is the largest possible relative error, 𝚫𝑭, in the measurement of 

flux of blood, 𝑭, through this blood vessel? 

Solution: The relative error in the measurement of a quantity means error in measuring that quantity divided by 

the actual value of that quantity. In other words, the ratios 
Δ𝑅

𝑅
,
Δ𝐿

𝐿
 and 

Δ𝐹

𝐹
 are, respectively, the relative errors in 

the measurements of the radius, length and flux of the blood through a blood vessel. These ratios are 

determined by first taking the natural log of the Poiseuille’s equation and then taking the derivatives of both 

sides as 

ln 𝐹 = ln 𝑘 +  4 ln𝑅 − ln 𝐿 

and 

Δ𝐹

𝐹
= 4 

Δ𝑅

𝑅
−
Δ𝐿

𝐿
  . 
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Since error in the measurement of radius is 2%, it means that the value of 
Δ𝑅

𝑅
 ranges between −0.02 and +0.02. 

Similarly, the value of 
Δ𝐿

𝐿
 ranges between −0.04 and +0.04. Thus, the largest possible value of 

Δ𝐹

𝐹
 is 4(+0.02) −

(−0.04) = 0.12. Or, the largest possible relative error in the measurement of flux of blood is 12%. 

Now, going back to the function 𝐹 = 𝐹(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) of 𝑛 variables, if 𝑥1, 𝑥2, … 𝑥𝑛 are constrained by one or 

more relationships of the form, 

Φ(𝑥1, 𝑥2, … 𝑥𝑛) =  constant  , 

then not all 𝑛 variables are independent. In fact, if 𝐹 is a function of 𝑛 variables and if there are 𝑚 (𝑚 < 𝑛) 

constraining relationships among variables, then the number of independent variables is only 𝑛 − 𝑚. In this case 

one can use the method of Lagrange multipliers to find the extremum value of the function 𝐹. 

Method of Lagrange Multipliers 

Instead of considering a general function of 𝑛 variables, let us focus our attention on a function 𝐹(𝑥, 𝑦, 𝑧) of 

three variables, 𝑥, 𝑦 and 𝑧. These variables are constrained by the relation 

Φ(𝑥, 𝑦, 𝑧) =  constant  . 

Because of this constraint only two out of three variables are independent. Let us choose 𝑥 and 𝑦 to be the 

independent variables. Since we wish to determine the extremum value of 𝐹(𝑥, 𝑦, 𝑧), we take its derivative and 

set it equal to zero:  

𝜕𝐹

𝜕𝑥
 ∆𝑥 + 

𝜕𝐹

𝜕𝑦
 ∆𝑦 +

𝜕𝐹

𝜕𝑧
 ∆𝑧 = 0  .                                               𝐸𝑞. (1.10𝑎) 

From the constraint equation, Φ =  constant, we get 

𝜕𝛷

𝜕𝑥
 ∆𝑥 + 

𝜕𝛷

𝜕𝑦
 ∆𝑦 +

𝜕𝛷

𝜕𝑧
 ∆𝑧 = 0  .                                               𝐸𝑞. (1.10𝑏) 

We multiply Eq. (1.10b) by a multiplier, −𝜆, and add it to Eq. (1.10a) to get 

(
𝜕𝐹

𝜕𝑥
 – 𝜆 

𝜕Φ

𝜕𝑥
) ∆𝑥 + (

𝜕𝐹

𝜕𝑦
 – 𝜆 

𝜕Φ

𝜕𝑦
)∆𝑦 + (

𝜕𝐹

𝜕𝑧
 – 𝜆 

𝜕Φ

𝜕𝑧
) ∆𝑧 = 0  .  

Since the multiplier 𝜆 is yet undetermined and can be chosen at will, we choose it so that 

𝜕𝐹

𝜕𝑧
 – 𝜆 

𝜕Φ

𝜕𝑧
 = 0  .  
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This choice of 𝜆 will remove the term containing ∆𝑧, leaving only the two independent variables 𝑥 and 𝑦. As 𝑥 

and 𝑦 are independent variables, we can choose them, in turn, so that ∆𝑥 = 0 and ∆𝑦 = 0 separately. It then 

follows that 

𝜕𝐹

𝜕𝑥
 – 𝜆 

𝜕Φ

𝜕𝑥
 = 0  , 

and 

𝜕𝐹

𝜕𝑦
 – 𝜆 

𝜕Φ

𝜕𝑦
 = 0  .  

The last three equations, along with the equation of constraint, provide the values of the multiplier 𝜆 and the 

optimal values of the variables 𝑥, 𝑦 and 𝑧 that make the function 𝐹 extremum. The constant 𝜆 is called Lagrange’s 

undetermined multiplier. 

Example: A box (sides 𝒂, 𝒃, 𝒄) of fixed volume 𝑽 is to be designed so that its surface area is minimum. Find the 

optimal values of 𝒂, 𝒃, 𝒄. 

Solution: 

 

Figure 1.3. A box of fixed volume 𝑉 whose surface area is minimized. 

In this case, the equation of constraint is 

𝑉 =  𝑎 𝑏 𝑐 =  constant  . 

Because of this constraint, only two sides of the box can be changed independently—the third side will be 

determined by the equation of constraint. We choose 𝑎 and 𝑏 as the independent variables.  

We need to find the minimum value of the surface area of this box, which is 
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𝑆 = 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)  . 

Setting the derivative of 𝑆 equal to zero, we get 

∆𝑆 =  
𝜕𝑆

𝜕𝑎
 ∆𝑎 + 

𝜕𝑆

𝜕𝑏
 ∆𝑏 +

𝜕𝑆

𝜕𝑐
 ∆𝑐 = 0  , 

or, after dividing by the common factor of 2, 

(𝑏 + 𝑐) ∆𝑎 + (𝑐 + 𝑎) ∆𝑏 + (𝑎 + 𝑏) ∆𝑐 = 0  .                        𝐸𝑞. (1.11𝑎) 

Also, the volume 𝑉 is constant. So, 

∆𝑉 = 
𝜕𝑉

𝜕𝑎
 ∆𝑎 + 

𝜕𝑉

𝜕𝑏
 ∆𝑏 +

𝜕𝑉

𝜕𝑐
 ∆𝑐 = 0  , 

or 

 (𝑏𝑐) ∆𝑎 + (𝑐𝑎) ∆𝑏 + (𝑎𝑏) ∆𝑐 = 0  .                                𝐸𝑞. (1.11𝑏) 

Multiply Eq. (1.11b) by undetermined multiplier −𝜆 and add it to Eq. (1.11a) to get 

[(𝑏 + 𝑐) − 𝜆(𝑏𝑐)] ∆𝑎 + [(𝑐 + 𝑎) − 𝜆(𝑐𝑎)] ∆𝑏 + [(𝑎 + 𝑏) − 𝜆(𝑎𝑏)] ∆𝑐 = 0  .       𝐸𝑞. (1.11𝑐) 

The multiplier 𝜆 is still undetermined and can be chosen at will. We choose 𝜆 = (𝑎 + 𝑏)/(𝑎𝑏), or 

(𝑎 + 𝑏) − 𝜆(𝑎𝑏) = 0 

so that term containing ∆𝑐 is removed in Eq. (1.11c). Also, since 𝑎 and 𝑏 are chosen as independent variables, it 

follows from Eq. (1.11c) that 

(𝑏 + 𝑐) − 𝜆(𝑏𝑐) = 0  , 

and 

(𝑐 + 𝑎) − 𝜆(𝑐𝑎) = 0  .  

From these three relationships, we get 

𝜆(𝑎𝑏𝑐) = 𝑎(𝑏 + 𝑐) = 𝑏(𝑐 + 𝑎) = 𝑐(𝑎 + 𝑏)  . 

Or 
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𝑎 = 𝑏 = 𝑐  .  

Thus, a box of a fixed volume 𝑉 and a minimum surface area is a cube. 

Example: Determine the ratio of radius, 𝒓, and height, 𝒉, of a right circular cylinder of fixed volume 𝑽, that will 

make the surface area, 𝑺, of the cylinder a minimum. 

Solution: 

 

Figure 1.4. A cylinder of fixed volume 𝑉 whose surface area is minimized. 

In this case, 𝑉 =  𝜋𝑟2ℎ = constant is the equation of constraint. Both 𝑟 and ℎ can vary, but only one of them is 

independent. Let us choose 𝑟 to be the independent variable. The surface area, 𝑆, of the cylinder consists of two 

end circles and the curved surface of the cylinder. Thus, 

𝑆 = 2𝜋𝑟ℎ + 2𝜋𝑟2  .  

From the constraint condition 

∆𝑉 =  
𝜕𝑉

𝜕𝑟
 ∆𝑟 + 

𝜕𝑉

𝜕ℎ
 ∆ℎ = 0  , 

or 

2𝜋𝑟ℎ ∆𝑟 +  𝜋𝑟2 ∆ℎ = 0  , 

or 

2ℎ ∆𝑟 +  𝑟 ∆ℎ = 0  .                                              𝐸𝑞. (1.12𝑎) 

Also, when the surface area, 𝑆, is a minimum, then 

∆𝑆 =  
𝜕𝑆

𝜕𝑟
 ∆𝑟 + 

𝜕𝑆

𝜕ℎ
 ∆ℎ = 0  , 
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or 

(2𝜋ℎ + 4𝜋𝑟) ∆𝑟 +  2𝜋𝑟 ∆ℎ = 0  , 

or 

(ℎ + 2𝑟) ∆𝑟 +  𝑟 ∆ℎ = 0  .                                            𝐸𝑞. (1.12𝑏) 

On multiplying Eq. (1.12b) by undetermined multiplier −𝜆 and adding it to Eq. (1.12a) we get 

[2ℎ − 𝜆(ℎ + 2𝑟)] ∆𝑟 + [𝑟 − 𝜆𝑟] ∆ℎ = 0  .                           𝐸𝑞. (1.12𝑐) 

The multiplier 𝜆, which can be chosen at will, is taken as 𝜆 = 1. This choice of 𝜆 removes the term containing ∆ℎ 

in Eq. (1.12c). Also, since 𝑟 is an independent variable, we can choose ∆𝑟 ≠ 0 which makes 

2ℎ − (ℎ + 2𝑟) =  0  , 

or 

ℎ = 2𝑟  .  

Thus, the right circular cylinder of a fixed volume 𝑉 will have the least surface area when the height of the 

cylinder is equal to its diameter. 

Let us try to construct some common solids of different shapes, using playdough of a fixed volume 𝑉, such that 

the solid has a minimum surface area, 𝑆. 

If we construct a playdough cube of side length 𝐿, then 𝑉 =  𝐿3 and 𝑆 = 6 𝐿2 = 6 𝑉2/3. 

On the other hand, a playdough cylinder with a minimum surface area will have a height equal to its diameter. 

Thus, if 𝑅 is the radius of this cylinder, then 𝑉 =  𝜋𝑅2(2𝑅) =  2𝜋𝑅3. The surface area is 𝑆 = 2(𝜋𝑅2) +

 (2𝜋𝑅)(2𝑅) =  6𝜋𝑅2 = 6𝜋 (
𝑉

2𝜋
)
2/3

=  5.54 𝑉2/3. 

Finally, a playdough sphere of radius 𝑅 will have its volume as 𝑉 = (
4𝜋

3
)𝑅3 and its surface area as 𝑆 = 4𝜋𝑅2 =

4𝜋 (
3𝑉

4𝜋
)
2/3

= 4.84 𝑉2/3. 

Thus, among these common solids, all of the same volume 𝑉, the sphere will have the smallest surface area. This 

may partly explain why all the celestial bodies – stars, planets, and moons – are spherical in shape. It also 
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explains why soap bubbles and raindrops tend to be spheres. In other words, Mother Nature prefers to make 

shapes with least surface area, for a fixed volume of its own playdough. 

Chain Rule for Partial Derivatives 

Recall that chain rule of calculus is applicable when we need to take derivative of a function of another function. 

Case I: The function 𝐹(𝑥) is a function of a single variables 𝑥 which itself is a function of two other variables, 𝑠 

and 𝑡, that is, 𝑥(𝑠, 𝑡). Then, in principle, 𝐹 is a function of two variables, 𝑠 and 𝑡. The derivatives of 𝐹 with respect 

to 𝑠 and 𝑡 are 

𝜕𝐹

𝜕𝑠
=  
𝑑𝐹

𝑑𝑥
 
𝜕𝑥

𝜕𝑠
  , 

and 

𝜕𝐹

𝜕𝑡
=  
𝑑𝐹

𝑑𝑥
 
𝜕𝑥

𝜕𝑡
  . 

Example: Given the function 𝑭(𝒙) = 𝒙𝟐 with 𝒙(𝒔, 𝒕) =  𝒔 + 𝒕, determine the derivatives 
𝝏𝑭

𝝏𝒔
 and 

𝝏𝑭

𝝏𝒕
. 

Solution: 

𝜕𝐹

𝜕𝑠
= (2𝑥)(1) = 2(𝑠 + 𝑡)  , 

and 

𝜕𝐹

𝜕𝑡
= (2𝑥)(1) = 2(𝑠 + 𝑡)  . 

Alternatively, 

𝐹(𝑠, 𝑡) = (𝑠 + 𝑡)2 

and, directly, the partial derivatives of 𝐹(𝑠, 𝑡) with respect to 𝑠 or 𝑡 provide the same results as those obtained 

by using the chain rule for partial derivatives. 

Case II: 𝐹(𝑥, 𝑦) is a function of two variables 𝑥 and 𝑦, and 𝑥 and 𝑦 themselves are functions of a single variable 𝑡. 

Then, in principle, 𝐹 is a function of a single variable 𝑡 and the derivative of 𝐹 with respect to 𝑡 is, 
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𝑑𝐹

𝑑𝑡
=  
𝜕𝐹

𝜕𝑥
 
𝑑𝑥

𝑑𝑡
+ 
𝜕𝐹

𝜕𝑦
 
𝑑𝑦

𝑑𝑡
  . 

Example: Given the function 𝑭(𝒙, 𝒚)  = 𝐥𝐧(𝟐𝒙 + 𝟑𝒚) with 𝒙 =  𝒕𝟐 and 𝒚 = 𝐬𝐢𝐧(𝟑𝒕), determine the derivative 

𝒅𝑭

𝒅𝒕
. 

Solution: Using the chain rule for partial derivatives,  

𝑑𝐹

𝑑𝑡
=  
𝜕𝐹

𝜕𝑥
 
𝑑𝑥

𝑑𝑡
+ 
𝜕𝐹

𝜕𝑦
 
𝑑𝑦

𝑑𝑡
=  

2

2𝑥 + 3𝑦
 (2𝑡) + 

3

2𝑥 + 3𝑦
 [3 cos(3𝑡)] =  

4𝑡 + 9 cos(3𝑡)

2𝑡2 + 3 sin(3𝑡)
  . 

Alternatively, we could write 

𝐹(𝑥, 𝑦) = ln[2𝑡2 + 3 sin(3𝑡)] 

and then use the rule, for taking derivative of a function of a single variable, to get the same result. 

Case III: The function 𝐹(𝑥, 𝑦) is a function of two variables 𝑥 and 𝑦, and the two variables 𝑥 and 𝑦 themselves are 

functions of two other variables, 𝑠 and 𝑡; that is, 𝑥(𝑠, 𝑡) and 𝑦(𝑠, 𝑡). Then, in principle, 𝐹 is a function of two 

variables, 𝑠 and 𝑡. The derivatives of 𝐹 with respect to 𝑠 and 𝑡 are 

𝜕𝐹

𝜕𝑠
=  
𝜕𝐹

𝜕𝑥
 
𝜕𝑥

𝜕𝑠
+ 
𝜕𝐹

𝜕𝑦
 
𝜕𝑦

𝜕𝑠
  , 

and 

𝜕𝐹

𝜕𝑡
=  
𝜕𝐹

𝜕𝑥
 
𝜕𝑥

𝜕𝑡
+ 
𝜕𝐹

𝜕𝑦
 
𝜕𝑦

𝜕𝑡
  . 

Example: Given the function 𝑭(𝒙, 𝒚) = 𝒙𝟐 + 𝒙𝒚 + 𝒚𝟐 with 𝒙(𝒔, 𝒕) =  𝒔 + 𝒕 and 𝒚(𝒔, 𝒕) = 𝒔𝒕, determine the 

derivatives 
𝝏𝑭

𝝏𝒔
 and 

𝝏𝑭

𝝏𝒕
. 

Solution: 

Using the chain rule for partial derivatives, 

𝜕𝐹

𝜕𝑠
=  
𝜕𝐹

𝜕𝑥
 
𝜕𝑥

𝜕𝑠
+ 
𝜕𝐹

𝜕𝑦
 
𝜕𝑦

𝜕𝑠
= (2𝑥 + 𝑦)(1) + (𝑥 + 2𝑦)(𝑡) = (2𝑠 + 2𝑡 + 𝑠𝑡) + (𝑠 + 𝑡 + 2𝑠𝑡)𝑡  , 

and 
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𝜕𝐹

𝜕𝑡
=  
𝜕𝐹

𝜕𝑥
 
𝜕𝑥

𝜕𝑡
+ 
𝜕𝐹

𝜕𝑦
 
𝜕𝑦

𝜕𝑡
= (2𝑥 + 𝑦)(1) + (𝑥 + 2𝑦)(𝑠) = (2𝑠 + 2𝑡 + 𝑠𝑡) + (𝑠 + 𝑡 + 2𝑠𝑡)𝑠  . 

Alternatively, one could express 𝐹(𝑥, 𝑦) as 𝐹(𝑠, 𝑡) in the form 

𝐹(𝑠, 𝑡) = (𝑠 + 𝑡)2 + (𝑠 + 𝑡)𝑠𝑡 + 𝑠2𝑡2  . 

Taking the partial derivatives of 𝐹(𝑠, 𝑡) with respect to 𝑠 or 𝑡 will lead to the same results as those obtained by 

using the chain rule for partial derivatives. 

1.3 WAVE EQUATION 

As an application of partial derivatives, we will derive an equation, the wave equation, which describes a periodic 

function. A function is periodic when it repeats itself either in time or in space. Periodic phenomena are very 

common in a variety of fields including biology, physics, chemistry, astronomy, and so on. In biology, periodic 

phenomena include cell cycle, cardiac cycle, circadian rhythms, ovarian cycle, and metabolic cycle. In physics, 

examples of periodic phenomena include a swinging pendulum, mass on a spring, and water waves (or ripples). 

In chemistry, periodicity is found in the properties of chemical elements and in oscillating chemical reactions. In 

astronomy, there are abundant examples of periodic phenomena such as motion of satellites and the Moon 

around the Earth, motion of planets around the Sun, and the associated periodic occurrences of seasons, tides, 

and the day-and-night cycle. 

One of the simplest mathematical functions that repeats itself is the sine (or cosine) function. For example, 

sin(𝑘𝑥) is a periodic function that repeats itself in spatial coordinate 𝑥. In fact, the value of this function at some 

point 𝑥0 is same as its value at 𝑥0 +
2𝜋

𝑘
. In other words, the wavelength [or, the length over which the function 

repeats itself] of this function is 𝜆 =
2𝜋

𝑘
. Similarly, sin(𝜔𝑡) is a periodic function that repeats itself in time 𝑡. The 

value of this function at some time 𝑡0 is the same as its value at 𝑡0 +
2𝜋

𝜔
. In other words, the period [or, the time 

over which the function repeats itself] of this function is 𝑇 =
2𝜋

𝜔
. Note that 

1

𝑇
 measures the number of times the 

function repeats itself in a unit time. Therefore, 
1

𝑇
, that measures how frequently the function repeats itself, is 

called the frequency, 𝑓, of the wave. Thus, 𝑓 =
1

𝑇
= 

𝜔

2𝜋
.  

Now, a wave, according to its dictionary meaning, refers to “a disturbance on the surface of a liquid body, as the 

sea or a lake.” We can set up a water wave (commonly called a ripple) by throwing a large stone in a lake. This 

wave will look like a series of surges which are progressively moving outwardly away from the point where stone 

touched the water. If we throw a bottle cork in the disturbed water, we will observe that the cork will be simply 

bobbing up and down at its fixed location, without moving horizontally with the wave, as surges pass by it. It 
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indicates that, in case of ripples in water, the wave is moving outward while the water itself is not moving with 

the wave. We can investigate the behavior of this wave either as a function of spatial coordinate 𝑥 or as a 

function of time 𝑡. Using a camera, if we take the photograph of this wave, it will look like Figure 1.5 which 

shows, at a fixed time [the time at which photograph was taken], the wave as a function of 𝑥. On the other hand, 

we could focus our attention at some fixed point, say the bobbing cork with spatial coordinate 𝑥, and measure its 

displacement with respect to the horizontal level of calm water as a function of time 𝑡. Figure 1.6 shows this 

displacement, for a fixed value of 𝑥 [location of cork], as a function of time 𝑡. From Figures 1.5 and 1.6 we note 

that this wave is periodic in both 𝑥 and 𝑡. If we represent this wave mathematically by a sine function, we get a 

sinusoidal or a harmonic wave. 

 

Figure 1.5. Periodic function 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) as a function of 𝑥 for a constant value of 𝑡.  

We note, in passing, that because of the identity 

sin (
𝜋

2
+ 𝜃) = cos(𝜃)  , 

for a given angle 𝜃, the sine function and the cosine function look the same except the sine function is ahead of 

cosine function by a phase of 𝜋/2. In general, if a function looks like a sine or a cosine function, we will refer to it 

as a sinusoidal function. 
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Figure 1.6. Periodic function 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) as a function of 𝑡 for a constant value of 𝑥.  

 

The mathematical function 

𝐹(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡)                                    𝐸𝑞.   (1.13𝑎) 

represents the sinusoidal wave of figures 1.5 and 1.6. The function 𝐹(𝑥, 𝑡) represents the displacement, at time 

𝑡, of a point in water located at position 𝑥. The largest value of the displacement is 𝐴, which is called the 

amplitude of the wave. The wavenumber 𝑘 is related to the wavelength 𝜆 as 𝑘 =
2𝜋

𝜆
. The angular frequency 𝜔 is 

related to the period 𝑇 as 𝜔 =
2𝜋

𝑇
. The argument of the sine function, namely (𝑘𝑥 − 𝜔𝑡), is called the phase of 

the wave. Each point on the wave, such as point P in Figure 1.5, has a fixed constant value of phase which does 

not change as the point P moves along with the wave. From Eq. (1.13a), as 𝑡 increases, 𝑥 also must increase to 

keep the phase constant. Thus, this wave travels along the +𝑥 direction. Similarly, a wave of the form  

𝐹(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝜔𝑡)                                                    𝐸𝑞. (1.13𝑏) 

travels along the – 𝑥 direction.  

The phase velocity refers to the speed of an arbitrary point, like P of some fixed phase, on the wave. For point P, 

phase =  𝑘𝑥 − 𝜔𝑡 = constant  . 

Thus, 

𝑘
𝑑𝑥

𝑑𝑡
− 𝜔 = 0 
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or 

𝑑𝑥

𝑑𝑡
=
𝜔

𝑘
= 𝑣  .                                                         𝐸𝑞. (1.14) 

Here 𝑣 is called the phase velocity of the wave. Thus, 

𝐹+(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) 

and  

𝐹−(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝜔𝑡) 

are the sinusoidal (or harmonic) waves travelling along +𝑥 and – 𝑥 direction, respectively. These waves are 

moving with a (phase) velocity of  

𝑣 =  
𝜔

𝑘
=  (

𝜆

2𝜋
) (
2𝜋

𝑇
) =  

𝜆

𝑇
  . 

Using partial derivatives of  

𝐹(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) 

we get 

𝜕𝐹

𝜕𝑥
= 𝑘𝐴 cos(𝑘𝑥 − 𝜔𝑡) 

𝜕2𝐹

𝜕𝑥2
= −𝑘2𝐴 sin(𝑘𝑥 − 𝜔𝑡) = −𝑘2𝐹 

𝜕𝐹

𝜕𝑡
= − 𝜔𝐴 cos(𝑘𝑥 − 𝜔𝑡) 

𝜕2𝐹

𝜕𝑡2
= −𝜔2𝐴 sin(𝑘𝑥 − 𝜔𝑡) = −𝜔2𝐹 

Combining these equations, we get 

−𝑘2𝜔2𝐹 = 𝜔2
𝜕2𝐹

𝜕𝑥2
= 𝑘2

𝜕2𝐹

𝜕𝑡2
  . 

Finally, using 𝜔 = 𝑘𝑣, where 𝑣 is the phase velocity, we have 
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𝜕2𝐹

𝜕𝑥2
−
1

𝑣2
𝜕2𝐹

𝜕𝑡2
= 0  .                                                      𝐸𝑞. (1.15) 

This is known as the 𝑤𝑎𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. Equations of this kind, which relate various partial derivatives, are called 

partial differential equations. 

In the above discussion, we derived the wave equation by starting from sinusoidal (or, sine- and cosine-like) 

functions. However, the general solutions of the wave equation are not necessarily sinusoidal. We will now show 

that general solutions of the wave equation are not merely functions of variables 𝑥 and 𝑡, but are functions of 

the combinations 𝑥 + 𝑣𝑡 and 𝑥 − 𝑣𝑡. To show this, we make a change of variables from 𝑥 and 𝑡 to 𝑟 = 𝑥 + 𝑣𝑡 

and 𝑠 = 𝑥 − 𝑣𝑡. Using chain rule for partial derivatives, 

𝜕𝐹

𝜕𝑥
=  
𝜕𝐹

𝜕𝑟
 
𝜕𝑟

𝜕𝑥
+ 
𝜕𝐹

𝜕𝑠
 
𝜕𝑠

𝜕𝑥
=  
𝜕𝐹

𝜕𝑟
+
𝜕𝐹

𝜕𝑠
= (

𝜕

𝜕𝑟
+
𝜕

𝜕𝑠
)𝐹  , 

𝜕𝐹

𝜕𝑡
=  
𝜕𝐹

𝜕𝑟
 
𝜕𝑟

𝜕𝑡
+ 
𝜕𝐹

𝜕𝑠
 
𝜕𝑠

𝜕𝑡
=  
𝜕𝐹

𝜕𝑟
𝑣 +

𝜕𝐹

𝜕𝑠
(−𝑣) = 𝑣 (

𝜕

𝜕𝑟
−
𝜕

𝜕𝑠
) 𝐹  . 

Or, in operator notation, 

𝜕

𝜕𝑥
≡  (

𝜕

𝜕𝑟
+
𝜕

𝜕𝑠
)  , 

𝜕

𝜕𝑡
≡  𝑣 (

𝜕

𝜕𝑟
−
𝜕

𝜕𝑠
)  . 

Then, 

𝜕2𝐹

𝜕𝑥2
=
𝜕

𝜕𝑥
(
𝜕𝐹

𝜕𝑥
) = (

𝜕

𝜕𝑟
+
𝜕

𝜕𝑠
) (
𝜕𝐹

𝜕𝑟
+
𝜕𝐹

𝜕𝑠
) =

𝜕2𝐹

𝜕𝑟2
+ 2

𝜕2𝐹

𝜕𝑟𝜕𝑠  
+
𝜕2𝐹

𝜕𝑠2
  , 

𝜕2𝐹

𝜕𝑡2
=
𝜕

𝜕𝑡
(
𝜕𝐹

𝜕𝑡
) = 𝑣 (

𝜕

𝜕𝑟
−
𝜕

𝜕𝑠
) 𝑣 (

𝜕𝐹

𝜕𝑟
−
𝜕𝐹

𝜕𝑠
) = 𝑣2 (

𝜕2𝐹

𝜕𝑟2
− 2

𝜕2𝐹

𝜕𝑟𝜕𝑠  
+
𝜕2𝐹

𝜕𝑠2
)  . 

Thus, the wave equation becomes, 

𝜕2𝐹

𝜕𝑥2
−
1

𝑣2
𝜕2𝐹

𝜕𝑡2
= 4 

𝜕2𝐹

𝜕𝑟𝜕𝑠  
= 0  . 

It implies that 

𝜕

𝜕𝑟
(
𝜕𝐹

𝜕𝑠
) = 0  , 
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as well as 

𝜕

𝜕𝑠
(
𝜕𝐹

𝜕𝑟
) = 0  . 

In words, it implies that 
𝜕𝐹

𝜕𝑠
 is independent of 𝑟 and 

𝜕𝐹

𝜕𝑟
 is independent of 𝑠. Thus, the function 𝐹 can be expressed 

as a sum of two separate functions, 𝑔 and ℎ, such that 𝑔 is a function of variable 𝑟 only and ℎ is a function of 

variable 𝑠 only. So, a general solution of the wave equation is of the form, 

𝐹 = 𝑔(𝑟) + ℎ(𝑠)  , 

or 

𝐹(𝑥, 𝑡) = 𝑔(𝑥 + 𝑣𝑡) + ℎ(𝑥 − 𝑣𝑡)  . 

We note in passing that the two sinusoidal functions that we encountered previously are indeed functions of 

variables 𝑟 = 𝑥 + 𝑣𝑡 and 𝑠 = 𝑥 − 𝑣𝑡. Explicitly, using 𝜔 = 𝑘𝑣, 

𝐹+(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) = 𝐴 sin 𝑘(𝑥 − 𝑣𝑡)  ,                                        𝐸𝑞. (1.16𝑎) 

and  

𝐹−(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝜔𝑡) = 𝐴 sin 𝑘(𝑥 + 𝑣𝑡)   .                  𝐸𝑞. (1.16𝑏) 

1.4 IMPLICIT DERIVATIVES 

Consider the relationship 𝑦2 + sin 𝑥 sin 𝑦 = 𝑥 between two variables 𝑥 and 𝑦. Both 𝑥 and 𝑦 can vary, though not 

independently since a change in 𝑥 leads to a change in 𝑦 and vice versa. Thus, either 𝑦 can be treated as a 

function of a single variable 𝑥, or 𝑥 can be treated as a function of the variable 𝑦. We can determine 
𝑑𝑦

𝑑𝑥
, the rate 

of change of 𝑦 with 𝑥, or 
𝑑𝑥

𝑑𝑦
, the rate of change of 𝑥 with 𝑦. We note that it is not easy to write either 𝑥 as a 

function of 𝑦 or 𝑦 as a function of 𝑥. Starting with the relationship between 𝑥 and 𝑦, we first differentiate it with 

respect to 𝑥 to get 

2𝑦
𝑑𝑦

𝑑𝑥
+ cos 𝑥 sin 𝑦 + sin 𝑥 cos 𝑦 

𝑑𝑦

𝑑𝑥
= 1  , 

or  

(2𝑦 + sin 𝑥 cos 𝑦) 
𝑑𝑦

𝑑𝑥
= 1 − cos 𝑥 sin 𝑦  , 
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or 

 
𝑑𝑦

𝑑𝑥
=
1 − cos 𝑥 sin 𝑦

2𝑦 + sin 𝑥 cos 𝑦
  . 

Again, starting with the relationship between 𝑥 and 𝑦, we next differentiate it with respect to 𝑦 to get 

2𝑦 + cos 𝑥 sin 𝑦
𝑑𝑥

𝑑𝑦
+ sin 𝑥 cos 𝑦  =

𝑑𝑥

𝑑𝑦
  , 

or  

(1 − cos 𝑥 sin 𝑦) 
𝑑𝑥

𝑑𝑦
= 2𝑦 + sin 𝑥 cos 𝑦  , 

or 

 
𝑑𝑥

𝑑𝑦
=
2𝑦 + sin 𝑥 cos 𝑦

1 − cos 𝑥 sin 𝑦
  . 

These kinds of derivatives, which contain both variables 𝑥 and 𝑦, are called implicit derivatives. Note in passing, 

in this example, 

𝑑𝑦

𝑑𝑥
=
1

𝑑𝑥
𝑑𝑦

  ,                                                      𝐸𝑞. (1.17) 

which is a general property of derivatives of a function of a single variable. 

As another example, consider the relationship 𝑥 + 𝑦 = exp(𝑥𝑦) between variables 𝑥 and 𝑦. We first 

differentiate this relationship with respect to 𝑥 to get 

1 +
𝑑𝑦

𝑑𝑥
= exp(𝑥𝑦) {𝑥

𝑑𝑦

𝑑𝑥
+ 𝑦}  , 

or  

{𝑥 exp(𝑥𝑦) − 1} 
𝑑𝑦

𝑑𝑥
= 1 − 𝑦 exp(𝑥𝑦)  , 

or 

 
𝑑𝑦

𝑑𝑥
=
1 − 𝑦 exp(𝑥𝑦)

𝑥 exp(𝑥𝑦) − 1
  . 
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Next, differentiate the original relationship with respect to 𝑦 to get 

𝑑𝑥

𝑑𝑦
+ 1 = exp(𝑥𝑦) {𝑥 +

𝑑𝑥

𝑑𝑦
𝑦}  , 

or  

{1 − 𝑦 exp(𝑥𝑦)} 
𝑑𝑥

𝑑𝑦
= 𝑥 exp(𝑥𝑦) − 1  , 

or 

 
𝑑𝑥

𝑑𝑦
=
𝑥 exp(𝑥𝑦) − 1

1 − 𝑦 exp(𝑥𝑦)
  . 

Again, the reciprocity relationship of Eq. (1.17), namely, 

𝑑𝑦

𝑑𝑥
=
1

𝑑𝑥
𝑑𝑦

  , 

is satisfied since we are dealing with a function of a single variable here. Now, let us explore whether this 

reciprocity relationship also works for partial derivatives. As an example, consider the coordinates of a point in a 

plane. The Cartesian (𝑥, 𝑦) and the plane polar (𝜌, 𝜙) coordinates of the point are related to each other. The 𝑥 

and 𝑦 coordinates can be expressed as functions of variables 𝜌 and 𝜙, 

𝑥 = 𝜌 cos𝜙,  𝑦 = 𝜌 sin 𝜙  . 

Conversely, the 𝜌 and 𝜙 coordinates can be considered as functions of variables 𝑥 and 𝑦, 

𝜌 =  √𝑥2 + 𝑦2, 𝜙 =  tan−1 (
𝑦

𝑥
)  . 

From here, 

𝜕𝜙

𝜕𝑥
=

−
𝑦
𝑥2

1 + (
𝑦
𝑥
)
2 = −

𝑦

𝑥2 + 𝑦2
  , 

and 

𝜕𝑥

𝜕𝜙
= −𝜌 sin𝜙 = −𝑦  . 
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Clearly, 
𝜕𝜙

𝜕𝑥
≠

1
𝜕𝑥

𝜕𝜙

. The reason is that the variables being held fixed are different for each of the two cases. In the 

above example 
𝜕𝜙

𝜕𝑥
 is actually (

𝜕𝜙

𝜕𝑥
)
𝑦

, that is, variable 𝑦 is held fixed while evaluating this derivative. Similarly, 
𝜕𝑥

𝜕𝜙
 is 

(
𝜕𝑥

𝜕𝜙
)
𝜌

 since variable 𝜌 is fixed during evaluation of this derivative. 

Legendre Transformation 

Suppose 𝐹(𝑥, 𝑦) is a function of two independent variables 𝑥 and 𝑦. It is possible to define two new variables 𝑢 

and 𝑣, which are combinations of 𝑥 and 𝑦 [for example, 𝑢 =  𝑥 + 𝑦 and 𝑣 = 𝑥 − 𝑦], and, inversely, 𝑥 and 𝑦 are 

functions of variables 𝑢 and 𝑣. Now if 𝑥 and 𝑦 in 𝐹 are replaced by 𝑢 and 𝑣, then 𝐹 will become a function of two 

new variables 𝑢 and 𝑣. Thus, 

𝐹(𝑥, 𝑦) → 𝐹[𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)] ≡ 𝐺(𝑢, 𝑣)  . 

The procedure for replacing one set of independent variables in a function by another set of independent 

variables is accomplished, in general, by Legendre transformation. The change of independent variables is helpful 

in classical mechanics in discussion of canonically conjugate variables, and in thermodynamics in the discussion 

of Maxwell relations. The transformation procedure is described below. 

For 𝐹(𝑥, 𝑦), we can write 

𝑑𝐹 =  
𝜕𝐹

𝜕𝑥
 𝑑𝑥 + 

𝜕𝐹

𝜕𝑦
 𝑑𝑦 = 𝑝 𝑑𝑥 + 𝑞 𝑑𝑦  , 

where 𝑝(𝑥, 𝑦) =
𝜕𝐹

𝜕𝑥
 and 𝑞(𝑥, 𝑦) =

𝜕𝐹

𝜕𝑦
. Using Clairaut theorem 

(
𝜕𝑝

𝜕𝑦
)
𝑥

= (
𝜕𝑞

𝜕𝑥
)
𝑦

 

Now, define three new functions, 

𝑓 = 𝐹(𝑥, 𝑦) − 𝑝(𝑥, 𝑦) 𝑥  , 

𝑔 = 𝐹(𝑥, 𝑦) − 𝑞(𝑥, 𝑦) 𝑦  , 

and             ℎ = 𝐹(𝑥, 𝑦) − 𝑝(𝑥, 𝑦)𝑥 − 𝑞(𝑥, 𝑦)𝑦  . 

Then, 

𝑑𝑓 = 𝑑𝐹 − 𝑝 𝑑𝑥 − 𝑥 𝑑𝑝 = −𝑥 𝑑𝑝 + 𝑞 𝑑𝑦  , 
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𝑑𝑔 = 𝑑𝐹 − 𝑞 𝑑𝑦 − 𝑦 𝑑𝑞 = 𝑝 𝑑𝑥 − 𝑦 𝑑𝑞  , 

𝑑ℎ = 𝑑𝐹 − 𝑝 𝑑𝑥 − 𝑥 𝑑𝑝 − 𝑞 𝑑𝑦 − 𝑦 𝑑𝑞 = −𝑥 𝑑𝑝 − 𝑦 𝑑𝑞  . 

Thus, 𝑓 is a function of variables 𝑝 and 𝑦, 𝑔 is a function of variables 𝑥 and 𝑞, and ℎ is a function of variables 𝑝 

and 𝑞. The partial derivatives of 𝑓(𝑝, 𝑦), 𝑔(𝑥, 𝑞) and ℎ(𝑝, 𝑞) are 

𝜕𝑓(𝑝, 𝑦)

𝜕𝑝
 = −𝑥    ,          

𝜕𝑓(𝑝, 𝑦)

𝜕𝑦
 = +𝑞  , 

𝜕𝑔(𝑥, 𝑞)

𝜕𝑥
 = +𝑝     ,          

𝜕𝑔(𝑥, 𝑞)

𝜕𝑞
 = −𝑦  , 

𝜕ℎ(𝑝, 𝑞)

𝜕𝑝
 = −𝑥    ,          

𝜕ℎ(𝑝, 𝑞)

𝜕𝑞
 = −𝑦  . 

Finally, using the Clairaut theorem, 

−(
𝜕𝑥

𝜕𝑦
)
𝑝

= +(
𝜕𝑞

𝜕𝑝
)
𝑦

  ,                                                    𝐸𝑞. (1.18𝑎) 

+(
𝜕𝑝

𝜕𝑞
)
𝑥

= −(
𝜕𝑦

𝜕𝑥
)
𝑞
  ,                                                    𝐸𝑞. (1.18𝑏) 

−(
𝜕𝑥

𝜕𝑞
)
𝑝

= −(
𝜕𝑦

𝜕𝑝
)
𝑞

  .                                                     𝐸𝑞. (1.18𝑐) 

These three relations along with the original relation 

+(
𝜕𝑝

𝜕𝑦
)
𝑥

= +(
𝜕𝑞

𝜕𝑥
)
𝑦
  ,                                                    𝐸𝑞. (1.18𝑑) 

are the basis of Maxwell’s relations in thermodynamics. Appendix B describes an easy mnemonic device to 

remember Maxwell’s relations with correct signs of terms. 
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PROBLEMS FOR CHAPTER 1 

1.  Given 𝐹 = exp(𝑥) sin 𝑦 ,   𝑥 =  𝑢𝑣2, 𝑦 =  𝑢2𝑣, use the chain rule to find 

𝑢
𝜕𝐹

𝜕𝑢
+  𝑣

𝜕𝐹

𝜕𝑣
  . 

Write the result in terms of variables 𝑥 and 𝑦 only. 

2.  Consider a function of a single variable 𝑥, 𝐹(𝑥) = 𝑥3 − 6𝑥2 + 9𝑥 + 4. 

(a) Determine the values of 𝑥 at which the function 𝐹(𝑥) is an extremum. 

(b) At the extremum points, does the function 𝐹(𝑥) have a minimum or a maximum value?  

3. Biomedical Physics Application. A common inhabitant of human intestines is the bacterium Escherichia coli. A 

single cell of this bacterium in a nutrient-broth medium divides into two cells every twenty minutes. The initial 

population of a culture is 250 cells.  

(a) Find an expression for the number of cells after 𝑡 hours. 

(b) Find the number of cells after 5 hours. 

(c) When will the population reach 128,000 cells? 

4. Biomedical Physics Application. At 8:00 AM in the morning, a biologist starts a six-hour experiment with 

bacterium Escherichia coli. As mentioned in problem 3, a cell of this bacterium in a nutrient-broth medium 

divides into two cells every twenty minutes.  At 12:00 PM the biologist measures the cell population to be 

2,048,000. 

(a) What was the initial population of the bacterium cells in the beginning of the experiment at 8:00 AM? 

(b) What will be the final population of the bacterium cells at the end of the experiment at 2:00 PM? 

5. If 𝑉(𝑟, 𝜃) = (𝛼𝑟𝑛 +  𝛽𝑟−𝑛) cos(𝑛𝜃) where 𝛼, 𝛽 and 𝑛 are constants, find 

𝜕𝑉

𝜕𝑟
,
𝜕2𝑉

𝜕𝑟2
 and 

𝜕2𝑉

𝜕𝜃2
  . 

Hence show that 
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𝜕2𝑉

𝜕𝑟2
 +  
1

𝑟

𝜕𝑉

𝜕𝑟
+ 
1

𝑟2
 
𝜕2𝑉

𝜕𝜃2
= 0  . 

6. The pressure 𝑃, volume 𝑉. and temperature 𝑇 of a certain gas are related by the van der Waals’ equation of 

state, 

(𝑃 + 
𝑎

𝑉2
) (𝑉 − 𝑏) = 𝑅𝑇  , 

where 𝑎, 𝑏 and 𝑅 are all constants. Find the values of 𝑃, 𝑉 and 𝑇 for which (
𝜕𝑃

𝜕𝑉
)
𝑇
= 0   and (

𝜕2𝑃

𝜕𝑉2
)
𝑇
= 0 are 

satisfied simultaneously. These particular values of pressure, volume and temperature are called critical values 

(𝑃𝑐, 𝑉𝑐  and 𝑇𝑐). One can define reduced parameters as 

𝑃𝑟 = 
𝑃

𝑃𝑐
, 𝑉𝑟 = 

𝑉

𝑉𝑐
 and 𝑇𝑟 = 

𝑇

𝑇𝑐
  . 

Show that the van der Waals’ equation can be recast, in terms of the reduced parameters, in the following 

invariant form: 

(𝑃𝑟 + 
3

𝑉𝑟
2
) (𝑉𝑟 − 

1

3
) =

8𝑇𝑟
3
  . 

7. Biomedical Physics Application. In all mammalians, including human beings, the rate of growth of skull is 

known to be different from the rate of growth of backbone. The allometric relationship between skull size S(t) 

and backbone length B(t), at age 𝑡, is 

𝑆(𝑡) =  𝑎 𝐵(𝑡)𝑏  , 

where 𝑎 = 1.16 and 𝑏 = 0.93. 

(a) Determine the relationship between the relative growth rates, 
1

𝑆
 
𝑑𝑆

𝑑𝑡
 and 

1

𝐵
 
𝑑𝐵

𝑑𝑡
, of skull and backbone, 

respectively. 

(b) Which part of the body, skull or backbone, grows faster than the other? 

8. If 𝑓(𝑥, 𝑦, 𝑧) =  1/(𝑥2 + 𝑦2 + 𝑧2), calculate 𝛁2𝑓, where 𝛁𝟐 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 is called the Laplacian operator. 

9. For 𝑓(𝑥, 𝑦) =  𝑥3 − 𝑦3 − 2𝑥𝑦 + 6, find the values of 𝜕2𝑓/𝜕𝑥2 and 𝜕2𝑓/𝜕𝑦2 at the points where 
𝜕𝑓

𝜕𝑥
=

0 as well as 
𝜕𝑓

𝜕𝑦
= 0. 
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10. Show explicitly that arbitrary functions 𝐹(𝑥 − 𝑣𝑡) and 𝐹(𝑥 + 𝑣𝑡) are solutions of the wave equation 

𝜕2𝐹

𝜕𝑥2
− 
1

𝑣2
𝜕2𝐹

𝜕𝑡2
= 0  . 

11. Biomedical Physics Application. All human beings belong to one of the four main blood groups (types of 

blood) – A, B, AB and O. Blood group O is the most common type of blood in the world. Mixing blood groups can 

lead to a life-threatening situation. The blood type of a person is determined by three alleles (a variant form of a 

gene), A, B and O that are inherited from parents, one from father and other from mother. The inherited genes 

join to form the blood groups A (joining A with A or A with O), B (joining B with B or B with O), AB (joining A with 

B) and O (joining O with O). According to the Hardy-Weinberg Law of genetics, the fraction of population that 

carries two different alleles is 

𝑃 = 2𝑥𝑦 + 2𝑦𝑧 + 2𝑧𝑥 

where 𝑥, 𝑦 and 𝑧 are the fractions of alleles A, B and O in the population. Using the fact that  𝑥 + 𝑦 + 𝑧 = 1, 

show using the Method of Lagrange Multipliers that 𝑃 can be at most 2/3. 

12. Assume that 𝑎 and 𝑏 are the side lengths of a right-angle triangle. The size of the hypotenuse, ℎ, of this 

triangle is fixed at 5√2 m. Using the Method of Lagrange Multipliers, determine the lengths of the sides 𝑎 and 𝑏 

when the area of the triangle is extremum. 

13. Biomedical Physics Application. The drug response function 𝑅(𝑡), describing the level of medication in the 

bloodstream after a drug is administered, can be represented as 

𝑅(𝑡) =  𝑅0 𝑡
−3/2 exp( −𝑎/𝑡  ) 

where 𝑅0 and 𝑎 depend on the nature of the drug. For a particular drug 𝑅0 = 0.01 and 𝑎 =  0.138, and 𝑡 is 

measured in minutes. Determine the time, 𝑡, at which the level of the medication in the bloodstream is 

maximum. 

14. Biomedical Physics Application. In the angioplasty procedure, a “balloon” is inflated inside a partially 

clogged artery to restore the normal blood flow. The volume of blood flowing per unit time past a given point, 

𝐹, is proportional to the fourth power of the radius, 𝑅, of the artery carrying the blood (Poiseuille’s equation), 

𝐹 = 𝑘 𝑅4  . 

What will be the relative change in 𝐹 (that is, 
𝑑𝐹

𝐹
) when an artery is constricted by a 2% change in its radius due 

to clogging?  
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Chapter 2: Integral Calculus 

In this chapter we will first review integral calculus, assuming that the reader has already seen integrals of 

functions of a single variable. After a short review, we will introduce the multiple integrals. 

2.1 INDEFINITE INTEGRALS 

An indefinite integral is defined as an antiderivative in the following sense. If a known function, 𝐹 (𝑥), is 

represented as the derivative of an unknown function, 𝑓 (𝑥), that is, 𝐹 (𝑥) =  
𝑑𝑓

𝑑𝑥
, then  

∫𝐹(𝑥) 𝑑𝑥 =  𝑓(𝑥)  . 

The function 𝑓(𝑥) is the antiderivative, or integral, of 𝐹(𝑥). In this case 𝑥 is the 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 and 

the known function 𝐹(𝑥) is the 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑛𝑑. Since 
𝑑𝐶

𝑑𝑥
= 0 if 𝐶 is a constant, it is customary to write 

∫𝐹(𝑥) 𝑑𝑥 =  𝑓(𝑥) +  𝐶  ,                   𝐸𝑞. (2.1) 

where 𝐶 is called the constant of integration. Some well-known indefinite integrals are 

∫𝑥𝑛 𝑑𝑥 =  
𝑥𝑛+1

𝑛 + 1
+  𝐶  , 

∫exp(𝑥)  𝑑𝑥 = exp(𝑥) +  𝐶  , 

∫
1

𝑥
 𝑑𝑥 = ln 𝑥 + 𝐶  , 

∫sin 𝑥  𝑑𝑥 = − cos 𝑥 +  𝐶  , 

∫cos 𝑥  𝑑𝑥 = sin 𝑥 +  𝐶  , 

∫sec2 𝑥  𝑑𝑥 = tan 𝑥 +  𝐶  , 

∫
1

1 + 𝑥2
 𝑑𝑥 = arctan 𝑥 +  𝐶  , 
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∫
1

√1 − 𝑥2
 𝑑𝑥 = arcsin 𝑥 +  𝐶  . 

The product rule of differential calculus [see Eq. (1.3)] corresponds to 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠 in integral calculus. 

In differential calculus, if 𝐹(𝑥)  =  𝑓(𝑥) 𝑔(𝑥), then  

𝑑𝐹

𝑑𝑥
=  𝑓(𝑥)

𝑑𝑔(𝑥)

𝑑𝑥
+ 
𝑑𝑓(𝑥)

𝑑𝑥
𝑔(𝑥) =  

𝑑[𝑓(𝑥)𝑔(𝑥)]

𝑑𝑥
  . 

Using the definition of an indefinite integral as an antiderivative, it can be written as 

∫𝑓(𝑥)
𝑑𝑔(𝑥)

𝑑𝑥
 𝑑𝑥 + ∫

𝑑𝑓(𝑥)

𝑑𝑥
𝑔(𝑥) 𝑑𝑥 =  𝑓(𝑥)𝑔(𝑥)  . 

On rewriting this equation as 

∫𝑓(𝑥)
𝑑𝑔(𝑥)

𝑑𝑥
 𝑑𝑥 =  𝑓(𝑥)𝑔(𝑥) − ∫

𝑑𝑓(𝑥)

𝑑𝑥
𝑔(𝑥) 𝑑𝑥  ,             𝐸𝑞. (2.2𝑎) 

we get the rule for integration by parts, which can be written in verbose form as 

∫[𝐹𝐼𝑅𝑆𝑇][𝑆𝐸𝐶𝑂𝑁𝐷] 𝑑𝑥

= [𝐹𝐼𝑅𝑆𝑇][𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑆𝐸𝐶𝑂𝑁𝐷] − ∫[𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝐹𝐼𝑅𝑆𝑇][𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑆𝐸𝐶𝑂𝑁𝐷] 𝑑𝑥  . 

Whenever the integrand can be expressed as a product of two functions, 𝐹𝐼𝑅𝑆𝑇 and 𝑆𝐸𝐶𝑂𝑁𝐷, it is convenient 

to identify as 𝐹𝐼𝑅𝑆𝑇 the function whose derivatives are comparatively simpler than the function itself. Similarly, 

it is convenient to identify as 𝑆𝐸𝐶𝑂𝑁𝐷 that function whose integrals are simpler than the function itself. 

An alternate way of writing the 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠 procedure is 

∫𝑓(𝑥) 𝑑𝑔(𝑥) =  𝑓(𝑥)𝑔(𝑥) − ∫𝑔(𝑥) 𝑑𝑓(𝑥)   .                                     𝐸𝑞. (2.2𝑏) 

Example: Evaluate 𝑰 =  ∫ 𝒙𝟐 𝐞𝐱𝐩 𝒙  𝒅𝒙 using integration by parts. 

Solution: In this case, the integrand is a product of two functions, 𝑥2 and exp 𝑥. Since 𝑥2 becomes simpler on 

differentiation while exp 𝑥 stays the same on differentiation or integration, we choose 𝐹𝐼𝑅𝑆𝑇 as 𝑥2 and 

𝑆𝐸𝐶𝑂𝑁𝐷 as exp 𝑥. Then, 

𝐼 =  𝑥2 exp 𝑥 − ∫(2𝑥) exp 𝑥  𝑑𝑥  . 
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Now, 𝐼 is converted into a simpler integral, which can be evaluated using integration by parts one more time, 

𝐼 =  𝑥2 exp 𝑥 − 2 [𝑥 exp 𝑥 − ∫exp 𝑥  𝑑𝑥]  =  𝑥2 exp 𝑥 − 2𝑥 exp 𝑥 +  2 exp 𝑥  . 

Finally, after including the constant of integration, the integral is evaluated as 

𝐼 =  (𝑥2 − 2𝑥 +  2) exp 𝑥 +  𝐶  . 

Example: Evaluate 𝑰 =  ∫ 𝒙𝟐 𝐥𝐧 𝒙  𝒅𝒙 using integration by parts. 

Solution: In this case, ln 𝑥 becomes simpler, compared to 𝑥2, on taking derivatives. So, we choose 𝐹𝐼𝑅𝑆𝑇 as ln 𝑥 

and 𝑆𝐸𝐶𝑂𝑁𝐷 as 𝑥2. Then,  

𝐼 = ln 𝑥 
𝑥3

3
− ∫

1

𝑥

𝑥3

3
 𝑑𝑥 =  ln 𝑥 

𝑥3

3
− 
1

3
∫𝑥2 𝑑𝑥  = ln 𝑥 

𝑥3

3
 −  
𝑥3

9
  . 

After including the constant of integration, the integral is evaluated as 

𝐼 =
𝑥3

9
 [3 ln 𝑥  − 1] +  𝐶  . 

2.2 DEFINITE INTEGRALS 

In a definite integral the range of the values of 𝑥, the variable of integration, is provided. If the range is 𝑎 ≤ 𝑥 ≤

𝑏, then 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

= 𝑓(𝑥)|𝑥=𝑎
𝑥=𝑏 =  𝑓(𝑏) − 𝑓(𝑎)  ,                                                         𝐸𝑞. (2.3) 

where 𝐹 (𝑥) =  
𝑑𝑓

𝑑𝑥
. Thus, we first determine the function 𝑓(𝑥) which is antiderivative is 𝐹(𝑥). Then, the value of 

the definite integral is the difference between the values of 𝑓(𝑥) at the upper limit and at the lower limit. 

There is an alternate way of interpreting a definite integral. If 𝐹(𝑥) is a continuous function in the whole range of 

𝑥, 𝑎 ≤ 𝑥 ≤ 𝑏, as shown in Figure 2.1, then we can divide the range into 𝑛 equal intervals, each of width ∆𝑥 =

(𝑏 − 𝑎)/𝑛. Also, if 𝑥𝑖 , for 𝑖 = 1,2, … 𝑛 is the location of the midpoint of the 𝑖th interval, then the definite integral 

is defined as a limit of a sum as follows: 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

→ lim
𝑛→∞

∑𝐹(𝑥𝑖)∆𝑥

𝑛

𝑖=1

  . 
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Figure 2.1. Area under the 𝑭(𝒙) versus 𝒙 curve is broken into strips. 

In Figure 2.1 the area under the 𝐹(𝑥) versus 𝑥 curve is broken into 𝑛 strips, each of width ∆𝑥. Note that 𝐹(𝑥𝑖)∆𝑥 

is the area of the cross-hatched 𝑖th strip shown in the figure. If the number of strips 𝑛 → ∞, then the width of 

each individual strip becomes vanishingly small and the sum of areas of all strips becomes equal to the area 

under the 𝐹(𝑥) versus 𝑥 curve. The definite integral ∫ 𝐹(𝑥) 𝑑𝑥
𝑏

𝑎
 thus represents the area under the 𝐹(𝑥) curve 

from 𝑥 = 𝑎 to 𝑥 = 𝑏. 

Note that ∫ 𝐹(𝑥) 𝑑𝑥
𝑏

𝑎
 is a number and its value does not depend on 𝑥. In fact, 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

= ∫𝐹(𝑦) 𝑑𝑦

𝑏

𝑎

= ∫𝐹(𝑧)𝑑𝑧

𝑏

𝑎

  . 

Thus, in a definite integral, the symbol for variable of integration, 𝑥 or 𝑦 or 𝑧, is only a placeholder and it 

disappears after the integral is evaluated. So, in a definite integral the variable of integration is called the 

𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒. From the definition of a definite integral, it follows that 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

=  𝑓(𝑏) − 𝑓(𝑎) = − [𝑓(𝑎) − 𝑓(𝑏)] = −∫𝐹(𝑥) 𝑑𝑥

𝑎

𝑏

  

and 

∫𝐹(𝑥) 𝑑𝑥

𝑎

𝑎

= 0  . 
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Figure 2.2. The point 𝒙 = 𝒄 lies inside the range, 𝒂 ≤ 𝒙 ≤ 𝒃, of the integrand. 

If the point 𝑥 = 𝑐 lies somewhere in the middle of the range of 𝑥, then 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

= area under the curve from 𝑎 to 𝑏

= area under the curve from 𝑎 to 𝑐 + area under the curve from 𝑐 to 𝑏

=  ∫𝐹(𝑥) 𝑑𝑥

𝑐

𝑎

+∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑐

  . 

Also, if 𝐹(𝑥) ≥ 𝐺(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏, then 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

 ≥  ∫𝐺(𝑥) 𝑑𝑥

𝑏

𝑎

  . 

Similarly, if 𝐹(𝑥) ≤ 𝐺(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏, then 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

 ≤  ∫𝐺(𝑥) 𝑑𝑥

𝑏

𝑎

  . 

If 𝐹(𝑥) is positive for part of a range and negative for the remaining range of 𝑥, as shown in Figure 2.3, then 

∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑎

= ∫𝐹(𝑥) 𝑑𝑥

𝑐

𝑎

+∫𝐹(𝑥) 𝑑𝑥

𝑏

𝑐

≡ 𝐼1 + 𝐼2  , 
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where 𝐼1 > 0 and 𝐼2 < 0. Note that even in this case the net area under the curve of a function 𝐹(𝑥) between 

𝑥 = 𝑎 and 𝑥 = 𝑏 is ∫ 𝐹(𝑥) 𝑑𝑥
𝑏

𝑎
. However, the magnitude of the area under the curve of 𝐹(𝑥) is ∫ |𝐹(𝑥)|𝑑𝑥

𝑏

𝑎
. 

 

Figure 2.3. The function 𝑭(𝒙) is positive as well as negative for parts of the range of 𝒙. 

Example: Find the net area and the magnitude of the area enclosed by function 𝑭(𝒙) = 𝒙𝟐 − 𝟓𝒙 + 𝟔 =

(𝒙 − 𝟑)(𝒙 − 𝟐) between 𝒙 = 𝟎 and 𝒙 = 𝟑 and the 𝒙-axis. 

Solution: In this case 𝐹(𝑥) ≥ 0 for 0 ≤ 𝑥 ≤ 2, and 𝐹(𝑥) ≤ 0 for 2 ≤ 𝑥 ≤ 3. The net area is 

∫𝐹(𝑥) 𝑑𝑥

3

0

= ∫(𝑥2 − 5𝑥 + 6) 𝑑𝑥

3

0

= (
𝑥3

3
−
5𝑥2

2
+ 6𝑥)|

𝑥=0

𝑥=3

=
9

2
− 0 =

9

2
  . 

To find the magnitude of the area under the curve, we break the integral from 0 to 2 and from 2 to 3. Then, 

𝐼1 = ∫(𝑥
2 − 5𝑥 + 6) 𝑑𝑥

2

0

= (
𝑥3

3
−
5𝑥2

2
+ 6𝑥)|

0

2

=
14

3
 

and 

𝐼2 = ∫(𝑥
2 − 5𝑥 + 6) 𝑑𝑥

3

2

= (
𝑥3

3
−
5𝑥2

2
+ 6𝑥)|

2

3

= −
1

6
  . 

Clearly, 𝐼1 + 𝐼2 =
14

3
−
1

6
=
9

2
, same as the net area, but the magnitude of the area is 

|𝐼1| + |𝐼1| = |
14

3
| + |−

1

6
| =

29

6
  . 
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2.3 DIFFERENTIATION OF INTEGRALS: LEIBNIZ’S RULE 

If one or both limits of a definite integral are functions of a variable, 𝑥, or if the integrand contains 𝑥 as a 

parameter, then it is possible to differentiate the integral with respect to 𝑥. The example of such a definite 

integral is 

𝐼(𝑥) = ∫ 𝐹(𝑥, 𝑡) 𝑑𝑡

𝑣(𝑥)

𝑢(𝑥)

  , 

where 𝑢(𝑥) and 𝑣(𝑥) are functions of 𝑥 and 𝑡 is the dummy variable. The derivative 
𝑑𝐼

𝑑𝑥
 is evaluated using a 

method developed by Leibniz. To understand Leibniz’s method of differentiating 𝐼(𝑥), we first look at three 

simpler cases of this integral, namely, 𝐼1(𝑥), 𝐼2(𝑥), and 𝐼3(𝑥). In integral 𝐼1(𝑥), the variable 𝑥 appears only in the 

upper limit; in integral 𝐼2(𝑥), the variable 𝑥 appears only in the lower limit; and in integral 𝐼3(𝑥), the variable 𝑥 

appears only in the integrand. If 

𝐼1(𝑥) = ∫𝐹(𝑡) 𝑑𝑡

𝑥

𝑎

=  𝑓(𝑥) − 𝑓(𝑎)  , 

then  

𝑑𝐼1
𝑑𝑥
=
𝑑𝑓

𝑑𝑥
= 𝐹(𝑥)  . 

On generalizing, if 

𝐼1(𝑥) = ∫ 𝐹(𝑡) 𝑑𝑡

𝑣(𝑥)

𝑎

=  𝑓(𝑣(𝑥)) − 𝑓(𝑎)  , 

then  

𝑑𝐼1
𝑑𝑥
=
𝑑𝑓(𝑣(𝑥))

𝑑𝑥
=
𝑑𝑓(𝑣(𝑥))

𝑑𝑣

𝑑𝑣(𝑥)

𝑑𝑥
= 𝐹(𝑣(𝑥)) 

𝑑𝑣(𝑥)

𝑑𝑥
  . 

Next, if 

𝐼2(𝑥) = ∫𝐹(𝑡) 𝑑𝑡

𝑏

𝑥

=  𝑓(𝑏) − 𝑓(𝑥)  , 

then  
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𝑑𝐼2
𝑑𝑥
= −

𝑑𝑓

𝑑𝑥
= −𝐹(𝑥)  . 

Again, on generalizing, if 

𝐼2(𝑥) = ∫ 𝐹(𝑡) 𝑑𝑡

𝑏

𝑢(𝑥)

=  𝑓(𝑏) − 𝑓(𝑢(𝑥))  , 

then  

𝑑𝐼2
𝑑𝑥
= −

𝑑𝑓(𝑢(𝑥))

𝑑𝑥
= −

𝑑𝑓(𝑢(𝑥))

𝑑𝑢

𝑑𝑢(𝑥)

𝑑𝑥
= −𝐹(𝑢(𝑥)) 

𝑑𝑢(𝑥)

𝑑𝑥
  . 

Finally, if 

𝐼3(𝑥) = ∫𝐹(𝑥, 𝑡) 𝑑𝑡

𝑏

𝑎

  , 

then  

𝑑𝐼3
𝑑𝑥
= ∫

𝜕𝐹(𝑥, 𝑡)

𝜕𝑥
 𝑑𝑡

𝑏

𝑎

  . 

These three results of integrals 𝐼1(𝑥), 𝐼2(𝑥), and 𝐼3(𝑥) can be combined and written in a single form, known as 

Leibniz’s rule, 

𝑑𝐼(𝑥)

𝑑𝑥
=
𝑑

𝑑𝑥
( ∫ 𝐹(𝑥, 𝑡) 𝑑𝑡

𝑣(𝑥)

𝑢(𝑥)

) = 𝐹(𝑥, 𝑣(𝑥))
𝑑𝑣

𝑑𝑥
−  𝐹(𝑥, 𝑢(𝑥))

𝑑𝑢

𝑑𝑥
+ ∫

𝜕𝐹(𝑥, 𝑡)

𝜕𝑥
 𝑑𝑡

𝑣(𝑥)

𝑢(𝑥)

  .               𝐸𝑞. (2.4) 

Example: Determine 
𝒅𝑰(𝒙)

𝒅𝒙
 if  

𝑰(𝒙) = ∫
𝐞𝐱𝐩(𝒙𝒕)

𝒕
 𝒅𝒕

𝟐𝒙

𝒙

  . 

Solution: Using Leibniz’s rule, we have 

𝑑𝐼(𝑥)

𝑑𝑥
=
exp[𝑥(2𝑥)]

2𝑥
(2) − 

exp[𝑥(𝑥)]

𝑥
(1) + ∫

𝑡 exp(𝑥𝑡)

𝑡
 𝑑𝑡

2𝑥

𝑥
  , 

or 
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𝑑𝐼(𝑥)

𝑑𝑥
=
exp[2𝑥2]

𝑥
− 
exp[𝑥2]

𝑥
+
 exp(𝑥𝑡)

𝑥
|
𝑡=𝑥

𝑡=2𝑥

=
2

𝑥
 (exp[2𝑥2] − exp[𝑥2])  . 

2.4 MULTIPLE INTEGRALS 

Multiple integrals are generalizations of single integrals with one variable. For example, a double integral, 𝐼2, 

with two variables, 𝑥 and 𝑦, can be perceived as two single integrals. 

𝐼2 = ∫ ∫  𝐹(𝑥, 𝑦)𝑑𝑦

𝑦=𝑏2

𝑦=𝑎2

𝑑𝑥

𝑥=𝑏1

𝑥=𝑎1

= ∫  𝑓(𝑥)𝑑𝑥

𝑥=𝑏1

𝑥=𝑎1

  ,                              𝐸𝑞. (2.5) 

where 

𝑓(𝑥) = ∫  𝐹(𝑥, 𝑦)𝑑𝑦

𝑦=𝑏2

𝑦=𝑎2

  . 

In evaluating the last integral for 𝑓(𝑥), the variable 𝑥 inside the integrand is treated as a constant. Similarly, a 

triple integral, 𝐼3, with three variables, 𝑥, 𝑦, and 𝑧, can be perceived as three single integrals. 

𝐼3 = ∫ ∫ ∫  𝐹(𝑥, 𝑦, 𝑧)𝑑𝑧

𝑧=𝑏3

𝑧=𝑎3

𝑑𝑦

𝑦=𝑏2

𝑦=𝑎2

𝑑𝑥

𝑥=𝑏1

𝑥=𝑎1

= ∫  𝑓(𝑥)𝑑𝑥

𝑏1

𝑎1

  ,                                      𝐸𝑞. (2.6) 

where 

𝑓(𝑥) = ∫  𝑔(𝑥, 𝑦)𝑑𝑦

𝑏2

𝑎2

  and  𝑔(𝑥, 𝑦) =  ∫  𝐹(𝑥, 𝑦, 𝑧)𝑑𝑧

𝑏3

𝑎3

  . 

Again, in evaluating the integral 𝑔(𝑥, 𝑦), the variables 𝑥 and 𝑦 inside the integrand are treated as constants and 

in evaluating the integral for 𝑓(𝑥), the variable 𝑥 inside its integrand is treated as a constant. Finally, if 𝐹(𝑥, 𝑦, 𝑧) 

is a separable function, it means that 𝐹 can be expressed as a product of three separate functions with each 

function containing only one variable as 𝐹(𝑥, 𝑦, 𝑧) = ℎ1(𝑥)ℎ2(𝑦)ℎ3(𝑧). So, for a separable integrand 𝐹(𝑥, 𝑦, 𝑧), 

𝐼3 = ∫ ℎ1(𝑥)𝑑𝑥

𝑏1

𝑎1

∫ ℎ2(𝑦)𝑑𝑦

𝑏2

𝑎2

∫  ℎ3(𝑧)𝑑𝑧

𝑏3

𝑎3

 

is also separable. 

Example: Evaluate the double integral ∫ ∫ (𝒙 − 𝒚)𝟐𝒅𝒚
𝟏

𝟎
𝒅𝒙

𝟏

𝟎
. 
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Solution: Consider the following integral, 

∫∫(𝑥 − 𝑦)2𝑑𝑦

1

0

𝑑𝑥

1

0

= ∫∫(𝑥2 − 2𝑥𝑦 + 𝑦2) 𝑑𝑦

1

0

𝑑𝑥

1

0

 

= ∫ |𝑥2𝑦 − 2𝑥
𝑦2

2
+
𝑦3

3
|
𝑦=0

𝑦=1

𝑑𝑥

1

0

= ∫(𝑥2 − 𝑥 +
1

3
) 𝑑𝑥

1

0

 

= |
𝑥3

3
−
𝑥2

2
+
𝑥

3
|
0

1

=
1

6
  . 

2.5 BAG OF TRICKS 

In this section we will introduce some tricks for evaluating somewhat complicated integrals by starting from a bit 

simpler integral which is commonly known. First, we look at some examples of indefinite integrals and follow it 

up by definite integrals (exponential and Gaussian integrals), which are useful in several areas of physics.  

Trick Number 1: Sometimes a complicated integral, which may appear quite intractable, can be manipulated so 

that it is written as the derivative of a simpler 𝑏𝑎𝑠𝑖𝑐 integral. In fact, it is possible to evaluate several new 

integrals by introducing a temporary parameter in the basic integral, and then differentiating both sides of the 

resulting integral with respect to this parameter to get the new integral. 

Trick Number 1a: As the first example, indefinite integrals of the type 

∫
𝑑𝑥

(𝑥 + 𝑎)2 
, ∫

𝑑𝑥

(𝑥 + 𝑎)3 
, …                                         𝐸𝑞. (2.7𝑎) 

are evaluated by starting from the 𝑏𝑎𝑠𝑖𝑐 integral ∫
𝑑𝑥

𝑥
= ln(𝑥). We introduce a parameter 𝑎 in the basic integral 

by changing 𝑥 to 𝑥 + 𝑎 as 

∫
𝑑𝑥

𝑥 + 𝑎
= ln(𝑥 + 𝑎)  .                                                 𝐸𝑞. (2.7𝑏) 

After having introduced the parameter 𝑎, we can now differentiate both sides of the resulting integral with 

respect to 𝑎 to evaluate the required integrals. 

Example: Evaluate the indefinite integral ∫
𝒅𝒙

(𝒙+𝒂)𝟑 
.  
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Solution: Differentiate both sides of Eq. (2.7b) twice with respect to parameter 𝑎 to get (𝑥 + 𝑎)3 in the 

denominator. The first differentiation gives 

−∫
𝑑𝑥

(𝑥 + 𝑎)2 
=

1

𝑥 + 𝑎
  . 

The second differentiation leads to 

−(−2)∫
𝑑𝑥

(𝑥 + 𝑎)3 
= −

1

(𝑥 + 𝑎)2 
  , 

which simplifies to the required integral 

∫
𝑑𝑥

(𝑥 + 𝑎)3 
= −

1

2 (𝑥 + 𝑎)2 
  . 

Trick Number 1b: Next, we can evaluate integrals of the type 

∫
1

(𝑎2 − 𝑥2)3/2
 𝑑𝑥 ,∫

1

(𝑎2 − 𝑥2)5/2
 𝑑𝑥 , …                                           𝐸𝑞. (2.8𝑎) 

by starting with the 𝑏𝑎𝑠𝑖𝑐 integral ∫
1

√1− 𝑥2
 𝑑𝑥 = arcsin 𝑥. On replacing 𝑥 by 𝑥/𝑎 in the basic integral, we get the 

integral with parameter 𝑎, 

∫
1

√𝑎2 − 𝑥2
 𝑑𝑥 = arcsin (

𝑥

𝑎
)   .                                             𝐸𝑞. (2.8𝑏) 

By differentiating both sides of this integral with respect to parameter 𝑎, we can evaluate integrals appearing in 

Eq. (2.8a). 

Next, there are similar indefinite integrals of the type, 

∫
𝑥

(𝑎2 − 𝑥2)3/2
 𝑑𝑥 ,∫

𝑥

(𝑎2 − 𝑥2)5/2
 𝑑𝑥 , …                                          𝐸𝑞. (2.9𝑎) 

In this case, the 𝑏𝑎𝑠𝑖𝑐 integral is 

∫
𝑥

√1 − 𝑥2
 𝑑𝑥 = −√1 − 𝑥2  , 

which can be evaluated easily using substitution 𝑢2 = 1 − 𝑥2. On replacing 𝑥 by 𝑥/𝑎 in the basic integral, where 

𝑎 is a parameter, we get 
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∫
𝑥

√𝑎2 − 𝑥2
 𝑑𝑥 = −√𝑎2 − 𝑥2  .                                                    𝐸𝑞. (2.9𝑏) 

Differentiating both sides of this integral with respect to parameter 𝑎 leads to evaluation of integrals of Eq. 

(2.9a). 

Example: Evaluate the indefinite integral ∫
𝒙

(𝒂𝟐− 𝒙𝟐)
𝟑/𝟐  𝒅𝒙 as well as the definite integral ∫

𝒙

(𝒂𝟐− 𝒙𝟐)
𝟑/𝟐  𝒅𝒙

𝒂/𝟐

𝟎
. 

Solution: Differentiating both sides of Eq. (2.9b) with respect to 𝑎 gives 

∫[−
1

2

2𝑎

(𝑎2 − 𝑥2)3/2
]  𝑥 𝑑𝑥 = −

1

2

2𝑎

(𝑎2 − 𝑥2)
1
2

  , 

or 

∫
𝑥

(𝑎2 − 𝑥2)3/2
 𝑑𝑥 =

1

√𝑎2 − 𝑥2
  . 

The definite integral is obtained by substituting the upper and the lower limits, 

∫
𝑥

(𝑎2 − 𝑥2)3/2
 𝑑𝑥

𝑎/2

0

=
2

√3 𝑎
−
1

𝑎
  . 

Trick Number 1c: Several indefinite integrals of the type 

∫
1

(𝑥2 + 𝑎2)2
 𝑑𝑥 ,∫

1

(𝑥2 + 𝑎2)3
 𝑑𝑥 , …                                                  𝐸𝑞. (2.10𝑎) 

can be evaluated by starting from the 𝑏𝑎𝑠𝑖𝑐 integral ∫
1

 𝑥2+1
 𝑑𝑥 = arctan 𝑥. Introduce a parameter 𝑎 by replacing 

𝑥 by 𝑥/𝑎 in the basic integral to get 

∫
1

𝑥2 + 𝑎2
 𝑑𝑥 =

1

𝑎
arctan (

𝑥

𝑎
)   .                                                      𝐸𝑞. (2.10𝑏) 

Now, multiple differentiations of both sides of this integral with respect to parameter 𝑎 lead to the required 

integrals of Eq. (2.10a). 

Example: Using the integral ∫
𝟏

𝟏+𝒙𝟐
𝒅𝒙

∞

𝟎
= 

𝝅

𝟐
 as a guide, introduce a parameter and then differentiate both 

sides with respect to this parameter to evaluate the integral 
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∫
𝟏

(𝒙𝟐 + 𝒚𝟐)𝟑
𝒅𝒙

∞

𝟎

  . 

Solution: In the guiding integral ∫
𝑑𝑥

1+𝑥2
=
𝜋

2
 

∞

0
, introduce a parameter 𝑦 by changing 𝑥 to 𝑥/𝑦, 

∫
1

1 + (
𝑥
𝑦
)
2

𝑑𝑥

𝑦
=
𝜋

2
 

∞

0

    or     ∫
𝑑𝑥

𝑥2 + 𝑦2
=
𝜋

2𝑦

∞

0

  . 

Now, to get (𝑥2 + 𝑦2)3 in the dominator, we differentiate both sides of the integral with respect to parameter 𝑦 

twice. The first differentiation gives 

∫ [−
2𝑦

(𝑥2 + 𝑦2)2
] 𝑑𝑥 =

𝜋

2
 

∞

0

[−
1

𝑦2
]  , 

or 

∫
𝑑𝑥

(𝑥2 + 𝑦2)2
=
𝜋

4

1

𝑦3

∞

0

  . 

The second differentiation gives 

∫ [−
2(2𝑦)

(𝑥2 + 𝑦2)3
] 𝑑𝑥 =

𝜋

4
 

∞

0

[−
3

𝑦4
]  , 

or 

∫
𝑑𝑥

(𝑥2 + 𝑦2)3
=
3𝜋

16

1

𝑦5

∞

0

  , 

which is the value of the required integral. 

Next, somewhat similar integrals of the type  

∫
𝑥

(𝑥2 + 𝑎2)2
 𝑑𝑥 ,∫

𝑥

(𝑥2 + 𝑎2)3
 𝑑𝑥 , …                                             𝐸𝑞. (2.11𝑎) 

can be evaluated by starting from the 𝑏𝑎𝑠𝑖𝑐 integral 

∫
𝑥

𝑥2 +  1
 𝑑𝑥 =

1

2
ln(𝑥2 +  1)  . 

This integral is easily evaluated by using the substitution 𝑢 = 𝑥2 +  1. On replacing 𝑥 by 𝑥/𝑎, where 𝑎 is a 

parameter, we get 
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∫
𝑥

𝑥2 + 𝑎2
 𝑑𝑥 =

1

2
ln(𝑥2 + 𝑎2) − ln 𝑎   .                                         𝐸𝑞. (2.11𝑏) 

Differentiating both sides of this integral with respect to parameter 𝑎 provides the integrals of Eq. (2.11a). 

Trick Number 2: Continuing with our bag of tricks to solve indefinite integrals, let us evaluate integrals of the 

form ∫
𝑃(𝑥)

𝑄(𝑥)
𝑑𝑥, where 𝑃(𝑥) and 𝑄(𝑥) are polynomials of 𝑥. 

Trick Number 2a: Our first case is the one in which degree of polynomial 𝑃(𝑥) is less than the degree of 𝑄(𝑥). 

Examples of such integrals are 

∫
𝑑𝑥

𝑥2 − 𝑥 − 6
         or       ∫

𝑥 𝑑𝑥

𝑥2 − 7𝑥 + 12
  . 

If the denominator can be factored, then use partial fractions to break the integrand of the first integral as 

1

𝑥2 − 𝑥 − 6
=

1

(𝑥 − 3)(𝑥 + 2)
=

𝐴

𝑥 − 3
+

𝐵

𝑥 + 2
  . 

To determine 𝐴 and 𝐵, multiply both sides by (𝑥2 − 𝑥 − 6) to get 

1 = 𝐴(𝑥 + 2) + 𝐵(𝑥 − 3)  . 

Since this is true for any values of 𝑥, set 𝑥 = 3 and 𝑥 = −2 successively, to get 𝐴 =
1

5
 and 

 𝐵 = −
1

5
. Thus, 

1

𝑥2 − 𝑥 − 6
=
1

5
[
1

𝑥 − 3
−

1

𝑥 + 2
]  . 

The original integral then becomes 

∫
𝑑𝑥

𝑥2 − 𝑥 − 6
=
1

5
∫
𝑑𝑥

𝑥 − 3
−
1

5
∫
𝑑𝑥

𝑥 + 2
=
1

5
ln(𝑥 − 3) −

1

5
ln(𝑥 + 2) =

1

5
ln (
𝑥 − 3

𝑥 + 2
)  . 

Similarly, for the second integral, 

𝑥 

𝑥2 − 7𝑥 + 12
=

𝑥

(𝑥 − 4)(𝑥 − 3)
=

𝐴

𝑥 − 4
+

𝐵

𝑥 − 3
  , 

or, on multiplying both sides by (𝑥2 − 7𝑥 − 12), we get 

𝑥 = 𝐴(𝑥 − 3) + 𝐵(𝑥 − 4)  . 
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On setting 𝑥 = 3 and 𝑥 = 4 separately, we get 𝐴 = 4 and 𝐵 = −3. So, 

∫
𝑥 𝑑𝑥

𝑥2 − 7𝑥 + 12
= 4∫

𝑑𝑥

𝑥 − 4
− 3∫

𝑑𝑥

𝑥 − 3
= 4 ln(𝑥 − 4) − 3 ln(𝑥 − 3)  . 

Trick Number 2b: There are situations in which the denominator of the integrand cannot be factored easily. In 

this case, one can try to complete the square and make a substitution that will turn the integral into a simpler 

well-known integral. For example, 

∫
𝑑𝑥

3𝑥2 − 6𝑥 + 7
= ∫

𝑑𝑥

3(𝑥 − 1)2 + 4
  . 

Define a new variable, 𝑢 = √3(𝑥 − 1)/2, or 𝑑𝑥 = 2 𝑑𝑢/√3. With this substitution, 

∫
𝑑𝑥

3𝑥2 − 6𝑥 + 7
=

1

2√3
∫

𝑑𝑢

𝑢2 + 1
=

1

2√3
arctan 𝑢 =  

1

2√3
arctan [

√3(𝑥 − 1)

2
]  . 

Trick Number 2c: If the numerator contains a polynomial 𝑃(𝑥) of degree one less than the degree of polynomial 

𝑄(𝑥) in the denominator, then write the numerator as 

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑎(𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) + 𝑏  , 

where 𝑎 and 𝑏 are some numbers. In this manner the integral becomes tractable. As an example, consider the 

integral 

∫
𝑥 + 4

𝑥2 + 2𝑥 + 5
 𝑑𝑥  . 

The numerator can be expressed as 

𝑥 + 4 =
1

2

𝑑

𝑑𝑥
[𝑥2 + 2𝑥 + 5] + 3  , 

so that 

∫
𝑥 + 4

𝑥2 + 2𝑥 + 5
 𝑑𝑥 = ∫

𝑑𝑥

𝑥2 + 2𝑥 + 5
 {
1

2

𝑑

𝑑𝑥
[𝑥2 + 2𝑥 + 5] + 3} =

1

2
 ln[𝑥2 + 2𝑥 + 5] + ∫

3 𝑑𝑥

𝑥2 + 2𝑥 + 5
  . 

The remaining integral can be determined using “complete the square” technique as described in Trick Number 

2b. 
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Trick Number 2d: Next, we consider the case in which the degree of polynomial 𝑃(𝑥) in the numerator is more 

than the degree of polynomial 𝑄(𝑥) in the denominator. In this situation, it is best to use long division to simplify 

the integrand. 

Example: Evaluate the indefinite integral, 

∫
𝟑𝒙𝟑 − 𝟕𝒙𝟐 + 𝟏𝟕𝒙 − 𝟑

𝒙𝟐 − 𝟐𝒙 + 𝟓
 𝒅𝒙  . 

Solution: Using long division, 

3𝑥3 − 7𝑥2 + 17𝑥 − 3

𝑥2 − 2𝑥 + 5
= 3𝑥 − 1 +

2

𝑥2 − 2𝑥 + 5
  . 

Thus, 

𝐼 = ∫
3𝑥3 − 7𝑥2 + 17𝑥 − 3

𝑥2 − 2𝑥 + 5
𝑑𝑥 = ∫ 3𝑥 𝑑𝑥 − ∫ 1𝑑𝑥 + ∫

2 𝑑𝑥

𝑥2 − 2𝑥 + 5
 

=
3𝑥2

2
− 𝑥 + 2𝐼1  , 

where 𝐼1 can be evaluated using “complete the square” technique as described in Trick Number 2b. 

Trick Number 3: Integrals involving trigonometric functions are simplified using standard identities such as, 

cos2 𝑥 + sin2 𝑥 = 1  , 

sin(2𝑥) = 2 sin 𝑥 cos 𝑥  , 

cos(2𝑥) = 2 cos2 𝑥 − 1 = 1 − 2 sin2 𝑥 , etc  . 

Example: Evaluate = ∫ 𝐬𝐢𝐧𝟑 𝒙 𝐜𝐨𝐬𝟐 𝒙  𝒅𝒙.  

Solution: The given integral is 

𝐼 = ∫ sin2 𝑥  cos2 𝑥  [sin 𝑥 𝑑𝑥] = −∫(1 − cos2 𝑥) cos2 𝑥  𝑑(cos 𝑥)  . 

On substituting 𝑢 = cos 𝑥, we get 

𝐼 = −∫(1 − 𝑢2) 𝑢2 𝑑𝑢 = −
𝑢3

3
+
𝑢5

5
== −

cos3 𝑥

3
+
cos5 𝑥

5
  . 
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Example: Evaluate 𝑰 = ∫ 𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙  𝒅𝒙. 

Solution: Since sin2 𝑥  cos2 𝑥 =
1

4
sin2(2𝑥) =

1

8
[1 − cos(4𝑥)], we get 

𝐼 =
1

8
∫[1 − cos(4𝑥)] 𝑑𝑥 =  

1

8
[𝑥 −

sin(4𝑥)

4
]  . 

2.6 EXPONENTIAL AND GAUSSIAN INTEGRALS 

Continuing with our bag of tricks, now we look at some examples of definite integrals. Two types of integrals that 

we commonly encounter in physics are exponential integrals and Gaussian integrals. As the names suggest, the 

exponential integrals contain the exponential function, exp(−𝑥), as a part of the integrand. The Gaussian 

integrals contain the Gaussian function, exp(−𝑥2), as a part of the integrand. The exponential integrals, 𝐼𝑒 , are 

defined as 

𝐼𝑒
𝑛 = ∫ 𝑥𝑛 exp(−𝑎𝑥)  𝑑𝑥  

∞

0

,                                       𝐸𝑞. (2.12) 

and the Gaussian integrals, 𝐼𝑔, are, 

𝐼𝑔
𝑛 = ∫ 𝑥𝑛 exp(−𝑎𝑥2)  𝑑𝑥

∞

0

  .                                                   𝐸𝑞. (2.13) 

Sometimes we also encounter Gaussian integrals, 𝐼𝑔𝑔, over an extended range of variable 𝑥, 

𝐼𝑔𝑔
𝑛 = ∫ 𝑥𝑛 exp(−𝑎𝑥2)  𝑑𝑥

∞

−∞

  .                                          𝐸𝑞. (2.14) 

In these integrals 𝑛, a positive integer, is called the order of the integral and 𝑎 is a positive constant. In each case 

we will try to set up a reduction formula that relates the integral 𝐼𝑛 to similar integrals of lower order, such as 

𝐼𝑛−1 and/or 𝐼𝑛−2. Using this reduction formula successively, one can relate 𝐼𝑛 to simpler integrals 𝐼1 and/or 𝐼0. In 

case of the exponential integral, we have, for 𝑛 = 0, 

𝐼𝑒
0 = ∫ exp(−𝑎𝑥)  𝑑𝑥

∞

0

 =
1

𝑎
  . 

Also, for 𝑛 ≥ 1, we can integrate by parts to get the reduction formula 
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𝐼𝑒
𝑛 = ∫ 𝑥𝑛 exp(−𝑎𝑥)  𝑑𝑥

∞

0

= 𝑥𝑛
exp(−𝑎𝑥)

−𝑎
|
0

∞

−∫
exp(−𝑎𝑥)

−𝑎
∙ 𝑛𝑥𝑛−1 𝑑𝑥

∞

0

= 0 +
𝑛

𝑎
𝐼𝑒
𝑛−1  . 

The first integrated term vanishes at both limits. At the upper limit, as 𝑥 → ∞, the factor exp(−𝑎𝑥) approaches 

zero faster than any increase in 𝑥𝑛. At the lower limit, 𝑥𝑛 goes to zero since 𝑛 ≥ 1. This reduction formula can be 

used successively to obtain 

𝐼𝑒
𝑛 =

(𝑛)

𝑎

(𝑛 − 1)

𝑎
𝐼𝑒
𝑛−2 =

(𝑛)

𝑎

(𝑛 − 1)

𝑎

(𝑛 − 2)

𝑎
𝐼𝑒
𝑛−3 = ⋯ =

(𝑛)

𝑎

(𝑛 − 1)

𝑎
⋯
(2)

𝑎

(1)

𝑎
𝐼𝑒
0  , 

or, on substituting the value of 𝐼𝑒
0 here, 

𝐼𝑒
𝑛 =

𝑛!

𝑎𝑛+1
  .                                               𝐸𝑞. (2.15) 

In case of Gaussian integrals, 𝐼𝑔
𝑛, we need 𝐼𝑔

0 and 𝐼𝑔
1 to use the reduction formula. We postpone the evaluation of 

𝐼𝑔
0 until after we have discussed curvilinear coordinates and multiple integrals in Chapter 9. The value of this 

integral, however, is, 

𝐼𝑔
0 = ∫ exp(−𝑎𝑥2)  𝑑𝑥

∞

0

=
1

2
√
𝜋

𝑎
  . 

The integral 𝐼𝑔
1, on the other hand, can be evaluated easily by substituting 𝑢 = 𝑎𝑥2, 

𝐼𝑔
1 = ∫ 𝑥 exp(−𝑎𝑥2)  𝑑𝑥

∞

0

=
1

2𝑎
∫ exp(−𝑢)  𝑑𝑢

∞

0

=
1

2𝑎
  . 

To set up the reduction formula for Gaussian integrals, we use the fact 

𝑑

𝑑𝑥
exp(−𝑎𝑥2) = −2𝑎𝑥 exp(−𝑎𝑥2)   or 𝑥 exp(−𝑎𝑥2) = −

1

2𝑎

𝑑

𝑑𝑥
exp(−𝑎𝑥2)  . 

Thus, for 𝑛 ≥ 2, using integration by parts we obtain 

𝐼𝑔
𝑛 = ∫ 𝑥𝑛−1 ∙ 𝑥 exp(−𝑎𝑥2)  𝑑𝑥

∞

0

= −
1

2𝑎
 ∫ 𝑥𝑛−1 ∙

𝑑

𝑑𝑥
exp(−𝑎𝑥2)  𝑑𝑥

∞

0

                                         

= −
1

2𝑎
𝑥𝑛−1 ∙ exp(−𝑎𝑥2)|0

∞ +
1

2𝑎
∫(𝑛 − 1)𝑥𝑛−2 exp(−𝑎𝑥2)  𝑑𝑥                  𝐸𝑞. (2.16)

∞

0
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= 0 +
(𝑛 − 1)

2𝑎
∫ 𝑥𝑛−2 exp(−𝑎𝑥2)  𝑑𝑥

∞

0

=
(𝑛 − 1)

2𝑎
𝐼𝑔
𝑛−2  .                                                        

Using this reduction formula, we can write 𝐼𝑔
2, 𝐼𝑔

4, 𝐼𝑔
6  ⋯ in terms of 𝐼𝑔

0, and 𝐼𝑔
3, 𝐼𝑔

5, 𝐼𝑔
7⋯ in terms of 𝐼𝑔

1. For 𝑛 = 2𝑚, 

where 𝑚 is an integer, 

𝐼𝑔
2𝑚 =

(2𝑚)!

(4𝑎)𝑚(𝑚)!
𝐼𝑔
0  . 

Similarly, for 𝑛 = 2𝑚 + 1,  

𝐼𝑔
2𝑚+1 =

(𝑚)!

𝑎𝑚
𝐼𝑔
1  . 

Finally, the Gaussian integral, 𝐼𝑔𝑔, over an extended range of variables is 

𝐼𝑔𝑔
𝑛 = ∫ 𝑥𝑛 exp(−𝑎𝑥2)  𝑑𝑥

∞

−∞

= ∫ 𝑥𝑛 exp(−𝑎𝑥2)  𝑑𝑥

∞

0

+ ∫𝑥𝑛 exp(−𝑎𝑥2)  𝑑𝑥

0

−∞

  . 

In the second integral, change the variable from 𝑥 to 𝑦 via 𝑥 = −𝑦. Then, 

𝐼𝑔𝑔
𝑛 = ∫ 𝑥𝑛 exp(−𝑎𝑥2)  𝑑𝑥

∞

0

− ∫(−𝑦)𝑛 exp(−𝑎𝑦2)  𝑑𝑦

0

∞

= 𝐼𝑔
𝑛 + (−1)𝑛 𝐼𝑔

𝑛  . 

Thus, if 𝑛 is an odd integer, then 𝐼𝑔𝑔
𝑛 = 0, and if 𝑛 is an even integer, then 𝐼𝑔𝑔

𝑛 = 2 𝐼𝑔
𝑛.  
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PROBLEMS FOR CHAPTER 2 

1. Evaluate using partial fractions 

∫
2𝑥 + 1

𝑥2 − 1

4

2

 𝑑𝑥  . 

2. Evaluate the indefinite integral 

∫
𝑥4 − 2𝑥2 + 4𝑥 + 1

𝑥3 − 𝑥2 − 𝑥 + 1
 𝑑𝑥   , 

using the bag of tricks. 

3. Use Leibniz’s rule to find 𝑑𝐼/𝑑𝑥 for 

𝐼 =  ∫ (𝑥 − 𝑡)
𝑥2

𝑎−𝑥

𝑑𝑡 

with 𝑎 >  0. 

Next, evaluate the integral 𝐼 explicitly, and then find 𝑑𝐼/𝑑𝑥. 

4. Use Leibniz’s rule to find the value of 𝜃 that provides the extremum value of the integral 

𝐼(𝜃) =  ∫ (𝑡 −
𝜋

4
) 
sin(𝑡)

𝑡

𝜋
2
 + 𝜃

𝜋
2
 − 𝜃

𝑑𝑡  . 

5. Define an integral 𝐼𝑛 = ∫(ln 𝑥)
𝑛  𝑑𝑥. Using integration by parts, derive the following reduction formula: 

𝐼𝑛 = 𝑥 (ln 𝑥)
𝑛 −  𝑛 𝐼𝑛−1  . 

Use this reduction formula to determine 

𝐼3 = ∫(ln 𝑥)
3  𝑑𝑥  . 

6. Consider the integral  

𝐼𝑛 = ∫ sinn 𝑥

𝜋/2

0

𝑑𝑥  . 

Explicitly evaluate the first two integrals 𝐼0 and 𝐼1. 

Using integration by parts and the identity cos2 𝑥 = 1 − sin2 𝑥, derive the reduction formula for 𝑛  2: 
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𝐼𝑛 = 
𝑛 − 1

𝑛
 𝐼𝑛−2  . 

Using the reduction formula, evaluate the integrals 

𝐼5 = ∫ sin5 𝑥

𝜋/2

0

𝑑𝑥   and  𝐼6 = ∫ sin6 𝑥

𝜋/2

0

𝑑𝑥  . 

 

7. Consider the integral  

𝐼𝑛 = ∫(𝑥
2 − 𝑎2)𝑛

𝑎

−𝑎

𝑑𝑥  . 

Explicitly evaluate the first integral 𝐼0. 

Using integration by parts, derive the reduction formula 

𝐼𝑛 = − 
2𝑛𝑎2

2𝑛 + 1
 𝐼𝑛−1 

for 𝑛  1. Use the reduction formula to determine the value of  

𝐼3 = ∫(𝑥
2 − 𝑎2)3

𝑎

−𝑎

𝑑𝑥  . 

8. Introduce a parameter in the standard integral 

∫
1

√1 − 𝑥2
 𝑑𝑥 = arcsin 𝑥 

and then differentiate both sides with respect to the parameter to determine the value of 

𝐼 =  ∫
𝑑𝑥

(𝑎2 − 𝑥2)3/2

𝑎/2

0

  . 

9. Biomedical Physics Application. A gunshot wound victim is bleeding at the rate given by 

𝑟(𝑡) = 𝑟0𝑡
2 exp(𝑏𝑡)  , 

where 𝑟0 = 0.000008 𝑚𝑙/𝑠
3, and 𝑏 =  0.004 𝑠−1. The ambulance takes five minutes after the shooting to 

arrive at the crime scene. How much total blood has left victim’s body before the medical attention is provided 

to the victim? 
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A healthy adult has about 5 liters of blood circulating in the human body. Most adults can lose up to 14% of 

their blood before their vital signs begin to deteriorate. What would be the outcome of the victim? 

10.  Biomedical Physics Application. The West Nile Virus is a disease that is contracted from infected 

mosquitoes. Scientists at the Centers for Disease Control and Prevention monitor the population growth of 

mosquitoes in a controlled environment. The mosquito population in this environment starts with 1000 

mosquitoes at the start of the summer and grows at the rate of 

𝑟(𝑡) = (1000) exp(0.1 𝑡) 

mosquitoes per day. What is the total mosquito population at the end of the seventh week of summer? 

11. Biomedical Physics Application. In physiology we learn that a typical healthy adult human being breathes 12 

to 15 times per minute. The volume of air inhaled in a single breath is about 500 mL. Assuming that breathing is 

a periodic process taking 5 seconds from the beginning of inhalation to the end of exhalation, the rate of air 

flow into the lungs can be represented by the function 

𝑓(𝑡) =  100π sin (
2𝜋𝑡

5
)   
𝑚𝐿

𝑠
  . 

Determine the total volume of the air inhaled at any time 𝑡 starting at 𝑡 = 0. Provide the volume of air inhaled 

by a healthy human being at 𝑡 =  1𝑠, 2𝑠, 3𝑠, 4𝑠, and 5 𝑠. 
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Chapter 3: Infinite Series 

In this chapter the convergent or divergent behavior of an infinite series is investigated. Several tests for 

checking this behavior are outlined. Taylor series and Maclaurin series are described and are used to obtain an 

infinite series expansion of several simple functions. 

3.1 AN INFINITE SERIES 

Consider an infinite series 

𝑎1 + 𝑎2 + 𝑎3……+ 𝑎𝑛 +⋯ 

where each element, 𝑎𝑛, of the series is a separate constant. For this series we define the partial sum, 𝑆(𝑁), as 

the sum of its first 𝑁 terms 

𝑆(𝑁) = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑁 =∑𝑎𝑛

𝑁

𝑛=1

  . 

The infinite series is said to converge if the partial sum 𝑆(𝑁) has a finite limit as 𝑁 → ∞. This limit is the value of 

the converging series; that is, if 

lim
𝑁→∞

[𝑆(𝑁)] = 𝑆  , 

then we write 

𝑆 = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 +⋯ =∑𝑎𝑛

∞

𝑛=1

  .                             𝐸𝑞. (3.1) 

If the partial sum does not have a finite limit as 𝑁 → ∞, then the series is divergent. Note in passing that in the 

summation notation, the running variable 𝑛 can be replaced by any other symbol as follows: 

𝑆 = ∑𝑎𝑛

∞

𝑛=1

  or  𝑆 = ∑ 𝑎𝑚

∞

𝑚=1

  or  𝑆 = ∑𝑎𝑝

∞

𝑝=1

  . 

Therefore, the running variable 𝑛 or 𝑚 or 𝑝 in the summation notation is referred to as the 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 in 

the same sense as the dummy variable of a definite integral; that is, it serves as a placeholder that disappears 

after the sum is evaluated. To determine the convergence of a series, we compare it with another series whose 
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convergence or divergence is known. For the comparison purpose we use either a geometric series or a harmonic 

series.  

Geometric Series 

The series in which the ratio of two successive terms is constant, namely 

𝑎 + 𝑎𝑥 + 𝑎𝑥2 + 𝑎𝑥3 +⋯𝑎𝑥𝑛−1 +⋯                                 𝐸𝑞. (3.2𝑎) 

is known as a geometric series. Here 𝑎 is the first term and 𝑥 is the 𝑐𝑜𝑚𝑚𝑜𝑛 𝑟𝑎𝑡𝑖𝑜. The partial sum of first 𝑁 

terms of this series is 

𝑆(𝑁) = 𝑎 + 𝑎𝑥 + 𝑎𝑥2 +⋯𝑎𝑥(𝑁−1)  .                                 𝐸𝑞. (3.2𝑏) 

On multiplying this partial sum by the common ratio 𝑥, we get 

𝑥𝑆(𝑁) = 𝑎𝑥 + 𝑎𝑥2 +⋯𝑎𝑥(𝑁−1) + 𝑎𝑥𝑁  .                                 𝐸𝑞. (3.2𝑐) 

Subtracting Eq. (3.2𝑐) from Eq. (3.2𝑏) results in 

(1 − 𝑥)𝑆(𝑁) = 𝑎 − 𝑎𝑥𝑁  , 

or  

𝑆(𝑁) = 𝑎
1 − 𝑥𝑁

1 − 𝑥
  .                                                               𝐸𝑞. (3.2𝑑) 

Now if 𝑥 ≥ 1, then 𝑆(𝑁) → ∞ as 𝑁 → ∞, so that geometric series is divergent for 𝑥 ≥ 1. For 𝑥 < 1, 𝑥𝑁 → 0 for 

𝑁 → ∞ so that 

lim
𝑁→∞

[𝑆(𝑁)] →
𝑎

1 − 𝑥
  .                                                           𝐸𝑞. (3.2𝑒) 

Therefore, the geometric series, 𝑎 + 𝑎𝑥 + 𝑎𝑥2 +⋯, converges to 
𝑎

1−𝑥
 for 𝑥 < 1 and diverges for 𝑥 ≥ 1. Note 

that in a converging geometric series, the common ratio 𝑥 can take any value as long as this value is less than 1. 

Harmonic Series 

Next, we consider a harmonic series. Unlike a geometric series, which can take several values depending on the 

value of 𝑥, there is only one harmonic series. Successive terms of the harmonic series are reciprocals of the 

natural integers as follows: 
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1 +
1

2
+
1

3
+
1

4
+ ⋯+

1

𝑛
+⋯ 

Even though each successive term in this series is smaller than the previous term, the series is divergent. The 

divergent nature of the series can be seen by grouping the terms as 

1 + (
1

2
) + (

1

3
+
1

4
) + (

1

5
+
1

6
+
1

7
+
1

8
) + (

1

9
+⋯+

1

16
) +⋯ 

A typical pair of parentheses will include terms like 

1

𝑛 + 1
+

1

𝑛 + 2
+⋯+

1

𝑛 + 𝑛⏟                  
>

𝑛 𝑡𝑒𝑟𝑚𝑠

1

𝑛 + 𝑛
+

1

𝑛 + 𝑛
+⋯+

1

𝑛 + 𝑛⏟                  
𝑛 𝑡𝑒𝑟𝑚𝑠

=
𝑛

2𝑛
=
1

2
  . 

Thus, for harmonic series, 

1 + (
1

2
) + (

1

3
+
1

4
) + (

1

5
+
1

6
+
1

7
+
1

8
) + (

1

9
+ ⋯+

1

16
) +⋯ > 1 +

1

2
+
1

2
+
1

2
+ ⋯ 

Now, the series on the right-hand side of this inequality is clearly divergent since the partial sum of this series is 

𝑆(𝑁) = 1 +
1

2
(𝑁 − 1) =

𝑁 + 1

2
  , 

and 

lim
𝑁→∞

[𝑆(𝑁)] → ∞  . 

Thus, the harmonic series is known to be a divergent series. 

3.2 TESTS FOR CONVERGENCE 

We can use several different tests to check the convergence of an unknown series. Three common tests are the 

comparison test, the ratio test, and the integral test. 

Comparison Test 

Now, to test the convergent or divergent nature of a series, we compare it term-by-term with another series 

whose convergence or divergence is known. For example, if the infinite series 𝑎1 + 𝑎2 + 𝑎3 +⋯ is known to be 

convergent, then consider an unknown series, 𝑏1 + 𝑏2 + 𝑏3…. If 𝑏𝑛 ≤ 𝑎𝑛 for all values of 𝑛 from 1 to infinity, 

then ∑ 𝑏𝑛 ≤𝑛 ∑ 𝑎𝑛𝑛  and, therefore, ∑ 𝑏𝑛𝑛  is also convergent.  
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On the other hand, suppose the infinite series 𝑢1 + 𝑢2 + 𝑢3… is known to be divergent. Then, consider an 

unknown series 𝑣1 + 𝑣2 + 𝑣3… If 𝑣𝑛 ≥ 𝑢𝑛 for all values of 𝑛 from 1 to infinity, then ∑ 𝑣𝑛𝑛 ≥ ∑ 𝑢𝑛𝑛  and, 

therefore, ∑ 𝑣𝑛𝑛 is also divergent. For this comparison test, a standard geometric series will serve as a prototype 

convergent series, and the harmonic series will serve as a prototype divergent series. 

Example: Check the convergence of the following series. 

𝑺 = ∑
𝟏

𝟐 + 𝟑𝒏

∞

𝒏=𝟏

  . 

Solution: Since 
1

2+3𝑛
<

1

3𝑛
 for any 𝑛, and ∑

1

3𝑛
∞
𝑛=1  is a convergent geometric series with the common ratio 1/3, the 

unknown series 𝑆 is also convergent. 

Example: Check whether the following series converges or diverges. 

𝑺 = ∑
𝐥𝐧(𝒏)

𝒏

∞

𝒏=𝟏

  . 

Solution: We compare this series with the harmonic series. Since 
ln(𝑛)

𝑛
>
1

𝑛
 for 𝑛 ≥ 3 and ∑

1

𝑛

∞
𝑛=1  is the divergent 

harmonic series, so 𝑆 is also a divergent series. 

Ratio test of Cauchy and D’Alembert 

The Cauchy and D’Alembert ratio test provides the ability to compare an unknown infinite series with the 

geometric series 1 + 𝑥 + 𝑥2 +⋯. We know that the above geometric series converges only if 𝑥, the ratio of two 

successive terms, is less than 1. Thus, for the unknown series 𝑎1 + 𝑎2 + 𝑎3…+ 𝑎𝑛 + 𝑎𝑛+1 +⋯, with all 𝑎𝑖 > 0, 

we look for the ratio of two successive terms, 
𝑎𝑛+1 

𝑎𝑛
. If 

lim
𝑛→∞

𝑎𝑛+1 

𝑎𝑛
< 1, the series is convergent,                                                                                   . 

lim
𝑛→∞

𝑎𝑛+1 

𝑎𝑛
> 1, the series is divergent, and                                                             𝐸𝑞. (3.3) 

lim
𝑛→∞

𝑎𝑛+1 

𝑎𝑛
= 1, the nature of the series is indeterminate.                                                  . 

Example: Determine the converging or diverging behavior of the infinite series, 

𝟏

𝟐!
+
𝟐

𝟑!
+
𝟑

𝟒!
+ ⋯+

𝒏

(𝒏 + 𝟏)!
+ ⋯ =  ∑

𝒏

(𝒏 + 𝟏)!

∞

𝒏=𝟏

  . 
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Solution: In this case, 

lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

=
𝑛 + 1

(𝑛 + 2)!

(𝑛 + 1)!

𝑛
=

𝑛 + 1

(𝑛 + 2) 𝑛
→ 0  . 

Thus, according to the ratio test, the series converges. The value of this series is 1 [see Example 3 at the end of 

this chapter]. 

Example: Check the convergence of the following series, 

(
𝟏

𝟑
)𝟏! + (

𝟏

𝟑
)
𝟐

𝟐! + (
𝟏

𝟑
)
𝟑

𝟑!…+ (
𝟏

𝟑
)
𝒏

𝒏! + ⋯ =∑(
𝟏

𝟑
)
𝒏

𝒏!

∞

𝒏=𝟏

  . 

Solution: In this case, 

lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

=
(
1
3
)
𝑛+1

(𝑛 + 1)!

(
1
3
)
𝑛

𝑛!

=
1

3
(𝑛 + 1) → ∞  . 

Thus, the unknown series is divergent. 

Integral test of Cauchy and Maclaurin 

Once again, consider an infinite series of constants, 

𝑎1 + 𝑎2 + 𝑎3……+ 𝑎𝑛 +⋯ 

Imagine a function, 𝑓(𝑥), that is a continuous and monotonically decreasing function of 𝑥 with 𝑓(𝑛) = 𝑎𝑛. 

Consider its partial sum 

𝑆(𝑁) = ∑𝑎𝑛

𝑁

𝑛=1

  . 

Now consider a series of unit-width rectangles, with heights 𝑎1, 𝑎2, 𝑎3, …etc, as shown in Figure 3.1. From the 

figure 

𝑎1 + 𝑎2 +⋯+ 𝑎𝑁−1 > ∫ 𝑓(𝑥)𝑑𝑥
𝑁

1

         [dashed line]          , 

and 
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                   𝑎2 + 𝑎3 +⋯+ 𝑎𝑁 < ∫ 𝑓(𝑥)𝑑𝑥
𝑁

1

       [solid line]          .   

 

Figure 3.1. Integral test of Cauchy and Maclaurin. 

That is, 

𝑆(𝑁) > ∫ 𝑓(𝑥)𝑑𝑥
𝑁+1

1

 

and 

𝑆(𝑁) < ∫ 𝑓(𝑥)𝑑𝑥
𝑁

1

+ 𝑎1  . 

On combining both the results, we get 

∫ 𝑓(𝑥)𝑑𝑥
𝑁+1

1

< 𝑆(𝑁) < ∫ 𝑓(𝑥)𝑑𝑥
𝑁

1

+ 𝑎1  . 

Now take the limit 𝑁 → ∞ to get, 

∫ 𝑓(𝑥)𝑑𝑥
∞

1

<∑𝑎𝑛

∞

𝑛=1

< ∫ 𝑓(𝑥)𝑑𝑥
∞

1

+ 𝑎1  .                          𝐸𝑞. (3.4) 

Thus, the series ∑ 𝑎𝑛
∞
𝑛=1  converges or diverges just as the integral ∫ 𝑓(𝑥)𝑑𝑥

∞

1
 converges or diverges. 
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Example: Check the converging behavior of the Riemann Zeta function, 

𝜻(𝒑) = ∑
𝟏

𝒏𝒑

∞

𝒏=𝟏

  . 

Solution: We define 𝑓(𝑥) =
1

𝑥𝑝
 so that 𝑓(𝑛) =

1

𝑛𝑝
. Then, 

∫ 𝑓(𝑥)𝑑𝑥
∞

1

= ∫ 𝑥−𝑝𝑑𝑥
∞

1

= {

𝑥−𝑝+1

−𝑝 + 1
|
1

∞

,     for 𝑝 ≠ 1

ln(𝑥) |1
∞,         for 𝑝 = 1

     . 

The integral ∫ 𝑓(𝑥)𝑑𝑥
∞

1
, therefore, diverges for 𝑝 ≤ 1 and converges for 𝑝 > 1. The series for the Riemann Zeta 

function is thus convergent for 𝑝 > 1. This is sometimes referred to as the 𝑝-series test. 

Absolute Convergence 

The series ∑ 𝑎𝑛
∞
𝑛=1  is said to converge absolutely if the related series ∑ |𝑎𝑛|

∞
𝑛=1  also converges. An absolute 

convergence implies convergence but not vice versa. As an example, the series 

1 −
1

2
+
1

3
−
1

4
+
1

5
− ⋯ 

converges to ln 2 [we will show it later in this chapter; see Eq. (3.12)]. But the corresponding absolute series, 

1 +
1

2
+
1

3
+
1

4
+
1

5
+ ⋯  , 

being the harmonic series, diverges. So, the original series is not absolutely convergent. An absolutely convergent 

series is important for two reasons: The product of two absolutely convergent series is another absolutely 

convergent series. The sum of the product of two absolutely convergent series is equal to the product of the sum 

of two individual series. That is, 

𝑆𝑎𝑆𝑏 + 𝑆𝑎𝑆𝑐 = 𝑆𝑎(𝑆𝑏 + 𝑆𝑐)  . 

If an infinite series is absolutely convergent, its sum is independent of the order in which the terms are added. 

Stated differently, if an infinite series is not absolutely convergent, the value of its sum will depend on the order 

in which the terms are added.  

As an example, let us go back to the series 
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𝑆 = 1 −
1

2
+
1

3
−
1

4
+
1

5
+ ⋯  , 

which is 𝑛𝑜𝑡 absolutely convergent. Now we show explicitly that the value of this series depends on the order in 

which its terms are added. Separating out the positive and negative parts of this series, we get 

𝑆 = (1 +
1

3
+
1

5
+
1

7
…) − (

1

2
+
1

4
+
1

6
+ ⋯)  . 

The terms in the second parenthesis can be further separated out as 

𝑆 = (1 +
1

3
+
1

5
+
1

7
… ) − (

1

2
+
1

6
+
1

10
+
1

14
… ) − (

1

4
+
1

8
+
1

12
+
1

16
… )  . 

Now, take out the common factor of 
1

2
 in the second parenthesis and then easily combine the first and second 

parenthesis as 

𝑆 = (
1

2
+
1

6
+
1

10
+
1

14
… ) − (

1

4
+
1

8
+
1

12
+
1

16
…)  . 

On taking out an overall common factor of 
1

2
, we get 

𝑆 =
1

2
(1 −

1

2
+
1

3
−
1

4
+
1

5
−
1

6
…)  , 

or 

𝑆 =
1

2
𝑆  , 

which, of course, is an absurd result. The absurdity arises since this series is not absolutely convergent. 

The second property of absolutely convergent series allows us to rearrange various series. Suppose 𝑆𝑎 = ∑ 𝑎𝑛
∞
𝑛=1  

and 𝑆𝑏 = ∑ 𝑏𝑛
∞
𝑛=1  are two absolutely converging series, then 𝑆 = 𝑆𝑎𝑆𝑏 is the following double series: 

𝑆 = ∑∑𝑎𝑚

∞

𝑛=1

𝑏𝑛

∞

𝑚=1

= ∑ 𝑐𝑚𝑛

∞

𝑚,𝑛=1

  . 

In this double sum the summation is carried over rows (and columns) of the table shown in Figure 3.2. However, 

if we define  

𝑟 = 𝑛 + 𝑚 − 1  , 
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Figure 3.2. Evaluation of a double infinite sum. 

then we note that 𝑟 also takes all integer values over the range from 1 to ∞. So, we can replace the dummy 

variable 𝑚 by variable 𝑟. Also, note 𝑚 = 𝑟 − 𝑛 + 1 ≥ 1     or   𝑛 ≤ 𝑟. Thus, 

𝑆 = ∑∑𝑐𝑚𝑛

∞

𝑛=1  

∞

𝑚=1

=∑∑𝑐𝑟−𝑛+1,𝑛

𝑟

𝑛=1  

∞

𝑟=1

  .                                           𝐸𝑞. (3.5) 

This summation is carried along the diagonal of the table in Figure 3.2. The advantage of this manipulation is that 

a double infinite sum is reduced to a single infinite sum plus a finite sum. This works only for absolutely 

convergent series. 

3.3 SERIES OF FUNCTIONS 

If each term of an infinite series is a function of a variable 𝑥, then the sum of the series, if it exists, is a function of 

𝑥. Such a series looks like 

𝑎0(𝑥) + 𝑎1(𝑥) + 𝑎2(𝑥) + ⋯+ 𝑎𝑛(𝑥) + ⋯  , 

with the sum of this infinite series being 

𝑆(𝑥) = ∑𝑎𝑛(𝑥)

∞

𝑛=0

= lim
𝑁→∞

𝑆(𝑁; 𝑥)  . 

Here 𝑆(𝑁; 𝑥) is the partial sum, 𝑆(𝑁; 𝑥) = ∑ 𝑎𝑛(𝑥)
𝑁
𝑛=0 . In case of series of functions, we will start the sum from 

𝑛 = 0 instead of 𝑛 = 1, as done previously for series of constant terms. 

The dependence of lim
𝑁→∞

𝑆(𝑁; 𝑥) on 𝑥 is expressed through uniform convergence of the series. If for a certain 

range of values of 𝑥, 𝑎 ≤ 𝑥 ≤ 𝑏, and for any small number 𝜖 > 0, it is possible to choose a number 𝜈 [which is 

independent of 𝑥] such that 
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  𝑆(𝑥) − 𝜖 < 𝑆(𝑁; 𝑥) < 𝑆(𝑥) + 𝜖  for all 𝑁 ≥ 𝜈  , 

or, alternatively, 

  |𝑆(𝑥) − 𝑆(𝑁; 𝑥)| < 𝜖   for all 𝑁 ≥ 𝜈  , 

then the series converges uniformly to 𝑆(𝑥) in the range 𝑎 ≤ 𝑥 ≤ 𝑏. Thus, no matter how small 𝜖 is, it is always 

possible to choose a sufficiently large 𝑁 such that the difference between the full sum 𝑆(𝑥) and the partial sum 

𝑆(𝑁; 𝑥) is less than 𝜖 for all values of 𝑥 between 𝑎 and 𝑏. A good thing about a uniformly converging series is 

that it can be differentiated and integrated term by term. A series in 𝑥 which converges uniformly in the interval 

𝑎 ≤ 𝑥 ≤ 𝑏 can be integrated term by term provided the limits of the integration lie within [𝑎, 𝑏]. Thus, if 𝑆(𝑥) =

∑ 𝑎𝑛(𝑥)
∞
𝑛=0  is uniformly convergent, then 

∫ 𝑆(𝑥)𝑑𝑥
𝑞

𝑝

=∑∫ 𝑎𝑛(𝑥)𝑑𝑥
𝑞

𝑝

∞

𝑛=0

  ,                                           𝐸𝑞. (3.6𝑎) 

provided 𝑝 and 𝑞 lie within [𝑎, 𝑏]. Similarly, a uniformly convergent series can be differentiated term by term 

within its range of convergence; that is, if 𝑆(𝑥) = ∑ 𝑎𝑛(𝑥)
∞
𝑛=0 , then 

𝑑𝑆(𝑥)

𝑑𝑥
= ∑

𝑑𝑎𝑛(𝑥)

𝑑𝑥

∞

𝑛=0

  .                                                             𝐸𝑞. (3.6𝑏) 

Taylor and Maclaurin Series 

The reverse process, in which a given function 𝑆(𝑥) is expanded into an infinite series, is called the power series 

expansion. Two power series expansions of interest to us are the Taylor and the Maclaurin series expansions. To 

gain more insight into the Taylor series expansion of a given function 𝑆(𝑥), consider expanding this function as 

𝑆(𝑥) = 𝑐0 + 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)
2 +⋯+ 𝑐𝑛(𝑥 − 𝑎)

𝑛 +⋯   ,                  𝐸𝑞. (3.7) 

where the coefficients 𝑐𝑛 are to be determined. This is the power series expansion of 𝑆(𝑥) about the point 𝑥 =

𝑎. Define 

𝑆(𝑛)(𝑥) =
𝑑𝑛𝑆(𝑥)

𝑑𝑥𝑛
 and 𝑆(𝑛)(𝑎) = 𝑆𝑛(𝑥)|𝑥=𝑎   . 

On setting 𝑥 = 𝑎 in Eq. (3.7), we note that 𝑐0 = 𝑆(𝑎). On taking the first derivative of the series in Eq. (3.7) and 

then setting 𝑥 = 𝑎, we get 

𝑑𝑆(𝑥)

𝑑𝑥
= 0 + 𝑐1 + 2𝑐2(𝑥 − 𝑎) + ⋯ 
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and  

𝑐1 =
𝑑𝑆

𝑑𝑥
|
𝑥=𝑎

= 𝑆(1)(𝑎)  .  

Similarly, on taking the second derivative of the series in Eq. (3.7) and then setting 𝑥 = 𝑎, we get 

𝑑2𝑆

𝑑𝑥2
= 2 ∙ 1𝑐2 + 3 ∙ 2𝑐3(𝑥 − 𝑎) + ⋯ 

and 

𝑐2 =
1

2!

𝑑2𝑆

𝑑𝑥2
|
𝑥=𝑎

=
𝑆(2)(𝑎)

2!
  . 

Similarly, on taking the third derivative of the series in Eq. (3.7) and then setting 𝑥 = 𝑎, we get 

𝑐3 =
1

3!

𝑑3𝑆

𝑑𝑥3
|
𝑥=𝑎

 =
𝑆(3)(𝑎)

3!
  . 

In general, 

𝑐𝑛 =
1

𝑛!

𝑑𝑛𝑆

𝑑𝑥𝑛
|
𝑥=𝑎

 =
𝑆(𝑛)(𝑎)

𝑛!
  . 

Substituting the values of 𝑐𝑛 in Eq. (3.7) provides the Taylor series expansion, namely 

𝑆(𝑥) = ∑
𝑆(𝑛)(𝑎) 

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

  .                                            𝐸𝑞. (3.8𝑎) 

This is the Taylor series expansion of 𝑆(𝑥) about 𝑥 = 𝑎. In general, the Taylor series can be truncated after 𝑁 

terms as  

𝑆(𝑥) = ∑  

𝑁−1

𝑛=0

𝑆(𝑛)(𝑎) 

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑁 

where the remainder 𝑅𝑁 is 
𝑆(𝑁)(𝑏) 

𝑁!
(𝑥 − 𝑎)𝑁, for any 𝑏 between 𝑎 and 𝑥. The Taylor series expansion is 

convergent only if 𝑅𝑁
𝑁→∞
→   0. 

For 𝑎 = 0,  
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𝑆(𝑥) = ∑
𝑆(𝑛)(0) 

𝑛!
𝑥𝑛

∞

𝑛=0

  ,                                                           𝐸𝑞. (3.8𝑏) 

which is purely a power series expansion of 𝑆(𝑥) and is called the Maclaurin series for 𝑆(𝑥).  

Example: Determine the Maclaurin series expansion of 𝑺(𝒙) = 𝐞𝐱𝐩𝒙. 

Solution: In this case, we note that 𝑆(𝑛)(𝑥) = exp 𝑥 and 𝑆(𝑛)(0) = 1 for all 𝑛. The Maclaurin series becomes 

exp 𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

= 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯                                              𝐸𝑞. (3.9) 

The convergence of the series can be checked by the ratio test since 
𝑎𝑛+1

𝑎𝑛
=

𝑥

𝑛+1
→ 0 as 𝑛 → ∞ and 𝑥 is finite. It is 

worth commenting that we can make expansion of exp 𝑥 about any point (other than zero) using Taylor series. 

Example: Determine Maclaurin series expansions of 𝐬𝐢𝐧 𝒙 and 𝐜𝐨𝐬 𝒙. 

Solution: In this case, 

𝑓(𝑥) = sin 𝑥 , 𝑓(0) = 0   ;       𝑔(𝑥) = cos 𝑥 ,   𝑔(0) = 1  , 

𝑓(1)(𝑥) = cos 𝑥 ,   𝑓(1)(0) = 1   ;      𝑔(1)(𝑥) = − sin 𝑥 , 𝑔(1)(0) = 0  , 

𝑓(2)(𝑥) = − sin 𝑥,   𝑓(2)(0) = 0   ;      𝑔(2)(𝑥) = − cos 𝑥 , 𝑔(2)(0) = −1  , 

𝑓(3)(𝑥) = − cos 𝑥 ,   𝑓(3)(0) = −1   ;      𝑔(3)(𝑥) = sin 𝑥 , 𝑔(3)(0) = 0  , 

𝑓(4)(𝑥) = sin 𝑥 ,   𝑓(4)(0) = 0   ;         𝑔(4)(𝑥) = cos 𝑥 , 𝑔(4)(0) = 1  . 

Thus, in general, for 𝑛 = 0,1,2⋯, 

𝑓(2𝑛)(0) = 0, 𝑓(2𝑛+1)(0) = (−1)𝑛  ;    𝑔(2𝑛)(0) = (−1)𝑛 , 𝑔(2𝑛+1)(0) = 0  . 

Use these values in 

𝑓(𝑥) = ∑
𝑓(𝑛)(0)

𝑛!

∞

𝑛=0

 𝑥𝑛      and       𝑔(𝑥) = ∑
𝑔(𝑛)(0)

𝑛!

∞

𝑛=0

𝑥𝑛 

to obtain 
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sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
− ⋯ =∑(−1)𝑛

𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

  ,                                         𝐸𝑞. (3.10) 

cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
− ⋯ = ∑(−1)𝑛

𝑥2𝑛

(2𝑛)!

∞

𝑛=0

  .                                                𝐸𝑞. (3.11) 

Example: Determine Maclaurin series expansion of 𝑺(𝒙) = 𝐥𝐧(𝟏 + 𝒙). 

Solution: In this case, 𝑆(0) = 0 and 

𝑆(1)(𝑥) = (1 + 𝑥)−1           𝑆(1)(0) = 1 

𝑆(2)(𝑥) = −(1 + 𝑥)−2         𝑆(2)(0) = −1 

𝑆(3)(𝑥) = 2(1 + 𝑥)−3          𝑆(3)(0) = 2! 

𝑆(4)(𝑥) = −3! (1 + 𝑥)−4         𝑆(4)(0) = −3! 

⋮ 

𝑆(𝑛)(𝑥) = (−1)𝑛−1(𝑛 − 1)! (1 + 𝑥)−𝑛    𝑛 ≥ 1         𝑆(𝑛)(0) = (−1)𝑛−1(𝑛 − 1)!     𝑛 ≥ 1  . 

Thus, the series for ln(1 + 𝑥) is 

𝑆(𝑥) = ln(1 + 𝑥) = ∑
(−1)𝑛−1

𝑛
𝑥𝑛

∞

𝑛=1

= 𝑥 −
𝑥2

2
+
𝑥3

3
−
𝑥4

4
+ ⋯                  𝐸𝑞. (3.12) 

Note in passing that 𝑆(1) = ln(2) = 1 −
1

2
+
1

3
−
1

4
+⋯ as mentioned earlier in this chapter. 

Example: Determine Maclaurin series expansion of a binomial function (Binomial Theorem), namely 

𝒇(𝒙) = (𝟏 + 𝒙)𝒎 

where 𝒎 is a real number (positive or negative; integer or non-integer), and |𝒙| < 𝟏.  

Solution: In this case, various derivatives of 𝑓(𝑥) are: 

𝑓(1)(𝑥) = 𝑚(1 + 𝑥)𝑚−1                                                               

𝑓(2)(𝑥) = 𝑚(𝑚 − 1)(1 + 𝑥)𝑚−2                                               

𝑓(3)(𝑥) = 𝑚(𝑚 − 1)(𝑚 − 2)(1 + 𝑥)𝑚−3 ⋮                             
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𝑓(𝑛)(𝑥) = 𝑚(𝑚 − 1)(𝑚 − 2)… (𝑚 − 𝑛 + 1)(1 + 𝑥)𝑚−𝑛  . 

On setting 𝑥 = 0, we get 

𝑓(𝑛)(0) = 𝑚(𝑚 − 1)… (𝑚 − 𝑛 + 1)  . 

Thus, the Maclaurin series for the binomial function is 

 𝑓(𝑥) = (1 + 𝑥)𝑚 = 1 +𝑚𝑥 +
𝑚(𝑚−1)

2!
𝑥2 +

𝑚(𝑚−1)(𝑚−2)

3!
𝑥3 +⋯                      𝐸𝑞. (3.13) 

As a particular case, if 𝑚 is a positive integer, say 𝑁, then 𝑁th derivative of 𝑓(𝑥) is 

𝑓(𝑁)(𝑥) = 𝑁(𝑁 − 1)(𝑁 − 2)… (1) = 𝑁!  , 

which is independent of 𝑥. So, all higher derivatives starting from 𝑓(𝑁+1)(𝑥) onwards are zero. In this case, the 

infinite series expansion of the binomial function (1 + 𝑥)𝑁 reduces to a finite series. For 𝑁 = 2,3,4… we have 

the well-known expansions 

(1 + 𝑥)2 = 1 + 2𝑥 + 𝑥2  ,                          

(1 + 𝑥)3 = 1 + 3𝑥 + 3𝑥2 + 𝑥3  ,              

(1 + 𝑥)4 = 1 + 4𝑥 + 6𝑥2 + 4𝑥3 + 𝑥4  , 

etc. 

Additional Examples 

If a series of functions is a uniformly convergent series, then it can be differentiated and/or integrated to reduce 

an unfamiliar series to a familiar one. A few examples of this trick are discussed here.  

Example 1: Consider the series 𝑆(𝑥), 

𝑆(𝑥) = 1 + 2𝑥 + 3𝑥2 + 4𝑥3 +⋯ 

where the range of convergence of this series is known to be −1 < 𝑥 < +1. Integrate the series term-by-term to 

obtain a geometric series, 

∫ 𝑆(𝑥)𝑑𝑥
𝑥

0

= 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 +⋯ =
𝑥

1 − 𝑥
  . 

Now differentiate both sides of this expression to get 
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𝑆(𝑥) =
𝑑

𝑑𝑥
(
𝑥

1 − 𝑥
) =

1

1 − 𝑥
+

𝑥

(1 − 𝑥)2
=

1

(1 − 𝑥)2
  . 

Example 2: Consider another series 𝑆(𝑥), 

𝑆(𝑥) =
1

1.2
+
𝑥

2.3
+
𝑥2

3.4
+
𝑥3

4.5
+ ⋯ 

then, 

𝑥2𝑆(𝑥) =
𝑥2

1.2
+
𝑥3

2.3
+
𝑥4

3.4
+
𝑥5

4.5
+ ⋯ 

On taking the second derivative of this series, it reduces to a geometric series, which can be easily summed as 

𝑑2

𝑑𝑥2
[𝑥2𝑆(𝑥)] = 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯ =

1

1 − 𝑥
  . 

Now, we integrate this expression twice to get 𝑆(𝑥). The first integration gives 

𝑑

𝑑𝑥
(𝑥2𝑆(𝑥)) = − ln(1 − 𝑥) + 𝐶1  , 

and the second integration gives 

𝑥2𝑆(𝑥) = −∫ ln(1 − 𝑥) 𝑑𝑥 + 𝐶1𝑥 + 𝐶2  . 

Here 𝐶1 and 𝐶2 are two constants of integration. The indefinite integral here can be evaluated using the 

substitution, 𝑦 = ln(1 − 𝑥), or equivalently, 𝑥 = 1 − exp 𝑦. Then, 

∫ ln(1 − 𝑥) 𝑑𝑥 = ∫𝑦[− exp 𝑦]𝑑𝑦 = −𝑦 exp 𝑦 +∫exp 𝑦 𝑑𝑦 = (1 − 𝑦) exp 𝑦 = (1 − 𝑥)[1 − ln(1 − 𝑥)]  . 

So, 

𝑥2𝑆(𝑥) = −(1 − 𝑥)[1 − ln(1 − 𝑥)] + 𝐶1 𝑥 + 𝐶2  . 

To evaluate the two constants of integration, we set 𝑥 = 0 and recall that 

ln(1 − 𝑥) = −𝑥 −
𝑥2

2
−
𝑥3

3
…  , 

to obtain 
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𝐶2 = 1  . 

Substitute this value of 𝐶2 in the above expression for 𝑆(𝑥) and then divide both sides by 𝑥 to get 

𝑥𝑆(𝑥) = 1 +
(1 − 𝑥) ln(1 − 𝑥)

𝑥
+ 𝐶1  . 

Again, set 𝑥 = 0 to obtain 𝐶1 = 0. So, finally, the value of the original series 𝑆(𝑥) is 

𝑆(𝑥) =
1

𝑥
+
1 − 𝑥

𝑥2
ln(1 − 𝑥)  . 

In some cases, even if the series does not contain a variable, one can still use the trick of differentiation and/or 

integration by introducing a variable judiciously.  

Example 3: Consider the series 

𝑆 =
1

2!
+
2

3!
+
3

4!
+⋯+

𝑛−1

𝑛!
+⋯  . 

We used this as an example of a converging series earlier; the value of this series was quoted as 1. Let us define 

𝑓(𝑥) =
𝑥2

2!
+
2𝑥3

3!
+
3𝑥4

4!
+
4𝑥5

5!
+ ⋯+

(𝑛 − 1)𝑥𝑛

𝑛!
+ ⋯ 

Clearly, 𝑆 = 𝑓(1) and 𝑓(0) = 0. Now, 

𝑑𝑓

𝑑𝑥
= 𝑥 + 𝑥2 +

𝑥3

2!
+
𝑥4

3!
+ ⋯+

𝑥𝑛−1

(𝑛 − 2)!
+ ⋯ 

= 𝑥 {1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯

𝑥𝑛−2

(𝑛 − 2)!
+ ⋯} = 𝑥 exp 𝑥  . 

On integrating both sides, we get 

∫
𝑑𝑓

𝑑𝑥
𝑑𝑥

𝑥

0

= 𝑓(𝑥) − 𝑓(0) = ∫ 𝑥 exp 𝑥 𝑑𝑥
𝑥

0

  . 

Or  

𝑓(𝑥) = 𝑥 exp 𝑥 |0
𝑥 −∫ exp 𝑥 𝑑𝑥

𝑥

0

= 𝑥 exp 𝑥 − exp 𝑥 + 1 = 1 + (𝑥 − 1) exp 𝑥  . 

Then, the value of the original series of constants is 𝑆 = 𝑓(1) = 1.    
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PROBLEMS FOR CHAPTER 3 

1. Find the value of 𝛼 (𝛼 > 0) if 

∑
1

(1 + 𝛼)𝑛

∞

𝑛=0

 =
(1 + 𝛼)2

2
  . 

2. Use the comparison test to check the convergence of following two series. 

∑
5𝑛

32𝑛

∞

𝑛=1

    and      ∑
1

√𝑛

∞

𝑛=1

  . 

3. Use the Cauchy and D’Alembert ratio test to check the convergence of following two series [Useful 

information, 𝑒 = 2.72]. 

∑𝑛exp(−𝑛)

∞

𝑛=1

             and              ∑
10𝑛

(𝑛!)2

∞

𝑛=1

  . 

4. Use the Cauchy and Maclaurin integral test to check the convergence of following two series. 

∑
1

1+ 𝑛2

∞

𝑛=1

  and  ∑
𝑛

1 + 𝑛2

∞

𝑛=1

  . 

5. Show that the first five terms in the Taylor series expansion of exp(−𝑥) cos 𝑥 about 𝑥 = 0 are 

exp(−𝑥) cos 𝑥 =  1 − 𝑥 + 
𝑥3

3
− 
𝑥4

6
+ 
𝑥5

30
…   . 

6. Expand the integrand below using binomial theorem  

1

2
ln (
1 + 𝑥

1 − 𝑥
) = ∫

𝑑𝑢

1 − 𝑢2

𝑥

0

  , 

and integrate term by term to obtain the power series expansion of 

ln (
1 + 𝑥

1 − 𝑥
)     for     |𝑥| < 1  . 

7. By comparing with other well-known series, evaluate the sum of the following series exactly 

    1 + ln 3  +  
(ln 3)2

2!
+ 
(ln 3)3

3!
+ ⋯ 

8. The classical expression for the kinetic energy of a particle is 𝐾𝐸 =  
1

2
 𝑚𝑜 𝑣

2 where 𝑚𝑜 is the mass of the 

particle when it is at rest and 𝑣 is the speed of the particle. When the particle is moving with speed comparable 
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to 𝑐, where c is speed of light, the motion of the particle is correctly described by the theory of relativity. 

According to this theory, the mass of a particle moving with speed 𝑣 is  

𝑚 = 
𝑚𝑜

√1 −
𝑣2

𝑐2

  , 

and the kinetic energy of the particle is the difference between its total energy 𝑚𝑐2 and its energy at rest 𝑚𝑜𝑐
2, 

that is, 𝐾𝐸 = 𝑚𝑐2 − 𝑚𝑜𝑐
2.  

(a) Using binomial expansion show that when 𝑣 is very small compared to c, this expression for the kinetic 

energy of particle agrees with the classical expression. 

(b) The leading relativistic correction term for the classical expression for the kinetic energy is of the 

form 𝛼 𝑚𝑜
𝑣4

𝑐2
. What is the value of 𝛼? 

9. Biomedical Physics Application. In the thirteenth century, Italian mathematician Fibonacci investigated the 

growth of rabbit population by assuming, 

(a) rabbits never die, 

(b) rabbits can mate at the age of one month with the gestation period of one month, 

(c) the mating pair produces a new pair every month starting at the age of two months. 

Starting with a newly born pair of rabbits, what is the number of rabbit pairs at the beginning of nth month? 

Here is the accounting: 

At the beginning of first month, there is only one original pair, a1 = 1. 

At the beginning of second month, the pair mates, but there is still only one pair, a2 = 1. 

At the beginning of third month, there is original pair and a newly born pair, a3 = 2. 

At the beginning of fourth month, original pair produces a new pair and the one-month-old pair mates, a4 = 3. 

At the beginning of fifth month, original pair and two-month-old pair reproduce while one-month-old pair 

mates, a5 = 5, etc. 

At the beginning of nth month, number of pairs, 𝑎𝑛, equals the sum of newly born pairs [which is equal to the 

number of pairs at the beginning of (n-2)th month, 𝑎𝑛−2] plus the number of pairs living at the beginning of (n-

1)th month, 𝑎𝑛−1. Explicitly, the first few terms in the Fibonacci series look like  

  1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 +…  , 
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with the recursion relation 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2. 

(i) If lim
𝑛 →∞

𝑎𝑛+1

𝑎𝑛
=  𝜆, then show that 𝜆 =  

1+√5

2
.  

(ii) Prove the following five relationships for elements of the Fibonacci series, 

1

𝑎𝑛−1𝑎𝑛+1
= 

1

𝑎𝑛−1𝑎𝑛
− 

1

𝑎𝑛𝑎𝑛+1
  , 

∑𝑎2𝑖+1 =  𝑎2𝑛

𝑛−1

𝑖=0

  , 

∑𝑎2𝑖 = 𝑎2𝑛+1 −  1

𝑛

𝑖=1

  , 

∑𝑎𝑖 = 𝑎𝑛+2 −  1

𝑛

𝑖=1

  , 

∑𝑎𝑖
2 = 𝑎𝑛𝑎𝑛+1

𝑛

𝑖=1

  . 

The Fibonacci series appears in several biological settings, such as number of leaves on a stem, number of 

branches in a tree as a function of height, designs of seashell or pinecone or artichoke or pineapple fruitlets, 

seeds in a sunflower, family tree of honeybees, etc. 
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Interlude 

In this short interlude we introduce a few mathematical bits and pieces which will be helpful in our future 

journey of mathematics. We will introduce a unit imaginary number 𝑖, Kronecker Delta 𝛿𝑖𝑗, Dirac Delta function 

𝛿(𝑥), Levi-Civita symbol 𝜖𝑖𝑗𝑘  and Euler’s formula. 

Unit Imaginary Number: 𝒊 = √−𝟏 

The square root of some positive numbers is easy to figure out and remember, such as √4 =  2, √25 = 5, etc. For 

other positive numbers, we may need a calculator, such as √3 = 1.732, √7 = 2.646, etc. But, our beloved 

calculator is not very helpful when we attempt to find out the square root of some negative numbers. For 

example, what is √−4 or √−7 ? For this purpose, we define the square root of −1 as a unit imaginary number, 𝑖. 

In terms of 𝑖 we can write √−4 = √(−1)(4) = 2 𝑖 or √−7 = √(−1)(7) = 2.646 𝑖. Various powers of 𝑖 are 𝑖2 =

−1, 𝑖3 = 𝑖2𝑖 = −𝑖, 𝑖4 = 𝑖2𝑖2 = 1. Using the fact that 𝑖4 = 1, we can reduce 𝑖𝑛, where 𝑛 is a large number, to a 

much simpler form. As an example, 𝑖65 = 𝑖16(4)+1 = 𝑖 or 𝑖135 = 𝑖33(4)+3 = 𝑖3 = −𝑖 or 𝑖206 = 𝑖51(4)+2 = 𝑖2 = −1, 

etc. 

Kronecker Delta: 𝜹𝒊𝒋 

Kronecker Delta is a symbol with two indices, 𝑖 and 𝑗, and it can take two possible values, 0 and 1, depending on 

the values of the indices. The two indices, 𝑖 and 𝑗, themselves can assume all possible discrete integer values 

from −∞ to +∞. Specifically, 

𝛿𝑖𝑗 = {
1  if 𝑖 = 𝑗
0  if 𝑖 ≠ 𝑗

  .                                               𝐸𝑞. (𝐼. 1𝑎) 

Using this definition of Kronecker Delta, we can write 

∑ 𝑓(𝑥𝑖) 𝛿𝑖𝑗

∞

𝑖=−∞

= 𝑓(𝑥𝑗)  .                                                  𝐸𝑞. (𝐼. 1𝑏) 

Dirac Delta Function 

In the definition of the Kronecker Delta above, its two indices, 𝑖 and 𝑗, can assume all possible 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 integer 

values from −∞ to +∞. Its analog in which these two indices can take all possible 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 values is referred 

to as Dirac Delta function. To make this connection more understandable, we rewrite the Kronecker Delta in an 

alternate notation as 
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𝛿(𝑖 − 𝑗) = 0  𝑖𝑓   𝑖 − 𝑗 ≠ 0       ,           [𝑖, 𝑗 = ⋯− 2,−1,0, +1,+2⋯ ]                   𝐸𝑞. (𝐼. 2𝑎)   

along with 

∑ 𝑓(𝑥𝑖) 𝛿(𝑖 − 𝑗)

∞

𝑖=−∞

= 𝑓(𝑥𝑗)  .                                                                    𝐸𝑞. (𝐼. 2𝑏) 

Now, if 𝛿 is generalized from discrete variables 𝑖 and 𝑗 to all possible continuous values, 𝑥 and 𝑦, then the Dirac 

Delta function should have the properties: 

𝛿(𝑥 − 𝑦) = 0  𝑖𝑓 𝑥 − 𝑦 ≠ 0          or simply           𝛿(𝑥) = 0   𝑖𝑓 𝑥 ≠ 0  ,        𝐸𝑞. (𝐼. 3𝑎) 

as well as  

∫ 𝑓(𝑥)

∞

−∞

𝛿(𝑥 − 𝑦) 𝑑𝑥 = 𝑓(𝑦)               or simply            ∫  

∞

−∞

𝛿(𝑥) 𝑑𝑥 = 1  .        𝐸𝑞. (𝐼. 3𝑏) 

The Eqs. (𝐼. 3𝑎 and 𝐼. 3𝑏) imply that 𝛿(𝑥) cannot be zero for 𝑥 = 0 because then the integral (which represents 

the area under the 𝛿(𝑥) versus 𝑥 curve) will be zero, not 1. In order to understand the value of 𝛿(0), consider a 

step function 𝐹(𝑥), of width 2𝜖 around 𝑥 = 0 and height 1/(2𝜖), 

𝐹(𝑥) =  {
0  𝑓𝑜𝑟             |𝑥| > 𝜖

1/(2𝜖)      𝑓𝑜𝑟                 𝜖 ≥ 𝑥 ≥ −𝜖
          .   

The area under this step function (or, the integral of the function 𝐹(𝑥) over 𝑥 from −∞ to + ∞) is 1. On taking 

the limit 𝜖 → 0 in 𝐹(𝑥), the step function will have value 0 for 𝑥 ≠ 0, value ∞ for 𝑥 = 0 and will preserve the 

area under the 𝐹(𝑥) versus 𝑥 curve to be 1. Thus, our functional definition of the Dirac Delta function, 𝛿(𝑥), is 

any function which satisfies the following three conditions: 

 𝛿(𝑥) = 0  𝑖𝑓  𝑥 ≠ 0,   𝛿(𝑥) = ∞   𝑖𝑓   𝑥 = 0      and    ∫  

∞

−∞

𝛿(𝑥) 𝑑𝑥 = 1  .           𝐸𝑞. (𝐼. 4) 

It is easy to show that the following limiting relationships, as 𝜖 → 0, satisfy all three defining conditions of the 

Dirac Delta function and, therefore, can be taken as definitions of the Delta function itself: 

𝛿(𝑥) =
1

𝜋
 lim
𝜖→0

𝜖

𝑥2 + 𝜖2
   ,                                                                           𝐸𝑞. (𝐼. 5𝑎) 

𝛿(𝑥) =
1

√𝜋 
 lim
𝜖→0

1

 𝜖
𝑒𝑥𝑝(−𝑥2/𝜖2)    ,                                                        𝐸𝑞. (𝐼. 5𝑏) 

𝛿(𝑥) =
1

𝜋
 lim
𝜖→0
 
1

𝑥
𝑠𝑖𝑛 (

𝑥

𝜖
)  .                                                                        𝐸𝑞. (𝐼. 5𝑐) 
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There are two comments worth mentioning here. First, unlike the Kronecker Delta which is a dimensionless 

number, the Dirac Delta function 𝛿(𝑥) has dimensions of 1/𝑥 for the integral of 𝐸𝑞. (𝐼. 4) to be meaningful. 

Second, the Dirac Delta function defined in Eq. (I.4) is a one-dimensional Delta function which can be generalized 

to two-dimensional and three-dimensional Dirac Delta functions. 

Levi-Civita symbol: 𝝐𝒊𝒋𝒌 

Analogous to a Kronecker delta, one can define the Levi-Civita symbol 𝜖𝑖𝑗𝑘  with three indices (𝑖𝑗𝑘). The three 

indices (𝑖𝑗𝑘) can take only three values (1 or 2 or 3) each. The Levi-Civita symbol itself can have one of the three 

possible values, +1 or 0 or -1. Specifically, 

𝜖𝑖𝑗𝑘 = {

0 if any two indices are equal

+1 if an even exchange of (𝑖𝑗𝑘) gives (123)

−1 if an odd exchange of (𝑖𝑗𝑘) gives (123)
                                       𝐸𝑞. (𝐼. 6) 

Then, out of 27 (3 times 3 times 3) possible Levi-Civita symbols, only six are nonzero. These are 𝜖123 =

+1, 𝜖132 = −1, 𝜖213 = −1, 𝜖231 = +1, 𝜖312 = +1, and 𝜖321 = −1. As we will see later, one can write the cross 

product of two vectors in a very compact form using the Levi-Civita symbol. Also, the value of a determinant of 

order 3 can be written using the Levi-Civita symbol. 

The Levi-Civita symbol is related to Kronecker delta by 

∑𝜖𝑖𝑗𝑘𝜖𝑖𝑙𝑚 = 𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙
𝑖

  .                                                𝐸𝑞. (𝐼. 7) 

A nice mnemonics device to remember the order of indices in this relationship is illustrated in the figure below so 

that, right-hand-side of the relation is (𝑓𝑖𝑟𝑠𝑡)(𝑠𝑒𝑐𝑜𝑛𝑑) − (𝑜𝑢𝑡𝑒𝑟)(𝑖𝑛𝑛𝑒𝑟). 

 

Figure I.1. Mnemonic for the order of indices in the Epsilon-Delta Identity 

This relationship between Levi-Civita symbols and Kronecker deltas (called epsilon-delta identity) is very useful in 

deriving several identities of vector calculus as well as several properties of determinants. A proof of the epsilon-

delta identity is given in Appendix C. 
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Euler’s Formula 

From Chapter 3, we recall the Maclaurin series expansion of some simple functions, such as: 

cos 𝑥 = ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!

∞

𝑛=0

  , 

sin 𝑥 = ∑
(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

  , 

exp 𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑛=0

  . 

Using these expansions, it follows, with 𝑖 = √−1, that 

exp(𝑖𝑥) = ∑
(𝑖𝑥)𝑛

𝑛!
= ∑

(𝑖𝑥)𝑛

𝑛!

 

𝑛=0,2,4…

∞

𝑛=0

+ ∑
(𝑖𝑥)𝑛

𝑛!

 

𝑛=1,3,5…

  . 

Now, on replacing the dummy index 𝑛 by 2𝑚 in the first sum and 𝑛 by 2𝑚 + 1 in the second sum, we get 

exp(𝑖𝑥) = ∑
𝑖2𝑚𝑥2𝑚

(2𝑚)!
+ ∑

𝑖2𝑚+1𝑥2𝑚+1

(2𝑚 + 1)!

∞ 

𝑚=0

                             

∞

𝑚=0

 

= ∑
(−1)𝑚𝑥2𝑚

(2𝑚)!
+ 𝑖 ∑

(−1)𝑚𝑥2𝑚+1

(2𝑚 + 1)!

∞ 

𝑚=0

∞

𝑚=0

  , 

or 

 exp(𝑖𝑥) = cos 𝑥 + 𝑖 sin 𝑥   .                                    𝐸𝑞. (𝐼. 8) 

This is known as Euler’s formula. By many accounts, Euler’s formula is the most beautiful equation of 

mathematics, or the jewel of mathematics. When written in the form 𝑒𝑖𝜋 + 1 = 0, it is made up of five different 

mathematical constants (namely, 0, 1, 𝜋, 𝑒, and 𝑖) each having its own independent value. Euler’s formula will be 

very helpful in our further studies of Fourier series, Fourier transform, and complex variables. 
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PROBLEMS FOR INTERLUDE 

1. Using properties of the Kronecker delta, show that 

∑ 

3

𝑖=1

∑𝛿𝑖𝑗 𝑥𝑖𝑥𝑗

3

𝑗=1

=∑𝑥𝑖
2

3

𝑖=1

  , 

and  

∑ 

3

𝑖=1

∑𝛿𝑖𝑗  

3

𝑗=1

=∑𝛿𝑖𝑖

3

𝑖=1

= 3  . 

2. Using properties of the Levi-Civita symbol, show that 

∑𝜖𝑖𝑗𝑘

 

𝑖𝑗

𝜖𝑖𝑗𝑚 =  2𝛿𝑘𝑚  , 

and  

∑𝜖𝑖𝑗𝑘

 

𝑖𝑗𝑘

𝜖𝑖𝑗𝑘 =  6  . 

3. Using Euler’s formula, show that 

cos 𝑥 =
exp(𝑖𝑥) + exp(−𝑖𝑥)

2
  , 

sin 𝑥 =
exp(𝑖𝑥) − exp(−𝑖𝑥)

2𝑖
  . 
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Chapter 4: Fourier Series 

Any periodic function can be expressed as an infinite series of sinusoidal (sine or cosine like) functions. This series 

is called the Fourier series of the periodic function. For a general nonperiodic function, the extension of the 

Fourier series leads to the Fourier transform. In this chapter, we will use orthogonality relationships of sinusoidal 

functions to derive coefficients in a Fourier series. We will also show how the Fourier series becomes the Fourier 

transform on increasing the periodicity of the periodic function. 

4.1 PERIODIC FUNCTIONS 

In preparation for our discussion of Fourier series and the Fourier transform, let us first get over some 

mathematical preliminaries. In our earlier discussion we derived an equation, the wave equation, whose solution 

describes any periodic function. In particular, we noted that a sinusoidal function 

𝑓(𝑥, 𝑡) =  sin [𝑘𝑥 ± 𝜔𝑡] 

satisfies the wave equation with 𝑘 = 2𝜋/𝜆, and 𝜔 = 2𝜋/𝑇. We also noted that a periodic function that repeats 

itself both in time (𝑡) as well as in a spatial coordinate (𝑥) is not a function of variables 𝑥 or 𝑡 separately but is a 

function of dimensionless variables 𝑘𝑥 ± 𝜔𝑡. In general, a periodic function 𝑓(𝜃), of variable 𝜃, repeats itself as 

the variable changes. The “periodicity” of such a repeating function is defined as the range of variable 𝜃 over 

which the function repeats itself. For example, if 𝑓 is a function of time, it repeats itself after an amount of time 

called its period, 𝑇. If 𝑓 repeats itself over space, then the length over which the function repeats itself is the 

wavelength, 𝜆. So, we can define periodicity for these periodic functions as either T or 𝜆. As another example, 

the periodicity of a simple sinusoidal function, sin 𝜃 or cos 𝜃, is 2𝜋. The integral of these functions over a 

complete range of their periodicity is the same no matter what the starting (lower limit) or ending (upper limit) 

points of the integral are. Specifically, for  𝛼 > 0, we have 

∫ sin 𝜃 𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ sin 𝜃 𝑑𝜃

2𝜋

0

+ ∫ sin 𝜃 𝑑𝜃

𝛼+2𝜋

2𝜋

−∫ sin 𝜃 𝑑𝜃

𝛼

0

= ∫ sin 𝜃 𝑑𝜃

2𝜋

0

  , 

 ∫ cos 𝜃 𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ cos 𝜃 𝑑𝜃

2𝜋

0

+ ∫ cos 𝜃 𝑑𝜃

𝛼+2𝜋

2𝜋

−∫ cos 𝜃 𝑑𝜃

𝛼

0

= ∫ cos 𝜃 𝑑𝜃

2𝜋

0

  , 

since in both cases a cancellation of integrals occurs in the middle step (on replacing the dummy variable 𝜃 by 

another variable 𝜓 using 𝜃 = 2𝜋 + 𝜓). Recall that a product of any two sinusoidal functions can be written as a 

linear combination of single sinusoidal functions, namely, 
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sin 𝛼 cos𝛽 =
1

2
[sin(𝛼 − 𝛽) + sin(𝛼 + 𝛽)]  , 

sin 𝛼 sin 𝛽 =
1

2
[cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)]  , 

cos 𝛼 cos 𝛽 =
1

2
[cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽)]  . 

Thus, in general (with 𝑝 and 𝑞 integers), 

∫ sin(𝑝𝜃) sin(𝑞𝜃) 𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ sin(𝑝𝜃) sin(𝑞𝜃) 𝑑𝜃

2𝜋

0

  , 

 ∫ cos(𝑝𝜃) cos(𝑞𝜃) 𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ cos(𝑝𝜃) cos(𝑞𝜃) 𝑑𝜃

2𝜋

0

  , 

 ∫ cos(𝑝𝜃) sin(𝑞𝜃) 𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ cos(𝑝𝜃) sin(𝑞𝜃) 𝑑𝜃

2𝜋

0

  . 

Orthogonality Relations 

Recall that for an even function of 𝜃, 𝑓(−𝜃) = 𝑓(𝜃), and for an odd function, 𝑓(−𝜃) = −𝑓(𝜃). In our discussion 

of Fourier series and the Fourier transform, we will encounter integrals whose integrands are products of either 

two sine (𝑠𝑠), two cosine (𝑐𝑐), or a cosine and a sine (𝑐𝑠) functions. The complete range of periodicity of these 

functions, namely 2𝜋, is taken to be from –𝜋 to +𝜋 so that sin 𝜃 is an odd function and cos 𝜃 is an even function 

of 𝜃 over this complete range. Assuming that 𝑝 and 𝑞 are nonzero integers, we have 

𝐼𝑠𝑠 = ∫ sin(𝑝𝜃) sin(𝑞𝜃) 𝑑𝜃

𝜋

−𝜋

 

= −
1

2
∫ 𝑑𝜃{cos[(𝑝 + 𝑞)𝜃] − cos[(𝑝 − 𝑞)𝜃]} 

𝜋

−𝜋

= −
1

2
{
sin(𝑝 + 𝑞)𝜃

𝑝 + 𝑞
−
sin(𝑝 − 𝑞)𝜃

𝑝 − 𝑞
}|
−𝜋

𝜋

 

= {
0    if           𝑝 ≠ 𝑞
𝜋    if          𝑝 = 𝑞

 

or       𝐼𝑠𝑠 = 𝜋𝛿𝑝𝑞  .                                                                                                                    𝐸𝑞. (4.1𝑎) 

Similarly,  
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𝐼𝑐𝑐 = ∫ cos(𝑝𝜃) cos(𝑞𝜃) 𝑑𝜃

𝜋

−𝜋

 

=
1

2
∫𝑑𝜃{cos[(𝑝 + 𝑞)𝜃] + cos[(𝑝 − 𝑞)𝜃]} 

𝜋

−𝜋

=
1

2
{
sin(𝑝 + 𝑞)𝜃

𝑝 + 𝑞
+
sin(𝑝 − 𝑞)𝜃

𝑝 − 𝑞
}
−𝜋

𝜋

 

= {
0     if           𝑝 ≠ 𝑞
𝜋    if          𝑝 = 𝑞

 

or        𝐼𝑐𝑐 = 𝜋𝛿𝑝𝑞   .                                                                                                                   𝐸𝑞. (4.1𝑏) 

Finally, 

𝐼𝑐𝑠 = ∫cos(𝑝𝜃) sin(𝑞𝜃) 𝑑𝜃                                                                                                                                                           

𝜋

−𝜋

 

=
1

2
∫ 𝑑𝜃{sin[(𝑝 + 𝑞)𝜃] − sin[(𝑝 − 𝑞)𝜃]}

𝜋

−𝜋

=
1

2
{−
cos(𝑝 + 𝑞)𝜃

𝑝 + 𝑞
+
cos(𝑝 − 𝑞)𝜃

𝑝 − 𝑞
}
−𝜋

𝜋

                     𝐸𝑞. (4.1𝑐) 

= 0   for all integer values of 𝑝 and 𝑞  .                                                                                                                            

We will refer to the three integrals 𝐼𝑐𝑐 , 𝐼𝑠𝑠 and 𝐼𝑐𝑠  as the orthogonality relationships for the sine and cosine 

functions. As an aside, we recall that Euler’s formula relates sine and cosine functions to exponential functions. 

Thus, we can write an orthogonality relationship for exponential functions. More specifically, 

𝐼𝑒𝑒 = ∫exp(𝑖𝑝𝜃) exp(−𝑖𝑞𝜃) 𝑑𝜃

𝜋

−𝜋

= ∫[cos(𝑝𝜃) + 𝑖 sin(𝑝𝜃)][cos(𝑞𝜃) − 𝑖 sin(𝑞𝜃)] 𝑑𝜃                                     

𝜋

−𝜋

 

= ∫ cos(𝑝𝜃)cos(𝑞𝜃) 𝑑𝜃

𝜋

−𝜋

+ ∫sin(𝑝𝜃)sin(𝑞𝜃) 𝑑𝜃

𝜋

−𝜋

= 𝜋 𝛿𝑝𝑞 + 𝜋 𝛿𝑝𝑞 = 2𝜋𝛿𝑝𝑞                         𝐸𝑞. (4.2) 

Periodic Functions of Spatial Coordinate, 𝒙, and Time, 𝒕. 

If the periodic function under consideration is a function of a spatial coordinate 𝑥, with periodicity of 𝜆, then we 

replace 𝜃 in the above examples by 𝑘𝑥. Substituting 𝜃 = 𝑘𝑥 = 2𝜋𝑥/𝜆, we get 

𝐼𝑠𝑠 = ∫sin(𝑝𝑘𝑥) sin(𝑞𝑘𝑥) 𝑑𝑥

𝜆
2

−
𝜆
2

=
𝜆

2
𝛿𝑝𝑞    (𝑝, 𝑞 ≠ 0)  ,                                   𝐸𝑞. (4.3𝑎) 
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𝐼𝑐𝑐 = ∫cos(𝑝𝑘𝑥) cos(𝑞𝑘𝑥) 𝑑𝑥

𝜆
2

−
𝜆
2

=
𝜆

2
𝛿𝑝𝑞  (𝑝, 𝑞 ≠ 0)  ,                                         𝐸𝑞. (4.3𝑏) 

and 

𝐼𝑐𝑠 = ∫cos(𝑝𝑘𝑥) sin(𝑞𝑘𝑥) 𝑑𝑥

𝜆
2

−
𝜆
2

= 0  ,                                                                     𝐸𝑞. (4.3𝑐) 

for all integer values of 𝑝 and 𝑞. 

If the periodic function under consideration is a function of time 𝑡, with periodicity of 𝑇, then we replace 𝜃 by 

𝜔𝑡. Substituting 𝜃 = 𝜔𝑡 = 2𝜋𝑡/𝑇, 

𝐼𝑠𝑠 = ∫sin(𝑝𝜔𝑡) sin(𝑞𝜔𝑡) 𝑑𝑡

𝑇
2

−
𝑇
2

=
𝑇

2
𝛿𝑝𝑞    (𝑝, 𝑞 ≠ 0)  ,                                      𝐸𝑞. (4.4𝑎) 

𝐼𝑐𝑐 = ∫cos(𝑝𝜔𝑡) cos(𝑞𝜔𝑡) 𝑑𝑡

𝑇
2

−
𝑇
2

=
𝑇

2
𝛿𝑝𝑞  (𝑝, 𝑞 ≠ 0)  ,                                       𝐸𝑞. (4.4𝑏) 

and 

𝐼𝑐𝑠 = ∫cos(𝑝𝜔𝑡) sin(𝑞𝜔𝑡) 𝑑𝑡

𝑇
2

−
𝑇
2

= 0   for all integer values of 𝑝 and 𝑞  .           𝐸𝑞. (4.4𝑐) 

4.2 FOURIER SERIES 

Now, look at the three functions of variable 𝜃 shown in Figure 4.1. Clearly these functions are periodic functions 

with periodicity of 2𝜋. The first function 𝑓1(𝜃) is an even function of 𝜃 since 𝑓1(𝜃) = 𝑓1(−𝜃). The second 

function 𝑓2(𝜃) is an odd function of 𝜃 since 𝑓2(𝜃) = −𝑓2(−𝜃). Finally, the third function 𝑓3(𝜃) is neither even 

nor odd since there is no direct relationship between 𝑓3(𝜃) and 𝑓3(−𝜃). According to Fourier, any arbitrary 

periodic function 𝑓(𝜃) can be represented as a linear combination of sinusoidal functions as: 

𝑓(𝜃) =
𝑎0
2
+ ∑ 𝑎𝑚cos(𝑚𝜃)

∞

𝑚=1

+ ∑ 𝑏𝑚 sin(𝑚𝜃)                                             𝐸𝑞. (4.5)

∞

𝑚=1
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Figure 4.1. Three periodic functions of 𝜃: 𝑓1(𝜃) is an even function of 𝜃, 𝑓2(𝜃) is an odd function of 𝜃, and 𝑓3(𝜃) is neither even nor odd 
function of 𝜃. 

which is known as the Fourier series. Here 𝑎0, 𝑎𝑚 , and 𝑏𝑚are Fourier coefficients. Note an additional factor of ½ 

with coefficient 𝑎0. The mystery of this factor will become clear after we evaluate 𝑎0. Given a periodic function 

𝑓(𝜃), we can obtain its Fourier series by simply calculating its Fourier coefficients. To obtain these coefficients, 

we multiply Eq. (4.5) by either cos(𝑝𝜃) or sin(𝑝𝜃), where 𝑝 is a nonzero integer, and integrate over 𝜃 from 

– 𝜋 to 𝜋 to get 
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∫cos(𝑝𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

=
𝑎0
2
∫ cos(𝑝𝜃) 𝑑𝜃

𝜋

−𝜋

 

+∑ 𝑎𝑚

∞

𝑚=1

∫ cos(𝑝𝜃) cos(𝑚𝜃) 𝑑𝜃

𝜋

−𝜋

+ ∑ 𝑏𝑚

∞

𝑚=1

∫ cos(𝑝𝜃) sin(𝑚𝜃) 𝑑𝜃

𝜋

−𝜋

 

= 0 + ∑ 𝑎𝑚

∞

𝑚=1

𝜋𝛿𝑚𝑝  + 0 = 𝑎𝑝𝜋  , 

or 

𝑎𝑚 =
1

𝜋
∫ cos(𝑚𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

        𝑚 ≥ 1  .                                                𝐸𝑞.   (4.6) 

Similarly, on multiplying Eq. (4.5) by sin(𝑝𝜃) and going through similar steps, 

𝑏𝑚 =
1

𝜋
∫ sin(𝑚𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

        𝑚 ≥ 1  .                                                  𝐸𝑞. (4.7) 

Finally, integrating Eq. (4.5) directly, 

∫𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

=
𝑎0
2
∫ 𝑑𝜃

𝜋

−𝜋

+ 0 + 0 = 𝑎0𝜋 

or 

𝑎0 =
1

𝜋
∫ 𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

        ,                                                                𝐸𝑞. (4.8) 

which is the same as Eq. (4.6) with 𝑚 = 0. The reason for associating an extra factor of ½ with 𝑎0 was to ensure 

that evaluation of this coefficient using Eq. (4.8) is similar to the evaluation of 𝑎𝑚  (𝑚 ≥ 1) using Eq. (4.6). This 

completes the evaluation of Fourier coefficients 𝑎0, 𝑎𝑚 , and 𝑏𝑚 for a general periodic function 𝑓(𝜃).  

Even and Odd Functions 

Further simplification of Fourier coefficients occurs if the function 𝑓(𝜃) is either an even function or an odd 

function of 𝜃. An even function of variable 𝜃 is symmetric about the origin, namely, 𝑓(−𝜃) = 𝑓(𝜃), whereas for 

an odd function, 𝑓(−𝜃) = −𝑓(𝜃). First, consider the Fourier coefficients 𝑏𝑚. Split the integral in Eq. (4.7) into 

two parts as 
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𝑏𝑚 =
1

𝜋
∫ sin(𝑚𝜃) 𝑓(𝜃)𝑑𝜃 +

𝜋

0

1

𝜋
∫ sin(𝑚𝜃) 𝑓(𝜃)𝑑𝜃 

0

−𝜋

= 𝐼1 + 𝐼2  .  

In the second integral, substitute 𝑦 = −𝜃 or 𝜃 = −𝑦, and note that for an even function 

𝐼2 =
1

𝜋
∫ [sin(−𝑚𝑦)]𝑓(−𝑦)𝑑(−𝑦) 

0

𝜋

=
1

𝜋
∫sin(𝑚𝑦) 𝑓(𝑦)𝑑(𝑦) = −𝐼1

0

𝜋

  . 

So, 𝑏𝑚 = 0 for an even function 𝑓(𝜃). Similarly, for an odd function, 𝐼2 = 𝐼1 so that 𝑏𝑚 ≠ 0 and it is given by 

𝑏𝑚 =
2

𝜋
∫ sin(𝑚𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

0

  . 

Next, consider the Fourier coefficients 𝑎𝑚. In this case, splitting the integral of Eq. (4.6) into two parts gives 

𝑎𝑚 =
1

𝜋
∫ cos(𝑚𝜃) 𝑓(𝜃)𝑑𝜃 +

𝜋

0

1

𝜋
∫ cos(𝑚𝜃) 𝑓(𝜃)𝑑𝜃 

0

−𝜋

= 𝐽1 + 𝐽2  . 

Again, in the second integral, substitute 𝑦 = −𝜃 or 𝜃 = −𝑦, and for an odd function, 𝑓(−𝜃) = −𝑓(𝜃), so that 

𝐽2 =
1

𝜋
∫[cos(−𝑚𝑦)]𝑓(−𝑦)𝑑(−𝑦) 

0

𝜋

=
1

𝜋
∫cos(𝑚𝑦) 𝑓(𝑦)𝑑(𝑦) = −𝐽1  

0

𝜋

. 

Thus, for an odd function, 𝑎𝑚 = 0, including 𝑎0. On the other hand, for an even function, 𝐽2 = 𝐽1 so that 𝑎𝑚 ≠ 0 

and it is given by 

𝑎𝑚 =
2

𝜋
∫ cos(𝑚𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

0

  . 

This is really not a very surprising result since it implies that for an odd function [𝑓(−𝜃) = −𝑓(𝜃)], the Fourier 

series consists of only odd sine functions: 

𝑓(𝜃) = ∑ 𝑏𝑚 sin(𝑚𝜃)   ,      

∞

𝑚=1

 

while for an even function [𝑓(−𝜃) = 𝑓(𝜃)], the Fourier series consists of only even cosine functions: 
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𝑓(𝜃) =
𝑎0
2
+ ∑ 𝑎𝑚cos (𝑚𝜃)

∞

𝑚=1

  . 

Here are examples of determining Fourier series for three different periodic functions. The first function is an 

odd function of 𝜃, the second function is an even function of 𝜃, and the third function is neither an even nor odd 

function of 𝜃. 

Example: Given a periodic function, 

𝒇(𝜽) = 𝜽   𝐟𝐨𝐫 − 𝝅 ≤ 𝜽 ≤ 𝝅                      [𝐒𝐚𝐰𝐭𝐨𝐨𝐭𝐡 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧], 

determine its Fourier series. 

 

Figure 4.2. The sawtooth function, 𝑓(𝜃), as a function of 𝜃. 

Solution: As seen in Figure 4.2, 𝑓(𝜃) is an odd function of 𝜃. So, all 𝑎𝑚 = 0 (including 𝑎0), and 

𝑓(𝜃) = ∑ 𝑏𝑚 sin(𝑚𝜃)

∞

𝑚=1

 

with 

𝑏𝑚 =
2

𝜋
∫ sin(𝑚𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

0

=
2

𝜋
∫ 𝜃 sin(𝑚𝜃) 𝑑𝜃

𝜋

0
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=
2

𝜋
{−
𝜃 cos(𝑚𝜃)

𝑚
|
0

𝜋

  
 +∫

cos(𝑚𝜃)

𝑚
𝑑𝜃

𝜋

0

} 

=
2

𝜋
{−
𝜋

𝑚
cos(𝑚𝜋) +

sin(𝑚𝜃)

𝑚2
|
0

𝜋

 } 

= −
2

𝑚
cos(𝑚𝜋) = (−1)𝑚+1

2

𝑚
  . 

Thus, 

𝑓(𝜃) = 𝜃 = 2 ∑
(−1)𝑚+1

𝑚
sin(𝑚𝜃)

∞

𝑚=1

  , 

= 2 {sin(𝜃) −
1

2
sin(2𝜃) +

1

3
sin(3𝜃) −

1

4
sin(4𝜃) + ⋯ }  . 

This is the Fourier series for the sawtooth function. Figure 4.3 shows the sawtooth function as well as the sum of 

first 𝑁 terms of the Fourier series (red dotted line) for 𝑁 = 2, 5, 10, and 100.  

Clearly, the depiction of the sawtooth function by the Fourier series becomes more accurate as 𝑁 increases. 

Example: Find the Fourier series for a periodic function 𝒇(𝜽) which is defined in the interval –𝝅 ≤  𝜽 ≤  𝝅 as 

𝒇(𝜽) =  𝜽𝟐  . 

Solution: Since 𝑓(𝜃) = 𝜃2 is an even function of 𝜃, 𝑏𝑚 = 0 for 𝑚 ≥ 1. Multiply both sides of the above function 

by cos 𝑛𝜃 and integrate over 𝜃 from − 𝜋 to 𝜋 to get 

∫𝑓(𝜃) cos(𝑛𝜃) 𝑑𝜃

𝜋

−𝜋

=
𝑎0
2
∫ cos(𝑛𝜃) 𝑑𝜃

𝜋

−𝜋

+ ∑ 𝑎𝑚 ∫ cos(𝑚𝜃) cos(𝑛𝜃) 𝑑𝜃

𝜋

−𝜋

∞

𝑚=1

 

= 0 + 𝜋𝑎𝑛 

     or 

𝑎𝑛 =
2

𝜋
∫ 𝜃2 cos(𝑛𝜃) 𝑑𝜃

𝜋

0

=
2 𝜃2

𝜋
⋅
sin(𝑛𝜃)

𝑛
|
0

𝜋

−
2

𝜋
∫ 2𝜃 ⋅

sin(𝑛𝜃)

𝑛
𝑑𝜃

𝜋

0
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Figure 4.3. The sum of first 𝑁 terms in the Fourier series of a sawtooth function. 
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= −
4

𝑛𝜋
∫ 𝜃 sin(𝑛𝜃) 𝑑𝜃

𝜋

0

=
4

𝑛𝜋
𝜃 ⋅
cos(𝑛𝜃)

𝑛
|
0

𝜋

−
4

𝑛𝜋
∫
cos(𝑛𝜃)

𝑛
𝑑𝜃

𝜋

0

 

=
4

𝜋𝑛2
[𝜋 cos(𝑛𝜋)] − 0 =

4

𝑛2
(−1)𝑛  . 

Next, integrate the given function from – 𝜋 to 𝜋 to get 

∫𝜃2𝑑𝜃

𝜋

−𝜋

=
𝑎0
2
∫𝑑𝜃

𝜋

−𝜋

+ ∑ 𝑎𝑚 ∫ cos(𝑚𝜃)𝑑𝜃

𝜋

−𝜋

∞

𝑚=1

 

    or 

𝜃3

3
|
−𝜋

𝜋

=
𝑎0
2
𝜃|
−𝜋

𝜋

+ 0        or       
2

3
𝜋3 =

𝑎0
2
⋅ 2𝜋        or       𝑎0 =

2

3
𝜋2  . 

     Thus, 

𝑓(𝜃) =
𝜋2

3
+ ∑

4(−1)𝑚

𝑚2
cos(𝑚𝜃)

∞

𝑚=1

  . 

Example: Determine the Fourier series for a unit step function defined as  

𝒇(𝜽) =  {
𝟎    𝐟𝐨𝐫            − 𝝅 < 𝜽 < 𝟎
𝟏    𝐟𝐨𝐫                  𝟎 < 𝜽 < 𝝅

 

Solution: The function 𝑓(𝜃) is neither an odd function nor an even function of 𝜃, so the Fourier series for 𝑓(𝜃) 

will consist of all Fourier coefficients, 𝑎0, 𝑎𝑚, and 𝑏𝑚, namely,  

𝑓(𝜃) =
𝑎0
2
+ ∑ 𝑎𝑚 cos(𝑚𝜃)

∞

𝑚=1

+ ∑ 𝑏𝑚 sin(𝑚𝜃)

∞

𝑚=1

    . 

We evaluate these coefficients using Eqs. (4.6) to Eq. (4.8), 

𝑎0 =
1

𝜋
∫𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

=
1

𝜋
∫(1) 𝑑𝜃

𝜋

0

=
𝜋

𝜋
= 1  , 

𝑎𝑚 =
1

𝜋
∫ cos(𝑚𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

=
1

𝜋
∫ cos(𝑚𝜃) 𝑑𝜃

𝜋

0

=
1

𝜋
⋅
sin(𝑚𝜃)

𝑚
|
0

𝜋

= 0        𝑚 ≥ 1  , 
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𝑏𝑚 =
1

𝜋
∫ sin(𝑚𝜃) 𝑓(𝜃)𝑑𝜃

𝜋

−𝜋

=
1

𝜋
∫ sin(𝑚𝜃) 𝑑𝜃

𝜋

0

= −
1

𝜋
⋅
cos(𝑚𝜃)

𝑚
|
0

𝜋

=
1

𝜋𝑚
[1 − (−1)𝑚]  , 

or, 

𝑏𝑚 = {
0                     for                    𝑚 = 2, 4, 6, 8 … 
2

𝜋𝑚
                for                    𝑚 = 1, 3, 5, 7 …

  .   

So, the Fourier series for 𝑓(𝜃) is 

𝑓(𝜃) =
1

2
+
2

𝜋
[
sin(𝜃)

1
+
sin(3𝜃)

3
+
sin(5𝜃)

5
+
sin(7𝜃)

7
+ ⋯ ]     .   

Complex Fourier Series 

Since Euler’s formula relates sine and cosine functions to exponential functions, it is possible to write the Fourier 

series as a series of exponential functions instead of sine and cosine functions, 

𝑓(𝜃) =
𝑎0
2
+ ∑ 𝑎𝑚 (

exp(𝑖𝑚𝜃) + exp(−𝑖𝑚𝜃)

2
)

∞

𝑚=1

+ ∑ 𝑏𝑚 (
exp(𝑖𝑚𝜃) − exp(−𝑖𝑚𝜃)

2𝑖
)

∞

𝑚=1

  

=
𝑎0
2
+ ∑ (

𝑎𝑚 − 𝑖𝑏𝑚
2

) exp(𝑖𝑚𝜃)

∞

𝑚=1

+ ∑ (
𝑎𝑚 + 𝑖𝑏𝑚

2
) exp(−𝑖𝑚𝜃)

∞

𝑚=1

  . 

On changing 𝑚 to –𝑚 in the second sum, we have 

𝑓(𝜃) =
𝑎0
2
+ ∑ (

𝑎𝑚 − 𝑖𝑏𝑚
2

) exp(𝑖𝑚𝜃)

∞

𝑚=1

+ ∑ (
𝑎−𝑚 + 𝑖𝑏−𝑚

2
) exp(𝑖𝑚𝜃)

−∞

𝑚=−1

 

Now, we define new coefficients 𝑐𝑚 as follows, 

𝑐0 =
𝑎0
2
  , 

𝑐𝑚 =
𝑎𝑚 − 𝑖𝑏𝑚

2
 for 𝑚 = 1,2,⋯∞  , 

and  

𝑐𝑚 =
𝑎−𝑚 + 𝑖𝑏−𝑚

2
 for 𝑚 = −1,−2,⋯−∞  . 
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In terms of these new coefficients, the Fourier series becomes 

𝑓(𝜃) = ∑ 𝑐𝑚 exp(𝑖𝑚𝜃)  

∞

𝑚=−∞

.                                                                 𝐸𝑞. (4.9𝑎) 

This is the complex (or exponential) form of the Fourier series. The coefficients 𝑐𝑚 are obtained by using the 

orthogonality relation [Eq. 4.2] for exponential functions, 

𝑐𝑚 =
1

2𝜋
∫ 𝑓(𝜓) exp(−𝑖𝑚𝜓) 𝑑𝜓

𝜋

−𝜋

  .                                              𝐸𝑞. (4.9𝑏) 

Example: Let us repeat the sawtooth function, 

𝒇(𝜽) = 𝜽             𝐟𝐨𝐫    − 𝝅 ≤ 𝜽 ≤ 𝝅  . 

using the complex Fourier series. 

Solution: 

The Fourier coefficients for this complex series are, 

𝑐𝑚 =
1

2𝜋
∫𝜃 exp(−𝑖𝑚𝜃) 𝑑𝜃

𝜋

−𝜋

=
1

2𝜋
{
𝜃 exp(−𝑖𝑚𝜃)

−𝑖𝑚
|
−𝜋

𝜋

− ∫
exp(−𝑖𝑚𝜃)

−𝑖𝑚
𝑑𝜃

𝜋

−𝜋

} 𝑓𝑜𝑟 𝑚 ≠ 0  , 

=
1

2𝜋
{
𝜃 exp(−𝑖𝑚𝜃)

−𝑖𝑚
|
−𝜋

𝜋

  
 −
exp(−𝑖𝑚𝜃)

(−𝑖𝑚)2
|
−𝜋

𝜋

} 

=
1

2𝜋
{
𝜋 exp(−𝑖𝑚𝜋)

−𝑖𝑚
−
(−𝜋) exp(𝑖𝑚𝜋)

−𝑖𝑚
  
 −
exp(−𝑖𝑚𝜋)

(−𝑖𝑚)2
+
exp(𝑖𝑚𝜋)

(−𝑖𝑚)2
} 

= −
1

𝑖𝑚
cos(𝑚𝜋) −

𝑖

𝜋𝑚2
sin(𝑚𝜋) = −

(−1)𝑚

𝑖𝑚
− 0 =

𝑖(−1)𝑚

𝑚
 𝑓𝑜𝑟 𝑚 ≠ 0  . 

For 𝑚 =  0, 

𝑐0 =
1

2𝜋
∫ 𝜃 𝑑𝜃

𝜋

−𝜋

= 0  . 

So, the complex Fourier series looks like 
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𝑓(𝜃) = 𝜃 = 0 + ∑
𝑖(−1)𝑚

𝑚
exp(𝑖𝑚𝜃)

∞

𝑚=1

+ ∑
𝑖(−1)𝑚

𝑚
exp(𝑖𝑚𝜃)

−∞

𝑚=−1

 

On changing 𝑚 to –𝑚 in the second sum, we have 

𝑓(𝜃) = ∑
𝑖(−1)𝑚

𝑚
exp(𝑖𝑚𝜃)

∞

𝑚=1

+ ∑
𝑖(−1)−𝑚

−𝑚
exp(−𝑖𝑚𝜃)

∞

𝑚=1

 

= ∑
𝑖(−1)𝑚

𝑚
[exp(𝑖𝑚𝜃) − exp(−𝑖𝑚𝜃)]

∞

𝑚=1

= 2 ∑
(−1)𝑚+1

𝑚
sin(𝑚𝜃)  

∞

𝑚=1

, 

the same as before. 

4.3 FOURIER TRANSFORMS 

In our discussion of Fourier series, our motivation was to write any arbitrary periodic function as a series of some 

well-known periodic functions—namely, sine and cosine functions. A question arises: Can we write something 

analogous to a Fourier series for an arbitrary function that does not appear to be a periodic function? Let us 

explore this possibility. Look at an isolated step-like function in space as shown in the Figure 4.4a. 

 

Figure 4.4a. An isolated step-like function in space. 

 

At first sight this function appears as a non-periodic step function in space. Now, imagine starting with a periodic 

step function, as in part 𝑎 of Figure 4.4b, of some definite wavelength as indicated. If we were to remove 

alternate spikes in part 𝑎 of this figure, we will end up with part 𝑏, which still shows up as a periodic function, 

except with a longer wavelength. We repeat the process of removing alternate spikes in part 𝑏 and end up with 

part 𝑐, which also shows a periodic function but with a still-longer wavelength. If we continue the process of 

removing alternate spikes from each new figure ad infinitum, we will end up with the isolated function of Figure 

4.4𝑎.  
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Figure 4.4b. A periodic function with an infinite wavelength appears as an isolated function. 

 

This procedure suggests that an equivalent of the Fourier series of an isolated function, of spatial coordinate 𝑥, 

will be obtained by taking the limit of an infinite wavelength (𝜆 → ∞).  Using complex Fourier series, with 𝜃 =

𝑘𝑥 we have 

𝑓(𝑥) = ∑ 𝑐𝑚 exp(𝑖𝑚𝑘𝑥)

∞

𝑚=−∞

  , 

where 

𝑐𝑚 =
1

𝜆
∫ 𝑓(𝑥′) exp(−𝑖𝑚𝑘𝑥′) 𝑑𝑥′

𝜆/2

−𝜆/2

  . 
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The dummy variable, 𝑚, in the infinite sum above goes from −∞ to +∞ in steps of 1, that is, Δ𝑚 = 1. Now we 

make a change of dummy variable in this infinite sum from 𝑚 to 𝑞, defined as 𝑞 = 𝑚𝑘 = 𝑚(2𝜋/𝜆). Then, 

Δ𝑞 =
2𝜋

𝜆
Δ𝑚 =

2𝜋

𝜆
     or     

1

𝜆
=
Δ𝑞

2𝜋
  .  

Note that values of 𝑞 are discrete with step size 2𝜋/𝜆. When 𝜆 → ∞, the sum over 𝑚 becomes an integral over 

𝑞, and Δ𝑞 → 𝑑𝑞. Then, 

𝑓(𝑥) = lim
𝜆→∞

∫ exp(𝑖𝑞𝑥)
Δ𝑞

2𝜋

∞

𝑚 𝑜𝑟 𝑞=−∞

∫ 𝑓(𝑥′) exp(−𝑖𝑞𝑥′) 𝑑𝑥′

𝜆/2

−𝜆/2

  , 

or  

𝑓(𝑥) =
1

2𝜋
∫ 𝑑𝑞 ∫ 𝑓(𝑥′) exp[𝑖𝑞(𝑥 − 𝑥′)]𝑑𝑥′

∞

−∞

∞

−∞

  . 

If we define  

𝐹(𝑞) =
1

√2𝜋
∫ 𝑓(𝑥′) exp(−𝑖𝑞𝑥′) 𝑑𝑥′
∞

−∞

  , 

then 

𝑓(𝑥) =
1

√2𝜋
∫ 𝑑𝑞 𝐹(𝑞) exp(𝑖𝑞𝑥)

∞

−∞

  . 

𝐹(𝑞) is called the Fourier transform of 𝑓(𝑥) and vice versa. The factor of 1/2𝜋 can be distributed in many ways 

between F and f. However, it is a common practice to distribute 1/√2𝜋 with function 𝑓 and 1/√2𝜋 with function 

𝐹 to preserve symmetry between a function and its Fourier transform. 

Let us then summarize the relationship between a function and its Fourier transform. Consider a pair of two 

physical quantities, 𝑢 and 𝑣, whose product is dimensionless and, therefore, can be measured in radians. Such 

variables are called conjugate variables. We have seen an example of this in our discussion of the wave equation, 

namely the pair of wave number 𝑘 and spatial coordinate 𝑥 such that the product 𝑘𝑥 is dimensionless. Another 

pair consisting of angular frequency 𝜔 and time 𝑡 is such that the product 𝜔𝑡 is dimensionless. Since 𝑢 and 𝑣 are 

conjugate variables, the Fourier transform “transforms” the 𝑢-dependent function 𝑓(𝑢) into a completely 

equivalent representation 𝐹(𝑣), a 𝑣-dependent function, in the following way: 
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𝐹(𝑣) =
1

√2𝜋
∫ 𝑓(𝑢) exp(−𝑖𝑢𝑣) 𝑑𝑢

∞

−∞

  . 

𝐹(𝑣) is called the Fourier transform of 𝑓(𝑢). The inverse Fourier transform creates the opposite transformation, 

namely, 

𝑓(𝑢) =
1

√2𝜋
∫ 𝐹(𝑣) exp(𝑖𝑢𝑣) 𝑑𝑣

∞

−∞

  . 

Thus, 𝑓(𝑢) is the Fourier transform of 𝐹(𝑣). In particular, a function of spatial coordinate 𝑥 (position in space) is 

cast into an equivalent function of wavenumber 𝑘 (momentum space) by the Fourier transformation, 

𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥) exp(−𝑖𝑘𝑥) 𝑑𝑥  

∞

−∞

,                                     𝐸𝑞. (4.10𝑎) 

and its inverse, 

𝑓(𝑥) =
1

√2𝜋
∫ 𝐹(𝑘) exp(𝑖𝑘𝑥) 𝑑𝑘

∞

−∞

  .                                                 𝐸𝑞. (4.11𝑎) 

As an aside, 𝑘-space is also called momentum space (or, 𝑝-space) since in quantum physics 𝑝 = ℏ𝑘, where ℏ is 

the universal Planck’s constant. Similarly, using the Fourier transformation, a temporal function of time 𝑡 is cast 

into an equivalent function of frequency 𝜔 as 

𝐹(𝜔) =
1

√2𝜋
∫ 𝑓(𝑡) exp(−𝑖𝜔𝑡) 𝑑𝑡

∞

−∞

  ,                                     𝐸𝑞. (4.10𝑏) 

and its inverse, 

𝑓(𝑡) =
1

√2𝜋
∫ 𝐹(𝜔) exp(𝑖𝜔𝑡) 𝑑𝜔

∞

−∞

  .                                                 𝐸𝑞. (4.11𝑏) 

Example: Determine the Fourier transform of a Gaussian function 𝒇(𝒙) given in the coordinate space as 

𝒇(𝒙) = 𝒇(𝟎) 𝐞𝐱𝐩 (−
𝒙𝟐

𝒂𝟐
) =

𝟏

𝒂√𝝅
𝒆𝒙𝒑(−

𝒙𝟐

𝒂𝟐
)  . 

Solution: The constant in front, namely, 𝑓(0) = 1/(𝑎√𝜋), normalizes the Gaussian function as 
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∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

= 1  . 

The integral here is same as integral 𝐼𝑔𝑔
0  of Eq. (2.14). The bell-shaped function 𝑓(𝑥) has its maximum value, 

𝑓(0), for 𝑥 = 0 and it goes to zero as 𝑥 → ±∞. The extent of values of 𝑥, namely ∆𝑥, over which the 

function 𝑓(𝑥) is appreciable is given by the full width of the function at half of its maximum value (FWHM). Thus, 

∆𝑥 = 𝐹𝑊𝐻𝑀 = 2𝑎√𝑙𝑛 2   .                                        𝐸𝑞. (4.12𝑎) 

In other words, the parameter 𝑎 in the Gaussian function is a measure of the approximate width of the function; 

the larger the parameter 𝑎 is, the wider the Gaussian function, and vice versa. Figure 4.5 shows the function 

𝑓(𝑥) for 𝑎 = 1, 2, and 3. 

 

Figure 4.5. The Gaussian function 𝑓(𝑥)/𝑓(0) =  𝑒𝑥𝑝(−𝑥2/𝑎2) for various values of 𝑎. 

The Fourier transform of 𝑓(𝑥)/𝑓(0) is 

𝐹(𝑘) =
1

√2𝜋
∫ exp [−

𝑥2

𝑎2
] exp[−𝑖𝑘𝑥] 𝑑𝑥

∞

−∞

  . 

On perfecting the square in the exponent, we get 

𝐹(𝑘) =
1

√2𝜋
∫ exp [−

1

𝑎2
(𝑥2 + 𝑖𝑘𝑎2𝑥 +

(𝑖𝑘𝑎2)2

4
) +

(𝑖𝑘𝑎2)2

4𝑎2
] 𝑑𝑥

∞

−∞
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=
1

√2𝜋
 exp [−

𝑘2𝑎2

4
] ∫ exp [−

(𝑥 + 𝑖𝑘𝑎2/2)2

𝑎2
] 𝑑𝑥

∞

−∞

 

On making a change of variable from 𝑥 to 𝑢, using 𝑢 =
(𝑥+𝑖𝑘𝑎2/2)

𝑎
, 

𝐹(𝑘) =
1

√2𝜋
 exp [−

𝑘2𝑎2

4
] ∫ exp(−𝑢2) 𝑎𝑑𝑢

∞

−∞

  , 

=
𝑎

√2
exp [−

𝑘2𝑎2

4
]  , 

on using the integral 𝐼𝑔𝑔
0  of Eq. (2.14). We note that the Fourier transform 𝐹(𝑘) of a Gaussian function in the 

coordinate space is also a Gaussian function, but in the 𝑘-space. The extent of values of 𝑘, namely ∆𝑘, over 

which the function 𝐹(𝑘) is appreciable is again given by the full width of this function at half of its maximum 

value (FWHM). Thus, 

∆𝑘 = 𝐹𝑊𝐻𝑀 =
4

𝑎
√𝑙𝑛 2   .                                             𝐸𝑞. (4.12𝑏) 

Now the parameter 𝑎 has an inverse relationship to the width of the function 𝐹(𝑘); the larger the parameter 𝑎 

is, the thinner the function 𝐹(𝑘). Note, the product of ∆𝑥 and of ∆𝑘 in Eq. (4.12) is independent of 𝑎. This 

essentially is the statement of the Uncertainty Principle in quantum physics. 

Example: Determine the Fourier transform of a single rectangular pulse in the coordinate space looking like, 

𝒇(𝒙) = {

𝟏

(𝟐𝒂)
     − 𝒂 ≤ 𝒙 ≤ 𝒂

𝟎,            |𝒙| ≥ 𝒂

  . 

Solution: For this function, 

∫ 𝑓(𝑥)𝑑𝑥 =
1

2𝑎

∞

−∞

∫𝑑𝑥 = 1 

𝑎

−𝑎

 . 

Furthermore, the extent of the values of 𝑥 over which the function is appreciable is, 

Δ𝑥 = 2𝑎  .                                              𝐸𝑞. (4.13𝑎) 

The Fourier transform of the single rectangular pulse is 
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𝐹(𝑘) =
1

√2𝜋
∫ 𝑓(𝑥) exp(−𝑖𝑘𝑥)

∞

−∞

𝑑𝑥 =
1

√2𝜋

1

2𝑎
∫exp(−𝑖𝑘𝑥)

𝑎

−𝑎

𝑑𝑥                        

=
1

√2𝜋

1

2𝑎

exp(−𝑖𝑘𝑥)

−𝑖𝑘
|
−𝑎

𝑎

= −
1

2𝑎𝑖𝑘

1

√2𝜋
[exp(−𝑖𝑘𝑎) − exp(𝑖𝑘𝑎)] 

= −
1

2𝑎𝑖𝑘

1

√2𝜋
[−2𝑖 sin(𝑘𝑎)] =

1

√2𝜋

sin(𝑘𝑎)

𝑘𝑎
  .                                    

Figure 4.6 shows 𝐹(𝑘) as a function of the variable 𝑘. It is a wiggly function with the central wiggle being the 

largest one, extending from 𝑘 = −𝜋/𝑎 to +𝜋/𝑎.    

 

Figure 4.6. The function sin(𝑘𝑎) /(𝑘𝑎) as a function of 𝑘𝑎. 

Thus, the extent of the values of 𝑘 over which 𝐹(𝑘) is appreciable is, 

Δ𝑘 =
2𝜋

𝑎
  .                                                                   𝐸𝑞. (4.13𝑏) 

Once again, the product of ∆𝑥 and of ∆𝑘, in Eqs. (4.13), is independent of 𝑎, which confirms the statement of the 

Uncertainty Principle in quantum physics. 

From examples of Fourier transforms, it can be concluded that if the extent of a function is very wide, then the 

extent of its Fourier transform is very narrow and vice versa. This fact is very useful in defining the reciprocal 

lattices in condensed matter physics.  
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PROBLEMS FOR CHAPTER 4 

1. Show explicitly, for p and q as positive integers and α as an arbitrary constant, 

∫ sin(𝑝𝜃) sin(𝑞𝜃)  𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ sin(𝑝𝜃) sin(𝑞𝜃)  𝑑𝜃

2𝜋

0

  , 

∫ cos(𝑝𝜃) cos(𝑞𝜃)  𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ cos(𝑝𝜃) cos(𝑞𝜃)  𝑑𝜃

2𝜋

0

  , 

∫ sin(𝑝𝜃) cos(𝑞𝜃)  𝑑𝜃

𝛼+2𝜋

𝛼

= ∫ sin(𝑝𝜃) cos(𝑞𝜃)  𝑑𝜃  

2𝜋

0

.  

2. Find the Fourier series for a periodic function 𝑓(𝜃) which is defined in the interval –𝜋 ≤  𝜃 ≤  𝜋 as 

𝑓(𝜃) =  {
𝜋 +  𝜃               for   − 𝜋 ≤ 𝜃 ≤ 0
𝜋 −  𝜃                for        0 ≤ 𝜃 ≤  𝜋

               .   

3. Determine the Fourier series for the “square” wave defined as  

𝑓(𝑥) =  {
−1  for −

𝜆

2
< 𝑥 < 0

1  for 0 < 𝑥 <
𝜆

2

   . 

This series appears in discussions of high frequency electronic circuits. 

4. Determine the Fourier series for the function defined as  

𝑓(𝑡) =  |sin 𝜔𝑡|  for − 𝜋 < 𝜔𝑡 < 𝜋  . 

This series appears in discussions of the full-wave rectifiers in electronics. 

5. Determine the Fourier series for the function defined as  

𝑓(𝑡) =  {
     sin 𝜔𝑡    for    0 < 𝜔𝑡 < 𝜋
0    for    − 𝜋 < 𝜔𝑡 < 0

 

This series appears in discussions of the half-wave rectifiers in electronics. 

6. Consider a periodic function 𝑓(𝜃) which is defined in the interval –𝜋 ≤  𝜃 ≤  𝜋 as 

𝑓(𝜃) =  {
+ cos 𝜃       for       0 ≤  𝜃 ≤  𝜋
− cos 𝜃        for    – 𝜋 ≤  𝜃 ≤  0

 

(a) Is the function 𝑓(𝜃) an even function or an odd function or neither? 
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(b) Determine the Fourier series for 𝑓(𝜃).  

7. Find the Fourier series for a periodic function 𝑓(𝜃) which is defined as 

𝑓(𝜃) =  |𝜃|       for     − 𝜋 ≤ 𝜃 ≤ 𝜋  . 

8. Show that the Fourier transform of the function 

𝑓(𝑥) =  {
cos (

𝜋𝑥

2𝑎
)   for − 𝑎 ≤ 𝑥 ≤ 𝑎

0  otherwise
 

(where 𝑎 is a constant) is 

𝐹(𝑘) =
𝑎

√2𝜋
 

𝜋

(
𝜋
2
)
2

− (𝑘𝑎)2
 cos(𝑘𝑎)  . 

Plot 𝑓(𝑥) as a function of 𝑥 and 𝐹(𝑘) as a function of 𝑘. Using these plots, estimate the extents ∆𝑥 and ∆𝑘 of 

the functions 𝑓(𝑥) and 𝐹(𝑘), respectively. Show that ∆𝑥 times ∆𝑘 is independent of 𝑎. 

 {Hint: Use cos 𝑥 = [exp(𝑖𝑥) + exp(−𝑖𝑥)]/2. } 

9. Show that the Fourier transform of the parabolic function 

𝑓(𝑥) =  {
𝑎2 − 𝑥2                   for    |𝑥| ≤ 𝑎
0                                for     |𝑥| > 𝑎

 

is 

𝐹(𝑘) =  
𝑎3

√2𝜋
{
4

(𝑘𝑎)3
 [sin(𝑘𝑎) − (𝑘𝑎) cos(𝑘𝑎)]}   . 

Plot 𝑓(𝑥) as a function of 𝑥 and 𝐹(𝑘) as a function of 𝑘. Using these plots, estimate the extents ∆𝑥 and ∆𝑘 of 

the functions 𝑓(𝑥) and 𝐹(𝑘), respectively. Show that ∆𝑥 times ∆𝑘 is independent of 𝑎. 

10. Show that the Fourier transform of the triangular pulse function, 

𝑓(𝑥) =  {
1 − |𝑥|/𝑎                  for   |𝑥| ≤ 𝑎

0                               for    |𝑥| > 𝑎
 

(where 𝑎 is a positive constant) is 

𝐹(𝑘) =
𝑎

√2𝜋
 (
sin(𝑘𝑎/2)

𝑘𝑎/2
)

2

  . 

Plot 𝑓(𝑥) as a function of 𝑥 and 𝐹(𝑘) as a function of 𝑘. Using these plots, estimate the extents ∆𝑥 and ∆𝑘 of 

the functions 𝑓(𝑥) and 𝐹(𝑘), respectively. Show that ∆𝑥 times ∆𝑘 is independent of 𝑎.  
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Chapter 5: Complex Variables 

In this chapter we will describe algebra related to complex numbers. Representations of complex numbers in 

two-dimensional planes will be explained with several examples. Algebraic properties of addition, subtraction, 

multiplication, and division of complex variables will be outlined. Finally, DeMoivre’s formula will be derived and 

applied to obtain some useful trigonometric identities. 

5.1 COMPLEX NUMBERS AND COMPLEX ALGEBRA 

A complex number is defined as an ordered pair of two real numbers (𝑥, 𝑦) in which the first number, 𝑥, is called 

the real part of the complex number and the second number, 𝑦, is called the imaginary part of the complex 

number. It is customary to reserve the letter 𝑧 for complex numbers and write the complex number as 

𝑧 = 𝑥 + 𝑖𝑦  .                                                       𝐸𝑞. (5.1𝑎) 

The real part of 𝑧, namely 𝑅𝑒(𝑧), is 𝑥 and the imaginary part of 𝑧, namely 𝐼𝑚(𝑧), is 𝑦. Complex numbers can be 

represented as points in a two-dimensional plane, which is analogous to the common 𝑥– 𝑦 plane and is called the 

complex plane or the 𝑧-plane. Because of its similarity with Cartesian coordinates, the representation of a 

complex number as 𝑧 = 𝑥 + 𝑖𝑦 is called the Cartesian representation of the complex number. In a plane one can 

switch from Cartesian coordinates (𝑥, 𝑦) to plane polar coordinates (𝑟, 𝜃). From Figure 5.1, 

𝑥 = 𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃   .                                                 𝐸𝑞. (5.2𝑎) 

Thus, a complex number can be written as 

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 𝑟 exp(𝑖𝜃)   .                                       𝐸𝑞. (5.1𝑏) 

Here 𝑟 is the magnitude of 𝑧 and 𝜃 is the argument or phase of 𝑧. The magnitude of a complex number is also 

commonly written as |𝑧| so that 𝑟 = |𝑧|. Note, 

𝑟 = √𝑥2 + 𝑦2, 𝜃 = arg(𝑧) = arctan (
𝑦

𝑥
)  .                                       𝐸𝑞. (5.2𝑏) 

The representation of a complex number as 𝑧 = |𝑧| exp(𝑖𝜃) = 𝑟 exp(𝑖𝜃) is called the polar or exponential 

representation of the complex number.  

The complex conjugate of a complex number is obtained by replacing 𝑖 by – 𝑖 and is denoted by placing a bar on 

top of the number. Thus 𝑧̅ = 𝑟 exp(−𝑖𝜃) or 𝑧̅ = 𝑥 − 𝑖𝑦. Note |𝑧| = 𝑟 = |𝑧̅|. Also 𝑧𝑧̅ = 𝑟2 = |𝑧|2 = 𝑥2 + 𝑦2. 

Thus, 



99 

 

|𝑅𝑒(𝑧)| ≤ |𝑧| and |𝐼𝑚(𝑧)| ≤ |𝑧|  . 

 

Figure 5.1. Cartesian and polar (or exponential) representation of a complex number. 

Example: Given, 𝒛𝟏 = 𝟐 + 𝟓𝒊, determine 𝑹𝒆(𝒛𝟏), 𝑰𝒎(𝒛𝟏), |𝒛𝟏|, phase angle 𝜽, complex conjugate 𝒛𝟏̅̅ ̅ and 

exponential representation of 𝒛𝟏. 

Solution: Looking at the complex number 𝑧1 = 2 + 5𝑖, we note 𝑅𝑒(𝑧1) = 2, 𝐼𝑚(𝑧1) = 5, |𝑧1| = √2
2 + 52 = √29, 

tan 𝜃 =
5

2
= 2.5, 𝜃 = 68.2° = 1.19 radians, 𝑧1̅ = 2 − 5𝑖, and 𝑧1 = √29 exp(1.19 𝑖).  

Example: Given 𝒛𝟐 = 𝟒 + 𝟑𝒊, determine 𝑹𝒆(𝒛𝟐), 𝑰𝒎(𝒛𝟐), |𝒛𝟐|, phase angle 𝜽, complex conjugate 𝒛𝟐̅̅ ̅, and 

exponential representation of 𝒛𝟐. 

Solution: Again, looking at the complex number 𝑧2 = 4 + 3𝑖, we note 𝑅𝑒(𝑧2) = 4, 𝐼𝑚(𝑧2) = 3, |𝑧2| =

√42 + 32 = 5, tan 𝜃 =
3

4
= 0.75, 𝜃 = 36.9° = 0.64 radians, 𝑧2̅ = 4 − 3𝑖, and 𝑧2 = 5exp(0.64 𝑖).  
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5.2 PROPERTIES OF COMPLEX NUMBERS 

Here is a list of some general properties of complex numbers. 

Property Number 1: Addition or subtraction of two complex numbers is achieved by adding or subtracting the 

real parts and the imaginary parts separately. If  

𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2  , 

then  

𝑧1 ± 𝑧2 = (𝑥1 ± 𝑥2) + 𝑖(𝑦1 ± 𝑦2)  . 

The addition of two complex numbers is both commutative as well as associative, 

𝑧1 + 𝑧2 = 𝑧2 + 𝑧1  , 

𝑧1 + (𝑧2 + 𝑧3) = (𝑧1 + 𝑧2) + 𝑧3  . 

The product of two complex numbers is treated as simple polynomial multiplication, 

𝑧1𝑧2 = (𝑥1 + 𝑖𝑦1)(𝑥2 + 𝑖𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑥2𝑦1)  . 

The product of two complex numbers is commutative and associative as well as distributive, 

𝑧1𝑧2 = 𝑧2𝑧1  , 

𝑧1(𝑧2𝑧3) = (𝑧1𝑧2)𝑧3  , 

𝑧1(𝑧2 + 𝑧3) = 𝑧1𝑧2 + 𝑧1𝑧3  . 

Property Number 2: If two complex numbers, 𝑧1 = 𝑥1 + 𝑖𝑦1  and 𝑧2 = 𝑥2 + 𝑖𝑦2, are equal, then their real and 

imaginary parts are separately equal. In other words, 𝑧1 = 𝑧2 implies 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2. If 𝑧 = 𝑥 + 𝑖𝑦 = 0, 

then it implies that both 𝑥 = 0 and 𝑦 = 0 simultaneously. 

Property Number 3: If 𝑧1𝑧2 = 0 it implies that either 𝑧1 = 0 or 𝑧2 = 0 or both are zero. To prove this fact, we 

note 

𝑧1𝑧2 = (𝑥1 + 𝑖𝑦1)(𝑥2 + 𝑖𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑥2𝑦1) = 0  . 

Thus 𝑥1𝑥2 − 𝑦1𝑦2 = 0    and  𝑥1𝑦2 + 𝑥2𝑦1 = 0. Therefore, 
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(𝑥1𝑥2 − 𝑦1𝑦2)
2 + (𝑥1𝑦2 + 𝑥2𝑦1)

2 = 0  , 

or  

𝑥1
2(𝑥2

2 + 𝑦2
2) + 𝑦1

2(𝑥2
2 + 𝑦2

2 ) = 0  , 

or 

 (𝑥1
2 + 𝑦1

2)(𝑥2
2 + 𝑦2

2) = 0  . 

Thus, either 𝑥1
2 + 𝑦1

2 = 0,which implies both 𝑥1 = 0   and   𝑦1 = 0, that is, 𝑧1 = 0, or 𝑥2
2 + 𝑦2

2 = 0,

which implies both 𝑥2 = 0  and  𝑦2 = 0, that is, 𝑧2 = 0, or both 𝑧1 and 𝑧2 are zero. Note in passing, 

|𝑧1𝑧2| = {(𝑥2
2 + 𝑦1

2)(𝑥2
2 + 𝑦2

2)}1/2 = |𝑧1||𝑧2|  . 

Property Number 4: Division of one complex number by another complex number works as follows. If 𝑧1 = 𝑥1 +

𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2 ≠ 0, then 

𝑧1
𝑧2
=
𝑥1 + 𝑖𝑦1
𝑥2 + 𝑖𝑦2

=
𝑧1𝑧2̅
𝑧2𝑧2̅

=
(𝑥1 + 𝑖𝑦1)(𝑥2 − 𝑖𝑦2)

𝑥2
2 + 𝑦2

2 =
(𝑥1𝑥2 + 𝑦1𝑦2)

𝑥2
2 + 𝑦2

2 + 𝑖
(𝑦1𝑥2 − 𝑥1𝑦2)

𝑥2
2 + 𝑦2

2   . 

Property Number 5: The properties of complex conjugation imply 

𝑧1 ± 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅  ± 𝑧2̅  , 

𝑧1𝑧2̅̅ ̅̅ ̅̅ = 𝑧1̅ 𝑧2̅  , 

(
𝑧1
𝑧2
)

̅̅ ̅̅ ̅̅
=
𝑧1̅
𝑧2̅
          (𝑧2 ≠ 0)  , 

(𝑧̅)̅̅ ̅̅ = 𝑧  . 

If 𝑧̅ = 𝑧 then 𝑧 is pure real, that is, 𝐼𝑚(𝑧) = 0 and if 𝑧̅ = −𝑧 then 𝑧 is pure imaginary, that is, 𝑅𝑒(𝑧) = 0. In fact, 

𝑅𝑒(𝑧) =
𝑧 + 𝑧̅

2
,         𝐼𝑚(𝑧) =

𝑧 − 𝑧̅

2 𝑖
  . 

Property Number 6: If 𝑧 = 𝑟 exp(𝑖𝜃) = 𝑥 + 𝑖𝑦 then 𝜃 = arg(𝑧) = arctan(𝑦/𝑥), and 

arg(𝑧1𝑧2) = arg(𝑧1) + arg(𝑧2)  , 

arg (
𝑧1
𝑧2
) = arg(𝑧1) − arg(𝑧2)  . 
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Example: In this example, we take the two complex numbers that we used in the previous two examples, 

namely, 𝒛𝟏 = 𝟐 + 𝟓𝒊 and 𝒛𝟐 = 𝟒 + 𝟑𝒊, and illustrate some of the properties that we discussed above. 

Solution: 

𝑧1 + 𝑧2 = 6 + 8𝑖,                     |𝑧1 + 𝑧2| = √6
2 + 82 = √100 = 10  , 

𝑧1 − 𝑧2 = −2 + 2 𝑖                     |𝑧1 − 𝑧2| = √(−2)
2 + 22 = √8  , 

𝑧1𝑧2 = (2 + 5𝑖)(4 + 3𝑖) = 8 + 20𝑖 + 6𝑖 + 𝑖
215 = −7 + 26𝑖  , 

|𝑧1𝑧2| = √(−7)
2 + 262 = √49 + 676 = √725 = √25 ∗ 29 = 5√29 = |𝑧1||𝑧2|  , 

 
1

𝑧1
=

1

2 + 5𝑖

2 − 5𝑖

2 − 5𝑖
=
2 − 5𝑖

29
=
2

29
−
5

29
𝑖  , 

1

𝑧2
=

1

4 + 3𝑖

4 − 3𝑖

4 − 3𝑖
=
4 − 3𝑖

25
=
4

25
−
3

25
𝑖  . 

 

Based on these useful items to remember, Property Number 2 for two complex numbers, in exponential form, 

can be written as follows. If 𝑧1 = 𝑟1 exp(𝑖𝜃1) and 𝑧2 = 𝑟2 exp(𝑖𝜃2), then 𝑧1 = 𝑧2 implies 𝑟1 = 𝑟2 and 𝜃1 = 𝜃2 +

2𝑘𝜋, where 𝑘 is an integer including zero. 

In some situations, dividing by a complex number or finding the reciprocal of a complex number is best 

accomplished by using the exponential form of the complex number instead of using Property Number 4. The 

following example will illustrate this point. 

  

Here is a list of some items which are so important that one should commit them to memory. The useful 

things to remember, for k an integer (positive or negative) or zero, are: 

exp(𝑖𝜋/2) = 𝑖 

exp(−𝑖𝜋/2) = − 𝑖 

exp(𝑖𝑘𝜋) = (−1)𝑘 

exp(𝑖2𝑘𝜋) = + 1 
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Example: Write the complex number 𝒛 = 𝟒𝒊/(√𝟑 + 𝒊) in its Cartesian form.  

Solution: We write the numerator and denominator of the complex number 𝒛 in exponential form as 

𝑧 =
4𝑖

√3 + 𝑖
=
4 exp(𝑖𝜋/2) 

2 exp(𝑖𝜋/6) 
= 2exp (

𝑖𝜋

2
−
𝑖𝜋

6
)
 

= 2 exp(𝑖𝜋/3) = 2 (cos
𝜋

3
+ 𝑖 sin

𝜋

3
) = 1 + 𝑖√3  . 

5.3 POWERS OF COMPLEX NUMBERS  

In order to calculate powers of a complex number, 𝑧, it is best to work with exponential notation, namely, 

𝑧𝑛 = (𝑥 + 𝑖𝑦)𝑛 = 𝑟𝑛 exp(𝑖𝑛𝜃)  . 

Example: Given 𝒛 =
𝟏

𝟐
+ 𝒊

√𝟑

𝟐
, determine all higher powers of 𝒛.  

Solution: First, we write 𝑧 in its polar or exponential form. Since 𝑟 = √
1

4
+
3

4
= 1 and 𝜃 = arctan√3 =

𝜋

3
, it 

follows that in exponential form 

𝑧 = 1 exp (
𝑖𝜋

3
)  . 

Then, 

 

Figure 5.2. Powers of a complex number 𝑧 = 1 exp (
𝑖𝜋

3
).  
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𝑧2 = 1exp (𝑖
2𝜋

3
)  , 

𝑧3 = 1exp(𝑖𝜋)  , 

𝑧4 = 1exp (𝑖
4𝜋

3
)  , 

𝑧5 = 1exp (𝑖
5𝜋

3
)  , 

𝑧6 = 1exp (𝑖
6𝜋

3
) = 1 exp(𝑖2𝜋) = 1  . 

Since 𝑧6 = 1, all higher powers of 𝑧, starting with 𝑧7 onwards, take one of the six values above. These six values 

are shown in a complex plane in Figure 5.2. They lie on a circle of unit radius. If the magnitude 𝑟 is different from 

1, then we get a spiral instead of a circle. For example, for 𝑟 = 1.1, 

𝑧 = 1.1 exp (𝑖
𝜋

2
)  , 

𝑧2 = 1.21 exp(𝑖𝜋)  , 

𝑧3 = 1.331 exp (𝑖
3𝜋

2
)  , 

𝑧4 = 1.4641 exp(2𝑖𝜋) ,   etc  . 

 

Figure 5.3. Powers of a complex number 𝑧 = 1.1 exp (𝑖
𝜋

2
).  
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In the complex plane these values appear on an ever-expanding spiral, as seen in Figure 5.3. Similarly, if the 

magnitude of a complex number 𝑧 is less than 1, that is 𝑟 < 1, then all higher powers of 𝑧 lie in the complex 

plane on an ever-contracting spiral. Also, for 𝑟 ≠ 1, all higher powers of 𝑧 have a separate distinct value. 

Example: Given 𝒛 = 𝟏 + 𝒊, what is 𝒛𝟖? 

Solution: First, write the complex number 𝑧 in polar or exponential form. Note 𝑟 = √1 + 1 = √2 and tan 𝜃 =
1

1
 

so that 𝜃 = 𝜋/4. So, 

𝑧 = 1 + 𝑖 = √2 exp (𝑖
𝜋

4
)  . 

Then, taking any higher power of 𝑧 is straightforward, 

𝑧8 = (√2)
8
exp (8

𝑖𝜋

4
) = 24 exp(𝑖2𝜋) = 16  . 

However, the long method would be to multiply 1 + 𝑖 by itself eight times: 

(1 + 𝑖)2 = 1 + 2𝑖 + 𝑖2 = 1 + 2𝑖 − 1 = 2𝑖  , 

(1 + 𝑖)4 = (1 + 𝑖)2(1 + 𝑖)2 = (2𝑖)(2𝑖) = 4𝑖2 = −4  , 

(1 + 𝑖)8 = (1 + 𝑖)4(1 + 𝑖)4 = (−4)2 = 16  . 

5.4 ROOTS OF A COMPLEX NUMBER 

Roots, such as square root or cube root, of a complex number are also evaluated most conveniently by using 

exponential form of the complex number. As a practice run, let us evaluate roots of +1 and −1. From algebra we 

know that a polynomial of order 𝑛, 

1 + 𝑎1𝑧 + 𝑎2𝑧
2 +⋯+ 𝑎𝑛𝑧

𝑛 = 0  , 

where coefficients 𝑎𝑖  can be real or complex, has exactly 𝑛 roots. Some roots may be repeated. Thus, roots of a 

simple polynomial 1 − 𝑧𝑛 = 0 are the 𝑛 roots of unity or +1. To obtain these roots, write 

𝑧𝑛 = +1 = exp(𝑖2𝜋𝑘)   𝑘 = 0,1,2… 
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Then, 𝑧 = exp (𝑖
2𝜋𝑘

𝑛
)  , which for different values of 𝑘 provides 𝑛 roots of unity. For 𝑘 = 0, 1, … (𝑛 − 1), these 

roots are, 1, exp (
𝑖2𝜋

𝑛
) , exp (

𝑖4𝜋

𝑛
) , exp (

𝑖6𝜋

𝑛
) , … exp (

𝑖2𝜋(𝑛−1)

𝑛
) . The next value of 𝑘, namely 𝑘 = 𝑛, gives back the 

first root, that is, 𝑧 = 1. 

Similarly, from 𝑧𝑛 + 1 = 0   or  𝑧𝑛 = −1 = exp(𝑖𝜋) exp(𝑖2𝜋𝑘) = exp[𝑖𝜋(2𝑘 + 1)], the 𝑛 roots of −1 are 

exp (
𝑖𝜋

𝑛
) , exp (

𝑖3𝜋

𝑛
) , exp (

𝑖5𝜋

𝑛
) , … exp (

𝑖(2𝑛−1)𝜋

𝑛
) . The next value of 𝑘, namely 𝑘 = 𝑛, gives back the first root, that 

is, 𝑧 = exp (
𝑖𝜋

𝑛
). 

Example: Determine all possible values of square roots of +1. 

Solution: In this case, 

𝑧2 − 1 = 0     or     𝑧2 = 1 = exp(𝑖2𝜋𝑘) 

or 𝑧 = exp(𝑖𝜋𝑘) ≡ 𝑧𝑘  for 𝑘 = 0,1,2, ….  

The mathematical symbol ≡ means that it is an equality for any value of variable 𝑘. Thus, for 𝑘 = 0 and 1, 

𝑧0 = +1 and 𝑧1 = −1  . 

Higher values of 𝑘 simply keep repeating values of 𝑧0 and 𝑧1, that is, 

 𝑧𝑘 = +1  for 𝑘 = 2,4,6, …  and  𝑧𝑘 = −1 for 𝑘 = 3,5,7, … 

Thus, there are only two independent square roots of +1 and their values are ±1. In the complex plane, these 

two roots of +1 lie on a unit circle as seen in Figure 5.4. 

 

Figure 5.4. Square roots of +1.  
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Example: Determine all possible values of cube roots of +1. 

Solution: In this case 

𝑧3 − 1 = 0      or      𝑧3 = 1 = exp(𝑖2𝜋𝑘) 

or,       𝑧 = exp (𝑖
2𝜋

3
𝑘) ≡ 𝑧𝑘  for 𝑘 = 0,1,2, … 

𝑧0 = +1, 

𝑧1 = exp (𝑖
2𝜋

3
) = cos (

2𝜋

3
) + 𝑖 sin (

2𝜋

3
) =

−1 + 𝑖√3

2
  , 

 

Figure 5.5. Cube roots of +1. 

𝑧2 = exp (𝑖
4𝜋

3
) = cos (

4𝜋

3
) + 𝑖 sin (

4𝜋

3
) =

−1 − 𝑖√3

2
  . 

Since 𝑧3 = exp (𝑖2𝜋) = +1, which is same as 𝑧0, the values of all 𝑧𝑘  for 𝑘 ≥ 3 are repeated. So, there are only 

three independent cube roots of +1, namely, 𝑧0, 𝑧1, and 𝑧2. Again, these three cube roots of +1 are seen to lie on 

a unit circle in the complex plane as in Figure 5.5. 

Example: Given 𝒛 = 𝟒𝒊,𝐰𝐡𝐚𝐭 𝐢𝐬 𝒛𝟏/𝟐? 

Solution: First, convert 𝑧 into its exponential form, 𝑟 = √0 + 16 = 4 and tan 𝜃 =
4

0
= ∞ or 𝜃 = 𝜋/2, so that 
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𝑧 = 4 exp (𝑖
𝜋

2
) exp(𝑖2𝜋𝑘) 

𝑧1/2 = 2exp(𝑖𝜋/4) exp(𝑖𝜋𝑘) ≡ 𝑧𝑘 for 𝑘 = 0,1,2, ….   

For 𝑘 = 0 and 𝑘 = 1, we get 

𝑧0 = 2(cos
𝜋

4
+ 𝑖 sin

𝜋

4
) = 2(

√2

2
+ 𝑖
√2

2
) = √2(1 + 𝑖)  , 

𝑧1 = 2(cos
5𝜋

4
+ 𝑖 sin

5𝜋

4
) = 2(−

√2

2
− 𝑖
√2

2
) = −√2(1 + 𝑖)  . 

For higher values of 𝑘, 𝑘 = 2, 3, 4, …, the roots 𝑧0 and 𝑧1 are repeated. Thus, 𝑧 = 4𝑖 has only two independent 

square roots, ±√2(1 + 𝑖). 

Example: Given 𝒛 = 𝟏 − √𝟑𝒊,𝐰𝐡𝐚𝐭 𝐢𝐬 √𝒛? 

Solution: Again, converting the complex number from its Cartesian form to its polar or exponential form, we get 

𝑧 = 1 − √3𝑖 = 2 exp(−𝑖𝜋/3) exp(𝑖2𝜋𝑘)  . 

Then, 

𝑧1/2 = √2exp(−𝑖𝜋/6) exp(𝑖𝜋𝑘) ≡ 𝑧𝑘  for 𝑘 = 0,1,2, ….   

For 𝑘 = 0 and 𝑘 = 1, we have 

𝑧0 = √2(cos
𝜋

6
− 𝑖 sin

𝜋

6
) = √2(

√3

2
− 𝑖
1

2
) = √

3

2
− 𝑖 

1

√2
  , 

𝑧1 = √2 (cos
5𝜋

6
+ 𝑖 sin

5𝜋

6
) = √2(−

√3

2
+ 𝑖
1

2
) = −√

3

2
+ 𝑖 

1

√2
  . 

Again, for higher values of 𝑘, 𝑘 = 2, 3, 4, …, the roots 𝑧0 and 𝑧1 are repeated. Thus, 

 𝑧 = 1 − √3𝑖 has only two independent square roots, ±√
3

2
∓ 𝑖 

1

√2
  . 
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5.5 DEMOIVRE’S FORMULA 

In the Interlude section we introduced the Euler’s formula, namely, 

exp(𝑖𝑥) = cos 𝑥 + 𝑖 sin 𝑥  . 

If we put 𝑥 = 𝑛𝜃 in Euler’s formula, we get 

exp(𝑖𝑛𝜃) = cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)  . 

Also, 

exp(𝑖𝑛𝜃) = (exp(𝑖𝜃))𝑛 = (cos 𝜃 + 𝑖 sin 𝜃)𝑛  . 

So, 

(cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)                                         𝐸𝑞. (5.3) 

which is known as DeMoivre’s formula.  

Applications of DeMoivre’s Formula 

In some situations, it becomes useful to write powers of a sine or a cosine function, such as sinn 𝜃 or cosn 𝜃 

[integer 𝑛], in terms of sine or cosine of various multiple angles like sin(𝑚𝜃)  or cos(𝑚𝜃) [integer 𝑚]. This can be 

accomplished by a simple application of DeMoivre’s formula. This formula also allows us to write 

sin(𝑛𝜃)  or  cos(𝑛𝜃) [integer 𝑛] in terms of multiple powers of sine or cosine, as sinm 𝜃  or cosm 𝜃 [integer 𝑚]. 

For convenience, write 

𝑧 = cos 𝜃 + 𝑖 sin 𝜃 = exp(𝑖𝜃)  , 

then 

𝑧−1 = [exp(𝑖𝜃)]−1 = cos 𝜃 − 𝑖 sin 𝜃  , 

and 𝑧𝑛 = exp(𝑖𝑛𝜃) , 𝑧−𝑛 = exp(−𝑖𝑛𝜃). 

Then,  

𝑧𝑛 + 𝑧−𝑛 = exp(𝑖𝑛𝜃) + exp(−𝑖𝑛𝜃) = 2 cos(𝑛𝜃)  ,                                        𝐸𝑞. (5.4𝑎) 

and  
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𝑧𝑛 − 𝑧−𝑛 = exp(𝑖𝑛𝜃) − exp(−𝑖𝑛𝜃) = 2𝑖 sin(𝑛𝜃)  .                                     𝐸𝑞. (5.4𝑏) 

These relationships along with DeMoivre’s formula allow us to accomplish what we set out to do. 

Example: Write 𝐜𝐨𝐬𝟑𝜽 and 𝐬𝐢𝐧𝟒𝜽 in terms of sine or cosine of angles which are multiples of 𝜽. 

Solution: Using Eqs. (5.4), 

cos3𝜃 = (
𝑧 + 𝑧−1

2
)

3

=
1

8
(𝑧3 + 3𝑧 + 3𝑧−1 + 𝑧−3) =

1

8
([𝑧3 + 𝑧−3] + 3[𝑧 + 𝑧−1])  

=
1

8
[2 cos(3𝜃) + 6 cos 𝜃] =

1

4
[cos(3𝜃) + 3 cos 𝜃]  

and 

sin4𝜃 = (
𝑧 − 𝑧−1

2𝑖
)

4

=
1

16
(𝑧4 − 4𝑧2 + 6 − 4𝑧−2 + 𝑧−4) 

=
1

16
([𝑧4 + 𝑧−4] − 4[𝑧2 + 𝑧−2] + 6) 

=
1

16
[2 cos(4𝜃) − 4 ∙ 2 cos(2𝜃) + 6] 

=
1

8
[cos(4𝜃) − 4 cos(2𝜃) + 3]  . 

Example: Write 𝐜𝐨𝐬(𝟒𝜽), 𝐬𝐢𝐧(𝟒𝜽), 𝐜𝐨𝐬(𝟐𝜽), and 𝐬𝐢𝐧(𝟐𝜽) in terms of multiples of 𝐬𝐢𝐧 𝜽 and 𝐜𝐨𝐬 𝜽. 

Solution: Starting with DeMoivre’s formula, 

cos(4𝜃) + 𝑖 sin(4𝜃) = (cos 𝜃 + 𝑖 sin 𝜃)4 

= cos4𝜃 + 4 cos3𝜃 (𝑖 sin 𝜃) + 6 cos2𝜃 (𝑖 sin 𝜃)2 + 4 cos 𝜃 (𝑖 sin 𝜃)3 + (𝑖 sin 𝜃)4 

= (cos4𝜃 − 6 cos2𝜃 sin2𝜃 + sin4𝜃) + 4𝑖 (cos3𝜃 sin 𝜃 − cos 𝜃 sin3𝜃) 

Separating out the real and imaginary parts on both sides leads to 

cos(4𝜃) = cos4𝜃 − 6 cos2𝜃 sin2𝜃 + sin4𝜃  , 

and 
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sin(4𝜃) = 4 cos 𝜃 sin 𝜃  (cos2𝜃 − sin2𝜃)  . 

Similarly, 

cos(2𝜃) + 𝑖 sin(2𝜃) = (cos 𝜃 + 𝑖 sin 𝜃)2 =  cos2𝜃 + 2 cos 𝜃 (𝑖 sin 𝜃) + (𝑖 sin 𝜃)2 

= (cos2𝜃−sin2𝜃) + 𝑖2 sin 𝜃 cos 𝜃  . 

Separating out real and imaginary parts, we get well-known relations 

cos(2𝜃) = cos2𝜃−sin2𝜃  , 

sin(2𝜃) = 2 sin 𝜃 cos 𝜃  . 
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PROBLEMS FOR CHAPTER 5 

1. Show that for any two complex numbers 𝑧1 and 𝑧2 

|𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = 2|𝑧1|
2 +  2 |𝑧2|

2 

2. Given a complex number, 

𝑧 =  
5 + 𝑖 10

(1 − 𝑖 2)(2 − 𝑖)
  , 

determine the real and imaginary parts of 𝑧. 

3. Determine the real part, imaginary part, and the absolute magnitude of the following three expressions, 

sin(𝑖 ln 𝑖),          √𝑖            and             
1

2𝑖
ln (
1 + 𝑖𝑎

1 − 𝑖𝑎
)  . 

4. If 𝑧 = 𝑥 + 𝑖𝑦, determine the real part, imaginary part and the absolute magnitude of the following three 

functions, 

(a)     sin 𝑧,    (b)    cos 𝑧          and          (c)  exp(𝑖𝑧). 

5. For two complex numbers 𝑧1 = √3 +  𝑖  and  𝑧2 = −√2 +  𝑖 √2, determine 

(a) |𝑧1/𝑧2|
4    and  (b) (𝑧1/𝑧2)

4.  

6. Find all roots of the equation 𝑧6 −  1 = 0 and plot the results in a complex plane. 

7. The three cube roots of +1 are of the form 1, 𝜔 and 𝜔2. Determine 𝑅𝑒 [𝜔] and 𝐼𝑚 [𝜔]. 

8. The three cube roots of −1 are of the form 𝛼, 𝛼3 and 𝛼5. Determine 𝑅𝑒 [𝛼] and 𝐼𝑚 [𝛼]. 

9. Determine the fourth root of 𝑧 =  −8 + 𝑖 8√3. 

10. Determine the third (or, cube) root of 𝑧 =  −2 + 𝑖 2. 

11. Use DeMoivre’s formula to express sin3 𝜃 and cos4𝜃 in terms of sine and/or cosine of multiples of 𝜃. 

12. Use DeMoivre’s formula to express cos(3𝜃) and sin(3𝜃) in terms of powers of sin 𝜃 and cos 𝜃. 
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Chapter 6: Determinants 

In this chapter we will first define a determinant as well as its minors and cofactors. Next, we will outline a 

procedure, due to Laplace, for determining the value of the determinant in terms of its cofactors. Several 

properties of determinants will be described which help in simplifying the determinant so that it can be reduced 

and evaluated easily. Two final examples will help in understanding the utility of properties in the simplification 

process for a determinant. 

6.1 DEFINITION OF A DETERMINANT 

A determinant is a square array of numbers (or elements) such as 

𝔸 =
|

|

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯

⋮ ⋮

𝑎1𝑗 ⋯ 𝑎1𝑛
𝑎2𝑗 ⋯ 𝑎2𝑛
⋮ ⋮

𝑎𝑖1 𝑎𝑖2 ⋯

⋮ ⋮
𝑎𝑛1 𝑎𝑛2 …

𝑎𝑖𝑗 ⋯ 𝑎𝑖𝑛
⋮ ⋱ ⋮
𝑎𝑛𝑗 ⋯ 𝑎𝑛𝑛

|

|
  , 

which are combined together according to certain rules to provide the value of the determinant. The element 𝑎𝑖𝑗  

is located at the intersection of 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. The number of rows (or columns) is called the order of 

the determinant. The determinant shown above is of order 𝑛. We also define the minor and the cofactor of each 

element of a determinant. Starting with a determinant of order 𝑛, one can obtain a smaller determinant by 

omitting one row and one column. The determinant of order (𝑛 − 1) obtained by omitting the row and column 

containing 𝑎𝑖𝑗  (that is, omitting 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column) is called the minor 𝑀𝑖𝑗  of 𝑎𝑖𝑗  and the minor multiplied by 

a sign of (−1)𝑖+𝑗  is called the cofactor 𝐶𝑖𝑗  of 𝑎𝑖𝑗 . 

Let us start evaluating some determinants. A single number can be considered as a determinant of order 1 and 

the value of this determinant is the value of the single number.  

Next higher order determinant is of order 2. Consider a determinant of order 2, 

𝔸 =  |
𝑎11 𝑎12
𝑎21 𝑎22

|  . 

According to the rules of determining the values of a determinant, the value of a determinant of order 2 is the 

difference between the products of elements along two diagonals as 

det(𝔸) = 𝑎11𝑎22 − 𝑎21𝑎12  . 
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Note, if we interchange the rows and columns of this determinant to form a new determinant 𝔹, 

𝔹 = |
𝑎11 𝑎21
𝑎12 𝑎22

|  , 

then 

det(𝔹) = det(𝔸)  . 

Next higher order determinant is of order 3. A typical determinant of order 3 is 

𝔸 = |

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

|   . 

Again, according to the rules of determining values of a determinant, the value of a determinant of order 3 can 

be written in terms of Levi-Civita symbols as 

det(𝔸) =∑𝜖𝑖𝑗𝑘𝑎𝑖1𝑎𝑗2𝑎𝑘3
𝑖𝑗𝑘

= 𝜖123𝑎11𝑎22𝑎33 +𝜖132𝑎11𝑎32𝑎23 + 𝜖213𝑎21𝑎12𝑎33 + 𝜖231𝑎21𝑎32𝑎13

+ 𝜖312𝑎31𝑎12𝑎23 + 𝜖321𝑎31𝑎22𝑎13 =∑𝜖𝑖𝑗𝑘𝑎1𝑖𝑎2𝑗𝑎3𝑘
𝑖𝑗𝑘

  . 

The last equality suggests that the value of a determinant of order 3 is not changed if its rows and columns are 

interchanged. In other words, if a determinant 𝔹 is obtained from 𝔸 by interchanging its rows and columns, 

then, 

det(𝔹) = det(𝔸)  . 

Substituting explicitly the values of all Levi-Civita symbols, we get 

det(𝔸) = 𝑎11𝑎22𝑎33 − 𝑎11𝑎32𝑎23 − 𝑎21𝑎12𝑎33 + 𝑎21𝑎32𝑎13 + 𝑎31𝑎12𝑎23 − 𝑎31𝑎22𝑎13  . 

Note that each product on the right-hand side contains only one element from each row and from each column 

of the determinant. Furthermore, factors on the right-hand side can be rearranged either as 

det(𝔸) = 𝑎11(𝑎22𝑎33 − 𝑎32𝑎23) − 𝑎21(𝑎12𝑎33 − 𝑎13𝑎32) + 𝑎31(𝑎12𝑎23 − 𝑎13𝑎22)                           

  = 𝑎11(−1)
1+1 |

𝑎22 𝑎23
𝑎32 𝑎33

| + 𝑎21(−1)
2+1 |

𝑎12 𝑎13
𝑎32 𝑎33

| + 𝑎31(−1)
3+1 |

𝑎12 𝑎13
𝑎22 𝑎23

| 

  = 𝑎11(−1)
1+1𝑀11 + 𝑎21(−1)

2+1𝑀21 + 𝑎31(−1)
3+1𝑀31 
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  = 𝑎11𝐶11 + 𝑎21𝐶21 + 𝑎31𝐶31  , 

or as 

det(𝔸) = 𝑎11(𝑎22𝑎33 − 𝑎32𝑎23) − 𝑎12(𝑎21𝑎33 − 𝑎31𝑎23) + 𝑎13(𝑎21𝑎32 − 𝑎31𝑎22)                           

  = 𝑎11(−1)
1+1 |

𝑎22 𝑎23
𝑎32 𝑎33

| + 𝑎12(−1)
1+2 |

𝑎21 𝑎23
𝑎31 𝑎33

| + 𝑎13(−1)
1+3 |

𝑎21 𝑎22
𝑎31 𝑎32

| 

  = 𝑎11(−1)
1+1𝑀11 + 𝑎12(−1)

1+2𝑀12 + 𝑎13(−1)
1+3𝑀13 

  = 𝑎11𝐶11 + 𝑎12𝐶12 + 𝑎13𝐶13  . 

These latter forms suggest an alternate way, due to Laplace, of obtaining the value of a determinant of any order 

𝑛 as 

det(𝔸) =∑𝑎𝑖1𝐶𝑖1

𝑛

𝑖=1

  , 

where the expansion of the determinant is across first column, or as 

det(𝔸) =∑𝑎1𝑖𝐶1𝑖

𝑛

𝑖=1

  , 

where the expansion of the determinant is across first row. It suggests that rows and columns of a determinant 

can be interchanged without affecting its value. In fact, the value of a determinant can be obtained by expanding 

across any row or any column. We illustrate this fact in the example below. 

Example: Determine the value of the following determinant of order 3, by expanding it across any row or any 

column. 

𝔸 = |
𝟏 𝟐 𝟏
𝟎 −𝟏 𝟐
𝟏 𝟏 𝟎

|  . 

Solution: Expanding across first row, 

det(𝔸) = (1)(−1)1+1 |
−1 2
1 0

| + (2)(−1)1+2 |
0 2
1 0

| + (1)(−1)1+3 |
0 −1
1 1

| 

= 1(0 − 2) − 2(0 − 2) + 1(0 + 1) = +3  .                                  

Expanding across second row, 
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det(𝔸) = (0)(−1)2+1 |
2 1
1 0

| + (−1)(−1)2+2 |
1 1
1 0

| + (2)(−1)2+3 |
1 2
1 1

| 

= −0(0 − 1) − 1(0 − 1) − 2(1 − 2) = +3  .                            

Expanding across third row, 

det(𝔸) = (1)(−1)3+1 |
2 1
−1 2

| + (1)(−1)3+2 |
1 1
0 2

| + (0)(−1)3+3 |
1 2
0 −1

| 

= 1(4 + 1) − 1(2 − 0) + 0(−1 + 0) = +3  .                               

Expanding across first column, 

det(𝔸) = (1)(−1)1+1 |
−1 2
1 0

| + (0)(−1)2+1 |
2 1
1 0

| + (1)(−1)3+1 |
2 1
−1 2

| 

= 1(0 − 2) − 0(0 − 1) + 1(4 + 1) = +3  .                                  

Expanding across second column, 

det(𝔸) = (2)(−1)1+2 |
0 2
1 0

| + (−1)(−1)2+2 |
1 1
1 0

| + (1)(−1)3+2 |
1 1
0 2

| 

= −2(0 − 2) − 1(0 − 1) − 1(2 − 0) = +3  .                           

Expanding across third column, 

det(𝔸) = (1)(−1)1+3 |
0 −1
1 1

| + (2)(−1)2+3 |
1 2
1 1

| + (0)(−1)3+3 |
1 2
0 −1

| 

= 1(0 + 1) − 2(1 − 2) + 0(−1 − 0) = +3  .                               

Thus, in general,  

∑𝑎𝑖𝑘𝐶𝑗𝑘 =∑𝐶𝑘𝑖𝑎𝑘𝑗 = 𝛿𝑖𝑗  det (𝔸)

𝑘

  

𝑘

.                                             𝐸𝑞. (6.1) 

6.2 PROPERTIES OF DETERMINANT 𝔸 

There are several very useful properties of determinants which are helpful in determining the value of a large 

determinant. Since the value of a determinant does not change on interchanging the rows and the columns, all 

the remarks below for columns of a determinant will apply equally well to the rows of the determinant. 

As a shorthand notation for writing the determinant, let us write 𝐴𝑙 for the 𝑙𝑡ℎ column of 𝔸. Then 
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𝔸 =  |𝐴1, 𝐴2, …𝐴𝑙 , …𝐴𝑛 |  . 

Property Number 1: If any two columns of a determinant 𝔸 are interchanged, then the value of the resulting 

determinant 𝔹 is same as the value of the original determinant except for an overall change of sign. In other 

words, if  

𝔸 =  |𝐴1, 𝐴2…𝐴𝑙 , …𝐴𝑚, … 𝐴𝑛 |  , 

and  

𝔹 = |𝐴1, 𝐴2…𝐴𝑚, … 𝐴𝑙, … 𝐴𝑛 |  , 

then 

det 𝔹 = − det 𝔸  . 

To prove this fact, we first assume that the 𝑙𝑡ℎ column and the 𝑚𝑡ℎ column of 𝔸 are two adjacent columns, that 

is, 

𝔸 =  |𝐴1, 𝐴2…𝐴𝑙 , 𝐴𝑚, …𝐴𝑛 | 

and  

𝔹 =  |𝐴1, 𝐴2…𝐴𝑚, 𝐴𝑙 , … 𝐴𝑛 |  . 

Now, to determine the values of these two determinants, let us expand each determinant across the column that 

contains elements of the original 𝑙𝑡ℎ column. Each element of this column will have the same minor both in 𝔸 

and in 𝔹; however, the cofactor of each element will differ in sign only since the 𝑙𝑡ℎ column is moved from left of 

𝑚𝑡ℎ column to the right of 𝑚𝑡ℎ column. So, det 𝔹 = −det 𝔸. This result is true even if the 𝑙𝑡ℎ column and the 

𝑚𝑡ℎ column of 𝔸 are not adjacent columns. If the 𝑙𝑡ℎ column and the 𝑚𝑡ℎ column are separated by 𝑗 columns, 

such as 

𝔸 =  |𝐴1, 𝐴2…𝐴𝑙 , ← 𝑗 columns →, 𝐴𝑚, …𝐴𝑛 |  , 

then a total of (2𝑗 + 1) interchanges of adjacent columns are required to exchange the 𝑙𝑡ℎ column and the 𝑚𝑡ℎ 

column and since (−1)2𝑗+1 = (−1) for any 𝑗, the fact that det 𝔹 = −det 𝔸 is proved. 

Example: A determinant 𝔹 is obtained by interchanging the first two columns of another determinant 𝔸 as 

shown below: 
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𝔸 = |
𝟏 −𝟏 𝟏
𝟐 𝟑 −𝟐
𝟑 𝟏 −𝟒

|  𝐚𝐧𝐝 𝔹 = |
−𝟏 𝟏 𝟏
𝟑 𝟐 −𝟐
𝟏 𝟑 −𝟒

|  . 

Show that 𝐝𝐞𝐭𝔹 = −𝐝𝐞𝐭𝔸. 

Solution: Expanding across first row, we get 

det(𝔸) = (1)(−1)1+1 |
3 −2
1 −4

| + (−1)(−1)1+2 |
2 −2
3 −4

| + (1)(−1)1+3 |
2 3
3 1

| 

= 1(−12 + 2) + 1(−8 + 6) + 1(2 − 9) = −19                            

and  

det(𝔹) = (−1)(−1)1+1 |
2 −2
3 −4

| + (1)(−1)1+2 |
3 −2
1 −4

| + (1)(−1)1+3 |
3 2
1 3

| 

= −1(−8 + 6) − 1(−12 + 2) + 1(9 − 2) = +19  .                      

Property Number 2: If a determinant has two identical columns, such as 

𝔸 =  |𝐴1𝐴2…𝐴𝑙…𝐴𝑙…𝐴𝑛 |     , 

then det 𝔸 = 0. 

The proof of this statement easily follows from Property Number 1, since on interchanging the two columns we 

get a negative sign, while the determinant stays the same since the two exchanged columns are identical. Thus, 

det(𝔸) = − det(𝔸)  . 

Or 

det(𝔸) =0  . 

Example: Two columns of a determinant 𝔸 are identical. Determine the value of this determinant. 

𝔸 = |
𝟏 −𝟏 −𝟏
𝟐 𝟑 𝟑
𝟑 𝟏 𝟏

|  . 

Solution: Expanding the determinant across first row, we get  
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det(𝔸) = (1)(−1)1+1 |
3 3
1 1

| + (−1)(−1)1+2 |
2 3
3 1

| + (−1)(−1)1+3 |
2 3
3 1

| 

= 1(3 − 3) + 1(2 − 9) − 1(2 − 9) = 0  .                                     

Property Number 3: If each element of a column of a determinant is multiplied by a constant 𝑘, then the value of 

the whole determinant is multiplied by the same constant 𝑘. Or, saying differently, multiplying a determinant by 

a constant 𝑘 amounts to multiplying any one of the columns of the determinant by 𝑘. 

Suppose determinant 𝔹 is constructed by multiplying the 𝑙𝑡ℎ column of determinant 𝔸 by a constant number 𝑘. 

Then 

𝔸 =  |𝐴1, 𝐴2…𝐴𝑙, … 𝐴𝑛 | 

and  

𝔹 =  |𝐴1, 𝐴2…𝑘𝐴𝑙 , …𝐴𝑛 |  . 

Also, 

det(𝔸) =∑𝑎𝑖𝑙𝐶𝑖𝑙

𝑛

𝑖=1

 

and  

det(𝔹) =∑(𝑘𝑎𝑖𝑙)𝐶𝑖𝑙

𝑛

𝑖=1

= 𝑘∑𝑎𝑖𝑙𝐶𝑖𝑙

𝑛

𝑖=1

= 𝑘 det(𝔸)  . 

Example: A new determinant 𝔹 is formed by multiplying the third column of another determinant 𝔸 by a 

constant number 𝒌 = 𝟓, as shown: 

𝔸 = |
𝟏 −𝟏 𝟏
𝟐 𝟑 −𝟐
𝟑 𝟏 −𝟒

|  𝐚𝐧𝐝 𝔹 = |
𝟏 −𝟏 𝟓
𝟐 𝟑 −𝟏𝟎
𝟑 𝟏 −𝟐𝟎

|  . 

Show that 𝐝𝐞𝐭𝔹 = 𝒌 𝐝𝐞𝐭 𝔸. 

Solution: Determinant 𝔸 is the same determinant as in the previous example. Its value, as determined 

previously, is −19. 

Now, expanding the determinant 𝔹 across the first column, we get 
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det(𝔹) = (1)(−1)1+1 |
3 −10
1 −20

| + (2)(−1)2+1 |
−1 5
1 −20

| + (3)(−1)3+1 |
−1 5
3 −10

| 

= 1(−60 + 10) − 2(20 − 5) + 3(10 − 15) = −95 = 5(−19)  .            

Property Number 4: If each element of the 𝑙𝑡ℎ column of a determinant 𝔸 can be expressed as 

 𝑎𝑗𝑙 = 𝛼𝑝𝑗𝑙 + 𝛽𝑞𝑗𝑙  with 𝑗 = 1,2⋯𝑛, then, columnwise, 

𝐴𝑙 = 𝛼𝑃𝑙 + 𝛽𝑄𝑙   . 

Now, expanding the determinant 𝔸 across its 𝑙𝑡ℎ column 

det(𝔸) = det|𝐴1𝐴2⋯𝐴𝑙−1 𝛼𝑃𝑙 + 𝛽𝑄𝑙  𝐴𝑙+1⋯𝐴𝑛|                                                                       

=∑(𝛼𝑝𝑗𝑙 + 𝛽𝑞𝑗𝑙)𝐶𝑗𝑙

𝑛

𝑗=1

= 𝛼∑𝑝𝑗𝑙𝐶𝑗𝑙

𝑛

𝑗=1

+ 𝛽∑𝑞𝑗𝑙𝐶𝑗𝑙

𝑛

𝑗=1

                                        

= 𝛼 det|𝐴1𝐴2⋯𝐴𝑙−1 𝑃𝑙  𝐴𝑙+1⋯𝐴𝑛| + 𝛽 det| 𝐴1𝐴2⋯𝐴𝑙−1 𝑄𝑙  𝐴𝑙+1⋯𝐴𝑛| 

= 𝛼 det(ℙ) + 𝛽 det(ℚ)  .                                                                                     

Note, the determinants 𝔸, ℙ and ℚ share all columns except the 𝑙𝑡ℎ column. 

Example: Two new determinants, ℙ and ℚ, are created by splitting the third column of another determinant 𝔸, 

as shown: 

𝔸 = |
𝟏 −𝟏 𝟏
𝟐 𝟑 −𝟐
𝟑 𝟏 −𝟒

|  𝐰𝐢𝐭𝐡 ℙ = |
𝟏 −𝟏 𝟏
𝟐 𝟑 −𝟏
𝟑 𝟏 −𝟐

|  𝐚𝐧𝐝 ℚ = |
𝟏 −𝟏 𝟎
𝟐 𝟑 −𝟏
𝟑 𝟏 −𝟐

|  . 

Show that 𝐝𝐞𝐭(𝔸) = 𝐝𝐞𝐭(ℙ) + 𝐝𝐞𝐭(ℚ).  

Solution: Determinant 𝔸 is the determinant of previous few examples. Its value, as determined previously, is 

−19. 

Now, expanding the determinants ℙ and ℚ across the first row, we get 

det(ℙ) = (1)(−1)1+1 |
3 −1
1 −2

| + (−1)(−1)1+2 |
2 −1
3 −2

| + (1)(−1)1+3 |
2 3
3 1

| 

= 1(−6 + 1) + 1(−4 + 3) + 1(2 − 9) = −5 − 1 − 7 = −13  , 
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det(ℚ) = (1)(−1)1+1 |
3 −1
1 −2

| + (−1)(−1)1+2 |
2 −1
3 −2

| + (0)(−1)1+3 |
2 3
3 1

| 

= 1(−6 + 1) + 1(−4 + 3) − 0 = −5 − 1 = −6  .                        

Clearly, det(𝔸) = det(ℙ) + det(ℚ).  

Property Number 5: If a determinant 𝔹 is obtained from determinant 𝔸 by adding to the 𝑙𝑡ℎ column of 𝔸 a scalar 

multiple of any other column of 𝔸, then det 𝔹 = det 𝔸. 

Explicitly, 

𝔹 = |𝐴1𝐴2⋯𝐴𝑙 + 𝛼𝐴𝑚⋯𝐴𝑚⋯𝐴𝑛|  . 

Using Property Number 4, 

det 𝔹 = det|𝐴1𝐴2⋯𝐴𝑙⋯𝐴𝑚⋯𝐴𝑛| + 𝛼 det|𝐴1𝐴2⋯𝐴𝑚⋯𝐴𝑚⋯𝐴𝑛|  . 

Or, using Property Number 2, 

det 𝔹 = det|𝐴1𝐴2⋯𝐴𝑙⋯𝐴𝑚⋯𝐴𝑛| + 0 = det 𝔸  . 

Example: A new determinant 𝔹 is created by adding first column to the third column of another determinant 𝔸 

as shown: 

𝔸 = |
𝟏 −𝟏 𝟏
𝟐 𝟑 −𝟐
𝟑 𝟏 −𝟒

|  𝐚𝐧𝐝 𝔹 = |
𝟏 −𝟏 𝟐
𝟐 𝟑 𝟎
𝟑 𝟏 −𝟏

|  . 

Show that 𝐝𝐞𝐭𝔹 = 𝐝𝐞𝐭𝔸. 

Solution: Determinant 𝔸 is the same determinant as in the previous examples. Its value, as determined 

previously, is −19. 

Now, expanding the determinant 𝔹 across the third column, we get 

det(𝔹) = (2)(−1)1+3 |
2 3
3 1

| + (0)(−1)2+3 |
1 −1
3 1

| + (−1)(−1)3+3 |
1 −1
2 3

| 

= 2(2 − 9) − 0 − 1(3 + 2) = −14 − 5 = −19  .                          

Finally, we provide two examples in which we use properties of determinants to first simplify the determinant, 

then evaluate it. 
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Example: Using properties of determinants, find out the value of  

𝔸 = |
𝟏 −𝟏 𝟏
𝟐 𝟑 −𝟐
𝟑 𝟏 −𝟒

|  . 

Solution: We have already seen that the value of 𝔸 is −19. Now we will use various properties of determinants 

to create as many zeros in a single row or in a single column as possible. We will do so for the first row of 

determinant 𝔸.  

First, we add column 2 to column 3 and use property number 5 to get 

|
1 −1 1
2 3 −2
3 1 −4

| = |
1 −1 0
2 3 1
3 1 −3

|  . 

Next, we add column 1 to column 2 and use property number 5 again to get 

|
1 −1 1
2 3 −2
3 1 −4

| = |
1 −1 0
2 3 1
3 1 −3

| = |
1 0 0
2 5 1
3 4 −3

|  . 

Now, we expand across row 1 to get, 

|
1 −1 1
2 3 −2
3 1 −4

| = |
1 −1 0
2 3 1
3 1 −3

| = |
1 0 0
2 5 1
3 4 −3

| = 1 |
5 1
4 −3

|  . 

The determinant of order 2 is easy to evaluate as 

|
1 −1 1
2 3 −2
3 1 −4

| = |
1 −1 0
2 3 1
3 1 −3

| = |
1 0 0
2 5 1
3 4 −3

| = 1 |
5 1
4 −3

| = −19  . 

As seen in the above example, the trick of simplifying the evaluation of a determinant is to create as many zeros 

in a single row (or column) as possible and then use this row (or column) to evaluate the determinant. 

Example: Given that |

𝒂 𝒃 𝒄
𝒅 𝒆 𝒇
𝒈 𝒉 𝒊

| = 𝟓, use the properties of general determinants to find the value of 

𝔻 = |

−𝟐𝒂 𝟑𝒅 − 𝒈 𝒈 + 𝒂
−𝟐𝒃 𝟑𝒆 − 𝒉 𝒉 + 𝒃
−𝟐𝒄 𝟑𝒇 − 𝒊 𝒊 + 𝒄

|  . 

Solution: The determinant to be evaluated is 
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𝔻 = |

−2𝑎 3𝑑 − 𝑔 𝑔 + 𝑎
−2𝑏 3𝑒 − ℎ ℎ + 𝑏
−2𝑐 3𝑓 − 𝑖 𝑖 + 𝑐

|  . 

First, take −2 common out of column 1 to get 

𝔻 = (−2) |

𝑎 3𝑑 − 𝑔 𝑔 + 𝑎
𝑏 3𝑒 − ℎ ℎ + 𝑏
𝑐 3𝑓 − 𝑖 𝑖 + 𝑐

|  . 

Now, subtract column 1 from column 3 to get 

𝔻 = (−2) |

𝑎 3𝑑 − 𝑔 𝑔
𝑏 3𝑒 − ℎ ℎ
𝑐 3𝑓 − 𝑖 𝑖

|  . 

Adding column 3 to column 2 gives 

𝔻 = (−2) |

𝑎 3𝑑 𝑔
𝑏 3𝑒 ℎ
𝑐 3𝑓 𝑖

|  . 

Taking a common factor of 3 out of column 2, we have 

𝔻 = (−2)(3) |

𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

|  . 

Finally, interchange rows and columns of the determinant, 

𝔻 = (−6) |

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

| = (−6)(5) = −30  . 
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PROBLEMS FOR CHAPTER 6 

1. Determine the values of the following two determinants 

|
5 2 3
−1 3 4
0 −2 3

|      and     |
−2 3 5
1 2 4
0 3 −2

|  . 

2. Using the properties of determinants, first simplify and then determine the value of the following 

determinant, 

|
𝑎 − 𝑏 𝑎2 − 𝑏2 𝑎3 − 𝑏3

𝑏 − 𝑐 𝑏2 − 𝑐2 𝑏3 − 𝑐3

𝑐 − 𝑎 𝑐2 − 𝑎2 𝑐3 − 𝑎3
|  . 

3. Without expanding the determinant, and using the properties of determinants only, show that 

|
𝑏𝑐 𝑎2 𝑎2

𝑏2 𝑐𝑎 𝑏2

𝑐2 𝑐2 𝑎𝑏

| = |
𝑏𝑐 𝑎𝑏 𝑐𝑎
𝑎𝑏 𝑐𝑎 𝑏𝑐
𝑐𝑎 𝑏𝑐 𝑎𝑏

|  . 

4. Without expanding the determinant, and using the properties of determinants only, show that 
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5. Without expanding the determinant, and using the properties of determinants only, show that 
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Chapter 7: Matrices 

In this chapter we will learn about matrices and their properties. Just like determinants, matrices are also arrays 

of numbers or elements, but that is where the similarity between a determinant and a matrix ends. A 

determinant, by design, is a square array of numbers while a matrix, in general, is a rectangular array of 

numbers. With determinants, the elements are combined together to provide a single number, which is the 

value of the determinant. On the other hand, in the case of a matrix there is no concept of a single value of the 

matrix available by any combination of its elements. However, only for a square matrix, one can mention a 

corresponding determinant whose elements are the same as the elements of the square matrix, or one can 

loosely talk about determinant of a square matrix. As an application of matrices, in this chapter we will explore 

their use in solving 𝑛 coupled inhomogeneous algebraic equations. 

7.1 A GENERAL MATRIX 

A general matrix is a rectangular array of numbers or elements. For example, 

𝔸 = (

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑛

) 

is a matrix with 𝑚 rows and 𝑛 columns. It is common to say that 𝔸 is an 𝑚 × 𝑛 matrix. The element 𝑎𝑖𝑗  is located 

at the intersection of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column of the matrix. If 𝔸 = 𝔹, then all elements of matrix 𝔸 are individually 

equal to all elements of matrix 𝔹; that is, 𝑎𝑖𝑗 = 𝑏𝑖𝑗  for all 𝑖 and 𝑗. Clearly, if 𝔸 is an 𝑚 × 𝑛 matrix, then so is 𝔹. 

Matrices consisting of only one row or one column are referred to as vectors. For example, an 𝑚 × 1 matrix is a 

column vector of dimension 𝑚, and a 1 × 𝑛 matrix is a row vector of dimension 𝑛.  

Various matrices combine (add, subtract or multiply) according to some well-defined rules. First, in order to add 

or subtract two matrices, they must be of the same size; that is, must have same number of rows and same 

number of columns. Furthermore, matrices add or subtract element-by-element. For example, if ℂ = 𝔸 ±𝔹, 

then 𝑐𝑖𝑗 = 𝑎𝑖𝑗 ± 𝑏𝑖𝑗 . Matrix addition is commutative as well as associative, that is, 

𝔸 + 𝔹 = 𝔹+ 𝔸 and 𝔸 + (𝔹 + ℂ) = (𝔸 + 𝔹) + ℂ  . 

Multiplication of two matrices, 𝔸 and 𝔹, leads to a new matrix ℂ, that is, ℂ = 𝔸𝔹. The element 𝑐𝑖𝑗 , located at the 

intersection of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column of matrix ℂ, is given by 
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𝑐𝑖𝑗 =∑𝑎𝑖𝑘𝑏𝑘𝑗
𝑘

  .                                                        𝐸𝑞. (7.1) 

In other words, element 𝑐𝑖𝑗  of ℂ is obtained by multiplying, element-by-element, the 𝑖𝑡ℎ row of 𝔸 with the 𝑗𝑡ℎ  

column of 𝔹, and then adding all the products. Note that for the multiplication of two general rectangular 

matrices to have any meaning, the number of columns of 𝔸 (namely, dummy index 𝑘 in the sum in Eq. (7.1)) 

must be equal to the number of rows of 𝔹 (again, the same dummy index 𝑘 in the same sum). So, if 𝔸 is an 

𝑚 × 𝑝 matrix and 𝔹 is a 𝑝 × 𝑛 matrix, then the product ℂ is an 𝑚 × 𝑛 matrix, while the product 𝔹𝔸 is undefined. 

However, as long as matrix multiplication is allowed, it is both distributive and associative, that is, 

𝔸(𝔹 + ℂ) = 𝔸𝔹 + 𝔸ℂ  , 

(𝔸𝔹)ℂ = 𝔸(𝔹ℂ)  . 

The use of the word 𝑣𝑒𝑐𝑡𝑜𝑟 for matrices with only one row or one column is justified since multiplying a 1 × 3 

row matrix containing elements 𝐴𝑥, 𝐴𝑦, and 𝐴𝑧 with a 3 × 1 column matrix containing elements 𝐵𝑥 , 𝐵𝑦 , 𝑎𝑛𝑑 𝐵𝑧 is 

equivalent to taking the scalar or dot product of two vectors. Explicitly, 

(𝐴𝑥 𝐴𝑦 𝐴𝑧) (

𝐵𝑥
𝐵𝑦
𝐵𝑧

) = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧 = A • B  . 

Multiplication of a matrix 𝔸 by a constant k simply multiplies each and every element of 𝔸 by 𝑘; that is, 

𝑘𝔸 = (

𝑘𝑎11 𝑘𝑎12
𝑘𝑎21 𝑘𝑎22

⋯ 𝑘𝑎1𝑛
⋯ 𝑘𝑎2𝑛

⋮ ⋮
𝑘𝑎𝑚1 𝑘𝑎𝑚2

⋱ ⋮
⋯ 𝑘𝑎𝑚𝑛

)   .                                                     𝐸𝑞. (7.2) 

If the number of rows and the number of columns of a matrix are equal, say to 𝑛, then the matrix is a 𝑠𝑞𝑢𝑎𝑟𝑒 

matrix of order 𝑛. For two square matrices 𝔸 and 𝔹 of the same order, one can form the products 𝔸𝔹 as well as 

𝔹𝔸. However, in general, 𝔸𝔹 ≠ 𝔹𝔸. If 𝔸𝔹 = 𝔹𝔸, then the matrices 𝔸 and 𝔹 are said to 𝑐𝑜𝑚𝑚𝑢𝑡𝑒. 

Example: Consider two square matrices 𝔸 and 𝔹 of order 2, 

𝔸 = (
𝟎 𝟏
𝟏 𝟎

)             𝔹 = (
−𝟏 𝟎
𝟎 𝟏

)  . 

Check whether the products 𝔸𝔹 and 𝔹𝔸 are equal or not. 

Solution: The products 𝔸𝔹 and 𝔹𝔸 are 
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𝔸𝔹 = (
0 1
1 0

) (
−1 0
0 1

) = (
0 1
−1 0

)     

𝔹𝔸 =  (
−1 0
0 1

) (
0 1
1 0

) = (
0 −1
1 0

)  . 

Clearly, in this case 𝔸𝔹 ≠ 𝔹𝔸. 

Example: Given two square matrices, 𝔸 = (
𝜶 𝜷
𝜷 𝜶

)     𝐚𝐧𝐝 𝔹 = (
𝜸 𝜹
𝜹 𝜸

), determine whether they commute or 

not.  

Solution: In this case, 

𝔸𝔹 = (
𝛼 𝛽
𝛽 𝛼

) (
𝛾 𝛿
𝛿 𝛾

) = (
𝛼𝛾 + 𝛽𝛿 𝛼𝛿 + 𝛽𝛾
𝛽𝛾 + 𝛼𝛿 𝛽𝛿 + 𝛼𝛾

)  , 

𝔹𝔸 = (
𝛾 𝛿
𝛿 𝛾

) (
𝛼 𝛽
𝛽 𝛼

) = (
𝛾𝛼 + 𝛿𝛽 𝛾𝛽 + 𝛿𝛼
𝛼𝛿 + 𝛽𝛾 𝛽𝛿 + 𝛾𝛼

)  . 

Since 𝔸𝔹 = 𝔹𝔸, then 𝔸 and 𝔹 commute. 

A matrix with all of its elements as zero is called a null or a zero matrix and it is denoted by 𝕆. We note in passing 

that, in general, if 𝔸𝔹 = 𝕆, it does not imply either 𝔸 = 𝕆 or 𝔹 = 𝕆. As an example, consider two matrices, 

𝔸 = (
2 1
−6 −3

)      𝔹 = (
1 −2
−2 4

)  . 

Their product is 

𝔸𝔹 = (
2 1
−6 −3

) (
1 −2
−2 4

) = (
0 0
0 0

) = 𝕆  . 

Note that the product 𝔸𝔹 is a zero matrix while neither 𝔸 nor 𝔹 is a zero matrix! 

7.2 PROPERTIES OF MATRICES 

From this point onwards, we will focus our attention only on square matrices. First, we define some special 

square matrices. A square matrix whose elements are all zero except the elements along the diagonal is called a 

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥. For such a matrix 𝔸, 𝑎𝑖𝑗 = 0 if 𝑖 ≠ 𝑗, and it looks like 

𝔸 = (

𝑎11 0
0 𝑎22

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝑎𝑛𝑛

)   .                                                    𝐸𝑞. (7.3) 
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In particular, a square diagonal matrix which has only 1 as its diagonal element is a 𝑢𝑛𝑖𝑡 𝑜𝑟 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝟙, 

𝟙 = (

1 0
0 1

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 1

)   .                                                            𝐸𝑞. (7.4) 

Thus, various elements of the unit matrix can be written in terms of a Kronecker delta as, 𝑎𝑖𝑗 = 𝛿𝑖𝑗. Multiplying 

any general matrix 𝔸, either on the left or on the right, by 𝟙 gives back the matrix 𝔸. So, 

𝔸𝟙 = 𝟙𝔸 = 𝔸  . 

Transpose of a Matrix (�̃�) 

A square matrix obtained by interchanging rows and columns of a matrix 𝔸 is its transpose, �̃�. (Another common 

notation for the transpose of a matrix which you may encounter is 𝔸𝑇 .) Thus, 

(�̃�)
𝑖𝑗
= (𝔸)𝑗𝑖  or �̃�𝑖𝑗 = 𝑎𝑗𝑖   . 

Obviously, (�̃�)̃ = 𝔸. There is an interesting property of transpose of a product of two general square matrices. 

The transpose of a product of two matrices is equal to the product of transposes of the two matrices in reverse 

order, that is, if ℂ = 𝔸𝔹 then ℂ̃ = �̃��̃�. As a proof, note 

𝑐𝑖𝑗 =∑𝑎𝑖𝑘𝑏𝑘𝑗
𝑘

=∑�̃�𝑘𝑖  �̃�𝑗𝑘
𝑘

=∑�̃�𝑗𝑘�̃�𝑘𝑖  

𝑘

= (�̃��̃�)
𝑗𝑖
  . 

Also, �̃�𝑗𝑖 = 𝑐𝑖𝑗  by definition of transpose. Thus �̃�𝑗𝑖 = (�̃��̃�)𝑗𝑖  or ℂ̃ = �̃��̃�  . 

Symmetric and Antisymmetric Matrices 

A matrix 𝔸 for which �̃� = 𝔸 is called a symmetric matrix since for such a matrix 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . On the other hand, a 

matrix 𝔸 for which �̃� = −𝔸 is called an antisymmetric matrix since for such a matrix 𝑎𝑖𝑗 = −𝑎𝑗𝑖. It implies that 

the diagonal elements 𝑎𝑖𝑖  of an antisymmetric matrix are zero. Now, for any general square matrix 𝔸, 𝔸 + �̃� is a 

symmetric matrix while 𝔸 − �̃� is an antisymmetric matrix. It is so because 

(𝔸 + �̃�)
𝑖𝑗
= 𝑎𝑖𝑗 + �̃�𝑖𝑗 = �̃�𝑗𝑖 + 𝑎𝑗𝑖 = (�̃� + 𝔸)𝑗𝑖  

(𝔸 − �̃�)
𝑖𝑗
= 𝑎𝑖𝑗 − �̃�𝑖𝑗 = �̃�𝑗𝑖 − 𝑎𝑗𝑖 = −(𝔸 − �̃�)𝑗𝑖   . 

Since, for any general matrix 𝔸, we can write 
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𝔸 =
1

2
(𝔸 + �̃�) +

1

2
(𝔸 − �̃�)  , 

it means that any general matrix can be written as a sum of a symmetric and an antisymmetric matrix. 

Inverse of a Matrix (𝔸−𝟏) 

If 𝔸𝔹 = 𝔹𝔸 = 𝟙 (unit matrix), then matrix 𝔹 is the inverse of matrix 𝔸 and matrix 𝔸 is the inverse of matrix 𝔹. 

Thus 𝔹 = 𝔸−1 and 𝔸 = 𝔹−1. Not every square matrix has an inverse; however, the inverse of a matrix, if it exists, 

is unique. As a proof of the uniqueness of the inverse of a matrix, let us suppose that there are two different 

matrices 𝔹 and ℂ which are inverse of the same matrix 𝔸. Then 𝔸𝔹 = 𝟙 and ℂ𝔸 = 𝟙. Now consider the triple 

product of matrices, ℂ𝔸𝔹. Using the associative nature of matrix multiplication, it can be rewritten as, 

ℂ𝔸𝔹 = (ℂ𝔸)𝔹 = ℂ(𝔸𝔹)            or           (𝟙)𝔹 = ℂ(𝟙)            or           𝔹 = ℂ  . 

Thus, the inverse of 𝔸 is unique. 

There is an interesting property of the inverse of a product of two general square matrices. The inverse of a 

product of two matrices is equal to the product of inverses of the two matrices in reverse order; that is, if ℂ =

𝔸𝔹, then ℂ−1 = 𝔹−1𝔸−1. As a proof, notice that 

ℂ−1ℂ = 𝔹−1𝔸−1𝔸𝔹 = 𝔹−1𝟙𝔹 = 𝟙            and          ℂℂ−1 = 𝔸𝔹𝔹−1𝔸−1 = 𝔸𝟙𝔸−1 = 𝟙  . 

Since the inverse of a matrix is unique, ℂ−1 is the true inverse of ℂ. 

Adjoint of a Matrix (𝔸𝒂) 

In preparation for describing a technique for obtaining the inverse of a square matrix, we first define the adjoint 

of a square matrix. Note that for a square matrix 𝔸 we may think of its determinant as the corresponding 

determinant whose elements are identical to the elements of 𝔸 and whose value is det(𝔸). Thus, if 

𝔸 is an 𝑛 × 𝑛 square matrix, its adjoint matrix is obtained by first replacing each element 𝑎𝑖𝑗  by the cofactor 𝐶𝑖𝑗  

of the corresponding element in the determinant det(𝔸), with appropriate sign, and then transposing the 

matrix. Specifically, adjoint of 𝔸 is 

𝔸𝑎 = (

𝐶11 𝐶21
𝐶12 𝐶22

⋯ 𝐶𝑛1
⋯ 𝐶𝑛2

⋮ ⋮
𝐶1𝑛 𝐶2𝑛

⋱ ⋮
⋯ 𝐶𝑛𝑛

)  , 

where 𝐶𝑖𝑗  is the cofactor of 𝑎𝑖𝑗 . From its construction, we infer (𝔸𝑎)𝑖𝑗 = 𝐶𝑗𝑖 . Using Eq. (6.1), then 
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(𝔸𝔸𝑎)𝑖𝑗 =∑(𝔸)𝑖𝑘(𝔸
𝑎)𝑘𝑗 =∑𝑎𝑖𝑘𝐶𝑗𝑘 = 𝛿𝑖𝑗  det (𝔸)

𝑘𝑘

  . 

or, 

𝔸𝔸𝑎 = det(𝔸)  𝟙  , 

where 𝟙 is the unit matrix. 

Similarly, using Eq. (6.1) again, 

(𝔸𝑎𝔸)𝑖𝑗 =∑(𝔸𝑎)𝑖𝑘(𝔸)𝑘𝑗
𝑘

=∑𝐶𝑘𝑖𝑎𝑘𝑗 = 𝛿𝑖𝑗  det (𝔸)

𝑘

  . 

Thus, 

𝔸𝔸𝑎 = 𝔸𝑎𝔸 = det(𝔸)𝟙  . 

This can be rewritten as 

(
𝔸𝑎

det(𝔸)
)𝔸 = 𝔸(

𝔸𝑎

det(𝔸)
) = 𝟙  , 

so that 

𝔸−1 =
𝔸𝑎

𝑑𝑒𝑡(𝔸)
  .                                                                𝐸𝑞. (7.5) 

Note that if det(𝔸) = 0 then 𝔸−1 is undefined. In other words, the condition for 𝔸−1 to exist is that det (𝔸) ≠ 0. 

A matrix 𝔸 for which det (𝔸) ≠ 0 is referred to as a nonsingular matrix while a matrix for which det(𝔸) = 0 is a 

singular matrix. Thus, the inverse of a singular matrix does not exist. 

Example: Find the inverse of the matrix 

𝔸 = (
𝟏 𝟎 𝟐
𝟐 −𝟏 𝟑
𝟎 𝟐 𝟑

) 

using the adjoint method. 

Solution: First, we note that det 𝔸 = +1(−9) + 2(4) = −1 ≠ 0, so that the matrix 𝔸 is nonsingular and its 

inverse exists. 



131 

 

The cofactors of various matrix elements are 

𝐶11 = −9, 𝐶12 = −6, 𝐶13 = +4  , 

𝐶21 = +4, 𝐶22 = +3, 𝐶23 = −2  , 

𝐶31 = +2, 𝐶32 = +1, 𝐶33 = −1  . 

The adjoint matrix is 

𝔸𝑎 = (
−9 4 2
−6 3 1
4 −2 −1

)  . 

Finally, the inverse of 𝔸 is 

𝔸−1 =
𝔸𝑎

det(𝔸)
= (

9 −4 −2
6 −3 −1
−4 2 1

)  . 

Just to verify that our inverse is correct, we multiply the original matrix 𝔸 by its inverse matrix 𝔸−1 and make 

sure that we get the identity matrix, 𝟙. 

𝔸−1𝔸 = (
9 −4 −2
6 −3 −1
−4 2 1

)(
1 0 2
2 −1 3
0 2 3

) = (
1 0 0
0 1 0
0 0 1

) = 𝟙  . 

Example: Given the matrix 

𝔸 = (
𝟏 𝟐 𝟑
𝟐 𝟑 𝟎
𝟎 𝟏 𝟐

)  , 

find 𝔸−𝟏 using the adjoint method. 

Solution: The determinant of this matrix is det 𝔸 = +1(6) − 2(1) = 4 ≠ 0,  hence the matrix is nonsingular. The 

cofactors of various elements 𝑎𝑖𝑗  are 

𝐶11 = +6, 𝐶12 = −4, 𝐶13 = +2  , 

𝐶21 = −1, 𝐶22 = +2, 𝐶23 = −1  , 

𝐶31 = −9, 𝐶32 = +6, 𝐶33 = −1  . 

The adjoint matrix is 
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𝔸𝑎 = (
6 −1 −9
−4 2 6
2 −1 −1

)  , 

and the inverse matrix is 

𝔸−1 =
𝔸𝑎

det(𝔸)
=
1

4
(
6 −1 −9
−4 2 6
2 −1 −1

)  . 

7.3 SOLVING INHOMOGENEOUS ALGEBRAIC EQUATIONS 

The idea of matrix inversion is very useful in solving a set of algebraic equations. Consider the following set of 𝑛 

algebraic equations containing 𝑛 unknown variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑦1  , 

𝑎21𝑥1 + 𝑎22𝑥2 +⋯+𝑎2𝑛𝑥𝑛 = 𝑦2  , 

⋮ 

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑦𝑛  . 

Here all the coefficients 𝑎𝑖𝑗  as well as the numbers on the right-hand sides of these equations, namely 𝑦𝑛, are 

known. If all the numbers 𝑦𝑛 are zero, then these algebraic equations are called ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 algebraic 

equations. On the other hand, if all or some of the numbers 𝑦𝑛 are nonzero, then these algebraic equations are 

called 𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 algebraic equations. The equations can be rewritten in a matrix form as 

(

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

)(

𝑥1
𝑥2
⋮
𝑥𝑛

) = (

𝑦1
𝑦2
⋮
𝑦𝑛

)  , 

or  

𝔸𝕏 = 𝕐  ,                                                                   𝐸𝑞. (7.6𝑎) 

where 𝕏 and 𝕐 are column matrices (or vectors), 𝕐 is known and 𝕏 is unknown. Then, using the idea of matrix 

inversion, 

𝕏 = 𝔸−1𝕐 =
𝔸𝑎

det(𝔸)
𝕐  .                                                 𝐸𝑞. (7.6𝑏) 
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Example: Solve the following three inhomogeneous algebraic equations of three variables, 𝒙, 𝒚, 𝐚𝐧𝐝 𝒛 using 

the inverse of a matrix. 

𝒙 + 𝟐𝒚 + 𝟑𝒛 = 𝟒  , 

𝟐𝒙 + 𝟑𝒚 = 𝟖  , 

𝒚 + 𝟐𝒛 = 𝟏𝟐  . 

Solution: Rewriting these equations in a matrix form, we get 

𝔸𝕏 = (
1 2 3
2 3 0
0 1 2

)(
𝑥
𝑦
𝑧
) = (

4
8
12
) = 𝕐  . 

The inverse of this matrix 𝔸 was determined in the previous example. Using it, we get 

(
𝑥
𝑦
𝑧
) = 𝔸−1 (

4
8
12
) =

1

4
(
6 −1 −9
−4 2 +6
2 −1 −1

)(
4
8
12
) 

= (
6 −1 −9
−4 2 +6
2 −1 −1

)(
1
2
3
) = (

−23
18
−3

)  . 

Thus, 𝑥 = −23, 𝑦 = 18 and 𝑧 = −3.  

In case of homogenous algebraic equations, 𝕐 = 0. Then, if det(𝔸) ≠ 0, we get the solution 𝕏 = 0, which is 

called the trivial solution. A nontrivial solution of homogenous algebraic equations is available only 

when det(𝔸) = 0. 

7.4 SPECIAL MATRICES  

Now, we introduce some well-known and useful matrices. An 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝔸 is the one that satisfies 

𝔸�̃� = �̃�𝔸 = 𝟙  . 

Clearly, for the orthogonal matrix,  

�̃� = 𝔸−1  . 

As an example of an orthogonal matrix, consider 
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𝔸 = (
cos𝛼 sin 𝛼
− sin 𝛼 cos𝛼

)  . 

For this matrix 

�̃� = (
cos 𝛼 −sin 𝛼
sin 𝛼 cos 𝛼

) 

and 

𝔸 �̃� = (
cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

) (
cos 𝛼 −sin 𝛼
sin 𝛼 cos 𝛼

) = 𝟙 

as well as 

 �̃� 𝔸 = (
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

) (
cos 𝛼 sin 𝛼
−sin 𝛼 cos𝛼

) = 𝟙  . 

So, we conclude that �̃� = 𝔸−1 and 𝔸 is an orthogonal matrix. 

If the elements of a matrix consist of some complex numbers, then we can obtain the 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, 𝔸∗, by simply replacing each element of matrix 𝔸 by its complex conjugate. Thus, if 

(𝔸)𝑖𝑗 = 𝑎𝑖𝑗 , then (𝔸∗)𝑖𝑗 = 𝑎𝑖𝑗
∗ . As an example, consider 

𝔸 = (
2 1 + 𝑖

2 − 𝑖 3
)  . 

Its complex conjugate matrix is 

 𝔸∗ = (
2 1 − 𝑖

2 + 𝑖 3
)  . 

Now, we will introduce 𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 and 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠. First, we define the Hermitian adjoint of a general 

matrix 𝔸. It is denoted by the symbol † (called dagger). The Hermitian adjoint is obtained by first taking the 

complex conjugate of the matrix, followed by taking the transpose of the matrix. Thus, 

𝔸† = 𝔸∗̃ 

is the definition of the Hermitian adjoint of 𝔸. Now, a matrix 𝔸 is a Hermitian matrix if its Hermitian adjoint is 

equal to the matrix itself. In other words, if 

 𝔸†  = 𝔸  , 

then 𝔸 is a Hermitian matrix.  
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Next, a matrix 𝔸 is a unitary matrix if its Hermitian adjoint is equal to the inverse, 𝔸−1, of the matrix. In other 

words, if 𝔸†  = 𝔸−1, or if 

 𝔸𝔸†  = 𝔸†𝔸 = 𝟙  , 

then 𝔸 is a unitary matrix. 

As an example, consider the matrix 

𝔸 =
1

√𝑎2 + 𝑏2 + 𝑐2
(
𝑎 𝑏 − 𝑖𝑐

𝑏 + 𝑖𝑐 −𝑎
)  , 

 with 𝑎, 𝑏, and 𝑐 real. One can even visually see that 𝔸† = 𝔸 for this matrix, so that it is a Hermitian matrix. 

Furthermore, one can easily check that this matrix satisfies 

 𝔸𝔸†  = 𝔸†𝔸 = 𝟙  , 

so that this matrix is also a unitary matrix. 

7.5 CHARACTERISTIC OR SECULAR EQUATION OF A MATRIX 

If 𝔸 is an 𝑛 × 𝑛 matrix and 𝜆 is a scalar parameter, then 

𝕂 = 𝔸 − 𝜆𝟙 

is called the characteristic matrix of 𝔸. The equation 

det(𝕂) = det(𝔸 − 𝜆𝟙) = 0 

is called the characteristic or secular equation of 𝔸. If 𝔸 is an 𝑛 × 𝑛 matrix, then the secular equation is of the 

form 

𝑓(𝜆) = 1 + 𝑎1𝜆 + 𝑎2𝜆
2 +⋯+ 𝑎𝑛𝜆

𝑛 = 0 

where the coefficients 𝑎𝑖(𝑖 = 1,… 𝑛) depend on the elements of 𝔸. The 𝑛 roots of this algebraic equation 

(𝜆1, 𝜆2, … . . , 𝜆𝑛) are called the characteristic roots of the matrix 𝔸.  

Eigenvalues/Eigenvectors of Matrices  

Given a 𝑛 × 𝑛 matrix 𝔸, there exist certain column matrices (or vectors) 𝕏 such that 𝔸𝕏 is a simple multiple of 𝕏. 

In other words, 
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𝔸𝕏 = 𝜆𝕏                                                                          𝐸𝑞. (7.7) 

where 𝜆 is a number (real or complex). Then 𝜆 is said to be an eigenvalue of 𝔸 belonging to the eigenvector 𝕏. 

Here 𝕏 is a column matrix with 𝑛 rows, 

𝕏 = (

𝑥1
𝑥2
⋮
𝑥𝑛

)  . 

Thus, Eq. (7.7) gives 

∑𝑎𝑖𝑗𝑥𝑗 =

𝑛

𝑗=1

𝜆𝑥𝑖   . 

Or, 

∑(𝑎𝑖𝑗 − 𝜆𝛿𝑖𝑗)𝑥𝑗 = 0

𝑛

𝑗=1

  . 

These are 𝑛 homogenous algebraic equations, for 𝑖 = 1, 2, …𝑛, in variables 𝑥1, 𝑥2, … , 𝑥𝑛. A nontrivial solution 

exists for these equations only if 

det(𝔸 − 𝜆𝟙) = 0  . 

This, of course, is the secular equation of matrix 𝔸. The characteristic roots of 𝔸 are, then, the eigenvalues of 𝔸, 

and the corresponding vectors 𝕏 are the eigenvectors. We briefly note that eigenvalues and eigenvectors are 

quite useful in quantum physics and this fact will be mentioned again in Chapter 13. 

Example: Find the eigenvalues and eigenvectors of the matrix 

𝔸 = (
0 3 4
3 0 0
4 0 0

)  . 

Solution: The characteristic equation is det(𝔸 − 𝜆𝟙) = 0, or 

det (
−𝜆 3 4
3 −𝜆 0
4 0 −𝜆

) = 0  . 

On expanding the determinant, we get 
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−𝜆3 + 9𝜆 + 16𝜆 = 0           or            𝜆(𝜆 + 5)(𝜆 − 5) = 0  . 

Or, 

𝜆 = 0,+5, −5  . 

These are the three eigenvalues of matrix 𝔸. Next, we determine the eigenvectors one-by-one. For 𝜆 = 0, 𝔸𝕏 =

𝜆𝕏 gives, 

(
0 3 4
3 0 0
4 0 0

)(

𝑥1
𝑥2
𝑥3
) = (

0
0
0
)  . 

Or, 

3𝑥2 + 4𝑥3 = 0,         3𝑥1 = 0,          4𝑥1 = 0  . 

Thus, within an arbitrary constant, the eigenvector is 

(
0
4
−3
)  . 

A normalized eigenvector is analogous to a unit vector since they both have magnitudes of 1. To normalize any 

eigenvector, we simply divide it by the magnitude of the eigenvector. So, for 𝜆 = 0, the magnitude of the 

eigenvector is √0 + 42 + (−3)2 = 5, and, therefore, the normalized eigenvector is 

 
1

5
(
0
4
−3
)  . 

For = +5,  𝔸𝕏 = 𝜆𝕏 gives 

(
0 3 4
3 0 0
4 0 0

)(

𝑥1
𝑥2
𝑥3
) = +5(

𝑥1
𝑥2
𝑥3
)  . 

Or, 

−5𝑥1 + 3𝑥2 + 4𝑥3 = 0 

+3𝑥1 − 5𝑥2 = 0           or            𝑥2 =
3

5
 𝑥1 
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+4𝑥1 − 5𝑥3 = 0            or               𝑥3 =
4

5
𝑥1  . 

Again, within an arbitrary constant, the eigenvector is  

(
5
3
4
)  , 

 and the normalized eigenvector is 
1

5√2
(
5
3
4
)  . 

Finally, for 𝜆 = −5,  𝔸𝕏 = 𝜆𝕏 gives 

(
0 3 4
3 0 0
4 0 0

)(

𝑥1
𝑥2
𝑥3
) = −5(

𝑥1
𝑥2
𝑥3
)  . 

Or 

+5𝑥1 + 3𝑥2 + 4𝑥3 = 0 

+3𝑥1 + 5𝑥2 = 0             or             𝑥2 = −
3

5
 𝑥1 

+4𝑥1 + 5𝑥3 = 0            or             𝑥3 = −
4

5
𝑥1  . 

So, the eigenvector is, within an arbitrary constant,  

(
5
−3
−4
)  , 

and the normalized eigenvector is 
1

5√2
(
5
−3
−4
)  . 
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PROBLEMS FOR CHAPTER 7 

1. Given the following two matrices 𝔸 and 𝔹, determine 𝔸𝔹, 𝔹𝔸, 𝔸2, and 𝔹2 if they exist. If a product does not 

exist, make a note of it. 

𝔸 =  (
1 2
2 −1
3 2

)           and           𝔹 =  (
3 −1
4 −3

)  . 

2. Given the three matrices, 

𝔸 =  (
0 1 0
0 0 0
0 0 0

) , 𝔹 =  (
0 0 0
0 0 1
0 0 0

) , ℂ =  (
0 0 1
0 0 0
0 0 0

)  , 

find all possible products of pairs of matrices (either 𝔸 and 𝔹, or 𝔹 and ℂ, or ℂ and 𝔸 ) to determine which 

pair, or pairs, of matrices commute.  

3. For the following matrix 𝔸, determine 𝔸−1, 

𝔸 =  (
1 2 2
2 3 0
2 0 3

)  . 

Explicitly verify that 𝔸𝔸−1 = 𝔸−1𝔸 =  𝟙. 

4. Determine the eigenvalues and the normalized eigenfunctions of matrix 𝔸 of problem 3. 

5. Solve the following inhomogeneous algebraic equations by finding the inverse of the matrix of coefficients, 

𝑥 − 𝑦 + 𝑧 = 4 

2𝑥 + 𝑦 − 𝑧 =  −1 

3𝑥 + 2𝑦 + 2𝑧 = 5  . 

6. In the theory of spin 
1

2
 in quantum physics, we encounter three 2 × 2 matrices (𝑃𝑎𝑢𝑙𝑖 𝑠𝑝𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠), 

𝜎1 = (
0 1
1 0

) , 𝜎2 = (
0 −1
1 0

),   𝜎3 = (
1 0
0 −1

)  . 

Prove the following properties of these matrices: 

(a) 𝜎𝑙𝜎𝑚 = 𝑖 ∑ 𝜖𝑙𝑚𝑛 𝜎𝑛
3
𝑛=1     for 𝑙 ≠ 𝑚.  

(b) 𝜎1
2 = 𝜎2

2 = 𝜎3
2 = 𝟙 = (

1 0
0 1

), where 𝟙 is the unit, or identity, matrix of size 2 × 2. 
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7. Determine the eigenvalues and the normalized eigenvectors of the three Pauli spin matrices of problem 6, 

separately. 

  



141 

 

Chapter 8: Vector Analysis 

In biomedical physics we encounter several physical quantities. Some of these quantities are characterized by 

their magnitude only, such as temperature of a sick patient, density of a blood sample, pressure in the lung, etc. 

Such quantities are called scalars and they are treated as ordinary algebraic numbers. On the other hand, there 

are physical quantities which are characterized by both magnitude and direction, such as forces on human spine 

during heavy lifting, velocity of blood flowing in veins, electric and magnetic fields in medical equipment, etc. 

Such quantities are called vectors. In this chapter we will learn about mathematical properties of vectors. 

8.1 VECTORS AND THEIR ADDITION/SUBTRACTION 

A vector quantity is represented by a directed line whose length is proportional to the magnitude of the physical 

quantity and whose direction is the direction of the physical quantity. These directed lines, representing vectors, 

look like an arrow with one end as the head of the arrow and the other end as the tail of the arrow, as shown in 

Figure 8.1. Vectors are shown as bold-faced letters like A and their magnitudes are shown as ordinary letters 

 

Figure 8.1. A vector, A, with its head and its tail. 

like 𝐴. We can move a vector, or the directed line representing the vector, around in space and the vector will 

remain unchanged as long as both the length of the directed line as well as its direction are kept unchanged. 

An alternate way of representing a vector is through its components. If the Cartesian coordinates of the head 

and of the tail of a vector A are (𝑥ℎ, 𝑦ℎ , 𝑧ℎ) and (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡), respectively, then, the components of A are 

𝐴𝑥 = 𝑥ℎ − 𝑥𝑡   , 

𝐴𝑦 = 𝑦ℎ − 𝑦𝑡   , 

𝐴𝑧 = 𝑧ℎ − 𝑧𝑡   . 

The length of the vector is  
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A = [𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2]
1/2
  .                                                   𝐸𝑞. (8.1𝑎) 

It is easier to see that if the origin of the coordinate system is chosen at the tail of the vector A, then 

𝐴𝑥, 𝐴𝑦 , and 𝐴𝑧 are merely the projections of A onto the three coordinate axes. 

Addition and Subtraction of Vectors 

Vectors do not add or subtract or multiply like ordinary numbers. First, we will learn the rules for adding and 

subtracting vectors, which lead to new vectors. Next, we will learn the rules for multiplying vectors, which can 

lead to either a scalar (scalar product) or a vector (vector product). The vectors can be added using a geometrical 

method, called head-to-tail method, in which we connect the head of the first vector, A, with the tail of the 

second vector, B. A new vector X whose head is the free unconnected head of B and whose tail is the free 

unconnected tail of A is the sum of vectors A and B, as shown in the Figure 8.2 

X = A + B  . 

 

Figure 8.2. Vector X is the sum of vectors A and B. 

 

Figure 8.3. Commutative nature of vector addition. 

By completing the parallelogram, as in Figure 8.3, it is seen that 

X = B + A 

as well. Thus, vector addition is commutative. Addition of more than two vectors proceeds in the same manner. 

If Z = A + B + C, then from the Figure 8.4 

A 

B 

X 
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X = A + B  , 

Y = B + C  , 

and 

Z = X + C = A + Y  , 

  

Figure 8.4. Sum of more than two vectors. 

that is, 

Z = (A + B) + C = A + (B + C)  . 

Thus, vector addition is associative as well. Now, let us talk about subtraction of one vector from another. Figure 

8.5 shows two vectors, A and B, of equal length but with opposite directions. According to head-to-tail method of 

adding vectors, A + B = 0  or B = − A. 

In other words, –A (or B) is a vector which has same magnitude as A but its direction is opposite to that of A. 

Subtraction of one vector from another can now be handled exactly in the same manner as vector addition 

except the sign (direction) of one of the vectors is reversed. For example, 

A−B = A +(−B)  . 
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Figure 8.5. Two vectors A and B of equal length, but opposite directions. 

 

Figure 8.6. Subtraction of two vectors. 

Also, graphically the “other” diagonal of the parallelogram in Figure 8.3 gives A − B as shown in Figure 8.6. 

An alternative way of adding vectors is by using the components of the vector. For this purpose, we choose a 

right-handed Cartesian coordinate system. The meaning of a right-handed coordinate system will be clearer after 

Eq. (8.6). For this coordinate system, we introduce unit vectors 𝐞𝐱, 𝐞𝐲, and 𝐞𝐳. These three vectors are each of 

unit length and are directed along the 𝑥, 𝑦, and 𝑧 axes, respectively. We note in passing that several other 

authors use the notation 𝐢, 𝐣, and 𝐤 or �̂�, �̂�, and �̂� for these Cartesian unit vectors. In our notation, then 𝐴𝑥𝐞𝐱 is a 

vector of length 𝐴𝑥 along the 𝑥-axis, 𝐴𝑦𝐞𝐲 is a vector of length 𝐴𝑦 along the 𝑦-axis, and 𝐴𝑧𝐞𝐳 is a vector of length 

𝐴𝑧 along the 𝑧-axis. Using vector addition by head-to-tail method, as seen in Figure 8.7, 

A = 𝐴𝑥𝐞𝒙 + 𝐴𝑦𝐞𝒚 + 𝐴𝑧𝐞𝒛  .                                               𝐸𝑞. (8.1𝑏) 

 

Figure 8.7. Components of a vector A. 

Now, two vectors A and B can be added simply by adding their components, that is, 

A + B = (𝐞𝒙𝐴𝑥 + 𝐞𝒚𝐴𝑦 + 𝐞𝒛𝐴𝑧) + (𝐞𝒙𝐵𝑥 + 𝐞𝒚𝐵𝑦 + 𝐞𝒛𝐵𝑧)                                                         

= 𝐞𝒙(𝐴𝑥 + 𝐵𝑥) + 𝐞𝒚(𝐴𝑦 + 𝐵𝑦) + 𝐞𝒛(𝐴𝑧 + 𝐵𝑧)  .                                  𝐸𝑞. (8.2𝑎) 
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Subtraction of one vector from another can now be handled exactly in the same manner as vector addition 

except sign (direction) of one of the vectors is reversed. For example, 

A − B = A + (−B) = 𝐞𝒙(𝐴𝑥 − 𝐵𝑥) + 𝐞𝒚(𝐴𝑦 − 𝐵𝑦) + 𝐞𝒛(𝐴𝑧 − 𝐵𝑧)  .                               𝐸𝑞. (8.2𝑏) 

It follows from the discussion of addition and subtraction of vectors that if two vectors are equal to each other, 

then individually the 𝑥, 𝑦, and 𝑧 components of those two vectors are also equal. 

8.2 MULTIPLICATION OF VECTORS: SCALAR PRODUCT 

Now, we talk about multiplying two vectors. There are two ways to multiply vectors. One way leads to a scalar 

and the other to a vector. The scalar (or inner or dot) product of two vectors A and B is a scalar number of 

magnitude AB cos 𝜃, where A and B are the magnitudes of the two vectors and 𝜃 is the angle between the two 

vectors. This angle is obtained by joining the tails of both vectors as in Figure 8.8. The scalar product of two 

vectors is indicated by placing a large dot between the two vectors, A•B = AB cos 𝜃 = B•A. Note that the scalar 

product of two vectors is commutative. The scalar product is also distributive, that is, 

 

Figure 8.8. Scalar product of two vectors A and B. 

A•(B + C) = A•B + A•C. Also, since unit vectors 𝐞𝐱, 𝐞𝐲, 𝐞𝐳 are mutually orthogonal, it follows that. 

𝐞𝐱 • 𝐞𝐱 = 1, 𝐞𝐲 • 𝐞𝐲 = 1,   𝐞𝐳 • 𝐞𝐳 = 1 

and 

𝐞𝐱 • 𝐞𝐲 = 𝐞𝐲 • 𝐞𝐱 = 0, 𝐞𝐱 • 𝐞𝐳 = 𝐞𝐳 • 𝐞𝐱 = 0, 𝐞𝐲 • 𝐞𝐳 = 𝐞𝐳 • 𝐞𝐲 = 0  . 

In particular, note 

A•B = (𝐞𝐱𝐴𝑥 + 𝐞𝐲𝐴𝑦 + 𝐞𝐳𝐴𝑧) • (𝐞𝐱𝐵𝑥 + 𝐞𝐲𝐵𝑦 + 𝐞𝐳𝐵𝑧) 
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= +𝐴𝑥𝐵𝑥(𝐞𝐱 • 𝐞𝐱) + 𝐴𝑦𝐵𝑥(0) + 𝐴𝑧𝐵𝑥(0) 

  +𝐴𝑥𝐵𝑦(0) + 𝐴𝑦𝐵𝑦(𝐞𝐲 • 𝐞𝐲) + 𝐴𝑧𝐵𝑦(0) 

  +𝐴𝑥𝐵𝑧(0) + 𝐴𝑦𝐵𝑧(0) + 𝐴𝑧𝐵𝑧(𝐞𝐳 • 𝐞𝐳) 

or 

A • B = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧  .                                 𝐸𝑞. (8.3) 

Also, 

A•A= 𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 

so that √A•A gives the magnitude of vector A. 

Now we introduce an alternate, but useful, new notation. We will use 𝐞𝟏, 𝐞𝟐, 𝐞𝟑 for the three orthogonal unit 

vectors 𝐞𝐱, 𝐞𝐲, and 𝐞𝐳, and 𝐴1, 𝐴2, and 𝐴3 for the three components 𝐴𝑥 , 𝐴𝑦, and 𝐴𝑧 of a vector A. In this notation 

it follows that 

𝐞𝒊 • 𝐞𝒋 = 𝛿𝑖𝑗   .                                             𝐸𝑞. (8.4) 

Using this identity, we can write the scalar product of two vectors in terms of a Kronecker delta as 

A•B =(∑𝒆𝒊 𝐴𝑖
𝑖

) •(∑𝒆𝒋𝐵𝑗
𝑗

) =∑𝛿𝑖𝑗  A𝑖Bj

i,j

=∑A𝑖
i

B𝑖   .  

 Finally, the law of cosines in trigonometry, which relates the lengths of three sides of a triangle, can be 

easily obtained using scalar product of two vectors. Three vectors A, B, and C, form the sides of a triangle as 

shown in the Figure 8.9. The angle 𝜃 between the two vectors A and B is obtained by joining the tails of both 

vectors. Using head-to-tail vector addition,  

C = A + B  , 

or 

𝐶2 = C•C = (A + B) • (A + B) = A•A   +   B•B   + 2 A•B = 𝐴2 + 𝐵2 + 2 𝐴𝐵𝑐𝑜𝑠 𝜃 

or  

𝐶2 = 𝐴2 + 𝐵2 − 2 𝐴𝐵cos𝜙                                   𝐸𝑞. (8.5) 
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Figure 8.9. Law of cosines. 

where 𝜙 is the angle inside the triangle opposite to side C, that is, the angle supplementary to 𝜃.  This is the law 

of cosines in trigonometry, and it is consistent with the Pythagorean theorem for a right-angled triangle (when 

𝜙 = 𝜋/2). 

8.3 MULTIPLICATION OF VECTORS: VECTOR PRODUCT 

Now, we talk about the second way of multiplying two vectors which leads to a vector. The vector (or cross) 

product of two vectors is indicated by placing a large cross between the two vectors A and B. It is defined to be a 

new vector C, 

C = A × B  , 

such that the magnitude of C is 𝐶 = 𝐴𝐵𝑠𝑖𝑛𝜃 and direction of C is perpendicular to the plane containing 

A and B in such a sense that A, B, and C form a right-handed system. In order to understand the direction of C 

better, let us imagine that the plane containing A and B is a big wall. We place a screwdriver, with a screw, 

against the wall such that the screwdriver can be rotated either clockwise or counterclockwise and the screw 

itself will move either into the wall or out of the wall. In the Figure 8.10 (a), the screwdriver is rotated 

counterclockwise, as shown by the arrow on angle 𝜃, from A to B, and the direction of A × B, which is along the 

direction of motion of the screw itself, is coming out of the wall, indicated by symbol . In Figure 8.10 (b), the 

screwdriver is rotated clockwise along the arrow shown on angle 𝜃, from B to A, and the direction of B × A, or 

the direction of motion of the screw itself, is going into the wall, indicated by symbol ⊗. This is referred to as the 

right-hand rule. With this definition, the vector B × A has the same magnitude as vector A × B; however, 

direction of B × A is opposite to that of A × B. Thus, 

A × B = −B × A  , 

that is, the cross product is anticommuting. In the case of the three unit vectors 𝐞𝟏, 𝐞𝟐, and 𝐞𝟑, 
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𝐞𝟏 × 𝐞𝟏 = 0  ,            𝐞𝟐  ×  𝐞𝟐 = 0  ,          𝐞𝟑  ×  𝐞𝟑 = 0  , 

𝐞𝟏  × 𝐞𝟐 = 𝐞𝟑 = −𝐞𝟐  × 𝐞𝟏, 𝐞𝟐  ×  𝐞𝟑 = 𝐞𝟏 = −𝐞𝟑  × 𝐞𝟐  , 𝐞𝟑  ×  𝐞𝟏 = 𝐞𝟐 = −𝐞𝟏  × 𝐞𝟑  . 

In a more compact form, we can write all of these nine relationships as 

𝐞𝒊 × 𝐞𝒋 =∑𝜖𝑖𝑗𝑘  𝐞𝒌

3

𝑘=1

.                                              𝐸𝑞. (8.6) 

 

Figure 8.10. Vector product of two vectors A and B. 

The three unit vectors, satisfying Eq. (8.6), describe a right-handed Cartesian coordinate system. Using these 

relations, the components of   C = A × B can be written as 

C = A × B = (𝐞𝟏𝐴1 + 𝐞𝟐𝐴2 + 𝐞𝟑𝐴3) × (𝐞𝟏𝐵1 + 𝐞𝟐𝐵2 + 𝐞𝟑𝐵3) 

= 𝐞𝟑𝐴1𝐵2 − 𝐞𝟐𝐴1𝐵3 − 𝐞𝟑𝐴2𝐵1 + 𝐞𝟏𝐴2𝐵3 + 𝐞𝟐𝐴3𝐵1 − 𝐞𝟏𝐴3𝐵2 

= 𝐞𝟏(𝐴2𝐵3 − 𝐴3𝐵2) + 𝐞𝟐(𝐴3𝐵1 − 𝐴1𝐵3) + 𝐞𝟑(𝐴1𝐵2 − 𝐴2𝐵1)  . 

Thus, 

𝐶1 = 𝐴2𝐵3 − 𝐴3𝐵2 

𝐶2 = 𝐴3𝐵1 − 𝐴1𝐵3 

𝐶3 = 𝐴1𝐵2 − 𝐴2𝐵1 

or 

𝐶𝑖 = 𝐴𝑗𝐵𝑘 − 𝐴𝑘𝐵𝑗  
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with 𝑖, 𝑗, and 𝑘 all different and in cyclic permutation. In terms of Levi-Civita symbol, we can write the 

components of C as 

𝐶𝑖 =∑𝜖𝑖𝑗𝑘𝐴𝑗𝐵𝑘
𝑗,𝑘

  , 

and the vector C as 

C =∑𝐞𝐢𝐶𝑖
𝑖

  , 

or 

A × B =∑𝜖𝑖𝑗𝑘𝐞𝒊𝐴𝑗𝐵𝑘
𝑖,𝑗,𝑘

  .                                                𝐸𝑞. (8.7) 

We note from this suggestive form that the vector product can be written in the form of a determinant as 

C = A × B = |

𝐞𝟏 𝐞𝟐 𝐞𝟑
𝐴1 𝐴2 𝐴3
𝐵1 𝐵2 𝐵3

|   .                                          𝐸𝑞. (8.8) 

The cross product of two vectors has a very nice geometrical interpretation. Consider a parallelogram, in a plane, 

whose sides are made up by vectors A and B, as shown in Figure 8.11. Note that the area of this parallelogram is 

𝐴𝐵 sin 𝜃, which is the magnitude of A × B. However, the direction of A × B is perpendicular to the plane of the 

parallelogram. Thus, in general, the area of an element such as the parallelogram defined above can be treated 

as a vector with its direction perpendicular to the plane containing that element. Note that the direction of area 

vector, either into or out of the plane, is related to the sense of traversal of the periphery of the area by the 

right-hand rule. In Figure 8.11, the direction of the area element A × B, of magnitude ABsin 𝜃, is obtained by 

traversing the periphery by going first over (solid line) vector A and then over (solid line) vector B, that is, 

traversing the periphery indicated by the thick counterclockwise arrow corresponding to direction coming out of 

the plane of parallelogram according to the right-hand rule. Similarly, the direction of the area element B × A, 

also of same magnitude ABsin 𝜃, is obtained by traversing the periphery of the parallelogram by going first over 

(dashed line) vector B and then over (dashed line) vector A, that is, traversing the periphery indicated by the 

thick clockwise arrow corresponding to direction going into the plane of the parallelogram according to the right-

hand rule. 
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Figure 8.11. An area element as a vector. 

8.4 TRIPLE SCALAR PRODUCT 

Now let us explore how we can multiply three vectors A, B, and C to obtain either a scalar or a vector. The 

product A•(B × C) is a scalar and is referred to as the triple scalar product. In terms of components, 

A•(B × C) = 𝐴1(B × C)1 + 𝐴2(B × C)2 + 𝐴3(B × C)3                                                         

= 𝐴1(𝐵2𝐶3 − 𝐵3𝐶2) + 𝐴2(𝐵3𝐶1 − 𝐵1𝐶3) + 𝐴3(𝐵1𝐶2 − 𝐵2𝐶1)  . 

The expression on the right-hand side can be rewritten in two alternate forms: 

first form = 𝐵1(𝐶2𝐴3 − 𝐶3𝐴2) + 𝐵2(𝐶3𝐴1 − 𝐶1𝐴3) + 𝐵3(𝐶1𝐴2 − 𝐶2𝐴1) = B•(C × A)  , 

or  

second form = 𝐶1(𝐴2𝐵3 − 𝐴3𝐵2) + 𝐶2(𝐴3𝐵1 − 𝐴1𝐵3) + 𝐶3(𝐴1𝐵2 − 𝐴2𝐵1) = C•(A × B)  . 

 

Thus, the triple scalar product can be written as, 

A•(B× C) = B•(C × A) = C•(A× B) = −A•(C × B) = −B•(A× C) = −C•(B × A)  .                       𝐸𝑞. (8.9𝑎) 

In other words, dot and cross can be interchanged in a triple scalar product. The triple scalar product can also be 

written in the form of a determinant: 

A•(B× C) = |

𝐴1 𝐴2 𝐴3
𝐵1 𝐵2 𝐵3
𝐶1 𝐶2 𝐶3

|     ,                             𝐸𝑞. (8.9𝑏) 
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or, in terms of Levi-Civita symbol, 

A•(B× C) = ∑𝜖𝑖𝑗𝑘𝐴𝑖𝐵𝑗𝐶𝑘
𝑖,𝑗,𝑘

  .                                       𝐸𝑞. (8.9𝑐) 

The triple scalar product has a nice geometrical interpretation. Consider the parallelepiped made up by vectors 

A, B, and C as shown in Figure 8.12. The area of the base of the parallelepiped is the parallelogram A × B. The 

direction of this area element is along 𝒏, the normal to the base. Then, 

(A × B)•C = |A × B|(𝒏•C) 

= (area of the base times height) = volume of the parallelepiped. 

 

Figure 8.12. A parallelepiped made up by vectors A, B, and C. 

8.5 TRIPLE VECTOR PRODUCT 

Now we explore the possibility of obtaining a vector by multiplying three vectors A, B, and C. In the triple vector 

product A × (B × C), the order of multiplying vectors is important. For example, 

𝐞𝟏 × (𝐞𝟐 × 𝐞𝟐) ≠ (𝐞𝟏 × 𝐞𝟐) × 𝐞𝟐  , 

since the left-hand side is zero because the vector product of a vector by itself is zero, but the right-hand side is 

nonzero, equal to 𝐞𝟑 × 𝐞𝟐 = −𝐞𝟏. In general, the triple vector product can be written as 

A × (B× C) = A × V =∑𝜖𝑖𝑗𝑘𝐞𝒊𝐴𝑗𝑉𝑘
𝑖,𝑗,𝑘

                                           𝐸𝑞. (8.10𝑎) 
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where 

V = B × C     and    𝑉𝑘 =∑𝜖𝑘𝑙𝑚𝐵𝑙𝐶𝑚  .

𝑙,𝑚

                                               𝐸𝑞. (8.10𝑏) 

On substituting for 𝑉𝑘  from Eq. (8.10b) into Eq. (8.10a), we get 

A × (B × C) =∑𝜖𝑖𝑗𝑘𝐞𝐢𝐴𝑗∑𝜖𝑘𝑙𝑚𝐵𝑙𝐶𝑚
𝑙𝑚𝑖𝑗𝑘

  . 

To carry out the sum over the repeated index 𝑘, we use the epsilon-delta identity (see Appendix C for proof), 

∑𝜖𝑖𝑗𝑘𝜖𝑘𝑙𝑚 =

𝑘

∑𝜖𝑘𝑖𝑗𝜖𝑘𝑙𝑚
𝑘

= 𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙  , 

so that the triple vector product looks like: 

A × (B × C) = ∑∑𝐞𝐢𝐴𝑗𝐵𝑙𝐶𝑚[𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙]

𝑙𝑚𝑖𝑗

  . 

Because of the Kronecker deltas, the sum over the repeated dummy indices 𝑙 and 𝑚 can be carried out easily, 

A × (B× C) = ∑𝐞𝒊𝐴𝑗[𝐵𝑖𝐶𝑗 − 𝐵𝑗𝐶𝑖]

𝑖𝑗

=∑𝐞𝒊𝐵𝑖
𝑖

∑𝐴𝑗𝐶𝑗
𝑗

−∑𝐞𝒊𝐶𝑖
𝑖

∑𝐴𝑗𝐵𝑗
𝑗

            

= B(A•C ) − C(A•B )  .                                           𝐸𝑞. (8.11) 

The order of vectors appearing on the right-hand side is remembered by using the mnemonic BAC-CAB. Another 

form of triple vector product is 

(A × B) × C= − C × (A × B) =  −A(B•C) + B(C•A)  ,                                 𝐸𝑞. (8.12) 

after using the BAC-CAB rule in the last step. Now, the order of vectors in the two forms of the triple vector 

product, namely, Eqs. (8.11) and (8.12), can be determined by: 

Vector product of three vectors = middle vector times scalar product of the remaining two vectors minus (−) 

other vector in the parenthesis times scalar product of the remaining two vectors. 
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PROBLEMS FOR CHAPTER 8 

1. Using the concept of scalar, or dot, product of two vectors, determine the angle between vectors A = 𝐞𝐱 +

2𝐞𝐲 + 2𝐞𝐳 and B =2𝐞𝐱 – 3ey + 6ez. 

2. Prove that the vectors A = 3𝐞𝐱 + 𝐞𝐲 − 2𝐞𝐳, B = - 𝐞𝐱 + 3 𝐞𝐲+ 4 𝐞𝐳, and C = 4 𝐞𝐱 - 2 𝐞𝐲 - 6 𝐞𝐳 can form the sides 

of a triangle. Find the lengths of the medians of this triangle. 

3. Using the concept of vector, or cross, product of two vectors, determine the area of a triangle with vertices at 

points A(1,2,3), B(2,4,5), and C(1,-8,0). In our notation here, P(𝑥, 𝑦, 𝑧) refers to the Cartesian coordinates of the 

point P. 

4. Determine a unit vector perpendicular to the plane containing vectors A  =  2 𝐞𝐱 − 6𝐞𝐲 − 3 𝐞𝐳 and B  =  4 𝐞𝐱 + 

3 𝐞𝐲 − 𝐞𝐳. 

5. The eight corners of a parallelepiped are labeled as C1, C2, C3, C4, C5, C6, C7, and C8. The Cartesian (𝑥, 𝑦, 𝑧) 

coordinates of the corners are C1 (5, 2, 0), C2 (2, 5, 0), C3 (4, 5, 0), C4 (7, 2, 0), C5 (6, 3, 3), C6 (3, 6, 3), C7 (5, 6, 3), 

and C8 (8, 3, 3). 

(a) Determine the three vectors A, B, and C that define this parallelepiped. 

(b) Determine the volume of the parallelepiped. 

[Hint: To visualize this parallelepiped, plot and label the first four and the last four corner points in two 𝑥 −

𝑦 planes separately. The two 𝑥 − 𝑦 planes are 𝑧 =  0 plane and 𝑧 =  3 plane.] 

6. Prove the following identity for vector triple product: 

A × (B × C)  +  B × (C × A)  +  C × (A × B)  =  0  . 

7. Prove the following two identities: 

(A × B) • (C × D)  =  (A • C) (B • D)  −  (A • D) (B • C)  , 

(A × B) × (C × D)  =  [(A × B) • D] C  −  [(A × B) • C] D  =  [(C × D) • A] B  −  [(C × D) • B] A  . 

8. If A and B are any two vectors, then show that 

(A × B)•(A ×B) = A2B2  −  (A•B)2  . 

9. A rhombus is a parallelogram with all four sides of equal length. Using the concept of scalar (or dot) product 

of vectors, show that the two diagonals of a rhombus are always perpendicular to each other. 
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10.  Biomedical Physics Application. The “life”, as we know it, is based on the chemistry of carbon-containing 

molecules. An understanding of the structure of these molecules is essential to understanding life. One of the 

simplest hydrocarbon molecules is methane (CH4), in which four hydrogen atoms are placed symmetrically at 

the vertices of a tetrahedron around a single carbon atom. Alternatively, the four hydrogen atoms are located at 

the four corners of a cube, as shown in the figure below, with the carbon atom at the center of the cube. The 

bond angle is the angle between the lines that join the carbon atom to two of the hydrogen atoms. Using your 

knowledge of the scalar product of vectors, show that the bond angle in methane molecule is 109.5°. 

[Hint: Take the origin of the coordinate system to be at the center of the cube (at carbon atom) of side 

length 2a and determine the coordinates of each hydrogen atom.] 

 

11. Consider an arbitrary triangle whose three sides are made up of three vectors A, B and C, then according to 

vector addition, A + B + C = 0. The three medians of this triangle, namely MA,MB, and MC, are also vectors. The 

median MA has its tail at the vertex opposite A and its head at the midpoint of A. There is similar construction 

for other two medians MB and MC. Using vector addition, show that 

MA = −
1

2
(B − C)  ,          

 MB = −
1

2
(C − A)  ,          

 MC = −
1

2
(A − B)  .         

12. The three vertices of a triangle in the 𝑥 − 𝑦 plane have Cartesian coordinates (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦3). 

Using the facts that three medians of a triangle intersect each other at a common point, called a centroid, and at 

this point each median is trisected, show, using vector addition, that the Cartesian coordinates of the centroid 

are 
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(𝑥𝑐 , 𝑦𝑐) = (
𝑥1 + 𝑥2 + 𝑥3

3
,
𝑦1 + 𝑦2 + 𝑦3

3
)  . 

13. The three vertices of a triangle in the 𝑥 − 𝑦 plane have Cartesian coordinates (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦3). 

Using the cross product of two vectors, show that the area of this triangle is given by the following determinant: 

area =
1

2
  |
1 1 1
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

|  . 
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Chapter 9: Curvilinear Coordinates and Multiple Integrals 

In this chapter, we will introduce two important curvilinear coordinate systems. These are the spherical 

coordinate system and the cylindrical coordinate system. They are very useful in carrying out multiple integrals 

encountered in problems with spherical and cylindrical symmetries.  

9.1 CARTESIAN COORDINATES 

First, we review the details of the well-known and more common rectangular Cartesian coordinate system. In 

this system, a point has three coordinates (𝑥, 𝑦, 𝑧) which are the distances perpendicular to three mutually 

orthogonal surfaces. All three coordinates (𝑥, 𝑦, 𝑧), vary independently from −∞ to +∞. Then we define some 

families of surfaces and families of curves for Cartesian coordinate system. A surface on which the value of the 𝑥 

 

Figure 9.1. A point P in space with Cartesian coordinates 𝑥, 𝑦, 𝑧. 

coordinate is constant, while the values of the 𝑦 and 𝑧 coordinates can vary, is called the 𝑥 = constant surface. 

This surface is a plane. Similarly, 𝑦 = constant and 𝑧 = constant surfaces are planes, as shown in Figure 9.1. A 

curve along which the 𝑥 coordinate varies, while the 𝑦 and 𝑧 coordinates are constant and fixed is called the 

𝑥–curve (or, 𝑥–axis). This curve is a straight line. Similarly, the 𝑦–curve and 𝑧– curve are straight lines. The unit 

vectors 𝐞𝐱, 𝐞𝐲, and 𝐞𝐳 are tangentially along the 𝑥–curve, 𝑦–curve, and 𝑧–curve, respectively. Consider a point, 𝑃, 

in space with Cartesian coordinates (𝑥, 𝑦, 𝑧). The vector, shown in Figure 9.1, 

𝐫 = 𝑥 𝐞𝐱 + 𝑦 𝐞𝐲 + 𝑧 𝐞𝐳  , 

locates the position of point 𝑃 with respect to the origin. A length element dl in this coordinate system is 
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𝐝𝐥 = 𝑑𝑥 𝐞𝒙 + 𝑑𝑦 𝐞𝒚 + 𝑑𝑧 𝐞𝒛  ,                                                               𝐸𝑞. (9.1𝑎) 

and the distance between two neighboring points is 

(𝑑𝑙)2 = (𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2  .                                                       𝐸𝑞. (9.1𝑏) 

A volume element in Cartesian coordinate system is 

𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧  .                                                                                        𝐸𝑞. (9.1𝑐) 

An area element in this system is 

dS = 𝑑𝑥𝑑𝑦 𝐞𝒛 + 𝑑𝑦𝑑𝑧 𝐞𝒙 + 𝑑𝑧𝑑𝑥 𝐞𝒚  .                                              𝐸𝑞. (9.1𝑑) 

9.2 SPHERICAL COORDINATES 

Again, consider the same point, 𝑃, in space located at a position given by the vector 𝐫 as shown in Figure 9.2. The 

spherical coordinates (𝑟, 𝜃, 𝜙) of point 𝑃 are defined as follows. The coordinate 𝑟 is the length of vector 𝐫 and its 

range is 0 ≤ 𝑟 ≤ ∞.  The coordinate 𝜃 is the angle between vector 𝐫 and the 𝑧-axis and its range is 0 ≤ 𝜃 ≤ 𝜋. It 

is similar to the angle of co-latitude in astronomy. In order to describe the third spherical coordinate, 𝜙, we need 

to focus our attention on two planes, the 𝑦 = 0 plane (or the 𝑥– 𝑧 plane) and the plane containing the vector 𝐫 

and the 𝑧-axis. Then, 𝜙 is the angle between these two planes. The coordinate 𝜙 is similar to the angle of 

longitude in astronomy and its range is 0 ≤ 𝜙 ≤ 2𝜋. The surface 𝑟 = constant is a sphere of radius 𝑟. The surface 

 

Figure 9.2. The point P of Figure 9.1 shown with its spherical coordinates 𝑟, 𝜃, 𝜙. 

𝜃 = constant is the curved surface of a cone having vertex at the origin. This cone becomes the 𝑧 = 0 plane if 

𝜃 = 𝜋/2, becomes the +𝑧-axis if 𝜃 = 0, and becomes the −𝑧-axis if 𝜃 = 𝜋. The surface 𝜙 = constant is a semi-

infinite plane. A curve along which the 𝑟 coordinate varies, while the 𝜃 and 𝜙 coordinates are constant and fixed, 

is called the 𝑟– curve. This curve is a straight line. Similarly, the 𝜃– curve is a semicircle and the 𝜙– curve is a full 
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circle. The unit vectors 𝐞𝐫, 𝐞𝛉, and 𝐞𝛟 are tangentially along the 𝑟–curve, 𝜃–curve, and 𝜙–curve, respectively. 

The relationships between spherical coordinates (𝑟, 𝜃, 𝜙) and the Cartesian coordinates (𝑥, 𝑦, 𝑧) are 

𝑥 = 𝑟 sin 𝜃 cos𝜙                                                                                   . 

𝑦 = 𝑟 sin 𝜃 sin 𝜙                                                                 𝐸𝑞. (9.2𝑎) 

𝑧 = 𝑟 cos 𝜃  ,                                                                                          . 

or the inverse relationships, 

𝑟 = (𝑥2 + 𝑦2 + 𝑧2)1/2                                                                       . 

𝜃 = arccos (
𝑧

(𝑥2+𝑦2+𝑧2)1/2 
)                                             𝐸𝑞. (9.2𝑏) 

𝜙 = arctan(𝑦/𝑥)                                                                                  . 

Thus,  

𝑑𝑥 = sin𝜃 cos𝜙 𝑑𝑟 + 𝑟 cos𝜃 cos𝜙 𝑑𝜃 − 𝑟 sin𝜃 sin𝜙 𝑑𝜙  ,                                                           . 

𝑑𝑦 = sin𝜃 sin𝜙 𝑑𝑟 + 𝑟 cos𝜃 sin𝜙 𝑑𝜃 + 𝑟 sin𝜃 cos𝜙 𝑑𝜙  ,                                              𝐸𝑞. (9.3) 

𝑑𝑧 = cos𝜃 𝑑𝑟 − 𝑟 sin𝜃 𝑑𝜃  .                                                                                                                    .  

The distance between two neighboring points is 

(𝑑𝑙)2 = (𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2  , 

or, on substituting for 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 in terms of 𝑑𝑟, 𝑑𝜃, and 𝑑𝜙 from Eq. (9.3), 

(𝑑𝑙)2 = (𝑑𝑟)2 + (𝑟 𝑑𝜃)2 + (𝑟 sin𝜃 𝑑𝜙)2  .                                                𝐸𝑞. (9.4𝑎) 

Thus, we note that the roles of length elements 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 of Cartesian coordinates are taken over, in 

spherical coordinates, by length elements 𝑑𝑟, 𝑟𝑑𝜃, and 𝑟 sin 𝜃 𝑑𝜙. Thus, a volume element in spherical 

coordinates is 

𝑑𝑉 = 𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜙  ,                                                                   𝐸𝑞. (9.4𝑏) 

and an area element is 

dS = 𝑟𝑑𝑟𝑑𝜃 𝐞𝛟 + 𝑟
2 sin 𝜃 𝑑𝜃𝑑𝜙 𝐞𝐫 + 𝑟 sin 𝜃 𝑑𝑟𝑑𝜙 𝐞𝛉  .                                   𝐸𝑞. (9.4𝑐) 
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9.3 CYLINDRICAL COORDINATES 

Once again, consider the same point, 𝑃, in space with Cartesian coordinates (𝑥, 𝑦, 𝑧) and spherical coordinates 

(𝑟, 𝜃, 𝜙). The cylindrical coordinates (𝜌, 𝜙, 𝑧) of this point are shown in Figure 9.3 and are defined as follows. The 

cylindrical 𝑧 coordinate is same as the Cartesian 𝑧 coordinate. Thus, the range of the 𝑧 coordinate is −∞ ≤ 𝑧 ≤

∞. The cylindrical 𝜙 coordinate is same as the spherical 𝜙 coordinate. So, the range of this coordinate is 0 ≤ 𝜙 ≤

2𝜋. The cylindrical 𝜌 coordinate is the projection of the position vector 𝐫 onto the Cartesian 𝑥– 𝑦 plane. The 

range of this coordinate is 0 ≤ 𝜌 ≤ ∞. The surface 𝑧 = constant is a plane perpendicular to the 𝑧-axis. The 

surface 𝜙 = constant is a semi-infinite plane. The surface 𝜌 = constant is a cylinder coaxial with the 𝑧-axis. As in 

Cartesian coordinates, the 𝑧–curve is a straight line. As in spherical coordinates, the 𝜙– curve is a full circle. The  

 

Figure 9.3. The point P of Figures 9.1 and 9.2 shown with its cylindrical coordinates 𝜌, 𝜙, 𝑧. 

𝜌–curve is a curve along which the coordinate 𝜌 varies while the other two coordinates 𝜙 and 𝑧 are held 

constant. This curve is a straight line. The unit vectors 𝐞𝛒, 𝐞𝛟, and 𝐞𝐳 are tangentially along the 𝜌–curve, 

the 𝜙–curve, and the 𝑧– curve, respectively. The relationships between cylindrical coordinates (𝜌, 𝜙, 𝑧) and the 

Cartesian coordinates (𝑥, 𝑦, 𝑧) are 

𝑥 = 𝜌 cos𝜙 , 𝑦 = 𝜌 sin𝜙    and    𝑧 = 𝑧  ,                                                 𝐸𝑞. (9.5𝑎) 

and the inverse relationships are 

𝜌 = √𝑥2 + 𝑦2, 𝜙 = arctan(𝑦/𝑥)  and 𝑧 = 𝑧  .                                           𝐸𝑞. (9.5𝑏)
  

Using these relationships, 

𝑑𝑥 = cos𝜙  𝑑𝜌 − 𝜌 sin𝜙  𝑑𝜙  ,                                                                                                . 
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𝑑𝑦 = sin𝜙  𝑑𝜌 + 𝜌 cos𝜙  𝑑𝜙  ,                                                                                𝐸𝑞. (9.6)
 

𝑑𝑧 = 𝑑𝑧  .                                                                                                                                        

Now, the separation between two neighboring points, given by 

(𝑑𝑙)2 = (𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2, 

can be rewritten on substituting for 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 in terms of 𝑑𝜌, 𝑑𝜙, and 𝑑𝑧 from Eq. (9.6), as 

(𝑑𝑙)2 = (𝑑𝜌)2 + (𝜌𝑑𝜙)2 + (𝑑𝑧)2  .                                                     𝐸𝑞. (9.7𝑎) 

Thus, we note that the length elements 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 of Cartesian coordinates are replaced, in cylindrical 

coordinates, by length elements 𝑑𝜌, 𝜌𝑑𝜙 and 𝑑𝑧.
 
So, the volume element and the area element in cylindrical 

coordinates become 

𝑑𝑉 = 𝜌𝑑𝜌𝑑𝜙𝑑𝑧  ,                                                            𝐸𝑞. (9.7𝑏) 

and, 

dS = 𝜌𝑑𝜌𝑑𝜙 𝐞𝐳 + 𝜌𝑑𝜙𝑑𝑧 𝐞𝛒 + 𝑑𝑧𝑑𝜌 𝐞𝛟  ,                                            𝐸𝑞. (9.7𝑐) 

respectively. 

9.4 PLANE POLAR COORDINATES 

We note in passing that because the 𝑧 coordinate in Cartesian coordinates and in cylindrical coordinates is the 

same, it is possible to treat the 𝑥– 𝑦 plane as a 𝜌–𝜙 plane. This relationship is a depiction of two-dimensional 

plane polar coordinates. In particular, an area element in this plane can be written as 

dS = 𝑑𝑥𝑑𝑦  or  dS = 𝜌𝑑𝜌 𝑑𝜙  .                                                 𝐸𝑞. (9.8) 

As an example of plane polar coordinates, we attend to an unfinished integral that we encountered in our 

discussion of Gaussian integrals in Chapter 2. We stated there, without proof, that [see remark after Eq. (2.15)] 

𝐼𝑔
0 = ∫ exp(−𝑎𝑥2)  𝑑𝑥

∞

0

=
1

2
√
𝜋

𝑎
  . 

Now we evaluate this integral. But, first we evaluate the related integral, 

𝐼 = ∫ exp(−𝑥2) 𝑑𝑥

∞

0

  . 
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Then, the integral 𝐼𝑔
0 will be obtained from 𝐼 by replacing 𝑥2 by 𝑎𝑥2. We write the 𝐼 integral twice, first with 

dummy variable 𝑥 and next with dummy variable 𝑦, and multiply the two integrals to get 

𝐼2 = ∫  ∫  exp[−(𝑥2 + 𝑦2)] 𝑑𝑥

∞

0

𝑑𝑦

∞

0

  . 

Now, think of this integral as an integral over the first quadrant of the 𝑥– 𝑦 plane. Converting to plane polar 

coordinates in the first quadrant, 

𝐼2 = ∫  ∫  exp(−𝜌2) 𝜌𝑑𝜌

𝜋/2

𝜙=0

𝑑𝜙

∞

𝜌=0

=
𝜋

2
 
1

2
∫  exp(−𝑢) 𝑑𝑢

∞

0

=
𝜋

4
  , 

with 𝑢 = 𝜌2. Thus, 

𝐼 = ∫ exp(−𝑥2) 𝑑𝑥

∞

0

=
√𝜋

2
  .                                              𝐸𝑞. (9.9) 

Now, to get the Gaussian integral 𝐼𝑔
0 simply replace 𝑥2 by 𝑎𝑥2 in Eq.(9.9). This gives 

    𝐼𝑔
0 = ∫ exp(−𝑎𝑥2)  𝑑𝑥

∞

0

=
1

2
√
𝜋

𝑎
  . 

9.5 MULTIPLE INTEGRALS 

The curvilinear coordinates, discussed above, are very useful in carrying out integrals which involve areas or 

volumes of circles, spheres and cylinders. A few examples will impress the reader about the utility of curvilinear 

coordinates. 

Example: Show that the area, 𝑨, of a circle of radius 𝑹 is, 𝑨 = 𝝅𝑹𝟐.  

Solution: 

The statement of this problem is so well-known that it is almost taken as a fact. However, historically speaking, it 

was considered quite an intellectual feat by Eudoxus in the fifth century BC to realize that the area of a circle is 

proportional to the square of its radius. At the time of Eudoxus, the formula for finding out the area of a triangle 

was well-known. So, the area of a circle was determined by inscribing in it regular polygons, which can be broken 

into several triangles. If 𝑨𝒏 is the area of an inscribed polygon of 𝒏 sides, then 𝑨𝒄𝒊𝒓𝒄𝒍𝒆 = 𝐥𝐢𝐦
𝒏→∞

𝑨𝒏. 
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           Figure 9.4. A circle of radius 𝑅.                                                              Figure 9.5. Calculating area of a circle. 

Now, using multiple integrals, it is very easy to determine the area of a circle. Break the circle into large number 

of small pieces by drawing various concentric circles and radial spokes inside the circle, as in Figure 9.5. The area 

of the tiny area element shown in the figure is, 

𝑑𝐴 = (𝑑𝜌)(𝜌𝑑𝜙) = 𝜌𝑑𝜌𝑑𝜙  . 

Then, 

𝐴𝑐𝑖𝑟𝑐𝑙𝑒 = ∫ 𝑑𝐴

 

𝑐𝑖𝑟𝑐𝑙𝑒

= ∫𝜌𝑑𝜌

𝑅

0

∫ 𝑑𝜙

2𝜋

0

=
𝑅2

2
(2𝜋) = 𝜋𝑅2  .                                     𝐸𝑞. (9.10) 

Example: Determine volume, 𝑽, of a sphere of radius R. 

Solution: Since a small volume element in spherical coordinates, 𝒅𝑽, is given in Eq. (9.4b), the volume of a whole 

sphere can be determined by summing (or, integrating) over all the small volume elements that make up the 

sphere. Explicitly, 

𝑉 = ∫ 𝑑𝑉
 

𝑠𝑝ℎ𝑒𝑟𝑒 

= ∫ ∫ ∫ 𝑟2 sin 𝜃 𝑑𝜃𝑑𝑟𝑑𝜙

2𝜋

𝜙=0

𝜋

𝜃=0

𝑅

𝑟=0

  , 

or, 
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𝑉 = ∫ 𝑑𝜙 ∫ sin 𝜃 𝑑𝜃

𝜋

𝜃=0

2𝜋

𝜙=0

∫ 𝑟2𝑑𝑟

𝑅

𝑟=0

= (2𝜋)(2) (
𝑅3

3
) =

4𝜋

3
𝑅3  .                                 𝐸𝑞. (9.11) 

9.6 SOLIDS OF REVOLUTION 

Consider a small strip of length 𝑑𝑥 located in the 𝑥– 𝑦 plane at (𝑥, 𝑦) ≡ (𝑥, 𝑅) as in Figure 9.6.  If this strip is 

revolved about the 𝑥-axis, it creates a disk of radius 𝑅 and thickness 𝑑𝑥, and, therefore, of volume 𝑉 = 𝜋𝑅2𝑑𝑥. 

Generalizing this result, if a curve, representing a function 𝑓(𝑥) with 𝑎 ≤ 𝑥 ≤ 𝑏, is revolved about 𝑥-axis, as in 

Figure 9.6, the volume of the solid generated will be  

 

Figure 9.6. Solids of revolution. 

𝑉 = ∫𝜋[𝑓(𝑥)]2𝑑𝑥  .

𝑏

𝑎

                                                            𝐸𝑞. (9.12) 

The solids obtained by revolving a curve about an axis are called the solids of revolution. 

Example: A straight line, given by the equation 

𝒇(𝒙) =
𝑹

𝑯
𝒙, 

is shown in the Figure 9.7. Revolution of this straight line about 𝑥-axis leads to a solid of revolution in the form 

of a cone of radius 𝑅 and height 𝐻. The vertex of this cone is at the origin and its axis lies along the 𝑥-axis. The 

volume of this cone is 

𝑉 = ∫ 𝜋 [
𝑅

𝐻
𝑥]
2

𝑑𝑥 = 𝜋
𝑅2

𝐻2

𝐻

0

∫ 𝑥2𝑑𝑥 = 𝜋
𝑅2

𝐻2

𝐻

0

𝐻3

3
=
𝜋

3
𝑅2𝐻  .                                                 𝐸𝑞. (9.13) 
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Thus, in general, the volume of a cone of radius 𝑅 and height 𝐻 is 𝜋𝑅2𝐻/3. 

Example: Consider a horizontal line of length 𝐻 in the 𝑥 − 𝑦 plane at 𝑦 = 𝑅. Revolution of this line around 𝑥-

axis generates a solid in the form of a cylinder of radius 𝑅 and height 𝐻. Its volume is 

𝑽 = ∫ 𝝅[𝑹]𝟐𝒅𝒙 = 𝝅𝑹𝟐𝑯  .

𝑯

𝟎

 

Thus, in general, the volume of a cylinder of radius 𝑅 and height 𝐻 is 𝜋𝑅2𝐻. 

 

Figure 9.7. A cone generated as a solid of revolution. 

 

Figure 9.8. A cylinder generated as a solid of revolution. 

9.7 CENTER OF MASS 

The concept of center of mass is very useful in the study of mechanics of a distribution of masses. The center of 

mass of the distribution, under the influence of external forces, moves as if all the mass of the distribution were 

concentrated there and as if all the external forces were applied there. 

Consider a mass distribution consisting of 𝑛 discrete point-like masses, Δ𝑚1, Δ𝑚2, ⋯ Δ𝑚𝑖⋯Δ𝑚𝑛 located at 

𝒓𝟏, 𝒓𝟐⋯𝒓𝒊⋯𝒓𝒏, respectively, as shown in Figure 9.9. The total mass 𝑀 is the sum of all discrete masses. The 

center of mass of this distribution is located at 

𝒓𝑐𝑚 =
(Δ𝑚1)𝒓1 + (Δ𝑚2) 𝒓2+. . . +(Δ𝑚𝑖) 𝒓𝑖+. . . +(Δ𝑚𝑛) 𝒓𝑛

(Δ𝑚1) + (Δ𝑚2) + ⋯+ (Δ𝑚𝑛)
                                     

=
1

𝑀
 ∑𝒓𝑖 Δ𝑚𝑖  

𝑛

𝑖=1

  .                                                                           𝐸𝑞. (9.14𝑎) 

An extended object of total mass 𝑀 can be imagined as a collection of a large number of point-like masses which 

are combined together to form a continuous distribution of mass. For such an object, the sum in Eq. (9.14a) can 
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be replaced by an integral. Thus, for a continuous distribution of mass, 𝑀, the center of mass of the body is 

located at 

𝒓𝑐𝑚 =
1

𝑀
∫ 𝒓

 

𝑎𝑙𝑙 𝑏𝑜𝑑𝑦

 𝑑𝑚  ,                                                    𝐸𝑞. (9.14𝑏) 

 

Figure 9.9. The center of mass of a distribution of 𝑛 discrete point-like masses. 

or, in Cartesian coordinates, 

𝑥𝑐𝑚 =
1

𝑀
∫𝑥 𝑑𝑚  , 

𝑦𝑐𝑚 =
1

𝑀
∫𝑦 𝑑𝑚  , 

𝑧𝑐𝑚 =
1

𝑀
∫𝑧 𝑑𝑚  . 

For a mass distribution with some symmetry, the center of mass is normally at the center of symmetry or on the 

axis of symmetry. For example, for a full circular disk of radius R, the center of mass is at the center of symmetry, 

namely, the center of the disk. 

Example: Determine the center of mass of a semicircular disk of radius R and mass M.  

Solution:  

In this case, the mass per unit area is 𝜇 = 𝑀/ (
1

2
𝜋𝑅2) = 2𝑀/(𝜋𝑅2). Using plane polar coordinates in the plane 

of the disk: 
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𝑥𝑐𝑚 =
1

𝑀
∫∫𝜇 (𝜌 cos 𝜙) 𝑑𝜌 𝜌 𝑑𝜙 =

𝜇

𝑀
∫𝜌2𝑑𝜌

𝑅

0

∫cos𝜙  𝑑𝜙 = 0

𝜋

0

𝜋

0

𝑅

0

 

𝑦𝑐𝑚 =
1

𝑀
∫∫𝜇 (𝜌 sin𝜙) 𝑑𝜌 𝜌 𝑑𝜙 =

𝜇

𝑀
∫𝜌2𝑑𝜌

𝑅

0

∫ sin𝜙  𝑑𝜙 =
𝜇

𝑀

𝑅3

3
2

𝜋

0

=
2

𝜋𝑅2
𝑅3

3
2 =

4𝑅

3𝜋

𝜋

0

𝑅

0

  . 

Thus, center of mass of a semicircular disk is located on its axis of symmetry at (0,4𝑅/3𝜋). 

 

Figure 9.10. Center of mass of a uniform semicircular disk. 

9.8 MOMENT OF INERTIA ABOUT AN AXIS 

In elementary physics we learn that, during a translational motion, the kinetic energy of a body of mass 𝑚 

moving with a linear velocity 𝑣 is 𝐾 =
1

2
𝑚𝑣2. Consider a person riding a stationary bicycle for exercise. Since the 

bicycle is stationary, there is no translational kinetic energy associated with the exercise machine. All the work 

done by pedaling the bicycle is converted into 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 of the rotating wheel. If the wheel of 

the exercise bicycle is rotating with a constant angular velocity 𝜔, then its kinetic energy is 𝐾 =
1

2
𝐼𝜔2, where 𝐼 is 

the moment of inertia or the rotational inertia of the wheel. In order to define the moment of inertia of a mass 

distribution, imagine several discrete point-like masses Δ𝑚1, Δ𝑚2, ⋯Δ𝑚𝑖⋯Δ𝑚𝑛 rotating about a certain 

common axis of rotation, as shown in Figure 9.11. Furthermore, 𝑟1, 𝑟2⋯𝑟𝑖⋯𝑟𝑛, respectively, are the shortest, 

perpendicular distances of various masses from the axis of rotation. Then, the moment of inertia of this mass 

distribution about the axis of rotation is defined as 

𝐼 =∑𝑟𝑖
2 (Δ𝑚𝑖)

𝑛

𝑖=1

  .                                           𝐸𝑞. (9.15𝑎) 
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An extended object can be imagined as a collection of a large number of point-like masses which are combined 

together to form a continuous distribution of mass. For such an object, the sum in Eq. (9.15a) can be replaced by 

an integral so that 

𝐼 = ∫ 𝑟2 𝑑𝑚  

 

𝑎𝑙𝑙 𝑏𝑜𝑑𝑦

.                                                        𝐸𝑞. (9.15𝑏) 

 

Figure 9.11. Moment of inertia of a distribution of 𝑛 discrete point-like masses rotating about an axis. 

If the mass is distributed uniformly in a volume 𝑉 with density 𝐷𝑉  (mass per unit volume), then 

𝐼 = ∫𝑟2 𝐷𝑉  𝑑𝑉

 

𝑉

  . 

If the mass is distributed uniformly in an area 𝐴 with density 𝐷𝐴 (mass per unit area), then 

𝐼 = ∫𝑟2𝐷𝐴  𝑑𝐴

 

𝐴

  . 

If the mass is distributed uniformly along a line 𝐿 with density 𝐷𝐿  (mass per unit length), then 
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𝐼 = ∫𝑟2𝐷𝐿  𝑑𝐿

 

𝐿

  . 

Example: Determine the moment of inertia of a thin spherical shell of mass 𝑴 and radius 𝑹 rotating about any 

diameter. 

Solution: The shell has surface area of 4𝜋𝑅2. If 𝐷𝐴 is mass per unit area, 𝐷𝐴 = 𝑀/(4𝜋𝑅
2), then mass of a small 

patch of area 𝑑𝐴 = (𝑅𝑑𝜃)(𝑅 sin 𝜃 𝑑𝜙) is 𝑑𝑚 = 𝐷𝐴 𝑑𝐴. The perpendicular distance of this patch of area from the 

axis of rotation is 𝑟 = 𝑅 sin 𝜃. So, 

𝐼 = ∫ [𝑅 sin 𝜃]2𝑑𝑚 = ∫ ∫ [𝑅 sin 𝜃]2𝐷𝐴  𝑅
2 sin 𝜃  𝑑𝜃 𝑑𝜙

2𝜋 

𝜙=0

𝜋 

𝜃=0

 

 𝑠ℎ𝑒𝑙𝑙 

 

or, with 𝑢 = cos 𝜃, 

𝐼 = 𝐷𝐴 𝑅
4 ∫ sin3𝜃 𝑑𝜃∫ 𝑑𝜙 = 𝐷𝐴 𝑅

4 2𝜋 ∫(1 − 𝑢2) 𝑑𝑢

1 

−1

2𝜋 

0

𝜋 

0 

                                                

= 2𝜋 𝐷𝐴  𝑅
4  (
4

3
) =

8𝜋

3
(
𝑀

4𝜋𝑅2
)𝑅4 =

2

3
𝑀𝑅2  .                                           𝐸𝑞. (9.16) 

 

Figure 9.12. Moment of inertia of a thin spherical shell. 
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Example: A thin rod of length 𝑳 and mass 𝑴 is rotating about an axis. The axis is passing through the center of 

the rod and is perpendicular to the rod. Determine the moment of inertia of this rotating rod. 

Solution:  

 

Figure 9.13. Moment of inertia of a rod rotating about an axis. 

Since the mass is distributed along the length of the rod, we can define mass per unit length as 𝐷𝐿 =  𝑀/𝐿. 

Consider a small mass element of length 𝑑𝑥 located a distance 𝑥 away from the axis of rotation. The mass of this 

element is 𝑑𝑚 = 𝐷𝐿  𝑑𝑥. So, the moment of inertia is 

𝐼 = ∫ 𝑥2𝑑𝑚 = ∫ 𝑥2𝐷𝐿  𝑑𝑥 = 𝐷𝐿  
𝑥3

3
|
−
𝐿
2

𝐿
2

𝐿
2
 

−
𝐿
2

 

𝑟𝑜𝑑 

= 𝐷𝐿 [
𝐿3

24
− (−

𝐿3

24
)]  , 

or, 

𝐼 =
𝑀

𝐿
(
𝐿3

12
) =

1

12
𝑀𝐿2  .                                                   𝐸𝑞. (9.17) 
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PROBLEMS FOR CHAPTER 9 

1. Find the position of the center of mass of a solid cone of radius 𝑅 and height 𝐻. 

2. A solid sphere, of radius 𝑅, is cut into two identical hemispheres. Find the position of the center of mass of 

such a hemisphere. 

3. Find the moment of inertia of a solid cone of radius 𝑅, uniform mass density 𝐷, height 𝐻, and mass 𝑀 about 

its axis of symmetry. Give the answer in terms of 𝑀 and 𝑅. 

4. (a) Determine the moment of inertia of a thick-walled right circular cylindrical tube of mass 𝑀, inner radius 𝑎, 

outer radius 𝑏, and height ℎ, about its central axis of symmetry.  

 

(b) Using the result of part (a), determine the moment of inertia of a solid right circular cylinder of radius 𝑅 

and mass 𝑀. 

(c) Using the result of part (a), determine the moment of inertia of a right circular cylindrical shell, open at 

both ends, of radius 𝑅 and mass 𝑀. The thickness of the shell can be considered as almost zero. 

5. (a) Determine the moment of inertia of a thick spherical shell, of mass 𝑀, about an axis passing through its 

center. The inner and outer radii of the shell are 𝑎 and 𝑏, respectively. 

(b) Using the result of part (a), determine the moment of inertia of a solid sphere of radius 𝑅 and mass 𝑀. 

(c) Using the result of part (a), determine the moment of inertia of a thin spherical shell of radius 𝑅 and 

mass 𝑀. The thickness of the shell can be considered as almost zero. 

6.  Biomedical Physics Application. The human heart is a muscular organ that is responsible for pumping blood 

throughout the body. Without resorting to an actual surgery, the size of a healthy heart can be estimated by 
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using a medical imaging technique called CAT scan or simply CT scan (for computed tomography). The scan 

produces equally spaced cross-sectional views of the heart. Suppose that a CT scan of a human heart shows 

cross sections spaced 1.0 cm apart. The heart is about 10 cm long and the cross-sectional areas, in square 

centimeters, are 0, 18, 38, 57, 72, 84, 71, 60, 39, 20, and 0. Using this information estimate the volume of the 

heart.  

7. Biomedical Physics Application. The velocity 𝑣 of blood that flows in a blood vessel with radius 𝑅 and length 

𝐿 at a distance 𝑟 from the central axis is  

𝑣(𝑟) =  
𝑃

4𝜂𝐿
 (𝑅2 − 𝑟2)  , 

where 𝑃 is the pressure difference between the ends of the vessel and  is the viscosity of the blood. The flux 

(volume of blood flowing per unit time) 𝐹 of the blood can be calculated by approximating the cross-sectional 

area of the blood vessel by concentric rings and integrating over all such rings. Show that the flux is given by 

𝐹 =  
𝜋𝑃𝑅4

8𝜂𝐿
  . 

This is called Poiseuille’s Law.  
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Chapter 10: Vector Calculus 

In this chapter we will combine our previous knowledge of calculus and of vectors to learn about vector functions 

and their derivatives. We will also gain knowledge of a couple of specialized theorems, the Gauss’s theorem (or, 

divergence theorem) and Stoke’s theorem, which are relevant for vector functions. 

10.1 VECTOR FUNCTIONS 

A vector function is a vector whose components are functions of coordinates. As an example, a vector function in 

𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 is 

A(𝑥1, 𝑥2, 𝑥3) = 𝐞𝟏𝐴1(𝑥1, 𝑥2, 𝑥3) + 𝐞𝟐𝐴2(𝑥1, 𝑥2, 𝑥3) + 𝐞𝟑𝐴3(𝑥1, 𝑥2, 𝑥3)  .        𝐸𝑞. (10.1) 

Here 𝐞𝟏, 𝐞𝟐, and 𝐞𝟑 are the three orthogonal unit vectors and 𝐴1, 𝐴2, and 𝐴3 are the three scalar functions of 

coordinates 𝑥1, 𝑥2, and 𝑥3. 

 Now, in vector calculus, just as in multivariate calculus, all derivatives are related to the rate of change of 

a function. For a scalar function 𝑓(𝑥1, 𝑥2, 𝑥3), the three derivatives, 
𝜕𝑓

𝜕𝑥𝑖
 (𝑖 = 1,2,3), represent the rate of 

variation of the function 𝑓 with respect to 𝑥𝑖  (𝑖 = 1,2,3). These three derivatives of 𝑓 behave like the three 

components of a vector, which is called the gradient of 𝑓. The gradient of 𝑓 is written as 

𝛁𝑓 = 𝐞𝟏
𝜕𝑓

𝜕𝑥1
+ 𝐞𝟐

𝜕𝑓

𝜕𝑥2
+ 𝐞𝟑

𝜕𝑓

𝜕𝑥3
  .                    𝐸𝑞. (10.2) 

Note that gradient of 𝑓 is a vector function. The differential operator 

𝛁 = 𝐞𝟏
𝜕

𝜕𝑥1
+ 𝐞𝟐

𝜕

𝜕𝑥2
+ 𝐞𝟑

𝜕

𝜕𝑥3
=∑𝐞𝐢

𝜕

𝜕𝑥𝑖

3

𝑖=1

 

is called the 𝑑𝑒𝑙 or 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 operator. Let us now interpret the gradient of a scalar function. Consider the values 

of a scalar function 𝑓 at two neighboring points in space. The first point is at 𝐫 = (𝑥1, 𝑥2, 𝑥3) and the value of the 

function there is 𝑓(𝑥1, 𝑥2, 𝑥3). The neighboring point is at 𝐫 + 𝐝𝐫 = (𝑥1 + 𝑑𝑥1, 𝑥2 + 𝑑𝑥2, 𝑥3 + 𝑑𝑥3) and the value 

of the function there is 𝑓(𝑥1 + 𝑑𝑥1, 𝑥2 + 𝑑𝑥2, 𝑥3 + 𝑑𝑥3), as shown in Figure 10.1. The change in the value of the 

function, 𝑓, on moving from one point to a neighboring point, is 

𝑑𝑓 = 𝑓(𝑥1 + 𝑑𝑥1, 𝑥2 + 𝑑𝑥2, 𝑥3 + 𝑑𝑥3) − 𝑓(𝑥1, 𝑥2, 𝑥3)  , 

or, keeping only the first order terms in the Taylor-series expansion of the function, 
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Figure 10.1. Values of a function at two neighboring points. 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑓

𝜕𝑥2
𝑑𝑥2 +

𝜕𝑓

𝜕𝑥3
𝑑𝑥3 = 𝛁𝑓• 𝐝𝐫  .                                   𝐸𝑞. (10.3) 

This expression leads to the following properties of the gradient of a scalar function 𝑓. 

First, the change, 𝑑𝑓, in the value of the function is maximum when 𝛁𝑓 is parallel to 𝐝𝐫. Thus 𝛁𝑓 is a vector that 

represents the magnitude and direction of the greatest rate of change of 𝑓. Second, if 𝐝𝐫 is tangential to the 

surface 𝑓(𝐫) = constant, then both 𝐫 and 𝐫 + 𝐝𝐫 lie on the surface. So, 

 𝑑𝑓 = 𝑓(𝐫 + 𝐝𝐫) − 𝑓(𝐫) = 0  , 

or, 

𝛁𝑓 • 𝐝𝐫 = 0  .  

Since 𝐝𝐫 is tangential to the surface, it means that 𝛁𝑓 is normal (or, perpendicular) to the surface 𝑓(𝐫) =

constant. We note in passing that in electrostatics the electric field, 𝑬 = −𝛁𝜙, is normal to an equipotential 

surface on which the electrostatic potential, 𝜙, is constant. This fact is a direct consequence of the second 

property of the gradient of a function. The rate of variation of the scalar function 𝑓 along any 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 

direction 𝒏 is given by 𝒏•𝛁𝑓, which is called the 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒.  
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Divergence and Curl of a Vector Function 

Because of the vector nature of the del operator, 𝛁, we can form the following two combinations for a vector 

function A: 

𝛁• A = (𝐞𝟏
𝜕

𝜕𝑥1
+ 𝐞𝟐

𝜕

𝜕𝑥2
+ 𝐞𝟑

𝜕

𝜕𝑥3
) •(𝐞𝟏𝐴1 + 𝐞𝟐𝐴2 + 𝐞𝟑𝐴3) =

𝜕𝐴1
𝜕𝑥1

+
𝜕𝐴2
𝜕𝑥2

+
𝜕𝐴3
𝜕𝑥3

     𝐸𝑞. (10.4) 

which is called the divergence of function A, and 

𝛁 × A = (𝐞𝟏
𝜕

𝜕𝑥1
+ 𝐞𝟐

𝜕

𝜕𝑥2
+ 𝐞𝟑

𝜕

𝜕𝑥3
) × (𝒆𝟏 𝐴1 + 𝐞𝟐𝐴2 + 𝐞𝟑𝐴3)                                                                   

= 𝐞𝟏 (
𝜕𝐴3
𝜕𝑥2

−
𝜕𝐴2
𝜕𝑥3

) + 𝐞𝟐 (
𝜕𝐴1
𝜕𝑥3

−
𝜕𝐴3
𝜕𝑥1

) + 𝐞𝟑 (
𝜕𝐴2
𝜕𝑥1

−
𝜕𝐴1
𝜕𝑥2

)                                    𝐸𝑞. (10.5) 

which is called the curl of function A. If, for a vector function A, 𝛁•A = 0, then A is called a solenoidal vector 

function. On the other hand, if 𝛁 × A = 0, then A is called an irrotational or conservative vector function. Finally, 

we define 𝛁•𝛁𝑓, which is the divergence of the gradient of a scalar function, as the Laplacian of 𝑓. It is written as 

∇2𝑓. Explicitly, 

∇2𝑓 = (𝐞𝟏
𝜕

𝜕𝑥1
+ 𝐞𝟐

𝜕

𝜕𝑥2
+ 𝐞𝟑

𝜕

𝜕𝑥3
) • (𝐞𝟏

𝜕𝑓

𝜕𝑥1
+ 𝐞𝟐

𝜕𝑓

𝜕𝑥2
+ 𝐞𝟑

𝜕𝑓

𝜕𝑥3
) =

𝜕2𝑓

𝜕𝑥1
2 +

𝜕2𝑓

𝜕𝑥2
2 +

𝜕2𝑓

𝜕𝑥3
2  . 

Or, 

∇2𝑓 =∑
𝜕2𝑓

𝜕𝑥𝑖
2

3

𝑖=1

  .                                            𝐸𝑞. (10.6) 

The Laplacian operator, ∇2, can also operate on a vector function A(𝑥1, 𝑥2, 𝑥3) as, 

∇2A = 𝐞𝟏∇
2𝐴1 + 𝐞𝟐∇

2𝐴2 + 𝐞𝟑∇
2𝐴3  .                           𝐸𝑞. (10.7) 

Note carefully that since the Cartesian unit vectors 𝐞𝟏, 𝐞𝟐, and 𝐞𝟑 are constant in magnitude and direction, they 

can be taken out of the ∇2 operator. Finally, we prove an important identity, 

𝛁 × (𝛁 × A) = 𝛁(𝛁• A) − ∇2A  .                                            𝐸𝑞. (10.8) 

To prove it, we start with the left-hand side of the identity, 
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Left Hand Side =∑𝜖𝑖𝑗𝑘
𝑖𝑗𝑘

 𝐞𝐢  
𝜕

𝜕𝑥𝑗
{𝛁 × A}𝑘                                                                                                                                

=∑𝜖𝑖𝑗𝑘
𝑖𝑗𝑘

 𝐞𝐢  
𝜕

𝜕𝑥𝑗
{∑𝜖𝑘𝑙𝑚
𝑙𝑚

𝜕

𝜕𝑥𝑙
 𝐴𝑚} = ∑∑𝐞𝐢

𝑙𝑚𝑖𝑗

 
𝜕

𝜕𝑥𝑗
 
𝜕

𝜕𝑥𝑙
𝐴𝑚∑𝜖𝑘𝑖𝑗𝜖𝑘𝑙𝑚             

𝑘

 

=∑∑𝐞𝐢
𝑙𝑚𝑖𝑗

𝜕

𝜕𝑥𝑗
 
𝜕

𝜕𝑥𝑙
𝐴𝑚{𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙} =∑𝐞𝐢

𝜕

𝜕𝑥𝑗
𝑖𝑗

𝜕

𝜕𝑥𝑖
𝐴𝑗 −∑𝐞𝐢

𝜕

𝜕𝑥𝑗
𝑖𝑗

𝜕

𝜕𝑥𝑗
𝐴𝑖    

=∑𝐞𝐢
𝜕

𝜕𝑥𝑖
𝑖

∑
𝜕𝐴𝑗

𝜕𝑥𝑗
𝑗

−∑
𝜕2

𝜕𝑥𝑗
2

𝑗

∑𝐞𝐢𝐴𝑖
𝑖

= 𝛁(𝛁•A) − ∇2A  .                                          

 Here we used the epsilon-delta identity of Appendix C. The above vector identity is valid only for Cartesian 

components of the vector function A(𝑥1, 𝑥2, 𝑥3) since the unit vectors 𝐞𝟏, 𝐞𝟐, 𝐞𝟑 are taken to be constant in 

magnitude and direction. 

In the remainder of this chapter, including the following examples, it will be easier to use (𝑥, 𝑦, 𝑧) notation 

instead of (𝑥1, 𝑥2, 𝑥3) notation. However, for the Cartesian unit vectors we will continue to use 𝐞𝟏, 𝐞𝟐, and 𝐞𝟑. 

Example: Consider the scalar function, 

𝒇(𝒙, 𝒚, 𝒛) = 𝒙𝟐 + 𝒚𝟐 − 𝒛𝟐 + 𝒙𝒚 − 𝒙𝒛 − 𝒚𝒛  . 

Determine 𝛁𝒇, unit vector along 𝛁𝒇, directional derivative along 𝐞𝟏 + 𝐞𝟐, and 𝛁𝟐𝒇, 𝐚𝐥𝐥 𝐚𝐭 (𝟏, 𝟏, 𝟏). 

Solution: Starting with gradient of 𝒇, 

𝛁𝑓 = 𝐞𝟏
𝜕𝑓

𝜕𝑥
+ 𝐞𝟐

𝜕𝑓

𝜕𝑦
+ 𝐞𝟑

𝜕𝑓

𝜕𝑧
                                                                        

= 𝐞𝟏(2𝑥 + 𝑦 − 𝑧) + 𝐞𝟐 (2𝑦 + 𝑥 − 𝑧) + 𝐞𝟑(−2𝑧 − 𝑥 − 𝑦)  . 

𝛁𝑓 at (1,1,1) = 𝐞𝟏(2) + 𝐞𝟐(2) + 𝐞𝟑(−4)  . 

Unit vector along 𝛁𝑓 at (1,1,1) =
1

√24
(2𝐞𝟏 + 2𝐞𝟐 − 4𝐞𝟑) =

1

√6
(𝐞𝟏 + 𝐞𝟐 − 2𝐞𝟑)  . 

In order to determine the directional derivative along 𝐞𝟏 + 𝐞𝟐, we first determine the unit vector along 𝐞𝟏 + 𝐞𝟐, 

which we will label as 𝒏. It is 
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𝒏 =
1

√2
(𝐞𝟏 + 𝐞𝟐)  . 

So, the directional derivative is 

𝒏•𝛁𝑓 =
1

√2
(𝐞𝟏 + 𝐞𝟐)•[𝐞𝟏(2𝑥 + 𝑦 − 𝑧) + 𝐞𝟐(2𝑦 + 𝑥 − 𝑧) + 𝐞𝟑(−2𝑧 − 𝑥 − 𝑦)] 

=
1

√2
[2𝑥 + 𝑦 − 𝑧 + 2𝑦 + 𝑥 − 𝑧] =

3𝑥 + 3𝑦 − 2𝑧

√2
=
4

√2
   at (1,1,1)  . 

Finally, 

∇2𝑓 =
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2
+
𝜕2𝑓

𝜕𝑧2
= 2 + 2 − 2 = 2  . 

Example: Given the vector function 

A = 𝒙𝟐𝒚 𝐞𝟏 + 𝒚
𝟐𝒛 𝐞𝟐 + 𝒛

𝟐𝒙 𝐞𝟑  , 

determine its divergence, curl, and Laplacian. Then, explicitly verify that 

𝛁 × (𝛁 × A) = 𝛁(𝛁•A) − 𝛁𝟐A  . 

Solution: The divergence of A is 

𝛁•A =
𝜕𝐴𝑥
𝜕𝑥

+
𝜕𝐴𝑦

𝜕𝑦
+
𝜕𝐴𝑧
𝜕𝑧

= 2𝑥𝑦 + 2𝑦𝑧 + 2𝑧𝑥  . 

The curl of A is 

𝛁 × A = ||

𝐞𝟏 𝐞𝟐 𝐞𝟑
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2𝑦 𝑦2𝑧 𝑧2𝑥 

|| = 𝐞𝟏(0 − 𝑦
2) + 𝐞𝟐(0 − 𝑧

2) + 𝐞𝟑(0 − 𝑥
2) = −𝑦2𝐞𝟏 − 𝑧

2𝐞𝟐 − 𝑥
2𝐞𝟑  . 

The Laplacian of A is 

∇2A = 𝐞𝟏(2𝑦) + 𝐞𝟐(2𝑧) + 𝐞𝟑(2𝑥)  . 

Now we verify the identity, 
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𝛁 × (𝛁 × A) = ||

𝐞𝟏 𝐞𝟐 𝐞𝟑
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

−𝑦2 −𝑧2 −𝑥2 

|| = 𝐞𝟏(2𝑧) + 𝐞𝟐(2𝑥) + 𝐞𝟑(2𝑦) = 2[𝑧𝐞𝟏 + 𝑥𝐞𝟐 + 𝑦𝐞𝟑] 

𝛁(𝛁•A) = 𝐞𝟏(2𝑦 + 2𝑧) + 𝐞𝟐(2𝑥 + 2𝑧) + 𝐞𝟑(2𝑦 + 2𝑥)  . 

On substituting explicitly, 

𝛁(𝛁•A) − ∇2A = 2𝑧𝐞𝟏 + 2𝑥𝐞𝟐 + 2𝑦𝐞𝟑 = 𝛁 × (𝛁 × A)  . 

Example: Find 𝛁 𝒇(𝒓) where r = 𝒙 𝐞𝟏 + 𝒚 𝐞𝟐 + 𝒛 𝐞𝟑 with 𝒓𝟐 = 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐. Note 𝒇(𝒓) is a function of only 

the magnitude 𝒓 of the vector r. 

Solution: Starting with gradient of 𝑓(𝑟), 

𝛁 𝑓(𝑟) = 𝐞𝟏
𝜕

𝜕𝑥
𝑓(𝑟) + 𝐞𝟐

𝜕

𝜕𝑦
𝑓(𝑟) + 𝐞𝟑

𝜕

𝜕𝑧
𝑓(𝑟) 

= 𝐞𝟏
𝜕𝑟

𝜕𝑥

𝑑𝑓(𝑟)

𝑑𝑟
 + 𝐞𝟐

𝜕𝑟

𝜕𝑦

𝑑𝑓(𝑟)

𝑑𝑟
+ 𝐞𝟑

𝜕𝑟

𝜕𝑧

𝑑𝑓(𝑟)

𝑑𝑟
 

Use 

 
𝜕𝑟

𝜕𝑥
=
𝑥

𝑟
,

𝜕𝑟

𝜕𝑦
=
𝑦

𝑟
,

𝜕𝑟

𝜕𝑧
=
𝑧

𝑟
   , 

to obtain 

𝛁𝑓(𝑟) =
𝑥 𝐞𝟏 + 𝑦 𝐞𝟐 + 𝑧 𝐞𝟑

𝑟
 
𝑑𝑓

𝑑𝑟
=

r

𝑟
 
𝑑𝑓

𝑑𝑟
   . 

10.2 LINE INTEGRALS  

The line integral of a vector function A over an arbitrary path joining point 1 to point 2 is written as, 

𝐼 = ∫ A • 𝐝𝐫
2

1

  .                                                                    𝐸𝑞. (10.9) 

It is evaluated by breaking the path, shown in Figure 10.2, into a large number of small segments of lengths 

𝐝𝐫1, 𝐝𝐫2,⋯ 𝐝𝐫𝑖⋯𝐝𝐫𝑛. For each tiny segment, we calculate the value of the integrand, namely, A𝑖•𝐝𝐫𝑖  and add all 

the values. The limiting value of this sum as the number of segments becomes very large or as the segment sizes 

become very small is the value of the line integral. In other words, 
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𝐼 = ∫ A•𝐝𝐫
2

1

= lim
𝑛→∞

∑A𝑖•𝐝𝐫𝑖

𝑛

𝑖=1

 

From this definition of the line integrals, we can derive an important result. Recalling from Eq. (10.3) that for any 

scalar function 

𝑑𝑓 = 𝛁𝑓•𝐝𝐫  , 

 

Figure 10.2. The path for a line integral. 

we obtain 

𝑓(𝑎) − 𝑓(1) = (𝛁𝑓)1• 𝐝𝐫1  , 

𝑓(𝑏) − 𝑓(𝑎) = (𝛁𝑓)2• 𝐝𝐫2  , 

𝑓(𝑐) − 𝑓(𝑏) = (𝛁𝑓)3• 𝐝𝐫3  , 

⋯⋯⋯⋯ 

𝑓(2) − 𝑓(𝑧) = (𝛁𝑓)𝑛• 𝐝𝐫𝑛  . 

Simply adding all these lines, we get 

𝑓(2) − 𝑓(1) =∑(𝛁𝑓)𝑖

𝑛

𝑖=1

•𝐝𝐫𝑖 → ∫ 𝛁𝑓•𝐝𝐫
2

1

  , 

independent of the path joining points 1 and 2. In particular, for a closed path, 
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∮(𝛁𝑓)•𝐝𝐫 = 0  ,                                                                          𝐸𝑞. (10.10) 

for any scalar function 𝑓(𝑥, 𝑦, 𝑧). The symbol of a circle on an integral sign indicates that the path of integration 

is a closed path. 

10.3 SURFACE INTEGRALS  

 

Figure 10.3a. Comparison of an open surface versus a closed surface. 

In surface integrals, we encounter two different kinds of surfaces, open surfaces versus closed surfaces, as shown 

in Figure 10.3a. An open surface has two sides with a boundary 𝐶 but no enclosed volume. An example of such a 

surface is a flat or a crumpled sheet of paper. In order to go from one side of an open surface to its other side, 

one has to cross the boundary 𝐶. A closed surface, on the other hand, has an enclosed volume but no boundary. 

Examples of closed surfaces include the surface of the Earth, the brown surface of an Idaho potato, etc. The 

surface integral of a vector function A over an arbitrary surface, open or closed, is written as 

𝐽 = ∫A•𝐝𝐒
 

𝑆

= ∫A•𝒏 𝑑𝑆
 

𝑆

  .                                                               𝐸𝑞. (10.11) 

Here 𝒏 is the normal to the area element 𝐝𝐒. The surface integral is evaluated by breaking the whole surface 

area, shown in Figure 10.3b, into a large number of small pieces of areas ∆𝐒1, ∆𝐒2, ⋯∆𝐒𝑖⋯∆𝐒𝑛. For each small 

piece, we calculate the value of the integrand, namely, A𝑖•∆𝐒𝑖 and add all the values. The limiting value of this 

sum as the number of pieces becomes very large or as the size of all pieces becomes very small is the value of 

the surface integral. In other words, 
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𝐽 = ∫A•𝐝𝐒
 

𝑆

 = lim
𝑛→∞

∑(A • 𝒏)𝑖  ∆𝑆𝑖

𝑛

𝑖=1

  . 

In the case of a closed surface, this integral is called 𝑡ℎ𝑒 𝑓𝑙𝑢𝑥 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 A out of the closed volume 𝑉. 

 

Figure 10.3b. Breaking a surface area into a large number of small area elements. 

10.4 VOLUME INTEGRALS  

The volume integral of a scalar function 𝑓(𝑥, 𝑦, 𝑧) over an arbitrary volume 𝑉 is written as, 

𝐾 = ∫𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉
 

𝑉

  .                                                               𝐸𝑞. (10.12) 

It is evaluated by breaking the volume, shown in Figure 10.4, into a large number of small elements of volume 

∆𝑉1, ∆𝑉2, ⋯∆𝑉𝑖⋯∆𝑉𝑛. For each little element, we calculate the value of the integrand, namely, 𝑓(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)∆𝑉𝑖  

and add all the values. The limiting value of this sum as the number of volume elements becomes very large 

 

Figure 10.4. Breaking a volume into many small volume elements. 

or as the element size becomes very small is the value of the volume integral. In other words, 
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𝐾 = ∫𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉
𝑉

= lim
𝑛→∞

∑𝑓(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)∆𝑉𝑖

𝑛

i=1

  . 

10.5 FLUX OF A VECTOR FUNCTION: GAUSS’S (OR DIVERGENCE) THEOREM 

The flux of a vector function A out of a closed volume 𝑉 has a very interesting property. If we break the volume 𝑉 

into two smaller pieces, then the sum of fluxes of A out of two closed smaller volumes is equal to the flux of A 

out of the original large, closed volume 𝑉. Let us prove it. 

 

Figure 10.5. Breaking a volume V into two smaller volumes 𝑉1 and 𝑉2. 

Consider a closed surface 𝑆 enclosing a volume 𝑉, as in Figure 10.5. For clear visualization, imagine this surface to 

be the brown surface of an Idaho potato. In order to determine the total flux of a vector function A out of 

volume 𝑉, we first consider the flux of A through a small surface element 𝐝𝐒. It is A • 𝒏 𝑑𝑆 = A •𝐝𝐒. Total flux of 

A out of volume 𝑉 is ∫A•𝐝𝐒
𝑠

. Now break the volume 𝑉 into two pieces by cutting the potato with a knife. The 

two cut pieces have volumes 𝑉1 and 𝑉2 and the corresponding brown surface areas are 𝑆𝑎  and 𝑆𝑏 , respectively. 

Clearly, 𝑉 = 𝑉1 + 𝑉2 and 𝑆 = 𝑆𝑎 + 𝑆𝑏. The cutting of the potato also exposes the interior white surface area, 𝑆𝑎𝑏 , 

that is common to both pieces of the potato. The volume 𝑉1 is enclosed by surface 𝑆1 = 𝑆𝑎 + 𝑆𝑎𝑏  and the volume 

𝑉2 is enclosed by surface 𝑆2 = 𝑆𝑏 + 𝑆𝑎𝑏 . Total flux of A out of volume 𝑉1 is 

∫ A
𝑠𝑎

•𝒏 𝑑𝑆 + ∫ A
𝑠𝑎𝑏

• 𝒏1 𝑑𝑆  , 

where 𝒏1 is the outward normal on the 𝑆𝑎𝑏  part of 𝑆1. Total flux of A out of volume 𝑉2 is 

∫ A
𝑠𝑏

•𝒏 𝑑𝑆 + ∫ A
𝑠𝑎𝑏

•𝒏2 𝑑𝑆  , 

where 𝒏2 is the outward normal on the 𝑆𝑎𝑏  part of 𝑆2. Now, the sum of total flux of A out of volume 𝑉1 and the 

total flux of A out of volume 𝑉2 is 

∫ A
𝑠𝑎

• 𝒏 𝑑𝑆 + ∫ A
𝑠𝑎𝑏

• 𝒏1 𝑑𝑆 + ∫ A
𝑠𝑏

• 𝒏 𝑑𝑆 + ∫ A
𝑠𝑎𝑏

•𝒏2 𝑑𝑆  . 
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Noting that 𝒏1 = −𝒏2, the sum of fluxes out of volume 𝑉1 and out of volume 𝑉2 becomes, 

∫ A
𝑠𝑎

• 𝒏 𝑑𝑆 + ∫ A
𝑠𝑏

• 𝒏 𝑑𝑆 = ∫ A
𝑠𝑎+𝑠𝑏

•𝒏  𝑑𝑆 = ∫A
𝑠

• 𝒏 𝑑𝑆  , 

which is equal to the total flux of A out of volume 𝑉. We can generalize this result by subdividing a giant volume 

𝑉 into a large number of smaller component volumes, of any size and shape. Then the sum of fluxes of A out of 

smaller component volumes is equal to the flux of A out of giant volume 𝑉. For convenience, we take each small 

component volume to be a parallelepiped in shape. 

Flux of A Out of a Parallelepiped  

Now, we will determine the flux of a vector function A out of a parallelepiped of side lengths (∆𝑥, ∆𝑦, ∆𝑧). Total 

volume of the parallelepiped is ∆𝑉 = ∆𝑥∆𝑦∆𝑧 and its surface area ∆𝑆 consists of six faces; namely, left face, right 

face, front face, back face, top face, and bottom face, as shown in Figure 10.6. Total flux of A out of the 

parallelepiped, ∫ A
∆𝑆 

• 𝐝𝐒, is the sum of six terms each representing a flux out of a different face. We will 

determine the flux out of three pairs of faces, the left-right pair, the front-back pair and the top-bottom pair. 

 

Figure 10.6. Flux of vector function A out of a parallelepiped. 

Flux out of the left face 1 = ∫ A
#1 

•𝒏 𝑑𝑆 = −∫ 𝐴𝑦#1 
 𝑑𝑥 𝑑𝑧 = −𝐴𝑦(1) ∆𝑥∆𝑧 

Flux out of the right face 2= ∫ A
#2 

•𝒏 𝑑𝑆 = ∫ 𝐴𝑦#2 
 𝑑𝑥 𝑑𝑧 = +𝐴𝑦(2) ∆𝑥∆𝑧 

Total flux out of the left-right pair of faces = [𝐴𝑦(2) − 𝐴𝑦(1)]∆𝑥∆𝑧 ≅ [(
𝜕𝐴𝑦

𝜕𝑦
)
 
∆𝑦] ∆𝑥∆𝑧 =

𝜕𝐴𝑦

𝜕𝑦
∆𝑉.  



183 

 

Similarly, total flux out of the front-back pair of faces = [(
𝜕𝐴𝑥

𝜕𝑥
)
 
∆𝑥] ∆𝑦∆𝑧 =

𝜕𝐴𝑥

𝜕𝑥
∆𝑉 and total flux out of the top-

bottom pair of faces = [(
𝜕𝐴𝑧

𝜕𝑧
)
 
∆𝑧] ∆𝑥∆𝑦 =

𝜕𝐴𝑧

𝜕𝑧
∆𝑉.  

Adding the contributions from all six faces, total flux of A out of volume ∆𝑉 is 

∫ A
∆𝑆 

•𝒏 𝑑𝑆 = (𝛁• A)∆𝑉  . 

Now, any arbitrary volume 𝑉 can be broken into a large number of small parallelepipeds as shown in Figure 10.7, 

so that, in general, for a closed surface 𝑆, 

 

Figure 10.7. Breaking an arbitrary volume into a large number of parallelepipeds. 

∫ A•𝒏
𝑆 

 𝑑𝑆 = ∫ (𝛁•A)𝑑𝑉
𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑉

  .                                                 𝐸𝑞. (10.13) 

This is known as the Gauss’s theorem or the divergence theorem for vector functions. 

Example: Consider a vector function: 

A = 𝑥𝑦 𝐞𝟏 + 𝑦𝑧 𝐞𝟐 + 𝑧𝑥 𝐞𝟑  , 

and a parallelepiped with side lengths 𝑎, 𝑏, 𝑐 and volume 𝑉 = 𝑎𝑏𝑐. Show that the divergence theorem is 

satisfied. 

Solution: The divergence of the vector function is 

𝛁•A = 𝑦 + 𝑧 + 𝑥  . 

The integral of this divergence over the volume of the parallelepiped of Figure 10.8 is 

∫ 𝛁• A 𝑑𝑉
 𝑉

= ∫ (𝑥 + 𝑦 + 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧
 𝑉

  , 
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∫ 𝛁• A 𝑑𝑉
 𝑉

= ∫ 𝑥 𝑑𝑥
𝑎

0

∫ 𝑑𝑦
𝑏

0

∫ 𝑑𝑧
𝑐

0

+∫ 𝑥
𝑎

0

∫ 𝑦 𝑑𝑦
𝑏

0

∫ 𝑑𝑧
𝑐

0

+∫ 𝑑𝑥
𝑎

0

∫ 𝑑𝑦
𝑏

0

∫ 𝑧 𝑑𝑧
𝑐

0

 

=
𝑎2

2
𝑏𝑐 + 𝑎

𝑏2

2
𝑐 + 𝑎𝑏

𝑐2

2
=
𝑉

2
(𝑎 + 𝑏 + 𝑐)  .                        

 

Figure 10.8. A parallelepiped with side lengths 𝑎, 𝑏, and 𝑐. 

The surface integral of the divergence theorem over the six faces (left-right pair, front-back pair and the top-

bottom pair) of the parallelepiped is 

∫ A
𝑆 

• 𝒏 𝑑𝑆 = ∫ A
𝑓𝑟𝑜𝑛𝑡 

•𝒏 𝑑𝑆 + ∫ A
𝑏𝑎𝑐𝑘 

•𝒏 𝑑𝑆 + ∫ A
𝑙𝑒𝑓𝑡 

•𝒏 𝑑𝑆                                                          

+∫ A
𝑟𝑖𝑔ℎ𝑡 

•𝒏 𝑑𝑆 + ∫ A
𝑡𝑜𝑝 

•𝒏 𝑑𝑆 + ∫ A
𝑏𝑜𝑡𝑡𝑜𝑚 

•𝒏 𝑑𝑆                                    

= ∫ A
𝑓𝑟𝑜𝑛𝑡 

•(𝐞𝟏)𝑑𝑦𝑑𝑧 + ∫ A
𝑏𝑎𝑐𝑘 

•(−𝐞𝟏)𝑑𝑦𝑑𝑧 + ∫ A
𝑙𝑒𝑓𝑡 

•(−𝐞𝟐)𝑑𝑥𝑑𝑧  . 

+∫ A
𝑟𝑖𝑔ℎ𝑡 

•(𝐞𝟐) 𝑑𝑥𝑑𝑧 + ∫ A
𝑡𝑜𝑝 

•(𝐞𝟑) 𝑑𝑥𝑑𝑦 + ∫ A
𝑏𝑜𝑡𝑡𝑜𝑚 

•(−𝐞𝟑) 𝑑𝑥𝑑𝑦 

= ∫ ∫ 𝑎 𝑦 𝑑𝑦𝑑𝑧 +
𝑐

0

𝑏

0

∫ ∫ (−0)𝑑𝑦𝑑𝑧 + ∫ ∫ (−0)𝑑𝑧𝑑𝑦                               

+∫ ∫ 𝑏 𝑧 𝑑𝑥𝑑𝑧 +
𝑐

0

𝑎

0

∫ ∫ 𝑐 𝑥 𝑑𝑥𝑑𝑦 +
𝑏

0

𝑎

0

∫ ∫ (−0)𝑑𝑥𝑑𝑦                              

= 𝑎
𝑏2

2
𝑐 + 𝑎𝑏

𝑐2

2
+
𝑎2

2
𝑏𝑐 =

𝑉

2
(𝑎 + 𝑏 + 𝑐)  .                                                
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Thus, divergence theorem: 

∫ A
𝑠𝑖𝑥 𝑓𝑎𝑐𝑒𝑠 

•𝒏 𝑑𝑆 = ∫ (𝛁• A)𝑑𝑉
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒𝑝𝑝𝑒𝑑

  , 

 is satisfied. 

10.6 CIRCULATION OF A VECTOR FUNCTION: STOKE’S THEOREM 

Consider an open surface 𝑆 whose boundary is the closed loop 𝐿 as in Figure 10.9. We define the 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 of 

a vector function A in closed loop 𝐿 as the line integral 

∮A•𝐝𝐫

 

𝐿

  .                                                                 𝐸𝑞. (10.14) 

 

Figure 10.9. Circulation of a vector function A in loop 𝐿. 

Here 𝐝𝐫 is everywhere tangential to the loop 𝐿. In general, the circulation of a vector function in a loop 𝐿 has a 

very interesting property. Imagine that the area enclosed by loop 𝐿 is broken into two smaller areas, with each 

area enclosed by a smaller loop. Then, the sum of circulations of a vector function A in two smaller loops 

(calculated in the same sense as in the original loop) is equal to the circulation of A in the large original loop 𝐿.  

 

Figure 10.10. Breaking a loop L into two smaller pieces 𝐿𝑎 and 𝐿𝑏. 
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In order to have a clear visualization, imagine that the large loop is made up of a blue color line as in Figure 

10.10. This loop encloses an area 𝑆. Now, using a pair of scissors, we cut the area along the line 𝐿𝑎𝑏  to get two 

smaller areas 𝑆1 and 𝑆2. Also, during this cutting, the blue line is cut into two pieces 𝐿𝑎  and 𝐿𝑏. Clearly, 𝑆 = 𝑆1 +

𝑆2 and 𝐿 = 𝐿𝑎 + 𝐿𝑏. Area 𝑆1 is enclosed by loop 𝐿1 = 𝐿𝑎 + 𝐿𝑎𝑏  and area 𝑆2 is enclosed by loop 𝐿2 = 𝐿𝑏 + 𝐿𝑎𝑏. 

Now, circulation of A in loop 𝐿1 is 

∫ A • 𝐝𝐫
𝐿𝑎

+∫ A • 𝐝𝐫1
𝐿𝑎𝑏

  , 

where 𝐝𝐫1 is along the line of cut 𝐿𝑎𝑏. The circulation of A in loop 𝐿2 is 

∫ A • 𝐝𝐫
𝐿𝑏

+∫ A • 𝐝𝐫2
𝐿𝑎𝑏

  , 

where 𝐝𝐫2 is along the line of cut 𝐿𝑎𝑏. Thus, the sum of the circulations of A in loop 𝐿1 and in loop 𝐿2 becomes 

∫ A • 𝐝𝐫
𝐿𝑎

+∫ A • 𝐝𝐫1
𝐿𝑎𝑏

+∫ A • 𝐝𝐫
𝐿𝑏

+∫ A • 𝐝𝐫2
𝐿𝑎𝑏

  . 

If the sense of circulations in the two smaller loops is the same, as shown in Figure 9.10, then 𝐝𝐫1 = −𝐝𝐫2. So, 

the sum of circulations in loops 𝐿1 and 𝐿2 becomes 

∫ A • 𝐝𝐫
𝐿𝑎

+∫ A • 𝐝𝐫
𝐿𝑏

= ∫ A • 𝐝𝐫
𝐿𝑎+𝐿𝑏

= ∫A • 𝐝𝐫
𝐿

  , 

which is equal to the circulation of A in loop 𝐿. This result holds even when 𝑆1 and 𝑆2 are not coplanar. 

 

Figure 10.11. Planar versus nonplanar open surfaces. 

Generalization is achieved by noting that loop 𝐿 can enclose an infinite number of open surfaces. These surfaces 

need not be planar in shape and can be warped like a crumpled sheet of paper, as in Figure 10.11. Any one of 

these surfaces can be broken into a large number of smaller surface areas of any size and shape. Then the sum of 

circulations in loops surrounding these smaller surface areas is equal to the circulation in original loop 𝐿. For 

convenience, we take each of the smaller surface areas as a flat rectangle.  
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Circulation of A in the Loop Surrounding a Flat Rectangle  

Now, we will determine the circulation of a vector function A in the loop surrounding a flat rectangle, in the 𝑥– 𝑦 

plane, of side lengths ∆𝑥 and ∆𝑦, as shown in Figure 10.12. The area of the loop is 𝐝𝐒 = ∆𝑥∆𝑦 𝐞𝟑. the loop 

consists of four sides of the rectangle labeled 1, 2, 3, and 4. So, the circulation of A has four contributions, 

∮ A•𝐝𝐫

 

𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒

= ∫𝐴𝑥𝑑𝑥 +
1

∫𝐴𝑦𝑑𝑦
2

−∫𝐴𝑥𝑑𝑥 −
3

∫𝐴𝑦𝑑𝑦
4

  ,                                        

≅ 𝐴𝑥(1)∆𝑥 + 𝐴𝑦(2)∆𝑦 − 𝐴𝑥(3)∆𝑥 − 𝐴𝑦(4)∆𝑥  , 

= −[𝐴𝑥(3) − 𝐴𝑥(1)]∆𝑥 + [𝐴𝑦(2) − 𝐴𝑦(4)]∆𝑦  , 

 

Figure 10.12. A rectangular loop in the 𝑥– 𝑦 plane. 

or  

∮ A•𝐝𝐫

 

𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒

= − [
𝜕𝐴𝑥
𝜕𝑦
 ∆𝑦] ∆𝑥 + [

𝜕𝐴𝑦

𝜕𝑥
 ∆𝑥] ∆𝑦 = (𝛁 × A)𝑧 ∆𝑥∆𝑦 = (𝛁 × A)• 𝒏 𝑑𝑆  . 

Now, going back to any general open surface, with loop 𝐿 as its boundary, that is broken into a large number of 

smaller surface areas in the form of flat rectangles: 

∮A•𝐝𝐫

 

𝐿

= ∫ (𝛁 × A)
𝐴𝑛𝑦 𝑜𝑝𝑒𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝐿

•𝒏 𝑑𝑆  .                                  𝐸𝑞. (10.15) 

This is the statement of the Stoke’s theorem. 
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Example: Consider a vector function A = 𝒙𝒚 𝐞𝟏 + 𝒚𝒛 𝐞𝟐 + 𝒛𝒙 𝐞𝟑 and a square of side 𝒂 in the 𝒚– 𝒛 plane. Show 

that Stoke’s theorem is satisfied by the vector function A and the square loop. 

Solution:  

For this vector function, the curl is 

𝛁 × A = |

𝐞𝟏 𝐞𝟐 𝐞𝟑
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑥𝑦 𝑦𝑧 𝑧𝑥 

|                                                                                                                             

= 𝐞𝟏 [
𝜕

𝜕𝑦
(𝑧𝑥) −

𝜕

𝜕𝑧
(𝑦𝑧)] + 𝐞𝟐 [

𝜕

𝜕𝑧
(𝑥𝑦) −

𝜕

𝜕𝑥
(𝑧𝑥)] + 𝐞𝟑 [

𝜕

𝜕𝑥
(𝑦𝑧) −

𝜕

𝜕𝑦
(𝑥𝑦)]  , 

or  

𝛁 × A = −𝐞𝟏𝑦 − 𝐞𝟐𝑧 − 𝐞𝟑𝑥  . 

 

Figure 10.13. A square loop in the 𝑦– 𝑧 plane. 

Since the square lies in the 𝑦– 𝑧 plane and we will traverse it in the counterclockwise sense, 𝒏 = 𝐞𝟏. So, 

∫(𝛁 × A
𝑆

)•𝒏 𝑑𝑆 = ∫ ∫ (−𝐞𝟏𝑦 − 𝐞𝟐𝑧 − 𝐞𝟑𝑥) • 𝐞𝟏 𝑑𝑦 𝑑𝑧                           
𝑎

0

𝑎

0

 

= −∫ 𝑦 𝑑𝑦
𝑎

0

∫ 𝑑𝑧
𝑎

0

= −
𝑎2

2
∙ 𝑎 = −

𝑎3

2
   . 

Now, four sides of the square are labeled with numbers 1, 2, 3, and 4. Circulation of A in the square is 
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∫ A • 𝐝𝐫 = ∫ [𝑥𝑦 𝑑𝑥 + 𝑦𝑧 𝑑𝑦 + 𝑧𝑥 𝑑𝑧]
1+2+3+4𝑠𝑞𝑢𝑎𝑟𝑒

= 0 + ∫ 𝑦 𝑧 𝑑𝑦 + 0
1+2+3+4

  , 

since 𝑥 = 0 everywhere on the square in the 𝑦– 𝑧 plane. So, circulation becomes 

∫ A • 𝐝𝐫
𝑠𝑞𝑢𝑎𝑟𝑒

= ∫(𝑧 = 0) 𝑦𝑑𝑦
 

1

+∫𝑦𝑧 (𝑑𝑦 = 0)
 

2

+∫(𝑧 = 𝑎) 𝑦𝑑𝑦
 

3

+∫𝑦𝑧 (𝑑𝑦 = 0)
 

4

 

= 0 + 0 + 𝑎∫  𝑦𝑑𝑦
0

𝑎

+ 0 = −
𝑎3

2
  .                                            

Thus, Stoke’s theorem, 

∮ A•𝐝𝐫

 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑙𝑜𝑜𝑝 𝐿

= ∫ (𝛁 × A)
𝑆𝑞𝑢𝑎𝑟𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝐿

•𝒏 𝑑𝑆  . 

is satisfied. 
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PROBLEMS FOR CHAPTER 10 

1. Determine gradient (𝛁) and Laplacian (∇2) of 𝑟 and 1/𝑟 where 𝑟 =  √𝑥2 + 𝑦2 + 𝑧2 . 

2. Determine the divergence and curl of the vector function 𝑭 =
𝑦𝑧

𝑥
 𝐞𝐱 +

𝑧𝑥

𝑦
 𝐞𝐲 + 

𝑥𝑦

𝑧
 𝐞𝐳.  

3. If 𝐫 = 𝑥 𝐞𝐱 + 𝑦 𝐞𝐲 +  𝑧 𝐞𝐳 is the position vector and 𝑟 =  √𝑥2 + 𝑦2 + 𝑧2  is its magnitude, then determine, 

(a)    𝛁•(𝑟 𝒓)  ,  

(b)     𝛁 × (𝑟 𝒓)  

 (c)     𝛁2(𝑟2)  .  

4. Consider a vector function A = ln(𝑥𝑦𝑧) 𝐞𝐱 + ln(𝑦𝑧) 𝐞𝐲 + ln(𝑧) 𝐞𝐳.  For this vector determine 

(a) 𝛁 •  A  , 

(b) 𝛁 × A  , 

(c) ∇𝟐A  , 

(d) 𝛁 (𝛁 •  A)  , 

(e) 𝛁 × (𝛁 × A)  . 

(f) Using these results, verify 𝛁 × (𝛁 × A) = 𝛁 (𝛁 • A) − 𝛁 2 A  .  

5. Consider a vector function A = (𝑥2
 
−  𝑦2) 𝐞𝐱 + 𝑥𝑦𝑧 𝐞𝐲  −  (𝑥 +  𝑦 +  𝑧) 𝐞𝐳 and a cube bounded by the 

planes 𝑥 =  0, 𝑥 =  1, 𝑦 =  0, 𝑦 =  1, 𝑧 =  0 and 𝑧 =  1. 

(a) Determine the volume integral ∫ 𝛁 •  A dV
 

𝑉
, where 𝑉 is the volume of the cube. 

(b) Next determine the surface integral ∫ A • 𝐧 𝑑𝑆
 

𝑆
, where S is the surface area of the cube. Compare with 

the result of part (a) 

6. Consider a vector function A = (2𝑥 −  𝑦) 𝐞𝐱 + 𝑦𝑧
2 𝐞𝐲 + 𝑦2𝑧 𝐞𝐳. Also, 𝑆 is the flat surface area of a rectangle 

bounded by the lines 𝑥 =  ± 1 and 𝑦 =  ± 2 and 𝐶 is its (rectangular) boundary in the 𝑥 − 𝑦 plane. 

(a) Determine the line integral ∫A ∙ 𝐝𝐫 

(b) Next determine the surface integral ∫ (𝛁 × A) • 𝐧 𝑑𝑆
 

𝑆
. Compare with the result of part (a). 

7. Biomedical Physics Application Entomologists have known that fruit flies are attracted to sugary substances 

and feed on overripe fruit as well as on spilled sodas. The fruit flies approach the fruit along the direction in 

C 
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which the smell of the decaying fruit is strongest. The concentration of the smell of the rotten fruit at a point 

(𝑥, 𝑦, 𝑧), due to some overripe fruit at the origin (0, 0, 0), is, 

𝐶(𝑥, 𝑦, 𝑧) = 𝐶𝑜 exp(−2 𝑥
2 − 𝑦2 + 𝑧2)  .  

Here 𝑥, 𝑦 and 𝑧 are in meters. If a fruit fly detects the presence of rotten food while it is at the point 

(0.6 𝑚, 0.8 𝑚, 0.9 𝑚), determine the unit vector along the initial direction in which the fruit fly approaches the 

food.  

  



192 

 

Chapter 11: First Order Differential Equations 

In our previous discussion of calculus, we were given a known function 𝐹(𝑥) and were asked to find either the 

derivative or the integral of this function. In some other situations, we are given the first, second or higher order 

derivative of an unknown function and are asked to figure out the function. That brings us to the domain of 

differential equations. Our aim in this chapter is to provide merely a flavor of differential equations, so we will 

confine our attention only to first order ordinary differential equations. The prolific topics related to differential 

equations, ordinary as well as partial, are covered in books which are entirely devoted to this subject. 

11.1 A FIRST ORDER DIFFERENTIAL EQUATION 

Consider the case where an unknown function 𝑦(𝑥), which is yet to be determined, satisfies, 

𝑑𝑦

𝑑𝑥
= 𝐹(𝑥)   or    

𝑑𝑦

𝑑𝑥
= 𝐺(𝑦)   or   

𝑑𝑦

𝑑𝑥
= 𝐻(𝑥, 𝑦)  ,                 𝐸𝑞. (11.1) 

where the functional form of 𝐹(𝑥) or 𝐺(𝑦) or 𝐻(𝑥, 𝑦) is known. Such equations are called differential equations. 

The order of a differential equation is the order of highest derivative appearing in the equation. An 𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 

differential equation involves derivatives of a function of a single independent variable. All equations shown in 

Eq. (11.1) are first order ordinary differential equations. A 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 differential equation, on the other hand, 

involves derivative of a function of multiple variables. The wave equation, that we encountered in Chapter 1, 

serves as an example of a partial differential equation since it contains the following derivatives,  

𝜕2𝑓

𝜕𝑥2
=
1

𝑣2 
𝜕2𝑓

𝜕𝑡2
  . 

The wave equation is a second order equation. When a differential equation for the function 𝑦(𝑥) is integrated, a 

constant of integration, 𝐶, will appear naturally as a part of integration. This constant will need to be evaluated 

using the constraints on the function 𝑦 at some fixed value of variable 𝑥. Such constraining relationships are 

called the boundary conditions. If the variable in the differential equation is time, 𝑡, the boundary conditions are 

referred to as the initial conditions. 

Several first order differential equations can be solved by direct integration. The following examples will illustrate 

this point. 

Example: Solve the differential equation  

                  
𝑑𝑦

𝑑𝑥
=

𝑥

√1 − 𝑥2
                     |𝑥| ≤ 1  ,                                                 𝐸𝑞. (11.2)  
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for the function 𝒚(𝒙) with the boundary condition 𝒚(𝟏)  =  𝟎. 

Solution: On integrating both sides of the differential equation (11.2) with respect to variable 𝑥, we get 

𝑦 = ∫
𝑥𝑑𝑥

√1 − 𝑥2
 +  𝐶  . 

To do the integral, substitute 1 − 𝑥2 = 𝑢2, or 𝑥 𝑑𝑥 = −𝑢 𝑑𝑢, 

∫
𝑥𝑑𝑥

√1 − 𝑥2
= −∫

𝑢 𝑑𝑢

𝑢 
= −𝑢 = −√1 − 𝑥2  . 

So, 𝑦 = −√1 − 𝑥2 + 𝐶 is the solution of the differential equation and the boundary condition gives 𝐶 = 0. 

Example: Solve the differential equation for 𝒚(𝒙), 

                 
𝑑𝑦

𝑑𝑥
= 1 + 𝑦2  ,                                                                   𝐸𝑞. (11.3) 

with boundary condition 𝒚(𝟎) = 𝟎. 

Solution: Since we have to solve for function 𝑦 in terms of variable 𝑥, we separate out the 𝑥 and 𝑦 dependent 

parts in Eq. (11.3) and then integrate to get 

∫
𝑑𝑦

1 + 𝑦2
= ∫𝑑𝑥 + 𝐶  . 

Or 

arctan 𝑦 = 𝑥 + 𝐶  . 

Or 𝑦 = tan(𝑥 + 𝐶)  is the solution of the differential equation. The boundary condition implies 𝐶 = 0. 

In some problems 
𝑑𝑦

𝑑𝑥
 can be written in a separable form as 

𝑑

𝑑𝑥
= 𝑔(𝑥)ℎ(𝑦)  . 

Then, 

∫
𝑑𝑦

ℎ(𝑦)
=  ∫𝑔(𝑥)𝑑𝑥 +  𝐶  . 
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Example: Solve the following differential equation for 𝒚(𝒙), 

                                 
𝑑𝑦

𝑑𝑥
=
9 exp 𝑥

𝑦2
  ,                                                                           𝐸𝑞. (11.4) 

with 𝒚(𝟎) = 𝟑. 

Solution: Write Eq. (11.4) in separable form and then integrate to get 

∫𝑦2𝑑𝑦 = ∫9exp 𝑥 𝑑𝑥 +  𝐶  . 

Or, 

𝑦3

3
= 9 exp 𝑥 + 𝐶  . 

On substituting boundary condition, 𝐶 = 0. Thus, the function 𝑦(𝑥) is, 

𝑦 = 3 exp (
𝑥

3
)  . 

11.2 INTEGRATING FACTOR 

Some first order differential equations are of the form 

𝑎
𝑑𝑦

𝑑𝑥
+ 𝑏𝑦 = 𝐹(𝑥)  ,                                                           𝐸𝑞. (11.5𝑎) 

where 𝑎 and 𝑏 are constants. These equations are solved by introducing an 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟. The integrating 

factor for equations of this type is 

exp (
𝑏

𝑎
𝑥)  . 

First, we rewrite Eq. (11.5a) after dividing by constant 𝑎, 

𝑑𝑦

𝑑𝑥
+
𝑏

𝑎
𝑦 =

1

𝑎
𝐹(𝑥)  .                                                              𝐸𝑞. (11.5𝑏) 

On multiplying both sides of Eq. (11.5b) by the integrating factor, the left-hand side becomes an exact 

differential, 
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𝑑

𝑑𝑥
[𝑦 exp (

𝑏

𝑎
𝑥)] =

exp (
𝑏
𝑎
𝑥)

𝑎
𝐹(𝑥)  . 

Integrate both sides of this equation with respect to 𝑥 to obtain the solution 

𝑦 exp (
𝑏

𝑎
𝑥) =

1

𝑎
 ∫ exp (

𝑏

𝑎
𝑥)  𝐹(𝑥)𝑑𝑥 + 𝐶  ,                                     𝐸𝑞. (11.6) 

where 𝐶, the constant of integration, will be determined by the boundary conditions. 

Example: 𝑨𝒏 𝑹– 𝑳 𝒄𝒊𝒓𝒄𝒖𝒊𝒕. The circuit consisting of an inductor of inductance 𝑳 and a resistor of resistance 𝑹 

is connected to a source of alternating current of frequency 𝝎 and voltage 𝑽𝟎 𝐜𝐨𝐬(𝝎𝒕). Using Kirchhoff’s rule 

in physics, the current 𝑰(𝒕) in the circuit satisfies the first order differential equation 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 = 𝑉0 cos(𝜔𝑡)   .                                                              𝐸𝑞. (11.7𝑎) 

Determine the current 𝑰(𝒕) as a function of time 𝒕. 

Solution: In this case the differential Eq. (11.7a) is of the same form as Eq. (11.5a). So, the integrating factor is 

exp (
𝑅

𝐿
𝑡). On multiplying the differential Eq. (11.7a) by the integrating factor and dividing by 𝐿, it becomes 

𝑑

𝑑𝑡
[exp (

𝑅

𝐿
𝑡)  𝐼(𝑡)] =

𝑉0
𝐿
exp (

𝑅

𝐿
𝑡) cos(𝜔𝑡)  . 

On integrating both sides of this equation with respect to 𝑡 using the standard integral, 

∫exp(𝑎𝑡) cos(𝑏𝑡)  𝑑𝑡
 

=
exp(𝑎𝑡)

[𝑎2 + 𝑏2]
 [a cos(𝑏𝑡) + 𝑏 sin(𝑏𝑡)]  , 

we obtain 

exp (
𝑅

𝐿
𝑡) 𝐼(𝑡) =

𝑉0
𝐿

exp (
𝑅𝑡
𝐿
)

[(
𝑅
𝐿
)
2

+ 𝜔2]

 [
𝑅

𝐿
cos(𝜔𝑡) +𝜔 sin(𝜔𝑡)] + 𝐶  . 

The constant of integration 𝐶 is determined from the initial condition. If, for example, at 𝑡 = 0, 𝐼 = 0, then 

𝐶 = −
𝑉0
𝐿

𝑅

𝐿

1

[(
𝑅
𝐿
)
2

+ 𝜔2]

   , 

so that, finally, 
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𝐼(𝑡) =
𝑉0
𝐿

1

[(
𝑅
𝐿
)
2

+ 𝜔2]

 [
𝑅

𝐿
cos(𝜔𝑡) +𝜔 sin(𝜔𝑡)] −

𝑉0
𝐿

𝑅

𝐿

exp (−
𝑅𝑡
𝐿
)

[(
𝑅
𝐿
)
2

+ 𝜔2]

  .                   𝐸𝑞. (11.7𝑏) 

Example: 𝑴𝒐𝒍𝒆𝒄𝒖𝒍𝒂𝒓 𝑰𝒔𝒐𝒎𝒆𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏. Some molecules with the same number of identical atoms can exist in 

several stable configurations or arrangements of their component atoms. Such configurations are called 

different isomers of the same molecule. For example, the molecule of propane-based alcohol, commonly 

called propanol, has two common isomers. The first isomer, 1-propanol, a primary alcohol, and the second 

isomer, 2-propanol, a secondary alcohol, have structural formulas as shown in the Figure 11.1. 

 

 Figure 11.1. Two isomers of propanol. 

The propanol molecule is of significant importance in biological physics. Determine the ratio of populations of 

two isomers of the propanol molecule in equilibrium. 

Solution: A typical molecule isomerizes (or flips) between two configurations 𝑀1 and 𝑀2. The probability that the 

molecule in configuration 𝑀2 flips into 𝑀1 in time ∆𝑡 is proportional to ∆𝑡—the longer the time period ∆𝑡, the 

higher the probability. Thus, the flipping probability is 𝑘+∆𝑡. The constant of proportionality 𝑘+, which 

represents the probability per unit time, is called the reaction rate. Stated differently, the rate of change of a 

single molecule from configuration 𝑀2 to configuration 𝑀1 is 𝑘+. If there are 𝑁2 molecules in configuration 𝑀2 

then rate of change of all molecules from 𝑀2 to 𝑀1 is 𝑘+𝑁2. Similarly, probability that the molecule in 

configuration 𝑀1 flips into 𝑀2 in time ∆𝑡 is 𝑘−∆𝑡, where 𝑘− is the reaction rate for the reverse isomerization. The 

complete isomerization process can be expressed as 

𝑀2

𝑘+
⇌
𝑘−

𝑀1 

Note that in this isomerization process a single molecule of first configuration is converted into a single molecule 

of second configuration. Thus, the total number of molecules, 𝑁𝑡𝑜𝑡 = 𝑁1 + 𝑁2, stays the same at all times. 
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Assume that in the beginning, at 𝑡 = 0, 𝑁2 = 𝑁𝑡𝑜𝑡 and 𝑁1 = 0, which is the initial condition. The rates of change 

of 𝑁1, the number of molecules with configuration 𝑀1, and of 𝑁2, the number of molecules with configuration 

𝑀2, are 

𝑑𝑁2
𝑑𝑡

= −𝑘+𝑁2 + 𝑘−𝑁1 = −(𝑘+ + 𝑘−)𝑁2 + 𝑘− 𝑁𝑡𝑜𝑡  , 

𝑑𝑁1
𝑑𝑡

= +𝑘+𝑁2 − 𝑘−𝑁1 = −(𝑘+ + 𝑘−)𝑁1 + 𝑘+ 𝑁𝑡𝑜𝑡 = −
𝑑𝑁2
𝑑𝑡
  . 

Thus, the first-order differential equation satisfied by 𝑁2(𝑡) is 

𝑑𝑁2
𝑑𝑡

+ (𝑘+ + 𝑘−)𝑁2 = 𝑘− 𝑁𝑡𝑜𝑡  ,                                              𝐸𝑞. (11.8𝑎) 

which is of the same form as Eq. (11.5b). The integrating factor of this equation is exp[(𝑘+ + 𝑘−)𝑡]. Therefore, 

𝑑

𝑑𝑡
{𝑁2 exp[(𝑘+ + 𝑘−)𝑡]} = 𝑘−𝑁𝑡𝑜𝑡 exp[(𝑘+ + 𝑘−)𝑡]  , 

which on integration gives 

𝑁2(𝑡) =
𝑘−𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

+ 𝐶2 exp[−(𝑘+ + 𝑘−)𝑡]  .                                  𝐸𝑞. (11.8𝑏) 

Here 𝐶2 is the constant of integration. Similarly,  

𝑁1(𝑡) =
𝑘+𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

+ 𝐶1 exp[−(𝑘+ + 𝑘−)𝑡]  ,                                          𝐸𝑞. (11.8𝑐) 

where 𝐶1 is the constant of integration. Using the initial condition, we get 

𝐶1 = − 𝐶2 = −
𝑘+𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

  . 

Thus  

𝑁2(𝑡) =
𝑘−𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

+
𝑘+𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

exp[−(𝑘+ + 𝑘−)𝑡] 

and  

𝑁1(𝑡) =
𝑘+𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

[1 − exp[−(𝑘+ + 𝑘−)𝑡]]  . 
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Note 𝑁1(𝑡) + 𝑁2(𝑡) = 𝑁𝑡𝑜𝑡  at all times. Also,  𝑁2(0) = 𝑁𝑡𝑜𝑡 ,    𝑁1(0) = 0. Finally, after a sufficiently long time 

[𝑡 → ∞], when equilibrium is attained, 

𝑁2(∞) =
𝑘−𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

  , 𝑁1(∞) =
𝑘+𝑁𝑡𝑜𝑡
(𝑘+ + 𝑘−)

  . 

Thus, at equilibrium 

𝑁1,𝑒𝑞 =
𝑘+

𝑘+ + 𝑘−
𝑁𝑡𝑜𝑡 , 𝑁2,𝑒𝑞=

𝑘−
𝑘+ + 𝑘−

 𝑁𝑡𝑜𝑡   and   
𝑑𝑁2
𝑑𝑡

= 0 as well as 
𝑑𝑁1
𝑑𝑡

= 0  . 

Also, note that at equilibrium, 

𝑁1,𝑒𝑞

𝑁2,𝑒𝑞
=
𝑘+
𝑘−
  , 

that is, the ratio of population of two isomers is the same as the ratio of two rates. 

Example: 𝑵𝒆𝒘𝒕𝒐𝒏’𝒔 𝑳𝒂𝒘 𝒐𝒇 𝑪𝒐𝒐𝒍𝒊𝒏𝒈. It is a common experience that if a glass of water at room temperature 

is placed outdoors on a hot day in summer, the temperature of water starts rising quickly. Similarly, if the 

same glass of water at room temperature is placed outdoors during a cold wintry night when the temperature 

has plunged due to the polar vortex, the temperature of water in the glass starts falling rapidly. Newton 

formulated the Law of Cooling by stating that the rate of change of temperature of a body, at any time 𝒕, is 

proportional to the difference between the constant temperature of the body’s surroundings, 𝑻𝒔, and the 

temperature of the body, 𝑻(𝒕), at time 𝒕. Mathematically, 

𝒅𝑻(𝒕)

𝒅𝒕
= 𝑪 [𝑻𝒔 − 𝑻(𝒕)]  , 

where 𝑪 (𝑪 > 𝟎) is the constant of proportionality. This is a first-order differential equation whose solution 

provides the temperature of a body, versus the constant temperature of its surroundings, as a function of 

time. Determine an explicit expression for the temperature of the body, T(t), at any time t. 

Solution: The differential equation to be solved is 

𝑑𝑇(𝑡)

𝑑𝑡
+ 𝐶 𝑇(𝑡) = 𝐶 𝑇𝑠  .                                          𝐸𝑞. (11.9𝑎) 

If we define a new function, 𝑢(𝑡), as 𝑢(𝑡) = 𝑇(𝑡) − 𝑇𝑠, then 

𝑑𝑢(𝑡)

𝑑𝑡
= −𝐶 𝑢(𝑡)    or     

𝑑𝑢(𝑡)

𝑢
= −𝐶 𝑑𝑡  .                                           𝐸𝑞. (11.9𝑏) 
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A straightforward integration gives 

ln 𝑢(𝑡) = −𝐶 𝑡 + 𝑘  , 

where 𝑘 is the constant of integration. This equation can be rewritten as 

𝑢(𝑡) = 𝑇(𝑡) − 𝑇𝑠 = exp(−𝐶 𝑡 + 𝑘)  , 

and can be rearranged as 

𝑇(𝑡) = 𝑇𝑠 + exp(−𝐶 𝑡 + 𝑘)  . 

The constant of integration, 𝑘, can be obtained by setting 𝑡 = 0, to get 

exp(𝑘) = 𝑇(0) − 𝑇𝑠  , 

so that, finally, 

𝑇(𝑡) = 𝑇𝑠 + [𝑇(0) − 𝑇𝑠] exp(−𝐶 𝑡)   .                                     𝐸𝑞. (11.9𝑐) 

Note that at a much later time, that is, 𝑡 → ∞, 𝑇(∞) = 𝑇𝑠 and the temperature of the body becomes equal to 

the temperature of its surroundings, as expected. 

11.3 APPLICATIONS OF NUCLEAR PHYSICS 

Without any doubt, nuclear physics has made tremendous contributions to modern medicine. Radiology and 

nuclear medicine involve the use of radioactive nuclei to diagnose, evaluate, and treat various diseases. The 

nucleus of any atom contains protons and neutrons. A single nuclear species, having unique values of the 

number of protons and number of neutrons, is called a nuclide. About 80% of the nuclides occurring on the Earth 

are stable nuclides; that is, they do not disintegrate, or decay, into other nuclides. On the other hand, about 20% 

of the nuclides are unstable, or radioactive, nuclides which can decay into other stable or unstable nuclides. In a 

sample of radioactive material, the number of radioactive nuclei continues to decrease with time as some of 

them disintegrate into other nuclides. In a radioactive transformation, the disintegrating nuclides are called 

𝑝𝑎𝑟𝑒𝑛𝑡 nuclides and they decay into so-called 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 nuclides. Generally, the rate at which the parent 

nuclides decay varies from nuclide to nuclide. If 𝑁(𝑡) is the number of radioactive nuclides in a sample, then the 

number 𝑑𝑁 of nuclides that will undergo disintegration in time 𝑑𝑡 will be proportional both to 𝑑𝑡 as well as to 

𝑁(𝑡). Saying this differently, the longer the time period 𝑑𝑡, the more decays occur, and the larger the number 𝑁 

of nuclides available to decay, the more decays occur. Thus, 

𝑑𝑁 = −𝜆 𝑁 𝑑𝑡  , 
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where the negative sign signifies a decrease in the number 𝑁. The constant of proportionality 𝜆 is called the 

decay constant and it is different for different nuclides. Therefore, 

𝑑𝑁

𝑑𝑡
+ 𝜆 𝑁 = 0  .                                                         𝐸𝑞. (11.10) 

Example: 𝑹𝒂𝒅𝒊𝒐𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚. In a sample of radioactive material, the number of nuclides at 𝒕 = 𝟎 is 𝑵(𝟎). 

Determine 𝑵(𝒕), the number of radioactive nuclides later at time 𝒕. Also, determine the time at which the 

number of radioactive nuclides has decreased to half of the number at 𝒕 = 𝟎. This time is called the half-life, 

𝑻𝟏/𝟐, of the radioactive sample. 

Solution: The first order differential equation satisfied by 𝑁(𝑡) is 

𝑑𝑁

𝑑𝑡
= −𝜆 𝑁  , 

which can be rewritten as 

𝑑𝑁

𝑁
= −𝜆 𝑑𝑡  . 

A simple integration of this equation gives 

ln𝑁(𝑡) = −𝜆 𝑡 + 𝐶  . 

Here 𝐶 is the constant of integration. Its value can be obtained using the initial condition that at 𝑡 = 0, 𝑁 =

𝑁(0). So, 𝐶 = ln𝑁(0). Therefore, 

ln𝑁 = −𝜆 𝑡 + ln𝑁(0)  , 

or 

𝑁(𝑡) = 𝑁(0) exp(−𝜆 𝑡)   .                                                  𝐸𝑞. (11.11) 

To determine the half-life, note that at 𝑡 = 𝑇1/2, we have 𝑁 = 𝑁(0)/2, so that 

1

2
= exp(−𝜆 𝑇1/2)  , 

or  

𝑇1/2 =
𝑙𝑛 2

𝜆
  .                                              𝐸𝑞. (11.12) 
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Thus, starting from the original number 𝑁(0), the number of remaining radioactive nuclides after each 

successive time interval of 𝑇1/2 are 
𝑁(0)

2
,
𝑁(0)

4
,
𝑁(0)

8
, … and so on. 

Example: 𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒊𝒗𝒆 𝑹𝒂𝒅𝒊𝒐𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚. A radioactive nuclide 𝑨 decays into a daughter nuclide 𝑩 with a decay 

constant of 𝝀𝑨. The daughter nuclide 𝑩 itself is radioactive and it decays into a stable nuclide 𝑪 with a decay 

constant of 𝝀𝑩. Schematically, the nuclear reaction can be expressed as 

𝑨
     𝝀𝑨    
→    𝑩

      𝝀𝑩     
→    𝑪  . 

If at the beginning, that is, at 𝒕 = 𝟎, the number of nuclides is, 𝑵𝑨(𝟎) = 𝑵𝟎 𝐚𝐧𝐝 𝑵𝑩(𝟎) = 𝟎, determine the 

number of nuclides later at time 𝒕. 

Solution: Following the previous example, since the parent 𝐴 decays only into the daughter 𝐵, the first order 

differential equation for 𝑁𝐴(𝑡) and its solution are 

𝑑𝑁𝐴
𝑑𝑡

= −𝜆𝐴 𝑁𝐴  ,                                                     𝐸𝑞. (11.13𝑎) 

and 

𝑁𝐴(𝑡) = 𝑁0 exp(−𝜆𝐴 𝑡)   .                                       𝐸𝑞. (11.13𝑏) 

The daughter 𝐵 is produced by decay of parent 𝐴 and is lost by its own decay into 𝐶. So, the first order 

differential equation for 𝑁𝐵(𝑡) is 

𝑑𝑁𝐵(𝑡)

𝑑𝑡
= 𝜆𝐴 𝑁𝐴 − 𝜆𝐵  𝑁𝐵   .                                    𝐸𝑞. (11.14) 

The first term on the right-hand side represents the rate of production of B and the second term represents the 

rate of decay of B. Substituting 𝑁𝐴(𝑡) from Eq. (11.13b) into the right-hand side of Eq. (11.14), we get 

𝑑𝑁𝐵(𝑡)

𝑑𝑡
+ 𝜆𝐵  𝑁𝐵 = 𝜆𝐴 𝑁0 exp(−𝜆𝐴 𝑡)   .                                    𝐸𝑞. (11.15) 

This differential equation is of the same form as Eq. (11.5b). In this case, the integrating factor is exp(𝜆𝐵  𝑡) and 

the solution of Eq. (11.15) is same as in Eq. (11.6), namely, 

𝑁𝐵(𝑡) exp(𝜆𝐵  𝑡) = 𝜆𝐴 𝑁0  ∫ exp[(𝜆𝐵 − 𝜆𝐴)𝑡]  𝑑𝑡 + 𝐶 =
𝜆𝐴 𝑁0
𝜆𝐵 − 𝜆𝐴

 exp[(𝜆𝐵 − 𝜆𝐴)𝑡] + 𝐶  , 

where 𝐶 is the constant of integration. Using the initial condition for 𝑁𝐵(𝑡) at 𝑡 = 0, 
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𝐶 = −
𝜆𝐴 𝑁0
𝜆𝐵 − 𝜆𝐴

  , 

so that 

𝑁𝐵(𝑡) =
𝜆𝐴 𝑁0
𝜆𝐵 − 𝜆𝐴

 [exp(−𝜆𝐴 𝑡) − exp(−𝜆𝐵  𝑡)]  .                                          𝐸𝑞. (11.16) 

Eq. (11.16) provides the number of daughter nuclides as a function of time. On comparing the half-life of parent 

A with the half-life of daughter B, we arrive at two conclusions. First, if the half-life of the parent is much larger 

than the half-life of the daughter, it implies, using Eq. (11.12), that 𝜆𝐴 is much smaller than 𝜆𝐵. Then, 𝜆𝐵 − 𝜆𝐴 ≈

𝜆𝐵  and exp(−𝜆𝐴 𝑡) is much larger than exp(−𝜆𝐵  𝑡), so that 

𝑁𝐵(𝑡) =
𝜆𝐴 𝑁0
𝜆𝐵

 exp(−𝜆𝐴 𝑡)  . 

Using Eq. (11.13b), it means that 

𝜆𝐴𝑁𝐴(𝑡) = 𝜆𝐵𝑁𝐵(𝑡)               or                  
𝑑𝑁𝐴
𝑑𝑡

=
𝑑𝑁𝐵
𝑑𝑡

  .                          𝐸𝑞. (11.17) 

So, after a sufficiently long time, both the parent and daughter nuclides disintegrate at the same rate. Second, 

we conclude that if the half-life of the parent is much shorter than the half-life of the daughter, no equilibrium 

can be reached since the parent nuclide will disintegrate quickly, leaving behind a much longer-lived daughter 

nuclide. 
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PROBLEMS FOR CHAPTER 11 

1. Determine the function 𝑢(𝑡) satisfying the differential equation 

𝑑𝑢

𝑑𝑡
=  
𝑡2 + 1

cos 𝑢
 

and 𝑢(0)  =  𝜋/2. 

2. Determine the function 𝑦(𝑥) satisfying 

𝑑𝑦

𝑑𝑥
=  
1

2

𝑦

𝑥
 

with 𝑦(4)  =  1. 

3. On a calculus exam, students were asked to use the product rule to determine the derivative of a function 

𝐹(𝑥) =  𝑓(𝑥) 𝑔(𝑥). A student forgot the product rule but mistakenly assumed that product rule was, 

𝑑𝐹

𝑑𝑥
=  
𝑑𝑓(𝑥)

𝑑𝑥

𝑑𝑔(𝑥)

𝑑𝑥
  . 

Luckily, the student got the correct answer. 

If one of the functions in the product was, 𝑔(𝑥) = exp(3𝑥), then set up a a first-order differential equation for 

the other function 𝑓(𝑥). 

Solve the differential equation to obtain the second function 𝑓(𝑥). 

4. Biomedical Physics Application. A glucose solution is administered intravenously into the bloodstream at a 

constant rate r. As the glucose is added, it is converted into other substances and removed from the 

bloodstream at a rate that is proportional to the concentration at that time. Thus, a model for the concentration 

C(t) of the glucose solution in the bloodstream is 

𝑑𝐶

𝑑𝑡
=  𝑟 − 𝑘𝐶 

where k is a positive constant.  

(a) Determine the concentration at any time t if the initial concentration at t = 0 is Co. 

(b) Determine the value of the concentration at sufficiently long time (𝑡 → ∞) after the administration 

begins. How will this value change if Co is doubled?  

5. Biomedical Physics Application. A device called a pacemaker can be implanted inside the human body to 

monitor the heart activity. The pacemaker is essentially a capacitor, with capacitance 𝐶, that stores some charge 
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at a certain voltage 𝑉. If the heart skips a beat, the pacemaker releases the stored energy through a lead wire of 

resistance 𝑅 to get the heart back to beating normally. In a pacemaker circuit, the charge, 𝑄(𝑡), on the plates of 

the capacitor varies with time as 

𝑅
𝑑𝑄

𝑑𝑡
+ 
𝑄

𝐶
= 𝑉 exp(−𝜆𝑡) 

where 𝜆 =  2/(𝑅𝐶). If at 𝑡 =  0, 𝑄(𝑡 = 0)  =  𝐶𝑉, solve the above differential equation to obtain 𝑄(𝑡) as a 

function of time, 𝑡. 

6. Biomedical Physics Application. On a clear wintry night, at midnight, when the outdoor temperature is 0°𝐶, 

the body of an old man was discovered on a park bench. The temperature of the body at the time of discovery 

was determined to be 28°𝐶. The body temperature of a normal healthy adult is 37°𝐶. It took an hour to take 

the body from the park to the nearby hospital. At 1:00 AM, the pathologist doing the autopsy finds the 

temperature of the body to be 24°𝐶 and declares the cause of death to be hypothermia. Based on this 

information, determine the time of death for the old man. 

7. Biomedical Physics Application. In medical research, radioactive materials are helpful in identifying and 

treating diseases in a noninvasive manner. In a chain of successive radioactivity, a radioactive nuclide 𝐴 decays 

into a daughter nuclide 𝐵 and the daughter nuclide 𝐵 decays into a stable nuclide 𝐶. The decay constants (or 

half-lives) of both the parent nuclide and the daughter nuclide are equal. If at 𝑡 = 0 the number of nuclides is 

𝑁𝐴(0) = 𝑁0 and 𝑁𝐵(0) = 0, then determine the time when the population of the daughter nuclide, 𝐵, is 

largest. Express this time in terms of the half-life of either nuclide. 
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Chapter 12: Diffusion Equation 

Let us start our discussion of diffusion through some everyday observations. Imagine placing a sugar cube in a 

glass of water. After a few hours, you notice that sugar cube is no longer there; it has become part of the water 

and now the water tastes sweet. The sugar cube has dissolved due to diffusion. This process is similar to the 

process of gas exchange in multicellular organisms. Other examples of diffusion include noticing the smell of 

spray perfume or cigarette smoke even when the person using perfume or smoking is far away from the 

observer.  

12.1 FICK’S LAW 

The process of diffusion refers to the movement of a substance, or more accurately its atoms and molecules, 

from a region of higher concentration to a region of lower concentration. Diffusion is important in biology in 

transporting biomolecules from one location to another. Thermal energy can spontaneously move the molecules, 

and this spontaneous motion is governed by the diffusion equation. Diffusion plays a role in cellular transport 

and membrane permeability, and in determining conformation of certain large biomolecules, along with other 

applications. The rate of enzymatic reaction in many cases is also diffusion-limited as it determines the time it 

will take the reactant molecules to come closer and interact with each other. 

To begin with, let us consider the flow of diffusing particles back and forth in one dimension (say, along the 𝑥-

axis) across a surface 𝑆 during a time 𝑡. The number of particles flowing across is directly proportional to time 𝑡 

and to area 𝑆. We define net flux, 𝐽𝑥, as the number of particles flowing per unit area per unit time. It was 

empirically noted by Fick that the net flux is proportional to the rate at which the concentration of particles 

varies with distance (that is, the gradient of the concentration). In other words, Fick’s law states 

𝐽𝑥 = −𝐷
𝜕𝐶

𝜕𝑥
   , 

where 𝐶 is the concentration (that is, number of particles per unit volume). The negative sign is indicative of the 

direction of the flow of particles. The direction of flux, 𝐽𝑥, is the direction of increasing 𝑥 and of decreasing 

concentration, 𝐶. The constant of proportionality 𝐷 is called the diffusion constant and it has dimensions of 

[L2/𝑇]. Similarly, the flow of particles along 𝑦 and 𝑧 directions satisfy 

𝐽𝑦 = −𝐷
𝜕𝐶

𝜕𝑦
  , 

𝐽𝑧 = −𝐷
𝜕𝐶

𝜕𝑧
   . 



206 

 

So, in three dimensions, we can write Fick’s law as 

𝑱 = −𝐷 𝛁 𝐶  .                                                           𝐸𝑞. (12.1) 

Equation of Continuity 

In order to study the diffusion of particles in three-dimensional space, let us break the whole space into tiny 

boxes. Over time, as particles in the whole space diffuse from one box to another, the total number of particles 

in the whole space remains fixed. In other words, 

𝑁 = ∫ 𝐶(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑧

 

𝑤ℎ𝑜𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

                                     𝐸𝑞. (12.2) 

is constant, independent of time. 

 

Figure 12.1. Particles diffusing into and out of a box. 

Let us consider flow of particles through a box of sides Δ𝑥, Δ𝑦 and Δ𝑧 between times 𝑡 and 𝑡 + Δ𝑡. The volume of 

this box is Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧. The concentration of particles in the box at time 𝑡 is 𝐶(𝑥, 𝑦, 𝑧, 𝑡) and the number of 

particles in the box at time 𝑡 is 𝑛(𝑡) = 𝐶(𝑥, 𝑦, 𝑧, 𝑡)𝛥𝑉. Similarly, the concentration of particles in the box at a 

later time 𝑡 + ∆𝑡 is 𝐶(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) and the number of particles in the box at later time 𝑡 + ∆𝑡 is 𝑛(𝑡 + ∆𝑡) =

𝐶(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡)Δ𝑉. Now using the definition of flux as the particles flowing per unit area per unit time, we get 

[ 𝐽𝑥(𝑥 + Δ𝑥) − 𝐽𝑥(𝑥)]Δ𝑡Δ𝑦Δ𝑧+[ 𝐽𝑦(𝑦 + Δ𝑦) − 𝐽𝑦(𝑦)]Δ𝑡Δ𝑥Δ𝑧+[ 𝐽𝑧(𝑧 + Δ𝑧) − 𝐽𝑧(𝑧)]Δ𝑡Δ𝑥Δ𝑦

= −{𝑛(𝑡 + Δ𝑡) − 𝑛(𝑡)}  . 

The negative sign on the right-hand side signifies that if more particles diffuse out of the box than diffuse into the 

box, then the number of particles in the box at the later time will be less than at the earlier time. Similarly, if 

more particles diffuse into the box than out of the box, then the number of particles in the box at the later time 

will be more than at the earlier time. Now, keeping only first-order terms in the difference of fluxes, we get 
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[(
𝜕𝐽𝑥
𝜕𝑥
) Δ𝑥] Δ𝑡Δ𝑦Δ𝑧 + [(

𝜕𝐽𝑦

𝜕𝑦
)Δ𝑦] Δ𝑡Δ𝑥Δ𝑧 + [(

𝜕𝐽𝑧
𝜕𝑧
) Δ𝑧] Δ𝑡Δ𝑥Δ𝑦 = −{𝐶(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) − 𝐶(𝑥, 𝑦, 𝑧, 𝑡)}Δ𝑉  . 

On dividing both sides by 𝛥𝑡 and 𝛥𝑉, we get 

𝜕𝐽𝑥
𝜕𝑥
+
𝜕𝐽𝑦

𝜕𝑦
+
𝜕𝐽𝑧
𝜕𝑧
= −

𝐶(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) − 𝐶(𝑥, 𝑦, 𝑧, 𝑡)

Δ𝑡
= −

𝜕𝐶

𝜕𝑡
  , 

or  

𝛁 ∙ 𝑱 = −
𝜕𝐶

𝜕𝑡
  .                                                             𝐸𝑞. (12.3) 

This is the equation of continuity. Physically, it represents the conservation of total number of particles, namely 

𝑁, independent of time, as in Eq (12.2). 

12.2 DIFFUSION EQUATION IN THREE DIMENSIONS 

Combining the equation of continuity with Fick’s law gives the diffusion equation, 

𝐷 𝛁𝟐𝐶 = 𝐷 [
𝜕2𝐶

𝜕𝑥2
+
𝜕2𝐶

𝜕𝑦2
+
𝜕2𝐶

𝜕𝑧2
] =

𝜕𝐶

𝜕𝑡
  .                                𝐸𝑞. (12.4) 

This is a time-dependent second order partial differential equation. Solving such an equation is beyond the scope 

of this book. The solution of the diffusion equation provides the time dependence of the concentration of the 

particles at any point in space. 

Solution of Diffusion Equation 

The solution of the diffusion equation, after solving the second order partial differential equation, is  

𝐶(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑥2 + 𝑦2 + 𝑧2

4𝐷𝑡
]   .                                           𝐸𝑞. (12.5𝑎) 

Let us verify that this indeed is the solution of the diffusion equation. The first and second derivatives of 𝐶 with 

respect to 𝑥 are 

𝜕𝐶

𝜕𝑥
=

𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑥2 + 𝑦2 + 𝑧2

4𝐷𝑡
] (−

𝑥

2𝐷𝑡
)  , 

𝜕2𝐶

𝜕𝑥2
=

𝑁

(√4𝜋𝐷𝑡)
3 {exp [−

𝑥2 + 𝑦2 + 𝑧2

4𝐷𝑡
] (−

𝑥

2𝐷𝑡
)
2

+ exp[⋯ ] (−
1

2𝐷𝑡
)}  , 
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or, with 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, 

𝜕2𝐶

𝜕𝑥2
=

𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑟2

4𝐷𝑡
] {

𝑥2

(2𝐷𝑡)2
−
1

2𝐷𝑡
}  . 

Similarly, the second derivatives with respect to variables 𝑦 and 𝑧 are 

𝜕2𝐶

𝜕𝑦2
=

𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑟2

4𝐷𝑡
] {

𝑦2

(2𝐷𝑡)2
−
1

2𝐷𝑡
}  , 

and 

𝜕2𝐶

𝜕𝑧2
=

𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑟2

4𝐷𝑡
] {

𝑧2

(2𝐷𝑡)2
−
1

2𝐷𝑡
}  . 

Thus, combining all the derivatives together, 

𝛁𝟐𝐶 =
𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑟2

4𝐷𝑡
] {

𝑟2

(2𝐷𝑡)2
−
3

2𝐷𝑡
}  . 

Also, the derivative of 𝐶 with respect to time, 𝑡, is 

𝜕𝐶

𝜕𝑡
= exp [−

𝑟2

4𝐷𝑡
]

𝑁

(√4𝜋𝐷)
3 {

1

(√𝑡)
3

𝑟2

4𝐷𝑡2
 −
3

2

1

(√𝑡)
5}    

       =
𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑟2

4𝐷𝑡
] {

𝑟2

4𝐷𝑡2
−
3

2𝑡
}  . 

On placing all these derivatives in the diffusion equation, Eq. (12.4), we note that the equation is indeed satisfied. 

Notice that the concentration 𝐶(𝑥, 𝑦, 𝑧, 𝑡) of diffusing particles, Eq. (12.5a), is a spherically symmetric function, 

namely, it can be rewritten as 

𝐶(𝑟, 𝑡) =
𝑁

(√4𝜋𝐷𝑡)
3 exp [−

𝑟2

4𝐷𝑡
]   .                                           𝐸𝑞. (12.5𝑏) 

Here 𝑟 is the distance from the point of release, or the source point, of diffusing particles. So, starting at the 

source, the diffusing particles spread out in a radial manner if there are no extenuating conditions. As time 𝑡 

increases, the spreading out of the particles increases the spatial extent of diffusion. However, the total number 

of particles in the whole space stays the same, namely, 𝑁. Explicitly, 
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𝐼 = ∫ 𝐶(𝑥, 𝑦, 𝑧, 𝑡) 𝑑𝑥𝑑𝑦𝑑𝑧

 

𝑤ℎ𝑜𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

= ∫ 𝐶(𝑟, 𝑡) 4𝜋𝑟2𝑑𝑟

 

𝑤ℎ𝑜𝑙𝑒 𝑠𝑝𝑎𝑐𝑒

=
4 𝜋 𝑁

(√4𝜋𝐷𝑡)
3∫ exp [−

𝑟2

4𝐷𝑡
] 𝑟2𝑑𝑟

∞

0

  . 

Make a change of variables from 𝑟 to 𝑢 = 𝑟/√4𝐷𝑡, so that 

𝐼 =
4 𝜋 𝑁

(√4𝜋𝐷𝑡)
3  (4𝐷𝑡)

3
2 ∫ exp (−𝑢2)

∞

−∞

𝑢2 𝑑𝑢 =
4 𝜋 𝑁

𝜋
3
2

√𝜋

4
= 𝑁  , 

independent of time, 𝑡. In the last step we used the integral 𝐼𝑔
2 [see, Eq. (2.16)]. The quantity √4𝐷𝑡 is called the 

diffusion length, 𝐿𝐷.  

12.3 DIFFUSION EQUATION IN ONE DIMENSION 

For diffusion of particles in one dimension only (say, along the 𝑥-axis), the function describing the concentration 

of particles (that is, particles per unit length) at location 𝑥, at time 𝑡, is 

𝐶(𝑥, 𝑡) =
𝑁

√𝜋 𝐿𝐷
exp [−

𝑥2

𝐿𝐷
2 ]  = 𝐶(0, 𝑡) exp [−

𝑥2

𝐿𝐷
2 ]   .                               𝐸𝑞. (12.6) 

This is a bell-shaped Gaussian function that we encountered previously in Figure 4.5 and its related discussion. 

The Gaussian function of Eq. (12.6) has its maximum, central, value of 𝐶𝑚𝑎𝑥(𝑡) = 𝐶(0, 𝑡) =
𝑁

√𝜋 𝐿𝐷
. Just as in the 

three-dimensional case, the total number of diffusing particles 𝑁 does not change with time for the one-

dimensional case of Gaussian concentration. Explicitly, 

∫ 𝐶(𝑥, 𝑡) 𝑑𝑥

∞

−∞

=
𝑁

√𝜋 𝐿𝐷
∫ exp [−

𝑥2

𝐿𝐷
2 ]  𝑑𝑥

∞

−∞

  , 

or, on changing the variables from 𝑥 to 𝑢 = 𝑥/𝐿𝐷, 

∫ 𝐶(𝑥, 𝑡) 𝑑𝑥

∞

−∞

=
𝑁

√𝜋
∫ exp[−𝑢2]  𝑑

∞

−∞

=
𝑁

√𝜋
√𝜋 = 𝑁  , 

independent of time, 𝑡. The maximum value of the concentration function 𝐶𝑚𝑎𝑥  is a function of time and it 

decreases with time. So, to keep 𝑁 fixed the concentration spreads out in space. The extent of values of 𝑥, 

namely ∆𝑥, over which the function 𝐶(𝑥, 𝑡) is appreciable is given, at any time, by the full width of the function 

at half of its maximum value (FWHM). Thus, 

∆𝑥 = 𝐹𝑊𝐻𝑀 = 2√ln 2 𝐿𝐷  .                                      𝐸𝑞. (12.7) 
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Note 𝐿𝐷 increases with time; that is, the extent to which certain particles diffuse in time 𝑡 is proportional to √𝑡. 

Also, the time dependence of the concentration 

𝐶(𝑥, 𝑡) =
𝑁

√𝜋 𝐿𝐷
exp [−

𝑥2

𝐿𝐷
2 ]  , 

comes through the time dependence of the diffusion length 𝐿𝐷 = √4𝐷𝑡. For 𝑡 → 0, the concentration of the 

diffusing particles is represented by a Dirac Delta function; that is, 𝐶(𝑥, 0) = 𝑁 𝛿(𝑥), using 𝐸𝑞. (𝐼. 5𝑏). 

12.4 FINAL COMMENTS 

We note in passing that the diffusion equation described here is same as the heat equation in thermal physics. 

That is not surprising since the heat equation describes diffusion of heat in a solid. In the thermal case, the 

concentration 𝐶(𝒓, 𝑡) is replaced by temperature, 𝑇(𝒓, 𝑡), at any point; thermal energy diffuses from a region of 

higher temperature to a region of lower temperature.  

It is worth pointing out that the process of diffusion is also very important in industrial settings, such as in 

metallurgy. For example, to convert ordinary iron into steel we must add carbon to it, a process called 

carburizing, which hardens the surface of iron. Parts of iron in a high temperature furnace are placed in contact 

with carbon-rich gases and carbon diffuses into the parts, following the diffusion equation, turning iron into 

hardened steel. More generally, the process of diffusion coating, in which some elements are diffused onto the 

surface of metals to improve their hardness and corrosion properties, has been used in nonstick Teflon coatings 

of kitchen pots and pans. 

  



211 

 

PROBLEMS FOR CHAPTER 12 

1. Consider a diffusing gas whose source is located at 𝑟 = 0 and its diffusion constant 𝐷 is 4 × 10−4 𝑐𝑚2/𝑠. At 

𝑡 = 0, the source spews out 1000 particles localized in the air. Plot the diffusion length 𝐿𝐷  as a function of time 

𝑡. What is the rate of growth of the horizontal area (𝐴 = 𝜋𝐿𝐷
2 ) filled by the diffusing particles? 

2. Again, consider the diffusing gas of 1000 particles and the diffusion constant of 𝐷 = 4 × 10−4 𝑐𝑚2/𝑠. For 

diffusion in one dimension and the source located at 𝑥 = 0, plot the concentration 𝐶(𝑥, 𝑡) as a function of 𝑥 for 

𝑡 = 1 𝑠, 4 𝑠 and 9 𝑠. What is the area under the 𝐶(𝑥, 𝑡) versus 𝑡 curve for each value of time 𝑡? 

3. Biomedical Physics Application. A truck carrying hydrogen fluoride, a toxic gas, gets into an accident on the 

road, causing leakage of about 5,000 molecules of the gas. If the diffusion constant of hydrogen fluoride is 

1.7 𝑋 10−5 𝑐𝑚2/𝑠, determine the concentrations of the toxic molecules at the site of the accident 6, 12, 18, and 

24 hours after the accident. 

4. Biomedical Physics Application. A researcher in a virology laboratory is working with a deadly virus in a 

sealed test tube. The laboratory is in the shape of a cube of side length 12 𝑚. The researcher is at the center of 

the floor of the laboratory when the test tube is accidently dropped, spilling the deadly virus. As a result, the 

laboratory will need to be sealed and later clinically cleaned. If the diffusion constant of the virus is 

9 𝑋 10−3 𝑚2/𝑠, how long will it take the virus to spread out to cover the whole floor of the laboratory? 
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Chapter 13: Probability Distribution Functions 

In various branches of science, we often deal with 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, which are measurable and controllable 

quantities such as momentum and kinetic energy of a particle or rate of a chemical reaction, etc. The values of 

physical variables are determined by some physical or chemical property such as mass of the moving particle, 

temperature and concentration of chemicals, and others. On the other hand, a variable whose value is 

determined by some random phenomenon is called a 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒. Examples of random variables are the 

number of babies delivered in a hospital per day or the periods of rotation of various planets around the Sun, 

and so on. These quantities are measurable but not controllable. Typically, the outcome of an experiment is an 

event or number which could belong to either a set of discrete possibilities or to a continuous range of possible 

values. Flipping a coin or rolling a die are examples of experiments in which the outcome is discrete. On the other 

hand, observing the change in outdoor temperature in a day from morning to evening or measuring the speed of 

an accelerating car starting from rest leads to continuous outcomes. A probability distribution function is a 

mathematical way of associating the different outcomes in an experiment with the probability with which they 

occur. In this chapter we will learn about 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 as well as 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 probability distribution functions. 

13.1 A DISCRETE PROBABILITY DISTRIBUTION FUNCTION 

A pharmaceutical company assembles a group of twenty volunteers to test its new vaccine. Before starting the 

testing, the pharmaceutical company needs to get the vital signs of all volunteers. These include the height, 

weight, body temperature, and pulse rate of each volunteer. The heights of individual persons are, in inches, 60, 

61, 62, 62, 64, 64, 64, 65, 65, 65, 65, 65, 65, 66, 66, 66, 68, 68, 69, and 70. To get the average or mean height, we 

simply add all the heights and divide by the number of persons, as 

ℎ̅  =
60 + 61 + 62 +⋯+ 70

20
=
1300

20
= 65 inches. 

[Note in passing that a variable with a bar on it is used to indicate the average or mean value of that variable.] 

Alternatively, we could organize the persons who have the same height into groups and write 

ℎ̅  =
60 + 61 + 2(62) + 3(64) + 6(65) + 3(66) + 2(68) + 69 + 70

20
= 65 inches. 

If there is a very large number of persons, say 𝑁, whose average height we need to find, we will first note that 𝑁1 

persons have height ℎ1, 𝑁2 have height ℎ2, 𝑁3 have height ℎ3… and 𝑁𝑛 have height ℎ𝑛, such that 𝑁1 +𝑁2 +⋯+

𝑁𝑛 = 𝑁. Then,  
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ℎ̅  =
𝑁1ℎ1 + 𝑁2ℎ2 + 𝑁3ℎ3 +⋯+ 𝑁𝑛ℎ𝑛

𝑁
= 𝑓1ℎ1 + 𝑓2ℎ2 + 𝑓3ℎ3 +⋯+ 𝑓𝑛ℎ𝑛  ,    𝐸𝑞. (13.1𝑎) 

where,  

𝑓𝑖 =
𝑁𝑖
𝑁
 is the fraction of persons with height ℎ𝑖   .                              𝐸𝑞. (13.1𝑏) 

Thus, 

ℎ̅  = ∑𝑓𝑖ℎ𝑖

𝑛

𝑖=1

  ,                                                                                (𝐸𝑞. 13.1𝑐) 

where 𝑛 is the number of different height groups. If instead of height, we are measuring a different vital sign, 

say, temperature of the volunteer, 𝑇, then, 

�̅�  = ∑𝑓𝑖𝑇𝑖

𝑛

𝑖=1

  , 

or pulse rate, 𝑃, 

�̅�  = ∑𝑓𝑖𝑃𝑖

𝑛

𝑖=1

  , 

or weight, 𝑤, 

�̅�  = ∑𝑓𝑖𝑤𝑖

𝑛

𝑖=1

  . 

The number of groups 𝑛 is different for different variables. In all these cases, the variable [height, temperature, 

weight, etc.] is a random variable and has discrete values (since the number of possible values is, at most, 𝑁). 

Also, note ∑ 𝑓𝑖
𝑛
𝑖=1 =1 in all cases, since all fractions of the sample (which, in this example, is the number of 

volunteers) must add up to 1. This is referred to as the 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. Note that these fractions are 

measures of probabilities. For example, assume that in this cohort consisting of 10 males and 10 females, 14 

volunteers are given the actual vaccine and the remaining six volunteers are given a placebo (a harmless 

medicine with no physiological effects). Males are given 4 placebos and 6 vaccines while the females are given 2 

placebos and 8 vaccines. Then we can sort all the volunteers into four groups as shown in the following table. 
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 With placebo With vaccine Total 

Male 4 6 10 

Female 2 8 10 

Total 6 14 20 

  

The outcome of any measurement on this group is an event or a number which is discrete. Now, if a person is 

randomly chosen from this group, the probability of choosing a person who was given the actual vaccine will be 

14/20 and probability of choosing a person given a placebo will be 6/20. The probability of choosing a male 

volunteer will be 10/20 and probability of choosing a female volunteer will also be 10/20. In general, if we are 

dealing with two or more events, then we need to find the joint probability that these events will occur 

simultaneously. If 𝑃(𝑋) is the probability of occurrence of event 𝑋 and 𝑃(𝑌) is the probability of occurrence of 

event 𝑌, then joint probability of occurrence of both events 𝑋 and 𝑌 simultaneously, if they are independent 

events, is 

𝑃(𝑋 and 𝑌) = 𝑃(𝑋) ∙ 𝑃(𝑌)  .                                 𝐸𝑞. (13.2𝑎) 

On the other hand, if the two events are not independent and their outcomes are related by some conditions, 

then we talk about conditional probability. By definition, 𝑃(𝑋|𝑌) is the probability of occurrence of event 𝑋, 

given that event 𝑌 has already occurred. Similarly, 𝑃(𝑌|𝑋) is the probability of occurrence of event 𝑌, given that 

event 𝑋 has already occurred. The rules for finding the conditional probabilities are 

𝑃(𝑋|𝑌) =
𝑃(𝑋 and 𝑌)

𝑃(𝑌)
  and  𝑃(𝑌|𝑋) =

𝑃(𝑋 and 𝑌)

𝑃(𝑋)
  .                      𝐸𝑞. (13.2𝑏) 

If 𝑋 and 𝑌 are independent events, it means that occurrence of event 𝑋 has no effect on the occurrence of event 

𝑌 and vice versa and, therefore, 𝑃(𝑋|𝑌) = 𝑃(𝑋) and 𝑃(𝑌|𝑋) = 𝑃(𝑌). Then, Eqs. (13.2b) reduce to Eq. (13.2a) for 

independent events. In case of conditional probabilities, it follows from Eq. (13.2b) that 

𝑃(𝑋) 𝑃(𝑌|𝑋)  =  𝑃(𝑌) 𝑃(𝑋|𝑌)  ,                    𝐸𝑞. (13.2𝑐) 

which is called Bayes’ theorem in statistics. This theorem provides the probability of an event, based on prior 

circumstances that might affect the event. Going back to the example of cohort with 20 volunteers, assume that 

event 𝑋 is choosing a person with the vaccine and event 𝑌 is choosing a female person. Then 𝑃(𝑋) is 
14

20
 and 𝑃(𝑌) 

is 
10

20
. Also from the table, 𝑃(𝑋 𝑎𝑛𝑑 𝑌) is 

8

20
. Since 𝑃(𝑋) multiplied by 𝑃(𝑌) is not equal to 𝑃(𝑋 𝑎𝑛𝑑 𝑌), it follows 

that events 𝑋 and 𝑌 are not independent and, therefore, it is necessary to calculate the conditional probability. 

The probability of choosing a person with a vaccine, given that a female person has already been chosen, is 
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𝑃(𝑋|𝑌) =
8/20

10/20
= 0.80. Similarly, the probability of choosing a female person, given that a vaccinated person 

has already been chosen, is 𝑃(𝑌|𝑋) =
8/20

14/20
=
4

7
= 0.57. It is easy to verify that Bayes’ theorem is satisfied in this 

case. 

If we have the average value �̅� of a random variable 𝑥 in a sample size of 𝑁, it does not provide any information 

about the spread of the values of 𝑥. To measure the spread of values, we define the 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 and 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 of 𝑥. To quantify the spread of values of the variable, we measure the deviation of each 

data point from the mean value, namely, 𝑥𝑖 − �̅�. The value of this deviation, for any individual data point, can be 

either positive or negative, and the simple sum of all of these deviations will be zero. That is so because, by 

definition of the average, 

�̅�  =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
    or    ∑𝑥𝑖

𝑁

𝑖=1

= 𝑁 �̅�      or     ∑(𝑥𝑖 − �̅�)

𝑁

𝑖=1

= 0  . 

So, to define a variance and a standard deviation, 𝜎, we first find the average value of the 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 of deviations 

over all data points. This is called variance and its square root is the standard deviation. Explicitly,  

variance, 𝜎2  = ∑ 𝑓𝑖(𝑥𝑖 − �̅�)
2 = ∑ 𝑓𝑖𝑥𝑖

2 − 2 �̅� ∑ 𝑓𝑖𝑥𝑖
𝑛
𝑖=1 + [�̅�]2∑ 𝑓𝑖 

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1   

= 𝑥2̅̅ ̅  − 2 �̅� �̅� + [�̅�]2 = 𝑥2̅̅ ̅  − [�̅�]2  ,                          

and  

standard deviation, 𝜎 = √𝑥2̅̅ ̅ − [�̅�]2  .                                𝐸𝑞. (13.3𝑏) 

Roughly speaking, variance is an overall measure of how spread out the 𝑥𝑖  values are from their mean value �̅�, 

while standard deviation is used when considering how an individual data point differs from the mean. In 

particular, the standard deviation is used when determining the statistical significance of an experimental result. 

13.2 BINOMIAL DISTRIBUTION FUNCTION 

Consider an experiment that has only two possible outcomes, which are mutually exclusive and can be thought 

of as a success or a failure. Examples of such experiments are tossing a coin or rolling a die. In case of coin-

tossing, if getting a head is a success, then the probability of success is ½ and probability of failure is also ½. 

While in rolling a die, if getting a 4 is a success, then probability of success is 1/6 and probability of failure is 5/6. 

The binomial distribution provides the probability of observing 𝑛 successes in 𝑁 independent trials if the 

probability of success in a single trial is 𝑝. The success probability 𝑝 is the same for all trials. The binomial 

distribution is 

𝐸𝑞. (13.3𝑎) 
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𝑃(𝑛, 𝑁, 𝑝) =
𝑁!

𝑛! (𝑁 − 𝑛)!
𝑝𝑛(1 − 𝑝)𝑁−𝑛  .                     𝐸𝑞. (13.4) 

Example: In the maternity ward of a hospital, young moms can deliver either a boy or a girl with equal 

probability. On a particular day, six pregnant women are admitted in the hospital. What is the probability that 

only one boy will be delivered on this day? Or, two boys will be delivered? Or, three boys will be delivered? Or, 

four boys will be delivered? Or, five boys will be delivered? Finally, what is the probability that the six babies 

delivered on this day will be either all boys or all girls? 

Solution: On this particular day six experiments are being done in the maternity ward and each experiment has 

two possible outcomes, either a boy or a girl. In this case 𝑁 = 6. Assuming that delivering a boy is a success for 

the experiment (no sexism intended!), then 𝑝 = ½. Using the binomial distribution, the probability of delivering 

only one boy (that is, 𝑛 = 1) is 

𝑃(1,6, 0.5) =
6!

1! (6 − 1)!
(
1

2
)
1

(
1

2
)
6−1

=
6

64
 =

3

32
  . 

The probability of delivering two boys (that is, 𝑛 = 2) is 

𝑃(2,6, 0.5) =
6!

2! (6 − 2)!
(
1

2
)
2

(
1

2
)
6−2

=
15

64
  . 

Similarly, probabilities of delivering three or four or five boys are 

𝑃(3,6, 0.5) =
20

64
=
5

16
,       𝑃(4,6, 0.5) =

15

64
        and     𝑃(5,6, 0.5) =

6

64
=
3

32
  . 

Finally, the probabilities of delivering all six boys (𝑛 = 6) or all six girls (𝑛 = 0) are 

 𝑃(6,6, 0.5) =
1

64
    and   𝑃(0,6, 0.5) =

1

64
  . 

Note that the sum of probabilities of all possibilities adds up to 1, that is 

∑𝑃(𝑛, 6, 0.5)

6

𝑛=0

= 1  , 

which is the normalization condition. 
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13.3 POISSON DISTRIBUTION FUNCTION 

Let us, once again, consider an experiment which has two possible outcomes, but now we do not know what the 

probability of success, 𝑝, is in a single trial. If we do this experiment for a large number of times (𝑁 → ∞), then 

we can find an average rate of success. For example, if we toss a coin millions of times, we will infer that average 

rate of getting a head is ½. So, instead of dealing with 𝑝, we deal with average rate of success, namely, 𝑁𝑝 ≡ 𝜆. 

So, we replace 𝑝 by 𝜆/𝑁 and take the limit 𝑁 → ∞ in the binomial distribution to get 

𝑃(𝑛, 𝜆) = lim
𝑁→∞

𝑁!

𝑛! (𝑁 − 𝑛)!
(
𝜆

𝑁
)
𝑛

(1 −
𝜆

𝑁
)
𝑁−𝑛

  . 

To evaluate this limiting expression, we look at it part-by-part. For example, 

lim
𝑁→∞

𝑁!

(𝑁 − 𝑛)!

1

𝑁𝑛
= lim
𝑁→∞

𝑁(𝑁 − 1)⋯ (𝑁 − 𝑛 + 1)

𝑁𝑛
= lim
𝑁→∞

(
𝑁

𝑁
) (
𝑁 − 1

𝑁
)⋯(

𝑁 − 𝑛 + 1

𝑁
) = 1, 

and 

lim
𝑁→∞

(1 −
𝜆

𝑁
)
−𝑛

= 1  . 

Also, in precalculus, Euler’s number, 𝑒, is introduced as the limit of (1 + 1/𝑁)𝑁  as 𝑁 approaches infinity. The 

value of this constant is 𝑒 = 2.71828. So,  

lim
𝑁→∞

(1 −
𝜆

𝑁
)
𝑁

= 𝑒−𝜆  . 

Thus, 

𝑃(𝑛, 𝜆) =  
𝜆𝑛

𝑛!
exp(−𝜆)   ,                                𝐸𝑞. (13.5) 

which is known as the Poisson distribution. The Poisson distribution is appropriate if the average rate at which 

certain identical events occur during a time period is known. Furthermore, all events occur independently; that 

is, occurrence of one event does not affect the probability of occurrence of the next event. The Poisson 

distribution provides the probability that 𝑛 events occur during a certain time period where 𝑛 = 0, 1, 2,⋯. Note 

in passing, 

∑𝑃(𝑛, 𝜆)

∞

𝑛=0

= exp(+𝜆) exp(−𝜆) = 1  , 
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which is the normalization condition. 

Example: In several parts of the world, sightings of tornadoes are a common occurrence. According to the 

historical records of the National Weather Service of the USA, in the state of Michigan the average number of 

tornadoes is 15 per year, with the largest monthly average of three tornadoes occurring in June. With this 

information, what is the probability that there will be exactly one or two or three or four tornadoes in 

Michigan next year in June? 

Solution: Since the average rate of tornadoes in June is three, 𝜆 = 3. The probability of 𝑛 tornadoes in June is 

𝑃(𝑛, 3) =  
3𝑛

𝑛!
exp(−3)  . 

Thus, probabilities of having one or two or three or four tornadoes next June are 

𝑃(1,3) =  
31

1!
exp(−3) = 0.149  , 

𝑃(2,3) =  
32

2!
exp(−3) =  0.224  , 

𝑃(3,3) =  
33

3!
exp(−3) = 0.224  , 

𝑃(4,3) =  
34

4!
exp(−3) =  0.168  . 

13.4 MAXWELL-BOLTZMANN (CONTINUOUS) DISTRIBUTION FUNCTION 

Now suppose we wish to find the average speed of molecules in a room. It will be extremely difficult to do since 

the number of molecules is immeasurably large and difficult to count. Even if we only wish to find the fraction of 

molecules with a particular speed 𝑣𝑖, their number will be enormously large. In this case, we break the whole 

possible range of speeds into small groups or intervals 𝛥𝑣 and concentrate on fraction of molecules with speeds 

between 𝑣𝑖  and 𝑣𝑖 + 𝛥𝑣. Then, the fraction of molecules in this interval is 𝑓(𝑣𝑖)𝛥𝑣. The function 𝑓(𝑣𝑖) is called a 

distribution function or probability density function (PDF). In this case, 

�̅�  =  ∑𝑣𝑖𝑓(𝑣𝑖)𝛥𝑣

𝑛

𝑖=1

  , 

and, if 𝛥𝑣 → 0, the variable 𝑣 becomes a continuous random variable, 
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�̅�  = ∫ 𝑣𝑓(𝑣) 𝑑𝑣

 

𝑤ℎ𝑜𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣

  .                                                           𝐸𝑞. (13.6𝑎) 

Also, since all fractions must add up to 1, 

∫ 𝑓(𝑣) 𝑑𝑣

 

𝑤ℎ𝑜𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣

= 1  .                                                             𝐸𝑞. (13.6𝑏) 

This is the normalization condition for the distribution function. This is equivalent to the notion that we can be 

100% certain that an observation will fall into the range of all possible outcomes. 

The velocity distribution of molecules of mass 𝑚 in a gas at temperature 𝑇 is the Maxwell-Boltzmann 

distribution. It is a continuous distribution function given by 

          𝑓(𝑣) = 4𝜋𝑣2 (
𝑚

2𝜋𝑘𝑇
)
3/2

exp (−
𝑚𝑣2

2𝑘𝑇
)  ,                                                          𝐸𝑞. (13.7) 

where 𝑘 is the Boltzmann constant. We note 

∫ 𝑓(𝑣)𝑑𝑣

∞

0

= 4𝜋 (
𝑚

2𝜋𝑘𝑇
)
3/2

∫ exp (−
𝑚𝑣2

2𝑇
) 𝑣2 𝑑𝑣

∞

0

  . 

To evaluate this integral, we make a change of variables. Let 𝑢2 =
𝑚

2𝑘𝑇
𝑣2 or 𝑢 = √

𝑚

2𝑘𝑇
 𝑣 and 𝑑𝑢 = √

𝑚

2𝑘𝑇
𝑑𝑣.  

Then, 

∫ 𝑓(𝑣)𝑑𝑣

∞

0

= 4𝜋 (
𝑚

2𝜋𝑘𝑇
)
3/2

(
2𝑘𝑇

𝑚
)
3/2

∫ exp(−𝑢2) 𝑢2𝑑𝑢

∞

0

= 4𝜋
1

𝜋3/2
√𝜋

4
= 1  ,                                𝐸𝑞. (13.8𝑎) 

as expected, since this is the normalization condition. Here we used the integral 𝐼𝑔
2 from Eq. (2.13). We can also 

find average values of 𝑣 and of 𝑣2 as 

�̅� = ∫ 𝑣𝑓(𝑣)𝑑𝑣

∞

0

= 4𝜋 (
𝑚

2𝜋𝑘𝑇
)
3/2

∫ exp (−
𝑚𝑣2

2𝑘𝑇
)𝑣3𝑑𝑣

∞

0

  . 

Again, we make a change of variables. Let 𝑡 =
𝑚𝑣2

2𝑘𝑇
 and 𝑑𝑡 =

𝑚

2𝑘𝑇
2𝑣𝑑𝑣, so that 

�̅� = 4𝜋 (
𝑚

2𝜋𝑘𝑇
)
3/2 1

2
 (
2𝑘𝑇

𝑚
)
2

∫ exp(−𝑡) 𝑡 𝑑𝑡

∞

0

= 2(
2𝑘𝑇

𝑚𝜋
)
1/2

∫ exp(−𝑡) 𝑡 𝑑𝑡

∞

0

= (
8𝑘𝑇

𝜋𝑚
)
1/2

  ,                 𝐸𝑞. (13.8𝑏) 



220 

 

and 

𝑣2̅̅ ̅ = ∫ 𝑣2𝑓(𝑣)𝑑𝑣

∞

0

= 4𝜋 (
𝑚

2𝜋𝑘𝑇
)
3/2

∫ exp (−
𝑚𝑣2

2𝑘𝑇
)𝑣4𝑑𝑣

∞

0

  . 

With the change of variables, 𝑢2 =
𝑚𝑣2

2𝑘𝑇
, 

𝑣2̅̅ ̅ = 4𝜋 (
𝑚

2𝜋𝑘𝑇
)
3/2

(
2𝑘𝑇

𝑚
)
5/2

∫ exp(−𝑢2) 𝑢4𝑑𝑢

∞

0

=
4𝜋

𝜋3/2
 
2𝑘𝑇

𝑚
 
3

8
√𝜋 =

3𝑘𝑇

𝑚
  .                                    𝐸𝑞. (13.8𝑐) 

Note in passing that 
1

2
𝑚𝑣2̅̅ ̅  =

3𝑘𝑇

2
, that is, average kinetic energy per molecule in a gas depends only on the 

temperature of the gas. 

13.5 NORMAL OR GAUSSIAN (CONTINUOUS) DISTRIBUTION FUNCTION 

Another useful continuous probability distribution function is the Gaussian, or normal, distribution function. A 

random variable 𝑥 has normal distribution if −∞ ≤ 𝑥 ≤ ∞ and the corresponding probability density function is 

𝑓(𝑥) =
1

𝜎√2𝜋
exp [−

1

2
 (
𝑥 − 𝜇

𝜎 
)
2

]   .                                              𝐸𝑞. (13.9) 

By definition, 𝑓(𝑥) 𝑑𝑥 is the probability that value of variable 𝑥 lies between 𝑥 and 𝑥 + 𝑑𝑥. First, we verify the 

normalization condition, namely, ∫ 𝑓(𝑥) 𝑑𝑥 = 1
∞

−∞
. The integral is 

∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

=
1

𝜎√2𝜋
∫ exp [−

1

2
 (
𝑥 − 𝜇

𝜎 
)
2

] 

∞

−∞

𝑑𝑥  . 

To evaluate this integral, we make a change of variable from 𝑥 to 𝑢 using 𝑢 =
𝑥−𝜇

𝜎 
, or 𝑥 = 𝜎 𝑢 + 𝜇, and 𝑑𝑥 =

𝜎 𝑑𝑢, 

∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

=
1

√2𝜋
∫ exp [−

𝑢2

2
] 𝑑𝑢 

∞

−∞

 =
1

√2𝜋
 √2𝜋 = 1  .                              𝐸𝑞. (13.10𝑎) 

Here we used the integral 𝐼𝑔𝑔
0  from Eq. (2.14). Next, we find average values of 𝑥 and of 𝑥2 using the same change 

of variable from 𝑥 to 𝑢, 

�̅�  =  ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫ 𝑥
1

𝜎√2𝜋
exp [−

1

2
 (
𝑥 − 𝜇

𝜎 
)
2

] 

∞

−∞

𝑑𝑥                                                                               
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=
1

√2𝜋
∫(𝑢𝜎 + 𝜇) exp [−

𝑢2

2
] 𝑑𝑢 

∞

−∞  

= 0 +
𝜇

√2𝜋
∫ exp [−

𝑢2

2
] 𝑑𝑢 = 𝜇

∞

−∞  

  ,                  𝐸𝑞. (13.10𝑏) 

and 

𝑥2̅̅ ̅  =  ∫ 𝑥2𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫ 𝑥2
1

𝜎√2𝜋
exp [−

1

2
 (
𝑥 − 𝜇

𝜎 
)
2

] 

∞

−∞

𝑑𝑥                                                  

=
1

√2𝜋
∫(𝑢2𝜎2 + 2𝜇𝜎𝑢 + 𝜇2) exp [−

𝑢2

2
] 𝑑𝑢 

∞

−∞  

=
1

√2𝜋
{σ2√2𝜋+ 0 + 𝜇2√2𝜋 } 

or, 

𝑥2̅̅ ̅  = 𝜎2 + 𝜇2  .                                                           𝐸𝑞. (13.10𝑐) 

Then,  

variance =  𝑥2̅̅ ̅ − [�̅�]2 = (𝜎2 + 𝜇2) − 𝜇2 = 𝜎2 

and, 

standard deviation = 𝜎  .                                   𝐸𝑞. (13.11) 

So, now we can interpret the normalized Gaussian distribution function. If a variable 𝑥 is normally distributed, 

then 𝑓(𝑥) 𝑑𝑥 is the probability that 𝑥 lies between 𝑥 and 𝑥 + 𝑑𝑥. The function 𝑓(𝑥) has a mean value of 𝜇 and 

standard deviation of 𝜎. If we change variable from 𝑥 to 𝑢 =
𝑥−𝜇

𝜎
, then, for the normal distribution, 

𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑢) 𝑑𝑢  , 

where 

𝐹(𝑢) =
1

√2𝜋
exp (−

𝑢2

2
)  . 

We note that 𝐹(𝑢) is the same Gaussian function that we encountered in chapters 4 and 12. It is worth observing 

that 𝐹(𝑢) is a symmetric function of 𝑢, that is, 𝐹(−𝑢) = 𝐹(𝑢). Also, 𝐹(𝑢) is a normalized function, that is, 

∫ 𝐹(𝑢) 𝑑𝑢
∞

−∞
= 1. The quantity 𝐹(𝑢) 𝑑𝑢 is the probability that 𝑢 lies between 𝑢 and 𝑢 + 𝑑𝑢. The probability that 

𝑢 lies between 𝑎 and 𝑏 is 
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∫𝐹(𝑢) 𝑑𝑢

𝑏

𝑎

=
1

√2𝜋
∫exp (−

𝑢2

2
) 𝑑𝑢

𝑏

𝑎

  . 

For given 𝑎 and 𝑏, the numerical value of this integral is obtained from the tabulated values of the Gaussian 

function, 𝛷(𝑥), defined as 

𝛷(𝑥) = ∫𝐹(𝑢) 𝑑𝑢

𝑥

−∞

=
1

√2𝜋
∫exp (−

𝑢2

2
)𝑑𝑢

𝑥

−∞

  .                                          𝐸𝑞. (13.12) 

The tabulated numerical values of 𝛷(𝑥), as a function of 𝑥, are given in Appendix D, in which the shaded area 

under the Gaussian curve is the value of 𝛷(𝑥). Note 𝛷(∞) = 1,𝛷(0) =
1

2
, 𝛷(−∞) = 0. Also, due to the 

symmetric nature of 𝐹(𝑢), 

𝛷(−𝑥) = ∫ 𝐹(𝑢) 𝑑𝑢

−𝑥

−∞

= − ∫𝐹(−𝑣) 𝑑𝑣

𝑥

∞

= ∫ 𝐹(𝑣) 𝑑𝑣

∞

𝑥

= ∫ 𝐹(𝑣) 𝑑𝑣

∞

−∞

− ∫𝐹(𝑣) 𝑑𝑣

𝑥

−∞

 

𝛷(−𝑥) = 1 − 𝛷(𝑥)  .                                                      𝐸𝑞. (13.13) 

This relationship allows us to find 𝛷 for negative values of 𝑥 in terms of 𝛷 for positive values of 𝑥. So, in the 

standard table of Appendix D, the function 𝛷(𝑥) is tabulated for positive values of 𝑥 only. Also, if 𝑏 >  𝑎, then 

∫𝐹(𝑢) 𝑑𝑢

𝑏

𝑎

=
1

√2𝜋
∫exp (−

𝑢2

2
)𝑑𝑢                                                                                                                                            

𝑏

𝑎

 

=
1

√2𝜋
∫exp (−

𝑢2

2
) 𝑑𝑢 −

𝑏

−∞

1

√2𝜋
∫exp (−

𝑢2

2
)𝑑𝑢

𝑎

−∞

= 𝛷(𝑏) − 𝛷(𝑎)  .             𝐸𝑞. (13.14) 

If the range of value of 𝑥 is from 𝑥𝐿 to 𝑥𝐻  (𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝐻) instead of from −∞ to ∞, then 

𝑓(𝑥) = 𝑁
1

𝜎√2𝜋
{exp (−

1

2
[
𝑥 − 𝜇

𝜎
]
2

)     for    𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝐻

0                       otherwise

  .                     𝐸𝑞. (13.15𝑎) 

This is referred to as the 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. The scaling constant 𝑁 is determined by the fact that 

∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
, or, 

𝑁
1

𝜎√2𝜋
∫ exp (−

1

2
[
𝑥 − 𝜇

𝜎
]
2

)

𝑥𝐻

𝑥𝐿

𝑑𝑥 = 1  . 
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Making a change of variable from 𝑥 to 𝑢 =
𝑥−𝜇

𝜎
, 

1 = 𝑁
1

√2𝜋
∫ exp (−

𝑢2

2
)

𝑢𝐻

𝑢𝐿

du = 𝑁[𝛷(𝑢𝐻) − 𝛷(𝑢𝐿)]  , 

or  

𝑁 =
1

[𝛷(𝑢𝐻) − 𝛷(𝑢𝐿)]
  .                                                             𝐸𝑞. (13.15𝑏) 

Example: The grade point averages (GPA) of a large population of students at a university are normally 

distributed with a mean of 2.4 and a standard deviation of 0.8. The students with GPAs higher than 3.3 receive 

honors credit while students with GPAs less than 2.0 do not receive the degree. 

What percentage of students receive honors credit? 

What percentage of students can never graduate? 

Solution: Let 𝑥 be GPA of students, 0 ≤ 𝑥 ≤ 4. 

𝑥𝐻 = 4.0, 𝑢𝐻 =
𝑥𝐻 − 𝜇

𝜎
=
4 − 2.4

0.8
= 2.0  , 

𝑥𝐿 = 0.0, 𝑢𝐿 =
𝑥𝐿 − 𝜇

𝜎
=
0 − 2.4

0.8
= −3.0  , 

𝑁 =
1

𝛷(2.0) − 𝛷(−3.0)
=

1

𝛷(2) − [1 − 𝛷(3.0)]
=

1

𝛷(2) + 𝛷(3.0) − 1
 

=
1

0.9772 + 0.9987 − 1
=

1

1.9759 − 1
=

1

0.9759
  .                             

(a)  

Percentage of honors students = ∫ 𝑓(𝑥)𝑑𝑥

4.0

3.3

= 𝑁
1

𝜎√2𝜋
∫ exp [−

1

2
(
𝑥 − 𝜇

𝜎
)
2

] 𝑑𝑥

4.0

3.3

  . 

Let 𝑢 =
𝑥−𝜇

𝜎
, then lower limit of 𝑢 =

3.3−2.4 

0.8
=
9

8
, upper limit of 𝑢 =

4.0−2.4 

0.8
= 2.  

Percentage = 𝑁
1

√2𝜋
∫exp [−

𝑢2

2
] 𝑑𝑢                                                                                             

2

9/8
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=
𝛷(2) − 𝛷 (

9
8
)

𝛷(2) − 𝛷(−3)
=
0.9772 − 0.8686

0.9759
=
0.1086

0.9759
= 0.11   or   11%  . 

 (b)  

Percentage of failing students = ∫ 𝑓(𝑥)𝑑𝑥

2.0

0

= 𝑁
1

𝜎√2𝜋
∫ exp [−

1

2
(
𝑥 − 𝜇

𝜎
)
2

] 𝑑𝑥

2.0

0

  . 

Let 𝑢 =
𝑥−𝜇

𝜎
, lower limit =

0−2.4 

0.8
= −3, upper limit =

2.0−2.4 

0.8
= −0.5.   

Percentage = 𝑁
1

√2𝜋
∫ exp [−

𝑢2

2
] 𝑑𝑢

−0.5

−3

                                                                                                                     

= 𝑁[𝛷(−0.5) − 𝛷(−3)] = 𝑁[1 − 𝛷(0.5) − 1 + 𝛷(3)] = 𝑁[𝛷(3) − 𝛷(0.5)] 

=
0.9987 − 0.6915

0.9759
=
0.3072

0.9759
= 0.31   or   31%  .                                                         

Example: The U.S. Centers for Disease Control and Prevention has reported several cases of Salmonella 

outbreak linked to guinea pigs. A veterinary research physician sets up a trap to catch a large number of 

guinea pigs. If the mean width of guinea pig’s shoulder is 𝝁 = 𝟑. 𝟖 inches with a standard deviation of 0.6 inch, 

and if the door of the trap is 5 inches wide, what percentage of guinea pigs will pass through the door? 

Solution: Let 𝑥 be the shoulder width of a guinea pig, so that 0 ≤ 𝑥 ≤ ∞. The percentage of guinea pigs with 

shoulder length less than 5 inches is 

Percentage =

1

𝜎√2𝜋
∫ exp [−

1
2
(
𝑥 − 𝜇
𝜎
)
2

] 𝑑𝑥
5.0

0

1

𝜎√2𝜋
∫ exp [−

1
2
(
𝑥 − 𝜇
𝜎
)
2

] 𝑑𝑥
∞

0

  . 

Make a change of variables from 𝑥 to 𝑢 =
𝑥−𝜇

𝜎
.  

For 𝑥 = ∞,𝑢 = ∞. For 𝑥 = 0, 𝑢 =
0−3.8

0.6
= −

19

3
. For 𝑥 = 5.0, 𝑢 =

5−3.8

0.6
= 2.0.  

Percentage =

1

√2𝜋
∫ exp [−

𝑢2

2
] 𝑑𝑢

2.0

−19/3

1

√2𝜋
∫ exp [−

𝑢2

2
] 𝑑𝑢

∞

−19/3

=
𝛷(2) − 𝛷(−

19
3
)

𝛷(∞) − 𝛷(−
19
3
)
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=
𝛷(2) − [1 − 𝛷(6.33)]

𝛷(∞) − [1 − 𝛷(6.33)]
=
𝛷(2) + 𝛷(6.33) − 1

𝛷(∞) + 𝛷(6.33) − 1
=
0.9772 + 1 − 1

1 + 1 − 1
= 0.9772  , 

or 97.7% guinea pigs will fit through the door. 

13.6 A FINAL REMARK 

As a final remark, it is worth pointing out that concepts related to probability distribution functions are central to 

quantum physics. The initial formulation of quantum physics using matrix methods led to the understanding of 

eigenvalues and eigenfunctions of matrices as representing physical observables. The gist of quantum physics is 

to talk about possibilities and probabilities in the measurement of physical properties, such as energy, 

momentum, angular momentum, and so on, at the scale of atomic and subatomic particles. The eigenvalues 

represent the possibilities and the eigenfunctions (or, their modulus square) represent the corresponding 

probability distribution functions. 
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PROBLEMS FOR CHAPTER 13 

1. To explain the conduction properties of metals, Paul Drude provided a simple model of a metal as a reservoir 

of free-electron gas. Even though Drude’s model was successful in explaining the classical Ohm’s law, it failed to 

account for the quantum behavior of electrons. The Exclusion Principle in quantum physics asserts that no more 

than two electrons can occupy the same atomic orbital. Classically, particles of a gas at absolute zero 

temperature will all have zero kinetic energy. In quantum physics, all electrons in an electron gas cannot be in 

ground state since that would contradict the Exclusion Principle. At absolute zero temperature, the fraction of 

electrons in a metal with energies between 𝐸 and 𝐸 + 𝑑𝐸 is given by 

𝑓(𝐸) 𝑑𝐸 = {
𝐶√𝐸 𝑑𝐸                 for 0 ≤ 𝐸 ≤ 𝐸𝐹

0                     for 𝐸 > 𝐸𝐹
  , 

where 𝐸𝐹  is a constant (called the Fermi energy). 

Determine 𝐶 if this energy distribution is normalized to 1. 

Find the average energy of electrons in terms of 𝐸𝐹 .  

2. A one-dimensional classical harmonic oscillator of mass 𝑚 and frequency 𝜔 is oscillating along the 𝑥–axis with 

its equilibrium point at 𝑥 = 0. The turning points of the classical oscillator at 𝑥 = ±𝑥𝑐  refer to the values of 𝑥 at 

which the oscillator momentarily comes to rest and reverses its direction of motion. In other words, 𝑥𝑐  is the 

largest displacement or the amplitude of the classical oscillator. The total energy 𝐸 of the classical oscillator is 

conserved and its value at the classical turning points is 𝐸 =
1

2
𝑚𝜔2𝑥𝑐

2. In quantum physics, the one-dimensional 

harmonic oscillator can be found anywhere along the 𝑥–axis from 𝑥 = −∞ to 𝑥 = +∞. The probability of 

finding the quantum oscillator between 𝑥 and 𝑥 + 𝑑𝑥 is 

𝑃(𝑥) 𝑑𝑥 = 𝐶 exp(−𝑥2/𝑥𝑐
2)  𝑑𝑥  .  

Determine 𝐶 if this probability distribution function is normalized to 1. 

Find the probability of locating the quantum oscillator outside the classical turning points. 

3. The simplest of all atoms is the hydrogen atom consisting of a proton and an electron. The proton is in the 

nucleus and the electron can be anywhere in the space surrounding the nucleus, with its position given by a 

distribution function. The probability of finding the electron at a distance between 𝑟 and 𝑟 + 𝑑𝑟 from the 

nucleus is 

𝑃(𝑟) 𝑑𝑟 = 𝐶 𝑟2 exp(−2𝑟/𝑎𝑜) 𝑑𝑟  , 

where 𝑎𝑜  is a constant (called the Bohr radius). Here, 𝑟 can take any value between 0 and ∞. 
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Determine 𝐶 if this probability distribution function is normalized to 1. 

Using this probability distribution function, determine the average value �̅� of 𝑟. 

4. Biomedical Physics Application. The gestation period of human pregnancies has a normal distribution with a 

mean 𝜇 of 268 days and standard deviation 𝜎 of 16 days. 

What percentage of pregnancies last between 260 and 284 days? 

The colloquial term “preemies” refers to infants who have preterm birth with gestational age of less than 37 

weeks, or 259 days. What percentage of infants are preemies? 

Post-term babies are born after 284 days of pregnancy. What percentage of pregnancies leads to post-term 

babies? 
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Appendix A: Limiting Value of 𝐬𝐢𝐧 𝜽/𝜽 as 𝜽 → 𝟎. 

Using simple facts from geometry and trigonometry, we can determine the limiting value of sin 𝜃/𝜃 as 𝜃 

approaches 0. 

 

Consider a circular pie, of radius R, which is cut into slices. One slice of angular size θ (shown in the left figure) is 

of area 𝐴𝑠. Using the concept of proportionalities, ratio of area of slice (𝐴𝑠) and area of full pie (πR2) is same as 

the ratio of angular size of slice (θ) and angular size of full circular pie, namely, 2𝜋. Thus, 
𝐴𝑠

𝜋𝑅2
= 

𝜃

2𝜋
 or 𝐴𝑠 = 

𝜃 𝑅2

2
. 

In the adjoining right figure, we show the same slice of angular size θ and label one of its corners as A. From this 

corner A we drop a perpendicular line that meets the opposite side of the slice at point B. Also, at corner A, we 

draw a tangent to the circular pie (of center O) that meets the extension of line OB at point T. From this second 

figure, we note 

Area of triangle 𝑂𝐴𝐵 ≤ Area of slice ≤ Area of triangle 𝑂𝐴𝑇  . 

Or, 

1

2
 (𝑂𝐵)(𝐴𝐵)  ≤ 𝐴𝑠  ≤

1

2
 (𝑂𝐴)(𝐴𝑇) 

1

2
 (𝑅 cos 𝜃)(𝑅 sin 𝜃)  ≤

𝜃 𝑅2

2
 ≤
1

2
 (𝑅)(𝑅 tan 𝜃) 

cos 𝜃  ≤
𝜃 

sin 𝜃
 ≤

1

cos 𝜃
  

Since cos 𝜃 → 1 as 𝜃 → 0, it follows that 
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lim
𝜃→0

sin(𝜃)

𝜃
= 1   .                                                    𝐸𝑞. (𝐴. 1) 

In addition, we note that for small values of θ, sin 𝜃 ≈  𝜃.   
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Appendix B: Mnemonic for Maxwell’s Relations of Thermodynamics 

Laws of thermodynamics play fundamental roles in physics, biology, chemistry, chemical engineering, mechanical 

engineering, and other scientific disciplines. In their mathematical descriptions, these laws relate four physical 

variables, pressure (P), volume (V), temperature (T) and entropy (S). Derivatives of these variables are related via 

four Maxwell’s relations of thermodynamics, which are 

+(
𝜕𝑆

𝜕𝑃
)
𝑇
= −(

𝜕𝑉

𝜕𝑇
)
𝑃
  , 

+(
𝜕𝑇

𝜕𝑉
)
𝑆
= −(

𝜕𝑃

𝜕𝑆
)
𝑉
  , 

+(
𝜕𝑃

𝜕𝑇
)
𝑉
= +(

𝜕𝑆

𝜕𝑉
)
𝑇
  , 

+(
𝜕𝑉

𝜕𝑆
)
𝑃
= +(

𝜕𝑇

𝜕𝑃
)
𝑆
  . 

This appendix presents a simple mnemonic device for recalling these relationships without any complications for 

remembering the correct signs. Note that two of these relations have a positive (+) sign on the right-hand side 

and the other two have a negative (N) sign on the right-hand side. In each relationship, the variable with respect 

to which a partial derivative is taken on one side is kept fixed on the other side. The first two relations with the 

negative sign on the right-hand side can be memorized as follows. Recalling the letter N for the negative 

relations, wrap the four letters PSTV for the thermodynamic variables, in alphabetical order, along this N in two 

possible ways as shown here: 

 

In these figures, the placement of letters is in the same location/way as in the first two Maxwell’s relations, 

which contain the negative sign on the right-hand side.  

P 

S 

T 

V P 

S 

T 

V 
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To get the mnemonic for the other two Maxwell relations—namely, the ones with the positive sign on the right-

hand side—rotate these figures by 𝜋/2 (does not matter whether the rotation is clockwise or counterclockwise) 

and replace N (negative) by + (positive), to get 

 

In these figures, the placement of letters is in the same location/way as in the last two Maxwell’s relations, which 

contain the positive sign on the right-hand side.  

  

T 

P 

V 

S T 

P 

V 

S 
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Appendix C: Proof of the Epsilon-Delta Identity 

In the introduction of Levi-Civita symbol, 𝜖𝑖𝑗𝑘, in the Interlude chapter, a relationship between 𝜖𝑖𝑗𝑘  and 

Kronecker delta 𝛿𝑖𝑗  was presented as 

∑𝜖𝑖𝑗𝑘𝜖𝑖𝑙𝑚 = 𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙
𝑖

  . 

This epsilon-delta identity can be proved by starting with a determinant of order 3 whose element, 𝑎𝑖𝑗 , located 

at the intersection of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column, is 𝛿𝑖𝑗. This determinant is 

𝔸 = |

𝛿11 𝛿12 𝛿13
𝛿21 𝛿22 𝛿23
𝛿31 𝛿32 𝛿33

| = |
1 0 0
0 1 0
0 0 1

| = 1   .   

In the Interlude chapter, the value of Levi-Civita symbol, 𝜖𝑖𝑗𝑘, was given as +1 (or −1) if an even (or odd) 

permutation of (𝑖𝑗𝑘) gives (123). Thus, on replacing the row numbers (123) of 𝔸 by (𝑖𝑗𝑘), the value of the 

determinant will become 𝜖𝑖𝑗𝑘  instead of 1, that is 

|

𝛿𝑖1 𝛿𝑖2 𝛿𝑖3
𝛿𝑗1 𝛿𝑗2 𝛿𝑗3
𝛿𝑘1 𝛿𝑘2 𝛿𝑘3

| = 𝜖𝑖𝑗𝑘    .   

Similarly, on replacing the column numbers (123) by (𝑛𝑙𝑚), the value of the determinant will become 

|

𝛿𝑖𝑛 𝛿𝑖𝑙 𝛿𝑖𝑚
𝛿𝑗𝑛 𝛿𝑗𝑙 𝛿𝑗𝑚
𝛿𝑘𝑛 𝛿𝑘𝑙 𝛿𝑘𝑚

| = 𝜖𝑖𝑗𝑘𝜖𝑛𝑙𝑚   .   

Now, replace 𝑛 by 𝑖, and expand the determinant across first column explicitly, to get 

𝜖𝑖𝑗𝑘𝜖𝑖𝑙𝑚 = 𝛿𝑖𝑖(𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙) − 𝛿𝑗𝑖(𝛿𝑖𝑙𝛿𝑘𝑚 − 𝛿𝑖𝑚𝛿𝑘𝑙) + 𝛿𝑘𝑖(𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙)  . 

Finally, sum over 𝑖 and use ∑ 𝛿𝑖𝑖
3
𝑖=1 = 3 to obtain 

∑𝜖𝑖𝑗𝑘𝜖𝑖𝑙𝑚
𝑖

= 3(𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙) − (𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙) + (𝛿𝑗𝑚𝛿𝑘𝑙 − 𝛿𝑗𝑙𝛿𝑘𝑚)  , 

or, 

                                                    ∑ 𝜖𝑖𝑗𝑘𝜖𝑖𝑙𝑚 = 𝛿𝑗𝑙𝛿𝑘𝑚 − 𝛿𝑗𝑚𝛿𝑘𝑙𝑖   .  
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Appendix D: Areas under the Standard Normal Curve 

The table below provides the values of the Gaussian function, Φ(𝑥), as a function of x. 

 

Table 13.1. Areas under the standard curve from − to x. 
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