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Preface

First Edition

This text is an introduction to algebra for undergraduates who are interested in
careers which require a strong background in mathematics. It will benefit stu-
dents studying computer science and physical sciences, who plan to teach math-
ematics in schools, or to work in industry or finance. The book assumes that
the reader has a solid background in linear algebra. For the first 12 chapters el-
ementary operations, elementary matrices, linear independence and rank are im-
portant. In the second half of the book abstract vector spaces are used. Students
will need to have experience proving results. Some acquaintance with Euclidean
geometry is also desirable. In fact I have found that a course in Euclidean geom-
etry fits together very well with the algebra in the first 12 chapters. But one can
avoid the geometry in the book by simply omitting chapter 7 and the geometric
parts of chapters 9 and 18.

The material in the book is organized linearly. There are few excursions away
from the main path. The only significant parts which can be omitted are those
just mentioned, the section in chapter 12 on PSL(2,F,), chapter 13 on abelian
groups and the section in chapter 14 on Berlekamp's algorithm.

The first chapter is meant as an introduction. It discusses congruences and
the integers modulo n. Chapters 3 and 4 introduce permutation groups and linear
groups, preparing for the definition of abstract groups in chapter 5. Chapters 8

and 9 are devoted to group actions. Lagrange's theorem comes in chapter 10 as

x1
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an application. The Sylow theorems in chapter 11 are proved following Wielandt
via group actions as well. In chapter 13, row and column reduction of integer
matrices is used to prove the classification theorem for finitely generated abelian
groups. Chapter 14 collects all the results about polynomial rings in one variable
over a field that are needed for Galois theory. I have followed the standard Artin
- van der Waerden approach to Galois theory. But I have tried to show where
it comes from by introducing the Galois group of a polynomial as its symmetry
group, that is the group of permutations of its roots which preserves algebraic
relations among them. Chapters 18, 19, 20 and 21 are applications of Galois
theory. In chapter 20 I have chosen to prove only that the general equation
of degree 5 or greater cannot be solved by taking roots. The correspondence
between radical extensions and solvable Galois groups I have found is often too
sophisticated for undergraduates.

This book also tries to show students how software can be used intelligently in
algebra. I feel that this is particularly important for the intended audience. There
is a delicate philosophical point. Does a software calculation prove anything?
This is not a simple question, and there does not seem to be a consensus among
mathematicians about it. There are a few places in the text where a calculation
does rely on software, for example, in calculating the Sylow 2-subgroups of Ss.
The Mathematica notebooks corresponding to the software sections are available
at the book's web site, as are the equivalent Maple worksheets.

Some of the exercises are referred to later in the text. These have been marked
with a bullet o . There are exercises where the software is useful but not essential,
and some where it is essential. However, I have deliberately not tried to indicate
which ones these are. Learning to decide when software is useful and when not,
seems to me to be an important part of learning to use it.

I am grateful to many people for help with this book at various stages, in
particular to Edward Bierstone, Imtiaz Manji, David Milne, Kumar Murty, Joe
Repka and Paul Selick. In discussions over the years, Ragnar Buchweitz has made
many suggestions about teaching undergraduate algebra, for which I am most

thankful. The section on quartics and the associated pencil of conics is one of
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several topics in the book suggested by him. The software was originally written
with the help of George Beck, Keldon Drudge and Petra Menz. The present
version is due to David Milne. The software which produced the pictures of the

Platonic solids in chapter 7 was also written by George Beck.

John Scherk
Toronto

2000

Second Edition

The first edition was published with CRC Press. This edition is published on-
line under the Creative Commons Copyright. The intention is to make the book
freely accessible to as many students and other readers as possible. The changes
in this edition are small. Many mistakes have been corrected. Some exercises

have been added and there are minor additions and refinements to the text.

John Scherk
Toronto
2010
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2 PREFACE

Introduction

The first part of this book is an introduction to group theory. It begins with a
study of permutation groups in chapter 3. Historically this was one of the starting
points of group theory. In fact it was in the context of permutations of the roots
of a polynomial that they first appeared (see 7.4). A second starting point was
the study of linear groups, i.e. groups of matrices, introduced in chapter 4. These
appeared as groups of transformations which preserve different geometries, such
as Euclidean spaces, the hyperbolic plane (see 8.8) or projective spaces. They also
arose as symmetry groups of objects like regular polygons or platonic solids in
in Euclidean space, discussed in chapter 7, or of tessellations of the Euclidean
or hyperbolic plane. The algebra underlying these special types of groups can be

unified in the concept of the abstract group. This is introduced in chapter 5.



Congruences

This is an introductory chapter. The main topic is the arithmetic of congruences,
sometimes called 'clock arithmetic'. It leads to the construction of the integers
modulo n. These are among the simplest examples of groups, as we shall see
in chapter 5. If n is a prime number, then the integers modulo n form a field.
In chapter 4, we will be looking at matrices with entries in these fields. As an
application of congruences we also discuss divisibility tests. In order to be able to
solve linear congruences we review greatest common divisors and the Euclidean

algorithm.

1.1 Basic Properties

Definition 1.1. Fix a natural number n. The integers a and b are congruent

modulo n or mod n, written

a=b (modn),
if @ — b is divisible by n.
For example,

23=1 (mod 11)
23=2 (mod 7)
23 = -2 (mod 25)
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4 CHAPTER 1. CONGRUENCES

If you measure time with a 12-hour clock, then you are calculating the hour mod-
ulo 12. For example, 5 hours after 9 o'clock is not 14 o'clock but 2 o'clock. We
keep track of the days by reckoning modulo 7. If today is a Wednesday, then 10
days from today will be a Saturday. January 19 was a Wednesday in the year 2000.

To determine what day of the week it was in 1998, we can calculate
2:365=730=2 (mod 7).

Therefore January 19 was a Friday in 1998. Calculating modulo 7 is very similar
to calculating in the integers. First we note that congruence modulo n is an

equivalence relation.
Theorem 1.2. () a=a (mod n);
(@) ifa =b (mod n) then b = a (mod n) ;
(@) ifa =b (mod n) andb = ¢ (mod n), then a = ¢ (mod n).

It is easy to see why this is true. Clearly a — a = 0 is divisible by n. If a — b
is divisible by n then so is b — a = —(a — b). And lastly, if a — b and b — ¢ are
divisible by n, then soisa — ¢ = (a — b) + (b — ¢).

Any integer a is congruent to a unique integer 7,0 < r < n — 1. Simply
divide a by n:

a=qn—+r, forsomegandr, 0<r <n.

Then a = r (mod n). From this you see that a is also congruent to a unique
integer between 1 and n, or between —57 and n—>58. Addition and multiplication

make sense modulo n:

Theotem 1.3. (i) fa =b (mod n),andc=d (mod n) thena+c=b+d

(mod n);
() ifa =b (mod n), andc = d (mod n) then ac = bd (mod n);

Proof. Well, since b— a and d — ¢ are divisible by n then so are (b+d) — (a+c¢) =
(b—a)+ (d—c)and bd — ac = bd — bc + bc —ac = b(d — ¢) + ¢(b—a). O
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1.2 Divisibility Tests

With these simple properties we can establish some divisibility tests for natural
numbers. Let's begin by deducing the obvious tests for divisibility by 2 and 5
using congruences. Suppose a is a natural number given in decimal form by

a = ag - - a10ag , in other words
a=apl0f + -+ a;10 + ao
with 0 < a; < 10 for all j. Then since 10/ =0 (mod 2) for any 7,
a=ay (mod2).

So a is even if and only if its last digit ag is even. Similarly 10/ = 0 (mod 5) so
that

a=ay (mod?5).

Thus a is divisible by 5 if and only if ag is, which is the case precisely when ay is
0 or 5. Next let's look at divisibility by 3 and 9.

Test 1.4. Divisibility by 3 or 9

(1) A natural number a is divisible by 3 if and only if the sum of its digits is divisible
by 3.

(i7) A natural number a is divisible by 9 if and only i the sum of its digits is divisible
by 9.

Proof. We have for k > 0,
1= (- +--+x+1).
Taking © = 10, we see that 10¥ — 1 is divisible by 9 and in particular by 3. So
10°=1 (mod9) and 10°=1 (mod 3).

Therefore if
a:ak10k+-~-+a110—|—a0,
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6 CHAPTER 1. CONGRUENCES

then
a=ag+---+a+a (mod9) and a=ap+---+a+ay (mod3).

So a is divisible by 9, respectively 3, if and only if the sum of its digits is divisible

by 9, respectively 3. [

There is a test for divisibility by 11 which is similar. It is discussed in exercise
5. The tests for divisibility by 7 and 13 are more subtle. Here is the test for 7.

The test for 13 is in exercise 6.

Test 1.5. Divisibility by 7
Let a be a natural number. Write a = 10b + aq, where 0 < ag < 10. Then a is
divisible by T if and only if b — 2aq s divisible by 7.

Proof. We have
10b+ap=0 (mod7)

if and only if
106 + ag = 21(10 (mod 7)

since 21ap =0 (mod 7). Equivalently,
100 — 20ap =0 (mod 7),

ie 7 divides 10b — 20ay = 10(b — 2ay) . Since 10 is not divisible by 7, this
holds if and only if 7 divides b — 2ay. In other words,

b—2ap=0 (mod7).

For example,
426537183 =39=0 (mod 3), but 426537183 =39=3 (mod9).
So 426537183 is divisible by 3 but not by 9. And

98=9-10+8=0 (mod7) since 9—2:-8=—-7=0 (mod 7).
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Here is a table summarizing all the tests mentioned for a natural number a. In

decimal form, a is given by apl0® + -+ a110 + ag = 10b + qy .

test

ap even

ap=0o0rd

ax + - -+ + a1 + ap divisible by 3

b — 2ay divisible by 7

ax + -+ - + a1 + ag divisible by 9

ap — -+ (=1)*ta; + (=1)*aq divisible by 11
b + 4ay divisible by 13

WH ©~Jwou |3

There is another divisibility question with a pretty answer. When does a nat-
ural number n divide 10* — 1 for some k > 0? Not surprisingly this is related to
the decimal expansion of 1/n. First remember that every rational number m/n
has a repeating decimal expansion (see [1], §6.1). This expansion is finite if and
only the prime factors of the denominator n are 2 and 5. Otherwise it is infinite.
If n divides 10¥ — 1, then the expansion of 1/n is of a special form. Suppose
that

na=10"-1, aeN.

Write out the decimal expansion of a:

a=a 10+ +ap_110 4 ay, .

So N
10 1
a10F 1+ a1 10+ ap = — — — .
n n
Divide this equation by 10*:
1 107k
0.ay...ap_1a, = — — )
n n
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8 CHAPTER 1. CONGRUENCES

Divide again by 10*:

for any ¢. Now sum over

0 10—tk 107(i+1)k
O.ay... e L= —
aq araq Ay ; < 0 " >
1 1070\
— - 1071’6
)%

The sums converge because the series on the right is a geometric series. The sum
in the middle telescopes, leaving 1/n, and the left hand side is a repeating decimal
fraction. So

1
—=0.a1...a,01...a507 ... . (1.1)
n

Conversely, it is easy to show that if 1/n has a decimal expansion of this form,
then n divides 10¥ — 1. The shortest such sequence of numbers ay, ..., a is
called the period of 1/n and k the /length of the period. If we have any other

expansion for 1/n,

1
—=0by...0by... by ...,
n
for some by, . .., by, then we see that [ must be a multiple of the petiod. So the

answer to our original question is:

Theorem 1.6.
10F—1=0 (mod n)

if and only if 1/ has a decimal expansion of the form (1.1) and k is a multiple of the length
of the period of 1/n.
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Taking n = 7, we can calculate that

1
- = 0.142857142857 . ..

So1,4,2,8,5,7is the period of 1/7, which has length 6. Then 10°—1 = 999999
is divisible by 7, and for no smaller k is 10* — 1 divisible by 7.

1.3 Common Divisors

Recall that d is a common divisor of two integers a and b (not both 0) if d divides a
and d divides b. The greatest common divisor is the largest one and is written (a, b).
Every common divisor of @ and b divides the greatest common divisor. We can
compute (a, b) by the Euclidean algorithm. We divide a by b with a remainder r.

Then we divide b by r with a remainder 71, and so on until we get a remainder 0.

a=qb+r 0<r<b

b=aqr+nr 0<r<r
Tic1 = Qit1Ti + Tit1 0<ri1<m
Tn—2 = qnTn—1 + 7, 0 S Tn < Tp—1

'n—1 = 4n4+1Tn

In chapter 14 we shall see the same algorithm for polynomials.

The reason that this algorithm computes (a, b) is the following:
Lemma 1.7. Letw and v be integers, not both 0. Write
U=qu-+r,
Jor some integers @ and v with 0 < r < |v|. Then

(u,v) = (v,71) .
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Proof. 1f d is a common divisor of © and v, then d divides 7 = u — qv and is
therefore a common divisor of v and 7. Conversely, if d is a common divisor of
v and r, then d divides 4 = qu + 7 and is therefore a common divisor of v and

v. So the greatest common divisor of the two pairs must be the same. [
Applying this to the list of divisions above we obtain
(ric1,73) = (ri; Tiga)
for each ¢ < m. Now the last equation says that r,, | 7,—1. This means that
(TPp—1,7n) = Tn .
Therefore arguing by induction,
(ric1,73) =1

for all 7, in particular

(a,b) =1y, .

The proof of the lemma also shows that any common divisor of @ and b divides
(a,b).

We can read more out of the list of equations. The first equation tells us that r
is a linear combination of @ and b. The second one, that - is a linear combination
of b and r, and therefore of a and b. The third, that 75 is a linear combination of
r1 and 7, and therefore of @ and b. Continuing like this, we get that r,, is a linear

combination of a and b. Thus there exist integers s and ¢ such that
(a,b) = sa+tb.

Example 1.8. Take @ = 57 and b = 21. Then

07T =2-21+15
21=154+6
15=2-6+4+3

6=2-3.
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Therefore
3=(57,21).
Furthermore
15=57—-2-21
6=21—-15=-57+3-21
3=15—-2-6=3-57—8-21.
So we can take s = 3and t = —8&. A

Another way to look at the Euclidean algorithm is as an algorithm which

expresses the rational number a/b as a continued fraction. We have

a +r_ N 1
b Ty O AN
r
But
™
-=q + —,
r
SO
a N 1 N 1
b_q r_q 1
1+ ¢+

r
1
Continuing like this, our list of equations gives us the continued fraction
a 1

b 1
Q1+
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12 CHAPTER 1. CONGRUENCES

In our example, we find that

2+ =

For more about the origins of the Euclidean algorithm, and its connection with
the rational approximation of real numbers, see [2]. To read more about contin-
ued fractions in number theory, see [1].

Returning to the greatest common divisor, we say that @ and b are relatively
prime if (a,b) = 1, that is, if they have no common divisors except +1. Thus, if

a and b are relatively prime, there exist integers s and ¢ such that
1 = sa+tb.
For example, 16 and 35 are relatively prime and
1=-5-35+11-16.

Related to the greatest common divisor of two integers is their least common
multiple. The least common multiple m of a,b € Z is the smallest common
multiple of @ and b, i.e. the smallest natural number which is divisible by both a
and b. We shall write

m = lem(a, b) .

It is not hard to see that m divides every common multiple of @ and b, and that

ab
=1 b).
(a’ b) Cm(a’ )
In example 1.8 above,

lem(57,21) = 57 - 21/3 = 399 .
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1.4 Solving Congruences

It is very useful to be able to solve linear congruences, just the way you solve

linear equations.

Theorem 1.9. If (a,n) = 1, then the congruence
ar =b (mod n)

has a solution which is unigue nodulo 1.

Proof. Wtite 1 = as 4 nt for some integers s and t. Then b = bas + bnt. Thus
b=abs (modn)

and x = bs is a solution of the congruence. If we have two solutions x and y
then ax = ay (mod n) i.e. n divides ax — ay = a(x — y). Since a and n are

relatively prime, this means that n divides  — y. Thus £ =y (mod n). ]
Example 1.10. Let's solve the congruence
24r =23 (mod 31) .

First we use the Euclidean algorithm to find integers s and ¢ such that 24s+31¢ =
1. One such pairis s = =9 and t = 7. Then

23 = 24(23s) + 31(23t)

so that
24(238) =23 (mod 31) .

Thus © = —207 = 10 (mod 31) is a solution of the congruence. We could

also just compute multiples of 24 modulo 31. A

In particular the congruence az = 1 (mod n) has a solution, unique modulo
n’

if (a,n) = 1. For example, if a = 7and n = 36, then 5 -7 = —1 (mod 36).
So —5 = 31 (mod 36) is a solution of 7x = 1 (mod 36).
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Remark 1.11. 1f n is prime, then all @ with a £ 0 (mod n) are relatively prime

to 1 and have 'multiplicative inverses' mod n.

Notice however that

9z =1 (mod 36)

does not have a solution. For if such an = did exist we could multiply the con-

gruence by 4 and get
0=4-92=4 (mod 36) .

But 0 — 4 is not divisible by 36. In fact it is true in general, that if a and n ate
not relatively prime, then

ar =1 (mod n)

does not have a solution. For suppose that a = a'd and n = n’d with d > 1.

Then n'a = n'a’d =0 (mod n) so that
O=nax=n"#0 (modn).

Therefore no such x can exist.

In general we let ¢(n) denote the number of integers a, 0 < a < n, which
are relatively prime to n. For example if p is prime then ¢(p) = p — 1.

Later we will also need to solve simultaneous congruences. The result which

tells us that this is possible is called the Chinese Remainder Theorem.

Theorem 1.12. Ifny and ny are relatively prime, then the two congruences
r=b (modny) and x=0by (mod ny)
have a common solution which is unigue modulo nynsg.

Proof. A solution of the first congruence has the form by + sny. For this to be a

solution of the second congruence, we must have that

bl +sn; = b2 (rnod 7l2) or equivalently nis = bg — b1 (mod TLQ) .
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Since (n1,n9) = 1, the previous theorem assures us that such an s exists. If =
and y are two solutions, then z =y (mod n;) and z =y (mod ny),ie. v —y
is divisible by 11 and by na. As 1y and ng are relatively prime, x — y must be

divisible by 1115. Thus * = y (mod nins). O
Example 1.13. Solve

r=14 (mod 24)
=6 (mod31)

Solutions of the first congruence are of the form 14+ 24s. So we must solve
14+24s=6 (mod 31)

or equivalently

245 =23 (mod 31) .

This is the congruence we solved in example 1.10. We saw that s = 10 is a
solution. Therefore x = 254 as a solution of the two congruences we began

with. A

1.5 The Integers Modulo n

As pointed out in theorem 1.2, congruence modulo 7 is an equivalence relation.
The equivalence classes are called congruence classes. The congruence class of
an integer a is

a:=a+nZ = {a+sn|se€Z}

The set of all congruences classes is denoted by Z/nZ and called the set of integers
modulo . Since every integer a is congruent to a unique 7 satistying 0 < r < n,

a contains a unique 7, 0 < 7 < n. Thus there is a one-to-one correspondence
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between Z/nZ and {0,1,...,n — 1}. For example, in Z/27 there are two

congruence classes:

0+2Z = {25 | s € Z},

the even integers, and
14+2Z = {1+2s|s€Z},

the odd integers. We can define addition on Z/nZ by

a+b=a+b.

Because of theorem 1.2 this makes sense. You can think of this as adding two
natural numbers a and b in {0,1,...,n — 1} modulo n, i.e., their sum is the

remainder after division of @ + b by n. This addition in Z/nZ is associative and

commutative:
(@a+b)+¢=a+(b+¢
a+b="b+a.
And
a+0 =20
a+(—a) =0
For example, in Z/10Z,
547=2,446=0.
Multiplication can also be defined on Z/nZ:
a-b:=ab.

As with addition we can think of this as just multiplication modulo n for two
numbers from {0,1,...,n — 1}. It too is associative and commutative, and 1

is the identity element. If (a,n) = 1 then as pointed out in remark 1.6, @ has a



1.5. THE INTEGERS MODULO N 17

multiplicative inverse. For example, we checked that in 7 /367 the multiplicative
inverse of 7 is 31. We also saw that because 4 - 9 = 0, 9 has no multiplicative
inverse.

We have seen that Z /nZ, at least when n is prime, has many formal properties
in common with the set of real numbers R and complex numbers C. We can

collect these properties in a formal definition.

Definition 1.14. A field F' is a set with two binary operations, called 'addition’
and 'multiplication’, written + and - respectively, with the following properties (a

binary operation on F'is just a mapping F' X F' — F):
(i) Addition and multiplication are both associative and commutative;
(i) Fora,b,c € F,a(b+ c) = ab+ ac;
(iii) There exist distinct elements 0,1 € [ such that for any a € F,

a+0=a

a-1=a.

(iv) For any a € F' there exists a unique element, written —a, such that

and for any a € F, a # 0, there exists a unique element, written a?

, such
that

a-at=1.

These are the formal properties satisfied by addition and multiplication in R
and C, as well as in Z/pZ for p prime. We introduce the notation [F,, for Z/pZ.
As pointed out above, if 1 is not prime, then not all non-zero elements in Z/nZ

have multiplicative inverses, so that in these cases Z/nZ is not a field.
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1.6 Introduction to Software

The main purpose of this section is to give you a chance to practice using Math-
ematica. It has several functions which are relevant to this section. For making

computations in the integers modulo 7 there is a built-in function Mod. Thus

In[1]:= Mod[25+87,13]

Out[1]= 8
and

In[2]:= Mod[2712,7]

Out[2]=1
A more efficient way of computing powers mod 7 is to use the function PowerMod:

In[3]:= PowerMod[2,12,7]

Out[3]= 1

For any real number a the function N[a, m] will compute the first m digits

of a. For example,

Inf[4]:= N[1/7, 20]

Out [4]= 0.14285714285714285714
So we see that the period of 1/7is 1,4,2,8 5,7, as discussed above. Similatly

In[5]:= N[1/19, 40]
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Out [5]=0.0526315789473684210526315789473684210526

Thus the period of 1/19is 0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1 , which
has length 18. And

In[6]:= Mod[10718 - 1, 19]

Out[6]= 0

but for smaller k, 10¥ — 1 2 0 (mod 19). We can do these calculations for all

the primes less than 30 say, and tabulate the results. They confirm theorem 1.6.

prime 11 13 17 19 23 29

3 7
length of period 2 6 2 6 16 18 22 28
smallest k 2 6 2 6 16 18 22 28

Interestingly
1001 =103 +1=7-11-13,
so that
104+1=0 (mod?7).
Similarly,

In[7]:= Mod[1079+1, 19]

Out[7]= 0

What do you think is going on? Experiment a bit and try to make a conjecture.
Given a pair of integers a and b, the function ExtendedGCD will compute

(a,b) and integers s and ¢ such that (a, b) = as + bt . For example,
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In[8]:= ExtendedGCD[57, 21]

Out [8]= {3,{3,-8}}

This means that 3 = 3 - 57 — 8- 21. If we want to find the multiplicative inverse

of 105 in [F197, we can enter

In[9]:= ExtendedGCD[105, 197]

Out[9]= {1,{-15,8}}

So 1=—-15-105+4+8-197 and —15 = 182 is the multiplicative inverse of 105.
There is a function called ChineseRemainder which will solve two such

congruences simultaneously. In fact it will solve a system:

r=0b; (modng)

r=b, (modn,)

Simply enter

In[10] := ChineseRemainder[{by, ... , b.},{ny,
> Np}]

So in our example:

In[11]:= ChineseRemainder[{14, 6},{24, 31}]

Out[11]= 254
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1.7 Exercises

1. On what day of the week will January 19 fall in the year 20037

2. Solve the following congruences:

a) 52 =06 (mod 7)

b) 52 = 6 (mod 8)

¢) 3z =2 (mod 24)
d) 14z =5 (mod 45).

3. Solve the following systems of congruences:

a) 5 =6 (mod 7) and 5z = 6 (mod 8)
b) 14z =5 (mod 45) and 4z =5 (mod 23) .

Check whether the Mathematica function ChineseRemainder gives the same

answers as you get by hand.

4. e For p prime, 0 < k < p, show that

(Z) =0 (modp);

(x+y)P=2+y" (modp).

2)

b)

5. Prove that a natural number a is divisible by 11 if and only if the alternating

sum of its digits is divisible by 11.

6. Show that 10m 4+ n, 0 < n < 10, is divisible by 13 if and only if m + 4n is
divisible by 13.
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10.

11.

12.

13.

14.

CHAPTER 1. CONGRUENCES

Prove that a rational number m,/n, where m and n are integers, n # 0, has a

finite decimal expansion if and only if the prime factors of n are 2 and 5.

Let n be a natural number. Suppose that 1/n has a decimal expansion of the

form 0.ay ...axa; . ..apa; . ... Prove thatn | (10% — 1).

For each prime p < 30, find the smallest £ € N such that
10 4+1=0 (modyp),

and compare it with the length of the petiod of 1/p.

Let p be a prime number, and let k be the length of the period of 1/p. Suppose
that k = 21 is even. Prove that 10! + 1 is divisible by p, and that 10™ + 1
is not divisible by p for any m < [. (Suggestion: write 10% — 1 = (10" —
1)(10" + 1).) Does this hold true if p is a composite number?

e Make a table of ¢(n) for n < 20. For p prime, > 1, calculate p(p").

Suppose that you have a bucket that holds 57 cups, and one that holds 21

cups. How could you use them to measure out 3 cups of water?

Given integers a and b which are relatively prime, suppose that
sa—tbh=1,

for some integers s and ¢. Suppose that
sa—tb=1,

as well, for some integers s’ and . Prove that there then exists an integer k
such that
s'=s+kb and t' =t+ka.

Let a and b be two non-zero integers.
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15.

16.

17.

18.

19.

20.

a) Show that Iem(a, b) divides every common multiple of a and b.
b) Suppose that (a,b) = 1. Prove that then lem(a, b) = ab.

c) Prove that in general

Write out addition and multiplication tables for Z/6Z. Which elements have

multiplicative inverses?
p

Write out the multiplication table for Z/77Z. Make a list of the multiplicative

inverses of the non-zero elements.

How many elements of Z/7Z and Z /117 are squares? How many elements
of Z/pZ, where p is prime, are squares? Make a conjecture and then try to

prove it.

Suppose that n € N is a composite number.

a) Show that there exist a,b € Z with a,b # 0 € Z/nZ , but ab = 0.
b) Prove that Z/nZ is not a field.

o Jet

Q(V2) = {a+b/2|a,beQ} CR.
Verify that Q(v/2) is a field.

e={(% o

Show that C is a field under the operations of matrix addition and multiplica-

Let

a,beR}

tion.

www . dbooks . org


https://www.dbooks.org/

24 CHAPTER 1. CONGRUENCES

a b
o= (2 1) |oven)

where r € Fp is not a square. Show that under the operations of matrix

21. e Let

addition and matrix multiplication, I,z is a field with p* elements. Suggestion:
to prove that a non-zero matrix has a multiplicative inverse, use the fact that
the congruence 72 —r = 0 (mod p) has no solution. What happens if r is a

square in [,?



Permutations

2.1 Permutations as Mappings

In the next chapter, we will begin looking at groups by studying permutation
groups. To do this we must first establish the properties of permutations that we
shall need there. A permutation of a set X is a rearrangement of the elements of

X. More precisely
Definition 2.1. A permutation of a set X is a bijective mapping of X to itself.

A bijective mapping is a mapping that is one-to-one and onto. We are mainly
interested in permutations of finite sets, in particular of the sets {1,2,...,n}
where n is a natural number. A convenient way of writing such a permutation «
is the following. Write down the numbers 1,2,...,n in a row and write down

their images under « in a row beneath:

For example, the permutation « of {1,2,3,4,5} with (1) = 3, a(2) =
1, a(3) =5, a(4) =2, and a(5) = 4 is written

(1 2345
*®=\3 15 92 4)

This notation is usually called wapping notation.

25
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We denote by Sy the set of all permutations of a set X, and by S, the set of
permutations of {1,2,...,n}. Itis easy to count the number of permutations
in S,,. A permutation can map 1 to any of 1, 2, ..., n. Having chosen the image
of 1, 2 can be mapped to any of the remaining n — 1 numbers. Having chosen
the images of 1 and 2, 3 can be mapped to any of the remaining n — 2 numbers.
And so on, until the images of 1,...,n — 1 have been chosen. The remaining
number must be the image of n. So there ate n(n — 1)(n — 2)--- 1 choices.
Thus S, has n! elements.

If we are given two permutations v and 3 of a set X then the composition
a o f3 is also one-to-one and onto. So it too is a permutation of the elements of

X. For example, if « is the element of S5 above, and

12345
B_<23514)’

then

The entries in the second row ate just (awo 3)(1),..., (a0 8)(5). Notice that

12345
500‘:(52431)7&0‘05'

The order in which you compose permutations matters.
Since a permutation is bijective, it has an inverse which is also a bijective

mapping. The inverse of the element 8 € S5 above is

g (12340
~ 4125 3)

To compute the entries in the second row, find the number which 3 maps to 1,

4 5
4 5)7

to 2, etc. You can quickly check that

. . 1 23
5106=6051=(123

which is the identity permutation.
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From now on, for convenience, we are going to write the composition of two

permutations « and 3 as a 'product”:

aff = aofs.

So to calculate (a3)(7), we first apply (3 to ¢ and then apply « to the result. In

other words, we read products 'from right to left'.

2.2 Cycles

Let
(1 2 3 45 c s
“~ 382415 >
Soa(l) =3,a(3) =4,a(4) = 1and « fixes 2 and 5. We say that o permutes 1,

3, and 4 cyclically and that o is a cycle or more precisely, a 3-cycle. In general, an

element av € .Sy, is an t-cycle, where r < n, if there is a sequence i1, %2, . . ., i, €
{1,...,n} of distinct numbers, such that

Oé(il) = iQ, Oz(lé) = 2.3, N a(z’r_l) = ir, Oé(ir) = il,
and « fixes all other elements of {1,...,n}.

Cycles are particularly simple. We shall show that any permutation can be
written as a product of cycles, in fact there is even a simple algorithm which does
this. Let's first carry it out in an example. Take

o — 123456738
- \245138¢6 7))
We begin by looking at a(1), a?(1), .... We have
a(l) =2, a(2) =4, a(4) = 1.

As our first cycle g then, we take the 3-cycle

Vo (12345678
1= \2 43156 78)

www . dbooks . org


https://www.dbooks.org/

28 CHAPTER 2. PERMUTATIONS

The smallest number which does not occur in this cycle is 3. We see that

So take as our second cycle, the 2-cycle

(12
@2 = {1 9

So let
(1 23 45 6 78
@ =\ 23458¢67)
The numbers {1, 2, ..., 8} are all accounted for now, and we see that

o = Q3007 .

The cycles are even disjoint, that is, no two have a number in common. This

works in general:
Theorem 2.2. Any permutation is a product of disjoint cycles.

To see this, let « € S,. Consider (1), a?(1), ... . At some point this
sequence will begin to repeat itself. Suppose that a'(1) = a*(1) where s < t.
Then o'~%(1) = 1. Pick the smallest ; > 0 such that & (1) = 1. Let ay be

the 7;-cycle given by the sequence

1, al), (1), ..., ™ }(1)

Now pick the smallest number iy # (1) for any i. Consider a(is), a®(ia), - . ..

Again pick the smallest 75 such that a"2(i3) = i3 and let ap be the ra-cycle given
by the sequence

ig, Oé(ig), 042(2'2), ey ofz_l(ig).
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Continuing this way we find cycles o, aig, . . ., v, such that
O = Q00 .

And these cycles are disjoint from one another.

At this point it is convenient to introduce ¢ycle notation. 1f o« € .Sy, is an r-cycle

then there exist i1, ...,7, € {1,...,n} distinct from one another such that
a(iy) = ige1, for 1l <k <r, a(i,) = i1, a(j) = j otherwise .
Then we write
a = (ipiy -+ 10,) .
So in the example above,
a; = (124), ap = (35), a3 = (687).
And in cycle notation, we write

a = (124)(35)(687) .

We do not write out 1-cycles, except with the identity permutation, which is writ-
ten (1) .
The order in which you write the cycles in a product of disjoint cycles does

not matter for the following reason:
Theorem 2.3. Digjoint cycles commute with each other.
To see this, suppose that «, 3, € S, are disjoint cycles given by
a = (i i), 0= (- Jds)-
Then

; for.j¢{ila--wimjlv"-ajs}?
A(Bin)) = ixsr = Blalin)), forl<k<r
a(B(jr)) = Jrar = Bla(j)), forl <k <s.
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It is understood that 2,11 := %1 and Js11 1= J1.
A 2-cycle is called a transposition. Any cycle can be written as a product of

transpositions. For example,
(1234) = (14)(13)(12) .

or equally well,

(1234) = (12)(24)(23) .
In general, if (i1 43 -+ i,) € Sy, then
(i1 49 -+ 4p) = (i1 4p) -+~ (17 13) (471 42) .

Combining this with the theorem above, we see that
Theorem 2.4. Any permutation can be written as a product of transpositions.
For example
(1 2 345

24513

Actually this theorem is intuitively obvious. If you want to reorder a set of

6 7 8
8 6

7) = (124)(35)(687) = (14)(12)(35)(67)(68).

objects, you naturally do it by switching pairs of them.

2.3 Sign of a Permutation

In writing a permutation as a product of transpositions, the number of transpo-

sitions is not well-defined. For example,
(23)(123) = (23)(13)(12)

and

(23)(123) = (13).
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However the parity of this number does turn out to be well-defined: the permu-
tation can be written as the product of an even number or an odd number of
transpositions, but not both.

To see this, let A be a real n X n matrix and o € S,,. Let A, denote the

matrix obtained from A by permuting the rows according to . So the first row
of A, is the a(1)th row of A, the second row of A, is the a(2)th row of A, and

so on. This is sometimes called a row operation on A. Recall that
A, = I,A,
where [ is the identity matrix. In particulat, taking A = I,
(Ig)a = Lals -
Now (Ig)q = Iap (because we are reading products from right to left). So
Ing = 1,15,
and therefore
det(l,3) = det({,)det(lp) .
If v is a transposition, then
det(l,) = —1.

(Interchanging two rows of a determinant changes its sign.) So if v is the product
of r transpositions, then

det(l,) = (—1)".
The left hand side depends only on « and the right hand side only depends on
the parity of r.

We define the sign of o, written sgn v by
sgnav = det(/y) .

A permutation « is even if sgn av is 1, i.e. if o can be written as a product of an
even number of transpositions, and odd if sgn o is —1. Thus the product of two
even permutations is even, of two odd ones even, and of an even one and an odd

one odd.
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2.4 Exercises

1. For the permutation

(12345
=315 92 4)"

compute @? and o®. What is the smallest power of a which is the identity?

123 123
C“:<231)’ ﬁ:<213)'

Compute o?, o, 3% a3, a?B. Check that these together with o and 3 are

2. oln Sg, let

the six elements of S3. Verify that

3. e Suppose that a and f3 are permutations. Show that (a3)~! = f~la™!
4. How many 3-cycles are there in Sy? Write them out.

5. How many 3-cycles are there in S, for any n? How many 7-cycles are there

in S, for an arbitrary r < n?

6. Prove that if «v is an 7-cycle, then o is the identity permutation.

7. Two permutations « and [ are said to be disjoint if (i) # i implies that
B(i) = i and B(j) # j implies that a(j) = j. Prove that disjoint permuta-

tions commute with one anothetr.

8. Write the following permutations as products of cycles:
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(s )
(o )

9. Write the two permutations in the previous exercise as products of transposi-

a)

o N
~ w
—_
ot Ot
N O
00~
w oo
© ©

b)

— o
- w
TUo
S o
=
0 ~1
©

tions.

10. Show that the inverse of an even permutation is even, of an odd permutation

odd.
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Permutation Groups

3.1 Definition

Suppose you have a square and number its vertices.

2 1

Each symmetry of the square permutes the vertices, and thus give you an element
of S4. We can make a table showing the 8 symmetries of the squate and the

corresponding permutations:

Symmetry Permutation
rotation counterclockwise through 7 /2 1234
rotation counterclockwise through 7 1324
rotation counterclockwise through 37 /2 (1432
identity map 1
reflection in diagonal through 1 and 3 24
reflection in diagonal through 2 and 4 (13
reflection in vertical axis 1234
reflection in horizontal axis 14)(23)

35
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Let Dy C Sy denote the set of permutations in the right-hand column,
Dy ={(1234),(13)(24),(1432),(1),(24),(13),(12)(34), (14)(23)} .

Now the set of all symmetries of the square has the following two properties:
(i) the composition of two symmetries is a symmetry;
(i) the inverse of a symmetry is a symmetry.

And it is easy to see that under the correspondence above, products map to
products. So the set Dy will have the same properties. You can also check this
directly. Sets of permutations with these algebraic properties are called permuta-

tion groups. As we shall see they arise in many contexts.

Definition 3.1. A non-empty set of permutations G' C .S, is called a permutation
group (of degree n) if forall a, € G

(1) ape G
(i) ateqG.

Sy, itself is a permutation group, called the full permutation group (of degtree n)

ot symmetric group (of degree n). Another example is
Vi = {(12),(34),(12)(34), (1)} C S

We see that
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So V' is a permutation group. With appropriate software it is easy to check
whether a set of permutations is a permutation group. This will be explained
below.

Let A,, C S, denote the set of all even permutations. In chapter 2, it was
pointed out that the product of two even permutations is even and that the inverse
of an even permutation is also even. Therefore A, is a permutation group, called
the alternating group (of degree n). Of the 6 elements of S3, 3 are even: the two
3-cycles and the identity. Thus

Az = {(1),(123),(132)}.

The number of elements in a permutation group G is called the order of G,

written |G|. Thus |S,| = n!, |A3| =3 and |V'| = 4.

3.2 Cyclic Groups

There is a very simple class of permutation groups. You construct them in the fol-
lowing way. Take any a € S,,, for some n. Consider the powers of a: o, a2, . . ..
Since S, is finite, at some point an element in this list will be repeated. Suppose
that

o' = of, for some s < t.

Then multiplying both sides by o™ %, we see that

Set
G = {(1),a,...,a" '} C S,.

Now check that G'is a permutation group: we have

—1 r—i

(@)t =a" =« foranyi, 1 <i <.
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and

a'ad = o' = af wherei+j=k (modr), 0<k<r.

G is called the cyclic permutation group generated by a and will be denoted by
(a). Tt has order 7. As you can imagine there is a connection between a cyclic
permutation group of order 1 and the integers mod 7. This will be made clear in

theorem 6.2.

Examples 3.2.

(i) Take a = (12). Since (12)? = (1), {(1),(12)} is a cyclic permutation
group of order 2.

(i) Take o = (123). Since (123)* = (1) ,and (123)2 = (132),
{(1),(123),(132)} is a cyclic permutation group of order 3. In fact this

group is the alternating group of degree 3, As.

These examples suggest that the cyclic permutation group generated by an

r-cycle should have order r. Indeed, if
Oé:(i1ig ir),

then o = (1), but for j < r, o?(i1) = i; # i1, so that &/ # (1). Therefore

the cyclic permutation group generated by v does have order 7.

Definition 3.3. The order of a permutation «, written |/, is the order of the
cyclic permutation group (@) generated by «, or equivalently, the smallest 7 € N
such that o” = (1)

Remark 3.4. Suppose that a® = 1, for some s € N. Letr = |a|. Write s = qr+t,
for some q,t € Z where 0 <t < r. Then

(1) =a® =t =o'

But then by the definition of || we must have t = 0. So r divides s.
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Example 3.5. Suppose we write «v as a product of disjoint cycles,
= Q109+ - O

where q; is an r;-cycle. Suppose o® = 1, for some s. Since oy, g, ..., oy are

disjoint cycles, this implies that

forall 7,1 <7 < k. (Check this!) But then by the remark above, 7; divides s for
all 7. So s is a common multiple of these orders. And therefore the order of v is

the least common multiple of 1,72, . .., . A

3.3 Generatotrs

The group V' above is not cyclic. Each of its elements has order 2 except for the
identity. There is no element of order 4. However our calculation showed that if
we begin with (12) and (3 4) say, we can express the remaining two elements of
V"’ in terms of them. Similarly, in exercise 2.2 we saw that every element of S
can be written in terms of (12) and (1 2 3). We say that V' or Sj is generated by
{(12)(34),(13)(24)}, respectively {(12),(123)}. In general a permutation
group G is said to be generated by a subset ¢ C G if every element in G can be
written as a product of elements of g.

Theorem 2.4 tells us that the set of all transpositions generates .S,,. This is
a relatively large set: there are (g) transpositions in S,,. In fact the set of n — 1

transpositions

will do. To see this we just need to convince ourselves that any transposition can
be expressed in terms of transpositions in g. Because every permutation can be

written in terms of transpositions, it follows then that every permutation can be
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written in terms of elements of g. Well, take a transposition (i j), where i < j.

We have
(ij)=0U-1/)U—-2-1)(i+1)--(G-27-10—-17).

But we can do even better than that. Just as in the case of S3, we can generate

Sy, using just one transposition and one n-cycle. Let
a=(12) , p=(12---n).
Then for 1 <1 < n,
(ii+1) = Bl = gi-lagn—itl

So every transposition in g and therefore every permutation can be written in
terms of & and 3 and thus {«, 5} generates S,,.

In practice, it is very clumsy to describe a permutation group by listing all
its elements. In fact for a permutation group of any moderately large size it is
impossible -- try writing out all the elements of S9! A more convenient way is
to give a set of generators for it. So suppose we begin with a set of permutations
g C S, for some n. What do we mean by the permutation group G generated by g ?
In some sense G is the set of all permutations which can be expressed in terms

of elements of g. The following theorem makes this more precise.

Theorem 3.6. Let G be the smallest permutation group containing g. Then

G = U g
i=0
The set ' is the set of all products of i elements of g, i.e.

gi = {a1g---ai | ag,09,...,0; € g}

Proof. Let H denote the right hand side. If Gisa permutation group containing

g, then g C G for all i. So H is contained in any such G. We just need to
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convince ourselves that [ is a permutation group. Well, the product of any two
elements in f lies in H. And if o € g, then as we saw in the previous section,
a~! € ¢ for some i. But forany ay,...,0; € g, (a1 ---a;) L =a; - -apt
(cf. exercise 2.3). So the inverse of any element in H also lies in H. Thus H is a

permutation group and therefore G = H. []
Now we can make our definition:

Definition 3.7. The permutation group generated by a set of permutations g is

the smallest permutation group containing g or equivalently, the set of products

o0
G = U q .
i=0
For computational purposes this description is very inefficient. A simple

algorithm which allows one to compute the elements of the permutation group

generated by g, provided that the degree of g is small, is given in the exercises.

Example 3.8. Let's look at more permutation groups of degree 4. First there
are the cyclic permutation groups. In Sy there are five different types of pet-
mutations: the identity, 2-cycles, 3-cycles, 4-cycles and products of two disjoint
2-cycles. The last have order 2. Non-cyclic groups that have already been men-
tioned ate Sy itself and Ay. There are also four copies of Ss: take the full group
of permutations of any three of 1, 2, 3, 4. As well there is the permutation group
V' mentioned at the beginning of the chapter. Another permutation group of

order 4, which looks similar to V| is

Vo= {(1),(12)(34),(13)(24), (14)(23)} .

All non-trivial elements have order 2 and any two of them generate V. Notice
that V' C Ay. There is also a permutation group of order 8 called Dy, generated
by {(1234),(12)(34)}. This is in fact the permutation group corresponding
to the symmetries of a square, mentioned at the beginning of the chapter. There
are actually several copies of this permutation group, depending on the choice of

4-cycle you make. A
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3.4 Software and Calculations

The package 'Groups.m' can be used to make useful calculations in permutation

groups. To start, you must load it:

In[1]:= << Groups.m;

Next you have to know how our notation for permutations is implemented. In

this package, a permutation (in mapping notation) is given by the list of its images
with the header, M. For example

1 2 5> 6
2 4 3 5

M[2,4,1,6,3,5]

3 4
16

is represented by

You can name this permutation:

In[2]:= a = M[2,4,1,6,3,5]

)

If b is another permutation then the product ab is given by

1

345
Out [2]= (2 16 3

DN

a.b

For example if

In[3]:=Db = M[4,2,3,6,1,5]

56
15

1234
Out [3]= (4 536
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then entering

|
o
o

In[4]:=

= W
(62T
N O

Out [4]

1]
N
o =
DN
w o
~

To find the inverse of a, enter

In[5]:= Inverselal

456
264

A permutation in cycle notation is written as the list of its cycles, which are in

3
5

Out[5]= (1 i

3

turn lists, and is preceded by the header P. For example (1 2)(3 4 5) is represented
by
P[{1,2},{3,4,5}]

You can take products and inverses using cycle notation just as with mapping

notation:

In[6]:= P[{1,2},{3,4,5}].P[{1,2,3,4,5}]

Out[6]= (2 4 3 5)

In[7]:= Inverse[ P[{1,2},{3,4,5}] 1]

Out[7]= (1 2)(3 5 4)
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Output is in standard mathematical cycle notation.

You can apply these functions to lists of permutations. When you take the
product of two lists of permutations, the product of every permutation in the

tirst list with every one in the second will be computed: for example

In[8]:= {a,b}.{a,b}

These functions are useful for checking whether a set of permutations form a

group. For example let

In[9]:=G={M[2,3,1,5,4], M[4,1,2,5,3], M[1,3,5,2,4],
M[2,1,3,4,5], M[1,2,3,4,5]}

In[10] := Inversel[G]

Out[10]= { (

w =
= N
N W
(2T
> o
g o
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So .
1 2 3 4 5\ (1 2 3 45
2 315 4 ~\31 2 5 4

is not in the set G and therefore G is not a permutation group.

The function Group calculates the permutation group generated by a given
set of permutations. All computations take place in S, where n is the largest
number occurring in the cycles in the input. The algorithm used is the one given
in exercise 3.8. For example, the permutation group G = ((12345), (12)(35))
is given by

In[11]:=G = Group[ P[{1, 2, 3, 4, 5}] , P[{1,2},{3,5}]
]

Out[11]= ((1 2 3 4 5),(1 2)(3 5))
To see a list of the elements in G, you use the function Elements:

In[12] := Elements[G]

Out[12]= {(1), (1 2345), (13524), (1425
3), (15432),
12)(35), (135, 1423, (1
5)(2 4),
(2 5)(3 4%

The function Generators will print out the generators of G again:

In[13] := Generators|[G]

Out[13]= {(1 23 45), (12)(35)}

The order of the permutation group is given by the function Order:
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In[14]:= Order[G]

Out [14]= 10

We can verify by computation that (12) and (12345 6) generate Sg:

In[15] := Order[ Group[ P[1,2], P[1,2,3,4,5,6] 1 ]

Out[15]= 720

Since 6! = 720, they do generate Sg.
Let's look for generators of Ay, which is also not cyclic. We know that the
even permutations of degree 4 are the 3-cycles, the products of two disjoint trans-

positions and the identity. We first try two 3-cycles:

In[16] := Order[ Group[ P[{1,2,3}], P[{2,3,4}] 1 ]

Out[16]= 12

It is not hard to show that the order of A,, is n!/2 (see exercise 11). Therefore the
two 3-cycles do generate A;. How about a 3-cycle and a product of two disjoint

transpositions?

In[17]:=0rder [ Groupl P[{1,2,3}], P[{1,2},{3,43}]
11

Out[17]= 12

These two appear to generate Ay as well. Let's see how these calculations extend
to As. We could use two 3-cycles again. But that would not work in Ag. So we

shall try with a 5-cycle and a 3-cycle:
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In[18] :=0rder [ Group[ P[{1,2,3,4,5}], P[{1,2,3}]
11

Out[18]= 60

And 60 is the order of A5. We now try a 5-cycle and a product of two disjoint

transpositions:

In[19] :=0rder[ Group[ P[{1,2,3,4,5}], P[{1,2},{3,4}]
11

Out [19]= 60

This works too. Do these calculations extend to Ag? Do they generalize to A,

for arbitrary n?

3.5 Exercises

1. Does the set of all odd permutations form a permutation group?
2. Verify the identity
a™h = a"" foranyi, 1 <i<r.
for a permutation o of order 7.
3. Verify the identity
(j) = G=1)0=2j-1-(i+1)---(G=27-1)(F-1J).

fori < j.
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4. Show that the set of n — 1 transpositions

{(12),(13),---,(In)}

generates Sy,.

5. We have mentioned permutation groups of degree 3, of order 1, 2, 3, and 6.

Do any exist of order 4 or 5?

6. Show that the permutation group generated by a set of permutations g C .S,

is the smallest set G C .S, containing ¢ such that ¢gG C G.

7. Apply the algorithm in the exercise below to the set

g=1(123),(234)}.

List the values of h and G at each stage.

8. Prove that the following algorithm terminates with G the permutation group

generated by g (cf.[3], exercise 3.3.13).

a) Set G={(1)}and h = {(1)}.

b) Set h="hg\ G .

o) If h=20, stop.

d) Set G = G U h and go to step (b).

9. Check whether the following sets of permutations form permutation groups.

a) A={M[2,3,1,5,4],M[4,1,2,5,3],M[1,3,5,2,4],M[2,1,3,4,5],M[1,2,3,4,5] }

b) B={M][1,2,3,4],M[2,1,4,3],M[3,4,1,2],M[4,3,2,1] }

o G={M[L, 2, 3,4, 5], M[1, 5,4, 3,2], M[2, 1, 5, 4, 3], M[2, 3, 4, 5, 1],
M3, 2,1, 5, 4], M[3, 4, 5, 1, 2], M[4, 3, 2, 1, 5], M[4, 5, 1, 2, 3],

5 3

M[5, 1,2, 3, 4, M[5, 4, 3,2, 1]}
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10.  a) Find as many different types of permutation groups of degree 5 as you
can. Describe them in terms of generators rather then listing all the

elements.

b) Make a list of the orders of all the permutation groups you found in (a).

What do these integers have in common?
11. What is the order of A,,?

12. e Verify that the set of 3-cycles generates A4, A5 and Ag. Can you prove that

this is true for any n > 3?

13.  a) Find two permutations which generate Ag. Find two which generate A7.

b) Do your results generalize to A,, for any n? Make a conjecture and try

to prove it.
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Linear Groups

4.1 Definitions and Examples

Think of the set of all rotations about the origin in the Euclidean plane. Let a(t)

denote the rotation through the angle ¢ counterclockwise. It can be represented

cost —sint
sint cost ’

If we multiply two such rotations together we get another rotation, and the in-

by the matrix

verse of a rotation is also a rotation. In fact,
at)at’) = a(t+1t) alt) ™t =a(—t) .

So if we set

G ={a(t) |t €R},

we get a collection of real 2 X 2 matrices which has the same algebraic properties
as a permutation group. Such sets of square matrices are called Znear groups. We
want to allow matrices with coefficients in an arbitrary field.

An m X n matrix defined over a field I is a rectangular array

a1 a2 ... QAip

Qg1 A22 ... Q2q

Am1 Am2 ... Gmp
51
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where a;; € F for 1 < i < m,1 < j < n. Matrix multiplication and addition
can be defined just as in the case /' = R. And they have the same formal
properties. We denote by M (m,n, F') the set of all m x n matrices over F,
by M(n, F) the set of all n X n matrices, and by GL(n, F') the subset of all

invertible matrices in M (n, F').

Definition 4.1. A linear group G is a non-empty set of matrices in GL(n, F')
such that

() if a, B € G, then af € G;
(i) ifa € G, thena™ ! € G.

Thus GL(n, F) itself is a linear group, called the general linear group (of degree

n over I'). Another simple example is the special linear group which is defined by
SL(n,F) == {a € GL(n, F) | detav = 1}.

The determinant of a matrix &« € M (n, F') is defined just as for ' = R and has

the same basic properties. Now for o, 5 € SL(n, F'),

det(aff) = detar detf =1
det(a™) = (deta) ™' =1
Thus SL(n, F) is also a linear group.
We are particularly interested in linear groups over the finite fields IF,,. If

a linear group G is finite then the order of G, written |G|, is defined to be the

number of elements of G. If G is infinite, we write |G| = 0.

Examples 4.2. (i) For any field F' let

T — {(é l{)‘beF} c GL(2, F).

There is a one-to-one correspondence between [ itself and 7. Under this
correspondence addition in F' corresponds to matrix multiplication in 7'

It follows that 7 is a linear group.
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(1)

(i)

Let N(p) be the set of upper triangular matrices in GL(2,F,),

- )

It is easy to see that N(p) is a linear group of order p(p — 1)
Let

o= {(z 8

where r € I, is not a square. It is easy to check that the product of two

a,b,d € F, ad # O} C GL(2,F,).

a,b € F,, a®> — b’r # 0} C GL(2,F,)

matrices in G(p) lies in G(p), as does the inverse of any matrix in G(p).

So G(p) is a linear group.

To compute its order we have to know precisely which matrices have non-
zero determinant. Now the determinant of such a matrix is a®> — b?r. So

first we solve the congruence
a>—b*r=0 (modp).
If b 0 (mod p) then multiplying by b2 we get
(ab™)> —r =0 (mod p).
But then x = ab~! would be a solution of
2

r=r (mod p)

This has no solutions since 7 is not a square mod p. Thus we must have
b = 0 (mod p), which means that a> = 0 (mod p) and hence a = 0
(mod p). Therefore the only solution of our original quadratic congruence

is the trivial one, a = b = 0. It follows that

G(p) = {(; Z) a,beF,, a#Oorb#O}
This tells us that

IG| = p*—1.
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(iv) Let's compute the order of GL(2,F,). The number of matrices in M (2,F,)
is p*. One of these is in GL(2, F,) if and only if it has rank 2. We need to
determine how many matrices have rank less than 2. A matrix has rank less
than 2 if and only if its column vectors are linearly dependent, i.e. if and
only if one is a multiple of the other. Now for the first column there are
p? possible choices. For each of these, except (0, 0), there are p distinct
multiples, i.e. possibilities for the second column. This gives (p* — 1)p
possible matrices in all. If the first column is (0, 0), then the second col-
umn can be any vector. This gives another p? possibilities. So in all there
are

(" = Dp+p*=p"+p" —p
matrices of rank less than 2. Therefore the order of GL(2,F)) is

pt=p—p +p=(p—1)’ppp+1).

4.2 Generators

As for permutations, we can define the order |a| of an element v of a linear
group to be the smallest n € N such that ™ = 1. If there is no such n, then we

say that «v has infinite order, and write || = 0o. In example (i), let

()
()

forany b € Z. If I’ = [F,,, then

Then

lal =p.
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But if F' = Q, then

la| =00 .

Two more examples: for any field I,

(? é) € GL(2,F)

(o 2)

has order 4 because 2* = 1 in F5, but 22,23 #£ 1.

If the order of a matrix « is infinite, then o~

has order 2. In GL(2,F;5),

Lis not a positive power of a.

So in defining a cyclic linear group, we must include powers of a™!.

Definition 4.3. let « € GL(n, F) for some field F. The cyclic linear group
generated by « is the linear group (o) := {a® | b € Z}.

As in permutation groups, we see that the order of an element « is the order
of (a). In general we say that a linear group G is generated by a set g C G if every

element of G can be written as a product of elements of ¢ and their inverses.

Example 4.4. Using row and column operations we can find generators for
GL(2, F). These operations work over an atbitrary field F' in exactly the same
way as over R. We begin with a matrix

a b
<cd>’ a,b,c,d € F, ad —bc # 0.

By interchanging the rows or the columns we can ensure that @ # 0. This means

we multiply on the left or on the right by the matrix

(1 0)

Next, we add a multiple of the first row to the second to eliminate the entry c.

This means multiplying on the left by a matrix of the form

(1 O),xGF.
z 1
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We now have a matrix which looks like

a b
<O d) ,ad # 0.

The next step is to eliminate the entry b. To do this, we add a multiple of the first

column to the second. This means multiplying on the right by a matrix

Ly
(0 1) ,yeF.

We are left with a diagonal matrix which looks like

(60)=(1)0 ) wtero.

So any matrix in GL(2, F') can be written as a product of matrices

61) 6w ()60 (o) maemoneer

But we can do better:
0 1 1 ¢ 01y (10
10 0 1 1 0/  \c 1
0 1 d 0 01y (10
1 0 0 1 1 0/ \0 d/) -
So all we need are matrices

<8 (1)> ’ ((1) [i) ’ ((f é) ,a€ F\{0}, beF.

This is our set of generators of GL(2, F'), for any field F'. If F' = [, then we

can reduce the number of generators further. As we mentioned before

1 b\ (1 1)\
0 1/ \0 1
for b € Z. Thus
11 0 1 a 0
0 1/°\1 0/’\0 1

and

«e B\ ()}
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generates GL(2,F,). It can be shown that

6 )

is a cyclic linear group (see chapter 14). So in fact you can find a set of 3 matrices

aEF\{O}}

which generates GL(2,F,). For example, take p = 5. In F5 we have 22 =

4,23 = 3,2 = 1. Thus every non-zero element of 5 is a power of 2. So every

GD-6
(RG]

generates GL(2, F5). A

matrix of the form

for some ¢. Therefore

This discussion has actually given us an algorithm for expressing a matrix in

GL(2, F) in terms of these generators. Let's apply it to the matrix

(g ?) € GL(2,F5) .

To begin we must have a non-zero entry in the upper left-hand corner. So we

will interchange columns, or equivalently, multiply the given matrix on the right
by
01
1 0/)°
0 2\/0 1\ (2 0
3 1 10/ \1 3)°
Next we add 2(row 1) to row 2 to eliminate the first entry:
10y /2 0y (20
2 1 13/ \0 3)°
I 0y /0 2\y/0 1\ (20
2 1 3 1 10/ \0 3"

This gives us
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CE-eyeaey
GOECY. e
D-CHEIE

CHEYey

N\
O N
w o
~—_
I
N\
O N
—_ O
O =
w o
~—_

I
N\
O N
—_ O

EHEDE )
)60

two calculations into equation (4.2):

G-ENG)EIENE)6E

So we have now written the given matrix in terms of the generators (4.1).

i)

(20
—lo 1

Finally, we can substitute the last

© /‘\C\O/\

Given g C GL(n, F), for some field F' and some natural number n, the
linear group generated by g, written (g), is the smallest linear group containing
g. If I is finite then definition 3.7 and the remarks with it apply, as does the

algorithm for computing (g).

4.3 Software and Calculations

The package 'Groups.m' also allows you to make calculations with linear groups
over a field F),. After loading the package, you must first choose a prime with

the function ChoosePrime . For example
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In[1]:= << Groups.m;
In[2]:= ChoosePrime[11]
Out[2]= 11

All your calculations will then be modulo this prime. You can change it at any
time, but if you do not make a choice none of the functions will evaluate. Matrices
are usually represented in Mathematica as lists of lists. In this package, however,
such a representation is wrapped with L[] in order to give a mechanism for
reducing modulo the chosen prime at each step in the calculations. (As well it
avoids confusion with permutations in cycle notation which are also represented

in Mathematica as lists of lists). For example, the general 2 X 2 matrix

a b
c d
which is usually represented in Mathematica as
{{a, b}, {c, d}},
is represented in this package as
L{a, b}, {c, d}.

The same functions you used with permutation groups are defined for linear

groups. For example if

In[3]:=a = L[{1,2},{3,4}]

In[4]:=b = L[{6,3},{7,5}]
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Out [4]= (? g)

then

In[5] := Inversela]

(91
Out [5]= (7 5)

In[6]:= a.b

Out [6]= (Z i)

Now suppose

In[7]:= ChoosePrime[7]

Out[7]= 7
and

In[8]:= G = { L[{1,1},{1,2}], L[{2,3},{4,1}],
L[{2,6},{6,1}], L[{1,0},{0,1}],
L{2,1},{6,4}] }

= { (1) - (23) - (1) - (63)
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Then

In[9] := Inverse[G]

o { (29) . (22) (12) (G9)
(9

So G is closed under taking inverses. Let's check whether it is closed under

products:

In[10]:= G.G

owetir- { (09)

You see immediately that the product of L[{1,1},{1,2}] with itself is not in
G. So (G is not a linear group.

We can verify that GL(2, F5) is generated by the three matrices given in the

previous section. First we change the chosen prime to 5.

In[11]:= ChoosePrime[5]

Out[11]= 5

www . dbooks . org


https://www.dbooks.org/

62 CHAPTER 4. LINEAR GROUPS

Let

In[12]:=H = Group[ L[{{2,0},{0,1}}], L[{{0,1},{1,0}}],
L{{{1,1},{0,1}}] ]

otz ((29) (03 - (51))

Now we check:

In[13] := Order [H]

Out [13]= 480

This is indeed 4% - 5 - 6. Can you find three matrices which generate GL(2,F7)?
GL(2,F)?

4.4 Exercises

1. Verify that G(p) is a linear group.

2. Show that for any field F' the set N of invertible 2 X 2 upper triangular matrices
forms a linear group. Verify that if F' = F,, then | N (p)| = p(p — 1)

3. Show thatin T

OG- = () -6

forany b, 0’ € F.
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4.

10.

11.

o Jet

a b
Fop-1) = {(O 1)

Check that F{;,_1), is a linear group (called the Frobenius group). What is its
order? Verify that

(D). (29 ¢ aremy

a,beF,, a#O} C GL(2,F,).

generates Fog

. oIn SL(2,C) let

o= {=(b )= %)= ()= )

Verify that () is a linear group. What are the orders of its 8 elements? () is

called the quaternion group.

. Write the matrix

(;} Z) € GL(2,Fs)

in terms of the generators above.

. Find three matrices which generate GL(2,F7). Check your answer with the

software functions.

. ® Prove that for any field I, SL(2, F') is generated by

16 2) 6 (o)

aeF\{O},beF}.

. Find three matrices which generate SL(2,Fy,).

Compute |SL(2,F7)| and |SL(2,F11)|. Can you give a formula for |SL(2,F,)|

in general?

e Find an element of order 3in SL(2, F;). Find a linear group G C SL(2, F5)
of order 24.
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Groups

In chapters 3 and 4 we discussed permutation groups and linear groups in a way
that brought out the formal similarities between them. These similarities lead to
the definition of an abstract group. First we must make clear what 'multiplication’

means in a general context and then what its basic properties should be.

5.1 Basic Properties and More Examples

Definition 5.1. A binary operation on a set GG is a mapping: G X G — G.

We write such an operation as a 'multiplication’, keeping in mind that it can
mean such different operations as matrix multiplication or composition of per-
mutations or addition of real numbers. The basic properties that our operation

should have are those which it has in our two examples.

Definition 5.2. A set GG with a binary operation on it is called a gromp if it has the

following properties:

(i) the operation is associative, i.e. for any o, 5,7 € G
(@B)y = a(Bv);

(i) there is an identity element, written 1 € G, i.e. foranya € G
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every element in GG has an inverse, i.e. for every @ € G there exists an

element written @~ € G such that

The binary operation on G is called the group operation.

Examples 5.3. (i) Take G to be a permutation group with composition as

(i)

(iii)

(iv)

v)

the group operation, as explained in chapter 3. By the definition of a per-
mutation group this is an operation in the above sense. It is certainly as-
sociative. The identity element is the identity permutation (1). And the
inverse of a permutation is the inverse permutation, which belongs to G

again by definition.

Take G to be a linear group, with matrix multiplication as the group opera-
tion. The definition of a linear group ensures that this is a binary operation.
It is associative. The identity element is the identity matrix /. And every

matrix in G has an inverse in G by definition.

Let G = Z (or Q, or R or C) with the operation addition. Addition is
associative, the identity element is 0, and the inverse of any a € Z is —a.

In fact any field F' is a group under addition, as is Z/nZ for any n € N.

Let
F* :={aeF|a#0}

with the operation multiplication. It is associative, with identity element

1 € F, and the inverse of any a € F isa™'.

The non-zero integers do not form a group under multiplication because

no integer except =1 has a multiplicative inverse.
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(v1)

(vi)

(viit)

(ix)

)

(xi)

Form € N, let
(Z/mZ)* ={a € Z/mZ]| (a,m)=1}.

If (a,m) = land (b,m) = 1then (ab,m) = 1. Furthermore, if (a, m) =
1 then as we saw in theorem 1.9, there exists an integer x such thatax = 1
(mod m). For this congruence to hold, x must be relatively prime to m.
Therefore (Z/mZ)* is a group under multiplication mod m, called the
multiplicative group of Z/mZ. In the particular case where m is a prime

p, we get [F7.

Let G = R"™ with operation vector addition. It is associative, the vector

(0,0,...,0) is the identity element, and the inverse of a vector

(ay,as,...,a,) is (—ai, —ag,...,—ay,).
The space of matrices M (m, n, F') under matrix addition is a group.

Let
S={aecC||al =1}.

Under multiplication S is a group.

Let GL(n,Z) be the set of all invertible n X m matrices with integer
entries whose inverses also have integer entries. Under matrix multipli-
cation GL(n,Z) is a group, just like GL(n, F) for a field F. If o €
GL(n,Z) then det(a) and det(a™) = det(a)™! are integers. Since
det(a) det(a™!) = 1, they must both be +1,

A mapping o : R"™ — R"™ is a rigid motion ot isometry if it preserves distances,
in other words,

la(v) = a(w)]| = v —wl]

for all v,w € R™, where ||v|| denotes the length of v (cf. [4]). The com-

position of two isometries is again one. It is easy to see that an isometry
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is injective. One can also show that it is surjective. Thus any isometry has
an inverse, which is also an isometry. Let Iso(n) denote the set of isome-
tries. Composition is a binary operation on Iso(n) which is associative.

The identity mapping is an isometry. So Iso(n) is a group.

The trivial group is the group with only 1 element, the identity element:

(1},

And now for something completely different: the braid gronp. Imagine that
we have two parallel lines. On the first one, on the right, we have n points
labelled 1,2,...,n. On the second, on the left, we also have n points
1,2,...,n which are just the translates of the corresponding points on
the first. We join each point on the first line to one on the second line with
a thread, going from right to left, in such a way that no two points on the

first are joined to the same point on the second. This is called a brazd.

We consider two such constructions to be the same braid if we can get one
from the other by moving about the strands without changing their end
points. So what matter are the end points and the way the strands cross
each other. We can combine two braids by placing them end to end to get

a new braid.



5.1. BASIC PROPERTIES AND MORE EXAMPILES 69

The trivial braid, in which 1 is joined to 1, 2 to 2, and so on, without any

crossovers, is the identity element for this operation.

The inverse of a braid is just the braid obtained by running along the
strands from their end points to their starting points. The braid below
is the inverse of the braid we started with. And the composition shown
above is just the inverse composed with the original braid. You can see

that by moving the strands, you will get the trivial braid.
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:
&3

With this operation the set of braids, denoted by B,,, forms a group. It's a

good idea to make a model with string of braids with 2 strands.
In examples (iii), (iv), (vi), (vii), and (ix) the multiplication is commutative, i.e.
af = Pa forala,f € G.

In examples (i) and (ii), as we have seen, it is generally not. A group is called
commmtative or abelian if the group operation is commutative. Group elements can

be manipulated formally in the ways you expect:
Theorem 5.4. Let G be a group.
(1) The identity element is unique.
(i) The inverse of an element v is unique.
(i) Foranya € G, ((0)™) ™" = a
(iv) Foramy o, B € G, (aB)™' = p7la™t.
(v) Cancellation rules: For any o, B,y € G,

a) fafS = v, then f =y,
b) if Bo = o then B = .
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Proof. (i) Suppose € € G is another identity element, i.c.
ca = ae = a, forall a € G.

Take v = 1. Thus € - 1 = 1. But since 1 is also an identity element € - 1 = €.
Therefore € = 1.

(it) Let o' be another inverse for . So

l=ad =da.

Multiply the first equation on the left by o' and use associativity:

ofl :O{il(O[Oé/) — (ofloz)o/: 1_&/:a/.

Thus o' = .

(iif) The inverse of ™! is characterized by the property

((a)_l)_la_l =1= 04_1((04)_1)_1

But comparing with property (iii) in the definition of a group, we see that av also

satisfies these equations. Since there is a unique inverse for a!

((04)_1)71 = a.

(iv) We have

, we must have

(B~ a N (ap) =B la)f= (B 1)B=B"B=1.

Similarly
(@B)(Bla™) =1.
Therefore 3~ a1t is the inverse of af3.
(v) Suppose
af = ay.

Multiply on the left by o~ !:

a HaB) = aay).
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By associativity,

which gives
1-f=1-v or [B=n.

The proof of (b) is analogous. []

If a group G is finite, then the number of elements in G is the order of G,
written |G|. If G is infinite, we write |G| = 00. Suppose & € G and there exists
n € N so that & = 1. Then the order of «, written |, is the smallest such n.
If no such n exists, we say that « has infinite order, || = 00. As in chapters 3
and 4, we can consider (o) = {a" | n € Z}. It is easy to see that (a) with the

operation inherited from G is a group. And

()] = laf .

Of course these definitions just generalize the definitions we made for permuta-

tion groups and linear groups.

Example 5.5. The order of (Z/mZ)* is ¢(m) (see page 14). If (10, m) = 1,
then 10 € (Z/mZ)*. And by theorem 1.6 the order of 10 is the length of the
period of 1/m. In particular, this implies that if p is prime, then the length of the
period of 1/p divides p — 1.

5.2 Homomorphisms

In example (xii) there is a natural mapping from B, to S,,. Each braid ¢ defines

a permutation o with

a¢(j) = endpoint of strand starting at j .
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For any v € S), there are many braids ( € B,, with ¢ = . So this mapping is
surjective but not injective. It is well-behaved with respect to the multiplications

in B, and S,,: from the diagrams we see that

Q¢ = QG Qg

for any (1, (2 € B,,. Since we know a bit about S,,, the mapping tells us some-
thing about what the group B,, looks like. Such a mapping from one group to

another is called a homonmorphism.

Definition 5.6. Let G and H be groups. A mapping [ : G — H is called a
(group) homomorphism if for any o, § € G,

flap) = fla)f(B).

Examples 5.7. We have already seen several other mappings between groups
which are homomorphisms. At the end of chapter 2 we defined the permutation
matrix I, € GL(n,R) belonging to a permutation o € S,,. Recall that the jth

row of I, is just the a(j)th row of the identity matrix. We saw that
Ing = 1,1p
for any «, 5 € S,,. Thus the mapping p : S, — GL(n,R) given by
pra— 1,
is a homomorphism. We also know that for any field F, the determinant
det: GL(n, F) — F*

satisfies
det(aff) = det(a) det(p)

for any a, B € GL(n, F). So det is also a homomorphism. A final example:
addition in Z/nZ was defined so that the canonical mapping Z — Z/nZ given

by a + a is a homomorphism.
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Homomorphisms have the formal properties that you would expect.

Theotem 5.8. Let [ : G — H be a group homomorphism. Then

(@) fla™) = fle)™ foram o € G
(iii) if f is bijective, then f~ : H — G is also a homomorphism.
Proof. We have
fle) = f(lele) = f(1a)*.
Multiply on the left by f(1¢) ™'

Iy = f(le) ' f(le) = f(le) " f(1e)® = f(lc) -

It follows that for any a € G,

Iy = f(le) = flaa™) = f(a) f(a™").

Therefore f(a™!) = f(a)~!. Lastly suppose that f is bijective. For any

0,7 € H, we have

On the other hand,

]

A homomorphism which is bijective is called an isomorphism. Two groups G

and H are said to be somorphic, written G = H, if there exists an isomorphism

f:G— H.
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Example 5.9. Let RT denote the positive real numbers. Under multiplication

RT is an abelian group. Let
f:R—=R"

be the exponential mapping

frozm—e®.
Since €*1Y = e”e?, f is a homomorphism. It has an inverse, the logarithm:

log:RJr%R

So the exponential is an isomorphism of groups. The formulalog(zw) = log(z)+

log(w) just says that log is 2 homomorphism.

A

Given two groups GG and H we define theit direct product to be the set G X H

with the operation:

((a1,81), (ag, B2)) = (a1, B152)

where a1, ap € G and 1, B2 € H. Itis not hard to see that this operation makes
G x H into a group (see exercise 16). For example, R? with vector addition is

the direct product of R with itself. The two projections:

p:GxH—=G
pli(O[,B)HOZ

and

pQIGXH—)H
p2:(0575)'_>ﬁ7

fora € G, B € H, are homomorphisms.
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Example 5.10. (i) Let's show that GL(3,R) is isomorphic to SL(3,R) X

(i)

R*. We define a mapping
f:SL(3,R) x R* — GL(3,R)
by
f:(a,a) = aa

fora € SL(3,R) and a € R*. We see immediately that f is a homomot-

phism. To define an inverse to f, first notice that the mapping
h:R* — R

given by
h(a) = a®

is an isomorphism. And if o € GL(3,R), then (deta) /3 has deter-

minant 1. Therefore, since det is a homomorphism, the mapping
g:a— ((deta) Y3a, (deta)'/?)

is a homomorphism from GL(3,R) to SL(3,R) x R*. It s cleatly inverse
to f.

Suppose that m,n € N and (m,n) = 1. For any a € Z, let a denote its
residue class mod mn, a; denote its residue class mod m and as denote

its residue class mod n. Define a mapping
g :Z/mnZ — (Z/mZ) x (Z/nZ)

by
g(a) := (ay, as) .

This mapping is well-defined because for any k € Z,

a+kmn=a (modm) and a+kmn=a (modm).
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We have

g(@+b) = (@ + by, @z + by) = (ay, @) + (b1, b2) = g(@) + g(b) .

So g is a homomorphism. Now the Chinese remainder theorem (theorem
1.12) says precisely that g is an isomorphism. Why is this? Well, what does
it mean for g to be sutjectiver Given integers a and b, we must show that

there exists an integer ¢ such that
c=a (modm) and ¢=b (modn).

And to say that g is injective is to say that such an integer ¢ is unique mod
mn.
A

5.3 Exercises

1. Which of the following groups atre abelian: the permutation group V/, the
linear groups T', F'(p) or G(p)?

2. Let G be a group. For a € G let a” be the n-fold product of o with itself,
for n > 0, and the n-fold product of a1 with itself, for n < 0. Show that

for any m,n € Z.

3. What is the order of (Z/16Z)*? (Z/247Z)*? For each group make a table

which gives the order of the elements in the group.

4. What is the order of any element in the additive group of IF,?» What are the

otders of the elements in the multiplicative group F;?
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Let a be an element of order n in a group G. Suppose that " = 1. Show

thatn | r.

. ® Suppose that « is an element of order n in a group G. For any m € N,

prove that

@™ =n/(m,n).

e Let o and 3 be elements of prime order in a group G, with |a| # |f].
Suppose that a = Sa. Prove that

|B| = [al]B] -

e Let o and 3 be elements of finite order in a group G, with (|a/, |3]) = 1.
Suppose that a = Sa. Prove that

|| = |al|B]
Determine the structure of the braid group Bs.
Show that an isometry is injective.
o Letexp : R — S be the exponential mapping
_ 2mix
exp(x) = e .

Verify that exp is a homomorphism. Is exp injective? Surjective?

Show that the mapping

given by

is an isomorphism.



5.3. EXERCISES 79

13.

14.

15.

16.

17.

18.

19.

20.

Check that the mapping in example 4.2(i) is a homomorphism.

Given a natural number n, prove that if G is an abelian group, then the map-
ping f : G — G, where
fra—a",

is a homomorphism.
Prove that the permutation groups V' and V"’ are isomorphic.

Verify that the direct product of two groups with the operation given is a

group.

Give an example of two finite groups of the same order which are not iso-

morphic.

a) Show that
(ZJ1672)* = (Z)27) x (Z]AZ) .

b) Show that
(Z)247)* = (Z)27.)* .

Let f : G — H be a homomorphism of groups and let g C G be a set of
generators of G. Suppose that

h:={f(a)]acg}

generates 1. Prove that f is surjective.

e Suppose that G and H are finite groups with the same order. Let f : G —

H be a homomorphism. Show that

a) if f is sutjective, then it is injective;

b) if f is injective, then it is surjective.
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21. e Suppose G'is a group. An isomorphism [ : G — G'is called an automorphism
. Let Aut(G) denote the set of automorphisms of G. Prove that G is a group

under composition of mappings.
22. Prove that Aut(Z/nZ) = (Z/nZ)*.

23. Suppose that m,n € N and (m,n) = 1. Define a mapping
h:(Z/mZ) x (Z/nZ) — Z/mnZ

by
h: (@, b) = na +mb .

Show that h is well-defined and is a homomorphism. Prove that h is an iso-

morphism.

24. e Recall that the order of (Z/mZ)* is ¢(m) (see page 14).
a) Suppose that (m,n) = 1. Prove that
g: (Z/mnZ)* —— (Z/mZ)* x (Z/nZ)*

where ¢ is the mapping defined in example 5.10(i).
b) Show that p(mn) = p(m)p(n).
¢) Suppose that
n=rb ot
where p1, ..., pr are distinct primes and 71, ..., J, > 0. Show that

p(n) = (o' =i ™) =Pl ) =0l =1/p1) - (1= 1/p,)

(see exercise 1.11).



Subgroups

6.1 Definition

Subgroups are subsets of groups which are groups themselves under the oper-
ation inherited from the group. Of course for this to be possible, the product
of two elements of the subgroup must lie in it, and so must the inverse of every

element. It turns out that this is in fact enough.

Definition 6.1. Let G be a group. A non-empty subset  C G is a subgroup
of G, written H < G, if forall o, B € H

af e H @

aleH. (ii)

Condition (i) ensures that the group operation on G gives us an operation on

H. Tt is associative because the operation on G is. Since H is non-empty, there

exists an element o € H. By (i), ' € H as well. Therefore 1 = aa™' € H

by (i). And by (ii) again, the inverse of every element in H lies in . So H with
the operation inherited from G is a group.

Looking back at chapters 3 and 4 we see that permutation groups were de-

fined as subgroups of S, and linear groups as subgroups of GL(n, F'). Looking

at the list of examples in chapter 5, we see that in example 3

7Z<Q<R<C.

81
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6.2 Orthogonal Groups

There are some further examples of linear groups which are going to be of in-
terest to us. These are the orthogonal groups, which consist of those isometries

which are linear mappings. Recall that a real n X n matrix « is orthogonal it
e —
for all v € R™. If we denote by O(n) the set of orthogonal matrices, then
O(n) = GL(n,R) N Iso(n) .

Thus O(n) is a subgroup of Iso(n) and of GL(n,R). The special orthogonal
group, SO(n), is given by

SO(n) =0(n)NSL(n,R).

So it is a subgroup of O(n) and S L(n, R) (as well as of I so(n) and of GL(n, R)).
It is not hard to describe the elements of SO(2). A matrix (2Y) € SO(2)
if and only if

ad+c32=1
b+ d? =1
ab+cd =0
ad —bc=1.

The first equation tells us that there exists ¢ € R such that (a, ¢) = (cost, sint).
The third equation implies that (b, d) = r(—sint, cost) for some r € R. From

the second, we can conclude that r = +1, and from the fourth, that 7 = 1. Thus

a b\  (cost —sint
c d)  \sint cost ’

So the elements of SO(2) are just the rotations about the origin and ¢ is the
angle of rotation. Multiplying two matrices corresponds to adding the angles of

rotation.
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We can also say what elements of O(2) whose determinant is —1 look like.

= (5 1)

If « € O(2) and detaw = —1, then det pae = 1. So pa is of the form
cost —sint
sint  cost )’
for some t, and therefore o can be written
A cost sint
~\ sint  cost)

Viewed geometrically p is a reflection in the line z = 0. It is easy to say what

Set

a reflection is in general, in any dimension. Let v € R" be a unit vector, and set
W = vt Define p, € O(n) by

po(v) =—v | popw = Iw -

Then p, is a reflection in the hyperplane W. For an arbitrary vector w € R™ we

have
po(w) =w —2(w - v)v
If we pick an orthonormal basis {vs, . . ., v, } of W, the matrix of p, with respect
to {v,vg, ..., Uy} is
-1 0 ... 0
0 1 0
0 O 1

Thus det p, = —1.
Lastly let's describe what an element a € SO(3) looks like. First we check

that 1 is an eigenvalue: since detar = 1,

det(aw — I) = det(a’ — I) = detadet(a’ — 1)
= det(aa’ — a) = det(] — )

= —det(a—1).
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Therefore det(aw— I') = 0. Let v then be an eigenvector with eigenvalue 1. Since

4

v is orthogonal the plane W := v~ is invariant under «v and it is easy to see that

detapy =deta=1.
So apy € SO(2). Now let {wy, wa} be an orthonormal basis of W. Then with
respect to the orthonormal basis {v, w1, wy} of R3, a matrix of « has the form

1 0 0
0 cost —sint
0 sint cost

In other words v is a rotation about the line through v through the angle ¢. Notice
that

traw = 2cost .

6.3 Cyclic Subgroups and Generators

If Gisagroup and a € G then (o) = {a" | n € Z} is called the ¢yclic subgroup
generated by . If (o) = G, then G is a ¢yedic group.

Theotem 6.2. An infinite cyclic group is isomorphic to L. A cyclic group of order n is
isomorphic to ) nZ.

Progf. Let G be a cyclic group with generator a. Define a mapping f : Z — G
by
fimme—a™

for m € Z. Since
f(my +mg) = ™1 =a™a™ = f(my)f(ms),

f is a homomorphism. Since G = («), f is surjective.
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Now there are two possibilities. First suppose that |G| = 0o. Then o™ # 1
for all m # 0. If @™ = ™ for some my, Ma, then @'~ ™2 = 1. But then
my — mg = 0. So f is injective and therefore is an isomorphism.

The second possibility is that |G| = n, for some n € N, ie. |a| = n. Now

f(m+ sn) = a™" = o™ = f(m) for any s. So [ defines a2 mapping
f:Z/n7 — G

which is also a surjective homomorphism. Since both groups have order n, ex-

ercise 5.20 implies that f is also injective and therefore an isomorphism. O

Thus any two cyclic groups of the same order are isomorphic. It is not true
in general that two groups of the same order are isomorphic. For example, the
group V' which has order 4 is not isomorphic to a cyclic group of order 4, because
it has no element of order 4.

Morte generally, if g C G then the subgroup generated by g, written (g), is
the subgroup consisting of all elements of G that can be expressed in terms of
the elements of g and their inverses. We have to make this more precise. If G is

finite, then we have
(9) = g
i=0

as in chapter 3. Otherwise the description is more complicated. We must include

expressions of the form

ailag2 L. aZk

where e; = &1 for all 7 and «; € g. Such expressions are called words in g.

Theorem 6.3. et
H = {af'a5® o | k>0,e;,=t1l,0; € 9,1 <i < k}.

Then H is the smallest subgroup of G containing g and is the intersection of all the subgroups
of G containing g.
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Proof. Certainly H D g and is thus non-empty. The product of any two words in
g is another word in g. And the inverse of a word is as well. So H is a subgroup.
Cleatly H is contained in any subgroup of G which contains g. Therefore H is
the smallest such subgroup. To see that H is the intersection of all the subgroups

containing g we need only show:
Lemma 6.4. The intersection K of a collection C of subgroups of G is again a subgroup.

Well, K # () since 1 € K. If a, 8 € K, then for any L € C we have
a, 3 € L and therefore a3 € L and a~! € L. It follows that a5, ™! € K.
And thus K is a subgroup of G. O

Example 6.5. In the group G L(n, Z) we have the subgroup
SL(n,Z) :={a € GL(n,Z) | deta = 1} .

The purpose of this example is to find a pair of generators for SL(2,Z). Suppose

a= (Z Z) € SL(2,Z) .

By applying the Euclidean algorithm to a and b, we are going to find an exptession

for o in terms of

(11 . (10
0'—01 an T_ll

In particular, this will prove that

wen - ((].(49)
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Now applying the Euclidean algorithm to a and b gives us a list of equations:

a=qb+r 0<r<b

b=qr+nr 0<r<r
Tic1l = Q175 + Tig1 0< Tig1 < T
Tn—2 = qnln-1 1+ Tn 0 S Tn < Th-1

'n—1 = Qn4+1Tn

Since ad — be = 1, it follows that (a,b) = 1 and therefore 1, = 1. We begin by
multiplying o on the right by 777

() (5 )= D)=

where the entries * denote integers which are not important to us, and the result-

ing matrix has determinant 1. Next we multiply it by o~ %:

CO6 =G =)

Again the resulting matrix has determinant 1. In general we will have a matrix in

SL(2,7Z) of the form
(Til T’i) <7”z‘ 7’1’1)
or ,
* ok * ok
depending upon whether ¢ is odd or even. We multiply it by 7~ %+, respectively
ri—1 15 1 0 _(Ti+1 T
* % —qiv1 1)\ *x %
Ty Tia I —qipa _ (T Tit1
* * 0 1 * *

o~ %i+1.
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At the end we are left with

(Tn 0> <O Tn)
or .
* * * *

Now 7, = 1 and the matrices have determinant 1. So in the first case we have a

10\
(k1) =

for some integer k. In the second case we have a matrix of the form

0 1
-1 k
for some k € Z. And

(%) -G
(D6 DG D6

matrix of the form

= rkor7lo .
So we have shown that
ar oM ... = tForrFor o ,
which means that
a = 1F . onrlorrherTlo. oY

Let's do a numerical example. Take

(19 7
*=\27 10) -

Applying the Euclidean algorithm gives us

19=2-74+5
T=05+2
5=2-2+1

2=2-1.
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So we first multiply o by 772

19 7 I 0\ (5 7
27 10)\—-2 1) \7 10
Next we multiply again by 77
1 2\/1 =2y (10
1 3/\0 1) \1 1"

Then we multiply the result by o~ ':
5 2
7 3
5 2 1 0
7 3)\-2 1
2 _—1_-2 -2

5 7 1 -1
7 10/ \0 1
1 2
1 3]
Lastly we multiply by o2
at "o T "o T =1,

Thus

or

a=To’T*oT?.
A

Example 6.6. It is not hard to describe a set of generators of the braid group
B,,. For 1 < i < n,let (; be the following braid: if j # 4,7 + 1, the jth strand
joins point j on the first line to point 7 on the second without crossing any other
strand. The ¢th strand joins point ¢ on the first line to point 2 + 1 on the second,
crossing under the (7 + 1)st strand, which joins point i 4 1 on the first to point

¢ on the second.

%
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To see that {1, . . ., (,—1} generates B, take any braid (, and perturb the strands
so that no two crossovers occur at the same level. Draw lines parallel to the two
lines through endpoints, which subdivide the region between them into slices

each containing only one crossover. Then in each slice, the braid is one of the

+1
Gi -

For example, the braid above can be written:

(G Cal s -
If we let
p="CGC" Gt

then one can show that {p, (; } also generates B,,. A

6.4 Kernel and Image of a Homomorphism

Suppose G and H are groups and f : G — H is a homomorphism. The kerne/
of f, written ker(f), is defined by
ker(f) == {a e G| fla) =1g} CG.

It measures how close f is to being injective, as we shall see below. The #7age of

f, written im( f), is the set of images of the elements of G in H, i.e.

im(f) = {f(a) | e G} CH.
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Theotem 6.7. The kernel of a homomorphism [ is a subgroup of G, and the image a
subgroup of H. A homomorphism is injective if and only if its kernel is trivial.

We just need to verify that ker(f) and im(f) fulfill the definition of a sub-
group. Well, suppose «, f € G and f(a) = 1 and f(5) = 1. Then

flap) = fla)f(P) =1
and

fla™) = fla) " =1.
Therefore ket(f) is a subgroup of G. And for any o, 5 € G, f(a)f(S) =
f(aB) € im(f),and f(a)t = f(a™!) € im(f). Thus im(f) is a subgroup of
H.

Lastly, suppose f is injective. Then in particular, if f(a) = 1 for some
a € G,since f(1) = 1, we have & = 1. Thus ker(f) = {1}. On the other
hand, assume ker(f) = {1}. Now if f(«a) = f(8) for some o, § € G, we have
L= f(@)f(B)" = fla)f(B7") = f(ap™).

So a3~ € ker(f), and therefore a1 = 1,i.e. & = . Thus f is injective.

Examples 6.8. (i) Recall that det : GL(n, F') — F* is 2 homomorphism
for any field F'. By the definition of SL(n, F)

ker(det) = SL(n, F) .

(i) The kernel of the canonical map: Z — Z/nZ is the subgroup nZ C Z.

(i) Let f: .S — S begiven by f(z) := 2", for some n € N. The kernel of f
is

{zeC|2"=1}.

A complex number z satisfying this equation is called an nth root of unity.

We shall denote the group of nth roots of unity by ft,.
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(iv) If G'and H are two groups, then the kernel of the projectionp; : GX H —
Gis H.

(v) In chapter 5, we saw that there is a natural homomorphism
br: B, = S,, wherebr(()=oac.
The permutation o maps ¢ to the endpoint of the % th strand of {. So
ag, = (ii+1)

Since
{(12),(23), ..., (n—1n)}

generates Sy, the homomorphism br is sutjective.

6.5 Exercises

1. What are the elements of finite order in SO(2)?

2. e Show that p,, is a cyclic subgroup of S. Notice that every element of finite

order of S is an nth root of unity for some n.

3. In example 6.5, verify that 72 = —I and that 7 has order 4.
) . ) 7 31 )
4. Use the algorithm in example 6.5 to write 9 9 as a word in 0 and T.

5. Write a Mathematica function which expresses an element of SL(2,7Z) as a

word in ¢ and T.

6. Let a,b € Z be relatively prime. The Euclidean algorithm produces integers
s and t such that
sa—tb=1.
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10.

11.

12.

13.

14.

Set
o — a b
o\t s/
Prove that if one applies the algorithm in example 6.5 to « then the integer k

there is 0 (cf. exercise 1.13).

. Show that F', F* and F}| are cyclic groups.

. Let G be a finite group and suppose that H C G, H # () and for all o, 3 €

H

b

apf € H.

Prove that H is a subgroup of G. Suppose that |G| = oo. Does this still

hold? If not give a counter-example.

. Find all generators of Z/60Z.

e Let p be prime. Suppose that a subgroup H C .S, contains a transposition

and an element of order p. Prove that H = 5.

e Show that every subgroup H of Z is either trivial or of the form nZ, where

n is the least positive integer in H.

Suppose that H and K are subgroups of a group G. Show that H U K is a
subgroup if and only if H C K or K C H.

Let G be a group and let
H={(a,a) e GXxG|aecG}.

Verify that H is a subgroup of G X G and that H = G.

Can you find two matrices which generate SL(2,F3)? SL(2,F5)? (You may
use that [SL(2,F,)| = (p — 1)p(p + 1), cf. example 10(i).)
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15. Prove that O(3) is isomorphic to SO(3) x {£1}.

16. e Let G be a subgroup of O(3). Suppose that —] € G. Prove that G is
isomorphic to Gt x {£1}, where GT = G N SO(3).

17. Show that det : GL(n, F') — F* is surjective.

18. Let
sgn : S, = {£1}

be given by the sign of a permutation. Show that sgn is a homomorphism. Is

it surjective? What is its kernel?

19. Let the homomorphism
f:(2)212)% = (2/3Z)

be reduction modulo 3. Write down the elements of the kernel of f. Show

that it is cyclic.
20. e Let F'be a field and let f : F"* — F™ be the map
fraw—a®,
for a € F'*. Verify that f is a homomorphism and determine its kernel.

21. Show that in B,

a) forj #i+1, CiCj = CjCi 5

b) forl <i<mn, (GG = Cr1GiCit1 -
22. Prove thatin B,

a) i1 =pGp ",
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b) Giy1 = p'Cp™",
and that therefore {(y, p} generates B,,.

23. Show that the image of S, under the homomorphism p in example 5.7 lies
in O(n), and that the image of A, lies in SO(n). Show that the image of a

transposition is a reflection.
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Symmetry Groups

Intuitively we know when an object has symmetry and when not. Symmetry is
closely related to our sense of what is beautiful. A rose window in a cathedral with
its rotational symmetry is beautiful, as is a face with strong bilateral symmetry (see
[5]). The octagon on the left below has no symmetry, while the one on the right

1s highly symmetric.

We would like a mathematically precise definition of symmetry which fits with
our intuitive sense. The regular octagon above can be reflected in the dotted line.
We can also rotate it about its centre through an angle of 7/4. The rotation and
reflection are both isometries of the Euclidean plane. This suggests a general

definition.

Suppose X is an object in Euclidean n-space. A symmetry of X is an isom-
etry which maps X to itself. We denote by Sym(X) the set of all symmetries of
X. Not surprisingly, Sym(X) is a subgroup of I'so(n). For the identity map is

97
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always a symmetry of X so that Sym(X) is not empty. The inverse of a sym-
metry is again a symmetry and so is the product of two symmetries. To say that
X is highly symmetric is to say that Sym(X) is large. If X has no symmetry at
all, then Sym(X) is the trivial group As references for Euclidean geometry, [6],

[4], and [7] are recommended.

7.1 Symmetries of Regular Polygons

Let's begin by looking at the symmetry groups of regular polygons in the plane.
We will place the centre of the polygon at the origin, so that the symmetries are

all elements of the orthogonal group (see [4], p.11).

Figure 7.1: Symmetries of an equilateral triangle

First we consider an equilateral triangle P5. We can rotate P53 about its centre
through 27/3, 47/3, and 27. (All angles are measured counterclockwise.) And
we can reflect Ps in the line joining a vertex to the midpoint of the opposite side.
Thus Sym(Ps3) has 6 elements, 3 rotations and 3 reflections. Notice that if we
label the vertices 1,2, 3 (counterclockwise), then the symmetries permute the 3

vertices. The rotations correspond to (1 2 3), (1 3 2), and (1) respectively. The
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Figure 7.2: Symmetries of a square

reflections leave a vertex fixed and switch the other two. So they each correspond

to a transposition. This mapping
Sym(Pg) — 53

is in fact an isomorphism of groups since it maps the product of two symmetries

to the product of the corresponding permutations.

Next look at a square Py (see introduction of chapter 3). We can rotate Py
about its centre through 7 /2, 7, 37 /2, and 27. There ate two types of reflections:
reflections in the diagonals, and reflections in the lines joining the midpoints of
opposite sides. Of each type there are two. So in all, Sym(F,) consists of 4
rotations and 4 reflections. Again we can label the vertices of Py: 1,2, 3, 4. Each

symmetry gives a permutation of the vertices and the mapping
S ym(P 4) — S4

defined this way is a homomorphism: the product of two symmetries is mapped
to the product of the corresponding permutations. The rotations correspond to
(1234),(13)(24),(1432)and (1) respectively. Reflections about a diagonal
correspond to the transpositions (1 3) and (2 4). The other two reflections
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correspond to (1 2)(34) and (1 4)(2 3). As we saw in chapter 3, these are just

the elements of the permutation group Dy. So we have an isomorphism

Sym(Py) —— D, .

These examples generalize. Let P, be a regular n-gon, n > 3. We can rotate
P, about its centre through angles 2w /n,47/n,...,(2n — 2)7/n,27. The

reflectional symmetry of P, depends on whether n is even or odd.

Figure 7.3: Symmetries of a regular n-gon

First suppose n is odd. P, is symmetric about the line joining a vertex to
the midpoint of the opposite side. There are n reflections of this type. Now
suppose 1 is even. Then there are two types of reflections: those in a line joining
the midpoints of opposite sides, and those in a diagonal joining opposite vertices.
There are n/2 reflections of each type. In either case, Sym(P,) has n rotations
and n reflections. It is called the dibedral group of order 2n We shall denote it
by D,. As in the cases n = 3,4, we can label the vertices 1,2,...,n. The
symmetries of I, permute the vertices and thus each correspond to an element
of S,,. The rotations correspond to the powers of (1 2 --- n). Since each
symmetry is determined by its action on the vertices of F,, this mapping from
D, into S, is injective and gives us an isomorphism of D,, with a permutation

group of degree n.
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There is another way of looking at dihedral groups, independent of whether
nis even or odd. Let o € D,, be a rotation through 27 /n counterclockwise, and
let 7 € D,, be any reflection. The n rotations are 07,1 < j <n. Andthen
reflections are 077, 1 < j < n -- this is best checked geometrically. One can

also see 07 = 70~ L. We say that o, T generate D,, subject to the relations

o"=1 =1 or=70". (7.1)
because they describe multiplication in D,, completely. If nis even, then T, o’r, ...

3

will be the reflections of one type, and o7, 0°7, . .. of the other.

7.2 Symmetries of Platonic Solids

What about the symmetry groups of the Platonic solids? We shall only look at
the proper symmetries (see exercise 9 for the full symmetry group). This means
that we first place the centre of the solid at the origin so that the isometry group
will be a subgroup of O(3). And then we restrict our attention to Sym™ (X)) :=
Sym(X) N SO(3).

Let's begin with X the regular tetrahedron. There are two types of rotations
which are symmetries of X. First, we can rotate about the line through a vertex
and the centre of the opposite face. In the diagram below, the gray line is such
an axis. There are two rotations, through angles 27 /3 and 47 /3. Since there are
4 vertices, there are 8 such rotations in all. Secondly, we can rotate about a line
like the black one, through the midpoints of opposite edges, by an angle of .
There are 6 edges. So this gives us 3 more rotations. Together with the identity,
the symmetry group therefore has 12 elements. As with the regular polygons, we
can regard these symmetries as permutations of the vertices of X, which we label
1,2, 3,4. Then the first type of rotation corresponds to a 3-cycle, and the second
one to a product of two disjoint transpositions. But these, with the identity, are
just the 12 even permutations in Sy. This mapping is a homomorphism, and
therefore the group of proper symmetries of the regular tetrahedron, which we

denote by T, is isomorphic to Ay.
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Figure 7.4: Symmetries of a tetrahedron

Next we look at the proper symmetries of the cube. This is the same as the
proper symmetry group of the regular octahedron, because it is just the dual of
the cube. First there are the rotations about an axis like the black one below,
through the centres of a pair of opposite faces, through angles 7/4, 7/2, and
37 /4. Since there are 3 such pairs of faces, this gives 9 rotations in all. Secondly,
we can rotate the cube through angles 27/3 and 47/3 about a diagonal, like
the light gray one, joining a pair of opposite vertices. There are 8 vertices and
therefore 8 of these rotations. Thirdly, we can rotate through an angle of 7 about
an axis like the dark gray one, through the midpoints of a pair of antipodal edges.
The cube has 12 edges and thus 6 of these rotations. Together with the identity,

this gives us 24 proper symmetries. We denote this group by O.

If we simply regard these symmetries as permutations of the 8 vertices, we get
a homomorphism of O into Sg which is certainly injective.  Now,
|Sg| = 40320. So the image is a relatively small subgroup, and this homomort-

phism does not tell us much about . However there is a more enlightening way
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Figure 7.5: Symmetries of a cube: axes of rotations

of identifying O with a permutation group. Instead of the 8 vertices, take the 4
diagonals shown below as the objects being permuted. Let's convince ourselves
that this mapping into .Sy is injective. Since |S4| = 24, our homomorphism is
then again an isomorphism. Suppose that a proper symmetry fixes all 4 diago-
nals. Rotations of the first type do not fix any diagonals. Those of the second
type fix only the diagonal which is their axis and no other. And the third type of
symmetry fixes no diagonal. So one which fixes all 4 must be the identity. Thus

the kernel of our homomorphism is trivial and therefore it is injective.

Finally we consider the proper symmetries of the regular dodecahedron or its
dual, the regular icosahedron. The regular dodecahedron has 12 faces, 30 edges,
and 20 vertices. The faces are regular pentagons and 3 edges meet at each vertex.
There are three types of rotational symmetries. First we can rotate through angles
of 27 /3 and 47 /3 about an axis passing through a pair of opposite vertices, like
the one in light gray. There are 20 such rotations. Secondly, we can rotate through
an angle of 7 about a line like the dark gray one passing through the midpoints of a

pair of antipodal edges. We have 15 of these rotations. And lastly, we can rotate
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Figure 7.6: Symmetries of a cube: diagonals

about a line like the black one through the centres of a pair of opposite faces,
through angles 27/5, 47/5, 67/5, and 87 /5. This gives a further 24 rotations.
In all we have 60 proper symmetries. Let I denote the proper symmetry group
of the regular dodecahedron or icosahedron.

Again we can realize these symmetries as permutations. What should we
take as the objects permuted? Well, the 30 edges can be grouped into 15 pairs of
antipodal edges. The 15 lines through the midpoints of these pairs form 5 sets of
mutually orthogonal triples or trihedra. In the picture below, the edges belonging
to each trihedron all have the same colour. One trihedron is shown. These 5
trihedra are permuted by the symmetries of the icosahedron. Thus we have a
homomorphism of the proper symmetry group into Ss. The rotations of order
3 correspond to 3-cycles. Those of order 2, to products of disjoint transpositions.
And those of order 5, to 5-cycles. Notice that all these permutations are even,

and that in fact all 60 elements of Aj are realized in this way. Thus I is isomorphic
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Figure 7.7: Symmetries of a dodecahedron: axes of rotations

to A5.

Figure 7.8: Symmetries of a dodecahedron: trihedra
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7.3 Improper Symmetries

We have computed the groups of proper symmetries of the Platonic solids. But
they obviously have reflectional symmetry as well. In general, an element o €
Sym(X) with deta = —1 is called an improper symmetry. Examples are re-
flections in a plane and the antipodal map —I € O(3). It is easy to see that
—1 € Sym(X) for all five Platonic solids. Therefore by exercise 6.16,

Sym(X) = Sym™(X) x {£[}.

The improper symmetries are the set — - Sym™(X) = —Sym(X).

Let's look at them in the case of the cube. Since |O| = 24, there are also 24
improper symmetries. First of all there are reflections. The mirrors are planes
bisecting pairs of opposite faces. As the pictures below show, there are two types.

The first type gives 3 reflections, the second 6 reflections, for a total of 9.

Figure 7.9: Reflections of a cube

This leaves 15 improper symmetries. They are rofatory reflections. A rotatory

reflection is a rotation followed by a reflection in the plane perpendicular to the
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axis of the rotation (see [4], p.16 or [6], 7.4). An example is a rotation through
7/2 about the vertical line followed by a reflection in the horizontal plane. The
antipodal map is just a rotation through 7 about the same line followed by the

reflection.

Figure 7.10: Rotatory reflection of a cube

7.4 Symmetries of Equations

Symmetry also plays an important role in the study of algebraic equations. Sup-

pose we have a polynomial equation p(z) = 0 with rational coefficients:
plx)=2"+a2" '+ +a, 7 +a, =0

where aq, ..., a, € Q. We assume that p is irreducible, i.e. does not factor into
polynomials of lower degree with rational coefficients. In the complex numbers,
p = 0 has n roots, 21, ..., 2,, which we will assume are distinct. We ate in-
terested in permutations of these roots which preserve any algebraic relations

among them. These form a permutation group of degree n which reflects the
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symmetries among the roots. For a generic polynomial p there will only be "triv-
ial" relations and the group will simply be 5. However, for special polynomials
there will be non-trivial relations and the symmetry group will not be the full
permutation group.

Let's look at the equation
O=a'+23+2?+o+1=("-1)/(z 1)

The roots are

2 = 627rz/5 . 2y = e47r7,/5 . 23 = 667r2/5 . 2= 6871'z/5 )

In the picture below, they ate shown on the unit circle in C.

627rz/5

e47rz/5

667rz/5

687ri/5

We have

2 3 4
We are looking for permutations of the 4 roots which preserve these relations. If
« is such a permutation, then (22), a(23), and (24) are determined by a(21),
which can be 21, 29, 23, Of 24.
() a(z1) = z1: then

a(z)=a(zn1)’ =2 alzn)=a(xn)’ =2 aolz)=az)=2z.

Soa = (1).
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(i) (z1) = zo: then
aln)=a(z) =2 =2 alzn)=4=2 oly) ==z
Therefore v = (1243).
(i) a(z1) = z3: then
alzn)=2=2 alzn)=2n=2 alu)=212=2.
Thus a = (1342).
(iv) a(z1) = zy4: then
alz) =23 alzg) =2 «afzg) =21 .
So o = (14)(23).
Therefore the symmetry group of the equation is the cyclic group ((124 3)).
As a second example, consider the equation
zt =102 +1 = 0.
Its roots are

21:\/5‘1'\/5, 22:—\/§+\/§, 23:\/_—\/5, 24:—\/5—\/5-

They satisfy the relations

21+ 24 = 6)
Zo+23=0 (ii)
(21 4+ 22)? = 12 (ii)
(214 23)* =8 (iv)
(22 +24)* =8 V)
(z3+24)* =12 (vi)
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We are interested in permutations of 21, 22, 23, 24 which preserve these rela-
tions. Well, (12)(34), (13)(24), (14)(23) and (1) do. No other permutations
do. To see this we check one transposition, one 3-cycle and one 4-cycle. The oth-

ers are similar. Now (12) takes relation (i) to
2o+ 24 = 0.

But this contradicts relation (v). The 3-cycle (12 3) does the same. The 4-cycle
(1234) takes (i) to
Zo+ 21 = 0 )

contradicting relation (iii). Thus the symmetry group of this polynomial is the

group
V'=1(12)(34). (13)(24),(14)(23), (1)} -

The symmetry group of a polynomial equation is usually called its Galois group.

We shall study Galois groups more extensively in later chapters.

7.5 Exercises

1. Look at some flowers and decide what their symmetry groups are.
2. What is the symmetry group of a rectangle which is not a square?

3. List the permutations in S5, respectively Sg, corresponding to the elements

of Ds, respectively De.

4. Let @ € D, be a rotation through 27 /n counterclockwise, and let § € D,
be any reflection.
a) Prove that the n reflections in D, are /3, 1 < j < n.
b) Show that a8 = Sa~ L.
¢) Show that o/ 3 = Ba .
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5. Under the given isomorphism between the group of proper symmetries of the
cube and Sy, to which types of permutations do the three types of rotations

correspond?

6. Verify that
a) elements of Aj ate either 5-cycles, 3-cycles, products of 2 disjoint trans-
positions, or the identity;

b) there are 20 3-cycles, 24 5-cycles, and 15 products of 2 disjoint transpo-

sitions.

7. In the picture below, a regular tetrahedron is inscribed in a cube. Which proper

symmetries of the cube map the tetrahedron to itself?

8. The figure below shows a cube inscribed in a regular dodecahedron. Which

proper symmetries of the dodecahedron map the cube to itself?
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9. Describe the reflections which are symmetries of a regular tetrahedron and of

a regular dodecahedron.
10. Describe the 12 rotatory reflections in the symmetry group of the cube.

11. Show that the symmetry group of 2%+ 1 = 0 is V. Suggestion: express the

roots as in the first example.

12. e Show that the symmetry group of z* — 222 —2 =0 is D,.



Group Actions

8.1 Examples

In the previous chapter, we looked at how the symmetry group of a regular poly-
gon permutes its vertices, and how the symmetry group of a cube permutes the
4 diagonals. Realizing these groups as permutation groups of a set of objects
told us a lot about them. In this chapter, we are going to pursue this point of
view. In general one says that a group G acts on a set X (usually finite) if one is
given a homomorphism G' — Sx. A more convenient way to express this is the

following,

Definition 8.1. We say that a group G acts on a set X if we have a mapping
G x X — X, whereby (o, z) — a -z € X, such that

(@f) -z = a-(6-x)

l-z ==z
foralla, f € Gand x € X.

Where there is no possibility of confusion, we shall just write o instead of ar- .
For example, if G = @ and X = {d;, ds, ds, d4}, the set of 4 diagonals of a
cube, then the mapping @ — X is given by

(Oé, dl) —> Oé(dz) ,

where € @ and 1 <7 < 4. Here ate two further examples which will interest

us greatly.

113
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Examples 8.2. (i) A group G acts on itself by multiplication on the left: for
¢ € Gand a € G we set
a-&:=af.
Then (i) is satisfied because the group operation is associative: for 8 € G,

(@B) -§ = (af)§ = a(B) = a- (8- &)

and (ii) because 1 is the identity for the group operation:

1-e=16=¢.
(i) A group G acts on itself by conjugation: for & € G and o € G we set

a-&=afa

Then for f € G,

(@) - €= (ap)é(af)™ = a(Bfa =a- (8¢
and
1-é=11"1=¢.

It is not hard to see that this definition does give you a homomorphism G' —

Sx. For each a € G we can define a permutation 0, of X:
oo(z) =a-x.
This map o, is bijective because it has an inverse, namely 0,-1:
Oa10o(7) =a Haz)=(a o)z =1

and therefore 0,-10, = 1. Similarly, 0,0,-1 = 1. Furthermore, the mapping
o:G — Sy, given by

O Q> 0,

is a homomorphism. For
oap(z) = (af) -2 =a(fr)=a-05(z) = Ua(O'B(ZL‘)) )

and hence 0,3 = 0,03.
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8.2 Orbits and Stabilizers

If the group G acts on the set X, the orbit of a point x € X is the set
O, ={ax|aeG} CX.

The stabilizer of x is the subgroup
Gy ={aeG|ax=u2a}.

Example 8.3. If we take

X =1{1,2,3,4}
and
G=V'= {(1)’ (12)7 (34)7 (12)(34)} C Sy,

then

O =0, ={1,2}, O3=04=1{3,4}
and

Vi=Vy=((34)), Vi=V/=(12).
The group

V =A{(1), (12)(34), (13)(24), (14)(23)}

also acts on this set. However
O1=0,=03=0,=X, Vi=V=V=V,={1)}.

In chapter 3 we looked at the decomposition of a permutation o € .S, into
a product of cycles. The cycles we found correspond to the orbits of the permu-

tation group () acting on the set {1,2,...,n}. The orbit of 1 is
O, = {1,a(1),a*(1),...,a" (1)},

which gives us the first cycle. We then pick the smallest number 75 which does

not occur in O and compute its orbit:

Oig = {ig, Oé(ig), 042(7:2), ey Oém_l(Zé)} .
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This gives us the second cycle, and so on.
In general if a group G acting on a set X has only one orbit, we say that G’ acts
transitively on X . If G is a permutation group of degree n which acts transitively

on{1,2,...,n} we say that G is transitive.

Remark 8.4. In general, O, = Oy, for z,y € X, if and only if there exists an
a € G such thataw = y. Why is this so? Suppose thatax = y. If 2 = By € O,,
then fax = Sy = z so that z € O,. Thus

0, CO,.
By writing @~ 'y = x, we can reverse the roles of x and y and see that
0, CO,.

Therefore O, = O,. Conversely, if O, = O,, theny € O, and therefore there
exists & € G such that ar = y. If there is only one orbit, then for all z and vy,
we have O, = O, or equivalently, for all  and y there exists &« € G such that

ar =y.

Many of the permutation groups that we have seen act transitively on the set
{1,2,...,n}. However the stabilizers may not be trivial. For example, taking
G = S, we see that any permutation which fixes 1 can permute {2,...,n}
quite arbitrarily. So (S,,); is the group of all permutations of {2, ...,n}, which
is isomorphic to S,,_1.

The group of proper symmetries of a Platonic solid acts transitively on the set
of vertices, the set of edges, and the set of faces. What do the stabilizers look like?
Let's look at the regular tetrahedron. First pick a vertex. The rotations whose axis
passes through the vertex and the centre of the opposite face leave it fixed. No
other rotations of order 3 do so. A rotation of order 2 whose axis passes through
the centres of a pair of opposite edges, does not fix any vertex. So the stabilizer
of a vertex is the cyclic group of order 3 consisting of the rotations about the line
through the vertex and the centre of the opposite side. The only rotation which

fixes a given edge is the half-turn about the line joining its midpoint and that of
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the opposite edge. So its stabilizer is the cyclic group of order 2 generated by this
half-turn. And the stabilizer of a face is just the stabilizer of the opposite vertex.
In example (i) above G acts transitively on itself. Why? Take v,{ € G. Let
a = &v~ Then
av = (v =¢.

The stabilizer of any element ¢ is trivial, because a§ = £ implies that o = 1.
The action of G on itself by conjugation (example (ii)) is more interesting:
first some terminology. The orbit of an element £ € G under conjugation is

called its conjugacy class and will be denoted by C. So

Cei={ata™"|a e G}.

1

An element a§a™ " is called a conjugate of . The stabilizer of & is called its

centralizer, denoted by Z¢(G) ot just Zg:

Zei={a€Glaga™ =€} = {a | af = a} .

Thus the centralizer of £ is the set of all elements which commute with £. The

centre of G, written Z(QG), is
Z(G)={a|aB = pa, forall § € G}

So

If G is abelian then of course Z(G) = G.

Let's compute the conjugacy classes of \S,,.

Lemma 8.5. Suppose v = (i1,...,1,) € Sy, is an r-cycle. Then ava~l s the r-cycle

(a(ir), ..., a(iy)).

Proof. We have
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where as usual, 7,11 = 7;. (Remember that we are reading from right to left.) If
i & {a(iy),...,a(iy)}, then a™1(2) & {iy,..., 4.}, so that

1 «

i 2 o) L i) —2 0.

Thus

ava = (a(ir),. .., a(iy)) .

]

It also follows from this lemma that if we are given a second 7-cycle &, there

exists an @ € G such that £ = ava™t. Namely, if € = (41, . .., j,), then define
Of(il) = j17 S a(ir) = jT 5

and extend « to the rest of {1,2,...,n} in any way you like as long as « is

bijective. Then by the lemma, § = ava™'.

Thus the set of all r-cycles is a
conjugacy class.

Now suppose that v = vy - - - Vg where 11, . . ., Vg are disjoint cycles of length
T1,...,Ts respectively. We say that v is of ¢yele type {71, ...,7s}. Then for any

a € G, we have

1 1 -1

E:=ava = aria - avsa

Therefore & too is of cycle type {71, ..., 7s}. On the other hand, given any two
elements v and £ of the same cycle type, we can refine the argument just given

1

to see that there exists an « such that § = ava™". This proves the following

theorem:
Theorem 8.6. A conjugacy class in Sy, consists of all permutations of a given cycle type.

For example, the possible cycle types in S5 are

{1y {23 {3} {22} {4 {23t {5}.

And to each of these there corresponds a conjugacy class in S5. Notice that a

cycle type is given by any set {71, ...,7s} C N, where 1 + - - - + ¢ = n. Such
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a set is called a partition of n. The list above can also be regarded as the possible
partitions of 5. As with cycle decompositions, we write {3} instead of {3,1,1}

and so on.

8.3 Fractional Linear Transformations

In this section we will look at an action of GL(2, F') on the projective line. More
will be said about it in example 10.13(iii) and it will be important in chapter 12.
You may well be familiar with fractional linear transformations over the complex num-

bers. Given a matrix ;
a
a = (c d) € GL(2,C),

one defines

(2) az+0b
5q(2) =
cz+d
which takes on complex values for z € C, except at z = —d/c. To deal with

this value, one extends s, to the extended complex line (or Riemann sphere),

P(C) = CU {00}, by setting
Sa(—d/c) =00, s4(c0) =a/c.

The reason for the latter formula is, that if you write

a+b/z
c+d/z’

Sa(2) =

and then set 1/z = 0, you obtain a/c.
This works petfectly well for any field £, not just C. The extended affine

line, or projective line, over F' can be defined formally by
P(F):= FU{c0}.

Then for ;
a
a—(c d)GG’L(Z,F),
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we set b
axr +

1o =, F7 _d )

Sa(T) p— x € x# —d/c

and

Sa(—d/c) =00, s4(c0) =a/c.

It is easy to check that we have defined an action of GL(2, F) on P(F). This

action is transitive because we can see that Oy = P(F'): take any b € F, then

54(0) =10 for a= (é Zl))

and

01
54(0) = 00 for az(l O>’

The action is particularly interesting when F' = I, for some prime p. We can
write P(F,) as
P(F,) ={0,1,...,p—1,00}

and can regard each S, as a permutation of this set of p+ 1 elements. In this way

the action gives us a homomorphism f, : GL(2,F,) — Sp41, with f() 1= s,.

Theorem 8.7.
ker fy =F) - I = Z(GL(Q,FP))

Proof. Clearly, ¥ - I C ker f,. Suppose that o € ker(fp). Then s,(z) = x for
allz € P(FF,). In particular this holds for x = 0, 1, co. This means that « lies

in the stabilizers of 0, 1, and 0o. Let's compute the stabilizer of 0: we have

a-0+b b
0=50)= 513~ 1

if and only if b = 0. So the stabilizer of 0 is

{(¢ 7)) ccren]
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Similarly,

a
oo:sa(oo)zz

if and only if ¢ = 0. Thus the stabilizer of 00 is

{(§ 7) ecrem).

So if a fixes both 0 and oo, then

(a0
“=\o d)

for some a,d € IF;. If in addition, « fixes 1, then
l=a(l) =a/d,
and therefore @ = d. Thus oo = al for some a € [F), and
ker(f,) ={al |a € F }.

In exercise 11 it is shown that this is the centre of GL(2, F'), for any field F'. []

Let's look at this map for p = 2. If we take

@—(1 1), we have so(x) =z +1.

0 1

Thus

50(0) =1, s4(1) =0, s4(c0)=00.
So

fola) = (01)
For 01 )
- h _—

6] (1 0) . wehave sg(2) .

Thus
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So
f2(B) = (0 00) .

As we saw in chapter 3, these two transpositions generate S3. So the image of fy

must be all of S3. Since
ker(fo) ={al [a € F3} ={I},

f2 is injective as well, and therefore an isomorphism.

Now let's consider f3. We know that
’GL(2,IF3)| =48 and |S4| =24 5

and
ker(fo) = {I,21} .

So f3is not an isomorphism. However it is sutjective. We can again find matrices

mapping onto three transpositions which generate Sy. Take
(21 5= 2 2 (0 1
“= o1 —\o0 1 =1
Then
1
Se(x) =20+1  spx)=204+2 s,(x)=—
x
and

f3la)=(01)  fs(B)=(02)  f3(y) = (000).

The action of GL(2, F') on P(F') is more than just transitive. In fact given
two triples of distinct points in P(F’), there exists an &« € G'L(2, F') such that s,
maps one triple to the other. To see this we shall show that given three distinct

elements u, v, w € P(F), we can find an « such that

50(0) = u Sa(l)=w Sa(00) = w .
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(h).

Then the three equations above are

Let

54(0) =b/d=u sa(l)=(a+b)/(c+d)=v So(00) =a/c=w.
Substituting the first and third into the second, we get

(cw+du)/(c+d)=v
which has the solution

¢=dv—u)/(w-v),

for d € I'*. Thus we have a solution «, unique up to multiplication by a non-
zero scalat, in other words by a matrix in the centre of GL(2, F’). This means
that s, is uniquely determined.

If a group G acts on a set X and maps any distinct triple of points in X to any
other, then we say that the action is triply transitive . If it maps any distinct pair
of points to any other, it is called doubly transitive. So the action of GL(2, F')
on P(F) is triply transitive and you can check that the action of SL(2, F') on

P(F) is doubly transitive (see exercise 25).

Remark 8.8. The upper half plane, H = {z € C|imz > 0} U {oo} with the
Poincaré metric is a model for the hyperbolic plane (see [9], chap. 7). The action
of SL(2,R) on P(C) preserves H. In fact SL(2,R)/{£I} is the group of

proper isometries of H.

8.4 Cayley's Theorem

As we saw in the first section, defining an action of a group G on a set X, is the

same as giving a homomorphism

c:G — Sx.
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The kernel of o is
{aeG|lar=xforallz € X},

in other words, those elements of G which act trivially on X. It is sometimes
called the &ernel of the action.
Now suppose that G is a finite group, and let G act on itself by multiplication

on the left. Then the mapping ¢ is a homomorphism from G — Sg. And
ker(o) ={a € G| af =¢ forall £ € G}

But taking £ = 1, we see that such an a must be 1. So ¢ is injective. This gives

us a result known as Cayley's Theorem:

Theotem 8.9. Let G be a finite group of ordern. Then G is isomorphic to a permutation
group of degree n, more precisely to a subgroup of the group of permmutations of G itself.

8.5 Software and Calculations

The function Orbit [G,x] will compute the orbit of x under the permutation

group G. Here x is a positive natural number or a vector. For example,

In[1]:= A5 = Group[ P[{1,2,3}], P[{3,4,5}] ]

Out[1]= ((1,2,3),(3,4,5))
So the orbit of 2 under A5 can be computed by

In[2]:= Orbit[A5, 2]

Out[2]= {1, 2, 3, 4, 5}

Similarly, if you set



8.5. SOFTWARE AND CALCULATIONS 125

In[3] := ChoosePrime[5]

Out[3]= 5
then

In[4]:=F20 = Group[ L[{1,1},{0,1}], L[{2,0},{0,3}]
]

o= { (51).(29) )

and the orbit of the vector (2, 3) is

In[5]:= Orbit[F20, {2,3}]

wers={(3)- (3) (0) () G) () (0)
() 6) ) GG 66
1) G @) 6 6 O

(see exercise 4.4).

Stabilizer[G,x] will compute the stabilizer of x in the group G. So for

example

In[6]:= Stabilizer[A5, 3]

Out[6]= ((1 2 4), (2 4 5))
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The conjugacy class of an element can be calculated with the function
ConjugacyClass. Let's use it to compute the conjugacy classes in A;. To begin
with, we know that the conjugacy classes in S5 correspond to the cycle types of

permutations of degree 5. The even cycle types are

{1}, {31, {5}, {2,2} .

The function CycleTypes computes the number of permutations in each cycle

type:

In[7]:= CycleTypes [A5]

1 3 5 22
Out[7]= |1 20 24 15
0.017 0.33 0.4 0.25

(The last row in the output is the density of each cycle type, i.e. the ratio of the
number of permutations of the given cycle type to the order of As). Now two
elements in A5 may be conjugate by an element in S5 but not by an element in
As. So a conjugacy class of S5 may break up into more than one conjugacy class

in As. We begin with a 3 -cycle:

In[8]:= ConjugacyClass[ A5, P[{1,2,3}] ]

Out[8]=4{ (1 23), (1 24), (234), (143),
(245), (345), (253), (125),
(235), (243), (134), (142,
(254), 354), (135), (145),
(152, (132), (153), (154) 7%

These are all 20 3-cycles. Next we look at the conjugacy class of a 5-cycle:
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In[9]:= ConjugacyClass[ A5, P[{1,2,3,4,5}] ]

Out[9]={ (1 2345), (12453), (12534),
(14523), (14235), (1524 3),
(13254), (13542), (14352),
(15432), (15324), (13425)7}

This is only half of the 5-cycles! One that is missing is (1 2 3 5 4) . So let's

compute its conjugacy class:

In[10]:= ConjugacyClass[ A5, P[{1,2,3,5,4}] ]

Out[10]={ (1 2354), (12435), (12543),
(15423), (13524), (14325),
(15342, (13452), (14532),
(13245), (14253), (15234)1}

These are the remaining 5-cycles. Lastly we look at the conjugacy class of a

product of two transpositions:

In[11]:= ConjugacyClass[ A5, P[{1,2},{3,4}] ]

Out[11]={ (1 2)(3 4), (1 4 (2 3), (1 3)(2 4),
(12)(@45), (23)(&5), (24@5),
(25)(@3 4, (12)(@5), (13)(4H5),
(14)@5), (14(@5), (154,
(185)(23), (13)@5), (15)(24) 1}

These are all 15 permutations of type {2,2}. So these four sets together with
{(1)} are the conjugacy classes of As.

The centre of a group can be computed with the function Centre. For

example
bl
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In[12]:= D4 = Group[ P[{1, 2, 3, 4}], P[{1, 3}] 1]

Out[12]= {(1,2,3,4),(1,3))
And

In[13] := Centre[D4]

Out[13]= ((1,3)(2,4))
For a matrix a in GL(2,F,) the corresponding fractional linear transfor-
mation s, is computed by the function LFTPermutation . Let's repeat the

calculation of f3 : GL(2,F3) — Sy using this function:

In[14]:= ChoosePrime[3]

Out[14]= 3
In[15]:= a = L[{{2,1},{0,1}}]

21
Out [15]= (o 1)

In[16]:= b = L[{{2,2},{0,1}}]

(6 7)

c = L[{{0,1},{1,0}}]

Out[16]

In[17]:
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01
Out [17]= (1 o)

In[18] := LFTPermutation(a]

Out[18]= (0, 1)

In[19] := LFTPermutation[b]
Out[19]= (0, 2)
In[20] := LFTPermutation(c]

Out [20]= (oo, 0)

8.6 Exercises

1. What is the stabilizer in D), of the vertex of a regular n-gon?

2. What are the stabilizers of a vertex, an edge, and a face of a cube in the octa-

hedral group? Of a regular dodecahedron in the icosahedral group?
3. Describe the conjugacy classes of Sg.
4. Compute the conjugacy classes of Ag.
5. What are the conjugacy classes of D5 ?

6. Determine the conjugacy classes in SL(2, F).
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10.

11.

12.

13.

Prove that the conjugacy class of an element a # 1 in SO(3) is uniquely
determined by

a) a unit vector v € R3 such that the axis of rotation of v is the line through
v, and
b) an angle of rotation t € (0, 7,

whereby the conjugacy class corresponding to (v, 7) is the same as the one

corresponding to (—v, ).

. What is the centralizer of an r-cycle in S, ?

e A group G acts on a set X. Suppose that z,y € X and y = ax for some
a € (. Prove that

G, =aGa ' :=={aBa' | B€G,}.

Verify that (o, ) — sq(x), o € GL(2, F'), © € P(F') defines an action of
GL(2, F) on P(F).

Prove that the centre of GL(2, F')is {al | a € F'}.
e Find the centre of D,,, n > 3.

Let G be a group. For any a € G, define
Co: G— G

by
ca(B) = aBat.
Prove that ¢, is an automorphism of G (see exetcise 5.21). Thus the conju-

gate of a product is the product of the conjugates, and the conjugate of an
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14.

15.

16.

17.

18.

inverse is the inverse of the conjugate. Such an automorphism is called an

inner automorphism.
Define a map

c: G — Aut(G)
by

cla) = ¢y -
Check that ¢ is a homomorphism. What is its kernel?
o lect
1 a b
H = 01 ¢]labceR
0 01
Verify that H is a linear group (H is called the Heisenberg group). Compute

its centre.

e Let G'72 be the permutation group generated by g = {(123), (14)(25)(36),
(1524)(36)}. It has order 72. Verify that G7o is transitive. Determine the
stabilizer of 1. Show that it is isomorphic to Z/27Z x Ss.

e Find the transitive subgroups of Sy. Suggestion: first check the subgroups

generated by at most 2 elements.

e Let p be prime and let G < .S}, be a transitive subgroup which contains a

transposition.
a) Forj € {l1,...,p}, set
Gy = {k| (k) € G}

Show that any two sets C} are either disjoint or coincide. Show that they

all have the same cardinality.

b) Prove that G = 5,
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19. Is f5 sutjective? If f, sutjective for any primes p > 5°?

20. e Show that f5 is injective on Fyg (see exercise 4.4) and that its image lies in
the stabilizer of 0co. Thus it can be identified with a permutation group of
degree 5. Verify that in S5 it can be generated by {(12345), (124 3)}.

21. Are two elements in Fhy which are conjugate in S5 also conjugate in Fhy itself?
22. Show that SL(2,7Z) acts transitively on P(Q). Does it act doubly transitively?

23. e Let the Frobenius group Fj,;,—1) (see exercise 4.4) act by fractional linear

transformations on P(F),).

a) Verify that for a € Ff and b € F, the matrix
a b
0 1

fap(x) =ax+b, zelF,.

acts by the mapping f, »:

Check that F,,_1) fixes oo.
b) Show that

fa,b o fc,d = fac,ad+b .

) Show that Fj,(,_1) acts transitively on P(IF,) \ {oo}. Does it act doubly

transitively?

24. Suppose that G acts transitively on X. Show that G acts doubly transitively if

and only if G, acts transitively on X \ {z} for some z € X.

25. e Show that SL(2, F') acts doubly transitively on P(F') for any field F'.



Counting Formulas

9.1 The Class Equation

If a group G acts on a set X, then X breaks up into the disjoint union of the
vatious otbits of G. When X and G ate finite we can obtain formulas relating the
number of elements in the orbits and stabilizers and in X, and for the number
of fixed points of the elements of GG. These formulas are useful in studying
the structure of abstract finite groups and of symmetry groups. They also have
applications to combinatorial problems. For any finite set Y, we shall denote the
number of elements in Y by |Y|.

Recall that in example 8.3 we looked at the actions of V' and V on X =
{1,2, 3,4}, and determined the orbits and stabilizers. For V' we found that

|Vz’]:2 and |0, =2,
and for V
[Va=1 and |0, =4,

for any x € X. So in both cases |G,||O.| = |G|. This relation holds in general.
Suppose we have a group G acting on a set X. Fix a pointx € X, and define

a map

e:G— 0,

by

e(a) =a-x,

www . dbooks . org


https://www.dbooks.org/

134 CHAPTER 9. COUNTING FORMUILAS

for o € G. This map is sutjective by the definition of the orbit of z. When do
two elements o, 5 € G have the same image y under e? Well, ar = fr =y

means that « ' fx = z or equivalently, that
yi=a'ed,.

On the other hand, if v € G, then
(ay)r=ax=1y.

Thus
e y) =aG, ={ay|yeG,}

where ax = .

aGy G,
G
[
o
O, —
Yy x

Now suppose that |G| is finite. We have a bijection
Gy ¢ e (y)

given by v <> a7y, so that
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Since

G=|]e'w,

y€O0,

it follows that
Gl = le W)l =D |Gal = [04]|Gl -
yGOm yGOx

This gives us our formula.
Formula 9.1. |G| = |0,||G.| .

Typically one uses this to compute |G|. For example in exercise 8.16, the
group G = Glyp acts transitively on {1,2, 3,4, 5,6}. Therefore |G| = 72/6 =
12. Or if we let X be the set of vertices of a cube, and G = O, then G acts
transitively, so that the order of any stabilizer is 24/8 = 3. Notice that this
equation says that |O, | always divides |G|.

Next we look at a formula for | X| in terms of data about the orbits. There

is an equivalence relation hiding in any group action. Define
z~y if Op,=0,.

This relation is reflexive, symmetric and transitive, and therefore is an equivalence

relation. By remark 8.3,
r~y ifandonlyif ar =1y,

for some @ € G. The equivalence class of an element z is its orbit O,. Since
distinct equivalence classes are disjoint, it follows that distinct orbits are disjoint.
If X too is finite, then we can obtain a count of the elements of X. Letxy,...,x,

be representatives of the orbits of G. Then

v~ (Jo..
=1

Combining this with (9.1), we have
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Formula9.2. |X|=53"" 0, =>""_IG|/|G.] .

Let's consider this formula in the case whetre G acts on itself by conjugation.
So the orbits are the conjugacy classes. If an element o € Z(G) then its conju-
gacy class is just {a@} because oo commutes with every element of G. Conversely,
any element whose conjugacy class has only one element in it must commute
with all elements of G and therefore lies in Z(G). Let a, . . ., a; be representa-
tives of the other, non-trivial conjugacy classes. Then equation (9.2) gives us the

following result:

Theorem 9.3 (The Class Equation).
Gl =1Z(G)| + ) _|Cay| = 1Z(G)| + D _|GI/|Za,] -
Jj=1 j=1

Examples 9.4. (i) Take G = S;. We know that the conjugacy classes are
given by the cycle types. The possible cycle types are

{1+ {2y {3 4 {22}

The number of elements in the corresponding conjugacy classes are 1, 6,

8, 6, and 3 respectively. So the class equation is

24=14+6+8+6+3.

(i) In the last section of the previous chapter we computed the conjugacy
classes of Aj directly. We now want to make this calculation in a different

way. As pointed out there the possible cycle types are

{1y {35 {5 {22},

These correspond to conjugacy classes in S5. We must decide whether two
permutations which are conjugate in Sy are also conjugate in As. For this

we need the following observation.
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Remark 9.5. If a group G acts ona set X and H < G, then H, = G, N H
forany z € X.

Recall that |S5| = 120 and | A5| = 60. First we check whether the set of 3-
cycles is a conjugacy class in As. The number of 3-cycles is 20. Therefore
the centralizer of a 3-cycle, say & = (123), in S5 has order 120/20 = 6
by (9.1). Now (4 5) commutes with (12 3) and so does (12 3) itself. But
((123),(45)) has order 6. So

Ze = ((123), (45)) .

The intersection

ZeNAs = ((123)),

which has order 3. Therefore the order of the conjugacy class of £ in As

is 60/3 = 20. So the set of 3-cycles is a single conjugacy class in A5 too.

Next, let's look at the set of 5-cycles. There are 24 of them, which means
that the centralizer of one of them in Sy has order 120/24 = 5. So this
centralizer is just the cyclic subgroup generated by the 5-cycle itself. This
subgroup lies in Aj. Therefore the order of the conjugacy class of the
5-cycle in Aj is 60/5 = 12. So the set of 5-cycles breaks up into two
conjugacy classes in As.

Lastly we make the calculation for the set of all products of two disjoint
2-cycles. There are 15 of them, so that the order of the centralizer of
one of them in S5 is 8. Again, we pick one, say { = (12)(34). Now
(1324) commutes with it since (1324)% = (12)(34). So do (13)(24)
and (14)(23). This gives us a subgroup of order 8 which must be the

centralizer of € in Sj:
Ze = (14)(23), (1324))

Now
Ze N As = (14)(23),(12)(34)) = V.
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Therefore the conjugacy class of (12)(34) in As has order 60/4 = 15 as
well, and is the set of all products of two disjoint transpositions. So the

class equation is

60=1+20+12+12+15.

(iii) Take G = D,,. In chapter 7 we saw that
D,={l,0,...,0" ' 1,07,...,0" 1},

where o is a rotation and T is a reflection which satisfy the relations

o"=1 72=1 or=710".

It follows that
o(dit)ot = oIt r
where the index j is taken modulo n, and
J

TolT =0""".

Using this let's work out what the conjugacy classes are for n = 4 and
n = 5. For n = 4 this tells us that Z(D,) = {1,0?} and that the other

conjugacy classes are
{r,0°7} {o7, 0%} {o,0%} .
So the class equation is
8=2+2+2+2.

For n = 5, the centre is trivial. The conjugacy class of T is

4

{r, o’r,olr, o, 037'} )

Since the order of every conjugacy class must divide 10, the remaining

classes must each have order 2. So they are

{0,0"}, {2, 0%} .
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The class equation is
100=1+5+2+2.

We see that in the case n = 4 the two different types of reflections each
form a conjugacy class. When n = 5 there is only one type of reflection
and only one conjugacy class. It is not hard to generalize this calculation

to arbitrary n (see exercise 2).

9.2 A First Application

Obur first application is a result which is useful in classifying groups whose order

1s a prime power.
Definition 9.6. A p-group is a group of order p® for some s > 0.

For example, Dy and Q) are 2-groups, and Z /37 X Z/3Z is a 3-group.
Theorem 9.7. Suppose G is a pgroup for some prime p. Then the centre of G is not trivial.

Proof. According to the class equation
Gl =1Z(G) + ) |Ca,|
j=1

where a7, . .., o, are representatives of the non-trivial conjugacy classes of G.
Since the order of each non-trivial conjugacy class divides |G| they must each be
a power of p. Therefore their sum is a multiple of p. Hence p divides |Z(G)| as
well. [

For example, as was shown in the previous section, and in exercise 8.12, the
centre of D, has order 2 and is thus not trivial. This theorem will allow us to

classify groups of order p?.
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9.3 Burnside's Counting Lemma

Our second application is a formula for the number of orbits of a finite group
acting on a finite set. It is useful in combinatorial problems with symmetry. First
we need a definition. If H is a subgroup of a group G, the conjugate of H by
a € (G is the subgroup

aHa™' :={apa™ |3 H}.

Two subgroups H and K ate conjugate to one another if there exists an a € G
such that
K=aHa".

In exercise 8.9 you saw that if G acts on X and two points z,y € X lie in the

same orbit, then their stabilizers G, and G, are conjugate to one another.

Theorem 9.8 (Burnside's Lemma). Lez G be a finite group acting on a finite set X.
Denote by ™, the number of fixed points of o« € G and by s, the number of orbits of G in
X. Then

Proof. First suppose that G acts transitively. So s = 1, and we want to show that
|G| = E M -
acG
Set

Y={(a,z) e Gx X |ax =z}

Now we count |Y| in two different ways. If we pick an x € X, then (o, z) € YV
if and only if @ € (. So the number of such paits is |G,|. Foranyy € X, G,

is conjugate to G and therefore |G| = |G|. Hence, summing over y, we have

YI="1G,| =) |G| = X]|G.| = |G,

yeX yeX
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by (9.1). On the other hand, if we choose an o € G, then the x € X such that
(v, x) € Y are just the fixed points of a. So summing over a, we get
Y| => mq,.
acG
We can now do the general case. Since G acts transitively on each orbit, the
formula we have just proved applies to each orbit. The total number of fixed

points an element « has, is the sum of the number of fixed points in each orbit.

Therefore
s|G| = Z Mg -
aclG

O

In example 8.3 the group V' acts on {1,2,3,4}. There are 2 orbits. Let's
count the fixed points. For @ = (1), we have m,, = 4. For « a transposition,
Mme = 2. And for o = (12)(34), m, = 0. So Burnside's formula is

1
2= (4+2+2+0).

Example 9.9. Suppose we want to count the number of ways of colouring the
vertices of a regular pentagon black or white. Since there 5 vertices, and 2 ways

to colour each one, the simplest answer is:
2° = 32.

But suppose we are making a necklace with 5 beads, each coloured black or white.
Then we do not want to distinguish between two patterns which can be trans-

formed into one another by a symmetry of the pentagon, for example
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To count these, let X be the set of 32 patterns. The symmetry group of the
pentagon, Dj, acts on X. We want to know how many orbits there are. The
Burnside formula will tell us, once we have computed the number of fixed points
of each symmetry. There are 3 different types of symmetry to consider. First,
a = 1. Then m,, = 32. Secondly, o could be one of the 4 non-trivial rotations.
The only patterns which a rotation leaves invariant are the 2 which are all black
or all white. So in this case, m, = 2. Lastly, & could be one of the 5 reflections.
Recall that these reflect the pentagon in a line passing through a vertex and the
midpoint of the opposite side. So one vertex is fixed and the other four are
interchanged in pairs. There are 2 ways of colouring each pair and of colouring
the fixed vertex. So mg, = 23 = 8. Substituting these numbers into the formula,

we have

10s=324+4-2+5-8=80,

where s is the number of orbits. Therefore s = 8. Here are 8 patterns which

represent the 8 orbits.

9.4 Finite Subgroups of SO(3)

Our second application of formula (9.1) is to find the finite subgroups of SO(3).
We already know the subgroups T, @, I. The dihedral groups also can be realized
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as groups of rotations of geometric objects. Take a regular n-gon in the plane.
Construct a pyramid above it and one of the same height below it. A rotation
of the n-gon in the plane can be extended to a rotation of the solid about the
line joining the peaks of the two pyramids. A reflection can be extended to a
rotation through an angle of 7 about the axis of the reflection. Thus D,, can be
embedded in SO(3) as a group of symmetries of this solid. Since D,, contains
a cyclic subgroup of order n, it too is a subgroup of SO(3). We shall see that
these are essentially all the finite subgroups. The way we shall demonstrate this
is to consider the fixed points of a group of rotations acting on the unit sphere
S2,
S*i={veR*[|jv] = 1}.

Remark 9.10. 1f a € O(3) then for any v € R3, |lav|| = ||v||, in particular if
|v]| = 1, then ||av|| = 1. So O(3) acts on S% Any subgroup of O(3), for

example T, also acts on S

Definition 9.11. If a group G acts on a set X, the set of fixed points of G is
{z | ax =z forsome o # 1} = {x | G, # {1}}.

For example, take G = T, acting on S%. Each non-trivial element in T is a
rotation about an axis. The axis meets S? in a pair of antipodal points, which are
fixed by the rotation. These two points belong to the set of fixed points. The
rotations about a line through a vertex and the centre of the opposite face give
4 pairs of fixed points. The rotations about an axis joining the midpoints of a
pair of opposite edges give another 3 pairs. In the picture below the arcs on the
sphere are the edges of an inscribed tetrahedron projected onto the sphere. The

centre of one face is shown.
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Theotem 9.12. et G < SO(3) be a finite subgroup. Then G is conjugate to a cyclic
group, to Dy > 2, 10T, 10 Q, or 2o L.

Progf. As a subgroup of SO(3), G acts on S?. Each non-trivial rotation in G
fixes the two points where its axis meets the sphere. The set of all such pairs
of antipodal points is the set of fixed points of GG, which we shall denote by X.
Now suppose € X is fixed by @ € G. Take any 8 € (. Then Sz is fixed by
Baf~t. So Bxr € X. Thus G acts on X.

Let Oq, ..., O be the orbits of GG in X. The stabilizer of a point in an orbit
O; has order

ny = [G1/10;]. o.)

for 1 < j < s, by equation (9.1). Since all the points in X have non-trivial
stabilizers, n; > 2.

We now count fixed points as in the proof of Burnside's lemma. Let
Y ={(a,z)|ax =2, a € G\ {1}, x € X} .

For fixed z, (o, z) € Yif and only if & € G, \ {1}. If x € O, then the number

of such elements « is n; — 1. So the points x € Oj contribute |Oj|(nj — 1)
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elements cv. Summing over j, we then get

Y1=> 10l(n; —
j=1

On the other hand, if we fix @ € G\ {1}, then (o, z) € Y if and only if z is
a fixed point of .. As we already noted, each rotation o has 2 fixed points. So

summing over o € G\ {1}, we obtain
Y= ) 2=2(c¢-1).
aeG\{1}
Thus

2(1G| = 1) =Y (n; = 1)|0;] .

=1

Substitute the value of |O;| from equation (9.1):

= |G|s — |G| Z—

Now divide through by |G| and rearrange terms:

S

2(1G] - 1) = Z

j=1

Zi:s—2+i. 9.2)

This is the equation we must analyze. First, notice that since all n; > 2, each

term on the left is at most 1/2. So we have the inequality

S S 2
— S — E—
2~ G
which implies that
2> —.

Thus s < 3. This leaves us with three cases to discuss.

@) s=
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(i)

(iii)
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Equation (9.2) becomes:

_ 2 1<0
ny |G| o ’

since |G| > 2. Then ny < 0 which is impossible.

s = 2.
Equation (9.2) becomes:

1 1 2

mo e |G
Multiplying by |G|, and inserting (9.1), we have
|O1] + 0o = 2.

Therefore |O1| = |Os] = 1 and ny = ny = |G|. Now if G has only 2
tixed points, they must be antipodal. And the line passing through them
must be the axis of rotation of the elements of G. These ate then rota-
tions in the plane perpendicular to this axis. So G can be regarded as a
subgroup of SO(2). We saw earlier that finite subgroups of SO(2) are
cyclic. Therefore G is cyclic.

s =3.
Equation (9.2) becomes:

S 9.3)
nq N9 ) |G| )

In particular

Lemma 9.13. The solutions of this inequality, with the constraints 0y, na, ng > 2 are
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ny mNg N3 |G|

2 2 n 2n
2 3 3 12
2 3 4 24
2 3 5 60
Proof of lemma. 1f 1y, na, ng > 3, then
1 1 1
—+—+—<1.

ni no ns

So at least one is 2, say n; = 2. If ng, ng > 4, then

Therefore we can assume thatny < 4. The first possible solution isn; = 2,ny =
2,n3 = n, where n > 2 is arbitrary. Now suppose ng = 3. Then the inequality
becomes

1 1 1

—t+o+—>1.
2+3+n3

Thus we must have that n3 < 6. This gives the other three solutions in the table.

To compute |G| substitute the values of 11, s and n3 in equation (9.3). []

We return to the proof of the theorem. The entries in the table correspond
to D,,, T, O and I respectively. The four cases ate similar. We will do the second
one.

So suppose that n; = 2,ny = 3,n3 = 3, and |G| = 12. Then |O;| = 6,
|O3] = 4 and |O3] = 4. We want to convince ourselves that these orbits are
the set of midpoints of the edges of a regular tetrahedron, the set of its vertices
and the set of centres of its faces. Begin with a point in P} € Os. Let /4 be the
line through P, and the origin. It is the axis of the rotations in G p,, which have
angles of rotation 271/3 and 47 /3. Pick a point Py € O, different from Py. Its
otbit under Gp, is { P», P3, P1}. They all lie in a plane perpendicular to / and

are the vertices of an equilateral triangle in this plane.
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P

l

Take the line joining any of these to the origin, say the line 4 joining P, to
the origin. It is the axis for the rotations of G'p, which permute { Py, P3, P,}.
So these all lie in a plane perpendicular to 4 and form an equilateral triangle.
Thus the 4 points in Oy ate equidistant from one another and are the vertices of
a regular tetrahedron. The group G is the group of proper symmetries of this
tetrahedron. The orbits O3 and O; are the centres of its faces and the midpoints
of its edges respectively. The symmetry groups of any two regular tetrahedra are

conjugate in SO(3). This proves the second case. []

This result can also be proved using only spherical geometry: see [8], §3.8.

9.5 Exercises

1. Verify the class formula of S5.
2. Determine the conjugacy classes of D,,, for n > 4.
3. Calculate the terms in the class equation for SL(2, Fj).

4. Calculate the terms in the class equation of Ag.
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5.

10.

Use the Mathematica function ConjugacyClass to compute the conjugacy

classes of Ag.

. What is the centre of the permutation group of degree 8 generated by

{(12345678),(1357)}>

. How many different necklaces with 6 beads can be made from beads of 3

colours?

. How many ways can the faces of a cube be coloured black and white?

. Complete the proof of theorem 9.12 in the case of the cube.

Show that Dg = S3 X Z/27.
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Cosets

10.1 Lagrange's Theorem

At the beginning of the previous chapter when we looked at the evaluation map
e : G = O,, we came upon subsets of GG of the form aG,, where z € X, a €
G. Such subsets are called cosets of the stabilizer G, in G. In general, given a

subgroup K < (G, we call a subset
aK :={ak |k € K}

a left coset of K in (. For example, a left coset of nZ in Z is a set of the form
m + nZ, m € Z. This is just the congruence class of m modulo n. A left coset
is not a subgroup of G except for the one coset 1 - K = K, because this is the

only coset containing 1.

Examples 10.1. (i) What are the left cosets of A, in S,,? Well, if « € S, is
even, then ad,, = A,,. If o is odd, then aA,, is the set of odd permuta-
tions. So there are 2 cosets: the set of even permutations and the set of

odd permutations.

151
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(i) Suppose we take G = S3 and K = ((12)). Then

(WK =K

(12)K =K
(13)K ={(13), (132)}
(23)K ={(23), (123)}
(123)K = {(23), (123)}
(132)K = {(23), (123)}

Thus there are 3 left cosets: K = {(1), (12)}, {(13), (132)}, and
{(23), (123)}.

(iii) Here are the left cosets of V' in Ay:
V=A{(1), (12)(34), (13)(24), (14)(23)}

(123)V = {(123), (243), (142), (134)}
(132)V = {(132), (143), (234), (124)}.

(Check this calculation yourself!)

(iv) Let G = R? with vector addition, and let K be a line through (0, 0). The
left cosets of K in G are the translates v + K, v € R?, of K.

v+ K K

The last section of this chapter explains Mathematica functions which compute
cosets. One can also look at the right cosets of K in G': they are subsets of the form
Ka, a € G. We denote the set of left cosets of K in G by G/K. We already
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used the notation Z/nZ for the set of congruence classes mod n, otherwise
known as the integers mod n. If G/ K is finite, then the number of elements in
it is called the index of K in G, written [G : K.

Notice that in the examples we have just looked at, every left coset has the
same number of elements, namely | K|, and distinct cosets are disjoint. As a result
of this, [G : K]|K| = |G]. For example, there are 3 left cosets of V' in A4. Each
has 4 elements, and |A4| = 12.

Theorem 10.2 (Lagrange's Theorem). If G is a finite group and K a subgroup of G,
then
Gl =[G K]|K].

Proof. The theorem can be proved in the way suggested above. This is done in
exercise 1. It also follows from formula 9.1, as we going to see now. The group

G acts on the set G/ K by left multiplication: define

a-(BK) = (af)K,

for a, 8 € (. This is a variant of the action of G on itself by multiplication on
the left and you show that it is an action in the same way. It too is transitive:

given two cosets, 3K, YK € G/K, the group element o = y3~! satisfies
a- K =K.

So there is only the one orbit, with [G : K| points in it. The stabilizer of the
coset K is the subgroup K. We can now apply our formula relating the number

of points in an orbit to the order of the stabilizer:

Gl =G : K]|K]|.

Corollary 10.3. The order of a subgroup divides the order of the group.
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For example, S5 can have subgroups of order 1, 2 and 3, but not of order 4 or
9. Itis not hard to write down these subgroups. First there is the trivial subgroup
of order 1. Subgroups of order 2 are those generated by a transposition. There
are 3 of these. There is exactly one subgroup of order 3, namely Az = ((123)).
The graph below shows how these subgroups fit together. It is called the lattice

of subgroups of Ss.

/ Ss
As

(12

)y ((13))
“

((23))

\
{

Corollary 10.4. The order of an element divides the order of the group.

A consequence of this is that if |G| = n, then for any a € G
a"=1.
Corollary 10.5. A group of prime order is cyclic.

Proof. Let G be a group of order p, where p is prime. The order of any element
in G must divide p. Therefore it must be either 1 or p. So if &« € G, v # 1, then
(o) = G. O

Thus groups of order 2, 3, 5 and 7 are all cyclic. On the other hand we know
of a group of order 4 which is not cyclic, namely V, and one of order 6 which is

not cyclic, Ss.
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Let's apply corollary 10.4 to the group IF;. Since it has order p — 1 the

corollary tells us that a?~! = 1 for any a € [F)¥, ot equivalently

a”'=1 (mod p)
for any a € Z, (a,p) = 1. But we can extend this to all integers if we multiply
the congruence by a:

Theorem 10.6 (Fermat's Little Theorem).
a’? =a (mod p)

Jorall a € Z.

The converse to Lagrange's theorem is not true. If G is a finite group and d

divides |G|, there need not be a subgroup of order d. Here is an example.

Example 10.7. Look at Ay4. It consists of eight 3-cycles, 3 products of disjoint
transpositions and the identity. Each 3-cycle generates a cyclic subgroup of order
3. Any two of them generate the whole group (see page 46). Each element of
type {2, 2} generates a cyclic subgroup of order 2. Two of them generate the
subgroup V' of order 4. A 3-cycle and a product of two transpositions generate
the whole group. So there is no subgroup of order 6. Here is the lattice of

subgroups of Ay .

www . dbooks . org


https://www.dbooks.org/

156 CHAPTER 10. COSETS

123 124 134 234
(12)(3))  ((13)(24)) //

10.2 Normal Subgroups

Another situation where cosets naturally arise is the following. Suppose f : G —
H is a group homomorphism. When do two elements in G have the same image
in H? Well, let o, o/ € G, & € H with

fla) = f(a) =a
Then
fla~a) = 1
so that
a ta € ker(f)

o € aker(f).

Conversely, if f(a) = @ and o € aker(f) then f(a/) = @. So

f @) = aker(f) .
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The kernel and its cosets have a special property. The most convenient way

to express it is this: forany a € G,

aker(f)a™! = ker(f) .

(For B € ker f, f(aBa™) = f(a)f(a™t) = 1x). We give a name to subgroups
with this property.

Definition 10.8. A subgroup K of G is called a normal subgroup, written K < G,
if
aKa'=K
foralla € G.
This property can be expressed in terms of the cosets of K.
Theorem 10.9. A subgroup K of a growp G is normal if and only if
(@) foramy o € G, oK = K, or equivalently,
(@) forany o, B € G, (aK)(BK) = (af) K, or equivalently,
(iii) foramy o € G, aKa ' C K.
Proof. Suppose that K is a normal subgroup. Take an a € . We have that
aKa ' =K. (10.1)
Multiplying on the right by o we get

oK =Ko .

Thus every left coset coincides with the corresponding right coset. In terms of

elements of K this means that for k € K, there exists a A\ € K, such that

aKk = A,
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and vice versa. Now assume that equation (i) holds for all a. Then given o, 8 €

G

(@K)(BK) = (KK = a(fK)K = (af) K
So the product of the cosets of o and of 3 is the coset of af. If equation (ii)

holds, then taking 5 = o', we have
(aK)(a'K)=(aca HK=1-K =K , (10.2)

which implies that
aKa ' c K (10.3)

(Why? Well, lying in the set on the left-hand side of (10.2) are all elements of
the form (ak)(a™'1), with k € K). Finally, since equation (10.3) holds for all

elements of G, it holds for o™

a'KaCK .
Conjugating both sides by « gives
K caKa™,

and combining this with (10.3) gives equation (10.1). [

In practice, to check whether K< G, you need only verify whether a Ka™! C
K, when a runs through a set of generators of G. In fact it is sufficient to check if
aka™t € K, where a runs through a set of generators of G and & runs through
a set of generators of K. In example (10.1), we know that {(123), (12)(34)}
generates Ay. Since (12)(34) € V, itis enough to check that (123)V(132) =
V. We see then that V' is a normal subgroup of Ay.

Remark 10.10. Any subgroup K of index 2 is normal. There are 2 left cosets: /X
and a K, where o ¢ K. And there are 2 right cosets: K and K a. The left cosets
are disjoint from one another and so are the right cosets. Therefore a K = Ka,

and K is normal. For example, A,, is a normal subgroup of .S, for all n.
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1

If GG is abelian, then every subgroup is normal since afa™" = [ for any «

and 3. The centre of any group is a normal subgroup because the same equation
holds for any o, with 3 in the centre.

We should also see an example of a subgroup which is not normal. Let G =
S3and K = ((12)). Then (123)(12)(132) =(23) € K. So K is not

normal.

10.3 Quotient Groups

Condition (ii) in theorem 10.9 tells us that we can make G/ K into a group by
multiplying cosets when K is a normal subgroup (and only then). Let's do this

carefully. First, we have a binary operation on G/ K:
G/K xG/K = G/K ,

given by
(aK,BK) — (aK)(BK) = afK

for ar, 8 € G. This operation is associative:

(aKBK)VK = (af)KyK = (af)vK
= a(Bfy)K = aK(B7)K = aK(BKVK) .

Secondly there is an identity element, namely 1 - K = K:
(aK)K = aK = K(aK) .
Thirdly, the inverse of a coset aK is a 1 K:
aKa 'K = (aa ™)K = K =a 'KakK .

G/ K with this operation is called the guotient group of G mod K.
You have already seen a quotient group: Z/nZ, the integers mod n, which is

the quotient group of the subgroup nZ. In fact, historically this is the example
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which lead to the general construction. If we look again at example 10.1(lii), we

see that

This shows that A4/V is a cyclic group of order 3.
Using Mathematica to generate left cosets and then multiply them together
makes it easy to see the multiplication in G/ K in examples where [G : K] is

larger.

10.4 The Canonical Isomorphism

We noted at the beginning of our discussion of normal subgroups, that the kernel
of a homomorphism is normal. In fact every normal subgroup is the kernel of
a homomorphism. For let K be a normal subgroup of a group . We have a

canonical map

p:G—G/K

given by
pra— ak

where a € G. By the definition of the group operation in G /K, this map is a

homomorphism:
p(aB) = aBK = aKBK = p(a)p(B)
for o, 8 € G. It is surjective, and
pla) =1g/xk = K if and only if a€e K

Thus the kernel of p is K.
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Example 10.11. Take G = Sy and K = V. It s easy to check that V' is a normal
subgroup of Sy. The quotient group Sy/V has order 24/4 = 6. We think we
know all groups of order 6. Which one is it? Three of the cosets are written out

in 10.1(iii). The other three are

(12)V = {(12), (34), (1324), (1423)}
(13)V = {(13), (24), (1234), (1432)}
(23)V = {(23), (14), (1243), (1342)} .

Thus the 6 cosets can be written as
V, (12)V, (13)V, (23)V, (123)V, (132)V .

We can define a map

S3 — S4/V

by
a—aV

for av € S3. Because of the definition of the group operation in Sy /V/, this map

is a homomorphism. Since it is bijective, we have
Sy)V =2 S;.

Here is a more sophisticated way of presenting the same argument. Consider

the subgroup H of Sy,
H:={(1), (12), (13), (23), (123), (132)} = S5.

Then H NV = {(1)}. So the canonical homomorphism p : Sy — S;/V
is one-to-one on H. Because both H and S;/V have order 6, they are in fact

isomorphic and

Sy/V = S;.
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In example 10.15 below we will look at a more complicated example.
In a sense, every homomorphism looks like the canonical homomorphism.

This is what the following theorem says.

Theorem 10.12 (First [somorphism Theorem). Let f : G — H be a homomor-
phism of groups. Then f = fp where

p:G— G/ket(f)
is the canonical homomorphism and
f:G/ker(f) = im(f) .

Proof. As we saw eatlier, for any o/ € aker(f) C G

Therefore we get a well-defined mapping
f:G/ker(f) = H

if we set
f(aker(f)) = fla).

This mapping is a homomorphism because f is one:

flaker(f)Bker(f)) = faBker(f)) = f(aB)
= f(a)f(B) = [(aker(f)) f(Bker(f)) -

As noted above as well, f is injective: for & = f(a) € im(f),

f @) = aker(f) .

And the image of fis just the image of f. So

f:G/ker(f) = im(f).
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and f = fp. Here is a diagram.
G — H

g I

GJ(ker f) —— im [

o

[]

Examples 10.13. (i) In exercise 5.11 you looked at the exponential homo-
morphism exp : R — S given by
exp(x) = ¥,

Its kernel is Z and it is surjective. Therefore it induces an isomorphism

=p:R/Z>S.

(ii) For any field F' we have the homomorphism
det: GL(2,F) — F* .

By definition, its kernel is SL(2, F) and it is sutjective. Thus we have an
isomorphism

GL(2,F)/SL(2,F) = F* .

This holds in particular for F' = [F,,. We know that the order of GL(2,F,)
is (p — 1)*p(p + 1). So we can compute |SL(2,F,)|:

p—1=|F*| = |GL(2,F,)|/|SL(2,F,)| = (p—1)°p(p+1)/|SL(2,F,)]

and therefore

[SL2,Fy)| = (p—Dplp + 1) -
(iti)y The action of GL(2,FF,) on P(FF,) gave us a homomorphism

fp GL(2,Fp) = Spyr
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The kernelis Z(GL(2,F,)) = F*. The map f, then induces an injective

homomorphism
fp : PGL(2,]FI,) = GL(Z,FP)/Z(GL(Q,IFP)) — Sp+1 .

PGL(2,F,) is called the projective linear group. Similarly one defines
PSL(2,F,) which we shall discuss further in chapter 12.

10.5 Software and Calculations

For computing cosets there are functions LeftCosets andRightCosets. They
take as arguments a group G and a subgroup K and produce a list of the elements
of G partitioned into cosets with /K itself as the first coset. To illustrate, let's re-

peat example 10.1. We have:

In[1]:= A4 = Group[ P[{1,2,3}], P[{2,3,4}] ]

Out[1]= ((1 2 3), (2 3 4))

and
In[2]:=V = Group[ P[{1,2},{3,4}], P[{1,3},{2,4}]
]
Out[2]= ((1 2)(3 4), (1 3)(2 4))
Then

In[3]:= LeftCosets[A4,V]
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out[3]= {{(1), (2 1D 3), B3 1. 2),
(4 1B 2}, {34 2), (24 1),
321, (431D} {432, (231),
(34 1), (421)}}

If you only want a representative from each coset you can use LeftCosetReps

or RightCosetReps:

In[4]:= LeftCosetReps[A4,V]

Out[4]= {(1), (34 2), (432)%

These are just the first elements from each coset. We can check that V' satisfies

10.9(i) by computing its right cosets and comparing them with the left cosets:

In[5]:= RightCosets[A4,V]

Out[5]= {{(1), (2 14 3), 3 14 2),
(4 1D@B22D¥{B42), 321), (431),
241D}, {432, 421, (231,
(34 1)}

So you can multiply two cosets together to get a third:

In[6]:= {P[{3, 4, 2}], P[{2, 4, 1}],
P[{3, 2, 1}], P[{4, 3, 1}1}.
{P[{4, 3, 2}, P[{2, 3, 1}1,
P[{3, 4, 1}], P[{4, 2, 1}1}

Out[6]=1{(1), (12)(@34), (13)(24), 1423}
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We can also verify that V' is normal in A4 by calculating its conjugates. First we

have the function Conjugate [a,b] which conjugates b by a. For example, if

In[7]:

a = P[{1,2,3}]

Out[7]= (1 2 3)

In[8]:=b = P[{1,4}]
Out[8]= (1 4)

then
In[9] := Conjugatel[a,b]

Out[9]= (2 4)

You can conjugate all the elements of a set by a at once:

In[10]:= Conjugate[ a, Elements([V] ]

out[10]={(1), (1 4)(23), (12)@34, (1324}

which confirms that V' is normal in Ay.

Example 10.14. In S5, we have the subgroup Fj (see exercise 8.20):

In[11]:=F20 = Group[ P[{1,2,3,4,5}] , P[{1,2,4,3}]
]

Out[11]= ((1 2 3 4 5), (1 2 4 3))
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A pair of generators of S5 is

In[12]:= P[{1,2,3,4,5}]

a
b = P[{1,2}]

Out[12]= (1 2 3 4 5)

Out[13]= (1 2)

To check whether Fy is normal in S5 you conjugate the generators of Fy first
by a and then by b and look whether the resulting sets lie in Fy. In fact since a

belongs to [y you need only check

In[14]:= Conjugate[ b, Generators[F20] ]

Out[14]= {(1 3452), (1432}

which does not lie in F5q. So Fyg is not normal.

Example 10.15. Let G75 (see exercise 8.16) be the permutation group

In[15]:=G72 = Group[ P[{1,2,3}], P[{1,4},{2,5},{3,6}],
P[{1,5,2,4},{3,6}] ]

Out[15]= ((1 2 3), (1 4)(2 5)(3 6), (1 52 4)(36))
G'79 has order 72:

In[16] := Order [G72]

Out[16]= T2
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Let K be the subgroup

In[17]:= K = Group[ P[{1,2,3}], P[{4,5,6}] 1]

Out[17]= ((1 2 3), (4 5 6))

Since these two 3-cycles commute with one another, K = 7/37Z x 7 /3Z. The
first element of the list of generators of Gizo is also a generator of K. So to check
that K < G72 we need only conjugate the generators of K by the remaining two

generators of Gizg :

In[18]:= Conjugate[ P[{1,4},{2,5},{3,6}],
Generators[K] ]
Conjugate[ P[{1,5,2,4},{3,6}],

Generators[K] ]

Out[18]= {(4 5 6), (1 2 3)}

Out[19]= {(4 6 5), (1 2 3)}

Therefore K is a normal subgroup of G7o. The quotient group L := Gr3/K
has order 72/9 = 8. We want to determine which group of order 8 it is. Since
each coset has 9 elements, we will tell Mathematica not to print out the entire list

of cosets when it computes L:

In[20] := L = LeftCosets[G72, K];

First we look at representatives from each of the cosets.

In[21] := LeftCosetReps[G72, K]
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Out[21]= {(1), (1 2), (4 5), (2 3)4 5),
(14)(25)(@36), (14)(2536),
(14)(2635), (14@6)@B5}

The first coset, L[[1]], is K’ = 17. The second, L[[2]] = (1 2) K. Now
(12)K)*=(12°K = K .

In other words, it has order 2. Since the representatives of the cosets L[[3]],
L[[4]], L[[5]] and L[[8]] have order 2 as well, so do the cosets themselves. This
leaves L[[6]] and L[[7]]. We can see that

(14)(2536)) = (14)(2635) .

So these two are inverse to each other. Do they in fact have order 4?2

In[22]:= L[[6]].L[[6]]

Out[22]= {(2 3)(4 B), (1 2)(4 5), (1 3)(4 5),
(236G 6), (23)&6), (12)(6G56),
12)46), (13)6B6), (13)4e6)}

Comparing this with our list of coset representatives, we see that this must be
L[[4]], which has order 2. So L[[4]] = L[[6]]* and L[[7]] = L][[6]]3. It begins to
look as if L might be isomorphic to Dy (see equation (7.1)). To check this, we

need generators o and T satisfying

Let's try 0 = L[[6]] and 7 = L[[2]]. To see that they generate L we compute
In[23]:= L[[2]].L[[6]]

LI[2]1]1.L[[4]]
LL[2]1]1.L[[71]
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Out[23]= {(1
(1
(1
(1
(1

Out [24]= {(4
(5
(1
(1

Out [25]= {(1
(1
(1
(1
(1

Thus

CHAPTER 10.

4)(2 5)(36), (1425 36),
43625), (152634),
53426), (15(€26)(@34)),
6 3524), (16)(24)(@35)),
6 24305)}

5, (123@5, (1
6), (46), (1223
23@6), (1326
32)(4 6}

32)(4 5),
6),
6),

4)(26)(35), (142
43526), (1536
5)(24)(36), (152
62534), (1634
6)(2 5)(3 4)}

6 3 5),
2 4),
43 6),
2 5),

COSETS

So L[[6]] and L[[2]] do generate L. Now let's see whether they satisfy the right

relation. We must check whether

In[26]:= L[[7]1].L[[2]
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Out[26]= {(1 4)(2 5)(36), (1425 36),
(143625), (1526234,
(153426), (15)(26)(@4),
(163524, (16)(24)(@35)),
(1624357}

which is L[[5]]. So indeed

h
I
S

10.6 Exercises

1. Suppose that G is a finite group and K < G.
a) Define a relation in G by
a~p if aK=ppK.

Verify that this is an equivalence relation. Conclude that two cosets are

either equal or disjoint.
b) Show that | K| = | K| for any o € G.

¢) From (a) and (b), deduce Lagrange's theorem.
2. Prove that for natural numbers a and n which are relatively prime,
a?™ =1 (mod n) .

3. & Draw the lattice of subgroups of Dj. Do the same for the quaternion group

Q (see exercise 4.5).

4. Which subgroups of D, ate normal? Identify the corresponding quotient

groups. Do the same for ().
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5.

10.

11.

12.

13.

14.

Verify that V' is a normal subgroup of S4. Find all normal subgroups of .

Is the permutation group of order 72 in example 10.15 a normal subgroup of
Se? Is N(p) a normal subgroup of GL(2,F,) (see example (4.2)(ii))?

Let G be a group and K a subgroup. Suppose that g is a set of generators of
G and k of K. Show that if

akat € K |

forall @ € gand k € K, then K is a normal subgroup.

e Let H and K be normal subgroups of a group G with H N K = {1}.
Prove that a8 = fa forany o € H and B € K. Suggestion: show that
aBa Bt e HNK.

Check that in example 10.1(ii) the product of two left cosets may not be a left

coset.

Prove that a quotient group of a cyclic group is cyclic.
Show that S,,/A,, = Z/27.

Verify that the group of translations 17" < GL(2,F,) (see example 4.2())) is
a normal subgroup of the Frobenius group F{,_1), (see exercise 4.4). Prove

. - . »
that the quotient group is isomorphic to [F7.

In Q/Z, what is the order of the coset of a/b, where a,b € Z,b # 0, and
(a,b) = 1? Conclude that every element in Q/Z has finite order, and that

there are elements of arbitrarily large order.

Are there elements of infinite order in R/Z = S (cf. exercise 6.2)?
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15.

16.

17.

18.

19.

20.

21.

22.

Let H be the Heisenberg group (see exercise 8.15). Show that

H/Z(H)~R*.

e In example 10.15, let
H={(14)(25)(36), (1524)(36)}) -
Prove directly that = D,. Show that the composition
H= G5 L,

where 7 is the inclusion map and p is the canonical homomorphism, is an

isomorphism. Is G75 isomorphic to H x K?
o In SL(2,C), let
N s (01

T\ o0 i) “\-10)"
Verify that Ba8~1 = a~! and that G5 := («, ) has order 12,
Let G be a group such that G/ Z(G) is cyclic. Prove that G is abelian.
Show that f3 : PGL(2,F3) — Sy is an isomorphism.
What is the order of PSL(2,F,)?

e Let F' be a finite field. How many squares are there in F', that is, elements

of the form a?, a € F? Suggestion: use exercise 6.20.

a) Suppose that [ is a normal subgroup of a group G. Show thatif & € H

then H contains the entire conjugacy class of .

b) e In example 9.4(ii), we determined the conjugacy classes of As. Use
this computation to prove that A5 has no normal subgroups other than

{1} and A5 itself.
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23.

24,

25.

e Let G be a group, H C G, a subgroup, and set X = G/H. Then G acts
on X by multiplication on the left. As discussed in chapter 8, this determines

a homomorphism ¢ : G — Sx which is given by
ola)-pH = afH .

a) Show that kero C H;

b) If K C H is a normal subgroup of G, prove that K C kero.

(11 5o 0 1 (31
a=1y 1) “\z10) 77 \2 1
in G = SL(2,F5) . Then g = {«, 5} generates G. Verify that h = {3,7}

generates a subgroup H of index 5 (see exetcise 4.11). The group G acts on

Let

G/H. The 5 cosets of H in G each contain one of the powers of a. So label

the cosets 1,2, 3,4, 5 by letting coset ¢ be the one containing

i (1
a_01

This defines an action of G on {1,2,3,4,5}, in other words, 2 homomort-

phism of G into S;.

a) Prove that the image of G'is As.

b) Identify the kernel of the mapping and prove that it induces an isomor-
phlSIl’l of PSL(2, ]F5) with A5.

Let G be a group, and H and K normal subgroups. Suppose that K < H.

a) Verify that H /K is a normal subgroup of G/ K.
b) (Second Isomorphism Theotem) Prove that (G/K)/(H/K) = G/H.
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Sylow Subgroups

11.1 The Sylow Theorems

The Sylow subgroups of a finite group G' are a class of subgroups which provide
the first clues for discovering the structure of G. We shall see later in this chapter
that the results we obtain about Sylow subgroups are enough to classify groups

of small order.

Definition 11.1. Let G be a group of order ap”, where (a,p) = 1. A p-subgroup
of order p” is called a Sylow p-subgroup of G.

In other words, a Sylow p-subgroup is a p-subgroup of the maximal possible
order. For example, |:Sy| = 24 = 23-3. So a Sylow 2-subgroup is one of order 8,
such as Dy. A Sylow 3-subgtroup is one of order 3, for example a cyclic subgroup
generated by a 3-cycle. If we consider the permutation group G2 in example
10.15, we have that 72 = 23 - 32, The subgroup H = Dy in exercise 10.16 is a
Sylow 2-subgroup and the subgroup K = (Z / 3Z) 2 , a Sylow 3-subgroup.

Our first result tells us that for each prime p which divides |G| there exists a
Sylow subgroup. It is a partial converse to Lagrange's theorem. In order to prove

it we need an arithmetic lemma.

Lemma 11.2. Suppose n = ap” where (a,p) = 1. Then

(Z) =a (modp).

In particular, p does not divide (;lr)

175
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Proof. As we saw in exercise 1.4,

(1+2)=1+4+2" (modp).

Arguing by induction,

(1+z) =1+2” (mod p).
Therefore
(I+z)"=(Q1+2)")' =1+2")"=1+az” +---+2" (modp).

But the coefficient of P in the expansion of (1 + )" is (;T) . Therefore

(Z) =a (modp).

]

Theotrem 11.3. et G be a finite group. For each prime p dividing |G| there exists a Sylow
p-subgroup.

Proof. Suppose n = |G| = ap”, where (a,p) = 1. Let X be the set of all

subsets of G with p" elements. We know that

a-()

(o, T) — aT,

Now G acts on X by

where @« € G and T' € X. X decomposes into a disjoint union of orbits of G.
According to the lemma, p does not divide | X|. So from formula 9.2 we see that
the order of at least one of these orbits is not divisible by p. Suppose Oy is such

an orbit, and G the stabilizer of 7. By formula 9.1,

|G| - ‘OT||GT| .
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Since |G| is divisible by p", it follows that |G| is divisible by p". But for any
T €T, wehave Gy C T, so that

|G| = [Ger| <|T|=p".

Therefore
|Gr| =p"

and G is a Sylow p-subgroup. O
Remark 11.4. The proof shows that in fact
Grr=1T,
in other words 7" is a right coset of the Sylow p-subgroup G'r. It also shows that
|Or] =a.
On the other hand, suppose H is any Sylow p-subgroup, and set
T=Hrt,

for some 7 € G. Then it is easy to see that Gy = H , and therefore |Orp| =
|G|/|H| = a. So orbits Or for such T, are precisely the orbits whose length is

prime to p.

Our second result says something about the number of Sylow p-subgroups.
Theorem 11.5. Letny, be the number of Sylow p-subgroups of G. Then
n,=1 (mod p).

Proof. As pointed out in the remark above, each orbit of length a consists of right

cosets of Sylow p-subgroups. Cosets of different subgroups are distinct: for if
Ho=Kr, o,7€G,

then
Hor '=K .
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In particular, 1 = B(0771) for some 8 € H. It follows that o7~ = 37 € H,
so that [ = K.

We can now count the number of elements of X in such orbits: there are
n, Sylow p-subgroups and each one has a cosets. Therefore the total number
of elements of X in these orbits is an,. Since the length of any other orbit is

divisible by p, equation 9.2 shows that
| X|=an, (modp).
But according to lemma 11.2,
| X|=a (modDp).
Therefore since (a,p) = 1,
n, =1 (mod p).
[]

If H is a Sylow p-subgroup of G, then so is every conjugate of H. In the
example G = Sy, we saw that the Sylow 3-subgroups ate cyclic. They are in fact
all conjugate to each other, because all 3-cycles are conjugate in Sy. The third

result tells us that this is not a coincidence.

Theorem 11.6. Lez G be a finite group. Then its Sylow p-subgroups are conjugate to one

another.

Proof. Let H be a Sylow p-subgroup of G. Each left coset of H has p" elements.
Thus the set of left cosets of H, G/H C X. Let K be another Sylow p-subgroup.
We can look at the action of K (by left multiplication) on X and in particular on
G/H. Then G/H decomposes into disjoint K -otbits. Since p does not divide
|G/ H|, equation 9.2 again says that there must be an orbit whose order is not
divisible by p. Suppose the coset a1, a € G, belongs to such an orbit. By 9.1,
the order of this orbit divides | K| = p”. But this order is not divisible by p. So

it must be 1, in other words,

KaH = aH .



11.1. THE SYLOW THEOREMS 179

This means that for any Kk € K,
ka1 e al

or equivalently

a‘kae H.

Therefore « ' Ka C H, and since |K| = |H|, in fact
a'Ka=H.

Thus any two Sylow p-subgroups are conjugate. []

This result suggests another way of counting the number of Sylow
p-subgroups. If we let G act on X by conjugation, then the orbit of a Sylow

p-subgroup H is the set of its conjugates. The stabilizer is the subgroup
Ng(H) :={a € G |aHa'=H}.

N¢(H) s called the normalizer of H in G. Cleatly H < Ng(H) and if H <G, then
N¢(H) = G. Now we can apply 9.1 again to see that the number of conjugates
of His |G|/|Ng(H)|. Since
el 6l
[Na(H)|  |H] |H| ’

it follows that the number of conjugates of I divides a. Therefore:
Corollary 11.7. n,, divides a.

Examples 11.8. (i) As we remarked, Dy is a Sylow 2-subgroup of Sy:

Dy ={(1), (12)(34), (13)(24), (14)(23), (1234), (1432),
(13), (24)}.

The subgroup

V=A{(1), (12)(34), (13)(24), (14)(23)}
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is a normal subgroup of Sy. So every conjugate of Dy contains V. Now
{(12)(34), (1234)} generates D,. There are 6 4-cycles, all conjugate
to each other. A pair of them, inverse to each other, occur in Dy and each
of its conjugates. Therefore there are 3 subgroups of Sy conjugate to Dy.

This fits with theorem 11.5 and corollary 11.7:

3=1 (mod?2) and 3=[Sy: D4 =u0a.

(i) In the group G7o, K is normal. So it is the only Sylow 3-subgroup. From

theorem 11.5 and corollary 11.7, we know that
ny =1 (mod 2) and ne|9.
Sony = 1,3 or 9. The Sylow 2-subgroup

HZ{(D? (45>>(1 2)? (12)(45)7 (14)(25)(36)7
(1425)(36), (1524)(36), (15)(24)(36)}

is isomorphic to Dy, with generators {(1524)(36), (14)(25)(36)}.
Using Mathematica (see chapter 8), or otherwise, we see that (1524)(36)
has 18 conjugates in G'79, occurring in mutually inverse pairs. Therefore

H has at least 9 conjugates. So ng = 9.

In the last section we shall see how to find a Sylow 2-subgroup of Ss.

11.2  Groups of Small Order

Theorem 11.9. A group of order p*, where p is prime, is cyclic or is isomorphic to 7 pZ X
Z/pZ.

Proof. Let G be a group of order p? and assume that G is not cyclic. According to
theorem 9.7, the centre of G has order at least p. So take an element o € Z(G),
a # 1. Then |a| = p. Now pick an element 8 & (a). Since |3] | p* and G
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is not cyclic, it follows that |3| = p too. And because o € Z(G), aff = Pa
Therefore the mapping
Z]pZ x 7./pZ — G
given by
(a,b) — B’ a,b € Z/pZ .
is a well-defined homomorphism. This homomorphism is injective. But both

groups have order p?, so it is in fact an isomorphism. Thus G is either cyclic or

isomorphic to (Z / pZ) 2 ]

For example a group of order 9 is either cyclic or isomorphic to (Z / SZ)Q. The

next result deals with groups of order 2p.

Theorem 11.10. A group of order 2p, where p > 3 is prime, is isomorphic to 7| 2pZ or
to Dy,

Proof. Let G be a group of order 2p. Its Sylow p-subgroup has order p and is
therefore cyclic (see corollary 10.5). Similatly, the Sylow 2-subgroup is cyclic of
order 2. So let o be an element of G of order p, and 3 of order 2. Now n, =1
(mod p) and n, | [G : ()] = 2. This implies that n, = 1 and that (@) is a

normal subgroup. Therefore
Baf = a*,
for some k, 0 < k < p. Conjugating again with 3, we get
a=Fap’ = fatf = (a*)f = ot

Therefore k* = 1 (mod p), which means that k = +1.

Thus there are two cases: first,

faf =a,

which says that @ and  commute. But then a3 has order 2p (see exercise 5.7)

and G is cyclic.
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In the second case
Baf=a"t.

This is the defining relation for D,, (equation (7.1)). So G is isomorphic to D,
[

In particular, for p = 3 this says again that a group of order 6 is either cyclic or
isomorphic to S3. And for p = 5, it says that a group of order 10 is either cyclic
ot isomorphic to Ds.

It is time to sort out the groups of order 8.

Theorem 11.11. Let G be a group of order 8. Then G is isomorphic to Dy, Q, 7./87,
Z/AZ X 7.)27. or (2.)27.)°.

Proof. Suppose that G is not cyclic. Then its non-trivial elements have order 2 or

4. It is not hard to see that if all of these have order 2, then
G=(z/22)°.

So let @ € G be an element of order 4. Since the index of (@) is 2, (&) is a

normal subgroup. Pick an element 5 ¢ (). Then
fap ™t =a*,

where k = £1. If k = 1 then v and 8 commute and G is abelian. There are two
possibilities: either |3| = 2 or | 5| = 4. In the first case, arguing as in the proof

of theorem 11.9 we see that
G = Z/4Z X Z/ZZ )

In the second case, we must have that 3> = «?. Therefore [aff| = 2. So
replacing B by a8 we are back to the first case.

Now suppose that

Baﬁ_l =o',
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Thus G is not abelian. If | 3| = 2, then the relation tells us that G = D, (see
equation (7.1)). This leaves us with the case | 3| = 4. According to theorem 9.7,

Z(G) is not trivial. It is not hatrd to see that

12(G)] =2,
and that if 7 € G has order 4, then

Z(G) < () -
So let € generate Z(G). Then o = €, 3% = €, and therefore

(Ba) = (Ba)(a™'f) =B =e¢.
It follows that | fa| = 4. Furthermore,
Ba=a'B=a’8=elap).

Comparing this with the desctiption of () in exetcise 4.5, we see that G = (). [J

The following result is the key to classifying groups of order 12.

Theorem 11.12. Let G be a group of order 12. Then G has a normal subgroup of order
3orG = Ay

Proof. Write 12 = 2% 3. According to theorem 11.5,n3 = 1 (mod 3). Accord-
ing to corollary 11.7, ng divides 4. So n3 = 1 or 4. Suppose that n3 # 1, in
other words that G does not have a normal subgroup of order 3. Let H be one
of the subgroups of order 3. Then G acts on the set of 4 left cosets, G/H, by

multiplication on the left. This defines a homomorphism
oc:G—Sy.
What is the kernel of 0? Well, 0(«) = 1 means that for all § € G,

a(BH) = 6H .
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Equivalently
frafH = H
or
B lap e H
for all 8 € G. But then
a€ BHB™!

for all 5 € G. By assumption, H has four distinct conjugates, and the intersec-
tion of two distinct subgroups of order 3 is trivial. Therefore av = 1 and o is
injective. So G is isomorphic to a subgroup of Sy of order 12, and the only such

subgroup is A,. ]

With this result it is not hard to classify groups of order 12. It turns out that
up to isomorphism there are 5 groups: Z /127, Z/3Z x V , D¢, Ay and G132 (see

exercise 4.17).

Example 11.13. Let G be a group of order 15 = 3 - 5. Then ng = 1 (mod 3)
and ng | 5. It follows that ng = 1. Similarly, ns = 1 (mod 5) and n5|3. So
ns = 1 too. Thus G has only one Sylow 3-subgroup and only one Sylow 5-
subgroup and both are normal. Let a be an element of order 3 and 3 of order

5. Applying exercise 10.8, we see that

af = Ba .

But then by exercise 5.7,

| = [al|f] = 15.

So G is cyclic. Thus every group of order 15 is cyclic.
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11.3 A List

We can now begin a list, up to isomorphism, of all the groups of very small order.

* order 1:

* order 2:

* order 3:

* order 4:

* order 5:

* order 6:

* order 7:

* order 8:

* order 9:

order 10:

order 11:

order 12:

order 13:

{1}

Since 2 is prime, all groups of order 2 are cyclic and therefore iso-

morphic to Z/27..
Just as for 2, all groups of otder 3 are isomorphic to Z/37Z.

It is easy to see that a group of order 4 is cyclic ot isomotphic to V.

Notice that both are abelian.
7 / 57, .

By theorem 11.10, there are two groups of order 6: Z /67 = 7./ 27 x
7,/37 and S; . Sj is the smallest non-abelian group.

7)77.

By theorem 11.11 there are five groups of order 8 Dy, Q, Z/8Z,
ZJAZ x 7./27 and (Z.)27.)3.

From theorem 11.9 we know that every group of order 9 is either
cyclic or isomorphic to (Z/ 3Z)2 :

By theorem 11.10 any group of order 10 is isomorphic to Z/10Z
or D5 .

Z/117Z.

As mentioned following theorem 11.12 the groups of order 12 are

Z/lQZ, Z/3Z X V, D6, A4 and G12 .

7./137..
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* order 14:  Again theorem 11.10 shows that the groups of order 14 are Z / 147,
and D+ .

* order 15: Example 11.13 shows that all groups of order 15 are cyclic.

Notice that there is no non-abelian group of odd order in this list. Can you find

a non-abelian group of least odd order?

11.4 A Calculation

Let's look at the Sylow subgroups of Sg. First factor 8!.

In[1]:= FactorInteger[8!]

Out[1]= {{2,7},{3,2},{5,1},{7,1}}

In other words,

8l = 273257.

The Sylow 5-subgroups and Sylow 7-subgroups are cyclic, generated by 5-cycles
and 7-cycles respectively. A Sylow 3-subgroup is generated by two disjoint 3-
cycles. A Sylow 2-subgroup has order 27 = 128 and is harder to find. The order
of any element in it is a power of 2. So let's begin our list of generators with an
8-cycle, say

(12345678) .

If we add an arbitrary 4-cycle we will get a group which is too big. Now the
square of this 8-cycle is
(1357)(2468) .

So let's take (135 7) as the second generator.

In[2]:= H = Group[ P[{1,2,3,4,5,6,7,8}],
P[{1,3,5,7}] ]
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Out[2]= ((12345678), (1357))

In[3]:= Order[H]

Out [3]= 32

So we have to add another element to our list of generators. If we take an arbitrary

2-cycle we will get the whole group Sg. But the squate of our 4-cycle is
(15)(37) .

So let's add (15) to our set of generators.

In[4]:=H = Groupl P[{1,2,3,4,5,6,7,8}], P[{1,3,5,7}],
P[{1,5}] 1]

Out[4]=((1 2345678, (1357), (15))

In[5] := Order[H]

Out [5]= 128

We have found a Sylow 2-subgroup!

Theorem 11.5 and corollary 11.7 tell us that the number of Sylow 2-subgroups
is odd and divides 8!/128 = 315. It would nice to know how many there really
are. By the second Sylow theorem all Sylow 2-subgroups are conjugate to one
another. So we must determine the number of subgroups of Ss conjugate to our
subgroup H. The function ConjugateSubgroups will do this. An 8-cycle and

a transposition generate Sg:
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In[6]:= S8 = Groupl[ P[{1,2,3,4,5,6,7,8}],
P[{1,2}] ]
Out[6]= ((12345678), (12))
Then
In[7]:= ConjugateSubgroups[S8, H]
Out [7]= 315

11.5 Exercises

1. Write down the Sylow 2-subgroups of Ss. Show directly that they are conju-

gate to each other.
2. Find a Sylow p-subgroup of Sg for each prime p dividing 6!.

3. Verify that the group of translations 1’ (see example 4.2(i)) is a Sylow p-
subgroup of GL(2,F,). Find another Sylow p-subgroup. What is n,,?

4. Let p > 2 be a prime number. What is the order of a Sylow p-subgroup of

Sop? Give an example of such a subgroup by giving a set of generators for it.

5. With the notation and assumptions of the proof of the first Sylow theorem,
let H be a Sylow p-subgroup of GG. What is the stabilizer of a H7? Write

oH T as a right coset of a Sylow p-subgtroup.

6. Suppose that G is a group of order pg, whete p and ¢ are prime, p < g and
p1 (¢ — 1). Prove that G is cyclic.
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10.

11.

12.

13.

14.

15.

. Determine all numbers n < 70 which are the product of two primes satisfying

the conditions of the previous exercise.

. @ Let G be a p-group. Show that G has a subgroup of every order which

divides |G]|.

. ® Let GG be a finite group, and p a ptime dividing |G|. Show that G has an

element of order p.

Prove that a group of order 4 is either cyclic or isomorphic to V.
Classify all groups of order 26.

Classify all groups of order 21.

Let G be a group of order 8. Suppose every element except 1 has order 2.

Prove that GG is abelian and
G = (z/22)".

Let G be a group of order 8.

a) Suppose that | Z(G)| > 4. Show that G is abelian.

b) Suppose that G is not abelian, and that & € G has order 4. Prove that
Z(G) C (a) .

Suppose that G is a group of order 12 and G 2 A,4. By theorem 11.12, G has
a normal subgroup H of order 3. Let K be a Sylow 2-subgroup of G. Then
K acts on H by conjugation.

a) Show that the kernel of this action has order 2 if G is not abelian.

b) Suppose that K = V. Prove that then G = S35 X Z /27 or
G=7/3L x (Z]27.)>.
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16.

17.

18.

19.

©) Suppose that K is cyclic. Prove that G is cyclic or that G = Gs.

How many Sylow 2-subgroups does S5 haver Sg?

Prove that the construction in the previous section gives 315 Sylow

2-subgroups of Sg.
How large is the centre of a Sylow 2-subgroup of Ss?

What is the order of a Sylow p-subgroup of Sj2, for p prime? Give an example

of one.
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Simple Groups

12.1 Composition Series

If we were to continue classifying groups of small order, we would get a table like

this one.

Order of Groups Number of Groups

16 14
17 1
18 5
19 1
20 5
2
2
1

21
22
23
24 15

As the table suggests, when the order has many prime factors, there tend to be
many groups of that order. So the order of a group does not tell you very much
about it. Classifying groups in this way is not very enlightening. A better way
to understand groups is to analyze how they are built up out of certain 'building

blocks'. The building blocks are called simple groups.

Definition 12.1. A group G is simple if it has no normal subgroups other than
{1} and G itself.

191
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We have seen some simple groups already: the groups of prime order. By
Lagrange's theorem they have no non-trivial subgroups at all. To understand

how a group is built out of simple groups, we need the following observation.

Theorem 12.2. Let G be a group and K < G. Letp : G — G = G/K be
the canonical homomorphism. Then there is a 1-to-1 correspondence between subgroups of G

containing K and subgronps of G' given by
Hw—p(H)=H/K,
where K < H < G. Furthermore H is normal in G if and only if p(H) is normal in G.
Proof. For any subgroup H < G the set
H:=p '(H):={aecCG|pla) € H}

is a subgroup of G. For 1 € H,so H # (. If « € H, then p(a) € H, which
means that p(a™!) = p(a)™ € Hsothata™! € H. Andif a, B3 € H, then

p(aB) = p(a)p(B) € H so that a3 € H.
Now given H < G,p '(H) > K and p(p~'(H)) = H. Andif K <
H < G, then p~'(p(H)) = H. Thus the correspondence

H < p(H)
is 1-to-1. Suppose H < G. Given & € G, pick a € G with p(a) = @&. Then
p(H) = plaHa™) = p(a)p(H)p(a™) = ap(H)a™"
so that p(H ) is normal in G. Conversely, if H < G and o € G, then
plap™ (H)a™") = p(a)Hp(a)™" = H .
Therefore ap ' (H)a™t = p ' (H) andp~ ' (H) < G. O

Now we can see how a finite group G is built up from simple groups. Let [

be a non-trivial proper normal subgroup which is as large as possible. In other
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words, there should be no proper normal subgroup containing H;. Then G/ H;
has no non-trivial proper normal subgroups and is therefore simple. Next, pick
a non-trivial proper normal subgroup Hy of H; which is as large as possible.
Again, by the theorem above, H;/H is simple. Continue in this way until you
have a non-trivial subgroup H,,_; which is simple itself. This will happen because
the orders of the subgroups H;, Hj, ... ate strictly decreasing. This descending

sequence of subgroups describes how G is built up out of simple groups.

Definition 12.3. A composition series for a group G is a sequence of subgroups
G=Hy>Hy>--->H, 1>H,={1}

where H;/H; 1 is a simple group for 0 < ¢ < n. The quotient groups H;/H; 1

are called composition factors of G.

For example, let's write down a composition series for Sy. We have A4 < Sy
and V' < Ay. Since V' = Z/27 x 7./27 we have one more term, Z/2Z < V.

Thus our composition series is
Sy > Ay V> Z/27 > {1} . (12.1)
The composition factors are
SyfAd = Z)22 AV =Z[3Z  V/[(Z)22)=Z/)2Z  L]2Z.
A composition seties for S5 is
Ss > As > {1}.
That's all, because we saw in exercise 10.22 that Aj is a simple group.

Theotem 12.4 (Jordan - Holder). Let G be a finite group. Then G has a composition

series. 'T'he composition factors are unique in the following sense. If

G=Hy>Hy>--->H, > H, ={1}
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and

G=Kyp K> >K,1>K,={1}

are two composition series for G, then . = 1 and the composition factors are the same up to

permutation, that is there is a permutation o of {1,2, ..., n} such that
Hi/Hi = Koy Kogit)
Jor 0 <@ <n.

We have seen that composition series exist, but shall not prove that they
are unique. Clearly it becomes important to know what the simple groups are.
We shall show that two families of groups are simple: A,,, for n > 5, and
PSL(2,F,), for p prime, p > 2. That A, is simple will be used in chapter
20 to prove that in general a polynomial equation of degree 5 or more cannot be

solved by radicals.

12.2  Simplicity of A,

We know that A3, which is cyclic of order 3, is simple, and that A, is not. In
exercise 10.22 we saw that A5 is simple. In fact, for alln > 5, A, is simple. First

we show that A,, is generated by the set of all 3-cycles (cf. exercise 3.12).
Theotem 12.5. The set of 3-cycles generates Ay, n > 3.

Proof. By definition, an even permutation can be written as a product of an even
number of transpositions. So it is sufficient to show that a product « of two
transpositions is a product of 3-cycles. Now there are two possibilities for .

Either the two transpositions have a symbol in common or they do not:
a=(ij)(k)

or

a = (ij)(kl)
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Now
(i7)(Gk) = (k)
and
(@7) (k1) = ()G R)GR) (KD = (i k)G RD) -
So «a is indeed a product of 3-cycles and therefore any even permutation is a

product of 3-cycles. O

Suppose that N <1 A,,. What we shall do is to prove that N must contain
all the 3-cycles and therefore be A,,. The following lemma tells us that if one
3-cycle belongs to NV, then all of them do.

Lemma 12.6. Suppose that N <1 A,,, n > 5, which contains one 3-cycle. Then N
contains all 3-cycles. Equivalently, the 3-cycles form a single conjugacy class in A,,.

Proof. Suppose that the 3-cycle (i j k) € N. Since n > 5, there exist ,m < n
different from ¢, 7, k. Now let v be any other 3-cycle. As we saw in theorem 8.0,

there exists a permutation 5 € S,, such that
Bap™' = (ijk).
If /3 is even, then we are done. Otherwise we can replace 3 by (I'm), since
(Im)Bap™ (Im) = (Im)(ij k)(Im) = (ijk).
O

So we want to show that /N contains a 3-cycle. To do this we look at commuta-
tors ¥ = afBa” B! where € N and B € A, (see also exercise 13.12). Since
N is normal, Ba™ '3~ € N, and therefore v € N.

Theotem 12.7. The alternating groups Ay, forn # 4 are simple.

Proof. Since Aj is cyclic of order 3, it is simple. So we can assume thatn > 5. We

now proceed by induction on n. In exercise 10.22 we saw that Aj is simple. So let
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n be greater than 5 and assume that A, is simple for all r < n. Let N be a non-
trivial normal subgroup of A,,. A, acts on{1,2,...,n} and the stabilizer of any
number is isomorphic to A,,_;. So for any s, the stabilizer Ny is isomorphic to a
normal subgroup of A,,_1. If N is not trivial, then by the induction assumption
it must be isomorphic to A, itself. In particular it contains a 3-cycle. Therefore
N contains a 3-cycle. Then lemma 12.6 proves that N contains all 3-cycles. But
according to theorem 12.5, the set of 3-cycles generates A,,. Therefore N = A,,.

It remains to convince ourselves that for some s, N; is not trivial. Suppose
a € N,a # 1. If B € A, is a 3-cycle then aBa™! is a 3-cycle too. Therefore
the commutator ¥ = afa~!3~! € N is a product of two 3-cycles. Suppose
that

v = (hij)(kIm).

If h,1, 7, k, [, m are not distinct then since n > 6, 7y has a fixed point s and thus

Ny is not trivial. If they are distinct, let 6 = (i j k). Then
e=~5y 1o = (ikhlj).

Now € € NN too and it does have a fixed point, namely m. So N, is not trivial.
We have shown therefore that A,, is simple and by the principle of induction,

the theorem is proved. [

12.3 Simplicity of PSL(2,F,)

Another family of groups which we can prove atre simple is PSL(2,F,), for p
ptime. In chapter 4 we computed generators for SL(2,F,). The first step is to

refine this result.

Theorem 12.8. SL(2,F),) is generated by

) (50))
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11 10
0 1)°\1 1 )
Proof. We have the relations

CDEDGO=(hY)  e
OG- e

as in chapter 4. These tell us that if one pair of matrices generates SL(2,F,),

or equivalently, by

then so does the other. According to exercise 4.8 all we need to show is that we

<(C) 091) ,CGF;,

in terms of these matrices. Now for any a, b € I, we have

G650 atn)

Takinga = 1, b= ¢! — 1 gives us the matrix

1 1
cb—1 ¢1) -

Taking a = —c™!, b = ¢ — 1 gives us the matrix

can write

Therefore the pair

generates SL(2,F,). [
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Remark 12.9. For convenience, write G := SL(2,F,). In chapter 8 we saw that

G acts on P(IF,) by fractional linear transformations. From the proof of theotem

ce]F;}.

8.7 it follows that

c 0
H—GoﬂGoo—{(O C_1>

If we picka c € IF; and set
c 0
0= (0 c_l) )

then the corresponding fractional linear transformation is given by

ss(x) =z .
Theotem 12.10. Forp > 3, the groups PSL(2,F,) are simple.

Proof. Tet N <1 PSL(2,F,) be a non-trivial subgroup, and N <1 SL(2,F,) be
its inverse image under SL(2,F,) — PSL(2,F,), (see theorem 12.2). We want
to show that N = G. To do this we shall show that

T = ((1] 1) eN. (12.4)

Why will this do the trick? Well, since NV is normal, relation (12.2) above tells us

1 0

(4 D) en

and therefore by theorem 12.8, N = SL(2,F,).
We will prove (12.4) by showing that

that

(i) N acts transitively on P(F,);
(i) Neo acts transitively on P(F,) \ {oo}.

The first statement tells us that p + 1 divides | V| and the second that p di-
vides | Ny | and therefore || as well. So p(p + 1) divides |N|. Now |G| =
(p—1Dpp+1) (see 10.13(ii)). Therefore |G/ N| divides p — 1. In particular,
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(|G/N|, p) =1.But |7| = p. So the order of 7 in G/ N must divide p. This
is only possible if 7 = 1, in other words, 7 € N.
First we show that N is transitive on P(F,). So given ¢ € P(F,), we must
find ay € N such that
5,(0) =c.

Since N # {1}, there exists « € N with s, # 1. Thus for some a € P(F,),
b:=s,(a) #a.

Since G is doubly transitive (see exercise 8.25), there exists f € G with

If weset v = BafS~! € N, then
s,(0) = sﬁsasgl(O) =c.

Thus N is transitive on P(F,).

Secondly, we prove that Ny, is transitive on P(F,) \ {oo}. We will do this by
showing that the orbit of 0 has length p. First let's check that N, is not trivial.
Take o € N such that

50(0) = 00 . (12.5)

Then forany d € H = Gy N G,
Ssas—1 (O) = 0.

Since dad ™! € N, there is more than one element in N satisfying (12.5). Let /3
be a second such element. It follows that a3~! € N and a3~! # 1. Now
pick ay € N, v # 1. Then for

(5:(8 091) ,CG]F;;,

85,5-1(0) = ¢*s,(0) .

we have
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If necessary, by replacing v with aya™" for a suitably chosen a@ € G, we
can assure that s, (0) # 0. Now there are (p — 1)/2 squares in F’ (see exercise
10.21). So Oy, the orbit of 0 under N, must have length at least (p—1)/2+1 =
(p+1)/2. We know that

O

N, \ Gl = (p— 1p

Since (p+ 1) /2 does not divide p — 1, it follows that |Og| = p. In other words
N is transitive on P(FF,) \ {co}. []

12.4 Exercises

1. Write down composition series for () and for Dy, with their composition

factors.
2. Find a composition seties for G'7o. What ate the composition factors?
3. Find a composition seties for a Sylow 2-subgroup of Sg.

4. Let G be a group of order pg, where p and q are distinct primes. Show that

G is not simple.

5. Prove that the product of two 3-cycles is either

a) a product of two disjoint 3-cycles, or
b) a 5-cycle, or
c) a product of two disjoint transpositions, or

d) a 3-cycle.
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6. Verify thatif v = (hij)(klm), § = (ijk) € Sg, where h, i, j, k, [, m are
distinct, then
vy ot = (ikhlj) .

7. Suppose v € A,,, ¥ # 1,n > 5. Show that if v has at least two fixed points,

then there exists a 3-cycle 9 such that their commutator is a 3-cycle.

8. Let p > 2 be prime.

a) Set

(0 1
a=(_1 o)
Show that s, € Api1. You may use the result that the congruence

22 = —1 (mod p) has a solution if and only if p =1 (mod 4).
b) Prove that f, (SL(Q,IFP)) < Appa.

9. A matrix ;
a
a= <c d) € SL(2,7Z)

is congruent to the identity matrix / modulo p, if

a=1 (mod p) =0 (modp)
1

b
¢c=0 (mod p) d=1 (mod p)

Let
I'(p):={ae€SL2,Z) |a=1 (modp)}.

a) Show that I'(p) < SL(2,Z).

b) Prove that
SL(2,Z)/T(p) = SL(2,F,)

10. Suppose that H is a normal subgroup of S, n > 4. Prove that H = S, or
H = A, or H is trivial.
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11.

12.

13.

14.

Can you generalize theorem 12.10 to any finite field F', with |F'| > 3?

Suppose that G is a finite group and H a proper subgroup such that |G| {
|G/H]|!. Prove that H contains a non-trivial normal subgroup of G. Sugges-

tion: use exercise 10.23.

Let G be a finite simple group with a subgroup of index n. Show that G is

then isomorphic to a subgroup of A,,. Suggestion: use exercise 10.23.

Prove that there is no simple group of order 80.



13

Abelian Groups

As we have seen, finite groups, even small ones, are complicated and very difficult
to classify. However abelian groups are quite a different story. As we shall see
it is not hard to classify finite abelian groups, or even finitely generated abelian

groups. This is the goal of this chapter.

13.1 Free Abelian Groups

Recall that a group G is finitely generated if there is a finite subset ¢ C G such that
G = (g). In this chapter, all groups will be abelian and finitely generated. As is

usual in abelian groups, we shall write the group operation as addition.

Definition 13.1. A set of generators g = {ay, ..., a,} of a finitely generated
abelian group G is called a basis of G if there are no non-trivial relations among

the elements of g, in other words
a1y + -+ apay, =0
foray,...,a, € Z, implies that
ag=---=a,=0.
If there exists a basis for G, then G is called a free abelian group.

For example, Z" has the basis {€1, . .., €, } where
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for 1 <14 < n,and is thus a free abelian group. On the other hand, Z/nZ is not

free, because every element o satisfies
no = 0.

In fact since a free group is infinite, no finite abelian group is free. In general if

G is an abelian group, set
Gy ={a € G| na=0, forsomen € Z} .

It is easy to see that G is a subgroup of G, called the orsion subgroup of G.

One consequence of the classification theorem will be that
G=Gy x Gy,

where G, is a free subgroup of G.
Every finitely generated free abelian group is isomorphic to Z" for some n.

Why is this so? Suppose G has a basis {1, ..., a, }. Define a mapping

f:72"—G
by
flay,...,a,) = ara + -+ + apo, .
This mapping is clearly a homomorphism, and is surjective since aq,...,aq,

generate GG. Suppose f(ay,...,a,) = 0 for some (ay,...,a,) € Z". So
a0 + -+ apa, =0

Then since there are no non-trivial relations among «q, ..., &y, , we have a; =
-+ =a, = 0. Thus f is injective.
It is not hard to see that for m # n, Z™ % Z". Therefore any two bases of

a free abelian group have the same number of elements.

Definition 13.2. The rank of a free abelian group is the number of elements in

a basis of the group.
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Now let's return to an arbitrary finitely generated abelian group G with gen-

erators ¢ = {1, ..., a,}. Then as above, we have a homomorphism
f:72"—G
given by
fi(ar, ... a,) = aaq + -+ + azay, (13.1)

which is sutjective. Its kernel is a subgroup of Z". By describing the kernel

precisely, we shall get a description of . The first step is the following theorem.
Theorem 13.3. A subgroup of a free abelian group of rank n is free, of rank at most .

Proof. We prove the theorem by induction on n. For n = 0 there is nothing to
prove. So assume that the result holds for any subgroup of a free group of rank
less than n. Let G be a free group with basis {a, ..., a,}, and H a subgroup
of G. Set

G1={ag,...,ay)

The inclusion H — G induces a homomorphism
g:H—G/Gi =2 Za1 = 7.

Now
kerg:HﬂG1,

so the induced homomorphism
g:H/(HNG,) - G/G1=Z
is injective. Therefore, by exercise 6.11, H/H N G is cyclic, and in fact,
H/(HNGy) = a1(Zay) ,

for some a1 € Z, a; > 0. Pick an element 31 € H such that generates
H/H N Gy. We can assume that it is of the form

fr=aon+p€H,

www . dbooks . org


https://www.dbooks.org/

206 CHAPTER 13. ABEILLAN GROUPS

for some 8 € HNG. Since the rank of G is n—1, by the induction assumption
H NG is free and of rank at most n — 1. Let {f, . .., B}, m < n, be a basis
of H N G1. We want to show that {1, 52, ..., B} is a basis of H. First we

check that it generates . Given an element v € H, we know that
Y=bp € H/(HNG),
for some by € Z. Therefore v — b3, € H N Gy and so
Y= bifr =bofr+ - 4 byl
for some by, ... b, € Z. Thus
Y =001+ befo+ -+ b

and {f1, ..., Bm} generates H.
Now suppose

bifr+b2f2+ -+ b =0,
for some by, ...,by, € Z. Thenin H/(H N Gy),
b1 =0,
which means that by = 0 since H/(H N G1) is free. But then
baBo 4 -+ + by = 0.
Since {fa, . .., B} is a basis of H N Gy, we have that
bp=---=0b,=0

as well. Therefore {/31, ..., B} is a basis of H. By the principle of induction,
the result then holds for all n. ]

In particular, this shows that the kernel of the homomorphism f, defined in
(13.1) above, is a free subgroup of Z". Suppose {1, ..., Bm} C Z" is a basis

of ker f. We can write
n

B = Z Qij€i

=1
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for some a;; € Z. If welet A = (a;;) € M(n,m,Z), then we have the sequence

of homomorphisms

zm 270 L a
with
ker f = (B1,...,Bm) =imA.
Thus
G=7Z"/imA.
In the next section, we shall show that there is a basis {«, . .., @, } of Z" such

that {diaq, . .., dyan,} is a basis of ker f, where dy,...,d,, € Zand d; | --- |

d,,. This will give us our first classification theorem.

13.2 Row and Column Reduction of Integer
Matrices

Suppose that G is a free abelian group of rank n with basis {ay, ..., a,}, and

H is a subgroup of rank m < n with basis {1, ..., B }. Write
Bi = ajai, (13.2)
i=1

forsome a;; € Z,1 <i<n,1 <j<m. Let A= (a;;) € M(n,m,Z). Our
goal is to diagonalize A using integral row and column operations. The algorithm
in fact applies to an arbitrary n X m integer matrix. First, let's list the elementary

operations.
(i) Multiply row (column) ¢ by —1.
(i) Interchange rows (columns) ¢ and j.

(i) Add a times row (column) ¢ to row (column) j, where a € Z.
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As with real row and column operations, these integer operations correspond
to multiplication on the left or right by elementary matrices. To obtain the corre-
sponding elementary matrix, apply the operation to the n X n or m X m identity
matrix. Row operations change the basis of GG, and column operations, the basis
of H.

Now we diagonalize A. First, pick an entry of A of minimal size. By in-
terchanging a row and a column, move it to the position (1,1). If necessaty,
multiply by —1 to make it non-negative. Divide each entry in row 1 by a1;. If
a remainder is not 0, then move that entry to the position (1, 1). Continue until
all entries in row 1, except the first are 0. Do the same with column 1. We now

have a matrix of the form

a1y 0 0
0 ag A2m,
0 An2 Qpm

We also want a;; to divide all other entries. Suppose that there is an entry in
row ¢ which is not divisible by @1;. Add row ¢ to row 1. Then proceed as before
to make all other entries in row 1, 0. Continuing in this way, we end up with an
entry in position (1, 1) which divides all other entries in A.

Now apply the same procedure to the (n — 1) X (m — 1) matrix remaining;
Applying row and column operations will leave the entries divisible by aq;. We

end up with a matrix of the form

d 0 - 0
0 do -+ 0
B=]10 0 dm,
0 O 0
0O 0 --- 0

where d; > 0, for 1 <7 < m, and

dy|dy |-+ | dpm -
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Furthermore,

B = PAQ,
where P € M(n,Z) and QQ € M(m,Z) are invertible. Thus we have proved:

Theorem 13.4. Tet A € M(n,m,7Z). Then there exist invertible matrices P €
M(n,Z) and Q € M(m,Z) such that B = PAQ is a diagonal matrix with non-

negative diagonal entries dy | da | - -+ | dp.

Now these numbers dy, ..., d,, are in fact invariants of A, that is they do
not depend on how A is diagonalized. To see this, we will show that they can
be expressed in terms of the minors of A. For any matrix A € M(n,m,Z),
let 0, = 0 (A) be the greatest common divisor of the k X k minors of A, for
1<k<m.

Lemma 13.5. Suppose that P € M(n,Z) and Q € M(m,Z) are invertible. Then
01y« Opy are the same for A and for P AQ).

Proof. 'The rows of PA are integral linear combinations of the rows of A. So for
any k, 1 < k < m, the k X k minors of P A are linear combinations of the k X k
minors of A. Therefore the greatest common divisor of the k& X k& minors of
A divides all the k X k minors of PA, and thus divides their greatest common
divisor. Now A = P71(PA). So, reversing the roles of A and PA, the same
argument shows that 0y (P A) divides 05 (A). Thus

ok(PA) = 6,(A) .

Multiplying PA on the right by () has a similar effect: the columns of PAQ)
are linear combinations of the columns of PA. So by an argument similar to the

one we have just made, we see that
5(PAQ) = 5,(PA)

Therefore,
0u(PAQ) = 6i(A) ,

as claimed. ]
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If B € M(n,m,Z) is a diagonal matrix with non-negative diagonal entries
dy | dy |-+ | dm, then
Op =dy - -dy,

for 1 < k < m. Equivalently,
dy = O /0k-1 ,

for k > 1, provided 651 # 0, and d; = 1. We can now prove that dy, . .., d,,

are invariants of A.

Theorem 13.6. Ler A € M(n,m, Z). Suppose we diagonalize A and obtain a diagonal
matrix with diagonal entries dy | dy | - -+ | dp. If we diagonalize A in a different way, we

will obtain the same diagonal matrix.

Proof. 'The lemma shows that the invariants 01, . .., d,, ate the same for A and
PAQ, for any invertible P € M (n,Z) and Q) € M(m,Z). Diagonalizing A
means finding such P and @ so that PAQ) is diagonal. So regardless of how
we diagonalize A, the resulting diagonal matrices will have the same invatiants
d1,...,0m. But as we have seen these determine the diagonal entries of the

resulting diagonal matrices. OJ

Let's now return to the matrix A given by equation (13.2). In this case it has
rank m. The matrix P transforms our original basis {1, ..., a,} of G into a

basis {71, ...,7n} of G such that

{dl’yla ce e 7dm’}/’m}

is a basis of H. This proves the following result.

Theotem 13.7. Let G be a free abelian group of rank n and H a subgroup. Then there
exists a basis {cv1, . .., o} of G and positive integers dy | -+ - | dp, for some m < n,
such that

{diaq, ..., dpopy}

is a basis of H.
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Example 13.8. Let

0 2 0
—6 —4 —6
A= 6 6 6
7 10 6
Apply the algorithm above to A:
0 2 0 2 0 0 2 0 0
-6 —4 —6 col 1 —4 —6 —6 clear col 1 0 -6 —6

6 6 6 & col 2 6 6 6 0O 6 6
7 10 6 10 7 6 0O 7 6

Now 2 does not divide 7. So we add row 4 to row 1:

2 0 0 2 7 6 2 1 6
0 -6 —6 row1 0 -6 —6 col 2 0 -6 —6 col 1
0 6 6 + row4 0 6 6 — 3coll 0 6 6 < col 2
0O 7 6 0O 7 6 0O 7 6
1 2 6 1 0 0 1 0 0
-6 0 —6 clear row1, 0 12 30 col 3 0 12 6 col 2
6 0 6 col 1 0 —-12 -30) -2ca2 |0 =12 —6] < cas
7 0 6 0 —14 —-36 0 —14 -8
1 0 0 1 0 0 1 0 0
0 6 12 clear row?2, 0O 6 0 row 4 0 —2 2 —row?2
0 —6 —12 col 2 0 0 0 & row?2 0 0 0
0 -8 —14 0 =2 2 0 6 O
10 0 1 00 1 00
0 2 -2 clear row 2, 0 2 0 row 3 0 2 0
00 0 col 2 0 00 & row4 0 0 6
06 0 0 06 0 00

13.3 Classification Theorems

We can now state the first classification theorem for finitely generated abelian

groups.
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Theorem 13.9. Let G be a finitely generated abelian group. There existdy, . .., d,, € N,
withdy | do | -+ | dp, andr > 0, such that

G=ZZ/AWZ X - XZL/dnZL X 7" .

Proof. 'To show the existence of such a decomposition, we need only put together
what we have discussed in the previous two sections. Let {1, ..., a,} be a set
of generators of G. Define f : Z" — G by

filar, ... an) — ajaq + -+ + apay, .

This map is surjective and therefore

G=Z"/kerf.
By theorem 13.7, there exists a basis {31, ..., [} of Z" and natural numbers
dy,...,dp withdy | -+ | d, such that {d151,...,dnBm} is a basis of ker f.
Therefore
G=EZ/AWZ X - xXL]dwL x L"
with 7 =n —m. [

For example, let A be the matrix in example 13.8, and let G = Z*/im A.
Then
GX=Z/2Z x L]6Z X 7 .

Corollary 13.10. The torsion subgroup
Gt %Z/dlZ X X Z/dmZ,
and G | Gy is free of rank 1.

This shows that r is an invariant of G. We define the rank of GG to be the rank
of G/G,. In the next section we shall show that dy, . .., d,, are also invariants,
called the elementary divisors of G.

Suppose we want to use the elementary divisors to classify finite abelian

groups of a given order d. How do we do this? The key is the two conditions:
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@) dildy |- [dm,
(i) didy---dy =d.
For example, let's classify abelian groups of order 72. We have
72=12%.3%.

Since d; divides all the other elementary divisors, each prime factor of d; does
as well. No prime factor of 72 occurs with multiplicity greater than 3. So there

can be at most 3 elementary divisors. Begin with m = 1. The only possibility is
dy =72.
Next, consider m = 2. We must write
72 = didy, with dy | dy .

The possibilities are

72=2-36
72=3-24
72=6-12.

Lastly, let m = 3. We are looking for factorizations
72 = dldgdg 5 where d1 | dg | dg .
The only possibilities are

72=2-6-6
72=2-2-18.

So there are 6 abelian groups of order 72.
One can also decompose a finite abelian group into a product of cyclic groups

of prime power order. This is our second classification theorem.
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Theorem 13.11. Let G be a finitely generated abelian group. Then
G 2 (Z/p1Z)* x -+ x (L) pmZ)™™ < 7",
where Pi, . . ., P, are primes and k1, . .., ky, € N.
Proof. Because of theorem 13.9 we need only show that forany d € N, d > 1,
Z/dZ = (Z/pZ)™ x - - x (Z/pZ)"™ (13.3)
where py, ..., p; are prime numbers. Well, write
d=7ph... pfl

where pq,...,p; are distinct primes, and ky,...,k; € N. Then by example
5.9(i), (13.3) holds. O

Example 13.12. For comparison, let's use this theorem to list the abelian groups
of order 72. Again we have

72=2%.3%.
The abelian groups of order 8 are
(Z)27)? , 7)2Z x ZJAZ , 787 .
Those of order 9 are
(Z/37)*, 7Z)9Z .

So we have the 6 groups:

Q) (Z/2Z)* x (Z/3Z)* = 7)2Z x (Z./67)>

() (Z/27)% x Z/9Z = (Z.)27.)? x 7./187Z

(i) Z/27 x ZJAT x (Z/3Z)?* = 7./6Z x 7.]127

(v) Z/27 x TJAT x 7.)97 = T.JAT x T./18Z = 7./27. x 7./367

) Z/8Z x (Z./3Z)* = 7./247 x 7.]37.

(vi) Z/8Z x 7.)97 = 7./ 72.
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13.4 Invariance of Elementary Divisors

In this section we shall show that the elementary divisors of an abelian group are
invariants of the group. First we set up the basic tool we shall use.

Let G be an abelian group. For any a € Z,
aG = {aa | a € G}

is a subgroup of G. We are particulatly interested in P’ G, where p is prime. Now
the quotient group G /pG is naturally a vector space over the field F,,. We just

need to define scalar multiplication. Let
(a +pZ)(a+ pG) := ac + pG .

This is cleatly well-defined, and makes G/pG into an F,-vector space. For ex-
ample, if

G = (Z/3Z) x (Z)9Z) ,

then
G/3G = (F3)*.

Since p(p’)G = p' G, the quotient group
PGIrTG

is an [F-vector space as well. The key to our proof that the elementary divisors

are invariants is the following lemma.

Lemma 13.13. Ler G = Z/dZ, for d € N. Then for p prime,

0, if piid,

Progf. First suppose that p’ 1 { d. Then

(W d) =p" =, d),
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for some k < j. Therefore in G,
7| =d/(’,d) = d/p* = d/(p"*",d) = [P

(exercise 5.6). Now ' = p/ - 1isa generator of P G. So this tells us that p/ T is

as well, and therefore
PGIpG =0
However, if p? 1 | d, then (p’*1, d) = p/!, whereas (p’, d) = p’. Thus
7| =d/p’" and [P =d/p".
Therefore
PGIYTG = L)L,

and

dimp, PG /PTG =1.

For example, if d = 12, then
G = 7Z/12Z = 7/AZ x 7./]3Z ,

and we have

G/2G = (Z/122)/(2Z/12Z) =7/2Z & dimp, G/2G =1
2G/4G = (2Z/12Z2)/(AZ)122) = /27 & dimp, 2G/4G = 1
4G/8G = (Z/3Z)/(Z/3Z) =X & dimp, 4G/8G =0

G/3G = (Z/12Z)/(3Z/12Z) =Z/3Z & dimp, G/3G =1
3G/9G = (Z/AL)](Z/AZ) =] & dimp, 3G/9G =0

We are now ready to prove that the elementary divisors are invariants.
Theorem 13.14. Suppose that
Z)A\Z X -+ X L)dnZ X Z7 = G = ZjerZ X --- X L]e, L x 71°

wheredy | -+ | dp and ey | -+ | €. Thenr = s, m =n, anddy = ey, ...,

Ay, = €.
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Proof. From Corollary 13.10, we see that r = s and

Z]d\Z % -+ X L)dn7 = Gy = L)yl x -+ X L]e 7 .

Pick a prime number p. By the lemma,
dime Gt/th <m.

Furthermore,

dim[[?p Gt/th =1m
if p | dy, since this implies that p | dj, for all k. In particular,
m — max dim]}?p Gt/th .
)

The same holds for n. Therefore m = n.

Now for any prime, and any j > 0,

l .= d1mp7Gt/p]+th

217

is the number of dj, such that p’*! divides di. Keeping in mind that if p/*!

divides d, then it also divides diy1, . . . , d;, this tells us that
pj—H'fdl,...,dm_l but pj+1 ’dm—l—i-l;“-;dm-
So these dimensions determine the prime factorization of dy, . . . , d;,. The same
holds for eq, . .., €,,. Therefore
di=¢€1,...,dy, =¢€p, .

For example, suppose that G is a finite abelian group with

dimp, G/2G =7
dimg, 2G /4G = 4
dimg, 4G /8G = 2
dimg, 8G/16G = 1
dimp, G/pG =0,
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for p # 2. Then we know that the number of elementary divisors is m = 7.
Furthermore, (13.4) implies that 2 divides all of them, (13.5) that 4 divides d4,
ds, dg and d7, (13.6) that 8 divides dg and d7, and (13.7) that 16 divides dj.
Therefore

di=dy=ds =2, dy=ds=4, ds=8, dy=16.

So
G = (Z)27Z)* x (ZJAZ)* x Z/87 x 7./]167Z .

13.5 The Multiplicative Group of the Integers
Mod n

An interesting class of abelian groups are the multiplicative groups (Z/nZ)*.
How do they decompose? First, recall that if n = plfl . -pﬁ;", with p1,...,DPm

distinct primes, then
Z/nZ =T/ x - x Z/pkrZ
(see example 5(ii)). It is easy to see that
(Z/nZ)* = (Z/pY L) x - X (Z[plZ)* .

(see exercise 5.24). The question is then: for p prime, k& € N, what does
(Z/p*7Z)* ook like ?

First we introduce the p-adic expansion of a natural number a.

Theorem 13.15. Any a € N has a unigue p-adic expansion
a:a0+a1p+--'+akpk,

where 0 < a; < p, forall 1.
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Proof. First we show that such an expansion exists. Pick the smallest £ such that
k-+1
p

Suppose that the result holds for £ — 1, i.e., any a < p”* has such an expansion.

> a and argue by induction on k. If k = 0 take ap = a and we are finished.

Divide a by p*:

a=app"+0b,
where 0 < b < pk. Since karl > a, we have a;, < p. By assumption, we can
write
b=ag+ - +ap1p" .
Therefore

a=ag+- +apg1p" " +app”,

and by the principle of induction, the result holds for all k. This argument also
shows that k and ag, . . . , a; are uniquely determined, and gives an algorithm for

computing them. Ol

For example, take a = 744 and p = 7. The smallest k for which 7% > 744
is k = 4. So we divide 744 by 73:

TA4=2-T 458
Then we divide 58 by 7%, and so on:

744 =27+ 58
=274+ 7 +9
=2-T+7+7+2.
We can describe (Z/p*Z)* using p-adic expansions. Any element in (Z/p*Z)*
can be represented by a unique integer a, 0 < a < p¥, which is prime to p. If we

write

a=ag+ap+---+a1pt, (13.8)

then (a,p) = 1 if and only if ag # 0. Counting such integers, we see that

(Z/p*Z)*| = (p = 1)p*" .
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Now (Z/p*Z)* has a distinguished subgroup. For p > 2, let
Uy = keel(Z/*2)* — (Z/p2)"]

where the homomorphism is reduction modulo p. These are just the elements

represented by integers with a p-adic expansion (13.8) where ag = 1. Thus
|Upk‘ = pk_l .

In the case p = 2 this group would coincide with (Z/p*Z)* itself. The right

definition in this case is

Uy = ket[(Z)2F7)* — (Z.JAZ)™] .

So these are elements which can be represented by integers with a 2-adic expan-

sion (13.8) where ag = a; = 1. Therefore
|U2k| — 2k_2 .
The groups U, are the key to finding the structure of (Z/p*Z)*:

Theorem 13.16. The group U is cyclic. Assume k > 1. Then for p > 2, the element
1+ p is a generator, and for p = 2, the element 5.

Proof. Suppose that p > 2. Since |Uyr| = p"!, the order of T + p must be a

power of p. But by the binomial formula,

(L+p " =1+ (mod p")
#1 (mod p").
Therefore
[T+pl=p"",
and U, is cyclic.
If p = 2, we have

9k—3

(1+25)* 7" =142 (mod 2¥)

%1 (mod 2%).
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Therefore
|5| — 2k—2 ’

and Uy is cyclic too. Ol

Corollary 13.17. For p > 2, (Z/p*7)* is cyclic, and (Z)2F7)* = Uy x
(Z/A7Z)™.

Progf. For p > 2, we have that |(Z/p*Z)*| = (p — 1)p*~L. So decomposing
the group into a product of cyclic groups of prime power order, we see that one
factor is Uyr, and the product of the remaining factors is isomorphic to (Z/pZ)*.
Thus
(Z/p* L) = Uy x (Z/pL)* .

As we shall see (see theorem 14.7), (Z/pZ)* is cyclic. Therefore since the orders
of these two groups are relatively prime, by example 5.9(ii), their product is cyclic.

If p = 2, then Uy is cyclic of order 2872 and (Z/47Z)* is cyclic of order
2. So by theorem 13.11, (Z/2*Z)* is either the product of the two or is cyclic.
Now let

a=1+2+---+2"1=2"—1,

Then
a?=(2"-1%=1 (mod2¥) and a=3 (mod4).

Therefore (a) C (Z/2*Z)* maps isomorphically onto (Z/4Z)* under re-

duction mod 4, and

(Z)28Z)* = Uy x (@) =2 Ups x (ZJAZ)* .
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13.6 Exercises

1. Prove thatif Z™ = Z"  then m = n.
2. Let G be an abelian group. Show that Gy is a subgroup of G.

3. Suppose that
G:Z/d1Z>< XZ/dmZXZT.

where dy,...,d,, € Nyand dy,...,d,, > 1. Prove that

Gi=Z/d\Zx - XZL]d,Z .

4. Let
—922 —48 267
—4 -4 31
A= _4 24 105
4 -6 -6

Find the elementary divisors of Z*/ im A.
5. What are the elementary divisors of
727 x (Z)6Z)* x 7.J217 x Z./50Z ?
6. Classify abelian groups of order 16.
7. Classify abelian groups of order 360.

8. @ Let G be a finite abelian group, with elementary divisors dy | -+ | d,.

Show that
dm =min{n € N|na =0, forall € G} .
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9. Let p be a prime number and let
a
G:{—ke(@mez, k:zo}.
p

a) Verify that G is a subgroup of Q. Is G finitely generated?

b) Show that every element in G /Z has finite order, and that G/Z consists
of precisely the elements of Q/Z whose order is a power of p. Is G/7Z

finitely generated?

10. Give the 3-adic, 5-adic, and 7-adic expansions of 107.
11. Write the elements of Us; as powers of 4.

12. Let G be a group. Let G’ be the subgroup generated by all commutators, that

is, elements of the form
afa”lph,
fora, € G. Show that G’ is a normal subgroup (called the commutator sub-

group), and that G /G’ is abelian. Prove that if X' C G is a normal subgroup
such that G/ K is abelian, then K D G'.

13. Write a Mathematica function which diagonalizes an integer matrix.
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Part I1

Solving Equations
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Introduction

In the coming chapters, we are going to use the group theory discussed so far
to see how to solve polynomial equations. What 'solving' an equation means
is a rather delicate question. People have known how to write solutions for a
quadratic equation in terms of the square root of its discriminant for some 4000
years, and today everyone learns the formula in high school. It is simple and
very useful. In the Renaissance similar formulas were discovered for cubics and
quartics. However, they are much more complicated and much less useful. Early
in the 19th century it was realized that for equations of degree greater than 4,
there do not even exist formulas for solutions in terms of radicals. At the same
time several mathematicians noticed that the symmetries of an equation, as we
discussed them in some examples in chapter 7, tell you many interesting and
profound things about its solutions. This point of view has been developed with
great success in the past two centuries and will be the theme of the remainder of
this book. If you are interested in the history of these ideas, the first part of van
der Waerden's History of Algebra ([10]) is a good reference.

To begin we set out the basic properties of polynomials in chapter 14. Then
we clarify what we mean by 'algebraic relations' among the roots of a polynomial.
To do this we introduce field extensions, in particular the splitting field of a poly-
nomial in chapter 16. With this apparatus in place we can explain in chapter 17
exactly what the symmetry group or Galois group of an equation is, and what
its properties are. We shall give two classical applications of this theory: first, to
prove in chpater 20 that an equation of degree greater than 4 cannot in general
be solved by taking roots, and secondly to discuss geometric constructions with

straight edge and compass in chpater 21.



14

Polynomial Rings

In this chapter we will look at polynomials with coefficients in an arbitrary field.
These behave in many ways like the integers. There is a Euclidean algorithm for
long division. There are 'prime' polynomials and there is unique factorization
into 'primes'. And the set of all polynomials with coefficients in a given field has

formal properties like those of Z.

14.1 Basic Properties of Polynomials

To begin with, let /" be a field. A polynomial with coefficients in /' is an expres-
sion of the form

flz)=apx™+ ...+ a1z +ag,

where ag, . .., a, € F. We define the degree of the polynomial f, written deg f,

to be the degree of the highest monomial with a non-zero coefficient:

deg f = max{n | a,, # 0} .

If f(x) = apa™ + ... + a1z + ap with a,, # 0, then a,, is called the /leading

coefficient of f. We can add polynomials in the obvious way:

(amz™ + ...+ a1z + ag) + (bpx™ + ...+ bix + by)
= (am +bn)x™ 4+ ...+ (a1 + b))z + (ag + bo)
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and multiply them:
(ama™ + ...+ a1+ ag) (bpx™ 4. .. + b1z + by) = Comx®™ + ...+ 17+ ¢

whetre
n
Cp = E a;iby,_; .
i=0

(The two polynomials can have any degree < m. It makes it easier to write the

formulas if you allow terms with zero coefficients.) Cleatly, for any f, g,

deg(fg) = deg f +degyg .

The set of all polynomials with coefficients in F, we will denote by F'[x]:
Flz] = {ama™ + apm_1a™  + ...+ @z +ag | m>0, ag,...,a, € F}

We can regard F as the set of constant polynomials in F'[x].
Next we show that we can do long division with polynomials. Remember
that for a,b € Z, a,b # 0,
b=gqga+r,

where ¢, € Z,and 0 < r < |a|. Here is the analogous statement for polyno-

mials.

Theorem 14.1. Suppose f, g € Flx|, f, g # 0. Then there exist unique q, v € F|x],
with degr < deg f, such that

g=qf +r.

Progf. Let m = deg f and n = degg. We will argue by induction on n — m.
If n —m < 0, in other words degg < deg f, then we take ¢ = 0 and r = g.
Now let n —m = [ > 0 and assume that the statement of the theorem holds for
n —m < [. Suppose that a,, is the leading coefficient of f, and b,, the leading

coefficient of g. Then we can write

9(x) = (bn/am)x" " f () + h(z)
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where degh < deg g. Therefore degh —deg f < [. So by the induction assump-
tion there exist ¢, 7 € F[x], with degr < deg f such that

Wz) = () f(z) +r(z) .
But then
9(x) = ((bn/am)2" ™" + q1(2)) f () + (2) .
Thus the statement holds for n — m = [ and by the principle of induction, for
all values of n — m.

To see that ¢ and " are unique, suppose that there exist ¢’ and r’ as well, such

that
g=df+1",
with degr’ < deg f. Then
(=g f=r"—r.
But deg(r’ — r) < deg(q — ¢') f unless ¢ — ¢’ = 0. But then 1’ = 7 too. So ¢q

and r are uniquely determined. [

Now we can define common divisors just as we did for the integers in chapter

1. If f, g € F[x], then one says that f divides g , and writes

flg,

if g = qf for some ¢ € F[x]. Notice that a non-zero scalar ¢ € F'* divides any
polynomial g € F'[x]. A polynomial d is a common divisor of f and g if d | f and
d | g. In order to have a unique greatest common divisor we make the following

definition: a polynomial d € F'[x] is monic if its leading coefficient is 1.

Definition 14.2. The greatest common divisor of f, g € F[z] is the common

divisor of f and g which is monic and of greatest degree.

As for integers, the greatest common divisor is denoted by (f, ¢) . And just
as for integers the greatest common divisor can be computed using the Exclidean

algorithm . We write
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g = qf+r degr < degf

f = qr+n degry < degr
Ticl = Qip1Ti T Tit1 degriy1 < degr;
Tneo = Qplpn_1+7Tn degr, < degrn—1
Tn—1 = Q4n+1Tn,

for some n. To see that this algorithm computes (f, g) we argue just as in chapter

1. First we prove:
Lemma 14.3. Let u and v be polynomials in F'|x), not both 0. Write
U=qu-+r,
Sor some q and v with degr < degv. Then
(u,v) = (v, 7).

The proof is the same as the proof of lemma 1.7. Applying this to the list of

divisions above we obtain
(ric1,73) = (ri; Tiga)
for each ¢ < m. Now the last equation says that r, | 7,—1. This means that
T = a(Tn_1,"n) ,
for some a € . Therefore arguing by induction,
Tn = a(ri_1,73)

for all 7, in particular
Tn = CL(f, g) :

So up to a scalar factot, 7, is the greatest common divisor of f and g. It is easy

to see that any common divisor of f and ¢ divides (f, g).
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As in chapter 1, we can read more out of this list of equations. The first

equation can be rewritten
r=g-af.

Using this, we can rewrite the second one:

n=f-qr=f-alg—qf)=1+qq)f—aqg.

In other words, r and then 7 are linear combinations of f and g, with coeffi-
cients from F'[x]. The third equation shows that 5 is a linear combination of 7
and 7, and therefore of f and g. Continuing like this, we get that ,, is a linear

combination of f and g. Thus there exist s,t € F[x] such that
(f,9) =sf+1g.
Example 14.4. In Fyq[z], let
flz)=a*+ 2%+ 2> + 3z +2
and
glr) =2 —a* -2+ 22 — v - 2.
Then

2 -t 2?4220 — - 2= (v - 2)(2* + 2% + 2% + 320 +2) + (2® + 32+ 2)
P+ 430 +2= (2 - 20 +5)(2* + 32 +2) +3(z + 1)
2+ 3z +2= (47 +8)(3x +3) .

Therefore

x+1:(x4—|—x3+x2+3x+2, x5—x4—$3+2$2—$—2)-
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Furthermore

P43 +2=" 2" -2+ 20 —2-2) - (v - 2)(a* +2° + 27 + 32+ 2)
v+ 1=4>*+2°+ 2%+ 32 +2) — 4(2* — 22+ 5)(z* + 32 + 2)
= d(x* + 2 + 2% + 32 +2) — (42° + 37 +9)
[(2° — 2" —2® +22° — 2 — 2) — (z — 2)(z* + 2° + 2° + 32 + 2)]
= (42° + 62° + 3z + 8) (2" + 2° + 2* + 3z + 2)
4+ (7T2? + 82+ 2)(2° — 2* — 2® +22° — 1 —2).
So we can take

s =42 + 62>+ 3x + 8 and t="T>+8x+2.

A

We say that f and g are relatively prime if (f,g) = 1, that is, if they have no
common divisors except the non-zero scalars. Thus, if f and g are relatively

prime, there exist polynomials s and ¢ such that
1 =sf+1g.

For example, 22 + 1 and = + 1 in Q[z] are relatively prime and

1:%(x2+1)—%(x—1)($+1).

We also want to discuss roots of polynomials and their relation to divisors.

Definition 14.5. A root of a polynomial f € F[z] is an element a € F such
that f(a) = 0.

Theotem 14.6. a € F isa root of [ € F[x| if and onby if © — a divides f. If
deg f =n, then [ has at most v roots in F.
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Proof. Given a € F, divide f by z — a:

f:q(x—a)+r,

where degr < deg(x — a), in other words 1 € F'. It follows that

fla)=qla—a)+r=r.

So ais a root of f if and only if 7 = 0, which is the case if and only if (x—a) | f.
We can now atrgue by induction that if deg f = n, then f has at most n roots.
Start with n = 1. A linear polynomial az + b has one root: —b/a. Suppose we

know that a polynomial of degree n — 1 has at most n — 1 roots. Let a be a root
of f. Then

f=q(z—a),
where degq = n — 1. If bis any root of f, then

0=f(b)=qb)(b—a).

So either b is a root of ¢, or b = a. By assumption, ¢ has at most n — 1 roots.
Therefore f has at most n roots. Applying the principle of induction, the result
holds then for all n. [

This result has a surprising application.

Application 14.7. The multiplicative group F* of a finite field F' is cyclic.
Proof. Setn = |F|. So F* is an abelian group of order n — 1. By theorem 13.9
F*=2Z/dZx - xZ/d,Z,
where dy,...,d, € Nyandd; | dy | - -+ | dy,. As pointed out in exercise 13.8,

d

a'm =1

forall @ € F*. Thus all n — 1 elements of F'* atre roots of the polynomial

x%m — 1 € Flx]. Tt follows from the theorem above that

n—1<d,, .
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On the other hand, since there is an element of order d,,, in F'*
dm S n—1 )
by corollary 10.4. Therefore d,,, = n — 1 and F'* is cyclic. ]

Remark 14.8. The proof does not need the full power of the classification theorem
for finite abelian groups. An argument using exercise 5.8 is given in exercise
13.16.

14.2 Unique Factorization into Irreducibles

Continuing the analogy between Z and F[x] we now explain what 'primes' are in
F[z] and show that every polynomial can be factored uniquely into a product of

'primes’.

Definition 14.9. A polynomial f € F'[x] is reducible if it can be factored f = gh,
where g, h € F[z],and degg,degh > 0. A polynomial f € F[x] is irreducible if

it is not reducible.

In other words, a polynomial is irreducible if its only divisors are itself and
the non-zero scalars. For example, 2+1€ Q|[z] is irreducible. Regarded as a
polynomial in F5[z], it is reducible because x? +1 = (z+2)(z + 3) € F5[z]. A
polynomial with a root is reducible. But a polynomial may be reducible without

having a root. For example, in Q[z],
gt — 4= (2 —2)(2* +2),

is reducible. But it has no roots in Q because neither 22 + 2 nor 2 — 2 have any
roots in Q.

Irreducible polynomials are analogous to prime numbers, and reducible poly-
nomials to composite numbers. And every polynomial can be written in a unique

way as a product of irreducibles. The key to proving this is the following lemma.
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Lemma 14.10. Lezp € F[x] be irreducible. Supposep | f g, where f, g € F|x]. Then
plforplyg

Proof. Suppose that p does not divide f. Then (p, f) = 1 since the only monic

divisor of p of degree greater than 0 is p itself. Therefore
l=sp+tf,
for some s,t € F[x]. Multiply by ¢:

g=spg+tfg.
Now p | spgand p | tfg. Sop | g. O

It is not hard to extend this result to a product of more than two polynomials:
if p is irreducible, and p | f1--- f,, then p | f; forsomei, 1 < i < r. The
following theorem is the analogue of the fundamental theorem of arithmetic (see

[1], §2.2), and is proved in the same way.

Theorem 14.11. Let f € Fx|, where F' is a field. Then

f:apl"'p’ra

where a € F* and py,...,p, € F|x] are irreducible monic polynomials. This decompo-
sition is unique up to the order of p1, ..., pr.

Proof. First we prove the existence of such a decomposition into irreducibles. We
proceed by induction on n := deg f. Linear polynomials are irreducible. So the
result holds for them. Assume that it holds for all polynomials of degree less
than n. If f is irreducible, then f = ap, where a € F'* and p is irreducible and

monic. If f is reducible, then
f=gh,

where deg g, deg h < n. By assumption then

g=bpr--pj . h=cpj1-pr,
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where b,c € F* and py, ..., p, ate irreducible monic polynomials. It follows

that
f=(bc)p1---py,

as desired. So by the principle of induction, any f € F[z] can be decomposed
into a product of irreducibles.
Next we demonstrate that such a decomposition is unique up to the order of

the factors. Suppose that

f=apy---pr,
and

f="ba--qs,

where a,b € F* and p1,...,pr, @1, - -, qs € F[x] are irreducible monic poly-

nomials. For any ¢, 1 <4 < r, we have that

pi|Q1"'Qs-

Therefore by the lemma, there exists a j(i), 1 < j(i) < s, such that p; | qj(i)-
But g;(;) is irreducible and monic. Therefore p; = ¢;(;). Similarly, for any j,
1 < j < s, thereexists an i(j), 1 < i(j) < r, with ¢; = Di(j)- Thus r = s and

the factors i, . . . , g are just py, . . ., p, re-ordered by the permutation i — j(%).

It follows that a = b as well. This completes the proof of the theorem. ]

14.3 Finding Irreducible Polynomials

Suppose you want to factor a polynomial in F'[x]. You have to know which
polynomials are irreducible. Deciding whether one is irreducible or not is usually
not easy. In this section we will look at two simple criteria for irreducibility of
polynomials in Q[x], and how to list irreducible polynomials in F,,[z]. In the last
section of the chapter we will discuss an algorithm for factoring polynomials in

[F,[]. 1t will also give us a test for irreducibility.
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Let's begin with
fx) =apa" + -+ a1z +ap € Qlz] .

If we multiply f by a common multiple a of the denominators of ay, . . . , @y, then
af has integer coefficients. One can show that af can be written as a product

of integer polynomials of positive degtee, if and only if f is reducible in Q[z].

Lemma 14.12. Suppose f(x) = a,a"+---+arx+ag € Qx| with ay, .. ., a, €
Z. If f is reducible, then | = gh where g and h have integer coefficients; g and h can be

taken to be monic if f is moni.

Proof. Suppose that
f=gh,
g,h € Q[z]. Let b (respectively ¢) be a common multiple of the denominators

of the coefficients of g (respectively h). Set d = be. Then

df = glhl 3

where g1 and h; have integer coefficients. Now let p be a prime factor of d, and

reduce this equation modulo p. We obtain
0= glill € Fp[l‘] .
Therefore
g1 = 0 or hl =0.

Suppose that g; = 0. This means that all the coefficients of g; are divisible by p.

So we can divide d and ¢; by p:

(d/p)f = gaha

where g9 and ho have integer coefficients. We can continue in this way with each
prime factor of d until we end up with a factorization of f into a product of poly-
nomials with integer coefficients. The leading coefficient of f is the product of
the leading coefficients of g and h. So if f is monic, then the leading coefficients
of g and h are both 1 or both —1. [
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The Eisenstein criterion then gives a condition for a polynomial with integer

coefficients to be irreducible.
Theorem 14.13. [ et

flx)=a2"+ - +ax+ap € Qlz],
with ay, . . ., An_1 € L. Suppose that for some prime p € 7,

p’a[h"'ap‘anfl ; PZJ(@O-

Then [ is irreducible.

Proof. Suppose that f is reducible. By the lemma we can assume that f = gh,
where
g=2"+--bix+by, h=2"4+---+cr+c,
with r+s=mn, r,s <nand bj,c; €Z for 0 <i<r—1,0<j7<s-—1
Then we have that
p | ao = boco ,

which implies that p | by or p | ¢p. It cannot divide both since by assumption
p? { ag. Suppose that p  by. Now reduce these polynomials modulo p: in F,[z]

we have
a" = f(x) = g(z)h(z) .
We have just said that bo # 0 and ¢y = 0. We want to show that ¢, = 0 for all

k. Suppose we know that ¢y = - - - = ¢,_1 = 0. Since
0=ag=brCo+ -+ biCe_1 + boCy ,

it follows that
0= ay = bycy ,
which implies that ¢, = 0. So by the principle of induction, ¢ = 0 for all k, and

h(x) = z°. But then calculating the coefficient of z° in f, we see that
0=a,=0by#0,

which is impossible. So f is irreducible. []
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This criterion shows for example that 22 +2x +2 is irreducible in Q[z]. Here

is a less obvious example.

Example 14.14. Let f(z) = 27! + .-+ + 2 + 1 € Q[z], where p is a prime

number. Since by
1’ —
flz) = ,

r—1

its roots in C are just the roots of unity other than 1 (see example 6.8(iii)). The

Eisenstein criterion does not apply directly to f. But if we make the substitution
r=y+1,

then

(y+1)P—1
Y

p

g(y) = fly+1) = 3

Since (i) =0 (mod p) , for 1 < k < p — 1, (see exercise 1.4), the criterion
does apply to g. And if g is irreducible then so is f. A

A second test is based on the following observation. Let f(z) = a,z" +

<+« +a1x + ag be a polynomial with integer coefficients. Suppose that

f=gh,

where g and h also have integer coefficients, and deg g, degh > 0. If we pick a
prime p which does not divide the leading coefficient a,, and reduce this equation

modulo p, then we obtain
f=gh €F,lx].
Since p { @y, , p does not divide the leading coefficients of g and h. Therefore
degg = degg >0, degﬁ =degh > 0.

So f is reducible in [F,[z]. Taking the converse of this gives us a test for irre-

ducibility:
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Test 14.15. Ler
f(x) =apa" + -+ a1z + ap € Q[z],
where ag, . . ., G € L. If there exists a prime p 1 ay, , such that f, the reduction of f mod

D, is irreducible, then [ is irreducible in Q[x].

This is a very practical test because it is easy to check whether polynomials in

[F,[] are irreducible, as we shall see in the final section of the chapter.

Example 14.16. Take f(z) = 2° — 5z + 12 € Q|x]. If we reduce f modulo 7,
it is not hard to check that f € F;[z] is irreducible. Therefore f is irreducible.A

You can build a list of irreducible polynomials in F,,[x] by using a sieve, like
Eratosthene's sieve for finding prime numbers (see [1], p.14). First write down all
the linear polynomials, then the quadratic ones, and so on. Cross out the multiples
of z,of x 4+ 1, ..., then of the remaining quadratics, .... The polynomials which
are left are irreducible. It is enough to find the monic irreducibles since the others
will be scalar multiples of them. For example, take p = 2. First list the monic
polynomials over [Fy:

z, z+1
22, 22+ 1, 2+, 2+ +1
2, b+, B4, B+ B+l P+t 41, 3+ 2t oo,
P+ ar+1

at, 2t 1, 2t o, a4 2? et et 1L

Cross out multiples of the linear polynomials:
r, r+1
4+ x+1
Bt 41, 41
441, et 2?1 2+, ettt e+
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Cross out the multiples of the remaining quadratics:

x, x+1
?+r+1
P+l B+l
441, et 2341 e+l

Cross out the multiples of the remaining cubics ..., and so on. The list above
already gives us the monic irreducible polynomials of degree less than 5.

You can also prove that there are infinitely many irreducible monic polyno-
mials in [F,,[x] by imitating the classical proof that there are infinitely many prime
numbers (see [1], theorem 1.6). Suppose that there were only finitely many irre-

ducible monic polynomials. Make a list of them: fi, fo, ..., fim. Let

f=hf2fmt1.

If f were reducible, then one of the list of irreducible polynomials would divide

it, say f; | f for some j, 1 < j < m. Then

il (f=Ffifor-fm) =1.

This is impossible. So f must be irreducible. It is monic since f1, fo, ..., fm, ate.

But it does not occur in the list because

deg f > deg f,

forall j,1 < 7 < m. So there cannot be only finitely many monic irreducible

polynomials in [F,,[z].

14.4 Commutative Rings

We have been emphasizing similarities between F'[x] and Z. The most basic
similarity is that addition and multiplication look the same in both. This suggests

that it is useful to make a definition which sets out these common properties.

www . dbooks . org


https://www.dbooks.org/

242 CHAPTER 14. POLYNOMIAL RINGS

Definition 14.17. A ring R is a set with two binary operations, 'addition' and

'multiplication’ satisfying:
(i) R is an abelian group under addition;
(if) multiplication is associative;
(iii) there is an identity element for multiplication, written 1, which is not 0;
(iv) multiplication is distributive over addition.

A ring is called commutative if its multiplication is commutative. Thus F'[x]
and 7Z are commutative rings. The set M (n, F) of all n X n matrices with co-
efficients in a field /' is a ring under matrix addition and multiplication which is
not commutative. Any field is a commutative ring. In fact a field is just a com-
mutative ring in which every non-zero element has a multiplicative inverse. In

general, the group of units of a ring R is the set
R* = {a € R | a has a multiplicative inverse }

with the operation of ring multiplication. Thus
7% = [+1)

and

Fla]* = F* .

As we saw in chapter 1, the integers mod n, Z/nZ, have a well-defined mul-
tiplication which satisfies the properties above. So Z/nZ is also a commutative
ting. Its group of units, (Z/nZ)*, was introduced in example 5(v) and studied

in detail in chapter 13, page 218ff.

Remark 14.18. Most commutative rings do not have unique factorization into
primes, like Z and F[x].

If R and S are rings, then a mapping ¢ : R — S is a ring homomorphism if it

is a group homomorphism which respects multiplication:
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®
(i)
(iii)

la+b) = (a) + (),
(ab) = ¢(a)ip(b),
P(1) =1,

for any a,b € R. For example, the canonical map Z — Z/nZ is a ring ho-

momorphism. A homomorphism which is bijective is called an isomorphism.

Remark 14.19. (i) Suppose that 1) : R — S is a ting homomorphism, and let

(i)

a € R be a unit. Then 1(a) is a unit in S:

1=14(1) =(aa™") = P(a)i(a").

In particular, ¢(a) # 0. Now if R is a field, then every non-zero element

is a unit. So in this case ker ) = 0 and 7 is injective.

Let F' be a field. Define ¢ : Z — F' by

pn):=1+---+1L .  ¢=n):=—vm) .  $(0):=0,

n

for n € N. Then 1) is a ring homomorphism, and
ker) = pZ ,

where p is either 0 or the least positive integer in ker 1) (see exercise 6.11).

In the first case 1 is injective, and ¥)(n) has a multiplicative inverse if

n # 0. Therefore we can extend 9 to all of Q by setting

Y(m/n) = (myp(n)~",

for any m,n € Z,n # 0. It is easy to see that this is a homomorphism,
and by the previous remark, it must be injective. So there is a copy of Q

inside F. Examples of such fields are R and C.
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The other possibility is that p > 0. Suppose that p is a composite number,
say
p=qr,

where ¢, 7 > 0. Then in F,

O=p-1l=qr-1=(q-1)(r-1).

Since F'is a field, we must have that either g -1 = 0 or -1 = 0. But
we chose p to be the least positive integer in ket 7). So this cannot happen,
and p must be prime. Now from theorem 10.12, we know that 7/ induces

a group homomorphism

F,=7Z/pZ —> F.

It is easy to see that 1) is a ring homomorphism, and therefore by the
Y 8 P y
previous remark, must be injective. So in this case, [’ contains a copy of
F,. An example is the field F,2 (see exercise 1.21) which contains I, as

the set of diagonal matrices.

Definition 14.20. Let F' be a field. If there exists a prime p such thatp-1 =0

in F', then p is called the characteristic of F', written
chr F'=p.

If no such p exists, then

chr FF:=0.

The copy of Qin F, if cht F' = 0, or of F,,, if cht F' = p, is called the prime field
of I

Later on we shall be very interested in automorphisms of a field. An
automorphism of a field F' is an isomorphism of F to itself. The set of all auto-
morphisms forms a group under composition (see exercise 11).

Just as you can construct the field of rational numbers from the integers,

so you can construct the field of rational functions F'(x) from F[z] A rational
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function over F' is a quotient f/g where f,g € F[x] and g # 0. We identify
f/g with kf/kg for any k € F[x]. You can define addition and multiplication
just as for rational numbers:

£+é,: Ji92 + oo h fo_ hh
g1 g2 ' 9192 7 g1 92 . g192 ’

where f1, fa, 1,92 € F[z] , ¢1,92 # 0. With these two operations, F'(x) is a
commutative ring. The ring of polynomials F'[z] can be regarded as a subring
by identifying f € F[x] with the quotient f/1 € F(x). Any rational function
f/g # 0 has a multiplicative inverse, g/ f. So just like Q, F'(x) is a field.

14.5 Congruences

We can also look at 'congruences' modulo a polynomial and 'quotient rings' anal-

ogous to Z/nZ. Suppose f € F[z] and define the subgroup (f) by

(f) == fFlz] ={fg|g € Flz]}

The quotient group F'[z]/(f) has a well-defined multiplication induced by the
multiplication on F'[z]: given fi, fo € Flx]

(fi+ fa)(fo+ fg2) = fifo+ [(fr92 + a1fo + f9102)

where g1, g2 € F[z], so thatin F[z]|/(f)

(fi+ fa)(fo+ fg2) = fife-

This multiplication satisfies properties (ii), (iii), and (iv) in 14.17. So Flz|/(f)
is also a commutative ring, and is called a guotient ring of F'[x]. It is sometimes

convenient to describe calculations in F'[z]/(f) via congruences mod f:

fi=fe (mod f)

means that fi = f, + fg for some g € Fl[z], in other words, f; = f; in

Fla]/(f).
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Notice that F'[z|/(f) is an F-vector space. In fact if deg f = n, then
dimp Flz]/(f) =n.

Why is this so? Well any g € F'[x] can be written

g=qf +r,

where degr < n. In other words, § = 7 is a linear combination of 1, 7, . . ., zn

Thus {1,Z,...,2" '} spans F[x]/(f). On the other hand, if for some

aOv"'aan—leF;
= -n—1 __
ag + a1 + -+ -+ Ap_17T =0

in Flz]/(f), then f | (ap + a1T + - - + ap_12™ 1), which is not possible. So
{1,7,...,2" '} is linearly independent.

This construction is particulatly interesting when f is irreducible. Remember
that for p a prime number, Z/pZ is a field. The same is true for F[z]/(f)if f is

irreducible.
Theorem 14.21. Lot f € Fx|. If f is irreducible, then F[x)/(f) is a field.

Proof. We must show that every non-zero element in F'[z]/( f) has a multiplica-
tive inverse. So suppose g € F|x] and f 1 ¢g. Then f and g are relatively prime
because f is irreducible. So there exist s,¢ € F[z] such that

=sf+tg.
Therefore
tg=1 (mod f),
or equivalently, tg = 1 € F[z]/(f). Thus F[z]/(f) is a field. ]

Examples 14.22. (i) Let f = 2% + 1 € Rx]. Since deg(z* + 1) = 2,

dimg R[z]/(2* +1) = 2,
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In fact we know that
{1, 7}
is a basis. Since 2 + 1 is irreducible, R[z]|/(z* + 1) is a field. Now let

1 := Z. Then every element can be written in the form a + b, a,b € R,

and

So
R[ac]/(ﬁ2 +1)=C,

the field of complex numbers.

(i) Let f(z) = 22 — 2 € Q[z]. By the Eisenstein criterion, z? — 2 is irre-
ducible. So Qlx]/(x? — 2) is a field. Since deg(z? — 2) = 2,

dimg Q[z]/(2* —2) = 2.
Define a homomorphism € 5 : Q[z] — R by
evs(9) =9(v2).
Given a polynomial g € Q[z], we can divide it by 2% — 2:
g(z) = q(x)(2* = 2) + (az + ) ,
for some a,b € Q. Then

6\/5(9) :g(\/ﬁ) :a\/§+b.

So the image of € NG is
Q(V2) ={av2+b|a,beQ}

(see exercise 1.19). Now for any g € Q|x],

ess (g(z)(z* —2)) =0.
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(i)

(iv)
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Therefore € NG induces a homomorphism
€s5:Qlz]/(2* —2) - Q(V2) CR.

This is injective because Q[z]/(x* — 2) is a field. Since it is also surjective,

it is in fact an isomorphism.

Suppose 1 € T, is not a square. Let f = 2> — r € Fp[z]. Then f is
irreducible. Therefore Fp[x]/(f) is a field. Again, since deg(z? — 1) = 2,

dimp, Fp[ﬂ/(f) =2,
It is not hard to see that the mapping
_ a b
a+ bx — (br a)

is an isomorphism from F},[x]/(f) to the field F2 defined in exercise 1.21.

Take f(x) = 2P~ ' 4+ .-+ + 2+ 1 € Q[z], where p is a prime number. In
example 14.14 we saw that f is irreducible, so that Q[z]/(f) is a field. If

we set w = €2™/P_then its roots are

{w,...,wP 1},
Let

Qw)={ap+aw+---+ ap_zwp_z | ag,...,a,—2 € Q}.

Define a homomorphism €, : Q[z] — C by

€(9) = 9(w) .
The image is just Q(w), and the induced map

€ : Qlz]/(f) = C,

is injective. So Q(w) is a field and
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Remark 14.23. We can generalize the constructions in (i) and (iv) which use eval-
uation maps. Suppose that £/ and F' are fields, with ' C E. So any polynomial
in F[z] can be regarded as being a polynomial in E[z] too. Pick an element

¢ € E. Define a map (evaluation at )
e Flz] - E

by
ec(f) = f(Q).

for f € F[x]. Then €, is a ting homomorphism: for any f, g € F[x],

ec(f+9) = (f+9)(C) = f(O) +39(C) = ecf) +eclg)
ec(f9) = (f9)(C) = F(Q)g(¢) = ec(f)ec(9)
e(l)=1(¢Q)=1.

Now suppose that f € F[z] is irreducible of degtee n, and that ( € F is a root
of f. Any g € F[x] can be written

g=af+r,
where degr < n. Therefore
ec(9) = 9(Q) = a()g(O) +r(C) = r(C) -
So the image of € is
F()={ap+arl+ - +an1¢(""|ag,....,an 1 €EF} CE.
The homomorphism €, induces a homomorphism
€ Fla]/(f) = E,

since (¢f)(¢) = ¢g(¢)f(() = 0, forany g € Flz]|. As Fx]/(f) is a field, &
must be injective. So F'(¢) = F[z]/(f) is a field, with ' C F({) C E. We

shall make heavy use of such fields in coming chapters.

www . dbooks . org


https://www.dbooks.org/

250 CHAPTER 14. POLYNOMIAL RINGS

Just as in the integers, we have the Chinese remainder theorem (see theorem
1.12).

Theorem 14.24 (Chinese Remainder Theorem). Ifp1, ..., pm € F|x] are pairvise

relatively prime, then the . congruences
f=g (modp;),1<i<m,
have a unique solution modulo py - - - py, for any g; € Fx].

Proof. We prove the theorem by induction on m. If m = 1, we are looking at a

single congruence
f=g1 (modp;)

with the solution f = g;, which is unique modulo p;. So suppose that the result

holds for m — 1 congruences, m > 1. We want to show that m congruences
f=g (modp;),1<i<m,

have a solution. By the induction assumption, the first m — 1 of these have a

solution f,,_1 € F'[x] and all other solutions are of the form

fm—1+upr- pPm_1,

foru e F [x] The mth congruence then becomes

Upt - Pm-1 = Gm — fm-1  (mod py,) ,

which we want to solve for u. Now given that py, ..., p,, are pairwise relatively
prime, it is easy to check that (py - - - pm—1, Pm) = 1. Therefore there exist
s,t € F[z] such that

L=sp1 - pm-1+tpm.

Multiplying this equation by ¢,,, — fin—1 gives

9m — fm—l = (gm - fm—l)spl cr o Pm-1 + (gm - fm—l)tpm .
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Thus
(gm - fm—l)spl o Pm—1 = 9m — fm—l (mOd pm) .

So take 4 = (g — fm—1)s and let

f=foo1+ (Gm — fn-1)sP1 Dm—1 -

Then

f=fm1=9g (modp;),1<i<m-—1,
and

= fma+ (gm - fm—1> = 0m (mod pm) )

which are the m congruences we want to solve. Therefore by the principle of
induction, there exists a solution for all m.

If f and g are two solutions then
f—=9g=0 (modp;),1<i<m.

Since p1, . . . , P, are relatively prime, it follows that py - - - pp, | (f — g), in other
words
f=g (modpi-pm).
O

Remark 14.25. The theorem can also be interpreted the following way (cf. exam-
ple 5.10(ii) and exercise 5.24). For any f € F[z], let f denote its residue class in
F[x]/(p1 -+ Pm), and fj its residue class in F[z]/(p;), for 1 < j < m. Then

the map

given by

b fer (fiyeo fn) -
is well-defined and is a ring homomorphism (see exercise 19 for direct products of

rings). The Chinese remainder theorem says precisely that ¢ is an isomorphism.
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14.6 Factoring Polynomials over a Finite Field

Earlier we saw how to build up a list of irreducible polynomials in F,[z]. This
is clearly not a good way to find out whether a given polynomial is irreducible.
There is a very effective algorithm, discovered by Berlekamp, which will test for
irreducibility. In fact it is actually an algorithm for factoring polynomials over [F,.
To explain it we need to make some preparations.

First consider the polynomial 2? — z € F,[z] . According to theorem 10.6,
every a € [F) is a root. Since P — x has exactly p roots, these are all. So 2P — x
factors

P —r=zxx—-1)---(x—p+1).

If g is any polynomial in [, [z] then we can substitute g for x in the previous

equation and obtain

g(x)P — g(x) = g(z)(g(x) = 1) -~ (9(x) —p+1) . (14.1)

Now suppose we have a monic polynomial f € F,[z]. We can factor it into

irreducibles as in theorem 14.11:

f = ql . .. qT‘
where each ¢; = p;" for some monic irreducible polynomial p;, and some
m; € N, and where q1, . .., g, are pairwise relatively prime. Our algorithm will
determine ¢y, . .., gr. How can one determine py, ..., p, from them? Suppose

that ¢ = s™, where s is irreducible. There are two cases to consider: (i) p 1 m;

(i) p | m.
Lemma 14.26. (i) Ifptm, then (q,q') # 1 and s = q/(q, ).
(@) Ifm = pn, then q(x) = q1(xP) for some q1 € F,x].

Proof. 1n the first case,
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Since s is irreducible, (s, s") = 1 and therefore

(q’ql) — Sm—l ]
It follows that
s=4q/(a,4)
Now for any polynomial s € IF,,[z], putting together exercise 1.4 and theorem

10.6, we see that

s(x)P = s(aP) .

So if ¢ = sP™, then
q(z) = (s(z)")"™ = s"(2") ,

and we can take ¢; = s to get the second statement. O]

To determine s in the second case, we have to apply the lemma again to q;.

Suppose then that
f=a g EFP[;C],

where ¢, . .., g, are pairwise relatively prime. How can we find the factors ¢;?

Berlekamp's idea is to consider the congruences
g=a; (mod q) e g=a, (mod g) (14.2)

where ay,...,a, € F,. According to the Chinese remainder theorem, there is
a unique solution ¢ modulo ¢; - - - ¢, = f. From solutions to such congruences
you can find the factors ¢y, . . ., g,. On the other hand, a solution ¢ is a solution

of the congruence
@ —9g=0 (mod f). (14.3)

This congruence is easy to solve. We shall now explain this in detail.
Recall that V' :=TF,[x]/( f) is a vector space over F,, of dimensionn = deg f.
The map

Vg g?
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is a linear mapping of V' to itself. The set of solutions W C V of the congruence
(14.3) is just the kernel of ¢ — I. So if we let A be the matrix of 1) with respect
to the basis {1,z,...,2" '} of V, then W = ker(A — I). This explains how
to solve (14.3).

Now if g is a solution of (14.3), then each g; divides the right hand side of
equation (14.1) since f = g1 ---q,. As the terms on the right hand side are
relatively prime, this means that for each ¢, 1 < ¢ < 7, there is an a; € I,
such that ¢; | g — a;. Therefore g is a solution of the congruences (14.2) with
this choice of aq, . . ., a,. Conversely, suppose g is a solution of (14.2) for some
ai,...,a,. Each term g — a; occurs in the right hand side of equation (14.1).
Therefore ¢ - - - g, = [ divides the right hand side and thus ¢ is a solution of
(14.3). So r-tuples (ay, ..., a,) correspond to solutions of (14.3). This give us

the connection between (14.2) and (14.3). In fact we have a linear map from
F,"— W,
given by
(ay...a,)— g, (14.4)

where ¢ is the corresponding solution of (14.2). Since this map is an isomor-
phism, the dimension of W is 7.

Finally we must know how to find the factors g, ..., g, from solutions g €
W. Looking at (14.2) we see that

(g_ahf)?él

for 1 < < r. Itis not hard to see that

f=1[e-ar, (14.5)

aclFy,
for any g € W (see exetcise 23). If a # bare in[F, and (g — a, f) # 1 and
(g — b, f) # 1, then these two factors of f will be relatively prime. So if the

numbers of the 7-tuple (a; ... a,) corresponding to g are all distinct, then we
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have 7 relatively prime factors of f and ate finished. If not, then we must take

each factor f we have found and repeat the procedure with it. Let's summatize

this all in the form of an algorithm:

Algorithm 14.27. Suppose that f is a polynomial in F,[z]. To factor f into

irreducible polynomials:

@

(i)

(iii)

(iv)

Solve the congruence

¢ —g=0 (mod f).

Let g1 = 1, ga, ..., gr be a basis of the solution space, with
deggr < degf,1 <k <.

Find all a € ), such that

(92_(1?](.)#0'

If there are 7 such numbers a, then you have r relatively prime factors of
f and are finished by (14.5).

Otherwise, take each such factor f and find all a € [, such that

(93_a7f)7é0'

Now
deg(gs —a, f) < degf .
This means that as you continue with gu, . . ., g, the process will terminate,

and you will end up with r relatively prime factors of f.

Each ¢; = p;"* where p; is irreducible. To determine p; take the detivative
of g;. If ¢} # 0, then

pi = 4/ (%, q;) -
If ¢, = 0, then ¢;(x) = §;(2P), for some §; € F,[2P]. The polynomial §;
is in turn a power of an irreducible polynomial in F,[z?]. So we return to

the beginning of this step and take its derivative.
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Let's calculate an example.

Example 14.28. Set
f=3+x+62"+22° + 42" +52° + 2° € Fy[a] .

We want to find solutions of

g —g=0 (mod f).

To do this we compute the matrix A of
g9
in V := F;[z]/(f) with respect to the basis {1, z, ..., z°}. We have
2 =1
f = 142z + 2+ 42° + 42
" = 344z 4 32% 4 32° + 22 + 32°
22 = 343+ 22+ 23+ 2t +40°
= 34522+ 52° + 224
¥ = 34322+ 52+ 520

Therefore the matrix is

1133 3 3
024300
01315 3
A—04315O
042125
003405

If we row reduce A — I we see that its kernel has the basis {(1,0,0,0,0,0),
(0,3,6,5,1,1)}, or equivalently, the solution space of (14.3) has a basis
{1,3z + 62* + 523 + 2* + 2°} and r = 2. So taking

g =3z +62% +52° + 2 + 2°
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we look for solutions of (14.2). We find that

(9+4,f) = 5+43c+2?
(g+5,f) = 246z +22° +2*

and

f=0G+3z+2Y)(2+6x+22° +2) .

The quadratic ¢, = 5 + 3z + x? € Fy[z] is clearly irreducible. But
g2 = 2 + 62 + 22% + 2 is not:

(g2, 5) =3+ +2°.

This quadratic too is irreducible, and go = (3 4+ = + x*)2. So we have found the

irreducible factors of f:

f=06+3z+2H)3+z+2%).

14.7 Calculations

Mathematica has a function PolynomialExtendedGCD which calculates (f, g)

for two polynomials f and g, as well as polynomials s and ¢ such that

(fig)=sf+tg.

If wetake f=a3+ 22 +2+1, g=a*+ 2>+ 2+ 1 € Q[z], we obtain

In[1]:= PolynomialExtendedGCD[ x~3+x~2+x+1,

x"4+x"3+x+1 ]

Out[1]= {1+x,{%—§—x—, 1Jrf}}
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Thus
(B2 +r+l, 2+ 2+ + ) =241,
and
1 2
r+1= <§———7>(x3+x2+x+1)+<§+§>(x4+x3+az+1).

The function can also calculate in I, . Here is example 14.4:

In[2]:= PolynomialExtendedGCD[ x74 + x73 + x72 +
3x + 2, xb - x4 - x"3+2x72 -x - 2,
Modulus -> 11]

Out[2]= {1+x,{8+3x+6x*+4x>,24+8x+7x*}}
Mathematica is very useful for a calculation like example 14.28. We have

In[3]:= f=34+x+62"2+22"3+42™4+52"5+ 276
Out[3]= 3+ x + 6% + 2x3 + 4x* + 5x°% + %6

To compute ', z'*, 2! 28 and 2% in term of the basis 1, z, ..., 2% of V,

we can use the function PolynomialMod which reduces a polynomial modulo a

natural number n and a polynomial £f.

In[4]:= PolynomialMod[ x~7, {£f,7} ]

Out[4]= 1+ 2x + x* + 4x3 + 4x*

In[5]:= PolynomialMod[ x~14, {£f,7} ]

Out[5]= 3 + 4x + 3x° + 3x3 + 2x* + 3%°
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In[6]:= PolynomialMod[ x~21, {f,7} ]

Out[6]= 3+ 3x + x% + x% 4+ x* + 4x°

In[7]:= PolynomialMod[ x~28, {f,7} ]

Out [7]= 3 + 5x% + 5x° + 2x*

In[8]:= PolynomialMod[ x~35, {f,7} ]

Out [8]= 3 + 3x? + 5x* + 5x°

Then
In[9]:= A = Transpose[{{1,0,0,0,0,0},{1,2,1,4,4,0},

{3,4,3,3,2,3},{3,3:1’1’1:4}’
{3,035:5)230},{3,03370,5,5}}];

In[10] := MatrixForm[A]
113333
024300
013153

Out[10]= 043150
042125
003405

To compute the kernel of A-I we can use the function Nullspace.

In[11]:=NullSpace[ A-IdentityMatrix[6], Modulus->7
]
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Outf11]= {{0,3,6,5,1,1},{1,0,0,0,0,0}}
Now we set

In[12]:= g =3x + 6x72 + 5x”3 + x74 + x7b

Out[12]= 3x + 6x% + 5x% + x* + x5

To check the greatest common divisors (g+a, f) fora € Fr, we use the function
PolynomialGCD:

In[13]:= PolynomialGCD[ g + 4, f, Modulus->7 ]

Out[13]= 5+ 3x + x°?

In[14]:= PolynomialGCD[ g + 5, f, Modulus->7 ]

Out[14]= 2+ 6x + 2x° + x*

We check the greatest common divisor of this quartic with its derivative:

In[15]:= PolynomialGCD[ 2 + 6x + 2 x73 + x74,
PolynomialMod[ D[2 + 6x + 2x73 + x4,
x], 7 ], Modulus->7 ]

Out[15]= 3+ x + x>

Lastly, we verify the factorization.

In[16]:= PolynomialMod[ Expand[(5 + 3x + x72)
*(3 + x +x72)72], 7]
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Out[16]= 3+ x + 6x° + 2x3 + 4x* + 5x° + %8

Mathematica does have a built-in function which implements Berlekamp's

algorithm:
In[17]:= Factor[ x*6 + 5x”5 + 4x74 + 2x"3 + 6x72
+ x + 3, Modulus -> 7 1]
Out[17]= (3+x+x2)? (5+ 3x + x?)

We can use this to check that 2° — 5z + 12 is irreducible modulo 7:

Factor[ x°5 - 5x + 12, Modulus -> 7 ]

In[18]:

5+ 2x + x°

Out[18]
You can also factor polynomials over Q:

In[19] := Factor[x™6 + x°5 + 4x74 + 2x73 + 6x72

+ x + 3]

Out[19]= (1 + %) (34 x+ 3x% + x> +x*)

14.8 Exercises

1. Let p € F[x] be irreducible, and suppose p | (f1--- f) where fi1,..., f, €
F[z]. Prove that p | f; forsomei,1 <7 <r.

2. Suppose that py,...,pm , m > 2, are pairwise relatively prime. Prove that

(p1 - Pm—1) and p,, are relatively prime.
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3. a) Let f(z) = ap,a™+ - -+ + a1x + ag be a polynomial with integer coeffi-
cients. Show that if a rational number a /b, with (a,b) = 1, is a root of

f,thena | agand b | a,.

b) Find the rational roots of 8 — 38z + 27x? + 4723 — 112* + 152°.

4. Show that a polynomial in F' [x] of degree 2 or 3 is reducible if and only if it

has a root.

5. Make a list of the monic irreducible polynomials of degree less than 4 in F5[x].

6. Write a Mathematica function which lists the monic irreducible polynomials of

degree less than n in F,,[z] by making a sieve.

7. Decide whether the following polynomials are reducible or irreducible:

a) 2’ + 23+ 22+ 2+ 1€ Fy];

by a*+ 22?4+ x + 2 € F3z] ;

o at+a*+1eF;z];

d) % + 62" — 5423 + 122 + 72z + 24 € Q[z] ;
e) xt — 1022 +1 € Q[z] ;

f) 2" +3x+5 € Qlx].

8. e Let f be a monic polynomial with integer coefficients. Suppose that
g € Q[z] is monic and divides f. Prove that the coefficients of g are integers

too.

9. Let p be prime. By factoring 2P~! — 1 € F,, show that

(p—1!=-1 (modp).
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10. e Let [ be a field, and K C F), its prime field. Show that if « is an auto-

morphism of F' then « fixes K, in other words a(a) = a forall a € K.

11.  a) Show that the set of automorphisms of a field forms a group under

composition.

b) Compute the group of automorphisms of

i Q(v2),

ii. Q(w),wherew = ¥/

iii. Q(w),wherew = ™/,

12. e Let I and F5 be fields, and ¢ : F} — Fj an isomorphism. Then 1) induces
a mapping ¥, : Fi[z] — Fy[z] as follows. For
flz) =apa" + - -+ a1z +ap,
with @y, ..., a1,a9 € F1, let
bj =v(a;), 0<j<n,

and then set

Uu(f)(@) = bpx™ + -+ + biw + bo .

Prove that 1), is an isomorphism of rings.

13. Suppose f € Fx]is reducible. Prove that F'[x]/(f) is not a field (cf. exercise
1.18).

14. Prove that the mapping in example 14.22(iii) is an isomorphism of fields.

15. e Let F' be a finite field of characteristic p with ¢ elements.

a) Verify that F' is a vector space over [F),. If dimp, /' = n, show that

q=p"
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b) Suppose f € Fz] is an irreducible polynomial of degree n. Prove that
E := Flx]/(f) is a finite field. How many elements does it have?

¢) Construct fields with

i. 8 elements;
ii. 9 elements;

iii. 125 elements.

16. Let G be a finite abelian group.

a) Given a, f € G show that there exists an element in G of order

lem(al, |5]) -

Suggestion: use exercise 5.8.

b) Let F' be a finite field and set

r = max |a .
ac >

Show that || | r forall « € F.

¢) Prove that the multiplicative group of a finite field is cyclic.

17. Let R be a commutative ring and let / C R be a subgroup such that
rl C 1

for all 7 € R. Prove that there is a well-defined multiplication on the quotient
group R/ induced by the multiplication on R, and that with this multipli-
cation R/I is a ring. Such a subgroup [ is called an ideal of R, and the ring
R/I is called the quotient ring of I. Let S be another ringand ¢ : R — S a
ting homomorphism. Show that ker 7 is an ideal. Prove that if ¢ is sutjective,

then it induces an isomorphism of rings:

R/I=S.



14.8. EXERCISES 265

18

19

20.

21.

22.

23.

24

. Prove that every ideal I of F'[z] is of the form [ = (f) for some f € F[z].

. Let R and S be two rings. For any 71,79 € R, 51,59 € 5, define
a) (r1,s1) + (re,82) == (11 + 1o, 51+ 52)
b) (11, 51)(r2, 52) == (1172, 5152)
Show that with these operations R X S is a ring, with multiplicative identity

(1g, 1s).

e Prove that a polynomial f € F'[z] has a repeated factor if and only if f and

its derivative have a common factor, in other words if and only if (f, f') # 1.

e Prove that for any g € [F,[z],
g(x)? = g(z") .

e Let F' be a field of characteristic p. Show that the map ¢ : ' — I, given
by
Y(a) =d”,

is a homomorphism. Prove that if F' is finite then 7 is an automorphism of

F'| in particular that every element of F' is a pth power.

a) Let F' be a field and f € F[z]. Suppose that g, h € F[z] are relatively

prime. Show that

(f:9h) = (f,9)(f,h) .

b) Prove that the formula (14.5) holds.

. Prove the the mapping (14.4) is linear, and is an isomorphism: F) — W.

www . dbooks . org


https://www.dbooks.org/

266 CHAPTER 14. POLYNOMIAL RINGS

25. Use Betlekamp's algorithm to show that ° — 5z + 12 € Fy[z] is irreducible.

26. Use Berlekamp's algorithm to factor 28 +32° +at+ a3+ 522+ 2 +4 € Frlz].

27. Use Betlekamp's algorithm to factor 28+ 204+ 102t + 1023 + 822+ 22+ 8 €
]].‘_“13 [l‘] .



15

Symmetric Polynomials

The coefficients of a polynomial in one variable are symmetric functions of its
roots. So are other quantities, like the discriminant of the polynomial. In this
chapter we will discuss symmetric polynomials and their basic properties. First

we say a little about polynomials in more than one variable.

15.1 Polynomials in Several Variables

Let F' be a field. A polynomial f in n vatiables 1,9, ..., 2, with coefficients

in F'is a finite sum

flxy, ..., 2,) = Z iy T

ilvn'vin
where the coefficients a;,...;, lie in F. We denote by F[xy,...,z,] the set of
all polynomials in x1, . .., T, with coefficients in F'. The degree of a monomial

2 xinis 4y + - +i,. The degree of a polynomial f is the largest degree of

a monomial with a non-zero coefficient in f. For example, the degree of
2,3 4
r1T3x3 + X105 € Flry, m9, 23]

is 6. You can add and multiply two such polynomials in the obvious way. With
these two operations F'[x1,. .., ;] becomes a commutative ring. The zero ele-
ment is the polynomial, all of whose coefficients are (. The constant polynomials

form a subring isomorphic to the field of coefficients F'.

267
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Just as with one variable, we can define rational functions in n variables. A

rational functionin 1, . . ., T, over F'is a quotient f /g, where f, g € Flx1,.. ., x,],
g # 0. We identify f/g with kf/kg for any k € Flxy,...,x,]. The set
of rational functions in z1,...,x, over F' is denoted by F(z1,...,x,). If

you define addition and multiplication in the same way as for one variable, then

F(xy,...,x,)becomes a field, called the field of rational functions inx1, . .., Z.

15.2 Symmetric Polynomials and Functions

A symmetric polynomial is one which is symmetric in the variables z1, ..., Ty :
Definition 15.1. A polynomial [ € Flxy,...,x,] is symmetric if
f(@aq), - Tam)) = f(@1,. .- T0)
foralla € S,
For example,
Ty + 2T + 1125 + X5x3 + 1175 + Toxh € Flry, 2, 73]

is symmetric. It is easy to see that if f; and f5 are symmetric, then so are fi + fo
and fifa. It follows that set of all symmetric polynomials in F'[xy, ..., 2,] is
a subring of F[zy,...,x,]. A rational function h € F(z1,...,x,) is called
symmetric if

hMzaqy, - Taq)) = h(z1, ..., 20),
for all € S,,. The set of all symmetric functions in F'(z1,...,x,) is a field.

Now suppose that
f)=a2"+a, 12" "+ +ag € Fla],
and that f has n roots (1,...,(, € F. So

f@)=(@=G) - (x—G) .
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Expanding the product, you obtain formulas for the coefficients ag, . . ., Gy—_1:

a = (=1)"G -G

anj = (=1) Z Gir * iy

1< <ij

. : .
Ap—1 — — Z Cj .
J=1

These expressions are symmetric in (p, ..., (,. The corresponding symmetric

polynomials are called the elementary symmetric polynomials:

Definition 15.2. The jth elementary symmetric polynomial in 1, . . ., Ty, is
Sj(mla"'axn) = Z Ly =0 Ty
’il<"-<ij
forl1 <j<n.
Thus

Ap—j = (_1)j8j(§1a s 7(71) :

The second reason that elementary symmetric polynomials are important is
that every symmetric polynomial can be expressed in terms of them. The proof
actually gives an algorithm for doing so. Let's see how it works in an example

before looking at the general case. Take
h(z1, 9, 73) = 25 + x5 + 23 .

We will write h in terms of

S1 = X1+ X9+ T3
So = X1To + T1x3 + ToX3
S3 = XT1T2T3 .
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To begin with, notice that the only way to obtain l':l)’ using s1, S and s3, is to take

s3. Then
3 2 2 2 2 2 2
h = s —3(xixe + v123 + 523 + 125 + 125 + 2973) — 6212973 .

Now the first term in the difference h — S? is m%xg. This occurs only in $159,
and

h = S‘I’ — 35189 + 3T1x273 .

Of course what remains on the right hand side is just 3s3. So we end up with
h = s? — 35159 + 353 .

To carry out this procedure for an arbitrary symmetric polynomial we will
have to argue by induction. For this, we must order the monomials. The sim-
plest way to do so is to order them /lexicographically . Suppose that we have two

monomials, i - - - ' and x1" - - - I, Then we define
lel...xzzl >_ a’;{l...l’-’zl”7
if
11 :jl ey ir:jra butir+1 >7:7«_|_1 .
for some r, 1 <7 < n. So for example,
3 2 2 2
This ordering has the property that, for any two monomials m; and my, either

my > Mo or mi = Mo or Mo > My .

Notice that the greatest monomial in s is 'y - - - ;. Therefore in an expression

1.2 .. odn
81 53 Sn s

the greatest monomial will be

J2 .02 Jn

e (@) (@ adn) = g TR gl i e (15.1)
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Now let f be a symmetric polynomial in x4, ..., z,. Otder its monomials
lexicographically. Suppose that 3! - - - z'n is the greatest monomial that occurs
in f. To write it in terms of the elementary symmetric polynomials, we compare
its exponents with those of the monomial (15.1). This gives us the system of

linear equations:

o= Jitjet+in

= Jn -

in

This system is easy to solve and has the unique solution:

Ji = 11— 1
Jo = 19 — 13
In = in -
Therefore we must use s°'~ 252~ " ... s to get the term z'' - - - . The dif-
1 2 n g 1 n
ference
h — 8111—12 852_23 . S;Lln ’

is again a symmetric polynomial, and only has lesser monomials in it. So arguing
by induction, it can be written in a unique way in terms of sy, ..., sy. This gives

us the theorem:

Theorem 15.3 (Fundamental Theorem of Symmetric Polynomials). A symmetric
polynomial f € Flxy,... x| can be written in a unique way as a polynomial in the

elementary symmetric polynomials.

Corollary 15.4. There are no algebraic relations among the elementary symmetric polynomi-

als.
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Proof. By an algebraic relation among 1, . .., s, is meant a polynomial g # 0 in
n vatiables such that g(sy, ..., s,) = 0. If there were such a polynomial relation
among them, then there would be more than one way to express the symmetric

polynomial 0 in terms of them. []
Examples 15.5. (1) Let
f(z) =2 +az® + bx + ¢ € Fla],
with roots (1, (2 and (3 in F'. Thus

a = _31(C17C27C3) = - gl - CQ - C3
b = 551,02, (3) = QG+ GG+ GG
c = —83(C17C2>C3) = — (1623 -

Now we are going to see how we can wtite down the monic cubic g € F[x]

whose roots are (2, (3 and (2, in terms of a, b and ¢. To do this we must

write 31(C12, C22, Qg), 82@12, C22, C??) and 33(612, CZZ, Qg) in terms of a, b and
c. We have
51(0.6,6) =G+ G +6G
= (G +G+EG)—2(06G+ GG+ Gé)
=a>—-2b
52(CF. €3, G5) = GG+ GG + GG
= (GaGs + CiGs + CiG2)® — 2(¢TCals + Q163G + G1GaC3)
= (GG + GG+ G6)* —2(GRG) (G + G+ G)

= b? — 2ac
2
=C .

Therefore the cubic g is given by

g(x> =1’ — 51<C127 C227 CS?)J:Q + S2(<127 C227 <§>$ o 83(C127 C227 Ci?)
= 2° — (a® — 2b)2* + (b* — 2ac)z — .
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(i) Suppose we have a polynomial

flx)=2"+a, 12" '+ +ag € Fla],

with roots (1, . . ., (, € F, none of which are (. Then we can write down a
monic polynomial g € F'[x] whose roots are the reciprocals 1/(y, ..., 1/,
in terms of ag, . . ., ay—1 . What we must do is to express si(1/C1,...,1/C),
0 <k <mn, intermsof ag,...,a,_1. Well,
1
(/G 1/G) = X e
<<y 21 Yk

If we multiply this by (1 - - - (,,) we obtain

(Clcn) Sk(l/Cb"'?l/Cﬂ) = Z le".Cjnfk

J1<<Jn—k

Therefore

se(1/Cy 5 1/Gn) = snk(Co- - Go) /50 (Cry o, Gn)
= (—=DFag/aq .

It follows that
g(x) ="+ + (an_p/ag)z" + -+ (1/ao) .
Now that we have the answer it is clear that we could get it more easily:
" f (é) =1+ +a, 17"+ + " = agg(7) ,

and the roots of " f(1/x) are 1/C1,...,1/C,.
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15.3 Sums of Powers

There is another simple type of symmetric polynomial which occurs frequently,

namely the sums of the jth powers. Let

n
pi(z1, ... x,) = sz .
i=1

By the fundamental theorem there must be formulas which express py, ..., p, in
terms of S1, ..., S, . These can be obtained recursively from Newton's identities.
Theorem 15.6.

0 = pr—s1

0 = po2—s1p1+ 259
0 = p3—s1p2+ sap1 — 383

0 = pn—81Pn1+S2Pua+ -+ (=1)"ns, .

Proof. We have forn > r > 1,
3 - %
J
s =Yy Yy =2 Tt D Ty
J k J

J1#352

— r—2 _ =1 =2,
S2Pr—2 = § :$j1$j2 E :Ik - § :lesz + E E ::Ehl’ji T js

Jj1<j2 k J1#£72 J1<j2<js i

_ _ 2
Sr—1P1 = E Tjy o Tjoy E Ty = E E Tjy o Tj gy
k

<Gt J1<<jr—1 1

DD

J1<<Jr

TSy = T E Zlfjl"'xjr .

J1<<gr

Taking the alternating sum of these equations gives us the formula. [
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Notice that if chr F' = 0, then these identities also allow us to write S1, ..., S,

in terms of P1, ..., Dy .

15.4 Discriminants

Let F be a field of characteristic # 2 and f(z) = 2> + ayz + ay € Flz], a
quadratic polynomial with roots (; and ¢, in F'. By completing the squate, we
get the well-known formula:

—a1+\/Z —al—\/z

Clz 2 CQZ 9 )

where A = a? — 4ay is the discriminant of f. This formula tells us that

A= (Cl —C2)2~

Now suppose that f € F[z] is a polynomial of degree n with roots (1, ...,(, €
F'. By analogy,

A=TJG=¢)? = (=02 TG - ¢)
1<j i#j
is called the discriminant of f. The most obvious property of A is that it is non-
zero if and only if the roots of f are distinct. In the chapters to come we shall
see some of its more subtle properties.

Interchanging two roots (; and (; does not change A. Since S, is generated
by the set of all transpositions, A is therefore symmetric in (3, . . ., (. So define
a polynomial

Az, ..., xy) = 1_[(1:Z —2;)? € Flay,..., 7).
1<j
Then A is symmettic in 21, . . ., T,,. Using the algorithm above, you can compute

that

A(wy, 09, 73) = 8785 — 4sy — 45753 + 18515253 — 2753 .
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With software it is easy to calculate A(z1, ..., z,) in terms of the elementary

symmetric polynomials for larger 1. Notice that the polynomial

0y, xy) = 1_[(95Z — ;)
1<j
is not symmetric. If you interchange two variables you get —d(xq, ..., x,) (see

exercise 11).

15.5 Software

Mathematica has a function SymmetricReduction which implements the algorithm
in theorem 15.3. It requires that you list the variables in your symmetric polyno-
mial, and name the elementary symmetric polynomials. Here is p3 in terms of

S1, S2 and S3:

In[1]:= SymmetricReduction[ u~3 + v73 + w~3,
{x1,x2,x3},{s1,s2,s83} ]

Out[1]= {s1® —3s1s2+3s3, 0}

Actually the function will take an arbitrary polynomial and write it as symmetric
polynomial and a remainder. This is where the second term 0 comes from. If
you are only interested in symmetric polynomials, you can get rid of the zero
remainder by applying the function First:

In[2]:= First[%]

Out[2]= s1® —3s1s2+ 3s3

Here is the discriminant Delta in four variables x1, x2, x3, x4, written in terms

of the elementary symmetric polynomials:
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In[3]:= Delta
= ((x1-x2) (x2-x3) (x3-x4) (x1-x3) (x2-x4) (x1-x4)) "2

Out [3]= (x1 — 22)*(22 — 3)*(23 — 24)*(z1 — 23)?* (22 —
74)% (21 — 24)?

In[4]:=First[ SymmetricReduction[ Expand[Delta],
{x1,x2,x3,x4},{s1,s2,s3,s4} 1 1]

Out[4]=s1?82253? — 452%s3% — 4513s3® + 185182533
—27s3* — 451252354 + 16s2*s4 + 18513525384
—80s1s2?s3s4 — 651%253%s4 + 14452s3%s4
—27s1%s4? +144s1%s25s4% — 128522 s4?

— 1925153542 + 256543

15.6 Exercises

1. Prove that the set of all symmetric polynomials in F'[x1, ..., x,] is a subring
of Flz1,...,x,] and that the set of all symmetric functions in F'(z1, ..., x,)
is a field.

2. Write 25 + 23 in terms of 51 and sa.

3. Suppose that
f(z) = 2* + ap2® + a1 + ag € Flx]

has roots (1, (2, (3 € F. Write down the polynomial with roots (2(3, (13,

and (4 (s in terms of the coefficients of f.
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4. a) Give an algorithm which expresses an arbitrary symmetric polynomial
in Q[z1,...,x,] in terms of p1, ..., p,. Do not go via the elementary

symmetric polynomials.

b) Write A(x1, z2, x3) in terms of py, ps and ps.

5. Let f € Q[z] be a cubic. Suppose that the sum of its roots is 0, the sum of
the squares of its roots is 1, and the sum of the cubes of its roots is 2. What

is the sum of the fourth powers of its roots?

6. e Let
f(z) = 2* + byr® + byx + by € Fla],

where chr F' is not 2, be a quartic with roots (1, (2, (3, (4 € F'. Set

m = (G + )G+ )
n2 = (G + (3) (G2 + Ca)
n3 = (G +C)(G+G),
and let
r(z) = (x —m)(z —m)(z—ns).

Prove that
r(z) = 2® — 2byx? + (b3 — 4by)x + b2 .

7. Derive Newton's identities for p,, 4., 7 > 0: show that
Prntr — S1Pn+r—1 + So2Pn+r—2 + -+ (_1)n3npr =0.
8. Prove that there exist polynomials r,, € Q[z] such that

()
r+—=rlx+—-],
Al x

for n > 1. Suggestion: derive a recursion formula for =" + 1/z" from

Newton's identities.
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9. Let F be a field of characteristic 0. A polynomial f € F|x] of degree n is

called a reciprocal polynomial if

" f (é) — f(@).

a) If f is a reciprocal polynomial and ¢ € F, { # 0, is a root of f verify
that 1/ is also a root of f.

b) Suppose that n is odd and that f is a reciprocal polynomial. Show that

—1 is a root of f, and that

g(x) = f(x)/(x +1)

is also a reciprocal polynomial.

¢) Suppose that n is even, and
fx) =ap2" + -+ a1z +ap .
Show that f is a reciprocal polynomial if and only if
Ay = Q;

for all k.

d) Let f be a reciprocal polynomial, and let ( € F' be a root of f. Prove
that { # 0.

e) If n = 2m and f is a reciprocal polynomial, prove that

S =g ( " 1)

for some polynomial g € F'[x] of degree m.

10.  a) Show that

1z 2?2 2t
-1
n(n—1) 1 T JZ% .I'g
(1) = ”(mz T;) = : . :
i<j : :
! 1 x, 22 xnt
n Lo ... Tn
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b) Show that
n o p1 P2 <o+ Pn—1
b1 P2 P3 <o+ DPn
Pn—1 Pn DPn+1 --- P2n—2

Suggestion: multiply the underlying matrix in (a) by its transpose and

take the determinant.

11. e Let

0zy, .. xn) = H(sz — ;).

Show that for any o € S,,,

0 (Ta@1),- - Tam)) =sgna 0(T1,...,2,) .

12. e Let f € F[z] have distinct roots (1, . .., (, € F. Prove that

DG G) = ("R T 1G)
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Roots of Equations

16.1 Introduction

In this chapter and the following ones, we are going to discuss solving polynomial
equations. For a quadratic equation, it is easy to write down a formula for the
roots. This formula tells you a lot about them and is very useful. There is a similar
formula for the roots of a cubic. But it is more complicated, less informative and
less useful (see chapter 20). For quartics this is even more so, and for equations
of degree greater than 4, such formulas do not even exist. So in trying to desctibe
the solutions of an equation we will take a different approach, namely the one
outlined in the introduction to chapter 14.

As we saw in chapter 7, algebraic relations among the roots are important.
First, let's be more precise about what we mean by this. To make things more
concrete, suppose f(x) = 2"+ -+ a1x+ ay € Q[x]. According to the funda-
mental theorem of algebra, f has n complex roots, (1, . . ., (,. Then an algebraic
relation among the roots is a polynomial g in n vatiables with coefficients in Q

such that g((1, ..., () = 0. Examples of such relations are

Sj(Cb s 7Cn) = (_1)jan_j .

for 1 < 7 < n. These hold for any f. But there may well be others for a
particular polynomial.
Now it is awkward to work directly with these relations. But there is an ap-

proach which works amazingly well. The basic idea is the following, The roots

281
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of the polynomial f lie in C, which is a very large field. In fact they lie in a much
smaller field. If we look at the smallest field containing them, we will see that its
algebraic structure is determined by the algebraic relations among the roots. It is
this field, called the splitting field of f, which we will study. A few examples will

make clearer what this means.

Examples 16.1. (i) f(z) = 2 — 2 € Q[z]. The roots of f are +v/2 €
C. These lic in the field Q(v/2). And this is cleatly the smallest field
containing Q and the two roots. Elements of Q(v/2) are of the form
a-+bv?2,a,b € Q, and the multiplication in Q(/2) is determined by the

relation

(V2)?=2.

(i) Let f(z) = 2* + 23 + 22 + x + 1 € Q[z]. As we saw in chapter 7, the
roots of f are

Cl _ e27ri/5 : <2 _ e47ri/5 7 CS _ 667”'/5 : <4 _ 6871'1'/5 )

These satisfy the relations determined by the symmetric polynomials. They
also satisfy

G=CG, 6=¢, G=¢.
Let's set w := (3. Then all the roots lie in the field Q(w) (see example
14.17(iv)), and this is the smallest field containing Q and the four roots.
Elements of Q(w) are of the form ag + ajw + asw? + asw?, and mult-

plication in Q(w) is determined by the relation
—1=51(¢1,0,G,0) =G+ o+ G+ =wtw’ +w +wh.

In general, given f € Q[z] with roots (i, ..., (, € C, let

Q(gla"wgn) = {g(Cla"an) S (C},

where g = h/kis a rational function, with h, k € Q|[x1, ..., z,]and k((y, ..., ()
# 0. It is not hard to see that Q((1, ..., (,) is a field, and in fact

Q-1 G)=N{K|QCKCC, (,...,( € K, K afield} .
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In other words, Q((y, . . ., (,) is the smallest field containing (i, . . ., (, and Q.
The relations among the roots determine the structure of this field. However,
this is too vague to be of much use. So we will develop a clearer, more precise
description.

In the examples, we have extended the field QQ to obtain a larger field con-
taining the roots of f. These fields are called extension fields of Q. As was
mentioned, the relative size of an extension field is important. There is a simple
way of measuring this. Such a field is a Q -vector space. So we can measure its
size by its dimension. In the first example it is 2, and in the second, 4. In general,
Q(¢1, - -+, ) is finite dimensional. On the other hand, the dimension of C as a
Q -vector space is uncountably infinite. So in this sense, C is a very large field,

and Q((y, - - ., (), 2 much smaller one.

16.2 Extension Fields

Definition 16.2. Let £/ and F' be fields, with £ D F. Then F is called an
exctension field of I, and F', a subfield of .

One often refers to the extension E over F, written E/F. So @(\/5) and Q(w)
are extension fields of Q and they are subfields of C. In example 14.22(iii), I}, is

embedded in [F2 as the set of diagonal matrices:

= {5 0)een < {0 2)

These are all examples of sizple extensions. An extension E/F is called simple

a,bEIFp} = Fp2.

if there exists an element ( € F such that

E = F(Q) = {9(Q)/h(C) | g.h € Flx], h(¢) 0} .

We say that F'(() is obtained from F by adjoining . Simple extensions can be

described precisely, which makes them very useful.
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Theorem 16.3. Suppose E = F((), for some ¢ € E. Then either

the field of rational functions in x.

Proof. Suppose there exists f € F[z|, f # 0, such that f(¢) = 0. Pick one of
minimal degree. This f will be irreducible: for if f = gh, with degg, degh <
deg f, then either g({) = 0 or h(¢) = 0. We have the evaluation map (see
remark 14.23)

e+ Flz] = F()

given by

which induces an isomorphism

e : Flz]/(f) = F(C) -

The other possibility is that f({) # 0 forall f € Flx], f # 0. We define
ec : F[z] = f(C) as above. But now we can extend it to F'(z) by setting

ec(g/h) = g9(¢)/n(C),

for any g, h € Fx], h # 0. This gives a homomorphism, whose image again is
an extension of F' containing . Therefore it must be all of F'((). Il

In the first case the polynomial f chosen in the proof can be taken to be

monic. It is then called the minimal polynomial of (. Its degree is called the degree
of C.

Corollary 16.4. If E | F is an extension, and { € E, with g(¢) = 0 for some g € F[x],
then g is divisible by the minimal polynomial of C.
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Proof. 1If g(¢) = 0, then € (g) = 0, which means that g = 0 € Flz]/(f). In
other words, g € (f) or f | g. O

In general, if F'/F is an extension and { € E, one says that ( is algebraic over
F if there exists f € F[x] such that f(¢) = 0. If no such f exists, one says that
( is rranscendental over F'. If ( is algebraic over QQ, then ( is called an algebraic
number, and if it is transcendental over Q, a #ranscendental number. 1t is not hard to
see that there are countably many algebraic numbers. So there are uncountably
many transcendental numbers. For example, 7 and e are transcendental. Yet it is
very hard to prove that a complex number is transcendental (see [1], §6.3)

Let's look at a slightly more complicated example:

Example 16.5. Let f(z) = 2° — 2. Clearly v/2 € R is a root of f. If w is a
cube root of 1, then w+/2 is also a toot of f. Solet w = e*™/3 Then

V2, wV2, WwW2 ecC
are the roots of f. We want to describe Q(v/2, wv/2, w?v/2). Now
Q(V2) CR,
but
wv2, wV2 ¢ R
So
wV2, W2 ¢ Q(V?2).
Any field containing all 3 roots must contain
cu§7§/<7§::<u.

So let's adjoin w to Q(+/2) . Then

E:=Q(V2)(w) = Q(V2,w) C Q(V2,wV2,w’V2),
and on the other hand, F will contain w+/2 and w?v/2. So

Qxf7§¢u€%§¢u2€yi) ::(@(€V§¢u).

Can you describe @(\3/5 ,w) as a simple extension? A
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In general, suppose that F// F'is a field extension, and (3, ..., (, € E. Then

we can define the extension

F(gl,,CT):F(Cl)(CT)CE
=N{K|FCKCEFE,(,...,(, € K}

={9(C1;-...¢) € EY,

where g = h/k is a rational function, with h, k € F[xq,...,x,] and
k(Ciy. .., Cn) # 0. We say that F'((q,. .., () is obtained from F by adjoining

Clyevey G

16.3 Degree of an Extension

If E is an extension of I, then £ is an ['-vector space:

(i) for ¢,n € E, define vector addition to be field addition in £

C+n:=C+n €k

(i) fora € F'and ¢ € E, define scalar multiplication using the field multipli-

cationin F

af:=a( € F.

It is straightforward to check that £ with these two operations is an ['-vector

space.

Definition 16.6. Let E//F be a field extension. Then the degree of the extension,

written [E : F, is the dimension of F as an F-vector space, that is,
[E: F|:=dimp E .

If [E: F| < oo then E/F is called a finite extension.
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If f € F[x] is irreducible then we saw in the previous chapter that the di-

mension of the simple extension E constructed from f is deg f. So in this case,
[F:F)=degf.

In our first example,
with basis

In the second one,

274 /5

where w = e , and

{1,w,w? w*}

is a basis. In the third example,

and

is a basis.

In example 16.5, we have
QCcQ(V2) cQ(V2,w).

It is clear that
[Q@(V2):Q] =3

with basis

{1,V2,(V2)%} .

What about [Q(\‘g/ﬁ, w) : Q(\?’/ﬁ)}? Well, w is a root of 22 + 2 + 1 which is
irreducible in R[z]. Therefore it is irreducible over Q(+/2) and

[Q(V2,w) : Q(V2)] =2
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with basis
{Lw}.
We would also like to compute [@(\3/5 ,w) Q} . Tt is not obvious that Q(+/2, w)/Q

is a simple extension. But the following result shows that we can calculate its de-

gree from [Q(V/2,w) : Q(v/2)] and [Q(V2) : Q).

Theortem 16.7. Ler D D E D F' be fields. Then
[D:F)=[D:E|E:F].

Proof. First, let's assume that [D : E] and [E : F] are both finite. So suppose

that

S:{Cl,..-;cs}

is a basis of D over F, and

T:{nh'"vnt}a

a basis of E over F'. Set
U={GmeD[1<j<s1<k<t}.

We want to show that U is a basis of D/ F'. First we show that it generates D/ F..
Pick @ € D. Since S'is a set of generators of D over E, there exist vy, ... a5 € E
such that

0:a1<1+"'+as<s-
Now T’ generates I over F. So for each j, 1 < j < s, there exist 8j; € F),
1 < k <'t, such that

aj; = Bjuny + -+ By -

Therefore .

0= Bi(Gm) -

j=1 k=1

So U generates D over F.
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Now we check that U is linearly independent over F'. Suppose that

0= iZﬁjk(Cjﬁk) = i (Zﬁjkﬁk) Gi

j=1 k=1 j=1 \k=1

for some B, € F',1 < j <s,1 <k <t Since S is linearly independent over

E, the coefficients of (1, . . ., (s must be 0, in other words,

Bijim + -+ B =0,

for1 < j < s. But{m,...,n} are linearly independent over F'. Therefore
Bjr = 0 for all j, k. So U is linearly independent over F' and is therefore a basis
of D/F. 1t follows that

[D: FE|E:F|=[D:F],

if all three are finite.
If one of [D : E] or [E : F| is infinite, then [D : F is infinite. O

We now can compute [Q(\B’/ﬁ, w): Q)
[Q(V2,w): Q] = [Q(V2,w): Q(V2)][Q(V2) : Q] =2-3=6.
Using the bases for Q(v/2)/Q and Q(v/2,w)/Q(3/2) given above, the basis

constructed in the theorem is

{1, V2, (V2)?, w, wV?2, w(V2)?} .

Example 16.8. Take f(x) = x* — 102 + 1 (see chapter 7). Its roots are

Any subfield of R containing the four roots contains v/2 and v/3 and vice versa.
So the smallest field containing the roots is @(\/ﬁ, \/§) From the theorem,

[Q(v2,v3): Q] = [@(v2): Q][Q(V2,V3): Q(v2)] =2-2=4,
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since 72 — 3 has no root in Q(v/2).
In fact it is not hard to see that Q(v/2,v/3)/Q is a simple extension. We

have

Q(V2+V3) c Q(V2,V3).

A short calculation shows that we can express \/§ and \/§ in terms of \/§ + \/g

and its powers:

(V24 V32 =5+ 2V3V3,

and
(V2+ V3 =11V2 4+ 9V3.
Thus .
VI=—D(VI+VE) + S (VE+VE),
and
VB= T (VI+VE) - L (VE+ VAP
Therefore

Q(V2+V3) = Q(v2,V3).

16.4 Splitting Fields

We can now say more about the smallest extension field containing the roots of
a polynomial. Suppose that F' is a field, and f a polynomial of degree n with
coefficients in F. We say that f sp/lits in an extension £ of F'if f has n roots

C1y---,Cn € E, of equivalently,
fl) = (z—=C) - (x— () € Elx] .

We want to show that any polynomial f € F[z] splits in some extension of F.
The smallest such extension is called a splitting field of f. This is the smallest field
containing all the roots of f.

For example,
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() Q(v/2) is the splitting field of 22 — 2 € Q[z]

(i) Q(w), wherew = e*™/° is the splitting field of z*+x3+2?+x+1 € Q[x]

(i) Q(v/2,w) is the splitting field of 2% — 2 € Q[x]
(iv) Q(v/2,/3) is the splitting field of #* — 102% 4 1 € Q[z]

As mentioned at the beginning of the chapter, the structure of the splitting
field reflects precisely the algebraic relations among the roots of the polynomial.
In the next chapter we will use splitting fields to study the symmetries of the
roots.

An obvious question to ask is, does a splitting field for a polynomial f € F[x]
always exist. If the answer is yes, then we can ask whether it is unique or not. In
examples (i) and (if) above, we were able to construct a splitting field by adjoining
one root to the field F. In example (iii), we had to adjoin a second root. This
suggests how we can construct splitting fields in general. Uniqueness of splitting

tields will be discussed in the next chapter.

Theorem 16.9. Let f € F[x] be a polynomial of degree n. There exists a splitting field
E/F of f with|[E : F| <nl.

Proof. We first assume that f is irreducible and argue by induction onn. If n = 1,
then f is linear and its only root lies in F'. So suppose that the result holds for

irreducible polynomials of degree at most 7 — 1. Set

E = Fl]/(f) -

In F, f has at least one root. So we can write

fx)=(z =) (&= G)g(x) € Ela],
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with (1,...,( € E,and g € E[x] irreducible. Since degg < n, by the induc-
tion assumption the result applies to g. Thus there exists a splitting field D/E

for g with
[D:E]<(n—r).
If
g9(x) = (= Gya) -+ (# = Gu) € D[],
then

f@)=(z =) (=) € Dla],
in other words, f splits in D. The field D then contains a splitting field £’ of f
with
[E':F|<[D:F]=[D:E|E:F]<(n—r)n<n!,
as desired. If f is reducible, we can apply the result for irreducible polynomials

to each irreducible factor of f. Itis not hatrd to see that here too, the degree of

the splitting field is at most n!. ]

Example 16.10. Consider f(z) = 2P — 2, where p is prime. We have already
looked at p = 3. First, there is a real root, V/2. Furthermore, if w? = 1, then
w+v/2 is also a root of f. So pick a pth root of 1, w # 1, for example w = i/,
Then the remaining pth roots of 2 are w’ V2, 1< J < p. Asin the case p = 3,

we see that if an extension field contains all the roots, then it must contain
WVZIVE = w.

Conversely, if it contains v/2 and w, then it contains all the roots. So the splitting
field of f is
QV2,w) .

To calculate [Q(W, w) : Q} , first note that
[@(V2):Q] = p.

So

r|[@¥2): Q@(V2.0): Q] = [Q(V2,0): Q).
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And since wisarootof 2Pt 4+ 4z +1,
[Q(V2,w): Q(V2)] < p-1.
Therefore
[Q(%, w) : Q} < (p - 1)p'
On the other hand,
[Qw): Q] =p-1

since 2P~ + -+ - 4+ x + 1 is the minimal polynomial of w over Q, and
QW) : Q] | [Q(¥2,w): Q] .

Therefore both p and p — 1 divide [Q(v/2,w) : Q] . Since they are relatively
prime, we have
(p—1)p ‘ V2,w): Q.
Thus
[Q(V2,w): Q] = (p—1)p.
The diagram below shows the relationships between the four fields, and the de-

grees of the extensions.
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16.5 Cubics

Let F be a field of characteristic # 2 and f(x) = 2°> + a1z + ag € Flz],
a quadratic polynomial. On page 275 we recalled the standard formula for its

roots (1 and (2. You can also write this in a slightly different way:

—a;+90 —a; — 0
Clle7 CQZlTa

where & = y/a? — 4ay is a square root of the discriminant of f. This formula
tells us that

5:C1_C27

and that F'(9) is a splitting field of f over F.
Now suppose that

f=2*+ay2® +ayx+ay € Flz]

is a cubic with 3 distinct roots (1, (2, and (3 in some extension £/ F. So we can

write
flx) =(z—G)(z— @)z —G) € Elz].
Set

0:=(C—)—G)G—() €EF.

So A = §? is the discriminant of f. It is not hard to see that A € F. If we pick
one root, say (1, then we can express the other two in terms of it and J. First, we

have

—ay =G+ G+ (3,

which gives us
G+G=—a—-G. (16.1)

Furthermore,

fla)=(z=G)@—G)+@—0)@—G)+@-q)r—-C),



16.5. CUBICS 295

so that

F(G) = (G — )G —G) -
Therefore, 5

GG—CG= m .

Combining this with equation (16.1), we get

=-2-4_ 20

2 2 2f(G)
- aw é 5 (16.2)

_|_
2 2 2f(G)
Thus F'(d, (1) is a splitting field for f over F'. One should think of this as £(J)

with a root of f adjoined. If f is irreducible over F, then
[F(6,6): F] = 3016,
depending upon whether § € Flor§ &€ F.
For example, take f(z) = 2% — 2 € Q[z]. As we saw in example 16.5, the
roots are
C1:\3/§7 C2:w\3/§7 C3:w2\3/§7
where w = €™/3, So
5 = (V2 —wV2)(wV2 - w?V2)(V2 — w*V2)
= 2(1 —w)(w—w?)(1 —w?
= 6+ 12w,
and Q(6, (1) = Q(w, v/2) is the splitting field again.
Remark 16.11. 1If f is a real quadratic then the discriminant controls whether the
roots are real: if A is positive, then f has 2 real roots. If A is negative, then f has
a pair of complex conjugate roots. For a cubic f € R[z] the discriminant has a
similar significance. A real cubic always has a real root. So take (; to be this root.
Then formula (16.2) shows that the other 2 roots are real if the discriminant is

positive, and complex conjugate if it is negative. The discriminant of real cubics

is discussed further on page 302.
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16.6 Cyclotomic Polynomials

We have been making much use of roots of unity. In this section, we are going
to discuss their minimal polynomials, called cyclotomic polynomials.
As we saw in exercise 6.2, the nth roots of 1 form a cyclic group pi,, of order

n. A primitive nth root of 1 is one which generates the group. If we write p,, as
{e?™*/" |0 <k <n}cCC,

then the primitive roots are those with (k,n) = 1. Thus there are ¢(n) of them
(see chapter 1).
Here is a plot of the 18th roots of 1 and the primitive 18th roots of 1 in the

complex plane.

We define the nth cyclotomic polynomial ®,,(z) to be the monic polynomial
whose roots are the primitive nth roots of 1, that is

o) = [] @-w) = ] (@—em*").

w primitive (kn)=1
nth root of 1 0<k<n

If w is an nth root of 1, and the order of w in p, is d, then d | n and w is a

primitive dth root of 1. Conversely, if d | n and w is a primitive dth root of 1,
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then w is an nth root of 1 whose order is d. Thetefore, sorting the roots by their

order, we see that

=1 = H(x—w):H H (:U—w):H@d(x). (16.3)

wn=1 djn @ primitve dn
dth root of 1

Using this formula, we can compute the cyclotomic polynomials recursively. We

have
r—1=3o(x),

and

2 -1 = &(2)Py(z) = (2 — 1)Dy() .
Therefore
Next,

P —1 = &(2)P3(z) = (2 — 1)P3(x) .
So

Os(z) = 2+ +1.
In fact, for any prime p,
P -1 = (2 1)),

and thus
dy(r) = 2P 4t

Going on, we have
' =1 = O(2)Py(2)Py(x) = (v —1)(z+1)Dy(x) .

Therefore
Py(z) = 2* +1.

And

25— 1 = &1(2)Py(2)P3(2)Ps(2) = (2 — 1) (z+1)(2* + 2+ 1)Pg(2) ,
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which tells us that
dg(z) = 2> —x+1.
You can continue like this. You can also use software to compute ®,, for much

larger values of n. Looking at these calculations the first thing you notice is that

all the cyclotomic polynomials computed have integer coefficients.

Theorem 16.12. The cyclotomic polynomials P, have integer coefficients and are monic, for
alln € N.

Proof. 'To see this, we argue by induction on n. It is certainly true for n = 1.

Suppose that all @, for d < n, have integer coefficients and are monic. Therefore

g(z) = [ ®al)
d|

is monic with integer coefficients. By formula (16.3), we have
2" =1 = g(x)®,(x) .

It follows that ®,, too must have integer coefficients and be monic (see exercise

14.8). So by the principle of induction, the first statement is proved. L]

Remark 16.13. Calculations of ®,, for small n may lead you to ask whether its

coefficients are =£1 for all n. This is not the case. For example,

B 105() Cldbp a2 gP b 9T a8 9 12y 18 1d

20 _ 422 .24 26 428 31

+aP 24—
R . S R . Cp JRC S W S
_ 83 4 A6 4 AT | a8

In fact arbitrarily large and small integers occur as coefficients of cyclotomic

polynomials.

Looking again at our calculations of cyclotomic polynomials, you notice that
O3, &, and P are irreducible over Q. In 14.14 we saw that ®,, is irreducible. So

one might ask whether this is true for all ®,,.
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Theorem 16.14. The cyclotomic polynomials @, are irreducible over Q, for allmn € N.

Proof. Suppose that f € Q[z] is monic, irreducible, and divides ®,,. It follows
from exercise 14.8 that f has integer coefficients. Since ®,, divides 2" — 1, so
does f. Write

2" — 1= f(x)g(z).
for some g with integer coefficients. Now let w be a primitive nth root of 1 which

is a root of f. Thus f is the minimal polynomial of w. Pick a prime p which does

not divide n. Then

0= ()" =1= f(w)g(w”).

So either f(wP) = 0 or g(wP) = 0.
Suppose that g(w?) = 0. Then w is a root of g(x?). It follows from corollary
16.4 that f(z) | g(aP), say

g9(a?) = f(x)h(z) ,

where h too has integer coefficients. Next, reduce this equation mod p:
g(=*) = f(x)h(z) .

Since g(zP) = §(x)? (see exercise 14.21), we have
(@) = f()h(z) .

Now in [F,[z], every polynomial factors uniquely into a product of irreducibles
(theorem 14.11). Therefore some irreducible factor k € F,[x] of g is also a
factor of f. Hence

K| fg=a"—1.

But if 2" — 1 has a repeated factor, then by exercise 14.20,
(a—:n - 17Ni)n_l) 7& 1 )

which is impossible. It follows that w” must be a root of f for every ptime p { n.
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We want to see that w” is a root of f for every 7 relatively prime to n. Suppose
that 7 = p; - - - p;, where py, ..., p; are primes which do not divide n. Now in
the argument above, we can replace w by w”!, since it too is a primitive nth root
of 1. Tt follows that (w])P2 = wP'P2 is a root of f. Continuing like this we see

that w” is as well. Since every root of ®,, is of this form, we must have that

f = ®,,and so ®,, is irreducible. O

Since ft,, is a cyclic group, an extension of Q which contains one primitive
nth root contains all of them. So the splitting field £, of ®,, is isomorphic to
Q[z]/(®,,) . It contains all nth roots of 1 and is thus the splitting field of ™ — 1

as well. Furthermore,
[E,:Q] = ¢(n).
E,, is called a ¢yclotomic field.

16.7 Finite Fields

Let's now look more closely at the case where F'is a field of characteristic p, in
particular where F' is finite with ¢ elements. Suppose that E//F' is an extension
of degree r. For example, if f € F|[x] is irreducible of degree 7, then F'[x]/(f)
is such a field. Since [E : F] =,

El=dq
(see exercise 14.15). It follows that
|[E*|=q¢" —1.

Soif ( € E*,
¢rt=1.
Therefore, for all ¢ € E, (cf. Fermat's little theorem)

r

¢ =¢.
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This tells us that 29" — x has ¢" roots in E. So E is in fact a splitting field for
29" — x over F. We are going to show in the next chapter that splitting fields are
unique up to isomorphism. This means that all extensions E/F' of degree r are

isomorphic. So given the uniqueness result, we have:
Theorem 16.15. There is a unigue field of order p", for p prime, v € N.

For example, I, is the field with p? elements, and is the splitting field over
F, of a”’ —z. In general, let's denote by Fr, 7he field with p” elements. If r | s,

. . (s/r)
then there is an extension of degree s/r of Fyr. It has p”

= p° elements,
and is therefore just [F,s. The converse also holds: if s is an extension of Fr,
then r | s.

This discussion also tells us something about the irreducible polynomials over
F,. Suppose f € F, is monic and irreducible of degree 7, and r | s. Since
F,lx]/(f) = F,r, f is the minimal polynomial of some element ¢ € F,r. As
Fpr CFps,

(" —(¢=0.

Therefore by corollary 16.4,

S

fl@r —x).

Since any two distinct monic, irreducible polynomials are relatively prime, it fol-

H f ‘(w”s—x).

f irreducible
f monic
degf | s

lows that

Conversely, suppose that f is 2 monic, irreducible factor of degree r of z¥" — x

. Since xP" — x splits in Fs, so does f. Pick a root of ¢ of f. Then

Fpr = Fpl]/(f) = Fp(C) CFps .

So r | s and all the factors of #7° — x occur in the product above. Since the

leading coefficient of the product is 1, we have the result:
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Theorem 16.16.

¥ —x = H f.

f irreducible
f monic
degf | s

Corollary 16.17. Let N(p, ) be the number of irreducible monic polynomials in Fp[ ] of
degree . Then

pS:ZN(p,r)r.

rls

Proof. The degree of the left hand side of the equation in the theorem is p®. The
degree of the right hand sideis >, N (p,r)r . O

You can obtain an explicit formula for N(p, ) by using the Mobius inversion
formula (see [1], p. 113).

16.8 Plots and Calculations

As we have seen, the discriminant A of a real cubic
f(x)=2°+ar+b

is given by
A = —da® — 270 .

Here is a plot of the semi-cubical parabola A = 0. The regions A > 0, re-
spectively A < 0, correspond to values of a and b for which f has 3 real roots,

respectively 1 real root and a pair of complex conjugate roots.

In[1]:=ContourPlot[ -4a"3 - 27b"2 == 0, {a,-2,0},
{b,-1.1,1.13}]
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D<O

D>0

Out[1]= - Graphics -
The notebook 'CubicRoots.nb' contains a demonstration showing how the
discriminant controls the behavior of the roots of a 1-parameter family of real
cubics. First choose a real cubic with two real critical points, for example x> — 3x.

Plot its graph:

In[2]:= Plot[ x°3 - 3x, {x,-2,2}]
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Out [2]= - Graphics -

The critical values are 2 and —2. Any value greater than 2 is taken on at one real
point and two complex conjugate points. A value between 2 and —2 is taken on
at three real points and one less than —2 at one real and two complex conjugate
points. Equivalently one can look at the roots of x> — 3x + a = 0. In the ani-
mation below they are plotted, in black, in the complex plane for a running from
-3 to 3. The discriminant —a? + 4 is also shown, in grey. One sees that when
it is negative, for a between -2 and 2, there is a pair of complex conjugate roots
and one real root. When it is positive, for a greater than 2 or less than —2 there

are three real roots. And when it vanishes there is a double root.

In[3]:=Do[ CubicRoots[ f, x, PlotRange->{{-6,6},
{-1,1}} 1, {a,-3,3,0.2} ]
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-0.25¢

-0.75r

Out [3]= - Graphics -

-0.5¢

This animation looks best when run cyclically. There is a QuickTime version

available at the web site.

Mathematica has a built-in function EulerPhi [n] which computes ¢(n):

In[4]:= EulerPhi[105]

Out[4]= 48
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The function Cyclotomic[n, x] calculates the nth cyclotomic polynomial

®,, (). Here is the example given in 16.13:

In[5]:= Cyclotomic[105,x]

Out[5]=14+x+a2—a—a8—22"— a8 — %+ 24 134 14
opls o164 17 020 022 24 26 028
4Bl B2 33 4 34 4 035 4 036 030 40

16.9 Exercises

1. e Show that if f € C[z] has degree 2, then f splits in C. Conclude that C has
no quadratic extensions, and that every quadratic extension of R is isomorphic

to C.
2. Find the splitting field of 3 + 2 € Q[z].
3. Find the minimal polynomial of v/2 + v/2 over Q.
4. e What is the minimal polynomial of cos(27/5) over Q?

5. Describe Q(v/2,w)/Q, where w # 1is a cube root of 1, as a simple extension.

6. Show that the cyclotomic field Fg = Q(i, v/2).

7.  Find the roots of z* — 2% — 2 € Q[z]. Determine its splitting field E/Q.
What is [E : Q]?

8. @ Let £/ I be a field extension.
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a) If E/F is a finite extension prove that every element of F is algebraic

over I

b) Let
K = {( € F | ( algebraic over F'} .

Prove that K is a field.

c) Set
Q = {¢ € C | ¢ algebraic over Q} .
Is Q/Q a finite extension? The field Q is called the field of algebraic

numbers.

9. e Let E//R be a finite extension.

a) Suppose that ¢ € E. Show that [R(() : R] is even or 1.
b) Prove that [E : R] is even or 1.

10. o Let
fx)=a"4+ap 12"+ +ag € Fla],

where the characteristic of F' does not divide n and n > 2. Show that the
substitution

T=Y—ap_1/n
transforms f into a polynomial of the form

9Y) =y  +buay" P+ + by € Fly] .

Compute the coefficients of the transformed polynomial g in the cases n = 2

and n = 3. This substitution is called a (linear) Tschirnhausen transformation.

11. e Show that the discriminant of
g(y)zzy34—b1y—+b0

is
—4b3 — 2703 .
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12. e Let f € R[x] be a cubic polynomial with distinct roots. Prove that

a) f has 3 real roots if and only if A > 0;

b) f has 1 real root and a pair of complex conjugate roots if and only if

A<O0.

13. Compute ¢, (x) forn < 12.

14. If p > 2 is prime, show that

yp(z) = 2Pt —aP P42t -+ 1.

15. Prove that the discriminant of ®,, is (—1)Pe=1/2pp=2_ Suggestion: write
P —1=(r—1)0,(z),
and differentiate to obtain
paP~h = ®y(z) + (z — 1)P)(z) .
Then apply the result of exercise 15.12.

16. Prove that

> wd)=n.

dln

17. Show that if F)s is an extension of [Fr, then 1 | s.

18. Verify the formula in theorem 16.16 for p = 2 and s = 4 directly.
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19.  a) Let F' be a finite field. An element ¢ € F'is an mth root of 1 if
¢"m=1.

Show that [’ contains m, mth roots of 1, in other words that 2™ — 1

splits in F', if and only if
m | (|F]=1)

b) Show that the splitting field of 2™ — 1 € F,[z] is F,r, where 1 is the

smallest number such that

m|(p —1).

20. The Fibonacci numbers f(n) , are given by the recursion formula

f(n+1)=f@) + f(n—1), J0)=0, (1) =1

In matrix notation this may be written

(f%l)) - G é) (f(fz@n) ’ (%;) - (3) ‘

This definition makes sense in IF,, Compute the Fibonacci numbers mod p
for a few primes p. Notice that they seem to be periodic. They can also be

given by the closed formula

"= (="
C+¢ 1t

where (2 — ¢ — 1 = 0. This holds over the integers and the integers mod

f(n) =

p. Explain why the Fibonacci numbers mod p are periodic. Determine their
period. (Mathematica has a function Fibonacci which you may find useful.
You can produce a list of the first n Fibonacci numbers mod p with

Mod[ Table[ Fibonaccilk], {k,1,n} 1, p 1).
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17

Galois Groups

17.1 Introduction

In chapter 7, we looked at some examples of symmetry groups of equations. A
symmetry of an equation was defined as a permutation of its roots which pre-
served any algebraic relations among them. We were not very exact about what
we meant by 'algebraic relations among the roots'. In the last chapter, we made
this more precise, and saw that the structure of the splitting field of an equation
reflects these algebraic relations. So a natural way to define what a symmetry of
an equation should be is to say that it should be a mapping of the splitting field
to itself which preserves the structure of the field and fixes the coefficients of
the equation. As we shall show shortly, this implies that it will permute the roots.
To put it more succinctly: if we have a polynomial f with coefficients in a field
F, with a splitting field £/ F, then a symmetry is an automorphism of E which
fixes F'.

Let's look at the examples from chapter 7 again from this point of view. Take
f@)=a*+2*+ 22+ +1.

As we saw in example 16.1(ii) the splitting field of f is Q(w), where w is a ptim-

2

itive 5th root of 1. The other roots are w?, w3, and w*. Suppose that « is an

automorphism of Q(w). Since every element of this field can be written as a

polynomial in w, o(w) determines (¢) for any ( in the field. So what can a(w)

311
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be? Notice that if ( is a root of f then

0 ="+ +C+C+1) = a(Q)'+ ()’ +a(@)* + () +1.

So a(() is also a root of f. Therefore a(w) must be one of w, w?, w3, or w’.

Define automorphisms «; by

2 4
p =0y, =03, ay=oa =1.

Thus the group of automorphisms of the splitting field is cyclic of order 4.
Next take

flz) =2 —102* +1 € Q[x] .

In example 16.8 we saw that the splitting field of f is Q(v/2,/3). Since any
element of this field can be expressed in terms of \/§ and \/g, an automorphism
o is determined by a(v/2) and a(v/3). Now

0= a((v2)?-2) = a(vV2)*-2.
Therefore
a(V2) = +V2.
Similarly, we must have that

a(V3) =+V3.

So there are four possibilities for a:

o a(v2) a(V3)

(651 \/§ \/§
(0%)] —V?2 \/g
3
3

Qg \/5 —

iy —V?2 —




17.1. INTRODUCTION 313
We see that

o] = 1 and yq = Q0 .
Thus, the group of symmetries is isomorphic to V', as we saw in chapter 7.

Let's do one more example:

Example 17.1. Set f(x) = 2% — 22% — 2 € Q] (see exercise 7.12). In exercise

16.7, you saw that the roots of f are

Clz\/l—l—\/g G2 = 1-v3
G=-G=-\V1+V3 (G=-G=-\1-V3,

and that the splitting field is
E - Q(Ch CQ) .

Figure 17.1: Splitting field of #* — 222 — 2

Now (; and (; satisfy the relation

G+@=2.
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In terms of F, this means that £ has two subfields, Q(¢;) and Q((z), with

Q(G) NQ(G&) = Q) =Q(G) =Q(V3) .

Any automorphism « of E is determined by «((;) and «((2), and must

satisty

a(G)? +a(G)?=2.

This gives us eight possibilities for a.. The last column gives the corresponding

permutation of the four roots.

a a(¢) «a(ly) permutation

ay G G2 1)
a  —G Ca (13)
Qg G —C2 24

ay =G =G 1324
as Co C1 12)(34
(675 _CQ Cl (1 43 2)
ay Co —(3 (1234
as —G  —Q (1492 3)

The list of 8 permutations on the right is the list in the table at the beginning

of chapter 3! So the group of automorphisms of E is isomorphic to Djy.

Remark 17.2. We have been using the following principle. Suppose that f € F[z],
and F is an extension of I containing a root ¢ of f. Let a be an automorphism

of E which fixes F'. Then «(() is also a root of f. Why is this so? Write f out:
f<I> :an$n+"'+a1$+a0,
whete a,,,...,a1,a9 € F. So

0=a,("+--+a(+ap.
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Applying « to this equation gives us
0=oa(a "+ -+ ai( + aop)
= a(an)a(Q)" + - + alar)a(C) + ala)
" aa(C) + afag)

Thus o permutes the roots of f.

17.2 Definition

We now are ready to make a formal definition of the group of symmetries of
an equation. Following the discussion above, we shall define it as the group of
automorphisms of its splitting field, which leave the field of coefficients invariant.
In fact we can look at this group for any extension. If F'/F is a field extension,
then we say that an automorphism « of E fixes F'if a(a) = a foralla € F'. The
set of all automorphisms of £ which fixes F' forms a subgroup of the group of

automorphisms of .

Definition 17.3. Let F//F be a field extension. Then the Galvis group of E/F,
written Gal(E/F), is the group of automorphisms of E which fix F in other

words
Gal(E/F) = {a | ais an automorphism of E, a(a) = a foralla € F'} .

If E is the splitting field of a polynomial f € F'[x], then Gal(E/F) is called the
Galois group of f, and written Gal(f).

So for f(x) =2* + 23 + 22 + 2 + 1,
Gal(f) = Gal (Qw)/Q) = 7/12,
and for f(z) = 2* — 102% + 1,

Gal(f) = Gal (Q(v2,V3)/Q) = V.
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Here is an example where F is not the splitting field of a polynomial: take
E = Q(v/2). Any automorphism of E must map v/2 to a cube root of 2. But

as we saw in 16.5, the other two cube roots of 2 do not lie in F. Therefore

Gal(E/Q) = {1} .

As we noted in exercise 14.101if E is an extension of Q, then every automorphism

of F fixes Q.

Example 17.1 Continued. We computed that if f(z) = 2* — 22% — 2, then
Gal(f) = Gal(E/Q) = D, .

We can also look at the extensions E/Q((1), E/Q((2) and E/Q(v/3), and com-
pute their Galois groups. Every automorphism of E which fixes Q(¢1), Q((1)
or Q(v/3) fixes Q and therefore belongs to Gal(E/Q). So Gal (E/Q(Cl)),

Gal (E/Q((2)) and Gal (E/Q(\/g)) are subgroups of Gal(E/Q). Looking at
the table, we see that

Gal(E/Q(¢1)) = (as)
which is cyclic of order 2. Similarly,

Gal(E/Q(¢2)) = (02) -

Now elements of Gal(E/Q(+v/3)) are automorphisms which fix (Z. The table

tells us then that
Gal(E/Q(V3)) = {a1, az, 03,04} = V.
Figure (17.2) shows the inclusions of these subgroups.

We have gone from diagram 17.1 to this one. You can also start from this

diagram and construct diagram 17.1, as we shall soon see. A
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Dy

/\
\/

Figure 17.2: Symmetries of xt— 222 -2

Let's compute one example that is a little more sophisticated. We shall calcu-
late the Galois group of the cyclotomic field E,,/Q), the splitting field of ®,,. In
the introduction we looked at the case n = 5. Pick a primitive nth root of 1, w.
So E,, = Q(w). Any element @ € Gal(Q(w)/Q) is determined by a(w), which
must be another primitive nth root of 1. Thus for each j, (j,n) =1, 1 < j < n,

there is an automorphism «;, defined by
aj(w) =w .
For j, k relatively prime to n,
o (ar(w)) = (wk)j =t = (W),
where 1 <1 < n, l = jk (mod n). Therefore we can define a homomorphism

h:(Z/nZ)* — Gal(E,/Q) = Gal(®,)

h(j) = a;.

www . dbooks . org


https://www.dbooks.org/

318 CHAPTER 17. GALOILS GROUPS

Since the «;'s are all the automorphisms of E,,, I is surjective. For different j's
the a;'s are different. So h is injective, and therefore an isomorphism. Recall that
we discussed the structure of (Z/nZ)* in chapter 13, page 218ff. In particular,

if n is prime, then Gal(®,,) is cyclic of order n — 1.

17.3 How Large is the Galois Group?

These calculations also suggest that there is a connection between [E : F] and

|Gal(E/F)|. In every example, we see that
|Gal(E/F)| < [E : F],

with equality when F is the splitting field of a polynomial f € F'[z]. This is in
fact true if f has distinct roots. To prove it, we have to construct automorphisms
of I/ which fix F. Such an automorphism can be regarded as an extension of the
identity map on [’ to E. More generally we can look at extending an arbitrary

automorphism of F' to I, or extending an isomorphism between two fields.
Theotem 17.4. Let F'y and Fs be fields, and
770 B — B

an isomorphism. Suppose that fi € F[x] is a monic polynomial (not constant), and fo €
Fy|x] the corresponding polynomial under 1p. Let Ey [ Fy be the splitting field of f1, and
Es | Fy, the splitting field of fa.

Then ) extends to an isomorphism Ey — Ea. The number of such extensions is at most
|Ey 2 Fy, and is exactly |[Ey = FY) if the roots of f1 in By are distinct .

Before starting the proof, we should clarify some points. First, if
fi(@) = apx”™ + - + a1 + ag

with @, ...,a1,a9 € Fi, let
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Then
fg(I‘) = w*(fl) = anTn + -+ bll' + bg S FQ[[L'] ,

as discussed in exercise 14.12. Secondly, as indicated above, the inequality for
|Gal(E/F)| will follow from the special case where F; = Fy = F, 1 is the
identity on I and By = Ey = E. But the proof of the theorem is by induction,
and for the induction step, we need the more general result. Thirdly, if we take
Fy = F, = F, and v the identity on F', and let F and Es be two splitting fields
of f over I, then the theorem shows that ' and E are isomorphic. In other

words, splitting fields are unique up to isomorphism. We begin with a lemma:

Lemma 17.5. Suppose that [ (and therefore f2) is irreducible. 1et Cy be a root of f1 in
E\. Then ) can be extended to a homomorphism

X : Fi(G) = By,
and the number of such extensions is the number of distinct roots of fo in Es.
Proof. From exercise 14.12, we have a ring isomorphism
Yyt Fi[z] —— Fylx],
which induces an isomorphism of fields

Do Fi[a/(fi) —— Fla/(f2) -

Let (5 be a root of fy in Fy. As we saw in 14.23, evaluation at (; and (5 define

isomorphisms:

& Fiz]/ () —— Fi(G), & Balrl/(fs) — Fa(G).

Putting all these together, we get a homomorphism

—1

X Fi(G) a, Fiz]/(f1) SREEN By[z]/(f2) SN Fy(() — Esy

which extends ¢ : F1 — Fy. Different roots (3 in Ey give different homomot-

phisms.
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Ey Ey

Fi(G) — Fa(G)

Fy

Fy

]

The theorem is proved by adjoining roots of f; in steps and extending 1) step

by step, as in the proof of the existence of splitting fields.

Proof. We argue by induction on n := [E; : Fj]. If fi is linear, then there is
nothing to prove. Assume that the result holds for splitting fields of degree less
than n. We want to use the lemma to extend ¥ to F((y), for some root (; of f.
Then we can use the induction assumption to extend further to F,. However the
lemma requites that f; be irreducible. So let g1 be an irreducible factor of degtree
> 1 of fi, and let g3 be the corresponding factor of fs. Pick a root (; of g; in E.
As shown in the lemma we can extend ¥ to a homomorphism from F}((;) into
E), and the number of such homomorphisms is the number of distinct roots of

g2 in . As gy splits in Fy, this is at most

deggo = deg g1 = [F1((1) = FA] ,

and is equal to [F}((1) : F1] if the roots are distinct.

Let 1) be one such homomorphism. Set £y = F}(¢;), and Fy = ) (Fy((1)).
Regard fi as a polynomial in Fy[z]. Then Ej is a splitting field for f; over F},
and Fj a splitting field for fy over Fy. As [Ey - ﬁl] < [E; : F], the induction
assumption applies. So Q/~1 extends to an isomorphism F; — Fs. Furthermore,
the number of such extensions is at most [E} : Fl], and is equal to [E] : Fl]

if the roots of f; are distinct. Now we can count the number of extensions of
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E1****>E2

Y to Fy. There are at most [F] : F}] extensions to F} and for each of these, at

most [E] : F’l] extensions from F} to Fj. So there are at most
[ﬁl : FIHEI : ﬁl] = [El . Fl]

extensions from F to E7. And if the roots of fi are distinct, then equality holds
everywhere. This completes the induction step. Therefore by the principle of

induction, the theorem is proved. O

Corollary 17.6. Let F' be a field and f a polynomial with coefficients in . Suppose that
Ey and Ey are splitting fields for f over F'. Then By = Es, in fact there is an isomorphism
Jrom En to By which fixes F'.

Proof. Take F} = Fy = F and 7 = 1p in the theorem. It tells us then that there

exists an isomorphism from £ to Ey which fixes F'. L]
Corollary 17.7. Suppose E is the splitting field of a polynomial f € F[x]. Then
|Gal(E/F)| < [E: F].
If the roots of f are distinct, then
|Gal(E/F)| = [E : F].

Proof. Take Fy = Fy = ', B} = Ey = E, and ¢ = 1p in the theorem. Then
extensions of ¢ to E ate just automorphisms of I which fix F', in other words,

elements of the Galois group. []
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These results raise the question: when are the roots of an irreducible polyno-
mial distinct? Exercise 14.20 shows that a polynomial f € F'[x] has a repeated
factor in F'[x] if and only if

(f f)#1.

If E/F is a splitting field for f, we can regard f as a polynomial in E[x]. Then
the same criterion tells us whether f has a multiple root. We can apply this to
answer our question.

The answer depends on whether the characteristic of F' is positive or not,
because in positive characteristic a polynomial can have derivative O without being
constant. So to begin with, assume that f is irreducible and not constant, and
that chr /' = 0. Then

deg f' < degf .
Butif (f, f') # 1, then
(ff)=1r,
since f is irreducible. It follows that f* = 0. This implies that f would have to be
constant. So in characteristic 0, an irreducible polynomial cannot have multiple
roots.
If chr F' = p, then it can happen that an irreducible polynomial which is not

constant has a multiple root. However, this does not happen if ' is finite.

Theorem 17.8. et F' be a finite field. Then an irreducible polynomial f € F[x| does
not have repeated roots in its splitting field.

Proof. Suppose that chr F' = p, and that f has a multiple root in its splitting field.

Then applying the criterion as before, we see that
f'=0.

Write out f:
f(l’) :an$”+~-~+a1x+a0,

for some n > 0, and some ag, a1, ..., a, € F. Therefore

0=f'(zr) =naz" "+ +a.
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So forall 7 > 0,
jaj =0 5
which means that if a; # 0 then j = 0 (mod p). Thus f is of the form
f(@) = appa™ + - + apa® + ay .

Now exercise 14.22 tells that since F' is finite every element of F' is a pth power.

Therefore for every j < k, there exists a bj, € [ such that

aj, = b

Jp -

This gives us

flx) =03 + - WP + b = (bpa® + -+ + byw + bo)”

(see exercise 14.22). But f is irreducible. So this is impossible. Therefore f does

not have a repeated root. [
This discussion is worth summarizing, First we make a definition.

Definition 17.9. A polynomial f € F[x] is separable if none of its irreducible

factors has a repeated root.

Theorem 17.10. Let F' be a field of characteristic O or a finite field. Then every polynomial
in F[x] is separable.

17.4 The Galois Correspondence

As the examples earlier suggest, if we have a field extension F//F' and an inter-
mediate field K, £ D K D F|, then

Gal(E/K) < Gal(E/F)
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since an automorphism of E which fixes K, fixes F'. On the other hand, if
H < Gal(E/F), then it is easy to see that

Fix(H) :={a € E| a(a) =a, forala € H} ,

is a subfield of I containing I. For a subgroup H and an intermediate field /K,

there are the obvious relations:

Gal (E/Fix(H)) D H
Fix (Gal(E/K)) D K .

Example 17.1 Concluded. Let's continue the discussion of example 17.1. We
can compute Fix(H) for the subgroups of Gal(E/Q) in diagram (17.2). First,
we need one more simple remark. Suppose £/ is the splitting field of a sepa-
rable polynomial f € F[z], and K is an intermediate field. Then F is also the
splitting field of f regarded as a polynomial over K. Therefore by corollary 17.7,
|Gal(E/K)| = [E : K].
Now let's begin our calculations. Cleatly, for H = Gal(E/Q) itself,

Fix(H) = Q. Next, take H = (a9, a3) = V. We already know that ap and a3
fix Q(v/3). So

Fix(H) D Q(V3) ,
and
[E: Fix(H) < [E:Q(V3)] =4.
Therefore by the remark,
|Gal (E/ Fix(H))| = [E : Fix(H)] < 4.
But

Gal (E/Fix(H)) D H,

which has order 4. So

4 = |Gal (E/Fix(H))| = [E : Fix(H)] = [E: Q(V3)] ,
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and
Fix(H) = Q(V3) .

We now do the two subgroups of order 2. The automorphism a3 fixes (1. We
know that

[{as)| =2 =[E:Q(G)],

and applying the argument used for V', we get that

Fix({as)) = Q(G1) -

Similatly, avs fixes (s, and

Fix({az)) = Q(C2) -

Lastly, for H = {(1)}, Fix(H) = E. So we have recovered diagram 17.1 from
the lattice 17.2.

This discussion can be extended to all the subgroups of Gal(E/Q), since we
know what the subgroups of Dy are. Here is the subgroup lattice of Gal(E/Q)
(see exercise 10.3). Diagram 17.2 is embedded on the right side.

Figure 17.3: Complete lattice of subgroups
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We can compute Fix(H) for the other two subgroups of order 4 in the same

way as we did for V. The subgroup (as, ag) fixes

a6 = V14 vBy1-v3 = V3.
Since
[E:Q(vV-2)] =4,

the discussion above shows that
Fix({as, ag)) = Q(v—2) .
The automorphism a7 fixes

(GGG -1)=V=2V3=V-6.
Therefore
Fix((a7)) = Q(vV—6) .

For the remaining subgroups of order 2, notice that ay; fixes (1 + (2, and asg
fixes (1 — (o. Since

<O./4> = <OZQ, (1/3> N <O{5, OZg) s

ay fixes both v/3 and v/—2. Therefore, we have

Fix((as)) = Q(¢1 + ¢2)
Fix({ag)) = Q((1 — ¢2)
Fix({cw)) = Q(V/3,vV~2)

We can put these fields in a diagram which extends diagram 17.1:
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QG+ ¢2) Q¢ — ¢2) Q(V3,

Figure 17.4: Complete lattice of subfields

This is just the lattice of subgroups 17.3 turned upside down! A

In our discussion, we have found that for each subgroup H,
Gal (E/Fix(H)) = H .
It is easy to see that for any intermediate field,
Fix (Gal(E/K)) = K .

These two statements imply that there is a one-to-one correspondence between
subgroups and intermediate fields. This is the Galois correspondence. The key to

proving these results in general is the following theorem.

Theorem 17.11. Let E be a field and G a finite group of antomorphisms of E. Set
F = Fix(G). Then
[E: F| <|G|.

Proof. Set m = |G|. What we shall do is to show that any n elements of F are

linearly dependent over F, if n > m. First list the elements of G

G={a1=1,a9, ...,a,}.
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Pick n elements (3,...,(, € E, and consider the system of m equations in n
unknowns in E:

Oél(Cl) al(Cn) T
: : : = 0.

am.(Cl) am(Cn) Tn

Notice that since a; = 1, the first equation is just
1G4+ 2nG =0

What we want is a solution of this equation which lies in F/'. Now since the
number of unknowns exceeds the number of equations, there exists a non-trivial
solution in F. Pick one with as few non-zero entries as possible, say (&1, ..., &,).

We can re-order the entries so that £ # 0. Since the system is linear,

gl_l(gla s 7€n)

is also a solution, with the minimal number of non-zero entries. So we can assume

that £, = 1. The system then looks like this:

ar(G) - a(G) 1
ar(G) o oa(G) | | &

= 0.

am(G) o am(Ga) ) \&n
What we want to do, is to show that this solution lies in F', in other words that it
is invariant under G.
Suppose it is not. Then one of the non-zero entries is not invariant, say &s.

This means that there exists an element o; € G such that

(&) # & -
Apply «; to the system:

OéjOél(Cl) OéjOél(Cn) 1
Oéja2<C1) ajO@(Cn) 04;’(52)

Oéja'r;m(CI) e O‘jan;((n) (&)
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Since G is a group,
{ojon, ajas, ... ajan} ={a1, a0, ... an} .

So this system is just the original one with the equations permuted. Therefore

(1, (&), - - ., (&) is also a solution of our system. It follows that

(170‘1'(52)7 e ‘7aj(§n)) - (17527 SR 7§n) = (an‘j(§2) — &y 70‘]’(5”) _gn)

is a solution. It is non-trivial since the second entry is not 0. But it has one
less non-zero entry than the original solution. This is impossible. Therefore the
original solution is invariant under G. In other words, {(y,...,(,} is linearly

dependent over F'. This proves that
E:F|<[q].
O

We can now prove the fundamental theorem about the Galois correspon-
dence. It will allow us to translate questions about polynomials and their roots

into questions about their Galois groups.

Theorem 17.12 (Fundamental Theotem of Galois Theory). Let E/F' be the split-
ting field of a separable polynomial in F'|x]. Then there is a one-to-one correspondence between
subgronps of Gal(E | F') and intermediate fields between E and F' given by

H < Fix(H) and Ga(E/K) < K,
where H is a subgroup and K an intermediate field, such that
Gal (E/Fix(H)) = H and Fix(Gal(E/K)) = K .

Proof. Suppose that E/F is the splitting field of f € F[z], which is separable.

First we show that

Gal (E/Fix(H)) = H ,
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for any subgroup H. Now by corollary 17.7
|Gal (E/ Fix(H))| = [E : Fix(H)] ,

since F is the splitting field for f over Fix(H ). And by theorem 17.11, we know
that
[E: Fix(H)|] < |H| .

Therefore
|Gal (E/Fix(H))| < |H| .

On the other hand, as we remarked eatlier,
Gal (E/Fix(H)) D H ,

so that
|Gal (E/ Fix(H))| > |H]| .

Hence |Gal (E/ F1X(H))| = |H]|, and
Gal (E/Fix(H)) = H .

Next we prove that

Fix (Gal(E/K)) = K .
Set H := Gal(F/K), and K’ := Fix(H) D K. We have just shown that
Gal(E/K') = H = Gal(E/K) .
Again, since F is the splitting field for f regarded as a polynomial over K or K’,
|F: K| =|Gal(E/K)|=|Gal(E/K")| = [E: K'] .

But since K’ D K,
[F:K|=[FE: KK :K],
and therefore [K' : K] =1 and

Fix (Gal(E/K)) =K' =K .
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Corollary 17.13. Fix (Gal(E/F)) = F.

Corollary 17.14. Let H be a subgroup of G =: Gal(E/F), and let K = Fix(H ).
Then
[K:F|=|G:H].

Proof. By the theorem we have
H =Ga(E/K),

and by corollary 17.7
[E: K] =|Gal(E/K)| .

Therefore

K : F]=[E: F/[E: K] = |Gal(E/F)|/|Gal(E/K)| = [G : H].

Here is a diagram with the degrees of the extensions:

E
|H|
K ]G]

G : H]

Example 17.15. Let E be the splitting field of 27 — 2, p prime, as in example
16.10. So E = Q(¥/2,w), where w is a primitive pth root of 1. Again, an
automorphism a of E is determined by a(v/2) and a(w). Now a(v/2) must
be another pth root of 2 by 17.2. These are V2w, where 0 < 7 < p. And
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a(w) must be a primitive pth root of 1. So the automorphisms of F are o j,

1 <1 <p,0< 7 < p, where
i j(w) =w' and a;;(V2) = V2w .
To see what the group structure is, let's compute o j o :

i j(ari(w)) = ai (W) = w™

0 j (Oék,z(%w)) = ai,j(%wl) — Uil — Y5t

Therefore
QG Ok 1 = Ok G441 -

But this is just the group Fj,,—1) as discussed in exercise 8.23 . So
Gal(E/Q) = Flpp1) -
It has the two interesting subgroups
T:={a1;|0<j<p}=F,

and

K:={aio|1<j<p}=F,.

Here is the lattice:

T /Fp<p1>\
\1}/

{
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What are the corresponding intermediate fields between E' and Q? Well 7'
fixes Q(w) since

ayj(w) =w,

for all 7. And since
ai,o(W) = \175,

for all i, K fixes Q(%/2). So by the fundamental theotem (or a direct calculation),
Gal (E/Qw)) =T and  Gal(E/Q(V2)) =K.

The diagram of field extensions is

\

v

We can also compute the Galois groups Gal(F,-/F,):

Theotem 17.16. The groups Gal(IF - /F,,) are cyclic of order, generated by the Frobenius

homomorphism.
Proof. Let
Y :Fpr — Fpr
given by
P(a) = a”,
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be the Frobenius homomorphism. As was shown in exercise 14.22, it is an au-
tomorphism of IF,-, and it does fix [F, (see exercise 14.10). So 9 belongs to
Gal(F,-/F,). Now

V(a) = a” .
Suppose that s | 7. We saw on page 301 that Fs is the splitting field of z¥" — z
over F,. This means that a?” = a for all a € Fps, but for a € Fys, a?” # a. In
other words,

Fix(p*) =TFps .

In particular for s = 7, we have

[l =r.

But
|Gal<]Fp'r/]Fp)| — []Fp'r . ]Fp] =T.

Therefore
Gal(Fy /Fp) = (¥) -

Fpr {1}
Fps <¢S>
F, Gal(F,-/F,)

The Galois correspondence reflects further properties of the structure of the

Galois group.
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Theotem 17.17. (i) Let K/ F be the splitting field of a separable polynomial in F|x),
and let E|K be a field extension. Then Gal(E/K) is a normal subgronp of

Gal(E/F). (This holds in particular if E|F is also the splitting field of a sepa-
rable polynomial.)

(i) Let EJF be the splitting field of a separable polynomial in F'|x), and set G =

Gal(E/F) . Suppose that H is a normal subgroup of G, and set K = Fix(H).
Then

Gal(K/F) = G/H .

E

G/H

Proof. (i) Suppose that K is the splitting field of f € F[z]. Take a €
Gal(E/F). By 17.2, o permutes the roots of f. Therefore, for any root (
of f, a(C) € K. Since every element of K is a rational expression in the
roots of f, it follows that a(K) C K.

Now let 3 € Gal(E/K)and¢ € K. Thena™(¢) € K. Soﬁ(oz_l(g)) =
a™1(¢). Therefore

(aBa™)(C) = a(a™'(¢) =¢.

Thus, aBfa™t € Gal(E/K), and Gal(E/K) is a normal subgroup of
Gal(E/F).
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(i) We first show that any @ € G maps K = Fix(H ) into itself. Take ( € K

and € H. Then since H is normal,

for some ' € H, and

B(a(Q) = a(8'() = al() .

Therefore o(¢) € K. Now we can define 2 homomorphism res : G —
Gal(K /F) by setting

res(a) = ok
for a € G. Since H = Gal(E/K), H = ker(res).
It remains to show that res is sutjective. This means that any 5 € Gal(K /F)
should extend to an automorphism of E. Since £ is the splitting field of
a polynomial in F'[x], it is the splitting field of the same polynomial re-

garded as an element of K [z]. Therefore by theorem 17.4, /3 extends to

an automorphism of £, and res is sutjective.

So res induces an isomorphism

G/H —— Gal(K/F).
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In example 17.1, all the subgroups of D, of order 4 are normal. For example
take H = (g, ar3). We calculated that Fix(H) = Q(v/3). Now

as(¢F) = G -

Since

G=1+v3 , (G=1-v3,

it follows that

045(\/5) - —V3.
Thus a5 restricted to Q(v/3) generates Gal (Q(\/g) /Q) And
(as) = Gal(E/Q)/H .

Instead of a5, we could have just as well used o or a7 or ag. The calculations
for the other two groups of order 4 are similar.

There is only one normal subgroup of order 2:
(au) = Z(Gal(E/Q)) .
We computed that Fix({ay)) = Q(v/3,v/—2). Now

JV3 =B V3 =3
R I S R I SN

So a5 and ay restricted to Q(v/3, v/—2) generate its automorphism group. And

indeed,

<O./5, Oé2> = Gal(E/Q)/<a4> .

17.5 Discriminants

In chapter 15, the discriminant of a polynomial was introduced. In this section

we discuss its connection with Galois theory.
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Let F' be a field, f € F[x] a separable polynomial of degree n, and F/F the
splitting field of f. Denote by (1, ..., (, , the roots of f in E. Then

o 2
A=]]G-¢) €E
i<j
is the discriminant of f. As we saw, it is invariant under all permutations of the

roots. In particular, it is fixed by Gal(f) C S,.. Therefore by corollary 17.13,
AeFl.

Now set

o=]J—-¢) €E.

i<j

So A = 62. From exercise 15.11, we see that
a(d) = (sgna)d

for @ € S,,. This means that ¢ is fixed by all even permutations, but not nec-
essarily by all elements in Gal(f). It is the invariant which determines whether
Gal(f) C A, or not.

Theorem 17.18. Suppose that f is a separable polynomial of degree n in F'|x|. Then
d € Fif andonby if Gal(f) C A,.

Proof. Suppose that § € F, and that a € Gal(f), but @ & A,,. Then ais an odd

permutation of the roots and
a(d) =—6.

This is impossible since 0 # 0. So Gal(f) C A,.
Conversely, if Gal(f) C A, then as we saw above,  is fixed by Gal(f). So
0 € F by corollary 17.13. ]

For example, if

flx) =2 —2* 22+ 1€ Qla],
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then it is easy to check that f has no root in Q and is therefore irreducible. Its
discriminant is 49. So the Galois group of f is As. In the next chapter we will

use 0 in our analysis of quartics via Galois theory.

17.6 Exercises

1. The field C is the splitting field of 22 + 1 € R[x]. Compute Gal(C/R).

2. e Suppose that f € R[z]. By the fundamental theorem of algebra, we can
assume that the splitting field of f is a subfield of C. Show that complex

conjugation defines an element of Gal(f).
3. Calculate the Galois group of z3 + 2z + 1 € Q|z].
4. Compute the Galois group of z* — 42% + 2 € Q[z].

5. Find the Galois group of 2% — 4z® + 1 € Q[z] (see Chapter 11.2, 'Groups
of Small Order").

6. Let h(z) = 2P —x —a € [F, and let F be its splitting field. What is [E : F,]?
Calculate Gal(h).

7. o Let F be a field of characteristic different from 2 or 3, and let f € F[x] be
an irreducible cubic. In Chapter 16, p.295, it was shown that the splitting field
E of f is of degree 3 over F'(J). Prove that

Gal (E/F(5)) = A; .

8. @ Let f € F[x] be an irreducible polynomial with distinct roots (1, . .., (-

Prove that the Galois group of f acts transitively on {(1,...,(n} -
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9. Let F be a finite field. For any f € F[z] regard Gal(f) as a group of permu-
tations of the roots of f.

a) Suppose that f is irreducible of degree n. Show that Gal( f) is generated

by an n-cycle.

b) Suppose that f is a product of distinct irreducible factors of degrees

ni,...,n;. Show that Gal(f) is generated by an element of cycle type

(nl, ce ,nl).

10. Suppose that E/F is a simple extension. Prove that if
|Gal(E/F)| = [E : F]
then E is the splitting field of a separable polynomial in F[x].

11. e Let w be a primitive nth root of 1. Let 0 := w + w L,

a) Show that [Q(w) : Q(0)] = 2;
b) Identify Gal (Q(w)/Q(6)) as a subgroup of Gal (Q(w)/Q).
12. Let E/F be a field extension, and H < Gal(E/F'). Verify that
Fix(H) :={a € E| a(a) =a, forala € H} ,

is a subfield of I/ containing F'.

13. Verify the Galois correspondence explicitly for Q(\/§ , \/g), the splitting field
for z* — 102? + 1 € Q[x], and its Galois group. In other words, write down
the lattice of subfields of Q(v/2, v/3) and the lattice of subgroups of its Galois

group, and show which intermediate field corresponds to which subgroup.

14. Verity the Galois correspondence explicitly for the splitting field of
73 — 2 € Q[z] and its Galois group.
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15. Compute the Galois group of z* — 2 € Q[z] and verify the Galois corre-

spondence.

16. Let Q C C be the field of algebraic numbers (see exercise 16.8), and let
G = Gal(Q/Q). For any f € Q[z], show that there is a sutjective homo-
morphism

G — Gal(f) .

17. Let f be a separable polynomial in F'[x], and let E be its splitting field. Sup-
pose that H < Gal(f), with K = Fix(H). Prove that for « € Gal(f), the
field

aK = Fix(aHa™") .

If K = F(n), for some n € E, show that

F(an) = Fix(aHa™) .

www . dbooks . org


https://www.dbooks.org/




18

Quartics

18.1 Galois Groups of Quartics

In this chapter we look at what Galois theory says about quartic equations. First
let's recall what we know about cubics. According to exercise 17.8 the Galois
group of an irreducible polynomial acts transitively on its roots. The only transi-
tive subgroups of S5 are Az and S itself. So these are the only possible Galois
groups if the cubic f is irreducible. (What if f is reducible?) Furthermore, its
Galois group is As if and only if the discriminant A is a squate in F.

If

f(zx) =2 +ar’ +ax+ay, as,ai,a9 €F,

and chr F' # 3, then we saw in exercise 16.10 and 16.11 that the substitution

T =y — ay/3 transforms f into a cubic of the form

9(3/):3/3+51y+50,

where

and the discriminant is

A = —4b} — 270} .

In terms of as, ay, ag, we have

A = —27a} — 4a® + 18apayay + ajas — 4apas . (18.1)

343
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Now suppose that f € F[z] is an irreducible quartic with distinct roots
1, (o, (3, (4 in fits splitting field E. Then Gal( f), which we will denote by G, can
be identified with a subgroup of Sy, the group of permutations of the roots. We

saw in exercise 8.17 that the transitive subgroups of Sy are

() Sa
(i) Ay

i) Dy ={(1234),(13)(24),(1432),(1),(24),(13),(12)(34),
(14)(23)} and its 3 conjugates

(iv) V ={(12)(34),(13)(24), (14)(23), (1)}
(v) Cy:={(1234),(13)(24),(1432),(1)} and its 3 conjugates
So these are the possibilities for the Galois group of f. We need invariants which

will help us decide which one of these it is.

Recall that a composition seties for Sy is given by
Sy > Ay > V> Z)2Z > {1}

(see (12.1)). We know that § or A will tell us whether G is a subgroup of As.
So it is natural to look for an invariant associated with V' next.
Let (1, (2, (3,(4 € E be the 4 roots of f and set

m = (G + )G+ Ca)
n2 = (G + C3)(Ca + Ca)
m3 = (G + Ca) (G + G3) -

It is easy to see that

(i) 71, M2, and 13 are all invariant under V' ;

(i) no element of Sy outside V fixes these 3 quantities ;
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(iii) Sy permutes 71, 12, and 73 .

To verify (i) you need only check what a 2-cycle, 3-cycle and 4-cycle do. To verify
(iii) it's enough to note that (12) and (123 4) permute 71, 12, and 13 . Now let

r(z) = (x =m)(@ —m)(x —ns) .

Then since the coefficients of 7 are symmetric in 11, 172, and 73, they are sym-
metric in (1, (2, (3, (4. Therefore they must be invariant under . 'This means
that they lie in I by corollary 17.13. The polynomial € F[z] is called the eubic
resolvent of f. The splitting field of r is

K := F(Ubﬁ?ﬂh) .

So K C Fix (V N G). Since no element of Sy outside V' fixes these 3 elements,

we know that

Ga(E/K)=VNGQ,

and therefore

K =Fix(VNG).

GNvV

G/GNV

As V' is a normal subgroup of Sy, V N G is normal in G. So by theorem
17.17,
G/(VNG) 2 Ga(K/F). (18.2)
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Also notice that the discriminant of r is the same as the discriminant of f.

We have namely,

m =1 = GG+ GO — GGk — GG =—(G— )G —G)

Similarly,

N2 — 13 = —(Cl - CQ)(C3 - C4)
m—n3=—(CG—G)G—G)-

Therefore

=TI - =TIt —n)-

i<j i<j
and the discriminants of f and r are the same.
Let's use what we know about cubics to analyze quartics. Suppose first that
7 is irreducible. Then there are two possibilities: either 6 € F'and [K : F] = 3
ot 0 ¢ Fand [K : F] = 6. In the first case,

31[E: Fl=1G]|

and G C A,. Looking at the list of transitive subgroups of Sy, we see that we

must have G = Aj. Similatly, in the second case,
6|[E: F] =G|

and G ¢ Aj. Therefore G = 5.

Next, suppose that 7 is reducible. The first possibility is that r splits into
linear factors in F, in other wortds, 171, 72,13 € F' and K = F. By (18.2), this
is equivalent to saying that that G C V. The only transitive subgroup of V is V'
itself. So G = V.

The second possibility is that 7 splits in F' into an irreducible quadratic and
a linear factor. So 6 € F and [K : F) = 2. Since [F': F| # 2, [E : K] # 1 and

|IGNV]|=2or4.
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In the first case, [E : F] = 4 and G = C}. In the second case, [F : F)| = 8 and
Gal(f) = D4. Summarizing,

o r Gal(r) Gal(f)
)¢ F r irreducible S5 Sy
0eF r irreducible As Ay
e F 7 reducible {1} V

)¢ F r reducible 7/27 Dy or Cy

In practice you compute the discriminant of f and then check whether it has
a squate root in F. So we just need a formula for the discriminant of f. Since
this is the same as the discriminant of r, we can use our formula (18.1) for the
discriminant of a cubic, if we know what the coefficients of 7 are. By applying
a Tschirnhausen transformation to f (see exercise 16.10) we can arrange that it

has the form

f(Z‘) = ZL’4 + bQZL’Z + blx + bo .

Then by exercise 15.6
r(z) = 2* — 2bya® + (b3 — 4by)x + b} .

With software to do the calculations for you, it is easy to decide what the Galois

group of a quartic is, apart from the ambiguity in the last case in the table.

18.2 'The Geometry of the Cubic Resolvent
This section requires some understanding of the geometry of conics in C2.,
Suppose we are given a quartic

f(&l) = .’174 + b2$2 + blx + bo ,

www . dbooks . org


https://www.dbooks.org/

348 CHAPTER 18. QUARTICS

with by, b1, by € C. Let's introduce a new variable

Y=,

Substituting into the quartic gives us a quadratic polynomial in 2 variables,
o, y) ==y + bay + brz + by .
If we set
n(z,y) =2’ —y,
then solving f = 0 is equivalent to solving the pait of equations
0 =0
@ =0

simultaneously. We can interpret this geometrically. Fach of these equations
defines a conic in C?. They intersect in 4 points. If (1, (2, (3, € C are the

roots of f, then the points of intersection are

Ql = (<17C12) ’ QQ = <<27C22> )
Qs =(G.¢3), Qs = (4 ¢).

The two conics determine a pencil of conics, given by
Qt3:CJO+tQ1:07 te(cv

which all pass through the 4 points Q1 , Q2,3 , Q4 , the basis points of the
pencil.
To any quadratic in two variables one can associate a symmetric 3 X 3 matrix.
If
q(z,y) = ax® + 2bry + 2cx + dy® + 2ey + f

set

s

I
SRS IR
o o

~S DO
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Then det A, = 0 if and only if g is degenerate, that is, splits into a product of
linear factors. Equivalently, the conic ¢ = 0 is a pair of lines.

For what values of ¢ is our pencil of conics degenerate? Well,

t 0 by /2
detd, = | 0 1 (by — £)/2
bi/2 (b —1t)/2 bo

= (=17 + 2bot® + (=03 + 4bo)t — b7) /4
= —r(t)/4.

So the pencil degenerates when ¢ = 7;, ¢ = 1,2,3. Each of these degenerate
conics is a pair of lines passing through the 4 points Q)1, Q2, @3, Q4. It is not
hard to identify exactly which lines belong to each degenerate value.

The line through )1 and ()2 is given by

y—¢G GG

$—C1_ G—C =Gt

or equivalently, by

ho(z,y) =y — (G +GQ)r+GGL=0.

Similatly, the line through Q3 and (4 has equation

Iss(z,y) =y — (3 + Q)+ 3¢ =0.

The product of the two linear forms ;5 and l34 is the degenerate quadratic form

lolsa(z,y) = (v — (G4 Q)+ GG) (¥ — (G + G)z + (3¢)
= P+ (GG + Gy + (G + &) (G + )’
—(QCQ(CB + Ga) + C3Ca(Cr + C2))l‘ + (1G2C3Cs
= y>+ (bs — m)y + ma® + bz + by
= qn(z,y).
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Similarly,

lislay = Qns

lislos = dn; -

Here is a diagram showing the configuration of the 3 degenerate conics.

Figure 18.1: The three degenerate conics

The picture below is a plot of the pencil of real conics for the polynomial
x* — 102% + 1. Its roots are all real. The 3 degenerate conics are the 3 pairs of

dashed lines. You can also see the 4 basis points (1, (2, 3, and Q4.
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Figure 18.2: Pencil of real conics

18.3 Software

This picture of the pencil of conics was drawn by a package called 'Quartics'. It

also can compute the Galois group of a quartic. First you must load the package:

In[1]:= << Quartics.m;

A function CubicResolvent is defined which computes the cubic resolvent of
a quartic, and then applies the criteria in the table above to determine the Galois

group (though it cannot distinguish between Dy and C}). For example, let

In[2]:=f =x"4 - 10x"2 + 1
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Out[2]=1— 1022+ 2*

In[3]:= CubicResolvent [f]

Out[3]= The cubic resolvent is 96z — 2022 + 3
Its discriminant is 147456

The square root of the discriminant is
384

The cubic resolvent factors.

So the Galois Group is V4.

If the quartic has real roots, the function QuarticPlot will draw the asso-

ciated pencil of conics.

In[4]:= QuarticPlot [f]

18.4 Exercises

1. What are the possible Galois groups of a reducible cubic?
2. What are the possible Galois groups of a reducible quartic?

3. Compute the Galois groups of the following rational polynomials:
a) vt + P+ r+1,
b) ' +5x+5,
o zt+8r+12.
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4. Suppose that g(z) = z* + ax® + b € F[x] is irreducible. What are the

possible Galois groups of g? Give an example of a polynomial g for each.

5. Let F be a subfield of R, and h an irreducible quartic in F'[z]. Suppose that
h has exactly 2 real roots. Prove that Gal(h) is either Sy or Dj.

6. Let f(x) = 2* — 2?2 + 4 € Q[z].
a) Show that f splits into the product of two quadratic polynomials over
Q(V/5). Suggestion: f(x) = (22 + 2)? — 5a?
b) Find the splitting field E of f.
¢) What is the Galois group of f?
d) Verify the Galois correspondence for Gal(f) and E/Q.

7. Let f(z) = 2* 4+ az® + bz + ax + 1 € Q|z] be a reciprocal quartic (see

exercise 15.9). Assume that f is irreducible.

a) Find the quadratic ¢ € Q[x] such that

% (x):g<x+£) |

b) Let £/Q be the splitting field of f. Show that g splits in F.

¢) What ate the possible Galois groups of f? Give an example of a quartic
f for each.

8. Let

C=vV2V3(1+V2)(V2+V3).

Verify that C is a root of 36 — 144z + 10822 — 242° + 2% . (You may find the
Mathematica functions Expand and Simplify useful). Show that Q(\/§ , \/§)

is a splitting field for the polynomial over Q. What are its other three roots?
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9. Let 1) be the positive square root of (. So 7 satisfies the equation
36 — 1442° + 108z" — 242° + 2° = 0.

Determine the other seven roots and show that the polynomial splits in Q(7).

What is its Galois group?

10. e Compute the Galois groups of randomly chosen irreducible quartics.
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The General Equation of the nth
Degree

19.1 Examples

Suppose that f € F'[z] is an irreducible polynomial of degree n with distinct
roots in its splitting field. If f is a 'generic' polynomial, or one chosen at random,
then we would not expect there to be any algebraic relations among its roots,
apart from those given by the elementary symmetric polynomials. So the group
of symmetries of the roots should be the full permutation group of degree n. In
exercise 18.10, you saw that the Galois group of an irreducible quartic, chosen
at random, always seems to be Sj. In fact you probably noticed that it is hard to
come up with a quartic whose Galois group is not Sy. If you had a suitable test
you would find the same for n > 4. In this chapter we want to give a family of
examples of degtee p, p ptime, with Galois group S, and prove that indeed the
general polynomial of degree n has Galois group S,,. We shall also give a proof

of the fundamental theorem of algebra using Galois theory.

Theotem 19.1. Let [ € Qx| be irreducible of degree p. Suppose that | has precisely 2
non-real roots. Then Gal(f) = S,,.

Progf. By the fundamental theorem of algebra, f splits in C. So we can assume
that the splitting field of f, B C C. Let (,...,(, be the roots of f in E.
Suppose that ¢; and (s are the two non-real roots. Since the coefficients of f are

real, complex conjugation permutes its roots, and therefore defines an element of

355
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Gal(f) (see exercise 17.2). It fixes all the real roots and interchanges the two non-
real roots. Thus conjugation corresponds to the transposition (12) € Gal(f).
Now Q((1) C E, so that

Q) : Q| [E: Q] = [Gal(f)] -

But
[Q(C1) : Q] =degf =p.
Therefore
p||Gal(f)] .

It follows then from the first Sylow theorem (see exercise 11.9) there is an element
of order pin Gal( f). But by exercise 6.10, a transposition and an element of order
p generate S,. Therefore Gal(f) = S5,

Instead of using the first Sylow theorem you can also use exercise 8.18 since

Gal(f) is transitive by exercise 17.8. [

Examples 19.2. (i) A cubic with A < 0 has only one real root (see exetcise

16.12) and therefore has Galois group Ss.
(i) Let
f(z) =2" -6z +2¢€Q[z].

By the Eisenstein criterion (theorem 14.13), f is irreducible. And
f/(x) =526,

which has exactly 2 real roots. Thus f has at most 3 real roots. Checking
a few values of f shows that it does in fact have 3 real roots, and therefore

2 non-real roots. So

Gal(f) = S5 .

Remark 19.3. Suppose that f is a monic polynomial with integer coefficients, and

suppose that the reduction of f modulo a prime p, f e [F,[x], is a product of
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irreducible factors of degrees ny, ..., n;. Then Gal(f) contains an permutation
of cycle type (n1,...,n;) (see [11], §4.16, and cf. exercise 17.9). This can often
help to determine the Galois group of a polynomial over Q. Here is a simple

example.

Example 19.4. Let f(7) = 2*+ 223+ 243 € Q[z]. Modulo 2, f is irreducible.
Therefore Gal(f) contains a 4-cycle. Modulo 3, f factors as

flz)=a2(2®+22+1).
So Gal( f) contains a 3-cycle. Hence

Gal(f) = S4 .

19.2 Symmetric Functions

In this section, we are going to prove that in a sense, if there are no non-trivial
algebraic relations among the roots of a polynomial, then its Galois group is
indeed .S,,.

Set M := F(xy,...,x,), the field of rational functions in the variables

T1,...,Tn, and let
fl) =@ —x1) (v —z,) € Mx].

Then
flz)=a"—s1xp 1+ -+ (=1)"sy,

so that its coefficients actually lie in F'(sy,...,s,) C M. Cleatly there are no
algebraic relations among the roots of f except those given by the elementary
symmetric polynomials. Furthermore, f is separable and M is the splitting field
of f over F((s1,...,5,). Now the full symmetric group acts on M: for a € S,

and g € M,
(ag)(@1, ... 2n) = 9(Taq), - - - Tam)) -
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And L := Fix(S,,) is the field of symmetric functions, which contains F'(sq, . .., Sy).

So we have the diagram
M
L
F(s1,...,8n)

But then corollary 17.13 tells us that

L = Fix(S,) C Fix(Gal(M/F(sl, o sn))> = F(s1,...,5).

Therefore
L="F(s1,...,5,),
in other word, F'(s1, ..., sy) is the field of symmetric functions. Furthermore,
Gal(f) =S, .
As we saw in corollary 15.4, s1, ..., s, are algebraically independent. Tradition-
ally an equation like
f=0

where the coefficients are algebraically independent, is called a general equation

of the nth degree.
Remark 19.5. (1) As in exercise 15.11, let

0z, ..., x,) = H(mz — ;).

1<j

Then L(§) C M is invariant under A, and in fact,

Gal (M/L(8)) = A, .
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(i) Suppose n = 4. Set

y1 = (r1 + 22) (23 + 4)
Yo = (21 + x3) (22 + x4)
ys = (r1 + x4) (22 + 23)

Then it is not hard to see that
Gal (M/L(y1,y2,y3)) =V .

So we have the chain of field extensions with the corresponding subgroups
of Sy:

M {1}
L(y1,v2,93) V
L(9) Ay

L Sa

19.3 The Fundamental Theorem of Algebra

There are many proofs of the fundamental theorem of algebra, some algebraic,
some analytic, and some topological. In this section we shall give a proof which

uses Galois theory.

Theorem 19.6. Any polynomial f € C|x] splits in C.
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Proof. First of all, notice that we can assume that f has real coefficients. If not,
then consider ff € R[z]. If ¢ € Cis a root of ff, then it must be a root of f or
of f. In the latter case, { is a root of f. So if ff splits in C, then f does as well.
Thus we can always replace f by ff. We can also assume that deg f > 1.

Now let F be the splitting field of f over R. By exercise 16.9, [E : R] is even.
So Gal(f) has a non-trivial Sylow 2-subgroup, H;. Let K1 = Fix(H;). Then
[K : R]is odd. Therefore by exercise 16.9 again, K1 = R and Gal(f) = H;.
In other words, Gal(f) is a 2-group.

As we saw in exercise 11.8, a 2-group has a subgroup of index 2. So let Hj
be of index 2 in Gal(f). The intermediate field Ky = Fix(Hs) is a quadratic
extension of R. But according to exercise 16.1 the only quadratic extension of R
is C. Therefore Ky = C.
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Suppose that |Gal(f)| > 2. Then Hj is a 2-group, and it too has a subgroup
Hj of index 2. So K3 = Fix(H3) is a quadratic extension of C. But there are no
quadratic extensions of C. Therefore |Gal(f)| = 2 and E = C. In other words,
f splits in C. ]

19.4 Exercises
1. Let
h(z) = (2* + 12)(z + 4)(z + 2)x(z — 2)(x — 4) — 2 € Q] .

a) Show that / is irreducible. (Suggestion: use Eisenstein's critetion)
b) Plot h in the interval [—5, 5].

¢) Prove that h has exactly 2 non-real roots and therefore Gal(h) = S;.

2. Generalize the construction above to other primes p. You may find it useful

to plot examples to get a feel for what is going on.

3. Show that in 19.5(i)
Gal (M/L(0)) = A, .

4. Prove that in 19.5(1i)

Gal (M/L(yhyz, y3)) =V.

5. Let G be a group of order n. Show that there exists a subfield K C M

= F(x1,...,2,) such that

G = Ga(M/K).

6. Let F be an infinite field.

www . dbooks . org


https://www.dbooks.org/

362 CHAPTER 19. THE GENERAL EQUATION OF THE NTH DEGREE

a) Letn = 2. Show that for some a € F/,
M = L(z + axs) .

Suggestion: First note that there are only finitely many intermediate

fields between M and L. Conclude that for some a,b € F, a # b,
L(z1 + azy) = L(x; + bxy) .
b) Prove that for any n, there exists a rational function § € M such that
M = L(0),

in particular, that M /L is a simple extension.

¢) Let E/F be a finite extension. Prove that it is a simple extension.
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Solution by Radicals

In the 16th century, formulas which express the solutions of a cubic equation and
a quartic equation in terms of radicals were discovered. For two hundred years,
mathematicians wondered whether the same could be done for quintics. Around
1800 it was shown that this is impossible. In this chapter, we shall first see how
to write the solutions of a cubic in terms of radicals. Then we shall prove that for
an equation of degree 5 or greater, no such formulas exist in general. All fields

are assumed to be of characteristic 0.

20.1 Formulas for a Cubic

There are several ways to derive the formulas for the roots of a cubic. We shall
use Lagrange resolvents because they will come up again when we discuss equations
with cyclic Galois groups.

Suppose F'is a field and f € F[z] an irreducible cubic. According to exercise

16.10, we can assume that it is of the form
f(z) =2+ a1z +ap.

If a; = 0, then the roots are just the cube roots of —ag. So we will also assume
that a; # 0. We saw in Chapter 16, p.295, that the splitting field F of f is of
degree 3 over F'(4). We would like to express the roots of f in terms of the cube
roots of an element of F'(). A Lagrange resolvent does this, at least up to a cube

root of unity.

363
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Let

— 2mi/3 — 1 V-3

2 2
and let (1, (2 and (3 be the roots of f. Then the Lagrange resolvents are

w

G=0+e+E=0
& = (1 + wl + Wy (20.1)
3= G+ WG+ wis .

Then

E=G+G+G
+3w((GG+ GG+ GG)
+3w(GE + GG+ GO
+ 6¢12G3 -

2

By exchanging w for w?, we get a similar expression for £3. Now

§= (G — Q)G — )¢ —G)
= (CFGa + 3G + ¢3¢1) — (GG + 4G + Gs¢E) -

Since we can write

L=G+G+E

D) [(CG + Ca+ B+ (GG + G+ G

2
o - w)[(G6 + GG +E0) — (GF +6E +GE)] + 606G
and
wHwr=-1 w—w2:\/—_3,
we have

3 3
& = ; G -3 ; GGk + 6016aGa + 5 V=34 . 202
J
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The first three terms above are symmetric in (3, (2 and (3. We can therefore
express them in terms of the elementary symmetric polynomials, whose values

are —ao = 0, a1 and —ag:
2= —ad+ 3ajas — 3ag = — 3a
i = 2 102 0= 0
J

Z C]2Ck = —ajas + 3&0 = 3&0 .
i#k

Substituting into (20.2) gives

27 3
g 2433
2 2
Similarly,
27 3
é-g = —76L0 — 5\/ —35 .

So we can take cube roots of the right-hand sides of these two equations to obtain

&2 and &3.

27 3

{2 = \/—?ao +5vV=39 (20.3)
227 3

63 = \/—?ao — 5\/ —35

There are three choices for each cube root. But we must keep in mind that

$&=(G+G+E)+ (wHw) (Gl + GG+ Gé)
= (G+G+E) — (GG + GG+ és)

- —3(11 y

which we have assumed not to be 0. So each value of &5 determines a value of &3.

Lastly, we can recover the roots of f by inverting the system of linear equations
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20.1) :
1
G = g(fz +&3)
G = %(WQ& + wé3) (20.4)

(3= %(W& + w?&s) .

Choosing a different cube root in (20.3) means multiplying & by w (or w?) and
&3 by w? (or w). This does not change {(y, (o, (3}. These are Cardano's formulas

for the roots of a cubic. Notice that if w € F', then
E=F(5,&)=F(5,&) -
As was pointed out in exercise 17.7,
Gal (E/F(8)) = As,
which is cyclic of order 3.

Example 20.1. Take f(z) = 23 + x — 2. Then by exercise 16.11, § = 4y/—7,
which gives

£ =27+6V21 and & =27-6V21.

Taking the real cube roots, we have

:

€2 =\/2T+6V2] and & =7

Formulas (20.4) then give us the roots of f:

:

\/ 27 + 6v/2 \/ 27 — 6v/21 |

3

+
WA/ 27 4+ 6 w276
+

1

WA 27 + 6v21 +w?\/27 — 6

But obviously 1 is a root of f, and since

P rr—-2=@-1)(z*+2+2),
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the other two roots are just

_li_“’_?.
2 2

This makes it clear that Cardano's formulas can easily produce expressions for

the roots which are rather obscure.

20.2 Cyclic Extensions

In example 17.15 we calculated the Galois group of 2P — 2 over Q. The result is
that after adjoining the pth roots of 1 to Q, the Galois group is cyclic of order p.
This is typical.

Theotem 20.2. Let F' be a field of characteristic O and let f(x) = 2™ — a € F|x].
Suppose that ' contains the nth roots of 1. Then Gal( f) is cyclic and its order divides n.

Proof. Let E = Flx]/(2" —a). If { € Eisarootof f, thensoisw(,ifw € F
is an nth root of 1. Thus £ is the splitting field of f over F'.

Ifa € Gal(E/F), then avis determined by (¢). Furthermore, av(() must be
of the form w( for some nth root of 1, w. Therefore let us define o, € Gal(f)
by

() = w(,

where w is an nth root of 1. This defines a mapping

Un — Gal(f) )

(see example 6.8(iii)), which we already know is surjective. It is a homomorphism:

suppose that w; and wy are nth roots of 1. Then

Cyws (C) = (w1w2>< = Oy (Oéw2 (C)) .
So

Qlyrwy = Oy Oy -

Therefore Gal(f) is a quotient of a cyclic group of order n. So it too is cyclic,

and its order divides n. ]
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An extension E'/F, where F is the splitting field of a separable polynomial
in F[z], is called ¢yclic if Gal(E/F) is cyclic. If E/F is the splitting field of an
irreducible cubic as in the previous section, then E/F(0) is a cyclic extension.

We showed there that E = F'(0, &) with & € F(4). In general if E/F is cyclic,
then £ = F({/a) for some a € F. This can be proved as above by finding a
Lagrange resolvent £ with £" € F and E = F(§).

Definition 20.3. Suppose that E//F is a cyclic extension, and « is a generator
of its Galois group. Assume that [ contains n distinct nth roots of 1. Then for

¢ € Eandw € F, an nth root of 1, we define the Lagrange resolvent
(w,¢) = CF+wal(() +- - +uw" " () . (20.5)
Equations (20.1) give Lagrange resolvents for n = 3.

Theorem 20.4. et I be a field of characteristic prime to m, containing the nth roots of 1.
Suppose that E | F' is a cyclic extension. Then

E=F(Va),
Jor some a € F.

Proof. Let w be a primitive nth root of 1. First notice that

a((w, Q) = a() +wa?(Q) + -+ +w" ¢
= wil(w7 C) :

This implies that if (w, () # 0and 1 < ¢ < n then
a((w, Q) = w™ (W, ) # (W, )",

and therefore
(W, ) & F.

However,

a((w, C)n) = (wv C)n )
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so that
(w, Q)" € F.
Thus if (w, () # 0,
E=F((w,))
and we can take
a=(w,¢)".

It remains to show that  can be found with (w, ¢) # 0.
Now for each 7, 0 < i < n, we can replace w by w’ in (20.5). This gives us a

system of n equations:

(1,0) 11 1 ¢
wo | 1o« || e
(@10 1wt eyt ) a1

It is easy to see that

1 1 1
1 w Wt . )

, , = J[w —w*) #0
1 wn‘fl (wnf.l)nfl 7>k

-1

¢ 11 1 (1,¢)
a(¢) B 1 w ... ot (w, ¢)
a”f.l(o 1 wn.*l e (an'l)nfl (wn;l’ ¢)

It follows that if ¢ # 0, then for some 4, (w’, () # 0. Replacing w by w' if

necessary, we then have what we want. U

www . dbooks . org


https://www.dbooks.org/

370 CHAPTER 20. SOLUTION BY RADICALS

20.3 Solution by Radicals in Higher Degrees

The formulas (20.3) and (20.4) express the solutions of the cubic in terms of the
square roots of A € F and the cube roots of —(27/2)ag + (3/2)vV—3 VA €
F(V/A). Can one find similar formulas for equations of higher degree? In other
words, can one build up an expression for the solutions by starting with an mth
root of an element a € F, then taking an nth root of an element b € F( 1/a),
and so on? In terms of the splitting field of the equation, this means that it should

be built up as a sequence of 'radical' extensions:

E

F(§/a)(V/b)

F(Va)
!

Example 20.5. Let f(z) = 2% — 42° + 1 € Qlx]. First note that g(y) =
y?> — 4y + 1 has roots 2 + /3. Therefore the roots of f are the cube roots of
2+ /3 and 2 — V3. Now

1 3/ 1
2_\/5_2_1_\/5 and Z—ﬁ—S—m

3
(cf. exercise 15.9). Therefore the splitting field of f is Q(\/ 2+ /3, w) , where

w is a primitive cube root of 1. This can be built up as
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Q (\/3 2+\/§,w)

As mentioned at the beginning of this chapter, this can be done in general for
quartics, but not for equations of degree greater than 4. More precisely, we shall
prove that for the general equation of degree greater than 4, that is one whose
Galois group is Sy, no such formulas can exist. In fact, it can be shown that if
such formulas do exist for a specific equation of degree p, where p > 5 is prime,
then its Galois group must be a subgroup of the Frobenius group F(,_1),. Since
the Frobenius group is a rather small subgroup of S, this result suggests that
the general equation of degree 5, say, is very far from being solvable by radicals.

First we need to know that we can assume that the base field /' contains all

the roots of unity that we need.

Lemma 20.6. Suppose f € Fx| and let E be the splitting field of f. et w be a primitive
mith root of 1. Then

Gal (E(w)/F(w)) = Gal (E/E N F(w))

and

Gal (E/EN F(w)) < Gal(E/F) .

Proof. Here is a picture of the field extensions:
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E(w)
/ \
E
\ F(w)
/
ENF(w)

F

Since E/ F is the splitting field of f we have a surjective homomorphism
tes : Gal (E(w)/F) — Gal(E/F)

by theorem 17.17. It is defined by restricting an element of Gal (E (w)/F ) to I,
and thus its kernel consists of automorphisms whose restriction to F is trivial.

Now Gal (E(w)/F(w)) C Gal (E(w)/F) and the composed mapping
Gal (E(w)/F(w)) < Gal (E(w)/F) — Gal(E/F) ,

is injective: an automorphism of E(w) which is trivial on F'(w) and on F, is
trivial. Furthermore, the image H lies in Gal (E/E N F(w)). We want to see
that it is all of Gal (E/E N F(w)). Suppose ¢ € E is fixed by H. If we regard
( as an element of E(w) this means that it is fixed by Gal (E(w)/F(w)), and
therefore lies in F'(w). So ¢ € E'N F(w) and

Fix H=ENF(w).

It follows that
H=Gal (E/ENF(w)) .

To see that it is a normal subgroup of Gal(E/F), take 8 € Gal (E/E N
F(w)) and a € Gal(E/F). Choose ' € Gal (E(w)/F(w)) and
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o' € Gal(E(w)/F) such that
res(d’) =a and res(f') =p.

Then
o/f'a’ ™t € Gal (E(w)/F(w))

since Gal (E(w)/F(w)) 4 Gal(E(w)/F). Therefore
afa”! € Gal (E/EN F(w)),

and

Gal (E/ENF(w)) < Gal(E/F) .

Corollary 20.7. If E ¢ F(w) and if Gal(E | F) is a simple group, then

Gal (E(w)/F(w)) = Gal(E/F) .

373

We can now prove the theorem itself. The heart of the proof is the fact that

A, is a simple group if n > 5.

Theotrem 20.8. et f € F[x] be an irreducible polynomial of degree n > 5 with Galois

group Sy. Then f cannot be solved by taking radicals.

Proof. Let E be the splitting field of f over F. Suppose that f can be solved by

radicals. First we adjoin 0, the square root of the disctiminant, to F. By theorem

17.18 we know that

Gal (E/F(8)) = A, .

So we have the diagram:
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Suppose that the next step is to adjoin y/a to F(d). Thus F(d, V/a) is
a subfield of E. We can assume that F' contains m distinct mth roots of 1.
Otherwise we adjoin w, a primitive mth root of 1 and replace F' and F by F'(w)
and E(w) respectively. Then by the lemma, Gal (E(w)/F((S, w)) = A,. Set

H =Gal(E/F(5, Va)) .

Since F'( y/a, ) is the splitting field of ™ — a over F'(0), by theorem 17.17, H

is a normal subgroup of 4,,, and
Gal (F(6, Va)/F(5)) = A,/H .

Here is the diagram:

But as we saw in theorem 12.7, A,, is simple for n > 4. This means that either

H = A,and F (8, Y/a)/F(6) s trivial, or H is trivial and A,, = Gal (F(0, Va)/F(9)),
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which is cyclic. Both are impossible. Therefore f cannot be solved by taking rad-
icals. U

Corollary 20.9 (Corollary to Proof). IfGal(f) = A, n > b, then f is not solvable
by radicals.

One can go further and characterize algebraically the Galois groups of poly-

nomials which can be solved by radicals. They are a class of groups called so/vable

groups.

Definition 20.10. A group G is solvable if it has a composition series
G=Hy>H>--->H, 1> H,={1}

where H;/H; 1 is a cyclic group of prime order, for 0 < i < n.

These turn out to be of great significance in group theory as well.

20.4 Calculations

Mathematica has a built-in function Solve for solving equations (algebraic or oth-

erwise). It manages to avoid some of the foibles of Cardano's formulas.

Examples 20.11. (i) In[1]:= Solve[ x™3 - 3x + 5

== ,X]

Out[1]= {{x — - (5%@)1/3 - (%(5 — @))1/3 }
{x- %(1+i\/§) (%(5—\/5))1/3
N 1—1i/3 }
22/3(5_\/5)1/3 )

[ l1-1v9) (%(5 - @))”3

1+1iy/3
+22/3(5 . @)1/3}}
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(ii) In[2]:= Solvel x™4 - 3x + 3 == 0, x ]

Out [2]= {{x — 123 — %\/3—21\/5},

{x—> 123 +%\/3—2i\/§},
{x—> V3 l\/3—21\/5},
{

2 2

iv/3 1
x—>—1\2/_+5 3—21\/5}}

20.5 Exercises

1. Find the roots of z° — 3x + 3.

2. Let w be a primitive nth root of 1. Show that

1 1 1
1 w w1 .

- I
1 wn—l (wn—l)n—l nzk>j>1

3. Suppose that I is an extension field of F' and that £ does not contain any

mth roots of 1. Let w be a primitive mth root of 1 in some extension of F'.

Prove that

4. Find the minimal polynomial of cos(27/11). Show that its Galois group is

cyclic of degree 5. Prove that it can be solved by radicals.
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5. Let f(z) = 2% — 22" — 2 € Q[z]. Determine the splitting field E of f.
Prove that f can be solved by radicals by showing how E' can be built up as a

sequence of radical extensions.

6. Find the Galois group of f(x) = 2% — 322 + 1 € Q[x]. Show that f can be

solved by radicals.

7. A normal seties for a group G is a sequence of subgroups
G=HyvHi>--->H, 1> H,={1}.

Prove that a finite group G is solvable if and only it has a normal seties where
all the factors H;/H;11,0 < j < n, ate cyclic. Prove that this also holds if

and only it has 2 normal series where all the factors H;/H;1 are abelian.
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21

Ruler-and-Compass Constructions

21.1 Introduction

In this chapter we are going to look at geometric constructions you can make
with a ruler and compass. To be more precise, we should say straight edge and
compass, because we are only using the ruler to draw straight lines, not to make
measurements. It is not hard to bisect a line segment or an angle. You can also
construct an equilateral triangle or a square. But can you trisect an angle? What
other regular polygons can you construct?

Such geometric constructions can be translated into algebraic problems in-
volving the solution of polynomial equations. As an example, let's look at the
question of trisecting an angle. Suppose we want to trisect an angle 7,0 < 7 <
/2. We put the vertex of the angle at the point (0, 0) and one arm along the

x-axis. The other arm then passes through the point (cos 7, sin 7). Since
sinT = V1 —cos? T,

the angle is determined by the real number cos 7. Similatly, the angle 7/3 can be

measured from the z-axis and then it is determined by cos(7/3).

Now we have the well-known triple angle formula:
cosT = cos 3(7/3) = 4 cos®*(7/3) — 3 cos(7/3) .
In other words, cos(7/3) is a solution of the real cubic

42 —3x —cosT =0.

379
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(cosT, sinT)

(cos(T/3), sin(T/?)))

T/3

Figure 21.1: Trisection of an angle

Trisecting the given angle T is equivalent to solving this equation.

We are going to see that with ruler and compass we can perform construc-
tions which solve sequences of quadratic equations, but not cubic equations. For
this reason, trisecting an angle with such constructions is in general impossible.
Of course there are special angles, like /2, which you can trisect in this way.

The fundamental criterion for constructibility in the next section only uses
the results on field extensions from chapter 16. It does not need any Galois the-
ory. The discussion of periods and explicit equations arising in the construction

of regular polygons in the following section does use Galois theory.

21.2 Algebraic Interpretation

We imagine that to start, we are given some points in the plane and some lengths.
Given a point we can construct its projections on the - and y-axes, in other
words, its coordinates. Conversely we can construct a point from its z- and y-
coordinates. So we can assume that our given data simply consists of some real
numbers a1, . . ., a,. For the same reasons, when we ask what can be constructed

from this data, we need only look at the lengths that can be constructed. We
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assume that we have chosen a unit length. Then let L C R be the set of all

lengths that can be constructed with ruler and compass.
Theotem 21.1. L is a field containing Q(ay, . .., a,). If b € L, then Vb e L.

Proof. It is clear how to add two given lengths using a compass, or how to subtract
one from the other. How can one multiply two lengths by and be? Matk the unit

length on the x-axis, and the length by on the y-axis. Join the two points.

b1 o

by

1 by

Now mark the length by on the x-axis. Draw a line through this point parallel to
the first line. It will meet the y-axis at the point byby. To construct by /by, switch
the roles of 1 and b,. Therefore L is a field. Since it contains aq, ..., a, and
contains Q, it contains Q(ay, ..., a,).

To construct the square root of a given length b, mark 1 and 1 + b on a line.
Draw a semi-circle with diameter 1 + b. Draw the perpendicular from the point

1 to the semi-circle, and let its length be c.

The hypotenuses of the two right-angled triangles on the diameter are v/1 4 ¢2
and Vb2 + 2 as shown. But the large triangle is also right-angled. Therefore

(1+)+ (*+ ) = (1+b)*,
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Vit c

0 1 1+0b

which implies that

c=Vb.
[]

For example, in exercise 16.4 you saw that the minimal polynomial of cos(27/5)
1s
40* 422 — 1.
Therefore
VE-1
1

and we can construct cos(27/5) with ruler and compass. This is the essential

cos(2m/5) =

step in constructing a regular pentagon. In [6], chapter 2, there is a more direct
construction.

This theorem can be interpreted in the following way. Suppose ' C L is
a subfield and b € F. Then any length in F/(v/b) is constructible. So if a real
number ( lies in an extension field of Q(ay, ..., a,) which can be built up as
a sequence of quadratic extensions, then ¢ is constructible. On the other hand,
suppose that we have a construction that starts with ay, ..., a, and gives us a

length ¢ € L. It is built up out of three basic steps:
(i) intersect two lines;

(i) intersect a line with a circle;



21.2. ALGEBRAIC INTERPRETATION 383

(i) intersect two circles.

From an algebraic point of view, we are beginning with the base field Q(ay, . . ., a,)
and each step gives us a field extension. Let's analyze what sort of extension we
get in each case.

Let I be a subfield of R containing ay,...,a,. Suppose we have a line
passing through two points whose coordinates lie in /. Then its equation will be
of the form

ar+by+c=0,

where a, b, c € F. If we have a second such line,
dr+ey+ f=0,

then the solution (z, y) of the pair of equations is the point of intersection. And
2 and y belong to [. So when we intersect two lines we make no field extension.
Next suppose we are given a circle whose radius is in F', and whose centre is

a point with coordinates in F'. Then it has an equation of the form
P4yt ddrtey+f=0,
where d, e, f € F'. If it meets a line
ar+by+c=0,

a,b,c € F, then to find the coordinates of the two points of intersection, we
solve the linear equation, for  say (assuming that @ # 0), and substitute into the
quadratic. This gives us a quadratic equation in one variable y. If we adjoin a
square root of its discriminant A to F' then the two solutions for y, and the cor-
responding values of z lie in F’ (\/Z) So constructing the points of intersection
of a circle and a line corresponds to making a quadratic extension.

Lastly, suppose we ate given two circles, determined by data in /', which meet:

P4yt tar+by+c=0
Py rdrtey+f=0,
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a,b,c,d,e, f € F. Subtracting, we get the equation
(a—d)x+b—-—ey+(c—f)=0.

A common solution of the two quadratic equations is a solution of the linear
equation. Therefore the linear equation gives the line passing through the points
of intersection of the two circles. So finding the points of intersection of two
circles can be reduced to finding the intersection of a circle and a line. Therefore,
the coordinates of the points of intersection will lie in a quadratic extension of
F too.

Summarizing, we have the following result:

Theotem 21.2. Givenay, . .., a, € R, we can construct a real numberC fromay, . . ., a,
using ruler and compass if and only if C lies in an extension E |Q(aq, . . ., a,) which can be

built up as a sequence of quadratic extensions.

Corollary 21.3. If ( is constructible, then (Q(aq, . ..,a,,C) : Q(ay,...,a,)] isa
power of 2.

Proof. Tf ( is constructible, then ( € F, where F is an extension of Q(ay, . . ., a,),

which can be built up as a sequence of quadratic extensions. Thus

[@(al,...,aT,():@(al,...,aT)]‘[E:Q(al,...,ar)] =2k,

for some k > 0. [

Examples 21.4. (i) Suppose that we want to trisect the angle 7/3. As dis-
cussed in the introduction, we begin with cos(7/3) = 1/2 € Q. We want

to construct cos(m/9), which is a root of
4o° —3x —1/2=0.
It is not hatd to see that this polynomial is irreducible over Q. Therefore
[Q(cos(m/9)) : Q] =3.

The theorem then tells us that cos(7/9) is not constructible.
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(i) Suppose we want to duplicate the cube. This means that we begin with a
cube with unit volume, and want to construct one with volume 2. So the
sides of the new cube must have length \3/5, and this is the number we

want to construct. But
[@(v2) : Q] =3.

Therefore v/2 is not constructible, and it is not possible to duplicate the

cube with a ruler-and-compass construction.

21.3 Construction of Regular Polygons

If we inscribe a regular n-gon P, in the unit circle about the origin in R2, with

one vertex at the point (1, 0), then the other vertices lie at the points
{ (cos(2mk/n),sin(27k/n)) |0 < k <n} .

If we can construct (cos(27r/n), sin(27r/n)) then we can construct the other
vertices from it. This is the case precisely when its components are constructible.

Since

sin(27/n) = /1 — cos2(2n/n) ,

we see that sin(27/n) is constructible if and only if cos(27/n) is. In exercise

17.11 you saw that

[Q(cos(2m/n)) : Q] = p(n)/2.

Therefore by corollary 21.3, if P, is constructible, ¢(n) must be a power of 2.

Conversely, suppose that ¢(n) is a power of 2. Since
p(n) = [En: Q = |Gal(®,)]

and

Gal(®,) = (Z/nZ)*
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this tells us that Gal(®,) is an abelian 2-group (see p.317). Therefore
Gal(Q(cos(27m/n))/Q) is as well. Then it follows from the first Sylow theo-
rem (see exercise 11.8) or from the classification of finite abelian groups, that

there is a chain of subgroups
{1} =Gy<Gi < <G, :=Gal (Q(cos(?ﬂ/n))/@) ,

where G;/G_1 has order 2, for all j > 1. Corresponding to this is a tower of

quadratic extensions
Q(cos(2m/n)) D Fix(G1) D - D Q.

Therefore by our criterion for constructibility, cos(27/n) is constructible.

So when is ¢(n) a power of 2? In exercise 5.24 , we found that if
e
with py, ..., p, distinct primes, then
p(n)=p (o1 = 1) o, — 1)
So ¢(n) is a power of 2 if and only if n factors as
n=2p - p,

where pi, — 1 is a power of 2 for each k. The question is then: for which primes
pis p—1apower of 2? It is not hard to show that if 2! + 1 is prime, then [ = 2™

for some m. Primes of the form
22m —|— 1 :

m > 0, are called Fermat primes. Here is a table of the first five:
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For m = 5, we do not get a prime:
2% 41 = 641 - 6700417 .

Constructions of the corresponding regular polygons are known form = 1, 2, 3, 4.
One for the regular 17-gon is given in [6], chapter 2, as well as a pretty proof that
641 divides 22" + 1.

21.4 Periods

By looking closely at the cyclotomic extension Ej7/Q one can give an explicit
sequence of quadratic extensions which start with Q and end at Q(cos(27/17)).
This is done by looking at the periods of a primitive 17th root of 1 in Ey7.
In general let p be a prime, p > 2, and let w be a primitive pth root of 1. We
know that
Pp(z)=a"'+- - 4a+1,

and that
G = Gal(®,) = (Z/p2)" |

which is cyclic. Let H be a subgroup of G of order h. Define the period
wy = Zﬁ(w) S

If a € G is a generator with

For convenience we shall set

Wg = W(ak) = Wy .
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Theorem 21.5.
Fix(H) = Q(wm)

Proof. First, if v € H, then
Ywm) = 1Bw) = Y Blw) =wn
BeH BeH
Therefore
@(WH) C FlX(H) .
On the other hand, suppose v ¢ H. The set {S(w) | B € G} is just the set of

all primitive pth roots of 1, which is lineatly independent over Q. Since
YyHNH=10,

it follows that
Ywn) =D Bw) # Y Blw) =wy .
peH peH
Therefore
Gal (E,/Q(wy)) C H ,

which implies that

Q(wpy) D Fix(H) .
So we have

Q(wg) = Fix(H) .

O]

Now let f € Q[z] be the minimal polynomial of wy. It has degree
|G : HJ. For vy € G, y(wg) is a root of f. Therefore as v runs through a
set of representatives of the cosets of H in GG, we get a complete set of roots of
f. They are of the form

V(wn) = Z’Yﬁ(w) ;

peH

and are called the h - fold petiods of the cyclotomic field.
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Examples 21.6. (i) Take p = 7. So Gal(®7) is cyclic of order 6. It has
two non-trivial subgroups, one of order 2 and one of order 3. Let w be a

primitive 7th root of unity. A generator of Gal(®7) is
arwes W
The subgroup H of order 2 is generated by a®. We have
wy = w+ o’ (w) =w+ w® =2cos(27/7) .
It satisfies a cubic equation over QQ:

(w+w)?=2+w? +u°
(w4 w)? = 3(w + ) + w® +w*,

and therefore
W+ + (w+uw)?—2w+w’)—-1=0.
The other roots of 23 + 22 — 2z — 1 are
a(w) + at(w) = w® +w! and (W) +a’(w) = w? + W’ ,

corresponding to the cosets «H and a*H. These are the three 2-fold

petiods of Ex.
The subgroup of order 3 is generated by a?, and the 3-fold periods are

w+ (W) +aot(w) =w+w +w?

+
a(w) + a?(w) + a®(w) = w* + Wb + W .
They are the roots of the quadratic equation:

24+r+2=0.
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(i) Take p = 17. Then G := Gal(P7) is cyclic of order 16. It has non-trivial

subgroups of order 2, 4, and 8. If w is a primitive 17th root of 1, then
awe W

is a generator of G. Here is the chain of subgroups with the corresponding

tower of quadratic field extensions.

{1} Q(w)

(@®) Q(ws)

(o*) Q(ws)

(o?) Q(w2)
G Q

Now

wr =w+w! +w? +w® + 0%+ w4+ w?

which is a root of

2+ —4 € Q.
The other 8-fold period is
alws) = w? + W + W + WM + WM + T+ W+ W

Next,
wi=w+w?+wl4+ut,

which is a root of
2 —wir —1 € Q(wy),
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together with

?(wy) = w0 + WP +wd +w?.

The field Q(w,) also contains o(wy) and a®(wy). (These four are the roots

of the minimal polynomial of w4 over Q). Thirdly,
wg = w + w'® = 2cos(27/17)

is a root of

2% — wyr + a(wy) € Qwy) .

Lastly, w is a root of

2 —wsr + 1.

By theorem 21.2, cos(27/17) can be constructed with ruler and compass

and therefore so can the regular 17-gon.

21.5 Exercises

1. a) Prove that

cosnt = f(cosT),

for some f € Q[x].

b) Show that the equation
flx) =y

can be solved by radicals:

2. Beginning with a unit length, use ruler and compass to construct lengths

D) V1+4v2
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10.

11.

b) V7
Prove that 423 — 3x — 1/2 € Q[z] is irreducible.

Show that it is not possible to construct a regular 9-gon or 11-gon with ruler

and compass.
Find the minimal polynomial of cos(27/7) over Q.
Prove that if 2 + 1 is prime, then [ = 2™ for some m.

Show how to construct a regular hexagon with ruler and compass. Suppose
you can construct a regular n-gon, for some n. Give a construction for a

regular 2n-gon.

Give a ruler and compass construction for a regular 15-gon. Can you gener-

alize this?

Calculate the periods of the subgroups of Gal(®13). Compute their minimal

polynomials over Q.
What is the minimal polynomial of w4 over QQ in example 21.6(ii)?

Let w be a primitive pth root of 1, where p is an odd prime.

a) Show that Q(w)contains exactly one quadratic extension K /Q.
b) Prove that L = Q(,/p) if p=1 (mod 4).

¢) Prove that L = Q(y/—p) if p =3 (mod 4).
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Mathematica Commands

Here is a list of the Mathematica commands introduced in the packages 'Groups.m'

and 'Quartics.m' with their usage statements.

Dot

M[al,. . . ,an] is the permutation which maps
ltoal,...,ntoan.

Dot [a,b], ora .b, where a and b are matrices or
permutations (of the same type), returns the per-
mutation mapping 1 to a(b(i)).

Dot [X,Y], where X and Y are lists of permuta-
tions, returns all products a.b as a ranges over X
and b over Y.

Dot [a,G], or a .G, where a is a permutation and
G is a group returns the list of elements of the left
coset. Similarly, G. a returns the right coset.
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Inverse

Group

Elements

Generators

Order

ChoosePrime

Orbit

APPENDIX A. MATHEMATICA COMMANDS

Inverse[a] is the inverse of the permutation or
matrix a.

P[{al,. .. ,am},{bl,. . . ,bn},. . . ] is

a permutation in cycle form.

Groupl[a,b,. . . ] returns the group generated
by the elements {a, b, . . . }.

Elements [G], where Gis a group, returns the list
of elements in G.

Generators [G], where G is a group, returns the
list of generators defining G.

Order [a] returns the order of the matrix or per-
mutation a, i.e., the smallest positive integer such
that a™ is the identity.

ChoosePrime [p] sets p to be the current ambi-
ent prime.

L{{al1,. .. ,aln},. . . {anl,. . . ,ann}]
is a matrix over I,,, where p is the current prime
chosen (see ChoosePrime).

Orbit[a,x], where a is a permutation and X is
an integer, or a is a matrix and X is a vector, returns
the orbit of x under a.

page 43

page 43

page 45

page 45

page 45

page 45

page 58

page 59

page 124



Stabilizer

CycleTypes

ConjugacyClass

Centre

LFTPermutation

LeftCosets

LeftCosetReps

RightCosets

RightCosetReps

Stabilizer[G,x] returns the subgroup of G
fixing x.

CycleTypes [G] returns a table of frequencies of
cycle types in G.

ConjugacyClass[G,a] returns the conjugates
of a by elements of G.

Centre[G] returns the centre of the group G.

LFTPermutation[a], where a is a matrix over
F,, returns the corresponding linear fractional
transformation of P(FF,) as a permutation of

0,...,p—1,00).

LeftCosets[G, KI, where G is a group with
subgroup K, returns a list of the left cosets of K
in G with K itself as the first coset.

LeftCosetReps [G, K], where G is a group with
subgroup K, returns a list of representatives of the
left cosets K in G. It consists of the first elements
in each coset as given by LeftCosets.

RightCosets[G, K], where G is a group with
subgroup K, returns a list of the right cosets of K
in G with K itself as the first coset.

RightCosetReps[G, K], where G is a group
with subgroup K, returns a list of representatives
of the right cosets K in G. It consists of the first el-
ements in each coset as given by RightCosets.
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Conjugate Conjugate[a,b] returns a.b.Inverse[a].

ConjugateSubgroups ConjugateSubgroups[G,H], where Gis a
group with subgroup H, returns the number of
subgroups of G conjugate to H.

CubicResolvent CubicResolvent[f] returns the cubic resol-
vent of a quartic £ and determines its Galois

group.

QuarticPlot QuarticPlot [f] plots the pencil of conics as-
sociated to a quartic £ whose roots are real.

page 166

page 187
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page 352
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Euclidean algorithm, 9, 86

for polynomials, 229
evaluation map, 133, 151, 249, 284
extension field, 283

finite, 286

simple, 283, 362

Fermat primes, 386

Fermat's little theorem, 155, 300
Fibonacci numbers, 309

field, 17, 242, 246

automorphism, 244, 263, 315, 318

characteristic of, 244
cyclotomic, 300, 317, 387
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finite, 263, 300
fixed, 315, 324
intermediate, 323
multiplicative group, 66, 233, 264
prime, 244, 263
rational functions, 245, 268
splitting, 290, 315, 321
symmetric functions, 268
finite extension, 286
finitely generated group, 203
First isomorphism theorem, 162
fixed field, 315, 324
fixed points, 143
fractional linear transformation, 119,
128
free abelian group, 203
Frobenius group, 63, 125, 132, 172,
371
Frobenius homomorphism, 265, 334
Fundamental theorem
of algebra, 281, 355, 359
of arithmetic, 235
of Galois theory, 329

of symmetric polynomials, 271

Galois correspondence, 327
Galois group, 110, 315
general linear group, 52
generators

A, 47,49,194

B,, 89
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Flp-1)p, 63
GL(2,F), 55
GL(2,F5), 57
GL(2,F,), 57
SL(2,F), 63
SL(2,7Z), 86
SL(2,F,), 196
Sh, 39
of a group, 39, 55, 85
greatest common divisor, 9
of polynomials, 229, 257
group, 65
abelian, 70, 159, 203
free, 203
torsion subgroup, 204
action, 113
alternating, 37
automorphism, 80
braid, 68, 89
centre of, 117, 127
commutative, 70
cyclic, 38, 55, 84, 154, 233
dihedral, 100, 130, 143
direct product, 75

finitely generated, 203

Frobenius, 63,125, 132,172, 371

Galois, 110, 315
general linear, 52
generators, 39, 55
Heisenberg, 131, 173

homomorphism, 73

INDEX

isomorphism, 74
linear, 52, 66, 81
of units of a ring, 242
order, 37,52, 72
orthogonal, 82
permutation, 606, 81
transitive, 116, 131, 343
projective linear, 164
quaternion, 63, 171
quotient, 159
simple, 192, 374
solvable, 375
special linear, 52
special orthogonal, 82
symmetric, 36

trivial, 68

Heisenberg group, 131, 173
homomorphism

group, 73

image, 90

kernel, 90

ring, 242
hyperbolic plane, 123

ideal, 264

image, 90

improper symmetry, 106
index, 153

integers modulo n, 15
intermediate field, 323
irreducibility tests, 238--241
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irreducible polynomial, 234
isometry, 67, 82, 123
isomorphism

canonical, 160

group, 74

ring, 243

kernel, 90

group action, 124

Lagrange resolvents, 363
Lagrange's theorem, 153, 155, 175
lattice of subgroups, 154

leading coefficient, 227

least common multiple, 12
lexicographical order, 270

linear group, 52

mapping notation, 25, 42

minimal polynomial, 284

monic polynomial, 229

multiplicative group of a field, 66, 233,
264

Newton's identities, 274
normal subgroup, 157, 166

normalizer, 179

orbit, 115, 124, 133

order
GL(2,F,), 54
SL(2,F,), 163
element, 38, 54, 72, 154
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group, 37, 52, 72
orthogonal group, 82

orthogonal matrix, 82

p-adic expansion, 219
p-group, 139, 175
partition, 119
period
length, 8, 72
of 1/n, 8,18, 22
periods, 387
permutation, 25
even, 31
odd, 31
sign of, 31
permutation group, 36, 124
transitive, 116, 131, 343
polynomial, 227, 267
common divisor, 229
cyclotomic, 296, 306
degree, 227, 267
Euclidean algorithm, 229
greatest common divisor, 229, 257
irreducible, 234, 236, 246
leading coefficient, 227
long division, 228
minimal, 284
monic, 229
reducible, 234
root of, 232
separable, 323
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symmetric, 268
power sums, 274
prime field, 244, 263
projective line, 119
projective linear group, 164

proper symmetry, 101

quartic equations, 278, 375
quaternion group, 63, 171
quotient group, 159
quotient ring, 245, 264

rank, 204, 212
rational function, 244, 268
reciprocal polynomial, 279
reducible polynomial, 234
reflection, 35, 83, 106
relatively prime, 12
polynomials, 232
rigid motion, 67
ring, 242
commutative, 242, 267
group of units, 242
homomorphism, 242
quotient, 245, 264
root
of a polynomial, 232
root of unity, 91, 296, 387
primitive, 296

rotatory reflection, 106

Second isomorphism theorem, 174

INDEX

separable polynomial, 323
sieve, 240
sign

of a permutation, 31
simple extension, 283, 362
simple group, 192, 374
solvable group, 375
special linear group, 52
special orthogonal group, 82
splitting field, 290, 315, 321
stabilizer, 115, 125, 133
subfield, 283
subgroup, 81

commutator, 223

index, 153, 158

lattice, 154

normal, 157, 159, 166

Sylow, 175, 360
Sylow p-subgroup, 175, 360
symmetric function, 268
symmetric group, 36
symmetric polynomial, 268

elementary, 269
symmetry

improper, 106

proper, 101

torsion, 204
transcendental, 285

number, 285

transitive group action, 116
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transposition, 30
Tschirnhausen transformation, 307,
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word, 85
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