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FOREWORD BY JERRY
DREW

Foreword
Jerry Drew, Military Space Operations Expert and

Theorist

While the casual observer may not have noticed the
elevation of United States Cyber Command to an
independent combatant command in 2018 or the
establishment (or rather, the reestablishment) of United States
Space Command in 2019, these changes within the
Department of Defense carried profound significance. The
new organizational structures, each headed by a four-star
general directly reporting to the Secretary of Defense, reflected
a deeper realization that had been percolating in national
security circles for a long time: the U.S. military, although
cripplingly dependent on satellites and computer networks,
needed to advance its thinking and its practice in these areas in
order to field a joint force capable of fighting and winning in
the twenty-first century.

Such advances, however, are incremental, especially in a
military as large as that of the United States. To further
compound the challenges of change, many military



practitioners and civilian security experts still consider space
and cyber as esoteric disciplines. Activities in these domains
clearly enable land, air, and maritime operations but in a way
that is often difficult to understand and often more difficult to
explain. And although the national security space community
has been engaged in an effort to provide these explanations
since its inception, military space forces are now in the position
of not just enabling operations in other domains but of
playing an expanded role in integrated military operations with
the rest of the joint force.

Under the direction of Professor Randall Nichols, Kansas
State University has published a series of six textbooks that
significantly contributes to the goal of explaining modern,
multi-domain security activities. To date, the series has
garnered more than 50,000 downloads and is averaging about
1,000 new downloads each month. In this installment, a group
of fifteen dedicated experts advances the series into the realm
of space operations—a discipline within the larger field of
security studies that has consumed the past twelve years of
my professional life. I could not be more grateful for their
efforts. It is hard to imagine more experienced and dedicated
professionals than the ones who have spent the past two years
of their lives putting together this textbook, yet I know that
similar groups are working around the world on problems of
equal value to our nation, and the timing could not be better.
Indeed, with China’s rapid military expansion and Russia’s
invasion of Ukraine last spring, the sense of urgency among
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the security community seems to have reached a level only
surpassed in recent memory by the tragedy of September 11,
2001.

But the times have changed over the past twenty years. As
the Biden administration’s Interim National Security Strategic
guidance makes clear, the United States is no longer an
undisputed world power, transregional problems abound, and
“America’s fate is inextricably linked to events beyond our
shores.”[1] To prepare for these challenges, graduate-level
students and researchers require an in-depth treatment of the
most technical aspects of modern, multi-domain warfare,
including orbital warfare, cyber operations, unmanned aerial
systems, unmanned underwater vehicles, hypersonic weapons,
and how these capabilities shape the contemporary security
environment. Indeed, if the phrase “Rise of the Machines”
may still ring a bit histrionic, the on-going conflict in Ukraine
provides at least some insight into what the conflicts of the
future will entail: rapidly evolving drone warfare, mesh
network communications, the criticality of the information
environment—all underpinned by satellites, servers, and the
electromagnetic spectrum. Perhaps more than any other
nation, the United States military depends upon the
technological advantages achieved by such systems. To deter
our adversaries, and to defeat them, if necessary, technology
is indispensable, but the knowledge of how to employ that
technology is vital. War is still a human endeavor, and humans
must carry the necessary knowledge.
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In writing of the German General Heinz Guderian, British
historian B.H. Liddell Hart observed that in the annals of
military history, “Innovators have rarely had the chance to put
into practice themselves the theories they have expounded.”[2]
In the modern world, however, rapid innovation and
implementation, underpinned by soundly developed theory,
will be critical for future battlefield success. Because of the
availability of advanced technologies like drones, the fluidity of
the cyber and electromagnetic environments, and the hyper-
transparency offered by space systems, the innovators must, at
all possible times, be prepared to apply what they have learned
as expeditiously as possible. The side that innovates with more
creativity and at the proper level of complexity will achieve
marked advantages. It is to that end that this textbook—and
this entire series of textbooks—aims to contribute, and it is
your responsibility, dear reader, to advance your particular
fields by building upon the knowledge and experience of
others. The military establishment needs your help, and such
contributions could not be more important for the future of
the free world.

As the authors of this text ably demonstrate, however, the
future is not all (or possibly not even mostly) one of conflict.
Warfare happens to be the artistic medium of greatest concern
to me, but the same technologies that are vital to our security
also provide new opportunities to advance agricultural
sciences, to mitigate the effects of natural disasters and climate
change, and to build a cislunar economy that promises
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abundant economic benefits and lays the cornerstone of
humankind’s expansion across the solar system. In other
words, like radios, rockets, satellites, and cell phones, the
technologies described in this series are often dual-use, and
when the time is appropriate, they must be used appropriately.
Just as our forebearers have often wished to beat their swords
into plowshares, it is my sincere hope that our children will
turn their hyperspectral cameras away from the enemy and use
the very same reconnaissance drones to determine the most
efficient placement of synthetic fertilizers. The future is always
scary, but as I write this, the Artemis I launch is pending,
and there is good reason to hope for a future built more on
cooperation than on conflict. Good luck out there!

Jerry Drew
September 3, 2022

[1] The White House, Interim National Security Strategic
Guidance (Washington, DC: 2021), 6.

[2] B.H. Liddell Hart, foreword to Panzer Leader, by Heinz
Guderian (New York: Da Capo, 2002), 15.
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PREFACE - PURVIEW OF
DREAMERS (NICHOLS)

PREFACE – PURVIEW OF DREAMERS
SPACE SYSTEMS: EMERGING TECHNOLOGIES

AND OPERATIONS is our seventh textbook in a series
covering the world of UASs / CUAS/ UUVs. Other textbooks
in our series are Drone Delivery of CBNRECy – DEW
Weapons: Emerging Threats of Mini-Weapons of Mass
Destruction and Disruption (WMDD); Disruptive
Technologies with applications in Airline, Marine,
Defense Industries; Unmanned Vehicle Systems &
Operations On Air, Sea, Land; Counter Unmanned
Aircraft Systems Technologies and Operations;
Unmanned Aircraft Systems in the Cyber Domain:
Protecting USA’s Advanced Air Assets, 2nd edition; and
Unmanned Aircraft Systems (UAS) in the Cyber
Domain Protecting USA’s Advanced Air Assets, 1st
edition. Our previous six titles have received considerable
global recognition in the field. (Nichols & Carter, 2022)
(Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R.
, et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018)
[1]

Our seventh title takes on a new purview of Space. Let’s



think of space as divided into four regions. Planets, solar
systems, and the great dark void fall into the purview of
astronomers and astrophysics. The earth, from a measurement
standpoint, is the baseline of space. It is the purview of
geographers, engineers, scientists, politicians, and romantics.
Flying high above the earth are Satellites. Their purview is
governed by military and commercial organizations. The
lowest altitude at which air resistance is low enough to permit
a single complete, unpowered orbit is approximately 80 miles
(125 km) above the earth’s surface. Normal LEO satellite
launches range between 99 miles (160 km) to 155 miles (250
km). Satellites in higher orbits experience less drag and can
remain in space longer in service. Geosynchronous orbit is
around 22,000 miles (35,000 km). However, orbits can be even
higher. The Russians claim they placed a radio astronomy
satellite in a long elliptical orbit that carries it nearly as far as
the moon. (Hardwick, 2022) UASs (Drones) have a maximum
altitude of about 33,000 ft (10 km) because rotating rotors
become physically limiting. (Nichols R. , et al., 2019)
Recreational drones fly at or below 400 ft in controlled
airspace (Class B, C, D, E) and are permitted with prior
authorization by using a LAANC or DroneZone.
Recreational drones are permitted to fly at or below 400 ft
in Class G (uncontrolled) airspace. (FAA, 2022) However,
between 400 ft and 33,000 ft is in the purview of
DREAMERS.

In the DREAMERS region, space has its most interesting
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technological emergence. We see emerging technologies and
operations that may have profound effects on humanity. This
is the mission our book addresses. We look at the Dreamer
region from three perspectives: a military view where
intelligence, jamming, spoofing, advanced materials, and
hypersonics are in play. An exploration of the challenges in the
Dreamer region follows. These include space-based platform
vulnerabilities, trash, disaster recovery management, AI,
manufacturing, and extended reality. Lastly, we dramatically
shift to the humanitarian use of space technologies. This
includes precision agriculture wildlife tracking, fire risk zone
identification, and improving the global food supply and cattle
management.

State-of-the-Art research by a team of fifteen SMEs is
incorporated into our book. We trust you will enjoy reading it
as much as we have in its writing. There is hope for the future.

Randall K Nichols
Professor of Practice
Director, GC Aerospace Cyber Operations
UAS / UUV Series Managing Editor / Co-Author
Kansas State University Aerospace & Technologies Campus
Professor Emeritus – Cybersecurity, Utica College
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CEO of VFT Solutions, a member of the Forbes Technology
Council. He has authored numerous articles, including: “Why
Industry and Government Leaders Need to Realize
Vulnerabilities of the Cloud.”

Published on June 16, 2017, on LinkedIn; ‘Identifying The
Lone Wolf Using Technology,” on LinkedIn, Published on
July 3, 2015; “Are Social Media Companies Using ToS And
Safe Harbor To Profit From Infringement, Crime And
Terror?,” Forbes.com, April 28, 2017; “Weaponizing Social
Media: New Technology Brings New Threat,” Forbes.com,
July 7, 2017; ‘Pay No Attention To That Man Behind The
Curtain’: Technology vs. Transparency,” Forbes.com, October
17, 2017; and “Drone Technology: The Good, The Bad And
The Horrible,” Forbes.com, January 10, 2018.

Dr. Julie J.C.H. Ryan, D.Sc. (Co-Author)
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Julie J.C.H. Ryan, D.Sc., is the CEO of Wyndrose Technical
Group, having retired from academia in 2017. Her last
position in academia was Professor of Cybersecurity and
Information Assurance at the U.S. National Defense
University. Before that, she was tenured faculty at George
Washington University and a visiting scholar at the National
Institute for Standards and Technology (NIST).

Dr. Ryan came to academia from a career in an industry that
began when she completed military service. Upon graduating
from the U.S. Air Force Academy, Dr. Ryan served as a Signals
Intelligence Officer in the Air Force and then a Military
Intelligence Officer with the Defense Intelligence Agency.
Upon leaving government service, she worked in various
positions, including systems engineer, consultant, and senior
staff scientist with Sterling Software, Booz Allen & Hamilton,
Welkin Associates, and TRW/ESL, supporting various
projects and clients.

She is the author /co-author of several books, including
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Defending Your Digital Assets Against Hackers, Crackers, Spies,
and Thieves (McGraw Hill 2000), and a Fellow of the
American Academy of Forensic Sciences (AAFS). At
Wyndrose Technical Group, she focuses on futures forecasting
and strategic planning, focusing on technology surprise and
disruption.

Professor Candice M. Carter (Co-Author)

Prof. Candice Carter is a cybersecurity expert with over 15
years of hands-on experience in counterterrorism,
counterintelligence, and cybercriminal investigations. She
conducts Classified/Unclassified briefings in the areas of
Terroristic Cyber Capabilities using Social Media and
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Counterterrorism for the Intelligence Community (IC). Ms.
Carter conducts research and constructs Asymmetric Warfare
and Attack / Defense Scenarios against National Critical
Infrastructure. She is the Team Lead for NASA Aeronautics
Research Institute for Transformative Vertical Flight (TVF)
Commercial Intra-City On-Demand VTOL group. Ms. Carter
is an invited speaker for key organizations, including BSides
London and (ISC)2 Security Congress. She is an Assistant
Professor/Chair MSc Cybersecurity program at Wilmington
University. Ms. Carter holds an MSc in Cybersecurity
Forensics and Intelligence from Utica College, Utica, NY, and
a PMT Cybersecurity UAS from Kansas State University.

CPT John-Paul Hood USA (Co-Author)

CPT John-Paul Hood is a researcher focused on developing
future counter unmanned aircraft technologies, theories, and
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best practices for government and civilian applications. CPT
Hood has commanded in the US Army Field Artillery with
a background specializing in coordinating and delivering
conventional/smart munitions and achieving desired
battlefield effects by integrating lethal and non-lethal assets.
CPT Hood holds a BS in Geospatial Information Systems
from the United States Military Academy, West Point, NY, and
a Professional Masters in Technology UAS from Kansas State
University.

Dr. Alysia Starkey (CEO & Dean Kansas State
University Aerospace and Technologies Campus; 2nd Ed.
Foreword)

Dr. Starkey is a Professor and currently serves as the CEO
and Dean of the Kansas State University Aerospace and
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Technology Campus. As Dean, she oversees the College of
Technology and Aviation academic programs and campus
research centers. Dr. Starkey holds an A.A. in Social Work
from Colby Community College, a B.S. in Psychology from
Fort Hays State University, an M.L.S. from the University of
North Texas, and a Ph.D. in Curriculum and Instruction from
Kansas State University. Joining Kansas State University
Aerospace and Technology Campus in June 2002 as a
technical services/automation coordinator and assistant
professor, Starkey was promoted to the library director and
associate professor in 2007 and assistant dean of continuous
improvement and distance education in 2010. She was named
associate dean of academics and promoted to full professor in
2014. She gained the additional duties of interim CEO and
Dean in June 2018 and continues in that capacity today.

Joel D. Anderson Colonel USMC (Ret), (OVPR, C-
UAS Foreword)
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Mr. Anderson has over 30 years of experience in the military,
industry, and academia. He currently serves as Development
Director for Kansas State University within the Office of
Research Development (ORD). Before joining KSU, he
served as a Technical Director, Innovation Evangelist, and
Senior Subject Matter Expert for ManTech International in
support of HQMC Intelligence Department and its Tactical
Exploitation of National Capabilities (TENCAP) office and
Technology and Innovation Directorate; and as the Director
for Mosaic ATM, Inc.’s Autonomous Systems Group.
Between 1984-and 2010, he served in the United States Marine
Corps, where he rose in rank from Private to Colonel. During
his career, he served as an (0231) intelligence analyst while

LXIV | SERIES CONTRIBUTORS



enlisted, where he was meritoriously promoted to Corporal.
As an officer, he held military occupational designations as
an (0202) Marine Air-Ground Task Force Intelligence Officer,
(0240) Imagery Officer, (0540) Space Operations Officer, and
(8058) Acquisition Professional earning DAIWIA Level III
Certification as Program Manager and member of the
acquisition community while PM-Marine Intelligence
Systems for the Marine Corps Systems Command. He held
command positions as a Surveillance and Target Acquisition
Platoon Commander, Commander of the 2nd Force Imagery
Interpretation Unit (FIIU), and Commanding Officer
Company E. Marine Security Guard Battalion (Department of
State). He served as the Marine Corps Senior Departmental
Requirements Officer (DRO) and as the Imagery and
Collections Section Head while serving with the Marine Corps
Intelligence Activity; as the Branch Head for HQMC
Intelligence Departments Imagery and Geospatial Plans and
Policy Branch, and concluded his career as a Strategic
Intelligence Planner for the Office of the Under Secretary of
Defense for Intelligence (OUSD-I) and as the Chief of Staff for
Secretary Gates Intelligence, Surveillance and Reconnaissance
Task Force (ISRTF). He has served at every operational level of
the Marine Corps from Battalion, Regiment, Division, Wing,
MEU, and MEF; within the Marine Corps supporting
establishment, HQMC, and on the OUSD-I staff. Mr.
Anderson has spent a career supporting efforts to address the
complexities of the intelligence community and interagency
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information management, decision making, talent acquisition,
and educational and operational environments.

His awards include the Defense Superior Service Medal;
Bronze Star; Meritorious Service Medal with four gold stars
instead of the 5th award; Navy and Marine Corps
Commendation Medal; Navy and Marine Corps Achievement
Medal; Joint Meritorious Unit Citation; Meritorious Unit
Citation; Navy Unit Citation; Marine Corps Expeditionary
Medal; National Defense Medal with one device instead of the
second award; Armed Forces Expeditionary Medal; Southwest
Asia Service Medal with three stars instead of additional
awards; Global War on Terrorism Service Medal; Sea Service
Deployment Ribbon with three stars instead of additional
awards; Overseas Deployment Ribbon with one device;
Marine Security Guard Ribbon; Kuwaiti Liberation Medal
(Saudi Arabia); Kuwaiti Liberation Medal (Kuwait).

Dr. Mark J. Jackson (Co-Author)
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Doctor Mark James Jackson is the McCune and
Middlekauff Endowed Professor and University Faculty
Fellow at Kansas State University. Born in Widnes, Lancashire,
England, in 1967, Doctor Jackson began his engineering career
in 1983 when he studied O.N.C. part I examinations and first-
year apprenticeship-training course in mechanical
engineering. After gaining an Ordinary National Diploma in
Engineering with distinctions and an I.C.I. prize for
achievement, he studied for a degree in mechanical and
manufacturing engineering at Liverpool Polytechnic. He spent
periods in the industry working for I.C.I. Pharmaceuticals,
Unilever Industries, Anglo Blackwells, Unicorn International,
and Saint-Gobain Corporation. After graduating with the
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Master of Engineering (M. Eng.) degree with Distinction
under the supervision of Professor Jack Schofield, M.B.E.,
Doctor Jackson subsequently conducted research for the
Doctor of Philosophy (Ph. D.) degree at Liverpool in the field
of materials engineering focusing primarily on microstructure-
property relationships in vitreous-bonded abrasive materials
under the supervision of Professors Benjamin Mills and H.
Peter Jost, C.B.E., Hon. F.R.Eng. Subsequently, he was
employed by Unicorn Abrasives’ Central Research &
Development Laboratory (Saint-Gobain Abrasives’ Group) as
a materials technologist, then technical manager, responsible
for product and new business development in Europe
university liaison projects concerned with abrasive process
development. Doctor Jackson then became a research fellow at
the Cavendish Laboratory, University of Cambridge, working
with Professor John Field, O.B.E., F.R.S., and Professor David
Tabor, F.R.S., on condensed matter physics and tribology
before becoming a lecturer in engineering at the University of
Liverpool in 1998. At Liverpool, he attracted several research
grants to develop innovative manufacturing processes. He was
jointly awarded an Innovative Manufacturing Technology
Centre from the Engineering and Physical Sciences Research
Council in November 2001. In 2002, he became an associate
professor of mechanical engineering and faculty associate in
the Centre for Manufacturing Research, Centre for Electric
Power, and Centre for Water Resources and Utilization at
Tennessee Technological University (an associated university
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of Oak Ridge National Laboratory) and a faculty associate
at Oak Ridge National Laboratory. Dr. Jackson was the
academic adviser to the Formula SAE Team at Tennessee
Technological University. At Tennessee Technological
University, Dr. Jackson established the NSF Geometric Design
and Manufacturing Integration Laboratory. Dr. Jackson
collaborated with Nobel Laureate Professor Sir Harold Kroto,
F.R.S., editing a book on ‘Surface Engineering of Surgical
Tools and Medical Devices’ and a special issue of the
International Journal of Nanomanufacturing on
‘Nanofabrication of Novel Carbon Nanostructures and
Nanocomposite Films.’ Dr. Jackson was appointed a member
of the United Nations Education, Scientific, and Cultural
Organization’s (UNESCO) International Commission for the
Development of the ‘Encyclopedia of Life Support Systems’
Theme on ‘Nanoscience and Nanotechnologies’ (http://m-
press.ru/English/nano/index.html), and still serves in this
capacity. The encyclopedia’s first edition was published in
2009, and the second edition was published in 2018. In March
2017, the degree of Doctor of Science (D. Sc.) in mechanical
engineering was conferred upon Dr. Jackson in absentia by the
congregation for sustained contributions made in mechanical
engineering and advanced manufacturing over twenty years.

Research Technologist – Randall W. Mai (Co-Author)
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Randall grew up on the family farm in rural Kansas near
Tribune. He spent a large sum of his summers helping on
the family farm that his great-grandfather established in 1929.
Before graduating high school, Randall was nominated to the
United States Naval, Military, and Merchant Marine
Academies by Congressman Keith G. Sibelius and Senator
Bob Dole. Randall earned an A.S. degree in Mechanical
Engineering Technology and a B.S. in Biology / Chemistry
minor. Graduating Magna cum Laud. Randall has worked
as an engineer in agriculture equipment mfg., an Analytical
Chemist / Validation Analysis of computer/software
validation for Abbott Labs, and currently works as a Research
Technologist for Kansas State University. He is now
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establishing himself in the Cybersecurity field as he stands on
his knowledge of Computer / Software Validation experience
gained within the Pharmaceutical field. He was responsible for
leading the 21CFRpart11 program at the Abbott Labs facility
in McPherson, Ks. He was also responsible for validating the
Laboratory LIMS and Millenium32 software. The validation
encompassed network security and disaster recovery.

Randall will complete a master’s program at Kansas State
University in May 2020 in Professional Masters of Technology
with a concentration in UAS and Cybersecurity.

Dr. Suzanne E. Sincavage (Co-Author)

Executive Summary
On April 20, 2021, Dr. Suzanne Sincavage founded and
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Co-Chairs the Foundation for Biodefense Research, a non-
profit 501 (c)(3) devoted and dedicated to promoting the
biodefense intelligence tradecraft and developing a stronger
biodefense community with government, industry, academia
professional organizations, and individuals who assess,
develop, and apply biodefense intelligence research to address
national security challenges.

From 2020- 2021, Dr. Suzanne Sincavage served as the
Executive Director for the Institute for Biodefense Research
(IBR). A nonprofit devoted to advancing the science of
microbial forensics.

Dr. Sincavage, a Ph.D. in public health epidemiology with
a focus on biological terrorism preparedness and response, has
led her consultancy, IDIQ Inc., since 2008, focusing on
CBRNE Subject Matter Expertise in facilitating and
integrating innovative emerging and converging technologies
that counter biological terrorism.

Dr. Sincavage received her Ph.D. in Public Health and
Epidemiology with a specialization in Biological Terrorism
from Union Institute & University. Dr. Sincavage’s career
encompasses 16 years of experience in the biotechnology and
pharmaceutical industry, serving as a field scientist supporting
R & D, medical and regulatory affairs, and commercial
operations covering therapeutic areas of infectious disease,
virology, and oncology, hematology, urology, and
immunology.

Dr. Sincavage is an SME for the National Institute of
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Science and Technology (NIST), the National Reconnaissance
Office (NRO), Intelligence and National Security Alliance
(INSA), and DHS. She has held senior management positions
in Watson Pharmaceuticals, Department of Medical &
Regulatory Affairs; Wyeth-Ayerst Laboratories, G.D. Searle;
Hoffman-La Roche Laboratories; Sacred Heart Medical
Center, and for fun, served as Executive Director of the La
Jolla Symphony & Chorus.

Dr. Sincavage holds certifications:
SAM (CCR); SBA 8 (m)
DD 2345 Military Critical Technical Data Agreement
D
DTIC STINFO Manager
Counterterrorism
InfraGuard – Infrastructure Liaison Officer
ONR – Counterterrorism
Committees:
NDIA Legislative Committee
NDIA National Small Business Conference
NRO ASP Industry Working Group
INSA Acquisition Management Council
USGIF Small Business Working Group
WOSB 8(m) Working Group, SPAWAR HQ, San Diego

Troy Harding Associate Dean (Foreword, WMDD)
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Troy Harding is a Professor in computer systems technology
and Department Head of Integrated Studies at Kansas State
University Salina Aerospace and Technology Campus.
Professor Harding earned a bachelor’s degree in Chemistry
and Computer Science from Bethany College and a master’s
degree in Chemistry from the University of Virginia. Before
joining K-State, he worked as Technical Director at Aquarian
Systems in Orange, VA, Programmer/Analyst and Network
Coordinator at Associated Colleges of Central Kansas, and
Director of I.S. at Kansas Wesleyan University. At K-State, he
has received the Marchbanks Award for Teaching Excellence,
the McArthur Faculty Fellow Award, and the endowed
McCune & Middlekauff Fellowship.
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Robert McCreight (Co-Author)

Dr. McCreight spent 27 years in federal service and 23 years
concurrently in US Army Special Operations, working on
various national security projects and special defense programs
associated with nuclear, chemical, and biological defense
matters. He has supported and served as a periodic advisor
on the Chemical Weapons Treaty and Biological and Toxin
Weapons Convention during a career at the State Department,
along with programs enabling satellite verification of arms
control treaty compliance. He helped draft HSPD-10 and
contributed to the issuance of HSPD-21, also serving as a
contributing White House assistant on nuclear policy and
strategy exercises. Upon retirement, he has published on
advanced weapons systems, WMD issues, crisis management,
emergency response issues, and neuroscience topics.
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Periodically he has been a guest lecturer at NDU on future
weapons systems and taught graduate school at seven different
universities during the last 15 years in his designated areas of
interest, on national security issues, CBRN matters, and
emerging convergent technology threats.

William Slofer (Co-Author)

Bill is an IT Project Management and security professional
with over 30 years of IT and management experience. He
holds PMP, Scrum, and Scaled agile certifications with
expertise in application development, systems/infrastructure
integration, high-speed video/data communications, and IT
security. His technical and management expertise has been
employed by federal, state, and local governments and various
industries in the private sector. Bill’s strong management,
interpersonal, and communications skills have enabled him
to lead high-impact teams nationally and in Europe, South/
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Central America, and Asia. Bill is a member of Infragard and
has career accomplishments involving implementing
corporate-wide fortifications for perimeter defense, Lateral
Segmentation, and Data Loss Prevention measures to protect
sensitive data assets.

Formal education includes:

• MS, Cybersecurity / Cyber Terrorism
• MS, Management, Management Information Systems

BS, Business Administration / Computer Science

Professor Michael L. Oetken (Co-author)
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Michael L. Oetken is an Assistant Professor and Program
Coordinator for Digital Media and Computer Systems
Technology in the Department of Integrated Studies at Kansas
State University Salina Aerospace and Technology Campus.
Professor Oetken teaches courses in the areas of immersive
media technology, user experience (UX) design, web
development, web design, digital media design and graphic
design. Professor Oetken’s areas of expertise are augmented
(AR), virtual (VR), and extended (XR) reality media
technology, strategic media communications, web
development, graphic design, motion graphics, 3D modeling,
and video production. Professor Oetken holds a B.A. in
Graphic Design from Fort Hays State University, an M.S. in
Web Development from Fort Hays State University and is
currently a Ph.D. candidate in the strategic media program
at Liberty University. Oetken has over 20 years of industry
experience in the areas of strategic communication, graphic
design, marketing, and digital media technologies. Previous
professional titles include graphic designer, webmaster, art
director, assistant marketing director, and creative director. As
senior creative director for Kansas State University, Oetken
provided leadership, oversight, coordination, and creative
direction for communications and marketing entities
throughout the entire university system — including all major
web, video, social media, and print projects. During Mr.
Oetken’s 20-plus years as an industry professional, he has been
recognized for excellence in communication, marketing, and
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design with numerous Council for Advancement and Support
of Education (CASE) and University & College Designers
Association (UCDA) awards—including the 2013 and 2017
CASE International Circle of Excellence awards, which
acknowledge superior accomplishments that have lasting
impact, demonstrate the highest level of professionalism, and
deliver exceptional results in regard to higher education
communications and marketing.

Dr. Siny Joseph (Co-author)

Dr. Siny Joseph is a Professor of Economics and Graduate
faculty member at Kansas State University’s Aerospace and
Technology Campus. She has an experience of 10 years of
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teaching graduate and introductory undergraduate economics
courses at K-State. She has won awards for teaching excellence
based on innovations in teaching pedagogy and developing
open textbook materials. Dr. Joseph has a multidisciplinary
background with a bachelor’s degree in electrical engineering,
a Master of Business Administration degree specializing in
marketing and operations research, and a master’s and PhD
degree in resource economics from University of
Massachusetts Amherst. Her research areas embody her
multidisciplinary background with interests in the areas of
agricultural trade, food policy, organic dairy and feed grain
markets, mobile computing, accessible and assistive
technologies, circular economy applications in space materials
and integrated livestock-crop production. Dr. Joseph is active
in securing grant funding both at the federal level and within
K-State with proposals funded for a total of approximately
$2 Million. She has been continually disseminating teaching
scholarship, disciplinary and inter-disciplinary research
findings through peer-reviewed academic journal articles,
conference proceedings, and national/international
conference presentations/posters. She plays an active role as
a moderator/facilitator/panelist in academic conferences and
workshops, reviewer for professional academic organizations,
academic journals, and federal funding agencies such as NSF
and USDA. Dr. Joseph serves as a consultant for various
federal agencies funded projects. In addition, she has appeared
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in radio and television shows discussing various economics
related topics.

Dr. Michael J. Pritchard (Co-author)

Dr. Michael J. Pritchard received a bachelor’s degree in
Anthropology from the University of Kansas, a Master of
Science in Information Systems from Northwestern
University, and a Doctor of Philosophy in Information
Systems from Dakota State University in 2019. He is currently
the Associate Dean for Research & Graduate Studies as well
as the Assistant Professor for Machine Learning and
Autonomous Systems at Kansas State University and a former
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graduate lecturer of Data Science at UC Berkeley. His research
is published in Information Systems, IEEE Transactions on
Professional Communication, International Journal of
Transport and Vehicle Engineering, and Hawaii International
Conference on System Sciences. His areas of research include
integrated machine learning, autonomous systems, cybernetic
systems, and information theory.

Dr. Haley Larson (Co-author)

Haley Larson, Ph.D., is a teaching assistant professor of
animal health at Kansas State University’s Olathe campus. Dr.
Larson earned her B.S. in Animal Science and Ph.D. in
ruminant nutrition from the University of Minnesota. Her

LXXXII | SERIES CONTRIBUTORS



graduate studies focused on understanding how manipulation
of growth and fermentation patterns in feedlot cattle effects
animal performance. While completing her degree, Larson
began working as a senior scientist for Cargill Animal
Nutrition and Health. In that role, she designed and
developed the company’s dual-flow continuous culture system
– the first fully automated dual-flow system for cattle rumen
simulation. This system, and the data she generated, is still
being used for new product development and fermentation
modeling within the company today. During her time with
Cargill, Larson was also presented with many opportunities to
develop and deploy on farm technologies for dairy, beef, swine,
poultry, and aquaculture.

At Kansas State, Dr. Larson teaches several animal health
graduate-level courses within the department of applied and
interdisciplinary studies as well as the College of Veterinary
Medicine’s diagnostic medicine and pathobiology
department. She leads regulatory affairs courses on preclinical
and clinical research strategies, post-approval product
stewardship, as well as EPA and FDA regulations for new
animal health products. Her passion for educating the
industry’s next generation of agricultural professionals shines
through in her courses, particularly those focused on the
interconnections between the food and animal health
industries.

In her role at K-State, Dr. Larson also designs academic
courses and professional development programming tailored
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to Greater Kansas City’s growing animal health industry. Most
recently, she has been working to incorporate new
opportunities for animal health students to understand the
application of technology and data analytics to the industry.

Jerry V. Drew II, Space operations expert, author, and
theorist. Foreword (SS:ET&O)

Jerry Drew is a space operations expert, author, and
theorist. He holds a Bachelor of Science in art, philosophy,
and literature from the U.S. Military Academy and a Master
of Science in astronautical engineering from the Naval
Postgraduate School where his work focused on applied
robotic manipulation using small spacecraft. He is a 2017 Art
of War Scholar and a 2018 graduate of the School of Advanced
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Military Studies. Mr. Drew is currently enrolled as a PhD
student in the Colorado School of Mines’ Space Resource
program.

Mr. Drew has served in numerous positions within the
National Security Space community, including as a member
of the planning teams that established U.S. Space Command
and the U.S. Space Force. In addition to one science fiction
novel and one poem, he has published a dozen articles and
conference papers on tactics, military history, robotics, and
operational art. His co-authored book, The Battle Beyond:
How to Fight and Win the Coming War in Space, is due for
publication later this year. He lives in Kansas with his wife and
four children.

The Wildcat team is Honored to have Jerry Drew as our
Foreword writer for Space Systems: Emerging Technologies and
Operations (SS:ET&O).
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ABBREVIATIONS AND
ACRONYMS

ABBREVIATIONS, ACRONYMS AND
DEFINITIONS [1] [2]

The following terms are common to the UAS / CUAS
/UUV /SPACE industries, general literature, or conferences
on UAS/UAV/Drone/UUV/ SPACE systems. A majority of
the technical abbreviations come from DRONE DELIVERY
OF CBNRECy – DEW WEAPONS Emerging Threats of
Mini-Weapons of Mass Destruction and Disruption
(WMDD); (Nichols & Sincavage, 2022) (Nichols R. K. et al.,
Unmanned Aircraft Systems in the Cyber Domain, 2019) and
(Nichols R. al., Counter Unmanned Aircraft Systems
Technologies, and Operations, 2020) (Nichols & et al., 2020)
(Nichols R.et al., Unmanned Aircraft Systems (UAS) in Cyber
Domain: Protecting USA’s Advanced Air Assets, 2nd Edition,
2019) (Nichols R. K., Chapter 14: Maritime Cybersecurity,
2021) (Nichols & Sincavage, Disruptive Technologies with
Applications in Airline, Marine, and Defense Industries, 2021)
(Nichols & Ryan, Unmanned Vehicle Systems & Operations
on Air, Sea & Land, 2020) (Adamy D. L., Space Electronic
Warfare, 2021) (Nichols & Sincavage, 2022)



ABM Anti-ballistic missile
A/C Aircraft (Piloted or unmanned) also A/C
ACAS Airborne Collision Avoidance System
A/CFD Aircraft Flood Denial jamming
ACOUSTIC Detects drones by recognizing unique

sounds produced by their motors.
A/D Attack / Defense Scenario Analysis
ADS Air Defense System (USA) / Area Denial

System
ADS-B Automatic Dependent Surveillance-Broadcast

systems
A/C FD Aircraft flood denial
AFRL Air Force Research Lab
A-GPS Assisted GPS
AGL Above ground level
AHI Anomalous Health Incidents
AI Artificial intelligence: “1. a branch of

computer science dealing with the
simulation of intelligent behavior in computers, and 2: the

capability of a machine
to imitate intelligent human behavior.” (Merriam-Webster,

2020)
AIS Automated Identification System for Collision

Avoidance
AMAZE EU’s Additive Manufacturing Aiming

ABBREVIATIONS AND ACRONYMS | LXXXVII



Towards Zero Waste and Efficient Production of High-Tech
Metal Products project

AMS Autonomous Mobile Sword (SCREAMER)
uses sound to disrupt the brain before cutting the enemy to
pieces.

AO Area of Operations
AOA Angle of Arrival of signals to GPS receivers /

Angle of Attack
AOCS Cooperative Attitude and Orbit Control

System takeover
APC Armored personnel carrier
APDS Armor-piercing discarding sabot projectile
APFSDS Armor-piercing fin-stabilized discarding sabot

projectile
APHIS Animal and Plant Health Inspection Service
AR Augmented reality
ARW Anti-radiation weapons
ASAT Anti-satellite weapons / Anti-satellite missile

system
ASREN Association of Geospatial Industries, the

Arab States Research and Education Network
ASW Anti-Satellite Weapons
ATC Air Traffic Control / Air traffic Control

Signals
ATCC Air Traffic Control Center
ATM Air Traffic Management
ATS Air Traffic Services
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ATSAW Air Traffic Situational Awareness
AUV Autonomous underwater vehicle
Azimuth The angle between true North and the treat

location, in a plane at the satellite perpendicular to the vector
from the SVP [Sub-vehicle Point]

Bandwidth is Defined as the Range within a band of
wavelengths, frequencies, or energy.

Think of it as a range of radio frequencies occupied by
a modulated carrier wave, assigned to a service over which a
device can operate. Bandwidth is also a capacity for data
transfer of electrical communications systems.

B&B Branch & bound
B.C. Before Christ
BC Ballistic Coefficient
BEAR Battlefield Extraction-Assist Robot
Black Swan Black Swan Event- A black swan is an

unpredictable event beyond what is.
Normally expected of a situation and has potentially severe

consequences. Black
swan events are characterized by their extreme rarity, severe

impact, and the
widespread insistence they were obvious in hindsight.
(Black Swan Definition, 2020)
BLOS Beyond line-of-sight
BPAUV Battlespace Preparation Autonomous

Underwater Vehicle
BrO bromine oxide
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BSL-4 Biosafety Level #
BTWC Biological & Toxin Weapons Convention
BVLOS Beyond Visual Line-of-Sight operations
BVR Beyond visual range
BW Biological weapons
BYOD Bring your device
C/No Carrier to Noise ratio
c Speed of light ~ (3 x 108 m/s) [186,000 miles

per sec] in vacuum named after Celeritas, the Latin word
for speed or velocity.

C CLAW Combat Laser assault weapon
cs speed of sound (344 m/s) in air
C2 / C2W Command and control / Command and

Control Warfare
C3 Command, control, communications
C3I Command, control, communications, and

Intelligence
C4 Command, control, communications, and

computers
C4I Command, control, communications and

computers, intelligence
C4ISR Command, control, communications,

computers, intelligence, surveillance & reconnaissance
C4ISTAR Command, control, communications,

computers, intelligence, surveillance, target
acquisition and reconnaissance
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C5I Command, control, communications,
computers, Collaboration & Intelligence

CA Collision Avoidance / Clear Acquisition
(GPS) / Cyber Assault (aka CyA)

C/A GPS Satellite Course Acquisition unique
code

CAA Control Acquisition cyber attack
CAMS Copernicus Atmosphere Monitoring Service
CAS Close Air Support / Common situational

awareness
CBRN Chemical, Biological, Radiation & Nuclear

critical infrastructure facilities
CBRNE Chemical, Biological, Radiation, Nuclear &

Explosives attacks critical infrastructure facilities or assets
CBRNECy Chemical, Biological, Radiation, Nuclear,

Explosives & Cyber-attacks on critical infrastructure facilities
or assets

CBW Chemical, Biological Weapons
CCC Circular Cross-Correlation in classical GPS

receivers
CC&D Camouflage, Concealment, and Deception
CCTV Closed Circuit Television
CD Collective detection maximum likelihood

localization approach (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019)

CD Charge diameters
Cd Drag coefficient
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CDC Center for Disease Control
CDMA Code division multiple access protocol
CD Collective detection maximum

likelihood localization approach (Eichelberger, 2019)
CE Circular economy
CEA Cyber-electromagnetic activities
CEP Circular error probable
CETC Chinese Electronics Technology Group

Corporation
CEW Cyber electronic warfare / Communications

electronic warfare
CGA Coast Guard Administration – Singapore
CFSPH Center for Food Security and Public Health

(CFSPH)
CHAMP Counter-Electronics High Power Microwave

Advanced Missile Project
CHS Cyber-Human Systems
CIA Confidentiality, Integrity & Availability (

standard INFOSEC paradigm)
CI / CyI Critical Infrastructure / Cyber Infiltration
CIA Confidentiality, Integrity, Availability /

Central Intelligence Agency
CIRCIA Cyber Incident Reporting for Critical

Infrastructure Act
CIS Critical Infrastructure Sector
CISA Critical Infrastructure Security Agency
CJNG Cártel de Jalisco Nueva Generación
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CM / CyM Countermeasure / Cyber Manipulation
CMADS China’s Microwave Active Denial System
C/NA Communication / Navigation Aid
CNA Computer network attack
CND Computer network deception
CNE Computer network exploitation
CNO Computer network operations
CNS Central nervous system
CO-ASAT Co-orbital (Co-ASAT) missile system
COMINT Communications intelligence
COMJAM Communications Jamming
COMINT Communications Intelligence
COMSEC Communications Security
CONOP(S) Concepts of Operations
CONUS Continental United States
CONV Convergent Technology Dynamics
CONV-CBRN Convergent Technology Dynamics –

Chemical, Biological, Radiation & Nuclear
COP Common operating picture
COTS Commercial off-the-shelf
CM Apollo Command Modules
CNPC Control and non-payload links
CPB Charged particle beam
CPS Cyber-physical systems
CR Conflict Resolution / Close range / Cyber

Raid (aka CyR)
CSI Crime scene investigation
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CSIS Center for strategic and International Studies
CT Counter-Terrorism / Counter-Terrorism

Mission
CTN Course -Time Navigation , A-GPS technique

which drops the requirement to decode the HOW timestamps
from the GPS signals. CTN also refers to a snapshot receiver
localization technique measuring sub-millisecond satellite
ranges from correlation peaks, like classical GPS receivers.

C-UAS Counter Unmanned Aircraft Systems
(defenses/countermeasures)

CUAV Counter Unmanned Aircraft Vehicle
(defenses/countermeasures)

CUES Code for unplanned encounters at sea
CW / CyW Cyber Warfare
CWC Chemical Weapons Convention
CWMD Countering Weapons of Mass Destruction

Community
CYBER WEAPON Malicious Software and IT systems

that, through ICTS networks,
manipulate, deny, disrupt, degrade, or destroy targeted

information systems or
networks. It may be deployed via computer,

communications, networks, rogue
access points, USBs, acoustically, electronically, and

airborne/underwater
unmanned systems & SWARMS. Alternatively, cyber

weapons:
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1. A campaign that may combine multiple malicious
programs for espionage, data theft, or sabotage.

2. A stealth capability that enables undetected operation
within the targeted system over an extended time.

3. An attacker with apparent intimate knowledge of details
for the workings of the targeted system.

4. A special type of computer code to bypass protective
cybersecurity technology.

DA-ASAT Direct Accent or Hit-to-Kill (DA-ASAT)
missile system

Danger Close
Definition www.benning.army.mil/infantry/magazine/

issues/2013/May-June/Myer.html Nov 14, 2013 – 1) danger
close is included in the “method-of-engagement” line of a call-
for-fire request to indicate that friendly forces are close to the
target. … Danger close is a term that is exclusive from risk
estimate distance (RED) although the RED for 0.1 percent
PI is used to define danger close for aircraft delivery. Pi =
Probability of incapacitation. 2) Definition of “danger close”
(US DoD) In close air support, artillery, mortar, and naval
gunfire support fires, it is the term included in the method
of engagement segment of a call for fires which indicates that
friendly forces are within close proximity of the target.

DARPA Defense Advanced Research Projects Agency
Dazzle Cause temporary blindness with Laser
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DCPA Distance between vessels approaching CPA
D&D Denial & deception
DDD Dull, dangerous, and dirty
D/D/D Destruction, Disruption, Deception
DDOS Distributed Denial of Service cyber attack
DEFCON Defense condition
DEW Directed energy weapons (also, DE) (Nichols

& Sincavage, 2022)
DF Direction-finding
DHS Department of Homeland Security
DOF Degrees of Freedom
DOS Denial of Service attack
DPRK Democratic People’s Republic of Korea
DTRA Defense Threat Reduction Agency
DUST Dual-use Science & Technology threat
1090ES – 1090 Extended Squitter Data Link
EA Electronic Attack
Earth Trace The Earth Trace is the locus of latitude and

longitude of the SVP as the satellite moves through its orbit
EARSC European Association of Remote Sensing

Companies
EBO Effects-based operations
ECCM / EP Electronic counter-countermeasures /

Electronic Protection
ECD Dr. Manuel Eichelberger’s advanced

implementation of CD to detect & mitigate spoofing attacks
on GPS or ADS-B signals (Eichelberger, 2019)
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ECCO Estimating the Circulation and Climate of
the Ocean

ECM Electronic countermeasures
ECMWF European Centre for Medium-Range

Weather Forecasts
EHC Extra high voltage
ELINT Electronic Intelligence
ELSA-D Twin small satellite launched in 2020 for End-

of-Life-Servicing & Long-Term orbital sustainability
EM Electromagnetic waves
EMC Electromagnetic compatibility
EMD Electromagnetic deception
EMF Electromagnetic field
EMI Electromagnetic interference
EMP Electromagnetic pulse – electromagnetic

energy.
EMR Electromagnetic radiation
EMS Electromagnetic spectrum
EO Electro-optical system
EOS Earth Observation Satellites
ESA European Space Agency
ESOC European Space Operations Center located in

Darmstadt, Germany
EW Electronic warfare[Legacy EW definitions:

EW was classically divided into (Adamy D., EW 101 A First
Course in Electronic Warfare, 2001):
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• ESM – Electromagnetic Support Measures – the
receiving part of EW;

• ECM – Electromagnetic Countermeasures – jamming,
chaff, flares used to interfere with operations of radars,
military communications, and heat-seeking weapons;

• ECCM -Electronic Counter-Counter Measures –
measures are taken to design or operate radars or
communications systems to counter the effects of
ECM.[1]

Not included in the EW definitions were Anti-radiation
Weapons (ARW) and Directed Energy Weapons (DEW).

USA and NATO have updated these categories:

• ES – Electronic warfare Support (old ESM) to monitor
the R.F. environment;

• EA – Electronic Attack – the old ECM includes ASW
and D.E. weapons; to deny, disrupt, deceive, exploit, and
destroy adversary electronic systems.

• EP – Electronic Protection measures – (old ECCM)
(Adamy D., EW 101 A First Course in Electronic
Warfare, 2001) to guard friendly systems from hostile
attacks.[2]

EW Electronic Warfare (EW) is the art and science of
denying an enemy the benefits of the electromagnetic
spectrum (EMS) while preserving them for friendly forces.
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(Wolff, 2022)ES is different from Signal Intelligence
(SIGINT). SIGINT comprises Communications Intelligence
(COMINT) and Electronic Intelligence (ELINT). All these
fields involve the receiving of enemy transmissions. (Adamy
D., EW 101 A First Course in Electronic Warfare, 2001)

EUMETSAT European Organization for the Exploitation
of Meteorological Satellites

ESA European Space Energy
FAA Federal Aviation Agency
FDM Fused Deposition Modeling technique
FHSS frequency-hopping spread spectrum
FIRES Definition (US DoD – JP 3-0) is the use of

weapon systems to create a specific lethal or nonlethal effect on
a target

FPS Feet Per Second
FY-4 China (FY-4) Lightning Mapping Imager
GAO Government Accountability Office
GCS Ground control station
GEE Google Earth Engine
GEO Group on Earth Observations
GIS Geographical information system

GLM Geostationary Lightning Mappers
GNSS Global Navigation Satellite System (GPS,

GLONASS, Galileo, Beidou & other regional systems)
GNU GNU / Linux Operating system
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GOES R-series Geostationary Operational
Environmental Satellites (GOES-16 and 17)

GPM Global precipitation measurement
GPS Global Positioning System (US) [3] (USGPO,

2021)
GPS Global Positioning System / Geo-Fencing
GPS/INS uses GPS satellite signals to correct or

calibrate a solution from an inertial navigation system (INS).
The method applies to any GNSS/INS system

GRU Russian military intelligence branch
GS Ground Station
gSSURGO Gridded Soil Survey Geographic Database
GSFD Ground station flood denial
GSM Global system for mobile communications
GTA Ground-to-Air Defense
Hard damage DEW complete vaporization of a target
HAPS High Altitude Platforms (generally for

wireless communications enhancements)
HAPS UAVs UAVs dedicated to HAPS service (example to

communicate via CNPC links)
HCM Hypersonic cruise missile
HGV Hypersonic glide vehicle
HEAT High-explosive anti-tank warhead
HEL High energy Laser
HPM High powered microwave
HOW Hand-over-word satellite data timestamp

defined in (IS-GPS-200G, 2013)
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HTV Hypersonic test vehicle
HUMINT Human Intelligence
HVM Hostile vehicle mitigation
IAEA International Atomic Energy Agency
IC Intelligence community ~ 17 different

agencies
ICAO International Civil Aviation Organization
ICBM Intercontinental ballistic missile
ICS Internet Connection Sharing / Industrial

control systems
ICT Information & Communications Technology
ICTS Information & Communications Technology

Services
ID Information Dominance / Inspection and

Identification /Identification
IDEX International Defense Exhibition and

Conference
IDS Intrusion detection system
IED Improvised Explosive Device
IFF Identify Friend or Foe
IIIM International, Impartial, and Independent

Mechanism
IMU Inertial Measurement Unit
IND Improvised nuclear device
INS Inertial navigation system
INSA Intelligence and National Security Alliance
INFOSEC Information Security
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IO /I.O. Information Operations
IoT Internet of things
IIoT Industrial Internet of things
IP Internet protocol
IR Infrared
IS Information security / Islamic State
ISO International Organization Standardization
ISM In-space manufacturing
ISS International Space Station
ISIS Islamic State of Iraq and al-Sham (ISIS)
ISR Intelligence, Reconnaissance and Surveillance

UAS Platform
ISTAR Intelligence, surveillance, target acquisition,

and reconnaissance
IT Information Technology
IT/OT Information Technology/ Operational

Technology
ITE Installation, Training, Expense
ITP In trail procedure
IW Information Warfare
JIM Joint Investigative Mechanism
JPL NASA Jet Propulsion Laboratory
JSR Jamming-to-signal ratio
KE Kinetic energy
KEW Kinetic energy weapon
K’IHAP Short Shout in Tae Kwon Do
KKW Kinetic Kill Weapon/Warhead
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LASER “A laser is a device that emits light through a
process of optical amplification based on the stimulated
emission of electromagnetic radiation. The term “laser”
originated as an acronym for “light amplification by stimulated
emission of radiation.” A laser differs from other light sources
in that it emits light coherently, spatially, and
temporally. Spatial coherence allows a laser to be focused on a
tight spot, enabling laser cutting and lithography applications
laser cutting and lithography. Spatial coherence also allows a
laser beam to stay narrow over great distances (collimation),
enabling applications such as laser pointers. Lasers can also
have high temporal coherence, which allows them to emit light
with a very narrow spectrum, i.e., they can emit a single color
of light. Temporal coherence can produce pulses of light as
short as a femtosecond. Used: for military and law
enforcement devices for marking targets and measuring
range and speed.” (Wiki-L, 2018)

LaWS Laser weapon system
LED- Light emitting diodes
LENS Laser-engineered net shaping
LDEF Long Duration Exposure Facility
LGF Low Gradient Furnace
LiDAR Light Detection and Ranging – a RS method

using light in the form of a pulsed laser to measure ranges
LOS Line-of-sight / Loss of Signal / Loss of

Separation
LLTR Low-level transit route
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LM or L.M. Loitering munitions
LMM Lightweight Multi-role Missiles
LPI Low Probability of Intercept
LRAD Long Range Acoustic Device / Long-Range

Area Denial [4]
LWSI Livestock weather safety index
M&S Modeling and simulation technologies
Mach 1 Speed of sound, 761.2 mph
MAD Mutually assured destruction
M-ATV Mine-resistant ambush-protected vehicle
MAME Medium altitude medium endurance
MASER Microwave Amplification Stimulated

Emission of Radiation
MAST Micro Autonomous Systems & Technology
MEDUSA (Mob Excess Deterrent Using Silent Audio)
MEMS micro-electro-mechanical systems
MIM Man-in-middle attack
MIRV Multiple independently targetable reentry

vehicles
ML Machine learning
MLAT Multilateration System
MMEVR Multi-Mission Extra Vehicular Robot
MMOD Micrometeoroids and orbital debris
MND Ministry of National Defense
MOA Minute of angle in degrees
MOPP Mission Oriented Protective Posture

(MOPP) Gear
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MoU Memorandum of Understanding
MRVs Multiple Re-entry Vehicles
mTBI mild Traumatic Brain Injury
MRG Europe – Meteosat Third Generation

Lightning Imager
MSFC NASA Marshall Space Flight Center
MTI Moving target indicator
MUM-T Manned-unmanned teaming (MUM-T)
NAS National Academy Of Sciences
NATO North Atlantic Treaty Organization
NASA National Aeronautical and Space

Administration
NCSS National Cooperative Soil Survey
NDM Navigation data modification spoofing attack
NDVI Normalized Difference Vegetation Index
NEB New Economic Block soldier
NERC North American Electric Reliability

Corporation
NGB National Guard Board
NGO Nongovernmental organization
NHTSA National Highway Traffic Safety

Administration
NIEHS National Institute of Environmental Health

Sciences
NIR Near Infrared
NKW non-kinetic warfare
NMA Navigation Message Authentication
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NO2 Nitrogen dioxide
NOAA National Oceanic & Atmospheric Agency
NV Neurological vulnerability
OCONUS Outside Continental United States
OLI Operational Land Imager
OMAR On-Orbit Manufacture, Assembly and Recycling
OMI Ozone Monitoring Instrument
OODA Observe, Orient, Decide, and Act decision

loops
OPCW Organization for the Prohibition of Chemical

Weapons
OPSEC Operational Security
OSINT Open-source intelligence (also OSI)
OTH Over-the-horizon
PFMI Pore formation and mobility investigation

furnace
PETMAN Humanoid robot developed for US Army

-Protection Ensemble Test Mannequin
Phigital Digital and human characteristics & patterns

overlap
PII Private identifying information and

credentials
PLA Peoples Liberation Army (Chinese)
PLAN Peoples Liberation Army & Navy (Chinese)
PMU Phasor Measurement Unit
PNT Positioning, navigation, and timing systems
POV Point of view
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PRAM Photovoltaic Radio-frequency Antenna
Module technology

PRN Pseudo-Random Noise
PSA Protective security advisors
PSR Primary Surveillance Radar
PSYOPS Psychological warfare operations
RC Radio communications signals
RCS Radar cross-section
RDD Radiological dispersion device
RF Radio Frequency
RF-EMF Radiofrequency – Electromagnetic field
RFID Radio-frequency identification (tags)
RID Remote identification of ID
RIMPAC Tim of the Pacific
RKA Chinese Relativistic Klystron Amplifier
RN Ryan-Nichols Qualitative Risk Assessment
RNRA Ryan – Nichols Attack / Defense Scenario

Risk Assessment for Cyber cases
ROA Remotely operated aircraft
ROC Republic of China
ROV/ROUV Remote operating vehicle / Remotely

operated underwater vehicle
RPA Remotely piloted aircraft
RPAS Remotely piloted system
RPO Rendezvous and proximity operations
RPV Remotely piloted vehicle
RS Remote sensing
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RSS Received signal strength / Remote Sensing &
Surveillance

RTU Remote terminal units
RV Re-entry vehicle
SA Situational Awareness
SAA Sense and Avoid
SAM Surface to Air missile
SAR Synthetic aperture radar
SATINT Satellite intelligence
SATCOM Satellite communications
SBLM Submarine-launched ballistic missile
SCADA Supervisory Control and Data Acquisition

systems
SCS Shipboard control system (or station) / Stereo

Camera System / South China Seas
SDA Space Domain Awareness
SDR Software-defined radio
SEAD Suppression of enemy defenses
SECDEF Secretary of Defense (USA)
SIC Successive Signal Interference Cancellation
SIGINT Signals Intelligence
Signature UAS detection by acoustic, optical, thermal,

and radio /radar
SMART Strategic Arms Reduction Treaty
SML Space mobility and logistics area support
S/N S / N = is one pulse received signal to noise

ratio, dB: Signal to Noise ratio at HAPS receiver (also, SNR)
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SO2 Sulfur dioxide
Soft damage DEW disruption to a UAS computer
SOCOM U.S. Army Special Operations Command
SOLAS Safety of Life at Sea (International Maritime

Convention) [safety conventions]
SQF Solidification Quench Furnace
Spoofing is A Cyber-weapon attack that generates

false signals to replace valid ones. GPS Spoofing is an
attack to provide false information to GPS receivers by
broadcasting counterfeit signals similar to the original
GPS signal or by recording the original GPS signal
captured somewhere else at some other time and then
retransmitting the signal. The Spoofing Attack causes
GPS receivers to provide the wrong information about
position

and time. (T.E. Humphrees, 2008) (Tippenhauer & et.al,
2011) (Eichelberger, Robust Global Localization using GPS
and Aircraft Signals, 2019) (Nichols & Sincavage, 2022)

Spoofing Alt Def: A Cyber-weapon attack generates
false signals to replace valid ones.

SSBN Strategic nuclear-powered ballistic missile
submarine

SSLT Seamless satellite-lock takeover spoofing attack
SSN Space Surveillance Network
SSR Secondary Surveillance Radar
STEALTH to resist detection
STM Space traffic management
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sUAS Small Unmanned Aircraft System
SUBSA Solidification using a Baffle in Sealed

Ampoules
SVP Sub-vehicle point – Point on earth’s surface

right below the Satellite
SWARM High level, a dangerous collaboration of

UAS, UUV, or unmanned boats
T2AR T2 Augmented Reality project
Taiwan ROC Taiwan is officially the Republic of China
TCAS Traffic collision avoidance system
TDOA Time difference of arrival
TEAM (UAS) High-level, a dangerous collaboration of

UAS, UUV, or unmanned boats; differs from SWARM in that
it has a UAS Team Leader (TL) where SWARM does not. TL
directs the UAS team and is the primary counter UAS target
to disrupt.

TIROS Television InfraRed Observational Satellite
TNT Trinitrotoluene
TO Theater of Operations
TOA Time of arrival
ToF Time of flight
TRANSEC Transmission security
TTFF Time to first fix (latency)
TTPs Tactic, Technique, and Procedures
Tx Transmit signal
UA Unmanned Aircraft (non-cooperative and

potential intruder)
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UAM Urban Air Mobile (vehicle)
UAS-p UAS pilot
UAS Unmanned aircraft system (popularly but

incorrectly referred to as drones)
UAT Universal access transceiver
UAV Unmanned aerial vehicle / Unmanned

autonomous vehicle.
UAV-p UAV pilot
UCAR Unmanned combat armed rotorcraft
UCARS UAV common automated recovery system
UCWA / UA Unintentional cyber warfare attack
UGCS Unmanned Ground Control Station
UGS Unmanned ground-based station
UGT Unmanned ground transport
UGV Unmanned ground vehicle
UHF Ultra-high frequency
UNOOSA The United Nations Office for Outer Space

Affairs
USDA US Department of Agriculture
USV Unmanned Surface Vessel
UUV Unmanned underwater vehicle
UWB Ultrawideband
VBN Visual-based navigation
VBN LiDAR Visual-based navigation: Light Detection

and Ranging – a RS method using light in the form of a pulsed
laser to measure ranges

VDL VHF Data link
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VI Vegetation Indices
VIEW Virtual Interface Environment Workstation
VIIRS Visible Infrared Imaging Radiometer Suite
VIS Visible
VPL Visual Programming Languages
VR Virtual reality
VRT Variable rate technology
VLOS visual line of sight
VTOL Vertical take-off and landing
VX Deadly nerve agent
WAM Wide area multilateration
WFOV Wide field of view
WFUL Wake Forrest University Laboratory
WLAN Wide Local area network
WMD Weapons of Mass Destruction
WMDD Mini-Weapons of Mass Destruction and

Disruption
WMO World Meteorological Organization
XR Extended reality

Special Definitions (Nichols & Carter, 2022) (Nichols R.
K., 2020)

Asymmetric warfare can describe a conflict in which the
resources of two belligerents differ in essence and, in the
struggle, interact and attempt to exploit each other’s
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characteristic weaknesses. Such struggles often involve
strategies and tactics of unconventional warfare, the weaker
combatants attempting to use strategy to offset deficiencies in
quantity or quality of their forces and equipment. (Thomas,
2010) Such strategies may not necessarily be militarized.
(Steponova, 2016)

This contrasts with symmetric warfare, where two powers
have comparable military power and resources and rely on
similar tactics, differing only in details and execution.
(Thomas, 2010)

False Flag Operation – organized spreading of
misinformation or disinformation.

Eichelberger Collective Detection (ECD) Definitions /
Counter Spoofing Concepts

Acquisition – Acquisition is the process in a GPS receiver
that finds the visible satellite signals and detects the delays of
the PRN sequences and the Doppler shifts of the signals.

Circular Cross-Correlation (CCC) – In a GPS classical
receiver, the circular cross-correlation is a similarity measure
between two vectors of length N, circularly shifted by a given
displacement d:

N-1
Cxcorr (a, b , d) = ∑ ai dot bI + d mod N Eq.

3-1
I=0
The two vectors are most similar at the displacement d,

where the sum (CCC value) is maximum. The vector of CCC
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values with all N displacements can be efficiently computed
by a fast Fourier transform (FFT) in Ớ ( N log N ) time.
[3](Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

Like classical GPS receivers, coarse-Time Navigation (CTN)
is a snapshot receiver localization technique that measures sub-
millisecond satellite ranges from correlation peaks. (IS-
GPS-200G, 2013) [See also expanded definition above.]

Collective Detection (CD) is a maximum likelihood snapshot
receiver localization method, which does not determine the
arrival time for each satellite but combines all the available
information and decides only at the end of the computation.
This technique is critical to the (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019) invention
to mitigate spoofing attacks on GPS or ADS-B.

Coordinate System – A coordinate system uses an ordered
list of coordinates to uniquely describe the location of points
in space. The meaning of the coordinates is defined concerning
some anchor points. The point with all coordinates being zero
is called the origin. [ Examples: terrestrial, Earth-centered,
Earth-fixed, ellipsoid, equator, meridian longitude, latitude,
geodetic latitude, geocentric latitude, and geoid. [4]

Localization – Process of determining an object’s place
concerning some reference, usually coordinate systems. [aka
Positioning or Position Fix]

Navigation Data is the data transmitted from satellites,
which includes orbit parameters to determine the satellite

CXIV | ABBREVIATIONS AND ACRONYMS



locations, timestamps of signal transmission, atmospheric
delay estimations, and status information of the satellites and
GPS as a whole, such as the accuracy and validity of the
data. (IS-GPS-200G, 2013) [5]

Pseudo-Random Noise (PRN) sequences are pseudo-
random bit strings. Each GPS satellite uses a unique PRN
sequence with a length of 1023 bits for its signal transmissions.
aka as Gold codes, they have a low cross-correlation with each
other. (IS-GPS-200G, 2013)

Snapshot GPS Receiver– A snapshot receiver is a global
positioning satellite (GPS) receiver that captures one or a few
milliseconds of raw GPS signal for a location fix. (Diggelen,
2009)

Classification of Satellites
Satellites are classified in terms of their purpose and are

classified as follows:
Astronomical satellites – observation of distant planets and

galaxies;
Biosatellites – carry living organisms to aid scientific

experiments;
Communication satellites – communications satellites use

geosynchronous or Low Earth orbits to communicate with
each other and other systems;

Earth observation satellites (EOS) are satellites intended for
non-military uses such as environmental monitoring,
meteorology, and producing maps;
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Killer satellites are designed to destroy warheads, satellites,
and space-based objects;

Navigational satellites use radio time signals transmitted to
enable mobile receivers on the ground to determine their exact
location. The relatively clear line of sight between the satellites
and receivers on the ground allows satellite navigation systems
to measure location to accuracies on the order of a few meters
in real-time;

Reconnaissance satellites are communications satellites
deployed for military or intelligence applications;

Recovery satellites provide a recovery of reconnaissance,
biological, space-production, and other payloads from orbit to
Earth;

Space stations are orbital structures designed for human
beings to live in space. A space station is distinguished from
other crewed spacecraft by its lack of major propulsion or
landing facilities. Space stations are designed for medium-term
living in orbit;

Tether satellites are connected to another satellite by a thin
cable called a tether; and

Weather satellites are used to monitor Earth’s weather and
climate.

Satellite Orbits
The most common type of orbit is a geocentric orbit, with

over 3,000 active artificial satellites orbiting the Earth.
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Geocentric orbits may be further classified by their altitude,
inclination, and eccentricity.

The commonly used altitude classifications of the
geocentric orbit are Low Earth Orbit (LEO), Medium Earth
Orbit (MEO), Geosynchronous Orbit (GEO), and High
Earth Orbit (HEO). Low Earth Orbit is any orbit below 2,000
km, Medium Earth Orbit is any orbit between 2,000 and
36,000 km, and High Earth Orbit is greater than 36,000 km.
LLO: low lunar orbit is approximately 100 km above the lunar
surface. L1 and L2: “Lagrange points are caused by the balance
between the gravitational fields of two large bodies; equilibria
between two pulling forces.

Centric classifications
A galactocentric orbit is an orbit around the center of a

galaxy.
A heliocentric orbit is an orbit around the Sun. In our Solar

System, all planets, comets, and asteroids are in such orbits, as
are many artificial satellites and pieces of space debris.

Geocentric orbit is an orbit around Earth, such as the Moon
or artificial satellites. Currently, there are over 2,500 active
artificial satellites orbiting the Earth.

Altitude classifications
Low Earth Orbit (LEO): Geocentric orbits ranging in

altitude from 180 km – to 2,000 km;
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Medium Earth Orbit (MEO): Geocentric orbits ranging in
altitude from 2,000 km – to 20,000 km;

Geosynchronous Orbit (GEO): Geocentric circular orbit
with an altitude of 36,000 km. The orbit period equals one
sidereal day, which coincides with the Earth’s rotation period.
The speed is 3,075 m/s (10,090 ft/s).

High Earth orbit (HEO): Geocentric orbits above the
altitude of a geosynchronous orbit (GEO) > 36,000 km (~
40,000 km).

Agroterrorism / Bioterrorism Definitions
Agroterrorism is a subset of bioterrorism and is defined

as the deliberate introduction of an animal or plant disease
to generate fear, causing economic losses and/or undermining
stability. (O.S. Cupp, 2004)

Bioterrorism is the threat or use of biological agents by
individuals or groups motivated by political, religious,
ecological, or other ideological objectives.

Earth Observation Epidemiology or tele-epidemiology
is defined as ‘using space technology with remote sensing in
epidemiology. (Wiki, 2022)

MASINT – Measurement and signature
intelligence (MASINT) is a technical branch of intelligence
gathering that detect, track, identify or describe the distinctive
characteristics (signatures) of fixed or dynamic target sources.
This often includes radar, acoustic, nuclear, chemical, and
biological intelligence. MASINT is scientific and technical
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intelligence derived from the analysis of data obtained from
sensing instruments to identify any distinctive features
associated with the source, emitter, or sender, to facilitate the
latter’s measurement and identification. (Wiki, 2022)

OSI, short for OPEN-SOURCE Intelligence (also known
as OSINT), is defined as any intelligence produced from
publicly available information that is collected, exploited, and
disseminated in a timely manner to an appropriate audience to
address a specific intelligence requirement. (Bazzell, 2021)

Remote Sensing (RS) uses non-ground-based imaging
systems to obtain information about processes and events on
Earth. It is unique among the detection and diagnostic
methods discussed herein in its ability to offer passive
monitoring for the disease at scale rather than active
sampling. (Silva & et.al, 2021)
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(Nichols & Sincavage, 2022) unless otherwise noted.

[2] EM definitions from (Wolff, 2022)
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[4] All these systems are discussed in Chapter 2 of
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

[5] Each satellite has a unique 1023-bit PRN sequence, plus
some current navigation data, D. Each bit is repeated 20 times
for better robustness. Navigation data rate is limited to 50
bit / s. This also limits sending timestamps every 6 seconds,
satellite orbit parameters (function of the satellite location over
time) only every 30 seconds. As a result, the latency of the first
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time to first fix (TTFF), can be high.
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PART I

SECTION 1: C4ISR
AND EMERGING
SPACE
TECHNOLOGIES





1.

CURRENT STATE OF
SPACE OPERATIONS
(PRITCHARD)

Student Objectives

• Introduce and integrate fundamental space operations
terminology

• Identify the history and historical relationships of space
operations

• Distinguish between space domain, space technologies,
and space operations

• Understand technological development priorities

Introduction
To understand Space Operations, we first have to

understand the broader concept of ‘operations’ as it relates to a
domain and the technologies that operate within that domain.
In other words, let us have a non-space conversation on just the
following: domains, operations, and technologies. Generically
speaking, what are these three concepts? And how are they



interrelated? Foremost, domains, operations, and technologies
are highly interconnected. Domains incorporate the objects,
concepts, and rules that define a particular area of knowledge
or activity. Operations are the basic actions that can be
performed on those objects, concepts, and rules. Technologies
are the means by which we perform those operations. (See
Figure 1-1)

Figure 1-1 Domains, Operations, and Technologies

Source: (Pritchard M. ) (Operations, 2022)
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Now that we have our taxonomic relationships worked out,
we can now overlay the concept of Space into this conversation.
A space domain is an area of knowledge or activity that deals
with objects, concepts, and space-related rules. A space
operation is an action that can be performed on objects,
concepts, and rules related to Space. Space technologies are
the means by which we perform space operations. Okay, so
maybe we need to add more definitions to this exercise. Space
technologies allow humans to accomplish actions, which are
operations within the environmental domain we call outer
Space. These actions – these space operations – exemplify our
ability to study celestial objects such as planets, pulsars,
galaxies, and even black holes. They are further exemplified
by our ability to traverse and explore our solar system. These
specialized activities, which are classified as space operations
within the harsh environmental space domain, are only
possible through the design and employment of space
technologies. So, to better understand Space Operations, let us
take a historical journey through a) the Space Domain and b)
Space Technologies. First up, is the Space Domain.

Space Domain

When did people first see Space as a working domain? Well,
you would be surprised at how far back we can go. The
evolvement of Space as a “working domain” can be categorized
into a kind of product lifecycle: ideation, research,
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development, and operations. In total, these phases cover
thousands of years. Humans have been fascinated by the
waxing and waning of heavenly bodies for a long time. Many
scholars believe that the development of the Aurignacian
Lunar Calendar, nearly 32,000 years ago, is the earliest data
point we have where there is demonstrable evidence of human
celestial awareness (Peregrine, 2001) (Gheorghiu, 2013)
(Soderman, 2021). Small and lightweight, these lunar
calendars were simple to transport on long seasonal excursions
and extended hunting expeditions (See Figure 1-2,
Aurignacian Lunar Calendar). These calendars were often
carved into animal bones (or stones). The largest creatures
were difficult to hunt, and the codification of celestial
phenomena into animal bones gave hunters the power of
foresight. They used this antique space information
system.[1] To predict the movement of Earth’s Moon. At this
point, a clearly documented phase of ideation occurs in human
evolvement toward the space domain.

Figure 1-2 Aurignacian Lunar Calendar
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Sources: (NASA, 2022) (Marchant, 2009)
These lunar calendars were not isolated to a few smart

human hunters; their usage was found throughout Europe
(Gaffney, 2013). Let us jump forward 30,000 years where we
find the ideation phase of many cultures ends and the research
phase begins. Roughly 3,600 years ago, humans began to
develop better celestial tracking mechanisms. Humans started
to create various sky mapping tools, such as the Nebra Sky
Disc (See Figure 1-3, Nebra Sky Disc). This antique object,
which measures around 30 centimeters, has been linked to
the Unetice people who lived in a region of Europe.
Reconstructed, the dots are believed to be stars, with the
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cluster standing in for the Pleiades. The huge circle and
crescent represent the Sun and Moon.

Figure 1-3 Nebra Sky Disc

Source: (Google Images, 2018)

Figure 1-4 Recovered Antikythera Mechanism
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Source: (Wikimedia, 2022)

The research phase of this story moves us forward a few
hundred years to the creation of the Antikythera Mechanism
(See Figure 1-4, Recovered Antikythera Mechanism). Created
by Greek scientists roughly 2200 years ago, the device was used
to forecast astronomical phenomena. It is described as the
oldest example of an analog computer. A hypothetical
schematic of the Antikythera Mechanism was proposed by
Freeth and Jones in 2012. Using a stylized clockwork gearing
structure, the mechanism showed in reverse engineering that
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it could forecast the elliptical trajectories of the planets and
the retrograde movement of the Moon and Mars (Freeth &
& Jones, 2012). The introduction of a pin-and-slot epicyclic
mechanism, which is the circumference of a big circle with the
Earth at its center, came more than a millennium before the
first known clocks recorded in antiquity (Marchant, 2009)

Figure 1-5 Reconstructed Antikythera Mechanism

Source: (Freeth & & Jones, 2012)
This phase of our story would last for nearly 2100 years.

This time frame would include the likes of Abd al-Rahman al-
Sufi (Azophi), who developed detailed star charts for each of
the major constellations in the 10th Century. This would be
followed by many great insights developed by Ibn ash-Shatir
(planetary motions that were empirically testable, 14th
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Century), Nicolaus Copernicus (Earth is not the center of the
universe, 16th century), Sir Isaac Newton (Law of Universal
Gravitation, 18th Century). The research phase largely ended
at the beginning of the 20th Century (in 1905) when Special
Relativity was first published by Albert Einstein (and General
Relativity in 1915). It is during this time that the development
phase of our story truly begins. In the early 20th Century,
with scientific advances by Konstantin Tsiolkovsky, Robert
H. Goddard, and Hermann Oberth (Neufeld, 2012). Initiated
within Germany in the 1920s by Fritz von Opel and Max
Valier, the first effective large-scale rocket experiments were
ultimately performed by Werner von Braun. This is when space
technologies finally begin to take shape.

Space Technologies
In October 1957, the Soviet Union sent the Sputnik 1

satellite into Space. This was the first time an artificial satellite
was put into Earth’s orbit. The satellite weighed 83 kg (183
lb) and orbited Earth at an altitude of 250 km (160 mi).
Broadcasting for the world to hear, Sputnik produced a
heartbeat signal at 20 megahertz. However, most people do
not realize that Sputnik was, in fact, not the first time we
put technology into Space. The first human-made object to
ever reach outer Space was achieved by the Germans in 1944
via the Aggregat 4[2] (commonly known as the V-2) rocket
development program (See Figure 1-6, V-2 Cutaway
Diagram).
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Figure 1-6 V-2 Cutaway Diagram

Source: (forbes, 2019)

On June 20, 1944, the Germans performed a test launch
with a rocket cryptically named MW 18014 (an A-4 rocket) at
the Peenemünde Army Research Center. MW 18014 reached
an apogee.[3] of 176 kilometers (109.3 miles…well above the
Kármán line[4]). It was the first artificial object to enter Space
and the first suborbital flight of a human-made object. While
MW 18014 did enter orbit for a short period, it could not
maintain orbital velocity and crashed back to Earth. During
(and shortly after) the conclusion of World War II, Russia
and the United States embarked on an intellectual property
acquisition spree. The United States began acquiring a
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significant amount of science from Germany (nuclear physics
and rockets) and Japan (biochemical weapons). After World
War II, A-4 rocket hardware was quickly acquired by both
Russia and the United States. Using a highly modified A-4
(V-2) rocket, the United States (US) captured the first-ever
image of Earth from outer Space from the White Sands Missile
Range in New Mexico (Vinogradov, 1968). In 1946, the
footage was taken using a 35mm camera placed between the
fuel tanks of the V-2 rocket (See Figure 1-7, First Photo of
Earth). A single rocket launch from the New Mexican desert
ignited the Space Race, the Cold War, and experimental space
sciences all at once (Kelvey, 2021).

Figure 1-7 First Photo of Earth
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Source: White Sands Missile Range / Applied Physics
Laboratory (Pinterest, 1947)

Space technologies made rapid progress over the next two
decades. The Soviet probe Luna 2, which made a hard landing
on September 14, 1959, was the first spacecraft to make
contact with the Moon’s surface. On October 7, 1959, the
Soviet (USSR) spacecraft Luna 3 took the first image of the
Moon’s far side (see Figure 1-8. Far Side of the Moon). The
USSR successfully sent the first human into Space, Vostok 1,
in April 1961. Automatic systems managed the whole mission.
This was due to uncertainty on how a human may respond
to weightlessness among medical personnel and spacecraft
engineers. While the USSR was a dominant space engineering
power throughout the 1950s and 1960s, the US made progress
on human spaceflight via Project Mercury. Project Mercury
was the first crewed US space program from 1958 to 1963. It
had a round-trip objective; with a safe return, launch a man[5]
into Earth orbit. The National Aeronautics and Space
Administration (NASA) was formed and took over the
program from the US Air Force. Six successful astronaut
flights were performed.

Figure 1-8 Far Side of the Moon
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Source: Russian Space Agency (rankred, 2020)

NASA’s second human spaceflight initiative was Project
Gemini. Gemini, a project between Mercury and Apollo,
began in 1961 and ended in 1966. Two astronauts were aboard
the Gemini spacecraft (See Figure 1-9. Gemini Capsule
Cutaway). In 1965 and 1966, 16 different astronauts and 10
Gemini teams completed low Earth orbit (LEO) flights.
Gemini’s goal was to create spaceflight technologies to help
Apollo achieve its goal of putting humans on the Moon.
Showing mission endurance up to slightly under 14 days,
longer than the eight days needed for a round journey to the
Moon, enabled the United States to catch up with human
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spaceflight capabilities that the Soviet Union had attained in
the early years of the Space Race. In the race for Space, the
US would eventually surpass the USSR. The Apollo 8 crew
were the first humans to enter lunar orbit and actually sight the
Moon’s far side on December 24, 1968. On July 20, 1969, the
US made the first human landing on the Moon. Commander
of Apollo 11, Neil Armstrong, was the first person to set foot
on the Moon.

Figure 1-9 Gemini Capsule Cutaway

Source: (NASA, 2022)

Since then, space technology has advanced rapidly, enabling
humans to land on the Moon and deploy extrasolar
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spacecraft.[6], explore other planets, and planetoids[7]. The
development phase ended, and the operational phase began at
01:29 UTC on December 22, 2015. On flight 20, a Falcon 9
rocket launch became the first successful return (via vertical
landing) of an orbital rocket’s first-stage booster. After a five-
year program to create a reusable launch system, the first stage
made a successful landing. The success of flight 20 was a
history-making moment for human spaceflight. It marked a
significant milestone toward reusable and modular rocket
systems that can significantly reduce the cost of launching
payloads into orbit (Figure 1-10, SpaceX Falcon Rocket
Program).

Figure 1-10 SpaceX Falcon Rocket Program
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Source: SpaceX Corporation (SpaceX, 2022)

Space technologies span many categories: orbital launch
systems, spacecraft, space stations, spaceflight, energy,
communications, propulsion, navigation, security, and life-
support. With increasing diversity, humans have been
expanding their technological footprint; here is a summary
snippet of our current technological capabilities:
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• Launching and moving space mobility and logistics
– Technologies in the space mobility and logistics (SML)
area support the transportation of people and supplies
into – and across – Space. This can include bringing
astronauts to and from the International Space Station
or transporting materials to be used in construction
projects in Space. However, it also includes two
important subcomponents: space accessibility and on-
orbit sustainment. Space access includes the launch
services to move a spacecraft from Earth to orbit
(Operations, 2022). The durability of space operations is
reinforced by using ridesharing and alternative launch
services and sites. The lifespan of a spacecraft, including
maintenance, reconstitution operations, operational
deterioration or loss, and end-of-life actions, is included
in on-orbit sustainment. These activities are supported
by maneuvers referred to as rendezvous and proximity
operations (RPO). The United States Government is no
longer the dominant leader in this area. Advances in
operational SML technologies are largely driven by
private corporations (Orozco & & Simpson, 2020).

• Exploring and mapping the solar system with
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robotic spacecraft – Robotic spacecraft are often used
to explore and map the solar system. These missions are
planned and executed by teams of scientists and
engineers, who use the data gathered by the spacecraft to
learn more about the planets and their moons. Robotic
missions have also been used to study comets, asteroids,
and other small bodies in the solar system. In 2020, 114
launches carried nearly 1,300 satellites into Space. The
United Nations Office for Outer Space Affairs
(UNOOSA) maintains an online index of objects
launched into outer Space (United Nations Office for
Outer Space Affairs, 2022). This list contains all objects
ever launched into Space (i.e., including non-
geocentric[8] Spacecraft). As of July 2022, there are
12,874 spacecraft located within the index. Four are
classified as ‘interstellar’ (i.e., the Voyager and Pioneer
programs).

• Conducting research on the International Space
Station (as well as other governmental and soon-to-be
commercial space stations) – The International Space
Station (ISS) is a cooperative effort between multiple
nations to conduct research in Space. Astronauts from
various countries live and work on the station,
conducting experiments in various fields. While it is
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starting to show its age, the space station has been used
as a test bed for developing new technologies and has
served as a platform for educational outreach programs.
The International Space Station and Tiangong Space
Station[9] They are the only operational space stations;
however, there are plans to build commercially accessible
space stations in the future. Private companies would
own and operate these stations for research,
manufacturing, and other commercial activities. It is
difficult to say how soon commercial space stations
would be up and running, as this depends on the
development of the technology and the availability of
funding. However, several companies are working on
this technology, and it is possible that we could see
commercial space stations in the next few years
(Fiorentino, 2022).

• Building and operating telescopes to study the
universe – Telescopes are often used to study the
universe. They can be used to observe distant galaxies,
stars, and other celestial bodies. Telescopes can also study
the Sun, Earth’s atmosphere, and other objects in our
solar system. The most advanced telescopes in current
operation are the Hubble Space Telescope and the James
Webb Space Telescope. Launched in 1990, the Hubble
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Space Telescope has provided some of the most detailed
images of the cosmos up until very recently. The James
Webb Space Telescope is a space-based telescope that
began its first light operations in June 2022. Employing a
liquid nitrogen-chilled beryllium mirror, it is currently
the most powerful telescope ever built, with an ability to
see back in time to the very early days of the universe.

• Searching for space mining candidates – While space
mining is still ways away, searching for resources on
other planets is currently occurring. If we can establish a
permanent human presence on another planet, then we
will need the ability to mine that planet for resources
such as water, minerals, and energy. This would require
developing new technologies to extract and process these
materials. Humans have already discovered many ideal
space mining candidates. For example, the large asteroid
Ceres is a good space mining candidate; it is an asteroid
that contains water and other minerals. It is also
relatively close to Earth, which makes it easier to reach
with current technologies (Ermakov, 2017). Other good
candidates for space mining include the asteroids Vesta
and Psyche, as well as the planet Mars (Thomas &
Makowski, 2011). These bodies all contain water and
other minerals that humans could use. Additionally, the
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complex moon systems on Jupiter and Saturn make
excellent space mining candidates. For example, with an
abundance of hydrocarbons, the Saturnian Moon Titan
makes for a great forward operating fuel depot of the
future.

Of course, there is a close relationship between space
technologies and space operations. Space technologies enable
space operations and space activities, while space operations
use space technologies. According to the North Atlantic
Treaty Organization (NATO), Space was declared an
operational domain in November 2019 (Sultan, 2022). While
this designation may have a militaristic focus, it extends well
into the economic aspects of the domain as well. Morgan
Stanley estimates that the global space industry may surge to
over $1 trillion by 2040 (Stanley, 2022).

Figure 1-11 Future Growth of the Space Economy
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Source: Morgan Stanley (Stanley, 2022)

Figure 1-12 Space, From Ideation to Operation

Source: (Pritchard M. )

So, there you have it, from our early ideation roots 34,000
years ago to the present day, we have come a long way (See
Figure 1-12, Space: From Ideation to Operation). We have
only just begun the operational phase of our journey. The
pace of technological development in this domain is running
at an exponential rate, and the rate of progress is increasing
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(Berman, 2016). From here, what are the top technological
priorities?

Enhancing Space Operations: Top Technological
Priorities

Space Domain Awareness

Formerly known as space situational awareness (Erwin, Air
Force: SSA is No More; It’s Space Domain Awareness, 2019),
Space Domain Awareness (SDA) is focused on tracking objects
in Space, identifying them, determining their orbits,
comprehending the environment they are working in, and
projecting their future positions and any hazards to their
operations. Data is used to forecast conjunctions between
objects and warn space operators of potentially hazardous
close approaches to enable collision avoidance operations. On
occasion, it would be necessary to anticipate and respond to
meteor storm debris, fragmentation event debris, or other
natural events that could impact operations. All space safety
and space traffic management operations are predicated on
SDA. Space traffic management (STM) is defined as using
SDA to accomplish a real-time goal.

It is crucial to thoroughly understand all the satellites’ orbits
as space activity rises. Integrating data from more sensors, even
those belonging to our allies, is one method to increase
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tracking capabilities. There are a variety of difficulties involved
with incorporating external data, and there is no assurance that
having more data would lead to better tracking. Aerospace
has assisted government investigations in exploring the
implications and advantages of adding satellite tracking
information from foreign sensors into US space object catalog
upkeep.

Among many other things, SDA accomplishes the
following:

• Ability to perform orbital tracking, determination, and
flight predictions at scale

• Creating an ongoing orbital space inventory of items
manufactured by humans

• Provide multi-modal data for the development of new
offensive and defensive capabilities

A complex and crowded space environment results from
the ongoing development of new space technologies and
spacefaring entities, as well as the existence of dangerous
debris. For instance, in 2021, there were approximately 3,372
active satellites in the Earth’s orbit, more than twice the
number of satellites in orbit five years ago. The increase in
the number of satellites in orbit is due to the expanding
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importance that space systems play in terrestrial applications,
including GPS, meteorology, and telecommunications.
Additionally, the number of satellites is growing due to the
continual growth in the number of spacefaring nations and the
expansion of space commerce. The commander of US Space
Command, Gen. James Dickinson, recently called space
domain awareness the command’s “No. 1 need.” (Erwin, Space
Domain Awareness: A Secret Weapon Against Shadowy
Threats in Orbit., 2022).

The development of SDA requires transdisciplinary
development programs. For example, mechanical engineering,
electrical engineering, or computer science alone cannot
achieve SDA. It requires a wide range of applied
transdisciplinary program expertise in Machine Learning,
Autonomous Systems, Modeling & Simulation, Cyber
Human Systems, Cyber-Physical Systems, and Remote
Sensing. Each of the areas mentioned earlier leverages a Systems
Engineering approach (Aniculaesei, 2018) (Roscoe, 2019);
(Tadjdeh, 2018); (Mittal, 2008); (Akkaya, 2016). While the
traditional verticals of engineering education (i.e., mechanical,
electrical, computer, chemical, industrial, etc..…) are still very
important for building specialized vertical expertise within
their respective domains, space systems require
transdisciplinary systems engineering program skills to be
successful (Watson, 2020).
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Machine Learning & Autonomous Systems

Autonomous and automated systems incorporate machine
learning into the intelligent management and control of
complex systems (Nilsson, 1982). Although they may include
crew members as part of the operation, autonomous systems
are run independently of other management and control
systems. Crewed ships, planes, and spacecraft are instances of
autonomous systems. Despite having centralized or
decentralized management and control, automated systems are
not dependent on human operators. The incorporation of
system physics highlights an emergent area for autonomous
systems research and operations. For example, Physics-
Informed Neural Networks (PINN) can dramatically reduce
the amount of onboard training data required to perform
autonomous shipboard tasks. A physics-informed
autonomous systems integration gives an AI a better ability to
manage and predict system dynamics ( (Mao, 2020); (Raissi,
2019). PINN seeks to integrate physics-based knowledge in
mathematical equations and data-driven AI/ML for complex
scientific and engineering problems (See Figure 1-13, Layered
Learning Automata).

Figure 1-13 Layered Learning Automata
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Source: (Pritchard M. )

For AI judgments to be useful concerning system
operations, each system function, subsystem, and
environment must be as efficient as possible. New AI models
that can leverage less training data – while still maintaining
precision, recall, and accuracy – will be better positioned to
propagate beneficial second-order effects throughout the
system (e.g., fewer computational operations per second,
increased system responsiveness, less system power required,
etc..…).

Figure 1-14 Autonomous System Stack
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Source: (Watson, 2020)

The difference between automation and autonomy must
be understood. Automation is the substitution of mechanical
action for human action. This automation may be integrated
into the system or used independently in a control center.
The relative physical and/or functional separation of decision-
making and action or response capacities is referred to as
autonomy (e.g., independence of action from a control
location). Simply stated, the term automation describes a
system process carried out deterministically without human
involvement. An automation system cannot extend beyond
what it was procedurally developed to do. An autonomous
system is an intelligent system that illustrates autonomy when
its system process can logically coordinate deterministic, non-
deterministic, and stochastic learning functions.
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Figure 1-15 Automation versus Autonomy

Source: (Fiske, 2021)

Figure 1-16 Automation versus Autonomy

Source: (Fiske, 2021)

According to a joint study conducted by TEConomy
Partners LLC, the global market for terrestrial autonomous
mobile systems alone is predicted to increase to an estimated
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$802 billion by 2025–2026. That figure can potentially exceed
$1 trillion when Defense, airborne, and autonomous marine
systems are included to represent the larger autonomous
mobile systems market sector (Tripp, 2021). And just a small
portion of that market value will be made up by self-driving
automobiles. The scope of autonomous technology, including
robotics, artificial intelligence, autonomous cars, and other
related sectors, is far greater and broader than that (i.e., space
systems operations and exploration).

Cyber-Human Systems

Cyber-Human Systems is a developing transdisciplinary
field. Robots, wearable technology, personally integrated
sensors & computers, and virtual & augmented reality, are
examples of Cyber-Human Systems (Eskins, 2011); (Krugh,
2018). The NSF classifies trends within Cyber-Human
Systems (CHS) as taking place across three dimensions:
people, computers, and the environment (Foundation, 2022).
The human dimension encompasses everything from
individuals to society. An important fundamental aspect of
CHS is Cybernetics. Cybernetics offers a solution for how a
system that controls another system might make up for greater
control process mistakes by having a wider range of
operational possibilities (Chacón, 2020). The human will take
on the function of a higher-level control instance since they
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are the most adaptable entity in the cyber-physical framework
(Barbosa, 2018).

Figure 1-17 Cyber Human Systems

Source: (Foundation, 2022)

The computer dimension includes anything from
stationary computing equipment, where a person must be
close by, to portable devices (which follow a person wherever
they go) to embedded computational systems comprising
sensors and visual/auditory devices. Extended reality
systems[10] fall in the center of the environmental dimension,
which includes discrete physical computational devices and
lifelike virtual worlds. Cyber-human systems are a key national

CURRENT STATE OF SPACE OPERATIONS (PRITCHARD) | 33



security component for the United States; it is part of their
“third offset strategy” (Tadjdeh, 2018) (Freedberg Jr, 2014).

Modeling & Simulation

Modeling and simulation (M&S) technologies are used to
generate advanced models. Models can be physical,
mathematical, or logical representations of systems, entities,
phenomena, or processes. In the computer application of
modeling and simulation, a mathematical model that
comprises important physical model parameters is built on a
computer. The mathematical model simulates the physical
model and applies the necessary circumstances to set up the
desired experiment. A simulation often refers to a
computerized version of the model performed over time to
analyze the effects of the stated interactions. In general,
simulations are developed iteratively. When a sufficient degree
of knowledge is achieved, one constructs a model, simulates it,
learns from the simulation, revises the model, and repeats the
process.

• System:
◦ A system exists and operates within four

dimensions (x, y, z, & t)[11].
• Model:

◦ A model is a system representation within these
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four dimensions.
• Simulation:

◦ A simulation enables human perception,
interaction, and analysis of system dimensionality
within a complex domain.

The major benefit of high-fidelity modeling and simulation
(M&S), supported by high-performance computing, advanced
information processing, and artificial intelligence, is the
empowerment of a virtual solution space that allows for lower-
cost validation of new design concepts. This can provide
valuable insights into the relationships between the simulated
environment and associated system responses. M&S
frameworks also allow for large-scale data analysis and
integrated system testing, increasing our ability to find new
scientific discoveries. This creates an ability for near real-time
numerical experimentation to explore mission trade spaces and
evaluate complex systems throughout their lifecycle.
Additional M&S opportunities include:

• Reducing program acquisition and systems integration
costs through rapid modeling and prototyping of
systems

• Immersive visualization systems: 3D immersive,
augmented, virtual, and mixed reality technologies for
visualization and training
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• Predictive threat modeling, agent-based simulations,
wargaming & simulation technologies, and multi-
domain risk modeling

• Support research, development, and acquisition
programs by leveraging advanced simulation
technologies to reduce technical risks

• Provide specialized industry training capabilities via
advanced simulators and highly immersive scenarios

• Support training and decision-support systems that
increase performance and safety while decreasing cost by
using modeling and simulation directly in mission
systems.

• Increasing mission readiness and outcomes through
advanced threat modeling

• Process Modeling and Gaming: Predictive models using
machine learning algorithms

• Fosters collaboration among federal agencies, industries,
and academia

While Modeling & Simulation activities are traditionally
focused on artificially representing the dimensionality of
physical systems, new research areas are exploring Real-time
Model Projections & Simulation Effects. For example, if you
are in a pilot simulation flying across the United States, actual
weather patterns would be modeled in real-time within the
simulation. In the reverse, simulated models (and digital twins)
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can be projected over real-world objects to enhance and
highlight important physical object features (both externally
and internally).

Cyberspace within Space

Cyberspace and extraterrestrial security challenges are
merging. Space-based communication and information
services are becoming more and more important to the
internet. Similar to cars and medical equipment, satellites and
other space assets are considered devices on the internet of
things since they operate on internet-based networks. Space-
related activities are growing and changing due to new
government actors, businesses, ambitions, and technologies.
However, neither cybersecurity nor space policy is equipped
for the difficulties brought about by blending cyber and
physical Space, which could raise national security
vulnerabilities.

Since the 1950s, spacefaring nations have prioritized the
security of outer Space. Governments launched space projects
for intelligence, military, political, and scientific reasons. They
also created defenses against rivals’ space-based threats, such
as anti-satellite weapons. By outlawing the deployment of
nuclear and other high-tech weapons in Space and
collaborating on peaceful uses of the planet, nations regulated
security competition. The commercial sector’s use of dual-
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use technologies to offer satellite communication services was
sparked by government projects. In contrast to a decade ago,
the pace of technological advancement is now enabling
nations, international groups, enterprises, and people to utilize
space capabilities. In other words, the game has changed as
more nations advance their capabilities to reach Space.

Understanding the specific cyber vulnerabilities that
develop in distinct space operations is necessary for protecting
space activities. For instance, ground stations,
communications to and from Earth, and satellites themselves
are all included in satellite cybersecurity. The American
military and intelligence systems are susceptible to physical and
digital attacks, given the absence of cybersecurity in their
design, the usage of commercially available components, and
the vulnerabilities that could be produced by connecting
satellites to operate as intricate, circling networks, civilian
smallsat.[12] Systems may likewise prove to be vulnerable.
Considering what we’ve previously seen with regulatory
oversight of key infrastructures that are already in place,
regulatory action will similarly proceed slowly to allow for
efficient responses to cyber threats from Space. To effectively
counter threats, we must look beyond conventional deterrence
tactics. As new technologies come online, new standards must
be created.

Space Manufacturing & Mining
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Mostly still in the research phase, the developing sector of
space mining is filled with both potential and difficulties
(Sivolella, 2019). For instance, Ceres has an escape velocity of
0.51 km/s and surface gravity of 0.029 g. By comparison, Earth
has an escape velocity of 11.186 km/s and surface gravity of
1.00 g. While you could stand up and maintain your balance
without floating off the dwarf planet, a game of basketball on
Ceres would be radically different. It would take around 10
seconds for an object to fall over. Anything kicked up during
mining activities (e.g., debris, dust, etc..…) would stay in the
air for considerably longer. Due to the significantly reduced
friction, your earth-based skid steer would have difficulty
scooping up loose materials (e.g., space dirt would quickly turn
into a cloud of dirt around the operator). Additionally, mining
machines would require new tethering technologies to
maintain proper planetary surface tension. A small drilling rig
would easily tip over if it tried to drill into the surface of a
dwarf planet without being first anchored to the surface.

Figure 1-18 Ceres, Dwarf Planet in the Asteroid Belt
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Source: (NASA, 2022)

The question for space mining is one of timing.
Technological developments in the space sector continue to
accelerate. Launch and operations costs are falling as reusable
rocket components become more common and off-the-shelf
parts are used more frequently. Private companies are now
emerging as leaders in developing emergent space activities
(e.g., orbital manufacturing, smallsat services, and orbital
tourism). While previously limited to government entities,
these activities have become commercially accessible. As we
have said before, the current market value of the space industry
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sits at roughly $400 billion; the space industry might reach $1
trillion by 2040 as private investment surges.

The concept is transitioning from the domain of science
fiction into the world of scientific fact as several firms are
already forming with the specific goal of asteroid prospecting,
exploration, and mining. Space mining opportunities can be
made by making orbital refueling cheaper, lowering overall
mission costs, enhancing space manufacturing activities, and,
more broadly, developing a better understanding of operating
in space environments. Although there are still many
unknowns, space mining eventually promises to speed up
space exploration and strengthen terrestrial economies
significantly. While the Industry in Space’s interests may
sometimes conflict with those of science, the infrastructure
built during these early stages will shorten the space mining
timeline.

Remote Sensing & Surveillance

Commercial Space remote sensing’s revolution can change
how national security experts see indicators and warnings of
hostile operations. Commercial sensing gives orders of
magnitude higher coverage and visitation rates that can
supplement and enhance the sensing capabilities supplied by
more exquisite government-owned and government-operated
systems rather than relying solely on high-demand, low-

CURRENT STATE OF SPACE OPERATIONS (PRITCHARD) | 41



density government-owned national assets. With the help of
artificial intelligence, human analysts will no longer have to
laboriously count bombers and tanks in pictures, and robots
will be able to look at enemy movements collectively across
enormous territories at a scale and pace that is not humanly
conceivable. Machines can simultaneously collect data from
all domains, operational locations, and intelligence sources to
inform their algorithms, unlike humans, who must develop
expertise in knowing how enemies typically operate in a small
number of important areas.

Machines can detect subtle changes in large data sets that
human analysts might miss in the data noise and combine
them with other open-source data to produce useful insights.
These automated insights, which are communicated to people
via alerts, put analysts in the best position to make
recommendations and conclusions based on the totality of the
circumstances. To support a US deterrence action, machine
learning systems can process the raw data to generate products
that improve early warning awareness and empower people
to take more educated judgments. Early warning systems that
focus on people frequently cause late awareness and reactive
actions. Reactive state entities will struggle to attain
dominance in an environment where larger government actors
are engineering evermore advanced decision support systems
to simulate and forecast advanced operational movements
within a given domain. A nation can actively dissuade and
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respond to threats only if it has the technological skills,
workforce, and capabilities to remotely understand enemy
actions more quickly.

For more than 60 years, remote sensing technologies have
been crucial to intelligence-gathering efforts. This capability is
directly correlated to an ability to project power within a given
domain. Although the remote sensing paradigms that were
initially established (government-developed satellites, manual
processing, and siloed data) were beneficial to the United
States during the Cold War, developments in commercial
frameworks have the potential to change these paradigms in
ways that offer new benefits. The commercial remote sensing
sector is advancing quickly. Remote sensing technologies rely
heavily on integrating Machine Learning Systems to swiftly
transform unprocessed sensory data into knowledge that
human analysts can use.

Celestial Positioning Systems

To expand spacecraft capabilities, future deep space
missions will need accurate positioning, navigation, and
timing (PNT) systems. This technology must withstand
radiation exposure and wide temperature swings in deep space
conditions. The design of spaceborne instruments and
components must now meet new requirements due to these
operational needs. Spacecraft must regularly contact Earth to
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verify their position without pulsar navigation. However, such
communication is time-consuming, expensive, and gets harder
the further a probe is from Earth. Systems like NASA’s Deep
Space Network, a collection of enormous satellite dishes, are
used for this purpose.

Pulsars are incredibly precise clocks, especially millisecond
ones. These pulses, best seen in X-rays, can be used akin to GPS
satellites. Naturally, GPS signals have a timestamp that enables
a receiver to estimate the satellite’s distance and measure the
delay with which they come. Although pulsars are very distant,
they allow us to measure the period precisely between pulses.
Due to the Doppler shift, there will be a temporal discrepancy
between them. They are then very simply translated into speed.
However, calculating a position requires more mathematical
skills.

Figure 1-19 Pulsar-based Navigation
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Source: (Chen, 2020)

Until recently, we had to compare the pulsar signal with a
relayed signal from a known location in the solar system to
extract these measurements. However, more recent research
has developed the mathematical framework necessary to
enable a spaceship to plot its position in Space fully (and
independently). Practically, an initial position can be
established with a minimum of four pulsars. A spacecraft
might determine its location in Space to within three miles by
integrating information from a pulsar’s pulses with a reference
point. Pulsar navigation systems have more signals available
to them versus traditional satnav.[13] Systems have more
resistance to jamming and spoofing due to the wide range of
frequencies accessible and the security of signal sources against
possible anti-satellite operations (Adamson, 2022).

Conclusions

We started 34,000 years ago and brought you to the present.
We covered the operational and technological highlights of
each time period. This chapter – and each of the chapters
within this book – could be their book. In other words, this
is by no means an exhaustive view of the Industry; however, it
is a nice view of where the space industry is today and where
it is heading. As you navigate the remaining chapters, you will
find additional details, concepts, technologies, and use cases.
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The top technological priorities illustrated in this chapter will
be exhibited in varying detail as you progress through each of
the readings. Each will provide emergent ideas and innovative
perspectives on space systems. Ideas are like spacecraft; they are
meant to be launched, get out there and make things happen.

References
Adamson, J. (2022). Use of pulsars for ship navigation: an

alternative to the sextant. The Journal of Navigation, pp. 1-20.
Akkaya, I. D. (2016). Systems engineering for industrial

cyber–physical systems using aspects. Proceedings of the IEEE,
pp. 104(5), 997-1012.

Aniculaesei, A. G. (2018). Toward a holistic software
systems engineering approach for dependable autonomous
systems. In 2018 IEEE/ACM 1st International Workshop on
Software Engineering for AI in AuEngineering for AI in
Autonomous Systems (SEFAIAS) IEEE, pp. pp. 23-30.

Barbosa, M. W. (2018). Managing supply chain resources
with Big Data Analytics: a systematic review. International
Journal of Logistics Research and Applications, pp. 21(3)
177-200.

Berman, A. a. (2016). Technology Feels Like It’s Accelerating
– Because It Actually Is. SingularityHub.

Biocca, F. (1992). Virtual reality technology: A tutorial.
Journal of communication, pp. 42(4), 23-72.

Chacón, A. A. (2020). Developing cognitive advisor agents

46 | CURRENT STATE OF SPACE OPERATIONS (PRITCHARD)



for operators in industry 4.0. . New Trends in the Use of
Artificial Intelligence for the Industry, pp. 4, 127.

Chen, P. T. (2020). Aspects of pulsar navigation for deep
space mission applications. The Journal of the Astronautical
Sciences, pp. 67(2), 704-739.

Ermakov, A. I.‐R. (2017). Constraints on Ceres’ internal
structure and evolution from its shape and gravity measured
by the Dawn spacecraft. Journal of Geophysical Research:
Planets, pp. 122(11), 2267-2293.

Erwin, S. (2019). Air Force: SSA is No More; It’s Space
Domain Awareness. Retrieved from https://spacenews.com/:
https://spacenews.com/air-force-ssa-is-no-more-its-space-
domain-awareness

Erwin, S. (2022). Space Domain Awareness: A Secret
Weapon Against Shadowy Threats in Orbit. Retrieved from
https://spacenews.com/: https://spacenews.com/air-force-ssa-
is-no-more-its-space-domain-awareness

Eskins, D. &. (2011). The multiple-asymmetric-utility
system model: A framework for modeling cyber-human
systems. In 2011 Eighth International Conference on
Quantitative Evaluation of SysTems, pp. pp. 233-242 IEEE.

Fiorentino, A. (2022). The First Space Hotel Could Open as
Soon as 2025. AFAR: The Future of Travel. Retrieved from
https://www.afar.com: https://www.afar.com/magazine/
space-hotel-pioneer-station-to-open-in-2025

Fiske, T. a. (2021). Industrial autonomy: How machines will
perform their own maintenance. Plant Service. Retrieved from

CURRENT STATE OF SPACE OPERATIONS (PRITCHARD) | 47



https://www.plantservices.com/:
https://www.plantservices.com/articles/2021/automation-
zone-industrial-autonomy/

forbes. (2019, June). v2-army-cutaway-1200×741.jpg.
Retrieved from https://blogs-images.forbes.com/
brucedorminey/files: https://blogs-images.forbes.com/
brucedorminey/files/2019/06/v2-army-
cutaway-1200×741.jpg

Foundation, N. (2022). Cyber-Human Systems. Computer
and Information Science and Engineering (CISE). Retrieved
from National Science Foundation: https://www.nsf.gov/
cise/iis/chs_pgm13.jsp

Freedberg Jr, S. J. (2014). Hagel Lists Key Technologies for
US Military; Launches ‘Offset Strategy. Breaking Defense, p.
16.

Freeth, T., & & Jones, A. (2012). The cosmos in the
Antikythera mechanism. Institute for the Study of the Ancient
World (ISAW).

Gaffney, V. (2013). Mesolithic timelords: a monumental
hunter-gatherer” calendar” at Warren Field, Scotland. Current
archaeology, pp. (283), 12-19.

Gheorghiu, D. &. (2013). Place as Material Culture:
Objects, Geographies and the Construction of Time. Cambridge:
Cambridge Scholars Publishing.

Google Images. (2018, June).
Nebra_Scheibe-1024×1007.jpg. Retrieved from
https://www.ancient-code.com/: https://www.ancient-

48 | CURRENT STATE OF SPACE OPERATIONS (PRITCHARD)



code.com/wp-content/uploads/2018/06/
Nebra_Scheibe-1024×1007.jpg

Kelvey, J. (2021). 75 Years Ago, A Nazi Rocket Took the First
Photo of Earth from Space. Inverse.

Krugh, M. &. (2018). A complementary cyber-human
systems framework for industry 4.0 cyber-physical systems.
Manufacturing letters, pp. 15, 89-92.

Mao, Z. J. (2020). Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics
and Engineering, pp. 360, 112789.

Marchant, J. (2009). Decoding the Heavens: A 2,000-Year-
Old Computer–and the Century-Long Search to Discover Its
Secrets. NYC: Da Capo Press.

Mittal, S. Z. (2008). Modeling and simulation for systems of
systems engineering. Systems of Systems–Innovations for the 21st
Century . Wiley.

NASA. (2022). Aurignacian Lunar Calendar. Retrieved
from https://i.pinimg.com/: https://i.pinimg.com/originals/
c8/40/10/c84010201d8fd16ab2b768383e0af23a.jpg

NASA. (2022). Gemini Capsule Cutaway. Retrieved from
https://i.pinimg.com/: https://i.pinimg.com/originals/74/
d2/a5/74d2a5a9fe00775c751ac03f105e6aff.jpg

NASA; & Marshack . (2022, Aug 28). oldest lunar
calendars. Retrieved from https://sservi.nasa.gov:
https://sservi.nasa.gov/articles/oldest-lunar-calendars/

Neufeld, M. J. (2012). The Three Heroes of Spaceflight:
The Rise of the Tsiolkovsky-Goddard-Oberth Interpretation

CURRENT STATE OF SPACE OPERATIONS (PRITCHARD) | 49



and Its Current Validity. Quest: The History of Spaceflight
Quarterly.

Nilsson, N. J. (1982). Principles of artificial intelligence.
Springer Science & Business Media.

Operations, S. (2022). Space Doctrine Note (SDN)
Operations: Doctrine for Space Forces. United States Space
Force, Headquarters.

Orozco, J. A., & & Simpson, C. R. (2020). Commercial
Crew successes lead the way in a pivotal year. Aerospace
America, pp. 58(11), 69-69.

Peregrine, P. N. (2001). Aurignacian. In Encyclopedia of
Prehistory. Boston, MA.: Springer.

Pinterest. (1947, Oct 24). First Photo of Earth. Retrieved
from https://i.pinimg.com/: https://i.pinimg.com/originals/
27/b8/74/27b874a0e9093ef8f2d236e5c4221c4b.jpg

Pritchard, M. (n.d.). Domains, Operations, Technologies.
Space Systems: Emerging Technologies and Operations 2022.
KSU, Manahattan, KS.

Pritchard, M. (n.d.). Space, From Ideation to Operation.
Space Systems: Emerging Technologies & Operations. KSU,
Manhattan, KS.

Raissi, M. P. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations.
Journal of Computational physics, pp. 378, 686-70.

rankred. (2020, July). Far-Side-of-the-Moon-by-Luna-3.
Retrieved from https://i1.wp.com/www.rankred.com/:

50 | CURRENT STATE OF SPACE OPERATIONS (PRITCHARD)



https://i1.wp.com/www.rankred.com/wp-content/uploads/
2020/07/Far-Side-of-the-Moon-by-
Luna-3.jpg?fit=779%2C600&ssl=1

Roscoe, R. D. (2019). Advancing diversity, inclusion, and
social justice through human systems engineering. CRC Press.

Sivolella, D. (2019). Space mining and manufacturing: Off-
world resources and revolutionary engineering techniques.
Springer Nature.

Soderman, T. (2021). SERVI, The Oldest Lunar Calendars.
National Aeronautics and Space Administration. Retrieved
from https://sservi.nasa.gov/: https://sservi.nasa.gov/articles/
oldest-lunar-calendars/

SpaceX. (2022). SpaceX Falcon Rocket Program. Retrieved
from https://i.pinimg.com: https://i.pinimg.com/originals/
f2/1a/47/f21a47342bb3ef674720f0bfc722f3df.jpg

Stanley, M. (2022). A New Space Economy on the Edge of
Liftoff. Retrieved from https://www.morganstanley.com/:
https://www.morganstanley.com/Themes/global-space-
economy

Sultan, B. &. (2022). BRICS space diplomacy and response
of non-Western countries: the inscription of Neo-
Functionalism. Journal of Humanities, Social and
Management Sciences (JHSMS), pp. 3(1), 351-365.

Tadjdeh, Y. (2018). Defense Applications Envisioned For
Cyber-Human Systems. Robotics and Autonomous Systems.
Robotics and Autonomous Systems, National Defense, pp.
102(774), 40-45.

CURRENT STATE OF SPACE OPERATIONS (PRITCHARD) | 51



Thomas, V. C., & Makowski, J. M. (2011). The dawn
spacecraft. In The Dawn Mission to Minor Planets 4 Vesta and
1 Ceres. NYC: Springer.

Tripp, S. (2021). Self-driving cars only a fraction of
projected $1-trillion global autonomous technology market.
Boston Business Journal.

United Nations Office for Outer Space Affairs. (2022).
Online Index of Objects Launched into Outer Space. United
Nations Office for Outer Space Affairs. NYC: United Nations.

Vinogradov, B. V. (1968). Space Photography for the
Geographic Study of the Earth (No. NASA-CR-93287).
Houston: NASA-CR-93287.

Watson, M. M. (2020). Engineering Elegant Systems: Theory
of Systems Engineering. National Aeronautics and Space
Administration. Marshall Space Flight Center.

Wikimedia. (2022). 440px-
NAMA_Machine_d%27Anticyth%C3%A8re_1.jpg. Retrieved
from https://upload.wikimedia.org/:
https://upload.wikimedia.org/wikipedia/commons/thumb/
6/66/NAMA_Machine_d%27Anticyth%C3%A8re_1.jpg/
440px-NAMA_Machine_d%27Anticyth%C3%A8re_1.jpg

52 | CURRENT STATE OF SPACE OPERATIONS (PRITCHARD)



Endnotes

[1] An information system need not be a computationally
derived device; it can be a book, a carving, or hieroglyphs; any
mechanism that allows for information storage is considered
an information system.

[2] More commonly known as the V-2 rocket program, it was
technically known as Aggregat 4 (A4) program. It was the
world’s first guided ballistic missile. It was fueled by a liquid
propellent mixture of liquid oxygen and alcohol.

[3] Perigee is the location where an object comes closest to
Earth. Apogee is the location where an object is furthest away
from Earth. For orbital determinations around generic celestial
bodies, we would use pericenter (periapsis, closest) and
apocenter (apoapsis, furthest).

[4] The Fédération Aéronautique Internationale (FAI) uses
the term Kármán line to define the boundary between
aeronautics and astronautics. Aeronautics is aerial activities,
including all air sports, within 100 km of Earth’s surface.
Astronautics are activities more than 100 km above Earth’s
surface. (100 kilometers equals 62.14 miles).
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[5] The Mercury 13 were thirteen American women who
completed the same physiological screening tests as the
astronauts chosen by NASA on April 9, 1959. It was a
privately funded initiative loosely affiliated with the Mercury
program. Female astronaut candidates were not selected for
spaceflight until Astronaut Group 8, for the Space Shuttle
program, in 1978

[6] An extrasolar spacecraft is designed to travel beyond our
solar system. These spacecraft are typically equipped with
advanced power systems and innovative propulsion systems.
Voyager 1 and Voyager 2 have left our Solar System. While
not originally designed to be extrasolar spacecraft, both have
reached interstellar Space.

[7] A minor planet is an astronomical object in direct orbit
around the Sun that is exclusively classified as neither a planet
nor a comet.

[8] Geocentric refers to spacecraft in Earth’s orbit. Non-
Geocentric would refer to all manner of spacecraft in other
orbital patterns (e.g., heliocentric (Sun), selenocentric
(Moon), areocentric (Mars), etc…).

[9] The Tiangong Space Station (TSS) core module was
launched into low earth orbit (LEO) on April 29, 2021.

[10] Extended reality systems (XR) encompass Augmented
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Reality (AR), Mixed Reality (MR), and Virtual Reality
(VR). (Biocca, 1992)

[11] Three dimensions of Space (x,y,z) and one dimension for
time (t)

[12] While there are no official standards when it comes to
SmallSats (Small Satellites), it is a term used that includes the
following: nanosatellites (1-10 kilograms), microsatellites (10
to 100 kilograms), and minisatellites (100 to 500 kilograms).
The term also includes CubeSats, the only class of smallsats
that are more clearly defined.

[13] A satellite navigation system (satnav) employs satellites
to provide geospatial location. Satellite navigation equipment
may pinpoint their location (longitude, latitude, and altitude/
elevation) with great precision (within a few centimeters to
meters).
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2.

SATELLITE KILLERS AND
HYPERSONIC DRONES
(SLOFER)

Student Objectives

• Understand the concept and importance of satellite
technology

• Various orbits and significance
• Threat deterrence and first strike capabilities in warfare
• Satellite countermeasures
• Satellite platforms for deployment of hypersonic

weapons

This chapter will set a foundation for instruments to kill
satellites. Some methods exploit existing hazards, and others
have been intentionally devised for that purpose. However,
each is discussion worthy when planning the destruction or
protection of satellite assets. This chapter will cover physical
considerations surrounding the deployment of Anti-Satellite



Weapons (AWS). For example, the layers of the atmosphere
are important because air density will result in frictional drag;
it will also affect Direct Energy Weapons (DEW) because
atmospheric density and ionization must be part of the
calculus. (Nichols, et al., 2022) Orbits and their various
altitudes are also discussed, along with their influence on
delivery system selection based on the target’s distance and
orbital velocity. We will also cover the existence of space
debris. This is a critical point because millions of pieces of
space junk are traveling at thousands of miles per hour, and
any collision, intentional or not, could destroy a multimillion-
dollar asset. Post-review of satellite attrition methods; we will
discuss hypersonic drones and how an orbital platform can
be utilized as a launch point for Hypersonic Glide Vehicles
(HGV), which could have devastating results due to the
impact velocity that would be similar to a small meteorite,
striking an object at 17-20,000 mph, resulting in the high-
velocity impact that will pulverize its target. The chapter’s
goal is not to engage in the details surrounding the science
of orbital velocity and the associated physics but on the
importance, as they pertain to a military perspective on
offensive and countermeasure considerations.

Overview of Satellite Technology
To take a quote from NASA, “A satellite is a moon, planet

or machine that orbits a planet or star. “ (NASA, 2015).
Because of their attitude, satellites are uniquely positioned
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to provide a beyond-the-horizon communications platform
and a Birdseye view of a vast surface area of the earth. These
capabilities offer a tactical advantage to anyone with access to
such technology. With this understanding, the then Union of
Soviet Socialist Republic (USSR), now Russia, developed and
launched the first artificial earth-orbiting satellite, Sputnik 1
(PS-1), in 1957. The US followed with secret satellite projects
like CORONA, in which the NSA, CIA, and other
intelligence agencies would use satellite technology to obtain
intelligence on Soviet missile locations (Dickson, 2001).

From 1957 to now, the heavens have gone from 1 artificial
satellite to approximately 4,852 as of 12/31/21, according to
information collected from the UCSUSA satellite database
(USCUSA, 2021). To obtain an appreciation for the material
to follow, it is vital to understand the various layers of the
atmosphere, types of orbits, and satellite tracks within those
orbits. This will lay the foundation for presenting the
effectiveness of multiple methods for satellite positioning and
assaults.

Atmospheric layers
At first glance, one may be tempted to discount any

practical impacts the layers may have on satellite offenses and
defenses. Each layer will have impacting characteristics, for
example. The troposphere and stratosphere are denser than
the higher levels of the atmosphere. They will produce more
drag and friction, producing surface heating of any fast-
moving ground deployed defenses against a satellite or
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platform. A typical missile used in ICBM interception is the
Raytheon RIM-161 SM-3, which travels at approximately 3
km/second or about 6,700 mph (Mostly Missile Defense,
2012). The X-15 only traveled at 4,520 mph and encountered
an aerodynamic heating temperature of 1200 degrees
Fahrenheit (Dryden Flight Research Center, n.d.). It should
be noted that such temperatures will melt aluminum,
magnesium, zinc, and lead. At higher layers, reduced
atmospheric pressure will determine the propulsion system
and the need to account for the increased solar and cosmic
radio interference. The increased distance of various orbits
increases projectile travel time and targeting complexities. For
example, many satellites are between 100 and 22,000 miles
from the earth’s surface. Additional travel time will allow the
target satellite’s nation(s) extra time to execute their OODA
(Observe, Orient, Decide, Act) loop to engage
countermeasures.

Figure 2-1 Common layers of the Earth’s atmosphere
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Note: Relative activities occur at various atmospheric layers
(Britannica, n.d.)

Source: https://cdn.britannica.com/42/
90442-050-6CB42E65/layers-atmosphere-Earth-phenomena-
heights.jpg

Types and Shapes of Orbits
As with the previous topic on atmospheric layers, the type

of orbit a satellite is in will significantly contribute to the
countermeasures or counter-countermeasures employed. The
following are critical concepts that will be understood and
considered.

As previously stated, this part of the chapter does not
perform a deep dive into the mathematics of orbital velocities
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or the other aspects of orbital mechanics. This will be further
discussed in the following chapter(s). However, it is essential
to understand that each orbit can have a specific shape and
distance. The one selected will vary based on its intended
operation/mission and acceptance of that selection’s
associated benefits and risks.

Inclination: Orbital inclination is identified as the amount
of angle or tilt. In the case of a satellite orbiting the earth, that
angle is referenced as the angle between the satellite’s orbit and
the planet’s equator. Generally, such orbits are referenced as
near equatorial, polar, or inclined.

Figure 2-2 Orbital Inclination

Note: The same concept applies to retro rotation, which is the
satellite rotating in the reverse direction of the planet.

Source: https://www.britannica.com/science/spaceflight
Shape: There are two general orbital shapes, circular and

elliptical. Circular orbits are a fixed distance from the earth
and are designated as LEO, MEO, and HEO, which are
described in detail in the next section. This orbit is usually
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performed for geosynchronous orbits in which the satellite
maintains a fixed earth position. The other orbital shape is
elliptical and is defined by two different points regarding the
planet being orbited. The closest point is the perigee, and the
furthest is the apogee, which will play a role in any attack or
asset protection determinations.

Figure 2-3 Orbital Shape

Source: https://www.britannica.com/science/spaceflight

Orbits by Attitude
Talk about the types of orbits and the significance of each.

Also, how this aligns with the orbital inclination and shapes:
LEO or Low-Earth Orbit satellites can employ an elliptical

or circular orbital shape, as illustrated in Figure 2-3. LEO
orbits are mainly in the altitude range of 155 to 1243 miles
(250–2000 km). Satellites in this orbit class complete an earth
orbit in approximately 84-127 minutes, depending on the
altitude. This low altitude requires a faster orbital speed to
maintain the balance between centrifugal force and gravity,
which is approximately 17,500 mph or 7.8 km/s. At this
speed, the International Space Station (ISS) will circle the earth

62 | SATELLITE KILLERS AND HYPERSONIC DRONES (SLOFER)



16 times daily at 90 minutes intervals ( European Space
Agency, n.d.). Examples of satellites in this orbit would be
Remote Sensing Satellites such as weather, terrestrial surface
mapping, climate change, oceanographic observation/
monitoring, spy/surveillance, and Hubble and the
International Space Station.

Table 2-1 Advantages and disadvantages for satellites
in GEO orbit

The following table list some advantages and disadvantages
for satellites in GEO orbit:
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Advantages:

1. Small, less expensive launch vehicles can
push the satellite into an LEO orbit.

2. The quicker orbit speed makes for a faster
moving target in the event Anti-Satellite
Weapons (ASW) were deployed against it. For
perspective, a typical 55 grain NATO
5.56x45mm bullet, used in AR15 assault rifles,
travels at approximately 3,250 ft/s (991 m/s)
(Wikipedia, 2001) or a little over 3,500 mph
compared to a satellite traveling at about 17,500
mph.

3. The lower orbit allows for better clarity
for imaging and surveillance

4. Lower proximity to the surface reduces
communications latency between the satellite
and ground station, which will be in the low
range of 5 to 10 msec.

5. Low-earth orbits (LEOs) can also be
effectively used for satellite communications.
LEO orbits range from 250 to 1000 miles, and
signal time delays are only 5 to 10 msec. This
advantage also includes reduced power
consumption for the communication links,
with an average power usage of .5W (Perez,
1988).

Disadvantages:
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1. The low but fast orbit limits the satellite to
a small field of view compared to other orbits. It
has a short duration over any given geographical
location of about 5-20 minutes per orbit.
Requires a network or constellation of satellites
working together to provide adequate
coverage. Also, the ground station and satellite
must use highly directional antennas to
conserve power consumption.

2. The LEO orbit has become congested
with space debris from other satellites and
rocket boosters from previous launches, which
can result in high-velocity impacts.

3. The low orbit would make an ASW
assault more feasible and allow multiple attack
attempts since it will be more difficult for the
protection agency to re-task the satellite to a
safe position due to orbital congestion.

4. Due to orbital decay resulting from
atmospheric drag, the satellites typically have a
7–10-year lifespan, although some were
extended due to the refueling/repair work from
various Space Suttle missions.

MEO or Medium Earth Orbit satellites operate in the
boundary between 1,243 – 22,235 miles (2,000-35,768 km).
Their orbital time can be between 2 hours at the lower
altitudes and just under 24 hours at the higher altitudes, but
in either case, the satellite will cross two points on the equator
at the same time interval per orbit. Generally, t, the satellites
employ a near-circular, semi-synchronous, low eccentricity
orbit or use an elliptical pattern. A standard elliptical orbit
is the Molniya orbit, a combination of a high inclination and
high eccentricity. The Russians invented this orbit, which
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provides a wider viewing area and a more extended viewing
period when approaching and leaving the apogee and moves
quickly when approaching the perigee. These orbits usually
contain satellites for GPS, navigation, communication (Sirius
and XM radio), cellular, internet, and surveillance.

Figure 2-4 Molniya orbit

Note: The Molniya orbit is a preferred method when
observing areas of high latitudes and will spend approximately
2/3rd of its orbit over one hemisphere (NASA, 2009). There is
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also a Tundra orbit which is well suited for communications
satellites.

Source: https://earthobservatory.nasa.gov/features/
OrbitsCatalog

Table 2-2 Advantages and disadvantages for satellites
in LEO orbit

The following table list some advantages and disadvantages
for satellites in LEO orbit:

Advantages:

1. Launched into higher altitudes than LEO
satellites and are subject to less orbit decay.
This typically increases their expected lifespan
to approximately 10 – 15 years.

2. Have an improved communication time
delay compared to higher orbit satellites (40 ms
vs. 120 ms for GEO orbits)

3. Slower rotation and more time over
viewing area and requiring fewer satellites in a
constellation/network for global coverage.

Disadvantages:

1. Requires a more powerful launch vehicle
to obtain higher orbit

2. Slower speed can make it a more assessable
target for Anti-Satellite Weapons (ASW)
systems.

3. Require a more robust power system
for transmission.
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Source: Information sourced from (RF Wireless World, n.d.)
GEO or Geosynchronous/Geostationary Earth Orbit is

generally accepted to range from 22,236 – 26,199 miles
(22,236 – 42,164 km). Their primary feature is their ability
to remain over a geographic area due to their 24-hour orbital
rotating of 23 hours, 56 minutes, and 4.1 seconds matching
the earth’s rotation. Maintaining the orbital speed and
distance requires some station-keeping and, when retired, are
placed in a higher orbit. Satellites generally found in this orbit
are communications, meteorology, and navigation. Because of
their extreme distance, it is possible to provide global coverage
with as few as three satellites (Wikipedia, 2001). This is
coveted international real estate since only a limited number
of satellites can exist here due to spacing and RF interference
requirements.

Table 2-3 Advantages and disadvantages for satellites
in GEO orbit

The following table list some advantages and disadvantages
for satellites in GEO orbit:
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Advantages:

1. They are less affected by atmospheric drag
that results in orbit decay, extending their life
expectancy by 15 years.

2. Excellent for TV and radio broadcasts and
weather forecasting.

3. Ground stations do not need to hand
off communications to other stations because
they remain within line of sight; footprints can
cover approximately 1/3 of the earth’s surface.

4. High altitude has less debris and will
take ASWs longer to get to.

Disadvantages:

1. Solar and lunar forces will cause satellite
deviation from the planned orbit requiring the
use of thrusters for adjustments.

2. Communication delays make real-time or
interactive impractical.

3. Slower moving and stationary orbit
make for a more vulnerable ASW target.

4. Expensive to maintain due to increased
weight, need for more powerful transmitters,
and fuel to maintain orbit.

Figure 2-5 Orbital Altitude
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Note: The same concept applies to retro rotation, which is the
satellite rotating in the reverse direction of the planet.

Source: https://www.britannica.com/science/spaceflight
HEO or High Earth Orbit and High Elliptical Orbit are

essentially any orbits above 22,235 miles (35,768 km).
Satellites in this zone will have orbital periods greater than 24
hours and appear to move backward or retrograde, although
they are moving forward. Satellites in this orbit require huge
boosters and usually require a transition orbit to obtain such
altitudes. These devices are typically large and require
significant power demands for signal transmission. Satellites
in this orbit have been related to the military, deep space
astronomy, nuclear monitoring/compliance, and deep space
research.

Figure 2-6 High Altitude Orbits

Note: The image is not to scale with HEO tapering off into
space approximately halfway to the moon and is a
modification of work from Mark Mercer.

Sourced: https://upload.wikimedia.org/wikipedia/
commons/b/b8/Orbitalaltitudes.svgt
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Table 2-4 Additional Orbital Information

The table provides additional summary information on the
previously described orbits.

Adapted from: https://newspaceglobal.com/operational-orbits-
advantages-and-disadvantages

Orbital Congestion and Debris
Before discussing actual Anti-Satellite Weapons (AWS) and

their systems, a final and critical topic is the vast number of
objects that encircle the earth and who owns them. As stated
at the beginning of the chapter, from 1957 to now, the heavens
have gone from 1 artificial satellite to approximately 4,852 as
of 12/31/21. This distribution of this number is illustrated in
the following table.
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Table 2-5 4,852 as of 12/31/21

Sourced from: https://www.ucsusa.org/media/11491
The location, identification/owner, and tracking of

satellites and debris are essential to ensure the safe placement
or movement of new or existing satellites and protect the space
assets of allies. The below displays the number of satellites
in space as of 12/31/22-That count has grown during this
writing.

Figure 2-7 Satellite By Country with Purpose &
Orbit
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Note: This contains only known active satellites and does not
account for any that may have been retired or space debris.

Adapted from: https://www.ucsusa.org/media/11491
Satellite image from: https://findicons.com/icon/28535/

satellite#
The number of active satellites dwarfs the number of actual

decommissioned satellites and other space debris currently in
orbit. It is essential to determine whose and what objects are
encircling the earth when discussing Anti-Satellite Weapons
(AWS) systems and understand that space debris has
accumulated over sixty decades of defuncted satellites,
experiments, and components from launch vehicles. This
issue is of such concern that the DoD and NASA work jointly
using the Space Surveillance Network (SSN), optical
telescopes, DebriSat, Haystack X-Band Radar, and Long
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Duration Exposure Facility (LDEF) to track debris in the
known orbital planes (NASA Orbital Debris Program Office,
n.d.). Similarly, the European Space Agency, whose Space
Debris Office in the European Space Operations Center
(ESOC)is located in Darmstadt, Germany, also tracks an
orbital collision risk assessment team. (European Space
Agency, n.d.) It is important to note that contrary to popular
belief, not all space debris is cataloged and tracked; statistical
analysis and modeling are used for objects smaller than 10
centimeters or 4 inches (NASA, 2021). According to
measurements from the ESA, as of July 11, 2022, the below
satellite and space debris data has been observed:

Table 2-6 Space Satellite & Space Debris Data
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Activity/Event Count

Satellite Data

· Satellites placed in orbit via rocket launches 13,320

· Satellites in orbit 8,580

· Functioning satellites in orbit (maybe the end
of life, out of fuel, or placed in graveyard orbit but
electronics still working)

6,100

· Debris is regularly tracked and cataloged by
SSN. 31,740

· Estimated events (explosions, collisions, etc.)
resulting in fragmentation. 630

General Debris Data

· Debris greater than 10cm (4 inches) 36,500

· Debris > 1cm (approx. size of #2 pencil) but
less than 10 cm 1,000,000

· Debris > 1 mm but less than 1 cm 130,000,000

Sourced from: (European Space Agency, 2022)
As previously noted in the LEO, orbital speeds are very

fast, and as an example, a NATO 5.56mm bullet travels at
approximately 3,260 f/s or about one km/s. Debris from a
satellite, including paint chips, can travel between 4-8 km/s or
roughly 13,123-26,246 f/s. These velocities translate to small
objects containing high amounts of kinetic energy, sufficient
to destroy a functioning satellite on impact.

Figure 2-8 Partial view of satellites and space debris
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in orbit from a global and continental view perspective

Note: Due to cropping, images do not capture full orbital
tracks for outer orbits.

Source: Realtime satellite and debris tracking (AstriaGraph,
2022). https://astria.tacc.utexas.edu/AstriaGraph/

The weaponization of Space and Methods of Satellite
Attrition

Due to the vastness of the topic and out of respect for
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chapter length, an in-depth review of ground-based Direct
Energy Weapons (DEW) will not be explored at this time.
However, it is one of the multiple methods of satellite
eradication.

Of the many methods of obtaining kill proximity to a
satellite, there are only a few principles, Direct Accent or Hit-
to-Kill (DA-ASAT) and Co-orbital (Co-ASAT). These two
principles allow for deploying such methods as Direct Energy
Weapons, Anti-satellite missiles, killer satellites, and the use
of natural and artificial debris. The following will provide
examples of direct and indirect attacks that could be employed
to destroy a satellite or constellation of satellites. It is also
critical to understand the existence of space debris caused by
numerous ASAT tests executed since the 1960s and the role it
can play in the intentional destruction of satellite assets.

Initially, weapons testing in space was conducted by the
United States and Russia. This has since expanded to include
China and India.

Table 2-7 Space Debris because of ASAT Tests
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Sourced from: https://www.visualcapitalist.com/sp/anti-
satellite-weapons/ (Bhutada & Smith, 2022)

Debris field disruption: Each orbital level has various
amounts of debris. LEO is not only very saturated but also has
the fastest traveling objects. A collision of any type will cause
a cascade of collisions, also known as the Kessler Syndrome.
In short, the concept is based on the collision of two or more
objects. Although the physic associated with the laws of
collisions and motion is outside the study of this text, it is
essential to understand that objects traveling at such high
velocities, even objects of negligible mass, will have high-energy
impact collisions that will result in the creation of smaller
objects moving in opposite directions with equal force. These
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smaller objects will collide with other debris, and the crashes
will continue resulting in a debris storm. As previously
discussed, the LEO orbit has numerous entities, including
functional satellites and the ISS (International Space Station).
There have been noted satellite collisions, with the first known
collision occurring in 1991 when Russia’s Cosmos 1934 was
struck by a piece of Cosmos 926. Then, in 1996, France’s
Cerise satellite was hit by an Ariane 4 rocket fragment. In
2005 a US upper stage was hit by a piece of a Chinese rocket’s
third stage. In 2009 an Iridium satellite collided with Russia’s
Cosmos-2251”, with devastating results (European Space
Agency, n.d.).

Left Figure 2-9 / Hits on Satellites / Right Figure
2-10
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Right Source: Source: https://space-env.esa.int/madweb/
Left, altered from: https://www.visualcapitalist.com/sp/anti-

satellite-weapons/ (Bhutada & Smith, 2022)
Debris weaponization needs to be a concern of any nation

owning or operating a satellite. The importance of satellites
and their ability to provide Realtime intelligence to military
troops is well known. Some countries may not have the
technical capabilities of their adversaries but wish to disrupt
the ability to collect SATINT or disrupt their
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communications, command, and control capabilities to
ground, naval, and aviation forces to level the playing field.
Such a country may be short on resources to perform satellite
management or even the technology to track and target an
object in orbit. However, they may be able to use the debris
field to destroy their opponent’s space assets and cause the
desired disruption. For example, North Korea has developed
and test-launched the Hwasong-12 ballistic missile. This
rocket is reported to have reached an altitude of 2,111 km or
1,311 miles. As previously studied, the LEO orbit is generally
below 2,000 km. (Center for Strategic and International
Studies, 2022). This attitude provides the capability to deliver
a payload anywhere within the LEO and lower portions of
the MEO orbit. As discussed, tracking, and striking a fast-
moving object is a complex operation. However, delivery of
a high explosive detonation does not contain near the level of
sophistication but will render similar results. Such a scenario
would begin a chain of reactions in which space debris would
become an ever-growing cloud of shrapnel that would increase
with the destruction of other objects in the ongoing collisions.
This could eliminate observation, monitoring, and
communications satellites for virtually every country. The
increasing proliferation of surplus missile boosters makes such
scenarios a viable threat vector.

Figure 2-11 Various ASTAT Tests and debris creation
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Altered from: https://www.visualcapitalist.com/sp/anti-
satellite-weapons/ (Bhutada & Smith, 2022).

Surface/Air to Space missiles (DA-ASAT, non-DEW):
After the successful launch of Sputnik, The US quickly
became aware that Russia had established space superiorly and
could spy on US installations. In addition, it was conceived
that the Russians would begin to deploy nuclear projects into
orbit, providing a first-strike capability. The initial US
response in 1958 was developing and testing the ASAT
weapon Bold Orion or (WS-199B), an air-launched missile.
Testing and development continued until a successful near
interception test was performed in LEO, where the missile
came within 4 miles (6.4 km) of the Explorer 6 satellite in
October of 1959 (Pike, 2016). This was countered by the
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Russians in 1960 with a Co-Orbital device, “Dubbed Istrebitel
Sputnikov (for the Satellite Destroyer) …” (Zak, 2013).

Figure 2-12 First, ASAT weapons used by US and
Russia

Right is the Bold Orion (WS-199B) 1959. Source:
https://www.globalsecurity.org/space/systems/bold-orion.htm

left is the Istrebitel Sputnikov. 1960. Source: https:
//www.jejaktapak.com/2015/09/06/istrebitel-sputnikov-
pemburu-dan-pembunuh-satelit/

From the 1950s to the early 1970, the tactical approach
of choice was the use of nuclear warheads and high-explosive
warheads for the attrition of enemy satellite assets. In 1963,
the US, Soviet Union, and Great Britain signed the Limited
Nuclear Test Ban Treaty, understanding that any such
explosion could cause collateral damage to both sides and
allies. It should be noted that this treaty did not cover the use
of other kinetic-type weapons. By the 1970s, tactics changed,
and research began using Kinetic Kill weapons which would
strike a target with extreme force. However, the force is such
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that targets are reduced to thousands of smaller pieces of
debris. This was proven out in a few relatively recent events:

2007 China destroyed its old weather satellite (Keck, 2019).
2008 US shoots down its spy satellite in low orbit (Oberg,

2021).
In 2021 Russia shot down its satellite (Litovkin, 2021).
Each of these satellites created large volumes of debris, with

the 2021 event causing personnel on the ISS to shelter in place
(Mogg, 2021) for multiple orbits until the debris field was no
longer considered a danger. However, the debris will remain
in orbit for decades, as outlined in table 2-7.

An overview of the Kinetic Kill Weapon/Warhead (KKW)
can be illustrated by the SM-3 missile, which is a DA-ASAT
hit-to-kill system that releases an independent 21-inch
(530mm), Lightweight Exo-Atmospheric interceptor kill
vehicle that will close on the target at approximately 10km/s
(22,000 mph) (GAO, 2011).

Figure 2-13 AEGIS BMD SM-3 Missile Profile
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Adapted from: https://missiledefenseadvocacy.org/defense-
systems/standard-missile-3-sm-3/

At this velocity, the impact would be equivalent to “…130
megajoules of kinetic energy, or the equivalent of a 10-ton
truck traveling at 600 miles per hour.” (Raytheon, 2007). For
perspective, that would be roughly equivalent to a standard
school bus traveling near the top speed of a 747 commercial
jet crashing into an object. The result will be the pulverization
of the target and the creation of additional high-velocity space
debris.

DA-ASAT challenges include previously identified
obstacles associated with LEO. First and foremost, the DA-
ASAT will require a propulsion system with sufficient force
to obtain attitude. Although some missiles can reach low to
middle LEO, fewer can reach higher regions. If the attitude
barrier is overcome, objects in this orbit travel at high
velocities, making it very difficult to perform target
identification, tracking, and acquisition. This will leave little
time for developing a firing solution before the target passes
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from range. Although there are numerous claims of success,
failed attempts are seldom discussed for obvious reasons. A
consideration continuously mentioned is the ever-increasing
space debris. Any DA-ASAT must navigate past debris
traveling at velocities in the “high” hypersonic speed spectrum
and have superior target identification facilities as part of its
instrumentation.

It is important to note that the missile system illustrated is
only one of many designs in which each company, country,
and their associated engineers, will have varying methods. Still,
the general concepts and principles will be virtually identical
regardless of design differences.

Figure 2-14 Other types of ASATs and their countries
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Source: https://www.visualcapitalist.com/sp/anti-satellite-
weapons/ (Bhutada & Smith, 2022)

Co-Orbital (CO-ASAT): These are weapon systems that
are placed in orbit with the intent of maneuvering close to a
target satellite from its orbital parking plane and can maneuver
to the higher or lower plane of the target satellite and destroy
it via various means. Such ASAT devices can have a dual
objective. Being disguised as weather, communications, or
having other non-imposing intentions, may allow them to
remain in orbit without attracting attention to their disguised
mission until called to action. This ASAT class could also
chase down another orbital body over multiple orbits until it
is close enough to perform its kill protocol. Such maneuvering
has been observed by activities from Kosmos-2543 to match
the orbit of Kosmos-2535 for a rendezvous and was able to
change fore and aft orbital positions (Chabot, 2019). As
referenced in table 2-7, Russia/USSR has performed nine co-
orbital tests since 1982 and the US 1. Before 1982 there were
17 documented Russia/USSR co-orbital-related tests
confirmed from 1963-1981 (The Space Review, n.d.). Due to
state secrets, it is difficult to know how many co-orbital satellite
activities related to eliminating adversary assets have occurred.

The following are examples of co-orbital actions that can
occur; some have been demonstrated.

Figure 2-15 Co-orbital-based weapon types
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Source: https://www.dia.mil/Portals/110/Documents/
News/Military_Power_Publications/
Challenges_Security_Space_2022-pdf

Direct collision or Kinetic Kill Vehicles are based on
techniques discussed in our exploration of DA-ASAT and
how high-velocity impacts can cause extensive damage to a
targeted satellite. The concept is the same, except the kill
vehicle is an orbital device that can transition orbital planes in
pursuit of a target.

Radiofrequency Jammers would permit an attacking
satellite to maneuver near another satellite and jam its sending
and receiving singles. An attacking satellite could align its
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orbit close enough to the target satellite to perform cognitive
jamming via spectrum sensing. This technology will allow the
attacker to sense the transmit-receive frequencies used by the
target and use a “detect and jam” strategy. Even as the target
satellite attempts to perform anti-jamming mitigation, the
attacking satellite could continue its spectrum analysis via
techniques such as detection sliding energy window
analysis. (Tianq, Pham, & Blasch, 2012) Jamming may only
need to exist for a short period to cause a disruption, especially
if the target is in LEO.

Microwave bombardment has become a feasible attack
method for satellite-to-satellite conflicts, as proven with high-
power microwave (HPM) experiments on electronic circuits
using narrow-band and ultra-wide-band (UWB) pulsed
radiation to damage the electronic circuitry of the target (SAE
Media Group, 2008). A microwave-capable ASAT
maneuvering near a target could emit microwaves creating an
energy transference that would build up additional voltage
within the target satellite. This would generate thousands of
volts, causing the target’s electronics conductors to build up
voltage and heat, which would semiconductors, processors,
and even melt critical components. Space research has proven
this using Photovoltaic Radio-frequency Antenna Module
(PRAM) technology. “PRAM converts sunlight for
microwave power transmission.” (Trevithick, 2020) to provide
power.

Cyber-attacks are not limited to terrestrial devices.
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(Nichols, et al., 2022) Satellites will have similar
vulnerabilities. Satellites receive communication from earth
stations and, in many cases, multiple earth stations, all of
which will require authentication. This implies the need for a
communication and security protocol to serve the receival of
the request, acknowledgment, and handshaking necessary for
passing credentials. This can be subject to a DoS (Denial of
Service) attack where the satellite could become overwhelmed
attempting to service the request and unable to authenticate
with the legitimate source, affecting its ability to receive
instructions from its base. Depending on the orbit and
satellite’s velocity, it may pass its communication window with
a particular ground station and must proceed to the next. As
discussed in orbit advantages and disadvantages, LEO orbits
require less power to communicate with the ground and
usually have smaller antennas and less powerful transmitters.
Another satellite or constellation of satellites in orbit could
potentially provide more focused signaling and begin an attack
before the target satellite enters its communication window
with the ground and cause disruption. This is one of the
numerous possible cyber-attacks that could be performed. A
similar cyber situation occurred where hackers acquired
control of a decommissioned satellite and broadcasted their
conference via the Anik F1R satellite (Paganini, 2022).

Figure 2-16 Illustration of a practical satellite hack
scenario
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Source: Arstechnica.com via
https://universemagazine.com/en/how-to-destroy-a-satellite-
without-firing-a-single-shot/

Laser weaponry for the use of co-orbiting attack satellites,
lasers may not be a practical solution at this point due to the
amount of power necessary to burn through the materials of
a target satellite effectively. However, much work is underway
to create more powerful lasers that require less power
consumption. It should also be noted that additional energy
would not be lost due to distance spreading, atmospheric
ionization, atmospheric dispersion, and refraction as a ground-
to-space attack. However, the technology does exist to use
laser light to blind a target. This could be useful in anti-
surveillance and detection, especially in the detection of
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hypersonic missile launches, which have a less pronounced
launch signature than the standard ICBM.

Chemical sprayers would be a more insidious method of
attack where the target would be sprayed with a chemical agent
that would cause corrosion of the satellite surface and
eventually compromise the system, which is already under
stress due to thermal changes and forces associated with high-
velocity travel. “Thermal stresses occur in the LEO orbit on
the outer surface of satellites due to periodic in and out of
the sunshade during orbiting. At LEO, this happens every 90
minutes and is roughly +100°C to -100°C. This temperature
change causes thermal stresses in materials, and the difference
in CTE will cause spalling of the oxide layer present on metal
surfaces and results in constantly exposing fresh material to
the atomic oxygen environment.” (European Space Agency,
n.d.). Such a dispersal of corrosive materials could reduce the
efficiency of solar panels and their components and eventually
comprise the structural integrity of the satellite.

Satellite robotic mechanisms have advanced
exponentially over the past decade with the advancement of
cube satellites, cheaper transport, improved robotic arm,
camera systems, faster computing power, advanced software
for accurate target identification and acquisition, and
improved autonomous response. These improvements are
now enabling devices to intercept and capture fast-moving
objects. Recently, the US, England, and China have embarked
on several experiments testing this technology under the guise
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of space debris removal to clean up the lower orbits. These
countries have performed technological demonstrations giving
each other weighty reasons for concern because the same
technology used for debris removal can do the same to
opposition assets. The following are known efforts that reflect
the technology being tested.

1. In March 2021, a Japanese firm Astroscale Holdings Inc.
launched a test mission with two satellites, “…a servicer
designed to safely remove debris from orbit and a client
satellite that serves as a piece of replica debris… this
pioneering mission to demonstrate the technologies and
capabilities necessary for debris capture and removal.
The servicer satellite will release and dock magnetically
with the client satellite in the first three complex
demonstrations. Following this demonstration of non-
tumbling capture, ELSA-d will perform two additional
demonstrations: one to capture the client while it is
tumbling, and one to lose deliberately, re-locate,
approach, and re-capture the client from far-range.”
(Howlett, 2021), intending to pull it to a lower altitude
where it will burn up in the atmosphere.

Figure 2-17 Image of Astroscale’s ELSA-d with the
“chaser” and “target” vehicle

SATELLITE KILLERS AND HYPERSONIC DRONES (SLOFER) | 93



Source: https://astroscale.com/astroscale-statement-on-our-
elsa-d-demonstration/

1. On January 2022, China’s Shijian-21 (SJ-21) satellite was
observed leaving its orbit and approaching the DeiDou-2
G2- It was later observed attaching to the G2 and
throwing it into what is known as a “graveyard” orbit,
where dysfunctional satellites are typically relocated,
except under their power, to be retired. After performing
this act, the SJ-21 returned to its regular GEO orbit.
There are concerns that this was not only a test to
remove debris but also to demonstrate the ability to
push a satellite into an unwanted atmospheric re-entry
(Hitchens, 2022).

2. “RemoveDebris” is a European consortium satellite
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operated by Surrey Satellite Technology Ltd. Launched
in April 2018, its mission was to:

◦ Flight a capturable object.
◦ Track and capture with net technology.
◦ Test a VBN LiDAR camera system for ranging.
◦ Perform accuracy tests for harpoon capture.
◦ Drag sail deployment for expedited orbit decay.

The mission accomplished its stated objectives (Aglietti, et al.,
2019).

Figure 2-18 Visual of the mission profile for the
RemoveDebris mission
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Source: https://www.cambridge.org/core/journals/
aeronautical-journal/article/removedebris-an-inorbit-
demonstration-of-technologies-for-the-removal-of-space-
debris/88B966915E7A3BD6F0B047A38FF713D2

Figure 2-19 Photo and cutaway views of the
RemoveDebris cube satellite
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Top image source: https://www.nasa.gov/mission_pages/
station/research/experiments/explorer/
Investigation.html#id=7350

Bottom images source: https://www.surrey.ac.uk/surrey-
space-centre/missions/removedebris

Of the many ASAT technologies being explored, there
seems to be a trend towards solutions that would minimize
collateral damage. Other than Kinetic Kill Weapons, the other
co-orbital methods target a specific asset and do not disturb
the orbiting debris field, which could also impose uncontrolled
collateral damage on the attacking nations’ assets.

Orbiting Hypersonic Missile Platforms
In addition to weather, communication, and spy satellites,

there are orbiting platforms. The diagram below identifies 15
different platforms across 11 different types.

Figure 2-20 Sample of current and past orbital
platforms

SATELLITE KILLERS AND HYPERSONIC DRONES (SLOFER) | 97



Source: https://upload.wikimedia.org/wikipedia/commons/
thumb/7/77/Space_station_size_comparison.svg/836px-
Space_station_size_comparison.svg.png

In 1963, 112 countries signed the Outer Space Treaty,
which essentially bands the use of nuclear weapons in space.
“Key provisions of the Outer Space Treaty include prohibiting
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nuclear weapons in space; limiting the use of the Moon and
all other celestial bodies to peaceful purposes; establishing that
space shall be freely explored and used by all nations; and
precluding any country from claiming sovereignty over outer
space or any celestial body. Although it forbids establishing
military bases, testing weapons, and conducting military
maneuvers on celestial bodies, the treaty does not expressly ban
all military activities in space, nor the establishment of military
space forces or the placement of conventional weapons in
space.” (Wikipedia, 2003). The specific declaration against
nuclear weapons has left the door open for other possible
systems, such as the launching of Kinetic Energy systems that
do not need a nuclear warhead since their hypersonic velocities
will produce devastating results by releasing the equivalent of
kilotons of TNT (depending on weight, density, and final
impact speed).

A known weapons platform that has been part of the
escalating arms race has been the development of hypersonic
weapons. A quick recap from book 6, these are vehicles
traveling at speeds greater than Mach 5 (>3,806 mph) and
attitudes below 90K (295,276 ft). Most objects in LEO orbit
travel at velocities of 17,500 mph, and these speeds are known
as high-hypersonic, ranging from Mach 10-25. Some Apollo
Command Modules (CM) were recorded traveling at reentry
velocities at Mach 36 (Smithsonian National Air and Space
Museum, n.d.).

In general, there are two types or classes of Hypersonic
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Missiles. The first being of the Cruise Missile type also
referred to as Hypersonic Cruise Missile (HCM), which
maintains speed via a SCRAM propulsion system, and the
Hypersonic Glide Vehicle (HGV), which uses the forces of
gravity and aerial dynamics to obtain its speed and stability.

Figure 2-21 Categories of Hypersonic missiles

Source: The RAND Corporation (Speier, Nacouzi, Lee, &
Moore, 2017)

The focus of this topic will be on the HGV and how it
would be applied as a space-based attack vector.

Currently, there are limited ways to detect the launch or
deployment of hypersonic missiles. The standard defense
strategy, since the cold war era, has focused on detecting ICBM
launches and interception. Hypersonic technology has
become a game changer in the OODA-loop decision strategy
process of Observe, Orient, Decide and Act (Devost &
Courley, 2022). The process is impacted because the
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observation cycle is delayed, which is the start of the process.
It should be noted that most early warning technology is
optimized to the infrared signature of an ICBM surface or
naval launch. This reduction in identification then
compresses the time available for the other processes, including
the ability to orient. The decrease further shortens the time
the under-siege entity needs to act because the devices are so
fast. For example, if we were to use the below table, extracted
from Chapter 12 of Book 6 on Hypersonic weapons,

Table 2-8 Speed, time, and distance comparisons at
various Mach speeds from 1-30 and times to cover 1000

miles

Source: (Nichols, et al., 2022)
It indicates how fast such weapons can move. It is not

impractical for an HGV to move around the upper
atmosphere over Mach 23 and about the lower altitudes at
Mach 10, which can cover 1000 miles in under eight minutes.
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The trajectory of HGV may resemble the diagram in a
typical launch-to-guide scenario.

Figure 2-22 Launch – to – Glide Scenario

Source: http://www.space4peace.org/articles/
race_for_new_nukes.htm

In such a scenario, there is the ability to observe the infrared
signature of the missile booster. In addition, the targets of the
HGV will be less due to the height constraint of the booster.
In a space-drop deployment scenario, the height restriction
will be removed. Also, there will not be an infrared heat
signature from the ground for observation satellites to detect
and report and depending on the time of day; it may be
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challenging to obtain early confirmation that an HGV has
been launched and started its re-entry trajectory, which may
resemble an atmospheric skip as displayed in the below
diagram.

Figure 2-23 HGV is capable of skipping across the
atmosphere to engage any target on the globe

Source: https://alphadefense.in/hypersonic-technology-and-its-
future/

This will provide the HGV stealth because it can be
dropped from a different global location and begin its
targeting activities. Once entering the atmosphere, it will have
the ability to maneuver, and because of its high altitude, it can
confuse enemy tracking as to the actual target. Also, if the
primary target is no longer available, multiple alternates can be
selected. It should be noted that the options are fewer as the
HGV gets lower. At a designated point, the HGV will drop on
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its target with maximum velocity to unleash as much kinetic
energy and destruction as possible.

Figure 2-24 HGV will have more targeting options
available

Source: Modified from https://alphadefense.in/hypersonic-
technology-and-its-future/

Despite treaties and national agreements, the use of
hypersonic weapons being launched from space is a
consideration that must be pondered. The ability to have a
first strike capability is too much of an enticement for nations
that have demonstrated a tradition of breaking treaties or
violating established norms and rules of engagement. Any
country that would ignore such may do so at its demise.

Summary
In this chapter, we have studied atmospheric and orbital

impacts associated with the advantages and disadvantages of
orbiting or attacking a satellite. We have also briefly explored
the history and evolution of Anti-Satellite (ASAT) technology
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and the earth-covering debris it has created. This reading has
also covered various methods to kill satellites through
intentional and unintentional means and the ongoing efforts
of some countries to obtain and maintain space superiority.
This chapter’s concepts and principles should provide a
foundation for the upcoming reading.
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3.

SPACE ELECTRONIC
WARFARE, SIGNAL
INTERCEPTION, ISR,
JAMMING, SPOOFING, &
ECD (NICHOLS & MAI)

Student Objectives
Space is the new frontier of electronic warfare (EW),

intelligence, and reconnaissance. Space is also the place to view
the earth in large “earth traces.” These views can help military
and agricultural planners make better decisions on protecting
the United States and managing (increase) global food supply,
land usage, irrigation, and health. The same information for
diametrically different uses. This chapter is concerned with the
former. We peruse:

• Key definitions in EW, satellite systems, and ECD
countermeasures

• A look at space calculations and satellite threats using



plane and spherical trigonometry to explain orbital
mechanics

• A brief review of EMS, signals, RADAR, Acoustic, and
UAS Stealth principles,

• Signals to/from satellites and their vulnerabilities to
Interception, Jamming, and Spoofing,

• Signals to/from satellites and their vulnerabilities to
Interception, Jamming, and Spoofing

• The promising ECD technology countermeasure to
spoofing can detect, mitigate, and recover fake and
genuine signals.

EW Definitions [1]
Electronic Warfare (EW) is the art and science of denying

an enemy the benefits of the electromagnetic spectrum (EMS)
while preserving them for friendly forces. (Wolff, 2022)

Signals Intelligence (SIGINT) is the analysis and
identifying intercepted transmissions, including frequency,
bandwidth, modulation (“waveform”), and polarization. Four
categories of SIGINT are: (Wolff, 2022)

• Electronic Intelligence (ELINT)
• Communications Intelligence (COMINT)
• Foreign instrument SIGINT (FISINT)

SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI) | 113



• Measurement intelligence (MASINT) Covered in
Chapter 10 of DRONE DELIVERY OF CBNRECy –
DEW WEAPONS Emerging Threats of Mini-Weapons
of Mass Destruction and Disruption (WMDD)
(Nichols & Sincavage, 2022)

EW Sub-Areas
Electronic Warfare Support (EWS/ES) measures

detection, intercept, identification, location, and localizes
sources of intended and unintended radiated electromagnetic
(EM) energy. (Wolff, 2022)

Activities related to ES include:

• Electronic Reconnaissance: location, identification, and
evaluation of foreign electromagnetic radiation

• Electronic intelligence: Technical and geolocation
intelligence derived from foreign non-communications
electromagnetic radiation emanating from sources other
than nuclear detonations or radioactive sources

• Electronics security: protection resulting from all
measures designed to deny unauthorized persons
information of value that might be derived from the
interception and study of non-communications
electromagnetic radiation, e.g., radar. (Wolff, 2022)[2]
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Electronic Attack (EA) activities – may be either offensive
or defensive and include: (Wolff, 2022)

• Countermeasures: employment of devices and/or
techniques that has as their objective the impairment of
the operational effectiveness of enemy activity

• Electromagnetic deception: Covered in Chapter 7 of
DRONE DELIVERY OF CBNRECy – DEW
WEAPONS

• Emerging Threats of Mini-Weapons of Mass Destruction
and Disruption (WMDD) (Nichols & Sincavage, 2022)
Various EM deception techniques, such as a false target
or duplicate target generation, confuse the enemy
intelligence, surveillance, and reconnaissance systems
(ISR). (Wolff, 2022)

• Electromagnetic intrusion: is the intentional insertion of
EM energy (EME) into transmission paths in any
manner to deceive operators or to cause confusion.

• Electromagnetic jamming is deliberate radiation,
reradiation, or reflection of EME to prevent or reduce an
enemy’s effective use of the EMS and with the intent of
degrading or neutralizing the enemy’s combat capability.

• Electromagnetic pulse is EM radiation from a strong
electronic pulse [Directed energy weapons (DEW)] that
may couple with electrical or electrical systems to
produce damaging current and voltages. (Wolff,
2022)Chapters 9-11 in DRONE DELIVERY OF
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CBNRECy – DEW WEAPONS Emerging Threats of
Mini-Weapons of Mass Destruction and Disruption
(WMDD) expertly cover the subject. (Nichols &
Sincavage, 2022)

• Electronic probing is intentional radiation designed to be
introduced into the devices and systems of potential
enemies to learn the operational capabilities of the
devices and systems.

• Cyber or electronic spoofing: – A Cyber-weapon attack
that generates false signals to replace valid ones. GPS
Spoofing is an attack to provide false information to
GPS receivers by broadcasting counterfeit signals similar
to the original GPS signal or by recording the original
GPS signal captured somewhere else at some other time
and then retransmitting the signal. The Spoofing attack
causes GPS receivers to provide the wrong information
about position and time. (T.E. Humphrees, 2008)
(Tippenhauer & et.al, 2011) (Nichols & Sincavage,
2022)

Electronic protection measures (EP): EP measures fall into
six categories: (Wolff, 2022)

EM hardening: actions are taken to protect personnel,
facilities, and or equipment by blanking, filtering, attenuating,
grounding, bonding, and shielding against undesirable effects
of EME.

Electronic masking: controlled radiation of EME on friendly
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frequencies to protect the emissions of friendly
communications and electronic systems against enemy EWS
measures and SIGINT without significantly degrading the
operation of friendly systems.

Emission control: sensitive and controlled use of EM,
acoustic, or other emitters to optimize command and control
(C2) capabilities while minimizing the following for
operations security (OPSEC): 1) detection by enemy sensors;
2) mutual interference among friendly systems; 3) enemy
interference with the ability to execute a military deception
plan. (Wolff, 2022)

EMS management: planning, coordinating, and managing
joint use of the EMS through operational, engineering, and
administrative procedures.

Wartime reserve modes: characteristics and operating
procedures for sensors, communications, navigation aids,
threat recognition, weapons, and countermeasures systems
that will contribute to military effectiveness if unknown to or
misunderstood by opposing commanders before they are used
but could be exploited or neutralized if known in advance.
(Wolff, 2022)

EM compatibility: the ability of systems, equipment, and
devices that use the EMS to operate in their intended
environments without causing or suffering unacceptable or
unintentional degradation because of electromagnetic
radiation (EMR) or response. (Wolff, 2022) This is an
extremely important concept and is exploited by the use of
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UAS against USN assets in the South China Seas
(SCS.) (Nichols & al., 2020)

ISR – Intelligence, Surveillance, and Reconnaissance
[3]

Intelligence, surveillance, and reconnaissance operations
(ISR) are used to collect information about the enemy, terrain,
weather, and other aspects of the Area of Operation (AO) that
will affect friendly combat operations. (Global Security.Org,
2022)

The Army has conducted reconnaissance and surveillance
tasks since its inception. The production of intelligence (the
product resulting from the collection, processing, integration,
analysis, evaluation, and interpretation of available
information concerning an enemy force or area of operation)
has always been critical to successfully accomplishing the
mission. ISR is the term currently applied to combined arms
enabling operation that combines previously described as
reconnaissance and surveillance (a maneuver or collection task)
with the production and dissemination of intelligence (a staff
task). ISR is a constant, continuous, and optimized operation
that focuses on the collection of relevant information that is
analyzed to create intelligence to support the commander’s
and or leader’s situational understanding and the operational
cycle. (Global Security.Org, 2022)

ISR Systems and Technology from Space
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MIT gives an interesting purview of their mission for ISR
from space. They see it as “Creating Technology To Provide
Vital Tactical Information.” They conduct “R&D in advanced
sensing, signal and image processing, decision support
technology, and high-performance embedded computing to
provide systems capable of gathering reliable intelligence,
surveillance, and reconnaissance information.” (MIT R&D,
2022) It is this purview that the authors see from the user POV
to develop “earth traces” from space capable of yielding unique
information on non-military technologies such as agriculture
management, crop rotation, global food supply, tree and fire
zone management, and cattle management.

Eichelberger Collective Detection (ECD) Definitions /
Counter Spoofing Concepts

Acquisition – Acquisition is the process in a GPS receiver
that finds the visible satellite signals and detects the delays of
the PRN sequences and the Doppler shifts of the signals.

Circular Cross-Correlation (CCC) – In a GPS classical
receiver, the circular cross-correlation is a similarity measure
between two vectors of length N, circularly shifted by a given
displacement d:

Eq. 3-1
The two vectors are most similar at the displacement d,

where the sum (CCC value) is maximum. The vector of CCC
values with all N displacements can be efficiently computed
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by a fast Fourier transform (FFT) in Ớ ( N log N ) time.
[4](Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

Like classical GPS receivers, coarse-Time Navigation (CTN)
is a snapshot receiver localization technique that measures sub-
millisecond satellite ranges from correlation peaks. (IS-
GPS-200G, 2013) [See also expanded definition above.]

Collective Detection (CD) is a maximum likelihood snapshot
receiver localization method, which does not determine the
arrival time for each satellite but combines all the available
information and decides only at the end of the computation.
This technique is critical to the (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019) invention
to mitigate spoofing attacks on GPS or ADS-B.

Coordinate System – A coordinate system uses an ordered
list of coordinates to uniquely describe the location of points
in space. The meaning of the coordinates is defined concerning
some anchor points. The point with all coordinates being zero
is called the origin. [ Examples: terrestrial, Earth-centered,
Earth-fixed, ellipsoid, equator, meridian longitude, latitude,
geodetic latitude, geocentric latitude, and geoid. [5]

Localization – Process of determining an object’s place
concerning some reference, usually coordinate systems. [aka
Positioning or Position Fix]

Navigation Data is the data transmitted from satellites,
which includes orbit parameters to determine the satellite
locations, timestamps of signal transmission, atmospheric

120 | SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI)



delay estimations, and status information of the satellites and
GPS as a whole, such as an accuracy and validity of the
data. (IS-GPS-200G, 2013) [6]

Pseudo-Random Noise (PRN) sequences are pseudo-
random bit strings. Each GPS satellite uses a unique PRN
sequence with a length of 1023 bits for its signal transmissions.
Aka as Gold codes, they have a low cross-correlation with each
other. (IS-GPS-200G, 2013)

Snapshot GPS Receiver– A snapshot receiver is a global
positioning satellite (GPS) receiver that captures one or a few
milliseconds of raw GPS signal for a location fix. (Diggelen,
2009)

Scope
Looking at the definitions above, the EW and ECD spheres

are huge and encompass many different sciences. Chapter 3
focus will be on space electronic warfare with a limited scope
and a specific emphasis on spoofing. We are trying to get a
sense of the technologies and challenges. Jamming will be
briefly presented only as a precursor attack to a spoofing
attack. There are plenty of learning seminars available by SMEs
like Rhode & Schwartz and fundamental textbooks to inform
the reader. (Wolff, 2022) (Adamy D. , EW 101: A First Course
in Electronic Warfare, 2001) (Adamy D. L., Space Electronic
Warfare, 2021) (Adamy D. L., EW 104: EW against a new
generation of threats, 2015) (Adamy D. L., EW 103: Tactical
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Battlefield Communications Electronic Warfare,
2009) (Adamy D. L., 2004)[7] [8]

Decibel Math
EW calculations are done using “dB” math. It allows

manipulation of very large numbers such as transmitted signal
strength and very small numbers such as received signal
strength. Numbers expressed in decibels (or dB) form are
logarithmic and follow the rules.[9] This permits the
comparison of values that may differ in many orders of
magnitude. It is important to understand that any value
expressed in decibel units is a ratio converted to a logarithmic
form. (Adamy D. , EW 101: A First Course in Electronic
Warfare, 2001)

To Convert To Decibel Form (base 10 log)
Ratio (in dB) = 10 log (Linear Ratio)

Eq. 3-2
Example: convert 2 (the ratio of 2 to 1) to decibel form.

(rounded)
convert 1/2 (the ratio of 1 to 2) to decibel form.

in EW, link loss and antenna
calculations this is a useful factor.

A reverse way of looking at the process or converting back
to a nonlogarithmic form is:

Antilog (logarithm number) = linear number in place of 10
(logarithmic number)

So, antilog (3/10) = 2. See (Adamy D. , EW 101: A First
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Course in Electronic Warfare, 2001) or (Adamy D. L., 2004)
or (Adamy D. L., Space Electronic Warfare, 2021) for many
examples of nauseating details and helpful tables for common
usage.

Plane Trig /Equations
To solve problems of elevation and azimuth of look angles

associated with Earth Satellites, three-dimensional (3-D)
angular relationships are solved with Plane and Spherical
Trigonometry. Plane Trigonometry deals with triangles in a
plane. The important relationships are:

Plane Trigonometry:
The Law of Sines:

Eq. 3-3
Note: Lower case letters represent the lengths of a triangle’s

side, and upper-case letters are their associated angles opposite
the corresponding side.

Eq. 3-4
The Law of Cosines for Angles:

Eq. 3-5
A right triangle is a plane triangle with a 90° angle. All

triangles fall under the above rules.

Right Triangle: 2-dimensional defined, also known as a
Plane Triangle.
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Figure 3-1 Right Triangle

Source: (Adamy D. L., Space Electronic Warfare, 2021)

Spherical Trigonometry:

The Law of Sines for Spherical Triangle:

Eq. 3-6
The Law of Cosines for Sides:

Eq. 3-7
The Law of Cosines for Angles:
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Eq. 3-8

Spherical Triangle: Formed by 3 great circles that pass
through a common center point.

Figure 3-2 Triangle on a Sphere

Source: (Adamy D. L., Space Electronic Warfare, 2021)

Napier’s Rules:
Right spherical triangles allow the use of simplified spherical

trigonometric equations using Napier’s rules.
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Figure 3-3 Napier’s Rules for Right Spherical
Triangles

Source: Author modification of Figure 2.6 in (Adamy D. L.,
Space Electronic Warfare, 2021)

Rules for Napier’s right spherical triangles
Eq. 3-9
Eq. 3-10
Eq. 3-11

Eq. 3-12

Orbital Mechanics
Spherical and Elliptical geometry explain Orbital

Mechanics. The difficulty trying to understand Spherical
Triangles versus Plane Triangles is because Spherical Triangles
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are 2-dimensional, taking place on a sphere rather than a
plane. An example would be looking at a map and drawing
a line from one point to the other, r but in reality, the space
between is actually curved. Spherical Trigonometry takes the
curvature of the earth into account. This is known as the
Keplerian ephemeris. The Ephemeris elements of Spherical
Triangles can be seen in Table 3-1.

Table 3-1
Earth Satellite Ephemeris

Ephemeris Value Significance

a Semi-major Axis Size of the Orbit

e Eccentricity Shape of the Orbit

i Inclination Tilt of orbit relative to the
equatorial plane

Ω-θ = n Right ascension of the
ascending node

Longitude at which the satellite
crosses the Equator going north

w Argument of Perigee Angle between ascending node
and perigee

v True anomaly Angle between perigee and the
satellite Location in the Orbit

Note: Apogee = a(1-e) Source: (Adamy D. L., Space Electronic
Warfare, 2021)
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Figure 3-4 The Ephemeris defines the satellite’s
location with six factors.

Source: Courtesy of (Adamy D. L., Space Electronic
Warfare, 2021)

From the orbital elements, it is possible to compute the
position and velocity of the satellite.

Kepler’s Third Law states the relationship between the size
of the orbit and its period is defined by:

Eq. 3-13
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where: a = the semi-major axis of the orbit ellipse, C is a
constant, and P = the orbit period.

Example: If a Satellite circles the Earth every 1.5 hours and
has an altitude of 281.4-km-high (or a radius from the center
of the Earth of 6,653 km, then C is calculated as; 6,653 km3/
90 min2 = 36,355.285 km per min2

Table 3-2 Shows the altitude of a circular Earth
satellite versus the period of its orbit for satellites with
periods of 1.5 hours to 9 hours.

Altitude and Semi-Major Axis of Circular Orbits
Versus the Satellite Period
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p(min) h(km) α(km) p(min) h(km) α(km)

90 281 6652 330 9447 15818

105 1001 7372 345 9923 16294

120 1688 8059 360 10392 16763

135 2346 8717 375 10854 17225

150 2980 9351 390 11311 17682

165 3594 9965 405 11761 18132

180 4189 10560 420 12206 18577

195 4768 11139 435 12646 19017

210 5332 11703 450 13081 19452

225 5883 12254 465 13510 19881

240 6422 12793 480 13936 20307

255 6949 13320 495 14357 20728

270 7466 13837 510 14773 21144

285 7974 14345 525 15186 21557

300 8473 14844 540 15595 21966

315 8964 15350 – – –

Source: (Adamy D. L., Space Electronic Warfare, 2021)

Figure 3-5 Altitude of a Circular Satellite is a
Function of its Orbital Period

130 | SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI)



Source: (Adamy D. L., Space Electronic Warfare, 2021)

EARTH TRACES

Figure 3-6 Earth traces of synchronous satellites as
they travel in sine wave over a global map

Source: (CYFO: A, 2018)
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If you have ever wondered why satellites look like they travel
in a sine-wave along a global map, you are not alone. It seems
counterintuitive; however, there is an easy explanation for
this. First, remember that a global is not a flat surface.
Although the above map is in 2-dimensions and Earth traces
of a satellite are represented in a sine wave, making them look
as though they do not travel in a straight line. Why are they
represented this way?

If we take a piece of paper, draw a straight line in the center,
and label it as the equator, we will find out that it is the only
straight line on a 2-dimensional map.

Figure 3-7 Representation of the Equator on a
2-dimensional paper
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Source: Hand drawn by co-author Mai, R. (2022)
Now, as we fold the piece of paper into a circle, we see that

the line creates a circle. It does not create the sine wave that we
see in the first map above.

Figure 3-8 Representation of the Equator on a
circular rolled 3-dimensional paper.
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Source: Hand drawn by co-author Mai, R. (2022)

However, by working backwards through this problem, by
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drawing a circle on the folded paper in any other inclination,
we do not have a result that creates a straight line.

Figure 3-9 Representation of any inclination as a sine
wave on circular rolled 3-dimensional paper- represent

a satellite’s Earth traces.
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Source: Hand drawn by co-author Mai, R. (2022)
Instead, a sine wave is formed when unfolded and laid flat,

just like in the picture above. This is how a sine wave is formed
when trying to represent a satellite Earth traces in
2-dimensional form. Even though the satellite travels in a
straight line when circling a globe. To represent its travel in 2
dimensions, this is the result. It is true for all angles other than
the equator.

When unfolded, you can see where the sine wave is created.

Figure 3-10 The Earth trace is the locus of latitude
and longitude of the SVP as the satellite moves through

its orbit.
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Source: Hand drawn by co-author Mai, R. (2022)
LOOK ANGLES
The Earth trace is the locus of latitude and longitude of the

SVP as the satellite moves through its orbit. Note: The SVP is
the point on the Earth’s surface directly below the satellite.
This point intersects the line from the center of the Earth to
the satellite with the surface of the Earth. LEO (low earth
orbits) determines the moment-to-moment area of the Earth
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that the satellite sees. It also allows us to calculate the look
angles and range of the satellite from a specified point on (or
above) the Earth at any specified time.

A recent example of a satellite monitoring Lake Meade
water loss since 2000, looking towards the SVP. It shows
before and after.

Figure 3-11 Lake Meade before water loss 2000
Figure 3-12 Lake Meade after water loss 2021
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Source for Figure 3-11 & 3-12: (Data: USGS/NASA
Landsat, 2021)

Using the six elements of Ephemeris (defined earlier in the
chapter) the exact location of a satellite can be calculated at
any time. For example, the Earth trace of a satellite with a
90-minute orbital period will move West by 22.56 longitude
degrees for each subsequent orbit.
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Example: (90-minute orbital Period / 1463 sidereal day,
minutes) x 360 deg = 22.56 deg

Figure 3-13 Earth trace of the satellite is the path of
the SVP over the Earth’s surface in Polar view.

Source: Courtesy of (Adamy D. L., Space Electronic
Warfare, 2021)

Where: (SVP = Sub-vehicle point) and is the intersection
of a line from the center of the Earth to the satellite with the
Earth’s surface

The Earth area over which a satellite can send or receive
signals to and from the Earth-based stations during each orbit
depends on the altitude of the satellite and the beam width
and orientation of antennas on the satellite. If a satellite is
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placed in polar orbit, its orbit has 90֩ inclination and will
therefore eventually provide complete coverage of the surface
of the Earth.

Figure 3-14 Earth trace of a satellite is the path of the
SVP over the Earth’s surface in equatorial view.

Source: Courtesy of (Adamy D. L., Space Electronic
Warfare, 2021)

A synchronous satellite has an SVP that stays in one
location on the Earth’s surface. This requires that its orbital
period be one sidereal day (i.e., 1,436 minutes). Another
requirement for a fixed SVP is that the orbit has an 0°
inclination. That would place it directly on the border.

Figure 3-15 Example calculation: Maximum Range to
a synchronous satellite on the horizon is 41,759 km by
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Kepler’s Laws. Link loss for a 2 GHz signal would be
from 189.5 to 190.9 dB
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Source: Courtesy of (Adamy D. L., Space Electronic
Warfare, 2021)

Figure 3-15 shows a sample calculation of the range of a
synchronous satellite based on a semi-major axis of 42,166 km.
“In a circular orbit, the satellite’s height will be 35,795 km.
The maximum range can be calculated from the Earth surface
station (ESS) to the synchronous satellite with a circular orbit.
The diagram is a planer triangle in the plane containing the
ESS, satellite, and center of Earth. The ESS sees the satellite at
0 deg elevation. The minimum and maximum range values for
the satellite to the ground link are 35,795 km and 41,682 km.
The shorter range applies if the satellite is directly overhead,
and the maximum range is for the satellite to the horizon as
shown.” (Adamy D. L., Space Electronic Warfare, 2021)

Location of Threat to Satellite
The location of a threat from the satellite is defined in terms

of the azimuth and elevation of a vector from the satellite that
points at the threat location and the range between the satellite
and the threat. The vector points information for a satellite
antenna aimed at the threat. An EW system on the satellite
will either intercept signals from a threat transmitter or
transmit jamming signals to a threat receiver at the considered
location.

Figure 3-16 The azimuth and elevation angle from the
nadir defines the direction of a threat to a satellite.
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Source: Courtesy of (Adamy D. L., Space Electronic
Warfare, 2021)

Where: the azimuth is the angle between true North and the
threat location in a plane at the satellite perpendicular to the
vector from the SVP. The elevation is the angle between the
SVP and the threat. The nadir is defined as the point on the
celestial sphere directly below an observer.

Calculating the Look Angles:
For the azimuth calculation, we need to consider the

spherical triangle.

Figure 3-17 A spherical triangle is formed between
the North Pole, the SVP, and the Threat location.
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Source: Courtesy of (Adamy D. L., Space Electronic
Warfare, 2021)

The elevation from the nadir and range to a threat from
a satellite can be determined from the plane triangle defined
by the satellite, the threat, and the center of the Earth. For
example, Set E is at the satellite, F is at the threat, and G is at
the center of the Earth. Side e is the radius of the Earth (6,371
km). Side f is the semi-major axis (the radius of the Earth plus
the satellite altitude = 10,560 km), angle G is side a from the
spherical triangle above (21.57°), and side g is the propagation
distance between the satellite and the threat.

The law of cosines for plane triangles is:
Eq. 3-14

SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI) | 145



Figure 3-18 The elevation from the nadir and range
to a threat from a satellite can be determined from the
plane triangle defined by the satellite, threat, and the

center of the Earth.

Source: Courtesy of (Adamy D. L., Space Electronic
Warfare, 2021)

EMS
Chapter 8 Designing UAS Systems for Stealth in

Unmanned Aircraft in the Cyber Domain, 2nd ed. (Nichols
R. K.-P., 2019) the author’s introduced the Electromagnetic
Spectrum in relationship to battlefield dimensions and stealth
signatures for unmanned aircraft systems (UAS). We will start

146 | SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI)



with a short replay of this information because the coverage
was instructive.

Designing a UAS for Stealth
Stealth means “to resist detection.” Stealth applies to the

air vehicle and materials visible to the enemy plus the internal
sense and avoid systems (SAA) that control / create noise,
heat, electromagnetic emanations, and changes in light. For
intelligence, reconnaissance, and surveillance (ISR) platforms
and missions, the UAS systems must be undetected in
operation. “It is desirable not to alert the enemy (military) or
criminals (police) to the ISR operation.” It can be assumed
that the enemy is using counter-UAV [10]operations and
weapons. Stealth design protects the air vehicle from these
counter – UAV measures. Stealth in civilian operations results
in minimal environmental disturbances. (Austin, 2010)

Detection Signatures

Their signatures detect UAS / UAVs: noise (acoustic),
optical (visible), infrared (thermal) and radar (radio).
“These acoustic or electromagnetic emissions occur at the
following wavelengths: (Austin, 2010)

Noise (acoustic) [16 m-2 cm, or 20 – 16000 Hz]
Optical (visible) [0.4 – 0.7 um]
Infrared (thermal) [0.75 um – 1 mm]
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RADAR (radio) [3 mm – 3 cm]” (Austin, 2010)

If the designer is to “reduce the vehicle detectability to an
acceptable risk level, it is necessary to reduce the received
emissions or reflection of the above wavelengths (expressed
as frequencies) below the threshold signature value. A good
portion of the UAS signatures is a function of the operating
height of air vehicle.” (Austin, 2010)

A student might look at the answers above and ask what
the significance is? Let’s take a short sojourn down the EMS
lane. Military planners used to think about ground, sea, and
air. Space came later. Now there is a “fifth realm,” the
electromagnetic spectrum (EMS). For EMS, we think in terms
of frequency. Enhancing our ability to communicate using
the EMS significantly changes how we conduct
warfare. (Adamy D. -0., 2015) (Adamy D. L., Space Electronic
Warfare, 2021)

Radio communications and wireless transmissions using
tuned transmitters and the information explosion of the
internet were the heart of the warfare revolution. The certainty
of intercepting radio communications and radar signals and
the ability to locate transmitters significantly impacted military
operations. Intercept, jamming, spoofing, emitter location,
message security, and transmission security became
fundamental to warfare. The basic destructive capabilities
(energy) employed in warfare have not changed greatly (fast-
moving projectiles, significant overpressure, heat, and sound).
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However, the ways they are employed have changed
significantly through the use of the EM Spectrum (EMS).
Now, we guide the destructive energy of weapons towards
their intended targets using the EMS in many ways. Also, the
EW specialist uses EMS to prevent those weapons from hitting
their intended targets. Sometimes the destruction of
communications capability by an enemy is the goal.

The battlespace, which once had only four dimensions
(latitude, longitude, elevation, and time [before radio]), now
has a fifth dimension: frequency. (Adamy D. -0., 2015) See
Table 3-2 Battlespace Dimensions.

Bandwidth is defined as the range within a band of
wavelengths, frequencies, or energy. Think of it as a range of
radio frequencies occupied by a modulated carrier wave,
assigned to a service over which a device can operate.
Bandwidth is also the capacity for data transfer of electrical
communications systems. The range has a significant impact
on radio transmission. Depending on the environment, the
strength of a received signal, T, is a function of the square or
fourth power of a distance, d, from the transmitter.

Table 3-3 Battlespace Dimensions
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Dimension Function Action

Latitude Friendly Force
Location

Direction of
Weapons

Longitude Enemy Force
Location Maneuver of Forces

Elevation

Time Speed of Maneuver Timeliness of
Attack

Timing of Weapon
Release

Enemy
Vulnerability

Frequency Bandwidth
Required

Rate of Information
Flow

Bandwidth
Available Interference

Frequency of
Transmissions

Vulnerability to
Jamming

Vulnerability to
Intercept

Vulnerability to
Spoofing11

Source: (Adamy D. -0., 2015) Reprinted from Table 8-1 in
(Nichols R. K.-P., 2019)

Note the addition of a new and powerful threat vector –
Spoofing.

A closer transmitter will better receive a signal and can
usually locate the transmitter more accurately. Once we
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depend on inputs from multiple receivers, the network
becomes central to our war-making ability. [ Think UAS Team
collaboration.] We have now entered net-centric
warfare. (Adamy D. -0., 2015) Net-Centric warfare was the
brainchild of John Arquilla and David Ronfeldt of the
National Defense Research Institute. See: (Ronfeldt, 1966)

Thinking again about a team or swarm of UAS, the low-
hanging fruit target is US communications. (Nichols R. K.,
2020)We depend on connectivity in everything we do: daily
lives, social interactions, business, manufacturing,
government, transportation, computers, and warfare, to name
just a few in the extensive list. Connectivity is any technique
for moving information from one location or player to another.
Consider the economic impact of shutting our critical
infrastructure (banking, air transportation, etc.). Damaging
the connectivity of the system is real damage. We measure
connectivity in terms of information flow. In warfare, this is
called Information Operations (IO). Fundamental to IO is the
frequency at which the information is transmitted or received.

Returning to the topic of stealth concerning UAS design,
we note the intelligence, surveillance, reconnaissance, and
weapons payload-delivery functions of UAS. These are all IO
operations, and frequency is at the heart of their success
against or denial by the enemy. (Nichols R. K.-P., 2019)

Electromagnetic Spectrum (EMS)
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The German company, Tontechnic-Rechner-Sengpielaudio
(TRS) has put together some clever tools for conversions of
wavelength to frequency (and vice versa) “for Acoustic Waves
(sound waves) and Radio Waves and Light waves in a vacuum.”
(TRS, 2018) Start with Figure 3-19 EMS. Note the inverse
relationship between frequency, f, and wavelength L (lambda
– Greek).

Figure 3-19 EMS

Source: (TRS, 2018) Reprinted from Figure 8-1 in (Nichols
R. K.-P., 2019)

Note also how small the visible spectrum is as part of the
enormous EMS. Figure 3-20 shows some of the EMS
functions.

Figure 3-20 EMS Functions
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Source: (TRS, 2018) Reprinted from Figure 8-2 in (Nichols
R. K.-P., 2019)

Figure 3-21 shows the conversion of sound and acoustic
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wave period to frequency and back. (Adamy D. -0., 2015)
Figure 3-22 shows the Sound EMS regions (Adamy D. -0.,
2015)

Figure 3-21 Conversion for sound and acoustic wave
period to frequency and back

Figure 3-22 Sound EMS Regions

Source for Figures 3-21 & 3-22: (TRS, 2018)
Acoustic waves and Sound Waves in Air

Sound waves are EMS waves that propagate vibrations in air
molecules. The 1986 standard speed of sound, c, is 331.3 m/s
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or 1125.33 ft/s at a temperature, T = 0 degrees Celsius.” (TRS,
2018)

The formulas and equations for sound are:

c = Lf; L = c /f = cT; f=c /L Eq. 3-15

where: T = time-period or cycle duration and T = 1/ f
and f = 1 / T, T in sec, frequency is in Hertz = Hz =1/
s; wavelength, L is in meters, m. The wave speed or speed of
sound, c, is meters/sec, m/s. (TRS, 2018)

Noise

Austin states that the design limit for UAS Stealth for
acoustic (noise) or sound waves is “[16 m-2 cm, or 20 – 16000
Hz].” (Austin, 2010) Use the TRS converter. {Basis: Speed of
sound c = λ × f = 343 m/s at 20°C} for 16 m L = 21.4375Hz.
This compares to the Austin value of 20 Hz. For the 2 cm =
0.02 m, the resulting valued for f = 17650 Hz. This is above
the 16,000 Hz limit from Austin. This might be due to the
20-degree Celsius basis difference. This tells the UAS designer
that the upper end of noise – Stealth acceptability of 17,150
Hz. The Stealth range is 20 Hz – 17,150 Hz.

Radio Waves and Light Waves in a Vacuum

The formulas and Equations for radio and light waves in
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a vacuum are the same. However, the constant c is different.
Lower-case c is the speed of light waves and the speed of radio
waves in a vacuum. The speed of light in free space (vacuum) is
the speed at which electromagnetic waves propagate, including
light waves.” (TRS, 2018) Instead of the speed of sound in air,
the speed of light c is 299,792,458 m/s (or 983,571,056 ft/s.)
needs to be used in the formulas as the speed of propagation.
Wave frequency in Hz = 1/s and wavelength in nm = 10 (**-9)
m. (TRS, 2018)

Radio waves and microwave radiation are both forms of
energy known as Electromagnetic Radiation (EMR). Sunlight
contains other EMR forms: ultraviolet, infrared (heat) waves,
and visible light waves. These EMRs spread in a vacuum at the
speed of light ~ 300 000 km/s as electromagnetic radiation.”
(TRS, 2018) The propagation speed of electrical signals via
optical fiber is about 9/10 of c or ~270 km/s. “Copper as a
medium is worse slowing the propagation speed c, to ~200,
000 km/s.” (TRS, 2018) Sound is also shown on the EMS
chart but has no electromagnetic radiation. “Sound pressure
is the deviation from local ambient pressure (sound pressure
deviation) caused by a sound wave – mainly in air.” (TRS,
2018) Wavelength is sometimes given in Angstrom units. 1 A
= 10 (**-10) m = 0.1 nm. See Figure 3-23 EMS Reduced.

Figure 3-23 EMS Reduced
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Source: (TRS, 2018)

The EMS includes visible light, gamma rays, microwaves,
and radio waves. They differ by wavelength. (TRS, 2018)
Figure 3-24 contains a conversion chart for radio and light
waves in a vacuum.

Figure 3-24 Conversion Chart – Frequency to
Wavelength Radio and Light Waves in a Vacuum [12]
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Source: (TRS, 2018)

We have covered noise, optical, and infrared stealth
signatures. RADAR is not as simple without another trip
down RADAR lane. RADAR was extensively discussed and
written about in the 20th century. It is certainly one of the
most influential inventions in the last century, arguably more
relevant than the cellphone. Our concern is to “paint” or
recognize the UAS signature from a distance, i.e., SPACE. If
we can “see” the hostile UAS coming, it can be tracked,
disabled, destroyed, intercepted, and “turned” to a new
waypoint or objective.

158 | SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI)



Figure 3-25 RADAR Frequency Bands (ITU, 2019)

Source: (ITU, 2019) Reprinted from (Nichols R. K.-P.,
2019)

RADAR / EW / Range Equation
From Austin, we know that the upper frequency for a UAS

RADAR signature is 0.03 m = 3 cm. This is approximately 10
GHz frequency. See Figure 3-25. RADAR is usually thought
of in terms of Frequency Bands. See Figure 3-26 RADAR
Bands and their Usage. These are consistent with the (Wolff,
2022) presentation.

Figure 3-26 RADAR Bands
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Sources: (ITU, 2019) (Wolff, 2022) Modified from Figure
8-3 in (Nichols R. K.-P., 2019)

Radio propagation theory is key to understanding Space
Electronic Warfare (EW) and its role in detecting a UAS
approaching a target. If we understand how radio signals
propagate, we can then intercept, jam, spoof or protect in a
logical progression. (Adamy D. -0., 2015) [13] (Nichols R. K.,
2020)

RADAR is Radio Detection and Ranging. It uses
radio waves and their propagation in the EMS to
determine the battlespace elements for an approaching

160 | SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI)



aircraft, UAS, ship, submarine, or any moving vehicle.
We are only interested in two equations to understand the
RADAR (radio) signature of a UAS. They are the link
equation and the RADAR Range Equation; both are
presented without derivation. “The operation of every type of
RADAR, military communications, signals intelligence, and
the jamming system can be analyzed in terms of individual
communications links.” (Adamy D. -0., 2015) A Link includes
one radiation source, one receiving device, and all events to
the electromagnetic energy as it travels from source to receiver.
(Adamy D. -0., 2015) (Adamy D. L., Space Electronic Warfare,
2021)

Sources and receivers can take on many forms. When a radar
pulse reflects off the skin of a UAS or airplane, the reflecting
mechanism is a transmitter. It obeys the same laws that apply
to a walky-talky when pushing the transmit button. Yet there
is no power source and no circuitry to fore reflection. (Adamy
D.-9. , 1998)

One–Way Link Equation

The basic communication link, known as a one-way link,
consists of a transmitter, receiver, transmitting and receiving
antennas, and propagation losses between the two antennas
along the path. (Adamy D. L., Space Electronic Warfare, 2021)
See Figure 3-27 Path Through One-Way Link.
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Figure 3-27 Path Through One-Way Link

Sources: (Adamy D. L., Space Electronic Warfare, 2021)
The diagram shows signal strength in dBm and increases

and decreases of signal strength in dB. Figure 3-27 shows the
Line-of-Sight link. The transmitter and receivers can
electronically see each other. However, there are interferences/
exceptions. The link must not be too close to water, land,
severe weather, or asymmetric non-line-of-sight propagation
factors. To calculate the received signal level (in dBm), add
the transmitting antenna gain (in dB), subtract the link losses
(in dB), and add the receiving antenna gain (in dB) to the
transmitter power (in dBm).

(Adamy D. L., Space Electronic Warfare, 2021)

A simple example of the link equation in dB format is:
Transmitter Power (1 Watt) = + 30 dBm
Transmitter Antenna Gain = +10 dB

162 | SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI)



Spreading loss = 100 dB
Atmospheric loss = 2 dB
Receiving Antenna Gain = +3 dB
Received Power = 30 dBm + 10 dB – 100 dB – 2 dB +3 dB

= – 59 dBm (Adamy D.-9. , 1998)

Figure 3-28 One–Way RADAR Equation

Source: Wikipedia RADAR Images

Effective Range
What is the maximum range that a RADAR can “see” a

UAS in any form: individual, group, team, or Swarm? The
RADAR range equations can estimate the maximum
distance to detect a UAS. The smaller the UAS, the less
reflective area is present to “return “a radar pulse back to its
transmitter source. Figures 3-28 and 3-29 demonstrate the
one-way and two-way (return trip) for determining the
maximum range of a RADAR unit. The received power is
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equal to receiver sensitivity at the maximum link range.
Receiver sensitivity is the smallest signal (lowest power
strength) it can receive and still provide the specified output.
(Adamy D. , EW 101 A First Course in Electronic Warfare,
2001)

Figure 3-29 Two Way RADAR Equation (Bi-Static)

Source: Wikipedia Two-Way RADAR Range Equation
images

If the received power level is at least equal to the receiver’s
sensitivity, communication takes place over the link. The
amount of design signal delta over the minimum receiver
sensitivity is called the margin. Figures 3-28 and 3-29 show
the derivations (in normal and dB forms) of the RADAR
Ranging Equations for limited environments. Other forms of
the basic RADAR Ranging Equation, derivations, definition
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of terms, and examples of radar units for surveillance, tracking,
and jamming applications can be found in Toomay’s
simplified reference. (Toomay, 1982) Readers interested in the
RADAR units for mariners (picking up a hostile UAS over
a ship) can refer to Monahan’s (Monahan, 2004) or Burch’s
references. (Burch, 2015) Detailed RADAR equations in
terms of orbital geometry and spherical relationships are found
in (Adamy D. L., Space Electronic Warfare, 2021)

Example

Given the operating frequency of 100 MHz, the
atmospheric and normal terrestrial losses are minimal. Assume
the transmitter output power, Pt = 10 watts. [About double
the normal marine VHF set.] The transmitting gain antenna,
GT, is +10dB, the receiving antenna gain, GR, is +3 dB, and
the design receiver sensitivity, Sens = – 65 dBm. {If we find that
the received power level (say -59 dBm is at least equal to the
sensitivity, then the communication takes place. The margin
in this example would be 6 dB higher}. Assume line-of-sight
between the two antennas. Calculate the maximum range we
can see to the hostile UAS, not using Stealth techniques to
reduce the radar visibility. Let PR = received power in dBm.
Let d = distance in km. Setting Sens = PR = -65 dBm. Convert
to dB math. Plug in the values and solve for 20 log (d). [ Logs
are base 10, not base e}

SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI) | 165



And

We can see the UAS (multiple with a bead on the leader) at
119 miles from our radar transmitter.

We have come full circle back to the question of designing a
UAS for stealth and to get closer to the target. (Nichols R. K.-
P., 2019) Discuss detailed detectability, stealth, and acoustic,
visual, thermal, and RADAR/radio signature reductions. We
return to Space.

Propagation Loss Models

The one-way link equation gives the received power PR in
terms of the other link components (in decibel units). It is:

Eq. 3-16
Where:

– received signal power in dBm
– transmitter output power in dBm
– transmitter antenna gain in dBm

– link losses from all causes as a positive number in dBm
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– receiver antenna gain in dBm

In linear (nondecibel units), this formula is:

Eq.
3-17

It is assumed that all link losses from propagation are
between isotropic antennas (unity gain, 0-dB gain). (Adamy D.
L., Space Electronic Warfare, 2021)

When a communication signal is intercepted, there are two
links to consider: the transmitter to intercept the receiver link
and the transmitter to desired receiver link. Refer to Figure
3-30.

Figure 3-30 Intercepted Communication Signal
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Source: Reprinted from Figure 4-3 courtesy of (Adamy D.
L., Space Electronic Warfare, 2021)

When a communication signal is jammed or spoofed, there
is a link from the desired transmitter to the receiver and a link
from a jammer or spoofer to the receiver. (Adamy D. L., Space
Electronic Warfare, 2021) [14] Refer to 3-X

Figure 3-31 Jammed / Spoofed Communications
Signal
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Source: Reprinted from Figure 4-4 courtesy of (Adamy D.
L., Space Electronic Warfare, 2021)

Propagation Loss Models
(Adamy D. L., Space Electronic Warfare, 2021) presents

several propagation loss models within the atmosphere based
on a clear or obstructed path and Fresnel zone distance. Refer
to Table 3- These models are LOS (free space loss or spreading
loss), two-ray propagation for phase cancellation, and KED
(knife-edge loss). Adamy also considers atmospheric, rain, and
fog losses.

Table 3-4 Selection of Appropriate Propagation Loss
Model
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Clear
propagation
path

Low frequency,
wide beams near
the ground

Link longer than
Fresnel-zone
distance

Use
two-ray
model

Link shorter than
Fresnel-zone
distance

Use
LOS
model

Hight-frequency,
narrow-beams Far from ground

Use
LOS
model

Propagation
path
obstructed by
terrain.

Calculate
additional loss
from the KED
model

Source: Reprinted from Table 4.1 courtesy of (Adamy D. L.,
Space Electronic Warfare, 2021)

When radio transmission and propagation is to or from
an Earth satellite, there are special considerations due to the
nature of space, losses due to extreme long range, and the
geometry of the links. The formula gives the received power at
the receiver:

Eq. 3-18
Where:

– received signal power in dBm
– the effective radiated power, in dBm
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– losses from all causes between transmitting and
receiving antennas in dBm

– receiver antenna gain in dBm

The total path loss to or from a satellite includes LOS loss,
atmospheric loss, antenna misalignment loss, polarization loss,
and rain loss. (Adamy D. L., Space Electronic Warfare, 2021)
[15]

Satellite Links
Satellites are, by nature, remote from the ground and must

be connected by links. Uplink and downlink geometry is a
complex set of calculations related to satellite position, North
Pole, longitudes, latitudes, sub-vehicle points (SVP), Center
of Earth, ground station, Equator, Greenwich Meridian,
Azimuth to the ground station, satellite movement in the
horizontal plane, satellite payloads, radar bore sights, and
hostile target detection, all wrapped up in complex orbital and
spherical geometry calculations. (Adamy D. L., Space
Electronic Warfare, 2021) spends four challenging chapters on
this subject. We will assume that Keplerian ephemeris,
Napier’s rules, and the Laws of Sines, Cosines for sides and
angles haven’t been overruled by Executive Order (EO), which
leads us to a discussion of Link vulnerability to EW. [16]

Link Vulnerability to EW: Space-Related Losses,
Intercept (Jamming) & Spoofing
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Satellites are from Earth but present excellent loss of signal
(LOS) from a large part of the Earth’s surface. They are highly
susceptible to three kinds of hostile activity. Signals from
satellites can be intercepted, and strong hostile transmissions
can be jamming signals, interfering with uplink or downlink
signals to prevent proper reception. They can also be spoofing
signals that cause the satellite to interpret them as functional
commands that are harmful or transmit useless positional data.
(Adamy D. L., Space Electronic Warfare, 2021) This section
and the following will focus heavily on spoofing and the
downlink interpretation of false signals in GNSS/GPS/ADS-
B receivers.

Figure 3-32 shows a successful intercept of a satellite signal.
Successful intercept gives the hostile receiver a high-quality
signal to recover important information. A ground-based
jammer operating against a satellite uplink transmits to the link
receiver in the satellite. The ground station and the jammer
must be above the horizon from the satellite. The received
signals are intended for the receiver in the satellite control
station (GCS) or other authorized receiver. There is a separate
link to any hostile receiver. (Adamy D. L., EW 103: Tactical
Battlefield Communications Electronic Warfare,
2009) (Adamy D. L., Space Electronic Warfare, 2021)

Successful spoofing places a strong enough signal into a
satellite link receiver to cause the satellite or its payload to
accept it as a valid command. Command spoofing could cause
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the satellite to perform a maneuver that ends the mission or
put the payload in an unusable state. (Adamy D. L., Space
Electronic Warfare, 2021)

Figure 3-33 shows a successful spoofing of a satellite signal.
A ground-based spoofer operating against a satellite uplink
transmits to the link receiver in the satellite. The ground
station and the jammer must be above the horizon from the
satellite.[17]

Figure 3-32 Intercept

Source: Figure 3-32 Modified from Figure 7.1 Courtesy of
(Adamy D. L., Space Electronic Warfare, 2021)

Figure 3-33 Spoofing
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Source: Figure 3-33 Modified from Figure 7.2 Courtesy of
(Adamy D. L., Space Electronic Warfare, 2021)

Space-Related Link Losses
Any attack on a satellite link may involve single or multiple

links. Each link is subject to transmission losses, including
LOS, atmospheric, antenna misalignment, rain, and
polarization losses.

An intercept link is separate from the intended command
and data links. It goes from the satellite’s link transmitter
(onboard or at GCS) to a hostile receiver. The quality of the
intercept is judged by the Signal to Noise (S/N) ratio achieved
in the hostile receiver. (Adamy D. L., Space Electronic
Warfare, 2021)

A spoofing link goes from the hostile transmitter to a satellite
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link receiver. This receiver is generally on the satellite. The
spoofing signal’s purpose is to cause it to function improperly,
but if the spoofer is in the GCS, the purpose is to invalidate the
date – especially localization data. (Adamy D. L., EW 104: EW
against a new generation of threats, 2015)

Jamming of any satellite link is communications jamming.
Jamming effectiveness is defined in terms of the Jamming-to-
Signal ratio (J/S) that it causes. It is calculated from the
following formula:

EQ. 3-19
Where:

= jamming-to-signal ratio in decibels
= effective radiated power (ERP) of jamming

transmitter toward the target receiver in dBm
= ERP of the desired signal toward the receiver in

dBm
= transmission loss from the jammer to target a

receiver in dBm
= transmission loss from transmitter to target a

receiver in decibels
= gain of receiving antenna in the direction of a

jammer in decibels
= gain of receiving antenna toward transmitter in

decibels
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The last two terms cancel each other if the target receiver has
a non-directional antenna.

(Adamy D. L., Space Electronic Warfare, 2021) in his
textbook, he presents and solves detailed examples of
intercepting, jamming, and spoofing uplinks and downlinks.
[18]

We now discuss spoofing in detail and its implications
concerning navigation and location services. We will focus on
a particularly promising anti-spoofing technology known as
ECD.

GPS/GNSS/ADS-B SPOOFING
Two issues are discussed: 1) GPS spoofing detection and

mitigation for GNSS / GPS using the ECD algorithm, and 2)
GPS spoofing of ADS-B systems.[19] Recognize that ADS-
B is a subset of the larger receiver localization problem.
Solutions that apply to the larger vector space, GNSS
/ GPS, also are valid for the subset, ADS-B, if
computational hardware is available. GPS spoofing is a
reasonably well-researched topic. Many methods have been
proposed to detect and mitigate spoofing. The lion’s share of
the research focuses on detecting spoofing attacks. Methods
of spoofing mitigation are often specialized or computational
burdensome. Civilian COTS anti-spoofing countermeasures
are rare. But a much better technology is available to
Detect, Mitigate and Recover Spoofed satellite signals –
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even those with a precursor Jamming attack. It is called
ECD.

ECD: EICHELBERGER COLLECTIVE
DETECTION

This section covers the brilliant value-added research by Dr.
Manuel Eichelberger on the detection, mitigation, and
recovery of GPS spoofed signals. (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019) ECD
implementation and evaluation show that with some
modifications, the robustness of collective detection (CD) can
be exploited to mitigate spoofing attacks. (Eichelberger,
Robust Global Localization using GPS and Aircraft Signals,
2019) shows that multiple locations, including the actual one,
can be recovered from scenarios where several signals are
present. [20] [21]

ECD does not track signals. It works with signal snapshots.
It is suitable for snapshot receivers, a new low-power GPS
receiver class. (M.Eichelberger, 2019) (J.Liu & et.al., 2012)

ADS-B’s high dependency on communication and
navigation (GNSS) systems causes the system to inherit the
vulnerabilities of those systems. This results in more
opportunities (threats) to exploit those vulnerabilities. In
general, advancements in computers, connectivity, storage,
hardware, software, and apps are major aids to malicious
parties who wish to carry out spoofing and other threats by
exploiting the vulnerabilities of ADS-B. Another main
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vulnerability of ADS-B systems is their broadcast nature
without security measures, which can easily be exploited to
cause harm.

Qualitative Risk Assessment Opinion based on FAA
SRM Reference Guidelines (FAA, 2018) (FAA, 2021)
(FAA, 2019)

After reviewing data, papers, and reports regarding the
Severity, Likelihood, and Risks associated with spoofing
GNSS/ GPS signals, there are two schools of thought. Before
2015, transmitting fake GNSS/GPS signals was a qualitative
– unlikely [Table 3-C Remote] (FAA, 2018) risk and a niche
issue. After 2015, the world changed considerably. Low-cost
SDR RF signal generators combined with an awareness that
spoofing was a powerful disruption technique and availability
of COTs precipitated a sharp increase in incidents ranging
from amateur to researcher generated to professional crook
to the nation-state. The Ling and Qing demonstration of the
SDR signal spoofer at DEFCON 2015 plus the 2013 spoofing
of the 213′ motor yacht White Rose of Drach’s by
Humphreys’ team set the stage for significant spoofing
incidents to follow. (T.E. Humphrees, 2008)

Two organizations report the spoofing risks quite
differently. These are the FAA and US Navy. The FAA is
concerned with aircraft and UAS. It considers the severity of
signal spoofing threat to be Major [Table 2 -3] (FAA, 2018)
because of substantial damage to the aircraft vehicle and
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physical distress or injuries to persons without loss of life.
Depending on circumstances, FAA sees the Likelihood as
Probable – especially for UAS. [Table 4-B]. (FAA, 2018) The
US Navy sees the spoofing threat quite differently. It
considered the spate of incidents in 2016 in Moscow, the Black
Sea in 2017, the Port of Shanghai in 2019, and the loss of 20
sailors in the South China Seas in 2017 involving incidents
with the USS McCain and USS Fitzgerald colliding with
commercial vessels Alnic MC and ACX. The US Navy sees
the spoofing severity as Catastrophic [Table 2-1] because of
multiple fatalities, loss, and/or severe damage to ships and
defensive aircraft. Further, the US Navy’s view appears to be
that the Likelihood is Probable [Table 3-B]. (FAA, 2018)
Depending on the view, spoofing can be considered at Risk
Levels Yellow or Red [Medium to High], i.e., medium
acceptable risk to unacceptable risk. This is based on the
number of researchers and analysts studying / reporting/
conventions on GNSS/GPS spoofing countermeasures since
2018.

Using FAA SRM Guidelines, signal spoofing on UAS
/ADS-B systems is above average likelihood (probable ->
frequent) and severe [Yellow bordering on Red or in terms of
the severity qualitative scale three -> 2 ]. (FAA, 2019)

Risk Assessment Spoofing Classes
Risk Assessment for spoofing threats into four

classifications: Part 107 Operations, BVLOS, Urban Areas, and
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Near Airports. Because of Federal guidelines and licensing
requirements, Part 107 Operations specifies a near pristine
Risk level or The Best-Case Scenario. Because the UAS is not
limited to a specified space and may cross the visual horizon,
BVLOS represents an elevated UAS spoofing threat and risk.
Urban area operations represent a difficult case for spoofing
with increased Severity of consequences—urban areas present
difficulty in enacting countermeasure to a spoofing attack.
Humans and equipment are at risk. Near Airports represents
the Worst-Case scenario with the highest Severity and
Likelihood Probability. There are globally reported UAS –
aircraft and UAS – ship spoofing incidents that present serious
consequences to human life. In all four classifications,
spoofing is Probable. Both FAA and USN consider
spoofing a real and escalating threat. It no longer
represents a remote or niche possibility. (Kahn & M.
Mohsin, 2021) (Nichols R. K., 2020) (M.L. Psiaki &
Humphreys, 2016)

Dependence on GPS and vulnerability [22]
It is important to understand that both GPS (part of the

GNSS family) and ADS-B systems are vulnerable to spoofing
attacks on both manned and unmanned aircraft. In general,
GPS vulnerabilities translate down to the more specific ADS-
B subset, which has vulnerabilities in its own right. This report
will detail the brilliant work of Dr. Michael Eichelberger on
Robust Global Localization using GPS and Aircraft Signals.
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He describes a functional tool known as CD to detect,
mitigate and counter spoofing (and jamming) attacks on all
stages of GPS. (Eichelberger, Robust Global Localization
using GPS and Aircraft Signals, 2019)

GPS is ubiquitous and incorporated into many applications
(aircraft, ship, car /truck navigation; train routing and control;
cellular network, stock market, and power grid
synchronization) that make a “rich” target for spoofing a
receiver’s perceived location or time. Wrong information in
time or space can have severe consequences.

ATC is partially transitioning from radar to a scheme in
which aircraft (A/C) transmit their current location twice per
second through ADS-B messages. This system has been
mandated in Europe and underway in the US since 2020. The
A/C determines location using GPS. If the onboard GPS
receiver estimates a wrong location due to spoofing, wrong
routing instructions will be delivered due to a wrong reported
A/C location, leading to an A/C crash.

Ships depend heavily on GPS. They have few reference
points to localize themselves apart from GPS. Wrong location
indication can strand a ship, cause a collision, push off course
into dangerous waters, ground a ship, or turn a ship into a
ghost or a missile. 2017 incidents in the Black Sea and South
China Seas have been documented. (Burgess, 2017) (Nichols
R. K.-P., 2019)

While planes and ships suffer spoofing attacks in the
location domain, an attacker may also try to change the
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perceived time of a GPS receiver. Cellular networks rely on
accurate time synchronization for exchanging communication
data packets between ground antennas and mobile handsets
in the same network cell. Also, all neighboring cells of the
network need to be time synchronized for seamless call
handoffs of handsets switching cells and coordinating data
transmissions in overlapping coverage areas. Since most
cellular ground stations get their timing information from
GPS, a signal spoofing attacker could decouple cells from the
common network time. Overlapping cells might send data
simultaneously and frequencies, leading to message collisions
and losses. (Anonymous, 2014) Failing communications
networks can disrupt emergency services and businesses.
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

SPOOFING
Threats and weaknesses show that large damages (even fatal

or catastrophic) can be caused by transmitting forged GPS
signals. False signal generators may cost only a few hundred
dollars of software and hardware.

A GPS receiver computing its location wrongly or even
failing to estimate any location at all can have different causes.
Wrong localization solutions come from 1) a low signal-to-
noise ratio (SNR) of the signal (examples: inside a building
or below trees in a canyon); 2) reflected signals in multipath
scenarios, or 3) deliberately spoofed signals. (Eichelberger,
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Robust Global Localization using GPS and Aircraft Signals,
2019) discusses mitigating low SNR and multipath reflected
signals. Signal spoofing (#3) is the most difficult case since
the attacker can freely choose the signal power and delays for
each satellite individually. (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019)

Before discussing ECD – Collective detection maximum
likelihood localization approach (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019) it is best
to step back and briefly discuss GPS signals, classical GPS
receivers, A-GPS, and snapshot receivers. Then the ECD
approach to spoofing will show some real power by
comparison. Power is defined as both enhanced spoofing
detection and mitigation capabilities. [23]

GPS SIGNAL
The GPS system consists of control, space, and user

segments. The space segment contains the 24 orbiting
satellites. The network monitor stations, GCS, and antennas
comprise the control segment. The third and most important
are the receivers, which comprise the user segment. (USGPO,
2021)

Satellites transmit signals in different frequency bands.
These include the L1 and L2 frequency bands at 1.57542 GHz
and 1.2276 GHz. (DoD, 2008) Signals from different satellites
may be distinguished and extracted from background noise
using code division multiple access protocols (CDMA). (DoD,
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2008) Each satellite has a unique course/acquisition code (C/
A) of 1023 bits. The C/A codes are PRN sequences
transmitted at 10.23 MHz, which repeats every millisecond.
The C /A code is merged using an XOR before being with the
L1 or L2 carrier. The data broadcast has a timestamp called
HOW, which is used to compute the location of the satellite
when the packet was transmitted. The receiver needs accurate
orbital information ( aka ephemeris) about the satellite, which
changes over time. The timestamp is broadcast every six
seconds; the ephemeris data can only be received if the receiver
can decode at least 30 seconds of the signal.[24] (Eichelberger,
Robust Global Localization using GPS and Aircraft Signals,
2019)

Classic Receivers
Classical GPS receivers use three stages when obtaining a

location fix. They are Acquisition, Tracking, and localization.
Acquisition. The relative speed between satellite and

receiver introduces a significant Doppler shift to the carrier
frequency. [25] GPS receiver locates the set of available
satellites. This is achieved by correlating the received signal
with the satellites’. Since satellites move at considerable speeds.
The signal frequency is affected by a Doppler shift. So, the
receiver must correlate the received signal with C/ A codes
with different Doppler shifts. (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019)

Tracking. After a set of satellites has been acquired, the data
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contained in the broadcast signal is decoded. Doppler shifts
and C /A code phase are tracked using tracking loops. After
the receiver obtains the ephemeris data and HOW timestamps
from at least four satellites, it can start to compute its location.
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

Localization. Localization in GPS is achieved using signal
time of flight (ToF) measurements. ToFs are the difference
between the arrival times of the HOW timestamps decoded in
the tracking stage of the receiver and those signal transmission
timestamps themselves. [26] The local time at the receiver is
unknown, and the localization is done using pseudo ranges.
The receiver location is usually found using least-squares
optimization. (Eichelberger, Robust Global Localization
using GPS and Aircraft Signals, 2019) (Wikipedia, 2021)

A main disadvantage of GPS is the low bit rate of the
navigation data encoded in the signals transmitted by the
satellites. The minimal data necessary to compute a location
fix, which includes the ephemerides of the satellites, repeats
only every 30 seconds. [27]

A-GPS (Assisted GPS) – Reducing the Start-Up Time
Assisted GPS (A-GPS) drastically reduces the start-up time

by fetching the navigation data over the Internet, commonly
by connecting via a cellular network. Data transmission over
cellular networks is faster than decoding GPS signals and
normally only takes a few seconds. The ephemeris data is valid
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for 30 minutes. The acquisition time can be reduced using
that data since the available satellites can be estimated along
with their expected Doppler shifts. With A-GPS, the receiver
still needs to extract the HOW timestamps from the signal.
However, these timestamps are transmitted every six seconds,
which translates to how long it takes the A-GPS receiver to
compute a location fix. (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019)

Course-Time Navigation
Course-Time Navigation (CTN) is an A-GPS technique

that drops the requirement to decode the HOW timestamps
from the GPS signals. (Diggelen, 2009) The only information
from the GPS signals is the phases of the C/A code sequences
detected by a matched filter. Those C/A code arrival times
are directly related to the sub-milliseconds unambiguously; the
deviation may be no more than 150 km from the correct
values. [28] [29] Since the PRN sequences repeat every
millisecond, without considering navigation data flips in the
signal, CTN can, in theory, compute a location from one
millisecond of the sampled signal. [30] Noise can be an issue
with such short signal recordings because it cannot be filtered
out the same way with longer recordings of several seconds.
The big advantage is that signal processing is fast and power-
efficient and reduces the latency of the first fix. Since no
metadata is extracted from the GPS signal, CTN can often
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compute a location even in the presence of noise or
attenuation. (Diggelen, 2009)

Snapshot Receivers
Snapshot receivers aim at the remaining latency that results

from the transmission of timestamps from satellites every six
seconds. Snapshot receivers can determine the ranges to the
satellite modulo 1 ms, which corresponds to 300 km.

COLLECTIVE DETECTION
Collective Detection (CD) is a maximum likelihood

snapshot receiver localization method, which does not
determine the arrival time for each satellite but combines all
the available information and decides only at the end of the
computation. [31] This technique is critical to the
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019) invention to mitigate spoofing attacks
on GPS or ADS-B. CD can tolerate a few low-quality satellite
signals and is more robust than CTN. CD requires a lot of
computational power. CD can be sped up by a branch and
bound approach, which reduces the computational power per
location fix to the order of one second even for uncertainties
of 100 km and a minute. CD improvements and research has
been plentiful. (Eichelberger, Robust Global Localization
using GPS and Aircraft Signals, 2019) (J.Liu & et.al., 2012)
(Axelrod & al, 2011) (P. Bissag, 2017)
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ECD
Returning to the spoofing attack discussion, Dr. Manuel

Eichelberger’s CD – Collective detection maximum likelihood
localization approach method not only can detect spoofing
attacks but also mitigate them! The ECD approach is a robust
algorithm to mitigate spoofing. ECD can differentiate closer
differences between the correct and spoofed locations than
previously known approaches. (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019) COTS has
little spoofing integrated defenses. Military receivers use
symmetrically encrypted GPS signals, subject to a “replay”
attack with a small delay to confuse receivers.

ECD solves even the toughest type of GPS spoofing attack
consisting of spoofed signals with power levels similar to the
authentic ones. (Eichelberger, Robust Global Localization
using GPS and Aircraft Signals, 2019) ECD achieves median
errors under 19 m on the TEXBAT dataset, which is the de
facto reference dataset for testing GPS anti-spoofing
algorithms. (Ranganathan & al., 2016) (Wesson, 2014) The
ECD approach uses only a few milliseconds of raw GPS
signals, so-called snapshots, for each location fix. This enables
offloading of the computation into the Cloud, which allows
knowledge of observed attacks. [32] Existing spoofing
mitigation methods require a constant stream of GPS signals
and tracking those signals over time. Computational load
increases because fake signals must be detected, removed, or
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bypassed. (Eichelberger, Robust Global Localization using
GPS and Aircraft Signals, 2019)

Research to 2016: Survey of Effective GPS Spoofing
Countermeasures

Because of the overwhelming dependence on GPS in every
sector, ranging from civilian to military, researchers have been
trying desperately to find a complete solution to the spoofing
threat. To understand that ECD ( following sections) is a
brilliant departure from past efforts, it is necessary to briefly
cover the prevailing common wisdom. Haider and Khalid
2016 published an adequate survey of spoofing
countermeasures up through the end of 2016. (Haider &
Khalid, 2016)

Spoofing Techniques
According to (Haider & Khalid, 2016) there are three

common GPS Spoofing techniques with different
sophistication levels. They are simplistic, intermediate, and
sophisticated. (Humphreys & al., 2008)

The simplistic spoofing attack is the most commonly used
technique to spoof GPS receivers. It only requires a COTS
GPS signal simulator, amplifier, and antenna to broadcast
signals towards the GPS receiver. It was performed successfully
by Los Almos National Laboratory in 2002. (Warner &
Johnson, 2002) Simplistic spoofing attacks can be expensive as
the GPS simulator can run $400K and is heavy (not mobile).
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The available GPS signal and detection do not synchronize
simulator signals is easy.

In the intermediate spoofing attack, the spoofing
component consists of a GPS receiver to receiver a genuine
GPS signal and a spoofing device to transmit a fake GPS
signal. The idea is to estimate the target receiver antenna
position and velocity and then broadcast a fake signal relative
to the genuine GPS signal. This type of spoofing attack is
difficult to detect and can be partially prevented using an IMU.
(Humphreys & al., 2008)

In sophisticated spoofing attacks, multiple receiver-spoofer
devices target the GPS receiver from different angles and
directions. In this scenario, the angle-of-attack defense against
GPS spoofing in which the reception angle is monitored to
detect spoofing fails. The only known defense successful
against such an attack is cryptographic authentication.
(Humphreys & al., 2008) [33]

Note that prior research on spoofing was to exclude the fake
signals and focus on a single satellite. ECD ( next section)
includes the fake signal on a minimum of four satellites and
then progressively / selectively eliminates their effect until the
real weaker GPS signals become apparent. (Eichelberger,
Robust Global Localization using GPS and Aircraft Signals,
2019)

(Haider & Khalid, 2016), present findings based on six
innovative research papers that cover spoofing
countermeasures. These are:
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1. Multi-test Detection and Protection Algorithm against
Spoofing Attacks on GNSS Receivers (Jovanovic &
Botteron, 2014)

2. GPS Spoofing Countermeasures (Warner & Johnston,
2003)

3. An Asymmetric Security Mechanism for Navigation
Signals (Kuhn, 2015)

4. A Cross-layer defense mechanism against GPS spoofing
attacks on PMUs in Smart Grid (Fan & al., 2015)

5. Detection and Mitigation of GPS Spoofing Based on
Antenna Array Processing (Magiera & Katulski, 2015)

6. GPS Spoofing Detection via Dual-Receiver Correlation
of Military Signals(Psiaki & al., 2013)

A-F Analysis (Haider & Khalid, 2016)
(Haider & Khalid, 2016) present two tables that show the

criteria used to evaluate each technique to find the most
effective GPS spoofing CM and present the analysis of A-F
with specific criteria. From their tables, we can discern that
almost all the techniques can offer protection against a
simplistic spoofing attack (Kuhn, 2015) (Jovanovic &
Botteron, 2014) (Fan & al., 2015) (Magiera & Katulski, 2015)
(Psiaki & al., 2013). Only two techniques can protect against
sophisticated attacks (Kuhn, 2015) (Psiaki & al., 2013). This
represents a reasonable look at the state-of-the-art GPS
spoofing CMs in 2016.

Then along comes Dr. Manuel Eichelberger and ECD!
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GPS Spoofing Research: Out-of-the-Box Brilliance to
ECD Defense

Three research tracks are most relevant to ECD / CD:
Maximum Likelihood Localization, Spoofing Mitigation
algorithms, and Successive Signal Interference Cancellation
(SIC). Historical spoofing research focuses primarily on the
detection of singular SPS source attacks. ECD’s hallmark is
to focus on mitigation, correction, and recovery attending to
multiple spoofing signals on multiple satellite attack surfaces.

Maximum Likelihood Localization
CD is a maximum likelihood GPS localization technique.

It was proposed in 1996 but considered computationally
infeasible at that time. (Spilker, 1996) CD was first
implemented by Axelrad et al. in 2011. (Axelrod & al, 2011)
The search space contained millions or more location
hypotheses. Improvements in the computational burden were
found using various heuristics. (Cheong & al., 2011) (Jia,
2016) A breakthrough came with the proposal of a branch-
and-bound algorithm that finds the optimal solution within
ten seconds running on a single CPU thread. (P. Bissag, 2017)

Spoofing Mitigation
GPS spoofing defenses have intensively been studied. Most

of them focus on detecting spoofing attacks. There is a paucity
of prior research for spoofing mitigation and recovering from
successful attacks by finding and authenticating the correct
signals. (M.L. Psiaki & Humphreys, 2016) In contrast to the
vast research on GPS spoofing, there is a lack of commercial,
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civil receivers with anti-spoofing capabilities. (Eichelberger,
Robust Global Localization using GPS and Aircraft Signals,
2019) ECD inherently mitigates spoofing attacks. The tide
will turn.[34]

Spoofing hardware performing a sophisticated, seamless
satellite-lock takeover attack has been built. (Humphreys & al.,
2008) Challenges associated with spoofing are matching the
spoofed and authentic signals ‘ amplitudes at the receiver,
which might not be in LOS and moving. (Schmidt & al, 2016)

It is practically feasible for a spoofer to erase the authentic
signals at a 180-degree phase offset. (M.L. Psiaki &
Humphreys, 2016) This is one of the strongest attacks that
can only be detected with multiple receiver antennas or by a
moving receiver. (M.L. Psiaki & Humphreys, 2016) For signal
erasure to be feasible, the spoofer needs to know the receiver
location more accurately than the GPS L1 wavelength, which
is 19 cm. Receivers with only a single antenna cannot
withstand such an erasure attack. ECD targets single-antenna
receivers and does not deal with signal erasure. (Eichelberger,
Robust Global Localization using GPS and Aircraft Signals,
2019) In all other types of spoofing attacks, including signal
replay and multiple transmission antenna implementations,
the original signals are still present, and ECD remains robust.
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019) Detecting multi-antenna receivers and
differentiating signal timing consistencies are covered in
(Tippenhauer & et.al, 2011)
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The GPS anti-spoofing work most relevant to ECD is based
on the joint processing of satellite signals and the maximum
likelihood of localization. One method can mitigate a limited
number of spoofed signals by vector tracking of all satellite
signals. (Jafarnia-Jahromi & al., 2012) A similar technique is
shown to be robust against jamming and signal replay. (Y. Ng
& Gao, 2016)

Successive Signal Interference Cancellation [35]
ECD uses an iterative signal damping technique with

spoofing signals similar to SIC. SIC removes the strongest
received signals one by one to find the weaker ones that have
been used with GPS signals before. (G. Lopez-Risueno &
Seco-Granados, 2005) (Madhani & al., 2003) That work is
based on a classical receiver architecture which only keeps a
signal’s timing, amplitude, and phase. The ECD has its
snapshot receiver based on CD, which directly operates in the
localization domain and does not identify individual signals in
an intermediate stage. It is impossible to differentiate between
authentic and spoofed signals, a priori, ECD does not remove
signals from the sample data. Otherwise. The localization
algorithm might lose the information from authentic signals/
Instead, ECD dampens strong signals by 60% to reveal weaker
signals. This can reveal localization solutions with lower CD
likelihood. (Eichelberger, Robust Global Localization using
GPS and Aircraft Signals, 2019)

GPS Signal Jamming
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The easiest way to prevent a receiver from finding a GPS
location is by jamming the GPS frequency band. GPS signals
are weak and require sophisticated processing to be found.
Satellite signal jamming considerably worsens the signal-to-
noise ratio (SNR) of the satellite signal acquisition results.
ECD algorithms achieve a better SNR than classical receivers
and can tolerate more noise or stronger jamming.
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

A jammed receiver is less likely to detect spoofing since the
original signals cannot be accurately determined. The receiver
tries to acquire any satellite signals it can find. The attacker
only needs to send a set of valid GPS satellite signals stronger
than the noise floor without synchronizing with the authentic
signals. [36] (Eichelberger, Robust Global Localization using
GPS and Aircraft Signals, 2019)

There is a more powerful and subtle attack on the jammed
signal. The spoofer can send a set of satellite signals with
adjusted power levels and synchronized to the authentic
signals to successfully spoof the receiver. (Eichelberger,
Robust Global Localization using GPS and Aircraft Signals,
2019) So even if the receiver has countermeasures to
differentiate the jamming, the spoofer signals will be accepted
as authentic. (Nichols R. K., 2020)

Two Robust GPS Signal Spoofing Attacks and ECD
Two of the most powerful GPS signal spoofing attacks are
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Seamless Satellite-Lock Takeover (SSLT) and Navigation Data
Modification (NDM). How does ECD perform against these?

Seamless Satellite-Lock Takeover (SSLT)
The most powerful attack is a seamless satellite-lock

takeover. In such an attack, the original and counterfeit signals
are nearly identical concerning the satellite code, navigation
data, code phase, transmission frequency, and received power.
This requires the attacker to know the location of the spoofed
device precisely so that ToF and power losses over a distance
can be factored in. After matching the spoofed signals with the
authentic ones, the spoofer can send its signals with a small
power advantage to trick the receiver into tracking those
instead of the authentic signals. A classical receiver without
spoofing countermeasures, like tracking multiple peaks,
cannot mitigate or detect the SSLT attack, and there is no
indication of interruption of the receiver’s signal tracking.
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

Navigation Data Modification (NDM)
An attacker has two attack vectors: modifying the signal’s

code phase or altering the navigation data—the former
changes the signal arrival time measurements. The latter affects
the perceived satellite locations. Both influence the calculated
receiver location. ECD works with snapshot GPS receivers and
is not vulnerable to NDM changes as they fetch information
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from other sources like the Internet. ECD deals with modified,
wireless GPS signals.

ECD Algorithm Design
ECD is aimed at single-antenna receivers. Its spoofing

mitigation algorithm object is to identify all likely localization
solutions. It is based on CD because 1) CD has improved noise
tolerance compared to classical receivers, 2) CD is suitable for
snapshot receivers, 3) CD is not susceptible to navigation data
modifications, and 4) CD computes a location likelihood
distribution which can reveal all likely receiver locations
including the actual location, independent of the number of
spoofed and multipath signals. ECD avoids all the spoofing
pitfalls and signal selection problems by joining and
transforming all signals into a location likelihood distribution.
Therefore, it defeats the top two GPS spoofing signal
attacks. (Eichelberger, Robust Global Localization using GPS
and Aircraft Signals, 2019)

Regarding the 4th point, Spoofing and multi-path signals
are similar from a receiver’s perspective. Both result in several
observed signals from the same satellite. The difference is that
multipath signals have a delay dependent on the environment,
while spoofing signals can be crafted to yield a consistent
localization solution at the receiver. To detect spoofing and
multipath signals, classical receivers can be modified to track
an arbitrary number of signals per satellite instead of only one.
(S.A.Shaukat & al., 2016) In such a receiver, the set of
authentic signals – one signal from each satellite – would have
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to be correctly identified. Any selection of signals can be
checked for consistency by verifying that the resulting residual
error of the localization algorithm is very small. This is a
combinatorically difficult problem. For n satellites and m
transmitted sets of spoofed signals, there are (m+ 1) n
possibilities for the receiver to select a set of signals. Only m
+ 1 of those will result in a consistent localization solution
representing the actual location and m spoofed locations.
ECD avoids this signal selection problem by joining and
transforming all signals into a location likelihood
distribution. (Eichelberger, Robust Global Localization using
GPS and Aircraft Signals, 2019)

ECD only shows consistent signals since just a few
overlapping (synced) signals for some location hypotheses do
not accumulate a significant likelihood. All plausible receiver
locations – given the observed signals – have a high likelihood.
Finding these locations in four dimensions, space and time, is
computationally expensive. (Bissig & Wattenhoffer, 2017)

Branch and Bound
Compared to exhaustively enumerating all the location

hypotheses in the search space, a fast CD leveraging branch
and bound algorithm is employed to reduce the computational
load. (Eichelberger, Robust Global Localization using GPS
and Aircraft Signals, 2019) describes the modifications to the
B&B algorithm for ECD in copious detail in chapter 6.
Eichelberger discusses acquisition, receiver implementation,
and experiments using the TEXBAT database. [37] [38]
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One of the key points under the receiver implementation
concerns the correlation of C/A codes. [39]

The highest correlation is theoretically achieved when the
C/A code in the received signal is aligned with the reference
C/A code. Due to the pseudo-random nature of the C/A
codes, a shift larger than one code chip from the correct
location results in a low correlation value. Since one code chip
has a duration of 1/1023 ms, the width of the peaks found in
the acquisition vector is less than 2% of the total vector size.
ECD reduces the maximum peak by 60% in each vector. A
detection for partially overlapping peaks prevents changes to
those peaks. Reducing the signal rather than eliminating it has
a little negative impact on the accuracy. Before using these
vectors in the next iteration of the algorithm, the acquisition
result vectors are normalized again. This reduces the search
space based on the prior iteration. (Eichelberger, Robust
Global Localization using GPS and Aircraft Signals, 2019)

ADS-B Security
We next move into the subset problem, namely ADS-B

systems on aircraft, both manned and unmanned. ADS-B
ubiquitously uses GPS location and signal receiver
technologies. ADS-B highly depends on communication and
navigation (GNSS) systems. This is a fundamental cause of
insecurity in the ADS-B system. It inherits the vulnerabilities
of those systems and results in increased Risk and additional
threats. (Nichols R. K., 2020) (Nichols R. K.-P., 2019)[40]
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Another vulnerability of the ADS-B system is its broadcast
nature without security measures. These can easily be
exploited to cause other threats such as eavesdropping on
aircraft movement with the intention to harm, message
deletion, and modification. The systems dependency on the
onboard transponder is also considered a major vulnerability
shared by the SSR. Aircraft hijackers can exploit this
vulnerability to make the aircraft movements invisible.
(Busyairah, 2019)

ADS-B Standards
ICAO has stressed including provisions for protecting

critical information and communication technology systems
against cyberattacks and interference, as stated in the Aviation
Security Manual Document 8973/8. (ICAO, 2021) This was
further emphasized in ATM Security Manual Document 9985
AN/492 to protect ATMs against cyberattacks. (ICAO,
2021)

ADS-B Security Requirements [41]
Strohmeier et al. (Strohmeier, 2015) and Nichols et al.

(Nichols R. K.-P., 2019) have both outlined a set of security
requirements for piloted aircraft and unmanned aircraft,
respectively. Here are the combined security requirements for
the ADS-B system in sync with the standard information
security paradigm of the CIA:

• Data integrity [42]
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The system security should ensure that ADS-B data received
by the ground station or other aircraft (a/c) or UAS (if
equipped) are the exact messages transmitted by the a/c. It
should also be able to detect any malicious modification to the
data during the broadcast.

• Source Integrity

The system security should verify that the ADS-B message
received is sent by the actual owner ( correct a/c) of the
message.

• Data origin (location / position fix) authentication

The system security should verify that the positioning
information in the ADS-B message received is the original
position of the a/c at the time of transmission.

• Low impact on current operations

The system security hardware/software should be compatible
with the current ADS-B installation and standards.

• Sufficiently quick and correct detection of incidents
• Secure against DOS attacks against computing power
• System security functions need to be scalable irrespective of

traffic density.
• Robustness to packet loss
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Vulnerabilities in ADS-B system
Vulnerability in this section refers to the Ryan Nichols

(RN) equations for information Risk determination. A
vulnerability is a weakness in the system that makes it
susceptible to exploitation via a threat or various types of
threats. (Nichols R. K.-P., 2019) ADS-B system is vulnerable
to security threats.

Broadcast Nature of RF Communications
ADS-B principle of operation, system components,

integration, and operational environment are adequately
discussed in Chapter 4 (Busyairah, 2019). The ADS-B system
broadcasts ADS-B messages containing a/c state vector
information and identity information via RF communication
links such as 1090ES, UAT, or VDL Mode 4. The broadcast
nature of the wireless networks without additional security
measures is the main vulnerability in the system. (R.K. Nichols
& Lekkas, 2002) [43]

No Cryptographic Mechanisms
The sender encrypts neither ADS-B messages at the point of

origin nor the transmission links. There are no authentication
mechanisms based on robust cryptographic security protocols.
The ICAO (Airport’s authority of India 2014) has verified
that no cryptographic mechanism is implemented in the ADS-
B protocol. (Airports Authority of India, 2014) [44]

ADS-B COTS
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ADS-B receivers are available in COTS at affordable prices.
The receiver can track ADS-B capable a/c flying within a
specific range of the receiver. The number of ADS-B tracking
gadgets for all media is growing yearly. They can be used to
hack the systems on UAS. (Nichols R. K.-P., 2019)

Shared Data
Due to the COTS availability of ADS-B receivers, private

and public parties share real-time air traffic information on
a/c on the Internet. Some websites on the internet provide
digitized live ADS-B traffic data to the public, e.g.,
flightradar24.com, radarvirtuel.com, and FlightAware. The
availability of the data and the capability to track individual
a/c movements open the door to malicious parties to perform
undesired acts that may have safety implications. (Busyairah,
2019)

Dependency On The On-Board Transponder
ADS-B encoding and broadcast are performed by either the

transponder (for 1090ES) or an emitter (for UAT/ VDL Mode
4) on the a/c. Therefore, ADS-B aircraft surveillance is
dependent on onboard equipment. There is a vulnerability
(not cyber or spoofing) whereby the transponder or emitter
can be turned off inside the cockpit. The a/c becomes invisible,
and SSR and TCAS operation integrity is affected.

Complex System Architecture and Passthrough Of
GNSS Vulnerabilities

ADS-B is an integrated system, dependent on an on-board
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navigation system to obtain information about the state of
the a/c and a communication data link to broadcast the
information to ATC on the ground and other ADS-B
equipped a/c. The system interacts with external elements
such as humans (controllers and pilots) and environmental
factors. The integrated nature of the system increases the
vulnerability of the system. The system inherits the
vulnerabilities of the GNSS on which the system relies
to obtain a/c positioning information! The ADS-B system
also inherits vulnerabilities of the communications links.
(Busyairah, 2019) (Eichelberger, Robust Global Localization
using GPS and Aircraft Signals, 2019) (The Royal Academy of
Engineering, 2011)

Threats to ADS-B system
Threats in this section refer to the Ryan Nichols (RN)

equations for information Risk determination. A Threat is an
action exploiting a vulnerability in the system to cause damage
or harm specifically to a/c and generally to the Air Traffic
Services (ATS), intentionally or unintentionally. (Nichols R.
K.-P., 2019) ADS-B system is vulnerable to security threats.

Eavesdropping
The broadcast nature of ADS-B RF communication links

without additional security measures (cryptographic
mechanisms) enables the act of eavesdropping on the
transmission. Eavesdropping can lead to serious threats such
as targeting specific a/c movement information with the
intention to harm the a/c. This can be done with more
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sophisticated traffic and signal analysis using available sources
such as Mode S and ASDS-B capable open-source GNU Radio
modules or SDR. Eavesdropping is a violation of
confidentiality and compromises system security. (Busyairah,
2019)

Data-Link Jamming
Data-link jamming is an act of deliberate / non-deliberate

blocking, jamming, or causing interference in wireless
communications. (R.K. Nichols & Lekkas, 2002) Deliberate
jamming using a radio jammer device aims to disrupt
information flow ( message sending /receiving) between users
within a wireless network. Jammer devices can be easily
obtained as COTS devices. (Strohmeier, 2015) (R.K. Nichols
& Lekkas, 2002) Using the Ryan Nichols equations, the
Impact is severe in aviation due to the large coverage area
(airspace), which is impossible to control. It involves critical
safety data; hence the computed Risk/lethality level is high.
(R.K. Nichols & Lekkas, 2002) (Busyairah, 2019) The
INFOSEC quality affected is availability because jamming
stops the a/’c or ground stations or multiple users within a
specific area from communicating. On Air Traffic Control

Jamming is performed on ADS-B frequencies, e.g.,
1090MHz. The targeted jamming attack would disable ATS at
any airport using ATCC. Jamming a moving a/c is difficult but
feasible. (Strohmeier, 2015)

ADS-B system transmitting on 1090ES is prone to
unintentional signal jamming due to the use of the same
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frequency (Mode S 1090 MHz) by many systems such as SSR,
TCAS, MLAT, and ADS-B, particularly in dense space.
(Busyairah, 2019) [45] Not only is ADS-B prone to jamming,
but so is SSR. (Adamy D. , EW 101: A First Course in
Electronic Warfare, 2001)[46]

Two Types of Jamming Threats for ADS-B
Apart from GNSS (positioning source for ADS-B)

jamming, the main jamming threats for the ADS-B system
include GS Flood Denial and A/C Flood Denial.

Ground Station Flood Denial (GSFD)
The GSFD blocks 1090 MHz transmissions at the ADS-

B ground station. There is no difficulty in gaining close
proximity to a ground station. Jamming can be performed
using a low-power jamming device to block ADS-B signals
from A/C to the ground station. The threat does not target
individual a/c. It blocks ADS-B signals from all A/C within
the range of the ground station.

Aircraft Flood Denial (A/C FD)
A/CFD blocks signal transmission to the a/c. This threat

disables the reception of ADS-B IN messages, TCAS, and
WAM/MLAT and SSR interrogation. It is very difficult to
gain close proximity to a moving A/C. The attacker needs
to use a high-powered jamming device. According to (D.
McCallie, 2011) these devices are not easy to obtain. MAYBE
(see author note).[47] The jamming function will be
ineffective as soon as the a/c moves out of the specific range of
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the jamming device. Better attempts can be made from within
the a/c. [48]

ADS-B Signal Spoofing
ADS-B signal spoofing attempts to deceive an ADS-B

receiver by broadcasting fake ADS-B signals structured to
resemble a set of normal ADS-B signals or by re-broadcasting
genuine signals captured elsewhere or at a different time.
Spoofing an ADS-B system is also known as message injection
because fake (ghost) a/c is introduced into the air traffic. The
system’s vulnerability – having no authentication measures
implemented at the systems data link layer – enables this
threat. Spoofing is a hit on the security goal of Integrity. This
leads to undesired operational decisions by controllers or
surveillance operations in the air or on the ground. The threat
affects both ADS-B IN and OUT systems. (Busyairah, 2019)
Spoofing threats are of two basic varieties: Ground Station
Target Ghost Injection / Flooding and Ground Station Target
Ghost Injection / Flooding.

Ground Station Target Ghost Injection / Flooding
Ground Station Target Ghost Injection / Flooding is

performed by injecting ADS-B signals from a single a/c or
multiple fakes ( ghost) a/c into a ground station. This will
cause single /multiple fake (ghost) a/c to appear on the
controller’s working position (radar screen). [49]

Aircraft Target Ghost Injection / Flooding
Aircraft Target Ghost Injection / Flooding is performed

by injecting ADS-B signals from a single a/c or multiple fake
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(ghost) a/c into an airplane in flight. This will cause ghost a/c
to appear on the TCAS and CDTI screens in the cockpit to
go haywire. Making the mess worse, the fake data will also be
used by airborne operations such as ACAS, ATSAW, ITP, and
others for aiding a/c navigation operations. (Busyairah, 2019)

ADS-B message Deletion
An a/c can be made to look like it has vanished from the

ADS-B-based air traffic by deleting the ADS-B message
broadcast from the a/c. This can be done by two methods:
destructive interference and constructive interference.
Destructive interference is performed by transmitting an
inverse of an actual ADS-B signal to an ADS-B receiver.
Constructive interference is performed by transmitting a
duplicate of the ADS-B signal and adding the two signal waves
( original and duplicate). The two signal waves must be of the
same frequency and phase and traveling in the same direction.
Both approaches will result in being discarded by the ADS-B
receiver as corrupt. (Busyairah, 2019)

ADS-B message modification
ADS-B message modification is feasible on the physical layer

during transmission via datalinks using two methods: Signal
Overshadowing and Bit-flipping. Signal overshadowing is
done by sending a stronger signal to the ADS-B receiver,
whereby only the stronger of the two colliding signals is
received. This method will replace either the whole target
message or part of it. Bit flipping is an algorithmic
manipulation of bits. The attacker changes bits from 1 to 0 or
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vice versa. This will modify the ADS-B message and is a clear
violation of the security goal of Integrity. (Strohmeier, 2015)
This attack will disrupt ATC operations or a/c navigation.

HAPS
Of special interest to this reviewer is the possibility of using

High Altitude UAS Platforms for wireless communications
(HAPS) to replace the aircraft in retransmitting GPS signals
and acting as the primary agent for indoor and outdoor
localization procedures. Two important references detail the
advantages and disadvantages of HAPS for communication
systems and localization use. (Alejandro Aragon-Zavala, 2008)
Nichols et al. provide an especially strong analysis of HAPS
capabilities compared to terrestrial and satellite systems for
telecommunications; HAPS platform advanced
telecommunications services in various stages of engineering
and development, HAPS link budgets, and characteristics of
terrestrial, satellite, and haps systems. (Nichols R. K.-P., 2019)

Security of GNSS (Shrivastava, 2021) (Ochin &
Lemieszewski, 2021)

In 2021 (Ochin & Lemieszewski, 2021) Ochin &
Lemieszewski penned an excellent update on the spoofing
threat covering air, land, and sea operations in Europe and
Asia. Some interesting topics covered were self-spoofing or
limpet spoofing technologies; DIY GNSS spoofers; [50] GNSS
interference modalities; complementary countermeasures like
INS; [51] GNSS jamming techniques; GNSS meaconing; and
detailed sections on cloud-based GNSS positioning. Modern
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satellite navigation uses NO-Request range measurements
between the navigation satellite and the user. The information
about the satellite coordinates given to the user is included
in the navigation signal. The way of range measurement is
based on calculating the receiving signal time delay compared
with the signals generated by the user’s equipment. (Ochin &
Lemieszewski, 2021) Chapter 3 divides cloud-based spoofing
detection into four classes and proceeds to mathematically
define the antenna distances and navigation modes based on
those classes. These detection modes are based on a single
antenna spoofer and do not consider mitigation and recovery
steps. This is compared to ECD, which does all three steps in
the security solution.

Ochin & Lemieszewski (Ochin & Lemieszewski, 2021)
present a fascinating picture of the history of anti-spoofing
from 1942 patent to fight the American radio-controlled sea-
based torpedoes with a radio jamming of German boats and
submarines. (US Patent No. 2,292,387, 1942) They continue
with a European view of security measures for the six satellite
constellations. They conclude with a Postscript on the drama
behind the taking by Iran of the US RQ-170 Sentinel and
how they did it! (Goward, April 21, 2020) The Ochin &
Lemieszewski chapter supports the risk opinions presented
earlier. “The risk of losing GNSS signal (to spoofing) is
growing daily. The accessories necessary for the manufacture
of systems for GNSS “jamming” and “spoofing” are now
widely available, and this type of attack can be taken advantage
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of by not only the military but also by terrorists.” (Ochin &
Lemieszewski, 2021)

CONCLUSIONS
Space is the new frontier of electronic warfare (EW),

intelligence, and reconnaissance. Signals are the soul of EMS.
Space is also the place to view the earth in large “earth traces.”
These views can help military and agricultural planners make
better decisions on protecting the United States and managing
(increase) global food supply, land usage, irrigation, and
health. The same information for diametrically different uses.
Chapter perused:

• Key definitions in EW, satellite systems, and ECD
countermeasures

• A look at space calculations and satellite threats using
plane and spherical trigonometry to explain orbital
mechanics

• A brief review of EMS, signals, RADAR, Acoustic, and
UAS Stealth principles,

• Signals to/from satellites and their vulnerabilities to
Interception, Jamming, and Spoofing,

• The promising ECD technology countermeasure to
spoofing can detect, mitigate, and recover fake and
genuine signals. All ADS-B vulnerabilities and threats
mentioned in Chapter 3 are amenable to ECD
mitigation if sufficient computing horsepower is
available.
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Chapter 3 should prepare students for deeper dives into the
fascinating world of space technologies.
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Endnotes

[1] Definitions taken from (Eichelberger, Robust Global
Localization using GPS and Aircraft Signals, 2019), (Wolff,
2022), (Nichols R. K.-P., 2019) and (Nichols & Sincavage,
2022)

[2] Since 1998, Christian Wolff has maintained the
educational website www.radartutorial.eu

[3] ISR defined from the USA Army POV only.

[4] Ớ = Order of magnitude; dot = dot product for vectors

[5] All these systems are discussed in Chapter 2 of
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

[6] Each satellite has a unique 1023-bit PRN sequence, plus
some current navigation data, D. Each bit is repeated 20 times
for better robustness. Navigation data rate is limited to 50
bit / s. This also limits sending timestamps every 6 seconds,
satellite orbit parameters (function of the satellite location over
time) only every 30 seconds. As a result, the latency of the first
location estimates after turning on a classic receiver, called the
time to first fix (TTFF), can be high.

[7] Professor Adamy has about 50+ years of experience and as
a SME has written an accelerated set of textbooks EW 101-104
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to define the entire EW playing field. The author had the
pleasure of studying under this accomplished researcher,
practitioner, lecturer, and author.

[8] This chapter is a testament to (Adamy D. L., Space
Electronic Warfare, 2021) work. It is impossible to summarize
his experience and knowledge, so we have used sections of his
technical teachings for our students.

[9] To multiply linear numbers, add their logarithms; to divide
linear numbers, subtract their logarithms; to raise a linear
number to the nth power, multiply its logarithm by n; and to
take the nth root of a linear number, divide its logarithm by n.

[10] UAS and UAV are used synonymously. V=vehicle.

[11] Spoofing is added to the table by author based on his
work with ECD and inferred from (Adamy D. L., EW 104:
EW against a new generation of threats, 2015) , (Adamy D.
L., Space Electronic Warfare, 2021) & (Nichols & Sincavage,
2022)

[12] Some useful factors: 1 Terahertz (THz) = 10**3 GHz =
10**6 MHz = 10 **12 Hz; and

1 nm = 10 (**-3) um (micron-meter) = 10 (**-6) mm
(millimeter)= 10(**-9) m

1-micron, um = m / 1000000 (1 millionth of a meter).

[13] Adamy has written five stellar references on EW, use of dB
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logarithmic mathematics to solve EW equations for strength,
gains, losses, radars, interceptors, jamming technologies,
current threats, defense systems and more for the reader to
research and enjoy. (Adamy D. -0., 2015)

[14] Spoofing affects the same path as a jammer.

[15] (Adamy D. L., Space Electronic Warfare, 2021) covers all
these losses in nauseating detail. From a ChE POV (ye author)
they are a just a total system loss regardless of root causes. One
number. EEs and RADAR engineers will find this statement
heresy.

[16] Author sarcasm.

[17] Spoofing is often accompanied by a precursive jamming
operation. (Nichols R. K., 2020)

[18] There are important numbers for space EW calculations:
A solar day is 24 hours or 1440 minutes. The sideral day is
23.9349 hours or 1436.094 minutes. Kepler’s third law is a3
= C x P2 where C= 36,355,285 km3 per min2 . Radius of
earth is 6,371 km. The earth is proportionally a smooth sphere
and can be assumed as a perfect sphere in orbital calculations.
Synchronous satellite period is 23 hours and 56 minutes. The
12-hour satellite is 20,241 km high. Synchronous altitude is
35,873 km. Its range to the horizon is 41,348 km. The width of
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the earth from a synchronous satellite is 17.38 degrees. These
all make excellent bar bets.

[19] Aircraft signal transfer is not the only means to localize
indoor signals. HAPs, WiFi, Ultrasound, Light, Bluetooth,
RFID. Sensor fusion and GSM all have a place in the decision-
making process.

[20] Experiments based on the TEXBAT database show that
a wide variety of attacks can be mitigated. In the TEXBAT
scenarios, an attacker can introduce a maximum error of 222
m and a median error under 19 m. This is less than a sixth of
the maximum unnoticed location offset reported in previous
work that only detects spoofing attacks. (Ranganathan & al.,
2016)

[21] According to SPSPATRON.com, GNSS Spoofing in
Anti-Drone Systems is the most common application of
GNSS spoofing. The anti-drone system simulates the
coordinates of the nearest airport. The commercial drone is
either landing or trying to fly to the takeoff point. There are
different usage scenarios here. Sometimes only GPS is spoofed,
and the other constellations are blocked. Sometimes
GLONASS + GPS are spoofed. There are also different
scenarios in terms of the duration of use. Automatic systems
generate a fake signal within minutes. Sometimes a spoofer
is activated for many hours. (GPSPATRON, 2022) ECD can
handle this and other forms of signal spoofing.
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[22] The author translated part of (Eichelberger, Robust
Global Localization using GPS and Aircraft Signals, 2019)
reference from the original German.

[23] The author has nicknamed Dr. Manuel Eichelberger’s
brilliant doctorial research, ECD. ECD is Dr. Manuel
Eichelberger’s advanced implementation of CD to detect and
mitigate spoofing attacks on GPS or ADS-B signals

[24] This is a key point. CD reduces this timestamping process
significantly.

[25] Data is sent on a carrier frequency of 1575.42 MHz (IS-
GPS-200G, 2013)

[26] GPS satellites operate on atomic frequency standard, the
receivers are not synchronized to GPS time.

[27] Because the receiver must decode all that data, it has to
continuously track and process the satellite signals, which
translates to high energy consumption. Furthermore, the
TTFF on startup cost the user both latency and power.

[28] The deviation is defined as the time offset multiplied by
the speed of light plus the location distance.

[29] For those who insist on SI / metric, 1 km = ~ 0.62 mi
(miles)
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[30] Data bit flips can happen. The normal practice is 2
milliseconds of sample time.

[31] The vector / tensor mathematics for localization are
reasonably complex and can be found in Chapter 5.3 of
(Eichelberger, Robust Global Localization using GPS and
Aircraft Signals, 2019)

[32] Cloud offloading also makes ECD suitable for energy-
constrained sensors.

[33] (Nichols & al., 2020) have argued the case for
cryptographic authentication on civilian UAS /UUV and
expanded the INFOSEC requirements.

[34] Author opinion.

[35] This is a key section to understanding the beauty of ECD.
The entire SIC algorithm and ECD implications is found in
detail in (Eichelberger, Robust Global Localization using GPS
and Aircraft Signals, 2019) p81-ff.

[36] This is what makes jamming a lesser attack. The jamming
is detectable by observing the noise floor, in-band power levels
and loss of signal -lock takeover.

[37] See (Eichelberger, Robust Global Localization using GPS
and Aircraft Signals, 2019) Sections 6.5 – 6.7 pages 84-94.
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[38] See (Eichelberger, Robust Global Localization using GPS
and Aircraft Signals, 2019) Sections 5.34 – 5.5 for extended
discussions on space discretization, satellite visible set V, time
discretization, averaging over likely hypotheses, hypothesis h,
coding, efficient implementation of the B&B, local oscillator
bias, criteria and test evaluations of ECD, computational
considerations, and conclusions. (Closas & al., 2007)(J.Liu &
et.al., 2012) (Diggelen, 2009)

[39] This is accomplished in the acquisition stage of a GPS
receiver. The received signals is correlated with the C/A codes.

[40] (Nichols R. K., 2020) presents a model of Risk as a
function of Threats, Vulnerabilities, Impact and
Countermeasures known as the Ryan- Nichols equations, that
models the qualitative effects of information flow through the
communications and navigation systems in UAS.

[41] These INFOSEC goals are admirable but considering that
most GPS and UAS COTS do not have sufficient GPS
spoofing countermeasures or cybersecurity protections (most
are legacy), the list is more of a wish list. [Author opinion]

[42] Please note the word “should.” Hackers just love this
word.

[43] Wireless networks present few obstacles to access and can
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easily be attacked by open-source software. (R.K. Nichols,
2020)

[44] This is still true in legacy systems. Newer
implementations have additional protections. UAS systems are
notoriously weak in terms of security.

[45] Ali, et al. identified that jamming of GPS transmissions
from the satellite affected the ADS-B system. (Ali, 2014)This
is a rather obvious statement of research considering that we
have also established that the vulnerabilities of GNSS/GPS
pass down to ADS-B systems because they are subset of the
larger problem.

[46] Dave Adamy is the leading global expert in EW. He
teaches it is more difficult to jam a PSR due to its rotating
antenna and higher transmission power. (Adamy D. , EW 101:
A First Course in Electronic Warfare, 2001)

[47] This might have been true in 2011, however a decade
of change, growth, cost-effective COTS, and state sponsored
hackers says that this observation is severely dated. (Author
comment)

[48] Author comment based on experience. Jamming devices
are as small as your cell phone and more powerful than
computers available in 2011. (Nichols R. K., 2020)

[49] This is a headache to say the least. Consider a SWARM

SPACE ELECTRONIC WARFARE, SIGNAL INTERCEPTION, ISR,
JAMMING, SPOOFING, &#038; ECD (NICHOLS &#038; MAI) | 231



of 100 + UAS bursting onto the controller’s screen at a busy
airport.

[50] DIY – Do it yourself

[51] INS- an inertial navigation system is composed of motion
sensors (accelerometer, gyrometer, and magnetometer)
allowing determination of the absolute movement of a
platform. Using this information and knowledge of the last
position, it is possible using dead reckoning to provide an
estimation of position, velocity, and time of the platform after
spoofing or jamming detection.
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4.

MANUFACTURING IN
SPACE (JACKSON &
JOSEPH)

Student Learning Objectives:

• The student will learn the potential of manufacturing in
space, on Earth and on the International Space Station
(ISS).

• The student will learn the potential of manufacturing
replacement parts in space, recycling in space, printing
spacecraft and use of resources on planetary surfaces.

• The student will learn the difference between circular
economics and sustainability and the need for
manufacturing in space as an application of circular
economic principles.

Introduction
Manufacturing in space is becoming a strategic aspect of

endeavor that aims to produce materials that cannot be
manufactured on Earth for a variety of reasons and where their



processing damages the Earth’s environment. Prior missions
to establish a scientific basis for manufacturing in space
developed in the 1950s with the foundations of studying
materials in microgravity environments commencing with the
Mercury and Gemini programs progressing to welding and
casting in space during the Apollo and Skylab era (Figure 4-1).
The Space Shuttle and Mir enterprises progressed the initial
work with the Spacelab and the International Space Station
(ISS). The focus was on the processing of materials without
containers, welding, and crystal formation (solidification), and
in fact, all the characteristics needed to realize additive
manufacturing as a process to be used in space (Volz 2014).

In recent years, a US government-led consortium known as
‘America Makes’ is fully supported by NASA (www.nasa.gov)
and is creating initiatives associated with ‘in-space
manufacturing’ with NASA leading the charge on all aspects
of manufacturing in space (https://www.americamakes.us/).
Parallel development of manufacturing in space is also
occurring in the European Union (EU) as part of the strategic
agenda of the EU focusing on additive manufacturing for the
aerospace sector (http://www.rm-platform.com/).

Figure 4-1 Long Duration Microgravity Materials
Science Research
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Source: Courtesy of NASA.

The EU’s focus is primarily on materials, technology,
engineering, and the circular economy/sustainability via the
Fraunhofer Institutes (AM Sub-Platform 2013, EU Powder
Metallurgy Association 2014). The European Space Agency
(ESA) is focused of additive manufacturing in space to develop
replacement parts for the ISS. The EU’s Additive
Manufacturing Aiming Towards Zero Waste and Efficient
Production of High-Tech Metal Products (AMAZE) project
involved in-space applications as a core area across the whole of
the EU (https://cordis.europa.eu/project/id/313781). ESA is
funding in situ additive manufacturing on planetary habitats
such as the Moon and asteroids using methods developed in
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the US. However, the development of manufacturing
standards in space and international cooperation between
space agencies needs to be established to eliminate duplication
owing to the cost of manufacturing in space (Volz 2014).

Manufacturing standards
At least 10,000 ASTM standards (www.astm.org) have been

developed for product safety, quality, market access, trade, and
consumer confidence. The International Organization
Standardization (ISO) (www.iso.org), is also developing
technical product standards. Standards specifically for additive
manufacturing are being jointly developed by Committee F42
of the ASTM and Technical Committee 261 of ISO.

The variation in standards is in areas of terminology,
processes and materials, test methods, and design and data
formats. The development of standards by ASTM/ISO for in-
space applications are qualification and certification methods,
design guidelines, test methods for characterizing raw
materials, test methods for mechanical properties of additively
manufactured parts, material recycling guidelines, standard
protocols for testing, standard test artifacts, and requirements
especially for additively manufactured parts (Prater et alia
2019).

Harmony of standards
Considering general manufacturing, standards are already

established for Earth-based processing. ASTM has specific
terminology for fundamental additive manufacturing. The
seven categories given for additive manufacturing technologies
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under ASTM Standard F2792-12A are vat
photopolymerization, material extrusion, material jetting,
binder jetting, powder bed fusion, sheet lamination, and
direct-energy deposition. However, for terrestrial
manufacturing, standards will need to be established prior to
large scale in-space additive manufacturing activities (Nafisi et
al. 2022).

Manufacturing on Earth
Manufacturing applications (especially additive) are

increasing for many aerospace applications. Lockheed Martin
additively manufactured waveguide brackets for microwave
communication components for NASA’s Juno spacecraft
launched in 2011 (Figures 4-2 and 4-3). Other parts are being
manufactured using additive manufacturing techniques such
as rocket engine injectors, entire jet engines, components of
engines, CubeSats and small satellites (Schmuland et al. 2013,
Gradl et al. 2022).

Figure 4-2 The Juno spacecraft includes additively
manufactured space system components
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Source: Courtesy of NASA/JPL
(https://www.jpl.nasa.gov/)

The Fused Deposition Modeling (FDM) technique is, and
additive manufacturing process used by Aurora Flight Sciences
to manufacture drone systems and components with active
sensors embedded into 3D-printed wings and printed heat
exchangers using novel materials (Gradl et al. 2022). Airbus
is using 3D printing techniques to produce fully functional
metallic prototype of the airframe and propulsion system for
a drone aircraft and there are many other examples that show
additive manufacturing/printing is able to create complex
shapes that are difficult to produce with traditional casting or
machining processes (Patankar 2018, Gradl et al. 2022).
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Figure 4-3 Additively manufactured waveguide
brackets for the Juno spacecraft

Source: Courtesy of Lockheed Martin
(www.lockheedmartin.com).

Additive manufacturing creates high value materials and
combinations of materials to direct specific product material
properties with gradient coatings. NASA’s Jet Propulsion
Laboratory (JPL) is using printing technology to create
gradient structures focusing on specific physical
characteristics, rigidity, and/or electrical and thermal
properties (Hoffman et alia 2013) that are tailored for
performance under various structural load and temperature
conditions (https://www.jpl.nasa.gov/). The gradient-metallic
alloy mirror assembly developed at JPL is a perfect example
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of using printing techniques to create gradient engineered
materials (Figure 4-4).

The components manufactured this way illustrate how
components can be enhanced when exposed to the harsh and
complex physical conditions of space (Bhudiya et al. 2022).
Additive manufacturing creates less waste compared to
traditional manufacturing processes and cost savings are
significant (Volz 2014). However, there are still issues with the
process owing to the microstructural integrity and reliability.
Research in the form of hybrid additive manufacturing
systems that combine additive manufacturing with direct-
writing technologies that allow embedded structures to be
produced in three dimensions. The integration of electronics
with 3D printed structures allows flexibility for use in complex
environments in space.

Figure 4-4 (a) An isotherm of the Fe-Ni-Cr ternary
phase diagram showing different gradient compositions.
The lines represent composition gradients between 304L
stainless steel and Invar 36, a simplified Inconel 625 alloy
and NiFeCr alloy; (b) An isogrid mirror fabricated using
a 3D plastic printer; (c) a fabricated part using laser-
engineered net shaping (LENS). The mirror surface of
Invar 36 and the isogrid backing is a gradient alloy that
transitions from Invar 36 to stainless steel; (d) A gradient
alloy mirror assembly with a metal-coated glass mirror
attached to the Invar side of the assembly using epoxy;
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(e) Test samples of a Ti-V gradient alloy being fabricated
by LENS; (f ) The compositions of the gradient mirror
assembly in (d), and (g) hardness and thermal expansions
across the gradient mirror assembly.
(http://www.techbriefs.com/component/content/article/5- ntb/
tech-briefs/materials/17446.

Source: Images courtesy of NASA/Jet Propulsion
Laboratory/California Institute of Technology).

The benefits of manufacturing ground-based aerospace
applications are significant. However, certain disadvantages
need to be addressed for use in space environments and include
the cost of operation (equipment, maintenance, and
materials); machine performance (size, speed, reliability,
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repeatability, and reproducibility); and availability/use of
materials in space environments.

Manufacturing of space devices on Earth
The first use of additive manufacturing techniques for space

applications is the development of CubeSats
(https://www.cubesat.org/), the first being launched into low
Earth orbit (LEO) in 2003. There are more than 4000 of these
small (10 cm × 10 cm x 10 cm) satellites have now been placed
in LEO (nanosats.eu, 2022). An example of an additively
manufactured CubeSat is shown in Figure 4-5. The low cost
and simplicity of CubeSats is highly advantageous for
developing space science on the small scale. CubeSats were
built using traditional spacecraft technologies and are built
with a wide range of assemblies and external features produced
using additive manufacturing materials/processes. The
features produced can control on-board systems including
power, communications, propulsion systems, thermal control,
attitude control, digital systems, and instrumentation (Russell
2017).

PrintSat (http://www.ssel.montana.edu/printsat.html) was
built to demonstrate the manufacture of space structures and
mechanisms in a university environment. The satellite
structure is composed of polyamide carbon-filled structures
used for terrestrial applications. The payload elements include
a single-chip hybrid radiation micro dosimeter, load cells, and
a surface resistivity sensor to measure the surface resistivity
of its nickel plating. The system was designed by students of
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the Space Science and Engineering Laboratory using standard
engineering software and hardware. Flight testing was
conducted to NASA standards then launched aboard a small
vehicle known as Super Strypi as part of Sandia’s space
program (www.sandia.gov). This type of space education is
clearly achievable using standard equipment/software and
associations with government laboratories and agencies.

Manufacturing construction in space
Manufacturing assembly in space started at the beginning

of the space program. The effort involved the integration of
large and complex components such as space station modules,
rather than manufacturing of sub-assemblies/components in
space. Space operations required launching fully integrated
spacecraft or connecting sub-assemblies in orbit with robots
and with human support. Structures and objects were made
on the ground and launched into space and assembled using
conventional methods. The Soviet space program performed
in-orbit welding, and in-space welding has been studied by
a US aerospace contractor. NASA employed supporting
technologies associated with welding processes and the ISS was
an assembly and integration project that was manufactured
on Earth. However, there were attempts at in-space
manufacturing of construction materials in the mid- 1970s,
when NASA built the ‘Space Fabrication Demonstration
System’ capable of assembling triangular aluminum trusses.
The system was tested at NASA Marshall Space Flight Center
(MSFC) in Alabama, where NASA considered using lunar

MANUFACTURING IN SPACE (JACKSON &#038; JOSEPH) | 243



regolith or Martian soil for the construction of structures.
However, the project did not continue.

Figure 4-5 NCUBE2 CubeSat integrated with the
ESA satellite SSETI-Express

Source: Courtesy of Bjørn Pedersen, NTNU, Norway.

Materials science and manufacturing aboard the ISS
The development of materials science aboard the ISS has

prompted the development of using additive manufacturing
processes in space (Momeni et al. 2022). Initial studies on
microgravity showed that diffusion-controlled growth is the
dominant mechanism of solidification promoting uniform
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microstructures as shown in Figure 4-6. Figure 4-6 shows the
differences between anisotropic dendrite formation in Pb-Sb
alloys and segregation channels in Pb-Sn alloys grown on Earth
to those formed in space. Space grown alloys show uniform
microstructure due to reduced thermal and solute convection
flows (Volz 2014).

Figure 4-6 Microgravity Reduces Thermal and Solute
Convection (Volz 2014)

Source: Courtesy of NASA.
Microgravity also minimizes sedimentation and buoyancy

of mixed materials, which promotes uniform particle
distributions that leads to understanding of coarsening
mechanisms and sintering (Figure 4-7) (Volz 2014). The
systems used on the ISS to conduct materials science
experiments focus on the use of a materials science glovebox,
a SUBSA vertical gradient furnace with transparent growth
zone, a PFMI low temperature furnace for solidification and
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remelting of transparent materials and a CSLM quench
furnace for studying coarsening in metals (Figure 8).

In addition to the equipment on the ISS shown in Figure
4-8, a Low Gradient Furnace (LGF) and a Solidification
Quench Furnace (SQF) also operate on the materials science
rack on the ISS with cartridges provided by ESA (Figure 4-9).
These pieces of equipment provide the laboratory equipment
needed to understand the basics of manufacturing in space
(Volz 2014).

Figure 4-7 Microgravity Minimizes Sedimentation
and Buoyancy (Volz 2014)

Source: Courtesy of NASA.

In 1999, Cooper and Griffin of NASA MSFC helped
publish a report that referred to direct manufacturing and
stated that in remote locations such as the Moon or Mars,
direct fabrication (manufacturing) could be used to produce
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items on location (NRC 2000). The report explained how
additive manufacturing in microgravity space demonstrated
the benefits of the fused deposition modeling (FDM)
technique to quickly produce replacement components or
repair broken hardware on the Space Shuttle (SS) or on the
International Space Station (ISS).

Cooper and Griffin conducted many laboratory
experiments and KC-135 low-gravity aircraft experiments to
demonstrate the capability of FDM equipment to fabricate
in a microgravity environment. Cooper and Griffin developed
a hardware implementation plan using FDM for further
experiments aboard the ISS. They proposed using an ISS FDM
device with a 10 cm × 10 cm × 10 cm working volume, total
mass of approximately 45-65 kg, physical envelope of 0.45 m ×
0.5 m × 0.6 m using peak power of 300 W with an air cooling
of 150 W (Cooper and Griffin 2003).

Additive manufacturing holds the potential to extend
traditional manufacturing capabilities to physical scales
currently unobtainable with current spaceflight hardware
construction practices (Korkut and Yavuz 2022).
Manufacturing in space allows construction of structures and
subsystems fully optimized to operate in the zero-gravity
environment with volume-to-mass efficiencies that may
revolutionize future approaches to design (Prater et alia 2018,
2019).

Figure 4-8 Materials Science Facilities on the ISS:
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Materials Science Glovebox (MSG) Facilities (Volz 2014)

Source: Courtesy of NASA

Manufacturing in Space
Manufacturing in space is a very useful way of creating

replacement parts and systems. The percentage of hardware
failures on the International Space Station (ISS) involve
polymeric and composite materials (~ 30%) that can be
repaired using additive manufacturing techniques on board
the ISS. NASA has developed several ways to achieve this.
Contracts with ‘Made In Space, Inc.’ (www.madeinspace.us)
to provide extrusion-based additive manufacturing in
microgravity environments on board the ISS were granted.
Once printed, an optical scanner is used to verify the integrity
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of parts made with a view to create procedures to use metals
and combinations of materials (Prater et alia 2019).

Figure 4-9 Materials Science Facilities on the ISS:
Low Gradient Furnace (LGF) & Solidification Quench

Furnace (SQF) (Volz 2014)

Source: Courtesy of NASA.

In addition to additive manufacturing, other forms of
traditional manufacturing are envisaged such as container-less
melting of metals (Figure 4-10), mixing of liquids for
pharmaceutical production and the bulk solids processing of
liquids and solids. Additive manufacturing in space presents
new opportunities for recycling. Recycling material on the ISS
has a significant impact on ISS operations. Traditionally,
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astronauts assign waste to robotic spacecraft (Russian Progress
and the Orbital Sciences’ Cygnus) for disposal. This is
achieved by detaching from the ISS and burning up in the
upper atmosphere of the Earth. However, using recycled
materials would eliminate that operation. Component/system
creation and recycling allows one to launch feedstock to ISS
instead of hardware (Prater et alia 2018).

The microgravity environment enables accurate
measurements of material properties such as viscosity and
surface tension, facilitates nucleation studies, increases the size
of crystals that can be grown container-less and reduces defect
densities from contact with container walls (Figure 4-10).

Figure 4-10 Microgravity Allows Container-less
Processing to Manufacture Items (Volz 2014)

Source: Courtesy of NASA.

Manufacturing hardware enables the production of low-
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mass systems thereby reducing launch and storage burdens.
Antennas, booms, and panels are designed for launching and
their size and shape are limited in addition to their
functionality and scale. Manufacturing in space and orbital
construction enable deployment of systems that do not
conform to weight and volume constraints. Systems include
mirrors, gossamer structures, antennas and arrays, reflectors,
trusses and much more (Kovalchuk et al. 2022).

Tethers Unlimited (https://www.tethers.com/) is a
company that provides launchable materials in the form of
spools of thread to form large truss-based structures such as
solar arrays and antennas in space. Other applications such as
star shades to block light/heat from stars allow space-based
telescopes to image exoplanets around stars. The use of a large
spider-like robot that can extrude long beams of thread and
join large structures together is highly attractive for space
exploration activities and is known as ‘SpiderFab’ (Figure
4-11).

Additive manufacturing in space enables the production
of entire subsystems and systems including the production,
assembly, and launch of sensor-based CubeSats from the ISS
and other platforms in orbit (Stewart et al. 2022). In-space
satellites deployed as swarms are not inconceivable. The
Automated Manufacturing Facility on the ISS and CubeSat
platforms could provide swarms of satellites. The swarm could
have a range of capabilities and act as a fully functional satellite
system.
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Figure 4-11 ‘SpiderFab’ is a combination structural
elements and multi-dexterous robots that can control

and manipulate structural elements

Source: Courtesy of Tethers Unlimited.

The concept of a fabrication laboratory (fab lab) was
developed at the Massachusetts Institute of Technology. A
typical fab lab is equipped with flexible manufacturing systems
and would be able to manufacture what is needed without
providing it from Earth. Free-flying fab labs for manufacturing
in space is a distinct possibility (Warner 2017).

Additive manufacturing techniques such as printing can be
applied to subsystems and complete systems such as spacecraft
(Kovalchuk et al. 2022). Sub-systems can be deposited on a
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transparent sheet of plastic with electronic components
printed to collect environmental information in space or
within a planet’s atmosphere (Figure 12). Roll-to-roll printing
is a technology that can revolutionize manufacturing in space
and allows the integration of mechanical and electrical
systems. The technique can produce flexible electronics that
can sense a variety of conditions prevalent in space.

Figure 4-12 A two-dimensional printed spacecraft
being developed at the Jet Propulsion Laboratory

Source: Courtesy of PARC, a Xerox company;
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(http://gigaom.com/2013/08/20/nasa-wants-to-print-a-
spacecraft-but-first-its-printing-the-electronics/).

When considering manufacturing on planets, the
availability of construction materials in space on asteroids or
surfaces of planets allows one to use manufacturing processes
to build settlements without having to launch expensive and
prefabricated materials out of Earth’s orbit (Stewart et al.
2022). Lunar regolith (simulated moon soil) could be used to
construct pressurized habitats or other infrastructure needed
to live on other planets such as landing pads, roads, walls,
buildings for protection against thermal radiation on the
Moon (Figure 4-13).

Figure 4-13 A robot on the Moon using “contour
crafting” to build up a structure, layer by layer
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Source: Courtesy of USC.
Contour crafting can create landing pads on the Moon

using simulated lunar regolith. Simulated lunar regolith is
being manufactured at the University of Central Florida’s
Center for Lunar and Asteroid Surface Science
(https://sciences.ucf.edu/class/
exolithlab/#:~:text=Located%20in%20Orlando%2C%20Flori
da%2C%20Exolith,asteroid%20regolith%20(soil)%20simulant
s) and aims to practice building structures on Earth prior to
building on the Moon. Contour crafting extrudes a building
material layer-by-layer to build structures. ESA has developed a
similar technology called D-Shape Printing to build Moon-
based habitats (https://www.esa.int/ESA_Multimedia/
Images/2013/01/D-Shape_printer).

Launch vehicles transporting materials for additive
manufacturing activities in space can provide volume densities
> 100 x, producing spacecraft in orbit or in a space-based
manufacturing center tailored to operate in a microgravity
environment such as the Moon. However, there are still many
challenges and hurdles to overcome to realize the concept of
manufacturing in space.

Challenges of Manufacturing in Space
For homogenous and heterogeneous material mixtures used

in space, new physics-based models of manufacturing
processes are required to predict material properties and design
the correct material compositions (Owens et al. 2016). An
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understanding of basic physics will create predictive modeling
techniques that will allow engineers to know functional
properties of systems of parts (Figure 4-14).

New methods are needed for in-process monitoring and
closed-loop feedback of sensors enabling non-destructive
evaluation and defect detection. Also, different processing
approaches can change the properties of systems due to
thermal effects depending on the energy source, density, and
environment (Owens 2017).

Figure 4-14 SuperDraco rocket engine uses an
additively manufactured Inconel thrust chamber

Source: Courtesy of SpaceX.
Printers create parts by fusing solid sheets or by using a
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laser to heat and/or polymerize. The total volume required to
print dominates the build time. The time to print an object
also depends on the resolution. The complexity of the design
and the application of the part will affect time required to
manufacture it. CubeSats can be constructed in weeks if
printing is required for complex subsystems. Printing in space
will require less mass due to the reduced gravity but is difficult
to predict build time without knowing the resolution required
and the impact of environment on the process (Prater et al.
2018).

The manufacturing of complex, multi-material, and multi-
functional parts involving embedding a circuit board, motor,
or other sub-assembly into the process when and where it
needs to be integrated can be done easily for ground-based
systems. To manufacture a functional satellite in orbit it is
likely to require research into additive manufacturing
specifically focused on that function and the environment it
operates (Figure 4-15).

Figure 4-15 Lockheed Martin’s Advanced Extremely
High Frequency Communications Satellite

manufactured with additive processes on the Earth
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Source: Courtesy of Lockheed Martin Corporation.
Manufacturing spacecraft on Earth through the use of

additive manufacturing process requires developments in each
of the spacecraft subsystem areas (Prater 2019). Developments
in electronics and optical manufacture will require mirrors and
optics to be fabricated using photolithographic and surface
science techniques that will be more accurate than additive
manufacturing processes (Cooper and Griffin 2003). This will
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require transitioning all types of manufacturing processes to
the space environment.

Manufacturing in space can be conducted in a pressurized
and climate-controlled environment or provided in an
unpressurized vacuum of space. The location of the
manufacturing will be affected by the microgravity
environment will be a concern and the vacuum and thermal
environment will need to be considered when understanding
the physics of additive manufacturing processes such as
casting, welding, and printing. Electron beam processing has
been developed for use in high vacuum environments. It is an
energy source that can be adapted to melt and fuse materials
and could be useful in the space environment (Bagwell 2018).

The current technologies used on Earth that thrive in
vacuum will require further study to understand the effect of
zero-gravity or microgravity on manufacturing processes and
the properties of the manufactured article (Cooper and Griffin
2003). In the absence of gravity, surface tension forces become
dominant forces of system function and processes that rely
on the control of fluid or flow conditions will need further
understanding. Reduced gravity environments will affect
processing parameters and functional integrity of the
manufacturing item or system (Marsh 2018).

The lack of gravity will affect the design of handling and
support systems for products. Earth based processes all
function at 1g within thermally controlled environments.
Also, zero/micro gravity environments generate floating debris
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that has the potential to interfere with the manufacturing
process (Moraguez et alia 2019). However, new drives will have
to be designed to avoid debris damage and to integrate robotic
interactions with manufacturing processes in the absence of
gravity to constrain manufactured parts/systems. Microgravity
environments might create new opportunities for improving
manufacturing systems and processes (Moraguez et alia 2019).

Thermal environments in space include a lack of convection
currents that will affect the processes of manufacturing that
will be subjected to the thermal loads of solar, albedo (measure
of the diffuse reflection of solar radiation out of total solar
radiation), and the Earth’s infrared during orbit (Kurk 2017).
The operation and performance of manufacturing systems
including dimensional accuracy of the product/system will be
affected. Shielding may have to be of paramount importance
for such operations in space (Huebner 2018).

The creation of stable in-space manufacturing platform is
needed to survive and operate in the space environment. The
ISS provides a platform for the development of manufacturing
processes in a space-based environment. ISS also has a materials
science aspect that allows physics-based manufacturing to take
place and can be validated too (Norfolk 2018). Clearly, the
existence of the ISS is important to the further development
of manufacturing in space, but a lunar manufacturing base
would provide the economies of scale needed to explore and
mine ores on planets such as Mars.

Manufacturing in space is far more of a systems engineering
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issue compared to manufacturing on Earth (Boling 2019). The
supporting infrastructure and environments are not trivial in
space compared to Earth and there is a much greater reliance
on reusing, recycling, and remanufacturing scarce resources.
The circular economy is considered vital to developing any
manufacturing system in space and its importance on Earth
and in space cannot be overstressed.

Manufacturing in Space and the Circular Economy
Circular versus linear economic model
The current linear consumption model practiced on Earth

is one of raw material extraction, production, use, and disposal
dominates the global economy. Today, we clearly see that this
linear model has led to serious unintended global
consequences from resource depletion to global waste,
spanning all industrial sectors, from plastics to the built
environment. In the current linear economic model, we take,
make, and waste products. In contrast with the ‘take-make-
waste’ or linear model is the circular economy. The ideas
behind the circular economy include keeping products in use,
eliminating waste and pollution by design, and aiming to help
nature.

In some industries, such as automobile production and
commodity aluminum products, circular design principles
have been successfully introduced, while in others such as
plastics products or the built environment, progress towards
circularity has been painfully slow. For example, the growth in
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the construction sector to house our growing population leads
to extraction of construction minerals exceeding 10 billion
metric tons annually, and the construction industry alone
could be responsible for up to 60% of the remaining carbon
budget (Muller, 2013). This industry currently favors the use
of products such as composite wood materials that do not
degrade such that 38 million tons are landfilled annually in
the US alone (U.S. EPA, 2015; Fischer-Kowalski, 2011). In
contrast to linear models, circular economy (CE) aims to
decouple economic growth from resource consumption by
cycling products and materials back into production, either by
returning materials to generate new products, or by releasing
benign substances to the environment through degradation.
CE principles are based on the efficient use of resources and
eliminating waste from product life cycles; a truly circular
economy keeps material in continuous use by design. The
overall adoption of CE principles has been incremental at best
– especially in the US – because the market fails to account
for externalities (i.e., full environmental costs) and owing to a
lack of truly circular designs to replace conventional analogs
(EMF, 2017). Bocken (2016) states that CE product design is
underpinned by closing and slowing resource loops. Closing
resource loops involves either creating products and
components that can be easily and safely absorbed by the
biosphere or creating items that while they cannot be released
to the ecosystem, can be easily recycled to high value uses. As
such, closing loops involves: (a) design for a biological cycle, (b)
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design for a technological cycle, and (c) design for disassembly
and reassembly. Designing for slowing resource loops includes
design for longer life and product life extension. In the design
for longer life, one aims to create more robust products with
longer viable service lives, while also creating designs to which
consumers become emotionally attached. Product life
extension can be achieved through several strategies: (a) design
for ease of maintenance and repair, (b) design for upgradability
and adaptability, (c) design for standardization and
compatibility, and (d) design for dis- and re-assembly.

Circular economy versus sustainability
A circular economy, as defined in the Save Our Seas 2.0 Act,

refers to an economy that uses a systems-focused approach and
involves industrial processes and economic activities that are
restorative or regenerative by design, enable resources used in
such processes and activities to maintain their highest value
for as long as possible, and aim for the elimination of waste
through the superior design of materials, products, and
systems (including business models). It is a change to the
model in which resources are mined, made into products, and
then become waste. A circular economy reduces material use,
redesigns materials to be less resource intensive, and recaptures
“waste” as a resource to manufacture new materials and
products.

A framework is developed to present CE in Figure 4-16
that intends to identify and segregate CE from its surrounding
ecosystems similar to a framework used by Nobre (2021). The
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framework, inspired by the 5W1H concept – What, Where,
Why, When, Who and How, allows readers to separate the
main research objective – “what is CE?” – from “why it is
important”, “where it applies to” and “how it can be
implemented”. Ellen MacArthur’s ‘Butterfly’ circular
economy system diagram in Figure 4-16 illustrates the
continuous flow of technical and biological materials through
a circular economy. The closed loop paradigm has started to
garner even more attention now that the United Nations
(UN) has integrated CE practices to achieve its Sustainable
Development Goals (SDGs) by 2030.

Figure 4-16 Circular economy definition framework

Source: United Nations (UN) has integrated CE practices
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While the terms ‘Circular Economy’ and ‘Sustainability’ are
increasingly gaining traction with academia, industry, and
policymakers, the similarities and differences between both
concepts remain ambiguous. The Brundtland Commission
provided the most commonly accepted definition of
sustainability as “development that meets the needs of the
present without compromising the ability of future
generations to meet their own needs” (Brundtland, 1987).

The most noticeable work on CE has been by the Ellen
MacArthur Foundation. The Foundation acts as a
collaborative hub for businesses, policy makers, and academia.
The CE concept has gained traction with policymakers,
influencing governments and intergovernmental agencies at
the local, regional, national, and international level. Germany
was a pioneer in integrating the Circular Economy into
national laws, as early as 1996, with the enactment of the
“Closed Substance Cycle and Waste Management Act” (Su et
al., 2013). This was followed by Japan’s 2002 “Basic Law for
Establishing a Recycling-Based Society” (METI, 2004), and
China’s 2009 “Circular Economy Promotion Law of the
People’s Republic of China” (Lieder and Rashid, 2016).
Supranational bodies have also incorporated circular economy
concerns – most notably the EU’s 2015 Circular Economy
Strategy (European Commission, 2015).

The modern understanding of the term Circular Economy
seems to have emerged more recently than that of
sustainability. While the Circular Economy is traced back by
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EMF (2013) to different schools of thought like cradle-to-
cradle and industrial ecology, the concept of sustainability is
considerably older (Mantel, 1990) and was institutionalized
by environmental movements and supranational bodies,
especially after the publication of the Brundtland report in
1987. Table 1 summarizes the identified differences between
the two concepts of Circular Economy and Sustainability.

Applying the circular economy in space
According to a well-known OECD’s definition, the space

economy “comprises a long value-added chain, starting with
research and development actors and manufacturers of space
hardware (e.g., launch vehicles, satellites, ground stations) and
ending with the providers of space-enabled products and
services to final users” (OECD, 2007, online).

The traditional approach to space industry was to divide
the sector into two segments: one upstream, which includes
launch systems, ground operations and satellite manufacturers
and the other downstream, related to all providers of satellite
communication services to the consumers (OECD, 2007).
This distinction, which came into existence in the 1990s
during the marked increase in the commercialization of
satellite services around the world, is still popular, irrespective
of the fact that the sector itself has moved on both for turnover
and as a paradigm jump. The space industry went through a
cycle development, each of which presenting widely different
characters and actors (OECD, 2016, 2019). Cycle 4
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characterized by both the popularization and the globalization
of space has seen the emergence of a different kind of
downstream activities, mainly handled by private companies
and supported by the on-going digital revolution, has now
been completed. The new Cycle 5, started in 2018 and
expected to last until 2033, will be determined by an ever-
increasing availability of data, and, among other things, by the
widespread adoption of CE principles. Cycle 5 is characterized
by growing uses of satellite infrastructure outputs; global
monitoring; new space activities; and robotics missions
(Paladini, 2021).

Paladini et al (2021) propose a framework integrating
circular economy, Space Sector, and Industry 4.0. The
cornerstone of Industry 4.0 conceptualization mandates that,
while its nine innovation-enabler fundamental pillars ((i.e., Big
Data & AI, Horizontal &Vertical Integration, Cloud
Computing, AR, IoT, Additive Manufacturing and 3D
Printing, Autonomous Robot, Simulation, Cyber-Security
(Russmann et al., 2015)) make smart systems possible, it is
only when they are all used together that Industry 4.0
unleashes all its potential (Sap, 2020; Haskel and Westlake,
2018). Space system Cycle 5, has already brought a series of
new actors on the world scene and a different set of procedures
at all levels, taking the sector away from the traditional
upstream and downstream divide and steering it toward a
different configuration, in an increasingly overlapping series
of value chains whose potential for spillovers to other sectors
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are far higher. The adoption of incremental technologies,
including data analytics, additive manufacturing, and
robotics, had the net effect of reducing those material costs
and production times, changing dramatically the way both
private and public operators plan their missions. In one of
the trends that is certainly going to keep growing is the way
private process innovators are changing the sector, followed by
the incumbents, especially in additive manufacturing (Russell,
2017; EOS, 2016) already identified as one of the cardinal
points of CE applications to industry. Space X’s reusable
rockets and adaptation of experiences and data from high-
volume industries (Space X, 2021; OECD, 2019), such as the
automotive industry, are just the beginning.

Other innovations that have already made their appearance
in the area of space manufacturing includes extensive 3D
printing (e.g., Space X rockets and RocketLab engines), a
growing reliance on ‘off-the-shelf’ components within supply
chains, and the Cubesat revolution of low-cost and low-
impact satellites, which have become the tool of choice of small
organizations and educational institutions.

Applying circular economy principles in space for
manufacturing

• Efforts in the US

NASA’s In-Space Manufacturing (ISM) project seeks to
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develop the materials, processes, and manufacturing
technologies needed to provide an on-demand manufacturing
capability for deep space exploration missions. The ability to
manufacture, repair and recycle some parts on demand rather
than launch them from earth has the potential to reduce
logistics requirements on long duration missions and enhance
crew safety.

ISM can provide on-demand fabrication, repair, and
recycling for critical systems, habitats, and mission logistics
and maintenance (both in-transit and on-surface). This can
provide cost savings by decreasing launch mass. Risk is reduced
by decreasing the need for pre-produced spares and/or over-
designing systems for reliability. ISM is developing these
capabilities by using new technologies being developed
terrestrially and modifying them for use in the space
environment.

In-Space Manufacturing shows immense potential to
achieve gains in logistics reduction by (a) reducing the number
of spare parts and orbital replacement units which much be
up massed and (b) enabling the recycling of materials which
would otherwise be nuisance materials (scrap/trash) or
consumables (Owens, 2016; Owens, 2017). The “make it,
don’t take it” philosophy represents a fundamental paradigm
shift from traditional logistics models, which rely on the
change out of orbital replacement units (stowed on the ISS)
rather than repair of a unit at the component level. The
implementation of ISM on future space mission thus depends
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on design of exploration systems which are accessible and
intended to be repaired rather than simply changed out with
an identical full-scale unit stored on-orbit.

The work under the recycling/reuse component of the In-
Space Manufacturing portfolio focuses on reuse of plastics and
packaging materials through (a) manufacturing technology
development for (i) recycling and (ii) printing with recycled
materials and (b) development of materials which are intended
to be reused and recycled.

• Efforts in the EU

European Space Agency (ESA) is looking to foster the
implementation of a ‘circular economy’ in space by recycling,
refurbishing, repurposing, and reusing by 2050. In this
case, a circular economy means “ensuring long-term orbital
sustainability through in-orbit servicing.”

The first step toward these goals has been taken through
a series of ESA studies carried out with European industry
under the umbrella title of ‘On-Orbit Manufacture, Assembly
and Recycling’ (OMAR). These studies identified some key
advantages that this revolutionary new space ecosystem could
have, including:

• Reduction in launch mass by taking advantage of
material, equipment or even entire assets that are already
in orbit.
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• Reduction in raw materials that are required to be
extracted on ground by recycling critical raw materials
that are already in orbit.

• Decrease in development times as the assets can be
developed and tested directly in orbit.

• Development of key technologies and capabilities that
currently cannot be achieved because satellites are
constrained by the dimensions and capabilities of
launchers.

To transition from OMAR studies to a circular economy, the
Agency is considering presenting a proposal at the ESA
Ministerial Council (end-2022) to place contract(s) with
service provider(s) and customer(s) to perform In-Orbit
Servicing covering some or all services listed below:

Cooperative Attitude and Orbit Control System (AOCS)
takeover: lifetime extension for a customer spacecraft by
providing the needed propulsion/actuation capabilities.

Assembly: Assemble, manipulate and/or disassemble (take
apart) spacecraft parts from or into a satellite/vehicle.

Refurbishment: Rehabilitation or servicing of a spacecraft
by replacing current aged or non-functional parts by new,
equivalent ones.

Manufacturing: Manufacturing of spacecraft parts in orbit
starting from raw material and/or basic components coming
from Earth and/or from in-orbit recycling.
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Refueling: Re-supply of propellant to a spacecraft already
in space.

Future Possibilities
The future possibilities associated with manufacturing in

space are tremendous and varied including planetary mining
and manufacturing, asteroid mining and manufacturing, and
manufacturing in orbit around planets and satellites of
planets. The challenges are great and a great deal of
understanding the physics of manufacturing processes is
needed in addition to the integration of systems to minimize
waste and effort. The space environment allows us to develop
materials that cannot be made on Earth owing to gravity or
environmental constraints. There is a vast amount of
knowledge that we simply do not know about manufacturing
in space environments that will occupy the minds of young
scientists and engineers for decades to come.

Questions

1. Describe the concept of ‘manufacturing in space’.
2. How does the microgravity environments affect the

structure of materials and how they are manufactured
into parts, components, systems, and sub-systems?

3. What are manufacturing standards and how are they
harmonized?

4. Describe the type of equipment used on the
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International Space Station (ISS) to study the effects of
microgravity on the properties of materials.

5. How does ‘Circular Economy’ fit into the concept of
sustainability?

6. What are the three pillars of sustainability? What
happens when only two out of the three pillars are
achieved?

7. How is circularity applied in the space sector?
8. Compare and contrast the US’s and the EU’s circularity

efforts in the area of manufacturing in space.
9. Why is manufacturing in space different to

manufacturing on Earth? Compare and contrast the
differences.

10. Why is the application of systems engineering principles
critical to manufacturing in space?
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(MCCREIGHT)

Student Objectives
Students will discuss, analyze and study:

• the nature of critical infrastructure and its various
subsystem elements today

• the impact of space-based platforms and technology on
critical infrastructures

• the significance of selected space related technologies on



the operational integrity of critical infrastructures and
their relevant cyber vulnerabilities

• Potential threat indicators related to space-based
platforms after 2023

• Security and risk management issues involving the
protection and safeguarding of critical infrastructures
from space-based threats as well as expected future
challenges

Background
For well over 20 years, we have consistently recognized the

existence of critical infrastructures which undergird our
nation, its security, its economy, and overall operational
integrity. The variety and number of Critical Infrastructures
[CI] is significant and subject to modification and expansion
based on an objective assessment by national governments of
those essential systems which sustain the national security,
societal stability, and economic wellbeing [such as clean water
and reliable energy] of the nation safeguarding its cohesion and
daily operation. Simply put, most modern societies in the 21st
century would collapse and fail without reliable CI.

The original list of critical infrastructures outlined in 6 USC
671 in 2002 by language contained in the ‘Critical
Infrastructure Protection Act’ includes a vague reference to “.
any component or bureau of a covered Federal agency that has
been designated by the President or any agency head to receive
critical infrastructure information. (CISA, 2002) Today the
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broad term symbolizes distinct areas of activity, enterprise and
industrial operations which support and guarantee everyday
life in the nation. For example, critical infrastructures [CI]
encompass energy systems, water and wastewater systems,
agriculture and food supply systems and telecommunications
to identify just a few. Moreover, it has been clearly established
an emphasized that these critical infrastructures are essential to
both national and homeland security despite ample evidence
that the sheer reliability, performance, operational demands,
and risks for each system is distinct in many case while
uniformly vulnerable in others.

What is of paramount security interest is assessing the
various space-based platforms [seen as distinct potential
weapons systems with disruptive capabilities] and gauging
their impact on critical infrastructures as they may retain the
potential to nullify and adversely affect the normal operations
of CI systems especially after 2023. We must recognize that
space-based systems and platforms retain their own inherent
vulnerabilities apart from the supporting role these orbital
systems play in sustaining ground level CI systems. Exploiting
space platforms as legitimate targets themselves, when
combined with their pivotal role in sustaining certain CI
systems, means the layers of security must envelop both
aspects. Understanding this emerging security risk and
enduring challenge will tax the national and homeland security
enterprise in ways unexpected. The special risks arising from
cyber intrusions on space systems merits a closer look. This
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offers an additional vulnerability for space systems apart from
ASAT [anti-satellite weapons], directed energy systems,
particle beam weapons and lasers to name a few.

Space systems are usually divided into several technological
and operational segments, which are responsible for different
functions and components all vulnerable to cyber intrusion
to some degree. Together Ground Stations, Mission Control
Centers, Ground Networks, Remote Infrastructure, and
Launch Facilities work together to enable management of
spacecraft, payload data, and telemetry. Most often exposed
to different cyber threats are the ground segment, the space
segment, and the link segment. Each segment presents its own
unique vestiges of cyber risk and vulnerability. (Weigel, n.d.)

The ground segment consists of all the ground elements
of space systems and allows command, control and
management of the satellite itself and the data arriving from
the payload and delivered to the users. Due to their role in
collecting data, the ground stations and terminals are exposed
to the threat of cyber espionage from states and non-state
actors. Moreover, the military aspect of satellites and their
importance to national security render them prime targets for
hostile takeover, disruption, and shutdown. Most cyberattacks
on the ground segment exploit web vulnerabilities and allow
the attacker to lure ground station personnel to download
malwares and Trojans to ground stations’ computers.
Infiltrating the ground station’s network can allow the
attackers to access the satellite itself. Hostile access could
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enable the attacker to execute a Denial of Service (DoS) attack
and may involve taking over Industrial Control Systems (ICS)
in order to control the satellite and damage it.

The space segment consists of the satellites themselves.
Major security gaps within satellites’ architecture exist in both
old and new satellites. Old satellites with life spans of decades
were built with no awareness for cyber security; today, small
satellites manufacturers tend to prioritize fast and cheap
production, in which the investment in cyber security is
perceived as a hurdle. Cyber threats to space segments usually
derive from vulnerabilities in ground stations, in network
components, and in the receivers which receive the data from
the satellite, thus allowing the attacker to infiltrate to the
network and remain undetected. Another threat may involve
the introduction of a malware into the satellite’s hardware in
the supply chain, in order to compromise ground units at a
later stage. Consequences of cyberattacks on satellites could
also be aggravated due to the rising connection and use of
Internet of Things (IoT) devices. An attack on a
communication satellite could cause wide disruptions to
communication channels across countries, cause panic, and
endanger national security.

The link segment consists of the signal transmission
between the satellite and the ground station, as well as between
satellites. The most common threat is GPS jamming. As GPS
systems rely on radio signals sent from the satellite in order to
determine the location of the users, GPS jammers send signals
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over the same frequency as the GPS device, in order to override
or distort the GPS satellite signals. GPS jammers are widely
accessible and cheap to purchase, rendering them available also
to poorer state-actors. In November 2018, Russia was
suspected of disrupting GPS signals in northern Norway and
Finland as the two nations participated in NATO’s Trident
Juncture exercise. Another type of attack is ‘spoofing’ – faking
signals by broadcasting incorrect GPS signals, structured to
resemble genuine ones. Spoofing is harder to carry out than
jamming, but if executed effectively, can be much more
dangerous, mainly because the victims do not necessarily know
that they are being spoofed. According to a 2017 US Maritime
Administration report, the GPS systems of at least 20 ships
were spoofed, leading the ships 32 kilometers inland to the
Gelendzhik Airport in the Black Sea, away from the original
destination. The incident raised assumptions among experts
that Russia had been experimenting new GPS spoofing
techniques as part of its electronic warfare capabilities. While
some experts define jamming and spoofing as physical threats
as they involve disrupting or tampering with frequency
signaling, an attacker could also intercept unencrypted satellite
traffic. (Wechsler, 2020)

Critical Infrastructure, [Ci] A Foundational Achilles
Heel, Today and Tomorrow

The Department of Homeland Security has defined,
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categorized, and described what critical infrastructure [CI]
means and includes a list of essential systems as of 2022 in
various official documents including the National
Infrastructure Protection Plan [NIPP]. What is just as
important is the list of current, as well as potentially relevant
other critical infrastructures, which provide the secure
operational backbone of our nation’s economy, societal
wellbeing, and security. For the last two decades each of the
enumerated CI systems have been studied and evaluated to
discern their fundamental operational requirements, system
strengths, vulnerabilities, maintenance issues and security
aspects. Each distinct CI system is reviewed and administered
via the Department of Homeland Security [DHS] and there
have been some interesting studies since 2002 which drew
attention to significant operational and security issues. For
example, via the National Critical Infrastructure Prioritization
Program, the DHS oversight agency known as the
Cybersecurity and Infrastructure Security Agency (CISA) is
required to identify a list of CI systems and assets that, if
destroyed or disrupted, would cause national or regional
catastrophic effects.

Back in 2007, for example, GAO found that certain CI
control systems faced increasing risks due to cyber threats,
system vulnerabilities, and the serious potential impact of
attacks as demonstrated by reported incidents. Threats can
be intentional or unintentional, targeted or nontargeted, and
can come from a variety of sources. Control systems are more
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vulnerable to cyber-attacks than in the past for several reasons,
including their increased connectivity to other systems and
the Internet. Further, as demonstrated by past attacks and
incidents involving control systems, the impact on a critical
infrastructure could be substantial. Control
systems—computer-based systems [such as SCADA-
Supervisory Control and Data Acquisition] ] that monitor
and control sensitive processes—perform vital safety and
operational reliability functions can be found in many of our
nation’s critical infrastructures such as electric power
generation, transmission, and distribution; oil and gas refining;
and water treatment and distribution. The disruption of
control systems could have a significant impact on public
health and safety, which makes securing them a national
priority. Subsequent studies and objective evaluations have
identified other similar issues. (GAO, 2007)

CI systems have been known to be sensitive to solar storms,
targeted terror attacks, and EMP explosions in addition to
their cyber weaknesses. In a recent 2022 GAO report CI
stakeholders identified cyberattacks as among the most
prevalent threats they faced but said that the program’s list
was not reflective of this threat. Further, according to CISA
data, since fiscal year 2017, no more than 14 states (of 56 states
and territories) provided updates to the program in any given
fiscal year. Ensuring that its process for determining priorities
reflects current threats, such as cyberattacks, and incorporates
input from additional states would give CISA greater
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assurance that it and stakeholders are focused on the highest
priorities. Here, with high emphasis on protecting various CI
systems against cyberattack, EMP or terrorist intrusion GAO
found three major sectors had adopted cyber defense strategies
while others were mired in various stages of adoption or
implementation. The chart below illustrates one dimension
of the cyber risk issue as GAO depicted it. [GAO
Report-105102, Adopting Cybersecurity Frameworks in
Critical Infrastructure, Feb 2022] (Sharon, 2022)

Figure 5-1 Status of Cyber Security Framework
Adoption by Critical Infrastructure Sector

Source: (GAO-22-105103, 2022)

According to CISA officials, a National Critical Functions
framework established in 2020 was intended to better assess
how failures in key systems, assets, components, and
technologies may cascade across the 16 critical infrastructure
sectors. Examples of critical functions are shown below in
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CISA’s four broad categories of “connect” (nine of the 55
functions), “distribute” (nine), “manage” (24), and “supply”
(13). Cascading systems failures and disruptions are especially
significant from the standpoint of ensuring continued reliable
and secure operations and the inherent risks that system
collapse in one area triggers failure to other CI systems.
Cascading collapse or failure in one CI system can adversely
affect others. Traditionally, this cascading risk has most often
been assigned to the energy grid. This chart illustrates the
CISA scheme for arraying National Critical Functions
(GAO-22-104279, 2022)

Figure 5-2 CISA Should Improve Priority Setting,
Stakeholder Involvement, and Threat Information
Sharing

Source: (GAO-22-104279, 2022)
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CISA is currently carrying out a process to break down each
of the 55 national critical functions (such as “supply water”)
into systems (such as “public water systems”) and assets
(including infrastructure such as “water treatment plants”. In
addition, the cascading shutdown dynamic which refers to
energy loss triggering other dependent CI systems failing
cannot be overlooked. This is a long, complex analytical
process but includes consideration of selected factors deemed
to place earth-based CI systems at greatest risk. These include

• Solar storms and geomagnetic waves [errant asteroids]
• Electromagnetic Pulse [EMP] weapons
• Terrorist attacks [physical or cyber]
• Insider threats/sabotage [criminal activity]

Today we must consider other potential threats to normal CI
operations beyond that short list. That would include the
emergence of sophisticated space-based weapons platforms
which, depending on their inherent capabilities, could cripple
or destroy selected CI systems. This would include space
platform failures to protect friendly CI systems as well as
hostile space-based attacks on CI. Before outlining these
space-based threats, a routine inventory of CI systems is
needed first. Here are the identified 16 CI systems which, as
of 2021, CISA and DHS regard as bedrock value to homeland
security.

In 2022, the specific array of diversified CI systems which
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DHS officially recognizes, and which are central and pivotal
to our national and homeland security include the following
major areas:

-Chemical/Petrochemical and Natural Gas Processing
Facilities

-Energy systems and Energy producing organizations
-Nuclear Reactors/Nuclear Waste management
-Commercial/Business organizations and corporate

enterprises
-Public Telecommunications/Internet Management/Voice-

Phone-Data
-Defense Industrial Base [equipment/finished weapons

systems, research & development, etc.]
-Critical Manufacturing organizations
-Dams, levees, flood control and seawall barriers
-Emergency Services Sector
-Public Health systems
-Food Supply/Agriculture
-Transportation/Trade/Shipping/Maritime and Port

Security
-Financial and Economic Transfer services
-Key Government agencies and facilities
-Information Technology/Cyber Systems
Each distinct system has its own functional characteristics,

operational norms, requisite technological and resource
requirements, and aspects which raise issues of security and
assured stability of continued performance in normal
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situations. Too often we reckon with calculated irony that
every conceivable crisis scenario and set of demands affecting
each CI system cannot be effectively deterred or nullified in
all scenarios or circumstances. Clearly, those systems which
are reliant on dependable energy sources and uninterrupted
cyber and information/telecommunications technologies are
most likely to require more robust and redundant security
safeguards than other CI elements because they undergird and
support the others. For example, the safety, security, and
operational control systems which support and manage the
daily activities of chemical plants rely heavily on reliable
electric power and related energy sources to maintain the
integrity of their various programs and functions. The photo
below demonstrates just one small aspect of this CI system
where safe and secure storage of finished and unblended
chemicals enables the chemical industry to perform its
ordinary work. (Nichols & Mumm, 2020)

Figure 5-3 Chemical Facility Storage Tanks
[DHS-2018]
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Source: (Primary) (GAO-20-453, 2020)

So, one paramount security issue to ensure the smooth and
reliable functioning of CI systems is their ultimate reliance
on energy regardless of threat, disruption, or extended crisis.
External threats to that energy source where sporadic or
reduced energy loads, or indefinitely cancelled energy supplies,
jeopardize continued operations indicates a prime area where
special protective measures, security system safeguards and
threat nullification measures are needed. In many cases these
adaptive security safeguards must be devised, engineered, and
developed to fit the unique operational requirements of the
specific CI system needing an upgrade.

CI systems reliant on consistently reliable cyber
connectivity must also be considered. Earlier in 2022 Congress
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passed the Cyber Incident Reporting for Critical
Infrastructures Act [CIRCIA] which marks an important
milestone in improving America’s cybersecurity. While law
does not eliminate all cyber risks and concerns it recognizes in
our modern complex society is the ever-present risk of cyber
warfare designed to disable and weaken an adversary prior to
an all-out attack. The primary worry in a surprise cyber-attack
is that there will be collateral damage to the critical
infrastructure of allied and friendly countries not directly
involved in the current conflict.

Today, services such as healthcare systems, power grids,
transportation and other critical industries are increasingly
integrating their operational technology with traditional IT
systems in order to modernize their infrastructure. As such,
these CI systems are open to a new wave of covert cyberattacks
many of which are largely undetectable or preventable . The
continuing conundrum of designing effective cyber deterrent
measures and technologies against future cyber threats further
complicates this risk terrain and makes estimations of evolving
jeopardy to our own vulnerable cyber systems where AI and
quantum may be involved is very serious.

While many businesses have ramped up their security
initiatives and investments to defend and protect their own
commercial interests, their efforts involving security upgrades
and protective measures have been piecemeal, reactive, limited
and lack uniform business context across all enterprises large
and small. Further the digitalization of critical infrastructure,
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coupled with increased dependence on third parties, has made
it vulnerable to ongoing cyberattacks across multiple vectors
in a global network of shared communications. Supply chain
attacks are becoming increasingly commonplace with several
critical infrastructure businesses being compromised as
collateral damage is inflicted or they become crippled by
targeted ransomware attacks. These companies in various sizes
now must monitor and manage employee workforce risk,
third, fourth, criminal dark web intruders and other parties
(not just their vendors, but their partners and suppliers’
networks, too), where the native technology stack, compliance,
and regulatory frameworks, including internal policies and
processes may be flawed or porous.

Vulnerabilities to cyber intrusion are several and experts
agree those CI systems most at risk include energy, water, food
supply, transportation, finance, and healthcare systems that
are needed every day for national survival. Safeguarding these
interconnected systems is crucial to assure national and
homeland security against a daily onslaught of cyber probes
and threats. The ability to disable and deny access to any of
these resources is a massive threat to any country’s economy
and its continued security and stability. Worse, cyber
intrusions open the door to an attacker gaining control over
space systems and networks, which could have devastating
consequences. That attack could come from foreign enemies
as well as determined terror groups.

Again, the energy grid in particular has often exhibited a
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frailty owing to risks of external cyber intrusion and influence.
Fundamentally the energy grid, and all the other related CI
systems which it supports, is the prime CI concern to achieve
the highest reliability assurance possible against disruption,
breakdown, and system loss. The energy grid is complex and
diversified reflecting variety of designated zones for daily
service. Extra high voltage (EHV) transformers are critical
components of our nation’s backbone transmission grid.
Approximately 90 percent of consumed power flows through
the transmission grid and through such a transformer. These
EHV transformers are very large, challenging to transport, and
often have lengthy procurement times of one year or greater.
There integral subcomponents include circuit breakers;
isolators;– instrument transformers; surge arresters; neutral-
earthing reactors; current-limiting reactors;

shunt reactors and capacitor banks all of them vital to secure
continuous operations involving many EHV substations
which may have several configurations (topologies), depending
on continuity requirements, as well as the reliability and the
quality of power supply. (electricaltechnology, 2018)

In addition to federally sponsored efforts many State and
local entities have taken the initiative towards proactively
assessing, prioritizing, and managing threats. Resources and
options for investing incremental budget increases among all
CI sectors is always constrained by shifting priorities. Both
public and private sector organizations can share information
and cyber defense best practices in critical infrastructure
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communities of interest, such as CISA’s Information Sharing
and Analysis Centers. There are also many popular
commercially backed exchanges where information can be
shared specific to critical infrastructure threats. Cyber risk
quantification, backed by sound data science principles, has a
unique opportunity to help mitigate and solve this challenge.
Two key steps involve information and technology
management best practices, to include network segmentation,
multi factor authentication, network access control, etc.
Organizations also need to implement quantitative risk
management, ensuring they are able to properly assess,
prioritize, and manage their relative cybersecurity risks. (CISA,
2022)

(CISA) conducts specialized but voluntary security and
resilience assessments on the CI systems to assist CISA and its
federal, state, local partners—and private industry—to better
understand and manage disruptive CI risks. The assessments
examine infrastructure vulnerabilities, interdependencies,
capability gaps, and the consequences of their disruption.
Vulnerability assessments, combined with infrastructure
planning resources developed through the CISA sponsored
Infrastructure Development and Recovery program forms an
integrated planning and assessment capability. This suite of
capabilities, methods, and tools support the efficient and
effective use of resources to enhance critical infrastructure
resilience to all hazards
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Because most U.S. critical infrastructure is privately owned,
the effectiveness of CISA assessments depends upon the
voluntary collaboration of private sector owners and
operators. CISA’s Protective Security Advisors (PSAs) work
collaboratively to foster and facilitate technical assistance to
buttress of the security and resilience of the Nation’s critical
infrastructure. Assessments are offered through the PSAs at
the request of critical infrastructure owners and operators and
other state, local, tribal, and territorial officials. The question
is—what else about CI systems interacting with space-based
platforms signals a security concern?

A Brief Excursion into Cyber/Satellite Attacks on CI
Several CI systems exhibit a degree of vulnerability to cyber/

space systems intrusion and disruption. For example, nuclear
plants are composed of an impressive number of components
such as SCADA/ICS, sensors and legacy systems that could be
hit by a hacker. The most popular case of a cyber-attack was
against a nuclear plant launched in 2010 . Known as Stuxnet
the attack involved malware developed by experts from the US
and Israel with the intent of destroying or disabling the Iranian
nuclear program. Hackers hit the plant of Natanz in Iran in
2010 interfering with the nuclear program of the Government
of Teheran. The Stuxnet targeted a grid of 984 converters, the
same industrial equipment that international inspectors found
out of order when visited the Natanz enrichment facility in
late 2009. IAEA inspectors noted, “The cyber-attack against
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the Cascade Protection System infects Siemens S7-417
controllers with a matching configuration. The S7-417 is a
top-of-the-line industrial controller for big automation tasks.
In Natanz, it is used to control the valves and pressure sensors
of up to six cascades (or 984 centrifuges) that share common
feed, product, and tails stations’. Stuxnet was designed with a
number of features that allowed to evade detection; its source
code was digitally signed, and the malware uses a man-in-the-
middle attack to fool the operators into thinking everything is
normal. Stuxnet proves it is possible to use a malicious code to
destroy operations at a nuclear plant. Experts and authorities
confirm a continued risk of future cyber-attacks exists, also
involving satellite systems which can enable such attacks,
against Nuclear plants. (Langner, 2013)

In 2021, two Russian COSMOS satellites in orbit were
stalking a US spy satellite high above the earth. It wasn’t clear
if they could attack U.S.-245, an American surveillance
spacecraft, already in orbit. The incident passed, but it marked
a new stage in the mounting arms race in space, where
potentially bomb-armed satellites, laser-shooting spacecraft
and other ‘satellite kamikaze’ technologies have moved from
science fiction to reality. The stakes were made clear recently
when Russia launched a missile from Earth and blasted to
pieces one of its satellites in a show of force. (phys.org, 2021)

China has tested a maneuverable satellite that has
demonstrated potential anti-satellite (ASAT) capabilities
joining similar Russian efforts aimed at attacking US satellites,
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says a new study by CSIS. Recently the US used its X-37B
spaceplane to covertly launch several CubeSats that could
demonstrate its ASAT capabilities and practiced extensive GPS
jamming during several naval exercises. And India joined the
ASAT club as the fourth country to test a kinetic-kill ASAT,
while France and Japan intensified exploration of new ASAT
capabilities, according to the Center for Strategic and
International Studies (CSIS). The three CSIS studies
[2019,2020,2021] offer an analytical series which finds a major
overall increase in the ability of nation-state space antagonists
to threaten each other’s satellites, as well as an expanded
number of countries pursuing ground- and space-based
capabilities to damage or destroy satellite systems. For example,
the 2021 CSIS report says the U.S. Space Force notes that,
“military space forces should make every effort to promote
responsible norms of behavior that perpetuate space as a safe
and open environment in accordance with the Laws of Armed
Conflict, the Outer Space Treaty, and international law, as well
as U.S. government and DoD policy.” Counterspace weapons,
particularly those that produce orbital debris, pose a serious
risk to the space environment and the ability of all nations to
use the space domain for prosperity and security. (Harrison,
2021)

These reports note that China, Russia, Iran, North Korea,
India, France, Israel, UK, Japan, South Korea, all display
diverse investments and enthusiasm for increased space
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platform launches and activity while major differences exist
between them about adopting, let alone enforcing, norms
applicable to satellite systems. Other CI systems are also
clearly at risk as long as cyber avenues to their disruption are
real and ever present. In contrast to nuclear plants, the idea
that reliable access to water, especially the clean, drinkable
kind, has become yet another CI battlefield. Security experts
have noted that many national and local water and wastewater
systems are extremely vulnerable to attacks by cyber criminals.
In 2020, an unknown hacker or group of hackers was able
to gain access to the operations technology (OT) system of
a water treatment plant in Oldsmar, Florida attempting to
poison the water supply by increasing the amount of sodium
hydroxide, also known as lye, in the water from 100 parts per
million to 11,100 parts per million. The attempt was thwarted
by an operator who was able to reverse the change to the
settings before the toxic levels of the chemical reached the
water. In June 2021 NBC News claimed that a hacker
attempted to poison a water treatment plant that served parts
of the San Francisco Bay Area a few months earlier. (MaGill,
2021)

Finally, another example arising in Germany dealt with
wind turbine operators reporting a fault in the satellite
connection of their systems saying the remote monitoring and
control of thousands of wind turbines had failed. The failure
coincided with the Russian invasion of Ukraine making
German officials suspect a Moscow-led cyber-attack. Instead,
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a spokesperson for the German Wind Energy Association said
the disruption was due to the failure of the KA-Sat
communication satellite belonging to ViaSat where turbine
shutdowns appeared to be based. German wind turbine
operators first reported the remote monitoring and control
of thousands of wind turbines had failed due to suspected
collateral damage from a Russian cyber-attack on a primarily
military target. The KA-Sat network is also used by satellite
communication service provider Euroskypark. Wind turbines
in areas without mobile network coverage use satellite-
supported communication for control and remote
monitoring. Euroskypark could not be reached for comment.
(Willuhn, 2022)

Grasping Space Systems and Platforms as New Critical
Infrastructure

Today we must also confront another relevant CI system
not officially listed with those which CISA/DHS have
recognized as of 2022 but which reflect the shifting security
environment of tomorrow—is space platforms and systems.
During the recent 2022 Satellite conference, guest speaker
Peter Hoene president and CEO of SES Government
Solutions, a telecommunications services provider from
Luxembourg said ‘…we are facing incredible threats from
space-based systems,”. We must also recognize the Russia-
Ukraine conflict illustrates how crucial the commercial space
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sector, multinational satellite communications companies,
and those businesses that sell remote sensing data and images
are part of tomorrow’s armed battles. . This would also
include small businesses that supply space subsystems, launch
companies, ground-station servicers, and cybersecurity
support providers. With the successful launch of Space X
many others followed suit.

The National Geo-Spatial Intelligence Agency declared
years ago that it would buy space imagery from private sector
companies. This changed the game board significantly.
Remote sensing was once the purview of the military and spy
agencies and less secretive NASA and NOAA for Earth
observation causing the commercial space-data-as-a-service
industry to explode in significance. With it, however, is an
awareness of new threats. There is even the threat of “killer
satellites,” maneuverable spacecraft that could potentially
cripple spacecraft using robotic arms or destroy them with
kinetic force. One challenge remains inside the private sector
is the dicey question of protecting intellectual property and
patented technologies which often prevents commercial space
companies from sharing data on their respective
vulnerabilities.

War and interstate conflict must include a cyber and space
offensive dimension after 2020 knowing that states with the
ability to execute attacks in both spheres will likely do so with
impunity. The ViaSat company suffered an attack at the outset
of the Ukraine war, which according to press reports, knocked
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out users’ modems throughout Europe. With the Ukraine war
its government leaders warned of possible cyberattacks on
domestic and international satellite systems with increased
geopolitical uncertainty. Satellite systems are prone to a variety
of threats and Russia amply demonstrated that in late 2021 by
launching an anti-satellite test destroying a defunct spacecraft
using an anti-ballistic interceptor missile. Space systems are
also vulnerable to signal jamming, laser dazzling — which
blinds remote sensing satellites — and cyberattacks, both in
space and directed toward ground systems. (Magnuson, 2022)

Speaker Sam Costak, the national counterintelligence
officer for space at the Office of the Director of National
Intelligence said at the conference “While space is not
designated technically as critical infrastructure, I think we can
all agree that all of the critical infrastructure sectors rely on
space…and the commercial space industry is just continuing
to grow beyond what anybody ever thought would happen,”
Commercial space system providers must be factored into the
conversations because despite military systems used for
surveillance, reconnaissance and communication the Pentagon
uses less than 15% of the space assets orbiting our planet.
Private sector space companies are looking to invest in more
space systems if the Pentagon can provide leasing and security
assurances. Costak also said, “.the government is currently
taking steps to add space to its critical infrastructure list.”
Back in May 2021, CISA formed the space systems critical
infrastructure working group, designed to function as “a mix
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of government and industry members that will identify and
develop strategies to minimize risks to space systems that
support the nation’s critical infrastructure. (Magnuson, 2022)

In addition, a white paper released in 2021 by the
Intelligence and National Security Alliance (INSA) calls for
the formal designation of U.S. space systems as a new sector
of U.S. critical infrastructure. Developed by INSA’s Cyber
Council, the paper, Designating the U.S. Space Sector as
Critical Infrastructure, notes that space systems have become
vital to U.S. national and economic security even though
space-related assets were not considered as one of 16 critical
infrastructure sectors designated by the 2013 Presidential
Policy Directive on Critical Infrastructure Security and
Resilience (PPD-21). Space assets are now integrated into
almost all essential sectors and functions, including defense,
agriculture, transportation, energy, and telecommunications.
Designating the space sector as critical infrastructure, the
paper asserts, would enhance the resiliency of space-related
assets and thereby make these other critical infrastructure
sectors more secure. “Space-related capabilities have become
essential to both national security and economic security, yet
countries like Russia and China – which have advanced
offensive cyber capabilities and anti-satellite weapons – have
the potential to take them offline,” said Larry Hanauer, INSA’s
Vice President for Policy. “Designating the space sector as part
of the nation’s critical infrastructure would make it easier for
government organizations, the military, and commercial space
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companies to share information on threats and vulnerabilities
and thereby enhance the space sector’s resilience.” (INSA,
2021)

The space sector includes mission control, launch facilities,
more than 6,500 satellites currently in orbit, [some active and
some not] deployed by a wide range of companies and
universities engaged in advanced research & development and
technology deployment. Some experts predict the space
industry will reach almost $1.5 trillion in value by end of 2030.
Designating the space sector as the United States’ newest
critical infrastructure sector would clarify government
agencies’ roles and responsibilities in protecting it and make
clear to U.S. adversaries that the United States is committed
to defending its space infrastructure, contribute to the
establishment of global norms regarding the safety and security
of space systems, and accelerate development of best practices
and technologies for ensuring cybersecurity and resilience of
space. (INSA, 2021)

When CISA established the Space Systems Critical
Infrastructure Working Group [SSCIWG] in 2021 CISA’s
acting director Brandon Wales remarked, “The critical
infrastructure on which the United States depends relies
heavily on space systems. Increasing the security and resilience
of space systems is essential to supporting the American
people, economy, and homeland security. Secure and resilient
space-based assets are critical to our economy, prosperity, and
our national security,” He also said, “This cross sector working
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group will lay the foundation for our collective defense against
the threats we face today and in the future.” noting, “this
working group will serve as an important mechanism to
improve the security and resilience of commercial space
systems. It will identify and offer solutions to areas that need
improvement in both the government and private sectors and
will develop recommendations to effectively manage risk to
space based assets and critical functions.” (CISA, 2021)

Further at a conference in October 2021, an experts panel
discussed the need to consider space systems as part of our
nation’s critical infrastructure due to its unique technologies
and capabilities combined with its interdependence with other
critical infrastructure sectors. Dawn Beyer, senior fellow at
Lockheed Martin, was quoted saying “We’re still debating
whether space is critical infrastructure, meanwhile of all the
domains, space is the furthest behind when it comes to
cybersecurity.” Samuel Visner, technical fellow at MITRE
and member of the ISAC board of directors, noted that “Our
adversaries see space as critical to their national interest, they
see space as critical to our national interest, and frankly I think
they see it as a vulnerability to our national interest that they
can exploit.” (Bahr, 2021)

Recognizing the value of supporting and reinforcing space-
based systems which undergird CI systems is important
however, beyond that fact is the issue of increasing dependency
of CI systems on space platforms and the extent to which those
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platforms can be arrayed to target and disable CI systems as a
prelude to war or other armed conflict This is much less well
known and examined and will be the subject of discussion later
in this chapter.

Greater Dependency of CI on Space Systems Creates
New Security Concerns

Space assets require protection from extremely hostile
environments where ground-based attacks, attacks from other
space platforms, and cyber enabled attacks originating
anywhere can happen frequently and without warning. .
Attacks from cyber-space can be shown to be as harmful to
spacecraft, and to their ground-based data and support
systems, as radiation belts and temperature extremes have
always been. To the extent that certain space systems and
platforms are the targets of disruptive cyber-attacks reinforces
the notion that CI systems are also in some indirect jeopardy
from those cyber probes. Some examples years ago of
adversarial cyber activity against space assets found in the open
literature include:

–“On July 23, 2008, Landsat-7 experienced 12 or more
minutes of interference. The responsible party did not fulfill
all steps required to command the satellite.”

— “On October 22, 2008, Terra EOS AM-1 experienced
nine minutes of interference. The responsible party fulfilled all
steps required to command the satellite but did not do so.”

–“On June 2012, a Romanian national known as ‘Tinkode’
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pleaded guilty in Romanian court to charges of illegally
accessing numerous NASA systems as it seems the Pentagon,
the Romanian government, and U.S. commercial entities were
also involved in the case

In 2014 the Director of National Intelligence wrote in
particular about space: “Threats to US space services will
increase during 2014 and the decade beyond as potential
adversaries pursue disruptive and destructive counterspace
capabilities’ Chinese and Russian military leaders understand
the unique information advantages afforded by space systems
and are developing capabilities to disrupt US use of space in a
conflict. For example, Chinese military writings highlight the
need to interfere with, damage, and destroy reconnaissance,
navigation, and communication satellites. China has satellite
jamming capabilities and is pursuing antisatellite systems. In
2007, China conducted a destructive antisatellite test against
its own satellite. Russia’s 2010 military doctrine emphasizes
space defense as a vital component of its national defense.
Russian leaders openly maintain that the Russian armed forces
have antisatellite weapons and conduct antisatellite research.
Russia has satellite jammers and is also pursuing antisatellite
systems.” (Byrne, 2014)

The key issue of satellite controls raises three risks that must
be mitigated: (1) the potential for an adversary to remotely
introduce a false satellite command; and (2) the potential for
an adversary to prevent the satellite operator from transmitting
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daily commands or receive telemetry from the satellite; and (3)
an adversary could wrest hostile extended control of satellite
systems from their owner/operators using cyber or related
interventions. ” Unfortunately, specific, detailed, information
about particular incidents are hard to find in the open
literature including- details describing the exact commands
issued by the adversary, or the various avenues of cyber access
to the space system environment at the time of the attack.
Worse, limited post incident forensics often make it extremely
difficult for defenders to construct a viable defense for their
own space systems. Regrettably, asserting that existing controls
will protect against current and future risks, or that all
vulnerabilities have been remedied is sometimes accepted
without reasonable supporting data. Worse, it is accepted
where the lack of data is used as proof. It is important to note
that as the cyber-threat environment changes, cyber defenses
need to be implemented or adapted to keep pace. This can only
get more complicated with the onset of quantum computers
and their unhackable attributes. Cyber-attackers of today and
tomorrow are malicious, persistent, and evolve their attacks
over time. By contrast, radiation doesn’t change the way it
attacks materials after you’ve chosen your shielding. Continual
study of changing adversarial actions with respect to the
operational needs of a mission is an important process that
must supplement the more static failure model approaches
currently prevalent in mission design. (Byrne, 2014)
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Cyber Defense architectures, designs, and mitigation
strategies must be evaluated against a range of conditions that
reflect the existing and expected threat environment and
cannot be static or adopt the ‘one size fits all’ philosophy.
Whatever verification activity is adopted it must cover at least
these attributes: [1] Range of conditions (not just single or
“best case” points); [2] Observable behaviors; [3]
Comparable observations; [4] Repeatable tests; and [5] worst
case scenarios. Test demonstrations must raise awareness that
existing fault containment zones were inadequate in providing
protections, contained gaps, or did not operate as originally
intended, to provide. Considering a normal systems assurance
lifecycle featuring development, integration & test, and
conventional operations. Tests must be robust enough to
reveal a potential security breach or an exploitable weakness in
a given system. Hopefully, these tests will help identify where
in the systems testing and demonstration phases that existing
security controls had gaps in their coverage. This is technically
tough but not impossible and consideration of using red team
penetration exercises to identify and root out weaknesses
ought to be considered.

There is also the ever-present threat to space platforms and
systems from EW [electronic warfare] technologies. This
would include identification, interception, and
characterization [friend or foe analysis] of deliberate or
unintended electronic warfare signals and pulses. These EW
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considerations would also include aspects of false targeting,
uplink or downlink interference, phantom or duplicate target
generation, faux surveillance, degrading radiation and signal
jamming. EW spoofing attacks launched via cyber
mechanisms can cause GPS receivers to provide the wrong
information about satellite position, time, and signal
coordinates. Mitigation and defense measures can include
masking, hardening and engineered deterrence subsystems.

Space and Satellite Systems and Platforms can Monitor
CI

Satellite technology plays an important role in the
monitoring of and response to infrastructure problems. For
example, heavy machinery at ground level that’s in the wrong
place where disasters or hazards occur can be identified before
major damage is done. Some examples which illustrate the
infrastructure monitoring value of satellites include:

Communications. Satellites are integral to support global
communications systems especially in a remote area or if the
client needs a redundant communications plan to avoid loss
of connection and its wide coverage radius allows connectivity
with otherwise inaccessible locations.

Optical images. Optical sensors perform like a camera
sensor capturing high resolution images for photography–or
low-resolution options–where the distance between pixels
equals more than 100 feet, while others can capture a distance
of less than three feet between pixels. However optical sensors
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can’t penetrate cloud cover or capture images in darkness since
they rely on reflected light. This makes them unreliable during
changing weather conditions and at night.

SAR images Synthetic aperture radar sensors operate on
a higher frequency in the electromagnetic spectrum versus
optical sensors. They transmit microwaves and measure
backscattered radiation that is received analyzed and pictured
as a two-dimensional image. The main advantages of SAR are
its abilities to see through cloud cover and capture images in
the dark.

Thermal images. Thermal image sensors capture infrared
radiation from the Earth using a spectrum of colors based on
temperature differences. Thermals have proven value in
monitoring power lines, but often space based spatial
resolution is much less precise than small aircraft (plane,
helicopter, or UAV), which deliver much higher resolutions.
They are also useful also in tracking changes in the
composition of the land or pinpointing sudden changes
observed around the infrastructure’s general location to
predict threats or risks which can be natural or man-made.
Some specific applications of these space systems include

Pipeline monitoring. When oil and gas pipelines are
buried 5 feet underground often, they are. vulnerable to
construction accidents which can trigger a majority of gas
pipeline failures. With well over 2 million miles of pipeline in
the world, using ground-based solutions or small-craft aerial
images is without real value and infeasible. Imaging satellites
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provide wide coverage and high-resolution alerts to companies
tracking macro changes in physical pipelines – i.e., explosions,
damaged segments, or ground movements – so that fixes can
be made quickly.

Power line monitoring Utility companies which
routinely monitor the health of power lines in their service
area or to offset risks of major downtime can use aerial images
used by companies to make decisions regarding maintenance
of power line conductors with a reported rate of 90% accuracy.
When paired with new, powerful AI image analysis software,
future decisions could become more efficient and incorporate
a high degree of automation, lowering response times.

Railway monitoring. Finding significant weaknesses or
deformation along railway tracks is crucial to reduce the
potential for disastrous consequences. SAR satellites can track
extremely precise changes over enormous distances enabling
random scanning of construction accidents quickly. SAR
satellites can identify rail gaps and deformations which merit
immediate attention. (Morgan, 2020)

Reckoning with the vulnerability of satellite
communications to cyber manipulation is critical to grasping
their contributing role in assuring CI stability of everyday
operations. GPS and related geo-location services rooted in
satellites illustrate one prime security concern. Increased
deployment of satellites have left space-based assets a target
for hackers looking to compromise sensitive information, for
terrorist, criminal or hostile nation aims with potentially
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devastating consequences. With the stakes so high when it
comes to protecting the data that satellites carry, security
cannot be an afterthought and it must play an integral part of
the design process itself.

Satellite ground technology is also advancing with more
innovation and scalability, as it looks to leverage virtualization,
orchestration, and network splicing to support 5G
connectivity. Software-defined satellites that can be
reprogrammed to move capacity based on market demands
create additional problems. With many new 5G and IoT
applications these connections open up potential doors for
hackers making satellites the new gateway. This jacks up the
requirement for smarter satellite security and protection from
hackers. There was a time when satellites seemed almost
untouchable, but today’s hackers can purchase and operate
the right equipment such as an antenna at a satellite and send
communication to it and influence its normal operations.

Security is the most significant area of technical concern
for most organizations deploying IoT systems and now 5G
networks, with multiple devices connected across networks,
platforms, and devices. This is also true for satellite, given the
size and scope, as well as the number of earth station access
points. The rise in IoT means if one single device isn’t
encrypted or the communication isn’t protected, a bad actor
can manipulate it and potentially a whole network of
connected devices. It isn’t just the devices themselves that need
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to be protected, but it is also every stage of data transmission
too.

A key first step is for organizations to understand the
vulnerabilities they have and how they can be exploited such
as legacy satellite communications that are not easily updated.
Significant testing must be completed to ensure upgrades for
communication with next-generation platforms will not
interfere or impact other key system functions. Weak
encryption and old IT equipment are key vulnerabilities for
satellite networks, which are a prime target for hackers to
exploit. So, for over 1,500 satellites in orbit today encryption
and other network security measures are essential and enable
communications to be authenticated at every stage of data
transmission between earth-bound devices and satellites. For
authentication to work as designed enabling devices must meet
compliance requirements at the networking level to safeguard
data when traveling across the satellite ecosystem.

Real-time security solutions are essential because any that
do not operate in real-time offer hackers an infiltration route
allowing them to be in and out in seconds. Satellites play
foundational roles in GPS, time validation , geolocation,
weather, traffic, ATMs, video conferencing, TV and radio,
inventory control, pay at pump gas stations, phone and
broadband, air traffic control systems, sea navigation systems,
and the vehicle navigation features used in our cars. Many
countries routinely use satellites in these primary areas:
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Intelligence, Surveillance, Reconnaissance and Remote
Sensing; Communications; Navigation and Science and
Technology. As of 2020 the array of nearly 900 US owned and
operated satellites include: 353 for Intelligence, Surveillance,
Reconnaissance and Remote Sensing; 391 for
communications; 7 for Navigation and 94 for Science and
Technology.

Figure 5-4 Competing in Space, National Air and
Space Intelligence Center. Jan 2019

Source: (NASIC, 2022)

Taking a Look at UUV/Underwater Threats to CI

It is important to recognize the additional unseen threat
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which UUV [Unmanned Underwater Vehicles] systems pose
to CI whether or not their eventual connectivity to space
systems can be verified and tested. Overall capabilities linking
UUVs with other UAV, satellite and related space-based
platforms is not beyond the scope or pursuit of finding
engineering technologies which permit operational linkages.
Here are just two examples where subtle threats to port CI and
related CI systems is within the realm of realistic risk.

[1]-China’s once-secret unmanned underwater vehicle
(UUV) may have been tested already in the strategically vital
Taiwan Strait, back in 2010. These revelations come from a
military-funded research program that was partly declassified
recently, according to the South China Morning Post. The
UUVs in question have the ability to recognize, follow, and
attack enemy submarines without human instruction and
conduct harbor surveillance. It was developed by the Harbin
Engineering University, Beijing’s top submarine research
institute. The same article also raises the possibility of a variant
of the sub that could be planted on sea floors and activated
in the event of a clash or war. The concept seems to be based
on using artificial intelligence (AI) technologies to identify and
track submerged targets, promising results better than human
sonar operators. Sonar operators still need to use their eyes
and ears to make judgments on important issues such as
identifying friendly vessels, with final decisions taken by the
captain, the article asserts. (Kongsberg Gruppen Maritime,
2021)
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[2]Threats to our critical infrastructure and vessels are on
the increase. Combat divers and now a new generation of
underwater drones, are known risk factors. These threats are
evolving and in parallel the technology required to detect,
track, and identify the threats is also evolving technology uses
active sonar elements to insanity an area and then analyses the
return signals. Typically deployed in shallow waters and with
a requirement to detect threats as far as possible, the design of
the instrument must consider carefully the challenges imposed
by confined areas, such as complex sound velocity profiles,
multipath effects, and shadow zones. The most successful
sonars use a circular transducer configuration to ensure even
coverage. The sonars track and analyze targets’ behavior to
discard false alarms. They are widely deployed today to protect
harbors, critical infrastructure, and private property. Navies
are equipping corvettes and patrol vessels to help protect their
ships, for instance while docked overseas, or to provide a
deployable detection capability. (Tena, 2019)

Spaced Based Systems as Actual Space Weapons
Threats to CI

Space is a recognized domain of future warfare and conflict.
Back in 2007, China demonstrated how space can become a
combat zone by conducting an anti-satellite mission test. The
country shot down its own weather satellite with a kinetic
kill vehicle. It was just a weather satellite – their own satellite.

324 | SPACE BASED PLATFORMS AND CRITICAL
INFRASTRUCTURE VULNERABILITY (MCCREIGHT)



Here was the unmistakable and clear message to the rest of
the world: –satellites can be destroyed from Earth, and at least
one nation can do it. Space technology and services represent
a major component of advanced societies and their inherent
infrastructure. At the same time, space technologies and
services lay in the vastly unsettled area of legislative and
institutional measures, leading to a growing ambiguity among
professional community, reunited under the concept of ”space
traffic management” (STM). STM seeks to address the
tension between governmental and private initiatives related
to the management and the coordination for space traffic, in
short, reconciling the problem of space weather phenomena,
space debris and near-Earth objects along with projected
future launches. At the same time, STM analysis also considers
the development of anti-satellite weapons and other forms of
space warfare. (Janosek, 2020) (Botezatu, 2020)

The Joint Chiefs of Staff, according to the NIPP [National
Infrastructure Protection Plan] report, has warned that space
conflict “will be intense, highlighted by satellites maneuvering
to hinder the operation of other satellites, co-orbital jamming,
and the use of ground-based lasers to dazzle or destroy imaging
sensors.” Space attacks will include the use of anti-satellite
(ASAT) weapons launched from the ground and orbiting
weaponized satellites that could create large debris fields and
possibly produce a chain reaction that would destroy other
orbiting systems. Electronic jammers and dazzlers will be used
to disrupt or impede the functioning of key satellites, such
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as GPS navigation and communications systems. Electronic
jamming, uplink and downlink attacks, spoofing, directed
energy, and lasers. (Lambakis, 2018)

Consideration of various space systems and platforms
includes reckoning with orbiting systems which have been in
their respective paths for some years as well as likely newcomers
to the crowded zones and operational areas where emerging
space weapons threats must be evaluated comparatively as
many system capabilities are covert and classified. Space based
platforms and systems which pose a security dilemma for most
CI subsystems include a variety of well-known and sometimes
vague orbiting mechanisms which merit a closer look. We
must consider a variety of space-based systems which
symbolize a range of potential threats to CI

Particle Beam systems accelerate particles without an
electric charge—particularly neutrons—to speeds nearly at the
speed of light directing them against a target. The neutrons
knock protons out of the nuclei of other particles they
encounter, generating heat on the target object. This
technology offers a “heat ray” or “death ray” option unlike
lasers, which burn the surface of a target. Instead, particle
beams penetrate hover in orbit against satellites or enemy
missile attack burning beyond the satellite’s surface to disrupt,
melt and adversely affect its interior. Such beams are immune
to measures that can deflect lasers generating enough heat to
burn a target, ignite its fuel supply, render it aerodynamically
unstable, or fry an oncoming missile’s onboard electronics.
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Particle beam weapons include both charged particle beam
(CPB) weapons and neutral particle beam (NPB) weapons.
Charged particle beams do not propagate in straight lines in
outer space because of the Earth’s magnetic field. Because of
this, their utility in the ASAT role appears limited. However,
neutral particles can propagate long, linear distances in outer
space. In late 2019 however U.S. Undersecretary of Defense
for Research and Engineering Mike Griffin recently told a
gathering of defense reporters, “We are deferring work on
neutral particle beams, indefinitely. It’s just not near-term
enough.” Griffin emphasized however that the Pentagon was
still forging ahead with research into lasers and microwave
weapons, for use by ground forces, air forces, and in space.
With regard to that development there are no guarantees that
despite what the US does, or declines to do, many hostile
military forces have rejected the idea of jettisoning this
technology or delaying its development. (Tucker, 2019)
(Nichols & Carter, 2022)

High Energy Lasers high-energy laser systems use
photons, or particles of light, to carry out military missions
and civil defense. Directed energy [DE] technology enables
detection of threats, tracking during maneuvers, and positive
visual identification to defeat a wide range of threats, including
unmanned aerial systems, rockets, artillery, and mortars. High
energy laser weapon systems work on land, in the air and at sea,
providing 360-degree coverage that protects bases, airports,
stadiums and other high-value military or civilian targets
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against missiles, and even drone swarms. Laser systems,
including coherent radiation, aligned waveform, and other
devices operating at or near the optical wavelengths, operate by
delivering energy onto the surface of the target. The gradual
or rapid absorption of this energy leads to several forms of
thermal damage. Its ruggedized packaging means it can be
used as a standalone system or rapidly installed on a variety
of military platforms. Full installation and testing on select
combat vehicles as well as helicopters has shown its operational
value.

Kinetic-Energy Weapons Kinetic-impact weapons
include a wide variety of systems which can cause structural
damage by impacting a target with one or more high-speed
densely packed masses. Small pieces of kinetic debris can inflict
substantial damage or destroy a satellite. In January 2007,
China successfully tested a direct-ascent, kinetic-kill ASAT
vehicle, destroying an inactive Chinese Feng Yun 1C (FY-1C)
weather satellite (launched in 1999). The satellite was in a polar
orbit at an altitude of 865 km (537 miles) and was attacked
when it passed over the Xichang Space Centre in Sichuan
Province. The satellite broke into more than 900 pieces,
generating more debris. The launch vehicle was probably a
mobile, solid-fuel KT-1 missile, a version of the DF-21
medium-range ballistic missile (MRBM), with a range of 1,700
km to 2,500 km, although according to some accounts it was a
KT-2, also mobile and solid fuel, based on DF-31 intermediate-
range ballistic missile (IRBM)/intercontinental ballistic
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missile (ICBM) technology, with a range of more than 6,000
km. The launch vehicle and warhead were guided to the target
by ground-based radars. (SPACE, 2016) (Nichols & Carter,
2022)

EMP weapons Recently Chinese engineers brought down
a large, unmanned aircraft using a new electromagnetic pulse-
type weapon in what could be China’s first test of its nascent
venture into advanced EMP weaponry. New reports say the
test reportedly concentrated a powerful beam of
electromagnetic energy on the unmanned aircraft during its
flight at 1,500 meters, or nearly 5,000 feet in altitude. The
aircraft “did not drop immediately but veered abruptly from
one side to another for a period. Flight data and analysis of
debris recovered from the crash site suggested that sensitive
electronic devices, including its satellite navigation system,
cryoscope, accelerometer, barometric altimeter, and
communication device, had not been damaged. The battery
and motors also functioned properly until collision.” In all
likelihood, the aircraft’s “flight control system malfunctioned,
issuing an error control command,” an engineer involved with
the live-fire event explained. Unlike kinetic or explosive
weapons, electromagnetic pulse-type weapons rely on ‘frying’
electrical systems, rendering them useless. Thus, airplanes,
drones, trucks—anything that relies on onboard electronics
are vulnerable unless specifically hardened against EMP
threats. (Chen, 2021)

SPACE BASED PLATFORMS AND CRITICAL INFRASTRUCTURE
VULNERABILITY (MCCREIGHT) | 329



KA Band Weapons Chinese researchers have developed
a microwave machine named Relativistic Klystron Amplifier
(RKA) which can jam and destroy satellites in space. A Taiwan
News agency recently reported. The RKA can generate a wave
burst measuring 5-megawatts in the Ka-band. The Ka-band is
a portion of the electromagnetic spectrum which is used for
civilian as well as military purposes. It may not be able to
shoot targets out of the sky from the ground, but it can be
mounted onto satellites and used to attack enemy positions
in space by frying their electrical components. Experts at US
based think tank Centre for Strategic and International
Studies (CSIS) told the Taiwan Times that these developments
should force the United States to deploy space-based sensors to
counter the Chinese military’s new missiles. China denies that
the RKA is a directed energy weapons (DEW) system. A DEW
system used concentrated electromagnetic energy rather than
kinetic energy to destroy enemy equipment and personnel,
news agency ANI explained. The Taiwan News report
expressed concern that if RKA turns out to be a DEW it can
rip apart metallic materials moving at speed. (TAIWAN
News, 2022)

Microsatellites and Nanosatellites We already know that
microsatellites (microsats) can target US commercial space
systems because they offer the opportunity for a broad range of
newer countries to enter space using off-the-shelf hardware to
build inexpensive satellites and very affordable launch options
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to place them into orbit. Currently at least 40 countries have
demonstrated some ability to design, build, launch, and
operate microsats. Used offensively, maneuvering microsats
can inspect and interfere with operations of orbiting assets.
India, Russia, China, and Japan all have the ability to launch
microsats as secondary payloads to low Earth orbit (LEO) and
geosynchronous Earth orbit (GEO). “Parasitic” microsats/
nanosatellites could also be launched inside the structure of
primary payloads without the knowledge of the launch
provider and deployed without detection. There is a significant
risk that criminals, terrorists, or nation-state hackers can
covertly enter a company’s network to disable satellites or steal
intellectual property such as satellite designs or software. For
decades, government agencies or multinational corporations
controlled the vast majority of satellites, and many of those
satellites were as large as school buses. Data was received and
commands were sent through private networks backed by
sophisticated security apparatuses. Now, small, and obscure
startup companies can hook up simple microsatellites
(weighing 10 to 100 kilograms) to the internet for affordability
and the convenience of customers. Today some imagery,
weather data and communications bandwidth are delivered
this way. “Microsatellites are completely driven by software
and completely networked. That’s where the vulnerability
comes in,” For example, as some experts have warned a private
firm’s vulnerabilities are embedded on its internet reliance.
They warned that an employee on an overseas trip could
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unwittingly create a conduit to the company’s satellite
constellation and blueprints by firing up a laptop on public
Wi-Fi. So, employees are no longer allowed to bring their work
laptops on many such trips. Instead, they travel with blank
laptops containing no information about the company or its
satellite.

Likewise demand for microsatellites and nanosatellites is
increasing significantly in the recent years. According to
nanosats.eu, as of January 2021, more than 2,900
nanosatellites were launched in the earth’s orbit. Companies
across the globe are launching constellations of nanosatellites
or microsatellites in the earth’s orbit for earth observation and
telecommunication applications such as high-speed space-
based internet services. For instance, in January 2020, Sateliot,
a Spain-based nanosatellite and telecommunications operator,
signed a Memorandum of Understanding (MoU) with the
European Space Agency (ESA) to analyze, develop, and
implement innovative technologies, products, and services
with space capability using 5G. The company is planning to
invest around 100 million Euros to launch constellation of
20 nanosatellites for hybrid terrestrial space networks, 5G
network architecture, spectrum management, and spectrum
exchange. constellation. Microsatellites and nanosatellites are
more cost-effective than traditional satellites and usually
developed for communication, commercial, and space research
purposes. The demand for these satellites has increased
significantly since 2015 owing to their lightweight attribute,
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shorter development cycle, high capability of performing
complex computational tasks, and lower cost for development
and launch. Major and upcoming companies, such as Planet
Labs, GomSpace, Sierra Nevada Corporation, among others,
are launching constellations of micro and nanosatellites to
offer near real-time remote sensing data for government and
commercial clients. (Werner, 2019)

Directed-Energy Weapons Include laser, RF, and particle-
beam weapons often seen collectively as “standoff” weapons
because they are primarily either ground- or air-based systems
many miles from their target. Most of these concepts are
technically sophisticated and attack the target from longer
ranges than most kinetic interceptors. In addition, these
technologies are capable of engaging multiple targets, whereas
interceptors tend to be single-shot systems. Additionally, if the
geometric conditions are right, directed-energy weapons can
acquire and attack their targets in seconds, whereas kinetic-
interceptor engagement times tend to be much longer. Finally,
standoff directed-energy weapons provide the enemy with a
degree of deniability. This is because the attack is relatively
quick—probably no intelligence indicators associated with
it—and because the degradation of the target spacecraft may
not be immediately apparent, making it difficult to figure out
when and where the attack actually occurred. (Nichols &
Carter, 2022)

Radio Frequency Weapons. RF weapons concepts
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include ground- and space-based RF emitters that fire an
intense burst of radio energy at a satellite, disabling electronic
components. RF weapons are usually divided into two
categories: high-power microwave (HPM) weapons and
ultrawideband (UWB), or video pulse, weapons.16 UWB
weapons generate RF radiation covering a wide frequency
spectrum—nominally from about 100 MHz to more than 1
GHz—with limited directivity. Because of the UWB weapon’s
low-energy spectral density and directivity, permanent damage
to electronic components would be very difficult to achieve,
except at very short ranges. The UWB enters through the
satellite’s antenna at its receive frequency, as well as through
openings in the system’s shielding. If enough power is applied,
the received radiation may cause major damage to the satellite’s
internal communications hardware. However, in many cases,
UWB weapons will simply cause system upset, which may
persist only while the target is being irradiated or may require
operator intervention to return the satellite to its normal state.
Most frequently an RF weapon uses radio waves at power
levels high enough to cause electrical disruption. Microwaves
(high-frequency radio waves) are usually preferred, so this type
of device is sometimes called a High-Powered Microwave, or
HPM weapon. RF weapons also overlap generally with
Electromagnetic Pulse, or EMP weapons, which emit a
powerful burst of radio waves in all directions. Unlike
jammers, which just interfere with the signal received by radios
or radar, radio frequency weapons do actual damage. They
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do this by two methods: ‘front door coupling’, where radio
waves are picked by the antennas and aerials normally used for
receiving, and in ‘back door coupling’, where wires inside the
electronics act as receivers resulting in an extremely powerful
pulse is to put far more current through a component than it
can handle. (Nichols & Carter, 2022) (Hambling, 2019)

Orbital interceptors. These weapons are typically ground-
or air-launched into intercept trajectories or orbits that are
nearly the same as the intended target satellite. Radar or optical
systems on board the satellite guide it to close proximity of
the target satellite The variety available include : [1] Low-
Altitude, Direct-Ascent Interceptors launched on a booster
from the ground or from an aircraft into a suborbital
trajectory that is designed to intersect that of an LEO satellite.
Because these interceptor systems are on a direct suborbital
trajectory, the on-orbit lifespan of these systems is measured
in minutes, making them the simplest type of interceptor
weapons to design, build, and test; [2] high-altitude, short-
duration weapon is an interceptor that is launched from the
ground into a temporary parking orbit from which it
maneuvers to attack a high-altitude satellite. Because these
interceptor systems enter a temporary parking orbit, the on-
orbit lifespan of these systems is measured in hours, which
makes them slightly more complex than direct-ascent; and [3]
Long-Duration Orbital Interceptors are launched into a
storage orbit for an extended period of time, possibly months
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to years, before it maneuvers to engage and attack the target
satellite. The weapon may be stand-alone or covertly placed on
or in a “mothership” satellite. Orbital choices include farsat,
nearsat, space mine, fragmentation or pellet ring, and space-to-
space missile. Farsats are parked in a storage orbit away from
their targets and maneuver to engage them on command.
Nearsats are deployed and stay near their targets to inspect
and attack on command. Space mines are parked in orbits
that intersect the target’s orbit and are detonated during a
periodic close encounter. Fragmentation or pellet rings are vast
quantities of small, non-maneuvering objects that are
dispersed from one or more satellites in such a way that an
artificial Earth-orbiting ring is created. Satellites flying through
the ring are damaged or destroyed. Space-to-space missiles are
rocket-propelled interceptors launched from an orbiting
carrier platform into an orbit that intercepts the intended
target. Presently, there is no existing treaties or other specific
international law that bans states from deploying conventional
weapons in space, including the use of interceptor missiles.
(Harper, 2017)

ASATs [Anti Satellite Weapons] Diverse nations are
aware of and intend to deploy sophisticated ASAT systems in
anticipation of the space frontier as explicit future battlefield.
Many nations plan to use microsatellite technology to develop
and deploy long-duration orbital ASAT interceptors. Beijing’s
decision to develop and deploy the ASAT system has both
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long-term and short-term strategic objectives. The long-term
objectives are to establish a strategic balance among the larger
nations, and to break up the monopoly on utilization of space
that large space systems of the superpowers are holding; thus,
weakening their capabilities in information warfare. In the
short-term China would strengthen its capabilities in
controlling the usage of space globally and change drastically
the Chinese-American military balance so that the U.S. would
not intervene easily in the event of a conflict in the Taiwan
Strait and at the Chinese perimeter. One can expect a
continual growth and development of ever increasingly
sophisticated ASAT systems. On Nov. 15, 2021, Russia tested
and demonstrated an anti-satellite weapon (ASAT) system by
destroying one of its inactive satellites at an altitude of about
300 miles above the earth’s surface. At this altitude, the
satellite’s debris will orbit the Earth for a long time. The
United States has identified more than 1,500 pieces. Russia
may have calculated that in the context of rising great-power
rivalry, especially between the United States and China, the
growing trend of space weaponization is the future of warfare.
At the same time, this trend of weaponization opens the door
to stringent space regulations that will limit the development
and use of these capabilities. Displaying technological
capability before new international regulations are created can
be valuable for both national security and political reasons. By
destroying its satellite in space, Russia achieved two objectives.
It enhanced its defense and deterrence capabilities, and also
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projected its power before testing, demonstrating, and using
ASAT capabilities could be prohibited or significantly
restricted by international mechanisms. Additionally, Russia
has ensured that it will be a significant party in any major
international regulatory process by publicly possessing such a
capability. (Paikowsky, 2021)

The overall threat these various space-based weapons
systems and platforms pose to the energy grid, reliable and
potable water, farm to market food supplies, public health,
transportation, emergency services and the industrial/
commercial base of a nation’s daily operations cannot be
underestimated. It will require serious and sustained research
efforts after 2022 to devise defensive, protective, and deterrent
countermeasures and security practices to safeguard what
major CI systems are deemed essential to normal and routine
daily life in those advanced nations which demand their
reliable and uninterrupted operation.

Counter Space Operations, Countermeasures and
Protection of Space Systems

Because commercial and military satellites, and related space
systems, are equally crucial for national defense, reliable
industrial and commercial operations, as well as being part
of a nation’s critical infrastructure their secure and stable
operations must be protected against a variety of threats.
Threatening or attacking a nation’s space capabilities would
have domestic, economic, and political consequences and
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could provoke international disputes about the origin and
intent of an attack and likely bring nations to the brink of
open warfare. Such ambiguity and uncertainty among nations
experiencing degraded satellite performance and security
would trigger a crisis of national safety and survival. Risks of
misinterpretation arising from lengthy lapses in secure satellite
operations could accelerate national security crises rapidly and
permit victimized nations to consider the advent of a surprise
attack if absolute confidence in control of friendly platforms
was deemed ambiguous, unreliable, or unconfirmed.

There are a number of possible crises or conflicts in which
the potential vulnerability of national security space systems
would be especially worrisome. During these situations,
national leadership and its senior military commanders and
civilian advisors would be dependent on information from
satellite systems to help manage the crisis, conduct military
operations, or bring about a resolution to the conflict. A real
time damage assessment which depicted the status of friendly
platforms and satellites would be essential along with a
discerning capability to determine which systems were
inoperable or compromised. If the performance of any of
these. systems were reduced, the geostrategic influence and
leverage of the jeopardized nations could decline rapidly. In
addition, the geostrategic position of an opportunistic and
determined adversary could be vastly improved, and the risks
of strategic blindness or dissolving confidence in friendly space
systems would be enormous tilting in favor of the attacker or
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party exerting operational influence over home nation satellites
and systems.

Strategic miscalculation and error would be part of the
ongoing crisis climate until or unless nations could restore
positive control over their own orbiting space systems. The
sheer opacity and technical uncertainty of verified satellite
systems control in such a crisis could create conditions which
would diverge among some leaders who would require further
confirmation of trouble and await an update versus those
presuming the worst case and launching their own pre-
emptive attack on suspected enemies based on a feeling of
diminished security.

Countermeasures such as hardening, mobile ground
control stations, autonomous operations better threat analysis,
targeting hostile space systems, creating orbital redundant
nodes, randomized platform maneuverability, deploying
decoys which simulate the radar and optical signatures of the
satellite are all effective to some degree. In the age of quantum
and deceptive cyber controls no guarantee of foolproof self-
defense systems exist. Shrewd enemies with technical skills can
covertly capture or control satellites unless measures are
devised to nullify or neutralize satellite operations based on
periodic security code transmission updates. Nevertheless,
demands for upgraded defensive measures, including methods
for neutralizing platforms at will, or detecting immediate
operational threats are more engineering issues than reality.
Here the priority and national security burden is placed
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equally on military and commercial satellite owners and
operators.

It is important to reckon with some of the things that could
go wrong and understand the security implications attached
to each. For example, the potential impact of deception,
disruption, denial, degradation, or destruction of specific
space systems by foreign offensive counterspace operations
designed to erode, weaken, or nullify friendly platforms
include:

• Impairment or elimination of reconnaissance satellites
that would reduce situational awareness and could lead
to military surprise, underestimation of enemy strength
and capabilities, less effective planning, and less accurate
targeting and battle damage assessments.

• Impairment or elimination of missile launch detection
satellites that would degrade the US’s ability to perform
missile launch warning, GPS targeting, missile defense,
and would increase the psychological impact of the
adversary’s ballistic missiles.

• Impairment or elimination of satellite communications
systems that would disrupt troop command and control
problems at all force levels.

• Impairment or elimination of navigation satellites that
would make troop movements more difficult, aircraft
and ship piloting problematic, and could render many
precision-guided weapon systems ineffective or useless.
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• Impairment or elimination of Earth resource and
weather satellites that would make it more difficult to
plan effective military operations.

IT Vulnerability in Space Systems and the Importance
Of Penetration Testing for CI

Penetration testing plays a key role in preemptive
cybersecurity. Leadership at water districts, power plants and
other critical infrastructure can no longer think “it will happen
to others, but not us.” They’re seeing the impacts of successful
attacks in the news and a correlated rise in their cyber
insurance premiums. Penetration testing will continue its
growth because the people in charge are humbler about their
current safeguards and the scope of attacks. They’ve accepted
that if they do a good job at running a plant or other facility,
then someone out there is interested in compromising their
hard work, whether it’s for ransom, intelligence gathering or
simply promoting chaos. Penetration testing is a vital part
of a critical infrastructure assessment that allows all parties
to assess risks and implement cybersecurity mitigations and
standards. Looking for a broad range of problems, such as
software vulnerabilities, network issues and even things like
phishing schemes and other human-based attacks are part of
it. Penetration testing is not a new practice, but it’s heightened
now due to the increase in nation-state attacks and people
seeing successful attacks like Colonial Pipeline.
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Today critical infrastructure managers are searching for
someone they can trust to conduct penetration testing. It’s an
important part of mitigation strategies to expose what they
might have missed (for potentially years) and need to address
before it’s too late. Overall penetration testing has become a
necessity. It’s a marker of the cyber hygiene of an organization,
under the overall vulnerability management umbrella. While
penetration testing brings forth anxiety, it also prompts
change. When an experienced firm conducts the testing, they’ll
not only simulate attacks but also train the security team on
best practices to react and survive an attack from a threat.
Just two examples illustrate the value of this approach—[1]
validating existing security controls to ensure they work as
designed; and [2] reducing the risk of zero-day threats where
attackers routinely probing IT systems find gaps and
vulnerabilities before the owner can close or fix them allowing
zero days to repair what’s important. (Morris, 2022)

Humans and Their Essential Role in CI Systems and
Space Systems

If after all the concerns about space systems, IT, cyber
security, and daily IC operations rooted in technology weren’t
enough it is always the overlooked and discounted resource
which skilled and trained people behind these various systems
are which make them work as intended. The damaging lapse
in human performance and productivity arising from nearly
three years reeling from the global COVID crisis with staffing
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shortfalls and periodic skills gaps drives home the point. The
workforce which underwrites, supports, and sustains CI and
space systems can be easily forgotten unless attention is drawn
to their vital role in making the connections between CI and
space systems obvious and apparent. This DHS chart
underscores the basic message. One source claims more than
104 million U.S. workers, or 71 % of the total U.S. workforce,
are employed in the “Essential Critical Infrastructure
Workforce”. (NCSL, 2020)

Figure 5-5 Essential Critical Infrastructure Workers

Source: (NCSL, 2020)

By contrast about 170,000 workers can be identified as part
of the US space systems workforce according to the US
Department of Labor in 2017. (BLS, 2017) By comparison
a more recent data point which includes all workers in the
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commercial and government space sector combined reckons
the total closer to 2 million workers. This aggregate number
of US based space workers when combined with CI workforce
data suggests that nearly 106 million workers can be found in
both camps. (Aerospace Industries Association, 2020)

Consider the Extra Achilles Heel: Devising Resilience
Standards for Space and CI

Here, the engineered and periodically tested measures of
resilience applicable for each distinct CI system must be
weighed against space system resilience criteria which are not
equivalent or similarly ranked. Most often because so much of
CI and about 50% of space systems are in private commercial
hands, we can find no uniform resilience criteria except to
consider how these complex systems tolerate or resist natural
disasters, terrorism, cyber hacking, sabotage or natural stress
and age-related decline. However, it begs the question of
when, how and under what rigorous standards verifiable
criteria to gauge resilience in each CI and space system could
be derived or developed. It also raises the perplexing dilemma
of what organization or objectively skilled enterprise has the
requisite talent and expertise to do so.

Inside DHS (CISA) conducts specialized but voluntary
security and resilience assessments on the Nation’s CI and its
partners—federal, state, tribal, territorial governments, and
private industry—in better understanding and managing CI
risks. The assessments examine infrastructure vulnerabilities,
interdependencies, capability gaps, and the consequences of
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their disruption. Vulnerability assessments, combined with
infrastructure planning resources developed through the DHS
sponsored Infrastructure Development and Recovery
program. This approach forms an integrated planning and
assessment capability featuring an integrated suite of
capabilities, methods, and tools support the efficient and
effective use of resources to enhance critical infrastructure
resilience to all hazards. These voluntary, nonregulatory
assessments are a foundational element of the National
Infrastructure Protection Plan’s risk-based implementation of
protective programs designed to prevent, deter, and mitigate
the risk of a terrorist attack while enabling timely, efficient
response and restoration in an all-hazards, post-event
situation.

Because most U.S. critical infrastructure is privately owned,
the effectiveness of CISA assessments depends upon the
voluntary collaboration of private sector owners and
operators. CISA’s Protective Security Advisors (PSAs) work
locally to foster this collaboration and facilitate technical
assistance to support enhancement of the security and
resilience of the Nation’s critical infrastructure. Assessments
are offered through the PSAs at the request of critical
infrastructure owners and operators and other state, local,
tribal, and territorial officials.

However, the voluntary nature of uniform resilience testing
and verification does raise questions about best ways to
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validate, confirm and test the resilience claims by CI owners
and operators. (Hardcastle, 2022)

Fifty-six vulnerabilities – some deemed critical – have been
found in industrial operational technology (OT) systems from
ten global manufacturers including Honeywell, Ericsson,
Motorola, and Siemens, putting more than 30,000 devices
worldwide at risk, according to private security researchers.
Some of these vulnerabilities received resilience severity scores
as high as 9.8 out of 10. That is particularly bad, considering
these devices are used in critical infrastructure across the oil
and gas, chemical, nuclear, power generation and distribution,
manufacturing, water treatment and distribution, mining and
building and automation industries. The most serious
security flaws include remote code execution (RCE) and
firmware vulnerabilities. If exploited, these holes could
potentially allow miscreants to shut down electrical and water
systems, disrupt the food supply, change the ratio of
ingredients to result in toxic mixtures, and do all manner of
cyber based havoc including – denial-of-service condition,
change control logic, or disable communication links and
found frequent flaws in such as programmable logic
controllers (PLCs) and remote terminal units (RTUs) –
control physical processes, while level 2 devices include
supervisory control and data acquisition (SCADA) and
human-machine interface systems. (Hardcastle, 2022)

SPACE BASED PLATFORMS AND CRITICAL INFRASTRUCTURE
VULNERABILITY (MCCREIGHT) | 347



Outlining Threat Dynamics and Vulnerabilities for CI
from Cyber and Space

It appears that cyber probes hunting for key hubs or nodes,
or classes of items could they impact to deliver a shutdown
many CI systems or render these systems hostage Our
adversaries have been conducting infrastructure
reconnaissance using cyber for many years, they likely already
understand our infrastructure choke points. What is missing
is a standard inventory of CI weaknesses and vulnerabilities
shielded from public view and shared in classified or
proprietary confidence between DHS/CISA and the managers
of national CI systems. A far more serious question that has
NATO ramifications is whether any CI probes and attacks
which undermine or neutralize CI systems within the alliance
would be seen as ‘acts of war’ sufficient to trigger an Article
V military response? One key challenge is devising foolproof
forensics to identify what party is engaged in the probe or
attack with enough solid confidence to hold a hostile regime
accountable. It appears that devising a standby strategy to
anticipate and respond to such a scenario would be essential as
part of US and NATO combined arms security.

A catalogue of verified CI system vulnerabilities is a starting
point but with so much of CI in the operational control of
the private sector, and with DHS urging voluntary resilience
actions, it is hard to ascertain how CI is protected and
sustained against threats in a global comparative manner.
Another crude way of putting the issue is to consider whether
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some advanced societies reliant on CI and space systems have
explored all the obvious [and less obvious] pathways to
undermine, destroy or disrupt CI as a prelude to armed
conflict or as a strategic ‘checkmate’ maneuver to obviate the
need for a kinetic attack. In that sense the EU, US, and other
advanced nations with CI at risk must tackle the sobering
question of preparedness and resilience against the widest
possible spectrum of threats and contingencies. If all nations,
including Russia, China, Iran, and all others were equally
vulnerable in CI terms one could argue the playing field is
mostly level. However, what degree of confidence do we have
in that perspective?

So, we are left to contemplate the spectrum of immediate
and downstream threats against CI considering the ever-
present risks arising from a variety of space systems. While
the nexus between space systems adding increased jeopardy
to CI systems is fundamental, we cannot lose sight of all the
other avenues of potential CI mayhem and destruction. More
specifically, the array of threat dynamics which entail robust
CI protection, and which consider the reciprocal effect of
space system influence on CI systems, is large and complex. It
certainly includes at least the following threat factors:

• Space based weapons systems
• Catastrophic natural disasters
• Covert cyber hacking and external manipulation

[quantum probes]
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• Targeted terrorism
• Solar storms
• EMP attacks
• Natural age/stress related system failures
• Insider threats/sabotage
• Interstate war and armed conflict

FBI—NGB Role//Homeland Defense and Estimating
CI Protection Priorities

Under existing regulations and normal interagency practices
DHS has arranged for the FBI and the National Guard [NGB]
to play a major role in restoring damaged or impaired CI
systems in conjunction with the private sector enterprises
which own and operate them. While not every CI system is
rigorously tested and exercised against all possible hazard and
threat scenarios the FBI role is integral most often in cases
where CI damage or disruption is claimed to be linked to a
terrorist act. The overall Homeland Defense posture of
Pentagon resources versus defined roles in DHS contingency
plans for selected natural disasters which are part of the
National Planning Frameworks which depict federal
interagency roles in differential disasters and hazard situations.
This is also reinforced in the Comprehensive Preparedness
Guide 101 which provides guidelines on developing
emergency operations plans and promotes a common
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understanding of the fundamentals of community-based, risk-
informed planning and decision making to help planners
examine threats or hazards and produce integrated,
coordinated, and synchronized plans.

It is fair to ask whether the NGB has developed and tested
its operational plans for handling a range of CI system
scenarios involving disruption or loss of functionality caused
by space system interventions of attacks. In this case a
comprehensive exploration of scenarios and readiness plans
which are geared to a variety of scenarios for exercise purposes
would make sense. In the case of other developed nations with
substantial CI assets to protect and safeguard from a
presumptive range of space-based threats the same challenge
exists to determine if and in what ways the various agencies
and organizations charged with protection and restoration of
damaged CI are ready to do so. This also reinforces the point
that the time and energy required to restore a damaged or
impaired CI system from its victimized state to a point of
interim versus full restoration presumes that in many cases
the difference between interim and full CI restoration will be
measured in days or weeks versus minutes or hours. This also
assumes that in cases of complex cascading CI failures that
resurrecting the one pivotal and keystone CI element which
supports many others can be done in a manner that ensures the
restoration of other dependent CI systems in an effective and
timely manner, From the standpoint of realistic exercise design
and conceptual testing this will be a complex and difficult
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undertaking. This also implies that designated teams involving
both government and private sector leaders should be
marshaled to assess the current standby capabilities of CI
subsystems to withstand space-based damage scenarios and
devise strategies for building in greater resilience for these
systems.

It begs the question in advanced societies with substantial
CI interests and systems to protect and support whether plans
and strategies exist to be exercised and thereby affirm the
concept.

Reinforcing CI Systems Against Space Based Threats
One clear signal from this brief review of CI systems and

their connection to space-based systems is that advanced
technologies to harden CI systems to ensure a level of resilience
against presumptive space-based threats entails consideration
of

• Cyber hardening
• Protective shielding
• Redundant CI systems
• Counter-space deterrent technologies

Conclusions
Once it becomes clear that CI systems are largely vulnerable

to space platforms and systems those nations seeking to
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buttress their CI systems and dependent networks will need to
devise strategies and technologies appropriate to the estimated
threat. Failure to calibrate and analyze the threat, or do
nothing to mitigate its worst effects, seems to leave open the
issue of catastrophic CI systems breakdown and loss. How
many advanced nations will accept that risk?
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6.

TRASH COLLECTION
AND TRACKING IN
SPACE (HOOD &
LONSTEIN)

Student Learning Objectives
This chapter examines the problem of trash in space,

including its history, exploring how space junk is located and
tracked. Potential mitigation strategies are presented and
discussed. Though rarely discussed, the safety considerations
of those traveling in space and those on Earth are enormous,
not to mention the environmental impact trash in space has
both outside and within the Earth’s atmosphere. Through
understanding historical considerations of waste management
and the challenges presented on Earth, we hope to provide
students with a foundational understanding of the issues they
will confront when applying them to extraterrestrial
environments.

The History of Trash
Famed MIT inventor, futurist, and engineer Carlo Ratti



once said, “Some trash is recycled, some are thrown away, and
some ends up where it should not end up.” (Ratti, 2022)

In the 1960s and 70s, space travel and exploration were what
many of our dreams were made of. Beginning with Sputnik,
then the moon, mars, and beyond. While many of us dreamed
of what could and may be possible, other visionaries foresaw
that no matter where humans travel, they inevitably will need
to address the issue of hygiene and waste management.
According to many scholars, the ancient Greeks and Romans
began to address the issue of trash as early as 3000 BC, when
the first known landfill was created on the island of Crete,
followed by the Chinese, who began to compost and recycle
around 2000 BC. (Agnoletti & Serneri, 2016)

Most early forms of waste management involved the
collection of trash and removing it to waste pits located outside
cities. This initial waste management method helped address
space and transportation concerns in densely populated cities.
Plagues during the fourteenth through eighteenth centuries
devastated large portions of the world’s population, and waste
management’s objectives were refocused upon health.
(Nathanson, 2020)

As the industrial revolution hit its stride in the 19th and
20th centuries, waste production increased exponentially,
requiring more sanitation methods and technologies.
Incineration, community collection, and sanitary forms of
landfill disposal played a vital role in supporting the faster,
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bigger, more affluent new world. (Hoornweg & Gianelli,
2007)

Figure 6-1: Ancient Greece Trash Pit (Eastern Boeotia
Archaeological Project)

Source: (Hall, 2015)

While simple in its operation, the trash pit in Figure
6-1 was largely effective due to the force of gravity. Most trash
placed in the pit was of sufficient weight that it would be
difficult for the wind or other elements to overcome the
gravitational force holding within the pit. Additionally, when
a cover of wood or stone capped the pit, gravity again assisted
in keeping the trash in place. (Harvey, 2021) As we turn to
this issue of debris and other refuse outside of the Earth’s
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atmosphere, the benefits provided by gravity are far less
significant.

The Challenge of Orbital Debris in Space
Famed poet and playwright Oscar Wilde once wrote,

“Life imitates Art far more than Art imitates Life” (Wilde,
2022). Many of us who grew up in the 1970’s recall a relatively
obscure television comedy called “Quark.”

Figure 6-2: Quark TV Show Space Sanitation Vehicle
(Courtesy Columbia)

Source: (Weiner, 2019)
The short-lived comedy bore the name of the lead character

Adam Quark. The idea of quirky writers foresaw an issue
many years later, which would require outer space sanitation
technology. Fast forward fifty years to 2022, and Buck Henry,
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the writer who created Quark, has gone from comic to
visionary.

How significant is the problem of space debris? Dr. Joseph
Minow put it this way in 2015:

“Micrometeoroids and orbital debris (MMOD) is the
number one risk

for NASA’s human space flight programs. Many orbital
debris objects

—approximately 20,000—are large enough to be tracked
and cataloged

by the U.S. Space Surveillance Network and can be avoided
by

spacecraft maneuvering. But the unseen population of
MMOD

poses the biggest risk to spacecraft: the orbital debris large
enough to

cause damage, but too small to track, and the
micrometeoroids, which

can’t be tracked regardless of their size.” (Minow, 2016)
Dr. Minow also points to the reality that one of the greatest

challenges for space vehicles again relates to the force of gravity.
“Getting to space requires speed. A lot of speed. So, for NASA
to send an object, like a satellite, into orbit, that object must
reach velocities of several kilometers per second. And if it hits
anything while in orbit, like debris, the damage can be
substantial if not catastrophic.” (Minow, 2016)

Factors including speed, congestion, and road hazards
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(debris) are well-established causative factors in modern
society’s fatalities on the roads and highways. According to the
National Highway Traffic Safety Administration (NHTSA)
conducted, in 2020, speed was a factor in 29% of all highway
fatalities on U.S. roadways. The toll of human lives lost related
to speed in just one year alone was 11,258 in 2020. (National
Highway Traffic Safety Administration, 2022). Similarly, road
debris plays a significant role in highway accidents and
fatalities. According to the American Automobile
Association, “Between 2011-2014, road debris was a factor in
a total of more than 200,000 police-reported crashes resulting
in a total of approximately 39,000 injuries and 500 deaths.”
(American Automobile Association Foundation for Traffic
Safety 2016) Finally, that congestion and accidentality are
highly correlated. (Sánchez González, 2021)

While the roads many of us travel daily may seem somewhat
challenging, imagine a traffic jam in a zero-gravity
environment. On Earth, we usually concern ourselves with
oncoming traffic or obstacles in our front, rear, right, and left.
In space, other traffic can approach from above and below
as well. Further complicating things is velocity. According to
NASA:

“There are approximately 23,000 pieces of debris larger than
a softball orbiting the Earth. They travel at speeds up to 17,500
mph, fast enough for a relatively small piece of orbital debris to
damage a satellite or a spacecraft. There are half a million pieces
of debris the size of a marble or larger (up to 0.4 inches, or
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1 centimeter) or larger, and approximately 100 million pieces
of debris-about .04 inches (or one millimeter) larger. There
is even smaller micrometer-sized (0.000039 of an inch in
diameter) debris.

Even tiny paint flecks can damage a spacecraft when
traveling at these velocities. Several space shuttle windows were
replaced because of damage caused by material analyzed and
shown to be paint flecks. Millimeter-sized orbital debris
represents the highest mission-ending risk to most robotic
spacecraft operating in low Earth orbit.” (NASA, 2021)

According to Secure World, there are three main challenges
confronting the safe and sustainable use of outer space, Space
Junk. Orbital Crowding and Space Security. Separately, each
of these challenges represents an existential threat to both
manned and unmanned orbital operations; many believe the
current situation is already unsafe and worsening with every
launch of new vehicles.

Figure 6-3: Space Sustainability (Courtesy Sustainable
World Foundation)
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Source: (Secure World Foundation, Bhutada, Govind
Editor, 2021)
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Orbital debris presents a multitude of challenges both on
Earth and in space. In her recent book, “War in Space,” Linda
Dawson explores the use of space debris as a weapon of war.
Many, including Dawson, believe we are approaching the
Kessler syndrome. The Kessler syndrome is akin to a chain
reaction where objects in space collide, creating more debris.
The newly created debris will cause more collisions, and a
nuclear reaction-like process will eventually lead to a time
when “low Earth orbit is so full of debris that passage through
it becomes impossible.” (Dawson, 2018)

Figure 6-4: Lab Test Result Small Aluminum Ball
Hitting Aluminum Block at 7 KM per second (Courtesy

Scientific American and ESA)
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Source:(David, 2021)

The devastation that can occur from collisions in space
between vehicles and man-made and naturally-occurring
debris is unfathomable. While we have documented many
minor collisions so far, we have not witnessed a collision
between two spacecraft, orbit vehicles, or larger debris or
meteor. Given the immense force created by such collisions, it
is only logical to consider the use of debris as a tool of warfare.
While many private companies and governments are
beginning to address the removal of space debris, the reality is
that a darker side of debris exists, one where it is used as a tool
for war, terror espionage, or another hostile purpose. Dawson
points out that “There is a double-edged sword to the (debris
removal) technology that might solve this issue, as anything
that can be used to bring down unusable satellites can also
bring down active ones.” (Dawson, 2018) p. 60.

Figure 6-5: Visualization of space debris around Earth
(Courtesy ESA)
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Source: (European Space Agency, 2019)
Space debris has ramifications both outside of Earth’s

atmosphere and at every level within it. As mankind continues
to explore, understand, and use space as a resource, inevitably,
we will leave our mark upon it. Sadly, part of that mark is trash.
For example, in 2021, a Falcon 9 rocket pressure vessel fell
onto a farm in central Washington State. Luckily no injuries
occurred.

Figure 6-6: Falcon 9 Rocket Pressure Tank (Courtesy
Grant County Sheriff via Twitter)
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Source:(Grant County Washington Sheriff, 2022)

Since the launch of the former Soviet Union’s Sputnik in
1957, humans have been adding to the pre-existing bounty
of galactic byproducts generally referred to as Asteroids and
Meteoroids. According to NASA, an asteroid is a small rocky
body that orbits the Sun. When asteroids collide, debris can
scatter; these collision byproducts are called meteoroids.
Meteoroids can also come from comets but are not composed
of rock but dust and ice. When a meteoroid comes near or in
contact with Earth’s atmosphere, it is called a meteor. Meteors
often appear as streaks of light in a dark sky, sometimes called
“falling stars.” When a meteor or some portion of it makes
it through Earth’s atmosphere and falls to Earth, it is called
a meteorite. (NASA, 2022) The largest known example of a
meteorite known as Hoba is believed to have landed in what is
known today as Namibia, weighs approximately 60 tons, and
is believed to have landed some 80,000 years ago.
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Figure 6-7: Hoba (Courtesy Compl33t / Wikimedia
Commons)

Source: (Dodgson, 2017)

Figure 6-8: Space debris consists of
discarded launch vehicles or parts of a spacecraft that
float hundreds of miles above Earth. Image: Space Safety
(World Economic Forum, 2021)
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Current International Policy and Laws on Space Trash
The body of legal regulations regarding the use of space

(space being defined as the area above the jurisdiction of air
law) by public and private entities are referred to as space law.
Currently, there are only about five such regulations of space,
the most significant of those being the United Nations Treaty
on Principles Governing the Activities of States in the
Exploration and Use of Outer Space, including the Moon and
Other Celestial Bodies (from now on referred to as the Outer
Space Treaty) of 1967. In this article, I would like to specifically
describe and analyze the laws and regulations handling the
increasingly prevalent issue of space debris in orbit around
Earth. The National Aeronautics and Space Administration
(NASA) defines space debris as “any man-made object in orbit
about the Earth which no longer serves a useful function.”
[1] However, a major confusion discussed below is that the
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Outer Space Treaty does not explicitly define what it refers to
as “space objects,” nor does it mention whether space debris
is space objects. An excessive clustering of space debris is a
problem for a few reasons. It may result in a phenomenon
known as the Kessler Syndrome, in which a “cascade created
when debris hits a space object, creating new debris and setting
off a chain reaction of collisions that eventually close off entire
orbits.” [2] This endangerment of Earth’s future ability to
explore extraterrestrial planets and life must be avoided at all
costs. Furthermore, space debris in orbit around Earth limits
the amount of available space for satellites to orbit, which may
result in the Tragedy of the Commons: multiple actors will
aggressively vie, in an arms race, for their right to space as it is a
limited resource. (Shah, 2021)

Recent accidents that continue to clutter the orbital
space around Earth: ISS Swerves

MOSCOW, December 3 (Reuters) – The International
Space Station (ISS) had to swerve away from a fragment of
a U.S. launch vehicle on Friday, the head of Russia’s space
agency said, the latest in a series of incidents in which space
debris have forced astronauts to respond. (Reuters, 2021)

In recent years there has been an uptick in expressed concern
from recent emergency procedures carried out by the ISS. The
below excerpt describes one such incident from 2021:
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Since Russia conducted an anti-satellite missile test last
month, calls to monitor and regulate space debris, or space
junk, have grown. This generated a debris field in orbit that
U.S. officials said would pose a hazard to space activities for
years. (Reuters, 2021)

Figure 6-9: The International Space Station
photographed from Russian spacecraft after undocking.

Source:(Reuters, 2021)

Dmitry Rogozin, head of Russian space agency Roscosmos,
said that the ISS had been forced to move due to space junk
from a U.S. launch vehicle sent into orbit in 1994.

Roscosmos said the station’s orbit, in an unscheduled
maneuver, carried out by mission control, dropped by 310
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meters (339 yards) for nearly three minutes to avoid a close
encounter. Rogozin added that the maneuver would not affect
the planned launch of the Soyuz MS-20 rocket on December
8 from the Baikonur Cosmodrome in Kazakhstan and its
docking at the ISS. (Reuters, 2021)

Looming changes that may further destabilize
international space operations add more clutter to an
already dirty problem: Russia leaves ISS.

MOSCOW — Russia will pull out of the International
Space Station after 2024 and focus on building its orbiting
outpost, the country’s new space chief said Tuesday, amid high
tensions between Moscow and the West over the fighting in
Ukraine. Yuri Borisov, appointed this month to lead the state
space agency, Roscosmos, said during a meeting with President
Vladimir Putin that Russia will fulfill its obligations to its
partners before it leaves. (Associated Press, 2022)

“The decision to leave the station after 2024 has been
made,” Borisov said, adding: “I think that by that time, we will
start forming a Russian orbiting station.” (Associated Press,
2022)

NASA and other international partners hope to keep the
space station running until 2030, while the

Russians have been reluctant to make commitments beyond
2024. (Associated Press, 2022) NASA has been working with
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U.S. companies to eventually establish private space stations
to replace the International Space Station. NASA hopes these
commercial space stations will be up and running by the
decade’s end. (Associated Press, 2022)

Clean This Mess: The Kessler Syndrome and the
challenges of cleaning orbital space debris before it’s too
late.

Finding ways to remove at least some of all that space junk
should be a top global priority, says Donald Kessler, a retired
NASA senior scientist for orbital debris research. In the late
1970s, he foretold the possibility of a scenario dubbed the
Kessler syndrome. As the density of space rubbish increases,
a cascading, self-sustaining runaway cycle of debris-generating
collisions can arise that might ultimately make low-Earth orbit
too hazardous to support most space activities. (David,
Leonard, 2021)

A Space Age “tragedy of the commons” is unfolding right
under our nose—or right over our head—and no consensus
yet exists on how to stop it. For more than a half-century,
humans have been hurling objects into low-Earth orbit in ever-
growing numbers. And with few meaningful limitations on
further launches into that increasingly congested realm, the
prevailing attitude has been persistently permissive. In orbit,
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it seems, there is always room for one more. (David, Leonard,
2021)

“There is now agreement within the community that the
debris environment has reached a ‘tipping point where debris
would continue to increase even if all launches were stopped,”
Kessler says. “It takes an Iridium-Cosmos-type collision to get
everyone’s attention. That’s what it boils down to…., And
we’re overdue for something like that to happen.” (David,
2021)

Kelso says there is no “one-size-fits-all solution” to the space
junk problem. He observes that removing large rocket bodies
is a significantly different task than removing the equivalent
mass of many smaller objects, which are in a wide range of
orbits. Meanwhile, innovations by companies such as SpaceX
are dramatically lowering launch costs, opening the floodgates
for far more satellites to reach low-Earth orbit, where some will
inevitably fail and become drifting, debris-generating hazards
(unless ELSA-d-like space tugs remove them). “Many of these
operators are starting to understand the difficulty and
complexity of continuing to dodge the growing number of
debris.” (David, 2021)

For now, according to Moriba Jah, an orbital debris expert
at the University of Texas at Austin, the business case for space
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debris removal is not monetizable and is more a “PowerPoint
talk” than a real marketplace. (David, 2021)

“I think people are hoping that government comes to some
common sense to help create and establish a marketplace for
industries to engage in these sorts of activities,” Jah says. For
that to happen, he believes that spacefaring nations have to
agree that near-Earth space is an ecosystem like land, air, and
the ocean. “It’s not infinite, so we need environmental
protection,” he says. (David, 2021)

Jah has in mind space sustainability metrics akin to a carbon
footprint. “Let’s call it a ‘space traffic’ footprint,” he says. “We
need a way to quantify when an ‘orbital highway’ gets
saturated with traffic, so it’s not usable. Then you can assign a
bounty for objects and discuss nonconsensual debris removal.
Maybe there is a penalty to the sovereign owner of their dead
asset that’s taking up the capacity of an orbit. This could create
a marketplace where space-object-removal technologies can
thrive.” (David, 2021)

A classification scheme for objects in space is also needed.
Having such a taxonomy, Jah says, would help sort out what
types of technologies are required for removing different
pedigrees of orbital clutter. As for the big picture, Jah says it is
a simple numbers game: the rate of launches exceeds the rate
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of space objects reentering Earth’s atmosphere. “That’s not a
great kind of energy balance,” he adds. (David, 2021)

Alas, Jah says, policymakers are still sluggish in their
reactions to the problem. After all, although events such as the
2009 Cosmos-Iridium collision generate massive amounts of
debris, they are still quite rare—for now. (David, 2021)

“In my view, that 2009 collision was equivalent to
passengers on the Titanic feeling that bump from an iceberg,
and then there’s a band playing on the deck,” Jah says. “In
terms of hazardous orbital debris, things are already going a
detrimental way because we haven’t changed our behavior.”
(David, 2021)

QUESTIONS:

1. As a space navigation professional, you are tasked with
flight planning just as in commercial aviation within the
Earth’s atmosphere. What resources do you think will be
needed to be able to safely navigate your entire journey
as it relates to naturally occurring and man-made space
debris?
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2. Besides both types of space debris and direct kinetic
attack, can you foresee any other type of attack vector
being used in space related to waste or biological
products? (Hint air, water, filtration, food, medication)

3. What could current technologies be used to create a
potential low-cost solution to cleaning space debris?
What resource considerations and policies would need to
be considered and or created to help facilitate the
removal of space debris?
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7.

LEVERAGING SPACE
FOR DISASTER RISK
REDUCTION AND
MANAGEMENT
(CARTER)

Student Objectives

• Impact of space disaster risk reduction and management
in preventing climate change

• Explore the benefits of space disaster risk reduction and
management during a global pandemic.

• To further understand the advances in space can lead to
greater quality of life on Earth.

Introduction
Disasters can disrupt or devastate a community, society, or

country. Disaster can cause human, economic, and
environmental loss. This unpredictable event can drain
resources hindering all aspects of recovery. This chapter



provides an overview of how satellite data can prepare and
respond to global disasters and emergencies. Space disaster
reduction and risk management include removing hazards,
reducing vulnerabilities, and reducing exposure. Before a
disaster occurs, remotely sensed data provide information for
systems and models that can predict disasters and provide early
warnings (UNOOSA, 2022). This form of management
supports the formulation of disaster scenarios to simulate the
impacts of crisis events and test emergency procedures (Le
Cozannet, G., Kervyn, M., & Russo, S., 2020). The Sendai
Framework is the backbone of the United Nations Office
Outer Space of Affairs mission for the adoption of using space
in risk reduction and management. The framework focuses
on adopting measures that address the three dimensions of
disaster risk (exposure to hazards, vulnerability and capacity,
and hazard’s characteristics) to prevent the creation of new
risk, reduce existing risk and increase resilience (United
Nations, 2015). The concept of space disaster reduction and
risk management is not new; however, the world looked to
this method to learn, monitor, and mitigate during COVID-
19. There are several benefits of space technologies for disaster
management and response. The ability to share satellite data,
communications, and applications provide real-time
monitoring of our planet. Satellite data is critical in the event
of disaster response and recovery. In 60 years, the planet went
from zero space technology to today; nearly half of all
countries have space capabilities.
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The Sendai Framework For Disaster Risk Reduction
2015 – 2030

The Sendai Framework for Disaster Risk Reduction
2015–2030 was adopted at the Third United Nations World
Conference on Disaster Risk Reduction, held in March 2015
in Sendai, Miyagi, Japan (United Nations, 2015). Currently,
the framework is the only international accord for disaster risk
management. The Sendai Framework embodies the following:

“…the need for improved understanding of disaster risk in
all its dimensions of exposure, vulnerability and hazard
characteristics; the strengthening of disaster risk governance,
including national platforms; accountability for disaster risk
management; preparedness to “Build Back Better”;
recognition of stakeholders and their roles; mobilization of
risk-sensitive investment to avoid the creation of new risk;
resilience of health infrastructure, cultural heritage, and work-
places; strengthening of international cooperation and global
partnership, and risk-informed donor policies and programs,
including financial support and loans from international
financial institutions. There is also a clear recognition of the
Global Platform for Disaster Risk Reduction and the regional
platforms for disaster risk reduction as mechanisms for
coherence across agendas, monitoring, and periodic reviews in
support of UN Governance bodies’ (United Nations, 2015).
The Sendai Framework and the Paris Agreement share a
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common goal of global coherence to climate change
adaptation and disaster risk reduction. The agreements have a
call to action for implementing policy and governance, using
data and information, and monitoring/reporting standards.
The Sendai Framework and the Paris Agreement encourage
global partnerships to help governments develop solid risk
financing strategies to respond to the impacts of climate-
related disasters.

Climate Change

We can see evidence of climate change all around us, from
the loss of arctic ice to the drying, wildfires increasing, and
unprecedented changes in weather patterns globally. Scientists
have proven the increase in human activities has caused the
warming of the atmosphere resulting in devastating events.
Evidence can be found in tree rings, ocean sediments, coral
reefs, and layers of sedimentary rocks (NASA, 2022). Carbon
dioxide from human activities is increasing about 250 times
faster than from natural sources after the last Ice Age (Gaffney
& Steffen, 2017). The advancement in satellites has allowed
scientists to collect more data than ever before to assist in
reversing damage to the planet.

NASA and international partners have the “A-Train”
satellite constellation of Earth-observing satellites that follow
along the same orbital track. Earth observation satellite-based
remote sensing technology monitors land, marine (seas, rivers,
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lakes), and the atmosphere (EUSPA, 2022). The satellites have
mounted payloads to gather imaging data about the Earth’s
characteristics. The satellite can have an Optical or thermal
sensor. These payloads can report on the energy received from
the Earth due to the reflection and re-emission of the Sun’s
energy by the Earth’s surface or atmosphere (EUSPA, 2022).
They operate between the visible and

Figure 7-1 “A-Train” Satellite Constellation

Source: (NASA, 2022)

Satellites use Infrared wavelengths of the electromagnetic
spectrum (EUSPA, 2022). Also, satellites can use radar sensors
to capture radiation emitted from the Earth’s surface. Earth
observations in space deliver various data to improve space
disaster risk management.

Figure 7-2 Burning in Botswana
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Source: (NASA, 2022)

Cities are increasingly experiencing the impact of climate
change through extreme weather events, bushfires, flooding,
storm surges, and sea level rise (Hurlimann, Moosavi, &
Browne, 2020). Over half of the world’s 8 billion people live in
cities, which is expected to increase by over 70% in the coming
decades (EUSPA, 2022). Population increases directly impact
the rise of temperature, bringing extreme heat events and
raising the risk for dense population areas to be impacted by
climate change. Being aware of the risk, urban planners use
sustainable developers to provide mitigation strategies to
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reduce the impact of climate change on the population.
Sustainable engineers use satellite-based remote sensing
technologies and socio-demographic data to create heat threat
maps to advise urban planners of areas that can adversely affect
the population, energy production, agriculture, and
transportation. Urban planners can take steps to protect
citizens and infrastructure by changing traffic patterns,
increasing green space, and encouraging alternative
transportation.

Figure 7-3 Dubai Satellite imagery and LiDAR
Digital Terrain Models urban strategic information
about urban planning and prevention of flooding

conditions in urban areas

Source: (Satellite Imaging Corporation, 2022)
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A Prague-based company, ECOTEN, uses data from
various satellite programs combined with technology to assist
with sustainable urban planning across Europe. EOCTEN is
mapping highly vulnerable urban areas to reduce the risk of
natural disasters (i.e., extreme heat events). Using this
innovative method for risk reduction, Vienna is using the
information to transform Zieglergasse in the 7th municipal
district into a climate-adapted street. The densely populated
area is modified with planted trees, several public water points,
and light-colored paving. These climate-friendly changes have
lowered the temperature and prevented the district’s flooding.

Figure 7-4 Zieglergasse – Vienna’s First Climate-
Adapted Street

Source: (Okosvaros, 2020)

Damage Mapping After A Disaster
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On December 26, 2004, the Indian Ocean tsunami was one
of the deadliest disasters in modern history, with nearly
230000 people dead. In the days immediately following, the
International Charter on Space and Major Disasters was
activated. This initiated the gathering of satellite data over the
affected region. The alliance carried out a large amount of
rapid mapping in the immediate days to follow, creating over
210 individual maps from more than 19 satellites (European
Space Agency, 2018). Crisis mapping continued for several
days and the

Figure 7-5 Satellite map of the affected Sri Lankan
coast
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Source: (European Space Agency, 2018)

The next step would be mapping environmental damage,
humanitarian aid, and rebuilding the region. The impacts of
the 9.0 earthquake and tsunami were far-reaching across
Indonesia, India, Malaysia, Maldives, Sri Lanka, Thailand, and
Africa (DeepSea News, 2011). The satellite disaster mapping
was able to identify the next environmental impacts:

• Solid Waste disaster debris and sewage
• Containment of soil and water
• Loss of infrastructure and Facilities
• Loss of natural ecosystems
• Notification of Coastal Waters
• Impact on biological communities and species

Solid waste and debris had an impact on all surrounding
ecosystems. Given the mix of concrete, raw sewage, and other
building waste materials, mixed were sent into the sea. The loss
of life was believed to be over 100,000 souls. Once the damage
assessment was complete, researchers requested a detailed
vulnerability assessment of the region as part of the rebuilding
effort. Poverty, structural design, and geological conditions
were the top outcomes of the earthquake vulnerability
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assessment. Researchers considered secondary hazards such as
landslides and fire. GIS mapping tsunami vulnerabilities
included the ecosystem, structure, and social vulnerabilities.

Figure 7-6 Satellite Images Of Environmental Impact
On Coast Post-December 26, 2004, Tsunami

Source: (DeepSea News, 2011)

Figure 7-6 gave recovery management an overview of the
environmental damage to northern Sumatra in Indonesia. The
tsunami wiped out the low-lying delta land, destroyed
fishponds, and removed coastal vegetation. The loss of this
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mangrove cover is critical; this tropical timber thrives in salty
seawater. These tropical trees can store large amounts of
carbon, a crucial component of fighting climate change. The
images also show a pocket of missing silt and soil, which stores
carbon, another protection from climate change. The sandy
beaches have been removed (important in some locations for
turtle nesting), and the deposition of silt or mud on the reef
(DeepSea News, 2011).

Global Health
The passion for science, technology, and innovation

combined with space manifested during the COVID-19
pandemic. The United Nations Office for Outer Space
brought together the globe to work together to use
information gathered from UN Member States satellite
infrastructures to understand risks, drive policy, understand
the spread of COVID-19, population movement, and
communication. Pandemic times highlighted part of the
capacity to use space for disaster risk management; maximum
potential in all corners of the world is yet to come.

COPERNICUS

Copernicus is a component of the European Union’s space
program, with funding by the EU, and is its flagship Earth
observation program, which operates through six thematic
services: Atmosphere, Marine, Land, Climate Change,
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Security, and Emergency. It delivers freely accessible
operational data and services providing users with reliable and
up-to-date information about our planet and its environment.
The program is coordinated and managed by the European
Commission and implemented in partnership with the
Member States, the European Space Agency (ESA), the
European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT), the European Centre for Medium-
Range Weather Forecasts (ECMWF), EU Agencies and
Mercator Ocean, amongst others. (UN-SPIDER, 2020).
During the pandemic, Copernicus provided EMS Rapid
Mapping for COVID -19. The rapid mapping produced
dynamic satellite maps, continuous census of installed
infrastructure, and merging with population data to check the
actual level of usage versus expected in designing, assisting with
the buildout of mobile and temporary hospital infrastructure.
Early in the pandemic, Copernicus was key in monitoring
boardercross after lockdown directives by European countries.
Optical VHR Data geospatial reporting delivered real-time
images of important traffic queues at the EU border areas (i.e.,
traffic jams, including the details of the number of trucks
versus the number of vehicles not moving) (UNOOSA, 2020).

Figure 7-7 Copernicus monitors the impact of traffic
congestion at border crossings between the EU Member

States during COVID- 19
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Source: (UNOOSA, 2020)

Images from Copernicus were used as a decision and
support tool for policy definition to determine the opening
of street markets, green areas, and parks. The satellite maps
with access points, land use, and usable areas were merged with
population data to project the maximum number of people
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who can stay in an area versus limits defined by law regulation
of access points. Governments using Copernicus looked at
satellite maps of open areas (i.e., parks) to understand access
points collated with the surrounding population to formulate
policies for a maximum number of people peruse the area.
(UNOOSA, 2022)

Figure 7-8 Change in concentration of NO2, ozone,
and particulate matter

Source: (Atmosphere Monitoring Service, 2022)
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Unique datasets originating from Copernicus Atmosphere
Monitoring Service (CAMS) during the pandemic brought to
light the level of air quality impacts back the length of life.
By using observed changes in daily concentrations of the
pollutants studied, combined with an assessment of people’s
exposure, scientists estimate that a total of over 800 deaths
were avoided with improved air quality resulting from the
governmental measures taken to limit the spread of the SARS-
Cov-2 virus (Atmosphere Monitoring Service, 2022). Paris,
London, Barcelona, and Milan were among the top six cities
with the highest number of avoided deaths (Atmosphere
Monitoring Service, 2022). There was a reduction in road
transport, leading to a decrease in Nitrogen Dioxide (NO2)
by over half across European cities. Vincent-Henri Peuch,
Director of the Copernicus Atmosphere Monitoring Service
(CAMS), commented, ” …beyond the analysis of the mortality
during the first months of the pandemic, this study could help
shape future policy as the public health benefits of reducing
pollution in our cities and the effectiveness of certain measures
are clear to see,” (Atmosphere Monitoring Service, 2022).

The evolution of the COVID-19 pandemic in countries
around the world using GIS and web-based dashboards, the
wider reach of communication technologies, and the
increasing availability of information technologies opened an
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opportunity for increased use of space-based solutions in these
times of crises (UN-SPIDER, 2021)

Conclusions
Space applications related to telecommunications and

global navigation can play a vital role in supporting disaster
risk reduction, response, and recovery efforts (St-Pierre, 2016).
Satellite imagery can help monitor the evolution of
populations, infrastructure, and environment, offering the
ability to contrast and identify vulnerabilities. Outer space can
help be better prepared and reduce the volatility of the impacts
of disasters. Collaborations across all nations to have the ability
to access the data and develop plans for disaster preparedness
are part of a piece of saving the planet from climate change.
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8.

BIO-THREATS TO
AGRICULTURE-SOLUTIO
NS FROM SPACE
(SINCAVAGE, CARTER,
NICHOLS)

Student Objectives

• To introduce common bioterrorism definitions, animal
diseases, human diseases, and zoonoses.

• To recognize that biological attacks on agriculture can be
low-tech, high-impact bioterrorism.

• What are the five potential targets of agricultural
bioterrorism?

• Describe two ways remote sensing can be used to
identify agricultural threats to crops.

• How can satellite observations predict vulnerable targets
conducive to plants and livestock?



Definitions
Agroterrorism is a subset of bioterrorism and is defined

as the deliberate introduction of an animal or plant disease
to generate fear, causing economic losses and/or undermining
stability. (O.S. Cupp, 2004)

Bioterrorism is the threat or use of biological agents by
individuals or groups motivated by political, religious,
ecological, or other ideological objectives.

Earth Observation Epidemiology or tele-epidemiology
is defined as ‘using space technology with remote sensing in
epidemiology. (Wiki, 2022)

MASINT – Measurement and signature
intelligence (MASINT) is a technical branch of intelligence
gathering that detect, track, identify or describe the distinctive
characteristics (signatures) of fixed or dynamic target sources.
This often includes radar, acoustic, nuclear, chemical, and
biological intelligence. MASINT is scientific and technical
intelligence derived from the analysis of data obtained from
sensing instruments to identify any distinctive features
associated with the source, emitter, or sender, to facilitate the
latter’s measurement and identification. (Wiki, 2022)

OSI, short for OPEN-SOURCE Intelligence (also known
as OSINT), is defined as any intelligence produced from
publicly available information that is collected, exploited, and
disseminated in a timely manner to an appropriate audience to
address a specific intelligence requirement. (Bazzell, 2021)

Remote Sensing (RS) uses non-ground-based imaging
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systems to obtain information about processes and events on
Earth. It is unique among the detection and diagnostic
methods discussed herein in its ability to offer passive
monitoring for the disease at scale rather than active
sampling. (Silva & et.al, 2021)

Introduction
Bio-threats to agricultural resources are commonly natural.

However, rival governments, terrorists, and rogue actors can
target critical agricultural infrastructure. The deliberate
introduction of an animal or plant disease to generate fear,
cause economic losses, and/or undermine stability is known as
Agroterrorism, a subset of bioterrorism. (O.S. Cupp, 2004)

Terrorist groups may be motivated to attack plants, animals,
or agricultural products to attract attention to a cause, incite
fear, disrupt society, or demonstrate a capability to exact
political concessions. Others may be prompted by motives
such as economic interest, sabotage, or revenge (Ban, 2000).
In the event of an agroterrorism attack, keeping the biological
incursion from inflicting significant damage to human health
and the economy will depend heavily on quick alerts to farmers
and disease specialists.

Currently, satellite and sensor technologies are
revolutionizing crop and livestock disease detection. These
technologies can be used individually or in combination to
support agricultural surveillance and communication to assist
and mitigate threats on the ground. Satellite imaging detects
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the distinct environmental conditions that may serve as a
refuge for the disease-carrying animals. Electromagnetic
spectra also provide useful information to make decisions
regarding plant physiological stress. In a captured image, plant
disease is identified by observing the physiological disturbances
caused by foliar reflectance in a near-infrared portion of the
spectrum.

Diseases have a Significant Negative impact on
Agricultural Productivity.

The burden of agriculture on endemic and naturally
imported epidemic diseases is high. It confirms the capacity of
animal and plant diseases to cause economic harm. The United
States is free of many significant global livestock diseases
because of effective surveillance of herds and imports and
aggressive eradication campaigns. (Howard, 2013) In general,
losses from animal disease account for 17% of the production
costs of animal products in the developed world and twice that
amount in the developing world.

The cost of crop diseases to the US economy has been
estimated to be more than $30 billion / year. The costs include
reducing quantity (bushels/acre) and quality (blemished fruit,
toxins in grain) yield, short-term control costs, pesticides, and
long-term management and harvesting. (Howard, 2013)

What are the Agriculture, Livestock, and Companion
Animal Weapons?
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The Animal and Plant Health Inspection Service (APHIS),
the US Department of Agriculture (USDA) and The Center
for Food Security and Public Health (CFSPH) have developed
some serious wallcharts about Agriculture and Zoonotic
Bioterrorism. These wallcharts portray the threats that must
be considered in every risk assessment to develop detection,
mitigation, and recovery countermeasures.

The Center for Food Security and Public Health (CFSPH)
at Iowa State University has developed two charts titled
“Animal Disease From Potential Bioterrorist Agents” that
show the CDC Category, (A-C) the severity (mild, moderate,
severe) of disease in potentially affected species [cattle, sheep,
goats, pigs, horses, dogs, cats, birds and other], incubation
period and prominent clinical signs. (CFSPH, 2022) All of the
charted diseases and agents in these charts have technical fact
sheets and they may be found at: (Spickler, 2022)

The Center for Food Security and Public Health (CFSPH)
at Iowa State University has developed two charts titled
“Human Disease From Potential Bioterrorist Agents” that
show the CDC Category (A-C), route of transmission,
potential body system affected (Septicemia, Respiratory,
Intestinal, Cutaneous, Ocular, and Neurological), incubation
period in days, person to person contact and prominent
clinical signs. (CFSPH, 2022) All of the charted diseases and
agents in these charts have technical fact sheets and they may
be found at: (Spickler, 2022)

The Center for Food Security and Public Health (CFSPH)
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at Iowa State University has developed two charts titled
“USDA High Consequence Foreign Animal Disease and
Pests” which show the disease or agent in tiers ( Tier 1- Tier
3), humans affected, species affected, incubation period, mode
of transmission, and prominent clinical signs in animals.
(CFSPH, 2022) All of the charted diseases and agents in these
charts have technical fact sheets and they may be found at:
(Spickler, 2022)

The Center for Food Security and Public Health (CFSPH)
at Iowa State University has developed two charts titled “Select
Zoonoses of Companion Animals” that show Animal Impact
by disease category ( Bacteria, Viruses, Fungi, Parasites) on
species with Zoonotic Potential (Dogs, Cats, Birds, Ferrets,
Rabbits, Rodents and other), incubation period, and
prominent clinical signs. (CFSPH, 2022) All of the charted
diseases and agents in these charts have technical fact sheets
and they may be found at: (Spickler, 2022)

The Center for Food Security and Public Health (CFSPH)
at Iowa State University has developed two charts titled “Select
Zoonoses of Companion Animals” that show Human Impact
by disease category (Bacteria, Viruses, Fungi, Parasites) , person
to person vector transmission, transmission from animals,
potential body system affected (Septicemia, Respiratory,
Intestinal, Cutaneous, Ocular, Neurological, and Death),
incubation period, and prominent clinical signs. (CFSPH,
2022) All of the charted diseases and agents in these charts
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have technical fact sheets and they may be found at: (Spickler,
2022)[1]

Potential Targets of Agricultural bioterrorism
There are five potential targets of agricultural bioterrorism:

field crops; farm animals; food items in the processing or
distribution chain; market-ready foods at the wholesale or retail
level; and agricultural facilities, including processing plants,
storage facilities, wholesale and retail food outlets, elements of
the transportation infrastructure, and research laboratories.
(Nichols & Carter, 2022) (Parker, 2002) (Wilson,
2000) (Bipartisan Committee on Biodefense, 2022) (Carus,
2015)

Developing a consensus for a list of the major bioterrorist
threats and action items is thus the priority in protecting crops
and animals. Such a list is necessary to guide the development
of surveillance plans, diagnostic tests, and response plans for
best containing and eradicating an introduced pathogen. Here
is one from the Bipartisan Committee on Biodefense:
(Bipartisan Committee on Biodefense, 2022)

■ direct losses of agriculture commodities to diseases
■ costs of diagnosis and surveillance
■ required the destruction of contaminated crops and

animals to contain the disease
■ costs of disposal of mortalities and carcasses
■ damage to consumer and public confidence
■ need for long-term quarantine of infected areas
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■ losses due to export and trade restrictions
■ disruption of commodity markets.

Containment, Eradication & Control
Introducing exotic pathogens that cause highly contagious

animal or plant diseases may elicit rapid and aggressive
attempts to contain and eradicate them. Still, these measures
cause more economic damage in the short term than the
disease itself. Cost may not be the primary factor if the
infectious disease becomes endemic. (Howard, 2013)

Containment and eradication of exotic animal diseases are
commonly done by culling the potentially exposed animal to
break the chain of transmission. (N.M. Ferguson, 2001) Many
animal diseases (potential bioterrorist threats) are caused by
viruses, for which there are limited therapies once the animal
is infected. Fungi cause about 75% of plant diseases. These can
be controlled with varying degrees of effectiveness by applying
fungicides. (Strange, 1993)

Transmission of bacterial and viral crop diseases is difficult
to control with chemical pesticides unless insect vectors
transmit the diseases. (Madden & et.al., 2000) Because of these
difficulties, containment and eradication of bacteriological
pathogens depend heavily on quarantining infected areas and
removing infected and exposed plants. (Howard, 2013)

Agricultural Bioterrorist Attack Requires Relatively
Little Expertise Or Technology
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One of the reasons that a bioterrorist attack on human
populations is difficult is that the development of an effective
bioweapon is a technically daunting task. Many bioagents are
poorly transmitted to humans requiring large amounts to be
disseminated to cause mass casualties. The only way to cause
mass damage is to use a respirable aerosol. This is also a danger
to the perpetrators. (Howard, 2013) (Nichols & Carter, 2022)

The same difficulties do not exist for many of the diseases
that would affect agricultural bioterrorist weapons. These
diseases of animals and crops are highly contagious and spread
effectively from the point source. Moreover, humans can safely
handle the causative organisms without risk of infection.
There is no need for vaccination, special precautions, or
prophylactic antibiotic use. (Howard, 2013) (Nichols &
Carter, 2022)

Material to initiate the plant or animal disease outbreak can
be produced in small quantities – a few milligrams could be
sufficient to initiate multiple outbreaks in widely separated
locations. The raw materials can easily be smuggled into the
US. They do not even need to be created in a laboratory.
(Howard, 2013)

Dissemination requires little experience. Animal virus
preparations can be diluted and disseminated with a simple
atomizer in close proximity to the animals. Simply exposing
a mass of sporulating fungi in the air immediately upward of
a target field could be effective for plant diseases. Weather is
the only fly in the ointment. One nightmare scenario is the
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introduction of a pathogen without perpetrators entering the
US. Sorghum is planted on both sides of the Southern border,
and wheat and barley are along the Canadian – US border.
Multiplication of pathogens in the foreign acreage could lead
to numbers of spores blowing across the US border and
initiating the escalating outbreak. An advantage to the
terrorists is that disease surveillance and control programs are
less effective/rigorous OCONUS. (Howard, 2013)

BIO-THREATS TO AGRICULTURE – SOLUTIONS
FROM SPACE (AGRO-TERRORISM)

Monitoring of plant pathogens
What is needed?
Answer: A real-time monitoring and communication

of abnormalities within livestock and crops using
satellite technology. Figure 8-1 shows the operating and
planned NASA Earth Fleet through 2023. The Landsat series
is particularly useful for agricultural bioterrorism studies.
(NASA, 2021)

Figure 8-1 NASA Earth Fleet
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Source: (NASA, 2021)
Figure 8-2 Layers of Agriculture Investigation
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Source: (NASA, 2021)

Figure 8-2 shows the agriculture density map where
satellites must penetrate with MASINT sensors. (NASA,
2021) Figure 8-3 shows the ESA operational plan for its
satellites. (ESA, 2019) Figure 8-4 shows the satellites used to
help researchers and defense analysts develop intelligence and
data for various missions.
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Figure 8-3 ESA Developed Earth Observation
Missions Pillars

Source: (ESA, 2019)
Figure 8-4 ISR Satellites and their Missions Diversity
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Source: (NASA, 2021)

MASINT
Broadband and multispectral methods rely primarily on

visible (VIS) and near-infrared (NIR) reflectance indices, such
as normalized difference vegetation index (NDVI). Ability to
offer passive monitoring for the disease at scale rather than
active sampling. A change in plant behavior could show
indications of tampering by bad actors when geological and
meteorological variables have been accounted for. (Silva &
et.al, 2021)

Remote Sensing (RS) is a technique for obtaining

BIO-THREATS TO AGRICULTURE-SOLUTIONS FROM SPACE
(SINCAVAGE, CARTER, NICHOLS) | 421



information on an object without physical contact by
measuring the electromagnetic energy reflected/backscattered
or emitted by the surface of the Earth (Freek D. van der Meer,
2007).

“A significant step forward in earth observation was made
with the development of imaging spectrometry. Imaging
spectrometers measure reflected solar radiance from the Earth
in many narrow spectral bands. Such a spectroscopical imaging
system can detect subtle absorption bands in the reflectance
spectra and measure the reflectance spectra of various objects
with very high accuracy. As a result, imaging spectrometry
enables better identification of objects at the Earth’s surface
and better quantification of the object properties than can
be achieved by traditional earth observation sensors such as
Landsat TM and SPOT. ” (Freek D. van der Meer, 2007)

As a noncontact technique, we include in the definition
of RS also spectral measurements acquired by portable
instruments such as handheld spectroradiometers (also called
proximal sensing). These measurements are processed and
analyzed to retrieve information on the object observed (i.e.,
plant health, in this case). RS is an indirect assessment
technique, able to monitor vegetation conditions from a
distance and evaluate the spatial extent and patterns of
vegetation characteristics and plant health in this application.
Sensors can be distinguished into active or passive; whether
they emit artificial radiation and measure the energy reflected
or backscattered (active sensors), the reflected solar radiation,
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or the emitted thermal radiation (passive sensors). (Martinelli,
2015)

Monitoring of Invasive Plants
Publicly available scientific literature about Agroterrorism,

biological crimes, and biological warfare targeting livestock
and poultry dates back over 100 years. Copious research
reports, peer reviews, books, and studies characterizing
bioterrorism risks, threats, impact, and detection methods for/
to plant ecosystems and the US economy. They have been
published as OSI. Similarly, research reports, papers, and
special government studies have been completed detailing
effective plant-advanced bioterrorism countermeasures. These
are generally CLASSIFIED and not OSI. They will not be
addressed in this chapter.[2] [3] We will briefly discuss two
interesting OSI / UNCLASSIFIED studies/ examples
performed to monitor invasive plants. We will then conclude
with a feedlot concern.

The effective and regular remote monitoring of agricultural
activity is not always possible in developing countries because
access to cloud-based geospatial analysis platforms or expensive
high-resolution satellite images is not always available. High-
resolution satellite images medium-resolution satellite images
were used to map the spatial distribution of sickle bush
(Dichrostachys cinerea), an archetypal allochthonous invasive
plant in Cuba that is becoming impossible to control owing
to its rapid growth in areas planted with sugar cane in the
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Trinidad-Valle de Los Ingenios area (Cuba), a UNESCO
World Heritage Site. (E. Moreno, 2021)

“Two images were used (WorldView-2 and Landsat-8); these
were subjected to supervised classification, with accuracy
values of 88.7% and 93.7%, respectively. Vegetation cover was
first derived from the WorldView-2 image. This information
was then used as the training field to obtain spectral signatures
from the Landsat-8 image so that Landsat images may be
regularly used to monitor D. cinerea infestations. The results
obtained in the spatial distribution map for sickle bush in the
Landsat-8 images had overall reliability of 93.7% and a Kappa
coefficient reliability of 91.9%. These values indicate high
confidence in the results, which suggests that sickle bush has
invaded 52.7% of the total 46,807.26-ha area of the Trinidad-
Valle de Los Ingenios. This process proved extremely effective
and demonstrated the benefits of using high-resolution spatial
images from which information can be transferred to free
satellite images with larger pixel size.” (E. Moreno, 2021)

Another satellite study performed by B. Chen and
colleagues. (Chen & et.al., 2019) California’s Central Valley
continually faces serious challenges of water scarcity and
degraded groundwater quality due to nitrogen leaching.
Orchard age is one of the key determinants of fruit and nut
production and directly affects consumptive water and
fertilizer demand. Chen developed a robust detection method
to track crop cover dynamics and identify the planting year
through time series of Landsat imagery within the Google
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Earth Engine (GEE) platform. They used a full archive of
Landsat data (Landsat-5 TM, Landsat-7 ETM+, and
Landsat-8 OLI) from 1984 to 2017 as inputs and automated
the GEE workflow for the on-fly mapping. (Chen & et.al.,
2019)

Chen’s method showed very high accuracy in estimating
tree crop ages, with an R2 of 0.96 and a mean absolute error
of less than half a year, when compared with 142 records
provided by almond growers. They further evaluated the
accuracy of the statewide mapping of planting years for all
fruit and nut trees in California and found an overall
agreement of 89.2%. (Chen & et.al., 2019)

Feedlot density detection
The highly concentrated breeding and rearing practices of

our livestock industry make it a vulnerable target for terrorists
because diseases could spread rapidly and be very difficult to
contain. For example, 80 and 90 percent of grain-fed beef cattle
production is concentrated in less than 5 percent of the
nation’s feedlots. Therefore, deliberately introducing a highly
contagious animal disease in a single feedlot could have serious
economic consequences. (epidemiology) (Agroterrorism:
What Is the Threat and What Can Be Done About It?, 2004)

There is a concern about creating transgenic plant
pathogens, pests, or weeds resistant to conventional control
methods. This prospect has already been realized through
developing a genetically mutant superweed, reportedly
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resistant to current herbicides. The superweed was reportedly
designed to “attack corporate monoculture” and target
genetically engineered crops. (Parker, 2002)

According to Plant Health Inspection Service (APHIS),
Earth Observation Epidemiology, or tele-epidemiology, is one
of the most promising technologies to monitor feedlot density
and diseases. Satellite imaging detects the distinct
environmental conditions that may serve as a refuge for the
disease-carrying animals. Electromagnetic spectra also provide
useful information to make decisions regarding plant
physiological stress. (Martinelli, 2015) (APHIS & USDA,
2022)

Conclusions
Despite the US’s best efforts, the US will continue to be

vulnerable to deliberate introductions of exotic plant and
animal diseases by terrorist groups. The vulnerability to
agricultural biological attack is a consequence of intrinsically
low security of agricultural targets, the technical ease of
engagement, and the large economic repercussions of even
small outbreaks.

The good news is that the US is aggressively stepping up
its ISR efforts via satellite. Satellite intelligence on agricultural
and cattle feeding zones reduces the risks of successful attacks.

References
Agroterrorism: What Is the Threat and What Can Be Done

426 | BIO-THREATS TO AGRICULTURE-SOLUTIONS FROM SPACE
(SINCAVAGE, CARTER, NICHOLS)



About It? (2004). Retrieved from https://www.rand.org/:
https://www.rand.org/pubs/research_briefs/RB7565.html

APHIS & USDA. (2022). wallchart-animal-disease-from-
potential-bioterrorist-agents. Retrieved from
https://www.cfsph.iastate.edu:
https://www.cfsph.iastate.edu/pdf/wallchart-animal-disease-
from-potential-bioterrorist-agents

Ban, J. (2000, June). Agricultural Biological Warfare: An
Overview. Retrieved from https://www.ojp.gov/ncjrs:
https://www.ojp.gov/ncjrs/virtual-library/abstracts/
agricultural-biological-warfare-overview

Bazzell, M. (2021). Open Source Intelligence Techniques:
Resources for Searching and Analyzing Online Information,
8th edition. Bazzell.

Bipartisan Committee on Biodefense. (2022, June). defense-
of-animal-agriculture/. Retrieved from
https://biodefensecommission.org:
https://biodefensecommission.org/reports/defense-of-
animal-agriculture/

Carus, W. (2015, Aug 10). The History of Biological
Weapons Use: What We Know and What We Don’t. Health
security, pp. 13.4 (2015): 219-255. Retrieved from
https://www.liebertpub.com/: https://www.liebertpub.com/
doi/10.1089/hs.2014.0092

CFSPH. (2022). select-zoonotic-diseases-of-companion-
animals-wallchart/. Retrieved from
https://www.cfsph.iastate.edu:

BIO-THREATS TO AGRICULTURE-SOLUTIONS FROM SPACE
(SINCAVAGE, CARTER, NICHOLS) | 427



https://www.cfsph.iastate.edu/product/select-zoonotic-
diseases-of-companion-animals-wallchart/

Chen, B., & et.al. (2019, May). Automatic mapping of
planting year for tree crops with Landsat satellite time series
stacks. Retrieved from https://www.sciencedirect.com:
https://www.sciencedirect.com/science/article/abs/pii/
S0924271619300802

1. Moreno, e. (2021, Sept 29). Affordable Use of Satellite
Imagery in Agriculture and Development Projects:
Assessing the Spatial Distribution of Invasive Weeds in
the UNESCO-Protected Areas of Cuba. Retrieved from
https://www.mdpi.com: https://www.mdpi.com/
2077-0472/11/11/1057

ESA. (2019, May). ESA-
developed_Earth_observation_missions_pillars.jpg. Retrieved
from https://www.esa.int: https://www.esa.int/var/esa/
storage/images/esa_multimedia/images/2019/05/esa-
developed_earth_observation_missions/19415135-3-eng-
GB/ESA-developed_Earth_observation_missions_pillars.jpg

Freek D. van der Meer, S. d. (2007, July 27). Imaging
Spectrometry: Basic Principles and Prospective Applications.
Retrieved from https://books.google.com/:
https://books.google.com/books/about/
Imaging_Spectrometry.html?id=XDBRCpQy64UC

428 | BIO-THREATS TO AGRICULTURE-SOLUTIONS FROM SPACE
(SINCAVAGE, CARTER, NICHOLS)



Howard, J. J. (2013). Weapons of Mass Destruction and
Terrorism. NYC: McGraw Hill.

Madden, L., & et.al. (2000). A theoretical assessment of the
effects of vector-virus transmission mechanism on plant virus
disease epidemics. Phytopathology, pp. 90:576-594.

Martinelli, F. e. (2015). Advanced methods of plant disease
detection. A review. Retrieved from https://link.springer.com/
article/10.1007/s13593-014-0246-1:
https://link.springer.com/article/10.1007/
s13593-014-0246-1

N.M. Ferguson, D. C. (2001). Transmission Intensity and
impact of control policies on the foot-and-mouth epidemic in
Great Britain. Nature, pp. 413: 542-548.

NASA. (2021, April). NASA_satellite_fleet.jpg. Retrieved
from https://gpm.nasa.gov/: https://gpm.nasa.gov/sites/
default/files/2021-04/NASA_satellite_fleet.jpg

Nichols, & Carter, H. J. (2022). Drone Delivery of
CBNRECy – DEW Weapons: Emerging Threats of Mini-
Weapons of Mass Destruction and Disruption (WMDD).
Manhattan, KS: New Prairie Press #46.

Nichols, R. K. (2020). Unmanned Vehicle Systems and
Operation on Air, Sea, and Land (Vol. IV). Manhattan: New
Prairie Press.

Nichols, R. K., Sincavage, S., Mumm, H., Lonstein, W.,
Carter, C., Hood, J., . . . & Shields, B. (2021). Disruptive
Technologies With Applications In Airline, Marine, Defense
Industries. Manhattan, KS: New Prairie Press, #38.

BIO-THREATS TO AGRICULTURE-SOLUTIONS FROM SPACE
(SINCAVAGE, CARTER, NICHOLS) | 429



O.S. Cupp, D. W. (2004). Agroterrorism in the U.S.: key
security challenge for the 21st century. Biosecurity and
Bioterrorism: Biodefense Strategy, Practice and Science 2,
97–105., pp. 2, 97–105. Retrieved from
https://pubmed.ncbi.nlm.nih.gov/15225403/:
https://pubmed.ncbi.nlm.nih.gov/15225403/

Parker, H. S. (2002).
McNair_65_agriculturalbioterrorism.pdf. Retrieved from
https://www.files.ethz.ch: https://www.files.ethz.ch/isn/
10897/McNair_65_agriculturalbioterrorism.pdf

Silva, G., & et.al. (2021, May 20). Plant pest surveillance:
from satellites to molecules. Emerg Top Life Sci., pp.
5(2):275-287. doi:10.1042/ETLS20200300. PMID:
33720345; PMCID: PMC8166340.

Spickler, A. R. (2022, October 6). bioterrorismdisease or
agents have technical fact sheets. Retrieved from
https://www.cfsph.iastate.edu:
https://www.cfsph.iastate.edu/diseaseinfo/factsheets/

Strange, R. (1993). Plant Disease Control. London:
Chapman and Hall.

Wiki. (2022). Measurement_and_signature_intelligence
(MASINT) definition. Retrieved from
https://en.wikipedia.org: https://en.wikipedia.org/wiki/
Measurement_and_signature_intelligence

Wiki. (2022, Aug 26). Tele-epidemiology. Retrieved from
https://en.wikipedia.org: https://en.wikipedia.org/wiki/Tele-
epidemiology

430 | BIO-THREATS TO AGRICULTURE-SOLUTIONS FROM SPACE
(SINCAVAGE, CARTER, NICHOLS)



Wilson, T. M. (2000, Sept). Agroterrorism, Biological
Crimes, and Biowarfare Targeting Animal Agriculture: The
Clinical, Pathologic, Diagnostic, and Epidemiologic Features
of Some Important Animal Diseases. Emerging diseases of
animals, 23-57. Retrieved from
https://www.sciencedirect.com:
https://www.sciencedirect.com/science/article/abs/pii/
S0272271218300222

Endnotes

[1] These wallcharts are packed with excellent information and
recommended.

[2] All research and writings must be OPEN Sourced,
UNCLASSIFIED, and verifiable with reliable sources. This is
the managing editor’s strict policy.

[3] Risk assessment for bioterrorism and other forms of
terrorist attacks are discussed in (Nichols R. K., Unmanned
Vehicle Systems and Operation on Air, Sea, and Land, 2020)
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9.

MODELING,
SIMULATIONS, AND
EXTENDED REALITY
(OETKEN)

This chapter provides an overview of immersive technology
and surrounding use cases in emerging space systems. Recent
advancements in virtual, augmented, and extended reality
technologies have created new and exciting frameworks in the
areas of simulation, modeling, and training. This chapter
explores those frameworks and provides insight into how they
fit within current and future space systems.

Student Learning Objectives
After reading this chapter, students should be able to do the

following:

1. Define and differentiate virtual, augmented, and
extended reality

2. Describe the framework of a virtual environment



3. Define and differentiate the degrees of freedom in
immersive simulation

4. Differentiate use case protocols for augmented versus
extended reality technology integration in space systems

Foundations of Immersive Systems Technology
Immersive technology and its relationship to human-

centered emerging space systems have the potential to
significantly enhance many facets of aerospace design and
space exploration. Immersive systems are the technologies used
to create an experience where system engineers and designers
enhance parts of a user’s physical world with computer-
generated input (The Interaction Design Foundation, 2021)
Emerging space systems can be enhanced through immersive
technologies that use virtual reality (VR), augmented reality
(AR), and extended reality (XR). System engineers and
designers are on the threshold of a tremendous opportunity to
enhance and improve the user experience for pilots, astronauts,
and other space-related occupations by embedding immersive
systems technologies in the lab and in the field.

Virtual Reality
Much of the virtual reality technologies found in today’s

ecosystems are built on ideas that date back as early as the
1800s. The first stereoscope, using twin mirrors to project a
single image, was invented in 1838, and that concept
eventually morphed into the View-Master toy, which was
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patented in 1939 and is still in production. The next big
technological leap in immersive systems came from Morton
Heilig, who is often regarded as the father of VR (Gackenbach,
2017). Heilig had the vision to create a multisensory theater
experience that would be more immersive than anything
people had previously experienced. His Sensorama simulator
(Figure 9-1) was a fully immersive, multisensory theater
experience that encompassed 3-D images, stereo sound, wind,
smells, and vibrations.

In order to make the Sensorama simulator more immersive,
Heilig invented a

side-by-side dual film 3-D camera and projector. He made
five films dedicated to the Sensorama, which included a
motorcycle ride through New York City, a bicycle ride, a ride
of a dune buggy, a helicopter ride over Century City, and a
dance by a belly dancer (Carlson, 2017). The experience of the
motorcycle ride through New York included a seat that would
vibrate as a motorbike would, air that would rush through
the user’s hair, and smells of the road and a passing bistro
(Gackenbach, 2017).

Figure 9-1 The Sensoroma
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Source: (Basso, 2017)
In 1965, another inventor named Ivan Sutherland created a

head-mounted device that Sutherland marketed as a window
into a virtual world. Sutherland’s device was the first head-
mounted display to incorporate computer technology to
mediate a VR system (Gackenbach, 2017). Sutherland’s
system became known as the “Sword of Damocles” (Figure
9-2). The name arises from the Greek story of Damocles, in
which a sword was suspended in the air by a hair, directly
above the King’s head—and at any moment, the hair could
break, killing the King (Skurzynski, 1994). Similarly,
Sutherland’s contraption consisted of a height-adjustable pole
attached to the ceiling. The system used this design setup due
to the extreme weight of the headgear.
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Figure 9-2 The Sword of Damocles

Source: (Van Krevelen, 2010)

This was the first time that computers were used to display
a real-world environment whose elements were augmented by
a computer (Adams, 2014). The headgear itself was made of
cathode ray tube monitors, a mechanical tracking system, an
ultrasonic tracking system, eyeglass display optics, and many
computer programs and algorithms. Sutherland’s system was
able to project a transparent, 3-D wireframe cube onto the
semitransparent optic lenses to create the illusion that the cube
was floating in the room (Sunderland, 1968). The graphics
were primitive—however, the 3-D cube would move and tilt,
corresponding to the observer’s head movements.

The term “virtual reality” was first used in the 1980s when
Jaron Lanier started to design and develop goggles and gloves
needed to experience what he called “virtual reality.” Visual
Programming Languages (VPL) was one of the first companies
to design, develop, and sell VR products to consumers. VPL
developed the DataGlove, the EyePhone, and AudioSphere

436 | MODELING, SIMULATIONS, AND EXTENDED REALITY
(OETKEN)



(Figure 9-3). These devices, when used together, created an
immersive experience. The DataGlove used fiber optic cables
attached to the back of the glove, which immitted tiny light
beams as the user bent and moved their hand. Then, a
computer interpreted the light beams and would generate an
image on a small screen inside the EyePhone helmet. There
were two drawbacks that limited the success of Lanier’s
systems: it was too expensive for the average consumer, and it
was a one-size-fits-all glove (Burdea, 2003). Additionally, the
DataGlove lacked tactile feedback, which reduced any sense of
presence and was inconsistent with expectations of reality.

Figure 9-3 The VPL DataGlove and EyePhone

Source: (Sorene, 2014)
The 1970s and 1980s were an exciting time in the field of
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virtual reality. Advances in optical technology ran parallel to
projects that worked on haptic devices and devices that would
allow users to move around in virtual space. At NASA’s Ames
Research Center in the mid-1980s, the Virtual Interface
Environment Workstation (VIEW) system (Figure 9-4)
combined a head-mounted device with VPL’s DataGloves to
enable haptic interaction. The VIEW system used a head-
mounted stereoscopic display system in which the display may
be an artificial computer-generated environment, or a real
environment relayed from remote video cameras (Rosson,
2022). can “step into” this environment and interact with it.
For this project, NASA developed the DataSuit—a full-body
garment equipped with sensors that increased the sphere of
performance for virtual reality simulations by reporting to the
computer the motions, bends, gestures, and spatial orientation
of the user (Rosson, 2022).

Figure 9-4 The NASA VIEW system
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Source: (Rosson, 2022)
A large leap towards more interactivity in VR technology

came in 2001 with the SAS cube—a computer-based cubic
room (Figure 9-5). The SAS cube was nicknamed “The Cave,”
which was in reference to Plato’s allegory of the cave, wherein
he challenges human ideas of perception, reality, and illusion.
The SAS cube room used projectors and sensors driven by
PCs that react to people in the room. The advancements in
PC graphics developed by the gaming industry meant that a
cluster of relatively inexpensive PCs could be used instead of
large supercomputers to yield the processing power required
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for effective vividity and interaction (Jacobson J. &., 2005)
(Jacobson J. L.-L., 2005). The SAS cube system used rear
projectors to cast stereoscopic images onto four screens, one
of which was the floor. The continuous visual images
synchronized across all screens produced a virtual landscape.
Users wear 3-D glasses equipped with motion tracking sensors,
which track

head movement (Fuchs, 2011). The stereoscopic images
made the environment look 3-D, and sensors let users interact
with objects and navigate the space (Robertson, 2001).

Figure 9-5 The SAS Cube System

Source: (Jacobson J. &., 2005)

Augmented and Mixed Reality

440 | MODELING, SIMULATIONS, AND EXTENDED REALITY
(OETKEN)



Augmented reality systems differ from virtual reality in
many conceptual and technical aspects. Augmented reality is
accomplished through the human eye’s view of the physical
world in which various elements are enhanced by computer-
generated input and digital artifacts. These inputs and artifacts
can range from sound to video, graphics to GPS overlays, and
more (The Interaction Design Foundation, 2021).

One of the first functional augmented reality systems was a
robotic system designed and developed in 1992 at The United
States Air Force Armstrong Research Lab by Louis
Rosenberg. Rosenberg designed an AR system called Virtual
Fixtures (Figure 9-6A & 9-6B), which was an incredibly
complex robotic system designed to compensate for the lack of
high-speed 3-D graphics processing power in the early 1990s
(The Interaction Design Foundation, 2021). The system
enabled the overlay of sensory information onto a workspace
to improve user productivity.

Figure 9-6A The Virtual Fixtures Robotic System
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Source: (Rosenberg, 2022)

Figure 9-6B The Virtual Fixtures Robotic System
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Source: (Rosenberg, 2022)
The first commercial AR application was introduced in

2008 by a German marketing agency in Munich. The agency
designed a printed magazine ad for a model BMW Mini,
which, when held in front of a computer’s camera, also
appeared on the screen. Through the connection of markers
on the physical print ad and the virtual car model, users were
able to control the car on the screen and move it around to
view different angles simply by manipulating the piece of paper
(Javornik, 2016). The application was one of the first
marketing campaigns that allowed interaction with a digital
model in real-time.

Google’s Project Glass AR device (Figure 9-7) was presented
to the public in 2012. Google Glass is an optical head-
mounted display wearable device that is controlled with an
integrated touch-sensitive sensor or with natural language
voice commands. After Google made the public
announcement for Google Glass, there was a surge of new
AR research and an increase in the public perception of
augmented reality technology (Arth, 2015). However, Google
Glass was never quite successful in the consumer market. In
January of 2015, Google announced that it would stop
producing the Google Glass prototype. In July of 2017,
Google announced the Google Glass Enterprise Edition and
an updated version of the enterprise edition in 2019.

Figure 9-7 Google Glass AR Device
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Source: (Statt, 2020)
In January of 2015, Microsoft announced the Hololens

(Figure 9-8A). The Hololens is a headset that fuses AR and
VR technologies. The device contains an integrated Windows
computer system with a see-through display and multiple
sensors. The Hololens is Microsoft’s take on augmented
reality, which they call mixed reality (Arth, 2015). Using
multiple sensors, advanced optics, and holographic processing
that melds seamlessly with its environment, the device
generates holograms that can be used to display information,
blend with the real world, or even simulate a virtual world.
The Hololens has a plethora of optical sensors, with two on
each side for peripheral environment understanding and sense,
a main downward facing depth camera to pick up hand
motions, and specialized speakers that simulate sound from
anywhere in the room. The Hololens also has several
microphones, an HD camera, an ambient light sensor, and
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Microsoft’s proprietary “Holographic Processing Unit” that
has similar processing power as an average laptop. The device
is capable of sensing the spatial orientation of the operator in
relation to its position in the room, tracking walls and objects
in the room, and blending holograms into the physical
environment. The Microsoft Hololens 2 was released in 2019
and improved on the immersiveness, ergonomics, and
connectivity of the original device.

Figure 9-8A Microsoft Hololens Device

Source: (Landyshev, 2019)
Basics of Dynamic Modeling in Virtual Environments
A virtual world is representative of an environment made

up of objects, avatars, actuators, and other elements. In a
general sense, we are dealing with dynamic environments
where objects can move when touched. Forces and torques
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from various sources act on virtual objects. Simulating the
dynamics of virtual environments is an

important part of an application, regardless of whether it is
dynamics of rigid bodies, deformation dynamics, or dynamics
of fluids (Mihelj, 2014). Inclusion of the relevant dynamic
responses allows realistic behavior of the virtual environment
to be achieved. A model of a body in a virtual environment
must include a description of its dynamic behavior. This
description also defines the body’s physical interaction with
other bodies in the environment. Body dynamics can be
described based on various assumptions, which then
determine the level of realism and the computational
complexity of the simulation.

Interaction and Simulation in Complex Systems
Complex immersive systems require advanced levels of

interaction within the virtual environment in order to
maintain integrity. Mihelj et al. (2014) describe this level of
interaction based on a computer-generated framework:

Interaction with a computer-generated environment
requires the computer to respond to the user’s actions. The
mode of interaction with a computer is determined by the type
of the user interface. Proper design of the user interface is of
utmost importance since it must guarantee the most natural
interaction possible. The concept of an ideal user interface uses
interactions from the real environment as metaphors through
which the user communicates with the virtual environment (p.
205).
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The principal elements of interaction inside a virtual
environment can be broken down into three main
functionalities: manipulation, navigation, and
communication. (Mihelj, 2014) note that “manipulation
allows the user to modify the virtual environment and
manipulate objects within it; navigation allows the user to
move through the virtual environment; and communication
occurs between different users or between users and digital
intermediaries within the virtual environment” (p. 207). One
of the advantages of operating in an immersive environment
is the ability to interact with objects or manipulate objects in
the environment (Mihelj, 2014). The ability to experiment in
a new environment, real or virtual, enables the user to gain
knowledge about the functioning of the environment. Some
manipulation methods are shown in (Figure 9-8B).

Figure 9-8B Manipulation Methods
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Source: (Mihelj, 2014)
Navigation represents movement in space from one point to

another. It includes
two important components: (1) travel—how the user

moves through space and time
and (2) path planning —methods for determination and

maintenance of awareness of
position in space and time, as well as trajectory planning

through space to the desired
location (Mihelj, 2014). Moreover, simultaneous activity

of multiple users in a virtual environment is a vital aspect of
a VR framework. (Mihelj, 2014) offer a good description of
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how simultaneous activity can be achieved in a virtual
environment:

Users’ actions in virtual reality can be performed in different
ways. If users work together in order to solve common
problems, the interaction results in cooperation. However,
users may also compete among themselves or interact in other
ways. In an environment where many users operate at the same
time, different issues need to be taken into account. It is
necessary to specify how the interaction between persons will
take place, who will have control over the manipulation or
communication, how to maintain the integrity of the
environment and how the users communicate.
Communication is usually limited to visual and audio
modalities. However, it can also be augmented with haptics (p.
210).

As technology advances, immersive systems become more
complex, and their use requires many new skills. Engineers and
designers are currently working on best-practice scenarios and
frameworks to put in place, but many of the principals dealing
with this complex environment are already in place. (Mihelj,
2014) explain this complexity in detail:

Extended reality is a medium that is suitable for training
operators of such systems. Thus, it is possible to practice flying
an aircraft, controlling a satellite, navigating a space vehicle,
repairing an engine, and many other tasks in a virtual
environment. Such environments are also important in the
field of advanced robotics. Their advantage is not only that
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they enable simulation of a robotic cell but also behave as a real
robot controller. This saves time required for programming
since robot teaching is done in a simulation environment
offline while the robot can still be used in a real environment
in the meantime. At the same time, a virtual environment
enables verification of software correctness before the program
is finally transferred to the robot. Simulation-based
programming may thus help avoid potential system
malfunctions and consequent damage to the mechanism or
robot cell (p. 217-219).

Degrees of Freedom in Immersive Simulation
Degrees of freedom (DoF) is a reference to the number of

basic ways a rigid object can move through 3-D space. In total,
there are six degrees of freedom. Three degrees correspond to
rotational movement around the x, y, and z axes. These are
commonly referenced as pitch, yaw, and roll. The other three
degrees correspond to translational movement along the x, y,
and z axes. These can be thought of in reference to how an
object is moving forward or backward, moving left or right,
and moving up or down.

Most VR and XR headsets and input devices are set up
in 3DoF or 6DoF configurations. 3DoF means one can track
rotational motion but not translational. In regard to the
immersive environment, that means one can track whether the
user has turned their head left or right, tilted it up or down,
or pivoted left and right. 6DoF (Figure 9-9) means one can
additionally track the translational motion in the immersive
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environment—whether the user has moved forward,
backward, laterally, or vertically.

Figure 9-9 6Dof Illustration

Source: ShareAlike 4.0 International (CC BY-SA 4.0))
Use of Motion Control Platforms
Cybersickness or Virtual Reality sickness are similar to

Motion Sickness. The symptoms are almost identical in that
users feel dizzy as if they were on a car trip or feel sick as if they
were on a bumpy plane ride. The intensity of cybersickness
depends on the VR technology that the headset is using.
Symptoms often involve problems with presence and balance
and eyes sending false perspectives as motion is displayed in the
headset. Through the use of mechanical movement, motion
control platform systems (Figure 9-10) provide the capability
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of staying immersed in longer virtual and extended reality
simulation sessions without feeling nauseous. Motion control
systems incorporate the principal physics of 3DoF or 6DoF
to provide a minimization of mismatches between movement
and graphics, which enhances disorientation for the user.

Figure 9-10 3DoF Motion Control Platform System

Source: (Motion Systems EU. , 2022)
AR and XR Uses Cases in Space Systems
In order for XR solutions to become a mainstream addition

to the modern space systems workflow, they need to be
efficient, immersive, and ergonomic. Hand and eye tracking
solutions are ideal for making the XR experience feel more
natural, but it is also important for the right hardware and
software innovations to be implemented to ensure these
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features deliver the right results (Carter, 2022). For example,
lightweight and untethered headsets with powerful displays
will make it easier to engage in XR environments for longer
periods of time. To improve the overall ergonomic experience,
developers are researching eye-tracking technology to detect
the visual needs of the user at any given time and adjust the
rendering accordingly (Carter, 2022). Additionally, enhanced
artificial intelligence solutions built into XR technology will
aid in making the immersive experience feel more natural when
it comes to using hand and eye tracking software. The right AI
innovations will be able to track even the most minute finger
movements and gestures, even when parts of a person’s hand
are hidden from direct view (Carter, 2022).

The current standard for human-system integration in
space hardware development makes use of high-fidelity
mockups to test operational scenarios and human interactions.
This process is iterated at different scales and development
stages, and it usually requires the use of great resources and
implementation time (Netti, 2021). Immersive technologies
can help mitigate this problem by minimizing the dependency
on physical prototyping of assets and help condense the
iterative evaluation/implementation process optimizing the
transition from CAD modeling to human-in-the-loop testing.
NASA is currently using XR simulation technology to test
a Multi-Mission Extra Vehicular Robot (MMEVR) that is
designed to be a collaborative/autonomous robot for EVA
operations. The MMEVR human-system integration
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experiment (Figure 9-11) is to explore the robot collaboration
capabilities in regular spacecraft maintenance scenarios and to
understand how the hardware performance is affected by the
human component and, conversely, how the human
capabilities in space are affected by the hardware component
(Netti, 2021).

Figure 9-11 MMEVR Testing Environment

Source: (Netti, 2021))
Crewed space mission requires astronauts to practice and

simulate every detailed step of the flight mission thousands
of time. Although launching a spacecraft from zero to orbit
takes only 12 minutes, it requires years of preparation and
hundreds of hours of complex training simulations (varjo.com,
2022). For the mission to be successful, everything needs to
go flawlessly. The Boeing Starliner flight-test crew in Houston
has implemented a new and innovative way to train for this
space system. The crew is using the Varjo XR3 extended reality
system (Figure 9-12). The XR3 system allows astronauts to
train remotely from anywhere in the world with the same level
of realism and interactions as in a physical simulator. The
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system uses industry-leading visual quality to ensure virtual
instruments in the spacecraft can be read and operated
accurately. This type of immersive simulation experience can
be used to train for any procedure. Additionally, it unlocks
the ability to train in pre-launch quarantine in crew quarters,
which was previously impossible.

Figure 9-12 Boeing Starliner Varjo XR3 Testing

Source: (nbcnews, 2018)
NASA is also using augmented reality technology to explore

various applications that can be used to assist astronauts
aboard the International Space Station. (Experiment details,
2022) The T2 Augmented Reality (T2AR) project (Figure
9-13) demonstrates how station crew members can inspect
and maintain scientific and exercise equipment critical to
maintaining crew health and achieving research goals without
assistance from ground teams (Guzman, 2021). The project
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demonstration used 3-D directional cues to direct the
astronaut’s gaze to specific work sites and displayed procedure
instructions. The device followed an astronaut’s verbal
instructions to navigate procedures and displayed AR cues and
procedure text over the hardware as appropriate for the
procedure step being performed (Guzman, 2021). The system
also provided supplemental information, such as instructional
videos and system overlays, to assist in performing the
procedure.

Figure 9-13 NASA T2AR Project Demonstration

Source: (NASA, 2021)
Future Thinking in Immersive Systems Technology
The future of immersive systems technology is exciting and

yet full of unknowns. Engineers and designers are just
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beginning to harness the full potential of new technological
advancements. Intelligent systems, machine learning,
advanced micro processing, and advanced optics will provide
the platforms for new immersive systems to emerge. These XR
and AR technologies will eventually merge and integrate more
seamlessly with the human body—which is ideal for complex
space systems. One way is through AR contact lenses. While
it’s true that AR glasses will get better, cheaper, and more
comfortable, in the future, they may also become obsolete as
AR lenses take over. Such lenses are already in development.

The Mojo AR contact lens prototype (Figure 9-14) is a
huge step forward for advanced immersive technology. The
new Mojo Lens prototype accelerates the development of
invisible computing, the next-generation computing
experience where information is available and presented only
when needed (Mojo, 2022). This type of AR experience allows
users to access timely information quickly and discreetly
without having to look down at a screen or lose focus on the
people and physical world around them.

Figure 9-14 Mojo Advanced AR Contact Lens
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Source: (Mojo, 2022)
The power of XR and AR technology is grounded in the

ability to turn information into experiences, which can make
many aspects of one’s life richer and more fulfilling. For
businesses, XR offers huge scope to drive business success,
whether that means engaging more deeply with customers,
creating immersive training solutions, streamlining business
processes such as manufacturing and maintenance, or
generally offering customers innovative solutions to their
problems. In the end, the potential benefits of XR and AR far
outweigh the challenges.
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10.

DRONES AND
PRECISION
AGRICULTURAL
MAPPING (MUMM)

Student Learning Objectives
The student will gain knowledge of the concepts and

framework related to the current and future uses of space
assets and autonomous systems in the agriculture industry.

A Look Back at the Traditional Agriculture Monitoring
Systems

Since the early days of humankind’s need to grow and
harvest food from the earth, the value of information on crop
yields, water supplies, seed stores, weather, and other data is
key to the success of output for the next growing season.
Currently, satellite and remote sensing data is collected and
analyzed as it is used worldwide by the “agricultural industry
to make decisions, understand changes, and estimate future
conditions. Like forecasting commodity price data, researchers
and industry professionals use these spatial data to forecast



changes to conditions under different management strategies,
climate scenarios, and market pressures” (Farmtogether,
2022).

The first agricultural revolution occurred in approximately
10,000 B.C. as humans shifted from being hunter-gathers to
subsistence farmers and herders. The second agricultural
revolution started about 300 years ago, which ushered in new
agrarian techniques, including selectively breeding livestock
and crop rotation systems. The third agricultural revolution
boosted crop yield and improved plant technologies
throughout the 1940s, 50s, and 60s (Epplett, 2021).

The Industrial Revolution was the catalyst for farmers
shifting from the small family farm yields to the industrial
output of the modern farm. This shift was instrumental in
allowing the sharing of all recorded data with farmers in other
states and other countries. The days of small farming and
handwritten journals are gone and replaced with data and
trend analytics to increase farm production to meet the
demands as the population shifts from rural farms to urban
and city life. As a result, the world’s population flourishes as
“food is more accessible around the world, especially in
wealthier, more developed places, due largely to effects of the
Industrial Revolution and changes that have occurred in
society” (Colby Community, 2018).

The importance of the agriculture industry is a hallmark
of our current civilization as food security, nutrition, and
availability are keys to a productive society. The “concern with
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ensuring social stability was evident with the creation of the
League of Nations Health Organization, which was launched
to combat epidemics in Eastern Europe, but eventually came
to sponsor a nutrition program” (Colby Community, 2018).

The agricultural industry is undergoing rapid
transformations as interconnected network sensor systems,
automated equipment, data feeds, and in-depth scientific
studies are taking food production into a technical revolution.
However, this revolution is not without challenges as
“technological innovation has resulted in substantive
improvements in the availability, timeliness and overall quality
of agricultural data, many technical and institutional
challenges remain” (Carletto, 2021).

The agriculture industry is a linchpin to humankind on
our planet and in outer space. The use of satellite data in the
“agriculture sector is not new; organizations have been
utilizing images from space to study land-use ever since the first
satellite of NASA’s Landsat program started beaming back
pictures in 1972”. (Measures, 2021)

The “difference between then and now is that the data we’re
generating can be integrated into all the additional innovations
taking place on the farm” (Measures, 2021) with the combined
use of space-based platforms, machine learning, and several
forms of autonomous systems now offer humankind the most
efficient and effective ways to make agricultural decisions since
farming began.

Outer Space to the Subsoil
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Satellites are commonplace today as the world consumes
GPS data on thousands of different devices daily, and Starlink
launches thousands of communication satellites every year.
The “advantage with satellite images is it is near real-time data
and can cover a large area in a short time…they also eliminate
the need for costly manual data collection and the potential
for human error”. (Measures, 2021) Historically, crop yields
were only as good as the individual family farmers’ journal
notated experiences and the Farmer’s Almanac. Now with new
technology, farmers are merging intuition and expertise with
data from satellites to analyze and make decisions at the field
level.

Satellite imagery is widely adopted in precision agriculture
because of its cost-effectiveness and accuracy. Helping
agronomists everywhere save time, resources, and money.
Satellite data collects detailed information to predict crop
yields, including NDVI. Earth observation (E.O.) data can
measure details, such as soil moisture, to help farmers support
crop health. (Increase Crop Yield With Precision Agriculture
Technology, 2022)

As depicted in Figure 10-1, overhead imagery reduces the
need for higher-cost ground sensors or hands-on physical
testing. One advantage of using drone-collected data is that
it can be easily integrated to provide multiple layers of
information in just a few minutes.

Figure 10-1 Autonomous crop data collection
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Source: (CEMA, 2021)

The Earth Observation Satellites (EOS) have been in orbit
since the early 1970s. These satellites allow for multiple data
layers to create soil maps, analyze acreage that has been tilled
or planted, estimate yields, identify pests, and determine the
nutrient content of fields. Farmers can now integrate all of
this information with water tables, weather, and other data
in a farm management software package to create precision
agriculture far beyond the typical family farming in the past
100 years.
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Figure 10-2 Example of integrated data layers
accessible from a farm management system

Source: (Jarman, 2018)

Figure 10-3 Example of the types of agrarian data
layers stored and accessible from a farm management

system
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Source:(Jarman, 2018)

Figures 10-2 and 10-3 above are examples of “online farm
management platform that exploits computer vision and crop
modeling to integrate EOS, weather, and field data to
automatically assess each field across the whole farm for grass
biomass and grazing readiness” (Jarman, 2018). Not only can
the system be used of for crops, but the data can also be used
for livestock management. Using the data collected as shown
in Figure 10-4, the “fields in green are shown to the farmer as
being suitable for grazing, while those in red require further
growth” (Jarman, 2018).
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Figure 10-4 Farmers can use the drone-collected data
to determine where livestock can best graze

Source: (Jarman, 2018)

The Gridded Soil Survey Geographic Database
(gSSURGO) is generally the most detailed level of soil
geographic data developed by the National Cooperative Soil
Survey (NCSS). See Figures 10-5 and 10-6. These databases are
a compilation of “remote sensing soil data product(s) that now
includes soil organic carbon estimates which can be applied to
a farm or ranch to see most carbon-rich locations as shown in
the map above where darker blue locations have high carbon
stock estimates” (Farmtogether, 2022).

Figure 10-5 Rendering of NASA’s Soil Moisture
Active Passive (SMAP) satellite, collecting global soil

moisture data. Image credit: NASA
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Source: (Jarman, 2018)

Figure 10-6 Sample rendering of the USDA NRCS
gSSURGO satellite gathering soil data
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Source: (Farmtogether, 2022)

Integrated Autonomous Systems
The integrated nature of agriculture data lends itself well

to the evolution of Internet of Things (IoT). An emerging
topic in the IoT arena is in the “agriculture field and IoT-
based precision agriculture. IoT applications can range from
water spraying from drones, soil recommendation for different
crops, weather prediction and recommendation for water
supply, etc.” (Roy, 2022) This emerging field is described as the
Internet of Precision Agricultural Things (IopaT).

Figure 10-7 A diagram of a wireless sensor node.
Image source: Inmarsat (2017).
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Source: (Jarman, 2018)

IoT devices linked to software and hardware tools allow
for the rapid integration and digital data flow that informs
agricultural machinery using the latest in-situ monitoring
information and farming inputs – seedlings, irrigation water,
fertilizers, and pesticides. See Figure 10-7. This information
can inform autonomous equipment and be targeted with a
square mile, providing accuracy to account for natural
variability in growing conditions/crop production across a
field.

Autonomous Ground Vehicles
Integrating space, drone, and IoT data allows for a plan

to move forward with tilling, seeding, watering, weeding, and
harvesting. Ideally, at this point, the farmer should introduce

DRONES AND PRECISION AGRICULTURAL MAPPING (MUMM) | 481



the next set of autonomous systems, which are autonomous
ground vehicles.

An easily recognizable name in the farming equipment
industry is the John Deere brand of Deere & Company, based
in Moline, Illinois. John Deere revealed a fully autonomous
tractor at the Consumer Electronics Show (CES) in January
2022 that would be available for sale later in the year. John
Deere states, “The autonomous tractor serves a specific
purpose: feeding the world. The global population is expected
to grow from about 8 billion to nearly 10 billion people by
2050, increasing the global food demand by 50%” (John Deere,
2022).

John Deere’s push for autonomous farm equipment comes
at a critical time; “farmers must feed this growing population
with less available land and skilled labor, and work through the
variables inherent in farming like changing weather conditions
and climate, variations in soil quality and the presence of weeds
and pests” (John Deere, 2022).

Figure 10-8 John Deere autonomous tractor
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Source: (John Deere, 2022)

The autonomous tractor (see Figure 10-8) can be
networked and controlled via the John Deere Operations
Center Mobile application, which

“provides access to live video, images, data, and metrics and
allows a farmer to adjust speed, depth, and more. If any job
quality anomalies or machine health issues occur, farmers will
be notified remotely and can optimize the machine’s
performance”. (John Deere, 2022) Deere & Company
recognizes that IoT must also be secure. The Company has
taken an active role in posturing its systems for cybersecurity,
stating:

“We have made cybersecurity a critical component of our
new machines. We have added protective features to our
hardware and software and updated how new vehicles are
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engineered… every step of the development process and
continuously evolving cybersecurity processes and solutions to
minimize vulnerability to cyber-attack”. (John Deere, 2022)

Tractors are not the only farm equipment that is being
automated; several other machines are being introduced, as
indicated in Table 10-1.

Different platforms used in autonomous agricultural
vehicle

Table 10-1 Autonomous agricultural vehicles and
capabilities (Roshanianfard, 2020).
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Types of
Platforms Varieties Applications as Autonomous

Vehicles

Tractor

Row crop
tractors,
general purpose
tractors,
tracklayers.
Two-wheel
tractors

Pulling/pushing different
machines (agricultural
machinery, tanks, vehicles, or
trailers). The pre-planting
process includes plowing, tilling,
disking, harrowing, planting,
weeding, watering, fertilizing,
harvesting, winnowing, and
threshing.

Combine
harvester

Wheel type
(self-propelled),
trawler type,
(track), tractor
mounted

Harvesting, winnowing, and
threshing

Utility
vehicle

Utility vehicles
(UTV),
all-terrain
vehicles (ATV)

Transporting, plowing (field,
snow), raking, harrowing,
mowing grass, building fences,
spreading seeds, catching calves,
carrying firewood

Transplanter

Rice
transplanter,
vegetable
transplanter,
flower
transplanter

Transplanting seedlings

Boats Motorboat,
airboat Fertilizing, weeding

Figure 10-9 Transporter system types, (a) wheel-type,
(b) half-crawler, (c) crawler-type (YANMAR, 2022), and

robotic leg (YANMAR, 2022)
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Source: (Roshanianfard, 2020)
The farmer can integrate these autonomous systems into an

augmented reality that allows the farmer to “see” the data to
gain a greater understanding, as depicted in Figure 10-10.

Figure 10-10 An example of augmented-reality
farming solutions displayed on a regular handheld
device
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Source: (Jarman, 2018)

Automated Weeders and Crop Eradication for Food
Crops

Crop eradication can take several forms and reasonings.
Primarily, weeds rob crops of valuable nutrients and water,
reducing crop yield. The weeds can be eliminated by sprayer
drones that are “already being deployed for agricultural
applications, and their load limitations are offset by their
ability to make precise spot applications… Other technologies
in development include precision flamers, lasers, abraders, or
cultivators who can replace or augment
herbicides” (Finkelnburg, 2021). See Figure 10-11 as an
example.

Figure 10-11 The Future of Weed Control-Drone
Precision Spraying
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Source: (Finkelnburg, 2021)

Weed control allows for precision application of herbicides,
while crop dusters and other manual efforts are “… believed
to be one of the least efficient agricultural activities. Precision
A.I. estimates that more than 80% of herbicides end up wasted
on bare ground, while another 15% of the harmful chemicals
fall on the crops” (Singh, 2021). The Company is developing
drones that use a combination of A.I. and computer vision
to spray only the problem areas and avoid unimpacted crops.
Precision A.I. believes that by targeting specific areas that need
herbicides can reduce costs by as much as $52 U.S. dollars per
acre. (Singh, 2021).

The weed control gardening assistance of autonomous
systems spans from large industrial farms to small backyard
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gardens. Tertill is the inventor of Roomba, the long-standing
and very successful automated home vacuum cleaner. Tertill
can assist small farmers in helping “grow delicious organic
vegetables – without all the weeding. Enjoy taking care of your
plants – let Tertill take care of the weeds…Proven as effective as
hand weeding by the Cornell School of Agriculture” (Tertill,
2022). See the Tertill in Figure 10-12.

Figure 10-12 Image of the Tertill automated weeder
in a backyard garden
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Source: (Tertill, 2022)

Crop Eradication for Illegal Crops
Illicit drug crops also need to be eradicated, yet the

requirements can take on very different aspects in the data
collection and the employment of autonomous systems.

In dealing with illegal crops such as illicit drugs, remote
sensing using satellites and drones are effective in surveying
and gathering data for law enforcement use. Reports indicate
that in June 2022, the U.S. State Department initiated a drone
spraying program to “use multi-functional drones to remotely
identify, then kill coca crops in Colombia – which are often
protected by guards, perimeters of explosives, or even wild
animals – with reduced risks to humans involved” (Crumley,
2022).

Figure 10-13 Overview of how drones could identify
illegal crops from the U.S. Department of State
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Source: (Cox, 2022)

For many decades, the State Department operated a fleet
(contractor and government-operated) manned aircraft
intending to use “aircraft to spray a glyphosate-based herbicide
mixture on coca and opium poppy fields, which are illegal
in Colombia and are the vital ingredients of the cocaine and
heroin trades… Pilots release the spray only after they have
visually identified coca in the flight line” (Aerial Eradication
of Illicit Crops: Frequently Asked Questions. (2003).
Washington DC: US Department of State, 2003). However,
these older methods of drug crop eradication do not offer the
precision that autonomous systems can provide, coupled with
a reduced cost and reduced risk to human lives as the
“Department of State wants the drones because it says
improvised explosive devices, ambushes, and hazardous
wildlife are threats to personnel .”(Cox, 2022) See Figure
10-13.

As with other areas of the agriculture sector, sensors,
databases, and autonomous systems show great promise in
being more effective and efficient than their traditional
human-operated counterparts.

Space Farming-Unlocking the Possibilities
Space-based platforms are changing how we grow food and

live on earth, yet they are also evolving humankind’s ability to
work, explore and live in space. The idea of growing food in
space is one of the goals and a true necessity to make space
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travel viable; “almost half of the experiments being carried out
on the International Space Station (ISS) revolve around
biotechnology and plant growth in space” (Space Farming:
How Does Farming Work in Space?, 2021) (“Space Farming:
How Does Farming Work in Space?” 2021).

The ability to apply these zero-gravity experiments to
current food production methods would change spaceflights
as we know them today by “creating self-sufficient crews for
the first manned flights to Mars, creating a garden on the ISS,
or even just cultivating food in space to alleviate the adverse
environmental impacts farming on Earth has on local
ecosystems .”(Space Farming: How Does Farming Work in
Space? 2021)

The Vegetable Production System, known as Veggie, is a
space garden residing on the space station. Veggie’s purpose
is to help NASA study plant growth in microgravity while
adding fresh food to the astronauts’ diet and enhancing
happiness and well-being on the orbiting laboratory…Veggie
has successfully grown a variety of plants, including three types
of lettuce, Chinese cabbage, mizuna mustard, red Russian
kale, and zinnia flowers (Growing Plants in Space, 2022).

Veggie is only one of many experiments that are focused on
plant production. Another experiment is the Advanced Plant
Habitat (APH); like Veggie, it is a growth chamber on the
space station for plant research, see Figure 10-14. “It uses LED
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lights and a porous clay substrate with controlled release
fertilizer to deliver water, nutrients, and oxygen to the plant
roots” (“Growing Plants in Space,” 2022). APH is an
automated system that uses “cameras and more than 180
sensors that are in constant interactive contact with a team
on the ground at Kennedy (space center)” (Growing Plants in
Space, 2022).

Figure 10-14 The first growth test of crops in the
Advanced Plant Habitat aboard the International Space

Station yielded great results. Credits: NASA

Source: (Growing Plants in Space, 2022)

The United States is not the only country working to grow
food in space. Russia launched plant experiments as part of the
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second Sputnik ship in the 1960s (Sinelschikova, 2020). The
conquest of space and the human desire to explore the vastness
of space is only limited by our ability to grow sustainable crops
in space.

A vitamin space greenhouse refers to ‘Vitacikl-T’ – a
titanium tube setup that allows a conveyor-belt system to grow
vegetables aboard the International Space Station. The
construction consists of a spinning drum with six root
modules…The operations are performed in a cycle, one taking
place every 44-66 days, and, for the time being, this type of
setup has been able to produce bigger and better results than
any other foreign-made space gardens. (Sinelschikova,
2020) See Vitacikl-T growing plants in Figure 10-15.

Figure 10-15 A picture of ‘Vitacikl-T’ Institute of
Biomedical Problems (IBMP) R.A.
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Source: (Sinelschikova, 2020)

Plants have been grown at the ISS since 1982. “Russian
cosmonauts have been eating produce grown in space since
2003, and American astronauts began doing the same in 2015.
Eating space-grown cultures has been allowed by law since the
1980s when scientists first determined their safety” (NASA,
2022).

The data gathered from the plant lifecycle in space can be
applied to everyday farming with the databases and lessons
learned just a click away. Space agriculture also has the
“potential to impact farming practices here on Earth – namely
with higher yields, more efficient production systems, and
closed loop nutrient and water recycling systems that make
the most of every drop of resource at our disposal .”(Space
Farming: How Does Farming Work in Space? , 2021) The
lessons in farming from traditional family farms, industrial
farming, and space-based farming are paving the way for
humankind to realize the dream of exploring Mars or taking a
vacation on board a galactic space station.

Walmart has entered into an agreement with Canno Electric
Vehicles to provide “4,500 Canoo Lifestyle Delivery Vehicles
(LDVs), which will be driven by Walmart staff as they fulfill
online orders, with an option to purchase up to 10,000.
(Lavars, 2022). There is speculation that Walmart will

evaluate the LDVs for autonomous delivery to remain
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competitive. See a rendering of the LDV in Figure 10-16.
Kroger formed a collaboration with Nuro autonomous
vehicles in 2018. Two years later, Walmart also entered a
relationship with Nuro. Walmart has continued to step into
the autonomous delivery space by partnering with Cruise, a
self-driving vehicle company that operates in several large
cities, including San Francisco, California, and Phoenix,
Arizona (Cruise Self Driving Vehicles, 2022). See the
rendering of Cruise vehicle in Figure 10-17.

Figure 10-16 A rendering of the Canoo Lifestyle
Delivery Vehicle

Source: (Lavars, 2022)
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Figure 10-17 Walmart partners with Cruise vehicles
for additional robotic delivery coverage

Source: (Cruise Self Driving Vehicles, 2022)

Several grocery stores, along with Kroger, already have
autonomous delivery. Kroger said, “The role of autonomous
vehicles in our seamless ecosystem continues to increase,
contributing to meeting our customers in the context of their
day without compromising on the quality or value while
contributing to our long-term growth and sustainability
goals .”(Redman, 2022)
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Figure 10-18 An example of the Nuro vehicle Kroger
uses

Source: (Redman, 2022)

Kroger plans to expand the Nuro autonomous delivery
service’s availability in Houston with the inception of the
third-generation vehicles. (Redman, 2022) See an example of
the Nuro in Figure 10-18.

Conclusions
The days of the family farm dairy being one of the only

data sources for farming is long over. Even the days of limited
information sharing from one town to another have ceased.
The reality of obtaining, analyzing, and using multiple layers
of agrarian data from around the world at the push of a button
is now the agricultural arena reality. The lessons learned,
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generational experience, crop planting tips, tricks, weather,
watering analysis, and numerous other data points are now
available to all in the industry, from beginner farmers to
institutional operations. Spaced-based platforms and various
autonomous systems used today are just the start. The fifth
industrial revolution is posed for humankind and machines to
metaphorically dance together with few limitations.

The ability to use space data, aggregated with IoT data to
inform drones on precision weed and water control, is the
new reality of the agricultural industry. The world now uses
autonomous systems for precision agriculture and does dull,
dirty, dangerous, repetitive jobs that assist in increasing
production while easing the employment issues.

The modern-day farmer spends more time with data,
chemicals, and computers than dirt and seeds. The need to
grow food for an increasing population continues to challenge
the industry. Using technology to increase livestock worldwide
or assist in humanitarian relief in underserved countries gives
purpose to this technology far beyond the labor savings and
scientific quest for knowledge. Humankind’s desire to reach
beyond our planet and colonize other planets and galaxies will
continue to bring one undeniable truth to light: agriculture
will be at the center of all humankind’s endeavors.

Questions

1. Do you think human evolution will see the day when all
agriculture, from beginning to end, is done by
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autonomous systems?
2. List three disruptive technologies that have altered the

family farm in the past 50 years.
3. When designing an agricultural footprint, how would

you take advantage of airspace and freedom of
movement with autonomous systems versus manned
systems?

4. Can agriculture and a nation’s food supply be
weaponized? If so, can you name three ways the use/
misuse of autonomous systems can neutralize this
weaponization?

5. Describe data layers and how they can be applied to the
agricultural arena?
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11.

CIVILIAN USE OF SPACE
FOR ENVIRONMENTAL,
WILDLIFE TRACKING, &
FIRE RISK ZONE
IDENTIFICATION (RYAN)

This chapter provides an overview regarding how an increasing
variety of civilian uses of space is transforming terrestrial
activities such as monitoring endangered species, tracking
environmental changes, and providing fire risk management
support. The global perspective made possible from the high
ground of space has transformed and enriched many civilian
activities, providing more, different, and better data that
contributes both to the science and to the practice of these
activities.

Student Learning Objectives
After reading this chapter, students should be able to do the

following:



1. Define cislunar space
2. Describe how satellites are used for a variety of civilian

uses

Introduction
The first venturing of humankind out of our earthly

atmosphere required harnessing the capabilities and resources
of nation-states to accomplish. In the United States, the
intentional use of space for civilian purposes was declared in
the National Aeronautics and Space Act of 1958: “it is the
policy of the United States that activities in space should be
devoted to peaceful purposes for the benefit of all mankind”.
(Hudson, 1990) Since then, the National Aeronautics and
Space Agency (NASA) has systematically expanded the civil
use of space, often in cooperative efforts with other nations.
As a result, the impact of space technology is extensive,
touching on nearly every aspect of modern life. In this
chapter, three applications are specifically explored, with the
caveat that these are but three of the broad uses of space-based
resources to augment the terrestrial based efforts that we
humans use to make life better.

In this chapter, the part of space discussed is that part called
cislunar (also spelled cis-lunar), which is to say that area
extending from near-Earth space to the Moon’s orbital
sphere (Holzinger, Chow, & Garretson, 2021). The specific
definition of cislunar space is: “Cislunar space is the area
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around the Earth extending out to just beyond the Moon’s
orbit, and including all of the five Lagrangian points that are
stable in position in reference to the Earth and Moon as they
rotate about each other.” (The Space Option, 2012) Figure
11-1 shows a graphical description of cislunar space, annotated
with common orbits, L1, and L2 for reference. The acronyms
are defined here:

• LEO: low earth orbit, which is between 160 and 2,000
km above the earth’s surface (CSIS, 2017)

• MEO: middle earth orbit, which is between LEO and
GEO(CSIS, 2017)

• GEO: geosynchronous orbit, which orbit at 35,786
km(CSIS, 2017). (Note that this use of the acronym
GEO should not be confused with the Group on Earth
Observations, also referred to as GEO.)

• HEO: highly elliptical orbit, which orbit along an
oblong rather than a circular path for greater dwell time
over a part of the earth (CSIS, 2017)

• LLO: low lunar orbit is approximately 100 km above the
lunar surface(Parker & Anderson, 2013)

• L1 and L2: “Lagrange points are caused by the balance
between the gravitational fields of two large bodies;
equilibria between two pulling forces.”(CSIS, 2017)

Figure 11-1 Cislunar Space
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Source: (The Space Option, 2012)
There are five Lagrange points, referred to as Lx, where x is

the numeric designator. “L1 lies between Earth and the sun at
about 1 million miles from Earth; L2 also lies a million miles
from Earth, but in the opposite direction of the sun.” (Howell,
2017) These points are shown graphically in Figure 11-2.

Figure 11-2 Lagrange Points
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Source: (Howell, 2017)
In cislunar space, there can be earth-orbiting systems,

moon-orbiting systems, and moon-based systems, as well as
systems that transit both orbital systems. The orbital and
moon-based systems may be manned or unmanned. Sensors
incorporated into these systems may be passive, such as
telescopes and antennas, or active, such as radars and
lasers. (Holzinger, Chow, & Garretson, 2021)

Applications
The promise of using space-based resources to help
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understand and manage the environment was an early concept
in humanity’s approach to space resources. The high ground
of space not only provides an ability to observe a broader swath
of the earth’s surface, but it also provides the ability to observe
and measure the atmosphere and weather patterns. As a result,
early applications included launching satellites with specialized
equipment for viewing the earth’s surface, such as LandSat,
and for monitoring the weather, such as the Television
InfraRed Observational Satellite (TIROS). The TIROS-1
satellite was one of the earliest programs, having been launched
in 1960 with the mission to collect weather data. (NASA,
2010) Landsat was launched in 1972 with the mission to
collect “data on the forests, farms, urban areas and freshwater”
of Earth. (NASA, 2022) From these early efforts, the ability
to surveil and study the environment has grown tremendously,
contributing to our knowledge and understanding of the
planet we live on and the effects that humans have on both the
environment and the climate.

Environmental monitoring from space started as a pretty
straight-forward proposition: place instruments into orbit
around the planet that collect specific types of data, transfer
that data-to-data fusion centers, and analyze the information.
But as the use of space became normalized, through things like
global communications systems, people started to realize that
there was more that could be done. Some of these applications
included putting tracking devices on animals and placing
terrestrial sensors in difficult to monitor locations: the data
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collected could be sent to satellites and then retransmitted to
more convenient or better equipped terrestrial locations. In
this approach, the earth-based target of study transmitted data
to the satellite for relay. In a different approach, made available
through the development of position-locating satellite
systems, such as the Global Positioning System (GPS), the
target of study receives signals from the satellites, which are
then used to identify the locations at measurement intervals.
With the increasing sophistication and miniaturization of
electronic devices, the application of these general approaches
to a wider body of problems has become possible.

Thus, the basic concepts of using space-based systems in
applications associated with environmental monitoring
include the following approaches:

1) equipping space-based systems, including satellites and
orbiting laboratories, with instrumentation suitable for
observing aspects of the environment, including climate and
terrestrial features;

2) using space-based systems to relay data from terrestrial
targets of research to terrestrial data analysis centers; and

3) using space-based systems to send data to terrestrial
targets of research for later accession and analysis.

These approaches may also, of course, be used in
combinations.

Current Systems
There are many current systems being used for
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environmental monitoring, wildlife tracking, and fire risk
management. The business of observing the Earth is complex
and can be expensive. Complicating things is the fact that
there are only so many orbital positions: access to space must
be coordinated and managed carefully. That makes
international cooperation necessary. Such cooperation
includes not only national and regional space authorities but
also the companies building the sensors and the satellites as
well as advocacy groups and researchers who use the resulting
data.

Illustrative of the level of cooperation is the Group on Earth
Observations (GEO), “is a partnership of more than 100
national governments and in excess of 100 Participating
Organizations.” (Group on Earth Observations, n.d.) The
focus of GEO is coordinating the development of the Global
Earth Observation System of Systems (GEOSS) in order to
advance the international community’s ability to collect and
use data related to the following topics: biodiversity and
ecosystem sustainability, disaster resilience, energy and mineral
resource management, food security and sustainable
agriculture, public health surveillance, infrastructure and
transport management, sustainable urban development, and
water resources management. As of 2022, there are 113
member governments representing the vast majority of the
Earth’s population. Additionally, there are 143 participating
organizations, including those such as the Association of
Geospatial Industries, the Arab States Research and Education
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Network (ASREN), the European Association of Remote
Sensing Companies (EARSC), and the World Ocean Council.
(Group on Earth Observations, n.d.)

Very large countries, such as the United States, have
established systems in place to contribute to the global earth
sensing goals. The U.S.’s NASA has a program called the
Earth Observation System (EOS) that has spanned decades of
effort, including 48 completed missions. There are currently
33 active missions in NASA’s Earth Fleet with an additional
17 missions planned (NASA, 2021). Similarly, the European
Space Agency (ESA) has a program of missions for observing
the Earth, which started in the 1970s (ESA, 2021), as do China
(Jones, 2022) and India ( (Indian Space Research
Organization, n.d.)

With such active participation in Earth observation, it is
impossible to catalog every effort. However, by looking at
examples of activity, one can develop a better understanding of
the scope and nature of the activities.

Water-Focused Topics
Water is a very important part of life on Earth. It is not only

necessary to sustain life but the water in the oceans, in rivers,
and in the atmosphere affect the weather and agricultural.
There are many things we need to understand about the
Earth’s water, including but not limited to oceanic currents,
marine mammals and fisheries, river systems, and sea levels.

Oceanic Currents
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Oceanic currents, shown in Figure 11-3, are the rivers that
flow through the ocean. Because of temperature and salinity,
these currents can flow lower or higher in the oceans, which
in turn affect evaporation rates, ice melt, and aquatic life
movement. Oceanic currents affect the climate of the Earth,
the life in the oceans, and localized ecosystems. Using satellites
to monitor oceanic currents provides an important set of data
to that being collected through ocean buoys and other
terrestrial systems. How the currents actually work is very
complicated:

“Winds, water density, and tides all drive ocean currents.
Coastal and sea floor features influence their location,
direction, and speed. Earth’s rotation results in the Coriolis
effect which also influences ocean currents. Similar to a person
trying to walk in a straight line across a spinning merry-go-
round, winds and ocean waters get deflected from a straight-
line path as they travel across the rotating Earth. This
phenomenon causes ocean currents in the Northern
Hemisphere to veer to the right and in the Southern
Hemisphere to the left.” (NOAA, 2011)

Figure 11-3 Oceanic Currents
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Source: (NOAA, 2011)
Ocean currents are studied to understand how they work,

what affects their movement, and how they change over time.
In 2012, NASA released a 20-minute video showing how
ocean currents had evolved using data from 2005 to 2007.
You can watch the video at this link (current August 2022):
http://svs.gsfc.nasa.gov/goto?3827. An enormous amount of
data was used to make that video. As described in the NASA
announcement:

The Estimating the Circulation and Climate of the Ocean
(ECCO) … model-data syntheses are being used to quantify
the ocean’s role in the global carbon cycle, to understand the
recent evolution of the polar oceans, to monitor time-evolving
heat, water, and chemical exchanges within and between
different components of the Earth system, and for many other
science applications. … Data used by the ECCO project
include: sea surface height from NASA’s Topex/Poseidon,
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Jason-1, and Ocean Surface Topography Mission/Jason-2
satellite altimeters; gravity from the NASA/German
Aerospace Center Gravity Recovery and Climate Experiment
mission; surface wind stress from NASA’s QuikScat mission;
sea surface temperature from the NASA/Japan Aerospace
Exploration Agency Advanced Microwave Scanning
Radiometer-EOS; sea ice concentration and velocity data
from passive microwave radiometers; and temperature and
salinity profiles from shipborne casts, moorings and the
international Argo ocean observation system. (NASA, 2012)

Marine Mammals and Fisheries
Marine mammals, such as sea lions, whales, and seals, are

important to understand because they reflect the health of
the environment in which they exist. Important data for
understanding marine mammal behavior includes tracking
where they go, where and when they migrate, and proximity
to other species. Some projects using satellites to assist in this
research are described here. Figure 11-4 shows marine
mammals fitted out with satellite tags that “the movements
and location of the animal, dive data (the depth and length of
the dive), water temperature and salinity of the water.” (Pacific
Marine Mammal Center, 2019)

Figure 11-4 Sea Lions Fitted with Satellite Tags
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Source: (Pacific Marine Mammal Center, 2019)

The Alaska Ecosystems Program uses satellites to track radio
signals from beacons attached to seals and sea lions. Because
the animals swim hundreds of miles in the far north, a polar-
inclined satellite is used to track the beacons. Additionally,
another satellite makes it possible to correlate the movement
of the animals to places more likely to have concentrations of
prey. The combination of this data provides important insight
into the health of the species. (JPL, 2001)
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Fisheries are an important target for monitoring for several
reasons. One reason is simply to monitor the health and
sustainability of the fish. Another is to monitor human
behavior, such as poaching and illegal fishing. Yet another is to
monitor environmental threats to fisheries, such as oil spills.
Satellite systems are uniquely placed above the Earth to
provide unblinking observation of the activities of humans
and of environmental problems. In fact, it was satellite systems
that first provided the data that alerted authorities to an oil leak
off the California coast in October 2021: imagery data from
Landsat 8 and Operational Land Imager (OLI) combined with
synthetic aperture radar imagery from Sentinel-1B were used
to identify and locate the source of oil that had been discovered
on the ocean surface near California a day earlier. The
continual monitoring of the environment was key to the
timely identification. (NASA, 2021)

River Systems
River systems are the lifeblood of the land. They bring

water from mountain snows to farms and seas, they provide
fresh water for drinking and agriculture, and they provide a
natural movement of sediment from land to sea. But rivers
change. Sometimes they change naturally, as when floods
carve out new channels or when water sources dry up and
rivers disappear. Other times they are changed by man,
through dams, canals, or displacement. Satellite systems can
track changes to river systems through visual, infrared, and
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radar imagery as well as through temperature and humidity
measurements. In this way, everyday effects on wildlife,
fisheries, and humans can be understood and managed.

As an example of satellite support to river management,
there is a continual challenge presented to regions by the
necessity to manage river dams. There is a specific problem
from “excess sedimentation, like sand and gravel from floods
or rivers that are deposited downstream into these systems”
which “can build up over time, leading to a loss of water
storage capacity and damaging hydropower dams, turbines,
and water intakes. Sediment-related maintenance and removal
costs can account for up to 40% of all maintenance costs.”
(Preston, 2022) Figure 11-5 shows “sediment levels before and
after a river flushing event at the Verbois hydropower plant in
Switzerland.” (Preston, 2022)

Figure 11-5 Monitoring Dam Flushing from Space

Source: (Preston, 2022)
Disasters are also a challenge. An important part of

understanding and managing river systems is understanding
precipitation and resulting floods or draughts. Too much rain
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and rivers flood. Too little rain and rivers, and lakes, dry up.
Also, too little rain leads to increased risk of wildfires.

“The Global Precipitation Measurement (GPM) Core
Observatory paints a picture of global precipitation every 30
minutes, with help from its other international satellite
partners. It has provided innumerable insights into Earth’s
precipitation patterns, severe storms, and into the rain and
snow particles within clouds. It has also helped farmers trying
to increase crop yields, and aided researchers predicting the
spread of fires.” (Patel, 2019)

The ability to observe precipitation from space has also led
to the development of the concept called “atmospheric rivers”,
which are “long, narrow bands of moisture in the air”. (Patel,
2019) The difference between an atmospheric river and a
storm is significant: the atmospheric river brings a steady
stream of water to an area, just as a terrestrial river brings water
to a specific area. It is a not a one-off event but a conveyor
belt of moisture. Figure 11-6 shows an atmospheric river
stretching from Asia to the West Coast of the North American
continent.

Figure 11-6 Atmospheric River Between Asia and
North America
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Source: (NASA, 2017)

This photo is a composite of two images taken by “the
Visible Infrared Imaging Radiometer Suite (VIIRS) on the
Suomi NPP satellite.” (NASA, 2017) The ability to actually
see the atmospheric rivers from satellites has had an enormous
impact on weather prediction, increasing the ability to predict
when an atmospheric river will affect an area.

Sea Levels
There are many things that affect sea level, and it is a very

real concern for the life of millions of people who live in
threatened areas along coasts and on islands. The scientific
community monitors many elements that can affect sea levels,
including sea ice and sea temperatures.

“Sea ice is frozen seawater that floats on the ocean surface.
It forms in both the Arctic and the Antarctic in each
hemisphere’s winter; it retreats in the summer but does not
completely disappear. This floating ice has a profound
influence on the polar environment, influencing ocean
circulation, weather, and regional climate.” (NASA, 2016)
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Although melting sea ice does not raise sea levels, because it
is already in the water, it has a very important impact on the
parts of the climate that can affect sea level: the temperature
of the atmosphere and the amount of sunlight that is reflected
back into space. Simply put bright white ice is highly
reflective. When this ice becomes sooty from pollution, it
becomes less reflective. When the ice melts entirely, it is not
at all reflective – it doesn’t exist. So, it is very important to
understand and monitor sea ice.

“Once sea ice begins to melt, a self-reinforcing cycle often
begins. As more ice melts and exposes more dark water, the
water absorbs more sunlight. The sun-warmed water then
melts more ice. Over several years, this positive feedback cycle
(the ice-albedo feedback) can influence global climate.”
(NASA, 2016)

Sea ice is monitored through satellite imagery, radar, and
infrared systems.

Monitoring sea levels is an important part of knowing how
the levels are trending. These are also monitored from space
through imagery and radar systems. Figure 11-7 shows a
conceptual artist rendition of how radar altimetry technology
is used to gather precision data on sea levels. (ESA, 2021)

Figure 11-7 conceptual artist rendition of how radar
altimetry technology is used to gather precision data on

sea levels
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Source: (ESA, 2021)

Land-Focused Topics
Land is, of course, where humans live and primarily

operate. Issues associated with land use include natural
disasters (including fires and floods) and population density
and movements.

Natural Disasters
Large scale natural disasters differ from more localized

disaster not only in the scale of the problem but also in the
cascading issues that stem from the disaster. For example, the
effects of Hurricane Katrina, while devastating to the Gulf
Coast and New Orleans specifically, affected the entire oil and
gas infrastructure that in turn affected both local and global
markets. Monitoring the potential and actuality of a large-
scale natural disaster, particularly those that occur in remote
locations, is only possible from the high ground of space.
NASA uses satellites to detect and monitor “global intensive
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risk events that span a range of natural hazards — not only
wildfires but earthquakes, tsunamis, floods, landslides, severe
weather, winter storms, tropical cyclones and
volcanoes.” (NASA, 2022) Since it is a global issue, there has
been a focus on international cooperation in these efforts,
leading to the development of “infrastructure and … new
relationships between international, regional and local natural
disaster response agencies and other Earth-observing space
agencies around the world.” (NASA, 2022)

Population Density and Movements
There are a lot of people on this earth and the competition

for resources is stiff. Simply knowing where humans live a
difficult question can be and yet it is critical for understanding
how to create programs and policies to address issues like food
security and disaster management. The European Space
Agency has created a program designed to bring the power of
space to mapping the global human footprint. The program,
named the World Settlement Footprint, provides “continuous
data streams of high quality and free of charge satellite
observations such as the Sentinels of the European Copernicus
program and the Landsat missions” in order to “monitor the
changes and trends in urban development globally.” (ESA,
2021) A sibling program, called the Global Urban Footprint,
“shows not just urban centers, but also tiny rural
hamlets.” (ESA, 2016) Figure 11-8 shows a view of Europe
provided by this effort.
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Figure 11-8 View of Europe – Global Urban Footprint

Source: (ESA, 2016)
Organizations are also using satellites to track human

movements and identify areas in which human rights are being
violated. “For example, across south Asia, there is a vast “Brick
Belt” — a network of tens of thousands of brick kilns that
employ some 23 million workers across India, Nepal, and
Pakistan [that may be] rife with debt-bondage and child
slavery.” (Zolli, 2018) “Researchers at the Rights Lab recently
used satellite imagery and machine learning techniques to map
the entire Brick Belt in unprecedented detail.” (Zolli, 2018)
Figure 11-9 shows this map.

Figure 11-9 Map The Entire Brick Belt
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Source: (Zolli, 2018)
These same techniques are being used to integrate many

types of data to understand how humans move and why, such
as linking movements to wide scale war, drought, or other
issues.

Atmosphere Focused Missions
The makeup of the atmosphere controls how much

radiation we are exposed to, how much heat is reflected from
the Earth into space, and how well plants and animals survive
on the planet. Issues with the atmosphere are extremely varied
but also include lightning, atmospheric gases, the ozone layer,
and the radiation shield.

Lightning
Monitoring lightning strikes around the world is more

important than simply keeping track of them. “Lightning is
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a surprisingly elusive and complex natural phenomenon for
the impact that it has on our daily lives. We are now at a
place where we have excellent measurements of its many facets,
which allow us to discover surprising new aspects of its
behavior.” (World Meteorological Organization, 2022)

Understanding the underlying phenomenon is key to
prediction. Tracking lightning from space has not only
assisted in gathering data to support research into lightning,
but it has also expanded our knowledge of the many forms in
which lightning occurs.

“Recent advances in space-based lightning mapping offer
the ability to measure flash extent and duration continuously
over broad geospatial domains. These new instruments
include the Geostationary Lightning Mappers (GLMs) on the
R-series Geostationary Operational Environmental Satellites
(GOES-16 and 17) …, and their orbiting counterparts from
Europe (the Meteosat Third Generation (MTG) Lightning
Imager) and China (FY-4 Lightning Mapping
Imager).” (World Meteorological Organization, 2022)

For example, it is now known that some storms can produce
giant jets of lightning that go up to the edge of space. Figure
11-10 shows a recent example of one such jet, captured by the
International Space Station in 2019.

Figure 11-10 Example Of One Such Jet, Captured By
The International Space Station In 2019
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Source: (Temming, 2021)
“Blue jets have been observed from the ground and aircraft

for years, but it’s hard to tell how they form without getting
high above the clouds.” (Temming, 2021) One can imagine
the damage if one of these lightning bolts hit a satellite or an
airborne system. They can also “affect how radio waves travel
through the air — potentially impacting communication
technologies.” (Temming, 2021)

There is also a phenomenon called “megaflash” lightning,
where a single flash of lightning occurs across a very large area.
The World Meteorological Organization (WMO) certified two
new records for megaflash lightning events in 2022 thanks to
the ability to harness satellite technology to observe large areas
of storms from above. These two records were for the largest
area covered and for the longest duration of a single flash.

“The longest single flash that covered a horizontal distance
of 768 ± 8 km (477.2 ± 5 miles) across parts of the southern
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United States on 29 April 2020. This is equivalent to the
distance between New York City and Columbus Ohio in the
United States or between London and the German city of
Hamburg. The greatest duration for a single lightning flash
of 17.102 ± 0.002 seconds from the flash that developed
continuously through a thunderstorm over Uruguay and
northern Argentina on 18 June 2020.” (World Meteorological
Organization, 2022)

Figure 11-11 shows the location of the two record breaking
strikes.

Figure 11-11 Record Breaking Mega-flash Lightning
Events

Source: (World Meteorological Organization, 2022)

Atmospheric Gases and Particulates
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Atmospheric gases pay a critical role in the survival of plants
and animals on the earth. Most fundamentally, animals need
a certain amount but not too much oxygen to survive. Too
much oxygen can be deadly as well as a serious fire hazard.
Plants need a certain amount but not too much carbon dioxide
to survive. Too much carbon dioxide can be deadly as well
as contributing to global climate change. Beyond the actual
mixture of the gases in the air, there is also the question of
particulates in the air. It is natural to have some dust and
other microscopic things in the air but too much can lead to
serious issues, such as lung cancer and acid rain. (World Health
Organization, 2022)

Monitoring atmospheric gases has been a scientific focus for
several hundred years. In 2023, a step forward will be taken
with the launch of the first Carbon Mapper satellite. “The
Carbon Mapper’s Earth-orbiting imaging spectrometer will
have a pixel size of about 30 meters (98 feet) square. Other
imaging spectrometers currently in orbit have larger pixel sizes,
making it hard to pinpoint the locations of sources that may
not be visible on the ground, such as cracks in natural gas
pipelines.” (NASA, 2021) Figure 11-12 shows an example of
the type of data that can be collected from space. This image
was captured from the same types of sensing systems in an
airborne platform.

Figure 11-12 Gas Plumes Captured with the Global
Airborne Observatory over the Permian Basin in 2019
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Source: (NASA, 2021)
Particulates come from both liquid air and material. Some

of them naturally flow with the air currents over the earth,
sometimes being precipitated out during storms. In some
places, however, particulates can stay localized for long periods
of time and cause problems to human health, crop cultivation,
and even electronics.

“Aerosol particle pollution—airborne solid particles and
liquid droplets—comes in a range of sizes. Particles smaller
than 2.5 micrometers pose the greatest risk to human health
because they are small enough to be breathed deep into the
lungs and, in some cases, enter the blood stream. These fine
particles, about 30 times smaller than the width of a human
hair, are also a major cause of poor visibility.” (NASA, 2010)

It is important to realize that the vast majority of
particulates come from natural sources, such as volcanoes,
forest fires, and even plants. However, the naturally produced
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particulates tend to be larger sized. Manmade particulates
tend to be smaller and more pervasive where humans live.

“Automobiles, incinerators, smelters, and power plants are
prolific producers of sulfates, nitrates, black carbon, and other
particles. Deforestation, overgrazing, drought, and excessive
irrigation can alter the land surface, increasing the rate at
which dust aerosols enter the atmosphere. Even indoors,
cigarettes, cooking stoves, fireplaces, and candles are sources of
aerosols.” (NASA, 2010)

What is in the air can move with the wind. Pollution in one
region can spread to other regions. It is a global issue. Treating
it like a global issue requires a global surveillance ability. This
simply cannot be done from the ground since some countries
lack the resources to collect data. While “satellites [can]
provide a global perspective, satellite instruments have
generally struggled to achieve accurate measurements of the
particles in near-surface air. The problem: Most satellite
instruments can’t distinguish particles close to the ground
from those high in the atmosphere. In addition, clouds tend
to obscure the view. And bright land surfaces, such as snow,
desert sand, and those found in certain urban areas can mar
measurements.” (NASA, 2010) This problem has been
partially solved by fusing multiple sources of data and by the
deployment of better sensing systems. As a result, it is possible
to create a global view of particulates in Earth’s atmosphere,
as shown in Figure 11-13. This image shows a global satellite-
derived map of PM2.5 averaged over 2001-2006.
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Figure 11-13 Global Satellite-Derived Map Of PM2.5
Averaged Over 2001-2006.

Source: (NASA, 2010)

Ozone layer
The ozone layer is critical to life on earth as we know it,

since it “blocks UV radiation that can damage living tissue,
including plants.” (NASA, 2021) The Ozone Monitoring
Instrument (OMI) is an international collaborative project
that brings together scientists and space agencies to collect data
in order to understand how to measure challenges to the ozone
layer and to develop countermeasures that are actually
effective. It “measures criteria pollutants such as nitrogen
dioxide (NO2), sulfur dioxide (SO2), bromine oxide (BrO),
and aerosol characteristics … [and] provides mapping of
pollution products from an urban to super-regional scale.”
(NASA, 2022)

Magnetic shield
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The earth’s magnetic shield is a product of the electrical
currents that run through the Earth. Also known as the
“magnetoshield,” it is a critical protective barrier shielding the
Earth from sunspots and other radiative hazards. Figure 11-14
portrays an artistic conception of the magnetosphere.

Figure 11-14 Portrays An Artistic Conception Of The
Magnetosphere

Source: (Buis, 2021)
The magnetosphere is constantly changing, however,

because the molten core of Earth, which generates the currents
that create the magnetic north and south poles, is constantly
moving and even occasionally flipping over. The more
immediate issue is when space weather causes “geomagnetic
storms that can penetrate our atmosphere, threatening
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spacecraft and astronauts, disrupting navigation systems and
wreaking havoc on power grids.” (Buis, 2021) Monitoring the
magnetosphere can provide some advance warning of such
events as well as contribute to our understanding of how the
greater system works. Satellites are crucial to this effort. One
such effort is from the European Space Agency, which
launched a 3 satellite “Swarm constellation [to provide] new
insights into the workings of Earth’s global magnetic
field.” (Buis, 2021)
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12.

HUMANITARIAN USE OF
SPACE TECHNOLOGIES
TO IMPROVE GLOBAL
FOOD SUPPLY & CATTLE
MANAGEMENT
(LARSON)

Student Learning Objectives
The student will gain an understanding of how space

technologies are being used to improve global food supply and
cattle management. Concepts discussed include using space
technologies for surveying and mapping, environmental
stewardship, animal health, and filling labor voids in modern
agriculture.

History of space technology used for agriculture
The development of human civilization occurred alongside

the discovery of agricultural practices. As humans drifted away
from the hunter-gatherer lifestyle, they developed science of
growing and harvesting food. This shift in food accessibility



allowed humans to produce food for a growing urban
environment. Through the years, the labor-intense lifestyle of
traditional agricultural practices has deterred people from the
field. This labor shortage has presented itself as a barrier to
increasing the food supply.

The demand for improved agricultural practices paved the
way for the rise of smart agriculture. Smart agriculture is
defined as the integration of innovative farming technologies
used to increase the quantity and quality of agricultural
products (Goel & Yadav, 2021). The movement is based on
three platforms: science, innovation, and space technology. For
smart agriculture to be successful, sensing technologies,
software applications, communication systems, positioning
technologies, hardware and software systems, and data
analytics solutions must align for the enhancement of the food
product supply system (Figure 12-1).

Figure 12-1. Components of a successful smart
farming initiative

546 | HUMANITARIAN USE OF SPACE TECHNOLOGIES TO
IMPROVE GLOBAL FOOD SUPPLY &#038; CATTLE MANAGEMENT



Source: (Sciforce, 2020)

Although few space technologies exist in the current market
space without connections to these mentioned facets of smart
agriculture, it is important to note that historically, it was not
always the case. For example, the first satellite developed for
remote sensing applications in the agricultural space is known
as LANDSAT 1. The LANDSAT 1 satellite, launched by
NASA, was used in agriculture to collect data estimating
biomass (Yang, 2020) and crop output (Doraiswamy &
Moulin, 2003). Although the implementation of this satellite
in the agricultural space was revolutionary for the field of
agriculture, its use had limitations. Limitations included
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spatial resolution of the imaging system, return visit frequency
and a number of spectral bands available for analysis, and
lacking integration of multiple remote sensor inputs. It did
not consider input from sensors gathering data on soil
monitoring (Sullivan & Shaw, 2005), water stress management
(Zarco-Tejada, 2012), weed infestation (Gómez-Casero &
Castillejo-González, 2010), chlorophyll and nitrogen content
of leaf, crop height, plant species and growth rate (Castillejo-
González, 2009); (Donoghue, 2007); (Enclona, 2004); (Peña-
Barragán, 2008)). Other countries, such as India, saw the
benefits of using space technology like LANDSAT for
agricultural purposes and launched their satellites regardless of
the limitations.

Integration of multiple sensor inputs presented a
monumental shift in the application of space technology for
agricultural purposes. A multiple sensor approach enhances
output precision to capture better the multi-factor decision-
making process food producers are tasked with. Applications
in the agricultural space began to demand more than remote
sensing platforms like satellites and unmanned aircraft vehicles
(UAV). Integration of remote sensors (for example, optical and
near-infrared (NIR) sensors or radio detection and ranging
(RADAR)) changed the potential for what information the
remote sensing platforms could deliver to the producer. In
addition, spatial resolution improved, and return frequency
increased, allowing satellite platforms to gather more data with
increased accuracy. The shift from basic image gathering
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toward data analysis of multiple sensor inputs defines the
needs of the precision agriculture movement. By enhancing
the precision and effectiveness of agricultural practices, food
producers are enabled to optimize environmental conditions
to maximize crop yield, resulting in more food production per
unit of land.

Key areas of success in implementing space technology
in agriculture

Those involved in the agriculture industry have prided
themselves on being stewards of the land for generations.
Farmers take pride in understanding that “today’s generation
must protect and nourish the environment for the betterment
of today and tomorrow’s generation” (Bansod & Singh, 2017).
Implementation of space technology, in particular, the
partnership of satellite remote sensing and proximal remote
sensing, provides opportunities for increased food production
using methods that work to enhance previous land
stewardship practices. This section will discuss key areas of
success when implementing space technology into the field
of agriculture in two loose groups: geographical information
systems and remote sensor monitoring (specifically
applications of on-farm weather sensors).

Geographical information systems – Surveying and
mapping

Geographical information systems (GIS) represent the
original implementation of space technology in the field of
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agriculture. The use of satellites and UAVs for monitoring in
the agricultural space continues to emerge as technologies that
can deliver value to the food production industry enter the
market space. Three categories loosely define areas of success
for current and emerging GIS technologies with application to
agriculture: surveying and mapping, environmental pollutant
monitoring, and circumventing labor challenges in
agriculture.

Surveying and mapping capabilities have been greatly
refined since the original days of LANDSAT 1. The big-
picture perspective of satellite imagery has long exercised its
effectiveness in creating topographical maps of remote
agricultural regions. With the additions of proximal GIS
technology such as UAV and multiple sensor inputs into these
GIS technologies, capabilities to deduce more than the basic
topographical map has emerged. Multiple data inputs provide
insight to geographically inform the producer on variations
in soil type and quality, water saturation, and plant density.
Unmanned ground vehicles (UGV) have been designed to
autonomously navigate agricultural regions using GPS
coordinates while pulling samples and relaying information
on present conditions. Figure 12-2 shows a UGV prototype
developed specifically for automated soil sampling to examine
nutrient content’s presence and deduce the need for fertilizer
and water within the designated sampling region (Vaeljaots,
2018). Understanding the nutrient presence, soil type, and
water holding capacity better enables producers to understand
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the needs of their agricultural region by providing information
to describe how many plants that plot of land can support.
This cascades to many decisions made by the producer during
the food growing period, such as how close to place seeds when
planting, how much water is needed to be applied using
irrigation technology, and whether or not additional fertilizer
needs to be applied to support plant growth nutritionally.

Figure 12-2. Unmanned ground vehicle designed for
autonomous soil sample collection by Estonian

University of Life Sciences

Source: (Vaeljaots, 2018)

Data analytics are used to aid the decision process in smart
agriculture. Analysis of the various sensor/sampling outputs
is sequentially inputted into satellite mapping to create
management zones that may use different strategies (for
fertilizer application, water requirements, or pesticide
application) to maximize crop yields in that area.
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Although the use of UAV and UGV is likely to continue in
the agricultural space for the collection of field-specific data,
satellite technology has the potential to limit the complexity
of data collection protocols (e.g., number of sensor inputs) if
the image quality provided has proven computationally stable
to provide the insight required (Meyers & Dokoozlian, 2020).
Determining which imagery platform is used (Satellite or
UAV/UGV) depends largely on spatial accuracy needs and
consumer willingness to pay. When equipped properly, UAV/
UGV has demonstrated an ability to deliver high spatial
accuracy and is effective for surveying smaller target regions.
However, there has been less development to date on
standardized procedures in the data analytics space. In
comparison, satellite imagery is generally lower resolution, but
satellite capabilities to revisit in equally spaced intervals
without weather restrictions (e.g., wind, precipitation) that
negatively impact UAV (except for cloud level factors) to
provide consistent autonomous data (Comparetti, 2022).

Emerging technologies integrating data from UAV/UGV
sensors with satellite mapping capacities are gaining interest
in the precision agriculture market space. Variable Rate
Technology (VRT) allows producers to customize the
application of fertilizer, seed planting density, irrigation
quantity, and pesticide applications to the sensor-identified
needs of the sampled agricultural region. Satellites play a
critical role in producing within-field maps to create the
spatially variable rate input application maps to be used by
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GPS monitored equipment (see Figure 12-3; (Comparetti,
2022) allowing UAV/UGV to provide additional sensor inputs
to define the agricultural region. By identifying regions
requiring alternative management conditions, food producers
can better maximize the quality and quantity of the food
grown in those regions. In certain regions, the automated
characterization of specific management needs could mean
producing a more uniform crop and maximizing the profit of
high-value food products, while in other regions of the world
could be the difference for a population attempting to produce
enough food to sustain themselves through non-growing
seasons. The global implications of GIS technologies for
surveying designated agricultural regions present unique
opportunities in the agricultural sector to enhance global food
supply – quantitatively and qualitatively, depending upon the
designated market. As the market for connected sensors
connected to GIS technologies continues to grow, the “smart
agriculture” movement and enhancement of space
technologies for agricultural applications will continue to
provide novel solutions for increasing global food supply in
a way that maintains the expectation for land stewardship set
forth by generations of farmers before.

Figure 12-3. Spatially variable rate fertilization map
in a Sicilian vineyard developed using Sentinel-2

Satellite. Two management zones are represented: black
cells representing areas of high vegetative vigor and
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high-water content; white cells representing areas of low
vegetative vigor and low water content.

Source: (Comparetti, 2022)

Geographical information systems – Environmental
Stewardship

Emphasis placed on the importance of environmental
stewardship by food producers ensures technological
advancements using GIS technology for monitoring
environmental pollutants will be a continuous field of interest.
Various laws highly regulate agriculture in the United States,
acts, and guidance documents encompassing many facets of
agricultural operations (United States Environmental
Protection Agency, 2022). Regulation exists for aquaculture
discharges; concentrated animal feeding operations’ water use

554 | HUMANITARIAN USE OF SPACE TECHNOLOGIES TO
IMPROVE GLOBAL FOOD SUPPLY &#038; CATTLE MANAGEMENT



and manure disposal; cropland pesticide application and use;
farm facilities, fuel, and equipment compliance; and a few.

The satellite used for emissions detections is currently being
used in many facets: climate, natural disasters, health, and air
quality, water resources, and others. Models such as the United
States Environmentally-Extended Input-Output model
(USEEIO) used by the EPA “melds data on economic
transactions between 389 industry sectors with environmental
data for these sectors covering land, water, energy, and mineral
usage and emissions of greenhouse gases, criteria air pollutants,
nutrients, and toxics, to build a life cycle model of 385 US
goods and services” (Yang, 2020). Efforts by EPA have begun
to automate the environmental compliance inspections by
deploying unmanned aircraft systems (UAS) technology
equipped with high-resolution imagery, geophysics and
remote sensing, and gas sensors. Data from sensor-equipped
UAS is transmitted in real-time using the ERT VIPER
monitoring system for data analysis and visualization by the
user (United States Environmental Protection Agency., 2022).

With the EPA using this level of detail in their risk-benefit-
based analysis, the agricultural industry must maintain a high
level of control on agricultural operations related to regulated
activities. Activities in particular that demand increased
precision are the application of pesticides to cropland,
application of inorganic fertilizer as well as manure based on
nutrient quantity, and irrigation of crops. The use of UAV
technology for applying pesticides, especially when integrated
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with VRT using satellite GIS mapping, provides food
producers with valuable tools to maintain compliance by only
targeting areas infected with pests or where the disease is
present. Figure 12-4 depicts an example of leading-edge aerial
technologies pesticide applicator UAV. Hurdles for initial
vehicle system development of this emerging technology
described the weight of the pesticide solution as challenging
for the UAV to carry and influencing vehicle control.
Therefore, the integration with spatial GIS mapping for VRT
was monumental for reducing the total quantity of products
needing to be applied in the field. The use of VRT to guide
UAV pesticide application serves as a benefit for both reducing
environmental pollutants and decreasing costs for the
producer, all while increasing crop yields due to pest and
disease management (Hafeez, 2022). The ease of
implementation decreased human exposure to chemicals, and
increased product effectiveness with less environmental
contamination has made producer uptake of this product
successful. The global market size for agricultural drones in
2020 is estimated to be USD 0.88 billion, with projections
supporting the market reaching USD 5.89 billion by 2030
(Wankhede, 2021).

Figure 12-4. Image of Precision Vision 35X as an
example of an unmanned air vehicle (UAV) with

pesticide application abilities in the agricultural space
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Source: (Reynolds, 2022)

Beyond pesticides, another area of stewardship that farmers
have long been concerned about is fertilizer management.
While fertilizer application using technology equipped with
VRT drawing from satellite mapping and GPS control is
present in the market and readily available by service providers.
Estimates of adoption were 81% of producers in the United
States applying single nutrients using VRT technology in 2017
(Lowenberg‐Deboer, 2019). The critical point to highlight
concerning the success of VRT inorganic fertilizer application
is the concept that each nutrient is being applied individually.
Growing crops to maximize yield requires a specific ratio of
nitrogen, phosphorous, and potash, which can vary based on
the type of crop the producer intends to plant that year. When
applied individually, the producer can calculate the need for
each nutrient to be added based on what nutrients are present
in the soil samples. However, when working with more
complex fertilizer sources, such as manure or compost, where
all three required nutrients are present, producers must apply
based on the soil’s need for one of those nutrients. So there
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may be an over or under abundance of one of the other two
nutrients. This adds a level of complexity when studying the
effectiveness of VRT for manure applications. The variation
in the success rate of meeting crop nitrogen needs has been
explained as one of the reasons for the limited uptake of the
technology in the livestock manure space. Still, phosphorus
data has been promising (Mallarino, 2010). Equipping UAVs
with emerging imaging and sensor technology capable of
correlating plant nitrogen status to projected grain yield adds
versatility for producers looking to apply manure or inorganic
fertilizer (Maresma & Ariza, 2016). In the Geographical
information systems – Surveying and mapping section of this
chapter, the use of UGVs for collecting soil samples integrating
with GIS mapping capabilities was described. It’s important
to note the environmental stewardship story when using space
technology’s role in UGV soil sampling paired with satellite
map creation. Most obviously, when mapping capabilities are
integrated with multisensory inputs (such as soil analysis,
water content, etc.) and used for variable rate application of
fertilizer and water improvement, the efficiency of the tillable
land is increased. Within the constraints of the earth’s
atmosphere, the quantity of tillable land has little room for
drastic increases without other severe environmental impacts.
Therefore, an increase in tillable land efficiency should be
considered an exceptional benefit to feeding the growing world
population.

However, the land stewardship story extends beyond
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increasing efficiency and yield. The big picture capabilities to
create a map conscious of the environment surrounding the
agricultural region help food producers better integrate
solutions for limiting erosion, protecting endangered
ecosystems, as well as understanding sources of fertilizer runoff
into the surrounding natural ecosystem. Conservation groups
are partnering with cattle producers to understand better the
stewardship story that space technology is creating on the
Kansas Prairie. Third-generation rancher Daniel Mushrush
joined a nature conservancy project partnered with Kansas
State University to explore the application of emerging space
technology to cattle management for two main reasons: labor
and maintenance challenges with traditional fences as well as
a “moral obligation to treat [Flint Hills grass] like it’s sacred.
Because it is. There’s not much left.” (Llopis-Jepsen, 2022).
The initiative examines emerging technology that uses GPS
technology to create virtual cattle fences. The project’s goals
are to evaluate: “whether the devices can save ranchers money
and simultaneously help ailing bird populations, reduce water
pollution and increase the resilience and diversity of
grasslands” (Llopis-Jepsen, 2022). Figure 12-5 depicts a cow
from Mushrush’s herd wearing a GPS-equipped collar that
guides the animal using satellite-derived GIS mapping
technology (Llopis-Jepsen, 2022). Using this technology, cattle
producers have the ability to set and move virtual fences to
consider the stage of grass growth (i.e., food availability for
cattle), accommodate the presence of disappearing species
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(e.g., prairie chickens), reduce the number of time cattle spend
near bodies of water (i.e., reduce erosion induced by cattle
trampling riverbanks), and various other applications
depending upon cattle operation.

Figure 12-5. Red Angus cow wearing a GPS-equipped
collar that responds to virtual fencing boundaries

created using satellite-derived geographical information
systems maps controllable virtually by the cattle

producer

Source: (Llopis-Jepsen, 2022).

In an interview with Ben Veres, Chief of Staff, and Jeff
Kafka, Director of Sales and Business Development for Vence,
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sustainability was mentioned as the greatest area of impact
from using space technologies like virtual fencing. “Minute-
by-minute GPS data can be paired with soil and vegetation
data to paint an incredibly rich picture of the impacts of cattle
on the landscape. There is often a lot of blame placed on
livestock for grassland degradation – but without real cattle
location data, the analysis is one-sided” (Veres, 2022).
Opportunities for the use of virtual fencing technology were
forecasted to evolve in 3 phases: Tracking (i.e., GPS location
of animals), fencing (i.e., reducing physical fencings limitations
and decreasing cost and labor), and animal health (which will
be further discussed later in section: Integration of space
technology into cattle management). Veres and Kafka state, “All
of these things combined can create a much richer feedback
cycle for the rancher – not only can they see where and how
their cattle are doing, but they can easily adjust the cattle’s
grazing plans and monitor the impacts of these changes. The
feedback cycle is also much shorter – on large ranches, some
cattle will go months between check-ins. This technology
allows ranchers to be closer with their animals” (Veres, 2022).
With regulative agencies like EPA incorporating space
technology into the surveillance of environmental stewardship
practices, emerging technologies like virtual fencing arm food
producers with the power of knowledge to accurately diagnose
and provide solutions for environmental challenges in their
operations.
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Geographical information systems – changing labor
force in agriculture

Ryan Cryan, a chief economist for the American Farm
Bureau Federation, captures the industry status well with his
statement, “American Agriculture has every resource to grow
and prosper and contribute to global food security – except for
labor” (Bacon, 2022). The disappearance of the family farm,
decrease in interest in the rural lifestyle and increase in
mechanization contribute to the 76% reduction in self-
employed and family farm workers seen between 1948 and
2017 (Wang, 2022). However, data also suggest that
agricultural output increased by nearly 187% (Wang, 2022).
Much of this success can be attributed to developments in
technology. Precision technology reduces labor hours of the
agricultural workforce for labor-intensive tasks while opening
opportunities for skilled labor to enter the agricultural space
in other ways (e.g., to maintain and operate implemented
technology). In 2017, 40% of farm labor hours worked were
executed by workers with at least some college education,
compared to 4% in 1950 (Wang, 2022). Implementation of
autonomous and semi-autonomous GPS monitoring
equipment has been one of the most widely recognized
successes in this area. While John Deere’s autonomous tractor
reveal in 2022 still has space reserved for a driver, it will no
longer require a driver presence to operate its desired tasks.
Automating tasks such as preparing the ground for planting
and, perhaps one day, even more complex tasks such as
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planting or harvesting play a large role in helping change the
labor force required in agriculture. In the livestock space,
similar emerging technologies are entering the market space.
Still, as a whole, the industry is behind the crop production
sector due to challenges with the costs of implementation.
Examples of technology emerging in the livestock space will be
provided later in this chapter in the section: Opportunities for
integration of space technology into cattle management.

Regardless of the agriculture industry sector to which these
emerging technologies are applied, they play a key role in
removing barriers to human labor requirements, increasing the
accuracy of planting and harvesting, and improving the
efficiency of time spent on tasks. These contributing factors
are convincing evidence for demonstrating how emerging
precision technology adds value to the agricultural industry
and increases the global food supply.

Remote sensors for weather monitoring
Since the Farmer’s Almanac, the impact of weather on food

production has been heavily respected in agriculture. With the
increasing uptake of smart agricultural practices, a growing
interest by both producers and agricultural tech companies
in personalizing weather-related information to specific
agricultural operations emerged. Personalization of weather-
related data has significant value to food producers, especially
for rural locations where the closest weather tower collecting
information may not be pertinent for real-time weather-
related challenges. Implementing on-site weather sensors
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provides food producers with information that can optimize
irrigation schedules and determine the best timing to plant and
apply fertilizer. Figure 12-6 shows an in situ weather sensor
marketed by OneSoil with capabilities to monitor soil
temperature and moisture as well as air, barometric pressure,
and illumination every 2 to 30 min on the farm (Timmermans,
2022).

Figure 12-6. OneSoil Agricultural in-ground weather
sensor monitors soil moisture and temperature

Source: (Timmermans, 2022)

Beyond using this technology as a stand-alone offering to
producers, perhaps more valuable is the integration of weather
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sensors into data analytics platforms for interpretable
producer outputs. Agricultural giant John Deere has
demonstrated this value with their mobile weather technology.
This sensor technology (Figure 12-7) feeds information to the
producer interface (Figure 12-8) to guide the equipment when
applying crop protectants according to regulations and
maintain compliance and quality record keeping (John
Deere., 2022).

Figure 12-7. John Deere Mobile weather sensor
technology mounted on the hood of self-propelled

sprayer
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Source: (John Deere., 2022)

Figure 12-8. John Deere mobile weather technology
user interface

Source: (John Deere., 2022)

The value of real-time recognition of weather events can
prove extremely valuable to food producers, especially when
coupled with personalized data analytics output,
measurements of wind speed and direction, temperature,
humidity, rainfall, and on-farm producers with the knowledge
to maintain environmental compliance standards and put
emergency preparedness plans into place if necessary. For
livestock producers, in particular, storm management plans
are a key tool to maintain animal welfare standards when
technology cannot overcome the forces of nature (e.g., power
outages, significant snowfall or flooding, high winds, or
significant heat events). Food producers in the livestock space
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are obligated to their animals, extending beyond whatever
mother nature throws them. Standardization of data analytics
procedures with recognizable producer indices, such as the
Livestock Weather Safety Index (LWSI), allows universal use
and interpretation of remote weather sensor technology data
(Mader, 2006).

Integration of space technology into cattle
management

Much like many of the agricultural solutions presented in
this chapter, space technologies used in cattle management
also rely on incorporating multi-sensor inputs for successful
integration into the market space. Like crop and produce
production, cattle management practices present numerous
opportunities for emerging space technologies to impact the
industry. Space technology has opportunities for success in the
cattle industry because:

1. Animals are primarily housed in outdoor areas (e.g.,
satellite and UAV technologies can access the region with
limited interference)

2. Industry labor shortages with limited automation
present (e.g., unlike the skilled labor shift that’s occurred
in other parts of agriculture, the lack of basic laborers
has forced skilled laborers to be used inefficiently for
more entry-level roles rather than what they were trained
for)
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3. Complex animal health concerns (e.g., complex
pathogens like those causing Bovine Respiratory Disease
can be challenging to identify during ideal treatment
windows)

4. Navigation of environmental regulations (e.g.,
Regulations for manure and water are monitored closely
in the cattle industry)

5. Longer time to market and greater monetary value of an
individual animal compared to other livestock (e.g., the
longer period spent in the feedlot presents a greater risk
for something happening to a high-value animal)

Although there is room in the market for developing
technologies to assist the cattle industry, skepticism does
plague this industry due to high investment costs. Therefore,
understanding and demonstrating the valued added
proposition of emerging technologies in this space is critical
for developers. This section will focus on three key areas of
space technology development for cattle management: satellite
systems, remote health sensors, and feed management
equipment. The technology mentioned in this section is not
an exhaustive list and includes examples of both space-based
technologies and remote sensors for integration with space
technology offerings.

Emerging cattle management technology: satellite
systems

Satellite systems have two main functionalities explored
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most commonly with application to cattle management: GPS
monitoring and imagery. The direct use of GPS monitoring
cattle via the virtual fencing industry has been described earlier
in the section: Geographical information systems –
Environmental Stewardship. It is important to emphasize that
despite its implications for environmental stewardship, for
virtual fencing to continue uptake by industry producers, it
must continue to demonstrate value to cattle feeding
operations monetarily. Eliminating costs of labor and supplies
for fence management is a key benefit, especially for cattle
grazing in the remote country when human access is
challenging. Another potential output of the technology that
broadly opens the targeted market is the recognition of cattle
movement for animal health purposes. Changes in movement
patterns of animals could detect calving status, disease
presence, or dangerous threats (e.g., predator, environmental
barriers, etc.). Access to this information helps cattle producers
understand when intervention is necessary (Handcock, 2009).

GPS technology application to animals is arguably not in
its infancy in the market like other technologies discussed in
this chapter. GPS technology has been applied to animals since
its emergence in the citizen space, specifically for ecologists’
and conservationists’ use in tracking terrestrial wildlife. But,
commercialization of the technology for cattle has since
accelerated the development of its capabilities beyond simple
measurements to include animal behavior inferences (e.g.,
grazing, traveling, and resting activities) (Ungar & Henkin,
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2005). Correlation of herd movement and activity with
satellite imagery to predict biomass available using
standardized vegetation indices (VI) provides producers even
more information on decisions herds are making and where
they are choosing to spend their time, especially for animals
grazed in remote locations (Figure 12-9; (Handcock, 2009)).

Figure 12-9. (a) Movement of 36 cattle over three days
in GPS-monitored paddock. (b) percentage of time spent

in the region represented by pixel in satellite image (c)
overlay of movement of cattle with normalized

difference vegetation index (NDVI)

Source: (Handcock, 2009)

Data analytics have taken the interpretation of these satellite
images a step further. Live weight gain prediction capabilities
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have been explored for cattle grazing paddocks using satellite-
derived VI data as primary data input for the model (Pearson,
2021). There is great value for cattle producers to understand
the biomass available. Knowing the quantity of vegetation
available for grazing (and the potential to translate to an animal
weight change) provides the cattle producer with an
understanding of when additional management interventions
(e.g., supplemental feed during dry season) are needed.

Emerging cattle management technology: remote
health sensors

The ability to identify animals feeling unwell within the
treatment window to ensure disease will not have lasting
impacts on that animal’s life is truly an art. Finding (and
retaining) labor with this valuable skill set in the cattle industry
is proving harder than the art itself. In response to this animal
welfare concern, agriculture technology companies and animal
health companies have partnered to develop a variety of sensors
that can simplify disease detection methods. “There will
always be a need for skilled producers to engage with and
deeply understand the cattle they are raising. No technology
will replace the need for ranchers to get their hands dirty.
Rather these technologies will be tools that will assist them in
those efforts” (Veres, 2022). QuantifiedAg Tag is part of the
SenseHub customer offering by Merck Animal Health. The
smart tag (Figure 12-10) measures temperature and animal
activity and has an LED indicator light on a tag to easily
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identify animals for treatment (Armstrong, 2016). The
information collected by sensors built into the animal’s ear tag
is relayed to a user interface where a list of animals needing
treatment is located. To ease cattle handling, animals with
values outside baseline for temperature and activity trigger an
LED light on the ear tag making sick animal identification
much more straightforward for cattle operation workers.

Figure 12-10. QuantifiedAg Tag measures animal
temperature and activity level to provide inputs for the

producer interface, where a list of sick animals to treat is
generated. The indicator light on the tag identifies

which animals need treatment.

Source: (Armstrong, 2016)

MOOnitor is a collar equipped with sensors for measuring
resting, feeding, rumination (i.e., chewing cud), head position,
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and restlessness of each animal, as well as monitoring for
optimal breeding time (Figure 12-11). These sensor outputs
relay back to the user interface, giving the producer a snapshot
of the animal’s overall health. The sensitivity of MOOnitor
sensors paired with its GPS module for movement tracking
has proven to have the accuracy, precision, sensitivity, and
specificity for effectively differentiating behaviors such as
standing, lying, standing and ruminating, lying and
ruminating, walking and walking, and grazing (Dutta, 2022).
Effectively recognizing animal movements indicates that these
remote health sensor technologies may be very effective in
determining cows’ optimal breeding time, identifying disease
presence, and/or detecting deviation from the herd’s baseline
health standards.

Figure 12-11. MOOnitor collar is equipped with
remote sensors as well as a GPS module for measuring
animal movement, feeding, rumination, head position,

etc. for monitoring general animal health as well as
detecting optimal breeding time for females
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Source: (Fox, 2019)

With the animal agriculture industry under a microscope
by the public media concerning the treatment of animals and
animal health standards, implementing these types of remote
sensor technologies will hopefully arm producers with data
related to animal welfare standards within their operation.
Perhaps most impactful to the cattle producer is these tools’
ability to circumvent challenges that exist with skilled labor
shortages for on-farm animal health management.

Emerging cattle management technology: feed
management equipment

In the beef feedlot sector, a critical role for skilled labor is
an employee with the ability to “read bunks” – a process by
which the animals’ feed trough is inspected for the presence
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of the previous day’s feed offering. Based on the bunk score
assigned by the bunk reader, the feed offered to that cattle pen
could increase or decrease in the present day. Reading bunks is
a time-intensive step in cattle management for large operations
with limited labor. The accuracy of the call is also critical as
feed costs are the major expense to any cattle operation. The
critical nature of this task has piqued the interest of multiple
agriculture technology developers. Efforts to develop
computer visioning for bunk management with stationary
cameras have succeeded with prediction accuracies for
detecting the quantity of feed in the bunk (accuracy of
prediction ranged from 81.8% to 90%) (Dorea, 2019).
Accuracy of prediction of cattle behavior using the same
technology resulted in a lower range with increased variability
(accuracy of prediction ranged from 66.6% to 86.6%) (Dorea,
2019). However, these results are not surprising. Detection
and analysis of a moving target (such as a live animal) is not
an easy feat for any technology. Still, it is understood by
agricultural workers that understanding cattle behavior at the
bunk is just as important as the amount of feed remaining.

A patent granted to Digi Star LLC in 2019 but not yet
available in public market space explores the idea of using
UAVs equipped with sensor technology to automate bunk
reading (Figure 12-12). The UAV sensor output is then relayed
back to a feed delivery truck to dispense the intended amount
of feed for that group of animals based on the previous day’s
remaining feed (Patent No. Agricultural drone for use in
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livestock feeding. In: Google Patents., 2019). Although truly
innovative in its field, the delay in development may be limited
producer interest in the uptake of UAV technology for critical
daily tasks – as weather may create an environment unfit for
UAV operations. Still, bunk calls must be made regardless of
the weather.

Figure 12-12. Explanatory diagram of the use of
unmanned air vehicle (UAV) to determine feed

remaining in cattle bunk with capabilities to relay real-
time information to feed delivery truck

Source: (Patent No. Agricultural drone for use in livestock
feeding. In: Google Patents., 2019)

One of the pioneer space technologies in cattle management
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is the use of GPS guiding feed truck equipment. Micro
Technologies launched their first GPS-guided Feed Truck
System, integrated with interfacing capabilities between feed
truck computer and feed truck scale, in 1998 (Micro
Technologies: Our History – Innovation in Motion. , 2022).
This technology was revolutionary for decreasing the skill
required to accurately deliver the correct amount of feed –
saving time and money associated with incorrect feed
deliveries. As regulations of in-feed animal drugs have
tightened after the passing of the veterinary feed directive, the
GPS-monitored Feed Truck System has ensured that drugs are
being dispensed to the correct group of animals in the correct
amounts – increasing the accuracy of record keeping with
regards to animal health drugs.

Micro Technologies continues offering cattle producers at
the forefront of precision agriculture. In 2022, they
announced the launch of Accu-Trac Vision – a truck-mounted
arm with a sensor detecting feed left in the bunk (Figure
12-13). This sensor output relays the bunk call to the feed
dispatch center, guiding the feed delivery by GPS-monitored
feed trucks. It has not been described whether or not this
technology considers animal behavior and the estimated
quantity of feed remaining – however, it is viewed as a
disruptive technology for the cattle industry because of the
opportunities to decrease skilled labor and increase consistency
in bunk calls.
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Figure 12-13. Accu-Trac Vision bunk scanner arm for
estimating cattle feed remaining from the previous day

Source: (Micro Technologies: Our History – Innovation in
Motion. , 2022)

Complete autonomous bunk calling and feed delivery
solutions have also emerged in the cattle industry. The
Australian-based company, Manabotix, has developed a sensor
with bunk reading capabilities similar to Micro Technologies
Accu-Trac Vision. This sensor is being tested as part of a UGV
for automated robotic bunk calling (Figure 12-14). BunkBot
has been well received for allowing skilled labor to be better
used in other roles on the feedlot and increasing the amount of
data available on animal feed intake.
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Figure 12-14 Autonomous unmanned ground vehicle
(UGV), BunkBot, equipped with sensor technology for

estimating feed remaining in cattle bunk

Source: (McMeniman, 2021)

The selected feed management technology described in this
section demonstrates the complex variation of emerging
technologies in the cattle feeding management sector.
Although these new technologies have captured the interest of
producers, product uptake will be heavily dependent upon the
product’s value proposition and, ultimately, what value cattle
producers put on circumventing labor challenges that plague
the industry.

Developer considerations for end-user of emerging
technology

This chapter highlights emerging technologies in the
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agriculture industry with connections to space. Although
there is no doubt developers are busy innovating in this space,
uptake by producers is not consistent across technology types.
Automated technologies have shown sooner adoption by food
producers after coming to the commercial market than more
data-intensive technologies (Ofori, 2020). But data-intensive
technologies are the lifeblood of larger applications such as
VRT. Uptake of VRT by producers is estimated between
20-30% of American food producers – demonstrating interest
on the part of the producer but that perhaps the technology
has not yet fully found its value proposition for the food
producer (Lowenberg‐Deboer, 2019). Value to the producer
will always be pivotal to the success of emerging technologies
in the agriculture industry. Increasing the quality and/or
quantity of food products produced equates to more revenue
from food producers. As emerging space technologies
continue to navigate the challenges facing the modern
agriculture industry, there is no doubt these innovations will
profoundly impact the quality and quantity of food producers
for the growing population.

Conclusions
As the age of smart agriculture ensues, the toolbox of

emerging space technologies appears to be at the cutting edge
of industry advancement. The advancing global population,
increasing environmental challenges, and (relatively) static
tillable acres presents the industry with innovation
opportunities to shoot for the stars in an effort to keep up
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with demand for increased food production. The examples
demonstrated in this chapter have provided evidence that
original innovators of space technologies may have rarely had
the chance to put their theories into agricultural practice
themselves; but from the perspective of the agricultural sector,
those technologies have the ability to change lives by increasing
the quantity and quality of food this world can produce.
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